METROVATION

RECEIVED

By Alameda County Environmental Health at 3:28 pm, Jun 06, 2014

May 29, 2014

Mr. Jerry Wickham Senior Hazardous Materials Specialist Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re: Terradev Jefferson LLC Property 645 Fourth Street, Oakland, CA 94607 Fuel Leak Case No. RO0003001 Blue Rock Project No. ASE-1

Dear Mr. Wickham,

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely,

Sara May Director of Operations Metrovation, LLC, managing agent for Terradev Jefferson, LLC

Attachment:

Blue Rock Environmental, Inc.'s Additional Site Characterization Report dated May 29, 2014.

May 29, 2014

Mr. Jerry Wickham Senior Hazardous Materials Specialist Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re: Additional Site Characterization Report

Terradev Jefferson LLC Property 645 4th Street, Oakland, CA 94607 Fuel Leak Case No. RO0003001 Blue Rock Project No. ASE-1

Dear Mr. Wickham,

This report, prepared by Blue Rock Environmental, Inc. (Blue Rock) on behalf of Terradev Jefferson, LLC, presents the results of additional investigation activities, which were proposed in the *Workplan for Additional Site Characterization* dated June 26, 2013 and approved by the Alameda County Health Care Services Agency – Environmental Health Services (ACHCSA) in their letter dated July 22, 2013.

Background

Site Description and UST Discovery / Removal

The site is located southeast of the intersection of 4th Street and Martin Luther King Jr. Way in Oakland, California (Figure 1). The site consists of a single story commercial building, bounded closely on the sides and back by other commercial buildings. One single-walled steel underground storage tank (UST) was discovered beneath the sidewalk immediately adjacent to the front of the building during renovation in 2006 (Figure 2). The UST is located on the upgradient edge of a developed city block.

Phase I Environmental Site Assessments completed in support of the purchase (1999) and for refinancing in 2006 indicated that no sign of an underground tank was observed during associated site inspections. The Phase I author also interviewed persons knowledgeable with the property from the 1950s until the time of the Phase I; the interviewees could recollect no underground tank being used during the period of their familiarity.

A review of Sanborn Fire Insurance Maps revealed no evidence of subject site use that would potentially require an underground tank, and as such it is difficult to discern precisely when the tank was installed or operated. Based on the Phase I interviews, it is assumed the tank was installed and last used prior to the 1950s. State and local regulations require the proper abandonment of tanks that are no longer used to store or dispense fuels, thus the abandonment work after tank discovery in 2006.

According to Golden Gate Tank Removal, Inc. (Golden Gate), after consultation with the City of Oakland, it was determined that building structural considerations prohibited physical tank removal and that in-place abandonment was the appropriate means to close the subject UST. Therefore, Golden Gate abandoned the UST in-place by triple washing followed by filling it to capacity with concrete slurry on September 5, 2006. Abandonment was performed with the permission and under the oversight of the City of Oakland Fire Prevention Bureau. Details of this event are presented in Golden Gate's *Tank Closure Report* dated September 21, 2006.

Golden Gate reported that the UST contained gasoline with an approximate holding capacity of 1,000-gallons, measuring approximately 10 feet in length and 4 feet in diameter. The bottom of the UST was estimated to be located 7.5 to 8 feet below ground surface (ft bgs). The fill port was reported to be located at the west end of the tank (Figure 2).

At the direction of the Oakland Fire Department, two holes were cored in the bottom of the cleaned tank prior to its abandonment to enable the collection of samples of underlying material. Golden Gate reported that the soil beneath the tank was wet, but that groundwater was not encountered. Soil samples were collected at a depth of 9 ft bgs. The samples were analyzed for concentrations of total petroleum hydrocarbons as diesel (TPHd), gasoline (TPHg), benzene, toluene, ethylbenzene, and xylenes (BTEX), and the five fuel oxygenates (MTBE, TBA, ETBE, DIPE, and TAME). Results of analysis of the sampled sediments indicated the presence of residual fuel hydrocarbons in both samples, with concentrations higher in the sample collected from the western end of the tank. This sample contained TPHg at a 10,000 mg/kg and benzene at 130 mg/kg.

Summary of Investigation Activities

Subsurface investigation began in 2009. A total of four soil borings have been drilled (B-1, B-2, CB-1, CB-2), and three extraction wells (DPE-1 through DPE-3) and three sub-slab soil vapor points (VP-1 through VP-3) have been installed at the site. A summary of well construction details is included in Table 1, and summaries of soil, groundwater, and sub-slab soil vapor sample analytical data are included in Tables 2, 3, and 4, respectively.

Site Conceptual Model

The site conceptual model for the project was initially developed by Amicus in their September 13, 2009 correspondence. The following section presents a summary of the current site conceptual model, which is subject to modification as new data are acquired.

The subject site is located in a commercial/industrial neighborhood along the San Francisco Bay-Margin. The site is underlain by sands and clays. The upper six feet generally consists of a brown sand (SP-SM), which has been interpreted as fill material. Native soil underlying the fill consists of a gray and yellow-brown sandy clay (CL) unit from $\sim 6 - 7$ ft bgs and a mottled redbrown and gray clayey sand (SC) from $\sim 7 - 14$ ft bgs, a brown sand (SP) from $\sim 14 - 16$ ft bgs, and gray clayey sand (SC) from $\sim 16 - 20$ ft bgs, the maximum depth explored. Groundwater is present in unconfined conditions at a depth of approximately 9 ft bgs. Groundwater flows generally to the south and southwest, towards the Oakland Inner Harbor, based on information from nearby sites.

Gasoline range hydrocarbons are present in soil and groundwater proximal to the abandoned UST. Interestingly, the contaminant signature also includes the gasoline additive methyl tertbutyl ether (MTBE). The addition of MTBE to gasoline began as early as 1979, and its use became ubiquitous in California by March 1996 to meet Clean Air Act standards at that time. However, its consumption in California was banned as of January 1, 2004. Although it is uncertain when the subject UST was removed from service, it is not expected to have been in service during MTBE's lifespan as a gasoline additive in California.

Blue Rock obtained historical Sanborn Fire Insurance maps, City Directories, and records review from Environmental Data Resources, Inc. (EDR) to better understand potential nearby sources. Blue Rock understands that an upgradient property at the corner of 5th Street and Martin Luther King Jr. Way was formerly used as a gas station "Grove Auto Repair" (Global ID T06000101350), the tanks for which were removed many years ago under Alameda County oversight. The limited information available Alameda County website for that station indicates tanks were removed in 1983 (it was a station from at least the early 1950s based on Sanborn maps) and 1,000 cubic yards were excavated and disposed off-site in 1989. No additional is available online for that site; however, the volume of soil excavated suggests a significant fuel release occurred. The EDR map also shows an "Oil/Gas" pipeline running down the west side of Martin Luther King Jr. Way (MLK Jr. Way); however, the specific product conveyed in the pipeline is unknown. The relationship, if any, between the historic service station and oil/gas pipeline and residual hydrocarbons found at the subject site is currently unknown.

The abandoned UST is located beneath the sidewalk along 4th Street, at the upgradient edge of a city block. The location of densely packed, low ceiling (occupied) buildings has limited implementation of a traditional environmental investigation (i.e. an array of downgradient borings and wells). The nearest location for the construction of downgradient monitoring wells is the street or sidewalk along 3rd Street, on the other side of the city block. Review of the previous UST studies at nearby sites (Allen property at 325 Martin Luther King Jr. Way and Markus Hardware at 632-638 Second Street) suggest that a 3rd Street location for downgradient monitoring wells might be far from the expected downgradient edge of the plume to serve any practical purpose. Yet, the results of corrective action at nearby sites might be used to predict aspects of the subject case.

The Allen property, located across Martin Luther King Jr. Way (formerly Grove Street), provides a useful example. Contamination originating from a 10,000-gallon UST at that property extended approximately 75 feet downgradient. According to Allen property reports, a 10,000-gallon UST was used at that property to fuel fleet vehicles prior to its in-place abandonment. Available reports do not describe the installation date, throughput, or contents of the tank; however, the analytes detected in proximal groundwater suggest the tank may have held gasoline. As an approximation, the migratory extent of the Terradev plume may be similar to that related to the Allen release (i.e. approximately 75 feet downgradient of the UST). This approximation is distant from the 3rd Street edge of the developed block, which is approximately 235 feet downgradient of the UST.

Groundwater beneath this area of Oakland is not presently used for beneficial purposes (consumption or irrigation). Additionally, it is reasonable to assume that the shallowest waterbearing zone in the vicinity of the subject site will plausibly not be used for beneficial consumption for the indeterminate future, if ever (in terms of City habitation). The residual hydrocarbons in groundwater do not, therefore, pose a threat to human health via consumption.

Secondary Source Removal

Amicus evaluated investigative and remedial options available at the site in their September 13, 2009 correspondence. It was noted that corrective actions would be necessarily constrained by the location of the abandoned UST relative to existing development - i.e. assessment proximally downgradient is prohibited, inadequate space to build a traditional fixed in-situ remediation system, and remedial excavation would undermine the existing building. Yet the persistence of elevated concentrations of gasoline range hydrocarbons in the subsurface merited remedial action. As a result, the use of mobile high-vacuum extraction (HVDPE) equipment was recommended as an aggressive approach to reduce the remaining gasoline mass in the vicinity of the UST for which details were proposed in the *Removal Action Workplan* dated February 3, 2010, which was conditionally approved by the ACHCSA in a letter dated February 19, 2010.

First High-Vacuum Dual-Phase Extraction Event (September-October 2010)

An initial mobile HVDPE remedial event was performed at the site from September 28 to October 3, 2010 (5 days). The event was completed using a truck-mounted unit consisting of a 25-horsepower oil sealed liquid-ring pump capable of producing 29 "Hg vacuum, and a thermal oxidizer capable of treating an air flow of approximately 450 ACFM. Wells DPE-1, DPE-2, and DPE-3 were used as extraction wells. A stinger hose was lowered into each well through a vacuum tight cap and placed approximately one foot off the bottom of each well. Depth to water at the beginning of the event was approximately 9.5 ft bgs in all three wells. At the beginning of the event, influent TPHg levels at individual wells ranged from 1,700 ppmv to 3,530 ppmv; however, they dropped to less 1,000 ppmv by the end of the event. The total average hydrocarbon mass recovered was **174 lbs** (based on 122 lbs calculated from field PID data and 225 lbs calculated from lab data), which equates to an average extraction rate of nearly 35 lbs/day.

Second High-Vacuum Dual-Phase Extraction Event (July 2012)

A second mobile HVDPE remedial event was performed at the site from July 9 to 24, 2012 (15days). The event was completed using a truck-mounted unit consisting of a 25-horsepower oil sealed liquid-ring pump capable of producing 29 "Hg vacuum, and a thermal oxidizer capable of treating an air flow of approximately 450 ACFM. Wells DPE-1 and DPE-2 were used as primary extraction wells, as they proved to be the most productive. A stinger hose was lowered into each well through a vacuum tight cap and placed approximately one foot off the bottom of each well. Depth to water at the beginning of the event was approximately 8.5 to 9 ft bgs, and the no LNAPL was observed in any of the wells. The total influent TPHg level was 1,200 ppmv at the start of the event and declined to 430 ppmv by the end of the event. The ending mass recovery rate was estimated to be approximately 11 lbs/day.

Blue Rock estimated the total average hydrocarbon mass recovered was approximately **249 lbs** (based on 199 lbs calculated from field PID data and 298 lbs calculated from lab data). The HVDPE unit provider (CalClean) estimated the total average hydrocarbon mass recovered was approximately **166 lbs** (based on 130 lbs calculated from field PID data and 191 lbs calculated from lab data). The difference between the mass removal estimates appears to be due to the fact that Blue Rock used flowrates from the manufacturer's blower curve based on the measured vacuum and Calclean used flowrates measured in the field with an inline flowmeter.

Cumulative Secondary Source Removal Efforts

The total hydrocarbon mass of approximately **340 to 423 lbs** has been removed by both the 2010 and 2012 events. At the beginning of the 2010 event, total inlet concentrations were 1,660 ppmv resulting in an extraction rate of approximately 90 lbs/day. By the end of the 2012 event, total inlet concentrations had declined to 430 ppmv and the extraction was approximately 10 lbs/day. Based on these data, it appears the use mobile HVDPE may have reached its effective limit and the mass appears to have been removed to the extent practicable. Additional use of mobile HVDPE would likely not be cost effective.

Free-Product Occurrence and Removal

Free-product was measured once in DPE-3 at a thickness of 0.13-feet in January 2011. However, following the second HVDPE event, no measurable thicknesses of free product has been observed in any of the wells.

Evaluation of Secondary Source Removal / Reduction

As presented in Blue Rock's March 11, 2013 report, a comparison of pre- and post-remedial soil quality proximal to the abandoned UST was intended to serve as a proxy for removal / reduction of the secondary source mass. The results of confirmation soil sampling are shown below.

West Side of UST											
Sample ID	Pre-remedial TPHg (mg/kg)	Post- Remedial TPHg (mg/kg)	CB-1 Sample ID								
DPE-1-7.5'	6,500	<1.0	CB-1-7.5'								
EX-W-9'	10,000	1,200	CB-1-9'								
DPE-1-12'	2,300	14,000	CB-1-12'								
DPF-1-15'	770	1.000	CB-1-15'								

East Side of UST										
Sample ID	Pre-remedial TPHg (mg/kg)	Post- Remedial TPHg (mg/kg)	CB-2 Sample ID							
DPE-2-6'	1.2	No s	ample							
EX-E-9'	920	840	CB-2-9'							
DPE-2-11'	160,000	2,700	CB-2-11'							
DPE-2-15'	430	380	CB-2-15'							

TPHg concentrations in the upper 11 feet of soil were lower compared to pre-remedial levels, while concentrations at a depth of 12 feet and below were similar to, or higher, than pre-remedial levels. The reduction in concentrations in the upper 11 feet is expected based on historical depth to water and temporary local dewatering during the HVDPE events. Static depth to water is approximately 9 ft bgs and the intake hoses were placed at a depth of approximately 14 ft bgs in DPE-3 and 14 ft bgs in DPE-1 / DPE-2 during HVDPE extraction (i.e. one foot off the bottom of the well casing). The combined effect of the naturally occurring vadose zone and depressed water levels in each extraction well likely facilitated better vapor flow, and therefore mass removal, in the upper 11 feet of the soil column relative to soil deeper in the saturated zone. These results are indicative of secondary source reduction primarily in the upper 11 feet of the soil column.

Previous Vapor Intrusion Evaluation

In June and August 2012, Blue Rock sampled three sub-slab soil vapor points (VP-1 through VP-3) inside the building adjacent to the closed UST (Figure 2). The points are located between approximately 6 and 38 feet south to southeast of the UST. Results from both events did not indicate a vapor intrusion risk based on comparison to Shallow Soil Gas ESLs from Table E of *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim 2007 (Revised 2008)* and CHHSLs published in *Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties (CALEPA 2005)* for commercial / industrial land use scenarios. Details of this work were presented in Blue Rock's *Sub-Slab Soil Vapor Sampling Report* dated July 7, 2012 and *Second Sub-Slab Soil Vapor Sampling Report* dated October 18, 2012. Sub-slab soil vapor data is summarized in Table 4.

Additional Site Characterization Activities

Purpose

In the *Workplan for Additional Site Characterization* dated June 26, 2013, Blue Rock outlined the following scope work:

- 1. Perform a geophysical survey in an effort to locate or rule-out any remaining USTs near the source area. (This task is currently being scheduled and the results of the effort will be presented in a separate report).
- 2. Collect grab groundwater samples from four borings, designated B-3 through B-6, located approximately 100 feet downgradient of the subject UST and collect groundwater samples from source area wells DPE-1 through DPE-3 to further characterize magnitude and extent of the remaining groundwater plume.
- 3. Resample sub-slab vapor points VP-1 through VP-3 to further evaluate potential VI risk.

Additional Groundwater Plume Characterization

Blue Rock further evaluated the downgradient extent of the dissolved-phase plume by collection of grab groundwater samples from four temporary borings (B-3 through B-6) located within service hallways or patios in the building (Figure 2).

Pre-Field Activities

Blue Rock obtained drilling permit from the Alameda County Public Works Agency (attached). The site was marked by Underground Service Alert to identify utilities proximal to proposed drilling location. Blue Rock prepared a site specific Health and Safety Plan, which was reviewed and signed by project workers.

Drilling and Sampling Activities

Drilling and sampling activities occurred on January 10-11, 2014. A Blue Rock geologist supervised all drilling and sampling activities. Gregg Drilling & Testing, Inc. (Gregg), a C-57 licensed company, used a hand-auger to complete the drilling and sampling work due to the limited access inside the hallway and interior patio locations.

At each drilling location, a hand-auger with an approximate 2.5-inch diameter bucket was used to advance a boring at least one foot into the water table. At the time of drilling, the water table was encountered at a depth of approximately 11-12 ft bgs in borings B-3 through B-6. During drilling, soil types were logged in accordance with the USCS. No field indications of petroleum impact, such as odors or soil discoloration, were noted for any of the borings, except B-6. Petroleum odors were noted in soil cuttings from boring B-6 beginning at a depth of approximately 6 ft bgs. Therefore, soil samples were retained from boring B-6 at depths of 6 ft bgs and 10.5 ft bgs. An impact sampler lined with a clean brass tube was used to collect the samples. The sample tubes were covered with Teflon lined plastic end caps, labeled, documented on a chain-of-custody form, and placed on ice in an insulated cooler for transport to the laboratory.

Following advancement of the each boring to a total depth of approximately 12 to 13 ft bgs, a new SCH40 PVC well screen was placed in each boring to help facilitate collection of a water sample. A new disposable polyethylene bailer was used to collect a groundwater samples from each boring. Water samples were transferred to laboratory supplied containers, labeled, documented on a chain-of-custody form, and placed on ice in an insulated cooler for transport to the project laboratory.

Upon completion of sampling, all boreholes were backfilled to the surface with cement and finished at the surface with concrete.

Groundwater Monitoring Activities

On January 10, 2014, the wells DPE-1 through DPE-3 were monitored. Prior to sampling, depth to water was measured with an electronic water level indicator, accurate to within ± 0.01 -ft. Well DPE-3 was dry. All wells were checked for measureable thicknesses of free-product, defined here as equal to, or greater than, 0.01-ft, however, none was observed.

The wells were purged until pH, temperature, and conductivity parameters had stabilized, which occurred after approximately three wetted casing volumes. Following recovery of water levels to approximately 80% of their static levels, groundwater samples were collected using disposable polyethylene bailers and transferred to laboratory-supplied containers. Sample containers were labeled, documented on a chain-of-custody form, and placed on ice in a cooler for transport to the project laboratory.

Kiff Analytical LLC, a California DHS-certified laboratory, analyzed the soil and groundwater samples for concentrations of:

- TPHd by EPA Method 8015M
- TPHd by EPA Method 8015M with silica-gel clean-up prior to analysis
- TPHg by EPA Method 8260B
- BTEX by EPA Method 8260B
- MTBE and TBA by EPA Method 8260B
- 1,2-DCA and EDB by EPA Method 8260B

Equipment Decontamination and Investigation Derived Waste Management

Drill-rod, hand-augers, bailers, and sampling devices were decontaminated in an Alconox® wash followed by double rinse in clean tap water to prevent cross-contamination. Soil cuttings and purge water were containerized in labeled DOT 55-gallon drum pending characterization and disposal.

Hydrogeologic Conditions Observed

The soil types logged in borings B-3 through B-6 were similar to those observed in previous borings. Fill is present in the upper several feet in each boring location, which of sand and construction rubble. The fill is underlain by a red-brown clayey sand to the total depth explored of approximately 13 ft bgs. The depth to first encountered water in the borings ranged from approximately 11 to 12 ft bgs, which is consistent with the coeval equilibrated water levels measured in wells DPE-1 and DPE-2. Due to their proximity and configuration, data from the existing wells are not suitable to determinations of flow direction / gradient. Groundwater flow at a nearby LUST site has been southerly, towards the Oakland Inner Harbor.

Soil Sample Analytical Results and Discussion

The following section summarizes soil analytical results for this event from B-6:

٠	TPHd w/out SCGU concentration:	280 [^] mg/kg (B-6-10.5') to 340 [^] mg/kg (B-6-6')
٠	TPHd with SCGU concentration:	280 [^] mg/kg (B-6-10.5') to 350 [^] mg/kg (B-6-6')
٠	TPHg concentration:	1,500 mg/kg (B-6-10.5') to 1,700 mg/kg (B-6-6')
٠	Benzene concentration:	0.13 mg/kg (B-6-6') to 4.1 mg/kg (B-6-10.5')
٠	MTBE concentration:	<0.050 mg/kg (B-6-6') to <0.25 mg/kg (B-6-10.5')
٠	1,2-DCA concentration:	<0.050 mg/kg (B-6-6') to <0.25 mg/kg (B-6-10.5')

Notes: ^ indicates that laboratory notes that hydrocarbons are lower-boiling than typical diesel.

Soil sample laboratory data are summarized in Table 2, and the laboratory report and chain-ofcustody form are attached.

Groundwater Sample Analytical Results

The following section summarizes groundwater analytical results for this event:

٠	TPHd w/out SGCU concentration:	58# µg/L (B-3) to 5,200^ µg/L (B-6)
٠	TPHd w/ SGCU concentration:	<50 µg/L (B-3,4,5,DPE-2) to 360^ µg/L (B-6)
٠	TPHg concentration:	<50 µg/L (B-3,4) to 100,000 µg/L (DPE-2)
•	Benzene concentration:	<0.50 µg/L (B-3,4) to 17,000 µg/L (DPE-2)
•	MTBE Concentration:	<0.50 µg/L (B-3,4) to 5,100 µg/L (B-6)
٠	1,2-DCA Concentration:	<0.50 µg/L (B-3,4) to 270 µg/L (DPE-1)

Notes:

[^] indicates that laboratory notes that hydrocarbons are lower-boiling than typical diesel.# indicates that laboratory notes discreet peaks in diesel range, atypical for diesel fuel.

Groundwater sample laboratory data are summarized in Table 3, and the laboratory report and chain-of-custody form are attached.

Discussion of Detected Soil and Groundwater Impairment

Four borings were drilled in locations forming an arc downgradient of the closed UST (i.e. ranging from southwest to southeast) to further evaluate the potential extent of the plume in those directions. Fuel petroleum concentrations were detected in soil and groundwater in the area of B-6, the southwestern-most boring. The remaining boring locations, B-3 through B-5, did not exhibit significant fuel concentrations in the samples collected from those borings.

Blue Rock re-reviewed the ERAS Environmental, Inc. *Phase I Environmental Site Assessment* completed in 1999 and separately acquired Sanborn Fire Insurance maps, City Directories, and environmental records report from Environmental Data Resources, Inc. (EDR) to further evaluate other potential sources on the property, and nearby properties, in the vicinity of B-6.

Sanborn Fire Insurance Map Review

The recently acquired Sanborn maps include the years 1889, 1902, 1912, 1951, 1952, 1957, 1958, 1961, 1967, and 1970.

The 1889 map shows a "Wood & Coal" yard near the corner of 4th Street and MLK Jr. Way, and the remainder of block as detached residential dwellings.

The 1902 map no longer shows the "Wood & Coal" yard. The map shows a "Junk Yard" at the corner of 3^{rd} Street and Jefferson Street, and the remainder of block as detached dwellings.

The 1912 map shows "Standard Brass Casting Company" in the south corner of the block previously occupied by the "Junk Yard", which was provided by fuel oil and electricity. The parcel fronting 4th Street in the area of the closed UST is shown as a "Storage Yard", and the remainder of the block was developed with residential structures, flats, and scattered sheds.

The 1951 and 1952 maps show the former Standard Brass Casting building being used for building materials storage. A "Furniture Warehouse" was present on the northeast corner of the block. A "Building Material Warehouse", "Boiler Shop", and "Roofing Material Warehouse" were present on the southwest side of the block facing 3rd Street. Residences are no longer present.

The 1957, 1958, 1961, 1967, and 1970 maps show the block to be fully developed with several structures identified as "Building Material Warehouses". The "Boiler Shop" is still shown on the southwest side of the block, facing 3rd Street. The parcel ostensibly associated with the closed UST is shown as vacant in 1957, and then as a "Building Materials Storage Yard" in 1958, 1961, 1967, and 1970.

The location of Grove Auto Repair, at the corner of 5th Street and MLK Jr. Way, was used as a school from as early as 1889 until at least 1952. By 1952, the school was demolished and the station was built. As discussed above, the limited records available indicate that the USTs were removed in 1983 and 1,000 cubic yards were excavated and disposed off-site in 1989.

In summary, the historical fire insurance maps do not show USTs in the area of B-6.

City Directory Review

The City Directories list former freight lines, trucking companies, and motor lines for the address $651 4^{\text{th}}$ Street. This use would be consistent with the known UST closed in place associated the site (which is listed as being associated with $645 4^{\text{th}}$ Street).

The area of boring B-6 is near the rear of the property, where it abuts a parcel fronting the evennumbered 600 block of 3rd Street. The address of 636 3rd Street is listed as boiler works from 1938 through 1962, which is consistent with the fire insurance maps.

Unfortunately, City Directories do not provide information beyond business type/name and associated address. Thus, they can only serve to help focus the search for potential sources based on based property use.

Environmental Records Review

Review of the environmental database records did not reveal any previously unknown potential sources of contamination, except for an "Oil/Gas" pipeline running down the west side of MLK Jr. Way. The product conveyed in the pipeline, and if there have been any recorded losses, remains unknown at this time.

The Allen Property plume has been defined and does not appear to extend to the location of B-6.

Summary of Records Review

In summary, historical fire insurance maps do not show USTs in the area of B-6, and the Allen plume does not appear to extend to the location of B-6.

A boiler shop formerly operated on the parcel approximately 30 feet south of boring B-6, at the address of $636 3^{rd}$ Street. Although no USTs were shown on the historical fire insurance maps in that area, tanks were undoubtedly used to store fuel to fire the boilers. Still, boring B-6 is located upgradient of that property.

An "Oil/Gas" pipeline runs down the west side of MLK Jr. Way, located over 100 feet upgradient of boring B-6. The product conveyed in the pipeline, and if there have been any recorded losses, is unknown.

At this time, no other documented sources proximal to the location of B-6 have been confirmed, and the working interpretation is that the petroleum impairment detected in B-6 is related to the subject UST.

Mr. Jerry Wickham May 29, 2014 Page 13 of 18

Additional Vapor Intrusion Evaluation

In previous correspondence, ACHCSA requested additional sub-slab soil gas sampling at the site, noting that the tracer gas was present at concentrations greater than 10% in two previous sub-slab soil gas samples, and that samples containing greater than 5% may not be considered valid. Blue Rock reviewed the data and also found that two of the previous six samples contained tracer gas concentrations in excess of 10%; however, none of the other four samples contained tracer gas concentrations above 1%. Therefore, those samples which did not contain tracer gas in excess of 5% are considered valid for the purpose of evaluating potential VI risk. In order to confirm earlier sub-slab soil gas sample results, Blue Rock performed an additional round of sampling from existing soil gas points VP-1 through VP-3 using similar methods employed for the previous events. The points were sampled on January 25, 2014.

Soil Vapor Point Sampling Equipment

The sample train for soil vapor sampling consists of tubing, connectors, valves, and vacuum source (Figure 3). All gauges and canisters were connected by laboratory-supplied stainless steel tubing and dedicated flexible Teflon or nylon tubing. The sample train was assembled using dedicated ¹/₄-inch (outer diameter) tubing for all vapor sampling at this site. Swagelok® connectors were used for all connections between tubing and other sampling components. A flow regulator of 100 – 200 mL/min was placed in-line between the manifold and the downhole side Swagelok® valve. Sampling equipment was inspected to ensure tight fittings between all components. A shroud was placed over the wellhead and the entire sampling train.

Leak Testing and Tracer Gas

The sampling manifold was leak tested by inducing a vacuum on the manifold. In preparation for manifold leak testing, the downhole side Swagelok® valve remained closed, as did the valves going to the purge and sample ends of the sample train. To commence leak testing, an electric air pump was connected to the purge valve end of the sample train. The purge valve was opened and the air pump turned on to induce a vacuum of approximately 30" Hg on the assembly, and the purge valve was closed again. The vacuum on the manifold assembly was monitored for at least 15 minutes. The manifold was considered to have passed the leak test if vacuum was maintained for at least 15 minutes with <0.2" Hg vacuum loss. After ensuring that all connections between the purge and sample valves, flow controller, and sample manifold were tight, soil vapor purging and sampling activities were performed.

During sample collection, helium (He) was used as a tracer gas to test for air leakage into the sampling system. The inner-shroud environment was enriched with helium supplied by a cylinder. The helium concentration inside the shroud was maintained at a minimum of 5% to 10%, so as to have detectable levels of tracer gas should leakage into the sampling train occur.

Vapor Point Purging, Sampling Activities and Analysis

The laboratory supplied the flow controller and sample canisters. The initial and final vacuum, start and finish times, and helium tracer gas percentages inside the shroud were documented (see attached field sheets).

Prior to collecting a vapor sample, the vapor points were purged to ensure that the vapor samples were representative of actual shallow soil vapor concentrations. Approximately 1-liter was purged from each point prior to sampling using an electric air pump and known flow limits of the manifold regulators. After purging was completed, the sample train purge valve was closed in preparation for sample collection.

All samples were collected in clean, laboratory-supplied 1-liter Summa® canisters immediately after purging. Each sample canister had a starting vacuum of approximately 30 "Hg. To collect a sample, the valve on the sample Summa® canister was opened and the time and initial vacuum documented. As the canister was being filled, the vacuum gauge on the flow controller was observed to ensure that the vacuum in the canister was decreasing over time. When the vacuum on the sample canister decreased to approximately 5 "Hg, the valve was closed and sampling ended. Helium tracer gas concentrations were monitored inside the shroud during sample collection using a field meter. Helium concentrations in the shroud for this entire sampling event ranged from 5.7% to 6.7%.

The samples were labeled, documented on a chain-of-custody form, and transported to Analytical Sciences for analysis.

The soil vapor samples were analyzed by Analytical Sciences for concentrations of:

- TPHg, BTEX, and MTBE by modified EPA Method TO-15
- Naphthalene, 1,2-DCA, EDB by modified EPA Method TO-15
- Helium, Oxygen, Carbon Dioxide, and Methane by Modified ASTM D-1946

Vapor Point Air Sample Analytical Results

Neither TPHg, BTEX, MTBE, naphthalene, 1,2-DCA, nor detected in any of the samples from the three vapor points (Table 4).

Very low levels of helium were detected in two of the three samples: VP-1 and VP-3 at concentrations of 0.023% and 0.012%, respectively. The concentration of helium in the sample divided by the concentration of helium in the shroud provides a measure of the proportion of the sample attributable to leakage (multiplied by 100 to convert to percent). In this case that equates to 0.40% for VP-1 and 0.18% for VP-3. No leak was detected in the sample from VP-2. These leaks are well below 5%, and are therefore considered reliable for the purpose of evaluating potential VI risk. Sub-slab vapor sampling data are shown in Table 4, and copies of the laboratory report and chain-of-custody form are attached.

Vapor Intrusion Risk Evaluation

Data from cumulative sub-slab vapor samples, in which the tracer gas did not exceed 5% (seven of the nine total samples), were compared to Shallow Soil Gas ESLs from Table E of *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Update February 2013* and CHHSLs published in *Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties (CALEPA 2005)* for commercial / industrial land use scenarios. None of the constituents or detection limits (if the analyte was not detected) in the samples evaluated exceeded the screening levels.

In accordance with the DTSC guidance, two consecutive sub-slab soil vapor sampling events should be performed before a final risk determination is made. As discussed above, none of the applicable screening levels were exceeded in any samples from any of the three vapor points over the last two sampling event. Further, the HVDPE event performed in July 2012 appears to have significantly benefitted sub-slab soil vapor quality based on the observed decrease in TPHg, BTEX, and MTBE levels following the event. Based on these data, Blue Rock concludes there is no vapor intrusion risk related to the area of the subject UST.

Project Status and Recommendations

- Blue Rock is currently coordinating the approved geophysical survey to rule out any potential remaining below the sidewalk along 4th Street, the results of which will be submitted under separate cover.
- In order to evaluate other potential sources in the area of documented soil and groundwater impairment, Blue Rock is currently attempting to gain access to perform a full file review of (1) Grove Auto Repair and (2) potential pipelines in the vicinity of the site. Additionally, Blue Rock will review high quality aerial photographs available at through Pacific Aerial Surveys to better understand past use and operations of the subject site and nearby properties.
- The results of the aforementioned activities will be incorporated into the working Conceptual Site Model. The updated CSM will guide development of recommendations for corrective action related to the release associated with the subject UST, as needed.
- No further evaluation of potential vapor intrusion risk in the area of closed UST is recommended at this time.

References

- AEI Consultant, 2013, Site Status Update and Case Closure Request, Allen Property, 325 Martin Luther King Jr. Way, Oakland, November 5
- Amicus Strategic Environmental Consulting, 2009, letter regarding Terradev Jefferson, LLC Property, 645 Fourth Street, Oakland, March 4.
- Amicus Strategic Environmental Consulting, 2009, letter regarding Terradev Jefferson, LLC Property, 645 Fourth Street, Oakland, September 13.
- Blue Rock, 2010, Removal Action Workplan, 645 Fourth Street, Oakland, California, February 3.
- Blue Rock, 2010, Well Installation and Removal Action Report, 645 Fourth Street, Oakland, California, October 29.
- Blue Rock, 2011, Groundwater Monitoring Report First Quarter 2011, 645 Fourth Street, Oakland, California, February 1.
- Blue Rock, 2012, Sub-Slab Soil Vapor Sampling Workplan and Project Schedule, 645 Fourth Street, Oakland, California, April 23.
- Blue Rock, 2012, Sub-Slab Soil Vapor Sampling Report, 645 Fourth Street, Oakland, California, July 7.
- Blue Rock, 2012, Second Removal Action and Groundwater Monitoring Report, 645 Fourth Street, Oakland, California, August 16.
- Blue Rock, 2012, Second Sub-Slab Soil Vapor Sampling Report, 645 Fourth Street, Oakland, California, October 18.
- Blue Rock, 2013, Confirmation Soil and Groundwater Sampling Report & Low Threat UST Case Closure Policy Evaluation, 645 Fourth Street, Oakland, California, March 11.
- California EPA DTSC. 2004. Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air. December 15 (Revised February 7, 2005).
- California EPA. 2005. Use of California Human Health Screening Levels (CHHSLs) in Evaluation of Contaminated Properties. January.
- California EPA DTSC. 2010. Advisory Active Soil Gas Investigation. March
- Ninyo & Moore, 2009, *Limited Phase II Environmental Site Assessment*, 645 Fourth Street, Oakland, California, July 24.

Golden Gate Tank Removal, Inc. 2006, Tank Closure Report, 645 Fourth Street, Oakland, California, September 21.

San Francisco Bay RWQCB. 2008. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater - Interim Final November 2007 (Revised May 2008). May.

Mr. Jerry Wickham May 29, 2014 Page 17 of 18

Certification

This report was prepared under the supervision of a California Professional Geologist at Blue Rock. All statements, conclusions, and recommendations are based upon published results from past consultants, field observations by Blue Rock, and analyses performed by a state-certified laboratory as they relate to the time, location, and depth of points sampled by Blue Rock. Interpretation of data, including spatial distribution and temporal trends, are based on commonly used geologic and scientific principles. It is possible that interpretations, conclusions, and recommendations presented in this report may change, as additional data become available and/or regulations change.

Information and interpretation presented herein are for the sole use of the client and regulating agency. The information and interpretation contained in this document should not be relied upon by a third party.

The service performed by Blue Rock has been conducted in a manner consistent with the level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions in the area of the site. No other warranty, expressed or implied, is made.

If you have any questions regarding this project, please contact us at (650) 522-9292.

Sincerely, Blue Rock Environmental, Inc.

Brian Gwinn, PG Principal Geologist

Mr. Jerry Wickham May 29, 2014 Page 18 of 18

Attachments:

Figure 1: Site Location Map Figure 2: Site Plan

Table 1: Well Construction DataTable 2: Soil Sample Analytical DataTable 3: Groundwater Analytical DataTable 4: Sub-Slab Vapor Sample Analytical Data

Alameda County PWA – Water Resources Well Permit

Boring Logs B-1 through B-6

Groundwater Monitoring Field Data Forms

Laboratory Reports with Chain-of-Custody Forms

Distribution:

Ms. Sara May, Metrovation 580 Second St. Suite 260, Oakland, CA 94607

TABLE 1Well Construction DataTerradev Jefferson, LLC Property645 Fourth StreetOakland, CA

Extraction Wells

Well <u>ID</u>	Date <u>Installed</u>	Total Boring Depth <u>(ft bgs)</u>	Casing Diameter <u>(inches)</u>	Screen Depth <u>(ft bgs)</u>	Sandpack Depth <u>(ft bgs)</u>	Bentonite Depth <u>(ft bgs)</u>	Cement Grout Depth <u>(ft bgs)</u>
DPE-1	9/20/10	15	2	8 - 15	7 - 15	5 - 7	0 - 5
DPE-2	9/20/10	15	2	8 - 15	7 - 15	5 - 7	0 - 5
DPE-3	9/20/10	10	2	6 - 10	5 - 10	3 - 5	0 - 3

Vapor Probes

Well <u>ID</u>	Date <u>Installed</u>	Total Probe Depth <u>(in bgs)</u>	Tubing Diameter <u>(inches)</u>	Slab Thickness <u>(in bgs)</u>	Screen Depth <u>(in bgs)</u>	Rubber Plug <u>(in bgs)</u>	Cement Depth <u>(in bgs)</u>
VP-1	6/16/12	9	0.25	6.0	~ 6 - 9	~5.0 - 6.0	0 - 5
VP-2	6/16/12	9	0.25	4.5	~ 6 - 9	~3.5 - 4.5	0 - 3.5
VP-3	6/16/12	9	0.25	4.0	~ 6 - 9	~3.0 - 4.0	0 - 3

Notes:

ft bgs Feet below ground surface.

in bgs Inches below ground surface.

TABLE 2Soil Sample Analytical DataTerradev Jefferson, LLC Property645 Fourth StreetOakland, CA

Sample ID	Depth (ft bgs)	Sample Date	TPHd (mg/kg)	TPHd w/SGCU (mg/kg)	TPHg (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE, ETBE, TAME (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)
<u>UST Removal Sa</u>	mples													
8795-EX-W-9'	9	8/23/06	<120		10.000	130	1.000	230	1,200	<12	<100	all<12		
8795-EX-E-9'	9	8/23/06	<25		920	6.8	55	18	110	<1.2	<10	all<1.2		
Investigation Sar	nples_													
DPE-1-7.5	7.5	9/20/10	810^		6,500	14	320	180	980	< 0.50	<2.5		< 0.50	0.50
DPE-1-12	12	9/20/10	260^		2,300	26	160	45	240	0.71	<1.5		< 0.30	< 0.30
DPE-1-15	15	9/20/10	92^		770	10	53	15	80	0.39	< 0.50		0.11	< 0.090
DPE-2-6	6	9/20/10	15		1.2	< 0.0050	0.0054	< 0.0050	0.021	< 0.0050	< 0.0050		< 0.0050	< 0.0050
DPE-2-11	11	9/20/10	1,200^		160,000	1,400	10,000	3,300	19,000	< 0.25	<1.5		< 0.25	1.8
DPE-2-15	15	9/20/10	66^		430	3.8	25	8.3	47	< 0.50	<2.5		< 0.050	< 0.50
DPE-3-7	7	9/20/10	260^		860	2.1	37	19	100	< 0.10	< 0.50		< 0.10	< 0.10
DPE-3-10	10	9/20/10	800^		8,900	78	580	180	980	< 0.25	<1.5		< 0.25	0.82
CB-1-7.5	7.5	2/18/13	1.2*		<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050			< 0.0050	< 0.0050
CB-1-9	9	2/18/13	110^		1,200	2.8	55	27	150	< 0.25			< 0.25	< 0.25
CB-1-12	12	2/18/13	880^		14,000	100	850	180	1,400	0.53			< 0.25	0.86
CB-1-15	15	2/18/13	89^		1,000	8.4	62	15	100	< 0.050			< 0.050	< 0.050
CB-2-9	9	2/18/13	120^		840	0.44	17	20	110	<0.15			< 0.15	< 0.15
CB-2-11	11	2/18/13	110^		2,700	23	160	48	260	< 0.40			< 0.40	< 0.40
CB-2-15	15	2/18/13	45^		380	3.9	18	6.6	34	< 0.050			< 0.050	< 0.050
B-6-6'	6.5	1/11/14	340^	350^	1.700	0.13	8.0	12	91	< 0.050	<0.25		< 0.050	< 0.050
B-6-10.5'	10.5	1/11/14	280^	280^	1,500	4.1	48	26	130	<0.25	<1.5		< 0.25	<0.25

Notes:	
ft bgs	feet below ground surface
mg/kg	milligrams per kilogram
TPHd	total petroleum hydrocarbons as diesel by EPA Method 8015M or 8015B, w/SCGCU = analysis performed after silica-gel clean-up.
TPHg	total petroleum hydrocarbons as gasoline by EPA Method 8260B
BTEX	benzene, toluene, ethylbenzene, and xylenes by EPA Method 8260B
MTBE, TBA, ETBE,	methyl tert-butyl ether, tert-butanol, ethyl tert-butyl ether, di-isopropyl ether, tert-amyl methyl ether by EPA Method 8260B,
DIPE, TAME	
1,2-DCA, EDB	1,2-dichloroethane, 1,2-dibromoethane by EPA Method 8260B.
μg/L	Micrograms per liter.
<###	Not detected at or above the indicated reporting limit.
٨	Laboratory Flag: Hydrocarbons are lower-boiling than typical Diesel Fuel
*	Laboratory Flag: Hydrocarbons are higher-boiling than typical Diesel Fuel
	Data not available, not monitored, or not sampled

TABLE 3Groundwater Analytical DataTerradev Jefferson, LLC Property645 Fourth StreetOakland, CA

Sample ID	Sample Date	TOC (ft MSL)	DTW (ft)	LNAPL (ft)	GWE (ft MSL)	TPHd (µg/L)	TPHd w/SGCU (µg/L)	TPHg (µg/L)	B (µg/L)	Т (µg/L)	Е (µg/L)	X (µg/L)	MTBE (μg/L)	TBA (µg/L)	1,2-DCA (µg/L)	EDB (µg/L)
<u>Grab Grou</u>	ndwater Sam	<u>ples</u>														
B-1-GW*	7/10/09		~10 - 20			5,300		78,000	15,000	13,000	1,700	10,500	570			
B-2-GW*	7/10/09		~10 - 20			2,300 60,000 13,000 13,000 890 4,800 120										
B-3	1/10/14		~12 - 13			58 # <50 <50 <0.50 <0.50 <0.50 <0.50 <0.50 <5.0							< 0.50	< 0.50		
B-4	1/10/14		~12 - 13			67#	<50	<50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0	<0.50	< 0.50
B-5	1/10/14		~12 - 13			110#	<50	110	1.2	1.4	0.65	4.5	2.7	200	43	< 0.50
B-6 (2)	1/11/14		~11 - 12			5,200^	360^	84,000	1,800	7,600	2,400	12,000	5,100	180J	110	<20
<u>Monitoring</u>	<u>y Well Data</u>															
DPE-1	9/22/10	15.81	9.21	0.00	6.60	<4,000 (1)		120,000	25,000	18,000	3,300	17,000	320	320	620	<40
Screen	9/28-10/3/10	15.81				5-day HVDPE	Remedial I	Event								
~8' - 15'	10/18/10	15.81	9.26	sheen	6.55	<4,000 (1)		97,000	15,000	20,000	1,600	11,000	490	270	390	<40
	1/20/11	15.81	8.56	sheen	7.25	<3,000 (1)		83,000	12,000	16,000	2,000	11,000	270	<200	220	<40
	7/6/12	15.81	8.85	0.00												
	7/9-7/24/12	15.81				15-day HVDP	E Remedial	Event								
	8/12/12	15.81	9.03	0.00	6.78	<2,000 (1)		71,000	7,500	9,800	1,000	6,500	280	89	190	<15
	2/11/13	15.81	8.74	0.00	7.07	<3,000 (1)		81,000	9,400	14,000	1,800	10,000	240	110	210	<15
	1/10/14	15.81	9.84	0.00	5.97	1,600^	56^	98,000	14,000	13,000	2,100	12,000	270	200	270	<25
DPE-2	9/22/10	16.01	9.44	0.00	6.57	<4,000 (1)		110,000	21,000	18,000	3,100	14,000	200	260	540	110
Screen	9/28-10/3/10	16.01				5-day HVDPE	Remedial I	Event								
~8' - 15'	10/18/10	16.01	9.48	sheen	6.53	<5,000 (1)		84,000	11,000	16,000	1,600	9,200	77	<200	220	77
	1/20/11	16.01	8.77	sheen	7.24	<5,000 (1)		94,000	12,000	19,000	2,500	13,000	64	<200	220	88
	7/6/12	16.01	9.06	0.00												
	7/9-7/24/12	16.01				15-day HVDP	E Remedial	Event								
	8/12/12	16.01	9.27	0.00	6.74	<2,000 (1)		70,000	9,900	16,000	1,700	9,600	54	<200	160	56
	2/11/13	16.01	8.95	0.00	7.06	<4,000 (1)		60,000	7,300	9,500	1,400	7,000	34	<90	120	<20
	1/10/14	16.01	10.08	0.00	5.93	2,800^	<50	100,000	17,000	15,000	2,400	11,000	120	100	220	27
DPE-3	9/22/10	15 87	9 43	0.00	6 44	insufficient wa	ter column	for samplir	or(ie. <0.4	5-ft)						
Screen	9/28-10/3/10	15.87				5-day HVDPE	Remedial I	Event	8 (,						
~6' - 10'	10/18/10	15.87	9.35	0.00	6.52	insufficient wa	ter column	for samplir	g (i.e. <0.5	5-ft)						
	1/20/11	15.87	8.51	0.13	7.36	no groundwate	er sample co	ollected, LN	APL prese	ent.						
	7/6/12	15.87	8.65	0.00		8										
	7/9-7/24/12	15.87				15-day HVDP	E Remedial	Event								
	8/12/12	15.87	9.02	sheen	6.85	<200.000 (1)		190.000	1.400	7.800	3.700	29.000	27	120	40	130
	2/11/13	15.87	8.34	sheen	7.53	<40.000 (1)		130.000	4,700	9.000	1.900	25.000	<40	<200	54	80
	1/10/14	15.87	Dry													
Notes:																
Screen		Well scree	en depth int	erval.												
TOC		Top of cas	sing relative	e to feet abo	ve mean sea	a level (ft MSL)	(ref NAVI	088).								
DTW		Depth to v	water (for b	orings DTV	V shows "de	pth to water" ar	nd "depth to	bottom of	boring")							
LNAPL		Light non-	aqueous ph	nase liquid p	etroleum, "	sheen" is an imi	neasurable	thickness (i	.e. <0.01-f	t)						
GWE		Groundwa	ter Elevatio	on (TOC-D	TW) in ft M	SL. (This does	not account	for LNAP	L thickness	s, if presen	t).					
TPHd		Total petro	oleum hydr	ocarbons as	diesel by E	PA Method 80	15M, *8015	B. SGCU	= Silica-ge	el cleanup j	prior to an	alysis.				
TPHg		Total petro	oleum hydr	ocarbons as	gasoline by	EPA Method	8260B, *80	15B.								
BTEX		Benzene,	toluene, eth	ylbenzene,	and xylenes	by EPA Metho	d 8260B, *	8021B.								
		Note: tota	l xylenes ec	ual the sum	n of sepearat	e isomers repoi	ted for the	7/09 sampl	es.							
MTBE		Methyl ter	rt-butyl ethe	er by EPA N	Aethod 8260)B, * 8021B.										
TBA		Tert-butar	nol by EPA	Method 82	60B.											
1,2-DCA, H	EDB	1,2-dichlo	roethane, 1	,2-dibromo	ethane by E	PA Method 826	50B.									
μg/L		Microgram	ns per liter.													
<###		Not detect	ted at or ab	ove the indi	cated report	ing limit.										
		Data not a	vailable, no	ot monitored	l, or not san	npled										
^		Laborator	y Flag: Hy	drocarbons	are lower-b	oiling than typic	al Diesel F	uel								
#		Laborator	y Flag: Dis	crete peaks	in Diesel ra	nge, atypical fo	r Diesel Fu	el								
J		Laborator	y Flag: TB	A concentra	ation may be	e biased slightly	high due to	o conversio	n of a smal	l fraction o	of MTBE	to TBA d	luring wat	er sample	analysis.	
(1)		Method de	etection lim	it increased	due to inet	erference from	gasoline rar	ige hydroca	rbons							
(2)		Repeat and	alysis by M	ethod 8260	B yielded ir	consistent resu	lts. The con	ncentration	s appear to	vary betw	een bottle	s. The hi	ghest vali	d result is	reported.	

Table 4 SUB-SLAB VAPOR SAMPLE ANALYTICAL DATA Terradev Jefferson LLC Property 645 Fourth St. Oakland, CA

															Tracer Ga	IS	Sample Can	Vacuum	
				Consituent Concentrations Soil Gas Concentrations									In Shroud	In Sample	Leak Percent^	End of	Arrival		
Sample	Sample	sample	TPHg	В	Т	Е	Х	MTBE	Naphthalene	1,2-DCA	EDB	O ₂	CO_2	CH_4	He - Avg	He	Leak	Sampling	at Lab
I.D.	Date	container	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	(%)	(%)	(%)	(%)	(%)	(%)	("Hg)	("Hg)
VP-1	6/16/12	1-L	1,300	38	120	21	138	7.3	< 0.09	< 0.14	< 0.050	15	0.096	< 0.008	22.2	2.4	10.8%	~8	~6
VP-1	9/22/12	1-L	<330	<8.0	<9.4	<11	<22	<9.0	<13	<10	<3.8	19	0.78	< 0.008	20.0	0.19	1.0%	~5	~6
VP-1	1/25/14	1-L	<330	<8.0	<9.4	<11	<22	<9.0	<13	<10	<3.8	14	4.7	< 0.008	5.7	0.023	0.40%	~5	~5
VP-2	6/16/12	1-L	1,200	66	25	2.6	8.2	<6.3	< 0.090	< 0.14	< 0.050	11	1.3	< 0.009	13.8	< 0.003	< 0.02%	~8	~7
VP-2	9/22/12	1-L	<330	<8.0	<9.4	<11	<22	<9.0	<13	<10	<3.8	14	4.0	< 0.008	19.0	< 0.003	< 0.02%	~7	~6
VP-2	1/25/14	1-L	<330	<8.0	<9.4	<11	<22	<9.0	<13	<10	<3.8	12	7.4	< 0.008	6.6	< 0.003	< 0.05%	~5	~5
VP-3	6/16/12	1-L	960	16	19	2.9	20	<5.8	< 0.08	< 0.13	< 0.050	16	0.029	< 0.008	23.6	2.6	11%	~5	~5
VP-3	9/22/12	1-L	<330	<8.0	<9.4	<11	<22	<9.0	<13	<10	<3.8	20	0.46	< 0.008	15.7	0.036	0.23%	~5	~6
VP-3	1/25/14	1-L	<330	<8.0	<9.4	<11	<22	<9.0	<13	<10	<3.8	19	1.5	< 0.008	6.6	0.012	0.18%	~5	~5

ESLs Comm/Indus Soil Gas	3,100,000	420	1,300,000	4,900	440,000	47,000	360	580	170
CHHSLs Comm /Indus Soil Gas	NA	122	378,000	NA	879,000	13,400	106	167	NA

TPHg Total Petroluem Hydrocarbons as gasoline by EPA Method TO-15 BTEX, MTBE Benzene, Toluene, Ethylbenzene, and Total Xylenes, Methyl tert-Butyl Ether by EPA Method TO-15(M) GC/MS (note: Xylene number shown in table is the sum of xylene isomers reported by lab) Naphthalene Naphthalene by EPA Method TO-15 1,2-DCA, EDB 1,2-dichloroethane, 1,2-dibromoethane by EPA Method TO-15 Oxygen, Carbon Dioxide, Methane, and Helium by modified ASTM D-1946 O2, CO2, CH4, He Micrograms per cubic meter $\mu g/m^3$ <#.## Compound not detected at or above the reported laboratory detection limit ESLs Environmental Screening Levels for Soil Vapor in Commercial/Industrial or Residential setting (SFBRWQCB 2013) CHHSLs California Human Health Screening Levels for Soil Vapor in Commercial/Industrial or Residential setting (CalEPA/OEHHA2005) Tracer Gas in Shroud Concentration range of tracer gas in shroud recorded during sample collection. Average = (Max - Min) / 2 Tracer Gas in Sample Concentration of tracer gas in sample as detected by lab analysis. Tracer Gas Leak into Sample If helium was detected in the sample, the concentration measured in the sample was divided by the average concentration in the shroud (and multiplied by 100 to convert to percent). ^ a leak of less than 5% is considered acceptable for data evaluation.

Shaded samples indicate a tracer gas leak of more than 5%.

Notes:

Alameda County Public Works Agency - Water Resources Well Permit

Receipt Number: WR2013-0422Total Amount Paid:\$265.00Payer Name : Brian GwinnPaid By: VISAPAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Contamination Study - 4 Boreholes Driller: Gregg Drilling & Testing, Inc. - Lic #: 485165 - Method: DP

Work Total: \$265.00

Specificatio	ons				
Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2013-	11/07/2013	02/13/2014	4	2.00 in.	15.00 ft
0908					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the

Alameda County Public Works Agency - Water Resources Well Permit

permits and requirements have been approved or obtained.

5. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

7. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

SOIL BORING AND WELL CONSTRUCTION LOG: B-3 BLUE ROCK ENVIRONMENTAL, INC.

SOIL BORING AND WELL CONSTRUCTION LOG: B-4

BLUE ROCK ENVIRONMENTAL, INC.

SOIL BORING AND WELL CONSTRUCTION LOG: B-5 BLUE ROCK ENVIRONMENTAL, INC.

SOIL BORING AND WELL CONSTRUCTION LOG: B-6

BLUE ROCK ENVIRONMENTAL, INC.

WELL GAUGING DATA/PURGE CALCULATIONS

Job No.: A	SE-1	Location:				Date: 1- 1	0-14	Tech(s): LT
WELL NO.	DIAM (in)	DTB (ft)	DTW (ft)	ST (ft)	CV (gal)	PV (gal)	SPL (ft)	NOTES
DPE-1	ð	14.80	9.94	4.96	0.79	2.37		
DPE-J	2	14.83	10.09	4.75	0.76	2.28		
DPE-3	д	9.41	DRY					

Explanation:

DIAM = Well Diameter DTB = Depth to Bottom DTW = Depth to Water ST = Saturated Thickness (DTB-DTW) CV = Casing Volume (ST x cf) PV = Purge Volume (standard 3 x CV, well development 10 x CV) SPL = Thickness of Separate Phase Liquid

Conversion Factors (cf)

1 inch diameter well cf = 0.04 gal/ft 2 inch diameter well cf = 0.16 gal/ft 4 inch diameter well cf = 0.65 gal/ft 6 inch diameter well cf = 1.44 gal/ft

BLUE ROCK ENVIRONMENTAL, INC.

1169 Chess Drive, Suite C, Foster City, CA 94404 Phone (650) 522-9292 Fax (650) 522-9259

			WELL I	PURGINO	G DATA	SHEET) OF (
Job No.: ASE - 1		Location:	ion: Date: 1/1			o/ul Tech:27		
WELL No.	TIME (24-hr)	VOLUME (gal)	TEMP. (deg. F.)	COND. (µS/cm)	pН	Sample time: Sample for: (circle)		
DPE-1	0805	0.75	62.8	968	247.19	TPHg TPHd TPHmo		
Calc. purge	0807	1.25	63,9	981	7.18	BTEX MTBE 8010		
volume	0809	1.75	64.1	976	7.06	Other:		
2.37 gal	0811	~2.40	64.4	974	7.01	Sampling Method:		
						Dedicated / Disposable bailer		
COMMENTS: C	color, turbidi	Purging Method:						
9.24.1	HC od	9		/ 0	(PVC bailer / Pump		
WELL	TIME	VOLUME	TEMP.	COND.	pH	Sample time:		
No.	(24-hr)	(gal)	(deg. F.)	(µS/cm)		Sample for: (circle)		
DPE-2	0821	0,75	Goit	8,14	7,16	TPHg TPHd TPHmo		
Calc. purge	0824	1.25	64.3	7,75	7.08	BTEX MTBE 8010		
volume	0824	1.75	64.5	7,70	7.02	Other:		
2.28gal	0430	2.30	64.7	7,68	7.02	Sampling Method:		
0.0 0				Dedicated / Disposable bailer				
COMMENTS: C	color, turbid	ity, recharge,	Purging Method:					
Н	(odor	-				PVC bailer / Pump		
WELL	TIME	VOLUME	TEMP.	COND.	pH	Sample time:		
No.	(24-hr)	(gal)	(deg. F.)	(µS/cm)	-	Sample for: (circle)		
						TPHg TPHd TPHmo		
Calc. purge						BTEX MTBE 8010		
volume						Other:		
						Sampling Method:		
						Dedicated / Disposable bailer		
COMMENTS: color, turbidity, recharge, etc.						Purging Method:		
						PVC bailer / Pump		

BLUE ROCK ENVIRONMENTAL, INC.

1169 Chess Drive, Foster City, CA 94404 Phone (650) 522-9292 Fax (650) 522-9259

Date:)-25-14							
Technician: LT							
JOD NO .: ASE-	(
	WELL ID: $VP - [$		Manifold ID#:				
Purge Suma ID#:	Pamp	Volume:		Start Presure:			
Sample Suma ID#:	Sample Suma ID#: みみ9ゆち		Start Presure: 30 "Hg_				
Shut-in Test Start T	ime/Pressure: 30 Hg@	90 5	Shut-in Test End Tim	e/Pressure: 9:40/30	>´		
	Time	Pre-Regulator Presure	Post-Regulator Presure	He Tracer			
1.10.	(24 Hr)	(=====_2U)H-3	(- Hg)	(%)			
5 (6.17 We	0950	25					
ML Purged	0957	25		NA			
Start	1008	30		6, 6			
5	1010	21		5.+%			
Ĩ,	1017	15		5,3%			
P	1614	9		5.3%			
end	1015	5		5.3%			
	·····						
	·····						
							
	L		<u>.</u>	<u> </u>			
Notes:			· · · · · · · · · · · · · · · · · · ·				

Date: 1/25/14								
Technician:								
Job No.: ASE-1								
	WELL ID: YP-J							
Purge Suma ID#:	Suma ID#: Pump Volume:		Start Presure:					
Sample Suma ID#: 429ア		Volume: 1L	Start Presure: 30 + 12					
Shut-in Test Start Ti	me/Pressure: 30 °C	914	Shut-in Test End Time	e/Pressure: 944	1/30" Hg 1045			
	Time	Pre-Regulator Presure	Post-Regulator Presure	He Tracer				
((24 Hr)	(-"H ₂ O)	(-"Hg)	(%)				
Start purge	1001	25"						
N/L Purged	1008	25"						
Stort	1021	30"		7,1				
À	1024	19"		6.7				
	1026	13"		6.1				
Eno	1078	5"						
•								
			-					
		······································						
		<u>l</u>		1	1			

Notes:

Blue Rock Environmental, Inc.

Soil Gas Sample Data Sheet
Date: 1-75-14 Technician: LT Joh No : ASE-1										
	WELL ID: VP-3		Manifold ID#:							
Purge Suma ID#:>	1818 Pump	Volume:	, , , , , , , , , , , , , , , , , , ,	Start Presure:						
Sample Suma ID#: /	+156	Volume: 12		Start Presure: 30						
Shut-in Test Start Ti	me/Pressure: 30"@	919	Shut-in Test End Time/Pressure: 946/30 Pass							
Start Purgeo Start Start END	Time (24 Hr) ge 1019 1026 1032 1034 1038 1039	Pre-Regulator Presure $(-"H_2O)$ 25 35 30 2-3 14 5 5	Post-Regulator Presure (-"Hg)	He Tracer (%) 6.7- 6.7- 6.7 6.4 6.4 6.4						
		1								

Notes:

.

Blue Rock Environmental, Inc.

Soil Gas Sample Data Sheet

-

.

Report Number : 87112 Date : 01/17/2014

Laboratory Results

Brian Gwinn Blue Rock Environmental, Inc. 1169 Chess Drive Suite C Foster City, CA 94404

Subject : 2 Soil Samples Project Name : Terradev Jefferson LLC Project Number : ASE-1

Dear Mr. Gwinn,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed. Testing procedures comply with the 2003 NELAC and TNI 2009 standards. Laboratory results relate only to the samples tested. This report may be freely reproduced in full, but may only be reproduced in part with the express permission of Kiff Analytical, LLC. Kiff Analytical, LLC is certified by the State of California under the Environmental Laboratory Accreditation Program (ELAP), lab # 08263CA. If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Troy D. Jurpen

Troy Turpen

Report Number : 87112 Date : 01/17/2014

Subject :2 Soil SamplesProject Name :Terradev Jefferson LLCProject Number :ASE-1

Case Narrative

All soil samples were reported on a total weight (wet weight) basis.

Recoveries for some Matrix Spike/Matrix Spike Duplicate analytes were outside of control limits. This may indicate a bias for the sample that was spiked. Since the LCS recoveries were within control limits, no data are flagged.

Matrix : Soil Sample : B-6-6' Lab Number : 87112-01 Sample Date :01/11/2014 Method Measured Analysis Date/Time Reporting Parameter Limit Units Method Analyzed Value Benzene 0.13 0.050 mg/Kg EPA 8260B 01/15/14 20:19 Toluene 8.0 0.050 mg/Kg EPA 8260B 01/15/14 20:19 mg/Kg Ethylbenzene 12 0.050 EPA 8260B 01/15/14 20:19 **Total Xylenes** 91 0.25 mg/Kg EPA 8260B 01/16/14 14:49 0.050 Methyl-t-butyl ether (MTBE) < 0.050 mg/Kg EPA 8260B 01/15/14 20:19 EPA 8260B Tert-Butanol < 0.25 0.25 mg/Kg 01/15/14 20:19 25 TPH as Gasoline 1700 mg/Kg EPA 8260B 01/16/14 14:49 1.2-Dichloroethane < 0.050 0.050 EPA 8260B 01/15/14 20:19 mg/Kg 1,2-Dibromoethane < 0.050 0.050 mg/Kg EPA 8260B 01/15/14 20:19 1,2-Dichloroethane-d4 (Surr) 102 EPA 8260B 01/15/14 20:19 % Recovery Toluene - d8 (Surr) 102 % Recovery EPA 8260B 01/15/14 20:19 2-Bromochlorobenzene (Surr) 89.3 % Recovery EPA 8260B 01/15/14 20:19 TPH as Diesel 340 1.0 mg/Kg M EPA 8015 01/15/14 12:31 (Note: Hydrocarbons are lower-boiling than typical Diesel Fuel.) **TPH as Diesel (Silica Gel)** 350 M EPA 8015 01/15/14 13:29 1.0 mg/Kg (Note: Hydrocarbons are lower-boiling than typical Diesel Fuel.)

% Recovery

% Recovery

M EPA 8015

M EPA 8015

Octacosane (Diesel Surrogate)97.1Octacosane (Silica Gel Surr)110

01/15/14 12:31

01/15/14 13:29

Lab Number : 87112-02

Sample : **B-6-10.5'**

Sample Date :01/11/2014

		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	4.1	0.25	mg/Kg	EPA 8260B	01/15/14 20:57
Toluene	48	0.25	mg/Kg	EPA 8260B	01/15/14 20:57
Ethylbenzene	26	0.25	mg/Kg	EPA 8260B	01/15/14 20:57
Total Xylenes	130	0.25	mg/Kg	EPA 8260B	01/15/14 20:57
Methyl-t-butyl ether (MTBE)	< 0.25	0.25	mg/Kg	EPA 8260B	01/15/14 20:57
Tert-Butanol	< 1.5	1.5	mg/Kg	EPA 8260B	01/15/14 20:57
TPH as Gasoline	1500	25	mg/Kg	EPA 8260B	01/15/14 20:57
1,2-Dichloroethane	< 0.25	0.25	mg/Kg	EPA 8260B	01/15/14 20:57
1,2-Dibromoethane	< 0.25	0.25	mg/Kg	EPA 8260B	01/15/14 20:57
1,2-Dichloroethane-d4 (Surr)	106		% Recovery	EPA 8260B	01/15/14 20:57
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	01/15/14 20:57
2-Bromochlorobenzene (Surr)	91.3		% Recovery	EPA 8260B	01/15/14 20:57
TPH as Diesel	280	1.0	mg/Kg	M EPA 8015	01/15/14 13:00
(Note: Hydrocarbons are lower-boiling	g than typical Diesel	l Fuel.)			
TPH as Diesel (Silica Gel)	280	1.0	mg/Kg	M EPA 8015	01/15/14 18:23
(Note: Hydrocarbons are lower-boilin	g than typical Diesel	l Fuel.)			
Octacosane (Diesel Surrogate)	105		% Recovery	M EPA 8015	01/15/14 13:00
Octacosane (Silica Gel Surr)	113		% Recovery	M EPA 8015	01/15/14 18:23

Matrix : Soil

QC Report : Method Blank Data

Project Name : Terradev Jefferson LLC

Project Number : ASE-1

Parameter	Measured	Method Reporting) Linite	Analysis	Date
			011113		Analyzeu
IPH as Diesei	< 1.0	1.0	mg/Kg	M EPA 8015	01/15/2014
TPH as Diesel (Silica Gel)	< 1.0	1.0	mg/Kg	M EPA 8015	01/15/2014
Octacosane (Diesel Surrogate)	86.0		%	M EPA 8015	01/15/2014
Octacosane (Silica Gel Surr)	114		%	M EPA 8015	01/15/2014
Benzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	01/15/2014
Ethylbenzene	< 0.0050	0.0050	mg/Kg	EPA 8260B	01/15/2014
Toluene	< 0.0050	0.0050	mg/Kg	EPA 8260B	01/15/2014
Total Xylenes	< 0.0050	0.0050	mg/Kg	EPA 8260B	01/15/2014
Methyl-t-butyl ether (MTBE)	< 0.0050	0.0050	mg/Kg	EPA 8260B	01/15/2014
Tert-Butanol	< 0.0050	0.0050	mg/Kg	EPA 8260B	01/15/2014
TPH as Gasoline	< 1.0	1.0	mg/Kg	EPA 8260B	01/15/2014
1,2-Dibromoethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	01/15/2014
1,2-Dichloroethane	< 0.0050	0.0050	mg/Kg	EPA 8260B	01/15/2014
1,2-Dichloroethane-d4 (Surr)	102		%	EPA 8260B	01/15/2014
Toluene - d8 (Surr)	100		%	EPA 8260B	01/15/2014

		Method			
	Measured	Reporti	ng	Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed

Project Number : **ASE-1**

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	d Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicate Spiked Sample Percent Recov.	e Relative Percent Diff.	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
TPH as Diesel														
	87116-01	500	19.8	19.7	656	239	mg/Kg	M EPA 8015	1/15/14	781	0.00	200	60-140	25
TPH-D (Si Gel)														
	87116-01	440	19.8	19.7	650	242	mg/Kg	M EPA 8015	1/15/14	1080	0.00	200	60-140	25
1 2-Dibromoeth	nane													
	87107-18	<0.0050	0 0400	0 0398	0.0238	0 0235	ma/Ka	EPA 8260B	1/15/14	59 5	59 1	0 664	70 0-130	25
1,2-Dichloroeth	nane	\$0.0000	0.0100	0.0000	0.0200	0.0200	mg/rtg		1/10/11	0010		0.001	10.0 100	20
	87107-18	<0.0050	0.0397	0.0394	0.0232	0.0260	mg/Kg	EPA 8260B	1/15/14	58.6	65.8	11.7	70.0-130	25
Benzene														
	87107-18	<0.0050	0.0397	0.0394	0.0202	0.0298	mg/Kg	EPA 8260B	1/15/14	50.9	75.6	39.0	70.0-130	25
Ethylbenzene														
	87107-18	<0.0050	0.0397	0.0394	0.0191	0.0287	mg/Kg	EPA 8260B	1/15/14	48.2	72.9	40.7	70.0-130	25
wetnyi-t-butyi e		0.0050	0.0000	0.0000	0.004.4	0.0007	···· ·· // ···			54.0	F7 0	0.45	CO O 400	05
P + M Xvlene	8/10/-18	<0.0050	0.0396	0.0393	0.0214	0.0227	mg/Kg	EPA 8260B	1/15/14	54.2	57.8	6.45	60.0-130	25
i i m xyterie	87107-18	<0.0050	0 0397	0 0394	0 0191	0 0279	ma/Ka	EPA 8260B	1/15/14	48 2	70 7	37.8	70 0-130	25
Tert-Butanol	0.107 10	10.0000	0.0007	0.000 P	0.0101	0.0270		2	.,,			0.10		20
	87107-18	<0.0050	0.198	0.197	0.0861	0.0686	mg/Kg	EPA 8260B	1/15/14	43.4	34.8	22.0	70.0-130	25

KIFF ANALYTICAL, LLC

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Name : Terradev Jefferson LLC

Project Number : **ASE-1**

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e ed Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicat Spiked Sample Percent Recov.	e Relative Percent Diff.	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Toluene														
	87107-18	<0.0050	0.0397	0.0394	0.0204	0.0290	mg/Kg	EPA 8260B	1/15/14	51.5	73.7	35.3	70.0-130	25

KIFF ANALYTICAL, LLC

Project Number : **ASE-1**

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit	
TPH as Diesel	20.0	mg/Kg	M EPA 8015	1/15/14	87.7	70-130	
TPH-D (Si Gel)	20.0	mg/Kg	M EPA 8015	1/15/14	98.4	70-130	
1,2-Dibromoethane	0.0403	mg/Kg	EPA 8260B	1/15/14	106	70.0-130	
1,2-Dichloroethane	0.0400	mg/Kg	EPA 8260B	1/15/14	107	70.0-130	
Benzene	0.0400	mg/Kg	EPA 8260B	1/15/14	92.6	70.0-130	
Ethylbenzene	0.0400	mg/Kg	EPA 8260B	1/15/14	90.6	70.0-130	
Methyl-t-butyl ether	0.0399	mg/Kg	EPA 8260B	1/15/14	103	60.0-130	
P + M Xylene	0.0400	mg/Kg	EPA 8260B	1/15/14	90.8	70.0-130	
Tert-Butanol	0.200	mg/Kg	EPA 8260B	1/15/14	90.5	70.0-130	
Toluene	0.0400	mg/Kg	EPA 8260B	1/15/14	93.6	70.0-130	

KIFF Analytical LLC		2795 2nd Davis, CA Lab: 530 Fax: 530	Street, S 95618 .297.480).297.48	Suite 3 00 02	300								SR(G # / I	Lab N	ło.		8	7	1	(2	-							Pa	ge		1	of	1
Project Contact (Hardcop	y or PDF	То):		Calif	ornia	EDF	Rep	ort?		Υ	/es] No					(Cha	in-c	of-C	ust	ody	Re	co	rd a	nd	Ana	alys	is F	۲eq	uest			
Brian Gwinn Company / Address:	Blue Roo		nental	Sam	nlina	Com	nany	Log	Code	<u> </u>					+						-		Ana	vsis	Re	aues	st						Tī	TAT	
1160 Choss Dr. Ste. C	Foster		icitat	BRS	F.	0011	ipany	209	0040							1					T	Ť	T	T		PLEAS	SE CIF	RCLE	7				+,		
Phone Number	,103(6)			Glob	al ID:				_						-											ME	THO	D			j I				
(650) 522-9292				T10	0000	010	72											â							Γ		Τ		T	6			'`	2111	
Fax Number:				EDF	Deliv	/erat	le To	(Em	ail A	ddres	s):							826(<u> </u>											15	1			_	
				bria	n@b	luero	ocker	<u>1V.CC</u>	<u>sm</u>									ΡA	826	ĝ		•	<u>.</u>			100				13	1				È
Project #:	P.O. #:			Bill t	o :													A E	₹.	826			Vate			11						4	2	.4 hr	õ
ASE-1				Blue	Roc	k El	nv.											ΞB	Щ Ш	Ā		<u>ا</u> ۋ	2			200				1-2	4				Use
Project Name:				Sam	pler f	Print	Nam	э:										AME	٦Š	Ē	<u>ه</u>	826	ž.		Ę	<u>5</u> 4	E	:		14	r		ſ		abl
				Lore	n Tay	/lor									┨ቆ	1		н Ш	Š	80	260	Ā					74	6	5	10	2		4	48hr	L L
Terradev Jefferson LLC				Sam	pier :		ature:	-			-/				192			ETB	δ	2	×8	U U U	24			- PP	2	6 6	3	14	-				щ
		1	. I'	$\vdash \epsilon$		\times		-		<u>7</u> "	tive	—		triv	–l [®]		m	Ъ	ш +	8	Ε	si	2 P				174		-						
Project Address:		Sam	biing		-1	Tam		╋				+			┦ቑ	â	260	С Ш	оху	Ŋ N	ons	Ē	۳,	1 U			i r	500	i Q		2		- 1-7	72hr	
645 4th Street, Oaklan	d, CA		-	I VOA	e	s	ar		3			1			5 @ 0.5 ppb	((EPA 8260	Gas (EPA 8	genates (MTB	ygenates (5	Scav. (1,2 I	ile Halocarb	ile Organics	ile Organics	as Diesel (E		1 / Metals (IIIV (EPA 24	Lead (EPA	T. Lead (ST	17815	101		1	Ø	
Sample Designat	ion	Date	Time	40 m	Siee Polv	Glas	Tedl	<u> </u>	NH	None	\perp	Wate	Soil	Air		BTE	H	5 Oxy	7 0X	Lead	Volat	Volat	Volat	H		CAM 5 Wa	Marc	Total	N.	_ ≩	<u> </u>	$\downarrow \downarrow$	¹	1 wk	. (
B-6-6'		1/11/2014	207		1					X			х			X	X			Х				х					\perp	<u> </u>	1_	\square	Ļ	1 wk	01
B-6-10.5'		1/11/2014	9:05		1					X			x		k	X	X			X				x						×				1 wk	02
			BO			1		\top		\square		T			7	î.	1													Τ	Τ				
				++		+		╋	+	┝╌╊╸	+	+	+	┼┼		\rightarrow	+						-		+		╈	+	+	+	+	\uparrow	-		
		 		╂┼		-	++	+	+	\vdash	_	╋	+-	$\left \right $	+	1-	+					+		-	+	_	-		+	+	+	╂╌╋	+		
				┞┤			\downarrow \downarrow	+	<u> </u>	\square		╇	<u> </u>		_	_		<u> </u>				_	_	+	-	_		-	+-	+	+	┼╌┼	+		·
																							\square							\perp	\bot	$\downarrow \downarrow$	\downarrow		
······································									1			1					Τ	1									Τ			Τ		\square			
				╉╶┼		+	+	╉	+	++	+	+-	+	┼╌┼		+	+	+				-+		-†	+	-+-			+	+	+	+	-+		
			ļ		_	\perp	\downarrow	\perp		\downarrow	\rightarrow		\downarrow	++		_	_	 				-+		-+			_			+	+	+	\rightarrow		
Relinquished by:			Date		Ti	me	Rece	eived	by:	<u></u>			<u> </u>				Rer	mark	s:					,				,	٨	.1 .	1 .	-1 -	-1		
1 AT	-/						-	_		مىكەر ب							Ple	ase F	-erfoi	rm TF	-Has	s Dies	seł w	silic:	a-gel	ii clea	n-up	i.	#	ne 7 -	+ 20	×20	A 	-i-	
Belinguished by:	70		Date			ime	Rece	eived	by:								- W	10	U +	Ž	i l	ico	-5	el	C	Lin	\- U	Ý -	1	cer	j (√`	+ k)(+	~	
Q Q	(Τ			-	<u> </u>								- V	ali	es	Ĩ.	ť	ap	plr	cub	U	L									
			Dato		+	me	Rec	A d	hvla	borate				1.	·~ 1	r	+					-	For	Lab	Use	Onl	v :	Sam	: pie	Recr					
	_					 			., <u>_</u>	So: arc	~y.			K	7-1		1-	emp	°C	1	nitiai	s		_us Dat	e		, .		Time		The	rm. ID	#	Coolan	Present
0			U	+14	- //	5	17	07	<u>ـ</u>	n	R	عر	1	Ana	h/	Ka				•		•				•				-				Yes	i No

Analytical LLC			SAMPLE R	HECK	LIST		s	8RG#: 87	1112	
Sample Receipt	Initials/Dat	te: RLM 011414	Storage Time	: 1522	Sample	Login	Initials/I	Date:	TJB0114	14
TAT: Standa	ard 🗌 F	Rush 🗌 Split	None	Method of R	eceipt:	🔀 Couri	er 🗌 🤇	Over-the-co	ounter	Shipped
Temp °C 1-8	□ N/A	Therm ID (P-(Time 1520	Coolant pres	sent [Yes	No	🗌 Wate	r 🗌 Te	emp Excursion
For Shipments Only	y: Cooler F	Receipt Initials/Date	/Time:			Custody	Seals	□ N/A	Intact	Broken

Chain-of-Custody:	Yes	No
Is COC present?	X	
Is COC signed by relinquisher?	X	
Is COC dated by relinquisher?		
Is the sampler's name on the COC?	X	
Are there analyses or hold for all samples?	X	

Documented on	coc	Labels		Discrepanci	es:	
Sample ID		X				
Project ID	\times	\times				
Sample Date	X	\times				
Sample Time	\times	\times				
Does COC match	project h	nistory?	N/A	☐ Yes	No	

Samples:	N/A	Yes	No
Are sample custody seals intact?			
Are sample containers intact?		X	
Is preservation documented?	X		
In-house Analysis:	N/A	Yes	No
Are preservatives acceptable?	X		
Are samples within holding time?	'	X	
Are sample container types correct?		X	
Is there adequate sample volume?		X	

Comments:

		X	
	X		
	N/A	Yes	No
	X		
		X	
		X	
		X	
	l		1
e	# of Co	ontaine	ers
		2	

(Container Type	# of Containers 2		
				CS Required:
			Proceed With Analysis: YES NO Init/Date: Client Communication:	

Receipt Details:

Matrix

Report Number : 87114 Date : 01/20/2014

Laboratory Results

Brian Gwinn Blue Rock Environmental, Inc. 1169 Chess Drive Suite C Foster City, CA 94404

Subject : 2 Water Samples Project Name : Terradev Jefferson LLC Project Number : ASE-1

Dear Mr. Gwinn,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed. Testing procedures comply with the 2003 NELAC and TNI 2009 standards. Laboratory results relate only to the samples tested. This report may be freely reproduced in full, but may only be reproduced in part with the express permission of Kiff Analytical, LLC. Kiff Analytical, LLC is certified by the State of California under the Environmental Laboratory Accreditation Program (ELAP), lab # 08263CA. If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Troy D. Jurpen

Troy Turpen

Sample : DPE-1		Matrix : \	Nater	Lab Number	: 87114-01
Sample Date :01/10/2014 Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	14000	25	ua/L	EPA 8260B	01/18/14 01:17
Toluene	13000	25	ug/L	EPA 8260B	01/18/14 01:17
Ethylbenzene	2100	25	ug/L	EPA 8260B	01/18/14 01:17
Total Xylenes	12000	25	ug/L	EPA 8260B	01/18/14 01:17
Methyl-t-butyl ether (MTBE)	270	25	ug/L	EPA 8260B	01/18/14 01:17
Tert-Butanol	200	150	ug/L	EPA 8260B	01/18/14 01:17
TPH as Gasoline	98000	2500	ug/L	EPA 8260B	01/18/14 01:17
1,2-Dichloroethane	270	25	ug/L	EPA 8260B	01/18/14 01:17
1,2-Dibromoethane	< 25	25	ug/L	EPA 8260B	01/18/14 01:17
1,2-Dichloroethane-d4 (Surr)	98.9		% Recovery	EPA 8260B	01/18/14 01:17
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	01/18/14 01:17
TPH as Diesel	1600	50	ug/L	M EPA 8015	01/15/14 16:57
(Note: Lower boiling hydrocarbons pr	resent, atypical for D	iesel Fuel.)			
TPH as Diesel (Silica Gel)	56	50	ug/L	M EPA 8015	01/16/14 08:13
(Note: Lower boiling hydrocarbons pi	resent, atypical for D	iesel Fuel.)			
Octacosane (Diesel Surrogate)	116		% Recovery	M EPA 8015	01/15/14 16:57
Octacosane (Silica Gel Surr)	120		% Recovery	M EPA 8015	01/16/14 08:13

Sample : DPE-2		Matrix : \	Nater	Lab Number : 87114-02		
Sample Date :01/10/2014	Measured	Method		Analysis	Date/Time	
Parameter	Value	Limit	Units	Method	Analyzed	
Benzene	17000	30	ug/L	EPA 8260B	01/18/14 01:51	
Toluene	15000	30	ug/L	EPA 8260B	01/18/14 01:51	
Ethylbenzene	2400	20	ug/L	EPA 8260B	01/17/14 03:39	
Total Xylenes	11000	20	ug/L	EPA 8260B	01/17/14 03:39	
Methyl-t-butyl ether (MTBE)	120	20	ug/L	EPA 8260B	01/17/14 03:39	
Tert-Butanol	100	90	ug/L	EPA 8260B	01/17/14 03:39	
TPH as Gasoline	100000	2000	ug/L	EPA 8260B	01/17/14 03:39	
1,2-Dichloroethane	220	20	ug/L	EPA 8260B	01/17/14 03:39	
1,2-Dibromoethane	27	20	ug/L	EPA 8260B	01/17/14 03:39	
1,2-Dichloroethane-d4 (Surr)	99.8		% Recovery	EPA 8260B	01/17/14 03:39	
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	01/17/14 03:39	
TPH as Diesel	2800	50	ug/L	M EPA 8015	01/15/14 17:32	
(Note: Lower boiling hydrocarbons pr	resent, atypical for D	iesel Fuel.)				
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	01/16/14 08:47	
Octacosane (Diesel Surrogate)	113		% Recovery	M EPA 8015	01/15/14 17:32	
Octacosane (Silica Gel Surr)	111		% Recovery	M EPA 8015	01/16/14 08:47	

QC Report : Method Blank Data

Project Name : Terradev Jefferson LLC

Project Number : **ASE-1**

		Method			
Parameter	Measured	Reporting	 Inite	Analysis Mothod	Date
	. 50	50			Analyzeu
TPH as Diesel (Silias Cal)	< 50	50	ug/L		01/15/2014
TPH as Diesel (Silica Gel)	< 50	50	ug/L	MEPA 6015	01/15/2014
Octacosane (Diesel Surrogate)	108		%	M EPA 8015	01/15/2014
Octacosane (Silica Gel Surr)	114		%	M EPA 8015	01/15/2014
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	01/16/2014
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	01/16/2014
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	01/16/2014
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	01/16/2014
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	01/16/2014
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	01/16/2014
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	01/16/2014
1,2-Dichloroethane-d4 (Surr)	102		%	EPA 8260B	01/16/2014
Toluene - d8 (Surr)	100		%	EPA 8260B	01/16/2014
Benzene	< 0.50	0.50	ug/L	EPA 8260B	01/17/2014
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	01/17/2014
Toluene	< 0.50	0.50	ug/L	EPA 8260B	01/17/2014
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	01/17/2014
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	01/17/2014
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	01/17/2014
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	01/17/2014
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	01/17/2014
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	01/17/2014
1,2-Dichloroethane-d4 (Surr)	94.9		%	EPA 8260B	01/17/2014
Toluene - d8 (Surr)	101		%	EPA 8260B	01/17/2014

		Method	1		
	Measured	Reporti	ng	Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed

Project Number : ASE-1

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	d Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicate Spiked Sample Percent Recov.	e Relative Percent Diff.	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
TPH as Diesel														
TPH-D (Si Gel)	BLANK	<50	1000	1000	972	974	ug/L	M EPA 8015	1/15/14	97.2	97.4	0.240	70-130	25
	BLANK	<50	1000	1000	819	797	ug/L	M EPA 8015	1/15/14	81.9	79.7	2.70	70-130	25
1,2-Dibromoeth	ane													
	87099-17	<0.50	40.3	40.2	40.1	40.0	ug/L	EPA 8260B	1/16/14	99.4	99.3	0.130	70.0-130	25
1,2-Dichloroetha	ane													
	87099-17	<0.50	40.0	39.9	42.6	41.6	ug/L	EPA 8260B	1/16/14	106	104	2.14	70.0-130	25
Ethylbenzene														
	87099-17	<0.50	40.0	39.9	41.0	40.8	ug/L	EPA 8260B	1/16/14	102	102	0.276	70.0-130	25
Methyl-t-butyl e	ther													
	87099-17	<0.50	39.9	39.8	40.4	39.1	ug/L	EPA 8260B	1/16/14	101	98.2	3.15	70.0-130	25
P + M Xylene														
	87099-17	<0.50	40.0	39.9	40.6	39.9	ug/L	EPA 8260B	1/16/14	101	99.9	1.54	70.0-130	25
Tert-Butanol														
	87099-17	<5.0	200	200	186	188	ug/L	EPA 8260B	1/16/14	93.1	94.1	1.10	70.0-130	25
1,2-Dibromoeth	ane													
	87142-02	<0.50	40.2	40.1	39.0	42.2	ug/L	EPA 8260B	1/17/14	97.1	105	8.06	70.0-130	25

Page 5 of 9

KIFF ANALYTICAL, LLC

Project Number : **ASE-1**

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicate Spiked Sample Percent Recov.	e Relative Percent Diff.	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
1,2-Dichloroetha	ane													
	87142-02	<0.50	39.9	39.8	42.1	43.6	ug/L	EPA 8260B	1/17/14	106	110	3.93	70.0-130	25
Benzene														
	87142-02	<0.50	39.9	39.8	40.7	40.1	ug/L	EPA 8260B	1/17/14	102	101	1.22	70.0-130	25
Ethylbenzene														
	87142-02	<0.50	39.9	39.8	40.6	40.3	ug/L	EPA 8260B	1/17/14	102	101	0.189	70.0-130	25
Methyl-t-butyl et	her													
	87142-02	<0.50	39.8	39.6	39.7	40.0	ug/L	EPA 8260B	1/17/14	99.8	101	1.24	70.0-130	25
P + M Xylene														
	87142-02	<0.50	39.9	39.8	39.3	39.4	ug/L	EPA 8260B	1/17/14	98.4	99.0	0.539	70.0-130	25
Tert-Butanol														
	87142-02	<5.0	200	199	190	185	ug/L	EPA 8260B	1/17/14	95.4	93.2	2.34	70.0-130	25
Toluene														
	87142-02	<0.50	39.9	39.8	40.5	40.0	ug/L	EPA 8260B	1/17/14	101	101	0.840	70.0-130	25

KIFF ANALYTICAL, LLC

Project Number : **ASE-1**

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
1,2-Dibromoethane	40.3	ug/L	EPA 8260B	1/16/14	103	70.0-130
1,2-Dichloroethane	40.0	ug/L	EPA 8260B	1/16/14	110	70.0-130
Ethylbenzene	40.0	ug/L	EPA 8260B	1/16/14	103	70.0-130
Nethyl-t-butyl ether	39.9	ug/L	EPA 8260B	1/16/14	102	70.0-130
P + M Xylene	40.0	ug/L	EPA 8260B	1/16/14	103	70.0-130
Tert-Butanol	200	ug/L	EPA 8260B	1/16/14	96.0	70.0-130
1,2-Dibromoethane	40.3	ug/L	EPA 8260B	1/17/14	99.7	70.0-130
1,2-Dichloroethane	40.0	ug/L	EPA 8260B	1/17/14	104	70.0-130
Benzene	40.0	ug/L	EPA 8260B	1/17/14	98.1	70.0-130
Ethylbenzene	40.0	ug/L	EPA 8260B	1/17/14	98.1	70.0-130
Methyl-t-butyl ether	39.9	ug/L	EPA 8260B	1/17/14	106	70.0-130
P + M Xylene	40.0	ug/L	EPA 8260B	1/17/14	96.8	70.0-130
Tert-Butanol	200	ug/L	EPA 8260B	1/17/14	92.1	70.0-130
Toluene	40.0	ug/L	EPA 8260B	1/17/14	100	70.0-130

Project Contact (Hardcopy or PDF To): California EDF Report? Y vs No Chain-of-Custody Record and Analy Brian Gwinn Sampling Company Log Code: BRSF Analysis Request Analysis Request 1169 Chess Dr. Ste. C, Foster City, CA BRSF Global ID: Global ID: Image: Company Log Code: Image:	Iysis Request
Brian Gwinn Analysis Request Company / Address: Blue Rock Environmental BRSF BRSF Phone Number: Global ID: T10000001072 Global ID: T10000001072 Fax Number: Fax Number: Project #: ASE-1 P.O. #: Bill to: Sampler Print Name: Loren Taylor Bill to: Sampler Print Name: Loren Taylor Fax Number:	TAT TAT 12 hr 12 hr 13 hr 15 hr 15 hr 15 hr 15 hr 16 Dr 16 Dr 17 hr
Company / Address: Blue Rock Environmental Sampling Company Log Code: Allalysis Request	TRA by 826008 15 hr 15 hr 15 hr 15 hr 15 hr 15 hr 15 hr 15 hr 15 hr 16 hr 17 hr 17 hr 17 hr 18 hr 19 hr 10 hr 1
1199 Chess Dr. Ste. C, Foster City, CA BRSF Phone Number: Global ID: (650) 522-3292 T10000001072 Fax Number: EDF Deliverable To (Email Address): brian@bluerockenv.com brian@bluerockenv.com Project #: P.O. #: ASE-1 Bill to: Coren Taylor Sampler Print Name: Terradev Jefferson LLC Sampler Signature Project Address: Sampler Ontainer Project Address: Sampler Ontainer Project Address: Sampler Designation Date Time Q io Quert H: You	TRA by 82600 15 hr 15 hr 16 hr 17 hr 17 hr 17 hr 18 hr 19 hr 18
Phone Number: Global ID: (650) 522-9292 T100000001072 Fax Number: EDF Deliverable To (Email Address): brian@bluerockenv.com Project #: P.O. #: Bill to: ASE-1 Bill to: Bill to: Sampler Print Name: Loren Taylor Terradev Jefferson LLC Project Address: Sampler Signature: Sampler Signature: Loren Taylor Sampler Signature: Sampler Signature: Loren Taylor Sampler Signature: Samp	TRA by 8260 B 13 hr 14 hr 14 hr 14 hr 15 hr 14 hr 15 hr 15 hr 16 hr 16 hr 16 hr 17 hr 17 hr 17 hr 17 hr 17 hr 18 hr 1
IDF Deliverable To (Email Address): brian@bluerockenv.com Project #: P.O. #: Bill to: ASE-1 Bill we Rock Env. Project Address: Sampler Signature Project #: Sampler Signature Project Address: Sampler Signature Sampler Signature Project #: Sampler Signature Project Address: Sampler Signature Sampler Signature Project #: Sampler Signature Decircl View Office View Of	TRA by 82600
Prain (Qbluerockenv.com) Project #: P.O. #: ASE-1 Bille to: Project A: Sampler Print Name: Loren Taylor Sampler Print Name: Loren Taylor Sampler Signature Terradev Jefferson LLC Sampler Signature Project Address: Sampler Signature G45 4th Street, Oakland, CA Volueito (JEA 800B) Nonatel Designation Date Time Q Pice Signation Date DPE-1 1/10/2014 9:07 DPE-2 1/10/2014 9:15	TRA by 8200 1487 1487 For Lab Use Only
Project #: P.O. #: Bill to: ASE-1 Blue Rock Env. Project Mame: Sampler Print Name: Lorent Taylor Lorent Taylor Terradev Jefferson LLC Sampler Signature: Project Address: Sampler Signature: G45 4th Street, Oakland, CA VOA # 007 Voa # 001 Blue Rock Env. JPE-1 1/10/2014 DPE-1 1/10/2014 DPE-2 1/10/2014 JPE-2 1/10/2014	
ASE-1 Blue Rock Env. Project Name: Sampler Print Name: Lerradev Jefferson LLC Sampler Signature: Project Address: Sampler Signature: G45 4th Street, Oakland, CA V DPE-1 1/10/2014 DPE-2 1/10/2014 DPE-2 1/10/2014 Project (Eby 3001, 1/10) Verteriol (Eby 4001, 1/10) Verteriol (Eby 2001, 1/2014) Sample Designation Date Time Verteriol (Eby 3001, 1/10) Verteriol (Eby 3001, 1/10) Verteriol (Eby 3001, 1/10) Verteriol (Eby 3001, 1/10) Sample Designation Date Time Verteriol (Eby 3001, 1/2014) Sample Designation Date Verteriol (Eby 3001, 1/10) Verterio	
Project Name: Sampler Print Name: Lerradev Jefferson LLC Sampler Signature: Project Address: Sampler Signature: Sampler Signature: None Sampler Signature: Voltation Project Address: Sampler Signature: Sampler Signature: Voltation Sampler Signature: Voltation Project Address: Voltation Sampler Signature: Voltation Sampler Signature: Voltation Open Signature: Voltation Sampler Signature: Voltation Voltation Voltation	For Lab L
International conductor International	Hahr Hahr
Terradev Jefferson LLC Sampler Signature Project Address: Sampler Signature Open-1 Date Time Open-2 Open-2 </td <td></td>	
Project Address: Sampling Container Preservative Matrix 645 4th Street, Oakland, CA N N H	
Project Address: Sampling Container Preservative Matrix Up 645 4th Street, Oakland, CA	
645 4th Street, Oakland, CA Date Time A	O 72hr
Sample Designation Date Time Q </td <td>SE d</td>	SE d
DPE-1 1/10/2014 9:07 6 6 X	
DPE-2 1/10/2014 9:15 6 6 X	.★ 1 wk 0
	1 wk 02
	+ + + + + + + + + + + + + + + + + + +
	┼╌┼╌┼╌╂──╂──
	┼╌┽╴┼╶┼╶╂──╂──
	┤╶┤╴┥╸┥╶┨╺╸┩┈
Relinquished by: Date Time Received by: Remarks:	Dolerinal Laut
Please Perform IPH as Diesel W/ silica-geli clean-up If	white what
Relinquished by: Date Time Received by: Date Time Received by:	
Φ 7//	
Relinquished by: Date Time Received by Laboratory: ICAA For Lab Use Only: Sample	le Receipt
011414 1151 Kon Me See And trial Temp °C Initiais Date Tim	and the second sec

Distribution White - ⊾ab Pink - Originator Rev (052011

nalytical LLC			SAMPLE R	ECEIPT C	HECK	LIST			SRG #:	87114	Ĺ
Sample Receipt	Initials/D	ate: 011414	Storage Time	: 1518	Sample	Login	Initials/	Date:	750 0	11414	
TAT: 🕅 Standa	rd 🗌	Rush Spl	it None	Method of R	eceipt:	🛛 Couri	er 🗌	Over-the-	-counter	Shipped	
Temp °C 2.6	N/A	Therm ID (R-(Time 1516	Coolant pre	sent	X Yes	No		ater [Temp Excu	rsion
For Shipments Only	: Cooler	Receipt Initials/Da	te/Time:			Custody	Seals	□ N/A	🗌 Inta	ict 🗌 Brol	ken

Comments:

Chain-of-Custody:	Yes	No
Is COC present?	X	
Is COC signed by relinquisher?	X	
Is COC dated by relinquisher?		<u> </u>
Is the sampler's name on the COC?	\times	
Are there analyses or hold for all samples?	X	

Documented on	COC	Labels		Discrepanci	es:	
Sample ID	X	X				
Project ID	X	X				
Sample Date	X	X				
Sample Time	\succ	\mathbf{X}				
Does COC match	project ł	nistory?	X N/A	🗌 Yes	No	

Samples:	N/A	Yes	No
Are sample custody seals intact?			
Are sample containers intact?		X	
Is preservation documented?		X	
In-house Analysis:	N/A	Yes	No
Are preservatives acceptable?		\times	
Are samples within holding time?		X	
Are sample container types correct?		X	
Is there adequate sample volume?		X	

Receipt Details:

Matrix	Container Type	# of Containers	
			CS Required:
			Proceed With Analysis: YES NO Init/Date: Client Communication:

Report Number : 87115 Date : 01/21/2014

Laboratory Results

Brian Gwinn Blue Rock Environmental, Inc. 1169 Chess Drive Suite C Foster City, CA 94404

Subject : 4 Water Samples Project Name : Terradev Jefferson LLC Project Number : ASE-1

Dear Mr. Gwinn,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed. Testing procedures comply with the 2003 NELAC and TNI 2009 standards. Laboratory results relate only to the samples tested. This report may be freely reproduced in full, but may only be reproduced in part with the express permission of Kiff Analytical, LLC. Kiff Analytical, LLC is certified by the State of California under the Environmental Laboratory Accreditation Program (ELAP), lab # 08263CA. If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Troy D. Jurpen

Troy Turpen

Report Number : 87115 Date : 01/21/2014

Subject :4 Water SamplesProject Name :Terradev Jefferson LLCProject Number :ASE-1

Case Narrative

Repeat analysis of sample B-6 by method EPA 8260B yielded inconsistent results. The concentrations appear to vary between the bottles. The highest valid result is reported.

Tert-Butanol result for sample B-6 may be biased slightly high and is flagged with a 'J'. A fraction of MtBE (typically less than 1%) converts to Tert-Butanol during the analysis of water samples. We consider this conversion effect to be mathematically significant in samples that contain MtBE/Tert-Butanol in ratios of over 20:1.

Sample : B-3		Matrix : \	Nater	Lab Number : 87115-01			
Sample Date :01/10/2014							
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed		
Benzene	< 0.50	0.50	ug/L	EPA 8260B	01/17/14 22:16		
Toluene	< 0.50	0.50	ug/L	EPA 8260B	01/17/14 22:16		
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	01/17/14 22:16		
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	01/17/14 22:16		
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	01/17/14 22:16		
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	01/17/14 22:16		
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	01/17/14 22:16		
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	01/17/14 22:16		
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	01/17/14 22:16		
1,2-Dichloroethane-d4 (Surr)	101		% Recovery	EPA 8260B	01/17/14 22:16		
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	01/17/14 22:16		
TPH as Diesel	58	50	ug/L	M EPA 8015	01/15/14 18:07		
(Note: Discrete peaks in Diesel range	e, atypical for Diesel	Fuel.)					
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	01/16/14 10:31		
Octacosane (Diesel Surrogate)	104		% Recovery	M EPA 8015	01/15/14 18:07		
Octacosane (Silica Gel Surr)	111		% Recovery	M EPA 8015	01/16/14 10:31		

Sample : B-4		Matrix : \	Nater	Lab Number : 87115-02			
Sample Date :01/10/2014		Marthaad					
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed		
Benzene	< 0.50	0.50	ug/L	EPA 8260B	01/16/14 13:02		
Toluene	< 0.50	0.50	ug/L	EPA 8260B	01/16/14 13:02		
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	01/16/14 13:02		
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	01/16/14 13:02		
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	01/16/14 13:02		
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	01/16/14 13:02		
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	01/16/14 13:02		
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	01/16/14 13:02		
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	01/16/14 13:02		
1,2-Dichloroethane-d4 (Surr)	101		% Recovery	EPA 8260B	01/16/14 13:02		
Toluene - d8 (Surr)	94.4		% Recovery	EPA 8260B	01/16/14 13:02		
TPH as Diesel	67	50 Fuel)	ug/L	M EPA 8015	01/15/14 18:42		
TPH on Discrete peaks in Dieser rang		Fuel.)			01/10/14 11:05		
IPH as Dieser (Silica Gel)	< 30	50	ug/L	IVI EPA 8015	01/10/14 11:05		
Octacosane (Diesel Surrogate)	107		% Recovery	M EPA 8015	01/15/14 18:42		
Octacosane (Silica Gel Surr)	107		% Recovery	M EPA 8015	01/16/14 11:05		

Sample : B-5		Matrix : \	Water	Lab Number : 87115-03			
Sample Date :01/10/2014							
Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed		
Benzene	1.2	0.50	ug/L	EPA 8260B	01/17/14 22:50		
Toluene	1.4	0.50	ug/L	EPA 8260B	01/17/14 22:50		
Ethylbenzene	0.65	0.50	ug/L	EPA 8260B	01/17/14 22:50		
Total Xylenes	4.5	0.50	ug/L	EPA 8260B	01/17/14 22:50		
Methyl-t-butyl ether (MTBE)	2.7	0.50	ug/L	EPA 8260B	01/17/14 22:50		
Tert-Butanol	200	5.0	ug/L	EPA 8260B	01/17/14 22:50		
TPH as Gasoline	110	50	ug/L	EPA 8260B	01/17/14 22:50		
1,2-Dichloroethane	43	0.50	ug/L	EPA 8260B	01/17/14 22:50		
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	01/17/14 22:50		
1,2-Dichloroethane-d4 (Surr)	100		% Recovery	EPA 8260B	01/17/14 22:50		
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	01/17/14 22:50		
TPH as Diesel	110	50	ug/L	M EPA 8015	01/15/14 19:17		
(Note: Discrete peaks in Diesel range,	atypical for Diesel	Fuel.)					
IPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	01/16/14 11:40		
Octacosane (Diesel Surrogate)	107		% Recovery	M EPA 8015	01/15/14 19:17		
Octacosane (Silica Gel Surr)	110		% Recovery	M EPA 8015	01/16/14 11:40		

Sample : B-6		Matrix : \	Nater	Lab Number : 87115-04				
Sample Date :01/11/2014	Measured	Method Reporting	linita	Analysis	Date/Time			
	value		Units					
Benzene	1800	20	ug/L	EPA 8260B	01/17/14 02:59			
Toluene	7600	20	ug/L	EPA 8260B	01/17/14 02:59			
Ethylbenzene	2400	20	ug/L	EPA 8260B	01/17/14 02:59			
Total Xylenes	12000	20	ug/L	EPA 8260B	01/17/14 02:59			
Methyl-t-butyl ether (MTBE)	5100	25	ug/L	EPA 8260B	01/20/14 15:59			
Tert-Butanol	180 J	150	ug/L	EPA 8260B	01/20/14 15:59			
TPH as Gasoline	84000	2000	ug/L	EPA 8260B	01/17/14 02:59			
1,2-Dichloroethane	110	20	ug/L	EPA 8260B	01/17/14 02:59			
1,2-Dibromoethane	< 20	20	ug/L	EPA 8260B	01/17/14 02:59			
1,2-Dichloroethane-d4 (Surr)	96.9		% Recovery	EPA 8260B	01/17/14 02:59			
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	01/17/14 02:59			
TPH as Diesel	5200	50	ug/L	M EPA 8015	01/15/14 19:52			
(Note: Lower boiling hydrocarbons prese	ent, atypical for D	Diesel Fuel.)						
TPH as Diesel (Silica Gel)	360	50	ug/L	M EPA 8015	01/16/14 12:15			
(Note: Lower boiling hydrocarbons prese	ent, atypical for D	iesel Fuel.)						
Octacosane (Diesel Surrogate)	115		% Recovery	M EPA 8015	01/15/14 19:52			
Octacosane (Silica Gel Surr)	116		% Recovery	M EPA 8015	01/16/14 12:15			

QC Report : Method Blank Data

Project Name : Terradev Jefferson LLC

Project Number : **ASE-1**

Parameter	Measured	Method Reporting) L Inite	Analysis	Date
	< E0	50			01/15/2014
TPH as Diesel (Silica Col)	< 50	50	ug/L	MEPA 8015	01/15/2014
	< 50	50	uy/L	MEPA 0015	01/15/2014
Octacosane (Diesei Surrogate)	108		%	M EPA 8015	01/15/2014
Octacosane (Silica Gel Surr)	114		%	M EPA 8015	01/15/2014
Benzene	< 0.50	0.50	ug/L	EPA 8260B	01/16/2014
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	01/16/2014
Toluene	< 0.50	0.50	ug/L	EPA 8260B	01/16/2014
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	01/16/2014
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	01/16/2014
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	01/16/2014
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	01/16/2014
1,2-Dichloroethane-d4 (Surr)	102		%	EPA 8260B	01/16/2014
Toluene - d8 (Surr)	100		%	EPA 8260B	01/16/2014
Benzene	< 0.50	0.50	ua/l	EPA 8260B	01/17/2014
Ethylbenzene	< 0.50	0.50	ua/L	EPA 8260B	01/17/2014
Toluene	< 0.50	0.50	ug/L	EPA 8260B	01/17/2014
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	01/17/2014
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	01/17/2014
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	01/17/2014
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	01/17/2014
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	01/17/2014
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	01/17/2014
1,2-Dichloroethane-d4 (Surr)	94.9		%	EPA 8260B	01/17/2014
Toluene - d8 (Surr)	101		%	EPA 8260B	01/17/2014

Parameter	Measured Value	Methoo Reporti Limit	t ing Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	01/16/2014
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	01/16/2014
Toluene	< 0.50	0.50	ug/L	EPA 8260B	01/16/2014
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	01/16/2014
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	01/16/2014
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	01/16/2014
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	01/16/2014
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	01/16/2014
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	01/16/2014
1,2-Dichloroethane-d4 (Surr)	101		%	EPA 8260B	01/16/2014
Toluene - d8 (Surr)	98.2		%	EPA 8260B	01/16/2014
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	01/20/2014
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	01/20/2014

Report Number : 87115 Date : 01/21/2014

Project Number : ASE-1

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e d Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicate Spiked Sample Percent Recov.	e Relative Percent Diff.	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
TPH as Diesel														
TPH-D (Si Gel)	BLANK	<50	1000	1000	972	974	ug/L	M EPA 8015	1/15/14	97.2	97.4	0.240	70-130	25
	BLANK	<50	1000	1000	819	797	ug/L	M EPA 8015	1/15/14	81.9	79.7	2.70	70-130	25
1,2-Dibromoetha	ane													
	87099-17	<0.50	40.3	40.2	40.1	40.0	ug/L	EPA 8260B	1/16/14	99.4	99.3	0.130	70.0-130	25
1,2-Dichloroetha	ane													
5	87099-17	<0.50	40.0	39.9	42.6	41.6	ug/L	EPA 8260B	1/16/14	106	104	2.14	70.0-130	25
Benzene	87099-17	<0.50	40.0	39.9	41.1	40.5	ug/L	EPA 8260B	1/16/14	103	101	1.34	70.0-130	25
Ethylbenzene														
P + M Xvlene	87099-17	<0.50	40.0	39.9	41.0	40.8	ug/L	EPA 8260B	1/16/14	102	102	0.276	70.0-130	25
	87099-17	<0.50	40.0	39.9	40.6	39.9	ug/L	EPA 8260B	1/16/14	101	99.9	1.54	70.0-130	25
Toluene	87099-17	<0.50	40.0	39.9	40.9	41.1	ug/L	EPA 8260B	1/16/14	102	103	0.753	70.0-130	25
1,2-Dibromoetha	ane													
	87142-02	<0.50	40.2	40.1	39.0	42.2	ug/L	EPA 8260B	1/17/14	97.1	105	8.06	70.0-130	25

Page 8 of 14

KIFF ANALYTICAL, LLC

Project Number : **ASE-1**

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e ed Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicat Spiked Sample Percent Recov	e Relative Percent Diff.	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
1,2-Dichloroetha	ane													
	87142-02	<0.50	39.9	39.8	42.1	43.6	ug/L	EPA 8260B	1/17/14	106	110	3.93	70.0-130	25
Benzene							-							
	87142-02	<0.50	39.9	39.8	40.7	40.1	ug/L	EPA 8260B	1/17/14	102	101	1.22	70.0-130	25
Ethylbenzene														
	87142-02	<0.50	39.9	39.8	40.6	40.3	ug/L	EPA 8260B	1/17/14	102	101	0.189	70.0-130	25
Methyl-t-butyl e	ther													
	87142-02	<0.50	39.8	39.6	39.7	40.0	ug/L	EPA 8260B	1/17/14	99.8	101	1.24	70.0-130	25
P + M Xylene														
Test D (see al	87142-02	<0.50	39.9	39.8	39.3	39.4	ug/L	EPA 8260B	1/17/14	98.4	99.0	0.539	70.0-130	25
l ert-Butanol	07440.00			100	400	105	/1			05.4		0.04	70 0 400	05
Toluene	87142-02	<5.0	200	199	190	185	ug/L	EPA 8260B	1/1//14	95.4	93.2	2.34	70.0-130	25
loidene	07142 02	-0.50	20.0	20.9	40 E	40.0	ua/l		1/17/11	101	101	0.940	70 0 120	25
	0/142-02	<0.50	39.9	39.0	40.5	40.0	ug/L	EFA 0200D	1/17/14	101	101	0.040	70.0-130	20
1,2-Dibromoeth	ane													
	87099-22	<0.50	40.3	40.3	39.1	38.7	ua/L	EPA 8260B	1/16/14	97.0	95.9	1.12	70.0-130	25
1,2-Dichloroetha	ane		-	-			0		-	-	-			
	87099-22	<0.50	40.0	40.0	46.4	45.3	ug/L	EPA 8260B	1/16/14	116	113	2.35	70.0-130	25

Page 9 of 14

KIFF ANALYTICAL, LLC

Project Number : **ASE-1**

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	d Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicate Spiked Sample Percent Recov.	e Relative Percent Diff.	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Benzene														
Ethylbenzene	87099-22	<0.50	40.0	40.0	42.6	41.0	ug/L	EPA 8260B	1/16/14	106	102	3.77	70.0-130	25
	87099-22	<0.50	40.0	40.0	39.3	38.6	ug/L	EPA 8260B	1/16/14	98.4	96.4	2.03	70.0-130	25
Methyl-t-butyl et	her													
	87099-22	<0.50	39.9	39.9	44.6	44.4	ug/L	EPA 8260B	1/16/14	112	111	0.411	70.0-130	25
P + M Xylene														
	87099-22	<0.50	40.0	40.0	36.1	35.4	ug/L	EPA 8260B	1/16/14	90.3	88.5	1.95	70.0-130	25
Tert-Butanol														
	87099-22	<5.0	200	200	200	202	ug/L	EPA 8260B	1/16/14	99.8	101	1.18	70.0-130	25
Toluene														
	87099-22	<0.50	40.0	40.0	40.8	39.2	ug/L	EPA 8260B	1/16/14	102	98.0	4.03	70.0-130	25
Methyl-t-butyl et	her													
	87141-14	<0.50	39.9	39.9	42.9	41.6	ug/L	EPA 8260B	1/20/14	108	104	3.16	70.0-130	25
Tert-Butanol														
	87141-14	<5.0	200	200	200	194	ug/L	EPA 8260B	1/20/14	99.9	96.9	3.00	70.0-130	25

KIFF ANALYTICAL, LLC

Project Number : **ASE-1**

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
1,2-Dibromoethane	40.3	ug/L	EPA 8260B	1/16/14	103	70.0-130
1,2-Dichloroethane	40.0	ug/L	EPA 8260B	1/16/14	110	70.0-130
Benzene	40.0	ug/L	EPA 8260B	1/16/14	105	70.0-130
Ethylbenzene	40.0	ug/L	EPA 8260B	1/16/14	103	70.0-130
P + M Xylene	40.0	ug/L	EPA 8260B	1/16/14	103	70.0-130
Toluene	40.0	ug/L	EPA 8260B	1/16/14	105	70.0-130
1,2-Dibromoethane	40.3	ug/L	EPA 8260B	1/17/14	99.7	70.0-130
1,2-Dichloroethane	40.0	ug/L	EPA 8260B	1/17/14	104	70.0-130
Benzene	40.0	ug/L	EPA 8260B	1/17/14	98.1	70.0-130
Ethylbenzene	40.0	ug/L	EPA 8260B	1/17/14	98.1	70.0-130
Methyl-t-butyl ether	39.9	ug/L	EPA 8260B	1/17/14	106	70.0-130
P + M Xylene	40.0	ug/L	EPA 8260B	1/17/14	96.8	70.0-130
Tert-Butanol	200	ug/L	EPA 8260B	1/17/14	92.1	70.0-130
Toluene	40.0	ug/L	EPA 8260B	1/17/14	100	70.0-130
1,2-Dibromoethane	40.1	ug/L	EPA 8260B	1/16/14	92.3	70.0-130
1,2-Dichloroethane	39.8	ug/L	EPA 8260B	1/16/14	109	70.0-130
Benzene	39.8	ug/L	EPA 8260B	1/16/14	100	70.0-130
Ethylbenzene	39.8	ug/L	EPA 8260B	1/16/14	95.7	70.0-130
Methyl-t-butyl ether	39.7	ug/L	EPA 8260B	1/16/14	105	70.0-130
P + M Xylene	39.8	ug/L	EPA 8260B	1/16/14	90.2	70.0-130

KIFF ANALYTICAL, LLC

QC Report : Laboratory Control Sample (LCS)

Project Name : Terradev Jefferson LLC

Project Number : **ASE-1**

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
TPH as Gasoline	485	ug/L	EPA 8260B	1/16/14	110	70.0-130
Tert-Butanol	199	ug/L	EPA 8260B	1/16/14	96.8	70.0-130
Toluene	39.8	ug/L	EPA 8260B	1/16/14	97.4	70.0-130
Methyl-t-butyl ether	39.8	ug/L	EPA 8260B	1/20/14	104	70.0-130
Tert-Butanol	200	ug/L	EPA 8260B	1/20/14	98.6	70.0-130

	KIFF Analytical LLC	3	2795 2nd Davis, CA Lab: 530 Fax: 530	Street, \$ \$95618 0.297.48 0.297.48	Suite 00 302	300									SR	G # /	Lab	No.		8	87	7/	1.	5	-								Pag	le	1	of	1
P	roject Contact (Hardco	py or PDF	To):		Cal	iforni	a ED	FRe	port	?	1	آ ک	es] No						Cha	ain-	of-(Cus	stoc	ly F	₹ec	ord	an	nd A	Ana	ilysi	is R	equ	Jest		
	irian Gwinn Company / Address	Blue Roo		mental	Sar	nnlin	a Co	mnar		n Co	nde:														Δn	alvs	is R	equi	lest			<u> </u>				TAT	— —
1	169 Chess Dr. Ste. (Enster	City CA	nentai	BR					Т	1	1								PI	FASE			<u>]</u>		ГТ			1								
Ē	hone Number:	, 1 03(01			Glo	ball	D:																						MET	HOD							
(650) 522-9292				T1	0000	001	072												â							Ĩ	T				ľ				12 hr	
F	ax Number:				ED	F De	livera	ble T	ĩo (E	mail	Ado	dress	s):							8260	B												12	i I			
L					bri	an@	blue	rocke	env.	com										PA	826	(â			÷				010)				Q	1			≥
F	Project #:	P.O. #:			Bill	to:														A B	PA	326(Vate				716				2	1		24 hr	ő
Ľ	ASE-1				Blu	ie Ro	ock E	Env.												Ē	Щ.	Ă		â	ې 2				200.				5				Jse
F	roject Name:				Sai	mple	Prin	t Nar	ne:											MA	B	Ū,	â	326(Ŗ			ô	EPA	E.							P P
					Lor	en T	aylor										- a			Ч	ž	DB	260	₹ A	ā		ŝ) 09	[) (u	747	ີ		.e			48hr	L B
'	erradev Jemerson LLC				Sai	npiei	Sigi	hatur	e.		1-	2					290				Ð	N N	A 8	t (E	24.2	5M)	015	2.7	Pb,	2	<u>801</u>		et				цщ
F)reject Addresse		Som	aling	-	<u>_</u>		201				, nuati	iv (o		Ma	atrix			l m	Ш	ш +	8	Щ Ш	l Lis	A 5	801	A 8	20	,Ni	174	12		3	11			
ľ	roject Address.		Sam			ΓŤ								┢			Ü	6	2601		ox /	SCA DC	ons	Ful	Ē	ΡA	Ë)	PA	O'DO	5.1	200	(C)	F			1 72br	
e	645 4th Street, Oaklar	nd, CA			Α												0 5 nnh	A 8260	(EPA 8:	es (MTBI	ates (5	v. (1,2 E	alocarb	rganics	rganics	iesel (E	otor Oil	/etals (l	Metais (EPA 24	d (EPA	ad (ST	2			1211	
	Sample Designa	tion	Date	Time	40 ml VC	Sleeve	Poly Glacs	Tedlar		HCI		None		Water	Soil	Air	MTBE @	BTEX (EF	TPH Gas	5 Oxygenat	7 Oxygen	Lead Sca	Volatile H	Volatile O	Volatile O	TPH as D	TPH as N	CAM 17 N	5 Waste Oi	Mercury (Total Lea	W.E.T. Le	MTR			I wk	
A E	3-3		1/10/2014	11:27	6					6				X	\square		Π,	X	x			x				х							X			1 wł	01
	<u>-</u>		1/10/2014	11.53	6					6	T		\uparrow	X	\square			, x				X				x							X		-	1	07
			1/10/2014	10:17							+				\square		+1				-	\uparrow								┼─		┢	X				103
	3-0		1/10/2014	10:17	0			+		0	+		+	Ê	+	+	-+1	$+^{\prime}$		-	+	\uparrow				<u>^</u>					+	┢	X	\vdash			
• ⊨	3-6		1/11/2014	9:37	6			+		6	_			X	$\left - \right $	\vdash	─₩			-	-	X				X				-	-	┢	<u>⊢</u> ⊣	$\left - \right $		<u>1 wk</u>	104
-							+	+			_		_	┡	\square		k	2			<u> </u>	 									-	–	+	┢─┤			╀──
L			<u> </u>					_			\perp						\square	1	1		ļ										<u> </u>	\bot		\square		<u> </u>	╞
																				1																	
Γ										Τ	T	Τ		Γ			Τ																				
F			1	1	1									1	\square			\uparrow	1	1	1		1		1		t			1		t	1		\neg	1	1
F	Relinguished by:			Date			Time	Red	ceive	d by:				1		1			Re	mark	is:	1		L	L					1		<u> </u>	L		<u> </u>		
		47	L					4			_								-Ple	ease I	Perfo	rm T	PHa	s Die	esel v	v/ sil	ica-g	ell cle	ean-	up	if	d	ete	W+ t	e cl	with	out
י דו	Winguished by:			Date		-	Time	Red	ceive	d bv:									45	γlτ	-Ca	-9	e (C	lein	٨Y	Δ.	2	lep) (V	4	61	c+h	- i	ralv	25	
		, 				-+					-			-					-li	f o	a)(117	rр	le.	,	1			'								
E E	eiinguished by:			Date			Time	Re	cejve	d by 1	Labo	rator	y :					~	+		11				Fo	r la	b Us	e O	niv:	S	amp	le R	ecei				
	,			011	1.10	4	115	11	Ď.	52	n	15	1		1	K	if.	Ę.		Temp	°C		Initia	is		 D	ate				<u>p</u> Ti	ime		<u></u> Therm	1. ID #	Coola	nt Present
	7			0170	+1-		כון	(/	C	~ ~				بر	-/	4n.	-y-1	14	9			1							•				-			Yes	/ No

Distribution, White - Lat, Pink - Orginator Revi 052011

Analytical LLC		SAMPLE	RECEIPT CHI	ECKLIST		SRG#: 87(15
Sample Receipt	nitials/Date: RLm	011414 Storage	Гіте: <i>(5</i> (5 Sa	mple Login	Initials/Date:	TJB 011414
TAT: Standard	d 🗌 Rush	Split Nor	ne Method of Rece	i pt : 🔀 Cour	rier 🗌 Over-the	e-counter 🗌 Shipped
Temp °C 2.2	N/A Therm ID	(R-1 Time 15(O Coolant present	Yes		Vater Temp Excursion
For Shipments Only:	Cooler Receipt In	itials/Date/Time:		Custody	/ Seals 🗌 N/A	Intact Broken

Chain-of-Custody:	Yes	No
Is COC present?	\mathbf{X}	
Is COC signed by relinquisher?	ΎΧ	
Is COC dated by relinquisher?		X
Is the sampler's name on the COC?	X	
Are there analyses or hold for all samples?	X	

Documented on	COC	Labels		Discrepanci	es:
Sample ID	X	Х			
Project ID	X	X			
Sample Date	X	X			
Sample Time	X	X			
Does COC match	project ł	nistory?	Ď ĺ N/A	Yes	□ No

Samples:	N/A	Yes	No
Are sample custody seals intact?	X		
Are sample containers intact?		\times	
Is preservation documented?		X	
In-house Analysis:	N/A	Yes	No
Are preservatives acceptable?		\times	
Are samples within holding time?		X	
Are sample container types correct?		X	
Is there adequate sample volume?		X	

Comments:	Sediment is	present in al	(VOAS_ TJB 011414
1804			
	· · · · · · · · · · · · · · · · · · ·		
<u></u>			

Init/Date:

CS Required:

Receipt Details:

Container Type	# of Containers 24	
		Proceed With Analysis: YES NO Client Communication:
	Container Type	Container Type # of Containers

February 12, 2014

Loren Taylor Blue Rock Environmental 1169 Chess Drive, Ste. C Foster City, CA 94404

Dear Loren,

Enclosed you will find Analytical Sciences' final report 4012807 for your Terradev Jefferson LLC project. An invoice for this work is enclosed.

Should you or your client have any questions regarding this report please contact me at your convenience. We appreciate you selecting Analytical Sciences for this work and look forward to serving your analytical chemistry needs on projects in the future.

Sincerely,

Analytical Sciences

March A. Valentini

Mark A. Valentini, Ph.D. Laboratory Director

Report Date: February 12, 2014

Laboratory Report

ASE-1

Loren Taylor Blue Rock Environmental 1169 Chess Drive, Ste. C Foster City, CA 94404

Project Name:	Terradev Jefferson LLC
Lab Project:	4012807

This 7 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini

Mark A. Valentini, Ph.D. Laboratory Director
Lab#	Sample ID	Compo	und Name		Result (µg/	m³)	RDL (µg/m³)
4012807-01	VP-1	Gasolin	e		ND	VA	330
		1,2-Dic	hloroethane (EDC	C)	ND		10
		Benzen	e		ND		8.0
		Toluene	2		ND		9.4
		1,2-Dib	romoethane (EDH	3)	ND		3.8
		Ethylbe	nzene		ND		11
		m,p-Xy	lene		ND		11
		o-Xyler	ie		ND		11
		Naphtha	alene		ND		13
		Methyl	tert-Butyl Ether (MTBE)	ND		9.0
Su	rrogates	Result (µg/m ³)	% Recove	ery	Acceptanc	e Range (%))
Dibromofluorom	nethane	37.5	96		70	-130	
4-Bromofluorob	enzene	38.9	100		70	-130	
Date Sampled:	01/25/14		Date Analyzed:	02/06/14		QC Bate	ch: B013071
Date Received:	01/28/14		Method:	EPA TO-15			

Volatile Hydrocarbons by GC/MS in Air ($\mu g/m^3$)

Volatile Hydrocarbons by GC/MS in Air (µg/m³)

Lab#	Sample ID	Compou	und Name		Result (µg/	m³)	RDL (µg/m³)
4012807-02	VP-2	Gasolin	e		ND	VA	330
		1,2-Dicl	hloroethane (EDC	C)	ND		10
		Benzene	e		ND		8.0
		Toluene			ND		9.4
		1,2-Dib	romoethane (EDH	3)	ND		3.8
		Ethylbe	nzene		ND		11
		m,p-Xy	lene		ND		11
		o-Xylen	ie		ND		11
		Naphtha	alene		ND		13
		Methyl	tert-Butyl Ether (MTBE)	ND		9.0
Sur	rogates	Result (µg/m ³)	% Recove	ery	Acceptanc	ce Range (%)	
Dibromofluorom	ethane	38.9	100		70)-130	
4-Bromofluorobe	enzene	34.4	89		70	0-130	
Date Sampled:	01/25/14		Date Analyzed:	02/06/14		QC Batc	h: B013071
Date Received:	01/28/14		Method:	EPA TO-15			

Lab#	Sample ID	Compo	und Name		Result (µg/	³)	RDL ($\mu g/m^3$)
4012807-03	VP-3	Gasolin	e		ND	VA	330
		1,2-Dic	hloroethane (EDC	C)	ND		10
		Benzen	e		ND		8.0
		Toluene	e		ND		9.4
		1,2-Dib	romoethane (EDH	3)	ND		3.8
		Ethylbe	enzene		ND		11
		m,p-Xy	lene		ND		11
		o-Xyler	ne		ND		11
		Naphtha	alene		ND		13
		Methyl	tert-Butyl Ether (MTBE)	ND		9.0
Su	irrogates	Result (µg/m ³)	% Recove	ery	Acceptanc	ce Range (%))
Dibromofluoron	nethane	41.9	108		70)-130	
4-Bromofluorob	enzene	42.5	110		70	0-130	
Date Sampled:	01/25/14		Date Analyzed:	02/06/14		QC Bate	ch: B013071
Date Received:	01/28/14		Method:	EPA TO-15			

Volatile Hydrocarbons by GC/MS in Air ($\mu g/m^3$)

Fixed Gases (%)

Lab#	Sample ID	Compound Name		Result (%)	RDL (%)
4012807-01	VP-1	Oxygen (O2) Carbon Dioxide (CO2) Methane Helium	rgen (O2)14bon Dioxide (CO2)4.7thaneNDium0.023		0.008 0.008 0.008 0.003
Date Sampled: Date Received:	01/25/14 01/28/14	Date Analyzed: Method:	02/06/14 ASTM 1946 D	QC	Batch: B013068

Fixed Gases (%)

Lab#	Sample ID	Compound Name		Result (%)	RDL (%)
4012807-02	VP-2	Oxygen (O2) Carbon Dioxide (CO2) Methane Helium		12 7.4 ND ND	0.008 0.008 0.008 0.003
Date Sampled: Date Received:	01/25/14 01/28/14	Date Analyzed: Method:	02/06/14 ASTM 1946 D	C	QC Batch: B013068

		Fixed (Gases (%)		
Lab#	Sample ID	Compound Name		Result (%)	RDL (%)
4012807-03	VP-3	Oxygen (O2)		19	0.008
		Carbon Dioxide (CO2)		1.5	0.008
		Methane		ND	0.008
		Helium		0.012	0.003
Date Sampled:	01/25/14	Date Analyzed:	02/06/14	QC	Batch: B013068
Date Received:	01/28/14	Method:	ASTM 1946 D		

Quality Assurance Report

	Volatile H	ydrocart	oons b	y GC/N	15 in A	Air (µg	/m ³)			
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B013071 - Air prep GC/MS										
Blank (B013071-BLK1)				Prepared	: 01/27/14	Analyze	ed: 01/29/1	14		
Gasoline	ND	330	µg/m³							
1,2-Dichloroethane (EDC)	ND	10	µg/m³							
Benzene	ND	8.0	$\mu g/m^3$							
Toluene	ND	9.4	µg/m³							
1,2-Dibromoethane (EDB)	ND	3.8	µg/m³							
Ethylbenzene	ND	11	µg/m³							
m,p-Xylene	ND	11	µg/m³							
o-Xylene	ND	11	$\mu g/m^3$							
Naphthalene	ND	13	µg∕m³							
Methyl tert-Butyl Ether (MTBE)	ND	9.0	$\mu g/m^3$							
Surrogate: Dibromofluoromethane	42.5		$\mu g/m^3$	38.9		109	70-130			
Surrogate: 4-Bromofluorobenzene	42.5		µg∕m³	38.8		110	70-130			

(m3) Volatila II . :. 1 . **a** .

		Fix	ked Ga	uses (%)					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B013068 - Air prep GC/MS										
Blank (B013068-BLK1)				Prepared	& Analyz	zed: 02/06	5/14			
Oxygen (O2)	ND	0.005	%							
Carbon Dioxide (CO2)	ND	0.005	%							
Methane	ND	0.005	%							
Helium	ND	0.002	%							

Notes and Definitions

- VA The sample canister was received by the laboratory with a vacuum gauge reading of 5 inches of mercury.
- RDL Reporting Detection Limit
- ND Analyte NOT DETECTED at or above the reporting detection limit (RDL)
- RPD Relative Percent Difference
- NR Not Reported

	CLIENT INFORMATION		BILLING I	NFORMA	ΤΙΟΝ			CLIENT'S	PROJECT	NAME: Ter	rader Jeffarson.	U.C.
Compan A C	DDRESS: <u>Blue Rock Environme</u> DDRESS: <u>1169 Chass Dr. Sta</u> <u>brian@blue.rocke</u> ONTACT: <u>Brian Gwinn</u> PHONE#: (650)522-9292	<u>intal</u> co . <u>C</u> <u>uvi.com</u>	Contact: <u>He</u> MPANY NAME: <u>B/.</u> Address: <u>116</u> <u>hea</u> Phone#: <u>65</u>	mry Hurk Marke 9 Chess D my Qblues 6)522-9	viens C, Ste C ockenske 292	Мови SAI 	C URNAI LE LAB ME DAY HOURS	ROUND 1	ROJECT NU TIME (che 24 Hou 72 Hou North		SE -) GEOTRACKER EDF: GLOBAL ID: <u>71000</u> COOLER TEMPERAT	_X_Y >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
			1 00 Tr				-		ANALYS	IS		_
тем	CLIENT SAMPLE ID.	Summa Canister Serial ≭	Regulator Serial #	Sample Start Time \$ VACUUM	Sample End Time & COUM	Date Sampled	Matrix	CALEPA TO-15 TBE	ASTIM D-1946 (E,Oa, COa)CHIL		COMMENTS	LAE SAMP #
1	VP-1	4295	Not	10:0 8/30 4	10:15/5 Ha	125/14	Air	X	X		collem Crew	-
2 3 4	VP-2 VP-3	4297 4156		10:21/30"Hg 10:32/30"Hg	10:25/5 143 10:39/5 443	425/14 1/25/14	Air Air	× ×	X		less than report Somple End Tim	- (a (
5												
6												
8									_			
9												
10			-									

P.O. Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128