METROVATION

RECEIVED

By Alameda County Environmental Health 8:48 am, Apr 21, 2016

April 15, 2016

Ms. Anne Jurek Senior Hazardous Materials Specialist Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re: Terradev Jefferson LLC Property 645 Fourth Street, Oakland, CA 94607 Fuel Leak Case No. RO0003001 Blue Rock Project No. ASE-1

Dear Ms. Jurek,

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely,

Sara May / Director of Operations Metrovation, LLC, managing agent for Terradev Jefferson, LLC

Attachment:

Blue Rock Environmental, Inc.'s Indoor Air Study - Report of Supplemental Findings (April 13, 2016).

April 13, 2016

Ms. Anne Jurek Senior Hazardous Materials Specialist Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re: Indoor Air Study – Report of Supplemental Findings Terradev Jefferson LLC Property 645 4th Street, Oakland, CA 94607 Fuel Leak Case No. RO0003001 Blue Rock Project No. ASE-1

Dear Ms. Jurek,

This report, prepared by Blue Rock Environmental, Inc. (Blue Rock) on behalf of Terradev Jefferson, LLC, presents the results of additional indoor air sampling and sub-slab vapor sampling at the subject site (Figure 1). This work was recommended in Blue Rock's Indoor Air Study - Report of Initial Findings dated January 4, 2016, which was concurred with by the Alameda County Department of Environmental Health (ACDEH) in a letter dated January 11, 2016. The purpose of this work was to provide supplemental data to the initial data set to aid in determination of indoor air conditions and potential associated human health risk. In their concurrence letter, the ACDEH requested expansion of the analyte list to include all volatile organic compounds so that the potential contribution of outdoor air to indoor air could be more thoroughly evaluated. Please note that the investigative methodologies documented herein are in general accordance with the California Environmental Protection Agency - Department of Toxic Substances Control's (DTSC's) Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (DTSC Guidance Document; DTSC, 2011) used in conjunction with the San Francisco Bay Regional Water Quality Control Board's Users Guide: Derivation and Application of Environmental Screening Levels (ESLs; SFBRWQCB 2016). The sampling event and following risk assessment evaluations contained herein were conducted to provide an assessment of indoor air conditions and potential associated human health risk.

This work was performed as part of an ongoing investigation of a leaking underground storage tank (UST) associated 645 4th Street. The UST, located in the southern sidewalk of 4th Street, was closed in-place under permit in 2006. Historical site investigation sample locations are shown on Figure 2 and well construction and analytical data are summarized in Tables 1, 2, 3, 4, 5, and 6. Please refer to technical documents on the project's GeoTracker web-page for detailed site history: http://geotracker.waterboards.ca.gov/profile_report.asp?global_id=T10000001072.

Sub-Slab Vapor Sampling

Sub-Slab Vapor Point Purging and Sampling

On March 12, 2016, Blue Rock purged and sampled four sub-slab vapor points: VP-1, VP-2, VP-4, and VP-5. Sub-slab vapor samples were collected the same day as indoor and outdoor air samples to aid in data evaluation, as recommended in the DTSC guidance document.

The sample train for soil vapor sampling consisted of tubing, connectors, valves, and vacuum canisters. All gauges and canisters were connected by laboratory-supplied stainless steel tubing and dedicated flexible Teflon or nylon tubing. The sample train was assembled using dedicated ¹/₄-inch (outer diameter) tubing for all vapor sampling. Swagelok® connectors were used for all connections between tubing and other sampling components. A flow regulator of 100 - 200 mL/min was placed in-line between the manifold and the downhole side Swagelok® valve. Sampling equipment was inspected to ensure tight fittings between all components. A transparent shroud was placed over each vapor point and sampling train to create an atmosphere with elevated helium concentrations for leak checking.

Leak Testing and Tracer Gas

The sampling manifold was leak tested by inducing a vacuum on the manifold. In preparation for manifold leak testing, the downhole side Swagelok® valve remained closed, as did the valves going to the purge and sample ends of the sample train. To commence leak testing, an electric air pump was connected to the purge valve end of the sample train. The purge valve was opened and the air pump turned on to induce a vacuum of approximately 30" Hg on the assembly, and the purge valve was closed again. The vacuum on the manifold assembly was monitored for at least 15 minutes. The manifold was considered to have passed the leak test if vacuum was maintained for at least 15 minutes with <0.2" Hg vacuum loss. After ensuring that all connections between the purge and sample valves, flow controller, and sample manifold were tight, soil vapor purging and sampling activities were performed.

During sample collection, helium (He) was used as a tracer gas to test for air leakage into the sampling system. The inner-shroud environment was enriched with helium supplied by a cylinder. The helium concentration inside the shroud was maintained at a minimum of 5% to 10%, so as to have detectable levels of tracer gas should leakage into the sampling train occur.

Sub-Slab Vapor Point Purging

Prior to collecting a vapor sample, the sub-slab vapor points were purged to ensure that the vapor samples are representative of actual sub-slab concentrations. The dead-space volume for each vapor probe is approximately 0.02-liters (i.e. the total volume of casing, annular pore space, and sample train tubing). Although a purge step-test is recommended by guidance documents, it cannot be practicably completed in a single field day with these sub-slab vapor points due to the comparatively small dead-space volume of 0.02-liters relative to the sample canister volume of 1-liter. In other words, the collection of a single sample volume is significantly greater than the commonly used step-test purge volumes. For the purpose of this sampling, a volume of approximately 0.2–liters was purged using an electric air pump and known flow limits of the manifold regulators. After purging was completed, the sample train purge valve was closed in preparation for sample collection.

Sub-Slab Vapor Point Sampling

The laboratory supplied the flow controller and sample canisters. The initial and final vacuum, start and finish times, and helium tracer gas percentages inside the shroud were documented (see attached field sheets).

All samples were collected in clean, laboratory-supplied 1-liter vacuum canisters immediately after purging. Each sample canister had a starting vacuum of approximately 30 "Hg. To collect a sample, the valve on the sample canister was opened and the time and initial vacuum documented. As the canister was being filled, the vacuum gauge on the flow controller was observed to ensure that the vacuum in the canister was decreasing over time. When the vacuum on the sample canister decreased to approximately 5 "Hg, the valve was closed and sampling ended. Helium tracer gas concentrations were monitored inside the shroud during sample collection using a field meter. Helium concentrations in the shroud for this entire sampling event ranged from 7.6% to 11.1%.

Sub-Slab Vapor Sample Analysis

The samples were labeled, documented on a chain-of-custody form, and transported to Analytical Sciences in Petaluma, California for analysis.

In accordance with the ACDEH's request of January 11, 2016, the vapor samples were analyzed by EPA Method TO-15 for all volatile organic compounds (VOCs) on the TO-15 list, which includes for the following constituents of potential concern (CPOCs) associated with gasoline that have been detected in earlier soil and/or groundwater samples:

- TPHg, BTEX, and MTBE by modified EPA Method TO-15
- Naphthalene, 1,2-DCA, and EDB by modified EPA Method TO-15

In addition, the vapor samples were analyzed for the following fixed gases:

• Helium, Oxygen, Carbon Dioxide, and Methane by Modified ASTM D-1946

Sub-Slab Vapor Sample Results

Sub-slab vapor sample analytical results are summarized below:

- <u>VP-1</u>: No CPOCs or VOCs were detected above method reporting limits.
- <u>VP-2</u>: No CPOCs or VOCs were detected above method reporting limits.
- <u>VP-4</u>: TPHg, benzene, toluene, and xylenes were detected at 10,000,000 μ g/m³, 4,100 μ g/m³, 6,500 μ g/m³, and 22,400 μ g/m³, respectively. No other CPOCs or VOCs were detected above method reporting limits (which were elevated).
- <u>VP-5</u>: TPHg, benzene, toluene, ethylbenzene, and xylenes were detected at 780,000 μ g/m³, 9,100 μ g/m³, 6,500 μ g/m³, 3,700 μ g/m³, and 208,000 μ g/m³, respectively. No other CPOCs or VOCs were detected above method reporting limits (which were elevated).

The tracer gas, helium (He), was detected in all of the samples at concentrations ranging from 0.009% to 0.28%, which indicates very minor leakage into sample train during collection. However, the leakage is not considered significant in any of the samples because the leakage percent, defined as the He concentration in the sample divided by the He concentration within the shroud (x100), did not exceed 5%, a value below which the amount of leakage is considered acceptable to rely on the sample results. Sub-slab vapor analytical data are summarized in Table 5 and the laboratory report is attached.

Comparison of Sub-Slab Vapor Data to Applicable Screening Levels

As recommended in the DTSC *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air* dated October 2011, sub-slab vapor data should be evaluated using an attenuation factor for potential migration to indoor air. The attenuation factor (α) of sub-slab vapor to indoor air concentrations is defined by the following equation:

$$\alpha = \frac{Concentration (indoor air)}{Concentration (subslab vapor)}$$

The guidance document identifies an attenuation rate (α) of 0.05 for both residential and commercial scenarios. Therefore, the resulting screening level for sub-slab vapor samples is defined by the following equation:

Screening level (subslab vapor) =
$$\frac{Screening \ level \ (indoor \ air)}{0.05}$$

The indoor air screening levels shown in the *User's Guide: Derivation of and Application of Environmental Screening Levels – Interim Final (SFBRWQCB 2016)* were used to calculate subslab vapor screening levels using the attenuation rate of 0.05. The constituents detected in VP-4 and VP-5 exceed the calculated sub-slab vapor screening levels, and reporting limits for compounds not detected were also above the calculated screening levels. This result is consistent with the initial sampling event performed in September 2015 (Table 5). In order to determine if these exceedances result in a vapor intrusion risk, additional indoor air samples were collected for analysis.

Indoor and Outdoor Air Sampling

Public Outreach and Building Parameters

The buildings of interest consist of single story construction and form three separate and distinct interior spaces associated with 645 4th Street, 380 MLK Jr Way, and 638 3rd Street. The canisters were placed approximately three feet above the floor and more than 25 feet from any exterior door or window. Additionally, all exterior doors and windows remained shut and the HVAC system operated as normal during the sample collection period. All three buildings are occupied by medical offices providing outpatient pediatric psychological and behavioral services. In late January 2016, an on-site tenant representative was verbally notified of the additional sampling activities planned and provided with a *Fact Sheet - Results of Indoor Air Sampling* leaflet dated January 22, 2016.

The three buildings consist of slab-on-grade construction with no basements or crawl spaces. Each building has its own roof mounted heating, ventilation, and air conditioning (HVAC) system. The thermostat for each HVAC system was set to approximately 68 degrees Fahrenheit, which is the normal setting when workers are in the buildings.

The subject property is located approximately one block south of Interstate 880, a busy transit thoroughfare through downtown Oakland.

Building Inspection

Blue Rock previously conducted a building inventory in accordance with DTSC guidance documents on December 5, 2015. The completed Building Inventory Forms were included in the *Indoor Air Study – Report of Initial Findings* dated January 4, 2016.

Sample Locations and Duration

On March 12, 2106, Blue Rock collected indoor air samples from the interior spaces associated with 645 4th Street, 380 MLK Jr Way, and 638 3rd Street. The samples were collected from approximately the center of each building over an 8-bour period at a height of approximately three to five feet above the floor surface.

Simultaneously, two outdoor air samples were collected from roof locations of 645 4th Street and 380 MLK Jr Way / 638 3rd Street. The wind conditions at the time of sampling were light and variable. Therefore, the central locations on the roof were selected.

Air Sampling Equipment

The samples were collected in 6-liter vacuum canisters. The canisters were certified clean and placed under vacuum by the analytical laboratory prior to shipment. A flow regulator, set to limit flow to fill the canister over an 8-hour period, was connected to the air inlet of the canister. Each canister had vacuums readings of approximately 30 "Hg at the start of sampling.

Air Sampling Procedures

Each sample canister had a starting vacuum of approximately 30 "Hg. To collect a sample, the valve on the sample canister was opened and the time and initial vacuum documented. As the canister was being filled, the vacuum gauge on the flow controller was observed to ensure that the vacuum in the canister was decreasing slowly over time. The valve on the sample canister was closed at the end of the 8-hour sample period. Sampling start time, sampling ending time, initial starting vacuum, and ending vacuum readings for the canisters were recorded. At the end of sampling, the samples were labeled, documented on a chain-of-custody form, and transported to the project laboratory for analysis.

Air Sample Analysis

In accordance with the ACDEH's request of January 11, 2016, the vapor samples were analyzed by EPA Method TO-15 for all volatile organic compounds (VOCs) on the TO-15 list, which includes for the following constituents of potential concern (CPOCs) associated with gasoline that have been detected in earlier soil and/or groundwater samples:

- TPHg, BTEX, and MTBE by modified EPA Method TO-15
- Naphthalene, 1,2-DCA, and EDB by modified EPA Method TO-15

Indoor Air Sample Results

Indoor air sample analytical results are summarized below:

- <u>645 4th</u>: Benzene was detected at 0.74 μ g/m³. No other CPOCs or VOCs were detected above method reporting limits.
- <u>380 MLK</u>: Benzene was detected at 0.42 μ g/m³. No other CPOCs or VOCs were detected above method reporting limits.
- <u>638 3rd</u>: Benzene was detected at 0.36 μ g/m³. No other CPOCs or VOCs were detected above method reporting limits.

Outdoor Air Sample Results

Outdoor air sample analytical results are summarized below:

- <u>R-1</u>: Benzene was detected at 0.31 μ g/m³. No other CPOCs or VOCs were detected above method reporting limits.
- <u>R-2</u>: Benzene was detected at 0.32 μ g/m³. No other CPOCs or VOCs were detected above method reporting limits.

Air sample analytical data are summarized in Table 6 and the laboratory report is attached.

Comparison of Indoor Air Data to Applicable Screening Levels

In order to evaluate the significance of the CPOC concentrations detected in indoor air, the reported values were compared with the corresponding ESLs published in the San Francisco Bay Regional Water Quality Control Board's *Users Guide: Derivation and Application of Environmental Screening Levels* for commercial exposure scenarios (SFBRWQCB 2016) (Table 6). Exceedances are discussed below:

- <u>645 4th</u>: This sample was collected within the interior space of 645 4th Street, near the center of the building and sub-slab vapor point VP-4. The benzene level of 0.74 μ g/m³ exceeds the commercial ESL of 0.42 μ g/m³. All remaining detected CPOCs were below applicable ESLs. Additionally, the reporting limits for non-detected CPOCs were below the applicable ESLs.
- <u>380 MLK</u>: This sample was collected within the interior space of 380 MLK Jr Way, near the center of the building and sub-slab vapor point VP-5. The benzene level of 0.42 μ g/m³ is equal to the commercial ESL of 0.42 μ g/m³. All remaining detected CPOCs were below applicable ESLs. Additionally, the reporting limits for non-detected CPOCs were below the applicable ESLs.
- <u>638 3rd</u>: This sample was collected within the interior space of 638 3^{rd} Street. The benzene level of 0.36 μ g/m³ is below the commercial ESL of 0.42 μ g/m³. All remaining detected CPOCs were below applicable ESLs. Additionally, the reporting limits for non-detected CPOCs were below the applicable ESLs.

It is noteworthy that the outdoor air samples analytical results were essentially the same as the indoor air sample results, in that benzene was the only CPOC detected and at similar concentrations (i.e. $0.31 \,\mu\text{g/m}^3$ and $0.32 \,\mu\text{g/m}^3$).

Human Health Risk Assessment

Based on the findings and discussion contained herein, the quality of data obtained from this indoor air study appears to have been conducted in general accordance with the DTSC Guidance Document.

Exposure Assessment

An exposure assessment was conducted in general accordance with the DTSC Guidance Document. As specified in the DTSC Guidance Document, the following assumptions were made:

- Exposure time is 8 hrs/day for commercial settings and 24 hrs/day residential settings;
- Exposure frequency is 250 days/yr for commercial settings and 350 days/yr for residential settings; and
- Exposure duration is 25 years for commercial settings and 30 years for residential settings.

Toxicity Assessment

In evaluating indoor carcinogenic and non-carcinogenic air toxicity for the selected COPCs, Blue Rock used the inhalation unit risk (IUR) defined in the SFRWQCB ESL Document (SFRWQCB 2016) as the potency of a carcinogenic chemical as risk per μ g/m³ when inhaled. In evaluating non-carcinogenic risk, Blue Rock used the reference concentration (RfC) presented in the same aforementioned documentation.

Risk Characterization

<u>Methodology</u>

In characterizing risk associated with soil vapor intrusion at the project site, Blue Rock utilized the DTSC Guidance Document's Appendix C - Risk Assessment in combination with the aforementioned IUR and RfC values. The cancer risk, defined as the incremental probability of an individual developing cancer in a lifetime as a result of exposure to a potential carcinogen, was calculated for each COPC using the generic equation:

$$Risk = \frac{Cindoor \ air \ x \ ET \ x \ EF \ x \ ED \ x \ IUR}{ATc \ x \ 365 \ \left(\frac{days}{year}\right) \ x \ 24 \ \left(\frac{hours}{day}\right)}$$

Where:

 $C_{indoor air} = Concentration of indoor air, in \mu g/m^3$ for COPCs above the reporting limit. For COPCs not detected, the reporting limit was used to be conservative.

- ET = Exposure time in hours per day, assumed to be 8 hours per day for commercial exposure and 24 hours per day for residential exposure.
- EF = Exposure frequency in days per year, assumed to be 250 days per year for commercial exposure and 350 day per year for residential exposure.
- ED = Exposure duration in years, assumed to be 25 years for commercial settings and 30 years for residential settings.

IUR = Inhalation Unit Risk, (risk per $\mu g/m^3$ or $(\mu g/m^3)^{-1}$)

 AT_c = Averaging Time for carcinogens, assumed to be 70 years.

The risk for non-carcinogenic chronic toxic effects was evaluated by the determination of a Hazard Quotient (HQ) where:

$$HQ = \frac{Cindoor \ air \ x \ ET \ x \ EF \ x \ ED}{ATnc \ x \ 365 \ \left(\frac{days}{year}\right) \ x \ 24 \ \left(\frac{hours}{day}\right) \ x \ RfC}$$

Where:

- ET = Exposure time in hours per day, assumed to be 8 hours per day for commercial exposure and 24 hours per day for residential exposure.
- EF = Exposure frequency in days per year, assumed to be 250 days per year for commercial exposure and 350 day per year for residential exposure.
- ED = Exposure duration in years, assumed to be 25 years for commercial settings and 30 years for residential settings.
- RfC = Reference Concentration of Contaminant ($\mu g/m^3$) that a person can be exposed to without adverse health effects.
- AT_{nc} = Averaging Time for non-carcinogens, assumed to be 25 years for commercial settings and 30 years for residential settings.

The cumulative incremental inhaled cancer risk from multiple volatile contaminants is the sum of all the chemical-specific cancer risks for the pathway. For carcinogenic chemical species S_1 , S_2 , ..., S_n with chemical-specific risks of Risk₁S₁, Risk₂S₂, ..., Risk_nS_n the cumulative incremental cancer risk is:

$$Risk = Risk_1S_1 + Risk_2S_2 + \ldots + Risk_nS_n$$

The hazard index (HI) is the sum of the chemical-specific HQs, including the HQs for noncarcinogenic effects posed by carcinogenic contaminants. For chemical species S_1, S_2, \ldots, S_n with chemical-specific hazard quotients of HQ₁S₁, HQ₂S₂, ..., HQ_nS_n the hazard index is:

$$HI = HQ_1S_1 + HQ_2S_2 + \ldots + HQ_nS_n$$

Carcinogenic risks and hazard quotients, as well as cumulative risks and hazard indices, were calculated for each of the indoor air sample locations (please see attached sheets).

Evaluation of Risk

Two sets of indoor air samples have been collected. The initial samples were collected in December 2015 and the supplemental samples were collected in March 2016. Some input parameters identified from the SFRWQCB ESL Document were updated in the most recent version released in February 2016. Therefore, the cumulative risk and hazard indices for both sets of indoor air samples were calculated for commercial exposure scenario:

Sample	645 4t	h	380 M	LK	638 3rd				
Date	Risk	HI	Risk	HI	Risk	HI			
12/5/2015	< 6.4 x 10 ⁻⁶	< 0.18	< 6.8 x 10 ⁻⁶	< 0.19	< 4.9 x 10 ⁻⁶	< 0.13			
3/12/2016	< 3.8 x 10 ⁻⁶	< 0.10	< 3.0 x 10 ⁻⁶	< 0.074	< 2.9 x 10 ⁻⁶	< 0.069			

The following table shows recommended responses to numerical risk and hazard evaluations, as published in the DTSC Guidance Document:

Vapor Intrusion Risk / Hazard	Risk Management Decision	Activities
$Risk < 1x10^{-6}$ Hazard Index ≤ 1.0	No Further Action	• None
1x10 ⁻⁶ < Risk < 1x10 ⁻⁴ Hazard Index >1.0	Evaluate Need for Action	 Possible Actions: Additional Data Collection Monitoring Additional Risk Characterization Mitigation Source Remediation
Risk > 1x10 ⁻⁴	Response Action Needed	Vapor Intrusion MitigationSource Remediation

It is notable that the indoor and outdoor analytical results for this event are essentially the same. This indicates that the calculated cumulative risk and hazard index for outdoor air in the area of the site would be essentially the same as those calculated for the indoor air samples.

As shown in the matrix above, the cumulative risks for the samples collected within 645 4th Street, 380 MLK Jr Way, and 638 3rd Street slightly exceed <1 x 10⁻⁶, while the hazard indices are \leq 1.0 for both sets of data. While the exceedance of cumulative risk is not greatly in excess of screening criteria, it indicates that the appropriate risk management decision would be to evaluate the need for action.

Discussion and Conclusions

Indoor air has been sampled on two occasions: the first event occurred in December 2015 and second occurred in March 2016. The December 2015 indoor air samples from 645 4th Street, 380 MLK Jr Way contained trace concentrations of TPHg and BTEX, and the indoor air sample from 638 3rd Street contained a trace concentration of benzene. Low levels of benzene were also detected in the coeval outdoor air samples. Due to the similarity between the analytical results, the concentrations of CPOCs detected in indoor air during that event can be attributed to subterranean contamination or "fresh" air introduced by the HVAC system, or a combination of both.

The March 2016 indoor air samples from 645 4th Street, 380 MLK Jr Way, and 638 3rd only contained trace concentrations of benzene, as did the coeval outdoor air samples. Due to the fact that the indoor and outdoor air samples contained only benzene at similar concentrations, the benzene detected in indoor air during that event appears to be primarily attributable to "fresh" air introduced by the HVAC system.

The outdoor air quality (i.e. benzene) by itself exceeds, or nearly exceeds, the indoor air screening levels, and the cumulative risk and hazard indices for outdoor air quality would similar to those for indoor air quality. These measurements are not considered unusual in an urban setting proximal to a busy Interstate highway.

The possible actions listed in the matrix above include: additional data collection, monitoring, additional risk characterization, mitigation, and source remediation. This second indoor air sampling event reported herein represents additional data collection, monitoring, and risk characterization to supplement the initial findings. The benzene concentrations in ambient air render moot the concept of introducing more outdoor air into the buildings to reduce risk as a mitigation approach. Source remediation was undertaken to the extent practicable in 2010 and 2012 in the form of mobile high-vacuum dual-phase extraction in the location of the closed UST.

The DTSC Guidance Document indicates at least two sampling events should be performed before a risk determination is made. Two indoor air sampling events have now been completed. The results for indoor and outdoor air are similar, and the resulting risk and hazard indices are nearly the same. The presence of benzene, the primary constituent presenting risk, in outdoor air will likely continue to be exhibited in indoor air at similar concentrations until ambient air quality improves for the area of site. Based on these data and observations, additional monitoring of indoor air inhalation exposure risk associated with subterranean contamination appears to be relatively minimal compared to the risk posed by ambient air quality in this area of Oakland.

Recommendations

Blue Rock does not recommend further evaluation of potential vapor intrusion or additional indoor air quality monitoring.

Blue Rock is currently preparing to undertake other previously ACDEH approved investigation activities, which include additional soil and groundwater sampling on the BART property north of the site and along 3rd Street.

References

- AEI Consultant, 2013, Site Status Update and Case Closure Request, Allen Property, 325 Martin Luther King Jr. Way, Oakland, November 5
- Amicus Strategic Environmental Consulting, 2009, letter regarding Terradev Jefferson, LLC Property, 645 4th Street, Oakland, March 4.
- Amicus Strategic Environmental Consulting, 2009, letter regarding Terradev Jefferson, LLC Property, 645 4th Street, Oakland, September 13.
- Blue Rock, 2010, Removal Action Workplan, 645 4th Street, Oakland, California, February 3.

Blue Rock, 2010, Well Installation and Removal Action Report, 645 4th Street, Oakland, California, October 29.

- Blue Rock, 2011, Groundwater Monitoring Report First Quarter 2011, 645 4th Street, Oakland, California, February 1.
- Blue Rock, 2012, Sub-Slab Soil Vapor Sampling Workplan and Project Schedule, 645 4th Street, Oakland, California, April 23.
- Blue Rock, 2012, Sub-Slab Soil Vapor Sampling Report, 645 4th Street, Oakland, California, July 7.
- Blue Rock, 2012, Second Removal Action and Groundwater Monitoring Report, 645 4th Street, Oakland, California, August 16.
- Blue Rock, 2012, Second Sub-Slab Soil Vapor Sampling Report, 645 4th Street, Oakland, California, October 18.
- Blue Rock, 2013, Confirmation Soil and Groundwater Sampling Report & Low Threat UST Case Closure Policy Evaluation, 645 4th Street, Oakland, California, March 11.
- Blue Rock, 2014, Additional Site Characterization Report, 645 4th Street, Oakland, California, May 29.
- Blue Rock, 2014, Report for Geophysical Survey and Additional Site Characterization Workplan, 645 4th Street, Oakland, California, September 18.
- Blue Rock, 2015, Additional Site Characterization Report, 645 4th Street, Oakland, California, March 27.
- Blue Rock, 2015, Workplan for Additional Site Characterization, Sub-Slab Vapor Sampling, and Indoor Air Sampling, 645 4th Street, Oakland, California, June 15.
- Blue Rock, 2015, Sub-Slab Vapor Point Installation and Sampling Report, 645 4th Street, Oakland, California, November 6.
- Blue Rock, 2016, Indoor Air Study Initial Report of Finding, 645 4th Street, Oakland, California, January 4.
- California EPA DTSC. 2011. Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance). October
- California EPA DTSC. 2012. Advisory Active Soil Gas Investigations. April.
- Clayton Environmental Consultants, 1993, UST Closure Report, 424 Martin Luther King Jr. Way, Oakland, California, April 30.
- Ninyo & Moore, 2009, Limited Phase II Environmental Site Assessment, 645 4th Street, Oakland, California, July 24.

Golden Gate Tank Removal, Inc. 2006, Tank Closure Report, 645 4th Street, Oakland, California, September 21.

San Francisco Bay RWQCB. 2016. Users Guide: Derivation and Application of Environmental Screening Level (ESLs).

Ms. Anne Jurek April 13, 2016 Page 15 of 16

Certification

This report was prepared under the supervision of a California Professional Geologist at Blue Rock. All statements, conclusions, and recommendations are based upon published results from past consultants, field observations by Blue Rock, and analyses performed by a state-certified laboratory as they relate to the time, location, and depth of points sampled by Blue Rock. Interpretation of data, including spatial distribution and temporal trends, are based on commonly used geologic and scientific principles. It is possible that interpretations, conclusions, and recommendations presented in this report may change, as additional data become available and/or regulations change.

Information and interpretation presented herein are for the sole use of the client and regulating agency. The information and interpretation contained in this document should not be relied upon by a third party.

The service performed by Blue Rock has been conducted in a manner consistent with the level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions in the area of the site. No other warranty, expressed or implied, is made.

If you have any questions regarding this project, please contact us at (650) 522-9292.

Sincerely, Blue Rock Environmental, Inc. Blue Rock Environmental, Inc. No 6505 Brian Gwinn, PG Principal Geologist

Ms. Anne Jurek April 13, 2016 Page 16 of 16

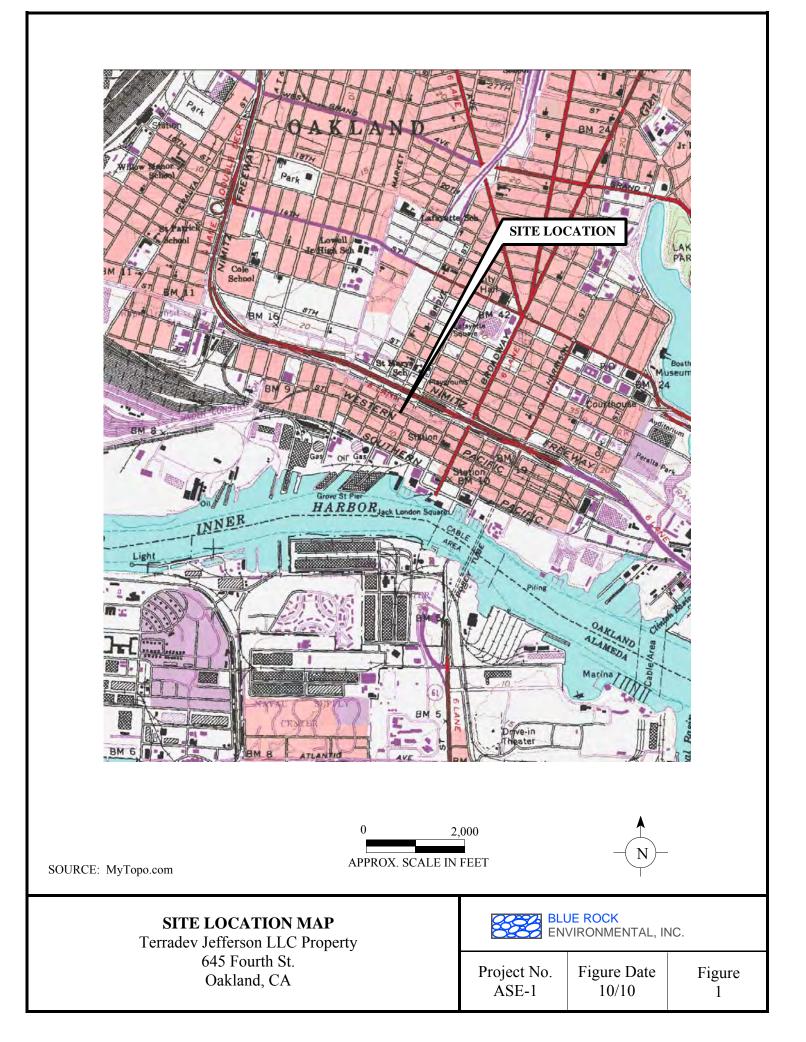
Attachments:

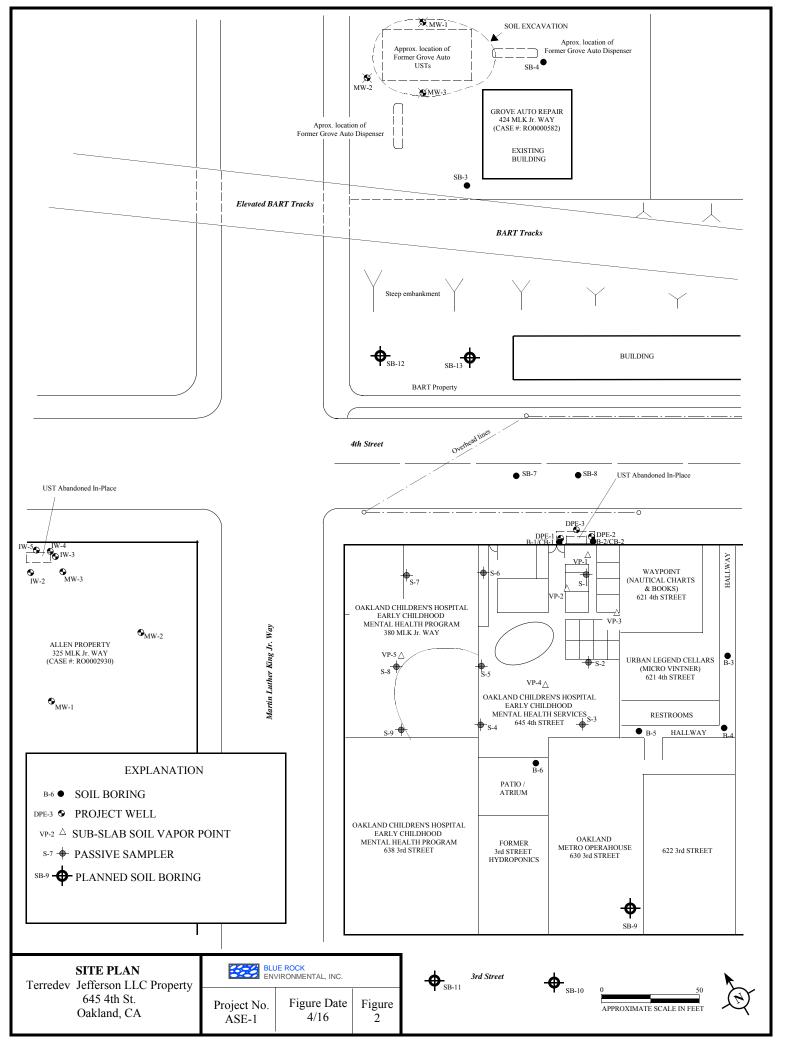
Figure 1: Site Location Map Figure 2: Site Plan Figure 3: Air Sample Map

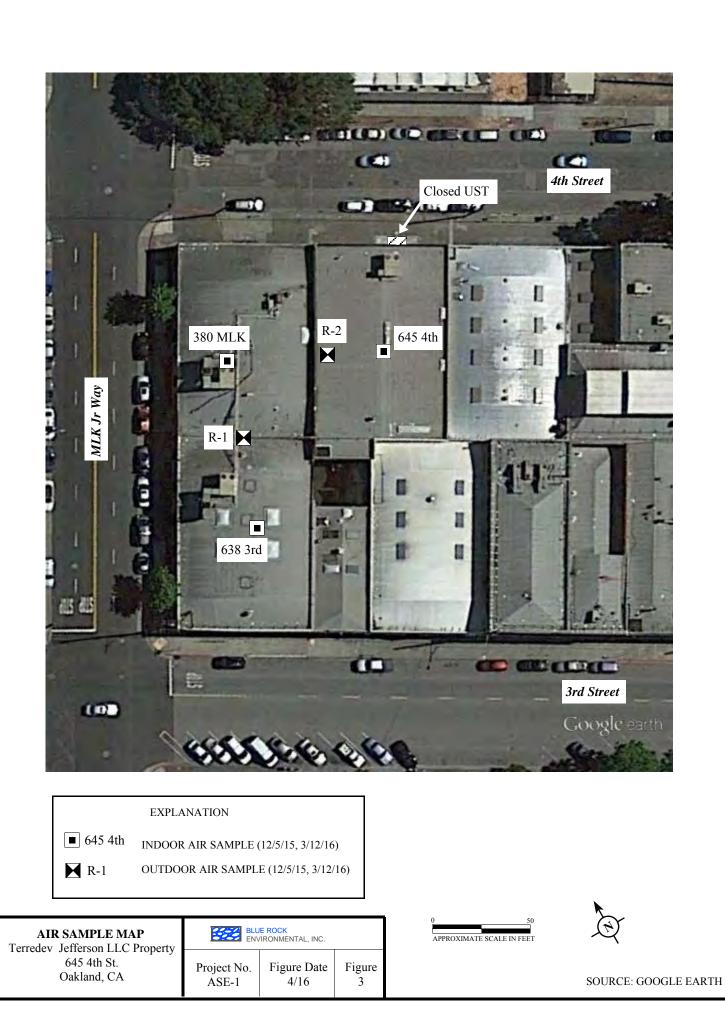
Table 1: Well Construction DataTable 2: Soil Sample Analytical DataTable 3: Groundwater Analytical DataTable 4: Passive Soil Gas Sample Analytical DataTable 5: Sub-Slab Vapor Sample Analytical DataTable 6: Air Sample Analytical Data

Blue Rock Sub-Slab Vapor Field Sampling Notes (3/12/16)

Carcinogenic Risk and Hazard Quotient Example Calculation Sheet with Input Parameters


Summary of Cumulative Risk and Hazard Indices for: $645 4^{th}$, 380 MLK, and 638 3^{rd} - 12/5/15 and 3/12/16


Laboratory Report and Chain-of-Custody Form (Sub-Slab Vapor Samples)


Laboratory Report and Chain-of-Custody Form (Indoor and Outdoor Air Samples)

Distribution:

Ms. Sara May, Metrovation, 580 Second St. Suite 260, Oakland, CA 94607

TABLE 1Well Construction DataTerradev Jefferson, LLC Property645 4th StreetOakland, CA

Extraction Wells

Well <u>ID</u>	Date <u>Installed</u>	Total Boring Depth <u>(ft bgs)</u>	Casing Diameter <u>(inches)</u>	Screen Depth <u>(ft bgs)</u>	Sandpack Depth <u>(ft bgs)</u>	Bentonite Depth <u>(ft bgs)</u>	Cement Grout Depth <u>(ft bgs)</u>
DPE-1	9/20/10	15	2	8 - 15	7 - 15	5 - 7	0 - 5
DPE-2	9/20/10	15	2	8 - 15	7 - 15	5 - 7	0 - 5
DPE-3	9/20/10	10	2	6 - 10	5 - 10	3 - 5	0 - 3

Vapor Probes

Well <u>ID</u>	Date <u>Installed</u>	Total Probe Depth <u>(in bgs)</u>	Tubing Diameter <u>(inches)</u>	Slab Thickness <u>(in bgs)</u>	Screen Depth <u>(in bgs)</u>	Rubber Plug / Bentonite <u>(in bgs)</u>	Cement Depth <u>(in bgs)</u>
VP-1	6/16/12	9	0.25	6.0	6 - 9	5.0 - 6.0	0 - 5
VP-2	6/16/12	9	0.25	4.5	6 - 9	3.5 - 4.5	0 - 3.5
VP-3	6/16/12	9	0.25	4.0	6 - 9	3.0 - 4.0	0 - 3
VP-4	8/29/15	9	0.25	5.5	6 - 9	3.0 - 6.0	0 - 3
VP-5	8/29/15	9	0.25	5.5	6 - 9	3.0 - 6.0	0 - 3

Notes:

ft bgs Feet below ground surface.

in bgs Inches below ground surface.

TABLE 2 Soil Sample Analytical Data Terradev Jefferson, LLC Property 645 4th Street Oakland, CA

	Depth	Sample	TPHd	TPHd w/SGCU	TPHg	В	т	Е	X	MTBE	ТВА	DIPE, ETBE, TAMI	1.2-DCA	EDB	Napht.
Sample ID	(ft bgs)	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
<u>UST Removal Se</u>	amples_														
8795-EX-W-9'	9	8/23/06	<120		10,000	130	1,000	230	1,200	<12	<100	all<12			
8795-EX-E-9'	9	8/23/06	<25		920	6.8	55	18	110	<1.2	<10	all<1.2			
Investigation Sa	mples_														
DPE-1-7.5	7.5	9/20/10	810^		6,500	14	320	180	980	< 0.50	<2.5		< 0.50	0.50	
DPE-1-12	12	9/20/10	260^		2,300	26	160	45	240	0.71	<1.5		< 0.30	< 0.30	
DPE-1-15	15	9/20/10	92^		770	10	53	15	80	0.39	< 0.50		0.11	< 0.090	
DPE-2-6	6	9/20/10	15		1.2	< 0.0050	0.0054	< 0.0050	0.021	< 0.0050	< 0.0050		< 0.0050	< 0.0050	
DPE-2-11	11	9/20/10	1,200^		160,000	1,400	10,000	3,300	19,000	< 0.25	<1.5		< 0.25	1.8	
DPE-2-15	15	9/20/10	66^		430	3.8	25	8.3	47	< 0.50	<2.5		< 0.050	< 0.50	
DPE-3-7	7	9/20/10	260^		860	2.1	37	19	100	< 0.10	< 0.50		< 0.10	< 0.10	
DPE-3-10	10	9/20/10	200 ⁻¹ 800 ⁻¹		8,900	2.1 78	580	19	980	<0.10	<0.30		< 0.10	0.10 0.82	
DFE-3-10	10	9/20/10	000		8,900	70	500	100	900	<0.23	<1.5		<0.23	0.82	
CB-1-7.5	7.5	2/18/13	1.2*		<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050			< 0.0050	< 0.0050	
CB-1-9	9	2/18/13	110^		1,200	2.8	55	27	150	< 0.25			< 0.25	< 0.25	
CB-1-12	12	2/18/13	880^		14,000	100	850	180	1,400	0.53			< 0.25	0.86	
CB-1-15	15	2/18/13	89^		1,000	8.4	62	15	100	< 0.050			< 0.050	< 0.050	
CB-2-9	9	2/18/13	120^		840	0.44	17	20	110	< 0.15			< 0.15	< 0.15	
CB-2-11	11	2/18/13	110^		2,700	23	160	48	260	< 0.40			< 0.40	< 0.40	
CB-2-15	15	2/18/13	45^		380	3.9	18	6.6	34	< 0.050			< 0.050	< 0.050	
B-6-6'	6.5	1/11/14	340^	350^	1 700	0.12	8.0	12	91	< 0.050	<0.25		< 0.050	<0.050	
В-6-10.5'	0.5 10.5	1/11/14	280^	280^	1,700	0.13 4.1	8.0 48	12 26	91 130		<0.25 <1.5		< 0.050	<0.050	
B-0-10.5	10.5	1/11/14	280**	280**	1,500	4.1	48	20	130	<0.25	<1.5		<0.25	< 0.25	
SB7-8.5/9	8.5-9	12/29/14	1.2^		4.0	0.16	0.50	0.081	0.50	< 0.0050	< 0.0050		< 0.0050	0.0070	0.043
SB7-10.5/11	10.5-11	12/29/14	1,400^		19,000	150	1,100	330	1,800	< 0.25	<1.5		< 0.25	2.5	99
SB7-12.5/13	12.5-13	12/29/14	310^		3,600	29	200	59	330	< 0.090	<1.5		< 0.090	0.46	23
SB-8-8.5/9	8.5-9	12/29/14	750^		6,600	30	290	120	580	< 0.25	<1.5		< 0.25	0.38	38
SB-8 11.5/12	11.5-12	12/29/14	170^		1,400	6.4	54	22	130	< 0.25	<1.5		< 0.25	< 0.25	10
SB-8 14.5	14.5	12/29/14	<1.0		<1.0	0.026	0.060	0.011	0.065	< 0.0050	< 0.0050		< 0.0050	< 0.0050	< 0.0050

Notes:

Notes:	
ft bgs	feet below ground surface
mg/kg	milligrams per kilogram
TPHd	total petroleum hydrocarbons as diesel by EPA Method 8015M or 8015B, w/SCGCU = analysis performed after silica-gel clean-up.
TPHg	total petroleum hydrocarbons as gasoline by EPA Method 8260B
BTEX	benzene, toluene, ethylbenzene, and xylenes by EPA Method 8260B
MTBE, TBA, ETBE,	methyl tert-butyl ether, tert-butanol, ethyl tert-butyl ether, di-isopropyl ether, tert-amyl methyl ether by EPA Method 8260B,
DIPE, TAME	
1,2-DCA, EDB	1,2-dichloroethane, 1,2-dibromoethane by EPA Method 8260B.
μg/L	Micrograms per liter.
<###	Not detected at or above the indicated reporting limit.
^	Laboratory Flag: Hydrocarbons are lower-boiling than typical Diesel Fuel
*	Laboratory Flag: Hydrocarbons are higher-boiling than typical Diesel Fuel
	Data not available, not monitored, or not sampled

TABLE 3 Groundwater Analytical Data Terradev Jefferson, LLC Property 645 4th Street Oakland, CA

Sample ID	Sample Date	TOC (ft MSL)	DTW (ft)	LNAPL (ft)	GWE (ft MSL)	TPHd (µg/L)	TPHd w/SGCU (µg/L)	TPHg (µg/L)	B (µg/L)	Т (µg/L)	E (µg/L)	Х (µg/L)	MTBE (µg/L)	TBA (µg/L)	1,2-DCA (µg/L)	EDB (µg/L)	Napht. (µg/L)
<u>Grab Grou</u>	undwater Samp	les															
B-1-GW*	7/10/09		~9.5			5,300		78,000	15,000	13,000	1,700	10,500	570				
B-2-GW*	7/10/09		~9.5			2,300		60,000	13,000	13,000	890	4,800	120				
B-3	1/10/14		~12			58#	<50	<50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
B-4	1/10/14		~12			67#	<50	<50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
B-5	1/10/14		~12			110#	<50	110	1.2	1.4	0.65	4.5	2.7	200	43	<0.50	
B-6 (2)	1/11/14		~11			5,200^	360^	84,000	1,800	7,600	2,400	12,000	5,100	180J	110	<20	
SB-7	12/29/14		~9			60,000^		250,000	15,000	34,000	4,000	20,000	<40	<200	130	240	1,000
SB-8	12/29/14		~9			16,000^		180,000	9,100	22,000	3,000	16,000	<40	<200	130	140	1,200
Monitoring	g Well Data																
DPE-1	9/22/10	15.81	9.21	0.00	6.60	<4,000 (1)		120,000	25,000	18,000	3,300	17,000	320	320	620	<40	
Screen ~8' - 15'	9/28-10/3/10 10/18/10	15.81 15.81	 9.26	 sheen	 6.55	5-day HVDPE <4,000 (1)		97,000	15,000	20,000	1,600	11,000	490	270	390	<40	
0 15	1/20/11	15.81	8.56	sheen	7.25	<3,000 (1)		83,000	12,000	16,000	2,000	11,000	270	<200	220	<40	
	7/6/12	15.81	8.85	0.00													
	7/9-7/24/12	15.81				15-day HVDP	E Remedial	Event									
	8/12/12	15.81	9.03	0.00	6.78	<2,000 (1)		71,000	7,500	9,800	1,000	6,500	280	89	190	<15	
	2/11/13	15.81	8.74	0.00	7.07	<3,000 (1)		81,000	9,400	14,000	1,800	10,000	240	110	210	<15	
	1/10/14	15.81	9.84	0.00	5.97	1,600^	56^	98,000	14,000	13,000	2,100	12,000	270	200	270	<25	
DPE-2	9/22/10	16.01	9.44	0.00	6.57	<4,000 (1)		110,000	21,000	18,000	3,100	14,000	200	260	540	110	
Screen	9/28-10/3/10					5-day HVDPE											
~8' - 15'	10/18/10	16.01	9.48	sheen	6.53	<5,000 (1)		84,000	11,000	16,000	1,600	9,200	77	<200	220	77	
	1/20/11	16.01	8.77	sheen	7.24	<5,000 (1)		94,000	12,000	19,000	2,500	13,000	64	<200	220	88	
	7/6/12 7/9-7/24/12	16.01	9.06	0.00		 15 day UVDB	 E Romodial										
	8/12/12	16.01 16.01	 9.27	0.00	 6.74	15-day HVDP <2,000 (1)	E Kemediai	70,000	9,900	16,000	1,700	9,600	54	<200	160	56	
	2/11/13	16.01	9.27 8.95	0.00	7.06	<4,000 (1)		60,000	9,900 7,300	9,500	1,400	7,000	34 34	<90	120	<20	
	1/10/14	16.01	10.08	0.00	5.93	2,800 [^]	<50	100,000	17,000	15,000	2,400	11,000	120	100	220	27	
DPE-3	9/22/10	15.87	9.43	0.00	6.44	insufficient w		-	ng (i.e. <0.	5-ft)							
Screen	9/28-10/3/10	15.87				5-day HVDPE											
~6' - 10'	10/18/10	15.87	9.35	0.00	6.52	insufficient w		-									
	1/20/11	15.87	8.51	0.13	7.36	no groundwat	er sample co	ollected, LP	NAPL pres	ent.							
	7/6/12 7/9-7/24/12	15.87 15.87	8.65	0.00		15-day HVDP	E Damadial	Event									
	8/12/12	15.87	9.02	sheen	6.85	<200,000 (1)		190,000	1,400	7,800	3,700	29,000	27	120	40	130	
	2/11/13	15.87	8.34	sheen	7.53	<40,000 (1)		130,000	4,700	9,000	1,900	25,000	<40	<200	54	80	
	1/10/14	15.87	Dry														
Notes: Screen TOC DTW LNAPL GWE TPHd TPHg BTEX MTBE TBA 1,2-DCA, F µg/L <### 	EDB	Depth to Light non Groundwa Total petr Total petr Benzene, Note: tota Methyl te Tert-butan 1,2-dichlo Microgram Not detec	sing relative sing relative auter (foi- -aqueous ater Elev roleum hy roleum hy toluene, al xylenes rt-butyl e nol by El proethane ms per lit ted at or	tive to feet r borings I s phase liqu ation (TOO ydrocarbon ydrocarbon ethylbenze s equal the ether by EP PA Method e, 1,2-dibro ter.	DTW show: nid petrolet C-DTW) in s as diesel s as gasolit ene, and xy sum of sep A Method 8260B. moethane	In sea level (ft N s "depth to wat um, "sheen" is a ft MSL. (This ' by EPA Metho ne by EPA Metho lenes by EPA Metho earate isomers 8260B, * 8021 by EPA Methoo eporting limit.	er" and "dep in immeasur does not acc d 8015M, * hod 8260B, dethod 8260 reported for B.	oth to botton rable thickn count for L1 8015B. SC , *8015B. OB, *8021E	ness (i.e. < NAPL thic GCU = Silio 3.	0.01-ft) kness, if p		to analys	is.				
^						er-boiling than	typical Die	sel Fuel									
#						sel range, atypi											
J				-		ay be biased sli			ersion of a	small frac	tion of M	TBE to T	BA durins	g water sa	ample analys	is.	
(1)						ineterference f											
(2)		Repeat an	alysis by	Method 8	260B yield	ed inconsistent	results. Th	e concentra	ations appo	ear to vary	between	bottles. T	he highes	st valid re	sult is report	ted.	

TABLE 4Passive Soil Gas Sample Analytical DataTerradev Jefferson, LLC Property645 Fourth StreetOakland, CA

Sample ID	Sample Depth (ft bgs)	Install Date	Retrieval Date	ТРН (µg)	DRPH (µg)	GRPH (µg)	В (µg)	Т (µg)	Е (µg)	Х (µg)	MTBE (µg)	1,2-DCA (µg)	Napht. (µg)
S-1	~2 - 3	2/7/15	2/14/15	13.33	2.90	10.86	0.04	0.03	0.02	0.17	0.25	0.13	0.20
S-2	~2 - 3	2/7/15	2/14/15	273.77	59.21	223.55	48.01	209.52	123.77	505.33	< 0.02	3.97	35.44
S-3	~2 - 3	2/7/15	2/14/15	183.36	72.98	115.01	33.38	127.13	113.16	367.48	< 0.02	2.35	37.35
S-4	~2 - 3	2/7/15	2/14/15	1.00	< 0.50	0.66	0.02	0.02	< 0.02	0.18	< 0.02	2.35	< 0.50
S-5	~2 - 3	2/7/15	2/14/15	220.53	107.91	117.33	20.23	90.58	24.79	369.71	< 0.02	2.01	30.63
S-6	~2 - 3	2/7/15	2/14/15	169.75	54.69	119.88	15.94	29.38	31.45	337.65	< 0.02	0.90	2.45
S-7	~2 - 3	2/7/15	2/14/15	1.03	0.74	<0.50	0.07	0.15	0.06	0.59	< 0.02	< 0.02	<0.50
S-8	~2 - 3	2/7/15	2/14/15	245.41	106.20	145.04	32.86	103.45	76.32	421.35	< 0.02	2.53	36.09
S-9	~2 - 3	2/7/15	2/14/15	<0.50	< 0.50	< 0.50	0.36	0.36	0.03	0.16	< 0.02	0.02	<0.50

Notes:

ft bgs µg TPH DRPH GRPH BTEX MTBE 1,2-DCA Naphthalene

<####

feet below ground surface

micrograms Total petroleum hydrocarbons by SPG-WI-0292

Diesel range petroleum hydrocarbons by SPG-WI-0292

Gasoline range petroleum hydrocarbons by SPG-WI-0292

benzene, toluene, ethylbenzene, and xylenes by SPG-WI-0292

methyl tert-butyl ether by SPG-WI-0292

1,2-dichloroethane by SPG-WI-0292

e Naphthalene by SPG-WI-0292

Not detected at or above the indicated reporting limit.

Table 5 SUB-SLAB VAPOR SAMPLE ANALYTICAL DATA Terradev Jefferson LLC Property 645 4th St. Oakland, CA

																Tracer Ga	IS	Sample Car	n Vacuum
						Cons	ituent Conce	ntrations				Soil C	Gas Conc	entrations	In Shroud	In Sample	Leak Percent^	End of	Arrival
Sample	Sample	sample	TPHg	В	Т	Е	Х	MTBE	Naphthalene	1,2-DCA	EDB	O ₂	CO ₂	CH_4	He - Avg	He	Leak	Sampling	at Lab
I.D.	Date	container	$(\mu g/m^3)$	(µg/m ³)	$(\mu g/m^3)$	(%)	(%)	(%)	(%)	(%)	(%)	("Hg)	("Hg)						
VD 1	(1)(1)2	1.7	1 200	20	120	21	120	7.2	-0.00	-0.14	-0.050	1.5	0.007	-0.000	22.2	2.1	10.00/	0	(
VP-1	6/16/12 9/22/12	1-L 1-L	1,300 <330	38 <8.0	120 <9.4	21	138 <22	7.3 <9.0	<0.09 <13	<0.14 <10	<0.050 <3.8	15 19	0.096	<0.008 <0.008	22.2 20.0	2.4 0.19	10.8%	~8	~6
	9/22/12	1-L 1-L	<330	<8.0 <8.0	<9.4 <9.4	<11	<22 <22	<9.0 <9.0	<13	<10	<3.8	19	4.7	<0.008	20.0	0.19	0.40%	~5 ~5	~0 ~5
	1/25/14	1-L 1-L	<330	<8.0	<9.4 <9.4	<11	<22	<9.0 <9.0	<13	<10	<3.8	14	2.6	<0.008	8.0	< 0.023	<0.04%	~5	~1
	3/12/16	1-L 1-L	<330	<8.0	<9.4	<11	<22	<9.0	<13	<10	<3.8	13	2.0	<0.008	10.0	<0.003 0.009	0.09%	~5	~1 ~4
	5,12,10	12	550	-0.0	5.1			9.0		10	0.0		2.1	0.009	10.0	0.009	0.0770	5	1
VP-2	6/16/12	1-L	1,200	66	25	2.6	8.2	<6.3	< 0.090	< 0.14	< 0.050	11	1.3	< 0.009	13.8	< 0.003	<0.02%	~8	~7
	9/22/12	1-L	<330	<8.0	<9.4	<11	<22	<9.0	<13	<10	<3.8	14	4.0	< 0.008	19.0	< 0.003	<0.02%	~7	~6
	1/25/14	1-L	<330	<8.0	<9.4	<11	<22	<9.0	<13	<10	<3.8	12	7.4	< 0.008	6.6	< 0.003	<0.05%	~5	~5
	12/5/15	1-L	<330	<8.0	<9.4	<11	<22	<9.0	<13	<10	<3.8	5.2	4.2	< 0.010	8.3	< 0.003	<0.04%	~5	~2
	3/12/16	1-L	<330	<8.0	<9.4	<11	<22	<9.0	<13	<10	<3.8	9.3	6.8	< 0.010	9.6	0.009	0.09%	~5	~4
VP-3	6/16/12	1-L	960	16	19	2.9	20	<5.8	< 0.08	< 0.13	< 0.050	16	0.029	< 0.008	23.6	2.6	11%	~5	~5
	9/22/12	1-L	<330	<8.0	<9.4	<11	<22	<9.0	<13	<10	<3.8	20	0.46	< 0.008	15.7	0.036	0.23%	~5	~6
	1/25/14	1-L	<330	<8.0	<9.4	<11	<22	<9.0	<13	<10	<3.8	19	1.5	<0.008	6.6	0.012	0.18%	~5	~1
VP-4	9/6/15	1-L	5,600,000	<58.000	<69.000	<79.000	600,000	<66.000	<95.000	<74.000	<140.000	7.5	0.37	<0.009	6.5	0.004	0.06%	~5	~2
VI -4	12/5/15	1-L	2,000,000	<1.100	<1.300	<1,500	55,000	<1.200	<1.800	<1.400	<530	17	2.9	< 0.007	8.2	< 0.003	< 0.04%	~5	~3
	3/12/16	1-L	10,000,000	4,100	6,500	<1,700	22,400	<1,400	<2,000	<1,600	<590	0.82	13	0.055	8.7	0.28	3.2%	~5	~4
			,,			,	,		,								/ -	-	1
VP-5	9/6/15	1-L	5,000,000	180,000	140,000	110,000	1,390,000	<54,000	<78,000	<60,000	<110,000	2.7	3.3	< 0.007	7.0	< 0.003	<0.04%	~5	~3
	12/5/15	1-L	8,200,000	170,000	180,000	150,000	1,310,000	<12,000	<18,000	<14,000	<5,300	1.9	13	0.008	8.2	< 0.003	<0.04%	~5	~1
	3/12/16	1-L	780,000	9,100	6,500	3,700	208,000	<1,300	<1,900	<1,400	<550	15	1.6	< 0.007	8.9	0.13	1.5%	~5	~2
																			1

Subslab Soil Gas Sceening Levels Calculated as: Screening level (subslab soil gas) = Screening level (indoor air) / 0.05

	a	8	<i>.)</i>						
ESLs Residential Indoor Air divided by 0.05	2,000	1.9	6,200	22	2,000	220	1.7	2.2	0.094
ESLs Comm/Indus Indoor Air divided by 0.05	2,000	8.4	26,000	98	8,800	940	7.2	9.4	0.40

Indoor Air Screening Levels

ESLs Residential Indoor Air	100	0.097	310	1.1	100	11	0.083	0.11	0.0047
ESLs Comm/Indus Indoor Air	100	0.42	1,300	4.9	440	47	0.36	0.47	0.020

Notes:	
TPHg	Total Petroluem Hydrocarbons as gasoline by EPA Method TO-15
BTEX, MTBE	Benzene, Toluene, Ethylbenzene, and Total Xylenes, Methyl tert-Butyl Ether by EPA Method TO-15(M) GC/MS (note: Xylene number shown in table is the sum of xylene isomers reported by lab)
Naphthalene	Naphthalene by EPA Method TO-15
1,2-DCA, EDB	1,2-dichloroethane, 1,2-dibromoethane by EPA Method TO-15
O2, CO2, CH4, He	Oxygen, Carbon Dioxide, Methane, and Helium by modified ASTM D-1946
$\mu g/m^3$	Micrograms per cubic meter
<#.##	Compound not detected at or above the reported laboratory detection limit
ESLs	Environmental Screening Levels for Indoor Air in Commercial/Industrial or Residential setting (SFBRWQCB 2016)
Tracer Gas in Shroud	Concentration range of tracer gas in shroud recorded during sample collection. Average = (Max + Min) / 2
Tracer Gas in Sample	Concentration of tracer gas in sample as detected by lab analysis.
Tracer Gas Leak into Sample	If helium was detected in the sample, the concentration measured in the sample was divided by the average concentration in the shroud (and multiplied by 100 to convert to percent).
	^ a leak of less than 5% is considered acceptable for data evaluation.
	Shaded samples indicate a tracer gas leak of more than 5%.

Table 6AIR SAMPLE ANALYTICAL DATATerradev Jefferson LLC Property645 4th St.Oakland, CA

													Sample C	an Vacuum
							Co	onsituent Co	ncentrations				End of	Arrival
Sample	Sample	Sample	sample	TPHg	В	Т	Е	Х	MTBE	Naphthalene	1,2-DCA	EDB	Sampling	at Lab
I.D.	Date	Duration	container	$(\mu g/m^3)$	("Hg)	("Hg)								
Indoor Air Samp	les													
645 4th	12/5/15	8 hrs	6-L	36	1.8	5.4	1.2	5.4	<3.6	< 0.05	< 0.08	< 0.03	~2.5	~1
	3/12/16	8 hrs	6-L	<9.8	0.74	<3.8	< 0.87	<8.6	<3.6	<0.05	< 0.08	< 0.03	~0	~0
380 MLK	12/5/15	8 hrs	6-L	17	2.0	5.4	1.2	4.9	<3.6	< 0.05	< 0.08	< 0.03	~0	~0
	3/12/16	8 hrs	6-L	<9.8	0.42	<3.8	< 0.87	<8.6	<3.6	< 0.05	<0.08	< 0.03	~4	~2
638 3rd	12/5/15	8 hrs	6-L	<9.8	1.2	<3.8	< 0.87	<8.6	<3.6	< 0.05	< 0.08	< 0.03	~5	~3
	3/12/16	8 hrs	6-L	<9.8	0.36	<3.8	<0.87	<8.6	<3.6	< 0.05	< 0.08	< 0.03	~5	~2
Outdoor Air San	<u>iples</u>													
R-1	12/5/15	8 hrs	6-L	<9.8	0.78	<3.8	< 0.87	<8.6	<3.6	< 0.05	< 0.08	< 0.03	~5	~2
	3/12/16	8 hrs	6-L	<9.8	0.31	<3.8	< 0.87	<8.6	<3.6	< 0.05	< 0.08	< 0.03	~1	~0
R-2	12/5/15	8 hrs	6-L	<9.8	1.2	<3.8	<0.87	<8.6	<3.6	< 0.05	< 0.08	< 0.03	~4.5	~1
K-2			-											
	3/12/16	8 hrs	6-L	<9.8	0.32	<3.8	<0.87	<8.6	<3.6	<0.05	<0.08	< 0.03	~3.25	~0

Indoor Air Screening Levels

ESLs Residential Indoor Air	100	0.097	310	1.1	100	11	0.083	0.11	0.0047
ESLs Comm/Indus Indoor Air	100	0.42	1,300	4.9	440	47	0.36	0.47	0.020

Notes:

TPHg Total Petroluem Hydrocarbons as gasoline by EPA Method TO-15

BTEX, MTBEBenzene, Toluene, Ethylbenzene, and Total Xylenes, Methyl tert-Butyl Ether by EPA Method TO-15(M) GC/MS (note: Xylene number shown in table is the sum of xylene isomers reported by lab)NaphthaleneNaphthalene by EPA Method TO-15

1,2-DCA, EDB 1,2-dichloroethane, 1,2-dibromoethane by EPA Method TO-15

μg/m³ Micrograms per cubic meter

<#.## Compound not detected at or above the reported laboratory detection limit

ESLs Environmental Screening Levels for Indoor Air in Commercial/Industrial or Residential setting (SFBRWQCB 2016)

		. ·			
Date: 3/12/16	7			-	
Technician: LT	i a				ι,
Job No .: ASE-1					
	WELL ID: VP-1		Manifold ID#: NA	•	
Purge States V	AL Pump	Volume: ~ 0. e	261 Rurge	Start Presure:	the A-
Sample Suma ID#:		Volume: \		Start Presure:	
Shut-in Test Start Ti	me/Pressure: 0940	/ 30"Hy	Shut-in Test End Tir	ne/Pressure: /00	3/30"Hg 1055
	Time	Pre-Regulator	Post-Regulator	He Tracer	
	(24 Hr)	Presure (-"H ₂ O)	Presure (-"Hg)	(%)	
20	1831		24	NA	-
lagez	1832.5	90 sec. furge	24		
start	1833		30	11.1	
Star -	1830		23	9.6	
	1838		17	819	
	1841	anna airdegiadhan falann anna aigeadh (dina f chailte airdean fe airdean anna	9	9.1	
· - 1	1842		5	8,8	
End					_
		a an			
	· · · · · · · · · · · · · · · · · · ·				
	-				
	• •			· · · · · · · · · · · · · · · · · · ·	
			a standard a		
·					
Notes:			n Califordia una una contra agust partago ta califordia angleta califordia una part gua (1961 en ang		
an dara mengen sekatakan sekatakan dara penakan dari sekatakan dari dari dari dari dari dari dari dari				-	
den mar in an i	an a shailan iyo ay ma a sa ana a sa an an a sa a sa a sa a		19. april 1		· · · · · · · · · · · · · · · · · · ·

•

Blue Rock Environmental, Inc.

Soil Gas Sample Data Sheet

ł,

Date: $3/12/16$ Technician: ξT	1				х х
OD NO .: ASE-				.^	and an a second seco
	WELL ID: VP-	2		A	
urge	lac Punp	Volume:	N0,062	Start Presure:	NA
Sample Suma ID#:	306	Volume: (Start Presure:	
Shut-in Test Start Tin	ne/Pressure: 094	5/29/42	Shut-in Test End Tim	e/Pressure: 100	5/29Hg
	Time	Pre-Regulator	Post-Regulator	He Tracer	
	(24 Hr)	Presure (-"H ₂ O)	Presure (-"Hg)	(%)	
2	1814		NA/254	NA	
Ruige 7	1815,5	10secie	NA/25He	NA	
stat	1816	¥	29	10.6	
200	1819		20	9.2	
	1821		15	8.6	
	1823		1み	9,1	
	1825		<i>1み</i> そ	8.8 . 8,6	
end	1826		5	. 8,6	
	/				
				·	-
	~				
					-
					-
	- ···				-
	· · · · · · · · · · · · · · · · · · ·				
Notes:					-

Blue Rock Environmental, Inc .

Soil Gas Sample Data Sheet

ob No.: ASE-1	10)	Manifold ID#: NA		
	VELLID: VP-2				
	AL PUMP	Volume:	.062	Start Presure:	
		Volume: L		Start Presure:	1 . 0
Shut-in Test Start Tim	ne/Pressure: 0938/3	949	Shut-in Test End Tim	e/Pressure: 1009	29"Hg
	Time	Pre-Regulator Presure	Post-Regulator Presure	He Tracer	
	(24 Hr)	(-"H ₂ O)	(-"Hg)	(%)	
0 cast	1725,0	NA	24	NA	
IN 82	1726.5			- 8 -	
Pwg Start	1734		29	9,7	
	1733		24	8.4	
	1736		17	8.0	
	1738		11	7.6	
end	1740		5	8.1	
	an an an Anna a				
			•		
	N				
. -	· · · · · · · · · · · · · · · · · · ·	and the second			
-			ander and and a state of the state		
-			α τη από τη μητική του το του το το το από στη ματά τη τη του το του το του το του το του του το του το του το Το το του του		
F	,,,,,,,		and a second		
			ana an	-	

. .

Blue Rock Environmental, Inc.

.

٤,

Soil Gas Sample Data Sheet

and the second second

OD NO .: ASE-1	WELL ID: VP-5		Manifold ID#: NA		
Purge State	AC RUMP	Volume: ~0.0	16L	Start Presure:	
Sample Suma ID#:	312	Volume: IL		Start Presure:	
Shut-in Test Start Tir	me/Pressure: 09 39/	>30"Hg	Shut-in Test End Tim	e/Pressure: 100	1/>30/4g PA:
	Time	Pre-Regulator Presure	Post-Regulator Presure	He Tracer	
V/	(24 Hr)	(-"H ₂ O)	(-"Hg) 25 ⁹	(%)	
2,583	17-48.0	NA	25"		
	1251	NA	>30	10.1	
start	1757	· \	25	8.1	
	1755		20		·
	1757		15	7.6 8.3	
	1759		9	8,7	
end	1800		5	8.2	
				·	
			-		
			-		-
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		-
				· · ·	
			4		

• •

Blue Rock Environmental, Inc.

Soil Gas Sample Data Sheet

.

AMBIENT & INDOOR AIR SAMPLE DATA WELL GAUGING DATA/PURGE CALCULATIONS

Job No.:	-3E-1	Location: Te	errader)efferse	on LLC	Date: 3//	7 16	Tech(s): 275
WELL NO.	START	DTB (ft)	ዮብ DTW (ft)	ST (ft)	Eenix	PV (gal)	SPL (ft)	NOTES
R-1	30"44	1008 22"Hg	1240 10"Hg	an sana an	1610 1"Hg			2#7005 M#1079
R-2	0817 >30"Hg	1009 25*Hg	1243 15'Hg		1617 123"Hg	N3, July		C#6976 M#3385
	0807	-		epiden david version over a sveden a david	1602 0"Hg			C#7007 m#931
		U		a anna a ru cananalann schliftig for alle a fra da ser anna anna 1981 a fra anna anna anna anna anna anna ann	V	1999 - The second of the second s		
380 MLK	0805	24"44	15"Hg	9009, J. 4 69 7. 68 8 80000 1 435 97. 6 8 80 80 80 1 1 1	1405 4''Hay	x =	e nga kata at a na anga mata anga kata anga kata ang	C# 7004 M# 7399
638 3rd	0807 3014g	1006 24.5	12-41 13:5 4	99 - 990 - 73 - 74 - 74 - 74 - 74 - 74 - 74 - 74	1607 5"Hg	1997 - 2000 199 - 19, 199 - 199 - 199 - 29 - 20 - 20 - 20 - 20 - 20 - 20 -	nan an ann an Ann Ann Ann Ann Ann Ann An	6#7006 mx 7402
				29 1900 2000 1101 21 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20				
		-		an sa				
				en batter e the state entry of the			stantistication (also calify come) and () a	
				1999 - 2000 F. S.		F. A. LEWIS CO. S. S. M. MANAGAMA (1997) MILLION AND IN CO.	-	

Explanation: OLAM = Well Diameter DTB = Depth to Bottom DTW = Depth to Water ST = Saturated Thickness (DTB-DTW)

CV = Casing Volume (ST x cf)

 $PV = Purge Volume (standard 3 x CV, well development <math>20 \times CV)$

SPL = Thickness of Separate Phase Liquid

Conversion Factors (cf)

1 meb diameter well $c_{c}^{2} = 0.04$ gal/ft 2 meb diameter well $c_{c}^{2} = 0.16$ gal/ft 4 ineb diameter well $c_{c}^{2} = 0.65$ gal/ft 6 ineb diameter well $c_{c}^{2} = 1.44$ gal/ft

BLUE ROCK ENVIRONMENTAL, INC.

1169 Chess Drive, Suite C, Foster City, CA 94404 Phone (650) 522-9292 Fax (650) 522-9259

Risk Calculation Example Sheet for Indoor Air Inhalation Exposure

 $Risk = \frac{C_{indoor air} \times ET \times EF \times ED \times IUR}{AT_c \times 365 \text{ day/yr} \times 24 \text{ hr/day}}$

Hazard Quotient (HQ) =
$$\frac{C_{indoor air} \times EF \times EF}{AT_{nc} \times 365 \text{ day/yr} \times 24 \text{ hr/day} \times RfC}$$

where:

$C_{indoor air} (\mu g/m^3) =$	Sample specific					
	Exposure	e Scenario				
	Resdiential	Commercial				
ET (hr/day) =	24	8				
EF day/yr =	350	250				
ED (yr)=	30	25				
AT _c (yr)=	70	70				
AT _{nc} (yr)=	30	25				

Source: DTSC 2011

				Ethyl-			Naph-		
	TPHg	Benzene	Toluene	benzene	Xylenes	MTBE	thalene	1,2-DCA	EDB
$IUR (\mu g/m^3)^{-1} =$	No Value	2.9E-05	No Value	2.5E-06	No Value	2.6E-07	3.4E-05	2.6E-05	6.0E-04
RfC (μ g/m ³) =	5.7E+02	3.0E+00	3.0E+02	1.0E+03	1.0E+02	3.0E+03	3.0E+00	7.0E+00	8.0E-01

Source: SFBRWQCB 2016

Project:	Terradev Jefferson LCC property, 645 4th St., Oakland, CA
Sample ID:	645 4th
Sample date:	12/5/2015

		TPHg	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Naphtha- lene	1,2-DCA	EDB		
Residential	Risk	No Value	2.1E-05	No Value	1.2E-06	No Value	<3.8E-07	<7.0E-07	<8.5E-07	<7.4E-06	CR	<3.2E-05
Residential	HQ	0.061	0.58	0.017	0.0012	0.052	< 0.0012	<0.016	< 0.011	<0.036	HI	<0.77
Commorsial	Risk	No Value	4.3E-06	No Value	2.4E-07	No Value	<7.6E-08	<1.4E-07	<1.7E-07	<1.5E-06	CR	<6.4E-06
Commercial	HQ	0.014	0.14	0.0041	0.00027	0.012	< 0.00027	<0.0038	<0.0026	<0.0086	HI	<0.18

Project:	Terradev Jefferson LCC property, 645 4th St., Oakland, CA
Sample ID:	645 4th
Sample date:	3/12/2016

		TPHg	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Naphtha- lene	1,2-DCA	EDB		
Residential	Risk	No Value	8.8E-06	No Value	<8.9E-07	No Value	<3.8E-07	<7.0E-07	<8.5E-07	<7.4E-06	CR	<1.9E-05
	HQ	< 0.016	0.24	< 0.012	< 0.00083	<0.082	< 0.0012	< 0.016	< 0.011	<0.036	н	<0.41
Commercial	Risk	No Value	1.7E-06	No Value	<1.8E-07	No Value	<7.6E-08	<1.4E-07	<1.7E-07	<1.5E-06	CR	<3.8E-06
	HQ	<0.0039	0.056	<0.0029	<0.00020	<0.020	<0.00027	<0.0038	<0.0026	<0.0086	н	<0.10

Project:	Terradev Jefferson LCC property, 645 4th St., Oakland, CA
Sample ID:	380 MLK
Sample date:	12/5/2015

		TPHg	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Naphtha- lene	1,2-DCA	EDB		
Residential	Risk	No Value	2.4E-05	No Value	1.2E-06	No Value	<3.8E-07	<7.0E-07	<8.5E-07	<7.4E-06	CR	<3.4E-05
	HQ	0.029	0.64	0.017	0.0012	0.047	< 0.0012	<0.016	<0.011	<0.036	HI	<0.80
Commercial	Risk	No Value	4.7E-06	No Value	2.4E-07	No Value	<7.6E-08	<1.4E-07	<1.7E-07	<1.5E-06	CR	<6.8E-06
	HQ	0.0068	0.15	0.0041	0.00027	0.011	< 0.00027	<0.0038	<0.0026	<0.0086	HI	<0.19

Project:	Terradev Jefferson LCC property, 645 4th St., Oakland, CA
Sample ID:	380 MLK
Sample date:	3/12/2016

		TPHg	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Naphtha- lene	1,2-DCA	EDB		
Residential	Risk	No Value	5.0E-06	No Value	<8.9E-07	No Value	<3.8E-07	<7.0E-07	<8.5E-07	<7.4E-06	CR	<1.5E-05
	HQ	< 0.016	0.13	< 0.012	<0.00083	<0.082	< 0.0012	< 0.016	< 0.011	<0.036	HI	<0.31
Commercial	Risk	No Value	9.9E-07	No Value	<1.8E-07	No Value	<7.6E-08	<1.4E-07	<1.7E-07	<1.5E-06	CR	<3.0E-06
	HQ	<0.0039	0.032	<0.0029	<0.00020	<0.020	<0.00027	<0.0038	<0.0026	<0.0086	HI	<0.074

Summary of Cumulative Risk and Hazard Index

Project:	Terradev Jefferson LCC property, 645 4th St., Oakland, CA
Sample ID:	638 3rd
Sample date:	12/5/2015

		TPHg	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Naphtha- lene	1,2-DCA	EDB		
Residential	Risk	No Value	1.4E-05	No Value	<8.9E-07	No Value	<3.8E-07	<7.0E-07	<8.5E-07	<7.4E-06	CR	<2.5E-05
	HQ	< 0.016	0.38	< 0.012	< 0.00083	<0.082	< 0.0012	< 0.016	< 0.011	<0.036	HI	<0.56
Commercial	Risk	No Value	2.8E-06	No Value	<1.8E-07	No Value	<7.6E-08	<1.4E-07	<1.7E-07	<1.5E-06	CR	<4.9E-06
Commercial	HQ	<0.0039	0.091	<0.0029	<0.00020	<0.020	<0.00027	<0.0038	<0.0026	<0.0086	HI	<0.13

Summary of Cumulative Risk and Hazard Index

Project:	Terradev Jefferson LCC property, 645 4th St., Oakland, CA
Sample ID:	638 3rd
Sample date:	3/12/2016

		TPHg	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	Naphtha- lene	1,2-DCA	EDB		
Residential	Risk	No Value	4.3E-06	No Value	<8.9E-07	No Value	<3.8E-07	<7.0E-07	<8.5E-07	<7.4E-06	CR	<1.5E-05
	HQ	< 0.016	0.12	< 0.012	<0.00083	<0.082	< 0.0012	< 0.016	< 0.011	<0.036	н	<0.29
Commercial	Risk	No Value	8.5E-07	No Value	<1.8E-07	No Value	<7.6E-08	<1.4E-07	<1.7E-07	<1.5E-06	CR	<2.9E-06
Commercial	HQ	<0.0039	0.027	<0.0029	<0.00020	<0.020	<0.00027	<0.0038	<0.0026	<0.0086	HI	<0.069

Analytical Sciences

Report Date: April 05, 2016

Laboratory Report

Brian Gwinn Blue Rock Environmental 1157 Chess Drive, Ste. 107 Foster City, CA 94404

Project Name:Terradev Jefferson LLCASE-1Lab Project Number:6031724

This 10 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini

Mark A. Valentini, Ph.D. Laboratory Director

Lab#	Sample ID	Compou	nd Name	Result (µg/	(m ³)	$RDL (\mu g/m^3)$		
6031724-01	VP-1	Gasoline		ND	VAa	330		
		Dichloro	difluoromethane (F-12)	ND		12		
		Chlorom		ND		5.2		
		Vinyl ch	loride	ND		6.4		
		-	hane (CE)	ND		6.6		
			ofluoromethane (F-11)	ND		14		
			loroethene (1,1-DCE)	ND		9.9		
			otrifluoroethane (F-113)	ND		19		
			ne chloride	ND		8.7		
			-Dichloroethene	ND		9.9		
			lloroethane (1,1-DCA)	ND		10		
			Dichloroethene (c1,2-DCE)	ND		9.9		
			orm (THM1)	ND		12		
			ichloroethane (TCA)	ND		14		
			loroethane (EDC)	ND		10		
			etrachloride	ND		9.4		
		Benzene		ND		8.0		
		Trichlor	bethene (TCE)	ND		13		
			Dichloropropene	ND		11		
			-Dichloropropene	ND		11		
	Toluene	1 1	ND		9.4			
			chloroethane	ND		14		
			proethene (PCE)	ND		17		
			omoethane (EDB)	ND		3.8		
		Chlorob		ND		12		
		Ethylber		ND		11		
		m,p-Xyl		ND		11		
		o-Xylen		ND		11		
		-	Tetrachloroethane	ND		17		
			lorobenzene	ND		15		
			lorobenzene	ND		15		
			lorobenzene	ND		15		
			chlorobenzene	ND		19		
		Naphtha		ND		13		
		-	ert-Butyl Ether (MTBE)	ND		9.0		
			alcohol (LEAK CHECK)	ND		61		
Surrogates		Result (µg/m ³)	% Recovery	Accentan	ce Range (%)			
		<u>38.8</u>	100		0-130			
Jibromofluoromethane 4-Bromofluorobenzene		38.8 40.8	100					
4-Bromofluorobenzene		40.8	105	/	70-130			
ate Sampled:	03/12/16		Date Analyzed: 03/18/16		QC Bate	h: B015584		
ate Received:	03/17/16		Method: EPA TO-15					

Lab#	Sample ID	Compou	nd Name	Result (µg/	(m ³)	$RDL (\mu g/m^3)$		
6031724-02	VP-2	Gasoline		330	VAa	330		
		Dichloro	difluoromethane (F-12)	ND		12		
		Chlorom	ethane	ND		5.2		
		Vinyl ch	loride	ND		6.4		
		Chloroet	hane (CE)	ND		6.6		
		Trichlor	ofluoromethane (F-11)	ND		14		
			loroethene (1,1-DCE)	ND		9.9		
		Trichlor	otrifluoroethane (F-113)	ND		19		
		Methyle	ne chloride	ND		8.7		
		-	-Dichloroethene	ND		9.9		
			loroethane (1,1-DCA)	ND		10		
			Dichloroethene (c1,2-DCE)	ND		9.9		
			orm (THM1)	ND		12		
			ichloroethane (TCA)	ND		14		
			loroethane (EDC)	ND		10		
		Carbon t	etrachloride	ND		9.4		
		Benzene		ND		8.0		
		Trichlor	bethene (TCE)	ND		13		
			Dichloropropene	ND		11		
			-Dichloropropene	ND		11		
	Toluene		ND		9.4			
		1,1,2-Tri	chloroethane	ND		14		
			proethene (PCE)	ND		17		
			omoethane (EDB)	ND		3.8		
		Chlorob		ND		12		
		Ethylber	izene	ND		11		
		m,p-Xyl		28		11		
		o-Xylen		12		11		
		-	Tetrachloroethane	ND		17		
			lorobenzene	ND		15		
			lorobenzene	ND		15		
			lorobenzene	ND		15		
			chlorobenzene	ND		19		
		Naphtha		ND		13		
		-	ert-Butyl Ether (MTBE)	ND		9.0		
		-	alcohol (LEAK CHECK)	ND		61		
Surrogates Dibromofluoromethane 4-Bromofluorobenzene		Result (µg/m ³)	% Recovery	Acceptan	ce Range (%)			
		<u>38.9</u>	100					
		39.9 39.9	100		70-130 70-130			
ate Sampled:	te Sampled: 03/12/16		Date Analyzed: 03/18/16		QC Batch: B015584			
ate Received:	03/17/16		Method: EPA TO-15					

Lab#	Sample ID	Compou	ind Name	Result (µg/	m³)	$RDL (\mu g/m^3)$		
6031724-03	VP-4	Gasolin	8	10000000	VAa	800000		
		Dichloro	odifluoromethane (F-12)	ND		1900		
		Chloron	nethane	ND		800		
		Vinyl ch	lloride	ND		980		
			thane (CE)	ND		1000		
		Trichlor	ofluoromethane (F-11)	ND		2200		
			nloroethene (1,1-DCE)	ND		1500		
			otrifluoroethane (F-113)	ND		3000		
			ne chloride	ND		1300		
		-	2-Dichloroethene	ND		1500		
			nloroethane (1,1-DCA)	ND		1600		
			Dichloroethene (c1,2-DCE)	ND		1500		
			orm (THM1)	ND		1900		
			ichloroethane (TCA)	ND		2100		
			nloroethane (EDC)	ND		1600		
			tetrachloride	ND		1500		
		Benzene		4100		1200		
			oethene (TCE)	ND		2100		
			Dichloropropene	ND		1700		
			3-Dichloropropene	ND		1700		
		Toluene		6500		1500		
			ichloroethane	ND		2100		
			oroethene (PCE)	ND		2600		
			romoethane (EDB)	ND		590		
		Chlorob		ND		1800		
		Ethylber		ND		1700		
		m,p-Xyl		14000		1700		
		o-Xylen		8400		1700		
		-	Tetrachloroethane	ND		2600		
			nlorobenzene	ND		2300		
			ılorobenzene	ND		2300		
			ılorobenzene	ND		2300		
			ichlorobenzene	ND		2900		
		Naphtha		ND		2000		
		-	tert-Butyl Ether (MTBE)	ND		1400		
			yl alcohol (LEAK CHECK)	ND		9500		
Surrogates		Result (µg/m ³)	% Recovery		ce Range (%)		
		<u>38.9</u>	100)-130	·		
			100					
4-DI01101100100	4-Bromofluorobenzene		101	/(70-130			
ate Sampled:	03/12/16		Date Analyzed: 03/18/16		QC Ba	tch: B015584		
ate Received:	03/17/16		Method: EPA TO-1	<i>c</i>				

Lab#	Sample ID	Compou	nd Name	Result (µg/	(m ³)	RDL (µg/m ³)		
6031724-04	VP-5	Gasoline)	780000	VA	46000		
		Dichloro	odifluoromethane (F-12)	ND		1800		
		Chlorom	nethane	ND		740		
		Vinyl ch	loride	ND		910		
		-	thane (CE)	ND		940		
		Trichlor	ofluoromethane (F-11)	ND		2000		
			loroethene (1,1-DCE)	ND		1400		
			otrifluoroethane (F-113)	ND		2700		
		Methyle	ne chloride	ND		1200		
			2-Dichloroethene	ND		1400		
		1,1-Dich	loroethane (1,1-DCA)	ND		1400		
			Dichloroethene (c1,2-DCE)	ND		1400		
			orm (THM1)	ND		1700		
			ichloroethane (TCA)	ND		2000		
			loroethane (EDC)	ND		1400		
			etrachloride	ND		1300		
		Benzene	;	9100		1100		
		Trichlor	oethene (TCE)	ND		1900		
			Dichloropropene	ND		1600		
			-Dichloropropene	ND		1600		
		Toluene		6500		1300		
		1,1,2-Tr	ichloroethane	ND		2000		
			oroethene (PCE)	ND		2400		
			omoethane (EDB)	ND		550		
		Chlorob		ND		1600		
		Ethylber		3700		1600		
		m,p-Xyl		150000		7800		
		o-Xylen		58000		7800		
		-	Fetrachloroethane	ND		2500		
			llorobenzene	ND		2100		
			llorobenzene	ND		2100		
			llorobenzene	ND		2100		
			ichlorobenzene	ND		2700		
		Naphtha		ND		1900		
		•	ert-Butyl Ether (MTBE)	ND		1300		
		-	alcohol (LEAK CHECK)	ND		8800		
Surrogates		Result (µg/m ³)	% Recovery		ce Range (%)			
		<u>38.8</u>				,		
	bibromofluoromethane		100		0-130			
4-Bromofluorobenzene		36.9	95		70-130			
ate Sampled:	03/12/16		Date Analyzed: 03/18/16		QC Bat	ch: B015584		
ate Received:	03/17/16		Method: EPA TO-1	5	-			

Fixed Gases (%)

Lab#	Sample ID	Compound Name		Result (%)	RDL (%)
6031724-01	VP-1	Oxygen (O2) Carbon Dioxide (CO2) Methane Helium		13 2.4 ND 0.009	0.009 0.009 0.009 0.004
Date Sampled: Date Received:	03/12/16 03/17/16	Date Analyzed: Method:	03/23/16 ASTM 1946 D	QC	Batch: B015604

Fixed Gases (%)

Lab#	Sample ID	Compound Name		Result (%)	RDL (%)
6031724-02	VP-2	Oxygen (O2) Carbon Dioxide (CO2) Methane Helium		9.3 6.8 ND 0.009	0.010 0.010 0.010 0.004
Date Sampled: Date Received:	03/12/16 03/17/16	Date Analyzed: Method:	03/23/16 ASTM 1946 D	QC	Batch: B015604

Fixed Gases (%)

Lab#	Sample ID	Compound Name		Result (%)	RDL (%)
6031724-03	VP-4	Oxygen (O2) Carbon Dioxide (CO2) Methane Helium		0.82 13 0.055 0.28	0.008 0.008 0.008 0.003
Date Sampled: Date Received:	03/12/16 03/17/16	Date Analyzed: Method:	03/23/16 ASTM 1946 D	QC I	Batch: B015604

Lab# Sample ID Compound Name Result (%) RDL (%) 6031724-04 VP-5 Oxygen (O2) 15 0.007 Carbon Dioxide (CO2) 0.007 1.6 ND 0.007 Methane Helium 0.13 0.003 Date Sampled: 03/12/16 Date Analyzed: 03/23/16 QC Batch: B015604 Date Received: 03/17/16 Method: ASTM 1946 D

Fixed Gases (%)

Quality Assurance Report

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B015584 - Air prep GC/MS										
Blank (B015584-BLK1)				Prepared:	03/17/16	Analyzed	: 03/18/16			
Gasoline	ND	330	μg/m³							
Dichlorodifluoromethane (F-12)	ND	12	μg/m³							
Chloromethane	ND	5.2	μg/m³							
Vinyl chloride	ND	6.4	μg/m ³							
Chloroethane (CE)	ND	6.6	μg/m ³							
Trichlorofluoromethane (F-11)	ND	14	μg/m ³							
1,1-Dichloroethene (1,1-DCE)	ND	9.9	μg/m ³							
Trichlorotrifluoroethane (F-113)	ND	19	μg/m ³							
Methylene chloride	ND	8.7	μg/m ³							
trans-1,2-Dichloroethene	ND	9.9	μg/m ³							
1,1-Dichloroethane (1,1-DCA)	ND	10	μg/m ³							
cis-1,2-Dichloroethene (c1,2-DCE)	ND	9.9	μg/m ³							
Chloroform (THM1)	ND	12	μg/m ³							
1,1,1-Trichloroethane (TCA)	ND	14	μg/m³							
1,2-Dichloroethane (EDC)	ND	10	μg/m³							
Carbon tetrachloride	ND	9.4	μg/m ³							
Benzene	ND	8.0	μg/m³							
Trichloroethene (TCE)	ND	13	μg/m³							
cis-1,3-Dichloropropene	ND	11	μg/m ³							
trans-1,3-Dichloropropene	ND	11	μg/m ³							
Toluene	ND	9.4	μg/m³							
1,1,2-Trichloroethane	ND	14	μg/m ³							
Tetrachloroethene (PCE)	ND	17	μg/m ³							
1,2-Dibromoethane (EDB)	ND	3.8	μg/m ³							
Chlorobenzene	ND	12	μg/m ³							
Ethylbenzene	ND	11	μg/m³							
m,p-Xylene	ND	11	μg/m³							
o-Xylene	ND	11	μg/m³							
1,1,2,2-Tetrachloroethane	ND	17	μg/m ³							
1,3-Dichlorobenzene	ND	15	μg/m ³							
1,4-Dichlorobenzene	ND	15	μg/m μg/m³							
1,2-Dichlorobenzene	ND	15	μg/m μg/m³							
1,2,4-Trichlorobenzene	ND	19	μg/m μg/m³							
Naphthalene	ND	13	μg/m μg/m³							
Methyl tert-Butyl Ether (MTBE)	ND	9.0	μg/m² μg/m³							
Isopropyl alcohol (LEAK CHECK)	ND	61	μg/m ³							
Surrogate: Dibromofluoromethane	7.78		µg∕m³	7.79		100	70-130			_
Surrogate: 4-Bromofluorobenzene	8.56		$\mu g/m^3$	7.76		110	70-130			

	Fixed Gases (%)										
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B015604 - Air prep GC											
Duplicate (B015604-DUP1)	So	urce: 6031724-	03	Prepared	& Analyze	ed: 03/23/1	.6				
Oxygen (O2)	0.8	0.008	%		0.8			0	20		
Carbon Dioxide (CO2)	13.0	0.008	%		12.9			0.5	20		
Methane	0.06	0.008	%		0.06			0	20		
Helium	0.3	0.003	%		0.3			1	20		

Notes and Definitions

VAa	The sample canister was received by the laboratory with a vacuum gauge reading of 4 inches of mercury.
VA	The sample canister was received by the laboratory with a vacuum gauge reading of 2 inches of mercury.
RDL ND	Reporting Detection Limit Analyte NOT DETECTED at or above the reporting detection limit (RDL)
RPD	Relative Percent Difference
NR	Not Reported

Lab Project Number: Client's Project Number:	Ker Rec			Page 1 of 1		Lab Comments Sample #	22	-Ad!	93 CC						0 1 (0	Late Lime
CHAIN OF CUSTODY Lab Project Number: Client's Project Number:		TURNAROUND TIME (check one) Same Dav	3	Normal Normal	SISA ANALYSIS	Regulator ID # Sample Sample Sample Sample Sample Sample Sample Start End Time 1946	1843/ ×	1816/29	PEETI AV	A Spoalefict, HN					SIGNATURES ALON Received By: Time Signature	
P.O. Box 750336 balatiuma, CA 94975- 110 Liberty Street, Petaluma, CA 94952 Fax (707) 769-8093	Company Name: Blue Rock Environmental Address: 1157 Chess Dr., Suite # 107	Contact: Loren Taylor	Phone #: (650) 522-9292 Fax #: (650) 522-9259	e-mail: Loren/orBrian@blue rockenv.com		t Sample ID Date Matrix Canister ID #	VP-1 3/13/16	Air		2	ind ind	1 3) A	10	Relinquished By: Lecen Tayle (C Signature Date The T	

Analytical Sciences

Report Date: April 05, 2016

Laboratory Report

Brian Gwinn Blue Rock Environmental 1157 Chess Drive, Ste. 107 Foster City, CA 94404

Project Name:Terradev Jefferson LLCASE-1Lab Project Number:6031723

This 8 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini

Mark A. Valentini, Ph.D. Laboratory Director

Lab#	Sample ID	Compoun	d Name	Result (µg/	Result (µg/m ³)	
6031723-01	645 4th	Gasoline		ND	VA	9.8
		Dichlorod	ifluoromethane (F-12)	ND		4.9
		Chlorome	thane	ND		2.1
		Vinyl chlo	oride	ND		0.03
		Chloroeth	ane (CE)	ND		2.6
		Trichlorof	fluoromethane (F-11)	ND		5.6
		1,1-Dichle	proethene (1,1-DCE)	ND		4.0
		Trichlorot	rifluoroethane (F-113)	ND		7.7
		Methylene	e chloride	ND		3.5
		-	Dichloroethene	ND		4.0
			proethane (1,1-DCA)	ND		1.2
			chloroethene (c1,2-DCE)	ND		4.0
			m (THM1)	ND		0.39
			hloroethane (TCA)	ND		5.5
			proethane (EDC)	ND		0.08
			trachloride	ND		0.02
		Benzene		0.74		0.06
			ethene (TCE)	ND		1.1
			chloropropene	ND		0.14
			Dichloropropene	ND		0.14
		Toluene		ND		3.8
			hloroethane	ND		0.11
			coethene (PCE)	ND		0.41
			moethane (EDB)	ND		0.03
		Chlorober		ND		4.6
		Ethylbenz	zene	ND		0.87
		m,p-Xyler		ND		4.3
		o-Xylene		ND		4.3
		-	etrachloroethane	ND		0.04
			hlorobenzene	ND		0.74
			orobenzene	ND		6.0
			orobenzene	ND		0.18
			orobenzene	ND		6.0
		Naphthale		ND		0.05
		-	rt-Butyl Ether (MTBE)	ND		3.6
Su	rrogates	Result (µg/m ³)	% Recovery	Acceptance Range (%) 70-130 70-130		
Dibromofluorome	ethane	7.78	100			
4-Bromofluorobe		7.19	93			
ate Sampled:	03/12/16		Date Analyzed: 03/17/16		OC Bate	ch: B015584
-			-		20 Dun	
ate Received:	03/17/16		Method: EPA TO-15			

Lab#	Sample ID	Compour	nd Name	Result (µg/m	1 ³)	$RDL (\mu g/m^3)$
6031723-02	380 MLK	Gasoline		ND	VAa	9.8
		Dichloroo	difluoromethane (F-12)	ND		4.9
		Chlorome	ethane	ND		2.1
		Vinyl chl	oride	ND		0.03
		Chloroeth	nane (CE)	ND		2.6
		Trichloro	fluoromethane (F-11)	ND		5.6
		1,1-Dichl	oroethene (1,1-DCE)	ND		4.0
		Trichloro	trifluoroethane (F-113)	ND		7.7
		Methylen	e chloride	ND		3.5
		trans-1,2-	Dichloroethene	ND		4.0
		1,1-Dichl	oroethane (1,1-DCA)	ND		1.2
		cis-1,2-D	ichloroethene (c1,2-DCE)	ND		4.0
		Chlorofo	rm (THM1)	ND		0.39
			chloroethane (TCA)	ND		5.5
			oroethane (EDC)	ND		0.08
			etrachloride	ND		0.02
		Benzene		0.42		0.06
		Trichloro	ethene (TCE)	ND		1.1
			ichloropropene	ND		0.14
			Dichloropropene	ND		0.14
		Toluene		ND		3.8
		1,1,2-Tric	chloroethane	ND		0.11
			roethene (PCE)	ND		0.41
			omoethane (EDB)	ND		0.03
		Chlorobe		ND		4.6
		Ethylben	zene	ND		0.87
		m,p-Xyle		ND		4.3
		o-Xylene		ND		4.3
		-	etrachloroethane	ND		0.04
			chlorobenzene	ND		0.74
			orobenzene	ND		6.0
			orobenzene	ND		0.18
			orobenzene	ND		6.0
		Naphthal		ND		0.05
		-	ert-Butyl Ether (MTBE)	ND		3.6
Su	Surrogates		% Recovery	Acceptance	e Range (%)	
Dibromofluoromo	-	<u>Result (μg/m³)</u> 7.75	100	70-130		
4-Bromofluorobe		7.24	93		70-130	
Date Sampled:	03/12/16		Date Analyzed: 03/17/16		QC Batch:	B015584
Date Received:	03/17/16		Method: EPA TO-15			
Bate Received.	00/17/10		EFA IO-IJ			

Lab#	Sample ID	Compour	nd Name	Result (µg/	m³)	$RDL(\mu g/m^3)$
6031723-03	638 3rd	Gasoline		ND	VAa	9.8
		Dichloro	difluoromethane (F-12)	ND		4.9
		Chlorom	ethane	ND		2.1
		Vinyl chl	oride	ND		0.03
		-	hane (CE)	ND		2.6
			fluoromethane (F-11)	ND		5.6
		1,1-Dich	loroethene (1,1-DCE)	ND		4.0
			trifluoroethane (F-113)	ND		7.7
			ne chloride	ND		3.5
		-	-Dichloroethene	ND		4.0
			loroethane (1,1-DCA)	ND		1.2
			ichloroethene (c1,2-DCE)	ND		4.0
			rm (THM1)	ND		0.39
			chloroethane (TCA)	ND		5.5
			loroethane (EDC)	ND		0.08
			etrachloride	ND		0.02
		Benzene		0.36		0.06
			ethene (TCE)	ND		1.1
			ichloropropene	ND		0.14
			-Dichloropropene	ND		0.14
		Toluene	1 1	ND		3.8
			chloroethane	ND		0.11
			proethene (PCE)	ND		0.41
			omoethane (EDB)	ND		0.03
		Chlorobe		ND		4.6
		Ethylben	zene	ND		0.87
		m,p-Xyle		ND		4.3
		o-Xylene		ND		4.3
		-	etrachloroethane	ND		0.04
			chlorobenzene	ND		0.74
			lorobenzene	ND		6.0
			lorobenzene	ND		0.18
			lorobenzene	ND		6.0
		Naphthal		ND		0.05
		-	ert-Butyl Ether (MTBE)	ND		3.6
Su	irrogates	Result (µg/m ³)	% Recovery	Acceptance	Acceptance Range (%) 70-130 70-130	
Dibromofluorom		7.75	100			
4-Bromofluorobe		7.39	95			
ate Sampled:	03/12/16		Date Analyzed: 03/17/16		QC Bate	h: B015584
ate Received:	03/17/16		Method: EPA TO-15		<u> </u>	
ale Received.	03/1//10		Miculou. EPA 10-15			

Lab#	Sample ID	Compoun	d Name	Result (µg/m ³)		$RDL (\mu g/m^3)$		
6031723-04	R-1	Gasoline		ND	VA	9.8		
		Dichlorod	ifluoromethane (F-12)	ND		4.9		
		Chlorome	thane	ND		2.1		
		Vinyl chlo	oride	ND		0.03		
		Chloroeth	ane (CE)	ND		2.6		
		Trichlorof	fluoromethane (F-11)	ND		5.6		
		1,1-Dichle	proethene (1,1-DCE)	ND		4.0		
		Trichlorot	rifluoroethane (F-113)	ND		7.7		
		Methylen	e chloride	ND		3.5		
		trans-1,2-	Dichloroethene	ND		4.0		
			proethane (1,1-DCA)	ND		1.2		
			chloroethene (c1,2-DCE)	ND		4.0		
			m (THM1)	ND		0.39		
			hloroethane (TCA)	ND		5.5		
			proethane (EDC)	ND		0.08		
			trachloride	ND		0.02		
		Benzene		0.31		0.06		
		Trichloroe	ethene (TCE)	ND		1.1		
		cis-1,3-Di	chloropropene	ND		0.14		
		trans-1,3-	Dichloropropene	ND		0.14		
		Toluene		ND		3.8		
		1,1,2-Tric	hloroethane	ND		0.11		
		Tetrachlor	coethene (PCE)	ND		0.41		
			moethane (EDB)	ND		0.03		
		Chlorober		ND		4.6		
		Ethylbenz	zene	ND		0.87		
		m,p-Xyler		ND		4.3		
		o-Xylene		ND		4.3		
		-	trachloroethane	ND		0.04		
			hlorobenzene	ND		0.74		
			orobenzene	ND		6.0		
			orobenzene	ND		0.18		
			orobenzene	ND		6.0		
		Naphthale		ND		0.05		
		-	rt-Butyl Ether (MTBE)	ND		3.6		
Su	rrogates	Result (µg/m ³)	% Recovery	Acceptance Range (%)				
Dibromofluorome		7.78	100	70	70-130 70-130			
4-Bromofluorober		7.96	103					
ate Sampled:	03/12/16		Date Analyzed: 03/17/16		OC Bate	ch: B015584		
-			•		20 Dai			
ate Received:	03/17/16		Method: EPA TO-15					

R-2	Chlorome Vinyl chl Chloroett Trichloro 1,1-Dichl Trichloro Methylen trans-1,2- 1,1-Dichl cis-1,2-D	oride	ND ND ND ND ND ND ND ND ND	VA	9.8 4.9 2.1 0.03 2.6 5.6 4.0 7.7 3.5
	Chlorome Vinyl chl Chloroett Trichloro 1,1-Dichl Trichloro Methylen trans-1,2- 1,1-Dichl cis-1,2-D	ethane oride nane (CE) fluoromethane (F-11) oroethene (1,1-DCE) trifluoroethane (F-113) e chloride Dichloroethene	ND ND ND ND ND ND		2.1 0.03 2.6 5.6 4.0 7.7
	Vinyl chl Chloroeth Trichloro 1,1-Dichl Trichloro Methylen trans-1,2- 1,1-Dichl cis-1,2-D	oride nane (CE) fluoromethane (F-11) oroethene (1,1-DCE) trifluoroethane (F-113) e chloride Dichloroethene	ND ND ND ND ND		0.03 2.6 5.6 4.0 7.7
	Chloroeth Trichloro 1,1-Dichl Trichloro Methylen trans-1,2- 1,1-Dichl cis-1,2-D	nane (CE) fluoromethane (F-11) oroethene (1,1-DCE) trifluoroethane (F-113) e chloride Dichloroethene	ND ND ND ND		2.6 5.6 4.0 7.7
	Trichloro 1,1-Dichl Trichloro Methylen trans-1,2- 1,1-Dichl cis-1,2-D	fluoromethane (F-11) oroethene (1,1-DCE) trifluoroethane (F-113) e chloride Dichloroethene	ND ND ND ND		5.6 4.0 7.7
	1,1-Dichl Trichloro Methylen trans-1,2- 1,1-Dichl cis-1,2-D	oroethene (1,1-DCE) trifluoroethane (F-113) e chloride Dichloroethene	ND ND ND		4.0 7.7
	Trichloro Methylen trans-1,2- 1,1-Dichl cis-1,2-D	trifluoroethane (F-113) e chloride Dichloroethene	ND ND		7.7
	Methylen trans-1,2- 1,1-Dichl cis-1,2-D	e chloride Dichloroethene	ND		
	trans-1,2- 1,1-Dichl cis-1,2-D	Dichloroethene			3.5
	1,1-Dichl cis-1,2-D		ND		0.0
	cis-1,2-D	oroethane (1,1-DCA)			4.0
		· · · · ·	ND		1.2
		ichloroethene (c1,2-DCE)	ND		4.0
	Chlorofor	rm (THM1)	ND		0.39
	1,1,1 - Tric	chloroethane (TCA)	ND		5.5
	1,2-Dichl	oroethane (EDC)	ND		0.08
	Carbon te	etrachloride	ND		0.02
	Benzene		0.32		0.06
	Trichloro	ethene (TCE)	ND		1.1
	cis-1,3-D	ichloropropene	ND		0.14
	trans-1,3-	Dichloropropene	ND		0.14
	Toluene		ND		3.8
		chloroethane	ND		0.11
	Tetrachlo	roethene (PCE)	ND		0.41
	1,2-Dibro	bromoethane (EDB) ND		0.03	
	Chlorobe	nzene	ND		4.6
	Ethylben	zene	ND		0.87
	m,p-Xyle	ne	ND		4.3
	o-Xylene		ND		4.3
	1,1,2,2 - Te	etrachloroethane	ND		0.04
	1,2,4-Tric	chlorobenzene	ND		0.74
	1,3-Dichl	orobenzene	ND		6.0
	1,4-Dichl	orobenzene	ND		0.18
	1,2-Dichl	orobenzene	ND		6.0
	Naphthal	ene	ND		0.05
	Methyl te	ert-Butyl Ether (MTBE)	ND		3.6
rogates	Result (µg/m³)	% Recovery	Acceptance Range (%)		
hane	7.75	100	7(70-130 70-130	
	7.85	101			
03/12/16		Date Analyzed: 03/17/16		QC Batc	ch: B015584
03/17/16				-	
	rogates hane zene 03/12/16 03/17/16	Trichloro cis-1,3-D trans-1,3- Toluene 1,1,2-Tric Tetrachlo 1,2-Dibro Chlorobe Ethylbenz m,p-Xyle o-Xylene 1,1,2,2-Tri 1,2,4-Tric 1,3-Dichl 1,4-Dichl 1,4-Dichl 1,2-Dichl Naphthale Methyl te rogates Result (μg/m ³) hane 7.75 zene 7.85	$\begin{array}{c c} Trichloroethene (TCE) \\ cis-1,3-Dichloropropene \\ trans-1,3-Dichloropropene \\ Toluene \\ 1,1,2-Trichloroethane \\ Tetrachloroethene (PCE) \\ 1,2-Dibromoethane (EDB) \\ Chlorobenzene \\ Ethylbenzene \\ m,p-Xylene \\ o-Xylene \\ 1,1,2,2-Tetrachloroethane \\ 1,2,4-Trichlorobenzene \\ 1,3-Dichlorobenzene \\ 1,4-Dichlorobenzene \\ 1,2-Dichlorobenzene \\ 1,2-D$	Trichloroethene (TCE)NDcis-1,3-DichloropropeneNDtrans-1,3-DichloropropeneNDTolueneND1,1,2-TrichloroethaneND1,1,2-Trichloroethane (PCE)ND1,2-Dibromoethane (EDB)NDChlorobenzeneNDEthylbenzeneNDn,p-XyleneND1,2,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneND1,2,2-TetrachloroethaneND1,2,4-TrichlorobenzeneND1,3-DichlorobenzeneND1,3-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneND1,2-DichlorobenzeneNDNaphthaleneNDMethyl tert-Butyl Ether (MTBE)NDrogatesResult (µg/m³)% RecoveryAcceptanehane7.751007(d)7(d)2012/16Date Analyzed:03/12/16Date Analyzed:	Trichloroethene (TCE) ND cis-1,3-Dichloropropene ND trans-1,3-Dichloropropene ND Toluene ND 1,1,2-Trichloroethane ND Tetrachloroethene (PCE) ND 1,2-Dibromoethane (EDB) ND Chlorobenzene ND m,p-Xylene ND o-Xylene ND 1,1,2,2-Tetrachloroethane ND 1,1,2,2-Tetrachloroethane ND 1,1,2,2-Tetrachloroethane ND 1,2,4-Trichlorobenzene ND 1,3-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,2-Dichlorobenzene ND Naphthalene ND Methyl tetr-Butyl Ether (MTBE) ND rogates Result (µg/m³) % Recovery Acceptance Range (%) rol-130 zene 7.85 101 70-130 70-130

Quality Assurance Report

Batch Bol5584-A.kr prep GC/MS Blank (B015584-BLK1) Prepared & Analyzed: $03/17/16$ Gasoline ND 9.8 $\mu g/m^2$ Dichlorodifhuoromethane (F-12) ND 4.9 $\mu g/m^2$ Chlorodintac ND 2.1 $\mu g/m^2$ Chlorodine (CE) ND 2.6 $\mu g/m^2$ Trichlorotifhuoromethane (F-11) ND 5.6 $\mu g/m^2$ Trichlorotifhuoroethane (F-13) ND 7.7 $\mu g/m^2$ Trichlorotifhuoroethane (L)-DCE) ND 4.0 $\mu g/m^2$ Trichlorotifhuoroethane (L)-DCA) ND 1.2 $\mu g/m^2$ Methylene chloride ND 3.5 $\mu g/m^2$ Chloroothane (L)-DCA) ND 1.2 $\mu g/m^2$ L3-Dichloroethane (L)-DCA) ND 0.39 $\mu g/m^2$ L3-Dichloroethane (C12-DCE) ND 0.08 $\mu g/m^2$ L3-Dichloroethane (C12-DCE) ND 0.04 $\mu g/m^2$ L3-Dichloroethane (C12-DC) ND 0.04 $\mu g/m^2$ L3-Dichloroethane (CED)	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Gasoline ND 9.8 $\mu g/m^3$ Dichlorodifluoromethane (F-12) ND 4.9 $\mu g/m^3$ Vinyl chloride ND 0.03 $\mu g/m^3$ Tichlorodithaue ND 2.6 $\mu g/m^3$ Tichlorodithaue ND 5.6 $\mu g/m^3$ Tichlorodithuromethane (F-11) ND 5.6 $\mu g/m^3$ Tichlorodithuromethane (F-13) ND 7.7 $\mu g/m^3$ Tichloroditorodethane (F-113) ND 7.7 $\mu g/m^3$ trans-1,2-Dichloroethane (F-13) ND 4.0 $\mu g/m^3$ trans-1,2-Dichloroethane (F-11) ND 3.5 $\mu g/m^3$ trans-1,2-Dichloroethane (F-13) ND 1.2 $\mu g/m^3$ trans-1,2-Dichloroethane (C1,2-DCE) ND 4.0 $\mu g/m^3$ Chloroethane (CCA) ND 0.39 $\mu g/m^3$ Carbon terachloride ND 0.02 $\mu g/m^3$ Carbon terachloride ND 0.14 $\mu g/m^3$ trans-1,3-Dichloropropene ND 0.14 $\mu g/m^3$ 1,1,2-Trichloroethane (PCE) ND 0.14 <t< th=""><th>Batch B015584 - Air prep GC/MS</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Batch B015584 - Air prep GC/MS										
Gasoline ND 9.8 µg/m² Dichlorodifluoromethane (F-12) ND 4.9 µg/m² Vinyl chloride ND 2.1 µg/m² Tichlorodimomethane (F-1) ND 2.6 µg/m² 1,1-Dichloromethane (F-11) ND 5.6 µg/m² Tichlorodimomethane (F-113) ND 7.7 µg/m² trans-1,2-Dichloroethene (1,1-DCE) ND 4.0 µg/m² trans-1,2-Dichloroethene (1-1) ND 3.5 µg/m² trans-1,2-Dichloroethene (1-1) ND 4.0 µg/m² cis-1,2-Dichloroethene (1,1-DCA) ND 1.2 µg/m² trans-1,2-Dichloroethene (1,1-DCA) ND 1.2 µg/m² trans-1,2-Dichloroethene (1,1-DCA) ND 1.2 µg/m² trans-1,2-Dichloroethene (1,1-DCA) ND 0.4 µg/m² Chloroethane (CA) ND 0.8 µg/m² Chloroform (THM1) ND 0.39 µg/m² Carbon tetrachloride ND 0.02 µg/m² Carbon tetrachloride ND 0.11 µg/m² Carbon tetrachloride ND 0.14 µg/m² Tichloroethane (CE) ND 0.14 µg/m² 1,1,2-Trichlor	Blank (B015584-BLK1)				Prepared	& Analyze	d: 03/17/2	16			
Chloromethane ND 2.1 $\mu g/m^2$ Vinyl thloride ND 0.03 $\mu g/m^2$ Vinyl thloride ND 2.6 $\mu g/m^2$ Trichlorofthane (CE) ND 2.6 $\mu g/m^2$ Trichlorofthare (F-11) ND 5.6 $\mu g/m^2$ Trichlorofthare (F-113) ND 7.7 $\mu g/m^2$ Trichlorofthare (I-1-DCE) ND 4.0 $\mu g/m^2$ trischlorofthare (1,1-DCA) ND 1.2 $\mu g/m^2$ trischlorofthare (1,1-DCA) ND 0.4 $\mu g/m^2$ trischlorofthare (1,1-DCA) ND 0.39 $\mu g/m^2$ trischlorofthare (1,1-DCA) ND 0.39 $\mu g/m^2$ 1,1,1-Trichloroethane (1CA) ND 5.5 $\mu g/m^2$ 1,2-Dichloroethane (EDC) ND 0.08 $\mu g/m^2$ Carbon tetrachloride ND 0.14 $\mu g/m^2$ trischloroptopene ND 0.14 $\mu g/m^2$ traschloroptopone ND 0.3 $\mu g/m^2$		ND	9.8	μg/m³							
Chloromethane ND 2.1 $\mu g'm^4$ Vinyi chloride ND 0.03 $\mu g'm^4$ Trichlorofluoromethane (f-11) ND 5.6 $\mu g'm^4$ Trichlorofluoromethane (f-11) ND 5.6 $\mu g'm^4$ Methylene chloride ND 3.5 $\mu g'm^4$ Trichlorofluoromethane (1-10CF) ND 4.0 $\mu g'm^4$ Methylene chloride ND 3.5 $\mu g'm^4$ Itams.1_2-Dichloroethane (1-10CA) ND 1.2 $\mu g'm^4$ cis-1_2-Dichloroethane (1-10CA) ND 0.39 $\mu g'm^4$ Chloroftm (THM1) ND 0.39 $\mu g'm^4$ 1_1_1-Erichloroethane (EDC) ND 0.08 $\mu g'm^4$ Carbon tetrachloride ND 0.02 $\mu g'm^4$ Carbon tetrachloride ND 0.11 $\mu g'm^4$ trans-1_3-Dichloropropene ND 0.14 $\mu g'm^4$ trackaloroethane (PCE) ND 0.41 $\mu g'm^4$ tetrachloroethane (PCE) ND 0.41 $\mu g'm^4$ 1_1_2-Dichloropropene ND 0.41 $\mu g'm^4$	Dichlorodifluoromethane (F-12)	ND	4.9								
Choroethane (CE) ND 2.6 $\mu g'm^3$ Trichlorofluoromethane (F-11) ND 5.6 $\mu g'm^3$ Trichlorotrifluoroethane (F-11) ND 4.0 $\mu g'm^3$ Methylene chloride ND 3.5 $\mu g'm^3$ Trackitorotrifluoroethane (F-113) ND 7.7 $\mu g'm^3$ trans-1,2-Dichloroethane ND 4.0 $\mu g'm^3$ trans-1,2-Dichloroethane (1,1-DCA) ND 1.2 $\mu g'm^3$ cish-1,2-Dichloroethane (1,2-DCE) ND 4.0 $\mu g'm^3$ Chloroftm (THM1) ND 0.39 $\mu g'm^3$ 1,1-Dichloroethane (1CA) ND 5.5 $\mu g'm^3$ 1,2-Dichloroethane (EDC) ND 0.08 $\mu g'm^3$ Carbon tetrachloride ND 0.02 $\mu g'm^3$ Trichloroptopene ND 0.14 $\mu g'm^3$ Toluene ND 0.14 $\mu g'm^3$ toluene ND 0.3 $\mu g'm^3$ t,1,2-Trichloroptopene ND 0.41 $\mu g'm^3$ toluene ND 0.43 $\mu g'm^3$ <	Chloromethane	ND	2.1								
Trichlorofluoromthane (F-11) ND 5.6 $\mu g'm^3$ 1,1-Dichloroethane (I,1-DCE) ND 4.0 $\mu g'm^3$ Trichlorotifluoroethane (F-113) ND 7.7 $\mu g'm^3$ trans.12-Dichloroethene ND 4.0 $\mu g'm^3$ trans.12-Dichloroethene ND 4.0 $\mu g'm^3$ cis1_2-Dichloroethene (1,1-DCA) ND 1.2 $\mu g'm^3$ Chloroform (THM1) ND 0.39 $\mu g'm^3$ 1,1-Tichloroethane (TCA) ND 5.5 $\mu g'm^3$ Carbon tetrachloride ND 0.08 $\mu g'm^3$ Carbon tetrachloride ND 0.02 $\mu g'm^3$ Trichloroethane (TCE) ND 0.14 $\mu g'm^3$ trans.1,3-Dichloropropene ND 0.14 $\mu g'm^3$ trans.1,3-Dichloropropene ND 0.11 $\mu g'm^3$ Tetrachloroethane (EDB) ND 0.33 $\mu g'm^3$ L1,2-Trichloroethane ND 0.34 $\mu g'm^3$ L2-Diromoethane ND 0.43 $\mu g'm^3$ L3-Dichloroethane ND 0.43 $\mu g'm^3$	Vinyl chloride	ND	0.03								
1,1-Dichloroethene (1,1-DCE) ND 4.0 $\mu g' m^3$ Trichlorotrifluoroethane (F-113) ND 7.7 $\mu g' m^3$ Methylene chloride ND 3.5 $\mu g' m^3$ Tirchloroethane ND 4.0 $\mu g' m^3$ 1,1-Dichloroethane (1,1-DCA) ND 1.2 $\mu g' m^3$ cis-1,2-Dichloroethane (cl.2-DCE) ND 4.0 $\mu g' m^3$ Chloroform (THM1) ND 0.39 $\mu g' m^3$ 1,1-Trichloroethane (EDC) ND 0.08 $\mu g' m^3$ Carbon tetrachloride ND 0.02 $\mu g' m^3$ Trichloroethane (TCE) ND 1.1 $\mu g' m^3$ Trichloroethane (TCE) ND 0.14 $\mu g' m^3$ Trichloroethane (CDC) ND 0.41 $\mu g' m^3$ Tirchloroethane (TCE) ND 0.14 $\mu g' m^3$ 1,1,2-Trichloroethane ND 0.14 $\mu g' m^3$ 1,1,2-Trichloroethane (EDB) ND 0.3 $\mu g' m^3$ 1,1,2-Trichloroethane (EDB) ND 0.3 $\mu g' m^3$ 1,1,2,2-Teithoroethane (ND 0.8 $\mu $	Chloroethane (CE)	ND	2.6								
1,1-Dichloroethene (1,1-DCE)ND4.0 $\mu g'm^3$ Trichlorotrifluoroethane (F-113)ND7.7 $\mu g'm^3$ Methylene chlorideND3.5 $\mu g'm^3$ Itarsh.12-DichloroetheneND4.0 $\mu g'm^3$ 1,1-Dichloroethane (1,1-DCA)ND1.2 $\mu g'm^3$ 1,1-Dichloroethane (1,2-DCE)ND4.0 $\mu g'm^3$ 1,1-Dichloroethane (1,2-DCE)ND4.0 $\mu g'm^3$ 1,1-Trichloroethane (EDC)ND0.39 $\mu g'm^3$ 1,2-Dichloroethane (EDC)ND0.08 $\mu g'm^3$ 1,2-Dichloroethane (EDC)ND0.04 $\mu g'm^3$ Carbon tetrachlorideND0.02 $\mu g'm^3$ Trichloroethane (TCB)ND1.1 $\mu g'm^3$ Trichloroethane (CDE)ND0.14 $\mu g'm^3$ Trichloroethane (EDB)ND0.14 $\mu g'm^3$ 1,1,2-TrichloroethaneND0.11 $\mu g'm^3$ 1,2-Dichloroethane (EDB)ND0.41 $\mu g'm^3$ 1,2-Dichloroethane (EDB)ND0.43 $\mu g'm^3$ 1,2-Trichloroethane (EDB)ND0.44 $\mu g'm^3$ 1,2-TrichloroethaneND0.87 $\mu g'm^3$ 1,2-DichloroethaneND0.43 $\mu g'm^3$ 1,2-DichloroethaneND0.44 $\mu g'm^3$ 1,2-TrichloroethaneND0.44 $\mu g'm^3$ 1,2-TrichloroethaneND0.45 $\mu g'm^3$ 1,2-TrichloroethaneND0.44 $\mu g'm^3$ 1,2-DichloroethaneND0.43 <t< td=""><td>Trichlorofluoromethane (F-11)</td><td>ND</td><td>5.6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Trichlorofluoromethane (F-11)	ND	5.6								
Trichlorotrifluoroethane (F-113) ND 7.7 $\mu g/m^3$ Methylene chloride ND 3.5 $\mu g/m^3$ trans-1,2-Dichloroethane ND 4.0 $\mu g/m^3$ cis-1,2-Dichloroethane (1,1-DCA) ND 1.2 $\mu g/m^3$ cis-1,2-Dichloroethane (1,1-DCA) ND 0.39 $\mu g/m^3$ Chloroform (THM1) ND 0.39 $\mu g/m^3$ 1,1-Trichloroethane (EDC) ND 0.08 $\mu g/m^3$ 1,2-Dichloroethane (EDC) ND 0.08 $\mu g/m^3$ Carbon tetrachloride ND 0.02 $\mu g/m^3$ Trichloroethane (TCE) ND 1.1 $\mu g/m^3$ Trichloroptopene ND 0.14 $\mu g/m^3$ Toiluene ND 0.14 $\mu g/m^3$ Tetrachloroethane (PCE) ND 0.41 $\mu g/m^3$ 1,2-Dichloropropene ND 0.41 $\mu g/m^3$ 1,2-Dichloroethane ND 0.33 $\mu g/m^3$ Trischloroethane (PCE) ND 0.41 $\mu g/m^3$ 1,2-Dichloroethane ND 0.43 $\mu g/m^3$		ND	4.0								
Methylene chlorideND 3.5 $\mu g/m^3$ trans-1,2-DichloroetheneND 4.0 $\mu g/m^3$ 1,1-Dichloroethene (1,1-DCA)ND 1.2 $\mu g/m^3$ chloroform (THM1)ND 0.39 $\mu g/m^3$ Chloroform (THM1)ND 0.55 $\mu g/m^3$ 1,1,1-Trichloroethane (TCA)ND 5.5 $\mu g/m^3$ 2-Dichloroethane (EDC)ND 0.08 $\mu g/m^3$ Carbon etrachlorideND 0.02 $\mu g/m^3$ BenzeneND 0.14 $\mu g/m^3$ Trichloroethane (TCE)ND 0.14 $\mu g/m^3$ ToileneND 0.14 $\mu g/m^3$ ToileneND 0.14 $\mu g/m^3$ TolueneND 0.14 $\mu g/m^3$ TolueneND 0.14 $\mu g/m^3$ Tetrachloroethane (PCE)ND 0.14 $\mu g/m^3$ TetrachloroethaneND 0.14 $\mu g/m^3$ TetrachloroethaneND 0.14 $\mu g/m^3$ TetrachloroethaneND 0.14 $\mu g/m^3$ L1,2-TrichloroethaneND 0.14 $\mu g/m^3$ L1,2-TrichloroethaneND 0.38 $\mu g/m^3$ ChlorobenzeneND 0.43 $\mu g/m^3$ L2-DibrhoroethaneND 0.43 $\mu g/m^3$ L2-DichlorobenzeneND 0.04 $\mu g/m^3$ L2-TetrachloroethaneND 0.04 $\mu g/m^3$ L2-TetrachloroethaneND 0.04 $\mu g/m^3$ L3-DichlorobenzeneND 0.04		ND	7.7								
trans-1,2-Dichloroethene ND 4.0 $\mu g/m^3$ 1,1-Dichloroethane (1,1-DCA) ND 1.2 $\mu g/m^3$ cis-1,2-Dichloroethane (c1,2-DCE) ND 4.0 $\mu g/m^3$ Choroform (THM1) ND 0.39 $\mu g/m^3$ 1,1-Trichloroethane (TCA) ND 5.5 $\mu g/m^3$ 1,2-Dichloroethane (TCA) ND 0.08 $\mu g/m^3$ Carbon tetrachloride ND 0.02 $\mu g/m^3$ Carbon tetrachloride ND 0.01 $\mu g/m^3$ Trichloroethene (TCE) ND 0.14 $\mu g/m^3$ Toilene ND 3.8 $\mu g/m^3$ Toluene ND 0.41 $\mu g/m^3$ Tetrachloroethane (PCE) ND 0.41 $\mu g/m^3$ 1,2-Dirbinoroethane (PCE) ND 0.46 $\mu g/m^3$ 1,2-Dirbinoroethane (PCE) ND 0.47 $\mu g/m^3$ 1,2-Dirbinoroethane (PCE) ND 0.46 $\mu g/m^3$ 1,2-Dirbinoroethane (PCE) ND 0.43 $\mu g/m^3$ 1,2-Dirbinoroethane ND 0.74 $\mu g/m^3$ <	Methylene chloride	ND	3.5								
1,1-Dichloroethane (1,1-DCA) ND 1.2 $\mu g/m^3$ cisi-1,2-Dichloroethane (c1,2-DCE) ND 4.0 $\mu g/m^3$ Chloroform (THM1) ND 0.39 $\mu g/m^3$ 1,1-Trichloroethane (TCA) ND 5.5 $\mu g/m^3$ 1,2-Dichloroethane (EDC) ND 0.08 $\mu g/m^3$ Carbon tetrachloride ND 0.02 $\mu g/m^3$ Benzene ND 0.06 $\mu g/m^3$ Trichloroethane (TCE) ND 1.1 $\mu g/m^3$ trans-1,3-Dichloropropene ND 0.14 $\mu g/m^3$ Toluene ND 0.14 $\mu g/m^3$ Tolucne ND 0.11 $\mu g/m^3$ 1,2-Dibromoethane (EDB) ND 0.41 $\mu g/m^3$ 1,2-Dibromoethane (EDB) ND 0.43 $\mu g/m^3$ 1,2-Dibromoethane (EDB) ND 0.87 $\mu g/m^3$ 1,2,2-Tirchachtoroethane ND 0.43 $\mu g/m^3$ 1,2,2-Tirchachtoroethane ND 0.74 $\mu g/m^3$ 1,2,2-Tirchachtoroethane ND 0.74 $\mu g/m^3$	-	ND	4.0								
cis-1,2-Dichloroethene (c1,2-DCE) ND 4.0 $\mu g/m^3$ Chloroform (THM1) ND 0.39 $\mu g/m^3$ 1,1,1-Trichloroethane (TCA) ND 5.5 $\mu g/m^3$ 1,2-Dichloroethane (EDC) ND 0.02 $\mu g/m^3$ Carbon tetrachloride ND 0.02 $\mu g/m^3$ Benzene ND 0.06 $\mu g/m^3$ Trichloroethane (TCE) ND 1.1 $\mu g/m^3$ cis-1, 3-Dichloroptopene ND 0.14 $\mu g/m^3$ trans-1, 3-Dichloroptopene ND 0.14 $\mu g/m^3$ 1,1,2-Trichloroethane ND 0.14 $\mu g/m^3$ 1,1,2-Trichloroethane ND 0.11 $\mu g/m^3$ 1,1,2-Trichloroethane ND 0.41 $\mu g/m^3$ 1,1,2-Trichloroethane ND 0.33 $\mu g/m^3$ 1,2-Dibromoethane (EDB) ND 0.03 $\mu g/m^3$ 1,2-Dichlorobenzene ND 0.87 $\mu g/m^3$ 1,2-Dichlorobenzene ND 0.43 $\mu g/m^3$ 1,2-Dichlorobenzene ND 0.74 $\mu g/m^3$ <tr< td=""><td></td><td>ND</td><td>1.2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>		ND	1.2								
Chloroform (THM1)ND0.39 $\mu g/m^3$ 1,1,1-Trichloroethane (TCA)ND5.5 $\mu g/m^3$ 1,2-Dichloroethane (EDC)ND0.08 $\mu g/m^3$ Carbon tetrachlorideND0.02 $\mu g/m^3$ BenzeneND0.06 $\mu g/m^3$ Trichloroethane (TCE)ND1.1 $\mu g/m^3$ Trichloroothene (TCE)ND1.1 $\mu g/m^3$ Trichloroothene (TCE)ND0.14 $\mu g/m^3$ Taras-1,3-DichloropropeneND0.14 $\mu g/m^3$ 1,1,2-TrichloroethaneND0.11 $\mu g/m^3$ 1,1,2-Trichloroothane (EDB)ND0.41 $\mu g/m^3$ ChlorobenzeneND0.87 $\mu g/m^3$ 1,2-Dibromoethane (EDB)ND0.687 $\mu g/m^3$ chlorobenzeneND4.3 $\mu g/m^3$ -xyleneND4.3 $\mu g/m^3$ -xyleneND0.74 $\mu g/m^3$ 1,2-DichlorobenzeneND6.0 $\mu g/m^3$ 1,3-DichlorobenzeneND6.0 $\mu g/m^3$ 1,2-DichlorobenzeneND6.0 $\mu g/m^3$ NaphthaleneND0.05 $\mu g/m^3$ Naphth		ND	4.0								
1,1,1-Trichloroethane (TCA)ND5.5 $\mu g/m^3$ 1,2-Dichloroethane (EDC)ND0.08 $\mu g/m^3$ Carbon tetrachlorideND0.02 $\mu g/m^3$ BenzeneND0.06 $\mu g/m^3$ Trichloroethene (TCE)ND1.1 $\mu g/m^3$ cis-1,3-DichloropropeneND0.14 $\mu g/m^3$ TolueneND0.14 $\mu g/m^3$ TolueneND3.8 $\mu g/m^3$ Tetrachloroethane (PCE)ND0.41 $\mu g/m^3$ L,2-Dirbomoethane (EDB)ND0.03 $\mu g/m^3$ ChlorobenzeneND4.6 $\mu g/m^3$ ChlorobenzeneND4.3 $\mu g/m^3$.1,1,2,2-TetrachloroethaneND0.44 $\mu g/m^3$.1,2,2-TetrachloroethaneND0.43 $\mu g/m^3$.1,2,2-TetrachloroethaneND0.44 $\mu g/m^3$.1,2,2-TetrachloroethaneND0.43 $\mu g/m^3$.1,2,2-TetrachloroethaneND0.04 $\mu g/m^3$.1,2,2-TetrachloroethaneND0.74 $\mu g/m^3$.1,2-DichlorobenzeneND0.18 $\mu g/m^3$.1,2-DichlorobenzeneND0.18 $\mu g/m^3$.1,2-DichlorobenzeneND0.60 $\mu g/m^3$.1,2-DichlorobenzeneND0.60 $\mu g/m^3$.1,2-DichlorobenzeneND0.61 $\mu g/m^3$.1,2-DichlorobenzeneND0.61 $\mu g/m^3$.1,2-DichlorobenzeneND0.61 $\mu g/m^3$.1,2-DichlorobenzeneND		ND	0.39								
1,2-Dichloroethane (EDC)ND 0.08 $\mu g/m^3$ Carbon tetrachlorideND 0.02 $\mu g/m^3$ BenzeneND 0.06 $\mu g/m^3$ Trichloroethene (TCE)ND 1.1 $\mu g/m^3$ trians-1,3-DichloropropeneND 0.14 $\mu g/m^3$ TolueneND 3.8 $\mu g/m^3$ tolueneND 3.8 $\mu g/m^3$ 1,1,2-TrichloroethaneND 0.11 $\mu g/m^3$ tetrachloroethane (PCE)ND 0.41 $\mu g/m^3$ 1,2-Dibromoethane (EDB)ND 0.03 $\mu g/m^3$ ChlorobenzeneND 4.6 $\mu g/m^3$ ethylbenzeneND 4.3 $\mu g/m^3$ n_p -XyleneND 4.3 $\mu g/m^3$ $1,2,2$ -TetrachloroethaneND 0.04 $\mu g/m^3$ $1,2,2$ -TetrachlorobenzeneND 0.14 $\mu g/m^3$ $1,2,2$ -TetrachloroethaneND 0.04 $\mu g/m^3$ $1,2,2$ -TetrachlorobenzeneND 0.14 $\mu g/m^3$ $1,2,2$ -TetrachlorobenzeneND 0.14 $\mu g/m^3$ $1,2$ -DichlorobenzeneND 0.18 $\mu g/m^3$ $1,2$ -DichlorobenzeneND 0.05 $\mu g/m^3$ $1,2$ -DichlorobenzeneND 0.05 $\mu g/m^3$ $1,2$ -DichlorobenzeneND 0.6 $\mu g/m^3$ $1,2$ -DichlorobenzeneND 0.6 $\mu g/m^3$ $1,2$ -DichlorobenzeneND 0.6 $\mu g/m^3$ NaphthaleneND 0.6 $\mu g/m^3$ Methyl t	1,1,1-Trichloroethane (TCA)	ND	5.5								
Carbon tetrachlorideND 0.02 $\mu g/m^3$ BenzeneND 0.06 $\mu g/m^3$ Trichloroethene (TCE)ND 1.1 $\mu g/m^3$ cis-1,3-DichloropropeneND 0.14 $\mu g/m^3$ trans-1,3-DichloropropeneND 0.14 $\mu g/m^3$ TolueneND 3.8 $\mu g/m^3$ 1,1,2-TrichloroethaneND 0.11 $\mu g/m^3$ 1,1,2-Trichloroethane (EDB)ND 0.41 $\mu g/m^3$ 1,2-Dibromoethane (EDB)ND 0.03 $\mu g/m^3$ ChlorobenzeneND 4.6 $\mu g/m^3$ ethylbenzeneND 4.3 $\mu g/m^3$ 0 -XyleneND 4.3 $\mu g/m^3$ $1,2,2$ -TetrachloroethaneND 0.044 $\mu g/m^3$ $1,2,2$ -TetrachloroethaneND 0.184 $\mu g/m^3$ $1,2,2$ -TetrachloroethaneND 0.184 $\mu g/m^3$ $1,2$ -DichlorobenzeneND 0.184 $\mu g/m^3$ $1,2$ -DichlorobenzeneND 0.54 $\mu g/m^3$ NaphthaleneND 0.55 $\mu g/m^3$ NaphthaleneND 0.56 $\mu g/m^3$ NaphthaleneND 3.6 $\mu g/m^3$		ND	0.08								
BenzeneND0.06 $\mu g/m^3$ Trichloroethene (TCE)ND1.1 $\mu g/m^3$ trans-1,3-DichloropropeneND0.14 $\mu g/m^3$ TolueneND3.8 $\mu g/m^3$ TolueneND0.11 $\mu g/m^3$ tetrachloroethene (PCE)ND0.41 $\mu g/m^3$ 1,1-2-Tirchloroethane (EDB)ND0.03 $\mu g/m^3$ ChlorobenzeneND4.6 $\mu g/m^3$ EthylbenzeneND0.87 $\mu g/m^3$ n,p-XyleneND4.3 $\mu g/m^3$ 1,1,2,2-TirtachloroethaneND0.04 $\mu g/m^3$ 1,1,2,2-TirtachloroethaneND0.43 $\mu g/m^3$ 1,1,2,2-TirtachloroethaneND0.44 $\mu g/m^3$ 1,1,2,2-TirtachloroethaneND0.04 $\mu g/m^3$ 1,2,2-TirtachloroethaneND0.04 $\mu g/m^3$ 1,2,2-TirtachloroethaneND0.18 $\mu g/m^3$ 1,3-DichlorobenzeneND6.0 $\mu g/m^3$ 1,4-DichlorobenzeneND0.18 $\mu g/m^3$ 1,2-DichlorobenzeneND6.0 $\mu g/m^3$ 1,2-DichlorobenzeneND0.05 $\mu g/m^3$ NaphthalenND0.05 $\mu g/m^3$ Methyl tert-Butyl Ether (MTBE)ND3.6 $\mu g/m^3$ Surrogate: Dibromofluoromethane7.75 $\mu g/m^3$ 7.7910070-130 $\mu g/m^3$		ND	0.02								
Trichloroethene (TCE) ND 1.1 $\mu g/m^3$ cis-1,3-Dichloropropene ND 0.14 $\mu g/m^3$ trans-1,3-Dichloropropene ND 0.14 $\mu g/m^3$ Toluene ND 3.8 $\mu g/m^3$ Tetrachloroethane ND 0.11 $\mu g/m^3$ Tetrachloroethane (PCE) ND 0.41 $\mu g/m^3$ Chlorobenzene ND 0.03 $\mu g/m^3$ Chlorobenzene ND 0.87 $\mu g/m^3$ Ethylbenzene ND 0.87 $\mu g/m^3$ o-Xylene ND 0.43 $\mu g/m^3$ 1,1,2,2-Tetrachloroethane ND 0.04 $\mu g/m^3$ 1,2,2-Tetrachloroethane ND 0.44 $\mu g/m^3$ o-Xylene ND 0.43 $\mu g/m^3$ 1,2,2-Tetrachloroethane ND 0.04 $\mu g/m^3$ 1,2,2-Tetrachloroethane ND 0.74 $\mu g/m^3$ 1,3-Dichlorobenzene ND 0.18 $\mu g/m^3$ 1,4-Dichlorobenzene ND 0.05 $\mu g/m^3$ 1,2-Dichlorobenzene ND	Benzene	ND	0.06								
cis-1,3-DichloropropeneND 0.14 $\mu g/m^3$ trans-1,3-DichloropropeneND 0.14 $\mu g/m^3$ TolueneND 3.8 $\mu g/m^3$ 1,1,2-TrichloroethaneND 0.11 $\mu g/m^3$ Tetrachloroethane (PCE)ND 0.41 $\mu g/m^3$ 1,2-Dibromoethane (EDB)ND 0.03 $\mu g/m^3$ ChlorobenzeneND 4.6 $\mu g/m^3$ EthylbenzeneND 0.87 $\mu g/m^3$ o-XyleneND 4.3 $\mu g/m^3$ 1,1,2,2-TetrachloroethaneND 0.04 $\mu g/m^3$ 1,1,2,2-TetrachloroethaneND 0.04 $\mu g/m^3$ 1,2,4-TrichlorobenzeneND 0.74 $\mu g/m^3$ 1,3-DichlorobenzeneND 0.18 $\mu g/m^3$ 1,4-DichlorobenzeneND 0.05 $\mu g/m^3$ 1,2-DichlorobenzeneND 0.05 $\mu g/m^3$ 1,2-DichlorobenzeneND 0.05 $\mu g/m^3$ 1,2-DichlorobenzeneND 0.05 $\mu g/m^3$ NaphthaleneND 0.05 $\mu g/m^3$ Surrogate: Dibromofluoromethane 7.75 $\mu g/m^3$ Surrogate: Dibromofluoromethane 7.75 $\mu g/m^3$		ND	1.1								
trans-1,3-DichloropropeneND 0.14 $\mu g/m^3$ TolueneND 3.8 $\mu g/m^3$ TolueneND 0.11 $\mu g/m^3$ 1,1,2-TrichloroethaneND 0.41 $\mu g/m^3$ Tetrachloroethane (EDB)ND 0.03 $\mu g/m^3$ ChlorobenzeneND 4.6 $\mu g/m^3$ EthylbenzeneND 0.87 $\mu g/m^3$ o-XyleneND 4.3 $\mu g/m^3$ $1,1,2,2$ -TetrachloroethaneND 4.3 $\mu g/m^3$ $1,2,4$ -TrichlorobenzeneND 0.044 $\mu g/m^3$ $1,2,4$ -TrichlorobenzeneND 0.744 $\mu g/m^3$ $1,4$ -DichlorobenzeneND 0.18 $\mu g/m^3$ $1,2$ -DichlorobenzeneND 6.0 $\mu g/m^3$ $1,2$ -DichlorobenzeneND 6.0 $\mu g/m^3$ $1,2$ -DichlorobenzeneND 0.18 $\mu g/m^3$ $1,2$ -DichlorobenzeneND 6.0 $\mu g/m^3$ $1,2$ -DichlorobenzeneND 0.05 $\mu g/m^3$ NaphthaleneND 0.05 $\mu g/m^3$ Surrogate: Dibromofluoromethane 7.75 $\mu g/m^3$ Surrogate: Dibromofluoromethane 7.75 $\mu g/m^3$		ND	0.14								
TolueneND 3.8 $\mu g/m^3$ 1,1,2-TrichloroethaneND 0.11 $\mu g/m^3$ Tetrachloroethene (PCE)ND 0.41 $\mu g/m^3$ 1,2-Dibromoethane (EDB)ND 0.03 $\mu g/m^3$ ChlorobenzeneND 4.6 $\mu g/m^3$ EthylbenzeneND 0.87 $\mu g/m^3$ o-XyleneND 4.3 $\mu g/m^3$ $1,2,2$ -TetrachloroethaneND 0.04 $\mu g/m^3$ $1,2,2$ -TetrachloroethaneND 0.74 $\mu g/m^3$ $1,2,4$ -TrichlorobenzeneND 0.74 $\mu g/m^3$ $1,3$ -DichlorobenzeneND 0.18 $\mu g/m^3$ $1,2$ -DichlorobenzeneND 0.05 $\mu g/m^3$ NaphthaleneND 0.05 $\mu g/m^3$ Surrogate: Dibromofluoromethane 7.75 $\mu g/m^3$ 7.79 100 $70-130$		ND	0.14								
1,1,2-Trichloroethane ND 0.11 $\mu g/m^3$ Tetrachloroethene (PCE) ND 0.41 $\mu g/m^3$ 1,2-Dibromoethane (EDB) ND 0.03 $\mu g/m^3$ Chlorobenzene ND 4.6 $\mu g/m^3$ Ethylbenzene ND 0.87 $\mu g/m^3$ m,p-Xylene ND 4.3 $\mu g/m^3$ o-Xylene ND 4.3 $\mu g/m^3$ 1,1,2,2-Tetrachloroethane ND 0.04 $\mu g/m^3$ 1,2,4-Trichloroethane ND 0.74 $\mu g/m^3$ 1,3-Dichlorobenzene ND 0.18 $\mu g/m^3$ 1,4-Dichlorobenzene ND 0.18 $\mu g/m^3$ 1,2-Dichlorobenzene ND 0.05 $\mu g/m^3$ Naphthalene ND 0.05 $\mu g/m^3$ Surrogate: Dibromofluoromethane 7.75 $\mu g/m^3$ 7.79 100 $70-130$		ND	3.8								
Tetrachloroethene (PCE)ND 0.41 $\mu g/m^3$ 1,2-Dibromoethane (EDB)ND 0.03 $\mu g/m^3$ ChlorobenzeneND 4.6 $\mu g/m^3$ EthylbenzeneND 0.87 $\mu g/m^3$ m,p-XyleneND 4.3 $\mu g/m^3$ o-XyleneND 4.3 $\mu g/m^3$ 1,1,2,2-TetrachloroethaneND 0.04 $\mu g/m^3$ 1,2,4-TrichlorobenzeneND 0.74 $\mu g/m^3$ 1,3-DichlorobenzeneND 0.18 $\mu g/m^3$ 1,4-DichlorobenzeneND 0.05 $\mu g/m^3$ NaphthaleneND 0.05 $\mu g/m^3$ Nethyl tert-Butyl Ether (MTBE)ND 3.6 $\mu g/m^3$ Surrogate: Dibromofluoromethane 7.75 $\mu g/m^3$ 7.79 100 $70-130$											
1,2-Dibromoethane (EDB)ND 0.03 $\mu g/m^3$ ChlorobenzeneND 4.6 $\mu g/m^3$ EthylbenzeneND 0.87 $\mu g/m^3$ m,p-XyleneND 4.3 $\mu g/m^3$ o-XyleneND 4.3 $\mu g/m^3$ 1,1,2,2-TetrachloroethaneND 0.04 $\mu g/m^3$ 1,2,4-TrichlorobenzeneND 0.74 $\mu g/m^3$ 1,3-DichlorobenzeneND 6.0 $\mu g/m^3$ 1,4-DichlorobenzeneND 0.18 $\mu g/m^3$ 1,2-DichlorobenzeneND 6.0 $\mu g/m^3$ NaphthaleneND 0.05 $\mu g/m^3$ Methyl tert-Butyl Ether (MTBE)ND 3.6 $\mu g/m^3$ Surrogate: Dibromofluoromethane 7.75 $\mu g/m^3$ 7.79 100 $70-130$		ND	0.41								
ND 4.6 $\mu g/m^3$ EthylbenzeneND 0.87 $\mu g/m^3$ m,p-XyleneND 4.3 $\mu g/m^3$ o-XyleneND 4.3 $\mu g/m^3$ $1,1,2,2$ -TetrachloroethaneND 0.04 $\mu g/m^3$ $1,2,4$ -TrichlorobenzeneND 0.74 $\mu g/m^3$ $1,3$ -DichlorobenzeneND 6.0 $\mu g/m^3$ $1,4$ -DichlorobenzeneND 0.18 $\mu g/m^3$ $1,2$ -DichlorobenzeneND 6.0 $\mu g/m^3$ $1,2$ -DichlorobenzeneND 0.05 $\mu g/m^3$ NaphthaleneND 0.05 $\mu g/m^3$ Surrogate: Dibromofluoromethane 7.75 $\mu g/m^3$ 7.79 100 $70-130$		ND	0.03								
EthylbenzeneND 0.87 $\mu g/m^3$ m,p-XyleneND 4.3 $\mu g/m^3$ o-XyleneND 4.3 $\mu g/m^3$ 1,1,2,2-TetrachloroethaneND 0.04 $\mu g/m^3$ 1,2,4-TrichlorobenzeneND 0.74 $\mu g/m^3$ 1,3-DichlorobenzeneND 6.0 $\mu g/m^3$ 1,4-DichlorobenzeneND 0.18 $\mu g/m^3$ 1,2-DichlorobenzeneND 6.0 $\mu g/m^3$ 1,2-DichlorobenzeneND 6.0 $\mu g/m^3$ NaphthaleneND 0.05 $\mu g/m^3$ NaphthaleneND 3.6 $\mu g/m^3$ Surrogate: Dibromofluoromethane											
ND4.3 $\mu g/m^3$ o-XyleneND4.3 $\mu g/m^3$ 1,1,2,2-TetrachloroethaneND0.04 $\mu g/m^3$ 1,2,4-TrichlorobenzeneND0.74 $\mu g/m^3$ 1,3-DichlorobenzeneND6.0 $\mu g/m^3$ 1,4-DichlorobenzeneND0.18 $\mu g/m^3$ 1,2-DichlorobenzeneND6.0 $\mu g/m^3$ 1,2-DichlorobenzeneND0.05 $\mu g/m^3$ NaphthaleneND0.05 $\mu g/m^3$ Surrogate: Dibromofluoromethane7.75 $\mu g/m^3$ 7.7910070-130											
ND4.3 $\mu g/m^3$ 0-XyleneND4.3 $\mu g/m^3$ 1,1,2,2-TetrachloroethaneND0.04 $\mu g/m^3$ 1,2,4-TrichlorobenzeneND0.74 $\mu g/m^3$ 1,3-DichlorobenzeneND6.0 $\mu g/m^3$ 1,4-DichlorobenzeneND0.18 $\mu g/m^3$ 1,2-DichlorobenzeneND6.0 $\mu g/m^3$ 1,2-DichlorobenzeneND6.0 $\mu g/m^3$ NaphthaleneND0.05 $\mu g/m^3$ Methyl tert-Butyl Ether (MTBE)ND3.6 $\mu g/m^3$ Surrogate: Dibromofluoromethane											
ND 0.04 $\mu g/m^3$ 1,2,2-TetrachloroethaneND 0.74 $\mu g/m^3$ 1,2,4-TrichlorobenzeneND 0.74 $\mu g/m^3$ 1,3-DichlorobenzeneND 6.0 $\mu g/m^3$ 1,4-DichlorobenzeneND 0.18 $\mu g/m^3$ 1,2-DichlorobenzeneND 6.0 $\mu g/m^3$ NaphthaleneND 0.05 $\mu g/m^3$ Methyl tert-Butyl Ether (MTBE)ND 3.6 $\mu g/m^3$ Surrogate: Dibromofluoromethane 7.75 $\mu g/m^3$ 7.79 100 $70-130$											
ND 0.74 $\mu g/m^3$ 1,2-4-TrichlorobenzeneND 6.0 $\mu g/m^3$ 1,3-DichlorobenzeneND 6.0 $\mu g/m^3$ 1,4-DichlorobenzeneND 0.18 $\mu g/m^3$ 1,2-DichlorobenzeneND 6.0 $\mu g/m^3$ NaphthaleneND 0.05 $\mu g/m^3$ Methyl tert-Butyl Ether (MTBE)ND 3.6 $\mu g/m^3$ Surrogate: Dibromofluoromethane 7.75 $\mu g/m^3$ 7.79 100 $70-130$	-										
NJND 6.0 $\mu g/m^3$ 1,3-DichlorobenzeneND 0.18 $\mu g/m^3$ 1,4-DichlorobenzeneND 6.0 $\mu g/m^3$ 1,2-DichlorobenzeneND 6.0 $\mu g/m^3$ NaphthaleneND 0.05 $\mu g/m^3$ Methyl tert-Butyl Ether (MTBE)ND 3.6 $\mu g/m^3$ Surrogate: Dibromofluoromethane7.75 $\mu g/m^3$ 7.79 100 $70-130$											
1,4-DichlorobenzeneND 0.18 $\mu g/m^3$ 1,2-DichlorobenzeneND 6.0 $\mu g/m^3$ NaphthaleneND 0.05 $\mu g/m^3$ Methyl tert-Butyl Ether (MTBE)ND 3.6 $\mu g/m^3$ Surrogate: Dibromofluoromethane7.75 $\mu g/m^3$ 7.7910070-130											
1,2-DichlorobenzeneND 6.0 $\mu g/m^3$ NaphthaleneND 0.05 $\mu g/m^3$ Methyl tert-Butyl Ether (MTBE)ND 3.6 $\mu g/m^3$ Surrogate: Dibromofluoromethane 7.75 $\mu g/m^3$ 7.79 100 $70-130$											
NaphthaleneND 0.05 $\mu g/m^3$ Methyl tert-Butyl Ether (MTBE)ND 3.6 $\mu g/m^3$ Surrogate: Dibromofluoromethane 7.75 $\mu g/m^3$ 7.79 100 $70-130$	-										
Methyl tert-Butyl Ether (MTBE)ND 3.6 $\mu g/m^3$ Surrogate: Dibromofluoromethane 7.75 $\mu g/m^3$ 7.79 100 $70-130$											
	-										
					7.70		100	70.100			
Surrogate: 4-Bromofluorobenzene 8.36 µg/m ³ 7.76 108 70-130											

Notes and Definitions

VAa	The sample canister was received by the laboratory with a vacuum gauge reading of 2 inches of mercury.
VA	The sample canister was received by the laboratory with a vacuum gauge reading of 0 inches of mercury.
RDL ND	Reporting Detection Limit Analyte NOT DETECTED at or above the reporting detection limit (RDL)
RPD	Relative Percent Difference
NR	Not Reported

Analytical Sciences Dev 78003.00, Pagalama, CA 94975. D Liberty Stront, Pagalama, CA 94975. D Liberty Stront, Pagalama, CA 94965. Fax (70) 769-8093 Fax (70) 769-8093 D Liberty Stront, Pagalama, CA 94967. Elle Rock Environmental 1157 Chess Dr., Suite # 107 Foster City, CA 94404 Lorent Taylor G650 552-9292 Lorent Daylor G650 552-9292 Lorent Daylor G650 552-9292 Lorent Taylor S H4Lb Analytic Ranister ID # Regulator ID # Nu LK 14 2007 A MLK 2037 D ate Matrix Canister ID # Regulator ID # S H4Lb 3/13/16 A1/1 A NLK 2007 A MLK 2007 A MLK 2007 A MLK 2006 A MLK 200	Lab Project Number: Client's Project Number: Client's Project Number:	GeoTracker Required Yes No GeoTracker Number: Page of of	Sis Lab Comments Lab Comments Sample #	$\frac{1}{2}$
Analytical Sciences D. Box 750336, Performation D. Box 750336, Performation D. Liberty Street, Performance, CA 94955, Performance, CA 94952, Performance CLIENT INFORMATION Blue Rock Environmental 1157 Chess Dr., Suite # 107 Foster City, CA 94404 Loren Taylor (650) 522-9292 (74) 14 <t< th=""><th>CHAIN OF CUSTOD Lab Project Number:</th><th>TURNAROUND TIME (check one) Same Day 24 Hours 48 Hours 24 Hours 5 Days Normal</th><th>Sample Sample Sa</th><th>SIGNATURES LOS A 172</th></t<>	CHAIN OF CUSTOD Lab Project Number:	TURNAROUND TIME (check one) Same Day 24 Hours 48 Hours 24 Hours 5 Days Normal	Sample Sa	SIGNATURES LOS A 172
	An	Company Name: Blue Rock Environmental Address: 1157 Chess Dr., Suite # 107 Foster City, CA 94404 Contact: Loren Taylor Phone #: (650) 522-9292 Fax #: (650) 522-9259 e-mail: Loren/orBrian@blue rockenv.com	Sample ID Date Matrix Canister ID #	seen.