

RECEIVED

10:40 am, Oct 20, 2009

Alameda County Environmental Health

SUPPLEMENTAL SITE INVESTIGATION REPORT

October 2009

2960 Castro Valley Blvd. Castro Valley, CA 94546

Case No. RO0002998

98 BATTERY STREET, # 200 SAN FRANCISCO, CA 94111

SUPPLEMENTAL SITE INVESTIGATION REPORT

October 2009

2960 Castro Valley Blvd. Castro Valley, CA 94546

Case No. RO0002998

Prepared by Endpoint Consulting, Inc. 98 Battery St., #200 San Francisco, CA 94111

Jing Heisler, PG, CHG Senior Geologist

1 Jacaher

Mehrdad Javaherian, Ph.D(c), MPH Risk Assessor

TABLE OF CONTENTS

TABLI	E OF CONTENTS	III
1.0	INTRODUCTION	1
2.0	SITE BACKGROUND	1
3.0	PREVIOUS INVESTIGATIONS	2
4.0	SUPPLEMENTAL SOIL VAPOR AND GROUNDWATER INVESTIGAITON ACTIVIITES.	3
4.1	Investigation Field Activities	3
4	.1.1 Pre-Field Activities	3
4	.1.2 Soil Vapor, Sub-slab Vapor, and Groundwater Sampling	3
4.2	INVESTIGATION RESULTS	5
5.0	WELL SURVEY RESULTS	7
6.0	CONCLUSIONS AND RECOMMENDATIONS	7
7.0	REFERENCES	8

List of Tables

Table 1 – Soil Vapor and Sub-Slab Vapor Analytical Results (October 2009)

List of Figures

Figure 1 – Site Vicinity Map and Well Survey Radius

Figure 2 – Site Map

Figure 3 – Sampling Locations

List of Attachments

Attachment A – Field Data Sheets Attachment B – Boring Log Attachment C – Laboratory Analytical Report Attachment D – Well Survey Results

1.0 INTRODUCTION

On behalf of the RR Retail Group, Endpoint Consulting, Inc. (Endpoint) conducted a supplemental soil vapor and groundwater investigation at the site (site) located at 2960 Castro Valley Blvd., Castro Valley, California (see Figure 1). The investigation was performed in accordance with Endpoint's *Supplemental Site Investigation Workplan* dated June 30, 2009 and the *Workplan Addendum* dated August 17, 2009. The work plan was approved by the Alameda County Health Services Agency (ACHCSA) in letters dated August 13, 2009 and September 3, 2009.

The following sections summarize the procedures and results of the supplemental field investigation and the well survey. Based on these results and those from previous investigations conducted at the site, recommendations are also set forth regarding closure of the site.

2.0 SITE BACKGROUND

The site is located in a mixed commercial/residential area and on the western corner of the Adobe Center Shopping Center, which covers a 3.07-acre parcel of land located on the northeast corner of the intersection of Castro Valley Blvd., and Anita Avenue. The site is entirely encompassed within a multiple-unit, single-story building approximating 45 long by 40 feet wide. The building consists of reinforced concrete block and steel frame construction, with slab-on-grade floors (Property Solutions, Inc., 2002b; AEI Consultants, 2007). Properties immediately surrounding the site include the remaining portions of the strip mall to the east, residential homes to the north and west across Anita Street, and a Chevron gasoline service station immediately to the south (see Figure 2).

Dry cleaning operations at the site date back to 1990 (Property Solutions, Inc., 2002a), continuing until 2002 (Personal Communication with Gabriel Chui). Since 2002, dry cleaning operations have ceased, with the Dry Cleaning Club of America reducing in size to the western-most portion of the site (2960 Castro Valley Blvd.) serving solely as a dry cleaning drop off location; since completion of the workplan, the Dry Cleaning Club of America has ceased operations and this portion of the site is currently vacant. The eastern portion of the site is currently occupied by a restaurant with the address of 2966 Castro Valley Blvd. (see Figure 3).

Past dry cleaning operations involved the use of tetrachloroethene (PCE) in a self-contained, closed-loop dry cleaning unit. Fresh PCE was reportedly stored in 10-gallon buckets in the toilet room at the subject property. PCE wastes were temporarily stored in a 16-gallon drum located near the dry cleaning unit and historically removed from the subject property by Safety Kleen under manifest procedures (Property Solutions, 2002b).

3.0 PREVIOUS INVESTIGATIONS

The following table summarizes previous investigations performed at the site

Date	Site Investigation Activities	Report Reference
August 2002	Seven soil gas samples (SG-1 through SG- 7) were collected. 6 soil borings were advanced (SB-1 through SB-6). Six grab groundwater samples were collected (W-1 through W-6). VOCs were analyzed for in all samples.	Property Solutions 2002
	PCE was not detected in any soil gas samples; however, detection limits were above environmental screening levels (ESLs) adopted by the Regional Water Quality Control Board ([RWQCB], 2008. PCE was detected in 3 out of 12 soil samples, with the maximum concentration of 140 μ g/kg (SB-3 at 3 feet bgs), less than the commercial/industrial ESL (700 μ g/kg). PCE was detected in 2 of 4 grab groundwater samples collected at a depth of 12 to 13 feet bgs, with detected concentrations ranging from 5.0 ug/L (SB- 1) to 6.8 μ g/L (SB-3); these concentrations are at or slightly above the drinking water standard maximum contaminant level (MCL) of 5 μ g/L.	
April 2007	Six soil borings were advanced (SB-1 through SB-6). PCE was detected in 2 of 5 soil samples collected, with maximum concentration of 0.076 mg/kg at a depth of 1 foot below ground surface (bgs) at boring SB-5. PCE was also detected in 3 of 5 groundwater samples collected, with the maximum concentration of 6.7 μ g/L in a groundwater sample collected from boring SB-5.	AEI 2007

Based on a review of the above-referenced investigations, the ACHCSA requested a workplan to further characterize soil vapor concentrations at the site, evaluate the potential for preferential migration of PCE in groundwater and soil vapor along sewer lines at the site, and to conduct an area well survey. The following sections summarize the investigations performed in response to the ACHCSA's request and per the approved workplan.

4.0 SUPPLEMENTAL SOIL VAPOR AND GROUNDWATER INVESTIGAITON ACTIVIITES

Per the approved workplan, the supplemental site investigation included collecting three (3) soil vapor samples (SV1 through SV3) and two (2) sub-slab vapor samples (SS-1 and SS-2) from the former location of the dry cleaning machine, one (1) soil vapor sample (SV4) along the indoor-portion of the sewer line emanating from the site, and one (1) grab groundwater sample (GW-1) near the sewer clean out. These activities are summarized below.

4.1 Investigation Field Activities

4.1.1 **Pre-Field Activities**

As required by the Occupational Health and Safety Administration (OSHA) Standard "Hazardous Waste Operations and Emergency Response" guidelines (29 CFR 1910.120), and by the California Occupational Health and Safety Administration (Cal-OSHA) "Hazardous Waste Operations and Emergency Response" guidelines (CCR Title 8, Section 5192), LRM prepared a site-specific Health and Safety Plan prior to the commencement of fieldwork. The Plan was reviewed by field staff and contractors before beginning field operations.

To complete the necessary scope of work, a permit (W2009-0880) was obtained from the Alameda County Department of Public Works. More than 48 hours prior to the initiation of fieldwork, the soil boring locations were marked with white paint and Underground Service Alert (USA) was notified. Also, a private utility locator was used to screen the boring locations in order to identify any subsurface obstructions. For additional safety, the soil boring near the sewer clean out was cleared through the use of a hand auger to the top few feet prior to drilling advancement.

4.1.2 Soil Vapor, Sub-slab Vapor, and Groundwater Sampling

The locations of the soil vapor, sub-slab vapor, and groundwater samples are illustrated on Figure 3.

On October 5, 2009, the drilling and sampling was completed by Vironex, Inc. of Pacheco, California, a state-licensed driller. Per the approved workplan, the soil-vapor sample depths had been proposed for approximately five feet bgs, and sub-slab samples were proposed for the depth immediately beneath the sub-slab, approximated at 0.5 feet bgs. The sole deviations from the workplan included: at location SV-3 inside the building, drilling refusal was

encountered at approximately 1.5 feet bgs, and a soil vapor probe was installed at that depth. At location SV-2, also inside the building, a soil vapor probe was installed at the proposed depth (5 feet bgs), however, no vapor flow was achieved at this location and no soil vapor sample could be collected. As described below, all other samples were collected per the approved workplan.

Vapor Sampling:

Inside the existing restaurant at 2966 Castro Valley Blvd. and within the footprint of the former dry cleaning machine¹, two sub-slab soil vapor samples (SS-1 and SS-2) and two shallow soil vapor samples (SV1 and SV3) were collected. At each location, a drill was used to create a 1-1/4 inch hole in the concrete slab. Following that, rods were advanced using a slide hammer. After the target depth had been achieved, the probes were installed through the center of the rods and the rods were withdrawn.

Following completion of these sample points within the building, soil-vapor boring SV-4 was completed outside the building using the same methodology, except that the rods were advanced using a Geoprobe instead of a slide hammer.

Five vapor samples (SS-1 and SS-2, SV1, SV3, SV4) were collected using 1-liter Summa canisters attached directly to the sampling manifold. Two canisters were used for each hole to purge the Teflon tubing and to collect the vapor samples. Before sampling, the Summa canisters held a vacuum approximately 29 inches of mercury ("Hg). Fresh Summa canisters were used for each soil vapor sample. A stepped purge vs. contaminant concentration test was completed prior to sample collection to determine the optimum purge volume. Based on the highest PID reading from a Tedlar bag, a purge volume of seven casing volumes was used throughout the vapor sampling. At each location, prior to sampling, a shut-in test and a leak test were performed per the approved work plan. Throughout the sampling process, a clear plastic container (shroud) was used to cover the sample train and filled with 10% to 16% helium by volume to test the integrity of the soil vapor sample point seal and all fittings and connections. No breakthrough was indicated during the vapor sample collection, as the helium was recorded at 0% ppmv in the vapor samples (see Table 1 and Attachment A).

After purging the sampling tube, a soil vapor sample was collected in the laboratory-cleaned Summa canister. The initial and final canister vacuums were noted and precautions were taken to leave 5" Hg vacuum in the canister. A partial vacuum was left in the Summa canister as a means to determine if leakage occurred during transit to the laboratory. The final vacuum gauge reading was recorded on a tag attached to the Summa canister. All samples were labeled and shipped under chain-of-custody documentation to McCampbell Analytical, Inc. (McCampbell), a California state-certified laboratory, for analysis of volatile organic

¹ Based on site inspection, scaling of the building dimensions, and discussions with Mr. Gabriel Chiu, the location of the former dry cleaning machine adopted from AEI (2007) and depicted in the workplan was revised (see Figure 3).

compounds (VOCs) by EPA Method TO-15. The field data sheets including purging, leak check test, and sample collection information are presented in Attachment A.

Groundwater Sampling:

One exploratory boring, designated as GW-1, was completed at the location shown on Figure 3. The boring was extended to approximately 16 feet bgs. After hand augering the upper few feet to avoid utility conflicts, the soils were continuously cored with a geoprobe and examined for lithology and evidence of contamination. Upon retracting the rods and installing PVC casing to facilitate groundwater sampling, groundwater was measured at approximately 10.9 feet bgs. A boring log for GW-1 is included in Attachment B.

A grab groundwater sample was then collected by using small diameter vinyl tubing fitted with a chuck ball tip. Groundwater was surged to the surface and decanted in to VOAs, which were labeled, entered on a chain of custody, and then placed in a cooler, on ice, prior to same-day delivery to McCampbell.

Laboratory Analysis:

The vapor samples in Summa canisters, the grab groundwater sample, and a soil sample of drill cuttings were transported on the same day to McCampbell for analysis. The vapor samples were analyzed for EPA Method 8010 constituents (chlorinated VOCs) by EPA Method TO-15. The grab groundwater sample was analyzed by EPA Method 8260B for 8010 constituents. A composite sample from the drill cuttings, designated as Comp S1, was collected and submitted for analyses by EPA Method 8260 (8010 list of analytes), and for total lead. The laboratory analytical report is included as Attachment C.

Backfill and Soil Disposal:

Following completion of sampling, all of the borings were backfilled with neat cement grout to surface. Boring GW-1 was tremmied. Quick-setting concrete was used to seal the borings at the surface. Mr. John Shouldice of the Alameda County Public Works department witnessed the grouting of GW-1.

The drill cuttings were placed in a 5-gallon pail which was labeled and left on site pending proper disposal by a certified transportation and disposal company.

4.2 Investigation Results

SUBSURFACE CONDITIONS

The boring advanced at location GW-1 was examined for lithologic information and evidence of contamination. No evidence of contamination was observed at this location in the field. The soils consisted predominantly of clayey to sandy silt, with some gravels present within

sandy silt below 15 feet bgs.

SOIL VAPOR

PCE was detected in all vapor samples collected (SS-1, SS-2, SV1, SV3, and SV4), ranging from 110 micrograms per cubic meters ($\mu g/m^3$) to 3,000 $\mu g/m^3$ (see Table 1). The highest concentration was detected in the soil vapor sample from boring SV-1 located within the footprint of the former dry cleaning machine, while the lowest concentration was detected in the soil vapor sample placed along the sewer line emanating from the site.

In addition to PCE, trichloroethene (TCE) and cis-1,2- dichloroethene (cis-1,2-DCE), daughter products of PCE, were also detected in the vapor sample from boring SV-1; these occurred at 800 μ g/m³ of TCE and 21 μ g/m³ of cis-1,2-DCE. No other chlorinated solvents were detected in the vapor samples.

As shown on Table 1, PCE concentrations at SV-1 (3,000 μ g/m³) and SS-2 (1,500 μ g/m³) exceeded the commercial/industrial RWQCB soil vapor ESL of 1,400 μ g/m³. The sole TCE and cis-1,2-DCE detections occurred below their respective commercial/industrial ESLs.

It should be noted that while the highly conservative ESL for PCE was exceeded in SV-1 and SS-2, the cumulative carcinogenic risk, conservatively back-calculated below from the detected concentrations relative to the ESL, approximate 2.34 x 10^{-6} for SV-1 and 1.07 x 10^{-6} in SS-2. These conservative risk estimates are at the lower end of the target acceptable risk management range of 1 x 10^{-4} to 1 x 10^{-6} adopted by the USEPA and DTSC.

Sample	Chemical	Detected Concentration (ug/m3)	Commercial/Industrial ESL (ug/m3)	Estimated Carcinogenic Risk				
SV-1	PCE	3000	1,400	2.14E-06				
	TCE	800	4,100	1.95E-07				
			Cumulative Risk	2.34E-06				
SS-2	PCE	1500	1,400	1.07E-06				
			Cumulative Risk	1.07E-06				
Target risk level for ESLs = 1 x 10-6								

GROUNDWATER

PCE was not detected above the laboratory reporting limit of 0.5 μ g/L in the grab groundwater sample collected from boring GW-1, located near the sewer clean out (see Attachment C).

5.0 WELL SURVEY RESULTS

A well survey for the area within 0.5 miles downgradient of the Property was completed using data provided by the Alameda County Public Works department. This survey indicates the potential presence of one production well within the search radius, as shown on Figure 1 and Attachment D. This well is located approximately 2,000 feet southwest (assumed to be hydraulically downgradient) of the site on Tyee Court, was reportedly drilled in 1953, is 52 feet deep, and has no known uses. Based on the age and depth of the well, it is unlikely to be used as a water supply well. Based on the low to non-detect concentrations of PCE in groundwater at the site and based on the well survey results, there do not appear to be any water-producing wells that could potentially be impacted by PCE impacts at the site.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Through the various rounds of investigations to date, PCE detections in soil and groundwater beneath the site have been sporadic and have occurred at low concentrations. Specifically, soil concentrations have been below ESLs (Property Solutions, 2002 and AEI, 2007), while groundwater detections have been sporadic with concentrations ranging from non-detect to slightly above the MCL (Property Solutions, 2002, AEI, 2007). Supplementing these results, this supplemental investigation further corroborated the sporadic nature of PCE in groundwater, confirming the absence of preferential migration along sewer lines and the absence of viable groundwater receptors downgradient of the site. Combined with the termination of PCE usage at the site in 2002, these results indicate the absence of any primary sources or significant secondary sources of PCE contamination at the site.

While PCE and a single detection of TCE was encountered in soil vapor beneath the footprint of the former dry cleaning machine used historically at the site, the detected concentrations correspond to conservative risk estimates which are at the lower end of the acceptable risk management range and do not constitute a significant vapor intrusion risk.

Based on the available information, the site appears to qualify for low-risk closure and no further action is accordingly recommended.

7.0 **REFERENCES**

AEI, 2007. Phase II Subsurface Investigation, by AEI Consultants, May 8, 2007

California Regional Water Quality Control Board, San Francisco Bay Region, 2008. Screening for Environmental Concerns at Sites with Contaminated Soil & Groundwater, Interim Final.

LRM, 2009a. Supplemental Site Investigation Workplan, by Consulting, Inc., June 30, 2009

LRM, 2009b. Supplemental Site Investigation Workplan Addendum, by Consulting, Inc., August 17, 2009

Property Solutions, 2002. Limited Phase II Subsurface Investigation, by Property Solutions, Inc. September 27, 2002

Soil Vapor and Sub-slab Vapor Analytical Results

2960 Castro Valley Boulevard

Castro Valley, California

-				Con	centration (ug/m	³) (2)		
Location ID	Sample ID	Sample Location	Sample Depth (feet)	Sample Date	PCE	TCE	cis-1,2-DCE	Leak Check Compound Helium (ppmv, %) (3)
SS-1	SS-1	inside Bldg.	0.5 (1)	10/5/2009	900	<11	<8.1	0
SS-2	SS-2	inside Bldg.	0.5 (1)	10/5/2009	1,500	<11	<8.1	0
SV-1	SV1	inside Bldg.	5	10/5/2009	3,000	800	21	0
SV-2		inside Bldg.	5	10/5/2009				
SV-3	SV3	inside Bldg.	1.5	10/5/2009	1,200	<11	<8.1	0
SV-4	SV4	outside Bldg.	5	10/5/2009	110	<11	<8.1	0
			ESL	Commercial	1,400	41,000	20,000	na

Abbreviations:

Bldg. = building (restaurant)

ESL = Environmental Screening Level- Soil Gas (Vapor Intrusion Concerns) (Table E, RWQCB, 2008).

"<" = less than the laboratory reporting limit

na = not available or not applicable

Notes:

- "--" Not sampled due to no vapor flow.
- (1) Sample was collected 3 to 4 inches below the slab.
- (2) Only detected compounds are shown. Samples were analyzed by McCampbell Analytical Inc., Pittsburg, California, using EPA TO-15 method.

(3) Samples were analyzed by Helium meter in the field per approved workplan.

Bold number exceeds ESL-commercial sites.

TABLES

FIGURES

0	100	200	300	400	500

Scale Approximate

2960 CASTRO VALLEY BOULEVARD CASTRO VALLEY, CALIFORNIA						
Endpoint. Strategy. Science. Sustainability.	Date: 6/24/2009	Figure:	2			

Attachment A

Field Data Sheets

SVI

APPENDIX B - FIELD FORM FOR SOIL VAPOR/SUB SLAB SAMPLING

Project Name: C/GO Ceshe Valley Date: $10-5-09$	Project Number
Site Location: 2960 Costro Velloy	
Weather: Clan + meld	
Field Personnel: j C+ Jeremy - Viranox	
Recorded by:	
Soil Vapor Probe No: SV/	

Sub Slab Probe	No:	
PID Serial No:	00485	
MDG 2002 Seri	al No: 2/6	
Tracer Gas:	helin	

PID Lamp: 10.6 eV

Surface Type: Asphalt _____ Concrete _____ Grass _____ Other _____ Surface Thickness (i.e., asphalt or concrete) _____

1 Casing Volume:

Sub Slab Volume _____L Soil Vapor Probe Volume 107 m l L

Initial Vacuum Prior to Pumping ______ inches of water Shut-in Test ______ inches of Water held for ______ seconds Field Tubing: Blank PID Reading ______ ppmv Shut in Test Completed Prior to Purging: ______ Yes _____ No

SVI

Purging

T

Date	Start Time	Start Time	Start Time	End Time	Elapsed Time (min.)	Bag Volume (L)	Purge Rate (LPM)	Cumulative Volume (L)	Trac	er Gas	Sample (ppmv, %)	VOCs by PID (ppmv)
10-5-09		1055	24455	5			Shro	ud (%)	T			
		1059	4	15	200	X5-L	Min	Max	0	6.1		
							10.6	19.4				
		-										
				1999), (1997) - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199	+							

Helium Concentration in Field Screen Samples is Less than 5% of Minimum Concentration in the Shroud?

_____ Yes _____ No

Date 10-5-09	Tíme	Time Sample ID		Summa Canister ID	Flow Controller #	Vaccum Gage #	Initial Vacuum (in of Hg)	Final Vacuum (in Hg)
	11 00	511	1/46	6301		MAN 316-674	-29	-5
						2		

SV2 (Stepped Purge)

Nogland

APPENDIX B - FIELD FORM FOR SOIL VAPOR/SUB SLAB SAMPLING

Project Name: 2960 Cashe Valley Date: 10-5-09 Site Location: 2960 Casher Valley Weather:	Project Number:
Field Personnel: J6 + Vivaneyo Recorded by: J6	
Soil Vapor Probe No:	
Sub Slab Probe No: PID Serial No:	PID
MDG 2002 Serial No: helin metor Z/ Tracer Gas: helin	6

Lamp: 10.6 eV

Surface Type: Asphalt _____ Concrete _____ Grass _____ Other _____ Surface Thickness (i.e., asphalt or concrete) _____ 4 ''____

1 Casing Volume:

4

Sub Slab Volume L Soil Vapor Probe Volume 167 E

Initial Vacuum Prior to Pumping ______ inches of water Shut-in Test _____7¹⁴ inches of Water held for ______ seconds _____ \mathbf{k} Field Tubing: Blank PID Reading _____ ppmv Shut in Test Completed Prior to Purging: _____ Yes _____ No

- 1	~	1 1	- 61	11	•	67
			- 22			22

D

Start Tune	End Time	Time (min.)	(L)	(LPM)	(L)	Tracer Gas		(ppmv, %)	PID (ppmv)
859	9	325		200		Shro	ud (%)	1	
9	910	10 m	0			Min	Max		
	<u>¥59</u> 9	×59 9 9 910	Time (min.) \$\$59 9 325 9 910 10 m	Time (min.) (L) \$\$59 9 325 9 970 10 m	Time (min.) (L) (LPM) \$\$\$79 9 32 \$ 200 \$\$9 970 10,m 0 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Time (min.) (L) (LPM) (L) \$\$59 9 325 200 Shron \$\$9 9/10 10 m 0 Min	Time (min.) (L) (LPM) (L) $\frac{559}{9}$ $\frac{32}{5}$ $20c$ Shroud (%) $\frac{9}{970}$ $\frac{10}{10}$ 0 10 10 $\frac{10}{9}$ $\frac{970}{10}$ $\frac{10}{10}$ 0 10 10 $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$ $\frac{10}{10}$	Time (min.) (L) (LPM) (L) (ppmv, %) $\frac{559}{9}$ $\frac{325}{0.00}$ 200 Shroud (%)

Ab (low alter 10 m (Tellar)

Helium Concentration in Field Screen Samples is Less than 5% of Minimum Concentration in the Shroud?

Yes No sample - no Plan

Sample Collection

Date	Time	Sample ID	Summa Canister ID	Flow Controller #	Vaccum Gage #	Initial Vacuum (in of Hg)	Final Vacuum (in Hg)
		an la facilitation de la construction de marcona			*****		

Shep Ruge

5.5-1.5

APPENDIX B - FIELD FORM FOR SOIL VAPOR/SUB SLAB SAMPLING

 Project Name:
 2960 (ashrValley

 Date:
 10-5-09 Project Number:

 Site Location:
 2960 CashrValley
 Project Number:

 Site Location:
 2960 CashrValley
 Project Number:

 Weather:
 Clean + melled
 Project Number:

 Field Personnel:
 10 + Jaremy - Uhraneso Recorded by:
 J

 Soil Vapor Probe No:
 SV S

 Sub Slab Probe No:
 SV S

 PID Serial No:
 CO 216

 Tracer Gas:
 heli m
 Surface Type:
 Asphalt

 Surface Type:
 Asphalt or concrete
 Y Y

 1 Casing Volume:
 Y Y Y

Sub Slab Volume _____ L Soil Vapor Probe Volume [17 ml L

Initial Vacuum Prior to Pumping <u>-30</u> inches of water Shut-in Test <u>7</u> inches of Water held for <u>80</u> seconds Field Tubing: Blank PID Reading <u>0</u> ppmv Shut in Test Completed Prior to Purging: <u>8</u> Yes No Purging

P

Date	Start Time	End Time	Elapsed Time (min.)	Bag Volume (L)	Purge Rate (LPM)	Cumulative Volume (L)	Tracer Gas		Sample (ppmv, %)	VOCs by PID (ppmv)
10-5-09	10:30	10:34	31155	an an i ba an ta ann, i ba an ta ann, i ba ann an ta di an ann an an i			Shro	ud (%)	1	
	10:34	10:37		1/5-	200	200	Min	Max	0	7.7
							10,1	15.Z		
1		***								
-									1	

Helium Concentration in Field Screen Samples is Less than 5% of Minimum Concentration in the Shroud?

______ Yes _____ No

Date	Time	Time Sample ID		Summa Canister 1D	Flow Controller #	Vaccum Gage #	Initial Vacuum (in of Hg)	Final Vacuum (in Hg)
10-5-09	10:39	513	10:49	1510		MAN 316-685	- 2.9	-5
			-					
10 - Marina (1997) - Paris Andrewson, 1997				1	1			1

SV4

Date	Start Time	End Time	Elapsed Time (min.)	Bag Volume (L)	Purge Rate (LPM)	Cumulative Volume (L)	Trace	er Gas	Sample (ppmv, %)	VOCs by PID (ppmv)
16-5-04	1225	1221	201 455				Shrou	ıd (%)		
/	1222	1226	4	Ys	200	ちし	Min	Max	. 0	\$7
							10.7	13.2		
									· · · · · · · · · · · · · · · · · · ·	

 Helium Concentration in Field Screen Samples is Less than 5% of Minimum Concentration in the Shroud?

 Yes
 No

Date	Time	Sample ID		Summa Canister ID	Flow Controller #	Vaccum Gage#	Initial Vacuum (in of Hg)	Final Vacuum (in Hg)	
10-5-09	1243	SVY	1258 gnd	6202		MAN316675	-29	-5	
neral let an an an atom	<u> </u>								

55

Purging

P T

Date	Start Time	End Time	Elapsed Time (min.)	Bag Volume (L)	Purge Rate (LPM)	Cumulative Volume (L)	Tracer Gas		Sample (ppmv, %)	VOCs by PID (ppmv)
16-5-09	1007	1008	115				Shro	ud (%)	1	
100	1008	1012	4	14	200	XC	Min	Max	U U	5.1
					· · · · · · · · · · · · · · · · · · ·		10.0	13.9		
									-	
						₩.#¥\${D#######\$\$\$\$######\$\$################				
										ł

Helium Concentration in Field Screen Samples is Less than 5% of Minimum Concentration in the Shroud?

Date	Time	Time Sample ID		Summa Canister ID	Flow Controller #	Vaccum Gage#	Initial Vacuum (in of Hg)	Final Vacuum (in Hg)	
10.5-09	1010	<u>Ss /</u>	1020 hand	6174	56348501	MAN 316-676	- 30	-5	
1963 - Carllen Jaar de Santa (Carlenne) 1969 - Maria Maria (Carlenne) - Carlenne (Carlenne)		<u> </u>			<u> </u>		ļ		
		-			1				

552

Purging

Date	Start Time	End Time	Elapsed Time (min.)	Bag Volume (L) .	Purge Rate (LPM)	Cumulative Volume (L)	Tracer Gas		Tracer Gas		Tracer Gas		Sample (ppmv, %)	VOCs by PID (ppmv)	
10-5-61	917	917	105				Shrou	ıd (%)		-					
T. 1	928	925	311	43	200	43l	Min	Max	0 helin	16 ppm	10000				
	929	929	32 5		-					.,					
	930	933	5-11	1/2	200	126		1	0	50.7	3				
	940	941	1M155	[10					
	942	946	4	1/3	000	13			0	103	7				

a-terrated

Helium Concentration in Field Screen Samples is Less than 5% of Minimum Concentration in the Shroud?

No

Yes _____

Sample Collection

Date	Time	Sample ID		Summa Canister ID	Flow Controller #	Vaccum Gage #	Initial Vacuum (in of Hg)	Final Vacuum (in Hg)
16-5-04	948-956	552		6412	602999001	M AN 316-686	-30	- 5
							<u></u>	

Attachment B

Boring Logs

PRO.	IECT:			29	960 Ca	CASTR stro V	O VALLEY BLVD. alley, California	Log of	Boring G	W-1 PAGE 1 C	DF 1
Borin	g location	:	See S	ite P	lan, F	igure	2		Logged by:	Joel Greger	
Date	started: 1	0/5/	09			5	Date finished: 10/5/09		Drilled By:	Vironex	
Drillir	ng method	d: Ge	eopro	be							
Hamr	ner weiah	t/dro	 ; ;				Hammer type:				
Samp	ler:		I								
	SA	MPLE	S		-						
PTH eet)	Sampla	ole	≥t	ery t)	udd)	DIOG	MATERIAL	DESCRIPTIO	NC		
E DE	Number	Samp	Cou	Recov (fee	NNO	ПТНС					
				_			4-inch Asphalt over sand and grav	el base			
1											
						FILL					
2—											_
_											
3-							SILT (ML) liaht brown, sliahtly moist, stiff				_
						ML	becoming dark brown, small roots	5			
4-						$\left - \right $	CLAYEY SILT (ML)				
						ML	dark greenish brown, slightly moi	st to moist, stil	ff		
5 —							SANDY SILT (ML)				
							orangish brown				
6-											
7_						ML					
8-											
							CLAYEY SILT (ML) olive green, moist				
9—							0				_
10 —						ML					_
							∇				
11 —							becoming saturated, small roots				
12											
12-							CLAYEY SILT (ML), becoming				
13 —							sand, very fine grained, saturated,	stiff			_
14 —											_
15 —											
						ML	SANDY SILT (ML) brown with 10 to 15?? subround	ed aravel up to	o 1/2 inch diamet	ter saturated s	stiff
16 —											
17 —											_
10_											
10											
19 —											_
20											
Borin surfa	g terminateo ce.	l at a d	epth o	f 16 fee	et belo	w grou	nd		201	Date:	Figure:
Borin Grou	g backfilled v ndwater enco	with tr ounter	emie pi red at a	ipe. depth	of 10.	9 feet d	uring	End	point.	10/12/2009	A-1
drillir	ng.						-	Strategy. Sc	cience. Sustainability.		

г

Attachment C

Laboratory Analytical Report

McCampbell An "When Quality	nalytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
Endpoint	Client Project ID: 2960 Ca	asro Valley	Date Sampled:	10/05/09		
98 Battery Street, Suite 200			Date Received:	10/05/09		
San Francisco, CA, 94111	Client Contact: Mehrdad	Javaher	Date Reported:	10/09/09		
	Client P.O.:		Date Completed:	10/09/09		

WorkOrder: 0910092

October 09, 2009

Dear Mehrdad:

Enclosed within are:

- 1) The results of the 7 analyzed samples from your project: **2960 Casro Valley**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

																			(09	71	00	39	12	2		2017-							
	M Web Telephor	ICCAMPI site: www.nec ne: (877) 252-	BELL 1534 WIL PITTSBUE amobell.r 9262	ANAI LOW PAS RG, CA 945 om Emai	YT s RO/ 565-17 il: ma	ICA ol in@m Fi	ccan	IN apbc 925	IC.	m 2-92	269	(allered)			TI	URI I Ge	N A	RC	C)U	HA ND r El	TI DF	N C Me)F	C PE		H C	24 24 2 E)Y] HR xce	R	EC 48 1	CO I HR W	RI 7. rite) 2 HR 0 n	5 DAY (DW)
F	Report To: M	phrdad	lave he	nen Bi	ill To	E	nd	00	im	P	Roman and A			+	ert commune		Contraction of	Principles	Langer	A	aly	sis l	Reg	nes	t		encoursed	-	per post ber		1	Othe	r	Comment
	Company: En	Point Battery	St. H	200				,		1	1-			-	8015)			UB&F)				ngeners			List .						t			Filter Samples
ł	Sontron	22520	CA	E	-Mai	im	ava	ner	Tan	240	1m	208.0		-	+			520 1				Col			0			020)	120)		5			for Metal
	Tele: (370) 5	73530	6	F	ax: (<. NT)	Q'A		-1	211	7	1	-1	1.88	9921		12	8.1)	0		clors		des)	801		(8)	9/6	0/6		0			analysis:
ł	Project #:	20/1 1-0	hav-	P.	rojec	T Nan	ie:Z	KU	(a	SM	00	al	1ey	4	(602	02/18	6	(166	s (4]	HAN	(des)	Aro		rhici	A	(9	Nd	609	601	(0)	1	5		105/190
ŀ	Project Location:	cha cas	to rai	ing DI		Can	5 14	00	a fi	-	7			-	Gas	PA 6	(803	ease.	rhon	321 (estic	TN	cides	1 He	20	100	VHS	00.8	90.8	/ 697	D	2		
ľ	Sampter Signatur	e:	SAMP	PLING	50	ters	N	1A7	RD	<	N PR	IET ESI	HOD	D	SE Hd.L 3	NEV (E)	Motor OH	OII & Gr	Hydroca	8010 81	081 (CI P	CB's ON	(NP Pesti	(Acidic C	\$260 (V)	/ 8270 (S ¹	/ 8310 (P/	(200.7/2	209.7 / 20	0.8 / 6010	ad	0		
	SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Container	Type Contair	Water	Soil	Air Sludge	Other	ICE	HCL	HNO ₃	Other	MTBE / BTEX &	MTBE / BTEN C	VITE as Diesel / N	Total Petroleum	Total Petroleum	EPA 502.2 / 601	EPA 505/ 608 / 8	EPA 608 / 8082 I	EPA 507/ 8141	EPA 515/ 8151	EPA 524.2 / 624	EPA 525.2 / 625	EPA 8270 SIM	CAM 17 Metals	LUFT 5 Metals (Lead (200.7 / 200	7015	2		
59	GW-1		10-5-09	1240 AM	3	YOU	×	1		1	4	X		T			475741					-			X		-		-	and the second s	1	an all this could		
I	55-1			1020AM	1	Sin.		>	1		1			T																	X			
I	55-2			95TAM	T	T		>	1	-	1	1		1											1		1	1		T	X			
I	SUI			11/ LAM		1				+	1	1	1	1					-	-						1	1	T	-	1	X			
	51/ 3		1-1	1049Am		++			-	1	1	1		-											-	-		1	1	1	X	-		
ł	814			17 54 PM	5				\$	-	+	1	+-+	+					-						-	-	-	1	1	-	Y		-	
	Cempsi		11	1229PM	1	L		X	^	1	X									X														
																									-				-	+				
										-				-														+	+	-				
								-																	-			-	-	-	-			
	Relineatished By	1	Date	Time	Ree	eived B			-	1	1	-		-	10	R/f ^p	1	6	-	and raise	-				1	1		1	CO	MM	ENT	'S:		L
	Joeln	10	5.09	132Pm	F	MA L	50	-	Tec	In	81	R			GC	DOD	cor	TIG	ION	-	-								2.22					
	Relinquished By:	opucer AA	Date:	Time: 15-3(Rec	Del	we	- 6	an	ty	T	-		-	HE DE AP PR	AD S CHL PRO	OR PRI RVF	CE A INA'I ATE (D IN	ED	IN L NTAI	AB	25												
	Dark a	L	Date:	Time:	Rec	h	hy:	a	V	1	Y	/	-		PR	ESE	RVA	TIO	VEN	DAS	03	G	MI pH		s	OTI	HER		line					

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-92	262					Work	Order:	09100)92	C	lient	Code: EP	В				
		WaterTrax	WriteOn	EDF		Excel		Fax	Ŀ	🖌 Email		HardC	ору	Third	Party	□ J-	flag
Report to:							Bill to:						Req	uested T	TAT:	5 (days
Mehrdad Javahe Endpoint 98 Battery Stree San Francisco, (415-706-8935	er t, Suite 200 CA 94111 FAX	Email: n cc: PO: ProjectNo: 2	nehrdad@en 960 Casro V	idpoint-inc.com /alley			Ac En 98 Sa cag	counts dpoint Battery n Franc ge2usa	Payable Street, isco, C @aol.c	e Suite 2 A 9411 om	200 1		Dat Dat	e Recei e Printe	ved: ?d:	10/05/ 10/05/	2009 '2009
									Req	uested	Tests	(See lege	end b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0910092-001	GW-1		Water	10/5/2009 12:40			Α	А									
0910092-002	SS-1		Soil Vapor	10/5/2009 10:20					А								
0910092-003	SS-2		Soil Vapor	10/5/2009 9:56					Α								
0910092-004	SV1		Soil Vapor	10/5/2009 11:16					А								
0910092-005	SV3		Soil Vapor	10/5/2009 10:49					А								
0910092-006	SV4		Soil Vapor	10/5/2009 12:38					А								

10/5/2009 12:29

Test Legend:

0910092-007

1	8010BMS_S		2	8010BMS_V
6			7	
11		1	12	

8010BMS_W	
	Γ

Soil

3	PREDF REPORT
8	

А

4	TO15-8010_SOIL(UG/M3)
9	

5	
10	

The following SampIDs: 002A, 003A, 004A, 005A, 006A contain testgroup.

CompS1

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Ana Venegas

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name: Endpoint				Date a	and Time Received:	10/5/2009	5:15:07 PM
Project Name: 2960 Casro	Valley			Check	dist completed and r	eviewed by:	Ana Venegas
WorkOrder N°: 0910092	Matrix Soil/Soil Va	oor/Wat	<u>er</u>	Carrie	r: <u>Derik Cartan (N</u>	MAI Courier)	
	<u>Chair</u>	n of Cu	stody (C	OC) Informa	ation		
Chain of custody present?		Yes	\checkmark	No 🗆			
Chain of custody signed when re	linquished and received?	Yes	\checkmark	No 🗆			
Chain of custody agrees with sa	mple labels?	Yes	\checkmark	No 🗌			
Sample IDs noted by Client on CC	C?	Yes	\checkmark	No 🗆			
Date and Time of collection noted	by Client on COC?	Yes	✓	No 🗆			
Sampler's name noted on COC?		Yes	✓	No 🗆			
	<u>s</u>	ample	Receipt	Information	1		
Custody seals intact on shipping	container/cooler?	Yes		No 🗆		NA 🗹	
Shipping container/cooler in good	l condition?	Yes	\checkmark	No 🗆			
Samples in proper containers/bo	ttles?	Yes	\checkmark	No 🗆			
Sample containers intact?		Yes	\checkmark	No 🗆			
Sufficient sample volume for indi	cated test?	Yes	✓	No 🗌			
	Sample Prese	rvatior	n and Ho	ld Time (HT)) Information		
All samples received within holding	ng time?	Yes	✓	No 🗌			
Container/Temp Blank temperatur	re	Coole	r Temp:	1.6°C		NA 🗆	
Water - VOA vials have zero hea	adspace / no bubbles?	Yes	\checkmark	No 🗆	No VOA vials subm	itted	
Sample labels checked for corre	ct preservation?	Yes	\checkmark	No 🗌			
Metal - pH acceptable upon recei	pt (pH<2)?	Yes		No 🗆		NA 🗹	
Samples Received on Ice?		Yes	\checkmark	No 🗆			
	(Ісе Тур	e: WE	TICE)			
* NOTE: If the "No" box is check	ed, see comments below.						

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell Ar	nalyti Counts"	cal, In	<u>C.</u>		1534 Willow Web: www.mccam Telephone:	Pass Road, Pittsburg, CA pbell.com E-mail: main 877-252-9262 Fax: 92:	. 94565-1701 @mccampbell.c 5-252-9269	com				
Endpoint		Client Pr	oject ID:	2960 C	asro Valley	Date Sampled:	10/05/09					
						Date Received:	10/05/09					
98 Battery Street, Suite 200	ľ	Client C	ontact: M	ehrdad	Javaher	Date Extracted:	10/05/09					
San Francisco, CA 94111	-	Client P.	0.:			Date Analyzed	10/07/09					
Halogenated	Volatil	e Organi	cs by P&T	' and G	C-MS (8010 Ba	sic Target List)*						
Extraction Method: SW5030B		Anal	lytical Method	: SW826	0B	8 • • • •	Work Order:	0910092				
Lab ID	091009	92-007A										
Client ID	Cor	npS1		- Reporting	Limit for $\tilde{c} = 1$							
						_		-1				
Matrix		S				_	s	W				
DF		1										
Compound			-	Conce	entration		mg/kg	μg/L				
Bromodichloromethane	1	١D					0.005	NA				
Bromoform	1	ND					0.005	NA				
Bromomethane	1	ND					0.005	NA				
Carbon Tetrachloride	1	ND					0.005	NA				
Chlorobenzene	1						0.005	NA				
Chloroetnane	r N						0.005	NA				
hloromethane		ND ND					0.005	NA NA				
Dibromochloromethane	N						0.005	NA				
1 2-Dibromoethane (EDB)	I	ND					0.003	NA				
.2-Dichlorobenzene		ND					0.005	NA				
1,3-Dichlorobenzene	1	ND					0.005	NA				
1,4-Dichlorobenzene	1	ND					0.005	NA				
Dichlorodifluoromethane	1	ND					0.005	NA				
1,1-Dichloroethane	1	ND					0.005	NA				
1,2-Dichloroethane (1,2-DCA)	1	ND					0.004	NA				
1,1-Dichloroethene	1	ND					0.005	NA				
cis-1,2-Dichloroethene	1	ND ID					0.005	NA				
trans-1,2-Dichloroethene	1	ND ID					0.005	NA				
1,2-Dichloropropane	1						0.005	NA NA				
trans 1.3 Dichloropropene	I						0.005	NA NA				
Freon 113	I						0.005	NA				
Methylene chloride	N	ND					0.005	NA				
1,1,1,2-Tetrachloroethane	1	ND					0.005	NA				
1,1,2,2-Tetrachloroethane	١	ND					0.005	NA				
Tetrachloroethene	١	ND					0.005	NA				
1,1,1-Trichloroethane	1	ND					0.005	NA				
1,1,2-Trichloroethane	1	ND					0.005	NA				
Trichloroethene	1	١D					0.005	NA				
Trichlorofluoromethane	1	ND					0.005	NA				
Vinyl Chloride	ſ	ND					0.005	NA				
l		Su	rrogate Re	coverie	s (%)	-						
%SS1:		86										
%SS2:	1	12										
%SS3:	1	02										
Comments												
* water and vapor samples are reported in extracts are reported in mg/L, wipe sampl ND means not detected above the reporti	water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.											

McCampbell Ana "When Ouality C	alytical, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
Endpoint	Client Pr	oject ID:	2960 Casro Valley	Date Sampled:	10/05/09					
_				Date Received:	10/05/09					
98 Battery Street, Suite 200	Client C	ontact: M	lehrdad Javaher	Date Extracted:	10/07/09					
San Francisco, CA 94111	Client P.	0.:		Date Analyzed	10/07/09					
Halogenated	Volatile Organi	rs hv P&T	and GC-MS (8010 Ba	sic Target List)*						
Extraction Method: SW5030B	Anal	ytical Method	1: SW8260B	She Turger List)	Work Order:	0910092				
Lab ID	0910092-001A					T T T T T T T T T T				
Client ID	GW-1									
Matrix	W				s	w				
DF	1									
Compound			Concentration		µg/kg	μg/L				
Bromodichloromethane	ND				NA	0.5				
Bromoform	ND				NA	0.5				
Carbon Tetrachloride	ND				NA NA	0.5				
Chlorobenzene	ND				NA	0.5				
Chloroethane	ND				NA	0.5				
Chloroform	ND				NA	0.5				
Chloromethane	ND				NA	0.5				
Dibromochloromethane	ND				NA	0.5				
1,2-Dibromoethane (EDB)	ND				NA	0.5				
1,2-Dichlorobenzene	ND				NA	0.5				
1,3-Dichlorobenzene	ND				NA	0.5				
1,4-Dichlorobenzene Dichlorodifluoromethane	ND ND				NA NA	0.5				
1.1-Dichloroethane	ND				NA	0.5				
1,2-Dichloroethane (1,2-DCA)	ND				NA	0.5				
1,1-Dichloroethene	ND				NA	0.5				
cis-1,2-Dichloroethene	ND				NA	0.5				
trans-1,2-Dichloroethene	ND				NA	0.5				
1,2-Dichloropropane	ND				NA	0.5				
cis-1,3-Dichloropropene	ND				NA	0.5				
Freen 113	ND ND				NA NA	10				
Methylene chloride	ND				NA	0.5				
1,1,1,2-Tetrachloroethane	ND				NA	0.5				
1,1,2,2-Tetrachloroethane	ND				NA	0.5				
Tetrachloroethene	ND				NA	0.5				
1,1,1-Trichloroethane	ND				NA	0.5				
1,1,2-Trichloroethane	ND				NA	0.5				
Trichlorofluoromathana	ND ND				NA	0.5				
Vinyl Chloride	ND ND				NA NA	0.5				
	<u> </u>	nnogoto De	(9/)		1111	0.5				
%SS1:	91	II Ogate K								
%SS2:	100									
%SS3:	99									
Comments	b1									
 * water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe. ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis. 										
# surrogate diluted out of range or surrogat	e coelutes with an	other peak.								

b1) aqueous sample that contains greater than ~1 vol. % sediment

McCampbell An	McCampbell Analytical, Inc. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 "When Ouality Counts" Web: www.mccampbell.com "When Ouality Counts" Telephone: 877-252-9262												
Endpoint		Client Pr	oiect ID:	2960 C	asro Vallev	Date Sampled:	10/05/09						
Lindpoint		Chemiti	oject ID.	2700 0	usio vancy	Date Received:	10/05/09						
98 Battery Street, Suite 200	F	Client C	ontact: M	ahrdad	Iavahar	Date Extracted:	10/08/00						
San Francisco, CA 0/111	-			emuau	Javanei	Date Extracted.	10/00/09						
San Francisco, CA 94111		Client P.	0.:			Date Analyzed	10/08/09						
	Haloge	nated Vo	latile Orga	nic Co	mpounds in µg/n	n ^{3*}							
Extraction Method: TO15		Anal	Work Order:	0910092									
Lab ID	09100	92-002A	0910092	-003A	0910092-004A	0910092-005A							
Client ID	S	S-1	SS-2	2	SV1	SV3	Reporting	Limit for					
							DF	=1					
Matrix	Soil	Vapor	Soil Va	apor Soil Vapor		Soil Vapor							
DF		1	1		1	1	C - 11 V	117					
Initial Pressure (psia)	13	3.82	14.8	8	13.98	14.77	Soli vapor	w					
Final Pressure (psia)	27	1.54	29.6	8	27.9	29.48		<u> </u>					
Compound				Conce	ntration		$\mu g/m^3$	ug/L					
Bromodichloromethane	1	ND	ND	I	ND	ND	14	NA					
Bromoform	1	ND	ND		ND	ND	21	NA					
Bromomethane	1	ND	ND		ND	ND	7.9	NA					
Carbon Tetrachloride	<u> </u>		ND ND		ND ND	ND ND	13	NA					
Chloroethane	<u>ו</u> ן	<u>ND</u> ND	ND		ND	ND	9.4 5.4	NA					
hloroform		ND	ND		ND	ND	9.9	NA					
hloromethane		ND	ND		ND	ND	4.2	NA					
Dibromochloromethane	1	ND	ND		ND	ND	17	NA					
1,2-Dibromoethane (EDB)	1	<u>ND</u>	ND ND		ND	ND	16	NA					
1.2-Dichlorobenzene	ND		ND		ND	ND	12	NA					
1,4-Dichlorobenzene	ND		ND		ND	ND	12	NA					
Dichlorodifluoromethane	ND		ND		ND	ND	10	NA					
1.1-Dichloroethane	1	ND	ND		ND	ND	8.2	NA					
1.2-Dichloroethane (1.2-DCA)	1	<u>ND</u>	ND ND		ND	ND	8.2	NA					
1.1-Dichloroethene	<u>ו</u> ז	<u>ND</u>	ND ND		ND 21	ND ND	8.1	NA NA					
trans-1.2-Dichloroethene	1	ND	ND		ND	ND	8.1	NA					
1.2-Dichloropropane	1	ND	ND	1	ND	ND	9.4	NA					
cis-1.3-Dichloropropene	1	ND	ND		ND	ND	9.2	NA					
trans-1.3-Dichloropropene	1	<u>ND</u>	ND ND		ND	ND	9.2	NA					
Freen 113	ו ז	ND	ND ND		ND	ND ND	14	NA NA					
Methylene chloride	1	ND	ND		ND	ND	7.1	NA					
1.1.1.2-Tetrachloroethane	1	ND	ND		ND	ND	14	NA					
1.1.2.2-Tetrachloroethane	1	ND	ND		ND	ND	14	NA					
Tetrachloroethene		<u>900</u>	1: ND	500	3000	1200	14	NA					
1.2.4-Trichlorobenzene	<u>ו</u>		ND ND		ND ND	ND ND	15	NA NA					
1.1.2-Trichloroethane	<u>ו</u> ו	<u>ND</u>	ND		ND	ND	11	NA					
Trichloroethene	1	ND	ND		800	ND	11	NA					
Trichlorofluoromethane	1	ND	ND		ND	ND	11	NA					
Vinvl Chloride	1	ND S	ND			ND	5.2	NA					
Surrogate Recoveries (%)													
%SS1: %SS2·	1	<u>96</u> 101	97	,	99	99							
%SS2: %SS3:		101 102 102 103 110 102 103 110 102 103)	107	107							
Comments													
*vapor samples are reported in µg/m ³ .													

McCampbell An	Pass Road, Pittsburg, CA bbell.com E-mail: main	94565-1701 @mccampbell.c	om					
when Ouanty	Counts	CI. D	1		Telephone:	8/7-232-9202 Fax: 92.	3-232-9209	
Endpoint		Client Pr	oject ID:	2960 C	asro Valley	Date Sampled:	10/05/09	
98 Battery Street, Suite 200				. 1 1 1	T 1	Date Received:	10/05/09	
San Francisco, CA 0/111		Client C	ontact: M	enraad	Javaner	Date Extracted:	10/08/09	
San Hancisco, CA 94111		Client P.	0.:			Date Analyzed	10/08/09	
	Haloge	enated Vo	latile Orga	nic Co	mpounds in µg/	m ^{3*}		
Extraction Method: TO15		Ana	lytical Method	l: TO15			Work Order:	0910092
Lab ID	09100	92-006A						
Client ID		SV4					Reporting	Limit for
							DF	=1
Matrix	Soil	Vapor						1
DF		1					Soil Vapor	w
Initial Pressure (psia)		<u>4.9</u>					-	
Final Pressure (psia)	2	9.75		C				/T
Compound	µg/m³	ug/L						
Bromodichloromethane		ND					14	NA
Bromoform		ND ND					21	NA NA
Carbon Tetrachloride		ND ND					13	NA
Chlorobenzene		ND					9.4	NA
Chloroethane		ND					5.4	NA
Chloroform	ND					9.9	NA	
Chloromethane	ND					4.2	NA	
Dibromochloromethane		ND ND					17	NA
1.2-Dichlorobenzene		ND					12	NA
1.3-Dichlorobenzene		ND					12	NA
1,4-Dichlorobenzene		ND					12	NA
Dichlorodifluoromethane		ND					10	NA
1.1-Dichloroethane		ND					8.2	NA
1.2-Dichloroethane (1.2-DCA)		ND					8.2	NA NA
ris-1 2-Dichloroethene							8.1	NA NA
trans-1.2-Dichloroethene		ND					8.1	NA
1.2-Dichloropropane		ND					9.4	NA
cis-1.3-Dichloropropene		ND					9.2	NA
trans-1.3-Dichloropropene		ND					9.2	NA
1.2-Dichloro-1.1.2.2-tetrafluoroethane		ND					14	NA NA
Methylene chloride							7 1	NA NA
1.1.1.2-Tetrachloroethane		ND					14	NA
1.1.2.2-Tetrachloroethane		ND					14	NA
Tetrachloroethene		110					14	NA
1.2.4-Trichlorobenzene		ND					15	NA
1.1.2 Trichloroethane		ND				+	11	NA NA
Trichloroethene		ND				1	11	NA NA
Trichlorofluoromethane		ND					11	NA
Vinvl Chloride		ND					5.2	NA
Ļ	1	Suri	ogate Reco	overies	(%)			
%SS1:		98						
%882: %882:		102					+	
Commonts	1	100	1				1	
*vapor complex are reported in us/3					I	1	<u> </u>	
vapor samples are reported in µg/m ² .								

McCampbell Analytical, Inc. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 "When Ouality Counts" Web: www.mccampbell.com Example 1 E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269													
"When Ouality Co	unts"			Telephone: 8	77-252-9262 Fax: 92	5-252-9269							
Endpoint	Client Pr	oject ID:	2960 C	asro Valley	Date Sampled:	10/05/09							
08 Dattom: Streat Swite 200					Date Received:	10/05/09							
98 Ballery Street, Suite 200	Client C	ontact: M	ehrdad	Javaher	Date Extracted:	10/08/09							
San Francisco, CA 94111	Client P.	0.:			Date Analyzed	10/08/09							
н	alogenated Vo	latile Ara	anic Co	mpounds in nI /	[*								
Extraction Mathada TO15		Work Ordon	0010002										
Extraction Method: 1015	Ana		1: 1015			work Order:	0910092						
Lab ID 0	0910092-002A	0910092	-003A	0910092-004A	0910092-005A	Donouting	Limitfor						
Client ID	55-1	55-2	2	SVI	SV3	Reporting Limit fo							
Matrix	Soil Vapor	Soil V	anor	Soil Vapor	Soil Vapor		-1						
DF	1	1	apoi	1									
Initial Pressure (psia)	13.82	14.8	8	13.98	14 77	Soil Vapor	W						
Final Pressure (psia)	27 54	29.6	8	27.9	29.48								
Compound	21.34	29.0	Conce	ntration	27.40	nL/L	11g/L						
			conce				ug/ 12						
Bromodichloromethane	ND ND	ND		ND ND	ND	2.0	NA						
Bromomethane	ND	ND		ND	ND	2.0	NA						
Carbon Tetrachloride	ND	ND		ND	ND	2.0	NA						
Chlorobenzene	ND	ND		ND	ND	2.0	NA						
Chloroethane	ND	ND		ND	ND	2.0	NA						
Chloroform	ND	ND		ND	ND	2.0	NA						
Chloromethane	ND ND	ND		ND	ND	2.0	NA						
Dibromochloromethane	ND ND	ND		ND	ND	2.0	NA						
1,2-Dibromoethane (EDB)	ND	ND		ND	ND	2.0	NA NA						
1.3-Dichlorobenzene	ND	ND		ND	ND	2.0	NA						
1.4-Dichlorobenzene	ND	ND	1	ND	ND	2.0	NA						
Dichlorodifluoromethane	ND	ND		ND	ND	2.0	NA						
1.1-Dichloroethane	ND	ND		ND	ND	2.0	NA						
1.2-Dichloroethane (1.2-DCA)	ND	ND		ND	ND	2.0	NA						
1.1-Dichloroethene	ND	ND		ND	ND	2.0	NA						
cis-1.2-Dichloroethene	ND ND	ND		5.3	ND	2.0	NA						
trans-1.2-Dichloropropage	ND ND	ND ND		ND ND	ND	2.0	NA NA						
cis-1 3-Dichloropropene	ND	ND		ND	ND	2.0	NA						
trans-1.3-Dichloropropene	ND	ND		ND	ND	2.0	NA						
1.2-Dichloro-1.1.2.2-tetrafluoroethane	ND	ND		ND	ND	2.0	NA						
Freon 113	ND	ND		ND	ND	2.0	NA						
Methvlene chloride	ND	ND		ND	ND	2.0	NA						
1.1.1.2-Tetrachloroethane	ND	ND		ND	ND	2.0	NA						
1.1.2.2-Tetrachloroethane	ND	ND	20	ND 120	ND	2.0	NA						
1 2 4 Tricklorohonzono	130	2	20	430 ND	180 ND	2.0	NA NA						
1.1.1-Trichloroethane	ND	ND		ND	ND	2.0	NA NA						
1.1.2-Trichloroethane	ND	ND		ND	ND	2.0	NA						
Trichloroethene	ND	ND		150	ND	2.0	NA						
Trichlorofluoromethane	ND	ND		ND	ND	2.0	NA						
Vinyl Chloride	ND	ND		ND	ND	2.0	NA						
	Suri	ogate Reco	overies	(%)	T	1							
%SS1:	96	97		99	99	+							
%552: % \$\$3.	101	102	2)	105	104	-							
Commonts	105		,	107	107								
*vapor samples are reported in nL/L.													

McCampbell An	alyti	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com							
"When Ouality	Counts"			•	Telephone:	877-252-9262 Fax: 92	5-252-9269				
Endpoint		Client Pr	oject ID:	2960 C	asro Valley	Date Sampled:	10/05/09				
98 Battery Street, Suite 200					x 1	Date Received:	10/05/09				
Son Francisco, CA 04111		Client C	ontact: M	ehrdad	Javaher	Date Extracted:	10/08/09				
San Francisco, CA 94111		Client P.	10/08/09								
	Halog	enated Vo	latile Org	anic Co	mpounds in nL/	L*					
Extraction Method: TO15		Ana	ytical Method	l: TO15			Work Order:	0910092			
Lab ID	09100	92-006A									
Client ID		SV4			Reporting	Limit for					
							DF	=1			
Matrix	Soil	Vapor									
DF		1					Soil Vapor	w			
Initial Pressure (psia)		4.9					-				
Final Pressure (psia)	2	9.75		~							
Compound	nL/L	ug/L									
Bromodichloromethane		ND					2.0	NA			
Bromoform		ND ND					2.0	NA			
Carbon Tetrachloride							2.0	NA			
Chlorobenzene		ND					2.0	NA			
Chloroethane		ND					2.0	NA			
Chloroform		ND					2.0	NA			
Chloromethane		ND					2.0	NA			
Dibromochloromethane		ND					2.0	NA			
1.2-Dichlorobenzene							2.0	NA NA			
1.3-Dichlorobenzene		ND					2.0	NA			
1,4-Dichlorobenzene		ND					2.0	NA			
Dichlorodifluoromethane		ND					2.0	NA			
1.1-Dichloroethane		ND					2.0	NA			
1.2-Dichloroethane (1.2-DCA)		ND ND					2.0	NA			
1.1-Dichloroethene		ND ND					2.0	NA NA			
trans-1.2-Dichloroethene		ND					2.0	NA			
1.2-Dichloropropane		ND					2.0	NA			
cis-1.3-Dichloropropene		ND					2.0	NA			
trans-1.3-Dichloropropene		ND					2.0	NA			
1.2-Dichloro-1.1.2.2-tetrafluoroethane		ND					2.0	NA			
Freon 115 Methylene chloride							2.0	NA NA			
1.1.1.2-Tetrachloroethane		ND					2.0	NA			
1.1.2.2-Tetrachloroethane		ND					2.0	NA			
Tetrachloroethene		16					2.0	NA			
1.2.4-Trichlorobenzene		ND					2.0	NA			
1.1.1-Trichloroethane		ND					2.0	NA			
Trichloroethene							2.0	NA NA			
Trichlorofluoromethane		ND					2.0	NA			
Vinyl Chloride		ND					2.0	NA			
l		Suri	ogate Reco	overies	(%)	- 1					
%SS1:		98					<u> </u>				
%SS2:		102					+				
		100	I			 	1				
Lomments			L				<u> </u>				
"vapor samples are reported in nL/L.											

McCampbell Analytical, Inc. "When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil			QC Matri	x: Soil			BatchID: 46185 V				NorkOrder 0910092		
EPA Method SW8260B	Extra	ction SW	5030B				Spiked Sample ID: 0910020-00						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)		
/ indiyio	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Chlorobenzene	ND	0.050	113	93.9	18.2	104	86.2	18.3	60 - 130	30	60 - 130	30	
1,2-Dibromoethane (EDB)	ND	0.050	95	82.6	14.0	89.1	74.8	17.4	60 - 130	30	60 - 130	30	
1,2-Dichloroethane (1,2-DCA)	ND	0.050	118	101	15.5	99.9	84.5	16.7	60 - 130	30	60 - 130	30	
1,1-Dichloroethene	ND	0.050	129	110	15.9	109	92.5	16.1	60 - 130	30	60 - 130	30	
Trichloroethene	ND	0.050	130	108	18.5	114	94.2	19.2	60 - 130	30	60 - 130	30	
%SS1:	106	0.12	71	72	0.496	71	72	1.83	70 - 130	30	70 - 130	30	
%SS2:	102	0.12	94	94	0	95	95	0	70 - 130	30	70 - 130	30	
%SS3:	113	0.012	87	89	3.03	87	86	1.02	70 - 130	30	70 - 130	30	
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE													

BATCH 46185 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0910092-007A	10/05/09 12:29 PM	I 10/05/09	10/07/09 3:59 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and freon 113 may occasionally appear in the method blank at low levels.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water			QC Matri	x: Water		BatchID: 46224			WorkOrder 0910092				
EPA Method SW8260B	Extra	ction SW	5030B					5	Spiked Sar	nple ID	: 0910055-0	010A	
Analyte	Sample	ample Spiked MS MSD MS-MS					LCSD	LCS-LCSD	Acc	Acceptance Criteria (%)			
/ indiyio	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Chlorobenzene	ND	10	101	97.7	3.25	87.1	87	0.0796	70 - 130	30	70 - 130	30	
1,2-Dibromoethane (EDB)	ND	10	101	105	3.67	99.3	102	2.59	70 - 130	30	70 - 130	30	
1,2-Dichloroethane (1,2-DCA)	ND	10	95.4	98.6	3.33	109	115	4.77	70 - 130	30	70 - 130	30	
1,1-Dichloroethene	ND	10	111	105	6.24	106	106	0	70 - 130	30	70 - 130	30	
Trichloroethene	ND	10	114	112	1.42	101	105	3.65	70 - 130	30	70 - 130	30	
%SS1:	76	25	90	94	3.78	122	127	3.60	70 - 130	30	70 - 130	30	
%SS2:	89	25	101	99	1.68	95	96	0.894	70 - 130	30	70 - 130	30	
%SS3:	80	2.5	104	103	1.46	94	102	8.59	70 - 130	30	70 - 130	30	
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE													

BATCH 46224 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0910092-001A	10/05/09 12:40 PM	I 10/07/09	10/07/09 4:31 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and freon 113 may occasionally appear in the method blank at low levels.

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR TO15

W.O. Sample Matrix: Soil Vapor			QC Matrix	x: Soil V	apor		BatchID: 46248 WorkOrder: 09				Order: 09100	92
EPA Method TO15	Extra	ction TO	15					5	Spiked Sar	nple ID): N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	
Analyte	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
1,3-Butadiene	N/A	25	N/A	N/A	N/A	85.3	89.9	5.20	N/A	N/A	70 - 130	30
Chlorobenzene	N/A	25	N/A	N/A	N/A	108	108	0	N/A	N/A	70 - 130	30
1,2-Dibromoethane (EDB)	N/A	25	N/A	N/A	N/A	113	114	1.13	N/A	N/A	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	N/A	25	N/A	N/A	N/A	106	107	0.885	N/A	N/A	70 - 130	30
1,2-Dichloro-1,1,2,2-tetrafluoroetha	N/A	25	N/A	N/A	N/A	88.9	96.6	8.26	N/A	N/A	70 - 130	30
Freon 113	N/A	25	N/A	N/A	N/A	103	106	3.01	N/A	N/A	70 - 130	30
1,1,1,2-Tetrachloroethane	N/A	25	N/A	N/A	N/A	111	112	0.743	N/A	N/A	70 - 130	30
1,1,2,2-Tetrachloroethane	N/A	25	N/A	N/A	N/A	97.5	98.2	0.654	N/A	N/A	70 - 130	30
1,2,4-Trichlorobenzene	N/A	25	N/A	N/A	N/A	81.8	84.5	3.25	N/A	N/A	70 - 130	30
Trichloroethene	N/A	25	N/A	N/A	N/A	105	104	0.726	N/A	N/A	70 - 130	30
Xylenes	N/A	75	N/A	N/A	N/A	109	109	0	N/A	N/A	70 - 130	30
%SS1:	N/A	500	N/A	N/A	N/A	105	106	1.41	N/A	N/A	70 - 130	30
%SS2:	N/A	500	N/A	N/A	N/A	109	109	0	N/A	N/A	70 - 130	30
%SS3:	N/A	500	N/A	N/A	N/A	109	109	0	N/A	N/A	70 - 130	30
All target compounds in the Method F	Blank of this	extraction	hatch we	re ND les	s than the	method R	L with th	e following	exceptions:			

NONE

BATCH 46248 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0910092-002A	10/05/09 10:20 AM	10/08/09	10/08/09 12:29 PM	0910092-003A	10/05/09 9:56 AM	10/08/09	10/08/09 1:18 PM
0910092-003A	10/05/09 9:56 AM	10/08/09	10/08/09 7:09 PM	0910092-004A	10/05/09 11:16 AM	10/08/09	10/08/09 2:06 PM
0910092-004A	10/05/09 11:16 AM	10/08/09	10/08/09 7:52 PM	0910092-005A	10/05/09 10:49 AM	10/08/09	10/08/09 2:56 PM
0910092-005A	10/05/09 10:49 AM	10/08/09	10/08/09 8:32 PM	0910092-006A	10/05/09 12:38 PM	10/08/09	10/08/09 3:45 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

Attachment D

Well Survey Results

WELL SURVEY - 2960 Castro Valley Blvd.											
PRODUCTION WELLS OR UNKNOWN USE											
T/R	Section	Address	Address Owner Drill date Elev. Depth Water depth								
3S/2W	9A 1	TYEE CT.	/EE CT. SAM WALLACE 7/53 0 52 0 0								

T/R = Township/Range

IRR = Irrigation