RECEIVED

2:43 pm, Feb 27, 2009

Alameda County Environmental Health

May 8, 2007

PHASE II SUBSURFACE INVESTIGATION

2960 Castro Valley Boulevard Castro Valley, California 94546

Project No. 271771

Prepared For

Gabriel Chew C/O Jim Roessler RR Retail Group 150 Post Street. Suite 630 San Francisco, CA 94108

Prepared By

AEI Consultants 2500 Camino Diablo, Suite 100 Walnut Creek, CA 94597 (925) 944-2899

May 8, 2007

Gabriel Chew C/O Jim Roessler RR Retail Group 150 Post Street. Suite 630 San Francisco, CA 94108

Subject: Phase II Subsurface Investigation 2960 Castro Valley Boulevard Castro Valley, California 94546 Project No. 271771

Dear Mr. Chew:

The following letter report describes the activities and results of the Phase II Subsurface Investigation performed by AEI Consultants at the above referenced property (Figure 1: Site Location Map). The investigation included drilling six (6) soil borings on the subject property. This Phase II Investigation was requested by Gabriel Chew as part of a due diligence investigation.

I Background

The subject property is located on the north side of Castro Valley Boulevard in a mixed commercial and residential area of Castro Valley. The property is the western most unit of a strip mall improved with a multiple unit single-story building. The subject property is currently vacant, but was previously occupied by the Dry Clean Club of America.

The immediately surrounding properties consist of the strip mall to the east, residential homes to the north and west across Anita Street, and a Chevron gasoline service station immediately to the south, Figure 2: Site map.

Based upon groundwater gradient at the Chevron Station immediately south of the subject site, groundwater flow beneath the subject property is inferred to be to the southwest.

In August 2002 Property Solutions, Incorporated (Property Solutions) performed a Limited Phase II Subsurface Investigation (Phase II) at the subject site. The Phase II identified low concentrations of Tetrachloroethene (PCE) a chlorinated solvent used as a dry cleaning fluid. PCE concentrations reported in soil samples ranged from not detected at a reporting limit of 5 micrograms per kilogram (ND<5.0 μ g/kg) to 140 μ g/kg. PCE reported in groundwater samples ranged from concentrations of ND<5.0 micrograms per liter (μ g/L) to 6.5 μ g/L. Soil gas

AEI Consultants AEI Project No. 271771 May 8, 2007 Page 2

samples were reported as ND<5 μ g/L. A copy of the report (partial) provided to AEI is included as Appendix A.

II Investigative Efforts

On April 12, 2007, AEI applied for a drilling permit for up to seven (7) soil borings at the site, which was approved on April 17, 2007. A copy of the permit is attached as Appendix B. On the morning of April 17, 2006, AEI inspected the site marked multiple borings inside the building and in the parking area at the site for Underground Service Alert. AEI performed the subsurface investigation at the property on April 26, 2007. Six (6) soil borings were advanced in parking or landscaped areas outside of the building and inside the unoccupied unit, Figure 3: Boring Location Map.

Soil boring SB-1 was located in the parking area in front of the unit. Boring SB-2 was located under the edge of the tree in the landscaped area at the southwest corner of the unit. Boring SB-3 was located in the parking area on the east end of the unit. Soil boring SB-2 and SB-3 had to be moved from their original locations due to underground utilities (roof and storm drains) encountered during hand clearing the soil borings prior to advancing the borings with the GeoProbe.

Boring SB-4 was a shallow boring added to the scope of work. The purpose of the boring that was located in a storage closet inside the dry cleaning facility was to evaluate the shallow soil where a white effervescence was present around a crack in the floor. Soil borings SB-5 and SB-6 were drilled in the center and southwest corner of the footprint of the former dry cleaning machine.

Soil boring SB-1 through SB-3 and SB-5 and SB-6 were drilled into the groundwater to depths of 16 to 19 feet bgs. Soil boring SB-4 was drilled to a depth of 4 feet bgs.

Soil Sample Collection

The borings were advanced by EnProb Environmental Probing (EnProb), a California licensed driller (C-57 - 777007), using a Geoprobe[®] 5410 truck mounted drilling rig and 540MT limited space unit.

A continuous sediment core was cut from the surface to the total depth of each boring. The cores were cut using an approximately 2-inch outer diameter drive sampler 4 feet in length, which contained 1.5-inch diameter acrylic liners.

At least one sediment sample was removed from each 4 foot core from for possible chemical analysis. An adjacent sample was placed in a 1-quart zipper locking plastic bag and used for field screening. The samples were screened using a Mini-Rae photo ionization detector (PID). The tip of the PID was inserted into the 1-quart bag through a small diameter hole poked into the bag. The PID readings were recorded on the boring logs. An AEI Professional Geologist logged

AEI Consultants AEI Project No. 271771 May 8, 2007 Page 3

the borings using the Unified Soil Classification System. The soil screening data and any other observations of odor and or color are presented on the borings logs found in Appendix C.

The soil samples retained for possible chemical analysis were sealed with Teflon film and plastic end-caps. Each sample was labeled with at a minimum, company name and project number, unique sample identifier, sampler's name, time and date of collection. The samples were put into individual zipper locking bags and placed in a cooler with water ice, pending same day transportation to the laboratory. The remainder of each core was examined and described by the AEI geologist.

Groundwater Sample Collection

Upon drilling to the target depth, temporary ³/₄" diameter slotted PVC casing was inserted into each boring to facilitate collection of groundwater samples. Very moist sediments were typically encountered at a depths ranging from 9 to 12 feet bgs in the soil borings, however water was typically not present until the boring was extended below 12 feet bgs.

Groundwater samples were collected using a small diameter bailer and collected into three 40-ml VOA vials. The VOAs were filled so that there was no headspace or visible air bubbles within the vials. Each sample was labeled with at minimum, company name and project number, unique sample identifier, sampler's name, time and date of collection, and then placed in a cooler with wet ice to await transportation to the laboratory.

Following sample collection, the temporary PVC casing was removed and each boring was backfilled with neat cement grout.

Laboratory Analysis

On April 26, 2007, the soil and groundwater samples were transported to McCampbell Analytical Inc. (Department of Health Services Certification #1644) sample receiving station at Enviro-Tech in Martinez, California by the AEI geologist, under appropriate chain of custody protocol for analysis.

One soil sample was analyzed from all borings except SB-2. Soil samples were analyzed for halogenated volatile organic compounds (HVOCs), EPA Method 8010 list by EPA Method 8260. Groundwater samples were analyzed for HVOCs, EPA Method 8010 list by EPA Method 8260. Analytical results and chain of custody documents are included as Appendices D and E.

III Findings

Soil Analysis Results

The results of HVOC analyses of soil samples reported all analytes except PCE as non detectable. PCE concentrations ranged from ND<0.005 mg/kg (SB-1, SB-4, SB-6) to 0.076 mg/kg (SB-5). No soil samples were analyzed from boring SB-2.

The results of chemical analysis on soil and groundwater samples are summarized on Table 1.

Groundwater Analysis Results

The results of HVOC analyses of groundwater samples reported all analytes except PCE as non detectable. PCE concentrations ranged from ND<0.5 μ g/L (SB-1 and SB-2) to 6.7 μ g/L (SB-5). No groundwater sample was collected and analyzed from shallow boring SB-4.

The results of the groundwater analyses from this investigation are summarized on Table 1.

IV Conclusions

The concentrations of PCE reported in the soil and groundwater samples analyzed are consistent with the previous investigation which indicates that a minor release has occurred at the subject site. Concentrations of PCE present in the soil do not exceed San Francisco Bay Regional Water Quality Control board guidelines (ESLs) for shallow soil in either commercial/industrial of residential settings. Concentrations of PCE present in the groundwater do not exceed San Francisco Bay Regional Water Quality Control board (RWQCB) guidelines (ESLs) for protection of the groundwater where the groundwater has no current or future potential as drinking water for commercial/industrial properties. One groundwater sample concentration (SB-5-W 6.7 μ g/L) from directly underneath the location of the former dry cleaning machine exceeds the ESL of 5.0 μ g/L for groundwater with current or potential use as drinking water, however AEI does not believe the local shallow groundwater has a current or potential use as drinking water.

V Recommendations

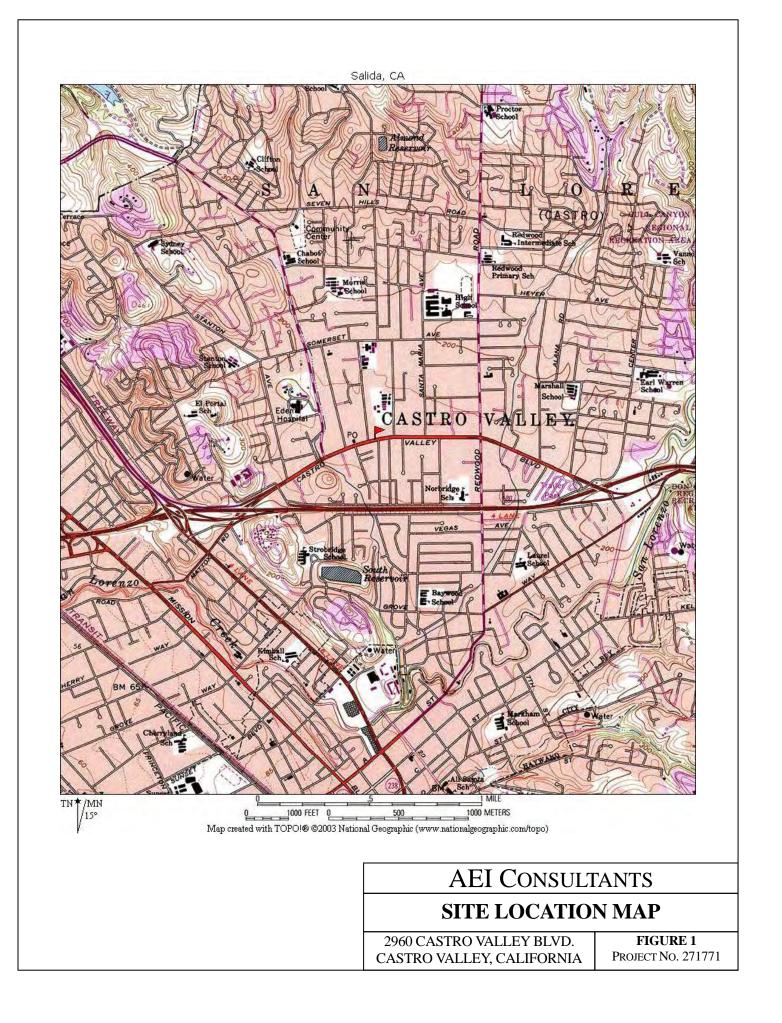
Based on results of this and previous investigations it is apparent that a minor release of PCE occurred at the former dry cleaning operation. The concentrations detected are very low and are not expected to require remedial action. However since a release has impacted the soil and groundwater, reporting to the appropriate agency is required, as recommended by Property Solutions. In the case of Alameda County, the local oversight agency is the Alameda County Health Care Services Agency (ACHCSA). AEI recommends that a complete copy of this report be submitted to the ACHCSA.

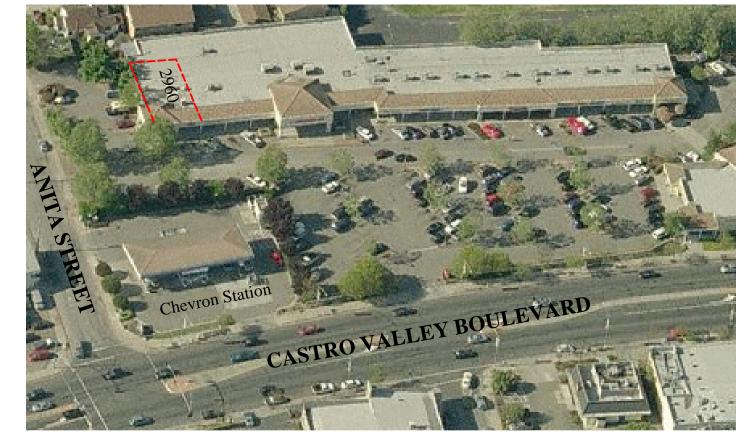
AEI Consultants AEI Project No. 271771 May 8, 2007 Page 5

eter J. McIntyre

nior Project Manager

VI Report Limitation


This report presents a summary of work completed by AEI Consultants. The completed work includes observations and descriptions of site conditions encountered. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide the requested information, but it cannot be assumed that they are representative of areas not sampled. All conclusions and/or recommendations are based on these analyses and observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document.


These services were performed in accordance with generally accepted practices, in the environmental engineering and construction field, which existed at the time and location of the work.

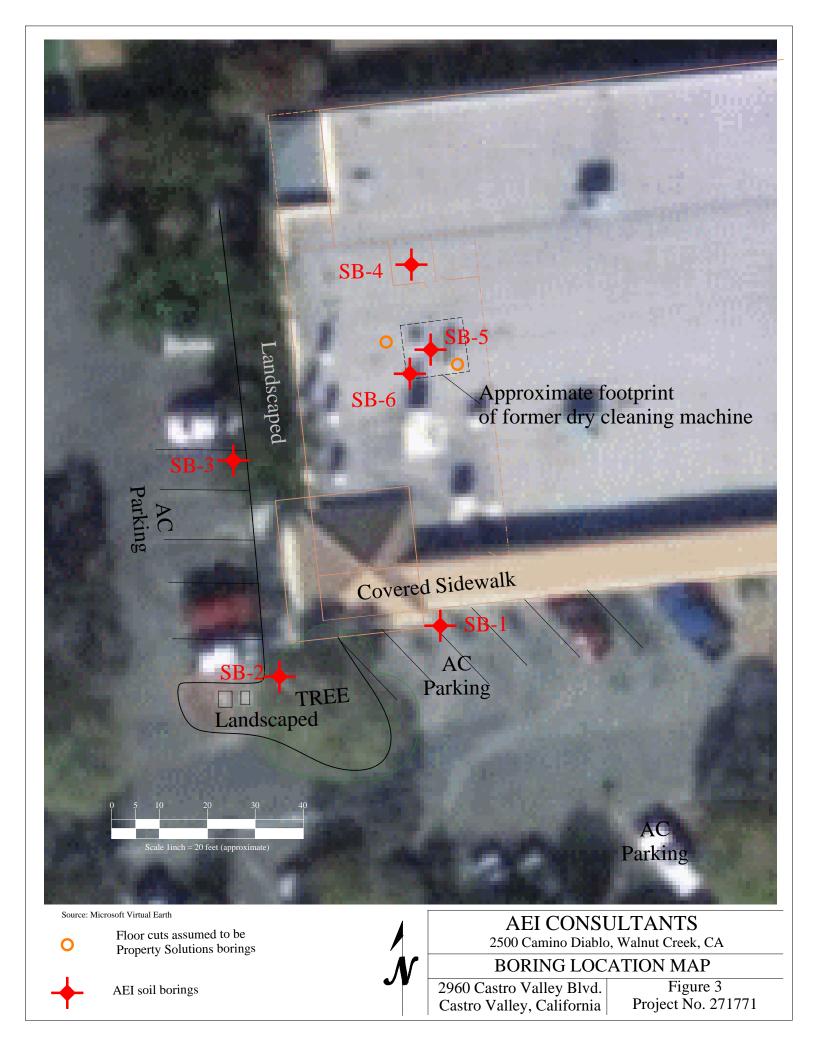
If you have any questions regarding our investigation, please do not hesitate to contact me at (925) 944-2899

Sincerely, **AEI Consultants** No. 5825 Robert F. Flory, P.G Senior Project Geølogist Adrian M. Angel Project/Geologist

FIGURES

Source: Microsoft Virtual Earth

J


500 400 Scale Approximate

AEI CONSULTANTS

2500 Camino Diablo, Walnut Creek, CA

SITE MAP

2960 Castro Valley Blvd. Castro Valley, California Figure 2 Project No. 271771

TABLES

Table 1:Soil and Groundwater Analytical DataRR Retail Group, 2960 Castro Valley Blvd., Castro Valley, CA

					Soil A	nalyses			Groundwater analyses						
Boring	Date	Sample	PCE	TCE	cis-1,2-	trans-1,2-	Vinyl	All	Sample	PCE	TCE	cis-1,2-	trans-1,2-	Vinyl	All
Number		Number			DCE	DCE	Chloride	Other	Number			DCE	DCE	Chloride	Other
		& Depth						Analytes							Analytes
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
SB-1	07/06/06	SB-1-13.5	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND	SB-1-W	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
SB-2	07/06/06								SB-2-W	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
SB-3	07/06/06	SB-3-10	0.016	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND	SB-3-W	1.2	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
SB-4	07/06/06	SB-4-1.5	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND							
SB-5	07/06/06	SB-5-1	0.076	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND	SB-5-W	6.7	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
SB-6	07/06/06	SB-6-4	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND	SB-6-W	0.69	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND
ESL ¹			0.24	0.73	3.6	7.3	0.019		ESL ⁵	120	360	590	590	3.8	
ESL ²			0.087	0.26	1.6	3.1	0.0067		ESL ⁶	5	5	6	10	0.5	
ESL ³			0.24	0.46	0.19	0.67	0.019								
ESL ⁴			0.087	0.26	0.19	0.67	0.0067								

Notes:

1 - RWQCB Commercial/Industrial ESL for shallow soil - not a current or potential drinking water source

- 2 RWQCB Residential ESL for shallow soil not a current or potential drinking water source
- 3 RWQCB Commercial/Industrial ESL for shallow soil current or potential drinking water source
- 4 RWQCB Residential ESL for shallow soil current or potential drinking water source
- 5 RWQCB ESL for protection of groundwater not a current or potential drinking water source
- 6 RWQCB ESL for protection of groundwater current or potential drinking water source

- PCE = Tetrachlorethene
- TCE = Trichloroethene
- DCE = Dichloroethene
- ND = not detected
- $\mu g/L =$ micrograms per liter (parts per billion)
- ----- = not sampled or not analyzed
- mg/kg = milligrams per kilogram (parts per milliuon)

APPENDIX A

Property Solutions Phase II

~ 4

.

÷ •

5--

k 2

.

Property Solutions INC.

Environmental & Engineering Consulting

17752 Skypark Circle • Suite 230 • Irvine, California 92614 • 949-222-1112 • Fax 949-222-1113

LIMITED PHASE II SUBSURFACE INVESTIGATION

of

Dry Clean Club of America 2960 Castro Valley Boulevard Castro Valley, Alameda County, California 94546

Prepared for:

Sutter Commercial Capital 1777 Botelho Drive, Suite 380 Walnut Creek, California 94596

Prepared by:

Property Solutions Incorporated 17752 Skypark Circle, Suite 230 Irvine, California 92614

Dated: September 27, 2002

Property Solutions Project Nos. 20021785 & 20021904

Enrique R. Cannata, P.E. West Coat Regional Manager

Brian C. Mannen for Kevin J. Billings, P.E.

Senior Vice President

TABLE OF CONTENTS

SECTION

. . .

: •

: .

• •

ι.

L.

PAGE

EXECUTIVE SUMMARY

1.0	INTRODUCTION	1
2.0	BACKGROUND	1
	FIELD EXPLORATION	
4.0	LABORATORY TESTING	3
	INVESTIGATION RESULTS	
	CONCLUSIONS AND RECOMMENDATIONS	
	LIMITATIONS	

APPENDICES

APPENDIX A	MAPS AND FIGURES
APPENDIX B	SOIL BORING LOGS
APPENDIX C	ANALYTICAL DATA
APPENDIX D	PROFESSIONAL QUALIFICATIONS

EXECUTIVE SUMMARY

Property Solutions Incorporated (Property Solutions) performed a Limited Phase II Subsurface Investigation (Phase II) at Dry Clean Club of America, located at 2960 Castro Valley Boulevard, in Castro Valley, Alameda County, California (subject property).

The Phase II was conducted at the request of Sutter Commercial Capital (Sutter) based upon the findings and recommendations of Property Solutions' Draft Phase I Environmental Assessment (EA) report dated July 24, 2002.

On August 2, 5 and 19, 2002, Property Solutions collected seven soil gas samples (SG-1 through SG-7), advanced six soil borings (SB-1 through SB-6), and collected six groundwater samples (W-1 through W-6) at the subject property. Seven soil gas samples, sixteen soil samples, and six groundwater samples and were analyzed for volatile organic compounds (VOCs) by EPA Method 8260B.

PCE was not detected in any of the soil gas samples tested. The majority of the soil and groundwater samples tested exhibited non-detected levels of Tetrachloroethene (PCE). Trace levels of PCE were detected in three of the soil samples and in two of the groundwater samples tested. Based on the results of the Phase II performed, Property Solutions present the following conclusions:

- Subsurface soils encountered in the borings generally consisted of silty clays to the maximum depth explored of 17 feet below the ground surface (bgs). Groundwater was encountered at depths ranging from 12 to 13 feet bgs. These subsurface soils have low permeability and are expected to act as a barrier preventing PCE from significantly moving downwards.
- The trace PCE concentrations measured in the three shallow soil samples suggest that a minor spill of PCE may have occurred at Dry Clean Club of America. Non-detected PCE measured in deeper soil samples in those borings indicate that PCE did not significantly move downwards. Non-detected PCE measured in soil gas samples at Dry Clean Club of America and the beauty salon indicate that the minor spill was laterally confined near the dry cleaning machine. Two of the detected PCE soil concentrations are below the soil screening levels (SSL) for PCE established by EPA. The three detected PCE soil concentrations are below the preliminary remedial goal (PRG) for PCE for residential uses established by EPA.
- The PCE groundwater concentrations measured in two borings were at or marginally above the maximum contaminant level (MCL) for PCE established by EPA. These trace PCE concentrations in water suggest that PCE may have reached groundwater through fissures or discontinuities in the silty clay layer. The trace levels of PCE in groundwater may also reflect background levels in the general area of the subject property.

20021785 & 20021904

;

7

i

Ĺ.

. . .

(·

Ĵ

;:

...

• •

. .

. .

:

• The data collected suggest that the measured PCE concentrations are significantly low and would not require additional assessment or remediation.

.

Based on the results of our investigation, Property Solutions recommends the following:

- Since the MCL for PCE was exceeded in one groundwater sample, we recommend the property owner to report the results of this investigation to the Alameda County Health Care Services (ACHCS). We further recommend that ACHCS consider "No further Action" regarding the trace of PCE measured at Dry Cleaners Club of America.
- Floor areas around the dry cleaning equipment and around PCE waste storage at Dry Cleaners Club of America should be coated with PCE-resistant epoxy to prevent any potential spills to reach subsurface soils.

20021785 & 20021904

·* .

۰.

٤.

١.,

ξ.

{

1.0 INTRODUCTION

Property Solutions performed a Phase II at Dry Clean Club of America, located at 2960 Castro Valley Boulevard, in Castro Valley, Alameda County, California, (subject property) at the request of Sutter of Walnut Creek, California.

The Phase II was conducted based upon the findings and recommendations of our Draft Phase I EA report dated July 24, 2002. Our EA report identified the following area of concern:

 Based on the historic presence of a dry cleaner on the subject property since 1990, the observed floor staining during the property visit, and historical Notices of Violation with the Bay Arca Air Quality Management District, Property Solutions recommended conducting a subsurface investigation at Dry Clean Club of America to evaluate the potential impact of dry cleaning operations at the subject property.

2.0 BACKGROUND

The subject property is located at 2960 Castro Valley Boulevard, in Castro Valley, Alameda County, California 94546. The subject property is part of Adobe Center, a retail center located on the northeast corner of Castro Valley Boulevard and Anita Avenue. Site location maps are included in Appendix A of this report.

A dry cleaning facility has been in operation at the Dry Clean Club of America tenant space since approximately 1990. One Frimair, closed-loop, dry-cleaning unit is utilized at the subject property. PCE is self-contained in the closed-loop dry cleaning unit. No secondary containment was observed around the dry cleaning unit. Fresh PCE is placed into the dry cleaning unit by hand. Fresh PCE is stored in 10-gallon buckets in the toilet room at the subject property. Waste PCE sludge, PCE-containing filters, and PCE-laden condensate are generated during the dry cleaning process. These PCE wastes are temporarily stored in a 16-gallon drum located near the dry cleaning unit and are removed from the subject property by Safety Kleen under manifest procedures.

Property Solutions contacted Mr. Amir Gholoami, Hazardous Materials Specialist of ACHCS regarding groundwater flow direction in the area of the subject property on August 5, 2002. Mr. Gholoami indicated that the predominant groundwater flow direction at the Chevron service station, that adjoins the subject property is to the west. This information was used by Property Solutions to select the boring locations during the Phase II.

20021785 & 20021904

ί.

٤.

3.0 FIELD EXPLORATION

Prior to the start of the field exploration, Property Solutions obtained drilling authorization tickets (Tickets No.331-252 and 351-594) from Underground Service Alert of California (USA). USA marked public utilities in the area of exploration prior to the start of the field activities. Field activities were directed by Mr. Enrique R. Cannata, a registered professional engineer of Property Solutions. On August 2, 2002, Property Solutions collected soil gas samples SG-1 through SG-3. Field activities were interrupted on that day due to a mechanical breakdown. On August 5, 2002, Property Solutions restarted file activities by advancing three soil borings (SB-1 through SB-3), and collecting soil gas samples at three locations (SG-4 through SG-6) at the subject property. On August 19, 2002, Property Solutions advanced three additional soil borings (SB-4 through SB-6), and collected one additional soil gas sample (SG-7) at the subject property.

Property Solutions contracted Vironex of San Leandro, California, a certified Geoprobe operator, to advance the soil borings and to collect the soil gas samples. Vironex utilized two rigs during this investigation. A Badger, limited access portable rig was used to advance soil borings SB-1 through SB-4, and to collect all soil gas samples (SG-1 through SG-7) that were located inside the building. A van-mounted geoprobe was used to advance borings SB-5 and SB-6, located in the parking lot and planter areas. These rigs advanced a 2-inch outside diameter, 1.5-inch inside diameter stainless steel "large bore" sampler. The Badger's sampler was 3-foot long while the geoprobe's sampler was 4-foot long. Prior to advancement of each boring, the cutting shoe was decontaminated and a dedicated disposable butyl acetate liner is placed in each spoon to prevent cross-contamination of the soils encountered.

The following field exploration program was performed:

- Soil borings SB-1 through SB-4 were located around the dry cleaning unit. Soil boring SB-3 was also located near the fresh and waste PCE storage areas. Soil boring SB-4 was located inside the adjoining beauty salon. Soil gas samples SG-1, SG-2, SG-3 and SG-7 were collected at approximately 5 feet bgs in each of the boring locations. Soil borings SB-1 and SB-3 were advanced to a depth of 14 feet bgs; soil boring SB-2 was advanced to a depth of 17 feet bgs, and soil boring SB-4 was advanced to a depth of 15 feet bgs.
- Soil gas samples SG-4, SG-5 and SG-6 were collected at 5 feet bgs inside the dry cleaners space, at distances from the dry cleaning machine ranging from 10 to 15 feet.
- Soil borings SB-5 was located in the parking lot east of the dry cleaners, in an upgradient location. Soil boring SB-6 was located in a planter west of the dry cleaners, in a down gradient location. Soil borings SB-5 and SB-6 were advanced to a depth of 16 feet bgs. No soil gas samples were collected in borings SB-5 and SB-6.

20021785 & 20021904

ł

ξ.

2

ί.,

ς.,

2

٤.

Soil gas samples were collected by driving the point sampler to 5 feet bgs, where the point was retracted and a 1/4-inch polyethylene tubing was inserted through the steel rods to the sampling unit. The soil gas was drawn from the sampling unit and collected in a one-liter Tedlar bag. A total of seven soil gas samples were collected.

During advancement of the soil borings, continuous soil collection took place. A field log was prepared for each boring, including details of observed soil conditions and drilling procedures. The soil samples were field screened with a photoionization detector (PID) for the presence of VOCs. The PID was calibrated to a known isobutylene standard prior to the start of the borings. A total of 16 soil samples were collected from the soil borings. The samples were collected in butyl acetate tubes and laboratory-supplied Encore soil samplers, in accordance with EPA 5035 Sampling Method. Soil samples were sealed, capped and placed on a container with ice.

A temporary, ³/₄-inch, slotted PVC pipe was placed at the bottom of each boring. A groundwater sample was collected in each boring using a ¹/₂-inch disposable bailer. A total of six groundwater samples were collected using 40-ml, unpreserved, glass vials. All soil borings and soil gas sample locations were filled with cement grout.

A Property diagram showing soil boring and soil gas sample locations is included as Figure 1 in Appendix A. Copies of the soil boring logs are included in Appendix B of this report.

4.0 LABORATORY TESTING

. . ..

.. .

•••

. . .

All samples were submitted for analysis under chain-of-custody to SunStar Laboratories, Inc., a California-certified analytical laboratory. Samples were analyzed for VOCs by EPA 8260B Method.

The analytical laboratory results from this investigation are presented in the following table.

				Contraction of Contraction
		Analytical I	est Results	
La contra de la co		A CONTRACTOR OF	PLOE IN SOIL O	PGE in Cround water
	PDepth (feet)	(crem)		PCE in Croind water *
SG-1	5	< 5	1. Mariani Mata Prant Bank Albiticolic	WWWICH ROUTE TO THE REAL PROPERTY OF THE REAL PROPE
SG-2	5	< 5		
SG-3	5	< 5		
\$G-4	5	< 5		
SG-5	5	< 5		
SG-6	5	< 5		
SG-7	\$	< 5		
			\cap	
SB-1	3		(15)	
L	7		< 5	

20021785 & 20021904

		Analysical	fest Results	
BOLUS NO.	Same Dentivifect		E En Soll /	PCEm Groundwater *
	國外撤銷國際國家	的原始的法律的法律	< 5	
W-I	11		<)	6
SB-2	5		<5	NA
	8		18	
	12		<5	
W-2				<\$
S13-3	3		(140)	
	6		25	
W-3	10		<5	6.8
SB-4	3		<5	
	6		<5	
	11		<5	
W-4				<5
SB5	5		<5	· · · · · · · · · · · · · · · · · · ·
	10		<5	
W-5				<5
\$B-6	5		<5	
	10		<\$	
W-6				<\$

Notes:

< *

·• ·

; -

* • • •

Ł,

: •

2. 0

ι,

٤.

Indicates not detected at or above the detection limit indicated

All other 8260B VOC compounds were not detected in any of the samples

The analytical test results are plotted on the Analytical Summary included as Figure 2 in Appendix A. A copy of the analytical laboratory report is included in Appendix C.

5.0 INVESTIGATION RESULTS

Subsurface conditions encountered in the borings generally consisted of a top 4 to 5-inch asphalt or cement concrete cover, underlain by an upper layer of fill material, approximately 3 feet in thickness The fill generally consisted of brown to black moist, silty clays. The fill layer was underlain by native soils consisting of brown and dark brown, very moist, silty clays. Groundwater was encountered between 12 feet and 13 feet bgs in the borings during our investigation. These subsurface soils have low permeability and are expected to act as a barrier preventing PCE from

20021785 & 20021904

significantly moving downwards.

Subsurface cross sections A-A' and B-B' located near the dry cleaning unit are indicated on Figures 2 and 3 in Appendix A.

Property Solutions' evaluation of the analytical data obtained at the subject property indicates the following:

- No PCE was detected in the any of the seven soil gas samples collected around the dry cleaning machine and inside the dry cleaner space.
- No PCE was detected in nine of the twelve soil samples collected around the dry cleaning machine (borings SB-1 through SB-4), or outside the building (borings SB-5 and SB-6). Trace concentrations of PCE were measured in three of the soil samples collected around the dry cleaning machine. These PCE concentrations were 15 ug/kg (SB-1 at 3 feet bgs), 18 ug/kg (SB-2 at 8 feet bgs), and 140 ug/kg (SB-3 at 3 feet bgs). PCE was not detected in deeper soil samples collected in borings SB-1 through SB-3, suggesting that the trace of PCE did not significantly move downward.
 - Detected PCE soil concentrations are below the SSL of 60 ug/kg established by EPA, except for one (140 ug/kg measured at SB-3 at a depth of 3 fect bgs). All detected PCE soil concentrations were less than the PRG for PCE for residential use established by EPA (5,700 ug/kg).
- No PCE was detected in two of the four groundwater samples collected in borings near the dry cleaning machine (samples W-1 and W-4), the upgradient boring (sample W-5), or the downgradient boring (sample W-6). Trace concentrations of PCE were measured in two of the groundwater samples collected in borings near the dry cleaning machine (samples W-1 and W-3). The measured PCE concentrations were at detection level (5 ug/l in W-1), or slightly above detection level (6.8 ug/l in W-2). These trace concentrations suggest that PCE may have reached groundwater through fissures or discontinuities in the silty elay layer, or the measured PCE may reflect background levels in the general area of the subject property..

PCE in groundwater sample W-1 was measured at the MCL established by EPA (5 ug/l). PCE in groundwater sample W-3 was measured marginally above the MCL.

20021785 & 20021904

. .

÷

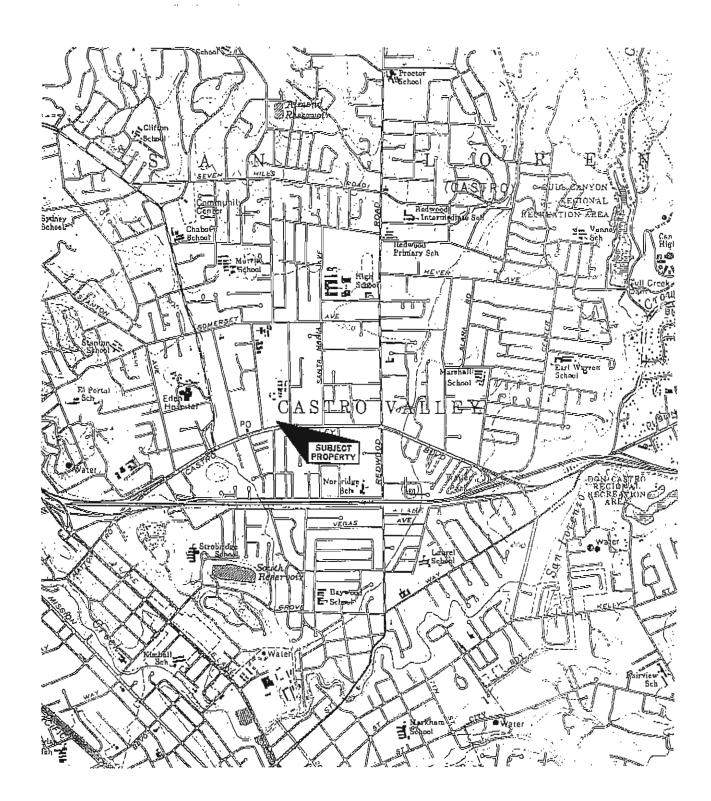
6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of our investigation, Property Solutions present the following conclusions:

- The trace PCE concentrations measured in the three shallow soil samples suggest that a minor spill of PCE may have occurred at Dry Clean Club of America. Non-detected PCE measured in deeper soil samples in those borings indicate that PCE did not significantly move downwards. Non-detected PCE measured in soil gas samples at Dry Clean Club of America and the beauty salon indicate that the minor spill was laterally confined near the dry cleaning machine. Two of the detected PCE soil concentrations are below the soil screening levels (SSL) for PCE established by EPA. The three detected PCE soil concentrations are below the preliminary remedial goal (PRG) for PCE for residential uses established by EPA.
- The PCE groundwater concentrations measured in two borings were at or marginally above the maximum contaminant level (MCL) for PCE established by EPA. These trace PCE concentrations in water suggest that PCE may have reached groundwater through fissures or discontinuities in the silty clay layer. The trace levels of PCE in groundwater may also reflect background levels in the general area of the subject property.
- The data collected suggest that the measured PCE concentrations are significantly low and would not require additional assessment or remediation.

Based on the results of our investigation, Property Solutions recommends the following:

- Since the MCL for PCE was exceeded in one groundwater sample, we recommend the
 property owner to report the results of this investigation to the Alameda County Health Carc
 Services (ACHCS). We further recommend that ACHCS consider "No further Action"
 regarding the trace of PCE measured at Dry Cleaners Club of America.
- Floor areas around the dry cleaning equipment and around PCE waste storage at Dry Cleaners Club of America should be coated with PCE-resistant epoxy to prevent any potential spills to reach subsurface soils.


7.0 LIMITATIONS

The findings, observations, conclusions, and recommendations of this report arc limited by the contract technical requirements and the methods used to perform the services outlined in the scope of work. These services have been performed in accordance with the described scope.

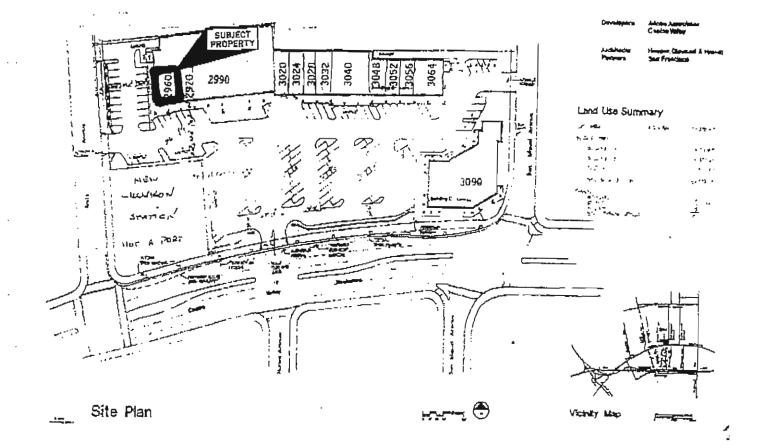
This report has been prepared for the sole benefit of Suter Commercial Capital, and may not be relied upon by any other person or entity without the written authorization of Property Solutions.

20021785 & 20021904

١.

US DEPARTMENT OF INTERIOR GEOLOGICAL SURVEY 7.5" TOPOGRAPHICAL QUADRANGLE

Property Solutions Inc.


Dry Clean Club of America 2960 Castro Valley Boulevard Castro Valley, California 94546

Project No.: 20021785

Topo Quad Name: Hayward, California

	Site Plan		
Property Solutions Inc.	Dry Clean Club of America 2960 Castro Valley Boulevard Castro Valley, California 94546	Project No.: 20021785	

APPENDIX B

Boring Permit

Alameda County Public Works Agency - Water Resources Well Permit

Steen · B	Start Start
	PUBLIC
a de la comos	WORKS

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Permit Numbers: W2007-0529 Application Approved on: 04/17/2007 By jamesy Permits Valid from 04/26/2007 to 04/26/2007 Application Id: 1176845873172 City of Project Site:Castro Valley Site Location: 2960 Castro Valley Blvd. Castro Valley, CA 94546 **Project Start Date:** 04/26/2007 Completion Date:04/26/2007 AEI Consultants - Robert Flory Phone: 925-944-2899 Applicant: 2500 Camino Diablo, Walnut Creek, CA 94597 **Property Owner:** Phone: 415-837-3722 James Rossler 150 Post Street, Suite 630, San Francisco, CA 94108 ** same as Property Owner * Client: Phone: 925-944-2899 Contact: Robert Flory Cell: 925-457-7517

	Total Due:	\$200.00
Receipt Number: WR2007-0171 Payer Name : Robert F. Flory		\$200.00 PAID IN FULL

Works Requesting Permits:

Specifications

Borehole(s) for Geo Probes-Sampling 24 to 72 hours only - 7 Boreholes Driller: EnProbe - Lic #: 777007 - Method: DP

Work Total: \$200.00

••••••					
Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2007-	04/17/2007	07/25/2007	7	2.00 in.	15.00 ft
0529					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

5. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

6. No Inspector Assigned to this site.

Applicant shall contact this office by email at wells@acpwa.org and certify in writing that work was completed and

PROGRAMS AND SERVICES

Well Standards Program

The Alameda County Public Works Agency, Water Resources is located at: 399 Elmhurst Street Hayward, CA 94544 For Driving Directions or General Info, Please Contact 510-670-5480 or wells@acpwa.org For Drilling Permit information and process contact James Yoo at Phone: 510-670-6633 FAX: 510-782-1939 Email: Jamesy@acpwa.org

Alameda County Public Works is the administering agency of General Ordinance Code, Chapter 6.88. The purpose of this chapter is to provide for the regulation of groundwater wells and exploratory holes as required by California Water Code. The provisions of these laws are administered and enforced by Alameda County Public Works Agency through its Well Standards Program.

Drilling Permit Jurisdictions in Alameda County: There are four jurisdictions in Alameda County.

Location: Agency with Jurisdiction Contact Number

Berkeley City of Berkeley Ph: 510-981-7460 Fax: 510-540-5672

Fremont, Newark, Union City Alameda County Water District Ph: 510-668-4460 Fax: 510-651-1760

Pleasanton, Dublin, Livermore, Sunol Zone 7 Water Agency Ph: 925-454-5000 Fax: 510-454-5728

The Alameda County Public Works Agency, Water Resources has the responsibility and authority to issue drilling permits and to enforce the County Water Well Ordinance 73-68. This jurisdiction covers the western Alameda County area of Oakland, Alameda, Piedmont, Emeryville, Albany, San Leandro, San Lorenzo, Castro Valley, and Hayward. The purpose of the drilling permits are to ensure that any new well or the destruction of wells, including geotechnical investigations and environmental sampling within the above jurisdiction and within Alameda County will not cause pollution or contamination of ground water or otherwise jeopardize the health, safety or welfare of the people of Alameda County.

Permits are required for all work pertaining to wells and exploratory holes at any depth within the jurisdiction of the Well Standards Program. A completed permit application (30 Kb)*, along with a site map, should be submitted at least **ten (10) working days prior to the planned start of work**. Submittals should be sent to the address or fax number provided on the application form. When submitting an application via fax, please use a high resolution scan to retain legibility.

Fees

Beginning April 11, 2005, the following fees shall apply:

A permit to construct, rehabilitate, or destroy wells, including cathodic protection wells, but excluding dewatering wells (*Horizontal hillside dewatering and dewatering for construction period only), shall cost \$300.00 per well.

A permit to bore exploratory holes, including temporary test wells, shall cost \$200 per site. A site includes the project parcel as well as any adjoining parcels.

Please make checks payable to: Treasurer, County of Alameda

Permit Fees are exempt to State & Federal Projects

Applicants shall submit a letter from the agency requesting the fee exemption.

Scheduling Work/Inspections:

Alameda County Public Works Agency (ACPWA), Water Resources Section requires scheduling and inspection of permitted work. All drilling activities must be scheduled in advance. Availability of inspections will vary from week to week and will come on a first come, first served bases. To ensure inspection availability on your desired or driller scheduled date, the following procedures are required:

Please contact **James Yoo at 510-670-6633** to schedule the inspection date and time (You must have drilling permit approved prior to scheduling).

Schedule the work as far in advance as possible (at least 5 days in advance); and confirm the scheduled drilling date(s) at least 24 hours prior to drilling.

Once the work has been scheduled, an ACPWA Inspector will coordinate the inspection requirements as well as how the Inspector can be reached if they are not at the site when Inspection is required. Expect for special circumstances given, all work will require the inspection to be conducted during the working hours of 8:30am to 2:30pm., Monday to Friday, excluding holidays.

Request for Permit Extension:

Permits are only valid from the start date to the completion date as stated on the drilling permit application and Conditions of Approval. To request an extension of a drilling permit application, applicants must request in writing prior to the completion date as set forth in the Conditions of Approval of the drilling permit application. Please send fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. There are no additional fees for permit extensions or for re-scheduling inspection dates. You may not extend your drilling permit dates beyond 90 days from the approval date of the permit application. **NO refunds** shall be given back after 90 days and the permit shall be deemed voided.

Cancel a Drilling Permit:

Applicants may cancel a drilling permit only in writing by mail, fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. If you do not cancel your drilling permit application before the drilling completion date or notify in writing within 90 days, Alameda County Public Works Agency, Water Resources Section may void the permit and No refunds may be given back.

Refunds/Service Charge:

A service charge of \$25.00 dollars for the first check returned and \$35.00 dollars for each subsequent check returned.

Applicants who cancel a drilling permit application **before** we issue the approved permit(s), will receive a **FULL** refund (at any amount) and will be mailed back within two weeks.

Applicants who cancel a drilling permit application **after** a permit has been issued will then be charged a service fee of \$50.00 (fifty Dollars).

To collect the remaining funds will be determined by the amount of the refund to be refunded (see process below).

Board of Supervisors Minute Order, File No. 9763, dated January 9, 1996, gives blanket authority to the Auditor-Controller to process claims, from all County departments for the refund of fees which do not exceed \$500 (Five Hundred Dollars)(with the exception of the County Clerk whose limit is \$1,500).

Refunds over the amounts must be authorized by the Board of Supervisors Minute Order, File No. 9763 require specific approval by the Board of Supervisors. The forms to request for refunds under \$500.00 (Five Hundred Dollars) are available at this office or any County Offices. If the amount is exceeded, a Board letter and Minute Order must accompany the claim. Applicant shall fill out the request form and the County Fiscal department will process the request.

Enforcement

Penalty. Any person who does any work for which a permit is required by this chapter and who fails to obtain a permit shall be guilty of a misdemeanor punishable by fine not exceeding Five Hundred Dollars (\$500.00) or by imprisonment not exceeding six months, or by both such fine and imprisonment, and such person shall be deemed guilty of a separate offense for each and every day or portion thereof during which any such

violation is committed, continued, or permitted, and shall be subject to the same punishment as for the original offense. (Prior gen. code §3-160.6)

Enforcement actions will be determined by this office on a case-by-case basis

Drilling without a permit shall be the cost of the permit(s) and a fine of \$500.00 (Five Hundred Dollars).

Well Completion Reports (State DWR-188 forms) must be filed with the Well Standards Program within 60 days of completing work. Staff will review the report, assign a state well number, and then forward it to the California Department of Water Resources (DWR). Drillers should not send completed reports to DWR directly. Failure to file a Well Completion Report or deliberate falsification of the information is a misdemeanor; it is also grounds for disciplinary action by the Contractors' State License Board. Also note that filed Well Completion Reports are considered private record protected by state law and can only be released to the well owner or those specifically authorized by government agencies.

See our website (www.acgov.org/pwa/wells/index.shtml) for links to additional forms.

APPENDIX C

Boring Logs

Log of Boring SB-1

Sheet 1 of 1

Date(s) Drilled April 26, 2007	Logged By Robert F. Flory	Checked By Adrian Angel	
Drilling Method Direct Push	Drill Bit Size/Type	Total Depth of Borehole 17 feet bgs	
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation	
Groundwater Level and Date Measured 11.7 feet ATD	Sampling Method(s) Tube Permit #		
Borehole Backfill Cement Slurry	Location Parking Area in front of former dry cleaners (south)		

Elevation, feet	Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
	0 - -			Asphalt GW-GC CL-ML		Clayey base rock Clayey Sandy Silt - Sandy Clay, brown, locally gravelly, firm - modrately firm, stiff, moist		
-	-	X	SB-1-3				<0.1	
_	- 5	X	SB-1-6	CL		Silty Clay, black, moderately stiff, moist	<0.1	
	- - 10—		SB-1-10	ML		Clayey SIIt, yellowish brown w/s light brown - light olive brown mottling, firm, moist	<0.1	
	-	×	SB-1-13.5	ML		Clayey Silt, light olive brown - yellowish brown - strong brown mottling, moderately soft, moist - trace wet, boring dry @ 14 feet bgs (ATD) 	<0.1	
	15— _ _			SW-SC		Clayey Sand, brown - yellowish brown, with occasional strong brown mottling, moderately soft, wet 		
_	- 20—							
						AEI		Figure

CONSULTANTS ENVIRONMENTAL& CIVIL ENGINEERING

X: PROJECTS) CHARACTERIZATION & REMEDIATION/DUE DIL & Other/271771 PHII (RR Retail) Castro Valley RFF/borings.bgs [DP Boring 20.tpl]

Log of Boring SB-2

Sheet 1 of 1

Date(s) Drilled April 26, 2007	Logged By Robert F. Flory	Checked By Adrian Angel		
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 16 feet bgs		
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation		
Groundwater Level and Date Measured 11.95 feet ATD	Sampling Method(s) Tube	Permit #		
Borehole Backfill Cement Slurry	Location In landscaped area at sou	Location In landscaped area at southwest corner of building.		

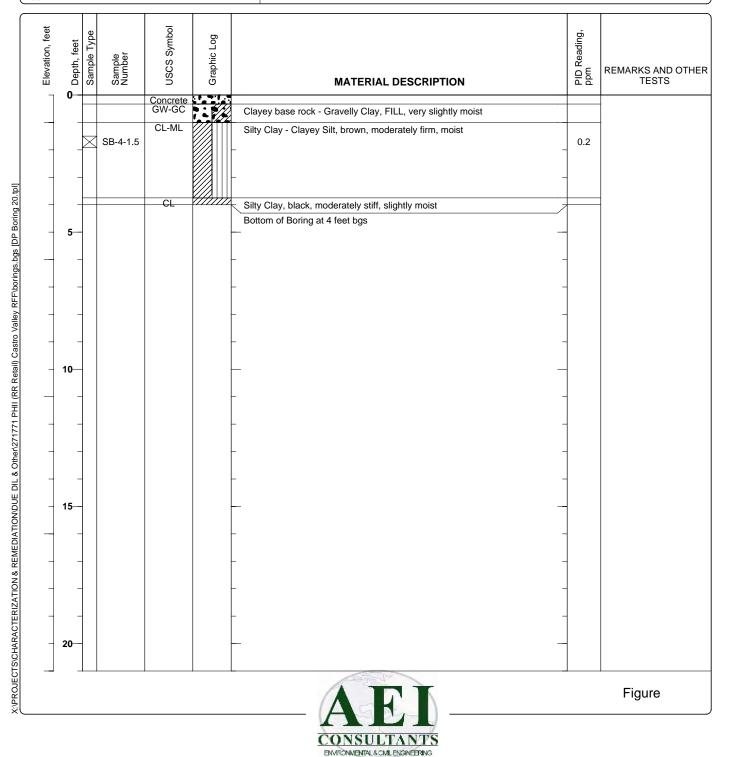
Elevation, feet Depth. feet	Sample Type	Sample Number	USCS Symbol	Graphic Log		PID Reading, ppm	REMARKS AND OTH
Ξ <u>Δ</u> - 0 -	ů	ΰŻ		U	MATERIAL DESCRIPTION	급접	TESTS
	_		CL		Sandy Gravelly Clay, brown, firm - modrately firm, stiff, dry -		
	_		CL		Sandy Gravelly Clay, brown, firm - modrately firm, stiff, very slightly moist	<0.1	
_ 5_	-		CL		Silty Clay, black, moderately stiff, slightly moist	-<0.1-	
	_		ML		Clayey Sllt, yellowish brown - brown mottled, firm, moist	0.2	-
- 10- 		SB-2-10				0.1	
_	_		SC		Clayey Sand, brown, firm, very moist		-
- 15-	-		SW		Sand, light brown - yellowish brown, very fine - fine grained, clayey, soft, wet		-
_	-			-	Bottom of Boring at 16 feet bgs		
_ - 20-	-						
					AFI	1	Figure

ENVIRONMENTAL & CMIL ENGINEERING

Log of Boring SB-3

Sheet 1 of 1

Date(s) Drilled April 26, 2007	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 16 feet bgs
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation
Groundwater Level and Date Measured 12.8 feet ATD	Sampling Method(s) Tube	Permit #
Borehole Backfill Cement Slurry	Location Parking Area, west end of	building


	Elevation, feet	Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHEF TESTS
	٦	0			Asphalt				
		-			Asphalt GW_GC		Clayey base rock Clayey base rock Sandy Clay, brown, locally gravelly, firm - modrately firm, moderately stiff, moist		
[idi.uz		_						0.1	_
	_	5 -	\times	SB-3-5	CL		Silty Clay, black, moderately stiff, slightly moist	0.4	
i) castro valley	-	-			ML		Clayey Sllt, yellowish brown - brown mottled, firm, moist	-	
X Keta	-	10—	\ge	SB-3-10	SC		Clayey Sand, yellowish brown, moderately firm, moist	0.8	
	_	-			SM-SC		Clayey Silt - Clayey Sand, yellowish brown, moderately firm, very moist	0.7	
	-	- - 15			SW		Sand, yellowish brown, very fine - fine grained, clayey, occasional gravel, soft, wet	0.6	-
	_	-					Bottom of Boring at 16 feet bgs	-	
	_	20—						-	
							AEI		Figure

CONSULTANTS ENVIRONMENTAL& CIVIL ENGINEERING

Log of Boring SB-4

Sheet 1 of 1

Date(s) Drilled April 26, 2007	Logged By Robert F. Flory	Checked By Adrian Angel	
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 4 feet bgs	
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation	
Groundwater Level and Date Measured Not Encountered ATD	Sampling Method(s) Tube	Permit #	
Borehole Backfill Cement Slurry	Location Inside storage room in back of unit		

Log of Boring SB-5

Sheet 1 of 1

Date(s) Drilled April 26, 2007	Logged By Robert F. Flory	Checked By Adrian Angel		
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 19 feet bgs		
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation		
Groundwater Level and Date Measured 9.31 feet ATD	Sampling Method(s) Tube	Permit #		
Borehole Backfill Cement Slurry	Location Approximate center of dry	Location Approximate center of dry cleaning machine foot print		

Elevation, feet	Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHEF TESTS
_	0	×	SB-5-1	Concrete GW-GC		Clayey base rock - Gravelly Clay, FILL, dry - very slightly moist -	2.0	
_	-			CL		Sandy Clay, brown, locally gravelly, moderately stiff, moist		
-	- 5		SB-5-4	CL		Silty Clay, black, moderately stiff, slightly moist	0.5 2.7	
_	-	\times	SB-5-7	CL-ML		Clayey Silt - Silt Clay, olive brown - brown mottling, firm, moist	2.4	
-	-	-		CL-ML		Clayey Silt - Silt Clay, yellowish brown - strong brown - dark grayish brown mottling, firm, moist (ATD) ≡		
	10— -	_	SB-5-12	ML		Very Clayey Silt, yellowish brown - strong brown, soft, moist 	0.8	
-	- 15	-		SW		Sand, yellowish brown, very fine - medium grained, locally clayey, locally pea gravel, moderately firm, wet		
-	-	-		GC-CL	00000	Gravelly Clay - Clayey Gravel, strong brown - grayish brown mottled, firm, wet		
-	- 20—				<u>° TXX///</u>	Bottom of Boring at 19 feet bgs		
				1	I	AEI		Figure

Project: RR Retail Project Location: 2960 Castro Valley Blvd., Castro Valley, CA Project Number: 271771

Log of Boring SB-6

Sheet 1 of 1

<i>.</i>		
Date(s) Drilled April 26, 2007	Logged By Robert F. Flory	Checked By Adrian Angel
Drilling Method Direct Push	Drill Bit Size/Type 2 inch	Total Depth of Borehole 18 feet bgs
Drill Rig Type Geoprobe 5410	Drilling Contractor EnProb	Approximate Surface Elevation
Groundwater Level and Date Measured 12.5 feet ATD	Sampling Method(s) Tube	Permit #
Borehole Backfill Cement Slurry	Location Southwest corner of drycleaners f	oot print

Elevation, feet	Depth, feet	Sample Type	Sample Number	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS
_	0			Concrete GW-GC		Clayey base rock - Gravelly Clay, FILL, dry		
	_			GW-GC		Clayey base rock - Gravelly Clay, FILL, slightly moist		
	-			GC	LI LI LI PILI	Clayey Gravel, light greenish gray - greenish gray (color from gravel clasts), sandy, firm - hard, moist, FILL		
	5		SB-6-4	CL		Silty Clay, black, moderately stiff, slightly moist	0.2	
	-	\times	SB-6-7	CL-ML		Clayey Silt - Silt Clay, brown w/s yellowish brown - pale brown, stiff, moist	0.1	
_	-			CL-ML		Clayey Silt - Silty Clay, yellowish brown - strong brown with gray spiderweb _ pattern, firm, moist	-	-
	- 10 - -		SB-6-10	ML		Sandy Clay - Clayey Silty Sand, yellowish brown w/s brown mottling, firm, moist	0.1	
_	- <u>-</u>			SW		Sandy Clay - Clayey Silty Sand, yellowish brown with some brown mottling,	-	
	15	-		SW		Sand, yellowish brown, very fine - medium grained, soft loose sand, wet	-	
_	_			GC-CL		Gravelly Clay - Clayey Gravel, strong brown - grayish brown mottled, firm, wet		
	20	-				Bottom of Boring at 18 feet bgs		
	-			I		AFI	<u> </u>	Figure

CONSULTANTS ENVIRONMENTAL& CIVIL ENGINEERING

APPENDIX D

Soil Laboratory Analyses With Chain of Custody Documentation

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #271771; RR Retail Group	Date Sampled: 04/26/07
2500 Camino Diablo, Ste. #200		Date Received: 04/26/07
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Reported: 05/02/07
Wallat Creek, CIT 9 1097	Client P.O.:	Date Completed: 05/02/07

WorkOrder: 0704564

May 02, 2007

Dear Robert:

Enclosed are:

- 1). the results of **5** analyzed samples from your **#271771; RR Retail Group project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

			C	7-0)4	56	8	f					_															4	1	2	-	
		McCAM	1538 W	L ANAI illow Pa urg, CA	ss Ro	ad	L, I	NC	•]]	ſUŀ	RŇ	AR					F		ST D JSH		D 24 H					Д 72 нк	5 DAY
Teleph	one: (9)	25) 252-9262						Γa	x: (9	925)	252	-926	9	0	GeoT	rac	ker	EDJ	FD	3	PD	F	\boxtimes]	Êxc	el	$\overline{\Box}$]	Writ	te O	n (DW)	
Report T	o: Robe	ert Flory		E	Bill To	o: Sa	me											1	nal	ysis l	Requ	lest							Othe	г	Com	ments
Company	AEI	Consultants								~			_			(L																
	2500	Camino Dia	blo											Ê		B&I												8010 Target List)				
	Wah	nut Creek, C.	A 94597	I	E-Mai	il: rflo	огу@	aeic	onst	iltan	ts.cc	m		Gas (SW8015Cm)		&F/					8260		625 / 8270 / 8310					rgůt				
Tel: (925)	944-28	899		F	Fax: (9	925)	944-	289	5					W80		20 E	8.1				1		8/0) Ta				
Project #			1 .		rojec				Reta	il G	rou	p		as (S		(55)	\$ (41	_	6		& DCA		827				ity	8010				
Project L	ocation	: 2960 Castr	o Valley I	BIND, Ca	strg V	alley	, CA	1					_	as G	(m	ase	pons	list	8020)		O&		25/			(0)	alin					
Sampler	Signatu	ire: Win	11	del	1		-							HdT	15C	Gre	ocar	010	02 /	none	EBD		A 6.			2/60	alk.	260				
		100	SAMP	FINE	s	iners	1	MA	TRU	x		ESER			(SW80	m Oil &	m Hydn	8260 (8	(EPA 6	8 / 8080	tes incl	0	s by EPA	lls	s	21/239.	, sulfare.	/OCs (8				
SAMPL	EID	(Field Point Name)	Date	Time	# Containers	Type Containers	Water	Soil	Air Shidoe	Other	lce	HCI	Other	MBTEX (SW8021B) &	TPH as Diesel (SW8015Cm)	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	HVOCs EPA 8260 (8010 list)	BTEX ONLY (EPA 602 /	PCBs EPA 608 / 8080	Fuel Oxygenates incl	EPA 625/8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	Nitrate, nitrite, sulfate, alkalinity	Halogenated VOCs (8260B				
96-5	-1	66-5	4/26	1140	7	2/1		1	-	+	i	-	1	-				X	-	-	+			-	-		-		-	1		
94-5	1	10-0	100	11116	14	17		1	+-	+	H	-	+	+			-			-	-		-				-			-	·	
10 0-	4	20-3		1147		1		+	+-	+				+	1		11	1	\mathbf{H}	-				-	-	-	-			+		
745-5	-/	70-9		1199	TL	-				-	11	-	+	-			H	24	1	1.					-	-	-			-		-
50-2-	-12	70-5,		1202	11			\square		1	\square		_	-	1		-	4	-		_			_	_	_	_		-			_
76-6	-4	46-6		1225	TI													X														_
56-6	-7	56-6		1236	11	1									1	1	11															
56-6	-10	58-6	Γ	1241				1			17				17	19	14	2							1							
Clast	LEI.	100	1/	1000	1			1		1		-	1	1	6	6	11			-		-						-		-		
Mosel	1.504	1	V	1000	1		┞┼	•	-	-	l'+		+		A	-0	10	4	-	-	-			-			-	-	-			
				-		<u> </u>		-	-	-	+	-+	+	-	-		-	-							-	-						-
								-	-			-	-		-		_	_	-	_	-				-	-						
					-								1											_				_				
													T	T																		
Λ		1					-	1					1	-						1	-					1				1		
Relinquishe Relinquishe ENVIVO Relinquishe	ed By: 1 -Tel	hs.R.	Daje: 4/0 000 Date: 4/2401 Date: 4-26 07	Time: 1890) Time: 1930 Time: 932	Rece	ived B	Nº /	19	Te	ics T	1	Si	R	1	ICE/ GOC HEA DEC) D (.D (5	PAC	E A	BSE	NT_ N LA	\B	ť	APPI CON	SER ROP TAI RSE	RI/ NE	A I E RS	N	UAS LAB	0&0		AETALS	OTHER

L

·		McCAN		ASC ANAI fillow Pas			L, I.	NC.	_	-	AF	1											FC			0	-		V-		RD		_
				inow ras urg, CA										T	'UF	N.	AR	01	JNI	D 1	FIN	IE			D ISH		24 H		4	2 8 HR		↓ 72 HR	5 DA
	Telephone: (9	25) 252-9262						Fax	c (9)	25) 2	252-9	269		G	eoT	гас	ker	ED	F	\boxtimes		PDF	۲.	$\overline{\langle}$		Exc						n (DW	
	Report To: Rob			E	ill To	o: Sa	me						_		_				Ana	dys	is R	equ	est						<u> </u>	Othe	r	Com	ments
	Company: AEI								-		_		-			(E)												3	(is				
		Camino Dia nut Creek, C		F	-Mai	l: rflo	ry(a	anin	meul	tante	- con	0	-	SCm)		F/B						09		10					8010 Target List)				
	Tel: (925) 944-28		1			925)				uarre.	5.001			(SW8015Cm)		0 E&	8.1)					- 8260		/ 83					Targ	0			
	Project #: 27177		1			t Nar			_	l Gr	oup					(552	(418		6			DCA		3270				Z	3010				
	Project Location	: 2960 Castr	Walley											& TPH as Gas	(m)	ease	bons	list)	8020)	_		D&		251			(010	alkalinity	1.1				
	Sampler Signatu	ire:	4l	11	2									TPH	0150	& Gr	rocar	8010	502 /	808(0	EBI		0 Y 6			.2/6(e. alk	3260			1	
			SAMP	LING		ners	1	MAT	RIX		ME PRES	THO		18)&	(SW80	n Oil á	n Hydi	3260 ((EPA 602 /	608 /	/ 808(ss incl		by El	35		21/239	sulfate.	OCs (8				
	SAMPLEID	LOCATION (Field Point Naine)	Date	Тіте	# Containers	Type Containers	Water	Soil	Sludge	Other	lce	HNO	Other	MBTEX (SW8021B)	TPH as Diesel (SW8015Cm)	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	HVOCs EPA 8260 (8010 list)	BTEX ONLY (Pesticides EPA 608 / 8080	PCBs EPA 608 / 8080	Fuel Oxygenates incl EBD & DCA	EPA 625 / 8270	PAH's/ PNA's by EPA 625/8270/8310	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	Nitrate, nitrite.	Halogenated VOCs (8260B				
9	56-1-3.	56-1	4-26	0750	21	2/1		X									1	1	1		1												
10	5B-1-6	56-1	4-26	0000	ľ	M		1)	N	0	10	1														
11	5B-1-10	56-1	4-26	0005	-1											5.																	
4	56-1-13.5	96-1	4-200	OSID	1													X															
12	58-2-8	9B-Z	4-26	0920	1																												
14	53-2-10	56-Z	4-26	0929	-1									11	4	1).																
5	56-3-5	58-3	4-26	1035	1								4	10	L	-	1																
96	56-3-10	36-3	4-20	PUT	19													X															
ab	5B-4-15	56-4	4-76	1130	1			11										X															
1		1				-		V																									
1																																	
	4													-									1										
	11,	11																-															
	Reinquished By: Relinquished By: EAU' O - Te Relinquished By:	As. R Dan	Date: 19-07 Date: 4/26/07 Date: 4-26-07	Time: // 30 Time: // 30 Time: / 950	EV	ived B	(<u>)</u> r:	-7 Mg	ec.	h	s U	·R ai		ŀ	GOC IEA		CON PAC	DIT CE A	BSI	ENT		B	A C	PPF ON	SER ROF TAI RSE	rl Ne	ATE RS_		UAS LAB	0.80		METALS	OTHE

SB-6-4

	ALL.
6	JY

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA (925) 252-92	A 94565-1701 262					Work(Order	: 0704	564	ClientII): AEL					
				EDF		Excel		Fax	🗸 Ema	il	HardO	Сору	Thii	rdParty		
Report to:						I	Bill t					Rec	queste	d TAT:	5 c	days
Robert Flory AEI Consultants 2500 Camino Di Walnut Creek, C	ablo, Ste. #200	Email: TEL: ProjectNo: PO:	rflory@aeicor (925) 283-60 #271771; RR	· · ·	283-6	12	AE 25 Wa	alnut Cr		97					04/26/ 04/26/	
									Requested	d Tests	(See leg	end b	elow)			
Sample ID	ClientSampID		Matrix	Collection Date	Hold	1	2	3	4 5	6	7	8	9	10	11	12
0704564-004	SB-1-13.5		Soil	04/26/07 8:10:00		А	А									
0704564-008	SB-3-10		Soil	04/26/07 10:40:00		А										
0704564-009	SB-4-1.5		Soil	04/26/07 11:30:00		А										
0704564-010	SB-5-1		Soil	04/26/07 11:40:00		А										

А

04/26/07 12:25:00

Soil

Test Legend:

0704564-014

1	8010BMS_S	2 PREDF REPORT	3	4	5
6		7	8	9	10
11		12			

Prepared by: C	hloe Lam
----------------	----------

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants			Date a	nd Time Received:	04/26/07	8:37:53 PM
Project Name:	#271771; RR Retail Group			Check	list completed and r	eviewed by:	Chloe Lam
WorkOrder N°:	0704564 Matrix <u>Soil/Soild</u>			Carrier	r: <u>Client Drop-In</u>		
	<u>Chair</u>	n of Cu	stody (C	OC) Informa	tion		
Chain of custody	v present?	Yes	\checkmark	No 🗆			
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗆			
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?	Yes	✓	No 🗆			
Date and Time o	collection noted by Client on COC?	Yes	\checkmark	No 🗆			
Sampler's name	noted on COC?	Yes	✓	No 🗆			
	<u>s</u>	ample	Receipt	Information			
Custody seals in	tact on shippping container/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good condition?	Yes	✓	No 🗆			
Samples in prop	er containers/bottles?	Yes	\checkmark	No 🗆			
Sample containe	rs intact?	Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated test?	Yes	\checkmark	No 🗌			
	Sample Prese	rvatio	<u>n and Ho</u>	<u>ld Time (HT)</u>	Information		
All samples rece	ived within holding time?	Yes	✓	No 🗌			
Container/Temp	Blank temperature	Coole	er Temp:	13.4°C		NA 🗆	
Water - VOA via	ls have zero headspace / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels cl	necked for correct preservation?	Yes	V	No 🗌			
TTLC Metal - pH	acceptable upon receipt (pH<2)?	Yes		No 🗆		N 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

When Ouality		<u>.</u>	Web: www.mccamp Telephone: 8	bell.com E-mail: main 77-252-9262 Fax: 925	@mccampbell.co -252-9269	om
AEI Consultants		oject ID: #27177			04/26/07	
	Group	5		Date Received:	04/26/07	
2500 Camino Diablo, Ste. #200	Cliant C	ontoot, Dohout El				
		ontact: Robert Fl	ory	Date Extracted:		
Walnut Creek, CA 94597	Client P.	0.:		Date Analyzed	04/28/07	
Halogenated	Volatile Organi	cs by P&T and G	C-MS (8010 Bas	sic Target List)*		
Extraction Method: SW5030B	Anal	ytical Method: SW826	0B	C ·	Work Order:	0704564
Lab ID	0704564-004A	0704564-008A	0704564-009A	0704564-010A		
Client ID	SB-1-13.5	SB-3-10	SB-4-1.5	SB-5-1	Reporting	
Cheft ID	SB-1-13.3	36-5-10	SB-4-1.3	30-3-1	DF	=1
Matrix	S	S	S	S		
DF	1	1	1	1	S	W
Compound		Conce	entration		mg/kg	µg/L
Bromodichloromethane	ND	ND	ND	ND	0.005	NA
Bromoform	ND	ND	ND	ND	0.005	NA
Bromomethane	ND	ND	ND	ND	0.005	NA
Carbon Tetrachloride	ND	ND	ND	ND	0.005	NA
Chlorobenzene	ND	ND	ND	ND	0.005	NA
Chloroethane	ND	ND	ND	ND	0.005	NA
2-Chloroethyl Vinyl Ether	ND	ND	ND	ND	0.005	NA
Chloroform	ND	ND	ND	ND	0.005	NA
Chloromethane	ND	ND	ND	ND	0.005	NA
Dibromochloromethane	ND	ND	ND	ND	0.005	NA
1.2-Dichlorobenzene	ND	ND	ND	ND	0.005	NA
1,3-Dichlorobenzene	ND	ND	ND	ND	0.005	NA
1,4-Dichlorobenzene	ND	ND	ND	ND	0.005	NA
Dichlorodifluoromethane	ND	ND	ND	ND	0.005	NA
1,1-Dichloroethane	ND	ND	ND	ND	0.005	NA
1,2-Dichloroethane (1,2-DCA)	ND	ND	ND	ND	0.005	NA
1,1-Dichloroethene	ND	ND	ND	ND	0.005	NA
cis-1,2-Dichloroethene	ND	ND	ND	ND	0.005	NA
trans-1,2-Dichloroethene	ND	ND	ND	ND	0.005	NA
1,2-Dichloropropane	ND	ND	ND	ND	0.005	NA
cis-1,3-Dichloropropene	ND	ND	ND	ND	0.005	NA
trans-1,3-Dichloropropene	ND	ND	ND	ND	0.005	NA
Methylene chloride	ND	ND	ND	ND	0.005	NA
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	0.005	NA
Tetrachloroethene	ND	0.016	ND	0.076	0.005	NA
1,1,1-Trichloroethane	ND	ND	ND	ND	0.005	NA
1,1,2-Trichloroethane	ND	ND	ND	ND	0.005	NA
Trichloroethene	ND	ND	ND	ND	0.005	NA
Trichlorofluoromethane	ND	ND	ND	ND	0.005	NA
Vinyl Chloride	ND	ND	ND	ND	0.005	NA
	Su	rrogate Recoverie	s (%)			
%SS1:	97	95	93	87		
%SS2:	97	97	96	95		
%SS3:	91	90	90	89		
Comments						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

McCampbell An "When Quality Of the Second			mpbell.com E-mail: ma e: 877-252-9262 Fax: 9		om
AEI Consultants	•	ID: #271771; RR Retail	Date Sampled:	04/26/07	
2500 Camino Diablo, Ste. #200	Group		Date Received	04/26/07	
2500 Camino Diabio, 5tc. #200	Client Contac	t: Robert Flory	Date Extracted	04/26/07	
Walnut Creek, CA 94597	Client P.O.:		Date Analyzed	04/28/07	
Wantat Crock, Crivity	Chefit I .O		Date Anaryzed	04/20/07	
Halogenated	Volatile Organics by	P&T and GC-MS (8010 H	Basic Target List)*		
Extraction Method: SW5030B	Analytical M	Method: SW8260B		Work Order:	0704564
Lab ID	0704564-014A			D i	T T T C
Client ID	SB-6-4			Reporting DF	
				DI	-1
Matrix	S			G	
DF	1			S	W
Compound		Concentration	•	mg/kg	μg/L
Bromodichloromethane	ND			0.005	NA
Bromoform	ND			0.005	NA
Bromomethane	ND			0.005	NA
Carbon Tetrachloride	ND			0.005	NA
Chlorobenzene	ND			0.005	NA
Chloroethane	ND			0.005	NA
2-Chloroethyl Vinyl Ether	ND			0.01	NA
Chloroform	ND			0.005	NA
Chloromethane	ND			0.005	NA
Dibromochloromethane	ND			0.005	NA
1,2-Dichlorobenzene	ND			0.005	NA
1,3-Dichlorobenzene	ND			0.005	NA
1,4-Dichlorobenzene	ND			0.005	NA
Dichlorodifluoromethane	ND			0.005	NA
1,1-Dichloroethane	ND			0.005	NA
1,2-Dichloroethane (1,2-DCA)	ND			0.005	NA
1,1-Dichloroethene	ND			0.005	NA
cis-1,2-Dichloroethene	ND			0.005	NA
trans-1,2-Dichloroethene	ND			0.005	NA
1,2-Dichloropropane	ND			0.005	NA
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND			0.005	NA
Methylene chloride	ND ND			0.005	NA NA
1,1,2,2-Tetrachloroethane	ND			0.005	NA
Tetrachloroethene	ND ND			0.005	NA
1,1,1-Trichloroethane	ND			0.005	NA
1,1,2-Trichloroethane	ND			0.005	NA
Trichloroethene	ND			0.005	NA
Trichlorofluoromethane	ND			0.005	NA
Vinyl Chloride	ND			0.005	NA
	Surroga	te Recoveries (%)			
%SS1:	91				
%SS2:	95				
%SS3:	89				
Comments		l l		1	

extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

NONE

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

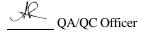
QC Matrix: Soil

WorkOrder 0704564

EPA Method SW8260B	Extra	ction SW	5030B		Bat	tchID: 27	707	Sp	Spiked Sample ID: 0704558-035A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)				
, individ	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD			
Chlorobenzene	ND	0.050	103	104	0.937	105	102	2.83	70 - 130	30	70 - 130	30			
1,2-Dichloroethane (1,2-DCA)	ND	0.050	118	126	6.84	119	118	0.484	70 - 130	30	70 - 130	30			
1,1-Dichloroethene	ND	0.050	76.6	81.4	6.05	80.5	78.3	2.72	70 - 130	30	70 - 130	30			
Trichloroethene	ND	0.050	85	86.6	1.84	85.7	85.9	0.197	70 - 130	30	70 - 130	30			
%SS1:	89	0.050	95	97	2.35	94	95	1.28	70 - 130	30	70 - 130	30			
%SS2:	95	0.050	97	100	3.80	101	101	0	70 - 130	30	70 - 130	30			
%SS3:	88	0.050	114	118	3.16	116	117	1.10	70 - 130	30	70 - 130	30			

BATCH 27707 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0704564-004A	04/26/07 8:10 AM	04/26/07	04/28/07 1:52 AM	0704564-008A	04/26/07 10:40 AM	04/26/07	04/28/07 2:44 AM
0704564-009A	04/26/07 11:30 AM	04/26/07	04/28/07 3:51 AM	0704564-010A	04/26/07 11:40 AM	04/26/07	04/28/07 4:51 AM
0704564-014A	04/26/07 12:25 PM	04/26/07	04/28/07 5:49 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

APPENDIX E

Groundwater Laboratory Analyses With Chain of Custody Documentation

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

AEI Consultants	Client Project ID: #271771;RR Retail Group	Date Sampled: 04/21/07
2500 Camino Diablo, Ste. #200		Date Received: 04/26/07
Walnut Creek, CA 94597	Client Contact: Robert Flory	Date Reported: 05/02/07
Wunde Creek, Cre 91097	Client P.O.:	Date Completed: 05/02/07

WorkOrder: 0704569

May 02, 2007

Dear Robert:

Enclosed are:

- 1). the results of **5** analyzed samples from your **#271771;RR Retail Group project**,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence

in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

			1538 W	L ANAI 'illow Pas urg, CA	ss Roa	ad	L, I	ne							τι	IRN	A							[STO D SH						ŔD	72 HR	5	5 D
	hone: (92	25) 252-9262						Fa	x: (9	925)	252	-926	9		Geo	Tra	cke	r ED)F	\boxtimes	1	PDF	\square	\leq	E	xce	1			Wri	ite O	Dn (DV	V) [
Report 7	o: Robe	ert Flory		E	Bill To	: Sa	me												An	alys	is R	equ	est			_			- (Othe	er i	Co	mme	ent
Compan	No. of Concession, Name	Consultants														G											1		-					
		Camino Dia	and the second sec						_			_			Ē	/B&						0		-					(List)					
		ut Creek, C.	A 94597		-Mai					ultan	ts.co	om		- 3	as Gas (SW8UI SCIII)	E&F	0					- 8260		8310					Target					
Tel: (925					ax: (9							_			2 M S	\$20	18.1					DCA -		82707					0 T.					
Project			1.		rojec				Reta	il G	rou	р		-	1986	e 15	1S (4	-	20)			ă		82			_	nity	8010					
		: 2960 Castr	6 Vaffey	Blud, Ca	stro V	alley	,C	F							as l	reas	rboi	0 lis	/ 80	0		DS		625 /			010	alkalinity	38					
Sampler	Signatu	re: Ac	14	yu	1	-	-	_	-	_		ETH	0.0		Hall	0 3	loca	801	602	808	0	8		EPA			9.2%	c, al	8261					
		1-0	SAMP	KING		ers	1	MA	TRE	X		IETH			TDH as Diasal (SW/8015Cm)	Total Petroleum Oil & Grease 15520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	HVOCs EPA 8260 (8010 list)	BTEX ONLY (EPA 602 / 8020)	Pesticides EPA 608 / 8080	PCBs EPA 608 / 8080	Fuel Oxygenates incl. EBD &					Lead (7240/7421/239.2/6010)	sulfate,	VOCs (8260B					
SAMP	EID	CATION	/	1	ers	Containers								1000	TDH as Diasal (SW	-) ma	uma	A 82	Y (E	PA (508	lates	EPA 625 / 8270	PAH'S / PNA'S by	CAM-17 Metals	100	742	te, s	20					
SAMPI	LE ID	(Field Point			Containers	On								- Mart	Dia.	trole	trole	EP	N	es E	PA (ygel	5/8	Z	CAM-17 Metal	NIC	240/	nitrite,	Halogenated					
		Name)	Date	Time	UOU		Water	-	Air	Other		- 5	EUNIA Othor	Unter	A as t	al Pe	al Pc	OC	EX (ticid	38 E	ő	1 62	20	I-W		() p	Nitrate,	oger					
					#	Type	M	Soil	Shu	õ	Ice	HCI	E	5	TDF	Tot	Tot	HV	BTI	Pest	PC	Fue	EP	PA	CA	3	Lea	ž	Hal					
5B-1		CB-1	11/201-	0820	300	-	V	-	+		1	-	+	+	-	-	-	1			-	-	-	+	-	+	+	+	+	+	+	+		-
10-1	-w	56-1	71201	000	12pp	-	N	-		+	\parallel	+	+	+	-	-	-	K	-	-	-		+	+		+	+	+	+	+	+	+		-
75-4	-w	53-2	4	0940	\square		K	-	-	-		-	-	+	-	-		X			-	_	-	+	-	+	-	+	-	_	_	+		_
56-3	-w	56-3		1035			X	_						1				X					_	_	_	_	_		_					_
58-5	-w	38-5		1230														X																
5B-6	-43	56-6		1254			V				\mathbf{V}							¥																
1.			-	<u> </u>	1	-	\wedge	-			Y		+	T		1	1	1					-			1			-					
				-		-		+	-	-		-	+	+	+	-		-			-	-	+	-	-	+	-	+	+	+	-	+		-
				-				-	-			-	+	+	-	-	-			-	-	-	+	+	-	+	+	+	+	-	-	+		-
								_	_			_	_	+	_	_	-	-		-	_	_	_	_	_	+	_	-	-	_	-	-		_
_																				_	_	_												_
																																		Ĩ
						-		-	-	+		-	+	+	+							+	+	+	-	+	-	+	-	-	+	-		-
											-		-	+	-	-			_	-	-	+	+	+		-	+	+	-	-	+	-		-
	1	11				-		-	-	-	-		+	-			-			_	-	-	_	-	-	+	-	+	-	-		-		-
//	1	11																															_	_
Reinquish	ed ter	4	Date: /	Time:	Recei	ived B	y:	-	-	1	C	- (2																	1	1		1	
2111	7	14	4/2407	1650	EV	1UC	10	-1	ec	h	0	U	~		IC	E/tº	3.	60			/	/	PF	RES	ERV	AT	10		DAS	0&0	6	METAL	s c)
Relinquish	ed By:	S.R.	Date	Time:	Recei	ived B	1. 1	1	4	7	2/				GC	DOD	CON				/		Al	PPR	OPF	AIA	TĘ		-				-	
FILLIN	0-100	UP C	12607 Date: 4-26-07	1930 Time:	11	e/ ived B	1	90	C	P	u	M	-		HE	AD S	SPA	CE /	ABS	ENT	-				TAIN			1	AB					

	AWA
6	NU
1	

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA (925) 252-92	A 94565-1701 262					Work	Order:	0704	569	Client	ID: AEI					
				EDF		Excel	[Fax		Email	Har	dCopy	Thir	dParty		
Report to: Robert Flory AEI Consultants 2500 Camino Di Walnut Creek, C	iablo, Ste. #200	Email: TEL: ProjectNo: PO:	(925) 283-60	nsultants.com 10 FAX: (925) Retail Group	283-6	12	AE 25 Wa	00 Can alnut Ci	ockel ultants nino Diabl reek, CA 9 ⊉aeiconsu	4597		Da	quested ate Reca ate Prin	eived	04/26/2	
									Reque	sted Test	s (See le	gend b	elow)			
Sample ID	ClientSampID	1	Matrix	Collection Date	Hold	1	2	3	4	5 6	7	8	9	10	11	12
0704569-001	SB-1-W		Water	04/21/07 8:20:00		А	А									
0704569-002	SB-2-W		Water	04/21/07 9:40:00		А										
0704569-003	SB-3-W		Water	04/21/07 10:55:00		А										
0704569-004	SB-5-W		Water	04/21/07 12:30:00		А										
0704569-005	SB-6-W		Water	04/21/07 12:54:00		А										

Test Legend:

1	8010BMS_W	2 PREDF REPORT	3]	4]	5
6		7	8]	9]	10
11		12					

Prepared by	: Chloe Lam
-------------	-------------

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Dat	e and	Time Received:	04/26/07 9	:42:12 PM
Project Name:	#271771;RR Reta	ail Group			Che	ecklist	completed and re	eviewed by:	Chloe Lam
WorkOrder N°:	0704569	Matrix <u>Water</u>			Car	rier:	Client Drop-In		
		Chain	of Cu	stody (C	OC) Infor	matio	'n		
Chain of custody	y present?		Yes		No 🗆]			
Chain of custody	y signed when relinqu	ished and received?	Yes	✓	No 🗆]			
	y agrees with sample		Yes	✓	No]			
Sample IDs note	d by Client on COC?		Yes	\checkmark	No 🗆]			
Date and Time o	f collection noted by C	lient on COC?	Yes	✓	No 🗆]			
Sampler's name	noted on COC?		Yes	✓	No 🗆]			
				- • <i>i</i>					
		<u>S</u>	ample	Receipt	Informati				
Custody seals in	tact on shippping con	tainer/cooler?	Yes		No]		NA 🔽	
Shipping contain	ner/cooler in good con	dition?	Yes	\checkmark	No]			
Samples in prop	er containers/bottles?		Yes	\checkmark	No]			
Sample containe	ers intact?		Yes	✓	No 🗆]			
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No]			
		Sample Prese	rvatio	n and Ho	ld Time (ł	IT) In	formation		
All samples rece	ived within holding tin	ne?	Yes	\checkmark	No]			
Container/Temp	Blank temperature		Coole	er Temp:	13.6°C			NA 🗆	
Water - VOA via	ils have zero headspa	ace / no bubbles?	Yes	✓	No] No	VOA vials subm	itted 🗆	
Sample labels c	hecked for correct pre	eservation?	Yes	\checkmark	No]			
TTLC Metal - pH	acceptable upon rece	eipt (pH<2)?	Yes	✓	No 🗆]		N 🗆	

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell An		<u>c.</u>	Web: www.mccam	Pass Road, Pittsburg, CA pbell.com E-mail: main 877-252-9262 Fax: 92	@mccampbell.c	om	
"When Ouality							
AEI Consultants	Group	oject ID: #27	1771;RR Retail	Date Sampled:			
2500 Camino Diablo, Ste. #200	Gloup			Date Received:	04/26/07		
2500 Cullino Diablo, 5tc. #200	Client C	ontact: Robe	rt Flory	Date Extracted:	04/28/07		
Walnut Creek, CA 94597	Client P.	0·	-	Date Analyzed	04/28/07		
· · · · · · · · · · · · · · · · · · ·			•	04/20/07			
Halogenated	Volatile Organi	cs by P&T an	d GC-MS (8010 Ba	sic Target List)*			
Extraction Method: SW5030B	Anal	ytical Method: SV	W8260B		Work Order:	0704569	
Lab ID	0704569-001A	0704569-002	2A 0704569-003A	0704569-004A	_		
Client ID	SB-1-W	SB-2-W	SB-3-W	SB-5-W	 Reporting DF 		
					DF	-1	
Matrix	W	W	W	W			
DF	1	1	1	1	S	W	
Compound		C	oncentration		μg/kg	µg/L	
Bromodichloromethane	ND	ND	ND	ND	NA	0.5	
Bromoform	ND	ND	ND	ND	NA	0.5	
Bromomethane	ND	ND	ND	ND	NA	0.5	
Carbon Tetrachloride	ND	ND	ND	ND	NA	0.5	
Chlorobenzene	ND	ND	ND	ND	NA	0.5	
Chloroethane	ND	ND	ND	ND	NA	0.5	
2-Chloroethyl Vinyl Ether	ND	ND	ND	ND	NA	1.0	
Chloroform	ND	ND	ND	ND	NA	0.5	
Chloromethane	ND	ND	ND	ND	NA	0.5	
Dibromochloromethane	ND	ND	ND	ND	NA	0.5	
1,2-Dichlorobenzene	ND	ND	ND	ND	NA	0.5	
1,3-Dichlorobenzene	ND	ND	ND	ND	NA	0.5	
1,4-Dichlorobenzene	ND	ND	ND	ND	NA	0.5	
Dichlorodifluoromethane	ND	ND	ND	ND	NA	0.5	
1,1-Dichloroethane	ND	ND	ND	ND	NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND	ND	ND	ND	NA	0.5	
1,1-Dichloroethene	ND	ND	ND	ND	NA	0.5	
cis-1,2-Dichloroethene	ND	ND	ND	ND	NA	0.5	
trans-1,2-Dichloroethene	ND	ND	ND	ND	NA	0.5	
1,2-Dichloropropane	ND	ND	ND	ND	NA	0.5	
cis-1,3-Dichloropropene	ND	ND	ND	ND	NA	0.5	
trans-1,3-Dichloropropene	ND	ND	ND	ND	NA	0.5	
Methylene chloride	ND	ND	ND	ND	NA	0.5	
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	NA	0.5	
Tetrachloroethene	ND	ND	1.2	6.7	NA	0.5	
1,1,1-Trichloroethane	ND	ND	ND	ND	NA	0.5	
1,1,2-Trichloroethane	ND	ND	ND	ND	NA	0.5	
Trichloroethene	ND	ND	ND	ND	NA	0.5	
Trichlorofluoromethane	ND	ND	ND	ND	NA	0.5	
Vinyl Chloride	ND	ND	ND	ND	NA	0.5	
	Su	rrogate Recov	eries (%)		1		
%SS1:	102	102	104	104			
%SS2:	95	94	95	95			
%SS3:	102	101	101	102			
Comments	i						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

WcCampbell An			mpbell.com E-mail: ma e: 877-252-9262 Fax: 9		om
AEI Consultants	•	ID: #271771;RR Retail	Date Sampled:	04/21/07	
2500 Camino Diablo, Ste. #200	Group		Date Received	: 04/26/07	
2500 Camino Diabio, Stc. #200	Client Contact	t: Robert Flory	Date Extracted	: 04/28/07	
Walnut Creek, CA 94597	Client P.O.:		Date Analyzed	1 04/28/07	
Wallat Creek, Crey-557	Chefit I .O		Date Analyzee	04/20/07	
Halogenated	Volatile Organics by 2	P&T and GC-MS (8010 I	Basic Target List)*	:	
Extraction Method: SW5030B	Analytical M	Aethod: SW8260B		Work Order:	0704569
Lab ID	0704569-005A				
Client ID	SB-6-W			Reporting	
Choirt ID	52 0 11			DF	=1
Matrix	W				
DF	1			S	W
Compound		Concentration			ug/I
		Concentration		µg/kg	μg/L
Bromodichloromethane Bromoform	ND			NA	0.5
Bromotorm Bromomethane	ND ND			NA NA	0.5
Carbon Tetrachloride	ND			NA	0.5
Chlorobenzene	ND			NA	0.5
Chloroethane	ND			NA	0.5
2-Chloroethyl Vinyl Ether	ND			NA	1.0
Chloroform	ND			NA	0.5
Chloromethane	ND			NA	0.5
Dibromochloromethane	ND			NA	0.5
1,2-Dichlorobenzene	ND			NA	0.5
1,3-Dichlorobenzene	ND			NA	0.5
1,4-Dichlorobenzene	ND			NA	0.5
Dichlorodifluoromethane	ND			NA	0.5
1,1-Dichloroethane	ND			NA	0.5
1,2-Dichloroethane (1,2-DCA)	ND			NA	0.5
1,1-Dichloroethene	ND			NA	0.5
cis-1,2-Dichloroethene	ND			NA	0.5
trans-1,2-Dichloroethene	ND			NA	0.5
1,2-Dichloropropane	ND			NA	0.5
cis-1,3-Dichloropropene	ND			NA	0.5
trans-1,3-Dichloropropene	ND			NA	0.5
Methylene chloride	ND			NA	0.5
1,1,2,2-Tetrachloroethane	ND			NA	0.5
Tetrachloroethene	0.69			NA	0.5
1,1,1-Trichloroethane	ND			NA	0.5
1,1,2-Trichloroethane	ND			NA	0.5
Trichloroethene	ND			NA	0.5
Trichlorofluoromethane	ND			NA	0.5
Vinyl Chloride	ND			NA	0.5
T		te Recoveries (%)		<u> </u>	
%SS1:	100				
%SS2:	95				
%SS3:	99				
Comments					

extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

NONE

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

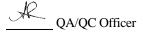
QC Matrix: Water

WorkOrder 0704569

EPA Method SW8260B	Extra	ction SW	5030B		Bat	chID: 27	694	Sp	Spiked Sample ID: 0704570-005B					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%))		
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
Chlorobenzene	ND	10	108	107	0.885	99.6	106	6.24	70 - 130	30	70 - 130	30		
1,2-Dichloroethane (1,2-DCA)	ND	10	126	123	2.47	119	122	2.47	70 - 130	30	70 - 130	30		
1,1-Dichloroethene	ND	10	83	78.3	5.84	74.9	77.8	3.87	70 - 130	30	70 - 130	30		
Trichloroethene	ND	10	91.1	88.5	2.84	82.4	85.6	3.86	70 - 130	30	70 - 130	30		
%SS1:	97	10	99	94	4.34	95	91	4.63	70 - 130	30	70 - 130	30		
%SS2:	99	10	99	97	2.23	101	93	7.83	70 - 130	30	70 - 130	30		
%SS3:	120	10	119	119	0	117	115	1.45	70 - 130	30	70 - 130	30		

BATCH 27694 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0704569-001A	04/21/07 8:20 AM	04/28/07	04/28/07 9:57 AM	0704569-002A	04/21/07 9:40 AM	04/28/07	04/28/07 10:42 AM
0704569-003A	04/21/07 10:55 AM	04/28/07	04/28/07 11:26 AM	0704569-004A	04/21/07 12:30 PM	04/28/07	04/28/07 12:10 PM
0704569-005A	04/21/07 12:54 PM	04/28/07	04/28/07 12:54 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

