RECEIVED

3:34 pm, Aug 31, 2009

Alameda County Environmental Health

17 March 2009

Mr. Robert Weston Alameda County Health Agency Department of Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

Subject: UST Closure Report Former Dublin Square Shopping Center 11759 Dublin Boulevard Dublin, California 94568

Dear Mr. Weston:

On behalf of the City of Dublin (City), ERM-West, Inc. (ERM) is pleased to present this closure report to the Alameda County Health Agency (County) for removal of underground storage tanks (USTs) from the Former Dublin Square Shopping Center, 11759 Dublin Boulevard in Dublin, California (site; Figure 1). ERM was contracted by the City to oversee UST removal activities at the site. The oversight activities included the following:

- Assisting in the preparation of a County Underground Storage Tank Closure Plan;
- Preparing a site-specific Health and Safety Plan;
- Sampling the contents of the USTs;
- Observing and documenting the UST removal activities;
- Collecting soil samples beneath the removed USTs;
- Collecting samples from the stockpile of excavated soil; and
- Assisting in profiling of the soil stockpile for disposal.

Environmental Resources Management

1777 Botelho Drive Suite 260 Walnut Creek, CA 94596 (925) 946-0455 (925) 946-9968 (fax)

Environmental Resources Management

BACKGROUND

Historically, the site was part of the old Dublin town center. According to City records, historical photographs show a gasoline service station at the location where the USTs were discovered. Until January 2008, the property operated as the Dublin Square Shopping Center. The City is currently in the process of converting the site into a city park. During construction activities associated with this project, three unregistered USTs and one concrete vault were discovered.

The USTs were named in the order in which they were found. Tank 2 is the furthest to the north, Tank 1 is in the middle, and Tank 3 is the southernmost tank (Figure 2). The concrete vault is just south of Tank 3. Tanks 1 and 2 were discovered on 11 November 2008, and Tank 3 and the concrete vault were discovered on 9 December 2008.

Description of Tanks

The three USTs were oriented parallel to each other, approximately 4 feet apart, as shown in Figure 2. The concrete vault was located on the southern end of the three USTs. Tank 3, the UST closest to the concrete vault, was partially encased in concrete. The western side of Tank 2 was accidently damaged when it was first discovered by the construction subcontractor during site construction activities (see Photograph 1, Appendix A).

The three USTs were single-walled steel tanks. The measured dimensions and approximate volumes of the tanks are provided in Table 1.

Tank ID	Length (feet-inches)	Diameter (feet-inches)	Approximate Volume (gallons)	
Tank 1	7′-7″	3'-6"	550	
Tank 2	11'-8″	3'-8"	920	
Tank 3	7′-4″	3'-4"	480	
Concrete Vault	4'-3" x 7'-8"	5.0' (depth)	1,220	

Table 1 - Tank Dimensions

Environmental Resources Management

Several pipe connection fittings or holes were observed on the tops of the tanks, as shown in Figure 2. These included the following:

- One, 2-inch fitting and two, 1.5-inch fittings were observed on the eastern portion of Tank 2. No piping was observed to be connected to these fittings at the time of discovery.
- Two, 2-inch fittings were observed on opposite ends of Tank 1, with approximately 1 foot of piping attached to the western fitting. No cap was observed on the piping.
- A 2-inch fitting with approximately 1 foot of piping was observed on the eastern portion of Tank 3. Additionally, two, 1.5-inch holes were observed just east of the 2-inch fitting on Tank 3. It was unclear if these holes were pipe fittings, holes created for some other purpose, or just accidental.

UST REMOVAL

Pre-Removal Activities

Prior to performing field activities at the site, ERM developed a sitespecific Health and Safety Plan. In addition, ERM assisted the City in preparing the County UST Closure Plan to perform tank removal activities. Ferma Corporation (Ferma) of Mountain View, California was contracted by the City to conduct tank removal activities.

Liquid was noted to be present in Tanks 1 and 2 upon their discovery. Tank 1 was nearly full, while Tank 2 only had a small amount of liquid at the bottom. No liquid was observed in Tank 3 or the concrete vault.

The liquid in Tanks 1 and 2 was sampled on 25 November 2008 using a peristaltic pump and disposable polyethylene tubing. The samples were collected in laboratory-provided containers. The containers were labeled, placed in resealable plastic bags, and kept in an iced cooler prior to submittal to the laboratory. The samples were shipped under proper chain-of-custody protocol to Accutest Northern California, Inc. (Accutest), a California-certified laboratory in Santa Clara. Samples of the liquids from Tanks 1 and 2 were analyzed for the following:

- Total Petroleum Hydrocarbons (TPH) in the extractable range by United States Environmental Protection Agency (USEPA) Method 8015M;
- Oil & Grease by USEPA Method 1664A;
- Volatile Organic Compounds (VOCs) including TPH as gasoline and fuel oxygenates by USEPA Method 8260B;
- LUFT 5 Metals by USEPA Method 6010B;
- Polychlorinated Biphenyls (PCBs) by USEPA Method 8082 and;
- Pentachlorophenol (PCP), Polynuclear Aromatic Hydrocarbons (PNAs), and creosote compounds by USEPA Method 8270C.

The analytical results for the tank contents suggest some diesel-fuelrange hydrocarbons and associated breakdown products. The sampling results for detected compounds in the tanks are summarized in Table 2. The complete laboratory reports are included in Appendix B.

	Units	Tank 1	Tank 2
Naphthalene (by 8260)	μg/L	60.6	ND
Tert-Butyl Alcohol	µg/L	ND	7.5
1,2,4-Trimethylbenzene	μg/L	1,110	ND
1,3,5-TrimethyIbenzene	μg/L	466	ND
Xylene (total)	μg/L	4,420	ND
TPH-GRO (C6-C10)	µg/L	13,700	66.2 [⊾]
Naphthalene (by 8270)	μg/L	80.6	ND
HEM Oil and Grease	mg/L	ND	6.1
TPH as Diesel	mg/L	13.3ª	3.88°
Cadmium	µg/L	28.9	35.5
Lead	µg/L	ND	72.5
Nickel	μ g /L	14.1	16.7
Zinc	_μg/L	45,700	37,500

Table 2 – Laboratory Results for Tank Contents

µg/L = micrograms per liter mg/L = milligrams per liter

HEM = Hexane Extractable Material

ND = not detected

a - Not a typical diesel pattern (higher boiling gasoline compounds in

the diesel range, C10-C28).

b - Atypical pattern. See results for TPH as diesel.

c - Diesel pattern.

Evergreen Environmental Services (Evergreen) was contracted to remove and dispose of the tank liquids. Based on the chemical analysis, the tank contents were disposed of as non-hazardous liquid waste. Evergreen pumped the contents of Tanks 1 and 2 on 9 December 2008. Approximately 620 gallons were removed from Tanks 1 and 2, the bulk of which was from Tank 1. The liquids were transported to Evergreen's facility in Newark, California. The liquid waste disposal manifest is included in Appendix C.

Dry ice was added to each of the three tanks and the concrete vault approximately 1.5 hours prior to tank removal activities. The lower explosive limit (LEL) was measured under supervision of the Dublin Fire Department. The LEL readings and corresponding oxygen levels are provided in Table 3.

Tank	LEL (%)	Oxygen (%)
Tank 1	0	20.8
Tank 2	• 0	5.6
Tank 3	0	5.5
Concrete Vault	1	20.7

Table 3 – LEL Readings prior to Tank Removal

The measured LEL levels were all below the required limits necessary to conduct tank removal activities.

Environmental Resources Management

Excavation Activities

The area around the USTs was excavated with a backhoe. The excavation area was fully within the fenced-off construction area and was delineated by yellow caution tape. The western side of the excavation area was sloped to provide access. The excavated area was approximately 33 feet, 5 inches, in the north-south direction and 30 feet in the east-west direction (as shown in Figure 2). The approximate depth of the excavation area, and the concrete vault was approximately 3 feet from the southern edge of the excavation area (see Figure 2).

The three tanks were removed using a backhoe. The tanks were placed on a plastic liner at ground level for inspection prior to being transported. No holes were observed in Tanks 1 or 2. Tank 3 showed considerable degradation at the bottom with several tears and holes observed (see Photolog, Appendix A).

The three tanks were placed on a single flat-bed truck and tied down with straps for transport by Ecology Control Industries (ECI) to their facility in Richmond, California. The waste manifest for these tanks is included in Appendix C.

The concrete vault was destroyed in place. The concrete was placed in a stockpile, along with other concrete unearthed during construction activities, for future disposal/recycling.

Confirmation Sampling

Following removal activities, soil samples were collected from below the floor of each excavation. Per the County removal guidelines, USTs smaller than 1,000 gallons require collection of one soil sample approximately 2 feet below the center of the original tank location. As indicated in Table 1, the three USTs discovered at the site were smaller than 1,000 gallons. The bottoms of the three USTs were all at approximately 4 feet, 7 inches, below ground surface. Additionally, one soil sample was collected from below the concrete vault location Confirmation samples were obtained using a backhoe to scoop soil from the former UST and concrete vault locations. The sample was then

Environmental Resources Management

collected by inserting a brass liner into the soil gathered in the backhoe bucket. Each end of the liner was then covered with Teflon tape and sealed with a tight-fitting plastic cap. The liners were labeled, placed in resealable plastic bags, and kept in an iced cooler prior to submittal to the laboratory. The samples were shipped under proper chain-of-custody protocol to Accutest. The samples were analyzed for the following:

- TPH Extractable diesel and motor oil ranges by USEPA Method 8015M;
- 1,4-Dioxane by USEPA Method 8260 SIM;
- LUFT 5 Metals by USEPA Method 6010B;
- PCBs by USEPA Method 8082;
- VOCs, including TPH as gasoline and fuel oxygenates by USEPA Method 8260B;
- PCP, PNAs, and creosote compounds by USEPA Method 8270C.

No TPH or breakdown products were detected in any of the soil samples collected below the tanks or concrete vault. The only chemical detections were for some of the LUFT 5 Metals, all of which were below regulatory standards. The analytical results from the soil samples are summarized in Table 4. The complete laboratory reports are included in Appendix B.

Table 4 - Analytical Results Su	ummary for Soil Sample	s beneath USTs
---------------------------------	------------------------	----------------

	Chromium	Lead	Nickel	Zinc
ESL	2,500	750	150	600
Tank 1	31.4	7	30.6	48.5
Tank 2	32.4	6.6	30.3	46.5
Tank 3	31	8.4	30.9	52.8
Concrete Vault	30.6	6.5	31.4	52.1

All units in milligrams per kilogram (mg/kg).

ESL = Environmental Screening Level for commercial/industrial land use for shallow soils (<10 feet), Regional Water Quality Control Board, May 2008.

Environmental Resources Management

Groundwater was not encountered during UST removal and sampling activities.

Soil Stockpile Disposal

Approximately 280 tons of soil was removed during the UST excavation and stockpiled on a plastic liner at the site. The stockpile base length was approximately 43 feet, the width approximately 26 feet, and the height was approximately 6 feet. Three composite samples were collected from the stockpile for profiling. The three composite samples were composed of four discrete samples taken from the eastern end, western end, and middle of the stockpile, respectively. The samples were collected by inserting a brass liner into the soil stockpile. Each end of the liner was then covered with Teflon tape and sealed with a tightfitting plastic cap. The liners were labeled, placed in resealable plastic bags, and kept in an iced cooler prior to submittal to the laboratory. The samples were shipped under proper chain-of-custody protocol to Accutest. The stockpile samples were analyzed for the following:

- TPH Extractable diesel and motor oil ranges by USEPA Method 8015M;
- LUFT 5 Metals by USEPA Method 6010B; and
- Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) and TPH as gasoline by USEPA Method 8260B.

The analytical results of the composite samples for the eastern end and the middle portion of the stockpile indicated that those portions of the stockpile could be disposed of as a Class II non-hazardous waste. Based on the lead analytical result reported for the western end composite sample (59.4 mg/kg), this sample required a Soluble Threshold Limit Concentration (STLC) analysis performed for lead to determine the appropriate disposal characterization. An analysis for STLC is used when determining the hazardous waste characterization under California State regulations as outlined in Title 22 of the California Code of Regulations. Based on the STLC result for lead (1.8 mg/L), the western end of the soil stockpile was also classified as Class II nonhazardous waste. The complete laboratory report for the composite samples is included in Appendix B.

Environmental Resources Management

The soil stockpile was shipped to the Waste Management landfill in Altamont, California, for disposal.

SUMMARY

The City of Dublin is in the process of converting the former Dublin Square Shopping Center to a city park. During the construction effort, three USTs and a concrete vault were discovered. Historical photographs suggest that these tanks may have been associated with a gasoline service station that once operated at the site location.

Ferma was contracted to conduct the tank removal activities. Evergreen was contracted to pump out and dispose of the contents of the tanks, and ECI was contracted to dispose of the tanks. Soil samples from below the tanks were analyzed for various compounds associated with fuel hydrocarbons and their associated breakdown products. The analysis of soils beneath the tanks for chemicals of concern did not indicate impacts exceeding any applicable regulatory standards. The soil removed during the excavation of the tanks was characterized as Class II nonhazardous waste and disposed of at the Waste Management landfill in Altamont, California.

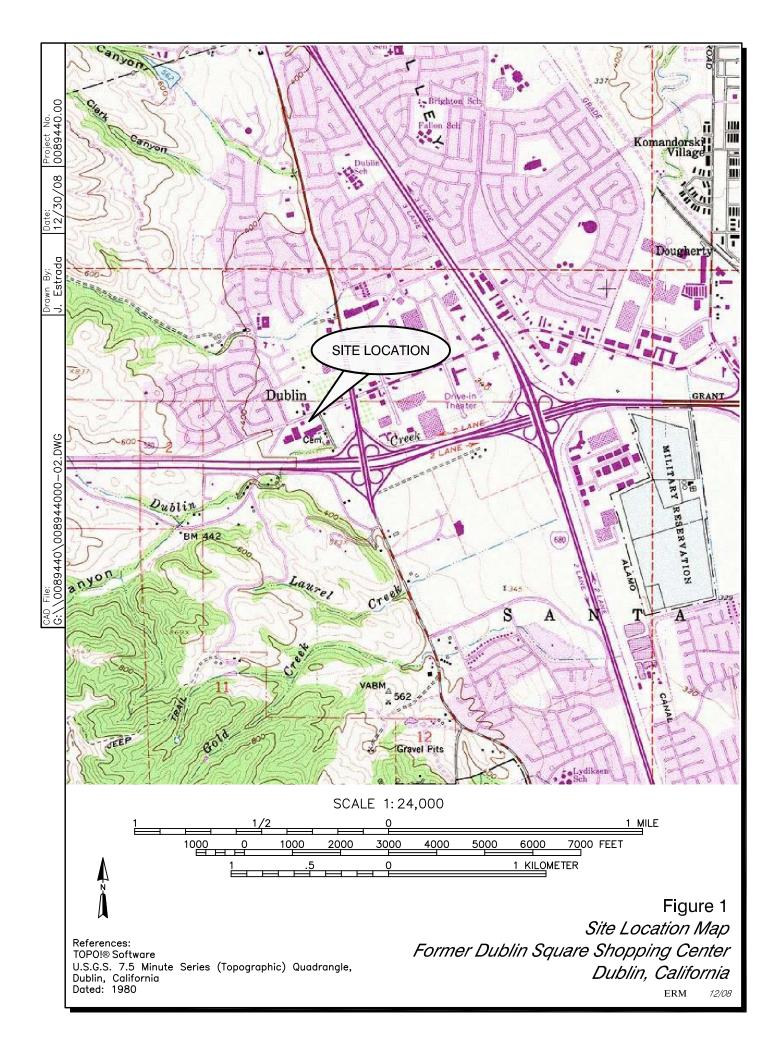
On behalf of the City of Dublin, ERM requests case closure for these tanks at this time.

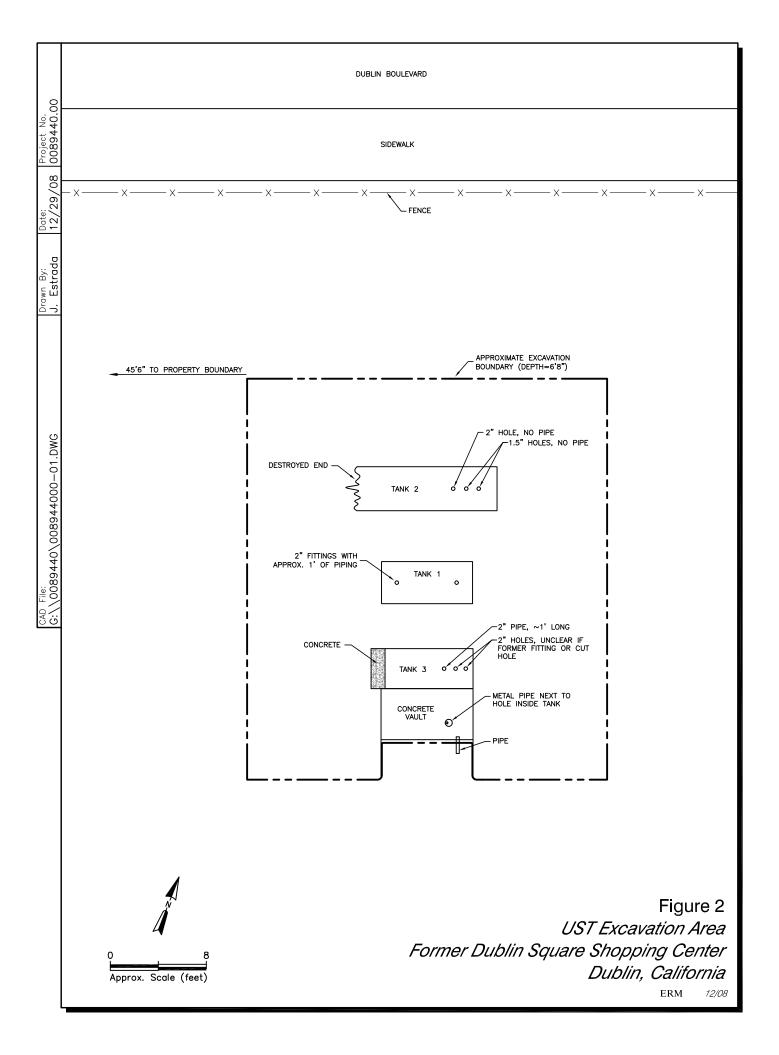
Sincerely,

Doug E. Moberg Project Manager

DEM/ASC/lhm/0089440.01

enclosures: Figures 1 and 2 Appendices A through C


rembergh


Arun S. Chemburkar, P.E. *Partner*

cc: Herma Lichtenstein - City of Dublin

Figures

Appendix A Photolog

View of tanks and concre	ete vault facing northwest. Soi	Lstocknile in background
	ete vuult luellig horutivest. Sol	
PHOTOGRAPH 1	ERM	Former Dublin Square Shopping Center 11759 Dublin Blvd. Dublin, CA 94568

View of backhoe removin	the tank.	
	- <u>o</u>	
PHOTOGRAPH 3	ERM	Former Dublin Square Shopping Center 11759 Dublin Blvd. Dublin, CA 94568

View of bottom of Tank 3	<image/> <page-footer></page-footer>	
PHOTOGRAPH 5	ERM	Former Dublin Square Shopping Center 11759 Dublin Blvd. Dublin, CA 94568

Appendix B Laboratory Reports

e-Hardcopy 2.0 Automated Report

12/03/08

Technical Report for

ERM-West, Inc.

11759 Dublin Blvd, Dublin, CA

0089440

Accutest Job Number: C3173

Sampling Date: 11/25/08

Report to:

ERM-West, Inc. 1777 Botelho Drive, Suite 260 Walnut Creek, CA 94596 doug.moberg@erm.com

ATTN: Doug Moberg

Total number of pages in report: 68

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Lunie Ston Hughy

Laurie Glantz-Murphy Laboratory Director

Client Service contact: Laurie Glantz-Murphy 408-588-0200

Certifications: CA (08258CA) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Northern California • 3334 Victor Court • Santa Clara, CA 95054 • tel: 408-588-0200 • fax: 408-588-0201 • http://www.accutest.com

Note: This report is password protected to disallow document modification or assembly. A password to unlock this report is available from your client service representative.

N

00

Table of Contents

.

-1-

	•
Section 1: Sample Summary	
Section 2: Sample Results	
2.1: C3173-1: TANK 1	5
2.2: C3173-1F: TANK 1	15
2.3: C3173-2: TANK 2	16
2.4: C3173-2F: TANK 2	26
2.5: C3173-3: TB-001	27
Section 3: Mise. Forms	30
3.1: Chain of Custody	31
Section 4: GC/MS Volatiles - QC Data Summaries	33
4.1: Method Blank Summary	34
4.2: Blank Spike Summary	38
4.3: Matrix Spike/Matrix Spike Duplicate Summary	43
Section 5: GC/MS Semi-volatiles - QC Data Summaries	47
5.1: Method Blank Summary	48
5.2: Blank Spike/Blank Spike Duplicate Summary	51
Section 6: GC Semi-volatiles - QC Data Summaries	54
6.1: Method Blank Summary	55
6.2: Blank Spike/Blank Spike Duplicate Summary	57
Section 7: Metals Analysis - QC Data Summaries	59
7.1: Prep QC MP651: Cd,Cr,Pb,Ni,Zn	60
Section 8: General Chemistry - QC Data Summaries	65
8.1: Method Blank and Spike Results Summary	66
8.2: Blank Spike Duplicate Results Summary	67
8.3: Duplicate Results Summary	68

Sample Summary

ERM-West, Inc.

Job No: C3173

11759 Dublin Blvd, Dublin, CA Project No: 0089440

-

Sample Number	Collected Date	Time By	Received	Matr: Code		Client Sample ID
C3173-1	11/25/08	00:00 DM	11/26/08	AQ	Water	TANK 1
C3173-1F	11/25/08	00:00 DM	11/26/08	AQ	Water	TANK 1
C3173-2	11/25/08	00:00 DM	11/26/08	AQ	Water	TANK 2
C3173-2F	11/25/08	00:00 DM	11/26/08	AQ	Water	TANK 2
C3173-3	11/25/08	00:00 DM	11/26/08	AQ	Water	TB-001

`

Sample Results	
----------------	--

Report of Analysis

.

.

.

	Report of A								Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	ole ID:		l 'ater 8260B B	Y SIM vd, Dublin, CA		Date Sampled: 11/25/08 Date Received: 11/26/08 Percent Solids: n/a			
Run #1 ª Run #2	File ID N03334	.D	DF 40	Analyzed 12/02/08	By TF	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VN99
Run #1 Run #2	Purge V 10.0 ml	'olume							
CAS No.	Compo	ound		Result	RL	MDL	Units	Q	J
123-91-1	1,4 - Dic	oxane		ND	80	40	ug/l		

(a) Dilution required due to matrix interference and high concentration of non-target compounds.

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

2.1 2

	Report of Analysis								
Client Sample ID: Lab Sample ID: Matrix: Method: Project:						Date Sample Date Receiv Percent Soli	e d: 11/26/08		
Run #1 Run #2	File ID N03306	.D	DF 40	Analyzed 12/01/08	By TF	Prep Date n/a	Prep Batch n/a	Analytical Batch VN98	
D (11	Purge V								

Run #1 10.0 ml Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units Q	?
67-64-1	Acetone	ND	800	400	ug/l	
71-43-2	Benzene	ND	40	12	ug/l	
108-86 -1	Bromobenzene	ND	40	12	ug/l	
74-97-5	Bromochloromethane	ND	40	20	ug/l	
75 - 27-4	Bromodichloromethane	ND	40	12	ug/l	
75-25-2	Bromoform	ND	40	20	ug/l	
104 - 51-8	n-Butylbenzene	ND	200	20	ug/l	
135-98-8	sec-Butylbenzene	ND	200	20	ug/l	
98 - 06-6	tert-Butylbenzene	ND	200	20	ug/l	
108-90-7	Chlorobenzene	ND	40	12	ug/l	
75-00-3.	Chloroethane	ND	40	12	ug/l	
67-66-3	Chloroform	ND	40	12	ug/l	
95-49 - 8	o-Chlorotoluene	ND	200	20	ug/l	
106-43-4	p-Chlorotoluene	ND	200	20	ug/l	
56-23-5	Carbon tetrachloride	ND	40	8.0	ug/l	
75 - 34-3	1,1-Dichloroethane	ND	40	12	ug/l	
75-35-4	1,1-Dichloroethylene	ND	40	8.0	ug/l	
563-58-6	1,1-Dichloropropene	ND	40	12	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	400	200	ug/l	
106-93-4	1,2-Dibromoethane	ND	40	8.0	ug/l	
107-06 - 2	1,2-Dichloroethane	ND	40	12	ug/l	
78-87-5	1,2-Dichloropropane	ND	40	12	ug/l	
142-28-9	1,3-Dichloropropane	ND	40	12	ug/l	
108-20-3	Di-Isopropyl ether	ND	200	20	ug/l	
594-20-7	2,2-Dichloropropane	ND	40	12	ug/l	
124-48-1	Dibromochloromethane	ND	40	8.0	ug/l	
75-71-8	Dichlorodifluoromethane	ND	40	12	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	40	12	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	40	20	ug/l	
541-73-1	m-Dichlorobenzene	ND	40	12	ug/l	
95-50-1	o-Dichlorobenzene	ND	40	12	ug/l	
106-46-7	p-Dichlorobenzene	ND	40	12	ug/l	

ND = Not detectedMDL - Method Detection Limit

RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID:TANK 1Lab Sample ID:C3173-1Matrix:AQ - WaterMethod:SW846 8260BProject:11759 Dublin Blvd, 1		C3173-1 D AQ - Water D		Date I	Sampled: Received: nt Solids:	11/25/08 11/26/08 n/a		
VOA 8260 List								
CAS No.	Compound	Result	RL	MDL	Units	Q		
156-60-5	trans-1,2-Dichloroethylene	ND	40	12	ug/l			
10061-02-6	trans-1,3-Dichloropropene	ND	40	8.0	ug/l			
100-41-4	Ethylbenzene	ND	40	12	ug/l			
64-17-5	Ethyl Alcohol	ND	4000	1600	ug/l			
637-92-3	Ethyl Tert Butyl Ether	ND	200	20	ug/l			
591-78-6	2-Hexanone	ND	800	400	ug/l			
87-68-3	Hexachlorobutadiene	ND	200	20	ug/l			
98-82-8	Isopropylbenzene	ND	40	8.0	ug/l			
99-87-6	p-Isopropyltoluene	ND	200	20	ug/l			
108-10-1	4-Methyl-2-pentanone	ND	800	200	ug/l			
74-83-9	Methyl bromide	ND	200	60	ug/l			
74-87-3	Methyl chloride	ND	40	12	ug/l			
74-95-3	Methylene bromide	ND	40	8.0	ug/l			
75-09-2	Methylene chloride	ND	800	200	ug/l			
78-93-3	Methyl ethyl ketone	ND	800	200	ug/l			
1634-04-4	Methyl Tert Butyl Ether	ND	40	20	ug/l			
91-20-3	Naphthalene	60.6	200	20	ug/l	J		
103-65-1	n-Propylbenzene	ND	200	20	ug/l			
100-42-5	Styrene	ND	40	8.0	ug/1			
994-05-8	Tert-Amyl Methyl Ether	ND	200	20	ug/l			
75-65-0	Tert-Butyl Alcohol	ND	400	200	ug/l			
630-20-6	1,1,1,2-Tetrachloroethane	ND	40	8.0	ug/l			
71-55-6	1,1,1-Trichloroethane	ND	40	8.0	ug/l			
79-34-5	1,1,2,2-Tetrachloroethane	ND	40	8.0	ug/l			
79-00-5	1,1,2-Trichloroethane	ND	40	8.0	ug/l			
87-61-6	1,2,3-Trichlorobenzene	ND	200	20	ug/l			
96-18-4	1,2,3-Trichloropropane	ND	200	20	ug/l			
120-82-1	1,2,4-Trichlorobenzene	ND	200	20	ug/l			
95-63-6	1,2,4-Trimethylbenzene	1110	200	20	ug/l			
108-67-8	1,3,5-Trimethylbenzene	466	200	20	ug/l			
127-18-4	Tetrachloroethylene	ND	40	8.0	ug/l			
108-88-3	Toluene	ND	40 .	20	ug/l			
79-01-6	Trichloroethylene	ND	40	12	ug/1			
75-69 - 4	Trichlorofluoromethane	ND	40	12	ug/l	·		
75-01-4	Vinyl chloride	ND	40	12	ug/l			
1330-20-7	Xylene (total)	4420	80	28	ug/1			
1550-20-7	TPH-GRO (C6-C10)	13700	2000	1000	ug/1 ug/1			

Report of Analysis

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

1.81

C3173

Client Sample ID: TANK 1

C3173-1

AQ - Water

SW846 8260B

Report of Analysis		Page 3 of 3
Date Sampled:	11/25/08	
Date Received:	11/26/08	

Percent Solids: n/a

VOA 8260 List

Lab Sample ID:

Matrix:

Method:

Project:

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	97%		60-130%
2037-26-5	Toluene-D8	99%		60-130%
460-00-4	4-Bromofluorobenzene	102%		60-130%

11759 Dublin Blvd, Dublin, CA

J = Indicates an estimated value

N = Indicates presumptive evidence of a compound

B = Indicates analyte found in associated method blank

Report of Ana	alvsis	
----------------------	--------	--

Matrix: Method: Project:		8270C	SW846 3510C vd, Dublin, CA		Date Received: Percent Solids:		<u></u>
Run #1 ª Run #2	File ID P917.D	DF 5	Analyzed 12/02/08	By LY	Prep Date 12/01/08	Prep Batch OP542	Analytical Batch EP62
	Initial Volume		/olume				

Run #2

ABN Full List

CAS No	o. Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic Acid	ND	96	24	ug/l	
95-57-8	2-Chlorophenol	ND	48	24	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	72	29	ug/l	
120-83-2	2 2,4-Dichlorophenol	ND	72	24	ug/l	
105-67-	9 2,4-Dimethylphenol	ND	48	24	ug/l	
51-28-5	2,4-Dinitrophenol	ND	96	14	ug/l	
534-52-	1 4,6-Dinitro-o-cresol	ND	96	9.6	ug/l	
95-48-7	2-Methylphenol	ND	48	24	ug/l	
	3&4-Methylphenol	ND	48	19	ug/l	
88-75-5	2-Nitrophenol	ND	72	24	ug/l	
100-02-	7 4-Nitrophenol	ND	- 48	4.8	ug/l	
87-86-5	Pentachlorophenol	ND	48	14	ug/l	
108-95-		ND	48	14	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	72	29	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	72	29	ug/l	
83-32-9	Acenaphthene	ND	48	24	ug/l	
208-96-	8 Acenaphthylene	ND	72	24	ug/l	
62-53-3		ND	48	24	ug/l	
120-12-		ND	48	19	ug/l	
103-33-		ND	48	24	ug/l	
92-87-5	Benzidine	ND	96	29	ug/l	
56-55-3	Benzo(a)anthracene	ND	48	9.6	ug/l	
50-32-8	Benzo(a)pyrene	ND	48	9.6	ug/l	
205-99-	2 Benzo(b)fluoranthene	ND	48	9.6	ug/l	
191-24-	2 Benzo(g,h,i)perylene	ND	48	9.6	ug/l	
207-08-		ND	48	9.6	ug/l	
101-55-	3 4-Bromophenyl phenyl ether	ND	72	29	ug/l	
85-68-7	Butyl benzyl phthalate	ND	48	14	ug/l	
100-51-	6 Benzyl Alcohol	ND	48	24	ug/l	
91-58-7	2-Chloronaphthalene	ND	48	24	ug/l	
106-47-	8 4-Chloroaniline	ND	48	24	ug/l	
86-74-8	Carbazole	ND	48	14	ug/l	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Samp Lab Sample Matrix: Method: Project:	ID: C3173-1 AQ - Water	46 3510C ublin, CA	Date I	Date Sampled: Date Received: Percent Solids:		
ABN Full L	ist					
CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	48	9.6	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	72	24	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	48	19	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	48	19	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	72	29	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	48	19	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	48	19	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	48	19	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	48	24	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	72	29	ug/l	
91-94-1	3,3' -Dichlorobenzidine	ND	48	24	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	48	9.6	ug/l	
132-64-9	Dibenzofuran	ND	72	24	ug/l	
122-39-4	Diphenylamine	ND	72	24	ug/l	
84-74-2	Di-n-butyl phthalate	ND	48	14	ug/l	
117-84-0	Di-n-octyl phthalate	ND	48	14	ug/l	
84-66-2	Diethyl phthalate	ND	48	24	ug/l	
131-11-3	Dimethyl phthalate	ND	48	19	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	48	14	ug/l	
206-44-0	Fluoranthene	ND	48	14	ug/l	
86-73-7	Fluorene	ND	72	29	ug/l	
118-74-1	Hexachlorobenzene	ND	72	24	ug/l	
87-68-3	Hexachlorobutadiene	ND	96	19	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	48	14	ug/l	
67-72-1	Hexachloroethane	ND	48	19	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	48	9.6	ug/l	
78-59-1	Isophorone	ND	72	24	ug/l	
90-12-0	1-Methylnaphthalene	ND	48	24	ug/l	
91-57-6	2-Methylnaphthalene	ND	48	24	ug/l	
88-74-4	2-Nitroaniline	ND	72	29	ug/l	
99-09-2	3-Nitroaniline	ND	48	24	ug/l	

ND

80.6

ND

ND

ND

ND

ND

ND

ND

48

48

48

96

48

48

48

96

48

19

24

24

14

24

24

14

9.6

19

Report of Analysis

ND = Not detectedMDL - Method Detection Limit

RL = Reporting Limit

100-01-6

91-20-3

98-95-3

62-75-9

621-64-7

85-01-8

129-00-0 110-86-1

120-82-1

E = Indicates value exceeds calibration range

4-Nitroaniline

Naphthalene

Nitrobenzene

Phenanthrene

Pyrene

Pyridine

N-Nitrosodimethylamine

1,2,4-Trichlorobenzene

N-Nitroso-di-n-propylamine

J = Indicates an estimated value

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

-.

		Report of Analysis								
Client Sam Lab Sampl Matrix: Method: Project:	-			Date Sampled: Date Received: Percent Solids:	11/25/08 11/26/08 n/a					
ABN Full I	List									
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits						
367-12-4 4165- <u>6</u> 2-2	2-Fluorophenol Phenol-d5	17% 16%		10-100% 7-100%						

25-115%

25-100%

25-106%

35-130%

118-79-6 2,4,6-Tribromophenol 96% 4165-60-0 Nitrobenzene-d5 87% 321-60-8 2-Fluorobiphenyl 70% 1718-51-0 Terphenyl-d14 90%

(a) Reporting limits raised due to non-target Hydrocarbons.

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 3 of 3

Client Sam Lab Sample Matrix: Method: Project:								
	File ID	DF	Analyzed	By	Prep D		Prep Batch	Analytical Batch
Run #1 Run #2	OO2190.D	1	12/01/08	NB	12/01/0		OP541	GOO79
Run #1 Run #2	Initial Volume 1040 ml	Final V 1.0 ml	olume					
PCB List								
CAS No.	Compound		Result	RL	MDL	Units	Q	
12674-11-2	Aroclor 1016		ND	0.096	0.019	ug/l		
11104-28-2	Aroclor 1221		ND	0.096	0.048	ug/l		
11141-16-5	Aroclor 1232		ND	0.096	0.048	ug/l		
53469-21-9	Aroclor 1242		ND	0.096	0.048	ug/l		
12672-29 - 6	Aroclor 1248		ND	0.096	0.048	ug/l		
11097-69-1	Aroclor 1254		ND	0.096	0.048	ug/l		
11096-82-5	Aroclor 1260		ND	0.096	0.029	ug/l		
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Lim	its		
877-09 - 8	Tetrachloro-m-	xylene	43%		41-1	34%		
877-09-8	Tetrachloro-m-	xylene	46%		41-1	34%		
2051-24-3	Decachlorobipl	henvl	50%		41-1	34%		
	-	2				34%		

ND = Not detected MDL - Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample		Report of Analysis								
Lab Sample I Matrix: Method: Project:	D: C317 AQ - SW84	3-1 Water 46 8015B M	SW846 3510 d, Dublin, CA	•	Date Sampled Date Received Percent Solids					
	'ile ID G2531.D	DF 20	Analyzed 12/01/08	Ву ЛН	Prep Date 12/01/08	Prep Batch OP543	Analytical Batch GGG104			
	nitial Volum 030 ml	e Final Vo 1.0 ml	olume							

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	13.3 ND ND ND	1.9 3.9 1.9 1.9	0.97 1.9 0.97 0.97	mg/l mg/l mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
630-01-3	Hexacosane	69%		45-14	40%	

(a) Not a typical Diesel pattern. Higher boiling gasoline compounds in the Diesel range(C10-C28). See results by 8260 analysis as Gasoline.

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Kepult ULAnalysis	Report	of	Analysis
--------------------------	--------	----	----------

Client Sample ID: Lab Sample ID: Matrix:	IANK I C3173-1 AQ - Water	Date Sampled: 11/25/08							
Project:	11759 Dublin	n Blvd, I	Dublin, CA						
General Chemistry	1		1.7						
Analyte	Re	esult	RL	Units	DF	Analyzed	By	Method	
HEM Oil and Grea	se <	5.0	5.0	mg/l	1	12/03/08	RL	EPA 1664A	

Page 1 of 1

• .

-

.

Client Sample ID:	TANK 1		
Lab Sample ID:	C3173-1F	Date Sampled:	11/25/08
Matrix:	AQ - Water	Date Received:	11/26/08
		Percent Solids:	n/a
Project:	11759 Dublin Blvd, Dublin, CA		

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium	28.9	2.0	ug/l	1	12/02/08		SW846 6010B ¹	SW3010A ²
Chromium	< 5.0	5.0	ug/l	1	12/02/08		SW846 6010B ¹	SW3010A ²
Lead	< 5.0	5.0	ug/l	1	12/02/08		SW846 6010B ¹	SW3010A ²
Nickel	14.1	5.0	ug/l	1	12/02/08		SW846 6010B ¹	SW3010A ²
Zinc	45700	30	ug/l	3	12/02/08		SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA400
 (2) Prep QC Batch: MP651

Page 1 of 1

RL = Reporting Limit

	Report of Analysis								
Client San Lab Samp Matrix: Method: Project:	le ID: C3173 AQ - V SW846	-2 Vater 5 8260B B	Y SIM vd, Dublin, CA	Date Sampled:11/25/08Date Received:11/26/08Percent Solids:n/a					
Run #1 Run #2	File ID N03335.D	DF 1	Analyzed 12/02/08	By TF	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VN99	
Run #1 Run #2	Purge Volume 10.0 ml								
CAS No.	Compound		Result	RL	MDL	Units	Q		
123-91-1	1,4-Dioxane		ND	2.0	1.0	ug/l			

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Client Sam Lab Sample Matrix: Method: Project:	e ID: C3173-2 AQ - Water SW846 8260B	C3173-2 AQ - Water			Date Sampled:11/25/08Date Received:11/26/08Percent Solids:n/a				
Run #1 Run #2	File ID DF N03307.D 1	Analyzed 12/01/08	By TF	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VN98		
Run #1 Run #2	Purge Volume 10.0 ml								
VOA 8260	List								
CAS No.	Compound	Result	RL	MDL	Units	Q			
67-64-1	Acetone	12.2	20	10	ug/l	J			
71-43-2	Benzene	ND	1.0	0.30	ug/l				
108-86-1	Bromobenzene	ND	1.0	0.30	ug/l				
74-97-5	Bromochloromethane	ND	1.0	0.50	ug/l				
75-27-4	Bromodichloromethane	ND	1.0	0.30	ug/l				
75-25-2	Bromoform	ND	1.0	0.50	ug/l				
104-51 - 8	n-Butylbenzene	ND	5.0	0.50	ug/l				
135-98-8	sec-Butylbenzene	ND	5.0	0.50	ug/l				
98-06-6	tert-Butylbenzene	ND	5.0	0.50	ug/l				
108-90-7	Chlorobenzene	ND	1.0	0.30	ug/l				
75-00-3	Chloroethane	ND	1.0	0.30	ug/l				
67-66-3	Chloroform	ND	1.0	0.30	ug/l				
95 - 49-8	o-Chlorotoluene	ND	5.0	0.50	ug/l				
106-43-4	p-Chlorotoluene	ND	5.0	0.50	ug/l				
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l				
75-34-3	1,1-Dichloroethane	ND	1.0	0.30	ug/l				
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l				
563-58-6	1,1-Dichloropropene	ND	1.0	0.30	ug/l				
96-12-8	1,2-Dibromo-3-chloropro	pane ND	10	5.0	ug/l				
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l				
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l				
78-87-5	1,2-Dichloropropane	ND	1.0	0.30	ug/l				
142-28-9	1,3-Dichloropropane	ND	1.0	0.30	ug/l				
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l				
594-20-7	2,2-Dichloropropane	ND	1.0	0.30	ug/l				
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l				
75-71-8	Dichlorodifluoromethane	ND	1.0	0.30	ug/l				
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.30	ug/l				
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.50	ug/l				
541-73-1	m-Dichlorobenzene	ND	1.0	0.30	ug/l				
95 - 50-1	o-Dichlorobenzene	ND	1.0	0.30	ug/l				
106-46-7	p-Dichlorobenzene	ND	1.0	0.30	ug/l				

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

•

ľ

Report of Analysis

Client Sample ID:TANK 2Lab Sample ID:C3173-2Matrix:AQ - WaterMethod:SW846 8260BProject:11759 Dublin Blvd, D		Dublin, CA		Date I	Sampled: Received: nt Solids:	11/25/08 11/26/08 n/a
VOA 8260 J	List					
CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.30	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l	
64-17-5	Ethyl Alcohol	ND	100	40	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
591-78-6	2-Hexanone	ND	20	10	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.50	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.50	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	20	5.0	ug/l	
74-83-9	Methyl bromide	ND	5.0	1.5	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	20	5.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	20	5.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l	
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.50	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
75-65-0	Tert-Butyl Alcohol	7.5	10	5.0	ug/l	J
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.20	ug/l	-
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.20	ug/l	'
87-61 - 6	1,2,3-Trichlorobenzene	ND	5.0	0.50	ug/l	
96-18 - 4	1,2,3-Trichloropropane	ND	5.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.50	ug/l	
95-63 - 6	1,2,4-Trimethylbenzene	ND	5.0	0.50	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.50	ug/1	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/1 ug/1	
127-18-4 108-88-3	Toluene	ND ND	1.0	0.20	ug/l	
108-88-3 79-01-6	Trichloroethylene	ND ND	1.0	0.30	-	
	Trichlorofluoromethane	ND ND		0.30	ug/l	
75-69-4			1.0		ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.30	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l	
	TPH-GRO (C6-C10) ^a	66.2	50	25	ug/l	

ND = Not detected MDL - Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

.

460-00-4

	Page 3 of 3					
Client Sam Lab Sampl Matrix: Method: Project:	1	Dublin, CA		Date Sampled: Date Received: Percent Solids:		
VOA 8260	List					
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7 2037-26-5	Dibromofluoromethane Toluene-D8	98% 102%		60-130% 60-130%		

60-130%

99%

(a) Atypical pattern. See results for TPH as Diesel.

4-Bromofluorobenzene

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report	of	Analysis

Run #1	Initial Volume 1040 ml	Final V	olume					
Run #2					<u>.</u>	<u> </u>		
Run #1 ª	File ID P918.D	DF 10	Analyzed 12/02/08	Ву LY	Prep Date 12/01/08	Prep Batch OP542	Analytical Batch EP62	
Project:	÷		vd, Dublin, CA			<u> </u>		
Matrix: Method:	AQ - W SW846		SW846 3510C		Date Received: 11/26/08 Percent Solids: n/a			
Client San Lab Samp	le ID: C3173-	2			Date Sampled			

ABN Full List

Run #2

CAS No.	Compound	Result	RL	MDL	Units Q
65-85-0	Benzoic Acid	ND	190	48	ug/l
95-57-8	2-Chlorophenol	ND	96	48	ug/l
59-50 - 7	4-Chloro-3-methyl phenol	ND	140	58	ug/l
120-83-2	2,4-Dichlorophenol	ND	140	48	ug/l
105-67-9	2,4-Dimethylphenol	ND	96	48	ug/l
51-28-5	2,4-Dinitrophenol	ND	190	29	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	190	19	ug/l
95-48-7	2-Methylphenol	ND	96	48	ug/l
	3&4-Methylphenol	ND	96	38	ug/l
88-75-5	2-Nitrophenol	ND	140	48	ug/l
100-02-7	4-Nitrophenol	ND	96	9.6	ug/l
87-86-5	Pentachlorophenol	ND	96	29	ug/l
108-95-2	Phenol	ND	96	29	ug/l
95 - 95-4	2,4,5-Trichlorophenol	ND	140	58	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	140	58	ug/l
83-32-9	Acenaphthene	ND	96	48	ug/l
208-96-8	Acenaphthylene	ND	140	48	ug/l
62-53-3	Aniline	ND	96	48	ug/l
120-12-7	Anthracene	ND	96	38	ug/l
103-33-3	Azobenzene	ND	96	48	ug/l
92-87 - 5	Benzidine	ND	190	58	ug/l
56-55-3	Benzo(a)anthracene	ND	96	19	ug/l
50-32-8	Benzo(a)pyrene	ND	96	19	ug/l
205-99-2	Benzo(b)fluoranthene	ND	96	19	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	96	19	ug/l
207-08-9	Benzo(k)fluoranthene	ND	96	19	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	140	58	ug/l
85-68-7	Butyl benzyl phthalate	ND	96	29	ug/l
100-51-6	Benzyl Alcohol	ND	96	48	ug/l
91 - 58-7	2-Chloronaphthalene	ND	96	48	ug/l
106-47-8	4-Chloroaniline	ND	96	48	ug/l
86-74-8	Carbazole	ND	96	29	ug/l

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

J = Indicates an estimated value

2.3

-

Client Samj Lab Sample Matrix: Method: Project:	nple ID: C3173-2 Date Sampled: 11/25/08 AQ - Water Date Received: 11/26/08 : SW846 8270C SW846 3510C Percent Solids: n/a				11/26/08		
ABN Full L	ist						
CAS No.	Compound	Result	RL	MDL	Units	Q	
218-01-9	Chrysene	ND	96	19	ug/l		
111-91-1	bis(2-Chloroethoxy)methane	ND	140	48	ug/l		
111-44-4	bis(2-Chloroethyl)ether	ND	96	38	ug/l		
108-60-1	bis(2-Chloroisopropyl)ether	ND	96	38	ug/l		
7005-72-3	4-Chlorophenyl phenyl ether	ND	140	58	ug/l		
95-50-1	1,2-Dichlorobenzene	ND	96	38	ug/l		
541 - 73-1	1,3-Dichlorobenzene	ND	96	38	ug/l		
106-46-7	1,4-Dichlorobenzene	ND	96	38	ug/l		
121-14-2	2,4-Dinitrotoluene	ND	96	48	ug/l		
606-20-2	2,6-Dinitrotoluene	ND	140	58	ug/l		
91-94 - 1	3,3'-Dichlorobenzidine	ND	96	48	ug/l		
53-70-3	Dibenzo(a,h)anthracene	ND	96	19	ug/l		
132-64-9	Dibenzofuran	ND	140	48	ug/l		
122-39-4	Diphenylamine	ND	140	48	ug/l		
84-74-2	Di-n-butyl phthalate	ND	96	29	ug/l		
117-84-0	Di-n-octyl phthalate	ND	96	29	ug/l		
84-66-2	Diethyl phthalate	ND	96	48	ug/l		
131-11-3	Dimethyl phthalate	ND	96	38	ug/l		
117-81-7	bis(2-Ethylhexyl)phthalate	ND	96	29			
206-44-0	Fluoranthene	ND	96	29	ug/l		
86-73-7	Fluorene	ND	140	58	ug/l		
118-74-1	Hexachlorobenzene	ND	140	48	ug/l		
87-68-3	Hexachlorobutadiene	ND	190	38	ug/l		
77-47 - 4	Hexachlorocyclopentadiene	ND	96	29	ug/l		
67-7 2- 1	Hexachloroethane	ND	96	38	ug/l		
193-39-5	Indeno(1,2,3-cd)pyrene	ND	96	19	ug/l		
78 - 59-1	Isophorone	ND	140	48	ug/l		
90 - 12-0	1-Methylnaphthalene	ND	96	48	ug/l		
91 - 57-6	2-Methylnaphthalene	ND	96	48	ug/l		
88 - 74-4	2-Nitroaniline	ND	140	58	ug/l		
99 - 09-2	3-Nitroaniline	ND	96	48	ug/l		
100-01-6	4-Nitroaniline	ND	96	38	ug/l		
91-20-3	Naphthalene	ND	96	48	ug/l		
91-20-3 98-95-3	Nitrobenzene	ND	96	48	ug/l		
62-75-9	N-Nitrosodimethylamine	ND	190	29	ug/l		
62-73-9 621-64-7	N-Nitroso-di-n-propylamine	ND	96	48	ug/l		
	Phenanthrene	ND	96 96	48 48	ug/1		
85-01-8		ND	90 96	29.	ug/l		
129-00-0	Pyrene		90 190	29. 19			
110-86-1	Pyridine	ND	190	17	ug/l		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID:TANK 2Lab Sample ID:C3173-2Matrix:AQ - WaterMethod:SW846 8270CSW846 8270CSW846 3510CProject:11759 Dublin Blvd, Dublin, CA

ABN Full List

•

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
367-12-4	2-Fluorophenol	31%		10-100%
4165-62-2	Phenol-d5	23%		7-100%
118-79-6	2,4,6-Tribromophenol	56%		25-115%
4165-60-0	Nitrobenzene-d5	55%		25-100%
321-60-8	2-Fluorobiphenyl	61%		25-106%
1718-51-0	Terphenyl-d14	81%		35-130%

(a) Reporting limits raised due to non-target Hydrocarbon.

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: TANK 2

Report of	of A	Analy	sis
-----------	------	-------	-----

Lab Sample Matrix: Method: Project:	AQ - W SW846	'ater 8082 SW	846 3510C I, Dublin, CA		Date I	Sampled: Received: nt Solids:	11/26/08	
Run #1 Run #2	File ID 002191.D	DF 1	Analyzed 12/01/08	By NB	Prep D 12/01/0		Prep Batch OP541	Analytical Batch GOO79
Run #1 Run #2	Initial Volume 1040 ml	Final Vo 1.0 ml	lume				· · ·	
PCB List								
CAS No.	Compound		Result	RL	MDL	Units	Q	
12674-11-2	Aroclor 1016		ND	0.096	0.019	ug/l		
11104-28-2	Aroclor 1221		ND	0.096	0.048	ug/l		
11141-16-5	Aroclor 1232		ND	0.096	0.048	ug/l		
53469-21-9	Aroclor 1242		ND	0.096	0.048	ug/l		
12672-29-6	Aroclor 1248		ND	0.096	0.048	ug/l		
11097-69-1	Aroclor 1254		ND	0.096	0.048	ug/l		
11096-82-5	Aroclor 1260		ND	0.096	0.029	ug/l		
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Lim	its		
877-09-8	Tetrachloro-m-	xylene	46%		41-1	34%		
877-09-8	Tetrachloro-m-	•	50%			34%		

66%

63%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

2051-24-3

2051-24-3

E = Indicates value exceeds calibration range

Decachlorobiphenyl

Decachlorobiphenyl

J = Indicates an estimated value

41-134%

41-134%

- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 1 of 1

	Report of Analysis							
Client San Lab Samp Matrix: Method: Project:	ple ID: C3173- AQ - W SW846	2 ⁷ ater 8015B M	SW846 3510 l, Dublin, CA	С	Date Sampled Date Received Percent Solids			
Run #1 Run #2	File ID GG2533.D	DF 5	Analyzed 12/01/08	Ву ЛН	Prep Date 12/01/08	Prep Batch OP543	Analytical Batch GGG104	
Run #1 Run #2	Initial Volume 1040 ml	Final Vo 1.0 ml	lume		· · · · ·			
TPH Extr	ractable							
CAS No.	Compound		Result	RL	MDL Units	Q		

CASI	No. C	Compound	Result	KL	MDL	Units	Ç
		TPH (Diesel) ^a	3.88	0.48	0.24	mg/l	
		CPH (Motor Oil)	ND	0.96	0.48	mg/l	
	I	TPH (Mineral Spirits)	ND	0.48	0.24	mg/l	
	Τ	PH (Kerosene)	ND	0.48	0.24	mg/l	
CAS	No. S	Surrogate Recoveries	Run# 1	Run# 2	Limits		
630-0	1-3 F	Iexacosane	70%		45-14	10%	

(a) Diesel Pattern.

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report of Analysis

. .

-

Client Sample ID: Lab Sample ID: Matrix: Project:						Date Sampled:11/25/08Date Received:11/26/08Percent Solids:n/a			
General Chemistry	7								
Analyte		Result	RL	Units	DF	Analyzed	By	Method	
HEM Oil and Grea	se	6.1	5.0	mg/l	1	12/03/08	RL	EPA 1664A	

Page 1 of 1

Report of Analysis

Report of Analysis	Page 1 of 1	
Date Sampled:	11/25/08	
Date Received:	11/26/08	

Percent Solids: n/a

AQ - Water Project: 11759 Dublin Blvd, Dublin, CA

Client Sample ID: TANK 2

C3173-2F

Metals Analysis

Lab Sample ID:

Matrix:

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium	35.5	2.0	ug/l	1	12/02/08	12/03/08 ст	SW846 6010B ¹	SW3010A ²
Chromium	< 5.0	5.0	ug/l	1	12/02/08	12/03/08 ст	SW846 6010B ¹	SW3010A ²
Lead	72.5	5.0	ug/l	1	12/02/08	12/03/08 ст	SW846 6010B ¹	SW3010A ²
Nickel	16.7	5.0	ug/l	1	12/02/08	12/03/08 ст	SW846 6010B ¹	SW3010A ²
Zinc	37500	30	ug/l	3	12/02/08	12/03/08 СТ	SW846 6010B ¹	SW3010A ²

(1) Instrument QC Batch: MA400

(2) Prep QC Batch: MP651

.

Client San Lab Samp Matrix: Method: Project:	ole ID: C317 AQ - SW8	'3-3 Water 46 8260B	l, Dublin, CA		Date I	Sampled: Received nt Solids	: 11/26/08	
Run #1 Run #2	File ID N03304.D	DF 1	Analyzed 12/01/08	By TF	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VN98
Run #1 Run #2	Purge Volum 10.0 ml	ie			<u></u>			
VOA 8260) List							
CAS No.	Compound		Result	RL	MDL	Units	Q	
67-64-1	Acetone		ND	20	10	ug/l		
71-43-2	Benzene		ND	1.0	0.30	ug/l		
108-86-1	Bromobenze	ene	ND	1.0	0.30	ug/l		
74-97-5	Bromochlore	omethane	ND	1.0	0.50	ug/l		
75-27-4	Bromodichle	oromethane	ND	1.0	0.30	ug/l		
75-25-2	Bromoform		ND	1.0	0.50	ug/l		
104-51-8	n-Butylbenz		ND	5.0	0.50	ug/l		
135-98-8	sec-Butylber		ND	5.0	0.50	ug/l		
98-06-6	tert-Butylber	nzene	ND	5.0	0.50	ug/l		
108-90 - 7	Chlorobenze	ene	ND	1.0	0.30	ug/l		
75-00-3	Chloroethan	e	ND	1.0	0.30	ug/l		
67 - 66-3	Chloroform		ND	1.0	0.30	ug/l		
95-49-8	o-Chlorotolu	lene	ND	5.0	0.50	ug/l		
106-43-4	p-Chlorotoh		ND ·	5.0	0.50	ug/l		
56-23-5	Carbon tetra		ND	1.0	0.20	ug/l		
75-34-3	1,1-Dichloro	oethane	ND	1.0	0.30	ug/l		
75-35 - 4	1,1-Dichlor	oethylene	ND	1.0	0.20	ug/l		

VOA 8260 L

/ 3-34-3	I, I-Dichiol demane	IND.	1.0	0.50	ug/1
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l
563-58-6	1,1-Dichloropropene	ND	1.0	0.30	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	5.0	ug/l
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.30	ug/l
142-28-9	1,3-Dichloropropane	ND	1.0	0.30	ug/l
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l
594-20-7	2,2-Dichloropropane	ND	1.0	0.30	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	0.30	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.30	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.50	ug/l
541-73-1	m-Dichlorobenzene	ND	1.0	0.30	ug/l
95-50-1	o-Dichlorobenzene	ND	1.0	0.30	ug/l
106-46-7	p-Dichlorobenzene	ND	1.0	0.30	ug/l

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

່ວາ
N

Page 2 of 3

Client Sample ID:	TB-001		
Lab Sample ID:	C3173-3	Date Sampled:	11/25/08
Matrix:	AQ - Water	Date Received:	11/26/08
Method:	SW846 8260B	Percent Solids:	n/a
Project:	11759 Dublin Blvd, Dublin, CA		

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.30	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l	
64-17-5	Ethyl Alcohol	ND	100	40	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l	
591-78-6	2-Hexanone	ND	20	10	ug/l	
87-68-3	Hexachlorobutadiene	ND	5.0	0.50	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	5.0	0.50	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	20	5.0	ug/l	
74-83-9	Methyl bromide	ND	5.0	1.5	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	20	5.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	20	5.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l	
91-20-3	Naphthalene	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	5.0	0.50	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l	
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.20	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.50	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.50	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.50	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.50	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.20	ug/l	
108-88-3	Toluene	ND	1.0	0.50	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.30	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.30	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.30	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	

ND = Not detected MDL - Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID:	TB-001		
Lab Sample ID:	C3173-3	Date Sampled:	11/25/08
Matrix:	AQ - Water	Date Received:	11/26/08
Method:	SW846 8260B	Percent Solids:	n/a
Project:	11759 Dublin Blvd, Dublin, CA		

v

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	97%		60-130%
2037-26-5	Toluene-D8	101%		60-130%
460-00-4	4-Bromofluorobenzene	96%		60-130%

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Section 3

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

Environmental Resources CHAIN OF CUSTODY RECORD Management NO: 4702 ERMCAWC 1559 C3173 1777 Botelho Drive, Suite 260 • Walnut Creek, CA • 94596 • (925) 946-0455 • FAX (925) 946-9968 of Page PROJECT # PROJECT NAME # REQUESTED PARAMETERS MATRIX 11759 Dublin Blud - D 0089440 OF SAMPLER: (PRINT NAME) 5 Metals (SIGNATURE) G X TPH Extractubles CONTA-NERS reesot ONERSE E08, Doug Moberg Norg KI14-Dioxere W G A T E R RECEIVING LABORATORY S 0 | L Santa Clava Accutes 00/2 X TUPY M ᠿᠰ SAMPLING METHOD PRESER-VATIVE GRAB SAMPLING VOLUME SAMPLE I.D. DATE COMP ыŃ TIME Peri Pump Y Varies 15 TANK I 125/08 K 火 X N .i X Varies X Penip Varies Y J X x TANK2 125108 2 X 15 × X X X ∞ Х prepared Hil V 3 TB-001 ζ ~ Y Yord × Evials each (1)How) 6 Lit Ambers each N/P 2 Lit Ambers each (10) H2 SOLL) 3 vials (FB'S) (CTHNO3) (PHC2 2828 Conter 2 Reoviel @ Temperature z.6℃ DATE TIME and 2.6% RECEIVED BY DATE TIME FIELD REMARKS 1/2/05 1010 Strong hydrocarbon-like odor. Dory MA 1126/08 1010 (SIGNATURE) DATE TIME RELINQUA TIME RECEIVED B HFS 11:09 Metals were Field Filtered. 1/26/08 126/08/106 ¢ Kimm TIME USE Method 8260 For RELINQUISHED ST (SIGNATURE) DATE DATE TIME RECEIVED BY VOCS REMARKS ON SAMPLE RECEIPT ERM REMARKS SEND REPORT TO: BOTTLE INTACT CUSTODY SEALS PRESERVED SEALS INTACT Doug Mober C SEE REMARKS WHITE - LABORATORY COPY CANARY - FIELD COPY PINK - DATABASE GOLD - PROJECT FILE

C3173: Chain of Custody Page 1 of 2

		Receiving	Checklist	Job #_ <u></u>	3173	
Review Chair	of Custody: The Chain	of Custody is to b	e completely and legi	bly filed out by Clier	nt.	
Are these	e regulatory (NPDES) samples	? Yes / (No)	circle one 🛛 🐼 İs	pH requested? Ye	s / (No) circle one	
 Was Clie 	ent informed that the hold time	is 15mins Yes /	No circle one If yes,	did they consent to	continue?	
Are sam	ple within one-half hold-time?	Yes / No circle o	ne If no, was the lat	o informed?		
⊘ Report to	info is complete and legible, i	including;				
ີ ຄວTy	pe of Deliverable needed 3	name ja address	s yos phone pe∕ema	il		
	o is complete and legible, inclu		□ Credit card □ con		phone o email	
Contact	and/or Project Mgr identified, i	ncluding; 🖉 phoi	ne qemail		,	
-	ame / number 🛛 Special requ	uirements? Mes	/ No circle one			
	Ds / date & time of collection ;		No circle one			
	ted and correct? reg / No					
	s listed are those we do or clies		a subcontract? (Yes)	/ No circle one		
	signed / dated by both client a	nd sample custodi	ian? Yes / No circle	one		
🖌 TAT requ	ested available? Approved b	y <u>ek</u>	\cup			
Review Cool	ers: 2 CODIERS REC	1d #1: 3	·B°C } #2	: 2.6°C		
Samples /	Coolers are at 0-6°C?		vithin 4hrs, then "on ic			
If a cooler	is outside the 0-6°C range; not	te below the bottle	s in that cooler below			
Note that A	NC does NOT accept evident	iary samples. (We	do not lock refrigerat	ors)		
Shipment I	Method: AC					
Custody S	eals Present: Yes	/ NO circle one	Un-broken:	Yes / No circle one	9	
Review of Sa	mple Bottles: If you answer n	o, explain below				
🖌 IDs / bot	tle number / Date / Time of bo	ttle labels match C	oC?			
z Sample I	bottle intact? Yes / No circ	le one				
Proper c	ontainers and volumes? Yes) / No circle one				
	reservatives? Check pH on pr			70, and VOAs and li	st below.	
or∕ VOAs re	ceived without headspace?	NO circle or	ne			
Lab #	Client Sample ID	pH Check:	0	ther Comments / Iss	nes	7
1	TANK I			Calleria and a	Dissolver	1
		PH 22	250mL poly	(winney)->	metals	-1
-2	TANK 2	<u>n</u>				_
			* Dissolved	metals ->	Field - Filtered	d٠
						7
	<u> </u>	·				

Lab #	Client Sample ID	pH Check:	Other Comments / Issues	
-1	TANK 1	PH <2	250mL poly (white) -> metals	
-2	TANK 2	n		
		<u> </u>	* Dissolved metals -> Field-Filtered	•
	· · · · · · · · · · · · · · · · · · ·	·		
	······			
			·	
				C3173: Chain of Custody
·	• • • • • • • • • • • • • • • • • • •		·····	JI / J. CHAIH OF CHORONY
				Page 2 of 2

D Client informed of irregularities at receiving Comments:

Project Mgr needs to contact Client for issues

:T:\Laboratory\Forms\SampleControl\Form_SampleReceiving_2008-04-12.doc

Page 2 of 2

Section 4

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

. -

Method Blank SummaryPage 1Job Number:C3173Account:ERMCAWC ERM-West, Inc.Project:11759 Dublin Blvd, Dublin, CA									
Sample VN99-MB	File ID N03332.D	DF 1	Analyzed 12/02/08	By TF	Prep Date n/a	Prep Batch n/a	Analytical Batch VN99		
The QC repor C3173-1, C317	••	ies to the	e following sam	ples:		Method: SW	7846 8260B BY SIM		

CAS No.	Compound	Result	RL	MDL	Units Q
123-91-1	1,4-Dioxane	ND	2.0	1.0	ug/l

Method Blank Summary Job Number: C3173

-

Account: Project:	ERMCAW0 11759 Dubl		,						
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch		
VN98-MB	N03299.D	1	12/01/08	TF	n/a	n/a	VN98		

The QC reported here applies to the following samples:

Method: SW846 8260B

C3173-1, C3173-2, C3173-3

		Result	RL	MDL	Units
67-64-1	Acetone	ND	20	10	ug/l
71-43-2	Benzene	ND	1.0	0.30	ug/l
108-86-1	Bromobenzene	ND	1.0	0.30	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.50	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.30	ug/l
75-25-2	Bromoform	ND	1.0	0.50	ug/l
104-51-8	n-Butylbenzene	ND	5.0	0.50	ug/l
135-98-8	sec-Butylbenzene	ND	5.0 .	0.50	ug/l
98-06-6	tert-Butylbenzene	ND	5.0	0.50	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.30	ug/l
75-00-3	Chloroethane	ND	1.0	0.30	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
95-49 - 8	o-Chlorotoluene	ND	5.0	0.50	ug/l
 106-43-4	p-Chlorotoluene	ND	5.0	0.50	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.30	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l
563-58-6	1,1-Dichloropropene	ND	1.0	0.30	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	10	5.0	ug/l
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.30	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.30	ug/l
142-28-9	1,3-Dichloropropane	ND	1.0	0.30	ug/l
108-20-3	Di-Isopropyl ether	ND	5.0	0.50	ug/l
594-20-7	2,2-Dichloropropane	ND	1.0	0.30	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	0.30	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.30	ug/l
	cis-1,3-Dichloropropene	ND	1.0	0.50	ug/l
	m-Dichlorobenzene	ND	1.0	0.30	ug/l
95-50-1	o-Dichlorobenzene	ND	1.0	0.30	ug/l
106-46-7	p-Dichlorobenzene	ND	1.0	0.30	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.30	ug/l
	trans-1,3-Dichloropropene	ND	1.0	0.20	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l
64-17-5	Ethyl Alcohol	ND	100	40	ug/l

Method Blank Summary

Job Number:	C3173
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VN98-MB	N03299.D	1	12/01/08	TF	n/a	n/a	VN98

The QC reported here applies to the following samples:

Method: SW846 8260B

C3173-1, C3173-2, C3173-3

CAS No.	Compound	Result	RL	MDL	Units Q
637-92-3	Ethyl Tert Butyl Ether	ND	5.0	0.50	ug/l
591 - 78-6	2-Hexanone	ND	20	10	ug/l
87 - 68-3	Hexachlorobutadiene	ND	5.0	0.50	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l
99-87-6	p-Isopropyltoluene	ND	5.0	0.50	ug/l
108 -1 0-1	4-Methyl-2-pentanone	ND	20	5.0	ug/l
74 - 83-9	Methyl bromide	ND	5.0	1.5	ug/l
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l
75-09-2	Methylene chloride	ND	20	5.0	ug/l
78-93-3	Methyl ethyl ketone	ND	20	5.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l
91-20-3	Naphthalene	ND	5.0	0.50	ug/l
103-65-1	n-Propylbenzene	ND	5.0	0.50	ug/l
100-42-5	Styrene	ND	1.0	0.20	ug/l
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	0.50	ug/l
75-65-0	Tert-Butyl Alcohol	ND	10	5.0	ug/l
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.20	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.20	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	0.50	ug/l
96-18-4	1,2,3-Trichloropropane	ND	5.0	0.50	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	0.50	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	0.50	ug/l
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	0.50	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.20	ug/l
108-88-3	Toluene	ND	1.0	0.50	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.30	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	0.30	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.30	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l
	TPH-GRO (C6-C10)	ND	50	25	ug/l

Page 2 of 3

-4

Method Blank Summary

Job Number: Account: Project:	C3173 ERMCAW0 11759 Dubl		· ·				ç
Sample VN98-MB	File ID N03299.D	DF 1	Analyzed 12/01/08	By TF	Prep Date n/a	Prep Batch n/a	Analytical Batch VN98
The QC repor			e following sam	ples:		Method: SW	/846 8260B

. -

C3173-1, C3173-2, C3173-3

CAS No.	Surrogate Recoveries		Limits
2037-26-5	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	97% 100% 96%	60-130% 60-130% 60-130%

.

37 of 68 5071 gac test. C3173

Job Number:	C3173
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VN99-BS	N03333.D	1	12/02/08	TF	n/a	n/a	VN99
The QC rep	orted here appl	ies to the	e following sam	ples:		Method: SW	7846 8260B BY SIM

C3173-1, C3173-2

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
123-91-1	1,4-Dioxane	10	9.9	99	60-130

-

.,

Project:	11759 Dublin Blvd, Dublin, CA								
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch		
VN98-BS	N03300.D	1	12/01/08	TF	n/a	n/a	VN98		

The QC reported here applies to the following samples:

Method: SW846 8260B

C3173-1, C3173-2, C3173-3

C L C N		Spike	BSP	BSP	.
CAS No.	Compound	ug/l	ug/l	%	Limits
67-64-1	Acetone	80	69.9	87	60-130
71-43-2	Benzene	20	18.8	94	60-130
108-86-1	Bromobenzene	20	18.9	95	60-130
74-97-5	Bromochloromethane	20	19.0	95	60-130
75-27-4	Bromodichloromethane	20	19.5	98	60-130
75-25-2	Bromoform	20	18.3	92	60-130
104-51-8	n-Butylbenzene	20	18.2	91	60-130
135-98-8	sec-Butylbenzene	20	18.8	94	60-130
98-06-6	tert-Butylbenzene	20	18.7	94	60-130
108-90-7	Chlorobenzene	20	19.2	96	60-130
75-00-3	Chloroethane	20	16.9	85	60-130
67-66-3	Chloroform	20	19.8	99	60-130
95-49-8	o-Chlorotoluene	20	18.6	93	60-130
106-43-4	p-Chlorotoluene	20	19.4	97	60-130
56-23-5	Carbon tetrachloride	20	19.4	97	60-130
75-34-3	1,1-Dichloroethane	20	18.2	91	60-130
75-35-4	1,1-Dichloroethylene	20	16.7	84	60-130
563-58-6	1,1-Dichloropropene	20	18.6	93	60-130
96-12-8	1,2-Dibromo-3-chloropropane		17.7	89	60-130
106-93-4	1,2-Dibromoethane	20	18.7	94	60-130
107-06-2	1,2-Dichloroethane	20	19.4	97	60-130
78-87-5	1,2-Dichloropropane	20	19.6	98	60-130
142-28-9	1,3-Dichloropropane	20	18.3	92	60-130
108-20-3	Di-Isopropyl ether	20	19.6	98	60-130
594-20-7	2,2-Dichloropropane	20	21.7	109	60-130
124-48-1	Dibromochloromethane	20	20.2	101	60-130
75-71-8	Dichlorodifluoromethane	20	15.5	78	60-130
156-59-2	cis-1,2-Dichloroethylene	20	19.3	97	60-130
10061-01-	· · ·	20	20.2	101	60-130
541-73-1	m-Dichlorobenzene	20	19.3	97	60-130
95-50-1	o-Dichlorobenzene	20	19.3	97	60-130
106-46-7	p-Dichlorobenzene	20	18.9	95	60-130
156-60-5	trans-1,2-Dichloroethylene	20	18.1	91	60-130
	6 trans-1,3-Dichloropropene	20	19.8	99	60-130
100-41-4	Ethylbenzene	20	19.0	95	60-130
64-17-5	Ethyl Alcohol	400	360	90	60-130
511,5		100	500	20	00 100

4.2 4

Job Number: Account: Project:	: C3173 ERMCAWC ERM-West, Inc. 11759 Dublin Blvd, Dublin, CA									
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch			
VN98-BS	N03300.D	1	12/01/08	ΤF	n/a	n/a	VN98			

The QC reported here applies to the following samples:

Method: SW846 8260B

C3173-1, C3173-2, C3173-3

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
637-92-3	Ethyl Tert Butyl Ether	20	19.0	95	60-130
591-78-6	2-Hexanone	80	69.7	87	60-130
87-68-3	Hexachlorobutadiene	20	19.6	98	60-130
98-82-8	Isopropylbenzene	20	19.7	99	60-130
99-87-6	p-Isopropyltoluene	20	18.6	93	60-130
108-10-1	4-Methyl-2-pentanone	80	70.6	88	60-130
74-83-9	Methyl bromide	20	20.3	102	60-130
74-87-3	Methyl chloride	20	12.4	62	60-130
74-95-3	Methylene bromide	20	20.2	101	60-130
75-09-2	Methylene chloride	20	17.7	.89	60-130
78-93-3	Methyl ethyl ketone	80	68.8	86	60-130
1634-04-4	Methyl Tert Butyl Ether	20	18.5	.93	60-130
91-20-3	Naphthalene	20	16.5	83	60-130
103-65-1	n-Propylbenzene	20	18.5	93	60-130
100-42-5	Styrene	20	19.9	100	60-130
994-05-8	Tert-Amyl Methyl Ether	20	19.6	98	60-130
75-65-0	Tert-Butyl Alcohol	100	80.5	81	60-130
630-20-6	1,1,1,2-Tetrachloroethane	20	19.7	99	60-130
71-55-6	1,1,1-Trichloroethane	20	19.5	98	60-130
79-34-5	1,1,2,2-Tetrachloroethane	20	18.4	92	60-130
79 - 00-5	1,1,2-Trichloroethane	20	18.7	94	60-130
87-61-6	1,2,3-Trichlorobenzene	20	18.3	92	60-130
96-18-4	1,2,3-Trichloropropane	20	19.0	95	60-130
120-82-1	1,2,4-Trichlorobenzene	20	18.5	93	60-130
95-63-6	1,2,4-Trimethylbenzene	20	18.6	93	60-130
108-67-8	1,3,5-Trimethylbenzene	20	18.7	94	60-130
127-18 - 4	Tetrachloroethylene	20	17.0	85	60-130
108-88-3	Toluene	20	18.0	90	60-130
79-01-6	Trichloroethylene	20	19.3	97	60-130
75-69-4	Trichlorofluoromethane	20	16.0	80	60-130
75-01-4	Vinyl chloride	20	16.0	80	60-130
1330-20-7	Xylene (total)	60	57.7	96	60-130

Page 2 of 3

Job Number: Account: Project:	C3173 ERMCAW0 11759 Dubl		,				
Sample VN98-BS	File ID N03300.D	DF 1	Analyzed 12/01/08	By TF	Prep Date n/a	Prep Batch n/a	Analytical Batch VN98
The QC repor	ted here appl	lies to the	e following sam	ples:		Method: SW	846 8260B
C3173-1, C317	73-2, C3173-3						

. . .

CAS No.	Surrogate Recoveries	BSP	Limits
	Dibromofluoromethane	100%	60-130%
	Toluene-D8	96%	60-130%
	4-Bromofluorobenzene	102%	60-130%

Page 3 of 3

Job Number: Account: Project:	C3173 ERMCAWC 11759 Dubl						
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VN98-BS	N03301.D	1	12/01/08	TF	n/a	n/a	VN98

The QC reported here applies to the following samples:

•

Method: SW846 8260B

C3173-1, C3173-2, C3173-3

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
	TPH-GRO (C6-C10)	125	123	98	60-130
CAS No.	Surrogate Recoveries	BSP	Lim	its	
1868-53-7 2037-26-5	Dibromofluoromethane	99%	60-1	30%	

Job Number:	C3173
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C3173-2MS	N03338.D	1	12/02/08	TF	n/a	n/a	VN99
C3173-2MSD	N03339.D	1	12/02/08	TF	n/a	n/a	VN99
C3173-2	N03335.D	1	12/02/08	TF	n/a	n/a	VN99

The QC reported here applies to the following samples:

C3173-1, C3173-2

CAS No.	Compound	C3173-2 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
123-91-1	1,4-Dioxane	ND	10	10.0	100	9.9	99	1	60-130/25

Page 1 of 1

Method: SW846 8260B BY SIM

4.3

43 of 68 CACCUTEST. C3173

Job Number:C3173Account:ERMCAWC ERM-West, Inc.Project:11759 Dublin Blvd, Dublin, CA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
C3208-1MS	N03309.D	1	12/01/08	ΤF	n/a	n/a	VN98
C3208-1MSD	N03310.D	1	12/01/08	TF	n/a	n/a	VN98
C3208-1	N03308.D	1	12/01/08	TF	n/a	n/a	VN98

The QC reported here applies to the following samples:

C3173-1, C3173-2, C3173-3

CAS No.	Compound	C3208-1 ug/l	Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	ND		80	68.2	85	72.0	90	5	60-130/25
71-43-2	Benzene	ND		20	19.8	99	20.2	101	2	60-130/25
108-86-1	Bromobenzene	ND		20	19.4	97	19.9	100	3	60-130/25
74-97-5	Bromochloromethane	ND		20	18.8	94	19.4	97	3	60-130/25
75-27-4	Bromodichloromethane	ND		20	19.0	95	19.7	99	4	60-130/25
75-25-2	Bromoform	ND		20	15.5	78	17.0	85	9	60-130/25
104-51-8	n-Butylbenzene	ND		20	20.4	102	19.9	100	2	60-130/25
135-98-8	sec-Butylbenzene	ND		20	20.7	104	20.3	102	2	60-130/25
98-06-6	tert-Butylbenzene	ND		20	20.2	101	19.7	99	3	60-130/25
108-90-7	Chlorobenzene	ND		20	19.0	95	19.7	99	4	60-130/25
75-00-3	Chloroethane	ND		20	20.4	102	19.7	99	3	60-130/25
67-66-3	Chloroform	ND		20	20.4	102	20.7	104	1	60-130/25
95-49-8	o-Chlorotoluene	ND		20	19.8	99	20.2	101	2	60-130/25
106-43-4	p-Chlorotoluene	ND		20	21.1	106	20.9	105	1	60-130/25
56-23-5	Carbon tetrachloride	ND		20	18.4	92	18.7	94	2	60-130/25
75-34-3	1,1-Dichloroethane	ND		20	19.9	100	20.4	102	2	60-130/25
75-35-4	1,1-Dichloroethylene	ND		20	18.1	91	18.1	91	0	60-130/25
563-58-6	1,1-Dichloropropene	ND		20	19.4	97	19.6	98	1	60-130/25
96-12-8	1,2-Dibromo-3-chloropropane	ND		20	17.6	88	19.5	98	10	60-130/25
106-93-4	1,2-Dibromoethane	ND		20	17.9	90	19.5	98	9	60-130/25
107-06-2	1,2-Dichloroethane	ND		20	18.0	90	19.0	95	5	60-130/25
78-87-5	1,2-Dichloropropane	ND		20	20.5	103	21.3	107	4	60-130/25
142-28-9	1,3-Dichloropropane	ND		20	18.2	91	19.7	99	8	60-130/25
108-20-3	Di-Isopropyl ether	ND		20	22.0	110	22.5	113	2	60-130/25
594-20-7	2,2-Dichloropropane	ND		20	21.2	106	21.2	106	0	60-130/25
124-48-1	Dibromochloromethane	ND		20	18.8	94	19.9	100	6	60-130/25
75-71-8	Dichlorodifluoromethane	ND		20	15.2	76 · ·	14.7	74	3	60-130/25
156-59-2	cis-1,2-Dichloroethylene	ND		20	20.2	101	20.6	103	2	60-130/25
10061-01-5		ND		20	20.3	102	21.3	107	5	60-130/25
541-73-1	m-Dichlorobenzene	ND		20	19.4	97	19.8	99	2	60-130/25
95-50-1	o-Dichlorobenzene	ND		20	19.0	95	19.6	98	3	60-130/25
106-46-7	p-Dichlorobenzene	ND		20	19.0	95	19.4	97	2	60-130/25
156-60-5	trans-1,2-Dichloroethylene	ND		20	19.5	98	19.7	99	1	60-130/25
10061-02-6	, , ,	ND		20	19.4	97	20.5	103	6	60-130/25
100-41-4	Ethylbenzene	ND		20	19.2	96	19.8	99	3	60-130/25
64-17-5	Ethyl Alcohol	ND		400	380	95	424	106	11	60-130/25

Page 1 of 3

4.3

44 of 68 ACCUTEST. C3173 Leborator

Job Number: Account: Project:	C3173 ERMCAWC ERM-West, Inc. 11759 Dublin Blvd, Dublin, CA									
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch			
C3208-1MS	N03309.D	1	12/01/08	TF	n/a	n/a	VN98			
C3208-1MSD	N03310.D	1	12/01/08	TF	n/a	n/a	VN98			
C3208-1	N03308.D	1	12/01/08	TF	n/a	n/a	VN98			

The QC reported here applies to the following samples:

Method: SW846 8260B

-

C3173-1, C3173-2, C3173-3

CAS No.	Compound	C3208-1 ug/l	Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
637-92-3	Ethyl Tert Butyl Ether	ND		20	20.0	100	20.9	105	4	60-130/25
591-78-6	2-Hexanone	ND		80	66.8	84	74.9	94	11	60-130/25
87-68-3	Hexachlorobutadiene	ND		20	19.4	97	18.7	94	4	60-130/25
98-82-8	Isopropylbenzene	ND		20	19.2	96	19.5	98	2	60-130/25
99-87-6	p-Isopropyltoluene	ND		20	20.3	102	19.8	99	2	60-130/25
108-10-1	4-Methyl-2-pentanone	ND		80	68.3	85	76.2	95	11	60-130/25
74-83-9	Methyl bromide	ND		20	23.4	117	22.9	115	2	60-130/25
74-87-3	Methyl chloride	0.64	J	20	15.4	74	15.3	73	1	60-130/25
74-95-3	Methylene bromide	ND		20	19.4	97	20.3	102	5	60-130/25
75-09-2	Methylene chloride	ND		20	18.6	93	19.1	96	3	60-130/25
78-93-3	Methyl ethyl ketone	ND		80	68.6	86	75.8	95	10	60-130/25
1634-04-4	Methyl Tert Butyl Ether	ND		20	19.2	96	20.3	102	6	60-130/25
91-20-3	Naphthalene	ND		20	15.1	76	16.1	81	6	60-130/25
103-65-1	n-Propylbenzene	ND		20	20.7	104	20.6	103	0	60-130/25
100-42-5	Styrene	ND		20	19.0	95	19.0	95	0	60-130/25
994-05-8	Tert-Amyl Methyl Ether	ND		20	20.5	103	21.6	108	5	60-130/25
75-65-0	Tert-Butyl Alcohol	ND		100	82.5	83	91.7	92	11	60-130/25
630-20-6	1,1,1,2-Tetrachloroethane	ND		20	18.5	93	19.2	96	4	60-130/25
71-55-6	1,1,1-Trichloroethane	ND		20	19.6	98	19.7	99	1	60-130/25
79-34-5	1,1,2,2-Tetrachloroethane	ND		20	19.5	98	21.0	105	7	60-130/25
79-00 - 5	1,1,2-Trichloroethane	ND		20	18.4	92	19.7	99	7	60-130/25
87-61-6	1,2,3-Trichlorobenzene	ND		20	16.6	83	17.1	86	3	60-130/25
96-18-4	1,2,3-Trichloropropane	ND		20	17.7	89	19.5	98	10	60-130/25
120-82-1	1,2,4-Trichlorobenzene	ND		20	17.4	87	17.9	90	3	60-130/25
95-63-6	1,2,4-Trimethylbenzene	ND		20	19.9	100	19.4	97	3	60-130/25
108-67-8	1,3,5-Trimethylbenzene	ND		20	20.4	102	20.0	100	2	60-130/25
127-18-4	Tetrachloroethylene	ND		20	16.0	80	16.2	81	1	60-130/25
108-88-3	Toluene	ND		20	18.7	94	19.2	96	3	60-130/25
79-01-6	Trichloroethylene	ND		20	19.7	99	20.1	101	2	60-130/25
75-69-4	Trichlorofluoromethane	ND		20	17.3	87	16.4	82	5	60-130/25
75-01-4	Vinyl chloride	ND		20	16.1	81	15.2	76	6	60-130/25
1330-20-7	Xylene (total)	ND		60	56.5	94	57.7	96	2	60-130/25

Job Number:	C3173
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C3208-1MS	N03309.D	1	12/01/08	TF	n/a	n/a	VN98
C3208-1MSD	N03310.D	1	12/01/08	TF	n/a	n/a	VN98
C3208-1	N03308.D	1	12/01/08	TF	n/a	n/a	VN98

The QC reported here applies to the following samples:

Method: SW846 8260B

C3173-1, C3173-2, C3173-3

CAS No.	Surrogate Recoveries	MS	MSD	C3208-1	Limits
1868-53-7	Dibromofluoromethane	99%	99%	99%	60-130%
2037-26-5	Toluene-D8	99%	100%	98%	60-130%
460-00-4	4-Bromofluorobenzene	98%	100%	104%	60-130%

Page 3 of 3

. دن

GC/MS Se	mi-volatiles
----------	--------------

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Job Number:	C3173
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample	File ID	DF	Analyzed	By	Prep Date 12/01/08	Prep Batch	Analytical Batch
OP542-MB	P913.D	1	12/02/08	LY		OP542	EP62
The QC reported here applies to the following samples:						Method: SW	7846 8270C

The QC reported here applies to the following samples:

C3173-1, C3173-2

CAS No.	Compound	Result	RL	MDL	Units Q
65-85-0	Benzoic Acid	ND	20	5.0	ug/l
95-57-8	2-Chlorophenol	ND	10	5.0	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	15	6.0	ug/l
120-83-2	2,4-Dichlorophenol	ND	15	5.0	ug/l
105-67-9	2,4-Dimethylphenol	ND	10	5.0	ug/l
51-28-5	2,4-Dinitrophenol	ND	20	3.0	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	20	2.0	ug/l
95-48-7	2-Methylphenol	ND	10	5.0	ug/l
	3&4-Methylphenol	ND	10	4.0	ug/l
88-75-5	2-Nitrophenol	ND	15	5.0	ug/l
100-02-7	4-Nitrophenol	ND	10	1.0	ug/l
87-86-5	Pentachlorophenol	ND	10	3.0	ug/l
108-95-2	Phenol	ND	10	3.0	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	15	6.0	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	15	6.0	ug/l
83-32-9	Acenaphthene	ND	10	5.0	ug/l
208-96-8	Acenaphthylene	ND	15	5.0	ug/l
62-53-3	Aniline	ND	10	5.0	ug/l
120-12-7	Anthracene	ND	10	4.0	ug/l
103-33-3	Azobenzene	ND	10	5.0	ug/l
92-87-5	Benzidine	ND	20	6.0	ug/l
56-55-3	Benzo(a)anthracene	ND	10	2.0	ug/l
50-32-8	Benzo(a)pyrene	ND	10	2.0	ug/l
205-99-2	Benzo(b)fluoranthene	ND	10	2.0	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	10	2.0	ug/l
207-08-9	Benzo(k)fluoranthene	ND	10	2.0	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	15	6.0	ug/l
85-68-7	Butyl benzyl phthalate	ND	10	3.0	ug/l
100-51-6	Benzyl Alcohol	ND	10	5.0	ug/l
91-58-7	2-Chloronaphthalene	ND	10	5.0	ug/l
106-47-8	4-Chloroaniline	ND	10	5.0	ug/l
86-74-8	Carbazole	ND	10	3.0	ug/l
218-01-9	Chrysene	ND	10	2.0	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	15	5.0	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	10	4.0	ug/l
108-60 - 1	bis(2-Chloroisopropyl)ether	ND	10	4.0	ug/l

Page 1 of 3

.

Method Blank Summary Job Number: C3173

Account:	ERMCAWC ERM-West, Inc.								
Project:	11759 Dublin Blvd, Dublin, CA								
Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch		
OP542-MB	P913.D	1	12/02/08	LY	12/01/08	OP542	EP62		

.

The QC reported here applies to the following samples:

Method: SW846 8270C

C3173-1, C3173-2

Compound	Result	RL	MDL	Units
4-Chlorophenyl phenyl ether	ND	15	6.0	ug/l
1,2-Dichlorobenzene	ND	10	4.0	ug/l
	ND	10	4.0	ug/l
1,4-Dichlorobenzene	ND	10	4.0	ug/l
2,4-Dinitrotoluene	ND	10	5.0	ug/l
	ND	15	6.0	ug/l
3,3'-Dichlorobenzidine	ND	10	5.0	ug/l
	ND	10	2.0	ug/l
Dibenzofuran	ND	15	5.0	ug/l
Diphenylamine	ND	15	5.0	ug/l
	ND	10	3.0	ug/l
	ND	10	3.0	ug/l
	ND	10	5.0	ug/l
	ND	10	4.0	ug/1
	ND	10	3.0	ug/l
Fluoranthene	ND	10	3.0	ug/l
Fluorene	ND	15	6.0	ug/l
Hexachlorobenzene	ND	15	5.0	ug/l
Hexachlorobutadiene	ND	20	4.0	ug/l
Hexachlorocyclopentadiene	ND	10	3.0	ug/l
Hexachloroethane	ND	10	4.0	ug/l
Indeno(1,2,3-cd)pyrene	ND	10	2.0	ug/l
	ND	15	5.0	ug/l
-	ND	10	5.0	ug/l
	ND	10	5.0	ug/l
2-Nitroaniline	ND	15	6.0	ug/l
3-Nitroaniline	ND	10	5.0	ug/l
4-Nitroaniline	ND	10	4.0	ug/l
	ND	10	5.0	ug/l
		10	5.0	ug/l
				ug/l
•				ug/l
1,2,4-Trichlorobenzene	ND	10	4.0	ug/l
	1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3,3'-Dichlorobenzidine Dibenzo(a,h)anthracene Dibenzofuran Diphenylamine Di-n-butyl phthalate Di-n-octyl phthalate Diethyl phthalate Diethyl phthalate Dimethyl phthalate bis(2-Ethylhexyl)phthalate Fluorene Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone 1-Methylnaphthalene 2-Nitroaniline 3-Nitroaniline Naphthalene Nitrobenzene N-Nitrosodimethylamine N-Nitrosodimethylamine Phenanthrene Pyrene Pyrene Pyridine	1,2-DichlorobenzeneND1,3-DichlorobenzeneND1,4-DichlorobenzeneND2,4-DinitrotolueneND2,6-DinitrotolueneND3,3'-DichlorobenzidineNDDibenzo(a,h)anthraceneNDDibenzofuranNDDibenzofuranNDDibenzofuranNDDi-n-butyl phthalateNDDiethyl phthalateNDDimethyl phthalateNDFluorantheneNDFluorantheneNDHexachlorobenzeneNDHexachlorobenzeneNDHexachlorocyclopentadieneNDIndeno(1,2,3-cd)pyreneND1-MethylnaphthaleneND2-MethylnaphthaleneND2-NitroanilineND3-NitroanilineNDNitrobenzeneNDNitrobenzeneNDPhenanthreneNDPyreneNDNentrosodinethylamineNDNentrosodinethylamineNDNentrosodinethylamineND	1,2-DichlorobenzeneND101,3-DichlorobenzeneND101,4-DichlorobenzeneND102,4-DinitrotolueneND102,6-DinitrotolueneND102,6-DinitrotolueneND102,6-DinitrotolueneND10Dibenzo(a,h)anthraceneND10DibenzofuranND15DiphenylamineND15Di-n-butyl phthalateND10Diethyl phthalateND10Dimethyl phthalateND10Diselz - Ethylhexyl)phthalateND10FluorantheneND10FluorantheneND15HexachlorobenzeneND15HexachlorocyclopentadieneND10Indeno(1,2,3-cd)pyreneND102-NitroanilineND102-NitroanilineND10NaphthaleneND10NaphthaleneND10PortoanilineND10PortoanilineND10NaphthaleneND10NaphthaleneND10NaphthaleneND10NaphthaleneND10NaphthaleneND10NaphthaleneND10ProveneND10NaphthaleneND10NaphthaleneND10NaphthaleneND10NaphthaleneND10NaphthaleneND10 <td< td=""><td>1,2-DichlorobenzeneND104.01,3-DichlorobenzeneND104.01,4-DichlorobenzeneND105.02,4-DinitrotolueneND105.02,6-DinitrotolueneND156.03,3'-DichlorobenzidineND105.0Dibenzo(a,h)anthraceneND102.0DibenzofuranND155.0Di-n-butyl phthalateND103.0Di-n-octyl phthalateND103.0Diethyl phthalateND103.0Diethyl phthalateND103.0FluorantheneND103.0FluorantheneND103.0FluoreneND155.0HexachlorobenzeneND155.0HexachlorobenzeneND103.0FluoreneND155.0HexachlorobenzeneND155.0HexachlorobenzeneND103.0HexachlorobenzeneND103.0HexachlorocyclopentadieneND103.0HexachlorocyclopentadieneND105.01-MethylnaphthaleneND105.02-NitroanilineND105.02-NitroanilineND105.03-NitroanilineND105.0N-NitrosodimethylamineND105.0N-NitrosodimethylamineND105.0N-Nitrosodimethyla</td></td<>	1,2-DichlorobenzeneND104.01,3-DichlorobenzeneND104.01,4-DichlorobenzeneND105.02,4-DinitrotolueneND105.02,6-DinitrotolueneND156.03,3'-DichlorobenzidineND105.0Dibenzo(a,h)anthraceneND102.0DibenzofuranND155.0Di-n-butyl phthalateND103.0Di-n-octyl phthalateND103.0Diethyl phthalateND103.0Diethyl phthalateND103.0FluorantheneND103.0FluorantheneND103.0FluoreneND155.0HexachlorobenzeneND155.0HexachlorobenzeneND103.0FluoreneND155.0HexachlorobenzeneND155.0HexachlorobenzeneND103.0HexachlorobenzeneND103.0HexachlorocyclopentadieneND103.0HexachlorocyclopentadieneND105.01-MethylnaphthaleneND105.02-NitroanilineND105.02-NitroanilineND105.03-NitroanilineND105.0N-NitrosodimethylamineND105.0N-NitrosodimethylamineND105.0N-Nitrosodimethyla

Page 2 of 3

..... ())

G

Method Blank Summary

Job Number:	C3173
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

. .

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP542-MB	P913.D	1	12/02/08	LY	12/01/08	OP542	EP62

Limits

The QC reported here applies to the following samples:

C3173-1, C3173-2

CAS No. Surrogate Recoveries

367 - 12-4	2-Fluorophenol	43%	10-100%
4165-62-2	Phenol-d5	29%	7-100%
118-79-6	2,4,6-Tribromophenol	73%	25-115%
4165-60-0	Nitrobenzene-d5	74%	25-100%
321-60-8	2-Fluorobiphenyl	70%	25-106%
1718-51-0	Terphenyl-d14	86%	35-130%

Method: SW846 8270C

Page 3 of 3

Blank Spike/Blank Spike Duplicate Summary

Job Number:	C3173
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

x 10 Jeen								
Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch	
OP542-BS	P914.D	1	12/02/08	LY	12/01/08	OP542	EP62	
OP542-BSD	P915.D	1	12/02/08	LY	12/01/08	OP542	EP62	

The QC reported here applies to the following samples:

Method: SW846 8270C

C3173-1, C3173-2

.

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
65-85-0	Benzoic Acid	50	18.0	36	18.2	36	1	10-100/30
95-57-8	2-Chlorophenol	25	16.0	64	16.4	66	2	23-103/30
59-50-7	4-Chloro-3-methyl phenol	25	17.6	70	17.0	68	3	17-130/30
120-83-2	2,4-Dichlorophenol	25	19.1	76	17.6	70	8	23-108/30
105-67-9	2,4-Dimethylphenol	25	16.8	67	17.1	68	2	17-91/30
51-28-5	2,4-Dinitrophenol	25	15.9	64	16.3	65	2	17-111/30
534-52-1	4,6-Dinitro-o-cresol	25	19.0	76	17.7	71	7	22-115/30
95-48-7	2-Methylphenol	25	14.2	57	15.7	63	10	25-101/30
	3&4-Methylphenol	25	13.6	54	14.6	58	7	22-105/30
88 - 75-5	2-Nitrophenol	25	19.5	78	17.9	72	9	19-111/30
100-02-7	4-Nitrophenol	25	9.3	37	8.5	34	9	13-130/30
87-86-5	Pentachlorophenol	25	18.1	72	15.8	63	. 14	24-130/30
108-95-2	Phenol	25	7.0	28	7.4	30	6	5-130/30
95-95-4	2,4,5-Trichlorophenol	25	18.8	75	17.7	71	6	19-106/30
88 - 06-2	2,4,6-Trichlorophenol	25	18.2	-73	18.8	75	3	18-107/30
83-32-9	Acenaphthene	25	15.9	64	16.6	66	4	25-130/30
208-96-8	Acenaphthylene	25	16.7	67	17.8	71	6	28-105/30
62-53-3	Aniline	25	12.1	48	12.3	49	2	23-98/30
120-12-7	Anthracene	25	19.4	78	18.8	75	3	35-108/30
103-33-3	Azobenzene	25	19.1	76	18.8	75	2	31-110/30
92 - 87-5	Benzidine	50	25.7	51	29.6	59	14	15-73/30
56-55-3	Benzo(a)anthracene	25	23.1	92	22.5	90	3	33-111/30
50-32-8	Benzo(a)pyrene	25	21.0	84	20.5	82	2	32-106/30
205-99-2	Benzo(b)fluoranthene	25	25.0	100	22.6	90	10	33-109/30
191-24-2	Benzo(g,h,i)perylene	25	25.2	101	24.0	96	5	31-111/30
207-08-9	Benzo(k)fluoranthene	25	18.9	76	19.3	77	2	34-111/30
101-55-3	4-Bromophenyl phenyl ether	25	17.3	69	17.3	69	0	34-107/30
85-68-7	Butyl benzyl phthalate	25	20.4	82	21.8	87	7	29-114/30
100-51-6	Benzyl Alcohol	25	11.8	47	12.3	49	4	24-108/30
91-58-7	2-Chloronaphthalene	25	15.1	60	16.9	68	11	23-130/30
106-47-8	4-Chloroaniline	25	16.5	66	17.4	70	5	23-103/30
86-74-8	Carbazole	25	22.2	89	20.4	82	8	36-109/30
218-01-9	Chrysene	25	24.6	98	24.7	99	0	34-111/30
111-91-1	bis(2-Chloroethoxy)methane	25	16.8	67	17.7	71	5	28-101/30
111-44-4	bis(2-Chloroethyl)ether	25	16.9	68	17.0	68	1	31-108/30
108-60-1	bis(2-Chloroisopropyl)ether	25	13.6	54	14.9	60	9	33-106/30

Blank Spike/Blank Spike Duplicate Summary

Job Number:	C3173
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP542-BS	P914.D	1	12/02/08	LY	12/01/08	OP542	EP62
OP542-BSD	P915.D	1	12/02/08	LY	12/01/08	OP542	EP62

The QC reported here applies to the following samples:

C3173-1, C3173-2

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
7005-72-3	4-Chlorophenyl phenyl ether	25	17.4	70	16.7	67	4	31-107/30
95-50-1	1,2-Dichlorobenzene	25	11.2	45	11.8	47	5	21-102/30
541-73-1	1,3-Dichlorobenzene	25	14.5	58	14.1	56	3	28-100/30
106-46-7	1,4-Dichlorobenzene	25	13.8	55	14.0	56	1	24-130/30
121-14-2	2,4-Dinitrotoluene	25	20.0	80	17.4	70	14	26-130/30
606-20-2	2,6-Dinitrotoluene	25	16.9	68	17.7	71	5	28-104/30
91-94-1	3,3'-Dichlorobenzidine	50	43.8	88	47.2	94	7	27-105/30
53-70-3	Dibenzo(a,h)anthracene	25	25.1	100	23.1	92	8	32-112/30
132-64-9	Dibenzofuran	25	16.3	65	17.2	69	5	31-108/30
122-39-4	Diphenylamine	25	17.5	70	17.8	71	2	27-110/30
84-74-2	Di-n-butyl phthalate	25	21.3	85	19.4	78	9	32-109/30
117-84-0	Di-n-octyl phthalate	25	24.7	99	24.0	96	3	30-120/30
84-66-2	Diethyl phthalate	25	14.3	57	15.2	61	6	32-109/30
131-11-3	Dimethyl phthalate	25	6.6	26* a	7.6	30* a	14	33-106/30
117-81-7	bis(2-Ethylhexyl)phthalate	25	27.2	109	26.8	107	1	29-116/30
206-44-0	Fluoranthene	25	21.9	88	19.8	79	10	35-114/30
86-73-7	Fluorene	25	17.6	70	17.6	70	0	31-106/30
118-74-1	Hexachlorobenzene	25	17.5	70	16.6	66	5	32-107/30
87-68-3	Hexachlorobutadiene	25	14.6	58	15.0	60	3	28-107/30
77-47-4	Hexachlorocyclopentadiene	25	7.3	29	9.6	38	27	19-94/30
67-72-1	Hexachloroethane	25	13.7	55	14.5	58	6	25-101/30
193-39-5	Indeno(1,2,3-cd)pyrene	25	28.3	113	27.5	110	3	31-113/30
78-59-1	Isophorone	25	19.2	77	19.6	78	2	26-111/30
90-12-0	1-Methylnaphthalene	25	15.7	63	17.2	69	9	22-102/30
91-57-6	2-Methylnaphthalene	25	17.0	68	17.4	70	2	26-112/30
88-74-4	2-Nitroaniline	25	22.3	89	21.3	85	5	30-109/30
99-09-2	3-Nitroaniline	25	20.3	81	20.1	80	1	22-107/30
100-01-6	4-Nitroaniline	25	22.1	88	19.8	79	11	29-111/30
91-20-3	Naphthalene	25	16.1	64	16.1	64	0	20-104/30
98-95-3	Nitrobenzene	25	18.4	74	18.1	72 .	2	22-105/30
62-75-9	N-Nitrosodimethylamine	25	15.1	60	14.2	57	6	20-71/30
621-64-7	N-Nitroso-di-n-propylamine	25	17.1	68	19.6	78	14	16-130/30
85-01-8	Phenanthrene	25	19.3	77	18.9	76	2	35-108/30
129-00-0	Pyrene	25	25.3	101	25.2	101	0	35-130/30
110-86-1	Pyridine	25	10.0	40	9.3	37	7	15-77/30
120-82-1	1,2,4-Trichlorobenzene	25	15.7	63	16.6	66	6	15-130/30

Method: SW846 8270C

Page 2 of 3

07 N

Blank Spike/Blank Spike Duplicate Summary Job Number: C3173

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP542-BS	P914.D	1	12/02/08	LY	12/01/08	OP542	EP62
OP542-BSD	P915.D	1	12/02/08	ĹΫ	12/01/08	OP542	EP62

. .

The QC reported here applies to the following samples:

Method: SW846 8270C

C3173-1, C3173-2

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
367-12-4	2-Fluorophenol	48%	49%	10-100%
4165-62-2	Phenol-d5	31%	32%	7-100%
118-79-6	2,4,6-Tribromophenol	84%	81%	25-115%
4165-60-0	Nitrobenzene-d5	72%	76%	25-100%
321-60-8	2-Fluorobiphenyl	65%	66%	25-106%
1718-51-0	Terphenyl-d14	83%	87%	35-130%

(a) Outside lab control limits.

Page 3 of 3

GC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary Job Number: C3173

Project:	11759 Dubl	III Divu, J	Dubini, CA	<u> </u>			
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP541-MB	002187.D	1	12/01/08	NB	12/01/08	OP541	GOO79

C3173-1, C3173-2

CAS No.	Compound	Result	RL	MDL	Units Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	ND ND ND ND ND	0.10 0.10 0.10 0.10 0.10 0.10	0.020 0.050 0.050 0.050 0.050 0.050	ug/l ug/l ug/l ug/l ug/l ug/l
11096-82-5	Aroclor 1260	ND	0.10	0.030	ug/l

CAS No.	Surrogate Recoveries		Limits		
877-09-8	Tetrachloro-m-xylene	78%	41-134%		
877-09-8	Tetrachloro-m-xylene	79%	41-134%		
2051-24-3	Decachlorobiphenyl	83%	41-134%		
2051-24-3	Decachlorobiphenyl	79%	41-134%		

ന ച

Method Blank Summary

Job Numbe Account: Project:	ERMCAWC ERM-W	C3173 ERMCAWC ERM-West, Inc. 11759 Dublin Blvd, Dublin, CA											
Sample OP543-MB	File ID DF GG2536.D 1	Analyzed 12/01/08	Ву ЛН	Prep 1 12/01/		Prep Batch OP543	Analytical Batch GGG104						
The QC re C3173-1, C	ported here applies to the 3173-2	following sam	ples:			Method : SW	7846 8015B M						
CAS No.	Compound	Result	RL	MDL	Units	Q							
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND ND ND ND	0.10 0.20 0.10 0.10	0.050 0.10 0.050 0.050	mg/l mg/l mg/l mg/l								

CAS No.Surrogate RecoveriesLimits630-01-3Hexacosane82%45-140%

Page 1 of 1

ي. م

_

Blank Spike/Blank Spike Duplicate Summary

Job Number:	C3173
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP541-BS	OO2188.D	1	12/01/08	NB	12/01/08	OP541	GOO79
OP541-BSD	OO2189.D	1	12/01/08	NB	12/01/08	OP541	GOO79

-

The QC reported here applies to the following samples:

Method: SW846 8082

C3173-1, C3173-2

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
53469-21-9	Aroclor 1242	0.4	0.33	83	0.33	83	0	40-140/30
CAS No.	Surrogate Recoveries	BSP	BS	D	Limits			
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	77% 80% 85% 83%	779 829 899 889	% %	41-1349 41-1349 41-1349 41-1349	% %		

6.2

•

Blank Spike/Blank Spike Duplicate Summary

Job Number:	C3173
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

	Sample OP543-BS OP543-BSD	File ID GG2537.D GG2538.D	DF 1 1	Analyzed 12/01/08 12/01/08	Ву ЛН ЛН	Prep Date 12/01/08 12/01/08	Prep Batch OP543 OP543	Analytical Batch GGG104 GGG104
--	---------------------------------	--	---------------------	---	-----------------------	------------------------------------	------------------------------	---

C3173-1, C3173-2

CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	BSD mg/l	BSD %	RPD	Limits Rec/RPD
	TPH (Diesel) TPH (Motor Oil)	1 1	0.687 0.719	69 72	0.728 0.741	73 74	6 3	45-140/30 45-140/30
CAS No.	Surrogate Recoveries	BSP	BSI	D	Limits			
630-01-3	Hexacosane	72%	749	6	45-140%	6		

Page 1 of 1

Section 7

Metals Analysis	
QC Data Summaries	
 Includes the following where applicable: Method Blank Summaries Matrix Spike and Duplicate Summaries Blank Spike and Lab Control Sample Summaries Serial Dilution Summaries 	

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: C3173 Account: ERMCAWC - ERM-West, Inc. Project: 11759 Dublin Blvd, Dublin, CA

QC Batch ID: MP651 Matrix Type: AQUEOUS Methods: SW846 6010B

Units: ug/l

Prep Date:				12/02/08	
Metal	RL	IDL	MB raw	final	
Aluminum	50	13			
Antimony	10	6.7			
Arsenic	10	9.6			
Barium	5.0	.2			
Beryllium	5.0	. 4			
Boron	10	7			
Cadmium	2.0	. 3	0.0	<2.0	
Calcium	50	5.2			
Chromium	5.0	.5	0.50	<5.0	
Cobalt	5.0	. 4			
Copper	5.0	.7			
Iron	50	3.3			
Lead	5.0	2.4	1.5	<5.0	
Lithium	10	1.9			
Magnesium	50	13			
Manganese	5.0	1.2			
Molybdenum	5.0	1.3			
Nickel	5.0	.9	-0.30	<5.0	
Potassium	500	51			
Selenium	20	9.8			
Silicon	50	14			
Silver	5.0	.8			
Sodium	100	16			
Strontium	10	.2			
Thallium	20	4			
Tin	50	2.6			
Titanium	2.0	.2			
Vanadium	5.0	.2			
Zinc	10	3.5	-2.2	<10	

Associated samples MP651: C3173-1F, C3173-2F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

.

MATRIX SPIKE AND DUFLICATE RESULTS SUMMARY

Login Number: C3173 Account: ERMCAWC - ERM-West, Inc. Project: 11759 Dublin Blvd, Dublin, CA

QC Batch ID: MP651 Matrix Type: AQUEOUS

Methods: SW846 6010B Units: ug/l

-

	C3173-1F		Spikelot		00
Metal	Original		MPIR1	% Rec	QC Limits
Aluminum					
Antimony					
Arsenic					
Barium					
Beryllium					
Boron					
Cadmium	28.9	530	500	100.2	80-120
Calcium					
Chromium	3.8	515	500	102.2	80-120
Cobalt					
Copper					
Iron					
Lead	4.8	529	500	104.8	80-120
Lithium					
Magnesium					
Manganese					
Molybdenum					
Nickel	14.1	518	500	100.8	80-120
Potassium					
Selenium					
Silicon					
Silver					
Sodium					
Strontium					
Fhallium					
ſin					
Fitanium					
/anadium					
linc	45700	46500	500	160.0(a)	80-120
Associated sam	ples MP651	: C3173-	1F, C3173-	-2F	
Results < IDL	are shown	as zero	for calcul	lation pur	poses
(*) Outside of (N) Matrix Spi	ke Rec. ou	tside of	QC limits	3	
(anr) Analyte (a) Spike amou	not reques	ted	*		Refer to lab control or spike blank for recovery

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C3173 Account: ERMCAWC - ERM-West, Inc. Project: 11759 Dublin Blvd, Dublin, CA

QC Batch ID: MP651 Matrix Type: AQUEOUS

-

Methods: SW846 6010B Units: ug/l

Prep Date:					12/02/08					
Metal	C3173-1F Original		Spikelot MFIR1	% Rec	MSD RPD	QC Limit				
Aluminum										
Antimony										
Arsenic										
Barium										
Beryllium										
Boron										
Cadmium	28.9	530	500	100.2	0.0	20				
Calcium										
Chromium	3.8	517	500	102.6	0.4	20				
Cobalt										
Copper										
Iron										
Lead	4.8	525	500	104.0	0.8	20				
Lithium										
Magnesium										
langanese										
Molybdenum										
Nickel	14.1	519	500	101.0	0.2	20				
Potassium										
Selenium										
Silicon										
Silver										
Sodium										
Strontium										
Thallium										
Fin										
Titanium										
Vanadium										
Zinc	45700	46700	500	200.0(a) 0.4	20				
Associated sa	amples MP65	1: C3173	-1F, C3173	-2F						
Results < ID (*) Outside ((N) Matrix Sp (anr) Analyte (a) Spike ame informat:	of QC limit pike Rec. c e not reque ount low re	.s outside c sted	f QC limit	s		to lab control or spike blank for recov	very			

7.1.2

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: C3173 Account: ERMCAWC - ERM-West, Inc. Project: 11759 Dublin Blvd, Dublin, CA

QC Batch ID: Matrix Type:	Matrix Type: AQUEOUS							Methods: SW846 6010B Units: ug/l					
Prep Date:			12/02/08				_	12/02/0	6				
Metal	BSP Result	Spikelot MPIR1	% Rec	QC Limits	BSD Result	Spikelot MPIR1	% Rec	BSD RPD	QC Limit				
Aluminum													
Antimony													
Arsenic													
Barium													
Beryllium													
Boron													
Cadmium	494	500	98.8	80-120	489	500	97.8	1.0					
Calcium													
Chromium	514	500	102.8	80-120	511	500	102.2	0.6					
Cobalt													
Copper													
Iron													
Lead	520	500	104.0	80-120	517	500	103.4	0.6					
Lithium													
Magnesium													
Manganese													
Molybdenum													
Nickel	510	500	102.0	80-120	506	500	101.2	0.8					
Pota ss ium													
Selenium													
Silicon													
Silver													
Sodium													
Strontium													
Thallium													
Tin													
Titanium													
Vanadium													
Zinc	489	500	97.8	80-120	487	500	97.4	0.4					
	amples MP6												

.

SERIAL DILUTION RESULTS SUMMARY

Login Number: C3173 Account: ERMCAWC - ERM-West, Inc. Project: 11759 Dublin Blvd, Dublin, CA

QC Batch ID: MP651

Matrix Type: AQUEOUS

Methods: SW846 6010B Units: ug/l -

7.1.4

Prep Date:			12/02/08	
Metal	C3173-1F Original	SDL 1:5	%DIF	QC Limits
Aluminum				
Antimony				
Arsenic				
Barium				
Beryllium				
Boron				
Cadmium	28.9	28.0	3.1	0-10
Calcium				
Chromium	3.80	2.50	34.2 (a)	0-10
Cobalt				
Copper				
Iron				
Lead	4.80	15.5	222.9(a)	0-10
Lithium				
Magnesium				
Manganese ·				
Molybdenum				
Nickel	14.1	12.0	14.9 (a)	0-10
Potassium				
Selenium				
Silicon				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc	45700	45400	0.5	0-10
Associated sam	ples MP65	1: C3173-	1F, C3173	-2F
Results < IDL (*) Outside of			for calcu	lation purposes

(anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Page 1

Section 8

General Chemistry	 	_	
QC Data Summaries			

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C3173 Account: ERMCAWC - ERM-West, Inc. Project: 11759 Dublin Blvd, Dublin, CA

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
HEM Oil and Grease	GP368/GN831	5.0	<5.0	mg/l	40	35.1	87.8	78-114%
Associated Samples:								

Batch GP368: C3173-1, C3173-2 (*) Outside of QC limits

BLANK SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C3173 Account: ERMCAWC - ERM-West, Inc. Project: 11759 Dublin Blvd, Dublin, CA

Analyte	Batch ID	Units	Spike Amount	BSD Result	RPD	QC Limit	
HEM Oil and Grease	GP368/GN831	mg/l	40	35.7	1.7	18%	

Associated Samples: Batch GP368: C3173-1, C3173-2 (*) Outside of QC limits

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: C3173 Account: ERMCAWC - ERM-West, Inc. Project: 11759 Dublin Blvd, Dublin, CA

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
HEM Oil and Grease	GP368/GN831	C3173-1	mg/l	<5.0	<5.0	0.0	0-18%
Associated Samples:							

Associated Samples. Batch GP368: C3173-1, C3173-2 (*) Outside of QC limits

,

-

e-Hardcopy 2.0 Automated Report

01/05/09

Technical Report for

ERM-West, Inc.

11759 Dublin Blvd, Dublin, CA

0089440

Accutest Job Number: C3343

Sampling Date: 12/10/08

Report to:

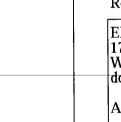
ERM-West, Inc. 1777 Botelho Drive, Suite 260 Walnut Creek, CA 94596 doug.moberg@erm.com

ATTN: Doug Moberg

Total number of pages in report: 94

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Lunie Stendt Laurie Glantz-Murphy


Laboratory Director

Client Service contact: Laurie Glantz-Murphy 408-588-0200

Certifications: CA (08258CA) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Northern California • 3334 Victor Court • Santa Clara, CA 95054 • tel: 408-588-0200 • fax: 408-588-0201 • http://www.accutest.com

N

Table of Contents

_

-1-

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: C3343-1: TANK 2	5
2.2: C3343-2: TANK 1	14
2.3: C3343-3: TANK 3	23
2.4: C3343-4: CONCRETE VAULT	32
2.5: C3343-5: STOCKPILE EAST COMP	41
2.6: C3343-6: STOCKPILE MID COMP	44
2.7: C3343-7: STOCKPILE WEST COMP	47
2.8: C3343-7A: STOCKPILE WEST COMP	50
Section 3: Misc. Forms	51
3.1: Chain of Custody	52
Section 4: GC/MS Volatiles - QC Data Summaries	55
4.1: Method Blank Summary	56
4.2: Blank Spike Summary	59
4.3: Matrix Spike/Matrix Spike Duplicate Summary	63
Section 5: GC/MS Semi-volatiles - QC Data Summaries	66
5.1: Method Blank Summary	67
5.2: Blank Spike/Blank Spike Duplicate Summary	70
5.3: Matrix Spike/Matrix Spike Duplicate Summary	73
Section 6: GC Semi-volatiles - QC Data Summaries	76
6.1: Method Blank Summary	77
6.2: Blank Spike/Blank Spike Duplicate Summary	79
6.3: Matrix Spike/Matrix Spike Duplicate Summary	81
Section 7: Metals Analysis - QC Data Summaries	83
7.1: Prep QC MP679: Cd,Cr,Pb,Ni,Zn	84
7.2: Prep QC MP737: Pb	90

Sample Summary

ERM-West, Inc.

.

Job No: C3343

11759 Dublin Blvd, Dublin, CA Project No: 0089440

Sample	Collected	Matrix	Client
Number	Date Time By	Received Code Type	Sample ID
C3343-1	12/10/08 09:55 DM	12/10/08 SO Soil	TANK 2
C3343-2	12/10/08 10:10 DM	12/10/08 SO Soil	TANK 1
C3343-3	12/10/08 10:40 DM	12/10/08 SO Soil	TANK 3
C3343-4	12/10/08 10:55 DM	12/10/08 SO Soil	CONCRETE VAULT
C3343-5	12/10/08 11:10 DM	12/10/08 SO Soil	STOCKPILE EAST COMP
C3343-6	12/10/08 11:10 DM	12/10/08 SO Soil	STOCKPILE MID COMP
C3343-7	12/10/08 11:10 DM	12/10/08 SO Soil	STOCKPILE WEST COMP
C3343-7A	12/10/08 11:10 DM	12/22/08 SO Soil	STOCKPILE WEST COMP

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Sample Results

Report of Analysis

Report of Analysis

Client Sar Lab Samp Matrix: Method: Project:		Dublin, CA		Date H	Sampled: Received: nt Solids:	12/10/08	
Run #1 Run #2		Analyzed 12/10/08	By MF	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VO140
Run #1 Run #2	Initial Weight 5.04 g						
VOA 826	0 List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	99	20	ug/kg		
71-43-2	Benzene	ND	5.0	1.5	ug/kg		
108-86-1	Bromobenzene	ND	5.0	1.5	ug/kg		
74-97 - 5	Bromochloromethane	ND	5.0	1.5	ug/kg		
75-27-4	Bromodichloromethane	ND	5.0	0.99	ug/kg		
75-25-2	Bromoform	ND	5.0	0.99	ug/kg		
104-51-8	n-Butylbenzene	ND	5.0	1.5	ug/kg		
135-98-8	sec-Butylbenzene	ND	5.0	1.5	ug/kg		
98 - 06-6	tert-Butylbenzene	ND	5.0	1.5	ug/kg		
108-90-7	Chlorobenzene	ND	5.0	1.5	ug/kg		
75-00-3	Chloroethane	ND	5.0	1.5	ug/kg		
67-66-3	Chloroform	ND	5.0	1.5	ug/kg		
95-49-8	o-Chlorotoluene	ND	5.0	1.5 1.5	ug/kg		
106-43-4	p-Chlorotoluene	ND	5.0	0.99	ug/kg		
56-23-5	Carbon tetrachloride	ND	5.0 5.0	0.99	ug/kg		
75-34-3	1,1-Dichloroethane	ND ND	5.0 5.0	0.99	ug/kg ug/kg		
75-35-4	1,1-Dichloroethylene	ND ND	5.0 5.0	1.5	ug/kg		
563-58-6 96-12-8	1,1-Dichloropropene		5.0	0.99	ug/kg		
	1,2-Dibromo-3-chloropropa	ND	5.0	0.99	ug/kg		
106-93-4	1,2-Dibromoethane		5.0	0.33	uging		

5.0

5.0

5.0

5.0

200

5.0

5.0

5.0

5.0

5.0

5.0

5.0

1.5

1.5

1.5

1.5

50

1.5

0.99

0.99

1.5

1.5

1.5

1.5

ND

107-06-2

78-87-5

142-28-9

108-20-3

123-91-1

594-20-7

124-48-1

75-71-8

156-59-2

95-50-1

10061-01-5 541-73-1

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

1,2-Dichloroethane

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

Dibromochloromethane

Dichlorodifluoromethane

cis-1,2-Dichloroethylene

cis-1,3-Dichloropropene

m-Dichlorobenzene

o-Dichlorobenzene

Di-Isopropyl ether

1,4-Dioxane

J = Indicates an estimated value

ug/kg

B = Indicates analyte found in associated method blank

.

		Report of Analysis					
Client Sample ID:TANK 2Lab Sample ID:C3343-1Matrix:SO - SoilMethod:SW846 8260BProject:11759 Dublin Blvd,		Dublin, CA		Date 1	Sampled: Received: nt Solids:	12/10/08 12/10/08 n/a ^a	
VOA 8260]	List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
106-46-7	p-Dichlorobenzene	ND	5.0	1.5	ug/kg		
156-60-5	trans-1,2-Dichloroethylene	ND	5.0	1.5	ug/kg		
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	1.5	ug/kg		
54-17-5	Ethyl alcohol	ND	500	99	ug/kg		
100-41-4	Ethylbenzene	ND	5.0	1.5	ug/kg		
537-92-3	Ethyl tert-Butyl Ether	ND	5.0	1.5	ug/kg		
591-78-6	2-Hexanone	ND	40	5.0	ug/kg		
87-68-3	Hexachlorobutadiene	ND	5.0	0.99	ug/kg		
98-82-8	Isopropylbenzene	ND	5.0	1.5	ug/kg		
99-87-6	p-Isopropyltoluene	ND	5.0	1.5	ug/kg		
108-10-1	4-Methyl-2-pentanone	ND	40	15	ug/kg		
74-83-9	Methyl bromide	ND	5.0	2.5	ug/kg		
74-87-3	Methyl chloride	ND	5.0	1.5	ug/kg		
74-95-3	Methylene bromide	ND	5.0	2.5	ug/kg		
75-09-2	Methylene chloride	ND	25	16	ug/kg		
78-93-3	Methyl ethyl ketone	ND	40	12	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	5.0	0.99	ug/kg		
91-20-3	Naphthalene	ND	5.0	1.5	ug/kg		
103-65-1	n-Propylbenzene	ND .	5.0	1.5	ug/kg		
100-42-5	Styrene	ND	5.0	0.99	ug/kg		
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	1.2	ug/kg		
75-65-0	Tert Butyl Alcohol	ND	40	9.9	ug/kg		
530-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.99	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.5	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	0.99	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	5.0	0.99	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.5	ug/kg		
96-18-4	1,2,3-Trichloropropane	ND	5.0	1.5	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.5	ug/kg		
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	1.5	ug/kg		
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	1.5	ug/kg		
127-18-4	Tetrachloroethylene	ND	5.0	3.5	ug/kg		
108-88-3	Toluene	ND	5.0	1.5	ug/kg		
79-01-6	Trichloroethylene	ND	. 5.0	0.99	ug/kg		
75-69-4	Trichlorofluoromethane	ND	5.0	1.2	ug/kg		
75-01-4	Vinyl chloride	ND	5.0	2.5	ug/kg		
1330-20-7	Xylene (total)	ND	9.9	4.0	ug/kg		
	TPH-GRO (C6-C10)	ND	99	50	ug/kg		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sampl Lab Sample I Matrix: Method: Project:	e ID: TANK 2 ID: C3343-1 SO - Soil SW846 8260B 11759 Dublin Blvd,	Dublin, CA		Date Sampled: Date Received: Percent Solids:	
VOA 8260 Li	ist				
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	

1868-53-7	Dibromofluoromethane	103%	60-130%
2037-26-5	Toluene-D8	102%	60-130%
460-00-4	4-Bromofluorobenzene	100%	60-130%

(a) All results reported on wet weight basis.

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

				керо	Analysis		Page 1 of 3	
Client Sample ID: Lab Sample ID: Matrix: Method: Project:			il 8270C S	SW846 3545A /d, Dublin, CA		Date Sample Date Receive Percent Soli		
	File ID X2003.	D	DF 1	Analyzed 12/11/08	Ву LY	Prep Date 12/11/08	Prep Batch OP571	Analytical Batch EX109
	Initial	Weight	Final V	olume				

Run #1 10.0 g 1.0 ml

Run #2

ABN Full List

CAS No.	Compound	Result	RL	MDL	Units Q	
65-85-0	Benzoic acid	ND	1000	890	ug/kg	
95-57-8	2-Chlorophenol	ND	1000	680	ug/kg	
59 -5 0-7	4-Chloro-3-methyl phenol	ND	500	420	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	500	140	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	500	150	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	2500	850	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	2000	1000	ug/kg	
95-48-7	2-Methylphenol	ND	500	170	ug/kg	
	3&4-Methylphenol	ND	500	150	ug/kg	
88-75-5	2-Nitrophenol	ND	500	130	ug/kg	
100-02-7	4-Nitrophenol	ND	2000	1200	ug/kg	
87-86-5	Pentachlorophenol	ND	500	420	ug/kg	
108-95-2	Phenol	ND	2000	1300	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	500	120	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	500	160	ug/kg	
83-32-9	Acenaphthene	ND	1000	500	ug/kg	
208-96-8	Acenaphthylene	ND	500	200	ug/kg	
62-53-3	Aniline	NĎ	500	140	ug/kg	
120-12-7	Anthracene	ND	500	100	ug/kg	
103-33-3	Azobenzene	ND	500	170	ug/kg	
92-87-5	Benzidine	ND	2500	730	ug/kg	
56-55-3	Benzo(a)anthracene	ND	500	70	ug/kg	
50-32-8	Benzo(a)pyrene	ND	500	90	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	500	60	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	500	150	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	500	120	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	500	150	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	500	110	ug/kg	
100-51-6	Benzyl Alcohol	ND	1000	160	ug/kg	
91-58-7	2-Chloronaphthalene	ND	500	180	ug/kg	
106-47-8	4-Chloroaniline	ND	500	140	ug/kg	
86-74-8	Carbazole	ND	500	80	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Deport of Analysis

Page 2 of 3

Client Sample Lab Sample I Matrix: Method: Project:	e ID: TANK 2 ID: C3343-1 SO - Soil SW846 8270C SW84 11759 Dublin Blvd, D			Date I	Sampled: Received: nt Solids:	12/10/08 12/10/08 n/a ^a	
ABN Full List							
CAS No.	Compound	Result	RL	MDL	Units	Q	
218-01 - 9	Chrysene	ND	500	100	ug/kg		
111-91-1	bis(2-Chloroethoxy)methane	ND	500	180	ug/kg		
	bis(2-Chloroethyl)ether	ND	500	230	ug/kg		
	bis(2-Chloroisopropyl)ether	ND	500	270	ug/kg		
	4-Chlorophenyl phenyl ether	ND	500	190	ug/kg		
	1,2-Dichlorobenzene	ND	500	160	ug/kg		
	1,3-Dichlorobenzene	ND	500	150	ug/kg		
	1,4-Dichlorobenzene	ND	500	420	ug/kg		
	2,4-Dinitrotoluene	ND	500	460	ug/kg		
	2,6-Dinitrotoluene	ND	1000	320	ug/kg		
	3,3'-Dichlorobenzidine	ND	2500	140	ug/kg		
53-70-3	Dibenzo(a,h)anthracene	ND	500	130	ug/kg		
132-64-9	Dibenzofuran	ND	500	160	ug/kg		
122-39-4	Diphenylamine	ND	500	120	ug/kg		
84-74-2	Di-n-butyl phthalate	ND	500	100	ug/kg		
117-84-0	Di-n-octyl phthalate	ND	500	130	ug/kg		
84-66-2	Diethyl phthalate	ND	500	170	ug/kg		
131-11-3	Dimethyl phthalate	ND	500	180	ug/kg		
117-81-7	bis(2-Ethylhexyl)phthalate	ND	500	220	ug/kg		
206-44-0	Fluoranthene	ND	500	100	ug/kg		
86-73-7	Fluorene	ND	500	180	ug/kg		
118-74-1	Hexachlorobenzene	ND	500	130	ug/kg		
87-68-3	Hexachlorobutadiene	ND	500	190	ug/kg		
77-47 - 4	Hexachlorocyclopentadiene	ND	500	140	ug/kg		
67-72 - 1	Hexachloroethane	ND	500	160	ug/kg		
193-39-5	Indeno(1,2,3-cd)pyrene	ND	500	140	ug/kg		
78-59-1	Isophorone	ND	500	170	ug/kg		
90-12-0	1-Methylnaphthalene	ND	500	160	ug/kg		
91-57-6	2-Methylnaphthalene	ND	500	160	ug/kg		
88-74-4	2-Nitroaniline	ND	500	120	ug/kg		
99 - 09-2	3-Nitroaniline	ND	500	120	ug/kg		
100-01-6	4-Nitroaniline	ND	500	300	ug/kg		
91-20-3	Naphthalene	ND	500	170	ug/kg		
	Nitrobenzene	ND	500	160	ug/kg		
62-75-9	N-Nitrosodimethylamine	ND	5000	2200	ug/kg		
	N-Nitroso-di-n-propylamine	ND	1000	550	ug/kg		
85-01-8	Phenanthrene	ND	500	110	ug/kg		
129-00-0	Pyrene	ND	1000	680	ug/kg		
110-86-1	Pyridine	ND	2000	220	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	500	340	ug/kg		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID:	TANK 2			
Lab Sample ID:	C3343-1	Date Sampled:	12/10/08	
Matrix:	SO - Soil	Date Received:	12/10/08	
Method:	SW846 8270C SW846 3545A	Percent Solids:	n/a ^a	
Project:	11759 Dublin Blvd, Dublin, CA			

ABN Full List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
367-12-4	2-Fluorophenol	64%		20-100%
4165-62-2	Phenol-d5	73%		20-100%
118-79-6	2,4,6-Tribromophenol	63%		30-100%
4165-60-0	Nitrobenzene-d5	69%		20-100%
321-60-8	2-Fluorobiphenyl	67%		20-106%
1718-51-0	Terphenyl-d14	71%		55-130%

(a) All results reported on wet weight basis.

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value

N = Indicates presumptive evidence of a compound

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Samı Lab Sample Matrix: Method: Project:	e ID: C3343- SO - So SW846	l il 8082 SW8	846 3545A , Dublin, CA		Date H	Sampled: Received: nt Solids: 		
Run #1 Run #2	File ID 002482.D	DF 1	Analyzed 12/12/08	By NB	Prep D 12/10/0		Prep Batch OP569	Analytical Batch GOO89
Run #1 Run #2	Initial Weight 10.0 g	Final Vo l 10.0 ml	lume					
PCB List								
CAS No.	Compound		Result	RL	MDL	Units	Q	
12674-11-2	Aroclor 1016		ND	100	17	ug/kg		
11104-28-2	Aroclor 1221		ND	100	50	ug/kg		
11141-16-5	Aroclor 1232		ND	100	50	ug/kg		
53469-21-9	Aroclor 1242		ND	100	50	ug/kg		
12672-29-6	Aroclor 1248		ND	100	50	ug/kg		
11097-69-1	Aroclor 1254		ND	100	50	ug/kg		
11096-82-5	Aroclor 1260		ND	100	20	ug/kg		
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Lim	its		
877-09 - 8	Tetrachloro-m-	-xylene	86%		58-1	30%		
877-09-8	Tetrachloro-m-	-xylene	86%		58-1	30%		
2051-24-3	Decachlorobip		104%		58-1	30%		
2051-24-3	Decachlorobip		105%		58-1	30%		

(a) All results reported on wet weight basis.

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value

B = Indicates analyte found in associated method blank

				Repo	rt of An	alysis			Page 1 of 1
Client San Lab Samj Matrix: Method: Project:	ple ID:		-1 oil 5 8015B M	SW846 35454 , Dublin, CA	4	Date 1	Sampled: Received: nt Solids:	12/10/08	
Run #1 Run #2	File ID GG2701	.D	DF 1	Analyzed 12/12/08	Ву ЛН	Prep D 12/11/0		Prep Batch OP566	Analytical Batch GGG112
Run #1 Run #2	Initial V 10.1 g	Veight	Final Vo 1.0 ml	lume					
TPH Extr	ractable								
CAS No.	Compo	und		Result	RL	MDL	Units	Q	
	TPH (C TPH (>		,	ND ND	9.9 20	5.0 9.9	mg/kg mg/kg		
CAS No.	Surrog	ate Rec	coveries	Run# 1	Run# 2	Lim	its		

90%

(a) All results reported on wet weight basis.

Hexacosane

630-01-3

ND = Not detected MDL - Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value

45-140%

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Lab Sample ID Matrix: Project:	SO -	Soil	Blvd, Du	blin, C	CA	Date Sam Date Rec Percent S	•	
Metals Analysi	\$							
Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method

-
SW846 3050B ²

(1) Instrument QC Batch: MA418

(2) Prep QC Batch: MP679

(a) All results reported on wet weight basis.

			Repo	ort of A	Inalysis		Page 1 of 3
Client Sa Lab Sam Matrix: Method: Project:	ple ID: C334 SO - SW84	3-2 Soil 46 8260B	vd, Dublin, CA		Date Sampled Date Received Percent Solids	: 12/10/08	
Run #1 Run #2	File ID 002790.D	DF 1	Analyzed 12/10/08	By MF	Prep Date n/a	Prep Batch n/a	Analytical Batch VO140
Run #1 Run #2	Initial Weigh 5.03 g	t					

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	99	20	ug/kg
71-43-2	Benzene	ND	5.0	1.5	ug/kg
108-86-1	Bromobenzene	ND	5.0	1.5	ug/kg
74-97-5	Bromochloromethane	ND	5.0	1.5	ug/kg
75-27-4	Bromodichloromethane	ND	5.0	0.99	ug/kg
75-25 - 2	Bromoform	ND	5.0	0.99	ug/kg
104-51-8	n-Butylbenzene	ND	5.0	1.5	ug/kg
135-98-8	sec-Butylbenzene	ND	5.0	1.5	ug/kg
98-06-6	tert-Butylbenzene	ND	5.0	1.5	ug/kg
108-90-7	Chlorobenzene	ND	5.0	1.5	ug/kg
75-00-3	Chloroethane	ND	5.0	1.5	ug/kg
67-66-3	Chloroform	ND	5.0	1.5	ug/kg
95-49-8	o-Chlorotoluene	ND	5.0	1.5	ug/kg
106-43-4	p-Chlorotoluene	ND	5.0	1.5	ug/kg
56-23-5	Carbon tetrachloride	ND	5.0	0.99	ug/kg
75-34-3	1,1-Dichloroethane	ND	5.0	0.99	ug/kg
75 -3 5-4	1,1-Dichloroethylene	ND	5.0	1.5	ug/kg
563-58-6	1,1-Dichloropropene	ND	5.0	1.5	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	0.99	ug/kg
106-93-4	1,2-Dibromoethane	ND	5.0	0.99	ug/kg
107-06-2	1,2-Dichloroethane	ND	5.0	1.5	ug/kg
78-87-5	1,2-Dichloropropane	ND	5.0	1.5	ug/kg
142-28-9	1,3-Dichloropropane	ND	5.0	1.5	ug/kg
108-20-3	Di-Isopropyl ether	ND	5.0	1.5	ug/kg
123-91-1	1,4-Dioxane	ND	200	50	ug/kg
594-20-7	2,2-Dichloropropane	ND	5.0	1.5	ug/kg
124-48-1	Dibromochloromethane	ND	5.0	0.99	ug/kg
75-71-8	Dichlorodifluoromethane	ND	5.0	0.99	ug/kg
156-59-2	cis-1,2-Dichloroethylene	ND	5.0	1.5	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	1.5	ug/kg
541-73-1	m-Dichlorobenzene	ND	5.0	1.5	ug/kg
95-50-1	o-Dichlorobenzene	ND	5.0	1.5	ug/kg

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

2.2 2

Page 2 of 3

Client Samp Lab Sample Matrix: Method: Project:		Dublin, CA		Date F	Sampled: Received: nt Solids:	12/10/08 12/10/08 n/a ^a	
VOA 8260 List							
CAS No.	Compound	Result	RL	MDL	Units	Q	
106-46-7	p-Dichlorobenzene	ND	5.0	1.5	ug/kg		
156-60-5	trans-1,2-Dichloroethylene	ND	5.0	1.5	ug/kg		
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	1.5	ug/kg		
64-17-5	Ethyl alcohol	ND	500	99	ug/kg		
100-41-4	Ethylbenzene	ND	5.0	1.5	ug/kg		
637-92-3	Ethyl tert-Butyl Ether	ND	5.0	1.5	ug/kg		
591-78-6	2-Hexanone	ND	40	5.0	ug/kg		
87-68-3	Hexachlorobutadiene	ND	5.0	0.99	ug/kg		
98-82 - 8	Isopropylbenzene	ND	5.0	1.5	ug/kg		
99-87-6	p-Isopropyltoluene	ND	5.0	1.5	ug/kg		
108-10-1	4-Methyl-2-pentanone	ND	40	15	ug/kg		
74-83-9	Methyl bromide	ND	5.0	2.5	ug/kg		
74-87-3	Methyl chloride	ND	5.0	1.5	ug/kg		
74-95-3	Methylene bromide	ND	5.0	2.5	ug/kg		
75-09-2	Methylene chloride	ND	25	16	ug/kg		
78-93-3	Methyl ethyl ketone	ND	40	12	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	5.0	0.99	ug/kg		
91-20-3	Naphthalene	ND	5.0	1.5	ug/kg		
103-65-1	n-Propylbenzene	ND	5.0	1.5	ug/kg		
100-42-5	Styrene	ND	5.0	0.99	ug/kg		
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	1.2	ug/kg		
75-65-0	Tert Butyl Alcohol	ND	40	9.9	ug/kg		
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	0.99	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.5	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	0.99	ug/kg		
79 - 00-5	1,1,2-Trichloroethane	ND	5.0	0.99	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.5	ug/kg		
96-18-4	1,2,3-Trichloropropane	ND	5.0	1.5	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.5	ug/kg		
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	1.5	ug/kg		
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	1.5	ug/kg		
127-18-4	Tetrachloroethylene	ND	5.0	3.5	ug/kg		
108-88-3	Toluene	ND	5.0	1.5	ug/kg		
79-01-6	Trichloroethylene	ND	5.0	0.99	ug/kg		
75-69-4	Trichlorofluoromethane	ND	5.0	1.2	ug/kg		
75-01-4	Vinyl chloride	ND	5.0	2.5	ug/kg		
1330-20-7	Xylene (total)	ND	9.9	4.0	ug/kg		
	TPH-GRO (C6-C10)	ND	99	50	ug/kg		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

 Client Sample ID:
 TANK 1

 Lab Sample ID:
 C3343-2
 Date Sampled:
 12/10/08

Lab Sample ID:C3343-2Date Sampled:12/10/08Matrix:SO - SoilDate Received:12/10/08Method:SW846 8260BPercent Solids:n/a aProject:11759 Dublin Blvd, Dublin, CAVOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	105%		60-130%
2037-26-5	Toluene-D8	100%		60-130%
460-00-4	4-Bromofluorobenzene	101%		60-130%

(a) All results reported on wet weight basis.

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value

B = Indicates analyte found in associated method blank

			Repo	rt of Ar	nalysis			Page 1 of 3
Client Sam Lab Samp Matrix: Method: Project:	le ID: C3343- SO - So SW846	2 9il 8270C SW	7846 3545A Dublin, CA		Date I	Sampled: Received: nt Solids:	12/10/08	
Run #1 Run #2	File ID X2004.D	DF 1	Analyzed 12/11/08	By LY	Prep D 12/11/0		Prep Batch OP571	Analytical Batch EX109
Run #1 Run #2	Initial Weight 10.0 g	Final Volu 1.0 ml	ume					
ABN Full	List							
CAS No.	Compound		Result	RL	MDL	Units	Q	
65-85-0	Benzoic acid		ND	1000	890	ug/kg		
95-57-8	2-Chloropheno	ol	ND	1000	680	ug/kg		
59-50-7	4-Chloro-3-me		ND	500	420	ug/kg		
120-83-2	2,4-Dichloropl		ND	500	140	ug/kg		
105-67-9	2,4-Dimethylp		ND	500	150	ug/kg		
51-28-5	2,4-Dinitrophe		ND	2500	850	ug/kg		
534-52 - 1	4,6-Dinitro-o-o		ND	2000	1000	ug/kg		
95-48-7	2-Methylpheno		ND	500	170	ug/kg		
	3&4-Methylph	enol	ND	500	150	ug/kg		
88-75-5	2-Nitrophenol		ND	500	130	ug/kg		
100-02-7	4-Nitrophenol		ND	2000	1200	ug/kg		
87-86 - 5	Pentachloroph	enol	ND	500	420	ug/kg		
108-95-2	Phenol		ND	2000	1300	ug/kg		
95-95-4	2,4,5-Trichlor		ND	500	120	ug/kg		
88-06-2	2,4,6-Trichlor	ophenol	ND	500	160	ug/kg		
83-32-9	Acenaphthene		ND	1000	500	ug/kg		
208-96-8	Acenaphthyler	ne	ND	500	200	ug/kg		
62-53-3	Aniline		ND	500	140	ug/kg		
120-12-7	Anthracene		ND	500	100	ug/kg		
103-33-3	Azobenzene		ND	500	170	ug/kg		
92-87-5	Benzidine		ND	2500	730 70	ug/kg		
56-55-3	Benzo(a)anthr	acene	ND	500	70	ug/kg		

MDL - Method Detection Limit ND = Not detected

RL = Reporting Limit

50-32-8

205-99-2

191-24-2 207-08-9

101-55-3

85-68-7

100-51-6

91-58-7

106-47-8

86-74-8

E = Indicates value exceeds calibration range

Benzo(a)pyrene

Benzyl Alcohol

4-Chloroaniline

Carbazole

Benzo(b)fluoranthene

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

Butyl benzyl phthalate

2-Chloronaphthalene

4-Bromophenyl phenyl ether

J = Indicates an estimated value

ug/kg ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

90

60

150

120

150

110

160

180

140

80

500

500

500

500

500

500

1000

500

500

500

NÐ

ND

ND

ND

ND

ND

ND

ND

ND

ND

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ì

-

Report of Analysis

		-				
Client Sam	ple ID: TANK 1					
Lab Sampl				Date S	Sampled:	12/10/08
Matrix:	SO - Soil				Received:	12/10/08
Method:		46 3545A			nt Solids:	n/a ^a
Project:	11759 Dublin Blvd, D					
ABN Full 1	List				<u> </u>	
CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	500	100	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	500	180	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	500	230	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	500	270	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	500	190	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	500	160	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	500	150	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	500	420	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	500	460	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	1000	320	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	2500	140	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	500	130	ug/kg	
132 - 64-9	Dibenzofuran	ND	500	160	ug/kg	
122-39-4	Diphenylamine	ND	500	120	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	500	100	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	500	130	ug/kg	
84-66-2	Diethyl phthalate	ND	500	170	ug/kg	
131-11-3	Dimethyl phthalate	ND	500	180	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	500	220	ug/kg	
206-44-0	Fluoranthene	ND	500	100	ug/kg	
86-73-7	Fluorene	ND	500	180	ug/kg	
118-74-1	Hexachlorobenzene	ND	500	130	ug/kg	
87-68-3	Hexachlorobutadiene	ND	500	190	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	500	140	ug/kg	
67-72-1	Hexachloroethane	ND	500	160	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	500	140	ug/kg	
78-59-1	Isophorone	ND	500	170	ug/kg	
90-12-0	l-Methylnaphthalene	ND	500	160	ug/kg	
91-57 - 6	2-Methylnaphthalene	ND	500	160	ug/kg	
88-74-4	2-Nitroaniline	ND	500	120	ug/kg	
99-09-2	3-Nitroaniline	ND	500	120	ug/kg	
100-01-6	4-Nitroaniline	ND	500	300	ug/kg	
91-20-3	Naphthalene	ND	500	170	ug/kg	
98-95-3	Nitrobenzene	ND	500	160	ug/kg	
62-75-9	N-Nitrosodimethylamine	ND	5000	2200	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	1000	550	ug/kg	
85-01-8	Phenanthrene	ND	500	110	ug/kg	
129-00-0	Pyrene	ND	1000	680	ug/kg	
110 96 1	Duriding	NIT	2000	220	110/110	

ND = Not detected MDL - Method Detection Limit

1,2,4-Trichlorobenzene

ND

ND

2000

500

220

340

RL = Reporting Limit

110-86-1

120-82-1

E = Indicates value exceeds calibration range

Pyridine

J = Indicates an estimated value

ug/kg

ug/kg

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

18 of 94 ZACCUTEST. Laborator C3343

Report of Analysis

Client Sample ID: TANK 1 Date Sampled: 12/10/08 Lab Sample ID: C3343-2 Date Received: 12/10/08 SO - Soil SW846 8270C SW846 3545A Percent Solids: n/a a

ABN Full List

Matrix:

Method:

Project:

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
367-12-4	2-Fluorophenol	43%		20-100%
4165-62-2	Phenol-d5	50%		20-100%
118-79-6	2,4,6-Tribromophenol	53%		30-100%
4165-60-0	Nitrobenzene-d5	46%		20-100%
321-60-8	2-Fluorobiphenyl	46%		20-106%
1718-51 - 0	Terphenyl-d14	104%		55-130%

11759 Dublin Blvd, Dublin, CA

(a) All results reported on wet weight basis.

ND = Not detectedMDL - Method Detection Limit RL = Reporting Limit

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

		Repo	rt of An	alysis			Page 1 of 1
e ID: C3343- SO - So SW846	2 511 8082 SW			Date]	Received	12/10/08	
File ID 002483.D	DF 1	Analyzed 12/12/08	By NB	-		Prep Batch OP569	Analytical Batch GOO89
Initial Weight 10.0 g	Final Vo 10.0 ml	lume					
Compound		Result	RL	MDL	Units	Q	
Aroclor 1016 Aroclor 1221		ND	100 100	17 50	ug/kg		
Aroclor 1232 Aroclor 1242		ND ND	100 100	50 50	ug/kg		
Aroclor 1248 Aroclor 1254		ND ND	100 100	50 50	ug/kg		
Aroclor 1260		ND	100	20	ug/kg		
Surrogate Rec	overies	Run# 1	Run# 2	Lim	its		
Tetrachloro-m- Decachlorobiph	xylene nenyl	76% 77% 89% 88%		58-1 58-1	30% 30%		
	E ID: C3343- SO - Sc SW846 11759 1 OO2483.D Initial Weight 10.0 g Compound Aroclor 1016 Aroclor 1221 Aroclor 1222 Aroclor 1242 Aroclor 1242 Aroclor 1254 Aroclor 1260 Surrogate Rec Tetrachloro-m- DecachlorobipI	EID: C3343-2 SO - Soil SW846 8082 SW 11759 Dublin Blvd File ID DF OO2483.D Initial Weight Final Vo 10.0 g Initial Weight Final Vo 10.0 ml Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1254 Aroclor 1254 Aroclor 1260 Surrogate Recoveries Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl	Dele ID: TANK 1 DI: C3343-2 SO - Soil SW846 8082 SW846 3545A 11759 Dublin Blvd, Dublin, CA File ID DF Analyzed OO2483.D 1 12/12/08 Initial Weight Final Volume 10.0 g 10.0 ml Result Aroclor 1016 ND Aroclor 1221 ND Aroclor 1232 ND Aroclor 1248 ND Aroclor 1254 ND Aroclor 1260 ND Surrogate Recoveries Run# 1 Tetrachloro-m-xylene 76% Tetrachloro-m-xylene 77%	Dele ID: TANK 1 SD: C3343-2 SO - Soil SW846 8082 SW846 8082 SW846 3545A 11759 Dublin Blvd, Dublin, CA File ID DF Analyzed By OO2483.D 1 12/12/08 NB Initial Weight Final Volume ND 100 Io.0 g 10.0 ml Result RL Aroclor 1016 ND 100 Aroclor 1221 ND 100 Aroclor 1232 ND 100 Aroclor 1248 ND 100 Aroclor 1254 ND 100 Aroclor 1260 ND 100 Surrogate Recoveries Run# 1 Run# 2 Tetrachloro-m-xylene 76% 77% Decachlorobipheny1 89%	ID:C3343-2 SO - Soil SW846 8082Date i Date i Date i SW846 8082Date i Date i 	Compound Result RL MDL Units Aroclor 1016 ND 100 17 ug/kg Aroclor 1221 ND 100 50 ug/kg Aroclor 1232 ND 100 50 ug/kg Aroclor 1248 ND 100 50 ug/kg Aroclor 1248 ND 100 50 ug/kg Aroclor 1254 ND 100 50 ug/kg Aroclor 1260 ND 100 50 ug/kg Aroclor 1260 ND 100 50 ug/kg Aroclor 1260 ND 100 50 ug/kg Aroclor 1271 ND 100 50 ug/kg Aroclor 1248 ND 100 50 ug/kg Aroclor 1260 ND 100 50	Compound Result RL MDL Units Q Aroclor 1016 ND 100 17 ug/kg Aroclor 1221 ND 100 50 ug/kg Aroclor 1248 ND 100 50 ug/kg Aroclor 1248 ND 100 50 ug/kg Aroclor 1242 ND 100 50 ug/kg Aroclor 1248 ND 100 50 ug/kg Aroclor 1254 ND 100 50 ug/kg Aroclor 1260 ND 100 50 ug/kg Aroclor 1248 ND 100 50 ug/kg Aroclor 1254 ND 100 50 ug/kg Aroclor 1260 ND 100 50 ug/kg Aroclor 1260 ND 100 50 ug/kg Aroclor 1274 ND 100 50 ug/kg Aroclor 128 ND 100 50 ug/kg Aroclor 1260 ND 100 50 ug/kg Aroclor 1260 ND 100 50 ug/kg Aroclor 1260 ND 100 58-130% Curachloro-m-xylene 77% 58-130% </td

(a) All results reported on wet weight basis.

ND = Not detected MDL - Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Report of Analysis

				-		•			
Client San Lab Samp Matrix: Method: Project:			2 911 8015B M	SW846 3545/ I, Dublin, CA	4	Date 1	Sampled: Received: nt Solids:	12/10/08	
Run #1 Run #2	File ID HH149		DF 1	Analyzed 12/12/08	Ву ЛН	Prep D 12/11/0		Prep Batch OP566	Analytical Batch GHH85
Run #1 Run #2	Initial 10.0 g	Weight	Final Vo 1.0 ml	lume					
TPH Extr	actable								
CAS No.	Comp	ound		Result	RL	MDL	Units	Q	
		C10-C28 > C28-C		ND ND	10 20	5.0 10	mg/kg mg/kg		
CAS No.	Surro	gate Rec	overies	Run# 1	Run# 2	Lim	nits		
630-01-3	Hexac	osane		78%		45-1	40%		

(a) All results reported on wet weight basis.

ND = Not detected MDL - Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

.

Report of Analysis

Page 1 of 1

Metals Analysis			
Project:	11759 Dublin Blvd, Dublin, CA		
		Percent Solids:	n/a ^a
Matrix:	SO - Soil	Date Received:	12/10/08
Lab Sample ID:	C3343-2	Date Sampled:	12/10/08
Client Sample ID:	TANK 1		

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium Chromium Lead Nickel Zinc	< 0.95 31.4 7.0 30.6 48.5	0.95 0.95 0.95 0.95 1.9	mg/kg mg/kg mg/kg mg/kg mg/kg	1 1 1 1	12/11/08 12/11/08 12/11/08 12/11/08 12/11/08	12/12/08 ст	SW846 6010B 1 SW846 6010B 1 SW846 6010B 1 SW846 6010B 1 SW846 6010B 1	SW846 3050B ² SW846 3050B ² SW846 3050B ² SW846 3050B ² SW846 3050B ²

(1) Instrument QC Batch: MA417
 (2) Prep QC Batch: MP679

(a) All results reported on wet weight basis.

2.2

		1		•			
Client San Lab Samp Matrix: Method: Project:	-	vd, Dublin, CA		Date H	Sampled: Received: nt Solids:	12/10/08	
	File ID DF	Analyzed	By	Prep D	ate	Prep Batch	Analytical Batch
Run #1 Run #2	O02791.D 1	12/10/08	MF	n/a		n/a	VO140
Run #1 Run #2	Initial Weight 5.00 g						
VOA 8260) List						
CAS No.	Compound	Result	RL	MDL	Units	Q	
67-64-1	Acetone	ND	100	20	ug/kg		
71-43-2	Benzene	ND	5.0	1.5	ug/kg		
108-86-1	Bromobenzene	ND	5.0	1.5	ug/kg		
74 - 97-5	Bromochloromethane	ND	5.0	1.5	ug/kg		
75-27-4	Bromodichloromethane	ND	5.0	1.0	ug/kg		
75-25-2	Bromoform	ND	5.0	1.0	ug/kg		
104-51-8	n-Butylbenzene	ND	5.0	1.5	ug/kg		
135-98-8	sec-Butylbenzene	ND	5.0	1.5	ug/kg		
98-06-6	tert-Butylbenzene	ND ND	5.0 5.0	1.5 1.5	ug/kg ug/kg		
108-90-7 75-00-3	Chlorobenzene Chloroethane	ND ND	5.0	1.5	ug/kg ug/kg		
67-66 - 3	Chloroform	ND	5.0	1.5	ug/kg		
95-49-8	o-Chlorotoluene	ND	5.0	1.5	ug/kg		
106-43-4	p-Chlorotoluene	ND	5.0	1.5	ug/kg		
56-23-5	Carbon tetrachloride	ND	5.0	1.0	ug/kg		
75-34-3	1,1-Dichloroethane	ND	5.0	1.0	ug/kg		
75-35-4	1,1-Dichloroethylene	ND	5.0	1.5	ug/kg		
563-58-6	1,1-Dichloropropene	ND	5.0	1.5	ug/kg		
04.10.0			5.0	1.0			

					00
108-90-7	Chlorobenzene	ND	5.0	1.5	ug/kg
75-00-3	Chloroethane	ND	5.0	1.5	ug/kg
67-66-3	Chloroform	ND	5.0	1.5	ug/kg
95-49-8	o-Chlorotoluene	ND	5.0	1.5	ug/kg
106-43-4	p-Chlorotoluene	ND	5.0	1.5	ug/kg
56-23-5	Carbon tetrachloride	ND	5.0	1.0	ug/kg
75-34-3	1,1-Dichloroethane	ND	5.0	1.0	ug/kg
75-35-4	1,1-Dichloroethylene	ND	5.0	1.5	ug/kg
563-58 - 6	1,1-Dichloropropene	ND	5.0	1.5	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/kg
106-93-4	1,2-Dibromoethane	ND	5.0	1.0	ug/kg
107-06-2	1,2-Dichloroethane	ND	5.0	1.5	ug/kg
78-87-5	1,2-Dichloropropane	ND	5.0	1.5	ug/kg
142 - 28-9	1,3-Dichloropropane	ND	5.0	1.5	ug/kg
108-20-3	Di-Isopropyl ether	ND	5.0	1.5	ug/kg
123-91-1	1,4-Dioxane	ND	200	50	ug/kg
594-20-7	2,2-Dichloropropane	ND	5.0	1.5	ug/kg
124-48-1	Dibromochloromethane	ND	5.0	1.0	ug/kg
75-71-8	Dichlorodifluoromethane	ND	5.0	1.0	ug/kg
156-59-2	cis-1,2-Dichloroethylene	ND	5.0	1.5	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	1.5	ug/kg
541-73-1	m-Dichlorobenzene	ND	5.0	1.5	ug/kg
95-50-1	o-Dichlorobenzene	ND	5.0	1.5	ug/kg

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

-

Page 2 of 3

Client Samj Lab Sample Matrix: Method: Project:		Date Sampled: Date Received: Percent Solids: Dublin, CA			12/10/08 12/10/08 n/a ^a	
VOA 8260	List					
CAS No.	Compound	Result	RL	MDL	Units	Q
106-46-7	p-Dichlorobenzene	ND	5.0	1.5	ug/kg	
156-60-5	trans-1,2-Dichloroethylene	ND	5.0	1.5	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	1.5	ug/kg	
64-17-5	Ethyl alcohol	ND	500	100	ug/kg	
100-41-4	Ethylbenzene	ND	5.0	1.5	ug/kg	
637-92-3	Ethyl tert-Butyl Ether	ND	5.0	1.5	ug/kg	
591-78-6	2-Hexanone	ND	40	5.0	ug/kg	
87-68-3	Hexachlorobutadiene	ND	5.0	1.0	ug/kg	
98-82-8	Isopropylbenzene	ND	5.0	1.5	ug/kg	
99-87-6	p-Isopropyltoluene	ND	5.0	1.5	ug/kg	
108-10-1	4-Methyl-2-pentanone	ND	40	15	ug/kg	
74-83-9	Methyl bromide	ND	5.0	2.5	ug/kg	
74-87-3	Methyl chloride	ND	5.0	1.5	ug/kg	
74-95-3	Methylene bromide	ND	5.0	2.5	ug/kg	
75-09-2	Methylene chloride	ND	25	16	ug/kg	
78-93-3	Methyl ethyl ketone	ND	40	12	ug/kg	
1634 - 04-4	Methyl Tert Butyl Ether	ND	5.0	1.0	ug/kg	
91-20-3	Naphthalene	ND	5.0	1.5	ug/kg	
103-65-1	n-Propylbenzene	ND	5.0	1.5	ug/kg	
100-42-5	Styrene	ND	5.0	1.0	ug/kg	
994-05 - 8	Tert-Amyl Methyl Ether	ND	5.0	1.2	ug/kg	
75-65-0	Tert Butyl Alcohol	ND	40	10	ug/kg	
630-20-6	1,1,1,2-Tetrachloroethane	ND	5.0	1.0	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	5.0	1.5	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	1.0	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.0	1.0	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.5	ug/kg	
96-18-4	1,2,3-Trichloropropane	ND	5.0	1.5	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.5	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	1.5	ug/kg	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	1.5	ug/kg	
127-18-4	Tetrachloroethylene	ND	5.0	3.5	ug/kg	
108-88-3	Toluene	ND	5.0	1.5	ug/kg	
79-01-6	Trichloroethylene	ND	5.0	1.0	ug/kg	
75-69-4	Trichlorofluoromethane	ND	5.0	1.2	ug/kg	
75-01-4	Vinyl chloride	ND	5.0	2.5	ug/kg	
1330-20-7	Xylene (total)	ND	10	4.0	ug/kg	
	TPH-GRO (C6-C10)	ND	100	50	ug/kg	

ND = Not detected MDL - Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample II Lab Sample ID:	: TANK 3 C3343-3		Date Sample	d: 12/10/08	
Matrix:	SO - Soil		Date Receive		
Method:	SW846 8260B		Percent Solic	ls: n/a ^a	
Project:	11759 Dublin Blvd, D	Dublin, CA			

.

CAD IN.	Surrogate Recoveries		100,007 2	2
1868-53-7	Dibromofluoromethane	110%		60-130%
2037-26-5	Toluene-D8	101%		60-130%
460-00-4	4-Bromofluorobenzene	102%		60-130%

(a) All results reported on wet weight basis.

MDL - Method Detection Limit ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 3 of 3

	Report of Analysis									
Client Sa Lab Sam Matrix: Method: Project:	ple ID: C So S'		SW846 3545A Blvd, Dublin, CA		Date Sample Date Receive Percent Soli					
Run #1 Run #2	File ID X2007.D	DF 1	Analyzed 12/11/08	Ву LY	Prep Date 12/11/08	Prep Batch OP571	Analytical Batch EX109			
Run #1	Initial We	eight Final 1.0 m	Volume 1							

ABN Full List

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
65-85-0	Benzoic acid	ND	1000	890	ug/kg	
95-57-8	2-Chlorophenol	ND	1000	680	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	500	420	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	500	140	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	500	150	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	2500	850	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND ·	2000	1000	ug/kg	
95-48-7	2-Methylphenol	ND	500	170	ug/kg	
	3&4-Methylphenol	ND	500	150	ug/kg	
88-75-5	2-Nitrophenol	ND	500	130	ug/kg	
100-02-7	4-Nitrophenol	ND	2000	1200	ug/kg	
87-86-5	Pentachlorophenol	ND	500	420	ug/kg	
108-95-2	Phenol	ND	2000	1300	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	500	120	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	500	160	ug/kg	
83-32-9	Acenaphthene	ND	1000	500	ug/kg	
208-96-8	Acenaphthylene	ND	500	200	ug/kg	
62-53-3	Aniline	ND	500	140	ug/kg	
120-12-7	Anthracene	ND	500	100	ug/kg	
103-33-3	Azobenzene	ND	500	170	ug/kg	-
92-87-5	Benzidine	ND	2500	730	ug/kg	
56-55-3	Benzo(a)anthracene	ND	500	70	ug/kg	
50-32-8	Benzo(a)pyrene	ND	500	90	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	500	60	ug/kg	
191-24 - 2	Benzo(g,h,i)perylene	ND	500	150	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	500	120	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	500	150	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	500	110	ug/kg	
100-51-6	Benzyl Alcohol	ND	1000	160	ug/kg	
91-58-7	2-Chloronaphthalene	ND	500	180	ug/kg	
106-47-8	4-Chloroaniline	ND	500	140	ug/kg	
86-74-8	Carbazole	ND	500	80	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

2.3

Report of Analysis							Page 2 of 3
Client Sam Lab Sample Matrix: Method: Project:			Received:	12/10/08 12/10/08 n/a ^a			
ABN Full I	ist						
CAS No.	Compound	Result	RL	MDL	Units	Q	
218-01-9	Chrysene	ND	500	100	ug/kg		
111-91-1	bis(2-Chloroethoxy)methane	ND	500	180	ug/kg		
111-44-4	bis(2-Chloroethyl)ether	ND	500	230	ug/kg		
108-60-1	bis(2-Chloroisopropyl)ether	ND	500	270	ug/kg		
7005-72-3	4-Chlorophenyl phenyl ether	ND	500	190	ug/kg		
95-50-1	1,2-Dichlorobenzene	ND	500	160	ug/kg		
541-73-1	1,3-Dichlorobenzene	ND	500	150	ug/kg		
106-46-7	1,4-Dichlorobenzene	ND	500	420	ug/kg		
121-14-2	2,4-Dinitrotoluene	ND	500	460	ug/kg		
606-20-2	2,6-Dinitrotoluene	ND	1000	320	ug/kg		
91-94-1	3,3' -Dichlorobenzidine	ND	2500	140	ug/kg		
53-70-3	Dibenzo(a,h)anthracene	ND	500	130	ug/kg		
132-64-9	Dibenzofuran	ND	500	160	ug/kg		
122-39-4	Diphenylamine	ND	500	120	ug/kg		
84-74 - 2	Di-n-butyl phthalate	ND	500	100	ug/kg		
117-84-0	Di-n-octyl phthalate	ND	500	130	ug/kg		
84-66-2	Diethyl phthalate	ND	500	170	ug/kg		
131-11-3	Dimethyl phthalate	ND	500	180	ug/kg		
117-81-7	bis(2-Ethylhexyl)phthalate	ND	500	220	ug/kg		
206-44-0	Fluoranthene	ND	500	100	ug/kg		
200-44-0 86 - 73-7	Fluorene	ND	500	180	ug/kg		
118-74-1	Hexachlorobenzene	ND	500	130	ug/kg		
87-68-3	Hexachlorobutadiene	ND	500	190	ug/kg		
87-08-3 77-47-4	Hexachlorocyclopentadiene	ND	500	140	ug/kg		
67-72-1	Hexachloroethane	ND	500	160	ug/kg		
193-39-5	Indeno(1,2,3-cd)pyrene	ND	500	140	ug/kg		
78-59 - 1	Isophorone	ND	500	170	ug/kg		
90-12-0	1-Methylnaphthalene	ND	500	160	ug/kg		
	• •	ND	500 500	160	ug/kg		
91-57-6	2-Methylnaphthalene	ND	500 500	120	ug/kg		
88-74-4	2-Nitroaniline 3-Nitroaniline	ND ND	500 500	120	ug/kg		
99 - 09-2	4-Nitroaniline	ND	500 500	300	ug/kg		
100-01-6		ND ND	500 500	1 7 0	ug/kg		
91-20-3 08 05 3	Naphthalene Nitrobenzene	ND	500	160	ug/kg		
98-95-3 62 75 0		ND	5000	2200	ug/kg		
62-75-9	N-Nitrosodimethylamine		1000	550			
621-64-7	N-Nitroso-di-n-propylamine	ND			ug/kg		
85-01-8	Phenanthrene	ND	500	110	ug/kg		
129-00-0	Pyrene	ND	1000	680	ug/kg		
110-86-1	Pyridine	ND	2000	220	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	500	340	ug/kg		

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	TANK 3		
Lab Sample ID:	C3343-3	Date Sampled:	12/10/08
Matrix:	SO - Soil	Date Received:	12/10/08
Method:	SW846 8270C SW846 3545A	Percent Solids:	n/a ^a
Project:	11759 Dublin Blvd, Dublin, CA		
1			

ABN Full List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
367-12-4	2-Fluorophenol	38%		20-100%
4165-62-2	Phenol-d5	44%		20-100%
118-79-6	2,4,6-Tribromophenol	45%		30-100%
4165-60-0	Nitrobenzene-d5	40%		20-100%
321-60-8	2-Fluorobiphenyl	39%		20-106%
1718-51-0	Terphenyl-d14	85%		55-130%

(a) All results reported on wet weight basis.

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 3 of 3

E = Indicates value exceeds calibration range

Report of Analysis

Client Sample ID:TANK 3Lab Sample ID:C3343-3Matrix:SO - SoilMethod:SW846 8082Project:11759 Dublin Blvd			846 3545A l, Dublin, CA		Date I	Sampled: Received: nt Solids:	12/10/08		
Run #1 Run #2	File ID 002484.D	DF 1	Analyzed 12/12/08	B y NB	Prep D 12/10/0		Prep Batch OP569	Analytical Batch GOO89	
Run #1 Run #2	Initial Weight 10.0 g	Final Vo 10.0 ml	lume						
PCB List									
CAS No.	Compound		Result	RL	MDL	Units	Q		
12674-11-2	Aroclor 1016		ND	100	17	ug/kg			
11104-28-2	Aroclor 1221		ND	100	50	ug/kg			
11141-16-5	Aroclor 1232		ND	100	50	ug/kg			
53469-21-9	Aroclor 1242		ND	100	50	ug/kg			
12672-29-6	Aroclor 1248		ND	100	50	ug/kg			
11097-69-1	Aroclor 1254		ND	100	50	ug/kg			
11096-82-5	Aroclor 1260		ND	100	20	ug/kg			
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Lim	nits			
877 - 09-8	Tetrachloro-m-	-xylene	80%		58-2	130%			
877 - 09-8	Tetrachloro-m-	-xylene	81%		58-3	130%			
2051-24-3	Decachlorobip	henyl	91%		58-3	130%			
2051-24-3	Decachlorobip	henyl	91%		58-3	130%			

(a) All results reported on wet weight basis.

ND = Not detected MDL - Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 1 of 1

	Page 1 of 1							
Client Sam Lab Samp Matrix: Method: Project:	ole ID: C3343 SO - S SW84	3-3 Soil 6 8015B M	SW846 35452 l, Dublin, CA	4	Date 1	Sampled: Received: nt Solids:	12/10/08	
Run #1 Run #2	File ID HH1498.D			Ву ЛН	Prep Date 12/11/08		Prep Batch OP566	Analytical Batch GHH85
Run #1 Run #2	Initial Weight 10.1 g	Final Vo 1.0 ml	lume					
TPH Extr	actable							
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH (C10-C2 TPH (> C28-		ND ND	9.9 20	5.0 9.9	mg/kg mg/kg		
CAS No.	Surrogate Re	ecoveries	Run# 1	Run# 2	Lim	its		

78%

(a) All results reported on wet weight basis.

Hexacosane

630-01-3

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

45-140%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

2

Report of Analysis

Analyzed By

Method

Page 1 of 1

Prep Method

Project:	11759 Dublin Blvd, Dublin, CA		
		Percent Solids:	n/a ^a
Matrix:	SO - Soil	Date Received:	12/10/08
Lab Sample ID:	C3343-3	Date Sampled:	12/10/08
Client Sample ID:	TANK 3		

Analyte Result RL Units DF Prep

Cadmium	< 0.93	0.93	mg/kg	1	12/11/08	12/12/08 C	Г SW846 6010B ¹	SW846 3050B ²
Chromium	31.0	0.93	mg/kg	1	12/11/08	12/12/08 C	T SW846 6010B ¹	SW846 3050B ²
Lead	8.4	0.93	mg/kg	1	12/11/08	12/12/08 C	Г SW846 6010B ¹	SW846 3050B ²
Nickel	30.9	0.93	mg/kg	1	12/11/08	12/12/08 C	г SW846 6010B ¹	SW846 3050B ²
Zinc	52.8	1.9	mg/kg	1	12/11/08	12/12/08 C	г SW846 6010B ¹	SW846 3050B ²

(1) Instrument QC Batch: MA417

(2) Prep QC Batch: MP679

(a) All results reported on wet weight basis.

2.3 2

74-97-5

75-27-4

75-25-2

104-51-8 135-98-8

98-06-6

108-90-7

75-00-3

67-66-3

95-49-8

106-43-4

56-23-5

75-34-3

75-35-4

563-58-6

96-12-8

106-93-4

107-06-2

78-87-5

142-28-9

108-20-3

123-91-1

594-20-7

124-48-1

75-71-8

156-59-2

541-73-1

10061-01-5

	Report of Analysis							Page 1 of 3	
Client San Lab Samp Matrix: Method: Project:	SO - So SW846					Sampled Received nt Solids			
Run #1 Run #2	File ID 002792.D	DF 1	Analyzed 12/10/08	By MF	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VO140	
Run #1 Run #2	Initial Weight 5.05 g								
VOA 8260) List								
CAS No.	Compound		Result	RL	MDL	Units	Q		
67-64-1 71-43-2 108-86-1	Acetone Benzene Bromobenzene		ND ND ND	99 5.0 5.0	20 1.5 1.5	ug/kg ug/kg ug/kg			

Compound	Result	RL	MDL
Acetone	ND	99	20
Benzene	ND	5.0	1.5
Bromobenzene	ND	5.0	1.5
Bromochloromethane	ND	5.0	1.5
Bromodichloromethane	ND	5.0	0.99
Bromoform	ND	5.0	0.99
n-Butylbenzene	ND	5.0	1.5
sec-Butylbenzene	ND	5.0	1.5
tert-Butylbenzene	ND	5.0	1.5
Chlorobenzene	ND	5.0	1.5
Chloroethane	ND	5.0	1.5
Chloroform	ND	5.0	1.5
o-Chlorotoluene	ND	5.0	1.5
p-Chlorotoluene	ND	5.0	1.5

ND

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

200

5.0

5.0

5.0

5.0

5.0

5.0

0.99

0.99

1.5

1.5

0.99

0.99

1.5

1.5

1.5

1.5

50

1.5

0.99

0.99

1.5

1.5

1.5

1.5

95-50-1 o-Dichlorobenzene ND 5.0 MDL - Method Detection Limit

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

Carbon tetrachloride

1,1-Dichloroethylene

1,1-Dichloropropene

1,2-Dibromoethane

1,2-Dichloroethane

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

Dibromochloromethane

Dichlorodifluoromethane

cis-1,2-Dichloroethylene

cis-1,3-Dichloropropene

m-Dichlorobenzene

Di-Isopropyl ether

1,4-Dioxane

1,2-Dibromo-3-chloropropane ND

1,1-Dichloroethane

J = Indicates an estimated value

ug/kg

ug/kg ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID:	CONCRETE VAULT		
Lab Sample ID:	C3343-4	Date Sampled:	12/10/08
Matrix:	SO - Soil	Date Received:	12/10/08
Method:	SW846 8260B	Percent Solids:	n/a ^a
Project:	11759 Dublin Blvd, Dublin, CA		

.

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
106-46-7	p-Dichlorobenzene	ND	5.0	1.5	ug/kg	
156-60-5	trans-1,2-Dichloroethylene	ND	5.0	1.5	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	1.5	ug/kg	
64-17-5	Ethyl alcohol	ND	500	99	ug/kg	
100-41-4	Ethylbenzene	ND	5.0	1.5	ug/kg	
637-92-3	Ethyl tert-Butyl Ether	ND	5.0	1.5	ug/kg	
591-78-6	2-Hexanone	ND	40	5.0	ug/kg	
87-68-3	Hexachlorobutadiene	ND	5.0	0.99	ug/kg	
98-82-8	Isopropylbenzene	ND	5.0	1.5	ug/kg	
99-87-6	p-Isopropyltoluene	ND	5.0	1.5	ug/kg	
108-10-1	4-Methyl-2-pentanone	ND	40	15	ug/kg	
74-83-9	Methyl bromide	ND	5.0	2.5	ug/kg	
74-87-3	Methyl chloride	ND	5.0	1.5	ug/kg	
74-95-3	Methylene bromide	ND	5.0	2.5	ug/kg	
75-09-2	Methylene chloride	ND	25	16	ug/kg	
78-93-3	Methyl ethyl ketone	ND	40	12	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	5.0	0.99	ug/kg	
91-20-3	Naphthalene	ND	5.0	1.5	ug/kg	
103-65-1	n-Propylbenzene	ND	5.0	1.5	ug/kg	
100-42-5	Styrene	ND	5.0	0.99	ug/kg	
994-05-8	Tert-Amyl Methyl Ether	ND	5.0	1.2	ug/kg	
75-65-0	Tert Butyl Alcohol	ND	40	9.9	ug/kg	
630-20 - 6	1,1,1,2-Tetrachloroethane	ND	5.0	0.99	ug/kg	
71-55 - 6	1,1,1-Trichloroethane	ND	5.0	1.5	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	0.99	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	5.0	0.99	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	1.5	ug/kg	
96 - 18-4	1,2,3-Trichloropropane	ND	5.0	1.5	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	1.5	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	5.0	1.5	ug/kg	
108-67-8	1,3,5-Trimethylbenzene	ND	5.0	1.5	ug/kg	
127-18-4	Tetrachloroethylene	ND	5.0	3.5	ug/kg	
108-88-3	Toluene	ND	5.0	1.5	ug/kg	
79-01-6	Trichloroethylene	ND	5.0	0.99	ug/kg	
75-69-4	Trichlorofluoromethane	ND	5.0	1.2	ug/kg	
75-01-4	Vinyl chloride	ND	5.0	2.5	ug/kg	
1330-20-7	Xylene (total)	ND	9.9	4.0	ug/kg	
	TPH-GRO (C6-C10)	ND	99	50	ug/kg	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

	Report of Analysis								
Client Sample Lab Sample II Matrix: Method: Project:				Date Sampled: Date Received: Percent Solids:					
VOA 8260 Lis	t								
CAS No. S	urrogate Recoveries	Run# 1	Run# 2	Limits					

1868-53-7	Dibromofluoromethane	112%	60-130%
2037-26-5	Toluene-D8	101%	60-130%
460-00-4	4-Bromofluorobenzene	103%	60-130%

(a) All results reported on wet weight basis.

MDL - Method Detection Limit ND = Not detected RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
 - B = Indicates analyte found in associated method blank
 - N = Indicates presumptive evidence of a compound

	Report of Analysis										
Client San Lab Samp Matrix: Method: Project:	le ID: C3343- SO - So SW846		346 3545A								
Run #1 Run #2	File ID X2008.D	DF 1	Analyzed 12/11/08	By LY	Prep Date 12/11/08		Prep Batch OP571	Analytical Batch EX109			
Run #1 Run #2	Initial Weight 10.0 g	Final Volu 1.0 ml	me								
ABN Full	List										
CAS No.	Compound		Result	RL	MDL	Units	Q				
65-85-0 95-57-8 59-50 - 7	Benzoic acid 2-Chlorophenol 4-Chloro-3-methyl phenol		ND ND ND	1000 1000 500	890 680 420	ug/kg ug/kg ug/kg					
120-83-2 105-67-9 51-28-5	2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol		ND ND ND	500 500 2500	140 150 850	ug/kg ug/kg ug/kg					
534-52-1 95-48-7	4,6-Dinitro-o-o 2-Methylpheno 3&4-Methylph	eresol ol	ND ND ND	2000 500 500	1000 170 150	ug/kg ug/kg ug/kg					
88-75-5 100-02-7	2-Nitrophenol 4-Nitrophenol		ND ND	500 2000	130 1200	ug/kg ug/kg					
87-86-5 108-95-2 95-95-4	Pentachloroph Phenol 2,4,5-Trichlor		ND ND ND	500 2000 500	420 1300 120	ug/kg ug/kg ug/kg					
88-06-2 83-32-9	2,4,6-Trichlor Acenaphthene	ophenol	ND ND	500 1000	160 500	ug/kg ug/kg					
208-96-8 62-53-3 120-12 - 7	Acenaphthylen Aniline Anthracene	le	ND ND ND	500 500 500	200 140 100	ug/kg ug/kg ug/kg					
103-33-3 92-87-5 56-55-3	Azobenzene Benzidine Benzo(a)anthra	acene	ND ND ND	500 2500 500	170 730 70	ug/kg ug/kg ug/kg					
50-32 - 8 205-99 - 2	Benzo(a)pyren Benzo(b)fluora	e anthene	ND ND	500 500	90 60	ug/kg ug/kg					
191-24-2 207-08-9 101-55-3	Benzo(g,h,i)pe Benzo(k)fluora 4-Bromopheny	anthene	ND ND r ND	500 500 500	150 120 150	ug/kg ug/kg ug/kg					
85-68-7 100-51-6 91-58-7	Butyl benzyl p Benzyl Alcoho 2-Chloronapht	hthalate ol halene	ND ND ND	500 1000 500	110 160 180	ug/kg ug/kg ug/kg					
106-47-8 86 - 74-8	4-Chloroanilin Carbazole	e	ND ND	500 500	140 80	ug/kg ug/kg					

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

35 of 94

BACCUTEST.

171

C3343 La

Client Sam Lab Sampl Matrix: Method: Project:	-	46 3545A		Date 1	Sampled: Received: nt Solids:	12/10/08 12/10/08 n/a ^a
ABN Full I	List					
CAS No.	Compound	Result	RL	MDL	Units	Q
218-01-9	Chrysene	ND	500	100	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	500	180	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	500	230	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	500	270	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	500	190	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	500	160	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	500	150	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	500	420	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	500	460	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	1000	320	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	2500	140	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	500	130	ug/kg	
132-64-9	Dibenzofuran	ND	500	160	ug/kg	
122-39-4	Diphenylamine	ND	500	120	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	500	100	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	500	130	ug/kg	
84-66-2	Diethyl phthalate	ND	500	170	ug/kg	
131-11-3	Dimethyl phthalate	ND	500	180	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	500	220	ug/kg	
206-44-0	Fluoranthene	ND	500	100	ug/kg	
86-73-7	Fluorene	ND	500	180	ug/kg	
118-74-1	Hexachlorobenzene	ND	500	130	ug/kg	
87-68-3	Hexachlorobutadiene	ND	500	190	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	500	140	ug/kg	
67-72-1	Hexachloroethane	ND	500	160	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	500	140	ug/kg	
78-59-1	Isophorone	ND	500	170	ug/kg	
90-12-0	1-Methylnaphthalene	ND	500	160	ug/kg	
91-57-6	2-Methylnaphthalene	ND	500	160	ug/kg	
88-74-4	2-Nitroaniline	ND	500	120	ug/kg	
99-09-2	3-Nitroaniline	ND	500	120	ug/kg	
100-01-6	4-Nitroaniline	ND	500	300	ug/kg	
91-20-3	Naphthalene	ND	500	170	ug/kg	
98-95-3	Nitrobenzene	ND	500	160	ug/kg	
62-75-9	N-Nitrosodimethylamine	ND	5000	2200	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	1000	550	ug/kg	
85-01-8	Phenanthrene	ND	500	110	ug/kg	
129-00-0	Pyrene	ND	1000	680	ug/kg	
110.96.1	Duriding	NTÓ	2000	220		

120-82-1 1,2,4-Trichlorobenzene NĎ 500

ND

2000

220

340

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

110-86-1

E = Indicates value exceeds calibration range

Pyridine

J = Indicates an estimated value

ug/kg

ug/kg

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

Report of Analysis

.

				<u> </u>
Client Sample ID: Lab Sample ID: Matrix: Method: Project:	CONCRETE VAULT C3343-4 SO - Soil SW846 8270C SW846 3545A 11759 Dublin Blvd, Dublin, CA	Date Sampled: Date Received: Percent Solids:	12/10/08	

ABN Full List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
367-12-4	2-Fluorophenol	30%		20-100%
4165-62-2	Phenol-d5	41%		20-100%
118-79-6	2,4,6-Tribromophenol	45%		30-100%
4165-60-0	Nitrobenzene-d5	23%		20-100%
321-60-8	2-Fluorobiphenyl	26%		20-106%
1718-51-0	Terphenyl-d14	100%		55-130%

(a) All results reported on wet weight basis.

MDL - Method Detection Limit ND = Not detectedRL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 3 of 3

Report of Analysis

_

Report of Analysis								Page 1 of 1	
Client Sam Lab Sample Matrix: Method: Project:	e ID: C3343 SO - Sc SW846	91 8082 SW8	LT 846 3545A , Dublin, CA		Date Sampled: 12/10/08 Date Received: 12/10/08 Percent Solids: n/a ^a		12/10/08		
Run #1 Run #2	File ID 002485.D	DF 1	Analyzed 12/12/08	By NB	Prep D 12/10/0		Prep Batch OP569	Analytical Batch GOO89	
Run #1 Run #2	Initial Weight 10.0 g	Final Vol 10.0 ml	ume			-			
PCB List			_				_		
CAS No.	Compound		Result	RL	MDL	Units	Q		
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260		ND ND ND ND ND ND	100 100 100 100 100 100 100	17 50 50 50 50 50 50 20	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg			
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Lim	its			
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m- Tetrachloro-m- Decachlorobiph Decachlorobiph	xylene lenyl	77% 78% 89% 89%		58-1 58-1 58-1 58-1	30% 30%			

(a) All results reported on wet weight basis.

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

.4 2

	Report of Analysis								
Client Sam Lab Samp Matrix: Method: Project:	le ID: C3 SO SW	CONCRETE VAULT C3343-4 SO - Soil SW846 8015B M SW846 3545A 11759 Dublin Blvd, Dublin, CA					Sampled: Received: nt Solids:		
Run #1 Run #2	File ID GG2702.D		DF 1	Analyzed 12/12/08	Ву JH	Prep D 12/11/0		Prep Batch OP566	Analytical Batch GGG112
Run #1 Run #2	Initial Wei 10.0 g	ght	Final Vo 1.0 ml	lume					
TPH Extra	actable								
CAS No.	Compoun	d		Result	RL	MDL	Units	Q	
	TPH (C10 TPH (> C			ND ND	10 20	5.0 10	mg/kg mg/kg		
CAS No.	Surrogate	Reco	overies	Run# 1	Run# 2	Lim	its		
630-01-3	Hexacosar	ne		77%		45-1	40%		
(a) All rest	ults reported	on we	t weight ba	asis.					

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

2.4 2

	Report of		Page 1 of	
Client Sample ID:	CONCRETE VAULT	, y - 7.6 a.e.		
Lab Sample ID:	C3343-4	Date Sampled:	12/10/08	
Matrix:	SO - Soil	Date Received:	12/10/08	
		Percent Solids:	n/a ª	
Project:	11759 Dublin Blvd, Dublin, CA			

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium Chromium Lead Nickel Zinc	< 0.96 30.6 6.5 31.4 52.1	0.96 0.96 0.96 0.96 1.9	mg/kg mg/kg mg/kg mg/kg mg/kg	1 1 1 1	12/11/08		SW846 6010B ¹ SW846 6010B ¹ SW846 6010B ¹ SW846 6010B ¹ SW846 6010B ¹	SW846 3050B ² SW846 3050B ² SW846 3050B ² SW846 3050B ² SW846 3050B ² SW846 3050B ²

(1) Instrument QC Batch: MA417

(2) Prep QC Batch: MP679

(a) All results reported on wet weight basis.

Page 1 of 1

Report of	Analysis
-----------	----------

Client Sam Lab Sample Matrix: Method: Project:	e ID: C3343- SO - So SW846	oil 8260B	Г СОМР , Dublin, CA		Date F	ampled: Received: It Solids:		
Run #1 Run #2	File ID 002793.D	DF 1	Analyzed 12/10/08	By MF	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VO140
Run #1 Run #2	Initial Weight 5.06 g	Final Vo 5.0 ml	lume Meth: 100 ul	anol Aliquo	t			
Purgeable	Aromatics							
CAS No.	Compound		Result	RL	MDL	Units	Q	
71-43-2	Benzene		ND	250	74	ug/kg		
108-88-3	Toluene		ND	250	74	ug/kg		
100-41-4	Ethylbenzene		ND	250	74	ug/kg		
1330-20-7	Xylene (total)		ND	490	200	ug/kg		
	TPH-GRO (C	6-C10)	ND	4900	2500	ug/kg		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluor	omethane	105%		60-1	30%		
2037-26-5	Toluene-D8		102%		60-1	30%		

(a) All results reported on wet weight basis.

MDL - Method Detection Limit ND = Not detected

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Påge 1 of 1

	Report of Analysis											
Client San Lab Samj Matrix: Method: Project:	ple ID: C3343- SO - So SW846	oil 8015B M	T COMP SW846 3545, l, Dublin, CA	A	Date	Sampled: Received: nt Solids:	12/10/08					
Run #1 Run #2	File ID GG2703.D	DF 1	Analyzed 12/12/08	Ву ЛН	Prep D 12/11/(Prep Batch OP566	Analytical Batch GGG112				
Run #1 Run #2	Initial Weight 10.5 g	Final Vo 1.0 ml	lume	<u></u>								
TPH Extr	actable						· · · · · · · · · · ·					
CAS No.	Compound		Result	RL	MDL	Units	Q					
	TPH (C10-C28) TPH (> C28-C40) ^b		ND 66.0	9.5 19	4.8 9.5	mg/kg mg/kg	-					
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Lim	its						
630-01-3	Hexacosane		86%		45-1	40%						

(a) All results reported on wet weight basis.

(b) Motor Oil Pattern.

J = Indicates an estimated value

N = Indicates presumptive evidence of a compound

B = Indicates analyte found in associated method blank

Report of Analysis										
Client Sample ID:	STOCKPILE EAST COMP									
Lab Sample ID:	C3343-5	Date Sampled: 12/10/08								
Matrix:	SO - Soil	Date Received: 12/10/08								
		Percent Solids: n/a ^a								
Project:	11759 Dublin Blvd, Dublin, CA									
Metals Analysis										
Analyte Re	sult RL Units DF Prep	Analyzed By Method	Prep Method							

Analyte	result	M 2	0	21	p			1
Cadmium	< 0.98	0.98	mg/kg	1	12/11/08	12/12/08 ст	SW846 6010B ¹	SW846 3050B ²
Chromium	32.3	0.98	mg/kg	1	12/11/08	12/12/08 CT	SW846 6010B ¹	SW846 3050B ²
Lead	20.9	0.98	mg/kg	1	12/11/08	12/12/08 CT	SW846 6010B ¹	SW846 3050B ²
Nickel	34.3	0.98	mg/kg	1	12/11/08	12/12/08 ст	SW846 6010B ¹	SW846 3050B ²
Zinc	89.7	2.0	mg/kg	1	12/11/08	12/12/08 CT	SW846 6010B ¹	SW846 3050B ²

(1) Instrument QC Batch: MA417

(2) Prep QC Batch: MP679

. .

(a) All results reported on wet weight basis.

Page 1 of 1

.

RL = Reporting Limit

•

	Report of Analysis									
Client Sam Lab Sampl Matrix: Method: Project:	le ID: C3343 SO - S SW84	Soil 6 8260B	COMP		Date 1	Sampled: Received nt Solids				
Run #1 Run #2	File ID 002794.D	DF 1	Analyzed 12/10/08	By MF	Prep D n/a	Date	Prep Batch n/a	Analytical Batch VO140		
Run #1 Run #2	Initial Weight 5.06 g	Final Vo 5.0 ml	lume Metha 100 ul	anol Aliquo	t					
Purgeable	Aromatics									
CAS No.	Compound		Result	RL	MDL	Units	Q			
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total) TPH-GRO (C		ND ND ND ND	250 250 250 490 4900	74 74 74 200 2500	ug/kg ug/kg ug/kg ug/kg ug/kg				
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its				
1868-53-7	Dibromofluor	omethane	104%		60-1	30%				

101%

101%

(a) All results reported on wet weight basis.

4-Bromofluorobenzene

Toluene-D8

2037-26-5

460-00-4

ND = Not detected MDL - Method Detection Limit

- RL = Reporting Limit
- E = Indicates value exceeds calibration range
- J = Indicates an estimated value

60-130%

60-130%

- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

	Report of Analysis										
Client Sar Lab Samp Matrix: Method: Project:	ple ID: C3343 SO - S SW84	6 8015B M	COMP SW846 3545A I, Dublin, CA	A	Date Sampled: 12/10/08 Date Received: 12/10/08 Percent Solids: n/a ^a						
Run #1 Run #2	File ID GG2705.D	DF 10	Analyzed 12/12/08	By JH	Prep Date 12/11/08		Prep Batch OP566	Analytical Batch GGG112			
Run #1 Run #2	Initial Weight 10.2 g	Final V o 1.0 ml	lume								
TPH Extr	ractable										
CAS No.	Compound		Result	RL	MDL	Units	Q				
	TPH (C10-C2 TPH (> C28-		ND 355	98 200	49 98	mg/kg mg/kg					
CAS No.	Surrogate R	ecoveries	Run# 1	Run# 2	Lim	its					
630-01-3	Hexacosane		79%		45-1	40%					
(2) All res	sults reported on a	vet weight h	acie								

(a) All results reported on wet weight basis.

(b) Motor Oil Pattern.

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

.

	Page 1 of 1			
Client Sample ID:	STOCKPILE MID COMP			···· · · · · · · · ·
Lab Sample ID:	C3343-6	Date Sampled:	12/10/08	
Matrix:	SO - Soil	Date Received:	12/10/08	
		Percent Solids:	n/a ^a	
Project:	11759 Dublin Blvd, Dublin, CA			

Report of Analysis

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium Chromium Lead Nickel Zinc	< 0.96 36.9 38.0 38.1 88.0	0.96 0.96 0.96 0.96 1.9	mg/kg mg/kg mg/kg mg/kg mg/kg	1 1 1 1 1		12/12/08 CT 12/12/08 CT 12/12/08 CT 12/12/08 CT 12/12/08 CT	SW846 6010B ¹ SW846 6010B ¹ SW846 6010B ¹ SW846 6010B ¹ SW846 6010B ¹	SW846 3050B ² SW846 3050B ² SW846 3050B ² SW846 3050B ² SW846 3050B ² SW846 3050B ²

(1) Instrument QC Batch: MA417

(2) Prep QC Batch: MP679

(a) All results reported on wet weight basis.

	Report of Analysis											
Client Sam Lab Sampl Matrix: Method: Project:	e ID: C3343 SO - S SW846	oil 5 8260B	T COMP , Dublin, CA									
Run #1 Run #2	File ID 002795.D	DF 1	Analyzed 12/10/08	By MF	Prep D n/a	ate	Prep Batch n/a	Analytical Batch VO140				
Run #1 Run #2	Initial Weight 5.04 g	Final Vo 5.0 ml	lume Meth: 100 ul	anol Aliquo	t							
Purgeable	Aromatics											
CAS No.	Compound		Result	RL	MDL	Units	Q					
71 - 43-2	Benzene		ND	250	74	ug/kg						
108-88-3	Toluene		ND	250	74 74	ug/kg						
100-41-4	Ethylbenzene		ND ND	250 500	74 200	ug/kg ug/kg						
1330 - 20-7	Xylene (total) TPH-GRO (C		ND	5000	2500	ug/kg						
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lin	nits						
1868-53-7	Dibromofluor	omethane	105%			130%						
2037-26-5	Toluene-D8		103%			130%						
460-00-4	4-Bromofluor	obenzene	104%		60-1	130%						

(a) All results reported on wet weight basis.

MDL - Method Detection Limit ND = Not detected RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

2.7

	Page 1 of 1								
Client Sar Lab Samp Matrix: Method: Project:	ole ID: C3343 SO - So SW846						12/10/08 12/10/08 n/a ^a		
Run #1 Run #2	File ID GG2704.D	DF 1	Analyzed 12/12/08	By JH	Prep D 12/11/0		Prep Batch OP566	Analytical Batch GGG112	
Run #1 Run #2	Initial Weight 10.1 g	Final Vo 1.0 ml	olume						
TPH Extr	actable								
CAS No.	Compound		Result	RL	MDL	Units	Q		
	TPH (C10-C2) TPH (> C28-C		ND 55.6	9.9 20	5.0 9 9	mg/kg mg/kg			
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its			
630-01-3 Hexacosane			87%		45-140%				

(a) All results reported on wet weight basis.

(b) Motor Oil Pattern.

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

- E = Indicates value exceeds calibration range
- J = Indicates an estimated value

N = Indicates presumptive evidence of a compound

2.7

B = Indicates analyte found in associated method blank

Report of Analysis

Project: Metals Analysis	11759 Dublin Blvd, Dublin, CA		
Lab Sample ID: Matrix:	C3343-7 SO - Soil	Date Sampled: Date Received: Percent Solids:	12/10/08
Client Sample ID:	STOCKPILE WEST COMP		·

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium Chromium Lead Nickel Zinc	< 0.98 36.3 59.4 36.4 93.8	0.98 0.98 0.98 0.98 2.0	mg/kg mg/kg mg/kg mg/kg mg/kg	1 1 1 1		12/12/08 CT	SW846 6010B ¹ SW846 6010B ¹ SW846 6010B ¹ SW846 6010B ¹ SW846 6010B ¹	SW846 3050B ² SW846 3050B ² SW846 3050B ² SW846 3050B ² SW846 3050B ²
Zinc	93.8	2.0	mg/kg	1	12/11/08	12/12/08 CT	SW846 6010B	SW846 3050B 2

.

(1) Instrument QC Batch: MA417

(2) Prep QC Batch: MP679

(a) All results reported on wet weight basis.

Page 1 of 1

Report of Analysis

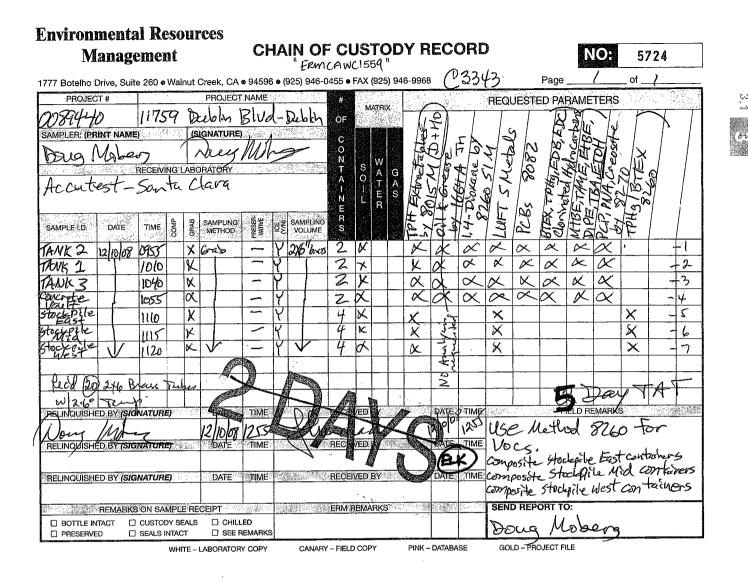
Client Samj Lab Sample Matrix: Project:	2 D : C334 SO -	STOCKPILE WEST COMP C3343-7A SO - Soil 11759 Dublin Blvd, Dublin, CA					Date Sampled: 12/10/08 Date Received: 12/22/08 Percent Solids: n/a				
Metals Anal	lysis, STLC L	eachate CA	WET					· · · · ·			
Analyte	Result	HW# MC	L RL	Units	DF	Prep	Analyzed By	Method	Prep Method		
Lead	1.8	D008	0.25	mg/l	5	01/02/09	01/02/09 ст	SW846 6010B ¹	SW3010A ²		

(1) Instrument QC Batch: MA442
 (2) Prep QC Batch: MP737

2.8

Page 1 of 1

Section 3


Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

C3343: Chain of Custody Page 1 of 3

Was Client in Are sample w Report to info yr Type o Bill to info is o Contact and/c Project name Sample IDs / Matrix listed a Analyses liste Chain is sign TAT requeste Review Coolers: Samples / Coo If a cooler is ou Note that ANC Shipment Meth Custody Seals Review of Sample Ds / bottle n Proper cortag Proper cortag	Sample Re Sustody: The Chain of Culatory (NPDES) samples? formed that the hold time is 11 ithin one-half hold-time? Yes is complete and legible, incluid Deliverable needed on name complete and legible, incluid Project Mgr identified, incluid r Project M	Sustody is to be c Yes / No circle Smins Yes / No s / No circle one iding; a PO# a address / g: PO# ore as authorized a s sample custodian ELK If sampled with elow the bottles in samples. (We do (No circle one No circle one No circle one No circle one ved samples exc	ompletely and legibly fi e one is plot of o circle one if yes, did ti if no, was the lab info me phone email redit card o contact gemail No circle one o circle one ubcontract? (res) / No circle one ubcontract? (res) / No circle one in 4hrs, then "on ice" is in that cooler below. o not lock refrigerators) Un-broken: Yes ? cept 1664, 625, 8270, a	equested? Yes / (N) circle ney consent to continue? med? address phone c e lo circle one s acceptable.	 mail
Lab #	Client Sample ID	pH Check:	Other	Comments / Issues	
			20 (2"×6")	Brass Tubes	
	·			· · · · · · · · · · · · · · · · · · ·	C3343: Chain of Custody
Client inform Comments:	ed of irregularities at receivin	9	Project Mgr nee	ds to contact Client for issu	Page 2 of 3

:T:\Laboratory\Forms\SampleControl\Form_SampleReceiving_2008-04-12.doc

-

Laurie Glantz-Murphy

From: Doug Moberg [Doug.Moberg@erm.com]

Sent: Monday, December 22, 2008 4:16 PM

To: Laurie Glantz-Murphy

Subject: STLC

Laurie:

Please run sample C3343-7 (Stockpile West Comp) for a STLC Pb on a standard turn. Let me know if you have any questions.

Thanks,

Doug Moberg, REA Senior Scientist

ERM 1777 Botelho Drive, Suite 260 Walnut Creek, CA 94596 T: +1 925 946 0455 T: +1 925 279 3223 (Direct) F: +1 925 946 9968

This message contains information which may be confidential, proprietary, privileged, or otherwise protected by law from disclosure or use by a third party. If you have received this message in error, please contact us immediately at (925) 946-0455 and take the steps necessary to delete the message completely from your computer system. Thank you.

Please visit ERM's web site: http://www.erm.com

C3343: Chain of Custody Page 3 of 3

12/22/2008

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Job Number:	C3343
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VO140-MB	002788.D	1	12/10/08	MF	n/a	n/a	VO140

The QC reported here applies to the following samples:

Method: SW846 8260B

C3343-1, C3343-2, C3343-3, C3343-4, C3343-5, C3343-6, C3343-7

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	100	20	ug/kg	
71-43-2	Benzene	ND	5.0	1.5	ug/kg	
108-86-1	Bromobenzene	ND	5.0	1.5	ug/kg	
74-97-5	Bromochloromethane	ND	5.0	1.5	ug/kg	
75-27-4	Bromodichloromethane	ND	5.0	1.0	ug/kg	
75-25-2	Bromoform	ND ·	5.0	1.0	ug/kg	
104-51-8	n-Butylbenzene	ND	5.0	1.5	ug/kg	
135-98-8	sec-Butylbenzene	ND	5.0	1.5	ug/kg	
98-06-6	tert-Butylbenzene	ND	5.0	1.5	ug/kg	
108-90-7	Chlorobenzene	ND	5.0	1.5	ug/kg	
75-00-3	Chloroethane	ND ¹	5.0	1.5	ug/kg	
67-66-3	Chloroform	ND	5.0	1.5	ug/kg	
95-49-8	o-Chlorotoluene	ND	5.0	1.5	ug/kg	
106-43-4	p-Chlorotoluene	ND	5.0	1.5	ug/kg	
56-23-5	Carbon tetrachloride	ND	5.0	1.0	ug/kg	
75-34-3	1,1-Dichloroethane	ND	5.0	1.0	ug/kg	
75-35-4	1,1-Dichloroethylene	ND	5.0	1.5	ug/kg	
563-58-6	1,1-Dichloropropene	ND	5.0	1.5	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	5.0	1.0	ug/kg	
106-93-4	1,2-Dibromoethane	ND	5.0	1.0	ug/kg	
107-06-2	1,2-Dichloroethane	ND	5.0	1.5	ug/kg	
78-87-5	1,2-Dichloropropane	ND	5.0	1.5	ug/kg	
142-28-9	1,3-Dichloropropane	ND	5.0	1.5	ug/kg	
108-20-3	Di-Isopropyl ether	ND	5.0	1.5	ug/kg	
123-91-1	1,4-Dioxane	ND	200	50	ug/kg	
594-20-7	2,2-Dichloropropane	ND	5.0	1.5	ug/kg	
124-48-1	Dibromochloromethane	ND	5.0	1.0	ug/kg	
75 - 71 - 8	Dichlorodifluoromethane	ND	5.0	1.0	ug/kg	
156-59-2	cis-1,2-Dichloroethylene	ND	5.0	1.5	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	5.0	1.5	ug/kg	
541-73-1	m-Dichlorobenzene	ND	5.0	1.5	ug/kg	
95-50 - 1	o-Dichlorobenzene	ND	5.0	1.5	ug/kg	
106-46-7	p-Dichlorobenzene	ND	5.0	1.5	ug/kg	
156-60-5	trans-1,2-Dichloroethylene	ND	5.0	1.5	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	5.0	1.5	ug/kg	
64-17-5	Ethyl alcohol	ND	500	100	ug/kg	

Page 1 of 3

4.1

Method Blank Summary

Job Number: Account: Project:	C3343 ERMCAWC 11759 Dubl					
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch
VO140-MB	002788.D	1	12/10/08	MF	n/a	n/a

The QC reported here applies to the following samples:

Method: SW846 8260B

C3343-1, C3343-2, C3343-3, C3343-4, C3343-5, C3343-6, C3343-7

100-41-4EthylbenzeneND 5.0 1.5 ug/kg 637-92-3Ethyl tert-Butyl EtherND 5.0 1.5 ug/kg $591.78-6$ 2-HexanoneND 40 5.0 ug/kg $87-68-3$ HexachlorobutadieneND 5.0 1.5 ug/kg $98-82-8$ IsopropylbenzeneND 5.0 1.5 ug/kg $99-87-6$ p -IsopropyltolueneND 5.0 1.5 ug/kg $108-10-1$ 4 -Methyl-2-pentanoneND 40 15 ug/kg $74-83-9$ Methyl bromideND 5.0 1.5 ug/kg $74-95-3$ Methylene bromideND 5.0 1.5 ug/kg $74-95-3$ Methylene chlorideND 2.5 ug/kg $75-09-2$ Methylene chlorideND 25 16 ug/kg $75-09-2$ Methyl ethyl ketoneND 40 12 ug/kg $91-20-3$ NaphtaleneND 5.0 1.5 ug/kg $103-65-1$ n -PropylbenzeneND 5.0 1.0 ug/kg $94-05-8$ Tert-Amyl Methyl EtherND 5.0 1.0 ug/kg $71-55-6$ $1, 1, 1-2$ -TetrachloroethaneND 5.0 1.0 ug/kg $71-55-6$ $1, 1, 1-2$ -TetrachloroethaneND 5.0 1.0 ug/kg $71-55-6$ $1, 1, 1, 2-7$ -EtrachloroethaneND 5.0 1.5 ug/kg $71-55-6$ $1, 1, 1, 2-7$ -EtrachloroethaneND<		CAS No.	Compound	Result	RL	MDL	Units Q	
637-92-3Ethyl tert-Butyl EtherND 5.0 1.5 ug/kg 591-78-62-HexanoneND 40 5.0 ug/kg 87-68-3HexachlorobutadieneND 5.0 1.0 ug/kg 98-82-8IsopropylbenzeneND 5.0 1.5 ug/kg 99-87-6p-IsopropyltolueneND 5.0 1.5 ug/kg 108-10-14-Methyl-2-pentanoneND 5.0 2.5 ug/kg 74-83-9Methyl bromideND 5.0 2.5 ug/kg 74-95-3Methyl ene bromideND 5.0 2.5 ug/kg 75-09-2Methylene chlorideND 5.0 1.6 ug/kg 78-93-3Methyl tethyl ketoneND 5.0 1.0 ug/kg 91-20-3NaphthaleneND 5.0 1.5 ug/kg 91-20-3NaphthaleneND 5.0 1.5 ug/kg 90-405-8Tert-Amyl Methyl EtherND 5.0 1.0 ug/kg 91-20-3NaphthaleneND 5.0 1.2 ug/kg 92-20-5treta-Amyl Methyl EtherND 5.0 1.2 ug/kg 93-20-6 $1,1,1,2.TetrachloroethaneND5.01.2ug/kg94-05-8Tert-Amyl Methyl EtherND5.01.0ug/kg95-05-0Tert Butyl AlcoholND5.01.5ug/kg91-55-11,1,2.TetrachloroethaneND5.01.5ug/kg$		100-41-4	Ethylbenzene	ND	5.0	1.5	ug/kg	
87-68-3HexachlorobutadieneND 5.0 1.0 ug/kg 98-82-8IsopropylbenzeneND 5.0 1.5 ug/kg 99-87-6p-IsopropylbolueneND 5.0 1.5 ug/kg 108-10-14-Methyl-2-pentanoneND 40 15 ug/kg 74-83-9Methyl bromideND 5.0 2.5 ug/kg 74-87-3Methyl bromideND 5.0 2.5 ug/kg 74-95-3Methyl ene bromideND 5.0 2.5 ug/kg 75-09-2Methyl ene thorideND 5.0 1.5 ug/kg 91-20-3NapthaleneND 5.0 1.5 ug/kg 91-20-4Nethyl EtherND 5.0 1.0 ug/kg 924-05-8Tert-Amyl Methyl EtherND 5.0 1.0 ug/kg 994-05-8Tert-Amyl Methyl EtherND 5.0 1.0 ug/kg 91-5-5 $1,1,1,2.7$ -TertachloroethaneND 5.0 1.0 ug/kg 99-40-5 $1,1,2,2$ -Tertachloroethane <td></td> <td>637-92-3</td> <td></td> <td>ND</td> <td>5.0</td> <td>1.5</td> <td>ug/kg</td> <td></td>		637-92-3		ND	5.0	1.5	ug/kg	
98-82-8IsopropylbenzeneND 5.0 1.5 ug/kg 99-87-6p-IsopropyltolueneND 5.0 1.5 ug/kg 108-10-14-Methyl-2-pentanoneND 40 15 ug/kg 74-83-9Methyl bromideND 5.0 2.5 ug/kg 74-87-3Methyl chlorideND 5.0 2.5 ug/kg 74-95-3Methylene bromideND 5.0 2.5 ug/kg 75-09-2Methylene bromideND 25 16 ug/kg 78-93-3Methyl ethyl ketoneND 40 12 ug/kg 1634-04-4Methyl Tert Butyl EtherND 5.0 1.5 ug/kg 91-20-3NaphthaleneND 5.0 1.5 ug/kg 103-65-1n-PropylbenzeneND 5.0 1.5 ug/kg 103-65-2StyreneND 5.0 1.5 ug/kg 103-65-3Tert-Amyl Methyl EtherND 5.0 1.0 ug/kg 103-65-4Tert-Amyl Methyl EtherND 5.0 1.0 ug/kg 175-56 $1,1,1,2$ -TetrachloroethaneND 5.0 1.0 ug/kg 17-55-6 $1,1,2,2$ -TetrachloroethaneND 5.0 1.0 ug/kg 120-82-1 $1,2,4$ -TrichlorobenzeneND 5.0 1.5 ug/kg 120-82-1 $1,2,4$ -TrichlorobenzeneND 5.0 1.5 ug/kg 120-82-1 $1,2,4$ -TrichloroethaneND 5.0 1.5 <td< td=""><td></td><td>591-78-6</td><td>2-Hexanone</td><td>ND</td><td>40</td><td>5.0</td><td>ug/kg</td><td></td></td<>		591-78-6	2-Hexanone	ND	40	5.0	ug/kg	
99-87-6p-1sopropyltolueneND 5.0 1.5 ug/kg 108-10-14-Methyl-2-pentanoneND 40 15 ug/kg 74-83-9Methyl bromideND 5.0 2.5 ug/kg 74-87-3Methyl chlorideND 5.0 1.5 ug/kg 75-09-2Methylene chlorideND 25 16 ug/kg 78-93-3Methyl ethyl ktoneND 40 12 ug/kg 1634-04-4Methyl Tert Butyl EtherND 5.0 1.0 ug/kg 91-20-3NaphthaleneND 5.0 1.5 ug/kg 103-65-1n-PropylbenzeneND 5.0 1.5 ug/kg 100-42-5StyreneND 5.0 1.2 ug/kg 994-05-8Tert-Amyl Methyl EtherND 5.0 1.2 ug/kg 75-65-0Tert Butyl AlcoholND 40 10 ug/kg 75-65-0Tert Butyl AlcoholND 5.0 1.0 ug/kg 71-55-6 $1, 1, 1.2$ -TetrachloroethaneND 5.0 1.0 ug/kg 79-05-5 $1, 1, 2.7$ -TetrachloroethaneND 5.0 1.0 ug/kg 79-05-5 $1, 1, 2.7$ -TrichlorobenzeneND 5.0 1.5 ug/kg		87-68-3	Hexachlorobutadiene	ND	5.0	1.0	ug/kg	
108-10-14-Methyl-2-pentanoneND4015 ug/kg $74-83-9$ Methyl bromideND 5.0 2.5 ug/kg $74-87-3$ Methyl chlorideND 5.0 1.5 ug/kg $74-95-3$ Methylene bromideND 5.0 2.5 ug/kg $74-95-3$ Methylene chlorideND 25 16 ug/kg $78-93-3$ Methyl ethyl ketoneND 40 12 ug/kg $1634-04-4$ Methyl Tert Butyl EtherND 5.0 1.0 ug/kg $91-20-3$ NaphthaleneND 5.0 1.5 ug/kg $103-65-1$ n -PropylbenzeneND 5.0 1.5 ug/kg $100-42-5$ StyreneND 5.0 1.2 ug/kg $994-05-8$ Tert-Amyl Methyl EtherND 5.0 1.2 ug/kg $75-65-0$ Tert Butyl AlcoholND 40 10 ug/kg $79-04-5$ $1,1,2-TetrachloroethaneND5.01.0ug/kg79-04-51,1,2-TetrachloroethaneND5.01.0ug/kg79-04-51,2,2-TetrachloroethaneND5.01.5ug/kg79-04-51,2,2-TetrachloroethaneND5.01.5ug/kg79-04-51,2,2-TetrachloroethaneND5.01.5ug/kg10-8-8-11,2,3-TrichloropenzeneND5.01.5ug/kg10-8-8-11,2,3-TrichloropenzeneN$		98-82-8	Isopropylbenzene	ND	5.0	1.5	ug/kg	
74-83-9Methyl bromideND 5.0 2.5 ug/kg 74-87-3Methyl chlorideND 5.0 1.5 ug/kg 74-95-3Methylene bromideND 5.0 2.5 ug/kg 75-09-2Methylene chlorideND 25 16 ug/kg 78-93-3Methyl ethyl ketoneND 40 12 ug/kg $1634-04-4$ Methyl Tert Butyl EtherND 5.0 1.5 ug/kg $91-20-3$ NaphthaleneND 5.0 1.5 ug/kg $103-65-1$ n -PropylbenzeneND 5.0 1.5 ug/kg $100-42-5$ StyreneND 5.0 1.2 ug/kg $994-05-8$ Tert-Amyl Methyl EtherND 5.0 1.2 ug/kg $75-65-0$ Tert Butyl AlcoholND 40 10 ug/kg $71-55-6$ $1,1,2-TetrachloroethaneND5.01.0ug/kg79-34-51,1,2-TetrachloroethaneND5.01.0ug/kg87-61-61,2,3-TrichlorobenzeneND5.01.5ug/kg96-18-41,2,3-TrichlorobenzeneND5.01.5ug/kg120-82-11,2,4-TrichlorobenzeneND5.01.5ug/kg120-82-11,2,4-TrichlorobenzeneND5.01.5ug/kg120-82-11,2,4-TrichlorobenzeneND5.01.5ug/kg120-82-11,2,4-TrichlorobenzeneND$		99-87 - 6	p-Isopropyltoluene	ND	5.0	1.5	ug/kg	
74-87-3Methyl chlorideND 5.0 1.5 ug/kg 74-95-3Methylene bromideND 5.0 2.5 ug/kg 75-09-2Methylene chlorideND 25 16 ug/kg 78-93-3Methyl ethyl ketoneND 40 12 ug/kg $1634-04-4$ Methyl Tert Butyl EtherND 5.0 1.0 ug/kg $91-20-3$ NaphthaleneND 5.0 1.5 ug/kg $103-65-1$ n-PropylbenzeneND 5.0 1.5 ug/kg $100-42-5$ StyreneND 5.0 1.2 ug/kg $94-05-8$ Tert-Amyl Methyl EtherND 5.0 1.2 ug/kg $75-65-0$ Tert Butyl AlcoholND 40 10 ug/kg $71-55-6$ $1, 1, 2-7$ tetrachloroethaneND 5.0 1.0 ug/kg $79-34-5$ $1, 1, 2-7$ tetrachloroethaneND 5.0 1.0 ug/kg $79-00-5$ $1, 1, 2-7$ trichloroethaneND 5.0 1.0 ug/kg $87-61-6$ $1, 2, 3-7$ trichloroethaneND 5.0 1.5 ug/kg $96-18-4$ $1, 2, 3-7$ trichloroethazenND 5.0 1.5 ug/kg $120-82-1$ $1, 2, 4-7$ trichloroethazeneND 5.0 1.5 ug/kg $120-82-1$ $1, 2, 4-7$ trichloroethazeneND 5.0 1.5 ug/kg $120-82-1$ $1, 2, 4-7$ trichloroethazeneND 5.0 1.5 ug/kg $120-8$		108-10-1	4-Methyl-2-pentanone	ND	40	15	ug/kg	
74-95-3Methylene bromideND 5.0 2.5 ug/kg 75-09-2Methylene chlorideND 25 16 ug/kg 78-93-3Methyl ethyl ketoneND 40 12 ug/kg $1634-04-4$ Methyl Tert Butyl EtherND 5.0 1.0 ug/kg $91-20-3$ NaphthaleneND 5.0 1.5 ug/kg $103-65-1$ n -PropylbenzeneND 5.0 1.5 ug/kg $100-42-5$ StyreneND 5.0 1.5 ug/kg $994-05-8$ Tert-Amyl Methyl EtherND 5.0 1.2 ug/kg $75-65-0$ Tert Butyl AlcoholND 40 10 ug/kg $75-65-0$ Tert Butyl AlcoholND 40 10 ug/kg $71-55-6$ $1, 1, 1, 2$ -TetrachloroethaneND 5.0 1.5 ug/kg $79-34-5$ $1, 2, 2$ -TetrachloroethaneND 5.0 1.0 ug/kg $79-00-5$ $1, 2, 3$ -TrichlorobenzeneND 5.0 1.5 ug/kg $87-61-6$ $1, 2, 3$ -TrichlorobenzeneND 5.0 1.5 ug/kg $120-82-1$ $1, 2, 4$ -TrichlorobenzeneND 5.0 1.5 ug/kg $120-82-1$ <td></td> <td>74-83-9</td> <td>Methyl bromide</td> <td>ND</td> <td>5.0</td> <td>2.5</td> <td>ug/kg</td> <td></td>		74-83-9	Methyl bromide	ND	5.0	2.5	ug/kg	
75-09-2Methylene chlorideND2516ug/kg78-93-3Methyl ethyl ketoneND4012ug/kg1634-04-4Methyl Tert Butyl EtherND 5.0 1.0 ug/kg91-20-3NaphthaleneND 5.0 1.5 ug/kg103-65-1n-PropylbenzeneND 5.0 1.5 ug/kg100-42-5StyreneND 5.0 1.5 ug/kg994-05-8Tert-Amyl Methyl EtherND 5.0 1.2 ug/kg75-65-0Tert Butyl AlcoholND 40 10 ug/kg630-20-6 $1, 1, 1, 2$ -TetrachloroethaneND 5.0 1.0 ug/kg71-55-6 $1, 1, 1, 2$ -TetrachloroethaneND 5.0 1.0 ug/kg79-00-5 $1, 2, 2$ -TetrachloroethaneND 5.0 1.0 ug/kg87-61-6 $1, 2, 3$ -TrichlorobenzeneND 5.0 1.5 ug/kg96-18-4 $1, 2, 3$ -TrichlorobenzeneND 5.0 1.5 ug/kg120-82-1 $1, 2, 4$ -TrichlorobenzeneND 5.0 1.5 ug/kg120-82-1 $1, 2, 4$ -TrichlorobenzeneND 5.0 1.5 ug/kg108-67-8 $1, 3, 5$ -TrimethylbenzeneND 5.0 1.5 ug/kg127-18-4TetrachloroethyleneND 5.0 1.5 ug/kg127-18-4TetrachloroethyleneND 5.0 1.5 ug/kg120-82-7TrichlorofluoromethaneND 5.0 1.2		74-87-3	Methyl chloride	ND	5.0		ug/kg	
78-93-3Methyl ethyl ketoneND4012ug/kg1634-04-4Methyl Tert Butyl EtherND 5.0 1.0 ug/kg 91-20-3NaphthaleneND 5.0 1.5 ug/kg 103-65-1 n -PropylbenzeneND 5.0 1.5 ug/kg 100-42-5StyreneND 5.0 1.0 ug/kg 994-05-8Tert-Amyl Methyl EtherND 5.0 1.2 ug/kg 75-65-0Tert Butyl AlcoholND 40 10 ug/kg 630-20-6 $1, 1, 2.7$ etrachloroethaneND 5.0 1.0 ug/kg 79-34-5 $1, 1, 2.7$ etrachloroethaneND 5.0 1.0 ug/kg 79-00-5 $1, 1, 2.7$ richloroethaneND 5.0 1.0 ug/kg 87-61-6 $1, 2, 3.7$ richlorobenzeneND 5.0 1.5 ug/kg 96-18-4 $1, 2, 3.7$ richlorobenzeneND 5.0 1.5 ug/kg 95-63-6 $1, 2, 4.7$ rimethylbenzeneND 5.0 1.5 ug/kg 108-67-8 $1, 3, 5.7$ rimethylbenzeneND 5.0 1.5 ug/kg 127-18-4TetrachloroethyleneND 5.0 1.5 ug/kg 128-88-3TolueneND 5.0 1.5 ug/kg 129-69-4TrichlorofhuoromethaneND 5.0 1.2 ug/kg 120-82-7Xylene (total)ND 10 4.0 ug/kg		74-95 - 3	Methylene bromide	ND	5.0	2.5	ug/kg	
1634-04-4Methyl Tert Butyl EtherND 5.0 1.0 ug/kg 91-20-3NaphthaleneND 5.0 1.5 ug/kg 103-65-1n-PropylbenzeneND 5.0 1.5 ug/kg 100-42-5StyreneND 5.0 1.0 ug/kg 994-05-8Tert-Amyl Methyl EtherND 5.0 1.2 ug/kg $75-65-0$ Tert Butyl AlcoholND 40 10 ug/kg $630-20-6$ $1, 1, 1, 2$ -TetrachloroethaneND 5.0 1.0 ug/kg $71-55-6$ $1, 1, 1$ -TrichloroethaneND 5.0 1.0 ug/kg $79-34-5$ $1, 1, 2, 2$ -TetrachloroethaneND 5.0 1.0 ug/kg $79-00-5$ $1, 1, 2$ -TrichloroethaneND 5.0 1.0 ug/kg $87-61-6$ $1, 2, 3$ -TrichlorobenzeneND 5.0 1.5 ug/kg $96-18-4$ $1, 2, 3$ -TrichlorobenzeneND 5.0 1.5 ug/kg $120-82-1$ $1, 2, 4$ -TrichlorobenzeneND 5.0 1.5 ug/kg $108-67-8$ $1, 3, 5$ -TrimethylbenzeneND 5.0 1.5 ug/kg $108-88-3$ TolueneND 5.0 1.5 ug/kg $104-88-3$ TolueneND 5.0 1.2 ug/kg $120-16$ TrichlorofluoromethaneND 5.0 1.2 ug/kg $120-82-7$ Xylene (total)ND 10 4.0 ug/kg		75-09-2	Methylene chloride	ND	25		ug/kg	
91-20-3NaphthaleneND 5.0 1.5 ug/kg 103-65-1n-PropylbenzeneND 5.0 1.5 ug/kg 100-42-5StyreneND 5.0 1.0 ug/kg 994-05-8Tert-Amyl Methyl EtherND 5.0 1.2 ug/kg 75-65-0Tert Butyl AlcoholND 40 10 ug/kg 630-20-6 $1,1,1,2$ -TetrachloroethaneND 5.0 1.5 ug/kg 71-55-6 $1,1,1$ -TrichloroethaneND 5.0 1.0 ug/kg 79-34-5 $1,1,2,2$ -TetrachloroethaneND 5.0 1.0 ug/kg 79-00-5 $1,1,2$ -TrichloroethaneND 5.0 1.0 ug/kg 87-61-6 $1,2,3$ -TrichlorobenzeneND 5.0 1.5 ug/kg 96-18-4 $1,2,3$ -TrichlorobenzeneND 5.0 1.5 ug/kg 120-82-1 $1,2,4$ -TrichlorobenzeneND 5.0 1.5 ug/kg 120-82-1 $1,2,4$ -TrimethylbenzeneND 5.0 1.5 ug/kg 120-82-1 $1,2,4$ -TrimethylbenzeneND 5.0 1.5 ug/kg 121-18-4TetrachloroethyleneND 5.0 1.5 ug/kg 108-67-8 $1,3,5$ -TrimethylbenzeneND 5.0 1.5 ug/kg 127-18-4TetrachloroethyleneND 5.0 1.5 ug/kg 128-3TolueneND 5.0 1.2 ug/kg 120-4TrichlorofluoromethaneND $5.$		78-93-3	Methyl ethyl ketone	ND	40		ug/kg	
103-65-1n-PropylbenzeneND 5.0 1.5 ug/kg 100-42-5StyreneND 5.0 1.0 ug/kg 994-05-8Tert-Amyl Methyl EtherND 5.0 1.2 ug/kg 75-65-0Tert Butyl AlcoholND 40 10 ug/kg 630-20-6 $1,1,1,2$ -TetrachloroethaneND 5.0 1.0 ug/kg 71-55-6 $1,1,1$ -TrichloroethaneND 5.0 1.0 ug/kg 79-34-5 $1,1,2,2$ -TetrachloroethaneND 5.0 1.0 ug/kg 79-00-5 $1,1,2$ -TrichloroethaneND 5.0 1.0 ug/kg 87-61-6 $1,2,3$ -TrichloroethaneND 5.0 1.5 ug/kg 96-18-4 $1,2,3$ -TrichlorobenzeneND 5.0 1.5 ug/kg 120-82-1 $1,2,4$ -TrichlorobenzeneND 5.0 1.5 ug/kg 95-63-6 $1,2,4$ -TrimethylbenzeneND 5.0 1.5 ug/kg 108-67-8 $1,3,5$ -TrimethylbenzeneND 5.0 1.5 ug/kg 127-18-4TetrachloroethyleneND 5.0 1.5 ug/kg 108-88-3TolueneND 5.0 1.2 ug/kg 75-69-4TrichlorofluoromethaneND 5.0 1.2 ug/kg 75-01-4Vinyl chlorideND 5.0 1.2 ug/kg 1330-20-7Xylene (total)ND 10 4.0 ug/kg		1634-04-4	Methyl Tert Butyl Ether	ND	5.0			
100-42-5StyrneND5.01.0ug/kg994-05-8Tert-Amyl Methyl EtherND5.01.2ug/kg75-65-0Tert Butyl AlcoholND4010ug/kg630-20-61,1,1,2-TetrachloroethaneND5.01.0ug/kg71-55-61,1,1-TrichloroethaneND5.01.0ug/kg79-34-51,1,2,2-TetrachloroethaneND5.01.0ug/kg79-00-51,1,2-TrichloroethaneND5.01.0ug/kg87-61-61,2,3-TrichlorobenzeneND5.01.5ug/kg96-18-41,2,3-TrichlorobenzeneND5.01.5ug/kg120-82-11,2,4-TrichlorobenzeneND5.01.5ug/kg95-63-61,2,4-TrimethylbenzeneND5.01.5ug/kg108-67-81,3,5-TrimethylbenzeneND5.01.5ug/kg127-18-4TetrachloroethyleneND5.01.5ug/kg108-88-3TolueneND5.01.5ug/kg75-69-4TrichlorofluoromethaneND5.01.2ug/kg75-69-4TrichlorofluoromethaneND5.01.2ug/kg75-69-4TrichlorofluoromethaneND5.01.2ug/kg75-01-4Vinyl chlorideND5.02.5ug/kg1330-20-7Xylene (total)ND104.0ug/kg	_	91-20-3	Naphthalene		5.0			
994-05-8Tert-Amyl Methyl EtherND 5.0 1.2 ug/kg 75-65-0Tert Butyl AlcoholND 40 10 ug/kg $630-20-6$ $1,1,1,2$ -TetrachloroethaneND 5.0 1.0 ug/kg $71-55-6$ $1,1,1$ -TrichloroethaneND 5.0 1.5 ug/kg $79-34-5$ $1,1,2,2$ -TetrachloroethaneND 5.0 1.0 ug/kg $79-00-5$ $1,1,2$ -TrichloroethaneND 5.0 1.0 ug/kg $87-61-6$ $1,2,3$ -TrichlorobenzeneND 5.0 1.5 ug/kg $96-18-4$ $1,2,3$ -TrichlorobenzeneND 5.0 1.5 ug/kg $120-82-1$ $1,2,4$ -TrichlorobenzeneND 5.0 1.5 ug/kg $108-67-8$ $1,3,5$ -TrimethylbenzeneND 5.0 1.5 ug/kg $108-67-8$ $1,3,5$ -TrimethylbenzeneND 5.0 1.5 ug/kg $108-88-3$ TolueneND 5.0 1.5 ug/kg $79-01-6$ TrichloroethyleneND 5.0 1.5 ug/kg $75-69-4$ TrichlorofluoromethaneND 5.0 1.2 ug/kg $75-69-4$ TrichlorofluoromethaneND 5.0 1.2 ug/kg $1330-20-7$ Xylene (total)ND 10 4.0 ug/kg		103-65-1	n-Propylbenzene		5.0			
75-65-0Tert Butyl AlcoholND4010ug/kg630-20-61,1,1,2-TetrachloroethaneND5.01.0ug/kg71-55-61,1,1-TrichloroethaneND5.01.5ug/kg79-34-51,1,2,2-TetrachloroethaneND5.01.0ug/kg79-00-51,1,2-TrichloroethaneND5.01.0ug/kg87-61-61,2,3-TrichloroethaneND5.01.5ug/kg96-18-41,2,3-TrichloropropaneND5.01.5ug/kg96-18-41,2,4-TrichlorobenzeneND5.01.5ug/kg95-63-61,2,4-TrimethylbenzeneND5.01.5ug/kg108-67-81,3,5-TrimethylbenzeneND5.01.5ug/kg108-88-3TolueneND5.01.5ug/kg79-01-6TrichloroethyleneND5.01.5ug/kg75-69-4TrichlorofluoromethaneND5.01.2ug/kg75-69-4TrichlorofluoromethaneND5.01.2ug/kg75-01-4Vinyl chlorideND5.02.5ug/kg130-20-7Xylene (total)ND104.0ug/kg								
630-20-61,1,2-TetrachloroethaneND5.01.0ug/kg $71-55-6$ 1,1,1-TrichloroethaneND 5.0 1.5 ug/kg $79-34-5$ 1,1,2,2-TetrachloroethaneND 5.0 1.0 ug/kg $79-00-5$ 1,1,2-TrichloroethaneND 5.0 1.0 ug/kg $87-61-6$ 1,2,3-TrichlorobenzeneND 5.0 1.5 ug/kg $96-18-4$ 1,2,3-TrichloropropaneND 5.0 1.5 ug/kg $120-82-1$ 1,2,4-TrichlorobenzeneND 5.0 1.5 ug/kg $95-63-6$ 1,2,4-TrimethylbenzeneND 5.0 1.5 ug/kg $108-67-8$ 1,3,5-TrimethylbenzeneND 5.0 1.5 ug/kg $108-88-3$ TolueneND 5.0 1.5 ug/kg $79-01-6$ TrichloroethyleneND 5.0 1.5 ug/kg $75-69-4$ TrichlorofluoromethaneND 5.0 1.2 ug/kg $75-01-4$ Vinyl chlorideND 5.0 2.5 ug/kg $1330-20-7$ Xylene (total)ND 10 4.0 ug/kg		994-05-8						
71-55-61,1,1-TrichloroethaneND5.01.5ug/kg $79-34-5$ 1,1,2,2-TetrachloroethaneND5.01.0ug/kg $79-00-5$ 1,1,2-TrichloroethaneND5.01.0ug/kg $87-61-6$ 1,2,3-TrichlorobenzeneND5.01.5ug/kg $96-18-4$ 1,2,3-TrichlorobenzeneND5.01.5ug/kg $120-82-1$ 1,2,4-TrichlorobenzeneND5.01.5ug/kg $95-63-6$ 1,2,4-TrimethylbenzeneND5.01.5ug/kg $108-67-8$ 1,3,5-TrimethylbenzeneND5.01.5ug/kg $108-67-8$ 1,3,5-TrimethylbenzeneND5.01.5ug/kg $108-67-8$ 1,3,5-TrimethylbenzeneND5.01.5ug/kg $108-88-3$ TolueneND5.01.5ug/kg $75-69-4$ TrichloroethyleneND5.01.2ug/kg $75-69-4$ TrichlorofluoromethaneND5.01.2ug/kg $75-01-4$ Vinyl chlorideND5.02.5ug/kg $1330-20-7$ Xylene (total)ND104.0ug/kg								
79-34-51,1,2,2-TetrachloroethaneND5.01.0ug/kg79-00-51,1,2-TrichloroethaneND5.01.0ug/kg87-61-61,2,3-TrichlorobenzeneND5.01.5ug/kg96-18-41,2,3-TrichloropropaneND5.01.5ug/kg120-82-11,2,4-TrichlorobenzeneND5.01.5ug/kg95-63-61,2,4-TrimethylbenzeneND5.01.5ug/kg108-67-81,3,5-TrimethylbenzeneND5.01.5ug/kg108-88-3TolueneND5.01.5ug/kg79-01-6TrichloroethyleneND5.01.5ug/kg75-69-4TrichlorofluoromethaneND5.01.2ug/kg75-01-4Vinyl chlorideND5.02.5ug/kg130-20-7Xylene (total)ND104.0ug/kg		630-20-6						
79-00-51,1,2-TrichloroethaneND5.01.0ug/kg87-61-61,2,3-TrichlorobenzeneND5.01.5ug/kg96-18-41,2,3-TrichloropropaneND5.01.5ug/kg120-82-11,2,4-TrichlorobenzeneND5.01.5ug/kg95-63-61,2,4-TrimethylbenzeneND5.01.5ug/kg108-67-81,3,5-TrimethylbenzeneND5.01.5ug/kg127-18-4TetrachloroethyleneND5.01.5ug/kg108-88-3TolueneND5.01.5ug/kg75-69-4TrichlorofluoromethaneND5.01.2ug/kg75-01-4Vinyl chlorideND5.02.5ug/kg130-20-7Xylene (total)ND104.0ug/kg								
87-61-6 1,2,3-Trichlorobenzene ND 5.0 1.5 ug/kg 96-18-4 1,2,3-Trichloropropane ND 5.0 1.5 ug/kg 120-82-1 1,2,4-Trichlorobenzene ND 5.0 1.5 ug/kg 95-63-6 1,2,4-Trimethylbenzene ND 5.0 1.5 ug/kg 108-67-8 1,3,5-Trimethylbenzene ND 5.0 1.5 ug/kg 127-18-4 Tetrachloroethylene ND 5.0 1.5 ug/kg 108-88-3 Toluene ND 5.0 1.5 ug/kg 75-69-4 Trichloroethylene ND 5.0 1.2 ug/kg 75-01-4 Vinyl chloride ND 5.0 1.2 ug/kg 130-20-7 Xylene (total) ND 10 4.0 ug/kg								
96-18-41,2,3-TrichloropropaneND5.01.5ug/kg120-82-11,2,4-TrichlorobenzeneND5.01.5ug/kg95-63-61,2,4-TrimethylbenzeneND5.01.5ug/kg108-67-81,3,5-TrimethylbenzeneND5.01.5ug/kg127-18-4TetrachloroethyleneND5.03.5ug/kg108-88-3TolueneND5.01.5ug/kg79-01-6TrichloroethyleneND5.01.0ug/kg75-69-4TrichlorofluoromethaneND5.01.2ug/kg75-01-4Vinyl chlorideND5.02.5ug/kg130-20-7Xylene (total)ND104.0ug/kg		79-00 -5						
120-82-11,2,4-TrichlorobenzeneND5.01.5ug/kg95-63-61,2,4-TrimethylbenzeneND5.01.5ug/kg108-67-81,3,5-TrimethylbenzeneND5.01.5ug/kg127-18-4TetrachloroethyleneND5.03.5ug/kg108-88-3TolueneND5.01.5ug/kg79-01-6TrichloroethyleneND5.01.0ug/kg75-69-4TrichlorofluoromethaneND5.01.2ug/kg75-01-4Vinyl chlorideND5.02.5ug/kg1330-20-7Xylene (total)ND104.0ug/kg								
95-63-61,2,4-TrimethylbenzeneND5.01.5ug/kg108-67-81,3,5-TrimethylbenzeneND5.01.5ug/kg127-18-4TetrachloroethyleneND5.03.5ug/kg108-88-3TolueneND5.01.5ug/kg79-01-6TrichloroethyleneND5.01.0ug/kg75-69-4TrichlorofluoromethaneND5.01.2ug/kg75-01-4Vinyl chlorideND5.02.5ug/kg1330-20-7Xylene (total)ND104.0ug/kg		96-18 - 4						
108-67-81,3,5-TrimethylbenzeneND5.01.5ug/kg127-18-4TetrachloroethyleneND5.03.5ug/kg108-88-3TolueneND5.01.5ug/kg79-01-6TrichloroethyleneND5.01.0ug/kg75-69-4TrichlorofluoromethaneND5.01.2ug/kg75-01-4Vinyl chlorideND5.02.5ug/kg1330-20-7Xylene (total)ND104.0ug/kg								
127-18-4 Tetrachloroethylene ND 5.0 3.5 ug/kg 108-88-3 Toluene ND 5.0 1.5 ug/kg 79-01-6 Trichloroethylene ND 5.0 1.0 ug/kg 75-69-4 Trichlorofluoromethane ND 5.0 1.2 ug/kg 75-01-4 Vinyl chloride ND 5.0 2.5 ug/kg 1330-20-7 Xylene (total) ND 10 4.0 ug/kg		95-63 - 6						
108-88-3 Toluene ND 5.0 1.5 ug/kg 79-01-6 Trichloroethylene ND 5.0 1.0 ug/kg 75-69-4 Trichlorofluoromethane ND 5.0 1.2 ug/kg 75-01-4 Vinyl chloride ND 5.0 2.5 ug/kg 1330-20-7 Xylene (total) ND 10 4.0 ug/kg		108-67-8						
79-01-6 Trichloroethylene ND 5.0 1.0 ug/kg 75-69-4 Trichlorofluoromethane ND 5.0 1.2 ug/kg 75-01-4 Vinyl chloride ND 5.0 2.5 ug/kg 1330-20-7 Xylene (total) ND 10 4.0 ug/kg								
75-69-4TrichlorofluoromethaneND5.01.2ug/kg75-01-4Vinyl chlorideND5.02.5ug/kg1330-20-7Xylene (total)ND104.0ug/kg		108-88-3						
75-01-4Vinyl chlorideND5.02.5ug/kg1330-20-7Xylene (total)ND104.0ug/kg			5					
1330-20-7 Xylene (total) ND 10 4.0 ug/kg		75-69 - 4						
TPH-GRO (C6-C10) ND 100 50 ug/kg		1330-20-7						
			TPH-GRO (C6-C10)	ND	100	50	ug/kg	

4.1

Page 2 of 3

Analytical Batch

VO140

57 of 94 **ACCUTEST.** C3343

Method Blank Summary

Job Number:	C3343
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VO140-MB	002788.D	1	12/10/08	MF	n/a	n/a	VO140

The QC reported here applies to the following samples:

Method: SW846 8260B

C3343-1, C3343-2, C3343-3, C3343-4, C3343-5, C3343-6, C3343-7

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	107%	60-130%
2037-26-5	Toluene-D8	100%	60-130%
460-00-4	4-Bromofluorobenzene	102%	60-130%

Page 3 of 3

4.1

Blank Spike Summary

Job Number:	C3343
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

|--|

The QC reported here applies to the following samples:

Method: SW846 8260B

C3343-1, C3343-2, C3343-3, C3343-4, C3343-5, C3343-6, C3343-7

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
67-64-1	Acetone	160	167	104	60-130
71-43-2	Benzene	40	34.5	86	60-130
108-86-1	Bromobenzene	40	33.6	84	60-130
74-97 -5	Bromochloromethane	40	38.5	96	60-130
75-27-4	Bromodichloromethane	40	33.7	84	60-130
75-25-2	Bromoform	40	33.4	84	60-130
104-51-8	n-Butylbenzene	40	32.8	82	60-130
135-98-8	sec-Butylbenzene	40	33.3	83	60-130
9 8 -06 - 6	tert-Butylbenzene	40	32.7	82	60-130
108-90-7	Chlorobenzene	40	32.4	81	60-130
75-00-3	Chloroethane	40	41.4	104	60-130
67-66-3	Chloroform	40	34.9	87	60-130
95-49 - 8	o-Chlorotoluene	40	34.5	86	60-130
106-43-4	p-Chlorotoluene	40	34.6	87	60-130
56-23-5	Carbon tetrachloride	40	28.9	72	60-130
75-34-3	1,1-Dichloroethane	40	37.0	93	60-130
75-35-4	1,1-Dichloroethylene	40	35.6	89	60-130
563-58-6	1,1-Dichloropropene	40	31.1	78	60-130
96-12-8	1,2-Dibromo-3-chloropropane	40	33.8	85	60-130
106-93-4	1,2-Dibromoethane	40	40.0	100	60-130
107-06-2	1,2-Dichloroethane	40	31.9	80	60-130
78-87-5	1,2-Dichloropropane	40	35.0	88	60-130
142 - 28-9	1,3-Dichloropropane	40	33.6	84	60-130
108-20-3	Di-Isopropyl ether	40	38.0	95	60-130
123-91-1	1,4-Dioxane	800	762	95	60-130
594-20-7	2,2-Dichloropropane	40	31.1	78	60-130
124-48-1	Dibromochloromethane	40	31.0	78	60-130
75-71-8	Dichlorodifluoromethane	40	33.0	83	60-130
156-59-2	cis-1,2-Dichloroethylene	40	37.1	93	60-130
10061-01-5	cis-1,3-Dichloropropene	40	33.9	85	60-130
541-73-1	m-Dichlorobenzene	40	33.5	84	60-130
95-50 - 1	o-Dichlorobenzene	40	34.3	86	60-130
106-46-7	p-Dichlorobenzene	40	33.6	84	60-130
156-60-5	trans-1,2-Dichloroethylene	40	35.8	90	60-130
10061-02-6	trans-1,3-Dichloropropene	40	30.1	75	60-130
64-17-5	Ethyl alcohol	800	882	110	60-130

Page 1 of 3

4.2

.

Blank Spike Summary

Job Number:	C3343
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VO140-BS	002785.D	1	12/10/08	MF	n/a	n/a	VO140

The QC reported here applies to the following samples:

Method: SW846 8260B

C3343-1, C3343-2, C3343-3, C3343-4, C3343-5, C3343-6, C3343-7

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
100-41-4	Ethylbenzene	40	31.7	79	60-130
637-92-3	Ethyl tert-Butyl Ether	40	40.3	101	60-130
591-78-6	2-Hexanone	160	133	83	60-130
87-68-3	Hexachlorobutadiene	40	32.8	82	60-130
98-82-8	Isopropylbenzene	40	31.4	79	60-130
99-87-6	p-Isopropyltoluene	40	33.0	83	60-130
108-10-1	4-Methyl-2-pentanone	160	142	89	60-130
74-83-9	Methyl bromide	40	31.6	79	60-130
74-87-3	Methyl chloride	40	32.5	81	60-130
74-95-3	Methylene bromide	40	35.1	88	60-130
75-09-2	Methylene chloride	40	37.3	93	60-130
78-93-3	Methyl ethyl ketone	160	160	100	60-130
1634-04-4	Methyl Tert Butyl Ether	40	37.2	93	60-130
91-20-3	Naphthalene	40	27.1	68	60-130
103-65-1	n-Propylbenzene	40	32.6	82	60-130
100-42-5	Styrene	40	32.3	81	60-130
994-05-8	Tert-Amyl Methyl Ether	40	43.4	109	60-130
75-65-0	Tert Butyl Alcohol	200	180	90	60-130
630-20-6	1,1,1,2-Tetrachloroethane	40	32.1	80	60-130
71-55-6	1,1,1-Trichloroethane	40	31.5	79	60-130
79-34-5	1,1,2,2-Tetrachloroethane	40	36.1	90	60-130
79-00-5	1,1,2-Trichloroethane	40	34.5	86	60-130
87-61-6	1,2,3-Trichlorobenzene	40	31.5	79	60-130
96-18-4	1,2,3-Trichloropropane	40	35.0	88	60-130
120-82-1	1,2,4-Trichlorobenzene	40	31.9	80	60-130
95-63-6	1,2,4-Trimethylbenzene	40	32.8	82	60-130
108-67-8	1,3,5-Trimethylbenzene	40	32.6	82	60-130
127-18-4	Tetrachloroethylene	40	29.8	75	60-130
108-88-3	Toluene	40	32.2	81	60-130
79-01-6	Trichloroethylene	40	32.2	81	60-130
75-69-4	Trichlorofluoromethane	40	36.8	92	60-130
75-01-4	Vinyl chloride	40	40.3	101	60-130
1330-20-7	Xylene (total)	120	97.8	82	60-130

Page 2 of 3

Blank Spike Summary

-

Job Number:	C3343
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
VO140-BS	002785.D	1	12/10/08	MF	n/a	n/a	VO140	
The QC repo	rted here appl	ies to th	e following sam	ples:		Method: SW	7846 8260B	

C3343-1, C3343-2, C3343-3, C3343-4, C3343-5, C3343-6, C3343-7

CAS No.	Surrogate Recoveries	BSP	Limits
	Dibromofluoromethane	106%	60-130%
	Toluene-D8	96%	60-130%
	4-Bromofluorobenzene	97%	60-130%

Blank Spike Summary

Job Number:	C3343
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VO140-BS	002787.D	1	12/10/08	MF	n/a	n/a	VO140

The QC reported here applies to the following samples:

Method: SW846 8260B

C3343-1, C3343-2, C3343-3, C3343-4, C3343-5, C3343-6, C3343-7

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
	TPH-GRO (C6-C10)	250	240	96	60-130
CAS No.	Surrogate Recoveries	BSP	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	108% 99% 101%	60-1	.30% .30% .30%	

Job Number:	C3343
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample C3343-4MS C3343-4MSD C3343-4	File ID 002796.D 002797.D 002792.D	DF 1 1 1	Analyzed 12/10/08 12/10/08 12/10/08	By MF MF MF	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch VO140 VO140 VO140 VO140
--	--	--------------------------	---	----------------------	---------------------------------------	---------------------------------	--

The QC reported here applies to the following samples:

Method: SW846 8260B

C3343-1, C3343-2, C3343-3, C3343-4, C3343-5, C3343-6, C3343-7

		C3343-4		Spike	MS	MS	MSD	MSD		Limits
CAS No.	Compound	ug/kg	Q	ug/kg	ug/kg	%	ug/kg	%	RPD	Rec/RPD
67 - 64-1	Acetone	ND		160	134	84	140	88	4	60-130/30
71-43-2	Benzene	ND		40	38.2	96	36.5	92	5	60-130/30
108-86-1	Bromobenzene	ND		40	30.2	76	30.2	76	0	60-130/30
74-97-5	Bromochloromethane	ND		40	38.7	97	37.7	95	3	60-130/30
75-27-4	Bromodichloromethane	ND		40	39.6	99	38.1	96	4	60-130/30
75-25-2	Bromoform	ND		40	33.3	83	33.5	84	1	60-130/30
104-51-8	n-Butylbenzene	ND		40	32.7	82	32.0	81	2	60-130/30
135-98-8	sec-Butylbenzene	ND		40	33.9	85	33.2	84	2	60-130/30
98-06 - 6	tert-Butylbenzene	ND		40	33.6	84	32.8	83	2	60-130/30
108 - 90-7	Chlorobenzene	ND		40	31.4	79	31.2	79	1	60-130/30
75-00-3	Chloroethane	ND		40	43.7	109	42.5	107	3	60-130/30
67-66-3	Chloroform	ND		40	40.9	102	39.7	100	3	60-130/30
95-49-8	o-Chlorotoluene	ND		40	32.4	81	30.9	78	5	60-130/30
106-43-4	p-Chlorotoluene	ND		40	31.3	.78	32.2	81	3	60-130/30
56 -23 -5	Carbon tetrachloride	ND		40	37.1	93	36.5	92	2	60-130/30
75-34-3	1,1-Dichloroethane	ND		40	42.6	107	41.9	106	2	60-130/30
75-35-4	1,1-Dichloroethylene	ND		40	42.2	106	40.3	102	5	60-130/30
563-58 - 6	1,1-Dichloropropene	ND		40	39.2	98	37.2	94	5	60-130/30
96-12 - 8	1,2-Dibromo-3-chloropropane	ND		40	29.2	73	29.0	73	1	60-130/30
106-93-4	1,2-Dibromoethane	ND		40	41.9	105	40.4	102	4	60-130/30
107 - 06-2	1,2-Dichloroethane	ND		40	38.9	97	37.8	95	3	60-130/30
78-87-5	1,2-Dichloropropane	ND		40	38.3	96	37.3	94	3	60-130/30
142-28-9	1,3-Dichloropropane	ND		40	35.9	90	34.4	87	4	60-130/30
108-20-3	Di-Isopropyl ether	ND		40	42.8	107	41.3	104	4	60-130/30
123-91-1	1,4-Dioxane	ND		800	755	94	738	93	2	60-130/30
594-20-7	2,2-Dichloropropane	ND		40	37.7	94	37.4	94	1	60-130/30
124-48-1	Dibromochloromethane	ND		40	32.5	81	31.8	80	2	60-130/30
75-71-8	Dichlorodifluoromethane	ND		40	52.6	132* a	52.2	132* a	1	60-130/30
156-59-2	cis-1,2-Dichloroethylene	ND		40	39.3	98	38.1	96	3	60-130/30
10061-01-5	cis-1,3-Dichloropropene	ND		40	37.3	93	35.6	90	5	60-130/30
541-73-1	m-Dichlorobenzene	ND		40	28.9	72	28.4	72	2	60-130/30
95-50-1	o-Dichlorobenzene	ND		40	29.1	73	28.0	71	4	60-130/30
106-46-7	p-Dichlorobenzene	ND		40	28.9	72	28.0	71	3	60-130/30
156-60-5	trans-1,2-Dichloroethylene	ND		40	39.2	98	38.3	97	2	60-130/30
	trans-1,3-Dichloropropene	ND		40	32.9	82	32.0	81	3	60-130/30
64-17-5	Ethyl alcohol	ND		800	845	106	807	102	5	60-130/30

Page 1 of 3

Job Number:	C3343
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
C3343-4MS	O02796.D	1	12/10/08	MF	n/a	n/a	VO140
C3343-4MSD	O02797.D	1	12/10/08	MF	n/a	n/a	VO140
C3343-4	O02792.D	1	12/10/08	MF	n/a	n/a	VO140

.

The QC reported here applies to the following samples:

Method: SW846 8260B

C3343-1, C3343-2, C3343-3, C3343-4, C3343-5, C3343-6, C3343-7

CAS No.	Compound	C3343-4 ug/kg	4 Q	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
100-41-4	Ethylbenzene	ND		40	34.5	86	34.3	86	1	60-130/30
637-92-3	Ethyl tert-Butyl Ether	ND		40	43.2	108	42.7	108	1	60-130/30
591 -78- 6	2-Hexanone	ND		160	140	88	144	91	3	60-130/30
87-68-3	Hexachlorobutadiene	ND		40	24.8	62	16.9	43* ^a	38* a	60-130/30
98-82-8	Isopropylbenzene	ND		40	34.4	86	33.5	84	3	60-130/30
99-87-6	p-Isopropyltoluene	ND		40	33.3	83	32.5	82	2	60-130/30
108-10-1	4-Methyl-2-pentanone	ND		160	137	86	142	89	4	60-130/30
74-83-9	Methyl bromide	ND		40	34.9	87	40.2	101	14	60-130/30
74-87-3	Methyl chloride	ND		40	41.6	104	41.4	104	0	60-130/30
74-95-3	Methylene bromide	ND		40	38.3	96	36.2	91	6	60-130/30
75-09-2	Methylene chloride	ND		40	39.9	100	39.7	100	1	60-130/30
78-93-3	Methyl ethyl ketone	ND		160	142	89	145	91	2	60-130/30
1634-04-4	Methyl Tert Butyl Ether	ND		40	37.6	94	38.3	97	2	60-130/30
91-20-3	Naphthalene	ND		40	21.0	53* a	21.0	53* a	0	60-130/30
103-65-1	n-Propylbenzene	ND		40	33.1	83	32.9	83	1 .	60-130/30
100-42-5	Styrene	ND		40	30.9	77	30.5	77	1	60-130/30
994-05-8	Tert-Amyl Methyl Ether	ND		40	49.2	123	47.9	121	3	60-130/30
75-65-0	Tert Butyl Alcohol	ND		200	180	90	194	98	7	60-130/30
630-20-6	1,1,1,2-Tetrachloroethane	ND		40	35.6	89	35.0	88	2 .	60-130/30
71-55-6	1,1,1-Trichloroethane	ND		40	39.7	99	38.8	98	2	60-130/30
79-34-5	1,1,2,2-Tetrachloroethane	ND		40	33.3	83	33.9	85	2	60-130/30
79-00-5	1,1,2-Trichloroethane	ND		40	35.1	88	34.3	86	2	60-130/30
87-61-6	1,2,3-Trichlorobenzene	ND		40	24.9	62	23.6	59* a	5	60-130/30
96-18-4	1,2,3-Trichloropropane	ND		40	34.9	87	34.5	87	1	60-130/30
120-82-1	1,2,4-Trichlorobenzene	ND		40	24.9	62	23.6	59* a	5	60-130/30
95-63-6	1,2,4-Trimethylbenzene	ND		40	32.0	80	31.5	79	2	60-130/30
108-67-8	1,3,5-Trimethylbenzene	ND		40	32.6	82	31.9	80	2	60-130/30
127-18-4	Tetrachloroethylene	ND		40	30.1	75	29.6	75	2	60-130/30
108-88-3	Toluene	ND		40	35.0	88	34.2	86	2	60-130/30
79-01-6	Trichloroethylene	ND		40	36.4	91	35.2	89	3	60-130/30
75-69-4	Trichlorofluoromethane	ND		40	43.0	108	41.3	104	4	60-130/30
75-01-4	Vinyl chloride	ND		40	49.3	123	48.7	123	1	60-130/30
1330-20-7	Xylene (total)	ND		120	101	84	98.6	83	2	60-130/30

<u>م</u> دی

Job Number:	C3343
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample File ID C3343-4MS O02796 C3343-4MSD O02797 C3343-4MSD O02792	.D 1	Analyzed 12/10/08 12/10/08 12/10/08	By MF MF MF	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch VO140 VO140 VO140 VO140
---	------	--	-----------------------------	---------------------------------------	--	---

The QC reported here applies to the following samples:

Method: SW846 8260B

C3343-1, C3343-2, C3343-3, C3343-4, C3343-5, C3343-6, C3343-7

CAS No.	Surrogate Recoveries	MS	MSD	C3343-4	Limits
1868-53-7	Dibromofluoromethane	107%	107%	112%	60-130%
2037-26-5	Toluene-D8	99%	99%	101%	60-130%
460-00-4	4-Bromofluorobenzene	103%	102%	103%	60-130%

(a) Outside control limits.

4,3

GC/MS Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary Job Number: C3343

Account: Project:	ERMCAW 11759 Dub		Dublin, CA				
Sample OP571-MB	File ID X2000.D	DF 1	Analyzed 12/11/08	Ву LY	Prep Date 12/11/08	Prep Batch OP571	Analytical Batch EX109

The QC reported here applies to the following samples:

Method: SW846 8270C

C3343-1, C3343-2, C3343-3, C3343-4

Benzoic acid				
0.01.1	ND	1000	890	ug/kg
2-Chlorophenol	ND	1000	680	ug/kg
4-Chloro-3-methyl phenol	ND	500	420	ug/kg
2,4-Dichlorophenol	ND	500	140	ug/kg
2,4-Dimethylphenol	ND	500	150	ug/kg
2,4-Dinitrophenol	ND	2500	850	ug/kg
4,6-Dinitro-o-cresol	ND	2000	1000	ug/kg
2-Methylphenol	ND	500	170	ug/kg
3&4-Methylphenol	ND	500	150	ug/kg
2-Nitrophenol	ND	500	130	ug/kg
	ND	2000	1200	ug/kg
Pentachlorophenol	ND	500	420	ug/kg
Phenol	ND	2000	1300	ug/kg
2,4,5-Trichlorophenol	ND	500	120	ug/kg
2,4,6-Trichlorophenol	ND	500	160	ug/kg
Acenaphthene	ND	1000	500	ug/kg
	ND	500	200	ug/kg
Aniline	ND	500	140	ug/kg
Anthracene	ND	500	100	ug/kg
Azobenzene	ND	500	170	ug/kg
Benzidine	ND	2500	730	ug/kg
Benzo(a)anthracene	ND	500	70	ug/kg
Benzo(a)pyrene	ND	500	90	ug/kg
Benzo(b)fluoranthene	ND	500	60	ug/kg
	ND	500	150	ug/kg
Benzo(k)fluoranthene	ND	500	120	ug/kg
4-Bromophenyl phenyl ether	ND	500	150	ug/kg
	ND	500	110	ug/kg
	ND	1000	160	ug/kg
	ND	500	180	ug/kg
4-Chloroaniline				ug/kg
				ug/kg
		500		ug/kg
				ug/kg
				ug/kg
				ug/kg
	2,4-Dimethylphenol 2,4-Dimitrophenol 4,6-Dimitro-o-cresol 2-Methylphenol 3&4-Methylphenol 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol Acenaphthene Acenaphthylene Aniline Anthracene Azobenzene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h, i)perylene Benzo(k)fluoranthene 4-Bromophenyl phenyl ether Butyl benzyl phthalate Benzyl Alcohol 2-Chloronaphthalene	2,4-DimethylphenolND2,4-DinitrophenolND4,6-Dinitro-o-cresolND2-MethylphenolND3&4-MethylphenolND3&4-MethylphenolND2-NitrophenolND4-NitrophenolND4-NitrophenolNDPentachlorophenolND2,4,5-TrichlorophenolND2,4,6-TrichlorophenolND2,4,6-TrichlorophenolNDAcenaphtheneNDAcenaphthyleneNDAcenaphthyleneNDBenzidineNDBenzo(a)anthraceneNDBenzo(a)pyreneNDBenzo(b)fluorantheneNDBenzo(g, h, i)peryleneNDBenzo(k)fluorantheneND4-Bromophenyl phenyl etherNDButyl benzyl phthalateND2-ChloroanitineND4-ChloroanitineNDCarbazoleNDbis(2-Chloroethoxy)methaneNDbis(2-Chloroethyl)etherND	2,4-DimethylphenolND 500 2,4-DinitrophenolND 2500 4,6-Dinitro-o-cresolND 2000 2-MethylphenolND 500 $3\&4$ -MethylphenolND 500 2-NitrophenolND 500 2-NitrophenolND 500 4-NitrophenolND 2000 PentachlorophenolND 500 PhenolND 2000 2,4,5-TrichlorophenolND 500 2,4,6-TrichlorophenolND 500 A,6-TrichlorophenolND 500 AcenaphtheneND 500 AcenaphthyleneND 500 AnthraceneND 500 BenzidineND 500 Benzo(a)anthraceneND 500 Benzo(b)fluorantheneND 500 Benzo(k)fluorantheneND 500 Benzo(k)fluorantheneND 500 Benzyl AlcoholND 500 Benzyl AlcoholND 500 CarbazoleND 500 CarbazoleND 500 bis(2-Chloroethoxy)methaneND 500 bis(2-Chloroethoxy)methaneND 500 bis(2-Chloroethoxy)methaneND 500 bis(2-Chloroethoxy)methaneND 500 bis(2-Chloroethoxy)methaneND 500	2,4-DimethylphenolND 500 150 2,4-DinitrophenolND 2500 850 4,6-Dinitro-o-cresolND 2000 1000 2-MethylphenolND 500 170 $3\&4$ -MethylphenolND 500 150 2-NitrophenolND 500 130 4-NitrophenolND 500 1200 PentachlorophenolND 500 420 PhenolND 500 420 PhenolND 500 420 PhenolND 500 120 2,4,5-TrichlorophenolND 500 120 2,4,6-TrichlorophenolND 500 160 AcenaphtheneND 500 160 AcenaphthyleneND 500 140 AnthraceneND 500 170 BenzidineND 500 170 BenzidineND 500 170 Benzo(a)anthraceneND 500 730 Benzo(b)fluorantheneND 500 150 Benzo(b)fluorantheneND 500 150 Benzo(k)fluorantheneND 500 150 Butyl benzyl phthalateND 500 140 CarbazoleND 500 140 CarbazoleND 500 160 2-ChloronaphthaleneND 500 140 CarbazoleND 500 140 CarbazoleND 500 140 CarbazoleND

Page 1 of 3

..... ())

1

Method Blank Summary

Job Number: Account: Project:	C3343 ERMCAW 11759 Dub		Vest, Inc. Dublin, CA				
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP571-MB	X2000.D	1	12/11/08	LY	12/11/08	OP571	EX109

.

The QC reported here applies to the following samples:

Method: SW846 8270C

C3343-1, C3343-2, C3343-3, C3343-4

CAS No.	Compound	Result	RL	MDL	Units Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	500	190	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	500	160	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	500	150	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	500	420	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	500	460	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	1000	320	ug/kg
91-94-1	3,3' -Dichlorobenzidine	ND	2500	140	ug/kg
53-70-3	Dibenzo(a, h)anthracene	ND	500	130	ug/kg
132-64-9	Dibenzofuran	ND	500	160	ug/kg
122-39-4	Diphenylamine	ND	500	120	ug/kg
84-74-2	Di-n-butyl phthalate	ND	500	100	ug/kg
117-84-0	Di-n-octyl phthalate	ND	500	130	ug/kg
84-66 - 2	Diethyl phthalate	ND	500	170	ug/kg
131-11-3	Dimethyl phthalate	ND	500	180	ug/kg
117-81-7	bis(2-Ethylhexyl)phthalate	ND	500	220	ug/kg
206-44-0	Fluoranthene	ND	500	100	ug/kg
86-73-7	Fluorene	ND	500	180	ug/kg
118-74-1	Hexachlorobenzene	ND	500	130	ug/kg
87-68-3	Hexachlorobutadiene	ND	500	190	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	500	140	ug/kg
67-72-1	Hexachloroethane	ND	500	160	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	500	140	ug/kg
78-59-1	Isophorone	ND	500	170	ug/kg
90-12-0	1-Methylnaphthalene	ND	500	160	ug/kg
91-57-6	2-Methylnaphthalene	ND	500	160	ug/kg
88-74-4	2-Nitroaniline	ND	500	120	ug/kg
99-09-2	3-Nitroaniline	ND	500	120	ug/kg
100-01-6	4-Nitroaniline	ND	500	300	ug/kg
91-20-3	Naphthalene	ND	500	170	ug/kg
98-95-3	Nitrobenzene	ND	500	160	ug/kg
62 - 75-9	N-Nitrosodimethylamine	ND	5000	2200	ug/kg
621 - 64-7	N-Nitroso-di-n-propylamine	ND	1000	550	ug/kg
85-01-8	Phenanthrene	ND	500	110	ug/kg
129-00-0	Pyrene	ND	1000	680	ug/kg
110-86-1	Pyridine	ND	2000	220	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	500	340	ug/kg

Page 2 of 3

cn ____

Method Blank Summary Job Number: C3343

. .

Project:	11759 Dub	lin Blvd, I	Dublin, CA				
Sample OP571-MB	File ID X2000.D	DF 1	Analyzed 12/11/08	By LY	Prep Date 12/11/08	Prep Batch OP571	Analytical Batch EX109
The QC repor	ted here app	lies to the	e following sam	ples:		Method: SW	7846 8270C

C3343-1, C3343-2, C3343-3, C3343-4

Surrogate Recoveries		Limits
2-Fluorophenol	55%	20-100%
Phenol-d5	56%	20-100%
2,4,6-Tribromophenol	50%	30-100%
Nitrobenzene-d5	55%	20-100%
2-Fluorobiphenyl	50%	20-106%
Terphenyl-d14	80%	55-130%
	2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl	2-Fluorophenol55%Phenol-d556%2,4,6-Tribromophenol50%Nitrobenzene-d555%2-Fluorobiphenyl50%

Page 3 of 3

01 ____

Job Number:	C3343
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP571-BS	X2001.D	1	12/11/08	LY	12/11/08	OP571	EX109
OP571-BSD	X2002.D	1	12/11/08	LY	12/11/08	OP571	EX109

The QC reported here applies to the following samples:

Method: SW846 8270C

C3343-1, C3343-2, C3343-3, C3343-4

		Spike	BSP	BSP	BSD	BSD		Limits
CAS No.	Compound	ug/kg	ug/kg	%	ug/kg	%	RPD	Rec/RPD
65-85-0	Benzoic acid	5000	2540	51	2550	51	0	24-116/30
95-57-8	2-Chlorophenol	2500	1530	61	1630	65	6	31-130/30
59-50-7	4-Chloro-3-methyl phenol	2500	1490	60	1600	64 [′]	7	35-117/30
120-83-2	2,4-Dichlorophenol	2500	1520	61	1610	64	6	40-111/30
105-67-9	2,4-Dimethylphenol	2500	1500	60	1620	65	8	29-109/30
51-28-5	2,4-Dinitrophenol	2500	1320	53	1220	49	8	19-117/30
534-52-1	4,6-Dinitro-o-cresol	2500	1520	61	1540	62	1.	28-119/30
95-48-7	2-Methylphenol	2500	1530	61	1660	66	8	33-114/30
	3&4-Methylphenol	2500	1540	62	1650	66	7	34-115/30
88-75-5	2-Nitrophenol	2500	1580	63	1670	67	6	20-116/30
100-02-7	4-Nitrophenol	2500	1880	75	2030	81	8	6-114/30
87-86-5	Pentachlorophenol	2500	1580	63	1690	68	7	10-115/30
108-95-2	Phenol	2500	1640	66	1740	70	6	28-122/30
95-95-4	2,4,5-Trichlorophenol	2500	1350	54	1410	56	. 4	30-111/30
88-06-2	2,4,6-Trichlorophenol	2500	1310	52	1430	57	9	30-110/30
83-32-9	Acenaphthene	2500	1400	56	1490	60	6	34-129/30
208-96-8	Acenaphthylene	2500	1400	56	1500	60	7	38-118/30
62-53-3	Aniline	2500	1470	59	1560	62	6	28-112/30
120-12-7	Anthracene	2500	1720	69	1840	74	7	41-114/30
103-33-3	Azobenzene	2500	1510	60	1580	63	5	28-114/30
92-87-5	Benzidine	5000	2010	40	2820	56	34* a	10-156/30
56-55-3	Benzo(a)anthracene	2500	1920	77	2080	83	8	40-116/30
50-32-8	Benzo(a)pyrene	2500	1900	76	2070	83	9	39-112/30
205-99-2	Benzo(b)fluoranthene	2500	1890	76	2020	81	7	40-117/30
191-24-2	Benzo(g,h,i)perylene	2500	1700	68	1760	70	3	36-113/30
207-08-9	Benzo(k)fluoranthene	2500	1800	72	1930	77	7	41-117/30
101-55-3	4-Bromophenyl phenyl ether	2500	1510	60	1620	.65	7	30-114/30
85-68-7	Butyl benzyl phthalate	2500	1970	79	2180	87	10	27-110/30
100-51-6	Benzyl Alcohol	2500	1580	63	1720	69	8	31-112/30
91-58-7	2-Chloronaphthalene	2500	1420	57	1520	61	7	37-115/30
106-47-8	4-Chloroaniline	2500	1380	55	1530	61	10	29-95/30
86-74-8	Carbazole	2500	2050	82	2200	88	7 .	40-116/30
218-01-9	Chrysene	2500	1650	66	1820	73	10	40-117/30
111-91-1	bis(2-Chloroethoxy)methane	2500	1560	62	1640	66	5	31-99/30
111-44-4	bis(2-Chloroethyl)ether	2500	1560	62	1660	66	6	30-106/30
108-60-1	bis(2-Chloroisopropyl)ether	2500	1630	65	1710	68	5	24-104/30

ა ა

Job Number: Account: Project:	C3343 ERMCAW 11759 Dub		Vest, Inc. Dublin, CA			
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch
OP571-BS	X2001.D	1	12/11/08	LY	12/11/08	OP571
	A2001.D	1	12/11/00		12/11/00	01 57 1

The QC reported here applies to the following samples:

Method: SW846 8270C

C3343-1, C3343-2, C3343-3, C3343-4

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	BSD ug/kg	BSD %	RPD	Limits Rec/RPD
7005-72-3	4-Chlorophenyl phenyl ether	2500	1380	55	1430	57	4	30-111/30
95-50-1	1,2-Dichlorobenzene	2500	1530	61	1630	65	6	27-111/30
541-73 - 1	1,3-Dichlorobenzene	2500	1460	58	1550	62	6	25-116/30
106-46-7	1,4-Dichlorobenzene	2500	1500	60	1580	63	5	27-120/30
121-14-2	2,4-Dinitrotoluene	2500	1630	65	1740	70	7	27-114/30
606-20-2	2,6-Dinitrotoluene	2500	1470	59	1520	61	3	27-114/30
91-94-1	3,3'-Dichlorobenzidine	5000	3730	75	3990	80	7	24-118/30
53-70-3	Dibenzo(a,h)anthracene	2500	1370	55	1480	59	8	37-115/30
132-64-9	Dibenzofuran	2500	1410	56	1510	60	7	28-113/30
122-39-4	Diphenylamine	2500	1520	61	1580	63	4	23-117/30
84-74-2	Di-n-butyl phthalate	2500	1990	80	2150	86	8	29-115/30
117-84-0	Di-n-octyl phthalate	2500	1930	77	2070	83	7	29-127/30
84-66-2	Diethyl phthalate	2500	1560	62	1650	66	6	29-116/30
131-11-3	Dimethyl phthalate	2500	1440	58	1520	61	5	30-110/30
117-81-7	bis(2-Ethylhexyl)phthalate	2500	1970	79	2160	86	9	27-121/30
206-44-0	Fluoranthene	2500	1950	78	2110	84	8	40-120/30
86-73-7	Fluorene	2500	1400	56	1490	60	6	40-119/30
118-74 -1	Hexachlorobenzene	2500	1510	60	1620	65	7	28-113/30
87-68-3	Hexachlorobutadiene	2500	1530	61	1610	64	5	29-115/30
77-47-4	Hexachlorocyclopentadiene	2500	1240	50	1310	52	5	26-114/30
67 - 72-1	Hexachloroethane	2500	1450	58	1550	62	7	24-109/30
193-39-5	Indeno(1,2,3-cd)pyrene	2500	1950	78	2110	84	8	37-114/30
78-59-1	Isophorone	2500	1670	67	1770	71	6	28-117/30
90-12-0	1-Methylnaphthalene	2500	1580	63	1690	68	7	25-113/30
91-57-6	2-Methylnaphthalene	2500	1630	65	1740	70	7	27-113/30
88-74-4	2-Nitroaniline	2500	1470	59	1550	62	5	23-116/30
99-09-2	3-Nitroaniline	2500	1400	56	1480	59	6	29-115/30
100-01-6	4-Nitroaniline	2500	1690	68	1820	73	7	29-114/30
91-20-3	Naphthalene	2500	1570	63	1660	66	6	24-113/30
98-95-3	Nitrobenzene	2500	1610	64	1680	67	4	23-112/30
62-75-9	N-Nitrosodimethylamine	2500	1000	41	1100	46	11	20-108/30
621 - 64-7	N-Nitroso-di-n-propylamine	2500	1590	64	1700	68	7	26-127/30
85-01-8	Phenanthrene	2500	1720	69	1810	72	5	41-113/30
129-00-0	Pyrene	2500	1910	76	2110	84	10	45-134/30
110-86-1	Pyridine	2500	1030	41	1190	48	14	20-78/30
120-82-1	1,2,4-Trichlorobenzene	2500	1600	64	1700	68	6	31-122/30

Page 2 of 3

Analytical Batch

EX109

EX109

Job Number:	C3343
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP571-BS	X2001.D	1	12/11/08	LY	12/11/08	OP571	EX109
OP571-BSD	X2002.D	1	12/11/08	LY	12/11/08	OP571	EX109

-

The QC reported here applies to the following samples:

Method: SW846 8270C

C3343-1, C3343-2, C3343-3, C3343-4

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
367-12-4 4165-62-2	2-Fluorophenol Phenol-d5	53% 64%	70% 71%	20-100% 20-100%
118-79-6	2,4,6-Tribromophenol	69%	73%	30-100%
4165-60 - 0 321-60 - 8	Nitrobenzene-d5 2-Fluorobiphenyl	64% 60%	70% 63%	20-100% 20-106%
1718-51-0	Terphenyl-d14	81%	91%	55-130%

(a) Outside lab control limits.

•

Job Number: Account: Project:	C3343 ERMCAW 11759 Dub		Vest, Inc. Dublin, CA				
Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP571-MS	X2005.D	1	12/11/08	LY	12/11/08	OP571	EX109
OP571-MSD	X2006.D	1	12/11/08	LY	12/11/08	OP571	EX109
C3343-2	X2004.D	1	12/11/08	LY	12/11/08	OP571	EX109

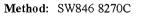
The QC reported here applies to the following samples:

Method: SW846 8270C

C3343-1, C3343-2, C3343-3, C3343-4

CAS No.	Compound	C3343-2 ug/kg	2 Q	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
65-85-0	Benzoic acid	ND		5000	1310	26	1810	36	32	24-116/36
95-57-8	2-Chlorophenol	ND		2500	1020	41	1040	42	2	31-130/31
59-50 - 7	4-Chloro-3-methyl phenol	ND		2500	1230	49	1430	57	15	35-117/38
120-83-2	2,4-Dichlorophenol	ND		2500	1050	42	1200	48	13	40-111/30
105-67-9	2,4-Dimethylphenol	ND		2500	624	25* a	529	21* ^a	16	29-109/31
51-28-5	2,4-Dinitrophenol	ND		2500	840	34	1020	41	19	19-117/40
534-52-1	4,6-Dinitro-o-cresol	ND		2500	1190	48	1290	52	8	28-119/37
95-48 - 7	2-Methylphenol	ND		2500	1010	40	1030	41	2	33-114/29
<i>y</i> y 10 <i>y</i>	3&4-Methylphenol	ND		2500	1090	44	1170	47	7	34-115/31
88-75-5	2-Nitrophenol	ND		2500	1010	40	1050	42	4	20-116/30
100-02-7	4-Nitrophenol	ND		2500	1840	74	2030	81	10	6-114/56
87-86-5	Pentachlorophenol	ND		2500	1400	56	1460	58	4	10-115/39
108-95-2	Phenol	ND		2500	1200	46	1300	50	8	28-122/38
95-95-4	2,4,5-Trichlorophenol	ND		2500	1090	44	1300	- 52	18	30-111/28
88-06-2	2,4,6-Trichlorophenol	ND		2500	1000	40	1180	47	17	30-110/27
83-32-9	Acenaphthene	ND		2500	1030	41	1210	48	16	34-129/31
208-96-8	Acenaphthylene	ND		2500	1010	40	1180	47	16	38-118/30
62-53-3	Aniline	ND		2500	861	34	790	32	9	28-112/38
120-12-7	Anthracene	ND		2500	1580	63	1730	69	9	41-114/29
103-33-3	Azobenzene	ND		2500	1320	53	1560	62	17	28-114/27
92-87-5	Benzidine	ND		5000	1240	25	941	19	27	10-156/50
56-55-3	Benzo(a)anthracene	ND		2500	1960	78	2050	82	4	40-116/31
50-32-8	Benzo(a)pyrene	ND		2500	1940	78	2070	83	6	39-112/32
205-99-2	Benzo(b)fluoranthene	ND		2500	1950	78	2050	82	.5	40-117/31
191-24-2	Benzo(g,h,i)perylene	ND		2500	1660	66	1740	70	5	36-113/32
207-08-9	Benzo(k)fluoranthene	ND		2500	1850	74	1930	77	4	41-117/30
101-55 - 3	4-Bromophenyl phenyl ether	ND		2500	1370	55	1570	63	14	30-114/26
85-68-7	Butyl benzyl phthalate	ND		2500	2130	85	2280	91	7	27-110/28
100-51-6	Benzyl Alcohol	ND		2500	1160	46	1260	50	8	31-112/34
91-58-7	2-Chloronaphthalene	ND		2500	947	38	1100	44	15	37-115/28
106-47-8	4-Chloroaniline	ND		2500	1010	40	1100	44	9	29-95/34
86-74-8	Carbazole	ND		2500	1920	77	2040	82	6	40-116/30
218-01-9	Chrysene	ND		2500	1730	69	1780	71	3	40-117/31
111-91-1	bis(2-Chloroethoxy)methane	ND		2500	1080	43	1190	48	10	31-99/30
111-44-4	bis(2-Chloroethyl)ether	ND		2500	925	37	926	37	0	30-106/33
108-60-1	bis(2-Chloroisopropyl)ether	ND		2500	916	37	974	39	6	24-104/32

Page 1 of 3


Job Number:	C3343
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP571-MS	X2005.D	1	12/11/08	LY	12/11/08	OP571	EX109
OP571-MSD	X2006.D	1	12/11/08	LY	12/11/08	OP571	EX109
C3343-2	X2004.D	1	12/11/08	LY	12/11/08	OP571	EX109

The QC reported here applies to the following samples:

C3343-1, C3343-2, C3343-3, C3343-4

CAS No.	Compound	C3343-2 ug/kg	2 Q	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
7005-72-3	4-Chlorophenyl phenyl ether	ND		2500	1130	45	1350	54	18	30-111/26
95-50-1	1,2-Dichlorobenzene	ND		2500	662	26* a	662	26* a	0	27-111/35
541-73-1	1,3-Dichlorobenzene	ND		2500	560	22* ^a	569	23* ^a	2	25-116/36
106-46-7	1,4-Dichlorobenzene	ND		2500	601	24* a	608	24* ^a	1	27-120/30
121-14-2	2,4-Dinitrotoluene	ND		2500	1500	60	1700	68	13	27-114/38
606-20-2	2,6-Dinitrotoluene	ND		2500	1260	50	1500	60	17	27-114/30
91-94-1	3,3'-Dichlorobenzidine	ND		5000	4050	81	3810	76	6	24-118/31
53-70-3	Dibenzo(a,h)anthracene	ND		2500	1420	57	1530	61	7	37-115/29
132-64-9	Dibenzofuran	ND		2500	1090	44	1290	52	17	28-113/27
122-39-4	Diphenylamine	ND		2500	1300	52	1510	60 ⁻	15	23-117/28
84-74-2	Di-n-butyl phthalate	ND		2500	2040	82	2190	88	7	29-115/27
117-84-0	Di-n-octyl phthalate	ND		2500	2090	84	2230	89	6	29-127/28
84-66-2	Diethyl phthalate	ND		2500	1450	58	1660	66	14	29-116/27
131-11-3	Dimethyl phthalate	ND		2500	1320	53	1510	60	13	30-110/26
117-81-7	bis(2-Ethylhexyl)phthalate	ND		2500	2150	86	2280	91	6	27-121/29
206-44-0	Fluoranthene	ND		2500	1900	76	1960	78	3	40-120/32
86-73-7	Fluorene	ND		2500	1160	46	1370	55	17	40-119/30
118-74-1	Hexachlorobenzene	ND		2500	1380	55	1550	62	12	28-113/27
87-68-3	Hexachlorobutadiene	ND		2500	754	30	821	33	9	29-115/33
77-47-4	Hexachlorocyclopentadiene	ND		2500	636	25* a	674	27	6	26-114/41
67-72-1	Hexachloroethane	ND		2500	580	23* ^a	604	24	4	24-109/38
193-39-5	Indeno(1,2,3-cd)pyrene	ND		2500	1970	79	2100	84	6	37-114/33
78-59-1	Isophorone	ND		2500	1180	47	1290	52	9	28-117/30
90-12-0	1-Methylnaphthalene	ND		2500	993	40	1110	44	11	25-113/33
91 - 57-6	2-Methylnaphthalene	ND		2500	1020	41	1140	46	11	27-113/32
88 - 74-4	2-Nitroaniline	ND		2500	1290	52	1520	61	16	23-116/29
99 - 09-2	3-Nitroaniline	ND		2500	1370	55	1540	62	12	29-115/31
100-01-6	4-Nitroaniline	ND		2500	1640	66	1820	73	10	29-114/31
91-20-3	Naphthalene	ND		2500	906	36	967	39	7	24-113/32
98-95-3	Nitrobenzene	ND		2500	985	39	1020	41	3	23-112/32
62-75-9	N-Nitrosodimethylamine	ND		2500	770	31	780	31	2	20-108/34
621-64-7	N-Nitroso-di-n-propylamine	ND		2500	1070	43	1150	46	7	26-127/43
85-01-8	Phenanthrene	ND		2500	1560	62	1730	69	10	41-113/32
129-00-0	Pyrene	ND		2500	1900	76	1950	78	3	45-134/33
110-86-1	Pyridine	ND		2500	515	21	439	18* a	16	20-78/38
120-82-1	1,2,4-Trichlorobenzene	ND		2500	856	34	901	36	5	31-122/44

Page 2 of 3

ෆ ය

Matrix Spike/Matrix Spike Duplicate Summary Job Number: C3343

Job Number: Account: Project:	ERMCAW 11759 Dub		Vest, Inc. Dublin, CA				
Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP571-MS	X2005.D	1	12/11/08	LY	12/11/08	OP571	EX109
OP571-MSD	X2006.D	1	12/11/08	LY	12/11/08	OP571	EX109
C3343-2	X2004.D	1	12/11/08	LY	12/11/08	OP571	EX109

The QC reported here applies to the following samples:

Method: SW846 8270C

.

C3343-1, C3343-2, C3343-3, C3343-4

CAS No.	Surrogate Recoveries	MS	MSD	C3343-2	Limits
367-12-4	2-Fluorophenol	41%	41%	43%	20-100%
4165-62-2	Phenol-d5	47%	51%	50%	20-100%
118-79-6	2,4,6-Tribromophenol	61%	65%	53%	30-100%
4165-60-0	Nitrobenzene-d5	39%	42%	46%	20-100%
321-60-8	2-Fluorobiphenyl	39%	46%	46%	20-106%
1718-51-0	Terphenyl-d14	87%	91%	104%	55-130%

(a) Outside lab control limits.

Page 3 of 3

GC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries •
- Blank Spike Summaries ٠
- Matrix Spike and Duplicate Summaries

1.4.1

Method Blank Summary

.

Account:	C3343 ERMCAWC 11759 Dubli							
*	File ID PP3051.D	DF 1	Analyzed 12/11/08	By NB	Prep I 12/10/		Prep Batch OP569	Analytical Batch GPP111
The QC reported	d here annl	ies to the fo	ollowing same	ples:			Method: SW	7846 8082
C3343-1, C3343-								
C3343-1, C3343-			Result	RL	MDL	Units	Q	
C3343-1, C3343-	-2, C3343-3, 1pound			RL 100	MDL 17	Units ug/kg	Q	
C3343-1, C3343- CAS No. Com	-2, C3343-3, 1 pound clor 1016		Result				Q	
C3343-1, C3343- CAS No. Com 12674-11-2 Aroo 11104-28-2 Aroo 11141-16-5 Aroo	-2, C3343-3, pound clor 1016 clor 1221 clor 1232		Result ND ND ND	100	17	ug/kg ug/kg ug/kg	Q	
C3343-1, C3343- CAS No. Com 12674-11-2 Aroc 11104-28-2 Aroc 11141-16-5 Aroc 53469-21-9 Aroc	-2, C3343-3, pound clor 1016 clor 1221 clor 1232 clor 1242		Result ND ND	100 100	17 50	ug/kg ug/kg	Q	
CAS No. Com 12674-11-2 Aroc 11104-28-2 Aroc 11141-16-5 Aroc 53469-21-9 Aroc 12672-29-6 Aroc	-2, C3343-3, npound clor 1016 clor 1221 clor 1232 clor 1242 clor 1248		Result ND ND ND ND ND ND	100 100 100 100 100	17 50 50 50 50	ug/kg ug/kg ug/kg ug/kg ug/kg	Q	
C3343-1, C3343- CAS No. Com 12674-11-2 Aroc 11104-28-2 Aroc 11141-16-5 Aroc 53469-21-9 Aroc	-2, C3343-3, npound clor 1016 clor 1221 clor 1232 clor 1242 clor 1248 clor 1254		Result ND ND ND ND ND	100 100 100 100	17 50 50 50	ug/kg ug/kg ug/kg ug/kg	Q	

CAS No.	Surrogate Recoveries		Limits
877-09-8	Tetrachloro-m-xylene	85%	58-130%
2051-24-3	Decachlorobiphenyl	108%	58-130%

Page 1 of 1

Method Blank Summary

Job Number:	C3343
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample	File ID	DF	Analyzed	Ву	Prep Date 12/10/08	Prep Batch	Analytical Batch
OP566-MB	HH1464.D	1	12/10/08	Л		OP566	GHH84
The QC repor	rted here appl	ies to the	e following sam	ples:		Method: SW	7846 8015B M

C3343-1, C3343-2, C3343-3, C3343-4, C3343-5, C3343-6, C3343-7

CAS No.	Compound	Result	RL	MDL	Units Q
	TPH (C10-C28) TPH (> C28-C40)	ND ND	10 20	5.0 10	mg/kg mg/kg
CAS No.	Surrogate Recoveries		Limits		
630-01-3	Hexacosane	73%	45-140	%	

78 of 94 **ACCUTEST** C3343

Page 1 of 1

CAS No.

877-09-8

Surrogate Recoveries

Tetrachloro-m-xylene

2051-24-3 Decachlorobiphenyl

Job Number: Account: Project:	C3343 ERMCAW0 11759 Dubl		,		-				-
Sample OP569-BS OP569-BSD	File ID PP3052.D PP3053.D	DF 1 1	Analyzed 12/11/08 12/11/08	By NB NB	12	rep Date 2/10/08 2/10/08	Prej OP5 OP5		Analytical Batch GPP111 GPP111
The QC repor C3343-1, C334			following sam	ıples:			Met	hod: SW	V846 8082
CAS No. Co	ompound		Spike ug/kg	BSP ug/kg	BSP %	BSD ug/kg	BSD %	RPD	Limits Rec/RPD
12672-29-6 Ar	oclor 1248		400	381	95	375	94	2	40-145/30

BSD

84%

106%

Limits

58-130%

58-130%

BSP

85%

104%

9

6.2

Page 1 of 1

-

Job Number:	C3343
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, C.

SampleFile IDDFAnalyzedByPrep DatePrep BatchAnalytical BaOP566-BSHH1465.D112/10/08JH12/10/08OP566GHH84OP566-BSDHH1466.D112/10/08JH12/10/08OP566GHH84
--

CA

The QC reported here applies to the following samples:

Method: SW846 8015B M

C3343-1, C3343-2, C3343-3, C3343-4, C3343-5, C3343-6, C3343-7

CAS No.	Compound	Spike mg/kg	BSP mg/kg	BSP %	BSD mg/kg	BSD %	RPD	Limits Rec/RPD
	TPH (C10-C28) TPH (> C28-C40)	100 100	88.3 81.1	88 81	87.8 77.8	88 78	1 4	45-140/30 45-140/30
CAS No.	Surrogate Recoveries	BSP	BSI	D	Limits			
630-01-3	Hexacosane	82%	83%	6	45-140%	6		

Page 1 of 1

.

Job Number: Account: Project:	C3343 ERMCAW 11759 Dubl										
Sample OP569-MS	File ID PP3063.D	DF 1	Analyzed 12/11/08	Ν	By 1B	Prep D 12/10/0	8	Prep Bate OP569	G	nalytical PP111	Batch
OP569-MSD C3346-2	PP3064.D PP3055.D	1 1	12/11/08 12/11/08		1B 1B	12/10/0 12/10/0		OP569 OP569	-	PP111 PP111	
The QC repor			_	ple	s:			Method:	SW846	8082	
C3343-1, C334	43-2, C3343-3	, C3343-4									
CAS No. Co	ompound		C3346-2 ug/kg	Q	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
12672-29-6 Ai	roclor 1248		ND		400	379	95	359	90	5	40-145/40

CAS No.	Compound	C3346-2 ug/kg Q	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
12672-29-6	Aroclor 1248	ND	400	379	95	359	90	5	40-145/40
CAS No.	Surrogate Recoveries	MS	MSD	C33	346-2	Limits			
877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	77% 95%	79% 93%	79% 95%	-	58-130% 58-130%			

ත. ය

Job Number:	C3343
Account:	ERMCAWC ERM-West, Inc.
Project:	11759 Dublin Blvd, Dublin, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP566-MS	HH1480.D	1	12/11/08	JH	12/10/08	OP566	GHH84
OP566-MSD	HH1481.D	1	12/11/08	JН	12/10/08	OP566	GHH84
C3316-1	HH1473.D	1	12/10/08	JH	12/10/08	OP566	GHH84

The QC reported here applies to the following samples:

Method: SW846 8015B M

C3343-1, C3343-2, C3343-3, C3343-4, C3343-5, C3343-6, C3343-7

CAS No.	Compound	C3316-1 mg/kg Q	Spike mg/kg	MS mg/kg	MS %	MSD mg/kg	MSD %	RPD	Limits Rec/RPD
	TPH (C10-C28) TPH (> C28-C40)	ND ND	100 100	82.4 70.8	82 71	78.9 65.7	79 66	4 7	45-140/30 45-140/30
CAS No.	Surrogate Recoveries	MS	MSD	C33	316-1	Limits			
630-01-3	Hexacosane	72%	68%	57%	6	45-140%	6		

Page 1 of 1

Section 7

QC Data Sum	maries	
Includes the follo	owing where applicable:	
	Duplicate Summaries Lab Control Sample Summarie	25

BLANK RESULTS SUMMARY Part 2 - Method Blanks

_

Login Number: C3343 Account: ERMCAWC - ERM-West, Inc. Project: 11759 Dublin Blvd, Dublin, CA

QC Batch ID: MP679 Matrix Type: SOLID Methods: SW846 6010B Units: mg/kg

Prep Date:				12/11/08
Metal	RL	IDL	MB raw	final
Aluminum	10	1.3		
Antimony	2.0	.67	anr	
Arsenic	2.0	.96	anr	
Barium	1.0	.02	anr	
Beryllium	1.0	.04	anr	
Boron	1.0	.7		
Cadmium	1.0	.03	0.020	<1.0
Calcium	10	.52		
Chromium	1.0	.05	0.13	<1.0
Cobalt	1.0	.04	anr	
Copper	1.0	.07	anr	
Iron	10	.33		
Lead	1.0	.24	0.030	<1.0
Lithium	1.0	.19		
Magnesium	10	1.3		
Manganese	1.0	.12		
Molybdenum	1.0	.13	anr	
Nickel	1.0	.09	-0.010	<1.0
Potassium	20	5.1		
Selenium	2.0	. 98	anr	
Silicon	. 10	1,4		
Silver	1.0	.08	anr	
Sodium	200	1.6		-
Strontium	1.0	.02		
Thallium	2.0	. 4	anr	
Tin	5.0	.26		
Titanium	1.0	.02		
Vanadium	1.0	.02	anr	
Zinc	2.0	.35	0.64	<2.0

Associated samples MP679: C3343-1, C3343-2, C3343-3, C3343-4, C3343-5, C3343-6, C3343-7

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C3343 Account: ERMCAWC - ERM-West, Inc. Project: 11759 Dublin Blvd, Dublin, CA

QC Batch ID: MP679 Matrix Type: SOLID

.

Methods: SW846 6010B Units: mg/kg

íetal	C3316 - 1 Original	MS	Spikelot MPIR1	% Rec	QC Limits
Aluminum				·	
Antimony	anr				
Arsenic	anr				
Barium	anr				
Beryllium	anr				
Boron					
Cadmium	0.17	46.5	50	92.7	80-120
Calcium					
Chromium	159	205	50	92.0	80-120
Cobalt	anr				
Copper	anr				
Iron					
Lead	5.6	50.1	50	89.0	80-120
Lithium					
Magnesium					
Manganese					
Molybdenum	anr				
Nickel	118	171	50	106.0	80-120
Potassium					
Selenium	anr				
Silicon					
Silver	anr				
Sodium					
Strontium					
Thallium	anr				
Tin					
Titanium					
Vanadium	anr				
Zinc	60.9	107	50	92.2	80-120

(*) Outside of QC limits
 (N) Matrix Spike Rec. outside of QC limits
 (anr) Analyte not requested

7.1.2 7

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C3343 Account: ERMCAWC - ERM-West, Inc. Project: 11759 Dublin Blvd, Dublin, CA

QC Batch ID: MP679 Matrix Type: SOLID Methods: SW846 6010B Units: mg/kg

Prep Date:					12/11/08	
Metal	C3316-1 Original	MSD	Spikelot MPIR1	% Rec	MSD RPD	QC Limit
Aluminum						
Antimony	anr					
Arsenic	anr					
Barium	anr					
Beryllium	anr					
Boron						
Cadmium	0.17	47.1	50	93.9	1.3	20
Calcium						
Chromium	159	221	50	124.ON(a	7.5	20
Cobalt	anr					
Copper	anr					
Iron						
Lead	5.6	50.6	50	90.0	1.0	20
Lithium						
Magnesium						
Manganese						
Molybdenum	anr					
Nickel	118	179	50	122.ON(a	4.6	20
Potassium						
Selenium	anr					
Silicon						
Silver	anr					
Sodium						
Strontium						
Thallium	anr					
Tin						
Titanium						
Vanadium	anr					
Zinc	60.9	108	50	94.2	0.9	20
Associated sa	mples MP67	9: C3343-	1, C3343-:	2, C3343-3	3, C3343-4	4, C3343-5, C3343-6, C3343-7
Results < IDL (*) Outside o (N) Matrix Sp (anr) Analyte (a) Spike rec	f QC limit. ike Rec. o not reque	s utside of sted	QC limit.	s		nd/or sample nonhomogeneity.

7.1.2

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

-

Login Number: C3343 Account: ERMCAWC - ERM-West, Inc. Project: 11759 Dublin Blvd, Dublin, CA

QC Batch ID: Matrix Type:							ds: SW846 ts: mg/kg		
Prep Date:			12/11/0	8				12/11/	08
Metal	BSP Result	Spikelc MPIR1	t % Rec	QC Limits	BSD Result	Spikelot MPIR1	t % Rec	BSD RPD	QC Limit
Aluminum	· · ·				• • • • •				······································
Antimony	anr								
Arsenic	anr								
Barium	anr								
Beryllium	anr								
Boron									
Cadmium	47.3	50	94.6	80-120	47.9	50	95.8	1.3	
Calcium									
Chromium	49.1	50	98.2	80-120	49.6	50	99.2	1.0	
Cobalt	anr								
Copper	anr								
Iron									
Lead	49.1	50	98.2	80-120	48.8	50	97.6	0.6	
Lithium									
Magnesium									
Manganese									
Molybdenum	anr								
Nickel	48.2	50	96.4	80-120	48.7	50	97.4	1.0	
Potassium									
Selenium	anr								
Silicon									
Silver	anr								
Sodium									
Strontium									
Thallium	anr								
Tin									
Titanium									
Vanadium	anr								
Zinc	47.6	50	95.2	80-120	47.9	50	95.8	0.6	
Associated s	amples MP6	579: C334:	3 - 1, C334	3 - 2, C3343	-3, C3343	-4, C3343	-5, C334	3-6, C33	13-7
Results < ID) are chou	D 26 765	o for cal	culation n	urnoses				

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

7.1.3

SERIAL DILUTION RESULTS SUMMARY

.

Login Number: C3343 Account: ERMCAWC - ERM-West, Inc. Froject: 11759 Dublin Blvd, Dublin, CA

Methods: SW846 6010B Units: ug/l

Prep Date:			12/11/08	
Metal	C3316-1 Original	SDL 2:5	%DIF	QC Limits
Aluminum				
Antimony	anr			
Arsenic	anr			
Barium	anr			
Beryllium	anr			
Boron				
Cadmium	1.80	2.00	11.1 (a)	0-10
Calcium				
Chromium	1660	1700	2.6	0-10
Cobalt	anr			
Copper	anr			
Iron				
Lead	57.8	69.0	19.4 (a)	0-10
Lithium				
Magnesium				
Manganese				
Molybdenum	anr			
Nickel	1230	1270	2.9	0-10
Potassium				
Selenium	anr			
Silicon				
Silver	anr			
Sodium				
Strontium				
Thallium	anr			
Tin				
Titanium				
Vanadium	anr			
Zinc	633	630	0.5	0-10
Associated sa	amples MP67	9: C3343-	·1, C3343-	2, C3343-3, C3343-4, C3343-5, C3343-6, C3343-7
Results < IDI (*) Outside d			for calcu	lation purposes

(*) Outside of QC limits (anr) Analyte not requested

QC Batch ID: MP679 Matrix Type: SOLID

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

7.1.4

88 of 94 **CACCUTEST:** C3343

FOST DIGESTATE SPIKE SUMMARY

Login Number: C3343 Account: ERMCAWC - ERM-West, Inc. Project: 11759 Dublin Blvd, Dublin, CA

QC Batch ID: MP679 Matrix Type: SOLID

.

Methods: SW846 6010B Units: ug/l

Prep Date:									12/11/0	
Metal	Sample ml	Final ml	C3316-1 Raw	Corr.**	PS ug/l	Spike ml	Spike ug/ml	Spike ug/l	% Rec	QC Limits
Aluminum										
Antimony										
Arsenic										
Barium										
Beryllium										
Boron										
Cadmium										
Calcium										
Chromium	10	10.05	1656.4	1648.159	2081.8	0.05	100	497.5124	87.2	-
Cobalt										
Copper										
Iron										
Lead										
Lithium										
Magnesium										
Manganese										
Molybdenum										
Nickel	10	10.05	1230.8	1224.677	1653	0.05	100	497.5124	86.1	-
Potassium										
Selenium										
Silicon										
Silver										
Godium										
Strontium										
Fhallium										
ſin										
Fitanium										
/anadium										
linc										
Associated sa	amples MP6	79: C3343	-1, C3343-	2, C3343-	3, C3343·	-4, C3343	-5, C3343	-6, C3343-	7	
Results < IDI (*) Outside c (**) Corr. s (anr) Analyte	of QC limi sample res	ts ult = Raw				olume)				

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: C3343 Account: ERMCAWC - ERM-West, Inc. Project: 11759 Dublin Blvd, Dublin, CA

QC Batch ID: MP737 Matrix Type: LEACHATE Methods: SW846 6010B Units: mg/l

Prep Date:				01/02/0
Metal	RL	IDL	MB raw	final
Aluminum	0.50	.063		
Antimony	0.25	.034		
Arsenic	0.25	.048	anr	
Barium	0.10	.001		
Beryllium	0.10	.002		
Boron	0.25	.035		
Cadmium	0.10	.0015		
Calcium	25	.026		
Chromium	0.10	.0025	anr	
Cobalt	0.10	.002		
Copper	0.10	.0035	anr	
Iron	0.50	.017		
Lead	0.25	.012	0.017	<0.25
Lithium	0.10	.0095		
Magnesium	0.50	.066		
Manganese	0.10	.006		
Molybdenum	0.10	.0065		
Nickel	0.10	.0045		
Potassium	25	.25		
Selenium	0.25	.049		-
Silicon	0.25	.071		
Silver	0.10	.004		
Sodium	25	.081		
Strontium	0.10	.001		
Thallium	0.25	.02		
Tin	0.25	.013		
Titanium	0.10	.001		
Vanadium	0.10	.001	anr	
Zinc	0.25	.018		

Associated samples MP737: C3343-7A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

-

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C3343 Account: ERMCAWC - ERM-West, Inc. Project: 11759 Dublin Blvd, Dublin, CA

QC Batch ID: MP737 Matrix Type: LEACHATE Methods: SW846 6010B Units: mg/l

Prep Date:				01/02/0	9
Metal	C3343-7 Origina		Spikelo MPIR1	ot % Rec	QC Limits
Aluminum					
Antimony					
Arsenic	anr				
Barium					
Beryllium					
Boron					
Cadmium					
Calcium					
Chromium	anr				
Cobalt					
Copper	anr				
Iron					
Lead	1.8	4.2	2.5	96.0	80-120
Lithium					
Magnesium					
Manganese					
Molybdenum					
Nickel					
Potassium					
Selenium					
Silicon					
Silver					
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Vanadium	anr				
Zinc					
Associated sa	mples MP7	737: C334	13-7A		
Results < IDL (*) Outside o (N) Matrix Sp (anr) Analyte	f QC limi ike Rec.	its outside			ourposes

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

· · · ·

Login Number: C3343 Account: ERMCAWC - ERM-West, Inc. Project: 11759 Dublin Blvd, Dublin, CA

QC Batch ID: MP737 Matrix Type: LEACHATE Methods: SW846 6010B Units: mg/l

Prep Date:				<u>.</u>	01/02/09	
Metal	C3343-7A Original		Spikelot MPIR1	% Rec	MSD RPD	QC Limit
Aluminum						
Antimony						
Arsenic	anr					
Barium						
Beryllium						
Boron						
Cadmium						
Calcium					÷	
Chromium	anr					
Cobalt						
Copper	anr					
Iron						
Lead	1.8	4.1	2.5	92.0	2.4	20
Lithium					•	
Magnesium						
Manganese						
Molybdenum						
Nickel						
Potassium						
Selenium						
Silicon						
Silver						
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Vanadium	anr					
Zinc						
Associated sam	mples MP73	7: C3343-	7A			
Results < IDL (*) Outside o (N) Matrix Sp. (anr) Analyte	f QC limit ike Rec. o	s utside of			ırposes	

7.2.2

SPIKE BLANK AND LAE CONTROL SAMPLE SUMMARY

-

Login Number: C3343 Account: ERMCAWC - ERM-West, Inc. Froject: 11759 Dublin Blvd, Dublin, CA

Prep Date:			01/02/09	9				01/02/	09
Metal	BSP Result	Spikelot MPIR1	% Rec	QC Limits	BSD Result	Spikelot MPIR1	% Rec	BSD RPD	QC Limit
Aluminum									
Antimony									
Arsenic	anr								
Barium									
Beryllium									
Boron									
Cadmium									
Calcium									
Chromium	anr								
Cobalt									
Copper	anr								
Iron									
Lead	2.5	2.5	100.0	80-120	2.5	2.5	100.0	0.0	
Lithium									
Magnesium									
Manganese									
Molybdenum									
Nickel									
Potassium									
Selenium									
Silicon									
Silver									
Sodium									
Strontium									
Thallium									
Tin									
Titanium									
Vanadium	anr								
Zinc									

7.2.3

93 of 94 ACCUTEST C3343

SERIAL DILUTION RESULTS SUMMARY

Login Number: C3343 Account: ERMCAWC - ERM-West, Inc. Project: 11759 Dublin Blvd, Dublin, CA

QC Batch ID: MP737 Matrix Type: LEACHATE

.

Methods: SW846 6010B Units: ug/l

Prep Date:			01/02/09		
Metal	C3343-7A Original	SDL 5:15	%DIF	QC Limits	
Aluminum					
Antimony					
Arsenic	anr				
Barium					
Beryllium					
Boron					
Cadmium					
Calcium					
Chromium	anr				
Cobalt					
Copper	anr				
Iron					
Lead	1830	1930	5.7	0-10	
Lithium					
Magnesium					
Manganese					
Molybdenum					
Nickel					
Potassium					
Selenium					
Silicon					
Silver					
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Vanadium	anr		н 		
Zinc					
Associated sam	nples MP73	7: C3343-	7A		
Results < IDL (*) Outside of (anr) Analyte	E QC limit	s	for calcu	ation purposes	

Lebbra.or

C3343

7.2.4

Appendix C Waste Disposal Documentation

NON-HAZARDOUS WASTE MANIFEST

	-				EES19	
	WASTE MANIFEST	10°5 US EPA 10 NO.		Manifest Document No.	NH 8717	2. Page 1 of
	3. Generator's Name and Mailing Address DUBLIN CITY OF 11755 DUBLIN BLUD DUBLIN CA 54568					
e viti Livit i s Livit i s	4. Generator's Phone (GO) 961 - 2742 5. Transporter 1 Company Name	6. US EPA ID Number				
		1		A. State Trans		
	EVERGREEN ENVIRONMENTAL SERVICES 7. Transporter 2 Company Name	CAD982413262 8. US EPA ID Number		B. Transporter	·····)
				C. State Trans	· · · · · · · · · · · · · · · · · · ·	
	9. Designated Facility Name and Site Address	10. US EPA ID Number	- · · · · · · · · · · · · · · · · · · ·	D. Transporter E. State Facilit		
					y 5 1 D	
	EVERGREEN OIL, INC. TP.O. 245 6880 Smith Avenue			F. Facility's Ph	one	
	Newark, CA 94560	CAD980887418		510 795		
	The WASTE DESCRIPTION		12. Cont	tainers	13. Total	14. Unit
	a.		No.	Туре	Quantity	Wt./Vol.
	a. Non-Hazardous waste, liquid					
ດີ	b.		001	<u> </u>	620	G
GENER						
A T	c.					
O R	d.					
	G. Additional Descriptions for Materials Listed Above	: . 			des for Wastes Listed Abov	
	15. Special Handling Instructions and Additional Information					
	Profile # Do not ingest Wear protective clothing In case of emergency call: CHEMTREC 800-424-93	300		Invoice: I Sales Order:	495965 0203524	
	16. GENERATOR'S CERTIFICATION: I hereby certify that the in proper condition for transport. The materials described or	contents of this shipment are fully and accurately on this manifest are not subject to federal hazardous	described and s waste regu	id are in all respe- lations.	ects	
	allin.	D. to	rari			
	Printed/Typed Name	Signature				Date
	// *	-			Month 2	Day Year
Ţ	17. Transporter 1 Acknowledgement of Receipt of Materials		:		<u> </u>	<u> 01 07</u> Date
Ā	Printed/Typed Name	Signature			Month	
ŝ	STSSE FALCONZ	- 1 52			Month i)	Day Year
<u>5</u> [18. Transporter 2 Acknowledgement of Receipt of Materials					
	Printed/Typed Name	Signature		<u> </u>	Month	Date Day Year
FAC	19. Discrepancy Indication Space					L
L.	20. Facility Owner or Operator: Certification of receipt of the was	ste materials covered by this manifest, except as n	oted in item	19.		
	Printed/Typed Name	Signature	1fm	$\left(\right)$	Month	Date Day Year
~			$\mathcal{A}\mathcal{U}$	<u> </u>	12	7 10

NON-HAZARDOUS WASTE

		ned for use on elite (12-pitch) typewrite	<u> </u>	2. Page 1 of	2 Emora	ency Response	Phone	4. Manifest	Tracking N	umber			
1	ORIN HAZARDOUS	1. Generator ID Number			500-32			nn	Anc	03	15.	JJK	
	ASTE MANIFEST nerator's Name and Mailin	CAC002637121					(if different that	an mailing addres		- 15 1 19 = =	13 1		
D. Gei	nerators name and mainin	CITY OF DUELIN					•			· .		-	
		100 CIVIC PLAZA				825 CUBL							
Gener	rator's Phone: 925-83	3-8872 DUELIN, CA 94568 1	65		C(.BLM, CA	94363-1						
6. Tra	ansporter 1 Company Nam	le .						U.S. EPA ID N		ህርጉሙ ምርቅ	ورکن و دور در		
ļ		Ecology Control Industries		<u></u>	. <u> </u>	·····		U.S. EPAID N		409820	3127 (-J		
7. Tra	ansporter 2 Company Nam			·			م م م م	U.S. EPAIDT			-	• • • •	
				<u></u>				U.S. EPA ID 1	lumber				
	signated Facility Name an	ECCLOGY CONTR 255 FARR BOULD	VARD -	E3			-		Ċ	1000S-l	765X2		
Facili	ity's Phone: 510-235-1	-543			r	(0.0.1)				Т			
9a.	9b. U.S. DOT Descripti and Packing Group (if	ion (including Proper Shipping Name, Hazar	rd Class, ID Number,		ŀ	10. Contai No.	ners Type	11. Total Quantity	12. Unit Wt./Vol.		3. Waste	Codes	
HM	and Packing Group (If a	any// •••••••			-+	110.	1	· · · ·	1				
		AZAPDOLS WASTE SOLD		••		ംട	45	3000	2	312			
~	- tener i visito	RACE TANK)				البيد فيز فير			1				
	2.							£					
5				-			1	3	1				
							_						
	3.							C					
									1		ł		
					Ì					+			
	4.						1	1	1	1	1	1	
								0			_		
7, 6 8	OTY O EXPTY S ECLICS #52137 WEAR FROMER I	GENNEN EN ELLAG MEG	HTE MONOL	LUEZ A	PE AFF								
7, 6 8	QTY 3 EXPTY 3 ECI JOB # 51137 WEAR FROPER F	TORACE TANKS TANKA 33 33 PENMEN HAIDUNG 4489 OR'S CERTIFICATION: Thereby declare th	ATT C ARE NOL	s consignmen	nt are fully a	nd accurately d	eeribed abov	e by the proper s	hipping nar s. If export	me, and are shipment a	e classified, nd I am the	packageo	
7, 6 8	GT/ 0 EMPT/ 8 SCI 209 # 52137 WEAR FROPER F GENERATOR'S/OFFER marked and labeled/plac	TORACE TANKS TANKA 33 33 PERMAEN MAIDUNG SHED OR'S CERTIFICATION: Thereby declare th arded, and are in all respects in proper cond	htt 5 4960 VCL hat the contents of the dition for transport acc	s consignmen	nt are fully a plicable inter	nd accurately d mational and na of Consent.	escribed abov itional governi	re by the proper s mental regulation	hipping nar s. If export	me, and are shipment ar		جي .	
15. Genu	QTC 3 EMPTC 3 ECL 3C9 # 52137 WEPR FRCFER GENERATOR'S/OFFER marked and labeled/plac Exporter, I certify that the I certify that the waste mi erator's/Offeror's Printed/I	TORACE TANKS TANKA 33 39 SEG WHEN HANDLING WESS OR'S CERTIFICATION: I hereby declare the arded, and are in all respects in proper conce a contents of this consignment conform to the inimization statement identified in 40 CFR 2	htt 5 4960 VCL hat the contents of the dition for transport acc	s consignmer cording to app ed EPA Ackno ge quantity ge	nt are fully a plicable inter	nd accurately d mational and na of Consent.	escribed abov itional governi	re by the proper s mental regulation	hipping nar	me, and are shipment au	e classified, nd I am the Month	Day	
15.	CTC 0 EMPTC 0 ECL COS # 52137 MEAN PROPER F GENERATOR'S/OFFER marked and labeled/plac Exporter, I certify that the I certify that the waste mi rerator's/Offeror's Printed/I errator's/Offeror's Printed/I	TORACE TANKS TANKA 33 39 SEG WHEN HANDLING WESS OR'S CERTIFICATION: I hereby declare the arded, and are in all respects in proper conce a contents of this consignment conform to the inimization statement identified in 40 CFR 2	htt 5 4960 VCL hat the contents of the dition for transport acc	s consignmer cording to app ed EPA Ackno ge quantity ge	nt are fully a plicable inter owledgment enerator) or	nd accurately d mational and na of Consent.	escribed abov itional governi	re by the proper s mental regulation	hipping nar	me, and are shipment ar		جي .	
- 15.	GTC 3 EXPTC 3 EXT ACB # 52T37 WEAR FROPER F GENERATOR'S/OFFER marked and labeled/plac Exporter, I certify that the I certify that the waste mi rerator's/Offeror's Printed/T	TOPACE TANKS TANKA 33 33 FF: MHEN HALDLAG WEB OR'S CERTIFICATION: I hereby declare th arded, and are in all respects in proper conce contents of this consignment conform to th inimization statement identified in 40 CFR 2 Typed Name	htt 5 4960 VCL hat the contents of the dition for transport acc	s consignmer cording to app ed EPA Ackno ge quantity ge	nt are fully a plicable inter owledgment enerator) or Signature	nd accurately d mational and na of Consent. (b) (if I am a sm http://www. Port of e	escribed abov itional governi nall quantity g CDCC entry/exit:	re by the proper s mental regulation	hipping nan s. If export	me, and are shipment a		Day	
- 15. Genu 16. I N Trar	GTC 3 EXPTC 8 SCL 409 # 52137 WEAR FROPER F GENERATOR'S/OFFER marked and labeled/place Exporter, I certify that the certify that the waste mi leriator's/Offeror's Printed/T UCC 100 Printed/T U	TOPACE TANKS TANKA 33 33 FF: MHEN HAUDUNG MED OR'S CERTIFICATION: I hereby declare th arded, and are in all respects in proper conce contents of this consignment conform to th inimization statement identified in 40 CFR 2 (yped Name Import to U.S. ports only):	htt 5 4960 VCL hat the contents of the dition for transport acc	s consignmen cording to app ed EPA Ackno ge quantity ge S	nt are fully a plicable inter owledgment enerator) or Signature	nd accurately d mational and na of Consent. (b) (if I am a sm http://www. Port of e	escribed abov tional governi nall quantity g	re by the proper s mental regulation	hipping nar s. If export	me, and are shipment a		Day	
- 15. Genu 16. I N Trar	GT/ G ENPTY B Str. 109 // 52137 WEP FROPER F GENERATOR'S/OFFER marked and labeled/place Exporter, I certify that the certify that the waste mi rerator's/Offeror's Printed/T international Shipments nsporter signature (for exp Transporter Acknowledgme	TORACE TAKKS TAKA 33 33 FR MEET HALDUNG ALLS OR'S CERTIFICATION: I hereby declare th arded, and are in all respects in proper conc contents of this consignment conform to th inimization statement identified in 40 CFR 2 Typed Name Import to U.S. ports only): ent of Receipt of Materials	htt 5 4960 VCL hat the contents of the dition for transport acc	s consignmer cording to app ad EPA Ackno ge quantity ge S	nt are fully a plicable inter owledgment enerator) or Signature	nd accurately d mational and na of Consent. (b) (if I am a sm http://www. Port of e	escribed abov itional governi nall quantity g CDCC entry/exit:	re by the proper s mental regulation	hipping nar s. If export	me, and are shipment a	Month	Day 201	Ye
- 15. Genu 16. I N Trar	CT CO EMPTOR SCI ICO M 52137 GENERATOR'S/OFFER marked and labeled/plac Exporter, I certify that the I certify that the waste mi rerator's/Offeror's Printed/T international Shipments insporter signature (for exp Transporter Acknowledgme resporter, I Printed/Typed N	TCIPACE TANKS TANKA 33 39 OR'S CERTIFICATION: Thereby declare the arded, and are in all respects in proper cond the contents of this consignment conform to the inimization statement identified in 40 CFR 2 Typed Name Import to U.S. borts only): ent of Receipt of Materials Iame	htt 5 4960 VCL hat the contents of the dition for transport acc	s consignmer cording to app ad EPA Ackno ge quantity ge S	nt are fully a plicable inter owledgment enerator) or Signature	nd accurately d mational and na of Consent. (b) (if I am a sm http://www. Port of e	escribed abov itional governi nall quantity g CDCC entry/exit:	re by the proper s mental regulation	hipping nar s. If export	me, and are shipment a	Month	Day 201	Ye Ye Ye
- 15. Genu 16. I N Trar	CT CO EMPTOR SCI ICO M 52137 GENERATOR'S/OFFER marked and labeled/plac Exporter, I certify that the I certify that the waste mi rerator's/Offeror's Printed/T international Shipments insporter signature (for exp Transporter Acknowledgme resporter, I Printed/Typed N	TCIPACE TANKS TANKA 33 39 OR'S CERTIFICATION: Thereby declare the arded, and are in all respects in proper condi- te contents of this consignment conform to the inimization statement identified in 40 CFR 2 Typed Name Import to U.S. borts only): ent of Receipt of Materials lame	htt 5 4960 VCL hat the contents of the dition for transport acc	s consignmer cording to app ad EPA Ackno ge quantity ge S Export from	nt are fully a plicable inter owledgment enerator) or Signature	nd accurately d mational and na of Consent. (b) (if I am a sn The Mathematical Port of e Date lea	escribed abov itional governi nall quantity g CDCC entry/exit:	re by the proper s mental regulation	hipping nar s. If export	me, and are shipment ar	Month	Day 201	Ye
- 15. Genu 16. I N Trar	CT CO EMPTOR SCI ICO # 52137 GENERATOR'S/OFFER marked and labeled/plac Exporter, I certify that the I certify that the waste mi rerator's/Offeror's Printed/I merator's/Offeror's Offeror's/Offeror's/Offeror's/Offeror's/Offeror's/Offeror's/Offeror'	TCIPACE TANKS TANKA 33 39 OR'S CERTIFICATION: Thereby declare the arded, and are in all respects in proper condi- te contents of this consignment conform to the inimization statement identified in 40 CFR 2 Typed Name Import to U.S. borts only): ent of Receipt of Materials lame	htt 5 4960 VCL hat the contents of the dition for transport acc	s consignmer cording to app ad EPA Ackno ge quantity ge S Export from	nt are fully a plicable inter weldgment enerator) or Signature n U.S.	nd accurately d mational and na of Consent. (b) (if I am a sn The Mathematical Port of e Date lea	escribed abov itional governi nall quantity g CDCC entry/exit:	re by the proper s mental regulation	hipping national states in the second states in the	me, and are shipment ar	Month	Day 10	Ye Ye Ye
	CT CO EMPTOR SCI ICO # 52137 GENERATOR'S/OFFER marked and labeled/plac Exporter, I certify that the I certify that the waste mi rerator's/Offeror's Printed/I merator's/Offeror's Offeror's/Offeror's/Offeror's/Offeror's/Offeror's/Offeror's/Offeror'	TCIPACE TANKS TANKA 33 39 OR'S CERTIFICATION: Thereby declare the arded, and are in all respects in proper condi- te contents of this consignment conform to the inimization statement identified in 40 CFR 2 Typed Name Import to U.S. borts only): ent of Receipt of Materials lame	htt 5 4960 VCL hat the contents of the dition for transport acc	s consignmer cording to app ad EPA Ackno ge quantity ge S Export from	nt are fully a plicable inter weldgment enerator) or Signature n U.S.	nd accurately d mational and na of Consent. (b) (if I am a sn The Mathematical Port of e Date lea	escribed abov itional governi nall quantity g CDCC entry/exit:	re by the proper s mental regulation	hipping nar s. If export	me, and are shipment a	Month	Day 10	Ye Ye Ye
15. Gen. 16. 1 17. 1 Tran Tran Tran 18. 1 17. 1 Tran 18. 1 17. 1 17. 1 17. 1 17. 1 17. 1 18. 1 17. 1 18. 1 19. 19. 1 19. 19. 19. 19. 19. 19. 19. 19. 19. 19.	GTC 3 EVPTC 3 ECT 3C9 # 52137 WEPP FROPER F GENERATOR'S/OFFER marked and labeled/place Exporter, I certify that the vaste mi- lerator's/Offeror's Printed/T international Shipments nsporter signature (for exp Transporter Acknowledgme nsporter 1 Printed/Typed N Market Acknowledgme	TORACE TAKKS TAKA 33 33 PERMEEN HANDLAG ARES OR'S CERTIFICATION: I hereby declare th arded, and are in all respects in proper conc contents of this consignment conform to th inimization statement identified in 40 CFR 2 Typed Name Import to U.S. borts only): ent of Receipt of Materials lame Jame	htt 5 4960 VCL hat the contents of the dition for transport acc	s consignmer cording to app ad EPA Ackno ge quantity ge S Export from	nt are fully a plicable inter weldgment enerator) or Signature n U.S.	nd accurately d mational and na of Consent. (b) (if I am a sn The Mathematical Port of e Date lea	escribed abov itional governi nall quantity g CDCC entry/exit:	re by the proper s mental regulation		me, and are shipment a	Month	Day 10	Ye Ye Ye
15. Gen. 16. 1 17. 1 Tran Tran Tran 18. 1 17. 1 Tran 18. 1 17. 1 17. 1 17. 1 17. 1 17. 1 18. 1 17. 1 18. 1 19. 19. 1 19. 19. 19. 19. 19. 19. 19. 19. 19. 19.	CTC 0 EXPTC 0 ECL COS # 52137 GENERATOR'S/OFFER marked and labeled/place Exporter, I certify that the I certify that the waster million rerator's/Offeror's Printed/T for the waster million for the second state of the second metaor's/Offeror's Printed/T for the second state of the second metaor's/Offeror's Printed/T for the second state of the second metaor's/Offeror's Printed/T for the second state of the second second state of the second state of the second metaor's of the second state of the second state of the second second state of the second state of the	TCRACE TAKKS TAKA 33 33 FR MHEN HALDLAG ALES OR'S CERTIFICATION: Thereby declare it arded, and are in all respects in proper cond contents of this consignment conform to the inimization statement identified in 40 CFR 2 Typed Name Import to U.S. borts only): ent of Receipt of Materials larme	hat the contents of this dition for transport acc the terms of the attache (62.27(a) (if I am a land 1 //)	s consignmer cording to app ad EPA Ackno ge quantity ge S Export from	nt are fully a plicable inter www.edgment enerator) or Signature n U:S. Signature	nd accurately d mational and na of Consent. (b) (if I am a sm) Port of e Date lea	escribed abov tional governi nall quantity g	re by the proper s mental regulation enerator) is true.		me, and are shipment ar	Month	Day / O Day / O Day Day	Ye Ye Ye
15. Gen 11.01 Tran 11.01 </td <td>CT 0 EXPT 8 CT 0 EXPT 8 CT 0 S 3 52137 WEPP PROPER F GENERATOR'S/OFFER marked and labeled/plac Exporter, I certify that the I certify that the waste mini- merator's/Offeror's Printed/T international Shipments nsporter signature (for exp Transporter Acknowledgments nsporter 1 Printed/Typed N COMPACT Printed/Typed N Discrepancy a. Discrepancy Indication S</td> <td>TCIPACE TAKKS TAKA 33 33 FIGMEN HALOUNG ALES OR'S CERTIFICATION: Thereby declare the arded, and are in all respects in proper cond inimization statement identified in 40 CFR 2 Typed Name Import to U.S. borts only): ent of Receipt of Materials lame Jame Space</td> <td>hat the contents of this dition for transport acc the terms of the attache (62.27(a) (if I am a land 1 //)</td> <td>s consignmer cording to app ad EPA Ackno ge quantity ge S Export from</td> <td>nt are fully a plicable inter www.edgment enerator) or Signature n U:S. Signature</td> <td>nd accurately d mational and na of Consent. (b) (if I am a sm how the Port of e Date lea</td> <td>escribed abov tional governi nall quantity g</td> <td>re by the proper s mental regulation enerator) is true.</td> <td>2. In Coport</td> <td>me, and are shipment ar</td> <td>Month</td> <td>Day / O Day / O Day Day</td> <td>Ye Ye Ye</td>	CT 0 EXPT 8 CT 0 EXPT 8 CT 0 S 3 52137 WEPP PROPER F GENERATOR'S/OFFER marked and labeled/plac Exporter, I certify that the I certify that the waste mini- merator's/Offeror's Printed/T international Shipments nsporter signature (for exp Transporter Acknowledgments nsporter 1 Printed/Typed N COMPACT Printed/Typed N Discrepancy a. Discrepancy Indication S	TCIPACE TAKKS TAKA 33 33 FIGMEN HALOUNG ALES OR'S CERTIFICATION: Thereby declare the arded, and are in all respects in proper cond inimization statement identified in 40 CFR 2 Typed Name Import to U.S. borts only): ent of Receipt of Materials lame Jame Space	hat the contents of this dition for transport acc the terms of the attache (62.27(a) (if I am a land 1 //)	s consignmer cording to app ad EPA Ackno ge quantity ge S Export from	nt are fully a plicable inter www.edgment enerator) or Signature n U:S. Signature	nd accurately d mational and na of Consent. (b) (if I am a sm how the Port of e Date lea	escribed abov tional governi nall quantity g	re by the proper s mental regulation enerator) is true.	2. In Coport	me, and are shipment ar	Month	Day / O Day / O Day Day	Ye Ye Ye
15. Gen 11.01 Tran 11.01 </td <td>CTC 0 EXPTC 0 ECL COS # 52137 GENERATOR'S/OFFER marked and labeled/place Exporter, I certify that the I certify that the waster million rerator's/Offeror's Printed/T for the waster million for the second state of the second metaor's/Offeror's Printed/T for the second state of the second metaor's/Offeror's Printed/T for the second state of the second metaor's/Offeror's Printed/T for the second state of the second second state of the second state of the second metaor's of the second state of the second state of the second second state of the second state of the</td> <td>TCIPACE TAKKS TAKA 33 33 FIGMEN HALOUNG ALES OR'S CERTIFICATION: Thereby declare the arded, and are in all respects in proper cond inimization statement identified in 40 CFR 2 Typed Name Import to U.S. borts only): ent of Receipt of Materials lame Jame Space</td> <td>hat the contents of this dition for transport acc the terms of the attache (62.27(a) (if I am a land 1 //)</td> <td>s consignmer cording to app ad EPA Ackno ge quantity ge S Export from</td> <td>nt are fully a plicable inter www.edgment enerator) or Signature n U:S. Signature</td> <td>nd accurately d mational and na of Consent. (b) (if I am a sm) Port of e Date lea</td> <td>escribed abov tional governi nall quantity g</td> <td>re by the proper s mental regulation enerator) is true.</td> <td>2. In Coport</td> <td>me, and are shipment ar</td> <td>Month</td> <td>Day / O Day / O Day Day</td> <td>Ye Ye Ye</td>	CTC 0 EXPTC 0 ECL COS # 52137 GENERATOR'S/OFFER marked and labeled/place Exporter, I certify that the I certify that the waster million rerator's/Offeror's Printed/T for the waster million for the second state of the second metaor's/Offeror's Printed/T for the second state of the second metaor's/Offeror's Printed/T for the second state of the second metaor's/Offeror's Printed/T for the second state of the second second state of the second state of the second metaor's of the second state of the second state of the second second state of the second state of the	TCIPACE TAKKS TAKA 33 33 FIGMEN HALOUNG ALES OR'S CERTIFICATION: Thereby declare the arded, and are in all respects in proper cond inimization statement identified in 40 CFR 2 Typed Name Import to U.S. borts only): ent of Receipt of Materials lame Jame Space	hat the contents of this dition for transport acc the terms of the attache (62.27(a) (if I am a land 1 //)	s consignmer cording to app ad EPA Ackno ge quantity ge S Export from	nt are fully a plicable inter www.edgment enerator) or Signature n U:S. Signature	nd accurately d mational and na of Consent. (b) (if I am a sm) Port of e Date lea	escribed abov tional governi nall quantity g	re by the proper s mental regulation enerator) is true.	2. In Coport	me, and are shipment ar	Month	Day / O Day / O Day Day	Ye Ye Ye
	GTC 3 EVPTC 3 Strate 3 A 52137 WEPP FROPER F GENERATOR'S/OFFER marked and labeled/place Exporter, I certify that the locatify that the wasternil rerator's/Offeror's Printed/T Printed/Typed N International Shipments nsporter signature (for exp Transporter Acknowledgme nsporter 1 Printed/Typed N Discrepancy a. Discrepancy Indication S Discrepancy Indication S	TCIPACE TAKKS TAKA 33 33 FIGMEN HALOUNG ALES OR'S CERTIFICATION: Thereby declare the arded, and are in all respects in proper cond inimization statement identified in 40 CFR 2 Typed Name Import to U.S. borts only): ent of Receipt of Materials lame Jame Space	hat the contents of this dition for transport acc the terms of the attache (62.27(a) (if I am a land 1 //)	s consignmer cording to app ad EPA Ackno ge quantity ge S Export from	nt are fully a plicable inter www.edgment enerator) or Signature n U:S. Signature	nd accurately d mational and na of Consent. (b) (if I am a sm) Port of e Date lea	escribed abov tional governi nall quantity g	re by the proper s mental regulation enerator) is true.	2. In Coport	me, and are shipment a	Month	Day / O Day / O Day Day	Ye Ye Ye
HACINI N 112 15. 16. 17. 17. 17. 17. 17. 17. 17. 17	GTC 3 EXPTC 3 SCL 309 # 52137 WEPP FROPER F GENERATOR'S/OFFER marked and labeled/place Exporter, I certify that the I certify that the wastern I certify that the wastern rerator's/Offeror's Printed/T international Shipments nsporter signature (for exp Transporter Acknowledgme nsporter 1 Printed/Typed N Discrepancy a. Discrepancy Indication S Discrepancy Indication S Discrepancy Indication S Discrepancy Indication S	TCRACE TAKKS TAXA 33 33 FT: MEEN HALDLAG ALES OR'S CERTIFICATION: I hereby declare th arded, and are in all respects in proper cond contents of this consignment conform to th inimization statement identified in 40 CFR 2 Typed Name Import to U.S. borts only): ent of Receipt of Materials lame	hat the contents of this dition for transport acc the terms of the attache (62.27(a) (if I am a land 1 //)	s consignmer cording to app ad EPA Ackno ge quantity ge S Export from	nt are fully a plicable inter www.edgment enerator) or Signature n U:S. Signature	nd accurately d mational and na of Consent. (b) (if I am a sm) Port of e Date lea	escribed abov tional governi nall quantity g	re by the proper s mental regulation enerator) is true.	2. In Coport	me, and are shipment ar	Month	Day / O Day / O Day Day	Ye
ED FACILITY IS: 15. 15. 15. 16. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	GTC 3 EVPTC 3 Strate 3 A 52137 WEPP FROPER F GENERATOR'S/OFFER marked and labeled/place Exporter, I certify that the locatify that the wasternil rerator's/Offeror's Printed/T Printed/Typed N International Shipments nsporter signature (for exp Transporter Acknowledgme nsporter 1 Printed/Typed N Discrepancy a. Discrepancy Indication S Discrepancy Indication S	TCRACE TAKKS TAXA 33 33 FT: MEEN HALDLAG ALES OR'S CERTIFICATION: I hereby declare th arded, and are in all respects in proper cond contents of this consignment conform to th inimization statement identified in 40 CFR 2 Typed Name Import to U.S. borts only): ent of Receipt of Materials lame	hat the contents of this dition for transport acc the terms of the attache (62.27(a) (if I am a land 1 //)	s consignmer cording to app ad EPA Ackno ge quantity ge S Export from	nt are fully a plicable inter www.edgment enerator) or Signature n U:S. Signature	nd accurately d mational and na of Consent. (b) (if I am a sm) Port of e Date lea	escribed abov tional governi nall quantity g	re by the proper s mental regulation enerator) is true.	2. In Coport	me, and are shipment ar	Month	Day Day Day Day Day Lay	Ye
ED FACILITY IS: 15. 15. 15. 16. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	GT 0 EVPT 8 Str 409 # 52137 WEPP FROPER F GENERATOR'S/OFFER marked and labeled/place Exporter, I certify that the I certify that the wasternil rerator's/Offeror's Printed/T international Shipments nsporter signature (for exp Transporter Signature (for exp Transporter Acknowledgme nsporter 1 Printed/Typed N Discrepancy a. Discrepancy Indication S Discrepancy Indication S Discrepancy Indication S Discrepancy Construction S Discrepancy Indication S Discrepancy Indic	TCRACE TAKKS TAKA 33 33 FF: MEEH HALDLAG ALE OR'S CERTIFICATION: I hereby declare th arded, and are in all respects in proper conc contents of this consignment conform to th inimization statement identified in 40 CFR 2 (pped Name Import to U.S. borts only): ent of Receipt of Materials lame Space Quantity herator) acility (or Generator)	hat the contents of this dition for transport acc the terms of the attache (62.27(a) (if I am a lar () //)	s consignmer cording to app ad EPA Ackno ge quantity ge S Export from S	nt are fully a plicable inter weldgment enerator) or Signature n U.S. Signature	nd accurately d mational and na of Consent. (b) (if I am a sm how the Date lean how the how	escribed abov tional governi nall quantity g manual quantity g entry/exit: ving U.S.:	re by the propers mental regulation enerator) is true.	2. In Coport	me, and are shipment ar	Month	Day Day Day Day Day Lay	Ye
ED FACILITY IS: 15. 15. 15. 16. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	GT 0 EVPT 8 Str 409 # 52137 WEPP FROPER F GENERATOR'S/OFFER marked and labeled/place Exporter, I certify that the I certify that the wasternil rerator's/Offeror's Printed/T international Shipments nsporter signature (for exp Transporter Signature (for exp Transporter Acknowledgme nsporter 1 Printed/Typed N Discrepancy a. Discrepancy Indication S Discrepancy Indication S Discrepancy Indication S Discrepancy Construction S Discrepancy Indication S Discrepancy Indic	TCRACE TAKKS TAXA 33 33 FT: MEEN HALDLAG ALES OR'S CERTIFICATION: I hereby declare th arded, and are in all respects in proper cond contents of this consignment conform to th inimization statement identified in 40 CFR 2 Typed Name Import to U.S. borts only): ent of Receipt of Materials lame	hat the contents of this dition for transport acc the terms of the attache (62.27(a) (if I am a lar () //)	s consignmer cording to app ad EPA Ackno ge quantity ge S Export from S S	nt are fully a plicable inter weldgment enerator) or Signature n U.S. Signature	nd accurately d mational and na of Consent. (b) (if I am a sm how the Date lean how the how	escribed abov tional governi nall quantity g manual quantity g entry/exit: ving U.S.:	Pe by the proper-s mental regulation enerator) is true.	2. In Coport	me, and are shipment a	Month	Day Day Day Day Day Lay	Ye
DESIGNATED FACILITY	GTC 3 EVPTC 8 ECL 309 # 52137 WEYN FROPER F marked and labeled/place Exporter, I certify that the wasterni terator's/Offeror's Printed/T International Shipments nsporter signature (for exp Transporter Acknowledgme hsporter 1 Printed/Typed N Discrepancy a. Discrepancy Indication S Discrepancy	TCRACE TAKKS TAXA 33 33 FIT MAEN MALDUNG ALLO OR'S CERTIFICATION: I hereby declare th arded, and are in all respects in proper conc inimization statement identified in 40 CFR 2 Typed Name Import to U.S. ports only): ent of Receipt of Materials larme Space Quantity nerator) acility (or Generator) t Management Method Codes (i.e., codes fo 2.	hat the contents of this dition for transport acc the terms of the attache (62.27(a) (if I am a lar (1))	s consignmer cording to app ad EPA Ackno ge quantity ge S Export from S	nt are fully a plicable inter weldgment enerator) or Signature fi U:S. Signature Signature M Signature 3.	nd accurately d mational and na of Consent. (b) (if I am a sm Port of e Date lea A M Residue tanifest Referen	escribed abov tional governi nall quantity g mitry/exit: ving U.S.: 	re by the propers mental regulation enerator) is true.	2. In Coport	me, and are shipment ar	Month	Day Day Day Day Day Lay	Ye
15. Generation 11.1 II. 11. 11. 11. 11. 11. 11. 11. 11	GT 0 EVPT 8 CT 0 EVPT 8 CT 0 C PER F CENERATOR'S/OFFER marked and labeled/place Exporter, I certify that the I certify that the wastern I certify that the wastern rerator's/Offeor's Printed/T international Shipments nsporter signature (for exp Transporter Acknowledgme nsporter 1 Printed/Typed N Discrepancy a. Discrepancy Indication S Discrepancy Indication S Discr	TCRACE TAKES TAKE TAKE 33 33 34 35 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37	hat the contents of this dition for transport acc the terms of the attache (62.27(a) (if I am a lar (1))	s consignmer cording to app ad EPA Ackno ge quantity ge S Export from S S S S S S S S S S S S S S S S S S S	nt are fully a plicable inter weldgment enerator) or Signature n U:S. Signature Signature a use Signature a use Signature Signature Signature a use Signature	nd accurately d mational and na of Consent. (b) (if I am a sm Port of e Date lea A M Residue tanifest Referen	escribed abov tional governi nall quantity g mitry/exit: ving U.S.: 	re by the propers mental regulation enerator) is true.	2. In Coport	me, and are shipment a	Month	Day Day Day Day Day Jorden Day	Ye
15. Generation 11.1 II. 11. 11. 11. 11. 11. 11. 11. 11	GTC 3 EVPTC 8 ECL 309 # 52137 WEYN FROPER F marked and labeled/place Exporter, I certify that the wasterni terator's/Offeror's Printed/T International Shipments nsporter signature (for exp Transporter Acknowledgme hsporter 1 Printed/Typed N Discrepancy a. Discrepancy Indication S Discrepancy	TCRACE TAKKS TAXA 33 33 FIT MAEN MALDUNG ALLO OR'S CERTIFICATION: I hereby declare th arded, and are in all respects in proper conc inimization statement identified in 40 CFR 2 Typed Name Import to U.S. ports only): ent of Receipt of Materials larme Space Quantity nerator) acility (or Generator) t Management Method Codes (i.e., codes fo 2.	hat the contents of this dition for transport acc the terms of the attache (62.27(a) (if I am a lar (1))	s consignmer cording to app ad EPA Ackno ge quantity ge S Export from S S S S S S S S S S S S S S S S S S S	nt are fully a plicable inter weldgment enerator) or Signature fi U:S. Signature Signature M Signature 3.	nd accurately d mational and na of Consent. (b) (if I am a sm Port of e Date lea A M Residue tanifest Referen	escribed abov tional governi nall quantity g mitry/exit: ving U.S.: 	re by the propers mental regulation enerator) is true.	Rejection	me, and are shipment ar	Month	Day Day Day Day Day Lay	Ye

WASTE MANAGEMENT

000138

ALTAMONT LANDFILL & RESOURCE RECOVERY 10840 ALTAMONT PASS RD LIVERMORE CA 94550 Page 3 of 5Customer:FERMA CORPORATIONAccount Number:554-0001523-2554-4Invoice Date:02/01/2009Invoice Number:0029106-2554-6Due Date:Due Upon ReceiptWM ezPay Account ID:00000-00823-65002

			rporation: 1265 Montecito			The second	
Date	Ticket	Description		Quantity	U/M	Rate	Amount
₩ 01/19/09	833662	Veh#:9d0931 Manf#: waf	5630				
		Pc soil reg-c&d		16.50	TON	16.00	264.00
		Gnrtr:164-du	//00/	10.00	1011	10.00	201.00
		Fuel surchge-If	· · ·	1.00	PCT	8.07	8.07
		Environmental fee-If		1.00	LOA	6.00	6.00
· .		Ticket total		1.00	LON	0.00	278.07
V 01/19/09	833665	Veh#:9d8709					210.01
V 01/13/03	000000	Manf#: waf					
		Pc soil reg-c&d		17.14	TON	16.00	274.24
		Gnrtr:164-du		17.14	TON	10.00	217.24
		Fuel surchge-lf		1.00	PCT	8.38	8.38
		Environmental fee-If		1.00	LOA	6.00	6.00
		Ticket total		1.00	LOA	0.00	288.62
V 01/19/09	833666	Veh#:9a7787					200.02
. 01/18/08	000000	Manf#: waf					
		Pc soil reg-c&d		17.61	TON	16.00	281.76
		Gnrtr:164-du		17.01	ION	10.00	201.70
				1.00	PCT	8.60	0.00
		Fuel surchge-If Environmental fee-If		1.00	LOA	6.00	8.60
< <			·	1.00	LOA	0.00	6.00
	000660	Ticket total Veh#:9a1520					296.36
✓ 01/19/09	833009						
		Manf#: waf		40.05	TON	10.00	047.00
		Pc soil reg-c&d		19.85	TON	16.00	317.60
		Gnrtr:164-du		4.00	DOT	0.00	0.00
		Fuel surchge-If		1.00	PCT	9.68	9.68
		Environmental fee-If		1.00	LOA	6.00	6.00
		Ticket total					333.28 `
✓ 01/19/09	833676	Veh#:6z8122					
		Manf#: waf					
		Pc soil reg-c&d		19.44	TON	16.00	311.04
		Gnrtr:164-du					
		Fuel surchge-If		1.00	PCT	9.48	9.48
		Environmental fee-lf		1.00	LOA	6.00	6.00
$\sum_{i=1}^{n}$		Ticket total					326.52
V 01/19/09	833677						
		Manf#: waf					
		Pc soil reg-c&d		18.79	TON	16.00	300.64
		Gnrtr:164-du					
		Fuel surchge-If		1.00	PCT	9.17	9.17
		Environmental fee-If		1.00	LOA	6.00	6.00
\mathbf{X}_{i}		Ticket total					315.81
V 01/19/09	833693	Veh#:9d0931					
		Manf#: waf					
		Pc soil reg-c&d		19.79	TON	16.00	316.64
		Gnrtr:164-du					
		Fuel surchge-If		1.00	PCT	9.65	9.65
		Environmental fee-lf		1.00	LOA	6.00	6.00
\mathbf{X}		Ticket total					332.29
∽ 01/19/09	833696	Veh#:9d8709					
		Manf#: waf					
		Pc soil reg-c&d	•	16.30	TON	16.00	260.80
		Gnrtr:164-du					
		Fuel surchge-If		1.00	PCT	7.98	7.98
		Environmental fee-lf		1.00	LOA	6.00	6.00
		Ticket total				2.00	274.78
							LIT.10

Date	Ticket	Description	Quantity	U/M	Rate	Amount
01/19/09	833698	Veh#:9a7787	Gouility		, 1415	Anount
01110108	555580	Manf#: waf				
		Pc soil reg-c&d	19.34	TON	16.00	200 44
			19.34	TON	16.00	309.44
		Gnrtr: 164-du	4.00	DOT	A 4A	·
		Fuel surchge-If	1.00	PCT	9.43	9.43
		Environmental fee-If	· 1.00	LOA	6.00	6.00
		Ticket total		4		324.87
01/19/09	833701	Veh#:9a1520				
		Manf#: waf				
		Pc soil reg-c&d	20.28	TON	16.00	324.48
		Gnrtr:164-du				
		Fuel surchge-If	1.00	PCT	9.88	9.88
		Environmental fee-If	1.00	LOA	6.00	6.00
		Ticket total				340.36
01/19/09	833707	Veh#:6z8122				0-0.00
		Manf#: waf				
		Pc soil reg-c&d	18.83	TON	16.00	301.28
		Gnrtr:164-du	10.00		10.00	301.20
		Fuel surchge-If	4.00	DOT	0.40	0.40
			1.00	PCT	9.19	9.19
		Environmental fee-If	1.00	LOA	6.00	6.00
04110100	000710	Ticket total				316.47
01/19/09	833710	Veh#:c12cat				
		Manf#: waf				
		Pc soil reg-c&d	11.78	TON	16.00	188.48
		Gnrtr:164-du				
		Environmental fee-If	1.00	LOA	6.00	6.00
		Fuel surchge-If	1.00	PCT	5.81	5.81
		Ticket total				200.29
01/19/09	833714	Veh#:9d0931				200.20
	***** i i i	Manf#: waf				
		Pc soil reg-c&d	17.41	TON	16.00	278.56
		Gnrtr:164-du	17.41		10.00	210.00
			4.00	DOT	0 54	~ <i>~ ~</i>
		Fuel surchge-If	1.00	PCT	8.51	8.51
		Environmental fee-lf	1.00	LOA	6.00	6.00
041101-0	0007/-	Ticket total				293.07
01/19/09	833717	Veh#:9d8709				
		Manf#: waf	· · · · · · · · · · · · · · · · · · ·	,		
		Pc soil reg-c&d	12.81	TON	16.00	204.96
		Gnrtr:164-du				
		Fuel surchge-If	1.00	PCT	6.31	6.31
'		Environmental fee-If	1.00	LOA	6.00	6.00
		Ticket total		•		217.27
01/19/09	833722	Veh#:9a7787				
		Manf#: waf				
		Pc soil reg-c&d	17.26	TON	16.00	276.16
		Gnrtr:164-du	11.20		10.00	210.10
		Fuel surchge-If	4 00	PCT	0 1 1	0.4.
			1.00		8.44	8.44
		Environmental fee-If	1.00	LOA	6.00	6.00
0.4.4.0.100	000707	Ticket total				290.60
01/19/09	833738	Veh#:9a1520				
		Manf#: waf				
		Pc soil reg-c&d	15.30	TON	16.00	244.80
		Gnrtr:164-du				
		Fuel surchge-If	1.00	PCT	7.50	7.50
			,		1.00	1.00
•		Environmental fee-If	1.00	LOA	6.00	6.00

ALTAMONT LANDFILL & RESOURCE RECOVERY 10840 ALTAMONT PASS RD LIVERMORE CA 94550
 Account Number:
 554-0001523-2554-4

 Invoice Date:
 02/01/2009

 Invoice Number:
 0029106-2554-6

 Due Date:
 Due Upon Receipt

 WM ezPay Account ID:
 00000-00823-65002

Servic	e Locatior	n: 554-1523 Ferma Corporation: 1265 Montee	cito Avenue #200: Moun	tain View	Ca 94043-4581	
Date	Ticket	Description	Quantity	U/M	Rate	Amount
		Late payment fee				0.00

Total Current Charges

4,686.96

Page 5 of 5

From everyday collection to environmental protection, Think Green. Think Waste Management. FOR CHANGE OF ADDRESS OR ANY SERVICE ISSUES CONTACT NUMBER ON PAGE 1

WEIGHMASTER-Altamont Landfill & RRF 10840 Altamont Pass Road Livermore, CA, 94651 Pht (925)465-7320

Origîna) Tîcket∦ 833477

lenitest 10 % (022876A Tofile () muerator

Lime Scale Deputy Weighmaster Inbound Gross . n 01/15/2009 16:51:11 MANUAL Will Plriddle lare nt01/15/2009 16:51:11 Plriddle Mot: / ions onments GEN: Unblin, Lity of 102787:8

Product IUS Qty UOM Rate Tax August Urigin SAPP Standard Appr 126 I Each Dublin

DRIVER:

Fatal Tax

Weighmaster Certificate

Total Ticket

	ð	
	VEIDEMASTER Altamont Landfill & RRF : 10840 Altamont Pass Road Livermore, CA, 94551 Ph: (985)455-7300	Original Ticket# 833707
Customer Nase FermaCo Ticket Date - 01/19/2 Payment Type - Credit Manual Ticket# Billing # - 2001523		morfe
Manifest WAF		
	CA (Clars II Cover~Ferma Corp*Dublin City of) StinCityof Dublin City of	
Time (Å 01/19/2009 09:50:0 Únt01/19/2009 09:50:0 Comments		50034 70140 10 Tare 735480 10 Net 37660 10 Tons 50 10.83
Product	LB% Uty UNM Rate Tax	Amount Origin
l C2 Cover RGC-Tan 2 FUEL-Fuel Surcha 3 E9L-Env Fee Lg.	ng 100 %	LOublin Dublin Oublin
DRIVER		Jun
	Weighmaster Certificate	st Teket
signature is on this certific ing with section 12700) of Div	e following described commodity was weighed, measured or cour cate, who is a recognized authority of accuracy, as prescribe vision 5 of the California Business and Professions Code, adminis alifornia Department of Food and Agriculture.	nted by a weighmaster, whose ed by Chapter 7 (commenc-

	, NEIGHMOSTER-Altamont 10040 Altamont Pass Livermora, CR, 94551 Ph: (925)455-7300		Origin Ticket	al # 833710
Custamer Name FormaCorp Ticket Date - 01/19/200 Paymont Type - Credit Ad Manual Ticket® Billing # - 0001523	979	Carrier BEN Altamont G Vehicle® C12CATS Container BRANHON 1068 License#	eneric	
Manifest UAF PO Profile 1027870A Generator 164-Dubli	(Class II Cover Ferm) inCityof Dublin City (a Carp*Dublin City of) of	х. ⁺	
Time In 01/19/2009 10:04:15 Out01/19/2009 10:04:15 Comments	J Schaeut	ffler	Gross Tare Net Tons	53960 10 30400 10 23560 10 7 100 11,78
Product	ED% Oty U	M Rate Tax	äneunt	Origin
1 C2 Cover RBC-Tens- C FUEL-Fuel Surcharg 3 EVL-Env Fee Lg	1.00 1			ADublin Dublin Dublin
DRIVER: UMC	Bann			Qn_
signature is on this certificat	ollowing described commodit e, who is a recognized aut ion 5 of the California Busine	ty was weighed, measured or coun thority of accuracy, as prescribe ss and Professions Code, adminis	ed by Chapter	7 (commenc-

	p			•	ž
	NEIGHMASTER-Altamont 10840 Altamont Pass Livermore, CA, 94551 Ph: (925)455-7300	Prad		Origin: Ticketi	1 833722
Customer Name FermaCor Tirket Date 01/19/20 Payment Type Credit A Manual Ticket# Billing # 0001523 Manifest WAF	20	Carrier GEN A Vehicle# 94778 Container BARCIA TRK. 7 License#	itamont Ge 78	Horic	
E(()			7 A ² 4		
) (Class (1 Cover*Ferm InCityof Dublin City	a corpountin ti of	ty ot)		
Time In 01/19/2009 10:29:24 Out01/19/2009 10:29:24 Comments		if Flor	Inbound	Gross Jare Net Tons	/ , 56260 15 31740 15 34520 15 17.26
Product	LUX Uty L	inia nate	Tax	Assount	, Origin
1 C2 Cover ROC-Tons 21 FUEL-Fuel Surchar 3 EVL-Env Fee Lg	g 100 % ·				(Dablin Dublin Dublin
DRIVER:	-16				Q
	Weighmas	ter Certificate		1. 1. C.A.	مري ايند . مري ايند . د
THIS IS TO CERTIFY that the f signature is on this certifica- ing with section 12700) of Divis urement Standards of the Calif	following described commod te, who is a recognized at sion 5 of the California Busing	ity was weighed, meas uthority of accuracy, ess and Professions C	as prescribe	d by Chapter	7 (commenc-

WAS	te management	

HEIGHMAGTER-Altamont Landfill & RRF 16840 Altamont Pass Hoad Livermore, CO, 94551 Ph: (985) 455-73000

Driginal Tickett B33738

Customer Name FermaCorporat Ferma Corporati Carrier GEN Altanont Generic Ticket Date Vah(clot 9月15倍成后周下 0171972009 Payment Type Credit Account Container 3国 马边1周下 Manual Tickets Billing # 0001523 License#

Manifest Waf (1)Profile 102787CA (Class II Cover*Ferma Corp*Dublin City of) 164-DublinCityof Dublin City of Generator Time Scale Deputy Weighwaster Inbound 80035 62500 11 In 01/19/2009 11:33:00 Scale 3 d R Rojas Tare 31900 15 Out01/19/2009 11:33:08 R Rojas Net 36666 15 Tens . 15.30 Conments

UCH Product L10% Gtey Rate Tax Anount Origin الي الدين الأفريق والراد والوقار وسع يتحار يصحبون والحجار والحسر حلين بالا الموجودة المترا بورجا الحاجا المحاولة بسها بواع ويرج الارتجام - And the state of the state of the 1. Tur CE Cover RGC-Tens- 100 15.30 Tans Dublin FUEL-Fuel Surchard 100 4) 20 Dublin EVL-Env Fee Ly. - 100 Dublin 1 Load

DRIVER: -

Weighmaster Certificate

WASTE	Management

WEIGHMASTER-Altamont Landfill & RRF 10840 Altamont Pass Read Livermore, CA, 94551 Ph: (925)455-7300

Original Ticket# 833717

Customer Name FermaCorporat Ferma Corporati CarrierGEN Altamont GenericTickot Date01/19/2009Vehicle# 9D87095Payment TypeCredit AccountContsinerManual Ticket#JD TRUCKIN610Billing # 0001523License#

Manifelst WAF

PO Profile 1027876A (Class II Cover"Ferma Corp"Dublin City of) Generator 164-DublinCityof Dublin City of

Time Deputy Weighmaster Scale Inbound Bross 56340 16 In @1/19/2009 10:16:18 Scale 3 d J Schaeuffler Tare 30720 15 J Schaeuffler Out01/19/2009 10:16:12 同時 念S620 11 Tons 12.61

它有限增长的化量。

Product 1.7%Qty UDH Rate Tax វាតលោត ខ Origin -C2 Cover REC-Tens- 100 12.81 Tons Dublin FUEL-Fuel Surcharg 100 ng Ja Dublin EVL-Env Fee Lu. - 100 1 Luad Dublin

Weighmaster Certificate

Total Ticket

	ent	e (8						
		10840 Al Livermor	TER-Altam tamont Pa e, CA, 94)455-73000	ss Road 551	Fill & RØF		Origh Ticket)al :# 833714
Customer Nam Tickot Date Payment Type Manual Ticko Hilling #	01/19/200 Credit Ac t#	9	na Corpor	Vehi Cent TTC	ier GEN cle# 9005 ainer INC T06NT nse#		910 1 0	
Manifest								
PO Frafile Generalor	1027870A 164-Dubli	(Class I nCityof	[Cover∾F Jublin Ci	erma Cor ty of	p'Dublin C	ity of)		
Time In 01/19/200 Out01/19/200		Scale 3	le "De 3 d J Sch J Sch	asuffler		Thbound	Tare Net	- 66540 11 31720 11 34820 11
Comments							Tons	17.41
Product	مېر ور د د د د د د د د د د ور	L1)%	Oty	1.014	Rate	Тах	Asount	Origin
e fuel-fu	- NGC-Tons- el Surcharg Feelg	100		Tons % Load		fan ar ann an nasaint i an an an an	la dina dina pada kao kao ini ya dina kao kao	Dublin Dublin Dublin
A								Θ_{λ}
RIVER:		1950 10-5000-5000-5000-5000-5000-5000-5000	Weighm	naster C	ertificate		· · ·	master whose

WASTE		1997 - 1997 1997 - 1997 - 1997 - 1997 1997 - 1977 - 197				· · · · · · · · · · · · · · · · · · ·		
		LUBAN A1 Livernor	TER-Altano tamont Pas e, CA, 345 1455-7300	s Poad	Fill & RRF	:	Origin Ticke	nal 18 833662
— Паўае; Раўае;	mer Name FermaC E Date - 01/197 NE Type - Credit I Ticket# ng # - 0001522	3669	wa Comports	Vehi: Cont	clex 9009 einer NC FØGNT	Altamont () 1310	eneric	
Hanif PO Profi Senor	1027876	CA (Class I) JinZityof J	I Cover≃Fe Jublin Cit	rma Corj V of	o'Dublin C	ity of)		
	Time /19/2009 07:40:/ /19/2009 07:40:/	15 Seale:	le Dep 3 d J Scha J Scha	eurrier	dimaster	Inbound	Gross Tore Net Tons	64720 th 31780 th 33000 th 15.30
Droc	duct.	1. D%	⊡ †y		经出生的	· · · · · · · · · · · · · · · · · · ·		Origin
ê F	22 Cover RGD-lar FUEL-fael Burch: EVL-Env Fee Lg.	urg 100	16.50 T % 1 L					· Dublin Dublin Dublin
DRIVER	: Ale		1.					
	C		Weighma	aster Ce	ertificate	Y - 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n Mer ministry og vyskal andre og som og

Weighmaster Certificate

WASTE MANAGEMENT	

MEIGHMAGTER-Altamont Landfill & RRF 10040 Altamont Pass Road Livermore, CA, 94851 Ph: (925)455-7300

Original . Ticket# 833665

Enstoner Mame FermaCorporat Ferma Corporati Carrier GEN Altamont Generic Ticket Date 01/19/2009 Vehicle# 9087095 Payment Type Credit Account Container Manual Ticket# JD TRUCKING10 Billing # 60001523 Littenses

6

Manifest 四周至 一 PΠ 102787CA (Class (I Cover"Forsa Comp"Dublin City of) Profile Generator 164-BublinCityof Dublin City of Time Scale - Deputy Meighnaster Inbound Gruss 65000 16 In 01/19/2009 07:46:16 Scale 3 d J Schaeuffler Tare 30720 15 Out01/19/2009 07:46:16. J Schaeuffler Net 34280 th Tuns 17.14 Connents

Frac	uct		Gty	UOM	Rate	Tax	Asount	firigin
1 C P P	2 Cover RGC-Tens- UEL-Fuel Surcharg VL-Env Fee Lg	1 (216) 1 (360)					τος δαν του που στη τ.τ. τ. τ. το του για τ.τ	Dublin Doblin Dublin

DRIVER: .

Weighmaster Certificate

	and the second				
	¥				
	WEIGHMASTER-Altamont 10840 Altamont Pass Livergore, CA, 94551 Ph: (925)495-7000	Landflll & RRF Road		Origir Tickst	al # 833659
Customer Name Fermallorp Tickat Date - 01/19/202 Payment Type - Credit Ac Manual Ticket# Billing # - 0001523	С) 		Altamont 20607	Seneric	
Nanifest Gaf					
Profile 1027870A	(Class II Cover*Ferms nCityof Dublin City :	t Carp∼Oublin C 18			
Time In 01/19/2009 07:53:39 · Out01/19/2009 07:53:39	Scale Deputy	/ Weighmaster Fler			71600 lb 31900 lb 39700 lb
Conments	•		· •	Tons	19.65
Product	Lōz Qty UC	H Rate	Таж	Amount	Origin
1 E2 Cover R6C-Tons- 2 FUEL-Fuel Surcharg 3 EWL-Env Fee Lg	100 19,85 Tuns 100 % 100 1 Load		n an	• • • • • • • • • • • • • • • • • • •	Dublin Dublin Dublin
	•				
DRIVER: Janis huns					2~
THIS IS TO CERTIFY that the fol signature is on this certificate ing with section 12700) of Divisio urement Standards of the Califor	lowing described commodity , who is a recognized aut n 5 of the California Busines	nority of accuracy, and Professions C	sured or cou	ad by Chapter	7/00000000

Product	RGC-Tons-	a state and in the second state of the second state of	y UGM	Rate	Тах	Angunt	ūrigin
Time In 01/19/2009 Jut01/19/2003		Scale 3 d .	Deputy Wo: I Schaeuffle: R Rojas		labound	Grons Tare Net Tons	66980 16 31740 16 35220 16 17.61
fanifest 20 Profile Jenerator	waf . 102787CA (164-Dublir	Class II Cov Cityof Dubl	ver Forma Con In City of	≏o^Dublin Ci	ty of)		88 - 1
Custower Nawe Licket Date Payment Type Manual Ticket Silling # - 0	Credit Ac	-)	Veti Con ØARi	rier – BEN A icle# 9A778 tainer CIA TRK, 7 ense#	Iltamont De 78	neric	
		-EISHMASTER- 10840 Altamon 1986 Autamone, Cr Ph: (925)455	nt Pass Road A, 94551	dfill & RRF		Drigir Ticket	al # 0.33666

WEIGHMASTER-Altamont LendFill & RRF 10840 Altamont Pass Read Livermore, CA, 94551 Ph: (925)455-7360

Uriginal Ticket* 833676

Customer Name Ticket Date	FermaCorporat Ferma 01/19/22009	Carrier Vehicle#	Generic	
Payment Type Manual Ticket Billing # - Ø		Container KENS TRK : License#		

Manifest waf PO Profile 102707CA (Class II Cover~Ferma Corp~Dublin City of) Bonerator 164 DublinCityof Dublin City of

Time Scale Deputy Weighmaster Inbound Gross 71360 lh ln 01/19/2009 08:14:51 Scalel In R Rojes Tare 32480 16 Jut01/19/2009 00:14:51 R Roias Het 三百日日前 主日 TONS 19.44 Commente

Product: (_D)% Qtv UOM Rate Tax Asount Origin C2 Cover NGC-Tons- 100 19.44 Топь Dublin FUEL-Fuel Surcharg 100 01 [1: Dublin 5 EVL-Env Fee Ly, - 100 1 Load Dublin

DRIVER:

Weighmaster Certificate

	VEIGHMASTE 10840 Alta Liveraora, Ph: (925)4	Worl Pass Ro CA, 94551	andfill & RRI ad	na Ka	Origin Ticket	al \$ 833677
Customer Nome FormaCon Ticket Date 01/19/80 Payment Type Credit 6 Manual Ticket# Billing # 0001523	6961 (P	۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲, ۲	arrier GEN ehicle# C120 ontainer RANNON 1068 icense#	Altamont ATS	Generic .	
Manifest Waf PO Prufile 10278706 Generator 164-Dub1) (Class (I (LinCityof Du	lover~Ferma) Min City:of	Corp?Qublin (ity of)		
Time In 01/19/2009 08:17:07 Out01/19/2009 08:17:07	유도 전 문문 가 좋다.	Deputy I I J Schaenff J Schaeuff		Inbound	Tare Net	67980 lb 30400 lb 37580 lb
Comments					Tons	18,79
Product		Qty UCM	Rate	Тах	Awount	
l CR Cover RGC-Tans 8 FUEL-Fuel Surchar 3 EVL-Env Fre Lg	q 100	8.79 Tons % 1 Load			1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	Dublin Dublin Dublin Sublin
DRIVER: Wand	Bran	e e pe			1	m-
THIS IS TO CERTIFY that the for signature is on this certificat	ollowing describ	feighmaster ed commodity w ognized autho	as weighed mea	sured or cou	tal Tax Al Ticket nted by a weighm ped by Chapter	naster, whose

signature is on this certificate, who is a recognized authority of accuracy, as prescribed by Chapter 7 (commencing with section 12700) of Division 5 of the California Business and Professions Code, administered by the Division of Measurement Standards of the California Department of Food and Agriculture.

		e dig Ø						
		10840 白1 Livernor)TER-Alta tamont P Pe, CA, 9 0455~730	4551 Poad	fill & RRF		Origi Ticke	nal t# 833693
LICERCE ENGLE		C.	as Corpo	Vehi Conk TTC	fer BEN cla# 9009 ainer INC T05NT ase#	Altanunt (319	lenorir	
lanifest VI	(dM-							
rofile	1027870A 164 Dubli	(Class I nCityof	l Covert Dublin C	Ferma Cor itylof:	p ^r Dublin C	ity of)		
Time n 01/19/200 0at01/19/200	19 09:00:38 19 09:00:38	Scale	3 d J Sc	aputy Wei Nacufflar Nacufflar		Inbound	Gross Tare Net Tons	71300 11 31720 11 39580 11 19.79
Product	ويور ويتعارف والدراجي والمراجع	L.0%	Cltry		Rate.	Tax	Amount	
FUEL-Fu	r RGC-Tons el Surcharg Fee Ly,	化的		Tons % Load		,		Dublin Dublin Dablin
K	5		·					D-
	Section and the section of the secti							<i>E</i> /

	- Contraction of the second seco	\$			του Εγγορα στοτού σχοτο	· · · · · · · · · · · · · · · · · · ·		
		法国民主团 自主性	awont Pas 1, CA, 945	s Road	Fill & RAF		Origin Tickol	nal 11 833696
Customer Name Ticket Data Paywont Type Hanual Ticket Billing 9 Ø	- 01/19/200 - Credit Ac	19	a Corpora	Vehi Conta	ele# 9087 siner RUCKINS10	Altamont 6 095	leneric	
Manifest PO Profile Gekeratory	WAF 102787CA 164-Dabli	(Class II nCityof D	Cover*Fe ublin Citu	™na Çorp Ziof	Spublin C	ity of)		
Time I 01/19/2003 Out01/19/2009 Comments	09:04:32	Scal		uty Weir S	hmaster	ໂກ່ນອບກວ່	Gross Tare Net Tons	63320)b 30720 lb 32600 lb 16.30
Product		1.10%	El try		Rate	Так	មិធតៈ(ក្រង	Origin
2 MUEL-Fue	RGC-Tons- 1 Surcharg Fee Lg	100 100 100 100	16.30 To % 1 Lo		n n n n n n n n n n n n n n n n n n n		**************************************	bublin Dublin Dublin
DRIVER:	11)						
THIS IS TO CERTI signature is on th ing with section 127 urement Standards	700) of Divisio	, who is a r n 5 of the Ca	ecognized a alifornia Busir	dity was w uthority (ness and F	reighed, meas of accuracy, Professions C	Sured or cour	ad by Chapter	7 /

.......

			<u>8</u>	
WASTE MANAGEMENT				
· *	WEIGHMASTER-Áltam 10840 Altamont Pa Livermors, CA,-94 Ph: (928)455-7300	551		Original Ticket# 033690
Customer Name FermaCor Ticket Date - 01/19/20 Payment Type - Credit A Manual Ticket# Billing # - 06015231.	10 B	ati Cerrior GEN A Vehiclet 90778 Container GARCIA TRK, 7 Licenset	Itamont Gener 78	ic
Manifest WAF				а А. А.
Profile 10270/CA Generator 164-pabl	(Class II Cover~F) InCityof Dublin Ci	erma Corp Dublin Ci tylof l v l	ly of) · Phil	
Time In 01/19/2009-09:16:11 Out01/19/2009-09:16:11	Scale De Scale 3 d R Roj R Roj		Tobound Gro Tar Net	c 31740
Cooments.			ិ រ រ រ រ រ	в 19.;
Product	1.0% Oty	(IIM Rate	Тан Ал	ount Origin
l C2 Cover ROC-Tons- 2 FUEL-Fuel Surchary 3 EVL-Env Fee Lg	; 160 y			Dublin Dublin Dublin
	16.			
THIS IS TO CERTIFY that the fo	Weighm Ilowing described comm	aster Certificate	Total Tatal Tid	tx tket

Ticket Date 01/19/2009 Vehicle# 90152060T Payment Type Credit Account Container Manual Ticket# JN 501WT Billing # 0001523 Livense# Manifest WAF PO Profile 102787CA (Class II Cover Ferma CorpCoublin City of) Geherapor 164-DublinCitypf Dublin City[of, ,, , , , , , , , , , , , , , , , , ,	Chut(Tine 31/19/2009 09:21: 31/19/2009 09:21: monte	27 Scale	le De 3 d R Roj R Roj	9.6	ghuasbar .	Inbound	Gross Tare Net Tons	72464 31920 40560 20
Ticket Date 01/19/2009 VehicleN 90152060T Payment Type Credit Account Container Manual Ticket# JN 5010T	Þ0 Þra	File 102787	GN (Class I blinGltynf	î Caver≌Fi ∂ublin Cit	erma Cort	YBublia C.	(ty of)		и Ч.
Customer Name FermaCorporat Ferma Corporati Carrier 668 Altamont Generic	fic Payı Manı	ket Dato - 01/19/ sent Type - Credit Mal Ticket#	之历内中	na Corpora	Vehic Conta JN 50	ole# - 9A15i ainer MIWT	lltamont G 2064T	anarir	

440 DRIVER:

Weighmaster Certificate

Customer Summary Report (legal) WEIGHMASTER-Altamont Landfill & RRF: S04305 (USA) Date 01/01/2009 12:00 AM to 01/31/2009 11:59 PM Customer: Ferma Corporation(FermaCorporat) | Operation Type: All | Ticket Type: All | Customer Type: All | PMT Category: All

ŧ

Ticket Date	Ticket ID	Cust Code	Customer	Generator	Manifest	Profile	Truck	Material	Mat. Desc.	Origin	Rate Rt. Unit	Rt. Qty	Yards	Tons Ma	aterial Rev.	Tax Rev.	Surch. Rev.	Tota
	833662		Ferma Corporation	164- DublinCity	waf	102787C A	9D09310	C2 Cover RGC-Tons	Cover Soil meeting Class II	Dublin	\$16.00 TON	16.50	0.0	16.50	\$264.00	\$0.00	\$14.07	\$278.0
/19/2009	833665	0001523	Ferma Corporation	of 164- DublinCity	waf	102787C A	9D87095	C2 Cover RGC-Tons	requirements Cover Soil meeting Class II	Dublin	\$16.00 TON	17.14	0.0	17.14	\$274.24	\$0.00	\$14.38	\$288.6
/19/2009	833666	0001523	Ferma Corporation	of 164- DublinCity	waf	102787C A	9A77878	C2 Cover RGC-Tons	requirements Cover Soil meeting Class II requirements	Dublin	\$16.00 TON	17.61	0.0	17.61	\$281.76	\$0.00	\$14.60	\$296.3
/19/2009	833669	0001523	Ferma Corporation	of 164- DublinCity of	waf	102787C A	9A15206 WT	C2 Cover RGC-Tons	Cover Soil	Dublin	\$16.00 TON	19.85	0.0	19.85	\$317.60	\$0.00	\$15.68	\$333.2
/19/2009	833676	0001523	Ferma Corporation	164- DublinCity of	waf	102787C A	6Z81220	C2 Cover RGC-Tons	Cover Soil	Dublin	\$16.00 TON	19.44	0.0	19.44	\$311.04	\$0.00	\$15.48	\$326.5
/19/2009	833677	0001523	Ferma Corporation	164- DublinCity of	waf	102787C A	C12CAT S	C2 Cover RGC-Tons	Cover Soil	Dublin	\$16.00 TON	18.79	0.0	18.79	\$300.64	\$0.00	\$15.17	\$315.8
1/19/2009	833693	0001523	Ferma Corporation	164- DublinCity of	WAF	102787C A	9D09310	C2 Cover RGC-Tons	Cover Soil	Dublin	\$16.00 TON	19.79	0.0	19.79	\$316.64	\$0.00	\$15.65	\$332.2
1/19/2009	833696	0001523	Ferma Corporation	164- DublinCity of	WAF	102787C A	9D87095	C2 Cover RGC-Tons	Cover Soil meeting Class II requirements	Dublin	\$16.00 TON	16.30	0.0	16.30	\$260.80	\$0.00	\$13.98	\$274.
1/19/2009	833698	0001523	Ferma Corporation	164- DublinCity of	WAF	102787C A	9A77878	C2 Cover RGC-Tons	Cover Soil	Dublin	\$16.00 TON	19.34	0.0	19.34	\$309.44	\$0.00	\$15.43	\$324.8
1/19/2009	833701	0001523	Ferma Corporation	164- DublinCity of	WAF	102787C A	9A15206 WT	C2 Cover RGC-Tons	Cover Soil	Dublin	\$16.00 TON	20.28	0.0	20.28	\$324.48	\$0.00	\$15.88	\$340.
1/19/2009	833707	0001523	Ferma Corporation	164- DublinCity of	WAF '	1027870 A	6Z81220	C2 Cover RGC-Tons	Cover Soil	Dublin	\$16.00 TON	18.83	0.0	18.83	\$301.28	\$0.00		\$316.
1/19/2009	833710	0001523	B Ferma Corporation		WAF /	1027870 A	C C12CAT S	C2 Cover RGC-Tons	Cover Soil	Dublin	\$16.00 TON	11.78	0.0	11.78	\$188.48	\$0.00	\$11.81	\$200.
1/19/2009	833714	0001523	8 Ferma Corporation		WAF /	, 1027870 A	C 9D09310	C2 Cover RGC-Tons	Cover Soil	Dublin	\$16.00 TON	17.41	0.0	17.41	\$278.56	\$0.00	\$14.51	\$293.0

Customer Summary Report (legal) WEIGHMASTER-Altamont Landfill & RRF: S04305 (USA)

.

.

Date 01/01/2009 12:00 AM to 01/31/2009 11:59 PM Customer: Ferma Corporation(FermaCorporat) | Operation Type: All | Ticket Type: All | Customer Type: All | PMT Category: All

Ticket Date	Ticket ID	Cust Code	Customer	Generator	Manifest	Profile	Truck	Material	Mat. Desc.	Origin	Rate Rt. Unit	Rt. Qty	Yards	Tons N	laterial Rev.	Tax Rev.	Surch. Rev.	Tota
/19/2009	833717	0001523	Ferma Corporation	164- DublinCity of	WAF	102787C A	9D87095	C2 Cover RGC-Tons	Cover Soil meeting Class II requirements	Dublin	\$16.00 TON	12.81	0.0	12.81	\$204.96	\$0.00	\$12.31	\$217.2
/19/2009	833722	0001523	Ferma Corporation	164- DublinCity of	WAF	102787C A	9A77878		Cover Soil meeting Class II requirements	Dublin	\$16.00 TON	17.26	0.0	17.26	\$276.16	\$0.00	\$14.44	\$290.6
1/19/2009	833738	0001523	Ferma Corporation	164- DublinCity of	waf	102787C A	9A15206 WT	C2 Cover RGC-Tons	Cover Soil	Dublin	\$16.00 TON	15.30	0.0	15.30	\$244.80	\$0.00	\$13.50	\$258.3
Mat. Tot.	16								·			278.43	0.0	278.43	\$4,454.88	\$0.00	\$232.08	\$4,686.9
1/15/2009	833477	0001523	Ferma Corporation				none	SAPP	Standard Approva Fee (2-5 days)	I Dublin	\$85.00 EA	1.00	0.0	0.00	\$0.00	\$0.00	\$85.00	\$85.0
Mat. Tot.	1											1.00	0.0	0.00	\$0.00	\$0.00	\$85.00	\$85.0
Cust. Tot.	17											279.43	0.0	278.43	\$4,454.88	\$0.00	\$317.08	\$4,771.9
Ticket Totals	17											279.43	0.0	278.43	\$4,454.88	\$0.00	\$317.08	\$4,771.9
Customer Summary:																		
				Loads			Yards	Тог	ns Tid	ket Amount								

\$4,771.96

No information was found.

External:			
Ferma Corporation	17	0.0	278.43

1