

1ST QUARTER 2014 GROUNDWATER MONITORING REPORT FORMER WESTERN FORGE & FLANGE FACILITY 540 CLEVELAND AVENUE ALBANY, CALIFORNIA RO#3009

RECEIVED

By Alameda County Environmental Health at 2:12 pm, Apr 10, 2014

PREPARED FOR:

Mr. Walter R. Pierce Western Forge & Flange 687 County Road 2201 Cleveland, Texas 77328

PREPARED BY:

Ninyo & Moore Geotechnical and Environmental Sciences Consultants 1956 Webster Street, Suite 400 Oakland, California 94612

> April 7, 2014 Project No. 401823001

1956 Webster Street, Suite 400 • Oakland, California 94612 • Phone (510) 343-3000 • Fax (510) 343-3001

April 7, 2014 Project No. 401823001

Mr. Walter R. Pierce Western Forge & Flange 687 County Road 2201 Cleveland, Texas 77328

Subject: 1st Quarter 2014 Groundwater Monitoring Report Former Western Forge & Flange Facility 540 Cleveland Avenue Albany, California RO#3009

Dear Mr. Pierce:

Ninyo & Moore is pleased to present this 1st Quarter 2014 Groundwater Monitoring Report for the property located at 540 Cleveland Avenue in Albany, California. This report documents the recent groundwater monitoring well sampling activities, laboratory analytical results, and our conclusions and recommendations regarding the environmental status of the site.

Should you have any questions regarding this report or need additional information, please contact the undersigned at your convenience.

Sincerely, NINYO & MOORE

Cem R. Atabek Senior Project Environmental Engineer

CRA/KML/caa

Distribution: (1) Addressee (1) Mark E. Detterman, ACEH

onal Kristopher M. Larson 8059 Calif

Kris M. Larson, PG 8059 Principal Environmental Geologist

April 7, 2014 Project No. 401823001

To: Mr. Mark E. Detterman Alameda County Environmental Health Department Health Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Perjury Statement 1st Quarter 2014 Groundwater Monitoring Report 540 Cleveland Avenue Albany, California 94706

I declare, under penalty of perjury, that the information or recommendations contained in the attached report are true or correct to the best of my knowledge.

It. R Paris

Walter R. Pierce President and CEO Western Forge & Flange Company

TABLE OF CONTENTS

Page

1.	INTRODUCTION	1
2.	SITE BACKGROUND	1
	2.1. Site Description	1
	2.2. Site Geology and Hydrology	1
	2.3. Previous Environmental Assessments and Remedial Action	3
	2.4. Cleanup Goals (CGs)	4
	2.5. Monitoring Well Sampling	5
	2.5.1. Groundwater Sample Analysis	5
	2.6. Groundwater Depths, Elevations, Flow Direction, and Gradient	б
	2.7. Groundwater Monitoring Analytical Results	б
	2.7.1. TDS	б
	2.7.2. Metals	7
	2.7.2.1. Arsenic	7
	2.7.2.2. Copper	7
	2.7.2.3. Lead	7
	2.7.2.4. Molybdenum	7
	2.7.2.5. Nickel	8
	2.7.2.6. Vanadium	8
	2.7.3. TPHho	8
	2.7.4. PAHs	8
3.	CONCLUSIONS AND RECOMMENDATIONS	8
4.	LIMITATIONS	9
5.	REFERENCES	2

Tables

- Table 2 Analytical Results for Metals and Total Dissolved Solids
- Table 3 Analytical Results for TPHho and PAHs

Figures

- Figure 1 Site Location
- Figure 2 Groundwater Gradient and Analytical Results Which Exceeded Cleanup Goals or Drinking Water ESLs – March 24, 2014

Appendices

- Appendix A Field Data Sheets
- Appendix B Laboratory Analytical Report

1. INTRODUCTION

Ninyo & Moore has prepared this 1st Quarter 2014 Groundwater Monitoring Report to document the groundwater monitoring activities recently performed at the former Western Forge & Flange facility located at 540 Cleveland Avenue in Albany, California (site). The groundwater monitoring activities were performed in general accordance with the guidelines presented in Ninyo & Moore's Revised Data Gap Investigation Report and Corrective Action Plan (CAP) dated May 15, 2013, and CAP Addendum dated July 22, 2013, which were approved by Alameda County Environmental Health (ACEH) in an e-mail dated October 14, 2013.

2. SITE BACKGROUND

The following sections describe the location, description, and historical background of the site.

2.1. Site Description

The subject site is located at 540 Cleveland Avenue in Albany, California (Figure 1). The site is located in a commercial/industrial area of Albany between the Interstate 80 and 580 Freeways, and immediately east of a Union Pacific Rail Road (UPRR) right of way (Figure 2). The site is bordered to the north by a heavy industrial property (Albany Steel), to the south by a commercial building (currently occupied by the City of Albany and used as a maintenance yard), and to the east by Cleveland Avenue. The site is approximately 1.0 acre and recently consisted of an approximately 25,000 square-foot building with concrete and asphalt paved areas. Western Forge & Flange manufactured flanges at the site from 1944 until it moved operations to Texas in 2007. The site building and the majority of pavement surfaces were demolished and removed in June and July of 2013. Several subsurface concrete pits were also demolished during building demolition activities.

2.2. Site Geology and Hydrology

The site is located within the Coast Range Geologic Province. The San Francisco Bay and Bay margin geology was formed by a series of Mesozoic and Cenozoic aged oceanic crust

and volcanic arc terranes accreted to the continent. Uplift also occurred due to transpression along the Hayward Fault Zone during the Cenozoic. Bedrock geologic units include Jurassic Coast Range Ophiolite, Late Jurassic-Early Cretaceous Franciscan Complex and Knoxville Formation, and the Late Cretaceous Great Valley Sequence. Late Quaternary deposits consisting of Pleistocene to Holocene alluvial fan deposits overly the bedrock formations within the site area.

The ground surface elevation of the site ranges from approximately 12 to 16 feet above mean sea level (MSL), and ground surface is gently sloped towards the west-southwest. The site sedimentology observed during excavation activities consisted of approximately 2 to 6 feet of fill material over laying native silty clay (bay mud) deposits. The margin of the San Francisco Bay historically crossed through the site, with the western portion of the site historically being tidal wetlands. Fill material was observed to be thinner (extending to approximately 2 feet below ground surface [bgs]) in the central portion of the site, and thicker (extending to approximately 6 feet bgs) in the western portion of the site. The upper 1 to 2 feet of fill material was observed to generally consist of dark gray silt with sand and clay. Bricks, concrete rubble, and other debris were observed in areas throughout the fill material.

No natural surface water bodies, including ponds, streams, or other bodies of water, are present on the site. The San Francisco Bay is located approximately 500 feet west of the site. During the soil boring advancement conducted for during previous investigations, shallow groundwater was encountered between 2.5 and 5.5 feet bgs in all but one of the borings. Groundwater was encountered at 1 foot bgs in one boring in the northwestern portion of the site, which was attributed to a very shallow, perched groundwater zone that has been documented in previous environmental assessments. During excavation activities, groundwater was observed at approximately 4 feet bgs in the south-central portion of the site, and at approximately 6 feet bgs in the western portion of the site. Due to the site's proximity to the San Francisco Bay, tidal fluctuation may affect groundwater depth and flow direc-

tion/gradient. The depth and elevation of groundwater measured monitoring wells, and the inferred groundwater flow direction and gradient are described in Section 2.6 below.

2.3. Previous Environmental Assessments and Remedial Action

The site has been the subject of several environmental assessments dating back to 1984. Based on data generated during episodes of site assessment, the site was determined to be impacted with constituents of concern (COCs) including arsenic, chromium, copper, lead, molybdenum, nickel, zinc, polycyclic aromatic hydrocarbons (PAHs), and total petroleum hydrocarbons as hydraulic oil (TPHho) at elevated concentrations at various locations throughout the site. In order to protect human health and the environment, and allow the site to be redeveloped for future commercial/industrial land use, a CAP was prepared for the site by Ninyo & Moore. The CAP included an evaluation of remedial alternatives for the site, and excavation and off-site disposal of impacted soil was selected as the appropriate remedial alternative. The CAP was implemented between October 2013 and January 2014, as documented in Ninyo & Moore's Removal Action Completion Report (RACR) dated February 6, 2014, which has been submitted to ACEH for review.

Implementation of the CAP included removal of approximately 1,200 cubic yards (1,798 tons) of soil impacted with COCs and replacing the COCs impacted soil with clean imported backfill materials. Approximately 12.5 tons of groundwater impacted with COCs was also removed from the site. Excavation sidewall and bottom confirmation samples were collected and the results indicated that site soil was remediated to meet the requirements presented in the ACEH approved CAP and CAP Addendum. Three groundwater monitoring wells (MW-1 through MW-3) were also installed in the western portion of the site to evaluate post remediation groundwater quality (Figure 2).

An initial groundwater monitoring event was performed on December 5, 2013. A relatively minor concentration of TPHho (below the Cleanup Goal [CG]) was detected in monitoring well MW-1, and TPHho was not detected in monitoring wells MW-2 or MW-3. Only minor concentrations (below CGs) of the PAHs acenaphthene and naphthalene were detected

monitoring well MW-1, and no PAHs were detected in monitoring wells MW-2 or MW-3. Concentrations of several metals (cobalt, copper, lead, molybdenum, nickel, and mercury) exceeded CGs. The results of the initial groundwater monitoring event are also documented in the RACR.

2.4. Cleanup Goals (CGs)

The CGs established in the CAP Addendum for groundwater beneath the site are the San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs) for groundwater which is not a current or potential drinking water resource (May 2013 ESLs, Table F-1b). The selection of these CGs were based on results of the Data Gap Investigation which reported total dissolved solids (TDS) concentrations in several groundwater samples above than the San Francisco Bay Region Basin Plan (RWQCB 2007) guidelines of 3,000 milligrams per liter (mg/L) for a potential drinking water resource. Analytical results from groundwater monitoring well samples have indicated TDS concentrations ranging from 1,100 to 1,800 mg/L, therefore shallow groundwater beneath the site would qualify as a potential drinking water resource under the Basin Plan. Post remediation groundwater monitoring results are therefore also compared to ESLs for Drinking Water (December 2013 ESLs, Table F-3).

The established groundwater CGs are the lowest of the screening values listed in ESLs Table F-1b, which are based on aquatic habitat goals for all site COCs with the exception of benzo(k)flouranthene, which is based on gross contamination/ceiling value (odor, etc.). Although the site is located in relative close proximity to San Francisco Bay, the COCs which have impacted site groundwater (metals, TPHho, and PAHs) are not very mobile and easily adsorb to soil, therefore these COCs most likely are not migrating to the aquatic habitat of San Francisco Bay. Post remediation groundwater monitoring results have revealed relatively minor residual impacts, with concentrations of only some metals slightly exceeding CGs and/or drinking water ESLs, as discussed in Section 2.7.2 below. The impacts were generally lower at the site's western boundary (in monitoring well MW-3), indicating that

groundwater impacts from the site would most likely not be migrating all the way to San Francisco Bay. It is therefore proposed that site CGs for groundwater be revised to be based on ESLs for Drinking Water (December 2013 ESLs, Table F-3). Drinking Water ESLs are generally higher than the ESLs for aquatic habitat goals for most of the metals which have impacted site groundwater.

2.5. Monitoring Well Sampling

On March 24, 2014, groundwater samples were collected from monitoring wells MW-1 through MW-3. The well caps were removed to allow the water level to equilibrate for approximately 20 minutes, at which time depth to groundwater was measured using a decontaminated water level meter accurate to 0.01 feet. Approximately three casing volumes of groundwater were purged using a peristaltic pump with dedicated tubing for each well prior to sample collection. Groundwater parameters, including pH, temperature, and electrical conductivity were measured during well purging and recorded on groundwater sampling field data sheets (Appendix A). Groundwater samples were collected in the appropriate containers using the peristaltic pump. The groundwater samples were not filtered or preserved during collection as the laboratory performed filtering and preservation of samples as necessary prior to analysis. The sample containers were labeled with the sample identification, project location, sampling date/time, and sampler's initials. The sample containers were stored in a cooler containing ice for transport to the analytical laboratory for analysis. Chain-of-custody documentation was completed and accompanied the groundwater samples to the laboratory.

2.5.1. Groundwater Sample Analysis

Groundwater samples were submitted to Test America for analysis of TDS using EPA Method SM 2540C, Title 22 Metals using EPA Method 6010B/7470A, hexavalent chromium using EPA Method 7199, TPHho using EPA Method 8015M with silica gel cleanup, and PAHs using EPA Method 8270-SIM.

2.6. Groundwater Depths, Elevations, Flow Direction, and Gradient

The depth to groundwater was measured in site monitoring wells on March 24, 2014. Groundwater depth and elevation data is presented in Table 1 and on Figure 2. The depth to groundwater ranged from 4.75 to 5.25 feet below the top of well casings, or approximately 1.9 to 2.4 feet bgs, as the top of well casings are approximately 3 feet above the ground surface. Based on the surveyed well elevations, the groundwater elevation in the western portion of the site ranged from approximately 10.42 to 10.52 feet MSL. Based on the groundwater elevations, the groundwater flow direction was inferred to be towards the west with a gradient of approximately 0.004 feet per foot. The groundwater flow direction is expected to typically trend towards the west-southwest towards San Francisco Bay, however because of the site's proximity to San Francisco Bay, groundwater elevations and flow directions may be tidally influenced.

2.7. Groundwater Monitoring Analytical Results

Analytical results for groundwater monitoring samples are summarized in Tables 2 and 3, and a copy of the analytical laboratory report is presented in Appendix B. Groundwater sample analytical results are compared to site CGs and Drinking Water ESLs. Groundwater sample results exceeding CGs or Drinking water ESLs are also presented on Figure 2. The following sections summarize the groundwater monitoring sample results.

2.7.1. TDS

Analytical results for TDS are presented in Table 2. TDS was detected at concentrations of 1,100 mg/L in monitoring wells MW-1 and MW-2, and 1,200 mg/L in MW-3. As discussed in Section 2.4 above, these concentrations are below the TDS limit of 3,000 mg/L established for drinking water in the Basin Plan, therefore groundwater beneath the site should be considered a potential drinking water resource.

2.7.2. Metals

Analytical results for metals are presented in Table 2. Groundwater monitoring results revealed concentrations of copper, lead, molybdenum, nickel, and vanadium which exceeded CGs, and concentrations of arsenic, lead, and molybdenum which exceeded Drinking Water ESLs. All other metals were either not detected, or were detected at concentrations below CGs and Drinking Water ESLs. Groundwater sample analytical results for metals which exceeded CGs or Drinking Water ESLs are discussed below.

2.7.2.1. Arsenic

Arsenic was not detected above the CG of 0.036 mg/L. Arsenic was detected at concentrations which exceed the Drinking Water ESL of 0.01 mg/L in samples MW-1 (0.018 mg/L) and MW-3 (0.014 mg/L), and was not detected in sample MW-2.

2.7.2.2. Copper

Copper was not detected above the Drinking Water ESL of 1.0 mg/L. Copper was detected at a concentration which exceeds the CG of 0.0031 mg/L in samples MW-1 (0.037 mg/L), and was not detected in samples MW-2 or MW-3.

2.7.2.3. Lead

Lead was detected at a concentration which exceeds the CG of 0.0025 mg/L and the Drinking Water ESL of 0.015 mg/L in samples MW-1 (0.019 mg/L). Lead was not detected in samples MW-2 or MW-3.

2.7.2.4. Molybdenum

Molybdenum was detected at concentrations which exceed the CG of 0.24 mg/L and Drinking Water ESL of 0.078 mg/L in samples MW-1 (0.67 mg/L) and MW-2 (0.55 mg/L), and was not detected in sample MW-3.

2.7.2.5. Nickel

Nickel was not detected above the Drinking Water ESL of 0.1 mg/L. Nickel was detected at concentrations which exceed the CG of 0.0082 mg/L in samples MW-1 (0.043 mg/L), MW-2 (0.018 mg/L), and MW-3 (0.019 mg/L).

2.7.2.6. Vanadium

Vanadium was not detected above the Drinking Water ESL of 0.050 mg/L. Vanadium was detected at a concentration which exceeds the CG of 0.019 mg/L in sample MW-1 (0.022 mg/L). Vanadium was detected below the CG in sample MW-2 (0.015 mg/L), and was not detected in sample MW-3.

2.7.3. TPHho

Analytical results for TPHho are presented in Table 3. TPHho was not detected in samples MW-1, MW-2, and MW-3.

2.7.4. PAHs

Analytical results for PAHs are presented in Table 3. Minor concentrations of acenaphthene (0.80 micrograms per liter [μ g/L]), fluorene (0.26 μ g/L), naphthalene (5.2 μ g/L), and phenanthrene (0.24 μ g/L) were detected in groundwater sample MW-1. These concentrations are below the CGs of 23 μ g/L, 3.9 μ g/L, 24 μ g/L, and 4.6 μ g/L, respectively, and below the Drinking Water ESLs of 20 μ g/L, 630 μ g/L, 6.1 μ g/L, and 410 μ g/L, respectively. A minor concentration of naphthalene was also detected in sample MW-2 (0.12 μ g/L), which is well below the CG and the Drinking Water ESL. No other concentrations of PAHs were detected in the groundwater monitoring samples.

3. CONCLUSIONS AND RECOMMENDATIONS

Based on the findings of post remediation groundwater monitoring activities, residual impacts from TPHho and PAHs in groundwater do not pose a significant threat to human health or the

environmental. Because metals do not biodegrade or readily naturally attenuate, the residual impacts from metals in groundwater may persist at levels which exceed CGs and/or Drinking Water ESLs for a significant period of time.

Impacted groundwater beneath the site is most likely not impacting the aquatic habitat of San Francisco Bay based on the relatively minor impacts detected in groundwater monitoring wells and the generally lower concentrations of COCs detected in monitoring well MW-3 which is closest to the site's western boundary and San Francisco Bay.

Based on the findings of previous site assessments and the results of site remediation and post remediation groundwater monitoring, Ninyo & Moore recommends the following:

- Site CGs for groundwater should be revised to be Drinking Water ESLs (ESLs Table F-3) based on groundwater monitoring results for TDS.
- Because concentrations of metals in site groundwater may continue to exceed Drinking Water ESLs for a significant period of time, a Land Use Restriction preventing the beneficial use of groundwater beneath the site should be established and recorded with the County Assessor Office.
- Groundwater monitoring at the site should be discontinued and ACEH should consider the site for case closure. Following completion of a public notice and comment period for the proposed case closure, monitoring wells MW-1 through MW-3 should be destroyed in accordance with state and local guidelines. Following the submittal of a report to ACEH documenting the monitoring well destruction activities, ACEH should provide a No Further Action letter for the site.

4. LIMITATIONS

The environmental services described in this report have been conducted in general accordance with current regulatory guidelines and the standard-of-care exercised by environmental consultants performing similar work in the project area. No other warranty, expressed or implied, is made regarding the professional opinions presented in this report. Variations in site conditions may exist and conditions not observed or described in this report may be encountered during subsequent activities. Please also note that this study did not include an evaluation of geotechnical conditions or potential geologic hazards.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Ninyo & Moore should be contacted if the reader requires any additional information, or has questions regarding content, interpretations presented, or completeness of this document.

Ninyo & Moore's opinions and recommendations regarding environmental conditions, as presented in this report, are based on limited subsurface assessment and chemical analysis. Further assessment of potential adverse environmental impacts from past on-site and/or nearby use of hazardous materials may be accomplished by a more comprehensive assessment. The samples collected and used for testing, and the observations made, are believed to be representative of the area(s) evaluated; however, conditions can vary significantly between sampling locations. Variations in soil and/or groundwater conditions will exist beyond the points explored in this evaluation.

The environmental interpretations and opinions contained in this report are based on the results of laboratory tests and analyses intended to detect the presence and concentration of specific chemical or physical constituents in samples collected from the subject site. The testing and analyses have been conducted by an independent laboratory which is accredited by the EPA or certified by the State of California to conduct such tests. Ninyo & Moore has no involvement in, or control over, such testing and analysis. Ninyo & Moore, therefore, disclaims responsibility for any inaccuracy in such laboratory results.

Our conclusions and recommendations are based on an analysis of the observed site conditions. It should be understood that the conditions of a site could change with time as a result of natural processes or human activities at the subject site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore has no control.

This report is intended exclusively for use by the WF&F. Any use or reuse of the findings, conclusions, and/or recommendations of this report by parties other than the WF&F is undertaken at said parties' sole risk.

5. **REFERENCES**

- California Regional Water Quality Control Board, San Francisco Bay Region, 2007 Water Quality Control Plan, dated January 18.
- Ninyo & Moore, 2013, Revised Data Gap Investigation Report and Corrective Action Plan, Western Forge and Flange, 540 Cleveland Avenue, Albany, California, dated May 15.
- Ninyo & Moore, 2013, Corrective Action Plan Addendum, Western Forge and Flange, 540 Cleveland Avenue, Albany, California, dated July 22.
- Ninyo & Moore, 2014, Removal Action Completion Report, 540 Cleveland Avenue, Albany, California, dated February 6.

SFRWQCB, 2013, Environmental Screening Levels, dated May.

SFRWQCB, 2013, Environmental Screening Levels, dated December.

TABLE 1 - GROUNDWATER DEPTH AND ELEVATION DATA

Monitoring Well ID	TOC Elevation (ft msl)	Ground Surface Elevation (ft msl)	Measurement Date	Depth to Groundwater (ft btoc)	Depth to Groundwater (ft bgs)	Groundwater Elevation (ft msl)
MW-1	15.76	12.9	12/3/2013	7.62	4.8	8.14
			12/5/2013	7.59	4.7	8.17
			3/24/2014	5.25	2.4	10.51
MW-2	15.47	12.6	12/3/2013	7.31	4.4	8.16
			12/5/2013	7.28	4.4	8.19
			3/24/2014	4.95	2.1	10.52
MW-3	15.17	12.3	12/3/2013	5.47	2.6	9.70
			12/5/2013	5.79	2.9	9.38
			3/24/2014	4.75	1.9	10.42
Notes:						

TOC = top of casing ft btoc= feet below top of casing ft msl = feet above mean sea level

ft bgs = feet below ground surface

	TABLE 2 - ANALYTICAL RESULTS FOR METALS AND TOTAL DISSOLVED SOLIDS																			
Sample ID	Date Collected	Antimony	Arsenic	Barium	Beryllium	Cadmium	Total Chromium	Hexavalent Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Thalium	Vanadium	Zinc	Mercury	Total Dissolved Solids
	<u> </u>								G	roundwa	ter Samp	le Result	ts (mg/L)							
MW-1	12/5/13	<0.010	0.017	0.074	<0.0020	<0.0020	<0.010	<0.010*	<0.0020	0.021	0.0094	0.99	0.033	<0.020	<0.0050	<0.010	0.018	<0.020	0.00022	1,400
	3/24/2014	<0.010	0.018	0.032	<0.0020	<0.0020	<0.010	<0.0005	<0.0020	0.037	0.019	0.67	0.043	<0.020	<0.0050	<0.010	0.022	<0.020	<0.00020	1,100
	!																			
MW-2	12/5/13	<0.010	0.011	0.11	<0.0020	<0.0020	<0.010	<0.010*	0.0056	0.020	< 0.0050	0.58	0.037	<0.020	< 0.0050	<0.010	0.012	0.047	0.00027	1,800
	3/24/2014	<0.010	<0.010	0.036	<0.0020	<0.0020	<0.010	< 0.0005	<0.0020	<0.020	< 0.0050	0.55	0.018	<0.020	< 0.0050	<0.010	0.015	<0.020	<0.00020	1,100
M\0/_3	12/5/13	<0.010	<0.010	0.15	< 0.0020	<0.0020	<0.010	< 0.010*	0.0028	<0.020	0.0099	<0.010	0.030	<0.020	< 0.0050	<0.010	<0.010	0.047	0.00021	1,800
10100-3	3/24/2014	<0.010	0.014	0.04	< 0.0020	< 0.0020	< 0.010	< 0.0005	0.0023	< 0.020	< 0.0050	<0.010	0.019	<0.020	< 0.0050	< 0.010	< 0.010	< 0.020	< 0.00020	1,200
	· · · · ·																			· · · ·
C	leanup Goals (mg/L)	0.030	0.036	1	0.00053	0.00025	0.18	0.011	0.003	0.0031	0.0025	0.24	0.0082	0.005	0.00019	0.004	0.019	0.081	0.000025	NA
Drinkin	g Water ESLs (mg/L)	0.006	0.01	1	0.004	0.005	0.05	0.00002	0.0047	1.0	0.015	0.078	0.1	0.05	0.1	0.002	0.050	5	0.002	NA
Notes																				
Metals analyz * indicates sau Total Dissolve ESLs = San F Cleanup Goa	Aletals analyzed by EPA Methods 6010B, 7470A (mercury), and 7199 (hexavalent chromium) indicates samples analyzed for hexavalent chromium by EPA Method 7196A 'otal Dissolved Solids analyzed by EPA Method SM 2540C 'SLs = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels Cleanup Goals = ESLs Table F-1b, Groundwater is not a current or potential drinking water resource, dated May 2013																			

Cleanup Goals = ESLs Table F-1b, Groundwater is not a current or po Drinking Water ESLs = ESLs Table F-3, dated December 2013 <x = less than laboratory reporting limit of x mg/L= milligrams per liter NA = not applicable **Bold** indicates concentration equal to or exceeding Cleanup Goal Grey Shading indicates concentration exceeding Drinking Water ESL

	TABLE 3 - ANALYTICLA RESULTS FOR TPHho and PAHs																	
										PA	Hs							
Sample ID	Date Collected	TPHho	Acenaphthene	Acenaphthylene	Anthracene	Benzo[a]anthracene	Benzo[a]pyrene	Benzo[b]flouranthene	Bonz[g, h,i]perylene	Benzo[k]fluoranthene	Chrysene	Dibenz(a, h)anthracene	Fluoranthene	Fluorene	Indeno[1,2,3-cd]pyrene	Naphthalene	Phenanthrene	Pyrene
	10/5/10	220	0.09	-0.10	-0.10	-0.10	-0.10	A	nalytical	Results (1g/L)	-0.10	-0.10	-0.10	-0.10	0.00	-0.10	-0.10
MW-1	3/24/2014	<100	0.28	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.26	<0.10	5.2	0.24	<0.10
																-		
MW-2	12/5/13	<100	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	3/24/2014	<100	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.12	<0.10	<0.10
	10/5/10	100	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.40	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
MW-3	12/5/13	<100	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	3/24/2014	<100	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
	Cleanup Goals (ug/L)	640	23	30	0.73	0.027	0.014	0.056	0.10	0.40	0.35	0.25	8	3.9	0.056	24	4.6	2
Drink	ting Water ESLs (µg/L)	100	20	2,000	22	0.056	0.2	0.056	0.13	0.056	0.56	0.016	130	630	0.056	6.1	410	68
Notes PAHs = polycyclic aromatic hydrocarbons analyzed by EPA Method 8270 SIM TPHho = total petroleum hydrocarbons as hydraulic oil analyzed by EPA Method 8015B ESLs = San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels Cleanup Goals = ESLs Table F-1b, Groundwater is not a current or potential drinking water resource, dated May 2013 Dirichica Vietra FSL = Scholar - FSL a dated December 2012																		

Drinking Water ESLs = ESLsTable F-3, dated December 2013 Grey Shading indicates concentration exceed Drinking Water ESLs

 $<\!\!x$ = not detected, concentration is less than laboratory reporting limit of x $\mu g/L$ = micrograms per Liter

1823001-SL.dwg, Apr 04, 2014, 9:32a

APPENDIX A FIELD DATA SHEETS

	Ninyo	Moore	5					GI	ROUNI	WATER SA	AMPLING FIELD I	DATA SF	IEET
Project	Name: WF&F	▼ √540 Clevelana	l Avenue										
Site: Project Monitor	No.:	401823001 MW- /]	Date: Weather: Vapor Mo	3/2 Serioring	4/2014 a A y g Results (ppi	Sampler:	CRA	WH=
Casing Total D Depth t Water (Diameter: <mark>√</mark> 2" epth (ft-TOC): o Water (ft-TOC Column Height (f	4" 6"	0tt 13,3 5.25 8,05	ner		x]	C Floating I Floating I 2" = 0.16 4"=0.65	Casing N mmiscil mmiscil gal/ft =	faterial: [. ble Layer Obs ble Layer Thi [.3]	$\frac{\sqrt{3} \text{ SCH 40-PVC}}{\text{served}?:}$ $x 3 = 2.9$	Other: S. S NC	Steel 2 A Min. Purge Volume
Water I Purging Pump L Temp./j Conduc	Level Measureme 3 Method/Equipn Lines/Bailer Rope 9H Meter: Stivity Meter:	nt Equip.: nent: s-New or Clear Oakton Oakton	Solinst Geopur ned?:	Water Lev. mp Peristal	el Indicator ltic Pump	New - dec	dicat	ed	Cali Cali	bration (date bration (date	/time): <u>3/24</u> /time):	Cleaned: Cleaned:	yes yes 1 300
Comme	ents:								p	H STND.	FIELD pH	FIEL	D TEMP. (°C)
*****									-	4.0	8 45		112
TIME	Purge Vol.(Gal)	Totalizer Reading (Gal)	ТЕМР. (°С)	ORP	DO (%)	рН	(COND. µS/cm)		COMMEN	TS (color, turbidity, c	odor, shee	n, etc.):
1320	2		15.7			6.89	12	79	Br	iown tint	, LOW two dits	, no od	or Isheen
1324	3		15.5			9.03	12	23	(,	a di seri da se provincio da serie da s		Cr .
1328	4		15.5			9.05	110	P5	(("
								N	_				
	· · · · · · · · · · · · · · · · · · ·												
Total V	olume Purged (g	allon):		4					Tim	e Finished P	urging:	328	
Sampli	ng Method/Equip	ment:	Geopu	mp Perista	ltic Pump		-	PARAM	ETER	USEPA METHOD	CONTAINERS/VO TYPE (Voa/Glass/)LUME/ /Plastic)	PRES.
Bailer I	Rope-New or Cle	aned?:	220				-						
Sample	Time:		1 20				-						
Renlica	te ID (if appl.)	pri t	<u>N-1</u>				-						
	int in (in uppin)						-						
							- [
Laborat	tory:						-						
							-						
				and a state of the			-						
Comme	ents:						ŀ						
							- Ľ						

Ninyo & Moor	8				G	ROUNI	DWATER SA	AMPLING FIELD I	DATA SH	IEET
Project Name: WF&F/540 Clevelar	d Avenue									
Site: 401823001 Project No.: 401823001 Monitoring Well ID: MW- 2					Date: Weather: Vapor Mo	3/2 2. onitorin	4/2014 ~~~~~ g Results (pp	Sampler:	CRA	WH=
Casing Diameter:	' 0tt <u>13.(6</u> <u>4,95</u> <i>8</i> .21	ner		x	Floating I Floating I 2" = 0.16 4"=0.65	Casing N mmisci mmisci gal/ft =	Material: [ble Layer Obs ble Layer Thi 1.32	SCH 40-PVC served?: ckness (feet): x 3 = 3.9	Other: S. S No NA	iteel Min. Purge Volume
Water Level Measurement Equip.: Purging Method/Equipment: Pump Lines/Bailer Ropes-New or Clea Temp./pH Meter: <u>Oakton</u> Conductivity Meter: <u>Oakton</u>	Solinst Geopui ned?:	Water Lev mp Perista	el Indicator ltic Pump	New – de	6"=1.47 dicated	Cal	ibration (date	/time): <u>3/24/</u> /time):	Cleaned: Cleaned:	(gallons) yes yes 7 300
Comments:						F	H STND.	FIELD pH	FIEL	D TEMP. (°C)
						-	4.0	7.05	,	67
TIME Purge Vol.(Gal) Totalizer 1353 (1352 2 1461 3	TEMP. (°C) [S. 3 [S. 8 [S. 8	ORP	DO (%)	рН 7.98 7.46 7.38	COND. (μS/cm) 1486 1059 409		COMMEN 2.//ow tin H	ITS (color, turbidity, (t, Clear, no oc	odor, sheer	n, etc.): heen
				7.41						
Total Valuma Durgad (gallan):		U				Tim	- Finished D		111.00	
Sampling Method/Equipment:	Geopu	mp Perista	ltic Pump		PARAM	IETER	USEPA METHOD	CONTAINERS/VC TYPE (Voa/Glass	DLUME/ Plastic)	PRES.
Bailer Rope-New or Cleaned?: Sample Time: Sample ID: Replicate ID (if appl.)	1405 W-2									
Laboratory:										
Comments:					_					

N <i>inyo</i> « Moore		GROUNDWATER SAMPLING FIELD DATA SHEET								
Project Name: WF&F/540 Cleveland Avenue										
Site: Project No.: 401823001 Monitoring Well ID: MW- 3		Date: 3 Weather: 0 Vapor Monitor	1/24/2014 Sunny ing Results (pp	Sampler:	CRA WH=					
Casing Diameter: $2"$ $4"$ $6"$ OtherTotal Depth (ft-TOC): $13, 05$ Depth to Water (ft-TOC): $4', 75$ Water Column Height (feet): $\mathfrak{S}_{*}, 30$	x	Casing Material: \checkmark SCH 40-PVCOther: S. SteelFloating Immiscible Layer Observed?: $\cancel{N0}$ Floating Immiscible Layer Thickness (feet): $\cancel{N4}$ $2^{"} = 0.16$ \cancel{a} \cancel{a} \cancel{a} \cancel{a} \cancel{a} $4^{"}=0.65$ gal/ft = \cancel{l} $\cancel{32}$ $x = \cancel{3}$ $\cancel{99}$ Win. PurgeVolume								
Water Level Measurement Equip.: Solinst W Purging Method/Equipment: Geopump Pump Lines/Bailer Ropes-New or Cleaned?: Temp./pH Meter: Oakton Oakton	ater Level Indicator 9 Peristaltic Pump 	6" = 1.47	(gallons) Cleaned: <u>yes</u> Cleaned: <u>yes</u> 4/14 1300							
Comments:		C	alibration (date	(time):						
			4 0	FIELD PH	FIELD TEMP. (°C)					
			7.0	7.05	16.7					
TIME Purge Vol.(Gal) Totalizer Reading (Gal) TEMP. (°C) 1429 1 16.1 1437 3 15.9 1441 15.8	ORP DO (%) pH 6. 97 6. 79 6. 79 6. 71 6. 66	COND. (μS/cm) 1007 (1033 (079 1097	COMMENTS (color, turbidity, odor, sheen, etc.): Clear, no olar /sheen ic (, ', (, ', (, ',							
Total Volume Purged (gallon):	4	I T	ime Finished Pi	irging.	441					
Sampling Method/Equipment: Geopump	Peristaltic Pump	PARAMETE	R USEPA METHOD	CONTAINERS/VO TYPE (Voa/Glass/)	LUME/ PRES. Plastic)					
Bailer Rope-New or Cleaned?: Sample Time: 1442 Sample ID: Mw~3 Replicate ID (if appl.)										
Laboratory:										
Comments:										

APPENDIX B

LABORATORY ANALYTICAL REPORT

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-56286-1

Client Project/Site: Western Forge & Flange

For: Ninyo & Moore 1956 Webster Street Suite 400 Oakland, California 94612

Attn: Mr. Cem Atabek

Athaema

Authorized for release by: 3/31/2014 9:10:12 AM Dimple Sharma, Senior Project Manager (925)484-1919

dimple.sharma@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	12
QC Association Summary	18
Lab Chronicle	21
Method Summary	23
Sample Summary	24
Chain of Custody	25
Receipt Checklists	26

Client: Ninyo & Moore Project/Site: Western Forge & Flange

Glossary

Glossary		 3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CNF	Contains no Free Liquid	J
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	8
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	9
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 720-56286-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-56286-1

Comments

No additional comments.

Receipt

The samples were received on 3/24/2014 5:35 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.5° C.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

Client Sample ID: MW-1

Lab Sample ID: 720-56286-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Naphthalene	5.2		0.10		ug/L	1	_	8270C SIM	Total/NA
Acenaphthene	0.80		0.10		ug/L	1		8270C SIM	Total/NA
Fluorene	0.26		0.10		ug/L	1		8270C SIM	Total/NA
Phenanthrene	0.24		0.10		ug/L	1		8270C SIM	Total/NA
Arsenic	0.018		0.010		mg/L	1		6010B	Dissolved
Barium	0.032		0.0050		mg/L	1		6010B	Dissolved
Copper	0.037		0.020		mg/L	1		6010B	Dissolved
Lead	0.019		0.0050		mg/L	1		6010B	Dissolved
Molybdenum	0.67		0.010		mg/L	1		6010B	Dissolved
Nickel	0.043		0.010		mg/L	1		6010B	Dissolved
Vanadium	0.022		0.010		mg/L	1		6010B	Dissolved
Total Dissolved Solids	1100		20		mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-2

Lab Sample ID: 720-56286-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Naphthalene	0.12		0.10		ug/L	1	_	8270C SIM	Total/NA
Barium	0.036		0.0050		mg/L	1		6010B	Dissolved
Molybdenum	0.55		0.010		mg/L	1		6010B	Dissolved
Nickel	0.018		0.010		mg/L	1		6010B	Dissolved
Vanadium	0.015		0.010		mg/L	1		6010B	Dissolved
Total Dissolved Solids	1100		13		mg/L	1		SM 2540C	Total/NA

Client Sample ID: MW-3

Lab Sample ID: 720-56286-3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Dil Fac	D	Method	Prep Type
Arsenic	0.014		0.010		mg/L		1	_	6010B	Dissolved
Barium	0.040		0.0050		mg/L		1		6010B	Dissolved
Cobalt	0.0023		0.0020		mg/L		1		6010B	Dissolved
Nickel	0.019		0.010		mg/L		1		6010B	Dissolved
Total Dissolved Solids	1200		13		mg/L		1		SM 2540C	Total/NA

Lab Sample ID: 720-56286-1 Matrix: Water

Date Collected: 03/24/14 13:30 Date Received: 03/24/14 17:35

Client Sample ID: MW-1

Method: 8270C SIM - PAHs	by GCMS (SIM)	Qualifier	Ы	MDI	Unit	_	Branarad	Analyzad	Dil Ess
Analyte		Quaimer		MDL		D	02/25/14 10:12	02/25/14 22:46	
Naphthalene	5.2		0.10		ug/L		03/23/14 10.13	03/23/14 23.40	
Acenaphthene	0.80		0.10		ug/L		03/25/14 10:13	03/25/14 23:46	1
Acenaphthylene	ND		0.10		ug/L		03/25/14 10:13	03/25/14 23:46	1
Fluorene	0.26		0.10		ug/L		03/25/14 10:13	03/25/14 23:46	1
Phenanthrene	0.24		0.10		ug/L		03/25/14 10:13	03/25/14 23:46	1
Anthracene	ND		0.10		ug/L		03/25/14 10:13	03/25/14 23:46	1
Benzo[a]anthracene	ND		0.10		ug/L		03/25/14 10:13	03/25/14 23:46	1
Chrysene	ND		0.10		ug/L		03/25/14 10:13	03/25/14 23:46	1
Benzo[a]pyrene	ND		0.10		ug/L		03/25/14 10:13	03/25/14 23:46	1
Benzo[b]fluoranthene	ND		0.10		ug/L		03/25/14 10:13	03/25/14 23:46	1
Benzo[k]fluoranthene	ND		0.10		ug/L		03/25/14 10:13	03/25/14 23:46	1
Benzo[g,h,i]perylene	ND		0.10		ug/L		03/25/14 10:13	03/25/14 23:46	1
Indeno[1,2,3-cd]pyrene	ND		0.10		ug/L		03/25/14 10:13	03/25/14 23:46	1
Fluoranthene	ND		0.10		ug/L		03/25/14 10:13	03/25/14 23:46	1
Pyrene	ND		0.10		ug/L		03/25/14 10:13	03/25/14 23:46	1
Dibenz(a,h)anthracene	ND		0.10		ug/L		03/25/14 10:13	03/25/14 23:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	43		29 - 120				03/25/14 10:13	03/25/14 23:46	1
Terphenyl-d14	54		45 - 120				03/25/14 10:13	03/25/14 23:46	1

Method: 8015B - Diesel Range Organics (DRO) (GC) - Silica Gel Cleanup

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
TPH-Hydraulic Oil Range (C19-C36)	ND		100		ug/L		03/27/14 10:04	03/27/14 22:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Capric Acid (Surr)	0		0 - 5				03/27/14 10:04	03/27/14 22:00	1
p-Terphenyl	79		31 - 150				03/27/14 10:04	03/27/14 22:00	1

Method: 6010B - Metals (ICP) - Dissolved

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.010		mg/L		03/25/14 15:38	03/26/14 15:42	1
Arsenic	0.018		0.010		mg/L		03/25/14 15:38	03/26/14 11:09	1
Barium	0.032		0.0050		mg/L		03/25/14 15:38	03/26/14 11:09	1
Beryllium	ND		0.0020		mg/L		03/25/14 15:38	03/26/14 11:09	1
Cadmium	ND		0.0020		mg/L		03/25/14 15:38	03/26/14 11:09	1
Chromium	ND		0.010		mg/L		03/25/14 15:38	03/26/14 11:09	1
Cobalt	ND		0.0020		mg/L		03/25/14 15:38	03/26/14 11:09	1
Copper	0.037		0.020		mg/L		03/25/14 15:38	03/26/14 11:09	1
Lead	0.019		0.0050		mg/L		03/25/14 15:38	03/26/14 11:09	1
Molybdenum	0.67		0.010		mg/L		03/25/14 15:38	03/26/14 11:09	1
Nickel	0.043		0.010		mg/L		03/25/14 15:38	03/26/14 11:09	1
Selenium	ND		0.020		mg/L		03/25/14 15:38	03/26/14 11:09	1
Silver	ND		0.0050		mg/L		03/25/14 15:38	03/26/14 11:09	1
Thallium	ND		0.010		mg/L		03/25/14 15:38	03/26/14 11:09	1
Vanadium	0.022		0.010		mg/L		03/25/14 15:38	03/26/14 11:09	1
Zinc	ND		0.020		mg/L		03/25/14 15:38	03/26/14 11:09	1

Lab Sample ID: 720-56286-1

Matrix: Water

Client: Ninyo & Moore Project/Site: Western Forge & Flange

Client Sample ID: MW-1 Date Collected: 03/24/14 13:30

Date Received: 03/24/14 17:35

Method: 7470A - Mercury (CVAA) - Analyte	DISSOIVED Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		03/25/14 09:58	03/25/14 14:11	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1100		20		mg/L			03/28/14 10:37	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (VI)	ND		0.50		ug/L			03/24/14 20:25	1

TestAmerica Pleasanton

Date Collected: 03/24/14 14:05 Date Received: 03/24/14 17:35

Method: 8270C SIM - PAHs	by GCMS (SIM)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.12		0.10		ug/L		03/25/14 10:13	03/26/14 00:07	1
Acenaphthene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:07	1
Acenaphthylene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:07	1
Fluorene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:07	1
Phenanthrene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:07	1
Anthracene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:07	1
Benzo[a]anthracene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:07	1
Chrysene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:07	1
Benzo[a]pyrene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:07	1
Benzo[b]fluoranthene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:07	1
Benzo[k]fluoranthene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:07	1
Benzo[g,h,i]perylene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:07	1
Indeno[1,2,3-cd]pyrene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:07	1
Fluoranthene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:07	1
Pyrene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:07	1
Dibenz(a,h)anthracene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	49		29 - 120				03/25/14 10:13	03/26/14 00:07	1

Mathead, 0045D Diseal	Deman O			00	0111-0-0	0-1	01	
wethod: 60156 - Dieser	Range U	rganics	(DRU) (66	- Silica (Jei	Cleanup	l

67

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
TPH-Hydraulic Oil Range (C19-C36)	ND		100		ug/L		03/27/14 10:04	03/27/14 22:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Capric Acid (Surr)	0		0 - 5				03/27/14 10:04	03/27/14 22:29	1
p-Terphenyl	81		31 - 150				03/27/14 10:04	03/27/14 22:29	1

45 - 120

Method: 6010B - Metals (ICP) - Dissolved

Terphenyl-d14

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.010		mg/L		03/25/14 15:38	03/26/14 11:18	1
Arsenic	ND		0.010		mg/L		03/25/14 15:38	03/26/14 11:18	1
Barium	0.036		0.0050		mg/L		03/25/14 15:38	03/26/14 11:18	1
Beryllium	ND		0.0020		mg/L		03/25/14 15:38	03/26/14 11:18	1
Cadmium	ND		0.0020		mg/L		03/25/14 15:38	03/26/14 11:18	1
Chromium	ND		0.010		mg/L		03/25/14 15:38	03/26/14 11:18	1
Cobalt	ND		0.0020		mg/L		03/25/14 15:38	03/26/14 11:18	1
Copper	ND		0.020		mg/L		03/25/14 15:38	03/26/14 11:18	1
Lead	ND		0.0050		mg/L		03/25/14 15:38	03/26/14 11:18	1
Molybdenum	0.55		0.010		mg/L		03/25/14 15:38	03/26/14 11:18	1
Nickel	0.018		0.010		mg/L		03/25/14 15:38	03/26/14 11:18	1
Selenium	ND		0.020		mg/L		03/25/14 15:38	03/26/14 11:18	1
Silver	ND		0.0050		mg/L		03/25/14 15:38	03/26/14 11:18	1
Thallium	ND		0.010		mg/L		03/25/14 15:38	03/26/14 11:18	1
Vanadium	0.015		0.010		mg/L		03/25/14 15:38	03/26/14 11:18	1
Zinc	ND		0.020		mg/L		03/25/14 15:38	03/26/14 11:18	1

Lab Sample ID: 720-56286-2 Matrix: Water

03/25/14 10:13 03/26/14 00:07

5

6

Client: Ninyo & Moore Project/Site: Western Forge & Flange

Client Sample ID: MW-2 Date Collected: 03/24/14 14:05

Date Received: 03/24/14 17:35

Cr (VI)

Lab Sample ID: 720-56286-2 Matrix: Water

Method: 7470A - Mercury (CVAA) - Dissolved Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.00020 03/25/14 09:58 03/25/14 14:13 Mercury ND mg/L 1 **General Chemistry** Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 03/28/14 10:39 13 **Total Dissolved Solids** 1100 mg/L 1 **General Chemistry - Dissolved** Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ND 0.50 ug/L 03/24/14 20:51 1

Client Sample ID: MW-3

Date Collected: 03/24/14 14:42 Date Received: 03/24/14 17:35

Method: 8270C SIM - PAHs	by GCMS (SIM)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:28	1
Acenaphthene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:28	1
Acenaphthylene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:28	1
Fluorene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:28	1
Phenanthrene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:28	1
Anthracene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:28	1
Benzo[a]anthracene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:28	1
Chrysene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:28	1
Benzo[a]pyrene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:28	1
Benzo[b]fluoranthene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:28	1
Benzo[k]fluoranthene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:28	1
Benzo[g,h,i]perylene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:28	1
Indeno[1,2,3-cd]pyrene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:28	1
Fluoranthene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:28	1
Pyrene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:28	1
Dibenz(a,h)anthracene	ND		0.10		ug/L		03/25/14 10:13	03/26/14 00:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Eluorobinhenyl	58		29 120				03/25/14 10:13	03/26/14 00.28	1

Method: 8015B - Diesel Range Organics (DRO) (GC) - Silica Gel Cleanup

70

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
TPH-Hydraulic Oil Range (C19-C36)	ND		100		ug/L		03/27/14 10:04	03/27/14 22:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Capric Acid (Surr)	0		0 _ 5				03/27/14 10:04	03/27/14 22:58	1
n-Ternhenvl	91		31 - 150				03/27/14 10:04	03/27/14 22:58	1

45 - 120

Method: 6010B - Metals (ICP) - Dissolved

Terphenyl-d14

Analyte	Result	Qualifier	RL MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND	0.0	10	mg/L		03/25/14 15:38	03/26/14 11:23	1
Arsenic	0.014	0.0	10	mg/L		03/25/14 15:38	03/26/14 11:23	1
Barium	0.040	0.00	50	mg/L		03/25/14 15:38	03/26/14 11:23	1
Beryllium	ND	0.00	20	mg/L		03/25/14 15:38	03/26/14 11:23	1
Cadmium	ND	0.00	20	mg/L		03/25/14 15:38	03/26/14 11:23	1
Chromium	ND	0.0	10	mg/L		03/25/14 15:38	03/26/14 11:23	1
Cobalt	0.0023	0.00	20	mg/L		03/25/14 15:38	03/26/14 11:23	1
Copper	ND	0.0	20	mg/L		03/25/14 15:38	03/26/14 11:23	1
Lead	ND	0.00	50	mg/L		03/25/14 15:38	03/26/14 11:23	1
Molybdenum	ND	0.0	10	mg/L		03/25/14 15:38	03/26/14 11:23	1
Nickel	0.019	0.0	10	mg/L		03/25/14 15:38	03/26/14 11:23	1
Selenium	ND	0.0	20	mg/L		03/25/14 15:38	03/26/14 11:23	1
Silver	ND	0.00	50	mg/L		03/25/14 15:38	03/26/14 11:23	1
Thallium	ND	0.0	10	mg/L		03/25/14 15:38	03/26/14 11:23	1
Vanadium	ND	0.0	10	mg/L		03/25/14 15:38	03/26/14 11:23	1
Zinc	ND	0.0	20	mg/L		03/25/14 15:38	03/26/14 11:23	1

Lab Sample ID: 720-56286-3

03/25/14 10:13 03/26/14 00:28

Matrix: Water

1

TestAmerica Job ID: 720-56286-1

Client: Ninyo & Moore Project/Site: Western Forge & Flange

Client Sample ID: MW-3 Date Collected: 03/24/14 14:42

Date Received: 03/24/14 17:35

Lab Sample	ID:	720-56	286-3
		Matrix:	Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		03/25/14 09:59	03/25/14 14:15	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1200		13		mg/L			03/28/14 10:40	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cr (VI)	ND		0.50		ug/L			03/24/14 21:16	1

Prep Type: Total/NA

5

Client Sample ID: Method Blank 6 7

1

		Frep Datch.	13.
D	Prepared	Analyzed	D
 _	03/25/14 08:31	03/25/14 19:38	

Mothod:	8270C		DAHe	by	GCMS	(SIM
weinou.	02100	31W -	гапэ	IJУ	GCINIS	

Lab Sample ID: MB 720-155886/1-C Matrix: Water

Analysis Batch: 155929								Prep Batch:	155919
-	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 19:38	1
Acenaphthene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 19:38	1
Acenaphthylene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 19:38	1
Fluorene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 19:38	1
Phenanthrene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 19:38	1
Anthracene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 19:38	1
Benzo[a]anthracene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 19:38	1
Chrysene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 19:38	1
Benzo[a]pyrene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 19:38	1
Benzo[b]fluoranthene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 19:38	1
Benzo[k]fluoranthene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 19:38	1
Benzo[g,h,i]perylene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 19:38	1
Indeno[1,2,3-cd]pyrene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 19:38	1
Fluoranthene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 19:38	1
Pyrene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 19:38	1
Dibenz(a,h)anthracene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 19:38	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	49		29 - 120	03/25/14 08:31	03/25/14 19:38	1
Terphenvl-d14	74		45 - 120	03/25/14 08:31	03/25/14 19:38	1

Lab Sample ID: MB 720-155919/1-A Matrix: Water Analysis Batch: 155929

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 155919

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 18:16	1
Acenaphthene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 18:16	1
Acenaphthylene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 18:16	1
Fluorene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 18:16	1
Phenanthrene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 18:16	1
Anthracene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 18:16	1
Benzo[a]anthracene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 18:16	1
Chrysene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 18:16	1
Benzo[a]pyrene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 18:16	1
Benzo[b]fluoranthene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 18:16	1
Benzo[k]fluoranthene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 18:16	1
Benzo[g,h,i]perylene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 18:16	1
Indeno[1,2,3-cd]pyrene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 18:16	1
Fluoranthene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 18:16	1
Pyrene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 18:16	1
Dibenz(a,h)anthracene	ND		0.10		ug/L		03/25/14 08:31	03/25/14 18:16	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	47		29 - 120				03/25/14 08:31	03/25/14 18:16	1
Terphenyl-d14	73		45 - 120				03/25/14 08:31	03/25/14 18:16	1

Spike

Added

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

Lab Sample ID: LCS 720-155919/2-A

Matrix: Water

Analyte

Fluorene

Naphthalene

Acenaphthene

Acenaphthylene

Phenanthrene

Benzo[a]anthracene

Benzo[k]fluoranthene

Benzo[g,h,i]perylene

Indeno[1,2,3-cd]pyrene

Dibenz(a,h)anthracene

Benzo[a]pyrene Benzo[b]fluoranthene

Fluoranthene

Pyrene

Anthracene

Chrysene

Analysis Batch: 155929

Client Sample ID: Lab Control Sample Prep Type: Total/NA 7

Prep Batch: 155919							
	%Rec.						
%Rec	Limits						
49	19 - 120						
53	24 - 120						
59	24 - 120						
58	27 _ 120						
58	31 - 120						

				0	
		10.0	5.30	ug/L	
		10.0	5.57	ug/L	
		10.0	8.15	ug/L	
		10.0	6.83	ug/L	
		10.0	5.45	ug/L	
.cs	LCS				
very	Qualifier	Limits			
51		29 - 120			

LCS LCS

4.89

5.34

5.87

5.79

5.78

6.68

7.13

6.35

6.64

7.54

6.31

Result Qualifier

D

67

71

63

66

75

63

53

56

82

68

55

44 - 120

48 - 120

47 - 120

43 - 120

42 - 120

42 - 120

35 - 120

36 - 120

43 - 120

47 - 120 33 - 120

Unit

ug/L ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ua/L

	200	200		
Surrogate	%Recovery	Qualifier	Limits	
2-Fluorobiphenyl	51		29 - 120	
Terphenyl-d14	75		45 - 120	

Method: 8270C SIM - PAHs by GCMS (SIM) (Continued)

Lab Sample ID: LCSD 720-155919/3-A Matrix: Water

Analysis Batch: 155929

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 155919

						Thep Buttern. 1000			
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	10.0	4.45		ug/L		44	19 - 120	9	35
Acenaphthene	10.0	4.87		ug/L		49	24 - 120	9	35
Acenaphthylene	10.0	5.21		ug/L		52	24 - 120	12	35
Fluorene	10.0	5.23		ug/L		52	27 _ 120	10	35
Phenanthrene	10.0	5.18		ug/L		52	31 - 120	11	35
Anthracene	10.0	6.07		ug/L		61	44 - 120	9	35
Benzo[a]anthracene	10.0	6.76		ug/L		68	48 - 120	5	35
Chrysene	10.0	6.09		ug/L		61	47 - 120	4	35
Benzo[a]pyrene	10.0	6.39		ug/L		64	43 - 120	4	35
Benzo[b]fluoranthene	10.0	6.51		ug/L		65	42 - 120	15	35
Benzo[k]fluoranthene	10.0	6.64		ug/L		66	42 - 120	5	35
Benzo[g,h,i]perylene	10.0	5.23		ug/L		52	35 _ 120	1	35
Indeno[1,2,3-cd]pyrene	10.0	5.40		ug/L		54	36 - 120	3	35
Fluoranthene	10.0	7.49		ug/L		75	43 - 120	9	35
Pyrene	10.0	6.22		ug/L		62	47 - 120	9	35
Dibenz(a,h)anthracene	10.0	5.39		ug/L		54	33 - 120	1	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	46		29 - 120
Terphenyl-d14	70		45 _ 120

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 720-156088/ Matrix: Water Analysis Batch: 156076	1-A										Client Sa Prep T	ample ID: I ype: Silica Prep E	Method Gel Cl Batch: 1	Blank eanup 56088
		ΜВ	МВ											
Analyte	Re:	sult	Qualifier	RL		MDL	Unit		D	P	repared	Analyz	ed	Dil Fac
TPH-Hydraulic Oil Range (C19-C36)		ND		99			ug/L			03/2	7/14 10:04	03/28/14 ()2:22	1
		ΜВ	МВ											
Surrogate	%Recov	very	Qualifier	Limits						P	repared	Analyz	ed	Dil Fac
Capric Acid (Surr)		0		0 - 5						03/2	7/14 10:04	03/28/14	02:22	1
p-Terphenyl		72		31 - 150						03/2	7/14 10:04	03/28/14	02:22	1
_ Lab Sample ID: LCS 720-156088	/2-A								CI	ient	Sample	ID: Lab Co	ontrol S	ample
Matrix: Water											Prep T	ype: Silica	Gel Cl	eanup
Analysis Batch: 156076												Prep E	Batch: 1	56088
				Spike	LCS	LCS						%Rec.		
Analyte				Added	Result	Qual	ifier	Unit		D	%Rec	Limits		
Diesel Range Organics				2500	2180			ug/L		_	87	32 _ 119		
	LCS	LCS												
Surrogate	%Recovery	 Quali	ifier	Limits										
p-Terphenyl	131			31 - 150										
_ Lab Sample ID: LCSD 720-15608	38/3-A							CI	ient	Sam	ple ID: L	ab Contro	l Sampl	e Dup
Matrix: Water											Prep T	vpe: Silica	Gel Cl	eanup
Analysis Batch: 156076												Prep E	Batch: 1	56088
				Spike	LCSD	LCS	D					%Rec.		RPD
Analyte				Added	Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
Diesel Range Organics				2500	1660			ug/L		_	66	32 - 119	27	35
[C10-C28]														
	LCSD	LCSE	2											
Surrogate	%Recovery	Quali	ifier	Limits										
p-Terphenyl	121			31 - 150										

Method: 6010B - Metals (ICP)

Lab Sample ID: LCS 720-155958/2-A Matrix: Water Analysis Batch: 156012				Clien	t Sample Prep	e ID: Lab Control Sample Type: Total Recoverable Prep Batch: 155958
	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits
Antimony	1.00	0.971	mg/l		97	80 - 120
Arsenic	1.00	0.967	mg/l	-	97	80 - 120
Barium	1.00	0.999	mg/l	-	100	80 - 120
Beryllium	1.00	0.982	mg/l		98	80 - 120
Cadmium	1.00	1.00	mg/l	-	100	80 - 120
Chromium	1.00	0.989	mg/l	-	99	80 - 120
Cobalt	1.00	1.01	mg/l		101	80 - 120
Copper	1.00	0.991	mg/l	-	99	80 - 120
Lead	1.00	0.997	mg/l	-	100	80 - 120
Molybdenum	1.00	0.964	mg/l		96	80 - 120
Nickel	1.00	0.988	mg/l	-	99	80 - 120
Selenium	1.00	0.988	mg/L	-	99	80 - 120

Spike

Added

0.500

1.00

1.00

1.00

LCS LCS

0.494

1.01

0.978

0.989

Result Qualifier

Unit

mg/L

mg/L

mg/L

Lab Sample ID: LCS 720-155958/2-A

Method: 6010B - Metals (ICP) (Continued)

Prep Type: Total Recoverable

Prep Batch: 155958

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

80 - 120

80 - 120

%Rec

99

101

98

D

7

mg/L 99 80 - 120 **Client Sample ID: Lab Control Sample Dup Prep Type: Total Recoverable**

Lab Sample ID: LCSD 720-155958/3-A Matrix: Water

Anal	veie	Ratch:	156012
Anar	y 515	Datch.	100012

Matrix: Water

Analyte

Thallium

Vanadium

Silver

Zinc

Analysis Batch: 156012

Analysis Batch: 156012							Prep	Batch: 1	55958
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	1.00	0.982		mg/L		98	80 - 120	1	20
Arsenic	1.00	0.976		mg/L		98	80 - 120	1	20
Barium	1.00	1.01		mg/L		101	80 - 120	1	20
Beryllium	1.00	0.988		mg/L		99	80 - 120	1	20
Cadmium	1.00	1.01		mg/L		101	80 - 120	1	20
Chromium	1.00	0.987		mg/L		99	80 - 120	0	20
Cobalt	1.00	1.02		mg/L		102	80 - 120	1	20
Copper	1.00	0.991		mg/L		99	80 - 120	0	20
Lead	1.00	1.00		mg/L		100	80 - 120	1	20
Molybdenum	1.00	0.981		mg/L		98	80 - 120	2	20
Nickel	1.00	0.991		mg/L		99	80 - 120	0	20
Selenium	1.00	0.993		mg/L		99	80 - 120	1	20
Silver	0.500	0.499		mg/L		100	80 - 120	1	20
Thallium	1.00	1.02		mg/L		102	80 - 120	1	20
Vanadium	1.00	0.984		mg/L		98	80 - 120	1	20
Zinc	1.00	0.993		ma/L		99	80 - 120	0	20

Lab Sample ID: MB 720-155917/1-C Matrix: Water

Analysis Batch: 156048

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.010		mg/L		03/25/14 15:38	03/26/14 15:38	1
Arsenic	ND		0.010		mg/L		03/25/14 15:38	03/26/14 15:38	1
Barium	ND		0.0050		mg/L		03/25/14 15:38	03/26/14 15:38	1
Beryllium	ND		0.0020		mg/L		03/25/14 15:38	03/26/14 15:38	1
Cadmium	ND		0.0020		mg/L		03/25/14 15:38	03/26/14 15:38	1
Chromium	ND		0.010		mg/L		03/25/14 15:38	03/26/14 15:38	1
Cobalt	ND		0.0020		mg/L		03/25/14 15:38	03/26/14 15:38	1
Copper	ND		0.020		mg/L		03/25/14 15:38	03/26/14 15:38	1
Lead	ND		0.0050		mg/L		03/25/14 15:38	03/26/14 15:38	1
Molybdenum	ND		0.010		mg/L		03/25/14 15:38	03/26/14 15:38	1
Nickel	ND		0.010		mg/L		03/25/14 15:38	03/26/14 15:38	1
Selenium	ND		0.020		mg/L		03/25/14 15:38	03/26/14 15:38	1
Silver	ND		0.0050		mg/L		03/25/14 15:38	03/26/14 15:38	1
Thallium	ND		0.010		mg/L		03/25/14 15:38	03/26/14 15:38	1
Vanadium	ND		0.010		mg/L		03/25/14 15:38	03/26/14 15:38	1
Zinc	ND		0.020		mg/L		03/25/14 15:38	03/26/14 15:38	1

TestAmerica Pleasanton

Client Sample ID: Method Blank

Prep Type: Dissolved

Prep Batch: 155958

Client Sample ID: MW-1

Client Sample ID: MW-1

Prep Type: Dissolved

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: 720-56286-1	MS
Matrix: Water	

Matrix: Water									Prep Typ	be: Dissolved
Analysis Batch: 156012									Prep E	Batch: 155958
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	ND		1.00	0.974		mg/L		97	75 - 125	
Arsenic	0.015		1.00	1.02		mg/L		101	75 ₋ 125	
Barium	0.033		1.00	1.04		mg/L		101	75 - 125	
Beryllium	ND		1.00	0.982		mg/L		98	75 - 125	
Cadmium	ND		1.00	1.00		mg/L		100	75 - 125	
Chromium	ND		1.00	0.974		mg/L		97	75 - 125	
Cobalt	ND		1.00	0.987		mg/L		99	75 - 125	
Copper	0.032		1.00	1.00		mg/L		97	75 - 125	
Lead	0.019		1.00	0.968		mg/L		95	75 - 125	
Molybdenum	0.63		1.00	1.63		mg/L		100	75 - 125	
Nickel	0.042		1.00	0.996		mg/L		95	75 - 125	
Selenium	ND		1.00	0.984		mg/L		98	75 - 125	
Silver	ND		0.500	0.498		mg/L		100	75 - 125	
Thallium	ND		1.00	0.903		mg/L		90	75 - 125	
Vanadium	0.018		1.00	1.02		mg/L		101	75 - 125	
Zinc	ND		1.00	1.01		mg/L		101	75 - 125	

Lab Sample ID: 720-56286-1 MSD Matrix: Water Analysis Batch: 156012

Analysis Batch: 156012									Prep	Batch: 1	55958
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	ND		1.00	0.974		mg/L		97	75 - 125	0	20
Arsenic	0.015		1.00	1.02		mg/L		101	75 _ 125	0	20
Barium	0.033		1.00	1.03		mg/L		100	75 ₋ 125	1	20
Beryllium	ND		1.00	0.994		mg/L		99	75 _ 125	1	20
Cadmium	ND		1.00	0.996		mg/L		100	75 ₋ 125	1	20
Chromium	ND		1.00	0.991		mg/L		99	75 - 125	2	20
Cobalt	ND		1.00	0.982		mg/L		98	75 _ 125	0	20
Copper	0.032		1.00	1.01		mg/L		98	75 - 125	1	20
Lead	0.019		1.00	0.970		mg/L		95	75 ₋ 125	0	20
Molybdenum	0.63		1.00	1.65		mg/L		101	75 _ 125	1	20
Nickel	0.042		1.00	1.00		mg/L		96	75 - 125	1	20
Selenium	ND		1.00	0.992		mg/L		99	75 ₋ 125	1	20
Silver	ND		0.500	0.493		mg/L		99	75 - 125	1	20
Thallium	ND		1.00	0.902		mg/L		90	75 _ 125	0	20
Vanadium	0.018		1.00	1.03		mg/L		101	75 ₋ 125	0	20
Zinc	ND		1.00	1.01		mg/L		101	75 ₋ 125	0	20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: LCS 720-155926/2-A					Client	Sample	ID: Lab Co	ontrol Sample
Matrix: Water							Prep T	ype: Total/NA
Analysis Batch: 155944							Prep E	Batch: 155926
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.0100	0.0107		mg/L		107	85 - 115	

Method: 7470A - Mercury (CVAA) (Continued)

								С	lient	Sam	ple ID: L	ab Control	Sampl	e Dup
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 155944												Prep Ba	atch: 1	55926
-			Spike		LCSD	LCS	D					%Rec.		RPD
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
Mercury			0.0100		0.0106			mg/L			106	85 - 115	1	20
 Lab Sample ID: MB 720-155917/1-B											Client Sa	ample ID: M	ethod	Blank
Matrix: Water												· Prep Typ	e: Diss	solved
Analysis Batch: 155944												Prep Ba	atch: 1	55926
	МВ	MB												
Analyte	Result	Qualifier		RL		MDL	Unit		D	Р	repared	Analyzed	ł	Dil Fac
Mercury	ND		0.000	020			mg/L			03/2	5/14 09:58	03/25/14 14	:09	1
Method: 7199 - Chromium, Hexav	alent (l	C)												
 Lab Sample ID: MB 720-155959/1-A											Client Sa	ample ID: M	ethod	Blank
Matrix: Water												Prep Typ	e: Diss	solved

Analysis Batch: 155872											
-	MB	MB									
Analyte	Result	Qualifier	RL		MDL	Unit		D	Prepared	Analyzed	Dil Fac
Cr (VI)	ND		0.50			ug/L				03/24/14 14:33	1
- Lab Sample ID: LCS 720-155959/2-A								Clie	nt Sample	ID: Lab Control	Sample
Matrix: Water										Prep Type: Di	ssolved
Analysis Batch: 155872											
			Spike	LCS	LCS					%Rec.	
Analyte			Added	Result	Qua	lifier	Unit		D %Rec	Limits	

2.17

ug/L

109

90 - 110

2.00

Method: SM 2540C - Solids, Total Dissolved (TDS)

Cr (VI)

Lab Sample ID: MB 500-229122/1										Client S	ample ID: Mo	thod Blank
Matrix: Water											Prep Typ	e: Total/NA
Analysis Batch: 229122												
	MB	MB										
Analyte	Result	Qualifier	RL		MDL	Unit		D	Pr	repared	Analyzed	Dil Fac
Total Dissolved Solids	ND		10			mg/L					03/28/14 10	35 1
Lab Sample ID: LCS 500-229122/2								Cli	ent	Sample	ID: Lab Con	trol Sample
Matrix: Water											Prep Typ	e: Total/NA
Analysis Batch: 229122												
		Spike		LCS	LCS						%Rec.	
Analyte		Added		Result	Qual	ifier	Unit		D	%Rec	Limits	
Total Dissolved Solids		250		286			mg/L			114	80 - 120	

GC/MS Semi VOA

Filtration Batch: 155886

Lab Sample ID MB 720-155886/1-C	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Water	Method FILTRATION	Prep Batch
Prep Batch: 155919					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-56286-1	MW-1	Total/NA	Water	3510C	
720-56286-2	MW-2	Total/NA	Water	3510C	
720-56286-3	MW-3	Total/NA	Water	3510C	
LCS 720-155919/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 720-155919/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
MB 720-155886/1-C	Method Blank	Total/NA	Water	3510C	155886
MB 720-155919/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 155929

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-56286-1	MW-1	Total/NA	Water	8270C SIM	155919
720-56286-2	MW-2	Total/NA	Water	8270C SIM	155919
720-56286-3	MW-3	Total/NA	Water	8270C SIM	155919
LCS 720-155919/2-A	Lab Control Sample	Total/NA	Water	8270C SIM	155919
LCSD 720-155919/3-A	Lab Control Sample Dup	Total/NA	Water	8270C SIM	155919
MB 720-155886/1-C	Method Blank	Total/NA	Water	8270C SIM	155919
MB 720-155919/1-A	Method Blank	Total/NA	Water	8270C SIM	155919

GC Semi VOA

Analysis Batch: 156075

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-56286-1	MW-1	Silica Gel Cleanup	Water	8015B	156088
720-56286-2	MW-2	Silica Gel Cleanup	Water	8015B	156088
720-56286-3	MW-3	Silica Gel Cleanup	Water	8015B	156088
Analysis Batch: 15607	6				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 720-156088/2-A	Lab Control Sample	Silica Gel Cleanup	Water	8015B	156088
LCSD 720-156088/3-A	Lab Control Sample Dup	Silica Gel Cleanup	Water	8015B	156088
MB 720-156088/1-A	Method Blank	Silica Gel Cleanup	Water	8015B	156088
Prep Batch: 156088					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-56286-1	MW-1	Silica Gel Cleanup	Water	3510C SGC	
720-56286-2	MW-2	Silica Gel Cleanup	Water	3510C SGC	

	=			
720-56286-3	MW-3	Silica Gel Cleanup	Water	3510C SGC
LCS 720-156088/2-A	Lab Control Sample	Silica Gel Cleanup	Water	3510C SGC
LCSD 720-156088/3-A	Lab Control Sample Dup	Silica Gel Cleanup	Water	3510C SGC
MB 720-156088/1-A	Method Blank	Silica Gel Cleanup	Water	3510C SGC

Metals

Filtration Batch: 155917

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-56286-1	MW-1	Dissolved	Water	FILTRATION	

8 9 10

11 12

Metals (Continued)

Filtration Batch: 155917 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-56286-1 MS	MW-1	Dissolved	Water	FILTRATION	
720-56286-1 MSD	MW-1	Dissolved	Water	FILTRATION	
720-56286-2	MW-2	Dissolved	Water	FILTRATION	
720-56286-3	MW-3	Dissolved	Water	FILTRATION	
MB 720-155917/1-B	Method Blank	Dissolved	Water	FILTRATION	
MB 720-155917/1-C	Method Blank	Dissolved	Water	FILTRATION	
Prep Batch: 155926	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-56286-1	MW-1	Dissolved	Water	7470A	155917
720-56286-2	MW-2	Dissolved	Water	7470A	155917
720-56286-3	MW-3	Dissolved	Water	7470A	155917
LCS 720-155926/2-A	Lab Control Sample	Total/NA	Water	7470A	
LCSD 720-155926/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	
MB 720-155917/1-B	Method Blank	Dissolved	Water	7470A	155917

Analysis Batch: 155944

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-56286-1	MW-1	Dissolved	Water	7470A	155926
720-56286-2	MW-2	Dissolved	Water	7470A	155926
720-56286-3	MW-3	Dissolved	Water	7470A	155926
LCS 720-155926/2-A	Lab Control Sample	Total/NA	Water	7470A	155926
LCSD 720-155926/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	155926
MB 720-155917/1-B	Method Blank	Dissolved	Water	7470A	155926

Prep Batch: 155958

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-56286-1	MW-1	Dissolved	Water	3005A	155917
720-56286-1 MS	MW-1	Dissolved	Water	3005A	155917
720-56286-1 MSD	MW-1	Dissolved	Water	3005A	155917
720-56286-2	MW-2	Dissolved	Water	3005A	155917
720-56286-3	MW-3	Dissolved	Water	3005A	155917
LCS 720-155958/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
LCSD 720-155958/3-A	Lab Control Sample Dup	Total Recoverable	Water	3005A	
MB 720-155917/1-C	Method Blank	Dissolved	Water	3005A	155917

Analysis Batch: 156012

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-56286-1	MW-1	Dissolved	Water	6010B	155958
720-56286-1 MS	MW-1	Dissolved	Water	6010B	155958
720-56286-1 MSD	MW-1	Dissolved	Water	6010B	155958
720-56286-2	MW-2	Dissolved	Water	6010B	155958
720-56286-3	MW-3	Dissolved	Water	6010B	155958
LCS 720-155958/2-A	Lab Control Sample	Total Recoverable	Water	6010B	155958
LCSD 720-155958/3-A	Lab Control Sample Dup	Total Recoverable	Water	6010B	155958

Analysis Batch: 156048

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-56286-1	MW-1	Dissolved	Water	6010B	155958
MB 720-155917/1-C	Method Blank	Dissolved	Water	6010B	155958

8 9 10 11 12 13

General Chemistry

Analysis Batch: 155872

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-56286-1	MW-1	Dissolved	Water	7199	155959
720-56286-2	MW-2	Dissolved	Water	7199	155959
720-56286-3	MW-3	Dissolved	Water	7199	155959
LCS 720-155959/2-A	Lab Control Sample	Dissolved	Water	7199	155959
MB 720-155959/1-A	Method Blank	Dissolved	Water	7199	155959
Filtration Batch: 15595	59				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-56286-1	MW-1	Dissolved	Water	FILTRATION	
720-56286-2	MW-2	Dissolved	Water	FILTRATION	
720-56286-3	MW-3	Dissolved	Water	FILTRATION	
LCS 720-155959/2-A	Lab Control Sample	Dissolved	Water	FILTRATION	
MB 720-155959/1-A	Method Blank	Dissolved	Water	FILTRATION	
Analysis Batch: 22912	2				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-56286-1	MW-1	Total/NA	Water	SM 2540C	
720-56286-2	MW-2	Total/NA	Water	SM 2540C	
720-56286-3	MW-3	Total/NA	Water	SM 2540C	
LCS 500-229122/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 500-229122/1	Method Blank	Total/NA	Water	SM 2540C	

Dilution

Factor

1

1

1

1

1

1

1

Run

Batch

Number

155919

155929

156088

156075

155917

155958

156048

155917

155958

156012

155917

155926

155944

155959

155872

229122

Prepared

or Analyzed

03/25/14 10:13

03/25/14 23:46

03/27/14 10:04

03/27/14 22:00

03/25/14 07:46

03/25/14 15:38

03/26/14 15:42

03/25/14 07:46

03/25/14 15:38

03/26/14 11:09

03/25/14 07:46

03/25/14 09:58

03/25/14 14:11

03/24/14 19:00

03/24/14 20:25

03/28/14 10:37

Analyst

NDU

MQI

NDU

JL

ECT

ASB

SLK

ECT

ASB

EFH

ECT

ECT

CAM

M.IK

MJK

CCK

Lab

TAL PLS

TAL CHI

Batch

Туре

Prep

Prep

Prep

Prep

Prep

Analysis

Analysis

Filtration

Analysis

Filtration

Analysis

Filtration

Analysis

Filtration

Analysis

Analysis

Batch

Method

3510C

8015B

3005A

6010B

3005A

6010B

7470A

7470A

7199

8270C SIM

3510C SGC

FILTRATION

FILTRATION

FILTRATION

FILTRATION

SM 2540C

Client Sample ID: MW-1

Date Collected: 03/24/14 13:30

Date Received: 03/24/14 17:35

Prep Type

Total/NA

Total/NA

Dissolved

Total/NA

Silica Gel Cleanup

Silica Gel Cleanup

Lab Sample ID: 720-56286-1

Matrix: Water

2 3 4 5 6

Client Sample ID: MW-2 Date Collected: 03/24/14 14:05 Date Received: 03/24/14 17:35

Lab Sample ID: 720-56286-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			155919	03/25/14 10:13	NDU	TAL PLS
Total/NA	Analysis	8270C SIM		1	155929	03/26/14 00:07	MQL	TAL PLS
Silica Gel Cleanup	Prep	3510C SGC			156088	03/27/14 10:04	NDU	TAL PLS
Silica Gel Cleanup	Analysis	8015B		1	156075	03/27/14 22:29	JL	TAL PLS
Dissolved	Filtration	FILTRATION			155917	03/25/14 07:46	ECT	TAL PLS
Dissolved	Prep	3005A			155958	03/25/14 15:38	ASB	TAL PLS
Dissolved	Analysis	6010B		1	156012	03/26/14 11:18	EFH	TAL PLS
Dissolved	Filtration	FILTRATION			155917	03/25/14 07:46	ECT	TAL PLS
Dissolved	Prep	7470A			155926	03/25/14 09:58	ECT	TAL PLS
Dissolved	Analysis	7470A		1	155944	03/25/14 14:13	CAM	TAL PLS
Dissolved	Filtration	FILTRATION			155959	03/24/14 19:00	MJK	TAL PLS
Dissolved	Analysis	7199		1	155872	03/24/14 20:51	MJK	TAL PLS
Total/NA	Analysis	SM 2540C		1	229122	03/28/14 10:39	CCK	TAL CHI

Client Sample ID: MW-3 Date Collected: 03/24/14 14:42 Date Received: 03/24/14 17:35

Batch Batch Dilution Batch Prepared Method Prep Type Run Factor Number Туре or Analyzed Analyst Lab Total/NA Prep 3510C 155919 03/25/14 10:13 NDU TAL PLS Total/NA 8270C SIM TAL PLS Analysis 155929 03/26/14 00:28 MQL 1

TestAmerica Pleasanton

Lab Sample ID: 720-56286-3

Matrix: Water

9

Client Sample ID: MW-3

Date Collected: 03/24/14 14:42 Date Received: 03/24/14 17:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Silica Gel Cleanup	Prep	3510C SGC			156088	03/27/14 10:04	NDU	TAL PLS
Silica Gel Cleanup	Analysis	8015B		1	156075	03/27/14 22:58	JL	TAL PLS
Dissolved	Filtration	FILTRATION			155917	03/25/14 07:46	ECT	TAL PLS
Dissolved	Prep	3005A			155958	03/25/14 15:38	ASB	TAL PLS
Dissolved	Analysis	6010B		1	156012	03/26/14 11:23	EFH	TAL PLS
lissolved	Filtration	FILTRATION			155917	03/25/14 07:46	ECT	TAL PLS
issolved	Prep	7470A			155926	03/25/14 09:59	ECT	TAL PLS
issolved	Analysis	7470A		1	155944	03/25/14 14:15	CAM	TAL PLS
vissolved	Filtration	FILTRATION			155959	03/24/14 19:00	MJK	TAL PLS
Dissolved	Analysis	7199		1	155872	03/24/14 21:16	MJK	TAL PLS
otal/NA	Analysis	SM 2540C		1	229122	03/28/14 10:40	CCK	TAL CHI

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Client: Ninyo & Moore Project/Site: Western Forge & Flange

	5	
	8	
	9	
1	ľ	0

Method	Method Description	Protocol	Laboratory
8270C SIM	PAHs by GCMS (SIM)	SW846	TAL PLS
8015B	Diesel Range Organics (DRO) (GC)	SW846	TAL PLS
6010B	Metals (ICP)	SW846	TAL PLS
7470A	Mercury (CVAA)	SW846	TAL PLS
7199	Chromium, Hexavalent (IC)	SW846	TAL PLS
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL CHI
Protocol Re	ferences:		
SM = "St	andard Methods For The Examination Of Water And Wastewater",		
SW846 =	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Th	nird Edition, November 1986 And Its Updates.	

Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Client: Ninyo & Moore Project/Site: Western Forge & Flange TestAmerica Job ID: 720-56286-1

Client: Ninyo & Moo Project/Site: Wester	ore rn Forge & Flange		TestAmerica Job ID: 720-56286-1								
Lab Sample ID	Client Sample ID	Matrix	Collected	Received							
720-56286-1	MW-1	Water	03/24/14 13:30	03/24/14 17:35							
720-56286-2	MW-2	Water	03/24/14 14:05	03/24/14 17:35							
720-56286-3	MW-3	Water	03/24/14 14:42	03/24/14 17:35	5						
					8						
					9						
					11						
					13						

TestAmerica Pleasanton				Ch	ain	of(Cu	sto	ody	Reco	ord						Te	∋st≁	۲	eric	à:
1220 Quarry Lane 770-56	12	16																			4
Pleasanton, CA 94566 phone 925.484.1919 fax 925.600.3002	Regul	iatory Pro	gram: 🗌] dw [NPDES	5 E	RCR	A	Oti	er:							тче М Те			oratories,	Inc. [
Client Contact	Project Ma	nager: Cer	n Atabek			Site	Cont	act:	Cem	Atabek		Date:	3/24/2	2014			COC	D No: 1		-	Ŕ
Cem Atabek	Tel/Fax: 51	0-343-3000)/510-343-3	3001		Lab Contact: Dimple Sharma					rier:										
1956 Webster Street	A	nalvsis Tu	rnaround	Time					<u>ତ</u>					1			San	pler: Cerr	n Atabel	k	
Oakland CA 94612		AR DAYS	WOF		/S		2	3	8		Í		11	Í			For	Lab Use	Only:		
(510) 343-3000 Phone	TAT	if different fro	m Below				0 2	5	M2							1	Wal	k-in Client	-	1	
(510) 343-3001 FAX		2.	veeks			200	174	5	s) s								Lab	Sampling	:		
Project Name: Western Forge & Flange			veek			silic	١ <u>ڦ</u>	1	19									• -		L	1
Site: 540 Cleveland Avenue, Albany			lavs			3	ଞ	ē	Š		ł						Job	/ SDG No			
P O # 401823001		20	lav			5M	als	Ved Ved	Ne le												
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	TPHho (80'	Title 22 Me	Hexavalent	Total Disso PAHs (8271							******		Sample	e Speci	fic Notes:	
MW-1	3/24/2014	1330	G	water	6	×	×	x	x x								Lab	filter for T	itle 22 N	Metals/TDS	
MW-2	3/24/2014	1405	G	water	6	×	×	×	xx								Lab	filter for T	itle 22 M	Metals/TDS	
<u>M</u> W-3	3/24/2014	1442	G	water	6	×	x	x	x x								Lab	filter for T	itle 22 M	Vietais/TDS	
				1					Í	1 1 1		11	11			1					
											- -										
							+	\rightarrow	-+-			┝╌┼╴	+ +			+					
																					2
			-	<u> </u>					-			+ +-	+		+						ğ
720-56286 Chain of Custody																					i
		-		[
Preservation liesd: 1= ice 2= HCI- 3= H2SO4: 4=HNO3: 5=		lhor -	1 1 5 7 63 ¹¹				- - -	4	4 1 4					, 4 485					2		C -
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please L Comments Section if the lab is to dispose of the sample.	ist any EPA	Waste Cod	es for the s	ample in	the	S	ampl	e Di	sposa	1 { A fee 1	may be	asses	ssed i	f sam	ples ar	e retai	ned lon	ger than '	1 mont	h)	- <u>*</u>
🗹 Non-Hazard 🛛 🗌 Flammable 🗌 Skin Imitant	🗌 Poison i	В	🗌 Սոևո	own			🗆 I	Return	to Clie	ent	🗹 C	Disposal b	by Lab		🗌 A	rchive for		Month:	s		
Special Instructions/QC Requirements & Comments:					J	5	<u>ُ</u> هر	<		-											
Custody Seals Intact: 🔲 Yes 🗌 No	Custody Se	al No.:							Coole	r Temp. ("	'C): Ob	s'd:		Co	rr'd:		The	m ID No.:		<u> </u>	
Relinquished by: Cem Ataber 15	Company:	& MOOS	e	Date/Ti	ime: / <u>/4</u> 15	к Ц	Received by:					npany 74	P Date/Time: 1P 3-24-14 1542-								
Relinquished by:	Company:	P		Date/Ti	? ו ^{יme:} היי	37 ^R	ecei.	ied b KU	<u>Š</u> Ł	$ \ge $	1_		Con	npany Į <i>F</i>	ξp		Date 3	e/Time: 구나//੫	r ľ	775	
Relinquished by:	Company:			Date/Ti	ime:	R	ecei	/ed ir	a Lab	oratory by	: #		Соп	npany			Date	e/Time:			

Form	No.	CA-C-WI-0	02. Rev.	4.2.	dated	04/02/2013
		W/1 W 991 W	· • • • • • • • • • • • • • •		~~~~	• • • • • • • • • •

Login Sample Receipt Checklist

Client: Ninyo & Moore

Login Number: 56286 List Number: 1

Creator: Bullock, Tracy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 720-56286-1

List Source: TestAmerica Pleasanton

Client: Ninyo & Moore

Login Number: 56286 List Number: 1 Creator: Kelsey, Shawn M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

13

List Source: TestAmerica Chicago

List Creation: 03/26/14 11:29 AM