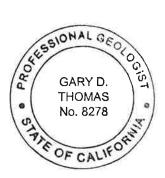


A Report Prepared For:

Mr. John Weber c/o Cox, Castle & Nicholson LLP 555 California Street, 10th Floor San Francisco, California 94104

Attention: Stuart I. Block, Esq.


RECEIVED

11:01 am, Nov 19, 2008

Alameda County Environmental Health

SUBSURFACE INVESTIGATION REPORT 4600-4700 COLISEUM WAY OAKLAND, CALIFORNIA

SEPTEMBER 18, 2008

By:

Gary Thomas, P.G. Senior Geologist

Kyle S. Flory, P.G. **Principal Geologist**

1148.001.03.003

TABLE OF CONTENTS

LIST OF ILLUSTRATIONSiv1.0 INTRODUCTION12.1 SIT DESCRIPTION12.1 Site Description12.2 Site History22.3 Local Geology and Hydrogeology22.4 Summary of Previous On-Site Environmental Investigations22.4.1 Phase I ESA by Kleinfelder22.4.2 Sampling and Excavation of Red-Stained Soils32.4.3 Additional Phase I ESAs42.4.4 PIERS January 2008 Phase II Investigation42.5 Summary of Environmental Conditions on Adjacent Properties52.5.1 Superior Plaster Castings Property52.5.2 PG&E Property52.5.3 Former AAA Equipment Company62.5.4 Learner Investment Company Property63.0 SUBSURFACE INVESTIGATIONS73.1 Field Activities and Sampling Methods73.1 Field Activities73.1.2 Sampling Methods83.2 Analytical Methods94.0 RESULTS OF SUBSURFACE INVESTIGATIONS94.1 Subsurface Conditions104.2 Laboratory Analytical Results104.2.1 Soil Results104.2.2 Groundwater Results115.0 DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS116.0 REFERENCES14	LIST OF TABLESiv
2.0 BACKGROUND INFORMATION 1 2.1 Site Description 1 2.2 Site History 2 2.3 Local Geology and Hydrogeology 2 2.4 Summary of Previous On-Site Environmental Investigations 2 2.4 Summary of Previous On-Site Environmental Investigations 2 2.4.1 Phase I ESA by Kleinfelder 2 2.4.2 Sampling and Excavation of Red-Stained Soils 3 2.4.3 Additional Phase I ESAs 4 2.4.4 PIERS January 2008 Phase II Investigation 4 2.5.1 Superior Plaster Castings Property 5 2.5.2 PG&E Property 5 2.5.3 Former AAA Equipment Company 6 2.5.4 Learner Investment Company Property 6 3.0 SUBSURFACE INVESTIGATIONS 7 3.1 Field Activities and Sampling Methods 7 3.1.2 Sampling Methods 8 3.2 Analytical Methods 9 4.1 Subsurface Conditions 10 4.2 Laboratory Analytical Results 10 4.2.1 Soil Results 10 4.2.2 Groundwater Results 11	LIST OF ILLUSTRATIONSiv
2.1 Site Description. 1 2.2 Site History. 2 2.3 Local Geology and Hydrogeology 2 2.4 Summary of Previous On-Site Environmental Investigations. 2 2.4 Summary of Previous On-Site Environmental Investigations. 2 2.4.1 Phase I ESA by Kleinfelder. 2 2.4.2 Sampling and Excavation of Red-Stained Soils. 3 2.4.3 Additional Phase I ESAs 4 2.4.4 PIERS January 2008 Phase II Investigation 4 2.5 Summary of Environmental Conditions on Adjacent Properties 5 2.5.1 Superior Plaster Castings Property 5 2.5.2 PG&E Property 5 2.5.3 Former AAA Equipment Company 6 3.0 SUBSURFACE INVESTIGATIONS 7 3.1.1 Pre-Field Activities 7 3.1.2 Sampling Methods 8 3.2 Analytical Methods 9 4.1 Subsurface Conditions 10 4.2 Laboratory Analytical Results 10 4.2.1 Soil Results 10 4.2.2 Groundwater Results 11	1.0 INTRODUCTION
3.0 SUBSURFACE INVESTIGATIONS73.1 Field Activities and Sampling Methods73.1.1 Pre-Field Activities73.1.2 Sampling Methods83.2 Analytical Methods94.0 RESULTS OF SUBSURFACE INVESTIGATIONs94.1 Subsurface Conditions104.2 Laboratory Analytical Results104.2.1 Soil Results104.2.2 Groundwater Results115.0 DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS11	2.1 Site Description.12.2 Site History.22.3 Local Geology and Hydrogeology22.4 Summary of Previous On-Site Environmental Investigations.22.4.1 Phase I ESA by Kleinfelder22.4.2 Sampling and Excavation of Red-Stained Soils.32.4.3 Additional Phase I ESAs42.4.4 PIERS January 2008 Phase II Investigation42.5 Summary of Environmental Conditions on Adjacent Properties52.5.1 Superior Plaster Castings Property52.5.2 PG&E Property52.5.3 Former AAA Equipment Company6
4.1 Subsurface Conditions104.2 Laboratory Analytical Results104.2.1 Soil Results104.2.2 Groundwater Results115.0 DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS11	3.0 SUBSURFACE INVESTIGATIONS .7 3.1 Field Activities and Sampling Methods .7 3.1.1 Pre-Field Activities .7 3.1.2 Sampling Methods .8
	4.1 Subsurface Conditions104.2 Laboratory Analytical Results104.2.1 Soil Results10
6.0 REFERENCES	5.0 DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS
	6.0 REFERENCES

TABLES

ILLUSTRATIONS

APPENDICES A – PIERS JANUARY 2008 LIMITED PHASE II SITE INVESTIGATION REPORT

- B PERTINENT DATA FROM ENVIRONMENTAL INVESTIGATIONS ON ADJACENT PROPERTIES
- C ALAMEDA COUNTY PUBLIC WORKS AGENCY DRILLING PERMITS
- D LITHOLOGIC LOGS
- E CURTIS & TOMPKINS LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION
- F PTS LABORATORIES LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

DISTRIBUTION

Table 1	Summary of Analyses Performed on Soil and Groundwater Samples
Table 2	Volatile Organic Compounds in Soil

Table 3 Volatile Organic Compounds in Groundwater

Results of Groundwater Monitoring - MNA Parameter Table 4

LIST OF ILLUSTRATIONS

- Plate 1 Site Location Map
- Plate 2 Site Plan
- Summary of Soil Analytical Results Plate 3
- Summary of Groundwater Analytical Results Plate 4

1.0 INTRODUCTION

This report has been prepared by PES Environmental, Inc. (PES), on behalf of Mr. John Weber to summarize the results of our recently conducted subsurface soil and groundwater investigations at 4600-4700 Coliseum Way, Oakland, California (the Site). The Site location is shown on Plate 1. The investigation activities described herein were conducted in accordance with PES' proposals dated June 6, 2008 (Reference No. 1148.001.01.P03) and July 11, 2008 (Reference No. 1148.001.01.P04).

The purpose of the PES investigations was to characterize the nature and extent of soil and groundwater impacts discovered at the Site during the January 2008 subsurface investigation conducted by PIERS Environmental Services, Inc. (PIERS, 2008). Previous investigations indicated other portion of the Site did not require additional investigations (Kleinfelder, Inc. [Kleinfelder], 2002; W.A. Craig, Inc. [W.A. Craig], 2003; and AEI Consultants [AEI], 2007).

This report summarizes background information, discusses the methods and results of the recently completed investigations and presents conclusions and recommendations based upon the findings. Our conclusions and recommendations are presented in Section 5.0 below.

2.0 BACKGROUND INFORMATION

2.1 Site Description

The 2.7-acre Site is comprised of two adjacent rectangular parcels with addresses of 4600 and 4700 Coliseum Way that are identified by Alameda County Assessor's Parcel Numbers (APN) 34-2293-3 and 34-2293-4-2, respectively.

Currently buildings at the Site consist of two smaller metal-framed warehouse buildings in the western portion of the Site, a large warehouse building in the central portion of the Site, and a small shed near the northeastern property boundary (Plate 2). The Site is located in a commercial/industrial area within the City of Oakland and County of Alameda, California. As shown on Plates 1 and 2, the Site is bounded to the northeast by an abandoned railroad spur and further northeast by a property owned by Learner Investment Company, to the southeast by Superior Plaster Casting Property, to the southwest by Coliseum Way, and to the northwest by 46th Avenue. Vehicle access to the property is via Coliseum Way.

According to the United States Geological Survey (USGS) *Oakland East, California* Quadrangle 7.5-minute series topographic map, the Site is situated at an elevation of approximately 10 feet above mean sea level. The topography on the Site and in the vicinity is relatively flat. The closest water body is San Francisco Bay, located approximately ¹/₂-mile to the southwest.

PES Environmental, Inc.

2.2 Site History

According to a Phase I Environmental Site Assessment (ESA) prepared by AEI Consultants (AEI) in October 2007 (AEI, 2007), the metal-framed warehouses in the western portion of the Site were constructed between 1912 and 1925 for use as storage facilities for feed and coal. According to AEI, these warehouses have historically been used for various operations including wooden molding manufacturing, insulation manufacturing, and cabinet making. Currently, the warehouses are being used for storage of miscellaneous equipment and construction supplies (ERAS Environmental, Inc. [ERAS], 2007a). The abandoned railroad spur shown on Plate 2 was present at the Site from at least 1925 through 1969.

The large warehouse building in the central portion of the Site was constructed in 1968 for use as a metal manufacturing facility by Bostrom Bergen Metal Manufacturing (Bostrom) (AEI, 2007). Bostrom occupied the Site, including the two metal-framed warehouses from at least 1969 through 2000. The large warehouse is currently occupied by LVI Environmental Services (ERAS, 2007a). LVI is a demolition and environmental remediation services company.

2.3 Local Geology and Hydrogeology

According to ERAS, the Site is underlain by "fine-grained alluvial sediment that represents distal deposits of alluvial fans that were deposited by rivers draining upland surfaces" (ERAS, 2007a). Also beneath the Site are clay layers referred to as Bay Mud. Several hundred feet of Bay Mud deposits are likely present in the vicinity of the Site. Beneath the Bay Muds are sedimentary and metamorphic rocks of the Jurassic-aged Franciscan Formation (ERAS, 2007a). Groundwater was encountered at depths ranging between 4 and 15 feet below ground surface (bgs) during an on-Site investigation conducted by PIERS Environmental Services, Inc. (PIERS) in January 2008 (PIERS, 2008). The PIERS investigation is discussed in Section 2.4. Groundwater flow in the vicinity of the Site is generally toward the south (ERAS, 2007a).

As discussed in Section 2.5 below, shallow groundwater in the vicinity of the Site is impacted by regional total petroleum hydrocarbon (TPH) and volatile organic compound (VOC) plumes that are currently being addressed under the oversight of Alameda County Department of Environmental Health (ACDEH). Studies conducted on nearby properties indicate that the underlying groundwater is brackish (Harding ESE, Inc. [Harding ESE], 2002; LFR, Inc. [LFR], 2008). Therefore, groundwater in this area is not considered a drinking water source.

2.4 Summary of Previous On-Site Environmental Investigations

2.4.1 Phase I ESA by Kleinfelder

In 2002, Kleinfelder conducted a Phase I ESA at the Site (Kleinfelder, 2002). Kleinfelder's site description and historical evaluation of the subject Site are similar to those presented

above. Kleinfelder indicated their assessment revealed the following Recognized Environmental Conditions (RECs):

- "A rail spur terminated inside the property, used as recently as 1959, for the shipment of dry grains";
- "Minor oil stains were observed on the concrete in various locations but appear to have been isolated incidents and did not indicate a re-occurring event. Additionally, soil that was stained red from non-lead based paint over-spray was observed in the metal painting area at the rear of the site";
- "The primary concern associated with surrounding areas is impacted ground water quality from past discharges at up-gradient properties, including sodium dichromate spill and methyl-tert-butyl ether (MTBE) reported in ground water a the site at 5115 East 8th Street";
- "The vacant lot located at 745 50th Avenue was observed to contain corroding, leaking, unlabeled drums and other containers of unknown waste fluids"; and
- "Bostrom-Bergen was cited for improperly disposing of waste paint and paint thinner on the ground in 1986 and 1987 by Alameda County. Per Alameda County's request, Bostrom-Bergen completed a Corrective Actions Plan to correct this violation".

Kleinfelder recommended that the concrete stains be properly cleaned and stained soils be properly removed from the Site.

2.4.2 Excavation of Red-Stained Soils

Based on the results of Kleinfelder's Phase I ESA (Kleinfelder, 2002), W.A. Craig collected four surface soil samples (samples S1 through S4) in the red-stained area at the rear of the property. The results of this sampling are presented in W.A. Craig's *Soil Sample Results* letter report dated May 22, 2003 (W.A. Craig, 2003). The samples were analyzed for cadmium, chromium, lead, nickel, and zinc. Maximum detected concentrations of these constituents were as follows: cadmium, 8.3 milligrams per kilogram (mg/kg); chromium, 1,100 mg/kg; lead 4,500 mg/kg; nickel, 130 mg/kg; and zinc, 18,000 mg/kg.

Based on these results, Controlled Environmental Services (CES) excavated the area of red-stained soils to approximately 12 inches bgs on June 12 and 18, 2003 (Kleinfelder, 2003). Approximately 226 tons of California hazardous soil and 159 tons of RCRA hazardous soil was removed from an area measuring 140 feet by 40 feet. Following excavation activities, Kleinfelder collected four confirmation soil samples. The samples were analyzed for total lead, which ranged in concentration from 42 to 130 mg/kg (Kleinfelder, 2003). The lead results were all below Risk Based Screening Level established by the Regional Water Quality Control Board.

2.4.3 Additional Phase I ESAs

AEI conducted a Phase I ESA at the Site in 2007 (AEI, 2007). AEI indicated their assessment revealed the following RECs:

- The use of the subject property for industrial purposed since at least 1925;
- The historical presence of railroad spurs on or near the Site;
- The presence of a gasoline tank shown on Sanborn maps between 1953 and 1969; and
- "The adjacent properties to the north, northeast, east, and southeast have been grouped together as a common source of historical releases that occurred on each of the four properties, resulting in a comingled plume".

AEI recommended a subsurface soil and/or groundwater investigation to evaluate the identified RECs.

In 2007, ERAS also conducted a Phase I ESA at the Site (ERAS, 2007a). ERAS prepared an addendum to their Phase I ESA report (ERAS, 2007b). ERAS' Phase I ESA and addendum did not contain any additional significant findings regarding the subject property.

2.4.4 PIERS January 2008 Phase II Investigation

In January 2008, based on the investigation and recommendations of AEI, PIERS conducted a soil and groundwater investigation at the Site that involved advancing five borings (i.e., borings B1 through B5, see Plate 2 for locations) and collecting a four point composite sample along the former railroad spur (i.e., composite sample from locations S1A through S1D, see Plate 2 for locations). The purposes of borings B1 through B5 were as follows (PIERS, 2008):

- B1 through B3 were located in the northeastern portion of the Site to investigate potential off-Site sources "that could cause contamination to migrate in groundwater beneath the Property"; and
- Borings B4 and B5 were located at and adjacent to the location of the former gasoline tank location shown on historical Sanborn maps.

A copy of PIERS *Limited Phase II Site Investigation Report* is included in Appendix A. Selected grab groundwater and soil sample results from borings B1 through B5 are posted on Plates 3 and 4, respectively. As shown on Plate 4, the VOCs 1,1,1-trichloroethane (1,1,1-TCA) and its degradation products were detected in groundwater in the borings advanced in the northeastern portion of the Site. The highest concentrations in groundwater (1,1,1-TCA) detected at 1,200 micrograms per liter $[\mu g/L]$ were encountered in boring B1

located in the eastern corner of the Site. Lower concentrations of 1,1,1-TCA were detected in the soil sample collected from boring B1 (Plate 3).

Very low concentrations of toluene were detected in the groundwater samples collected from the location of the former gasoline tank shown on historical Sanborn maps (see table included in Appendix A). Hydrocarbons and VOCs were not detected in the soil samples collected from these borings. Total petroleum hydrocarbons quantified as diesel and motor oil (TPHd and TPHmo) were detected at concentrations of 9.9 and 84 mg/kg in the composite sample collected along the former railroad spur; VOCs and polychlorinated biphenyls (PCBs) were not detected in this sample.

2.5 Summary of Environmental Conditions on Adjacent Properties

Pertinent data from environmental investigations conducted on the adjacent properties discussed in Sections 2.5.1 through 2.5.4 are included in Appendix B.

2.5.1 Superior Plaster Castings Property

This property is located southeast and immediately adjacent to the subject Site (Plate 1) and appears to be hydraulically down- and cross-gradient from the Site with respect to the direction of groundwater flow. The primary contaminants detected at this property include petroleum hydrocarbons (total petroleum hydrocarbons quantified as gasoline [TPHg] and TPHd, respectively), xylenes, and VOCs. VOCs present on the Superior Plaster Castings Property appear to be limited to chlorobenzene (CB), 1,2-dichlorobenzene (1,2-DCB), 1,3-DCB and 1,4-DCB. 1,1,1-TCA and its breakdown products were not detected in groundwater samples collected on this property (ERAS, 2000).

2.5.2 PG&E Property

This property is located southeast from the subject Site and immediately adjacent to the Superior Plaster Castings Property (Plate 1) and appears to be hydraulically down- and cross-gradient from the subject property with respect to the direction of groundwater flow. This property is the location of a general construction yard and a former gas holder tank that was removed in May 1990. Seven groundwater monitoring wells are located on the PG&E Property. Groundwater flows towards the south, which is in general agreement with the other properties in the area. The wells were sampled in November 2007 and VOCs detected were primarily CB and DCBs. Fuel hydrocarbons are also present in the groundwater at the PG&E Property. In April 2007, 1,1,1-TCA was detected in one groundwater sample (OW-1) but at a low concentration of 0.6 μ g/L and 1,1-dichloroethane (1,1-DCA) was also detected at a maximum concentration of 12 μ g/L (Geomatrix Consultants, Inc. [Geomatrix], 2007).

A workplan was submitted by PG&E to Alameda County on November 16, 2007 to conduct additional assessment of the petroleum hydrocarbons, CB and DCB contamination in groundwater. The status of that proposed work is not known at this time.

2.5.3 Former AAA Equipment Company

This property is located east-southeast of the subject Site and appears to be hydraulically cross-gradient from the Site (Plate 1) with respect to the direction of groundwater flow. TPHd and TPHmo have been detected on the property. Polynuclear aromatics (PNAs) and PCBs have also been detected on this property. VOCs detected in soil and groundwater appears to be limited to CB and DCBs (Harding ESE, 2002).

LFR submitted a *Workplan for Assessment of Dichlorobenzene in Soil and Groundwater* dated October 30, 2007 for this property (745 50th Street) and the Learner Investment Company Property at 768 46th Avenue.

2.5.4 Learner Investment Company Property

This property is located north and northeast of the subject Site and appears to be hydraulically up-gradient from the Site (Plate 1) with respect to the direction of groundwater flow. This property is being actively investigated and is under oversight by Alameda County Department of Health (ACDEH). Previous sampling conducted on this property indicates that it is affected by petroleum hydrocarbons (TPHd and TPHmo), PCBs, benzene, toluene, ethylbenzene, and xylenes (BTEX), and metals.

The most recent investigation at this property was conducted by LFR in April 2008 and involved advancing 12 borings (LFR, 2008). Soil samples at depths ranging from 1 to 5 feet bgs were collected from each boring and grab groundwater samples were collected from four borings. Four of the borings (LP-4, LP-5, LP-6 and LP-13) were located near the boundary northeast of the subject Site; grab groundwater samples were collected from borings LP-6 and LP-13. The summary below focuses on the results these four borings.

The soil samples collected from borings LP-4, LP-5, LP-6 and LP-13 were analyzed for TPHd, TPHmo, VOCs, metals, and PCBs and the groundwater samples were analyzed for TPHd, TPHmo, VOCs, and metals. In summary, TPHd, TPHmo, PCBs, acetone and methylene chloride were detected in the soil samples.

LFR indicated that most of the metals concentrations in soil were within range of naturally occurring metals concentrations in the San Francisco Bay Area. However, according to LFR, six metals (arsenic, cadmium, copper, lead, nickel, and zinc) were detected at elevated concentrations. The maximum concentrations of these metals in the samples collected from borings LP-4, LP-5, LP-6 and LP-13 were arsenic at 12 mg/kg, cadmium at 10 mg/kg, copper at 100 mg/kg, lead at 1,000 mg/kg, and zinc at 2,800 mg/kg.

TPHd, TPHmo, 1,1-DCA, 1,2-dichloroethane (1,2-DCA), cis-1,2-dichloroethene (cis-1,2-DCE), and bromodichloromethane were detected in the grab groundwater samples.

3.0 SUBSURFACE INVESTIGATIONS

The following sections present the field activities and sampling methods (Section 3.1) and analytical methods (Section 3.2) for the subsurface investigations conducted by PES on June 27 and July 31, 2008.

3.1 Field Activities and Sampling Methods

The objective of PES' initial subsurface investigation conducted on June 27, 2008 was to:

- Provide a better understanding of soil and groundwater conditions in the eastern portion of the Site based on information provided in prior site assessments;
- Verify the results of the previous sampling conducted in the eastern portion of the Site; and
- Characterize the nature and extent of VOCs detected previously in soil and groundwater in the eastern portion of the Site.

During the investigation conducted in June 2008, PES advanced eight borings (B-1 through B-8; Plate 2) in the northeastern portion of the Site. A summary of the samples collected from these borings and the analyses performed on the samples is provided in Table 1.

Based on the results of the June 26, 2008 investigation, PES conducted a second phase of work at the Site on July, 31 2008. The objective of this additional investigation was to:

- Assess soil conditions in the immediate vicinity of a storage shed to evaluate whether soil beneath and in the vicinity of the shed is the source of VOC-affected groundwater; and
- Define the extent of groundwater north (up-gradient), west (cross-gradient), and south (down-gradient) of the shed.

During the second phase of work, PES completed seven borings (B-9 through B-15; Plate 2). A summary of the samples collected from these borings and the analyses performed on the samples is also provided in Table 1.

The drilling and sampling activities during both phases of work were conducted with oversight by a licensed California Professional Geologist.

3.1.1 Pre-Field Activities

Drilling permits were obtained from the Alameda County Public Works Agency (ACPW) prior to both phases of drilling. Copies of the permits are included in Appendix C. PES contacted

Underground Service Alert more than 48 hours before beginning drilling activities to locate and mark utilities at the Site and C. Cruz Sub-Surface Locators, Inc. (C. Cruz) of Milpitas, California cleared the sampling locations for subsurface utilities. Additionally, PES coordinated with Vironex, Inc. (Vironex) of Pacheco, California, a licensed drilling contractor possessing a valid C-57 water well contractor's license issued by the State of California, to schedule the sampling events. A Site-specific Health and Safety Plan that complied with applicable federal, California Occupational Safety and Health Administration (OSHA), and Title 29 CFR 1910.120 guidelines was prepared by PES for the sampling activities.

3.1.2 Sampling Methods

With the exception of boring B-12, Vironex utilized a direct-push drilling rig to advance the borings to the desired depth, which ranged between 8 and 19 feet bgs. Borings B-2, B-3, and B-9 (advanced for groundwater sampling only) were advanced using single-walled direct-push tooling with a displacement point attached to the bottom of the drive casing. The purpose of the displacement point is to prevent soil from entering the drive casing as it is advanced to the desired depth using hydraulic forces. Once the desired depth was reached, the drive casing was pulled back to separate the displacement point from the drive casing. Grab groundwater sampling was then performed, as described below.

Continuous soil cores were collected from the remaining direct-push borings, which were advanced using single-walled direct-push tooling equipped with a clear acetate liner. Access to boring B-12 was limited because it was located inside the shed (Plate 2). Therefore, this boring was advanced using hand-augering equipment and soil samples were collected using a hand-held sampling device equipped with a slide hammer. Soil samples analyzed for VOCs (including MTBE and fuel oxygenates) were collected with an EncoreTM sampling device in accordance with U.S. Environmental Protection Agency (USEPA) Method 5035.

PES observed the borehole drilling and prepared a lithologic log for the continuously cored borings using the Unified Soil Classification System (USCS). The soil cores were screened for VOCs via headspace analysis using a photoionization detector (PID). The PID readings were recorded on the lithologic logs. Lithologic logs are presented in Appendix D.

To facilitate groundwater sampling, a 1-inch diameter schedule 40 polyvinyl chloride (PVC) well casing fitted with a 10-foot section of factory-slotted PVC well screen was lowered into the borings selected for groundwater sample collection. Groundwater samples were collected from the PVC casing with a new disposable bailer. The samples were decanted into appropriate pre-cleaned, laboratory-provided sample containers.

As indicated on Table 1, boring B1 was sampled for selected monitored natural attenuation (MNA) parameters. Therefore, groundwater within the boring was purged and a multi-parameter instrument was used to monitor temperature, pH, conductivity, turbidity, dissolved oxygen (DO), and oxidation reduction potential (ORP) to assure that stable readings were obtained prior to collecting the samples analyzed for MNA parameters and VOCs.

Sample containers were labeled to indicate project location, job number, boring number, sample number, and time and date collected. The samples were immediately placed in a thermally-insulated cooler containing ice. The samples were picked up by a courier who transported them under chain of custody protocol to Curtis & Tompkins, Ltd. (C&T) in Berkeley, California, which is a California state-certified laboratory for chemical analysis performed. The laboratory analytical reports provided by C&T are presented in Appendix E.

Downhole drilling and sampling equipment were cleaned via high pressure, hot water wash prior to use and between borings. Upon completion of sampling activities, each borehole was grouted to the surface with cement grout under the oversight of an ACPW inspector.

3.2 Analytical Methods

Soil and groundwater samples analyzed for VOCs (including MTBE and fuel oxygenates) by USEPA Test Method 8260B were delivered to C&T under chain-of-custody protocol. In addition, C&T analyzed the MNA groundwater samples collected from boring B-1 using the following methods:

- Total organic carbon (TOC) by USEPA Test Method 415.2;
- Nitrate/nitrite by USEPA Test Method 300.0;
- Chloride and sulfate by USEPA Test Method 300.0; and
- Methane/ethane/ethene using modified Test Method RSK-175.

The soil samples collected from borings B-1 and B-8 for analysis of physical parameters were delivered to PTS Laboratories, Inc. (PTS) under chain-of-custody protocol and analyzed using the following test methods:

- Dry bulk density by Test Method API RP40;
- Water-filled porosity, air-filled porosity, and total porosity by Test Method API RP40; and
- TOC and fraction organic carbon by the Walkley-Black Test Method.

The laboratory analytical report provided by PTS is presented in Appendix F.

4.0 RESULTS OF SUBSURFACE INVESTIGATIONS

The following sections present the results of the investigations including a discussion of the subsurface conditions (Section 4.1) and the soil and groundwater analytical results (Section 4.2).

114800103R001.doc

Analytical results for soil matrix and groundwater samples are presented in Tables 2 and 3, respectively. The C&T laboratory analytical reports and chain of custody forms are presented in Appendix E. The MNA parameter results are presented in Table 4 and Appendix E and the physical parameter results are included in Appendix F. Selected soil matrix and groundwater sampling results are posted on Plates 3 and 4, respectively. A discussion of the results from PES' investigations and previous investigations is presented in Section 5.0.

The soil results presented on Table 2 were compared to the California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) risk-based Environmental Screening Level (ESL) concentrations for shallow soil (less than 3 meters [9.84 feet] bgs) in a commercial/industrial setting where groundwater is not a current or potential drinking water source. ESL concentrations for soil and groundwater are provided in the RWQCB's *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater* (RWQCB, 2008). The ESLs were developed by the RWQCB to be protective of human health and the environment for potentially complete exposure pathways. The groundwater results presented on Table 3 were compared to the RWQCB's risk-based ESL concentrations for evaluation of potential vapor intrusion concerns (RWQCB, 2008). The soil and groundwater ESLs discussed above are presented in Tables B and E-1, respectively, of the referenced document.

4.1 Subsurface Conditions

In general, soil beneath the portion of the Site investigated by PES consists of dark grayish brown to dark brown gravelly silts to a depth ranging between 1.5 to 3 feet bgs. Soil below this material generally consists of a yellowish brown to very dark gray clay, clay with silt, or silty clay to 19 feet bgs, the total depth investigated. This material contains discontinuous, approximately 0.5-foot thick interbeds of sand and clayey sand and 1- to 3-foot thick interbeds of clay with gravel and gravelly clay. Wet soil was first encountered at depths ranging between 9 and 12 feet bgs (see lithologic logs in Appendix D). Groundwater may be under confining conditions because water stabilized at depths between 7 and 8 feet bgs.

4.2 Laboratory Analytical Results

4.2.1 Soil Results

As shown in Table 2 and Plate 3, 1,1-dichloroethene (1,1-DCE), 1,1-DCA, and 1,1,1-TCA were the only VOCs detected in soil. In summary:

1,1-DCE was detected in 3 of 21 soil samples at concentrations ranging from
 4.9 micrograms per kilogram (μg/kg, 6 to 6.5 feet bgs sample from boring B-4) to
 31 μg/kg (6 to 6.5 feet bgs sample from boring B-15);

- 1,1-DCA was detected in 7 of 21 soil samples at concentrations ranging from 22 μg/kg (2.5 to 3 feet bgs sample from boring B-14) to 2,500 μg/kg (2.5 to 3 feet bgs sample from boring B-12); and
- 1,1,1-TCA was detected in 7 of 21 soil samples at concentrations ranging from 5.9 μg/kg (2.5 to 3 feet bgs sample from boring B-4) to 11,000 μg/kg (2.5 to 3 feet bgs sample from boring B-12).

Only two samples contained VOC concentrations above the applicable ESL: 1,1-DCA and 1,1,1-TCA in the 2.5 to 3 feet bgs sample from boring B-12 (See Table 2 and Plate 3).

Physical parameter analytical results are presented in Appendix F.

4.2.2 Groundwater Results

In all, 12 different VOCs were detected in the grab groundwater samples (Table 3). As indicated on Table 3 and Plate 4, the highest concentrations in groundwater were found near the shed in boring B-4 (i.e., 1,1-DCE at 1,000 μ g/L, 1,1-DCA at 230 μ g/L, and 1,1,1-TCA at 540 μ g/L) and west of the shed in boring B-10 (i.e., acetone at 610 μ g/L, TCE at 120 μ g/L, ethylbenzene at 340 μ g/L, and xylenes at 2,200 μ g/L). None of these VOC detections, however, exceed applicable vapor intrusion ESLs.

MNA parameter analytical results are presented in Table 4 and Appendix E. The MNA parameters suggest natural degradation of 1,1,1-TCA and 1,1,2-TCA dissolved in groundwater is occurring.

5.0 DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS

5.1 Discussion

Previous investigations conducted at the Site by others indicated that environmental conditions in the northeast portion of the property warranted additional investigation. The previous investigations also indicated the other portions of the Site did not require such additional investigation.

PES advanced and sampled a total of 15 borings at and around the east-northeastern portion of the Site in June and July 2008. Soil samples were collected from 10 borings and grab groundwater samples were collected from 8 borings (Table 1). The objectives of the investigations were to characterize the soil and groundwater conditions in the east-northeastern portion of the subject property and to determine what, if any, additional work is recommended at the site relating to such conditions.

As shown on Plate 3, the only VOCs detected in soil are 1,1-DCE, 1,1-DCA and 1,1,1-TCA. The highest concentrations of these compounds were detected in the vicinity of the shed

(Plate 3). As discussed in Section 4.2, the concentrations of 1,1-DCA and 1,1,1-TCA in the 2.5 to 3 feet bgs sample collected directly beneath the shed (boring B-12) are the only detections above applicable ESL values. Testing revealed, however, that these impacts are limited to shallow soils as detections of the compounds in the 6-6.5 feet bgs sample beneath the shed are well below their respective ESL values. As also shown on Plate 3, relatively low concentrations of VOCs were detected soil in the borings immediately outside the shed (i.e., borings B-4, B-13, B-14, and B-15). VOCs were not detected at or above the laboratory reporting limits in any of the soil samples collected by PES from borings located further away from the shed.

The TPH-related VOCs detected at low concentrations in groundwater (i.e., toluene, ethylbenzene, xylenes, DIPE and isopropylbenzene, Table 3) were not detected in soil samples collected during PES' investigations or PIERS' investigation.

Similar to soil conditions, the highest concentrations of VOCs (specifically 1,1,1-TCA, 1,1-DCA and their associated degradation products) detected in groundwater were in the vicinity of the shed (Plate 4). During PIERS January 2008 investigation, the highest VOC concentrations were detected in boring B1, which was advanced near the northeastern corner of the Site (Plate 4). Co-located boring B-1 was advanced during PES' June 2008 investigation to verity the sampling results from boring B1. However, as indicated on Table 3 and Plate 4, the concentrations of VOCs detected in the groundwater sample collected from boring B-1 were much lower. None of the detected groundwater concentrations during PES' or PIERS investigations are above potential vapor intrusion ESL values developed for commercial properties. Additionally, concentrations of VOCs in groundwater in samples collected from down-gradient borings B-1 and B-2 were very low. This finding suggests the VOC-affected groundwater is not likely to have impacted down-gradient properties.

The MNA parameter results for the groundwater samples collected from boring B-1 suggest that groundwater beneath the Site exhibits favorable conditions for natural attenuation of VOCs by reductive dehalogenation. The following evidence supports this conclusion:

- Dissolved oxygen at 0.27 mg/L: Concentrations at or below 0.5 mg/L are considered favorable to reductive dehalogenation;
- ORP at -238.3 millivolts (mV): Measurements below 50 mV are considered favorable to reductive dehalogenation;
- Nitrate at 0.09 mg/L: Nitrate concentrations below 1.0 mg/L are considered favorable to reductive dehalogenation;
- Methane at 0.036 mg/L: The presence of methane suggests methanogenesis may be occurring in the groundwater resulting in reductive dehalogenation; and
- Chloride at 35 mg/L: Chloride is the final product of halogenated solvent reduction.

As discussed in Section 2.0, regional TPH groundwater plumes exist in the vicinity of the Site. Based on the absence or low concentrations (i.e., TPHd and TPHmo in the composite sample collected during PIERS investigation) of TPH constituents in the soil samples collected at the Site and the presence of the regional plumes, the low concentrations of TPH-related VOCs in Site groundwater is attributed to off-Site sources.

5.2 Conclusions

Based on the results of the soil and groundwater investigations conducted at the subject property, PES concludes the following:

- The results of previous investigations performed at the subject property indicate the area of potential environmental concern at the property is limited to the eastern-northeastern portion of the Site;
- The results of previous investigations performed at the subject property indicate the constituents of potential concern are limited to VOCs, primarily 1,1,1-TCA and its degradation products;
- Soil beneath properties in the vicinity of the subject property has been impacted by metals, petroleum hydrocarbons, PCBs, and petroleum hydrocarbon-related constituents from historic activities conducted at those off-site locations;
- Groundwater in the vicinity of the Site has been impacted by releases of petroleum hydrocarbons and VOCs, primarily petroleum hydrocarbon-related constituents such as BTEX and isomers of dichlorobenzene from historic activities conducted at those off-site locations;
- The off-site properties discussed in this report are all under regulatory oversight from ACDEH;
- Shallow soil beneath the on-Site shed has been impacted with elevated levels of 1,1,1 TCA and 1,1-DCA, a breakdown product of 1,1,1-TCA. Based on the results of the soil sample analyses, other VOCs detected in soil in the vicinity of the shed are present at relatively low levels, each of which is below applicable screening levels;
- The lateral and vertical extent of VOC-impacts to soil has been defined and the area of concern is limited to shallow soil (upper 6 feet) beneath the footprint of the shed;
- The groundwater sampling results suggest that portions of the groundwater underlying the subject property has been affected by off-Site releases of petroleum hydrocarbon-related constituents (e.g., toluene, xylenes and DIPE, a fuel oxygenate), although at concentrations below levels of concern;
- Groundwater beneath the subject property has been impacted by 1,1,1-TCA and its degradation products. The maximum concentrations of 1,1,1-TCA and degradation

products are orders of magnitude lower than the respective ESLs developed by the RWQCB for vapor intrusion concerns at commercial/industrial properties where underlying groundwater is not considered a drinking water source;

- Groundwater conditions beneath the subject property appear to be conducive to degradation of 1,1,1-TCA and its degradation products and based on the presence of 1,1,1-TCA and its degradation products in groundwater, natural degradation of these VOCs is occurring; and
- On the basis of the grab groundwater sampling results, the lateral extent of the 1,1,1-TCA and its degradation products impacts in groundwater has been defined and appear to be limited to the subject property.

5.3 Recommendations

Based on the results of the investigations conducted on the subject property, PES provides the following recommendations:

- The results of the soil and groundwater investigations conducted on the subject property should be submitted to ACDEH for review and comment;
- A plan for remediation addressing on-Site VOC-affected soil beneath the shed and on-Site VOC-affected groundwater should be prepared and submitted to ACDEH for review and approval;
- The remedial plan should be implemented and the methods and results of the remedial action should be documented in a report to be submitted to ACDEH; and
- Case closure should be requested following successful implementation of the remedial action.

6.0 REFERENCES

- AEI Consultants (AEI), 2007. Phase I Environmental Site Assessment, 4700 Coliseum Way, Oakland, California 94621. October 22.
- California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB), 2008. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final November 2007 (Revised May 2008).
- ERAS Environmental, Inc. (ERAS), 2000. Soil Remediation, 4800 Coliseum Way, Oakland, California, Project Number 00047A. June 26.

- ERAS Environmental, Inc. (ERAS), 2007a. Phase I Environmental Site Assessment, 4600 and 4700 Coliseum Way, Oakland, California. November 15.
- ERAS, 2007b. Addendum to Phase I Environmental Site Assessment, 4600 and 4700 Coliseum Way, Oakland, California. December 13.
- Geomatrix Consultants, Inc. (Geomatrix), 2007. Additional Investigation Work Plan, PG&E Oakland General Construction Yard, 4930 Coliseum Way, Oakland, California. November.
- Harding ESE, Inc. (Harding ESE), 2002. Environmental Investigation, 745 50th Avenue, Oakland, California. May 30.
- Kleinfelder, Inc. (Kleinfelder), 2002. Phase I Environmental Site Assessment Report, 4700 Coliseum Way, Oakland, California. December 13.
- Kleinfelder, 2003. Confirmation Soil Sample Results, Oakland Facility, 4700 Coliseum Way, Oakland, California. June 26.
- LFR Inc. (LFR), 2008. Summary Report of Soil and Groundwater Investigation, Former Learner Investment Company Property, 768 46th Avenue, Oakland, California (SLIC Case RO0002478; Geotracker Global ID SLT2O150156). June 6.
- PIERS Environmental Services, Inc. (PIERS, 2008). Limited Phase II Site Investigation Report of 4600-4700 Coliseum Way, Oakland, California. January 23.
- W.A. Craig, Inc. (W.A. Craig), 2003. Soil Sample Results, 4700 Coliseum Way, Oakland, California. May 22, 2003.

TABLES

Table 1 Summary of Analyses Performed on Soil and Groundwater Samples 4600-4700 Coliseum Way Site Oakland, California

				Soil Analy	/ses	
Boring Location	Sample Identification	Sample Depth (ft bgs)	Sample Date	VOCs plus MTBE & gasoline oxygenates	Physical Parameters ¹	Grab Groundwater Analyses
	B-1-2.5'-3'	2.5-3	6/27/2008	Х		N/A
B-1	B-1-3.5'-4'	3.5-4	6/27/2008		Х	N/A
B-1	B-1-7.5'-8' 7.5-8 6/27/2		6/27/2008	Х		N/A
	B-1-W	5-15	6/27/2008	N/A	N/A	VOCs plus MTBE & gasoline oxygenates, MNA parameters ²
B-2	B-2-W	5-15	6/27/2008	N/A	N/A	VOCs plus MTBE & gasoline oxygenates
B-3	B-3-W	5-15	6/27/2008	N/A	N/A	VOCs plus MTBE & gasoline oxygenates
	B-4-2.5'-3'	2.5-3	6/27/2008	Х		N/A
B-4	B-4-6'-6.5'	6-6.5	6/27/2008	Х		N/A
	B-4-W	5-15	6/27/2008	N/A	N/A	VOCs plus MTBE & gasoline oxygenates
B-5	B-5-2.5'-3'	2.5-3	6/27/2008	Х		N/A
D-3	B-5-6'-6.5'	6-6.5	6/27/2008	Х		N/A
	B-6-2.5'-3'	2.5-3	6/27/2008	Х		N/A
B-6	B-6-6'-6.5'	6-6.5	6/27/2008	Х		N/A
	B-6-W	5-15	6/27/2008	N/A	N/A	VOCs plus MTBE & gasoline oxygenates
B-7	B-7-2.5'-3'	2.5-3	6/27/2008	Х		N/A
ВТ	B-7-6'-6.5'	6-6.5	6/27/2008	Х		N/A
	B-8-2.5'-3'	2.5-3	6/27/2008	Х		N/A
B-8	B-8-3'-3.5'	3-3.5	6/27/2008		Х	N/A
	B-8-6'-6.5'	6-6.5	6/27/2008	Х		N/A
B-9	B-9-W	9-19	7/31/2008	N/A	N/A	VOCs plus MTBE & gasoline oxygenates
B-10	B-10-W	6-16	7/31/2008	N/A	N/A	VOCs plus MTBE & gasoline oxygenates
B-11	B-11-W	6-16	7/31/2008	N/A	N/A	VOCs plus MTBE & gasoline oxygenates
_	B-12-1-1.5	1-1.5	7/31/2008	Х		N/A
B-12	B-12-2.5-3	2.5-3	7/31/2008	Х		N/A
	B-12-6-6.5	6-6.5	7/31/2008	Х		N/A
B-13	B-13-2.5-3	2.5-3	7/31/2008	Х		N/A
	B-13-6-6.5	6-6.5	7/31/2008	Х		N/A
B-14	B-14-2.5-3	2.5-3	7/31/2008	X		N/A
	B-14-6-6.5	6-6.5	7/31/2008	Х		N/A
B-15	B-15-2.5-3	2.5-3	7/31/2008	Х		N/A
	B-15-6-6.5	6-6.5	7/31/2008	Х		N/A

Notes:

ft bgs = Feet below ground surface N/A = Not applicable

MTBE = Methyl-tert-butyl ether

VOCs = Volatile organic compounds

¹ Physical parameters include dry bulk density, total porosity, water-filled porosity, air-filled porosity, total organic carbon (TOC), and fraction organic carbon

² Monitored natural attenuation (MNA) parameters include oxidation reduction potential (ORP), TOC, dissolved oxygen, nitrate/nitrite as nitrogen, sulfate, chloride, methane, ethane, and ethene.

Table 2Volatile Organic Compounds in Soil4600-4700 Coliseum Way SiteOakland, California

Boring	Sample	Sample Depth	Sample	1,1- DCE	1,1- DCA	1,1,1- TCA	
Identification	Identification	(Feet bgs)	Date	(µg/kg)	(µg/kg)	(µg/kg)	Other VOCs
B-1	B-1-2.5'-3'	2.5-3	6/27/2008	ND (4.7)	ND (4.7)	ND (4.7)	All ND
B-1	B-1-7.5'-8'	7.5-8	6/27/2008	ND (5.2)	ND (5.2)	ND (5.2)	All ND
B-4	B-4-2.5'-3'	2.5-3	6/27/2008	ND (5.3)	44	5.9	All ND
B-4	B-4-6'-6.5'	6-6.5	6/27/2008	4.9	69	14	All ND
B-5	B-5-2.5'-3'	2.5-3	6/27/2008	ND (4.7)	ND (4.7)	ND (4.7)	All ND
B-5	B-5-6'-6.5'	6-6.5	6/27/2008	ND (4.9)	ND (4.9)	ND (4.9)	All ND
B-6	B-6-2.5'-3'	2.5-3	6/27/2008	ND (5.3)	ND (5.3)	ND (5.3)	All ND
B-6	B-6-6'-6.5'	6-6.5	6/27/2008	ND (5.0)	ND (5.0)	ND (5.0)	All ND
B-7	B-7-2.5'-3'	2.5-3	6/27/2008	ND (5.6)	ND (5.6)	ND (5.6)	All ND
B-7	B-7-6'-6.5'	6-6.5	6/27/2008	ND (4.4)	ND (4.4)	ND (4.4)	All ND
B-8	B-8-2.5'-3'	2.5-3	6/27/2008	ND (5.1)	ND (5.1)	ND (5.1)	All ND
B-8	B-8-6'-6.5'	6-6.5	6/27/2008	ND (4.8)	ND (4.8)	ND (4.8)	All ND
B-12	B-12-1-1.5	1-1.5	7/31/2008	ND (5,000)	ND (5,000)	ND (5,000)	All ND
B-12	B-12-2.5-3	2.5-3	7/31/2008	ND (1,000)	2,500	11,000	All ND
B-12	B-12-6-6.5	6-6.5	7/31/2008	ND (8.0)	350	1,000	All ND
B-13	B-13-2.5-3	2.5-3	7/31/2008	ND (5.1)	ND (5.1)	ND (5.1)	All ND
B-13	B-13-6-6.5	6-6.5	7/31/2008	ND (6.2)	ND (6.2)	ND (6.2)	All ND
B-14	B-14-2.5-3	2.5-3	7/31/2008	ND (7.5)	22	460	All ND
B-14	B-14-6-6.5	6-6.5	7/31/2008	ND (5.6)	26	84	All ND
B-15	B-15-2.5-3	2.5-3	7/31/2008	15	130	160	All ND
B-15	B-15-6-6.5	6-6.5	7/31/2008	31	ND (130)	ND (130)	All ND
	Shallov	v (<3 meters bgs)) Soil ESL ⁽¹⁾	4,300	1,900	7,800	N/A

Notes:

ESL⁽¹⁾ = San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Level (ESL) for commercial/industrial land use

where potentially impacted groundwater is not a current or potential drinking water resource (Table B).

- Results exceeding commercial/industrial ESLs are shaded

1,1-DCE = 1,1-Dichloroethene

1,1-DCA = 1,1-Dichloroethane

1,1,1-TCA = 1,1,1-Trichloroethane

bgs = Below ground surface

µg/kg = Micrograms per kilogram

ND (4.7) - Analyte not detected above the stated laboratory reporting limit.

ND = Not detected

N/A = Not applicable

Table 3 Volatile Organic Compounds in Groundwater 4600-4700 Coliseum Way Site Oakland, California

Boring Identification	Sample Identification	Sample Date	Acetone (µg/L)	1,1- DCE (μg/L)	1,1- DCA (μg/L)	1,2- DCA (μg/L)	1,1,1- TCA (μg/L)	1,1,2- TCA (μg/L)	Toluene (µg/L)	TCE (μg/L)	Ethylbenzene (µg/L)	Xylenes (µg/L)	DIPE (µg/L)	Isopropyl- benzene (μg/L)	All Other VOCs
B-1	B-1-W	6/27/2008	ND (10)	ND (0.5)	0.6	5.4	ND (0.5)	ND (0.5)	41	ND (0.5)	0.6	2.9	14	ND (0.5)	All ND
B-2	B-2-W	6/27/2008	ND (10)	1.0	3.1	1.5	ND (0.5)	ND (0.5)	3.5	ND (0.5)	ND (0.5)	0.5	ND (0.5)	ND (0.5)	All ND
B-3	B-3-W	6/27/2008	ND (10)	2.5	11	3.9	7.8	ND (0.5)	1.1	ND (0.5)	ND (0.5)	ND (0.5)	19	ND (0.5)	All ND
B-4	B-4-W	6/27/2008	ND (50)	1,000	230	20	540	3.5	2.5	9.0	ND (2.5)	ND (2.5)	2.7	ND (2.5)	All ND
B-6	B-6-W	6/27/2008	ND (10)	ND (0.5)	0.9	1.8	ND (0.5)	ND (0.5)	7.1	ND (0.5)	ND (0.5)	ND (0.5)	1.7	ND (0.5)	All ND
B-9	B-9-W	7/31/2008	12	4.5	5.1	0.9	1.4	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	22	ND (0.5)	All ND
B-10	B-10-W	7/31/2008	610	39	48	ND (3.6)	ND (3.6)	ND (3.6)	9.6	120	340	2,200	6.3	7.3	All ND
B-11	B-11-W	7/31/2008	ND (10)	10	7.7	ND (0.5)	12	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	ND (0.5)	All ND
P	otential Vapor Inti	rusion ESL ⁽¹⁾	150,000,000	18,000	3,400	690	360,000	1,200	530,000	1,800	170,000	160,000	NE	NE	N/A

<u>Notes:</u> (1) = San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Level (ESL) for evaluation of potential vapor intrusion concerns (Table E-1).

- Results exceeding groundwater ESLs are shaded

1,1-DCE = 1,1-Dichloroethene

1,1-DCA = 1,1-Dichloroethane

1,2-DCA = 1,2-Dichloroethane

1,1,1-TCA = 1,1,1-Trichloroethane

1,1,2-TCA = 1,1,2-Trichloroethane

TCE = Trichloroethylene

DIPE = Isopropyl ether

µg/L = Micrograms per liter

ND (0.5) - Analyte not detected above the stated laboratory reporting limit.

ND = Not detected

NE = Not established

N/A = Not applicable

Table 4Results of Groundwater Monitoring - MNA Parameters4600-4700 Coliseum Way SiteOakland, California

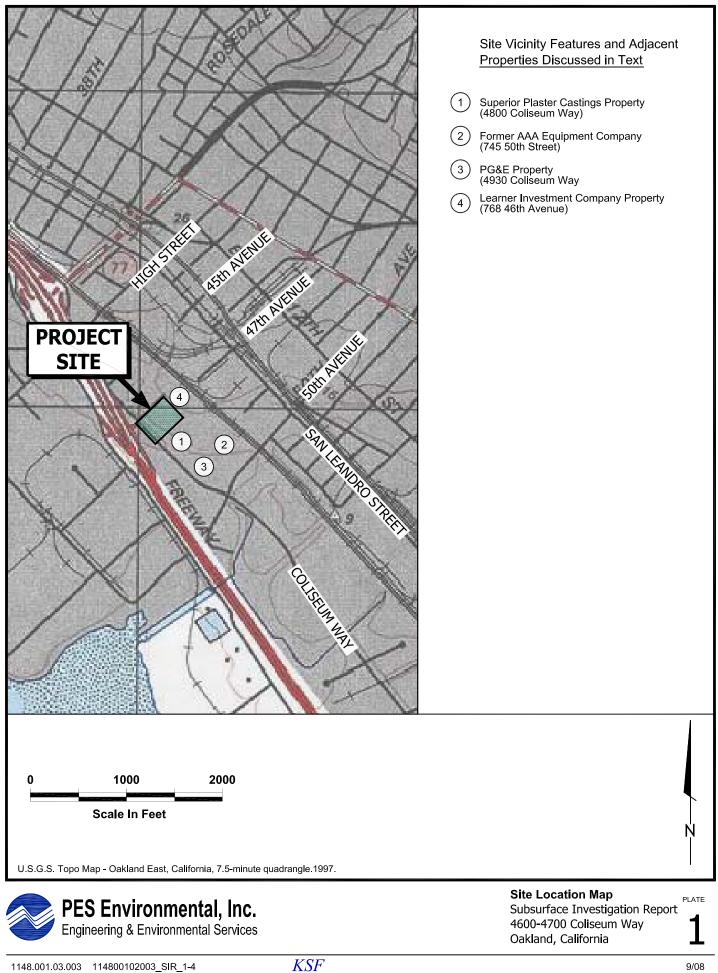
		Geochemical Parameters Electron Acceptors		Geochemical Parameters		Metabolic Byproducts					
Boring Identification	Sample Identification	Sample Date	ORP ¹ (mV)	TOC (mg/L)	Dissolved Oxygen ¹ (mg/L)	Nitrate/Nitrite as Nitrogen (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Methane (mg/L)	Ethane (mg/L)	Ethene (mg/L)
B-1	B-1-W	6/27/2008	-238.3	24.0	0.27	0.09 / ND (0.05)	73	35	0.036	ND (0.005)	ND (0.005)

Notes:

MNA = Monitored natural attenuation

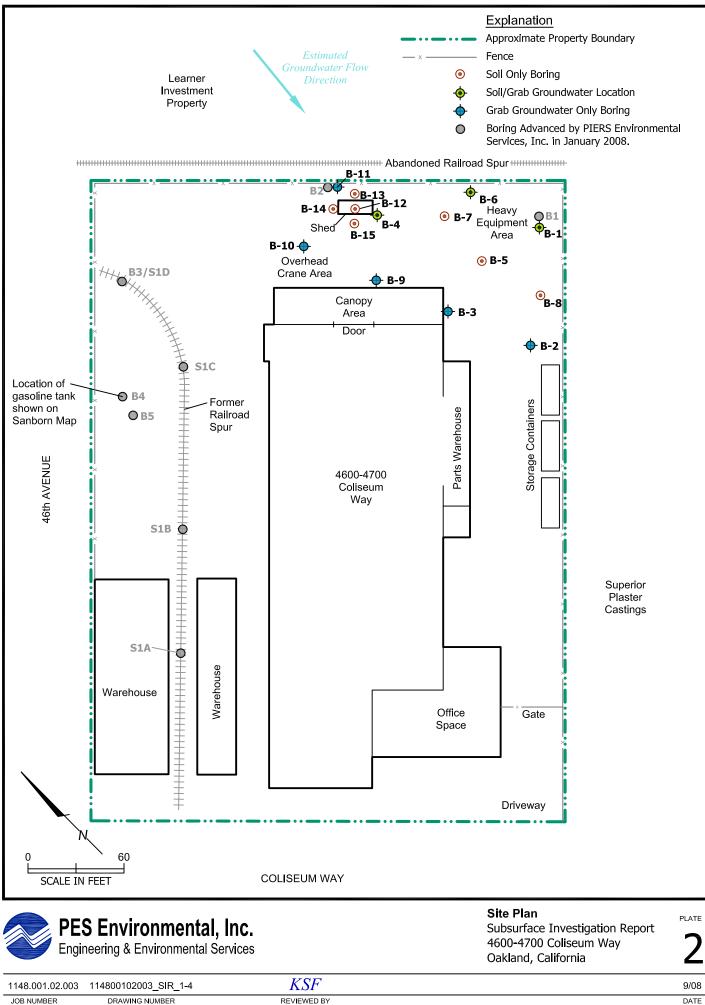
ORP = Oxidation reduction potential

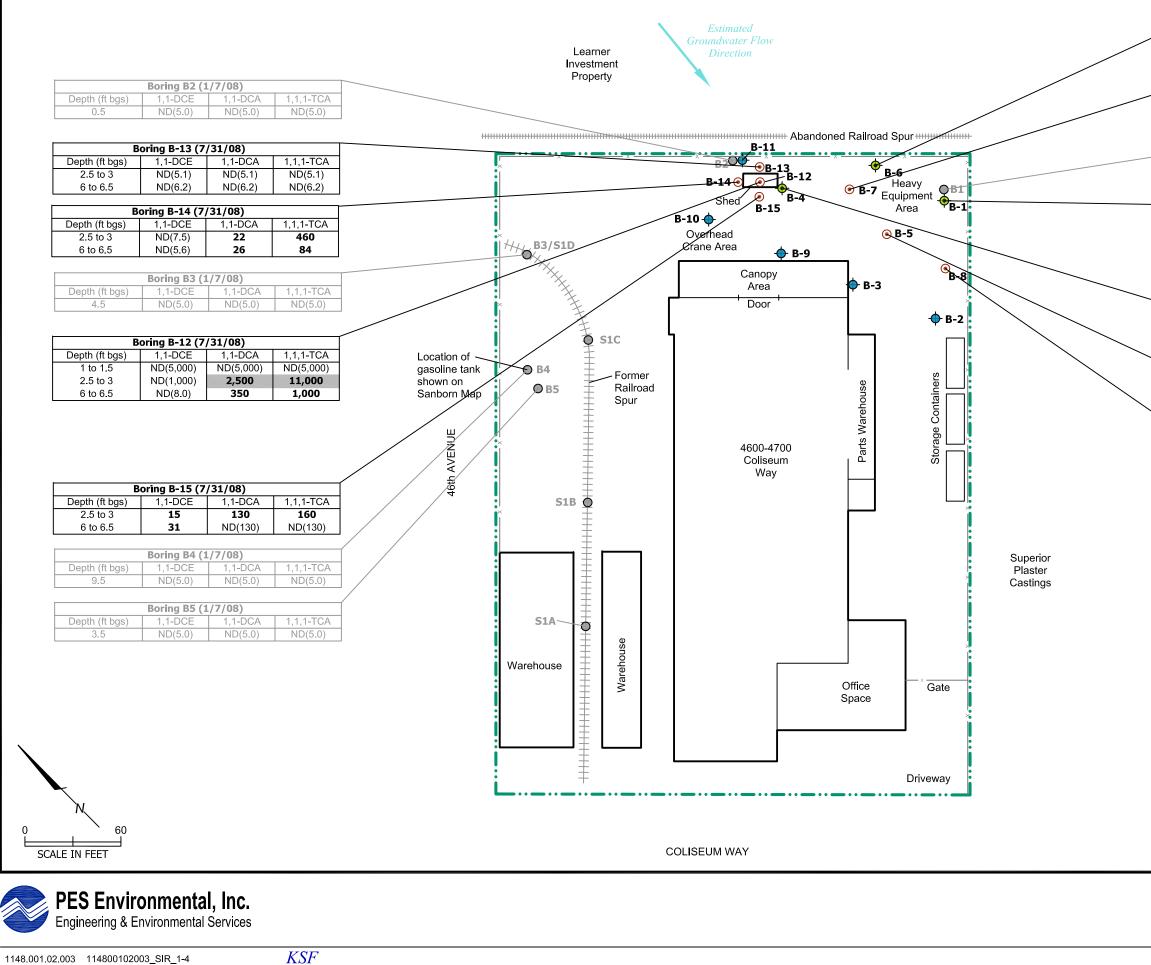
TOC = Total organic carbon


mV = Millivolts

mg/L = Milligrams per liter

ND (0.05) = Analyte not detected above the stated laboratory reporting limit.


¹ Measured in the field with a multi-parameter instrument.


ILLUSTRATIONS

REVIEWED BY

DATE

		Boring B-6 (6/	27/08)	
_	Depth (ft bgs)	1,1-DCE	1,1-DCA	1,1,1 - TCA
	2.5 to 3	ND(5.3)	ND(5.3)	ND(5.3)
	6 to 6.5	ND(5.0)	ND(5.0)	ND(5.0)

1	Boring B-7 (6/27/08)							
	Depth (ft bgs)	1,1-DCE	1,1-DCA	1,1,1-TCA				
	2.5 to 3	ND(5.6)	ND(5.6)	ND(5.6)				
	6 to 6.5	ND(4.4)	ND(4.4)	ND(4.4)				

_	Boring B1 (1/7/08)							
	Depth (ft bgs)	1,1-DCE	1,1-DCA	1,1,1-TCA				
	2.5	ND(5.0)	ND(5.0)	61				

Boring B-1 (6/27/08)						
Depth (ft bgs)	1,1-DCE	1,1-DCA	1,1,1 - TCA			
2.5 to 3	ND(4.7)	ND(4.7)	ND(4.7)			
7.5 to 8	ND(5.2)	ND(5.2)	ND(5.2)			

E	80ring B-4 (6/	27/08)	
Depth (ft bgs)	1,1-DCE	1,1-DCA	1,1,1 - TCA
2.5 to 3	ND(5.3)	44	5.9
6 to 6.5	4.9	69	14

\sim				
	E	807 Boring B-5	27/08)	
	Depth (ft bgs)	1,1-DCE	1,1-DCA	1,1,1-TCA
	2.5 to 3	ND(4.7)	ND(4.7)	ND(4.7)
	6 to 6.5	ND(4.9)	ND(4.9)	ND(4.9)

· ·					
	Boring B-8 (6/27/08)				
	Depth (ft bgs)	1,1-DCE	1,1-DCA	1,1,1 - TCA	
	2.5 to 3	ND(5.1)	ND(5.1)	ND(5.1)	
	6 to 6.5	ND(4.8)	ND(4.8)	ND(4.8)	

Explanation

----- Approximate Property Boundary

- Fence

- Soil Only Boring
- Soil/Grab Groundwater Location
- Grab Groundwater Only Boring
 - Boring Advanced by PIERS Environmental Services, Inc. in January 2008.

Notes:

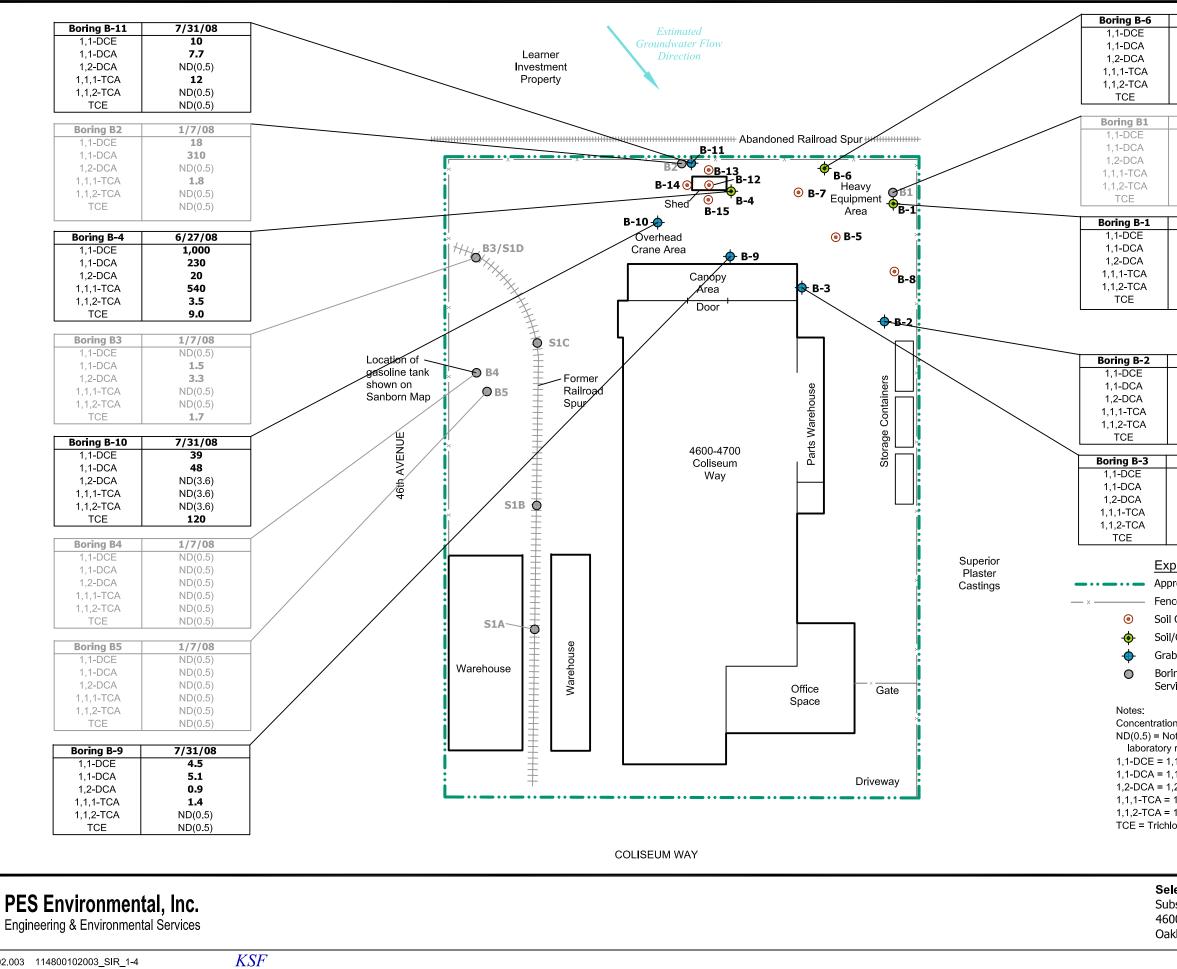
 \circ

Results exceeding San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Environmental Screening Level (ESL) are shaded

- 1,1-DCE = 1,1-Dichloroethene
- 1,1-DCA = 1,1-Dichloroethane

1,1,1-TCA = 1,1,1-Trichloroethane

ft bgs = Feet below ground surface


Concentrations are expressed in micrograms per kilogram (µg/kg)

ND(4.7) - Analyte not detected above the stated method reporting limit

Summary of Soil Analytical Results Subsurface Investigation Report 4600-4700 Coliseum Way Oakland, California

PLATE

 1148.001.02.003
 114800102003_SIR_1-4

 JOB NUMBER
 DRAWING NUMBER

Boring B-6	6/27/08				
1,1-DCE	ND(0.5)				
1,1-DCA	0.9				
1,2-DCA	1.8				
1,1,1-TCA	ND(0.5)				
1,1,2-TCA TCE	ND(0.5) ND(0.5)				
TCE	ND(0.5)	J			
Boring B1	1/7/08				
1,1-DCE	38				
1,1-DCA	310				
1,2-DCA	ND(12)				
1,1,1 - TCA	1,200				
1,1,2-TCA	17				
TCE	ND(12)				
Boring B-1	6/27/08				
1,1-DCE	ND(0.5)				
1,1-DCA	0.6				
1,2-DCA	5.4				
1,1,1-TCA 1,1,2-TCA	ND(0.5) ND(0.5)				
TCE	ND(0.5)				
ICE	ND(0.5)				
Boring B-2	6/27/08				
1,1-DCE	1.0				
1,1-DCA	3.1				
1,2-DCA	1.5				
1,1,1 - TCA	ND(0.5)				
1,1,2 - TCA	ND(0.5)				
TCE	ND(0.5)				
Boring B-3	6/27/08				
1,1-DCE	2.5				
1,1-DCA	11				
1,2-DCA	3.9				
1,1,1-TCA	7.8				
1,1,2-TCA TCE	ND(0.5)				
TCE	ND(0.5)				
	Evolopation				
	Explanation				
• — • • —	Approximate Property Bou	ndary			
	Fence				
-					
۲	Soil Only Boring				
-••-	Soil/Grab Groundwater Lo	cation			
•	Grab Groundwater Only B	orina			
 Boring Advanced by PIERS Environmental Services Tracing January 2009 					
Services, Inc. in January 2008.					
Notes:					
Concentrations are expressed in micrograms per liter (µg/L)					
ND(0.5) = Not detected at or above the indicated					
laboratory reporting limit					
1,1-DCE = 1,1-Dichloroethene					
1,1-DCA = 1,1-Dichloroethane					
1,2-DCA = 1,2-Dichloroethane					
	A = 1,1,1-Trichloroethane	$\overline{\}$			
1,1,2-TCA = 1,1,2-Trichloroethane					
TCE = Trichloroethylene					
SCALE IN FEET					
Select Groundwater Analytical Results					
Subsurface Investigation Report					
4600-4700 Coliseum Way					
		^{ay} 4			
	Oakland, California	l l			
		9/08			

6/27/08

APPENDIX A

PIERS JANUARY 2008 LIMITED PHASE II SITE INVESTIGATION

Limited Phase II Site Investigation Report of 4600-4700 COLISEUM WAY OAKLAND, CALIFORNIA

٩,

Prepared For:

Mr. Samuel Leung United Commercial Bank 900 Webster Street Oakland, CA 94607

Prepared By:

PIERS Environmental Services, Inc. 1330 S. Bascom Avenue, Suite F San Jose, CA 95128

January 2008 PIERS Project Number: 7339 January 23, 2008

Mr. Samuel Leung United Commercial Bank 900 Webster Street Oakland, CA 94607

RE: Limited Phase II Site Investigation Report 4600-4700 Coliseum Way, Oakland, CA

Dear Mr. Leung:

At your request, PIERS Environmental, Inc. (PIERS) has prepared this report of "Limited Phase II Site Investigation Report" for the above-referenced site (hereinafter referred to as "the Property"). The work was performed to investigate whether the subsurface soils and groundwater at the Property have been impacted by the prior and current use of the Property, and to investigate the potential of impacts to the Property from off-site sources.

SITE DESCRIPTION AND BACKGROUND

The Property is located on the northeastern side of Coliseum Way, which is a frontage road along the eastern side of the Interstate I-880 freeway in Oakland, California. A Property Site Plan is attached to this report as Figure 2.

PIERS' previous work for this Property was performed in December 2007, when PIERS reviewed previous Phase I Environmental Site Assessments (ESAs) that were completed in October and November of 2007 by two other environmental firms, AEI Consultants and ERAS. PIERS review of these ESAs was summarized in a letter dated December 7, 2007. The scope of work completed for this investigation was based on recommendations from the October 2007 ESA completed by AEI Consultants.

THIS INVESTIGATION

On January 7, 2008, eight exploratory soil borings, designated as B1 through B5 and S1A through S1C on the attached Figure 2, were completed at the Property (borings S1D and B3 were combined).

Prior to drilling, a health and safety plan was prepared, and the site was marked and Underground Service Alert was notified. Also, a drilling permit was obtained from Alameda County Public Works.

The exploratory soil borings were completed using a Geoprobe direct push drill rig provided by Vironex, Inc. of Pacheco, California, a state-licensed driller. Soil borings B1 through B3 were located as close as was possible to the northeastern perimeter of the Property to investigate potential off-site sources that could cause contamination to migrate in groundwater beneath the Property. Borings B4 and B5 were located at and adjacent to the location of a former gasoline tank shown on historical Sanborn Maps. These soil borings were extended to approximately ten feet below grade. Groundwater entered the boreholes and rose to approximately four feet below grade, except in B3, where the soil boring was extended to approximately 15 feet below grade and several feet of water eventually collected in the borehole.

Four shallow soil borings had been proposed along a former railroad spur. Soil borings S1A through S1C were collected along this feature. A soil sample designated as S1D was collected at soil boring B3 to complete a four-part composite soil sample.

At all of the soil borings except B3, the soils were continuously cored to approximately ten feet below grade, the rods retracted, and slotted PVC casing was placed in the borehole. The groundwater samples were retrieved by using small diameter vinyl tubing fitted with a chuck ball tip to surge the water to the surface, or a bailer. The groundwater samples were decanted into VOAs and an amber liter, labeled, placed in an ice chest, on ice, and entered on a chain of custody form prior to same day delivery to the laboratory.

At B3, the borehole collapsed upon retrieval of the rods, and no groundwater was encountered above approximately eight feet below grade. A hydropunch tool was then used to collect a groundwater sample. During the first attempt, the rods were extended to approximately 13 feet below grade and the hydropunch screen was exposed over a fourfoot interval; however, sufficient water to allow for sample collection did not accumulate over a half-hour time period. The rods were retracted and then the hydropunch was extended to approximately 15 feet below grade and the water sample was successfully collected.

At soil borings B1 through B3, shallow soil samples from the unsaturated zone were collected but placed on hold pending the results of the water analyses. At B4, one soil sample that would correspond to the likely bottom of an underground storage tank (UST) was collected at approximately 9.5 feet below grade. At nearby soil boring B5, one soil sample that would correspond to the capillary fringe zone was retained from approximately 3.5 feet below grade. At S1A through S1D, soil samples from approximately 0.5 to 1.5 feet below grade were retained (S1D was collected from soil boring B3).

The subsurface conditions beneath approximately 2.5 feet consisted predominantly of dark brown to olive brown silt (ML) and sandy gravelly silt (ML). Fill material, also consisting of sandy gravelly silt, was present at the surface to approximately one to two feet below grade. No obvious odors or soil staining were observed during drilling.

The sections of the plastic liners containing soil samples to be retained were first cut with a hacksaw. The ends of the liner containing the soil samples were covered with Teflon tape and caps and then the soil samples were labeled, placed in an ice chest, on ice, and entered on a chain of custody form prior to same day delivery to the laboratory.

The groundwater samples were retrieved by using small diameter vinyl tubing fitted with a chuck ball tip to surge the water to the surface, or a bailer. The groundwater samples were decanted into VOAs and an amber liter, labeled, placed in an ice chest, on ice, and entered on a chain of custody form prior to same day delivery to the laboratory.

Soil cuttings from the soil boring were stored on site in a 5-gallon pail for proper disposal. Upon completion of groundwater sampling, the soil borings were filled with neat cement grout using the PVC casing as a tremie pipe. Ms. Vicky Hamlin of Alameda County Public Works witnessed the sealing of some of the soil borings.

ANALYTICAL RESULTS

The soil and groundwater samples were transported on the same day in an ice chest under chain of custody procedures to McCampbell Analytical Laboratory in Pittsburg, California. The soil samples from the four shallow soil borings along the railroad spur were composited into one sample by the laboratory. All of the soil and water samples were analyzed for volatile organic compounds (VOC) by EPA Method 8260B. The groundwater samples from the three soil borings along the northeastern perimeter of the Property and the composite soil sample were also analyzed for Total Petroleum Hydrocarbons (TPH) as diesel and as motor oil by EPA Method 8015. The soil and groundwater samples from the two soil borings at the former fuel tank location were also analyzed for TPH as gasoline by EPA Method 8015. The composite soil sample was also analyzed for polychlorinated biphenols (PCBs) by EPA Method 8082A.

The four-part composite soil sample yielded non-detectable results for VOCs, and for PCBs. TPH as diesel and motor oil were detected at concentrations of 9.9 parts per million (ppm) and 84 ppm, respectively.

Concentrations of VOCs and TPH as gasoline were not detected in the soil samples collected at the former fuel tank location (B4 d9.5' and B5 d 3.5').

Concentrations of TPH as gasoline and VOCs were non-detectable in the water samples from B4 and B5, at the former fuel tank location, except for toluene, which was detected at concentrations of 1.3 parts per billion (ppb) and 0.70 ppb, respectively.

In the water sample from B1, concentrations of 1,1-dichloroethane (1,1-DCA), 1,1dichloroethene (1,1-DCE), 1,1,2-trichloroethane (1,1,2-TCA), and 1,1,1-TCA were detected at 310 ppb, 38 ppb, 17 ppb, and 1,200 ppb, respectively. In B2, concentrations of 1,1-DCA and 1,1-DCE were detected at 9.2 ppb and 18 ppb, respectively. In B3, concentrations of 1,1-DCA, trichloroethene (TCE), 1,2-DCA, and cis-1,2-DCE were detected at 1.5 ppb, 1.7 ppb, 3.3 ppb and 1.0 ppb, respectively. Toluene and di-isopropyl ether (DIPE, a fuel oxygenate) were also detected at concentrations of 1.3 ppb and 2.6 ppb, respectively. Concentrations of TPH as diesel and as motor oil were not detected in B1 or B3. TPH as diesel was detected in B2 at a concentration of 95 ppb. Laboratory footnotes indicate that a portion of the concentration reported as diesel overlapped with gasoline.

Based on the groundwater sample results, the three shallow soil samples from B1 through B3 (B1d2.5', B2d0.5', and B3d4.5'), which had been put on hold in the laboratory were then analyzed for VOCs by EPA Method 8260. The only analyte detected in the soil samples was 1,1,1-TCA, which was detected in B1d2.5' at a concentration of 0.061 ppm.

The analytical results are summarized on Table 1. Copies of the laboratory analytical data sheets are attached to this report.

CONCLUSIONS AND RECOMMENDATIONS

"Environmental Screening Levels" (ESLs) for concentrations of contaminants in soils and groundwater have been established by the Regional Water Quality Control Board (RWQCB). These levels are used to determine the relative risks to human health and the environment. Generally the presence of a chemical in soil or groundwater at concentrations below the corresponding ESL can be assumed to not pose a significant threat to human health or the environment. The ESLs for the compounds detected in groundwater are shown on Table 1.

The concentrations of detected VOCs and hydrocarbons in groundwater are summarized on Table 1. Concentrations of VOCs detected above the ESLs are shown on Figure 2.

Borings B1 through B3 were located as close as was possible to the northeastern perimeter of the Property to investigate potential off-site sources that could cause contamination in groundwater to migrate beneath the Property. VOCs were detected in groundwater at elevated concentrations. The only analyte detected in the soil samples was 1,1,1-TCA, which was detected in B1d2.5' at a concentration of 0.061 ppm. The highest concentration of any analyte in groundwater was 1,1,1-TCA at a concentration of 1,200 ppb in B1. The occurrence in groundwater (1,200 ppb) is significantly above the ESL of 200 ppb. The occurrence in soil at 2.5 feet (0.061 ppm) is below the residential and commercial ESL of 7.8 ppm.

The highest concentration of 1,1,1-TCA was found in B1 at the northeastern corner of the Property and the lowest concentration was found in B3, which was the farthest boring away from B1. The only occurrence of 1,1,1-TCA in soil was found in B1, which had the highest groundwater concentrations. Because of the shallow occurrence of groundwater (approximately four feet below grade on the drilling date), it is possible that the 1,1,1-TCA in soil at B1 is from migration of contaminants in groundwater from an upgradient source.

During PIERS review of the two previous Phase I reports by AEI and ERAS, it was determined that, "Adjacent parcels to the north, northeast, east, and southeast are currently under remediation for the release of chlorinated solvents, petroleum hydrocarbons, polychlorinated biphenyls, volatile organic compounds and metals. The sites have been grouped together as a common source of historical releases that have resulted in a commingled plume. The adjacent sites are:

- Former Learner property at 768 46th Ave to the north
- Former AAA Equipment Company at 745 50th Avenue to the northeast
- PG&E at 4930 Coliseum Way to the east
- Former Superior Plaster Casting at 4800 Coliseum Way to the southeast
- Pacific Galvanizing at 715 46th Avenue, adjacent to the northwest across 46th Avenue, and
- East Bay Clarklift at 4701 Coliseum Way, adjacent to the southwest across Coliseum Way."

The available data reviewed by PIERS to date have not revealed an identified upgradient source of the 1,1,1-TCA. To make that determination (if possible), additional file reviews, particularly of the up-gradient 768-46th Street site, should be conducted. If data indicating an up-gradient source cannot be found, additional delineation (additional soil borings) should be completed.

Borings B4 and B5 were located at and adjacent to the location of a former gasoline tank shown on historical Sanborn Maps, and soil and groundwater samples were collected. Very low concentrations of toluene below the ESLs were detected at 1.3 ppb and 0.70 ppb, respectively. Hydrocarbons and other VOCs were not detected in the soil samples. Based on these findings, the Property does not appear to have been significantly impacted by the former gasoline tank at this location.

Four shallow soil samples were completed along a former railroad spur and composited into one sample by the laboratory. The four-part composite soil sample yielded non-detectable results for VOCs and for PCBs. TPH as diesel and motor oil were detected at concentrations of 9.9 ppm and 84 ppm, respectively, below the ESL for heavy hydrocarbons in shallow soils (1,000 ppm for commercial use).

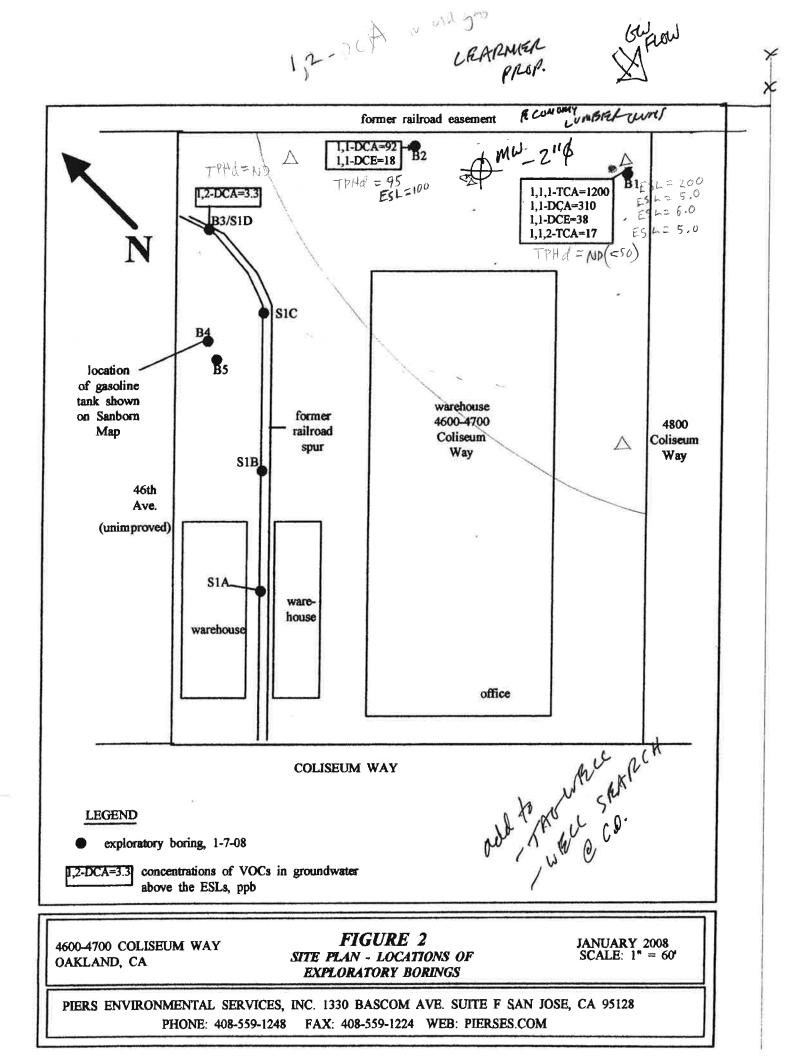

PIERS recommends that because contaminants in on-site soil and groundwater were identified during this investigation, this report should be submitted to the Alameda County Health Care Services Agency.

LIMITATIONS

The observations and conclusions presented in this report are professional opinions based on the scope of work outlined herein. This report was prepared in accordance with generally accepted standards of environmental geological practice in California at the time this investigation was performed. The opinions presented apply to site conditions existing at the time of our study and cannot apply to site conditions or changes of which we are not aware or have not had the opportunity to evaluate. This investigation was conducted solely to evaluate environmental conditions beneath the Property at specific locations. Subsurface conditions may vary away from the data points available. Additional work, including subsurface investigation, can reduce the inherent uncertainties associated with this type of investigation. It must be recognized that any conclusions drawn from these data rely on the integrity of the information available at the time of investigation and that a full and complete determination of environmental contamination and risks cannot be made.

Should you have any questions regarding this report, please do not hesitate to call me at (510) 593-5382.

Sincerely, PIERS Environmental Services, Inc.



Joel G. Greger Senior Project Manager CEG # EG1633, REA # 07079

Chief Operations Officer REP #5800, REA-II #20236

Kay Pannell

Attachments: Figure 2 Table 1 Laboratory Analytical Data Sheets

						TABLE 1	1					
			G	ROUND	WATEF	R ANALY	TICAL R	ESULTS	5			
				470	0 Coliseu	ım Way, O	Oakland, (CA				
				5	Samples of	collected of	on 1-7-08.					
Sample No.	TPH-gas (ppb)	TPH-diesel (ppb)	TPH-motor oil	1,1-DCA (ppb)	1,1-DCE (ppb)	1,1,2-TCA (ppb)	1,1,1-TCA (ppb)	TCE (ppb)	1,2-DCA (ppb)	cis-1,2-DCE (ppb)	Toluene (ppb)	DIPE (ppb)
B1 water	NA	<50	<250	310	38	17	1200*	<12	<12	<12	<12	<12
B2 water	NA	95	<250	9.2	18	< 0.5	1.8	< 0.5	< 0.5	<0.5	< 0.5	<0.5
B3 water	NA	<50	<250	1.5	<0.5	< 0.5	< 0.5	1.7	3.3	1.0	1.3	2.6
B4 water	<50	NA	NA	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	1.3	< 0.5
B5 water	<50	NA	NA	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	0.70	< 0.5
ESL	100/5000	100/2500	100/2500	5.2/100	6.0/6300	5.0/350	200/200	5.0/530	0.5/200	6.0/6200	40/400	
EXPLANA		DCA = dichl	oroethane, DC	E = dichlo	proethene,	TCA = Tric	hloroethane.	TCE = Tr	ichloroether	ne, DIPE = Dii		her
NA = not an	alyzed.	TPH = Total	Petroleum Hy	drocarbon	s.		,				sopropyreu	ici.
* 0.061 ppm	of 1,1,1-T	CA was detect	ted in soil fro	m B1 at 2.	5'.							
ESL - Envir	onmental So	creening Leve	l - groundwate	er is/is not	considered	l a resource.	Tables A/B.					

When Ouali		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269
Piers Environmental	Client Project ID: Coliseum	1 Way Date Sampled: 01/07/08
1330 S. Bascom Avenue, Ste. F		Date Received: 01/07/08
a a ci ocion	Client Contact: Joel Greger	Date Reported: 01/14/08
San Jose, CA 95128	Client P.O.:	Date Completed: 01/14/08

WorkOrder: 0801147

January 14, 2008

Dear Joel:

Enclosed within are:

- 1) The results of the 8 analyzed samples from your project: Coliseum Way,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

ē.

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

Report To: Joe Company: DEA	S Envin	1534 W PETTSB Necanoph 7) 252-9	IETOW PA URG, CA 9 <u>di.com</u> Er 262	ASS RO 14565-1 mail: 1 Bill T)AD 701 nain(g Fax o: <i>Pie</i>	ancear : (925	npbe) 25.	ell.co 2-92(n 59	- 1.1	114		Geo	2X		οu	IND EDF		M h h /sis	E PD	F	Rils Rils S	l H Es) اند cel	HK E))	□ 484 Wri	te Qu	E) 12 HI (DN Bag i	
Tele: (12)25 Project #: Project Location: Sampler Signatur	135382 7600-7	70: (i	1 -/1 -> C ++	E-Ma Fax: Projec h Col	il: p- (5-6) et Nai		12	145				-		Grense (1664 - 5520 E)	carbuns (418-1)	(8021 (HVOCs)	(EPA 602 8021)	1 Pesticides i	ONLY: Aroclors Cour	sticides)	: Cl Herbicides)	(VOCa)	(\$1.0(1))	PARA PNAS	200.8 6n10 601n,	200.8 6010 602:	6010 : 60201			for Metals analysis: Yes / No
SAMPLE ID	LOCATION/ Field Point Name	SAM Date	PLING	# Containers	Type Containers	Water W		Sludge	<u>P</u>	RES	THOD ERVE ONH	의	DTEX & TPH as Gas (TPH as Direct (2015)	Total Petroleum Oll & Grease (1664 - 5520 E/R&E)	Total Petroleum Hydrocarbuns (418.1)	EPA 502.27 601 (8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 8021)	EPA \$05. 608 / BOB1 (CI Pesticides	EPA 608 - 8082 PCB's ONLY: Aractors - Congeners	EPA S07 - 8141 (NP Pesticides)	EPA \$15 - \$151 (Acidie C) Herbicides)	EPA 524.2 / 624 / 8260 (VOCa)	EPA 525-2 1625 18270 (SV OCs)	EPA 8270 SIM / 6310 (PARA	CAM 17 Metals (200.7 - 200.8	LL PT 5 Metals (208 + 200.8	Lead (209.7 / 200.8 / 60	2CB3		
B1 45 1941 B5 w sper B5 w sper B5 w sper Corp 3; A-D B1 0 25 B1 0 25		♦7. cl	2 12 Am 251 Pm 125 Pm 10.51Am 2015 Pm 2016 Pm 2016 Pm 2016 Pm 10.12 Am 10.12 Am 10.37 Am	Y X Y Y · · · ·					>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	*			T X X X XXXX	- ·								***、***、**	a montrepresentation of the second se							1 L, 4 A, 1 - 2 A, 2
Refinquished By: Action Refinquished By: Refinquished By:		Date: 7/07 Date: 9/27 Bate:	Time: 12 × 12 × Time: 415 Time:	Rece	ived By	40	N	a	4	7	Y	H U A P	CEAT COOD IEAD DECH PPRO RESP	SPAC LORI DPRI/ RVE	'E AI NAT' NTE (D IN	BSET ED I CON LAB	TAR	NF:R;	s G			.5		IER		CO	MMH	ENTS:		

McCampbell Analytical, Inc. **CHAIN-OF-CUSTODY RECORD** Page 1 of 1 Street of 1534 Willow Pass Rd Pittsburg, CA 94565-1701 WorkOrder: 0801147 **ClientID: PESJ** (925) 252-9262 M EDF Excel Fax 🖌 Email HardCopy ThirdParty Report to: Bill to: **Requested TAT:** 5 days Joel Greger Email: piers@pierses.com Jennifer Piers Environmental TEL: (408) 559-1248 FAX: (408) 559-1224 Piers Environmental 1330 S. Bascom Avenue, Ste. F Date Received: 01/07/2008 ProjectNo: Coliseum Way 1330 S. Bascum Avenue, Ste. F San Jose, CA 95128 PO: San Jose, CA 95128 Date Printed: 01/08/2008 jennifer@pierses.com **Requested Tests (See legend below)** Sample ID ClientSampID Matrix Collection Date Hold 1 2 3 4 5 6 7 8 9 10 11 12 0801147-001 B1 Water Water 1/7/2008 8:10:00 В А Α 0801147-002 B2 Water Water 1/7/2008 8:51:00 В Α 0801147-003 **B3 Water** Water 1/7/2008 12:15:00 в Α

Π

П

Α

Α

Α

Α

В

В

Α

Α

A

A

A

Test Legend:

0801147-004

0801147-005

0801147-006

0801147-010

0801147-011

B4 Water

B5 Water

Comp S1A-D

B4d9.5'

B5d3.5'

Water

Water

Soil

Soil

Soil

1/7/2008 10:17:00

1/7/2008 10:51:00

1/7/2008 9:29:00

1/7/2008 10:02:00

1/7/2008 10:37:00

1 8082A_PCB_S	2 8260B_S	3 8260B_W	4 G-MBTEX_S	5 G-MBTEX W
6 PREDF REPORT	7 TPH(DMO)WSG_S	8 TPH(DMO)WSG_W	9	10
11	12			

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. Web: www.mccampbell.com E-mail: main@mccampbell.com "When Ouality Counts" Telephone: 877-252-9262 Fax: 925-252-9269 Sample Receipt Checklist Date and Time Received: 1/7/2008 7:16:06 PM **Piers Environmental** Client Name: Checklist completed and reviewed by: Melissa Valles Project Name: **Coliseum Way** Matrix Soil/Water Carrier: Rob Pringle (MAI Courier) 0801147 WorkOrder Nº: Chain of Custody (COC) Information No 🗀 $\mathbf{\nabla}$ Yes Chain of custody present? No 🗆 $\mathbf{\nabla}$ Chain of custody signed when relinquished and received? Yes No 🗌 Chain of custody agrees with sample labels? Yes No 🗆 Yes Sample IDs noted by Client on COC? Yes Date and Time of collection noted by Client on COC? Yes Sampler's name noted on COC? Sample Receipt Information Custody seals intact on shipping container/cooler? Yes No 🗍 $\mathbf{\nabla}$ Shipping container/cooler in good condition? Yes $\mathbf{\nabla}$ No 🗖 Yes Samples in proper containers/bottles? No 🗖 Yes Sample containers intact? No 🔲 Yes 🗹 Sufficient sample volume for indicated test? Sample Preservation and Hold Time (HT) Information No 🗖 Yes 🗹 All samples received within holding time? Cooler Temp: 6°C Container/Temp Blank temperature No D No VOA vials submitted D $\mathbf{\Sigma}$ Yes Water - VOA vials have zero headspace / no bubbles? No 🗌 Yes Sample labels checked for correct preservation? No 🗆 NA 🗹 TTLC Metal - pH acceptable upon receipt (pH<2)? Yes

Client contacted:

Date contacted:

Contacted by:

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Comments:

McCampbell An "When Ouality		l <u>, Inc.</u>		Web: www.mccamp	Pass Road, Pittsburg, CA bell.com E-mail: mair 377-252-9262 Fax: 92	@mccampbell	com
Piers Environmental	Cli	ent Project ID:	Colise	um Way	Date Sampled:	01/07/08	
1330 S. Bascom Avenue, Ste. F					Date Received:	01/07/08	
San Jose, CA 95128	Cli	ent Contact: Jo	el Greg	ger	Date Extracted:	01/07/08	
	Cli	ent P.O.:			Date Analyzed	01/09/08	
	olychlorinat		,	roclors by GC-I	ECD*		
Extraction Method: SW3550C Lab ID	0801147-0	Analytical Method	: SW808	2A	T	Work Order:	0801147
Client ID	Comp S1A						Limit for
Matrix	S						1
DF	1					S	w
Compound			Conce	entration		mg/kg	ug/L
Aroclor1016	ND					0.025	NA
Aroclor1221	ND					0.025	NA
Aroclor1232	ND					0.025	NA
Aroclor1242	ND					0.025	NA
Aroclor1248	ND					0.025	NA
Aroclor1254	ND					0.025	NA
Aroclor1260	ND					0.025	NA
PCBs, total	ND					0.025	NA
	5	Surrogate Reco	veries	(%)			
%\$\$\$:	85						
Comments							
* water samples in µg/L, soil/sludge/solid s samples and all TCLP & SPLP extracts an			ı µg/wiŗ	e, filter samples in	µg/filter, product/oil/	non-aqueous	liquid
ND means not detected above the reportir	ig limit; N/A i	means analyte not	applical	ole to this analysis.			
# surrogate diluted out of range or surroga	te coelutes wi	th another $peak_{\epsilon}$					
(h) a lighter than water immiscible sheen/r	roduct is pres	ent: (i) liquid sam	ale that	contains >~1 vol %	sediment (i) sampl	e diluted due	to high

(h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains > 1 vol. % sediment; (j) sample diluted due to high organic content/matrix interference; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (p) see attached narrative; q) reporting limit raised due to insufficient sample amount; (r) results are reported on a dry weight basis;

		<u>1C.</u>				in@mccampbell.com		
"When Oualit						25-252-9269		
Piers Environmental	Client F	roject II	D: Col	iseum Way	Date Sampled:	· · · · · · · · · · · · · · · · · · ·		
1330 S. Bascom Avenue, Ste. F					Date Received	01/07/08		
1550 S. Dascolli Arvende, Ste. 1	Client C	Contact:	Joel G	reger	Date Extracted:	01/07/08		
San Jose, CA 95128	Client P	.0.:			Date Analyzed	01/10/08		
ner prosterioren in terretion da ava	Volatile Organ	ics by P	&T an	d GC/MS (Basic Ta	rget List)*	e it with the first second second		
Extraction Method: SW5030B	-	Analytical M			Er List)	Work Order: 0801	147	
Lab ID	T	and the second se	al attents	0801147	-006A			
Client ID	·			Comp S				
Matrix				Soi				
Compound	Concentration *	DF	Reporting Limit	Compour	d	Concentration *	DF	Report
Acetone	ND I	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.0
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl et	her (TAME)	ND	1.0	0.00
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.00
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.00
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.00
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB/	A.)	ND	1.0	0.0
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.00
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.00
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.00
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl	Ether	ND	1.0	0.0
Chloroform	ND	1.0	0.005	Chloromethane		ND	1.0	0.00
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene		ND	1.0	0.00
Dibromochloromethane	ND	1.0	0.005	1.2-Dibromo-3-chlor	ropropane	ND	1.0	0.00
1,2-Dibromoethane (EDB)	ND	1.0	0.004	Dibromomethane		ND	1.0	0.00
1.2-Dichlorobenzene	ND	1.0	0.005	1.3-Dichlorobenzene		ND	1.0	0.00
1.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromet	nane	ND	1.0	0.00
1,1-Dichloroethane	ND	1.0	0,005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.00
1.1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethe	ne	ND	1.0	0.00
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane	2	ND	1.0	0.00
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane		ND	1.0	0.00
1,1-Dichloropropene	ND	1.0	0.005	cis-1.3-Dichloroprop	ene	ND	1.0	0.00
trans-1.3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (D	IPE)	ND	1.0	0.00
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether	r (ETBE)	ND	1.0	0.00
Freon 113	ND	1.0	0.1	Hexachlorobutadiene		ND	1.0	0.00
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.00
Isopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.00
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005			ND	1.0	0.00
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.00
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.00
Styrene	ND	1.0		1,1,1,2-Tetrachloroe	thane	ND	1.0	0.00
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.00
Foluene	ND	1.0		1.2.3-Trichlorobenze		ND	1.0	0.00
1.2.4-Trichlorobenzene	ND	1.0		1,1,1-Trichloroethan	e	ND	1.0	0.00
I.1.2-Trichloroethane	ND	1.0	0.005	Trichloroethene	70	ND	1.0	0.00
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropa		ND	1.0	0.00
1.2.4-Trimethylbenzene	ND	1.0		1.3.5-Trimethylbenze Xylenes	ine	ND ND	1.0	0.00
Vinyl Chloride	ND						1.0	1.0.00
		Surrog	zate Ke	coveries (%)				
%SS1:	92			%SS2:		101	â	
%SS3	103							_

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell A		<u>1C.</u>		Web: www.mccamp	Pass Road, Pittsburg, C bell.com E-mail: ma	in@mccampbell.com					
"When Ouali				and the second		025-252-9269	_				
Piers Environmental	Client P	roject ID	: Col	iseum Way	Date Sampled:	01/07/08					
1220 G. D. Laws Assessed Star E.					Date Received	: 01/07/08					
1330 S. Bascom Avenue, Ste. F	Client C	Contact:	Joel G	reger	Date Extracted	d: 01/07/08					
San Jose, CA 95128											
Sal Jose, CA 95126	Client P	.0.:			Date Analyzed	01/10/08		-			
	Volatile Organ	ics by Pa	&T an	d GC/MS (Basic Ta	arget List)*						
Extraction Method: SW5030B	A	Analytical M	ethod:	SW8260B		Work Order: 0801	147				
Lab ID	1			0801147	-0104						
Client ID				B4d9		27 - 1 - 1 - Au ¹¹					
Matrix				So							
Watth		and consume the party	Reporting		A CONTRACTOR OF A CONTRACT			Reportu			
Compound	Concentration *	DF	Limit	Compour	d	Concentration *	DF	Limi			
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.05			
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl et	her (TAME)	ND	1.0	0.00			
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.00			
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.00			
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.00			
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB/	4)	ND	1.0	0.05			
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.00			
tert-Butyl benzene	ND		0.005	Carbon Disulfide		ND	1.0	0.00			
Carbon Tetrachloride	ND	1000	0.005	Chlorobenzene		ND	1.0	0,00			
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl	Ether	ND	1.0	0.01			
Chloroform	ND		0.005	Chloromethane		ND	1.0	0.00			
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	100 mar 100 mar 100	ND	1.0	0.00			
Dibromochloromethane	ND		0.005	1.2-Dibromo-3-chlo	ropropane	ND	1.0	0.004			
1,2-Dibromoethane (EDB)	ND		0.004	Dibromomethane		ND	1.0	0.00			
1.2-Dichlorobenzene	ND		0.005	1.3-Dichlorobenzene		ND	1.0	0.00			
1.4-Dichlorobenzene	ND ND		0.005	Dichlorodifluoromet 1,2-Dichloroethane (ND ND	1.0	0.004			
1,1-Dichloroethane 1,1-Dichloroethene	ND		0.005	cis-1,2-Dichloroethe		ND	1.0	0.004			
	ND		0.005	1.2-Dichloropropane		ND	1.0	0.00			
trans-1,2-Dichloroethene 1,3-Dichloropropane	ND		0.005	2,2-Dichloropropane		ND	1.0	0.00			
1.1-Dichloropropene	ND		0.005	cis-1.3-Dichloroprop		ND	1.0	0.00			
trans-1,3-Dichloropropene	ND		0.005	Diisopropyl ether (D		ND	1.0	0.005			
Ethylbenzene	ND		0.005	Ethyl tert-butyl ethe		ND	1.0	0.005			
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	(LIDE)	ND	1.0	0.004			
Hexachloroethane	ND		0.005	2-Hexanone		ND	1.0	0.00			
Isopropylbenzene	ND		0.005	4-Isopropyl toluene		ND	1.0	0.005			
Methyl-t-butyl ether (MTBE)	ND			Methylene chloride		ND	1.0	0.005			
4-Methyl-2-pentanone (MIBK)	ND		0.005	Naphthalene		ND	1.0	0.005			
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.005			
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroe	thane	ND	1.0	0.005			
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005			
Toluene	ND		0.005	1,2,3-Trichlorobenze		ND	1.0	0.005			
1,2,4-Trichlorobenzene	ND			1.1.1-Trichloroethan	e	ND	1.0	0.005			
1,1,2-Trichloroethane	ND		0.005	Trichloroethene		ND	1.0	0.005			
Trichlorofluoromethane	ND		0.005	1.2.3-Trichloropropa		ND	1.0	0.005			
1.2.4-Trimethylbenzene	ND			1.3.5-Trimethylbenze	ene	ND	1.0	0.005			
Vinyl Chloride	ND			Xvlenes		ND	1.0	0.005			
		Surrog	ate Re	coveries (%)							
%SS1:	92			%SS2:		101					
%SS3:	105				Address of the second						

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

<u>McCampbell A</u>		<u>ıc.</u>		Web: www.mccampbell.com	Pittsburg, CA 94565-1701 E-mail: main@mccampbell.com					
"When Ouali					262 Fax: 925-252-9269 Sampled: 01/07/08					
Piers Environmental	Client P	тојест п	J: Con	-	and the second se					
1220 S. Dascom Avenue Ste F				Date	Received: 01/07/08					
1330 S. Bascom Avenue, Ste. F	Client C	Contact:	Joel G	reger Date I	Extracted: 01/07/08	: 01/07/08				
San Jose, CA 95128	Client P	.0.:		Date	Analyzed 01/10/08					
	N L (1) O	ter ber D	6 T	d CC/MS (Deale Towart L	(nf)#					
	8			d GC/MS (Basic Target L						
Extraction Method: SW5030B	4	Analytical N	Aethod:		Work Order: 0801	47	-			
Lab ID				0801147-011A						
Client ID			_	B5d3.5						
Matrix				Soil			IBanor			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Report Lim			
Acetone	ND	1.0	0.05	Acrolein (Propenal)	ND	1.0	0.0;			
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl ether (TA		1.0	0.00			
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.00			
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.00			
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.00			
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.0			
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	ND	1.0	0.00			
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.00			
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.00			
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether	ND	1.0	0.0			
Chloroform	ND	1.0	0.005	Chloromethane	ND	1.0	0.00			
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene	ND	1.0	0.00			
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropa		1.0	0.00			
1,2-Dibromoethane (EDB)	ND	1.0	0.004	Dibromomethane	ND	1.0	0.00			
1.2-Dichlorobenzene	ND	1.0	0.005	1.3-Dichlorobenzene	ND	1.0	0.00			
1.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane	ND	1.0	0.00			
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DC.		1.0	0.00			
1.1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene	ND	1.0	0.00			
trans-1,2-Dichloroethene	ND	1.0	0.005	1.2-Dichloropropane	ND	1.0	0.00			
1.3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane	ND	1.0	0.00			
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene	ND	1.0	0.00			
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)	ND	1.0	0.00			
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether (ETBE		1.0	0.00			
Freon 113	ND	1.0	0.1	Hexachlorobutadiene	ND ND	1.0	0.00			
Hexachloroethane	ND	1.0	0.005	2-Hexanone	ND	1.0	0.00			
Isopropylbenzene	ND		0.005	4-Isopropyl toluene	ND	1.0	0.00			
Methyl-t-butyl ether (MTBE)	ND ND	1.0		Methylene chloride Naphthalene	ND ND	1.0	0.00			
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.003	n-Propyl benzene	ND	1.0	0.00			
Nitrobenzene	ND ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.00			
Styrene 1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.00			
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.00			
1.2.4-Trichlorobenzene	ND	1.0	0.005	1.1.1-Trichloroethane	ND	1.0	0.00			
1.1.2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.00			
Trichlorofluoromethane	ND	1.0	0,005	1,2,3-Trichloropropane	ND	1.0	0.00			
1.2.4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene	ND	1.0	0.00			
Vinyl Chloride	ND	1.0	and the desident of the second	Xylenes	ND	1.0	0.00			
		Surro	gate Re	coveries (%)						
%SS1:	91			%SS2:	10					
/0.531.	104			A AND MARK.						

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

<u>McCampbell</u>		<u>1c.</u>		Web: www.mccamp	Pass Road, Pittsburg, C bell.com E-mail: ma 377-252-9262 Fax: 9	in@mccampbell.com				
	lity Counts"	Designet ID		iseum Way	Date Sampled:					
Piers Environmental		Tojeci ID		iscuin way						
1330 S. Bascom Avenue, Ste. F			_		Date Received	: 01/0//08				
1550 5. 200000000000000000000000000000000	Client (Contact:	Joel G	ireger	Date Extracted	1: 01/11/08				
San Jose, CA 95128	Client F	P.O.:			Date Analyzed	:d 01/11/08				
	Volatile Organ	ics by PA	bT an	d GC/MS (Basic Ta	arget List)*					
Extraction Method: SW5030B		Analytical M			Bot Elisty	Work Order: 0801	147			
Lab ID				0801147			ت در از رست			
Client ID				B1 W						
Matrix				Wat						
	C		Reporting	I		Concentration *	DF	Report		
Compound	Concentration *	DF	Limit	Compour		Concentration *		Lim		
Acetone	ND<250	25	10	Acrolein (Propenal)		ND<120	25	5.0		
Acrylonitrile	ND<50	25 25	<u>2.0</u> 0.5	tert-Amyl methyl et Bromobenzene	ner (TAME)	ND<12 ND<12	25 25	0.5		
Benzene	ND<12 ND<12	25	0.5	Bromodichlorometh		ND<12	25	0		
Bromochloromethane	ND<12	25	0.5	Bromomethane	ane	ND<12	25	0		
Bromoform	ND<12	25	2.0	t-Butyl alcohol (TB.	()	ND<50	25	2.0		
2-Butanone (MEK)	ND<30	25	0.5	sec-Butyl benzene	<i>v</i>	ND<12	25	0.		
n-Butyl benzene	ND<12	25	0.5	Carbon Tetrachlorid		ND<12	25	0.:		
tert-Butyl benzene Carbon Disulfide	ND<12	25	0.5	Chlorobenzene		ND<12	25	0		
	ND<12	25	0.5	2-Chloroethyl Vinyl	Ether	ND<25	25	1.0		
Chloroethane	ND<12	25	0.5	Chloromethane	Chief	ND<12	25	0		
Chloroform	ND<12	25	0.5	4-Chlorotoluene		ND<12	25	0.5		
2-Chlorotoluene Dibromochloromethane	ND<12	25	0.5	1,2-Dibromo-3-chlo	ropropage	ND<12 ND<5.0	25	0.2		
1.2-Dibromoethane (EDB)	ND<12	25	0.5	Dibromomethane	Topropune	ND<12	25	0.4		
1.2-Dichlorobenzene	ND<12	25	0.5	1.3-Dichlorobenzene		ND<12	25	0.5		
1.4-Dichlorobenzene	ND<12	25	0.5	Dichlorodifluoromet		ND<12	25	0.5		
1.1-Dichloroethane	310	25	0.5	1.2-Dichloroethane		ND<12	25	0.5		
1.1-Dichloroethene	38	25	0.5	cis-1,2-Dichloroethe		ND<12	25	0.5		
trans-1.2-Dichloroethene	ND<12	25	0.5	1.2-Dichloropropane		ND<12	25	0.5		
1.3-Dichloropropane	ND<12	25	0.5	2.2-Dichloropropane		ND<12	25	0.5		
1.1-Dichloropropene	ND<12	25	0.5	cis-1,3-Dichloropror	ene	ND<12	25	0.5		
trans-1.3-Dichloropropene	ND<12	25	0.5	Diisopropyl ether (D	IPE)	ND<12	25	0.5		
Ethylbenzene	ND<12	25	0.5	Ethyl tert-butyl ethe	r (ETBE)	ND<12	25	0.5		
Freon 113	ND<250	25	10	Hexachlorobutadiene	0	ND<12	25	0.5		
Hexachloroethane	ND<12	25	0.5	2-Hexanone		ND<12	25	0.5		
Isopropylbenzene	ND<12	25	0.5	4-Isopropyl toluene		ND<12	25	0.5		
Methyl-t-butyl ether (MTBE)	ND<12	25	0.5	Methylene chloride		ND<12	25	0.5		
4-Methyl-2-pentanone (MIBK)	ND<12	25	0.5	Naphthalene		ND<12	25	0.5		
Nitrobenzene	ND<250	25	10	n-Propyl benzene		ND<12	25	0.5		
Styrene	ND<12	25	0.5	1,1,1,2-Tetrachloroe	thane	ND<12	25	0.5		
1,1,2,2-Tetrachloroethane	ND<12	25	0.5	Tetrachloroethene		ND<12	25	0.5		
Toluene	ND<12	25	0.5	1.2.3-Trichlorobenze		ND<12	25	0.5		
1.2.4-Trichlorobenzene	ND<12	25	0.5	1,1,1-Trichloroethar	e	1200	25	0.5		
1,1,2-Trichloroethane	17	25	0.5	Trichloroethene		ND<12	25	0.5		
Trichlorofluoromethane	ND<12	25	0.5	1,2,3-Trichloroprop	- 3.7.111	ND<12	25	0.5		
1.2.4-Trimethylbenzene	ND<12	25	0.5	1.3.5-Trimethylbenz	ene	ND<12	25	0.5		
Vinyl Chloride	ND<12	25	0.5	Xylenes (9/)		ND<12				
			ate Re	coveries (%)		r				
%SS1:	100			%SS2:		99				
%SS3:	103	,								

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference,

McCampbell A		nc.		Web: www.mccamp		in@mccampbell.com		
Piers Environmental		Project ID:	Col		Date Sampled:	01/07/08		
					Date Received	: 01/07/08		
1330 S. Bascom Avenue, Ste. F	Client	Contact: Jo	oel C	reger	Date Extracted:	01/11/08		
San Jose, CA 95128	Client I	P.O.:			Date Analyzed	01/11/08		
	Volatile Orgai	nics by P&	T an	d GC/MS (Basic Ta	rget List)*			
Extraction Method: SW5030B	_					Work Order: 0801	147	
Lab ID				0801147	-002B	14		
Client ID				B2 Wa	ater			
Matrix				Wate	er			Ċ.
Compound	Concentration *			Compoun	d	Concentration *	DF	Reportin Limit
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0		her (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5		ine	ND	1.0	0.5
Bromoform	ND		_	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	ND				.)	ND	1.0	2.0
n-Butyl benzene								0.5
tert-Butvl benzene			_					0.5
Carbon Disulfide		The second second second						0.5
Chloroethane			_		Ether			1.0
Chloroform				and the second se				0.5
2-Chlorotoluene								0.5
Dibromochloromethane					opropane			0.2
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene			_					0.5
1.4-Dichlorobenzene			_		але			0.5
1,1-Dichloroethane			_					0.5
1.1-Dichloroethene	18							0.5
trans-1.2-Dichloroethene	ND						1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5			ND	1.0	0.5
1.1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloroprop	ene	ND	1.0	0.5
trans-1.3-Dichloropropene	ND	Bay Life: Web: www.mccampbell.com Telephone: 877-252-9262 Fanal: main@mccampbell.com Telephone: Telephone: 877-252-9262 Tenait: main@mccampbell.com Telephone: Telephone: 877-252-9262 Tenait: main@mccampbell.com Date Sampled: Old to 1/07/08 Client Contact: Joint Colspan="2">Joint Colspan="2">Joint Colspan="2">Tenait: main@mccampbell.com Client Contact: Joint Colspan="2">Joint Colspan="2">Joint Colspan="2">Joint Colspan="2">Joint Colspan="2">Joint Colspan="2">Colspan="2">Joint Colspan="2">Colspan="2">Joint Colspan="2">Colspan="2" Colspan="2" Colspan="2" Termin Comoound Concentration * DF Reporting Termin Colspan="2" Voint Colspan="2" Telephortine <t< td=""><td>0.5</td></t<>		0.5				
Ethylbenzene	Telephone: 877-253-9262 Fax: 925-252-9269 Telephone: 877-253-9262 Fax: 925-252-9269 Client Project ID: Coliseum Way Date Sampled: 01/07/08 Date Sampled: 01/07/08 Client Contact: Joel Greger Date Extracted: 01/11/08 Client P.O.: Date Sampled: 01/07/08 Concentration P.O. Concentration P.O. Mathematical Method: SW3208 Work Order: 0801147 DB Water Bate Sampled: 01/11/08 Concentration * DF ND 10 ND 1			1.0	0.5			
Freon 113	Image: Project ID: Coliseum Way Date Sampled: 01/07/08 cenue, Ste. F Client Contact: Joel Greger Date Received: 01/07/08 Client Contact: Joel Greger Date Extracted: 01/11/08 Client P.O.: Date Analyzed 01/11/08 Volatile Organics by P&T and GC/MS (Basic Target List)* S0308 Mark Analytical Method: SW8260B Work Order: Lab ID Output: SW8260B Work Order: Client ID B2 Water Matrix Water Matrix Water ND 1.0 1.0 Acrolein (Prosenal) ND ND 1.0 0.5 Bromodehargene ND ND 1.0 0.5 Bromodehargene ND ND 1.0 0.5 Chorobenzene ND ND 1.0 0.5 Chorobenzene ND ND 1.0 0.5 Chorobenzene ND ND 1.0 0.5 </td <td>ND</td> <td>1.0</td> <td>0.5</td>		ND	1.0	0.5			
Hexachloroethane								0.5
Isopropylbenzene	ND			an and a state of the local division of the state of the local division of the state of the stat		ND		0.5
Methyl-t-butyl ether (MTBE)								0.5
4-Methyl-2-pentanone (MIBK)								0.5
Nitrobenzene					1 2538			0.5
Styrene					hane			0.5
1.1.2.2-Tetrachloroethane			_					0.5
Toluene								0.5
1.2.4-Trichlorobenzene 1.1.2-Trichloroethane					×			0.5
Trichlorofluoromethane			_		ne			0.5
1.2.4-Trimethylbenzene				the second s				0.5
Vinyl Chloride			_					0.5
CHART MILLING				And the state of the				
%SS1:	10'					00		
%\$\$3:				,				
Comments: i								

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference,

When Quality		<u>ıc.</u>		1534 Willow Pass R Web: www.mccampbell.c Telephone: 877-2:	om E-mail: ma	in@mccampbell.com		
Piers Environmental		roject II	D: Col		ate Sampled:	01/07/08		
		5			ate Received:	01/07/08		
1330 S. Bascom Avenue, Ste. F	Client C	Contact:	Joel G		te Extracted:	and the second		_
San Jose, CA 95128	Client P				ate Analyzed			
and the second			0.6.T am	d GC/MS (Basic Targe	Market Market Hold			
Extraction Method: SW5030B	-	-		SW8260B		Work Order: 0801	147	
Lab ID				0801147-003	BB			
Client ID				B3 Water				
Matrix				Water				
Compound	Concentration *	DF	Reporting Limit	Compound		Concentration *	DF	Report
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether ((TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane		ND	1.0	0.
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)		ND	1.0	2.
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.
tert-Butyl benzene	ND	1.0	0.5	Carbon Tetrachloride		ND	1.0	0.
Carbon Disulfide	ND	1.0	0.5	Chlorobenzene		ND	1.0	0
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ethe	ег	ND	1.0	1.
Chloroform	ND	1.0	0.5	Chloromethane		NÐ	1.0	0.
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene		ND	1.0	0.
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropro	opane	ND	1.0	0.
1.2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.
1,2-Dichlorobenzene	ND	1.0	0.5	1.3-Dichlorobenzene		ND	1.0	0.
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane		ND	1.0	0.
1,1-Dichloroethane	1.5	1.0	0.5	1,2-Dichloroethane (1,2-	DCA)	3.3	1.0	0.
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene		1.0	1.0	0.;
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane		ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane		ND	1.0	0.:
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene		ND	1.0	0.
trans-1.3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)		2.6	1.0	0.,
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (E	TBE)	ND	1.0	0.:
Freon 113	ND	1.0	10	Hexachlorobutadiene		ND	1.0	0.
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0;
Methyl-t-butyl ether (MTBE)	ND	1.0		Methylene chloride Naphthalene		ND ND	1.0	0.:
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	n-Propyl benzene		ND	1.0	0
Nitrobenzene	ND	1.0	0.5	1.1.1.2-Tetrachloroethan	12	ND	1.0	0.
Styrene	ND ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.
1,1,2,2-Tetrachloroethane	1.3	1.0	0.5	1.2.3-Trichlorobenzene		ND	1.0	0.
Loluene 1.2.4-Trichlorobenzene	ND	1.0	0.5	1.1.1-Trichloroethane		ND	1.0	0.
1.1.2-Trichloroethane	ND	1.0	0.5	Trichloroethene		1.7	1.0	0.5
Frichlorofluoromethane	ND	1.0	0.5	1.2.3-Trichloropropane		ND	1.0	0.5
1.2.4-Trimethylbenzene	ND	1.0	0.5	1.3.5-Trimethylbenzene		ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes		ND	1.0	0.4
THE STREET		Surro		coveries (%)				
0/991	105			%8S2:		102	,	
%\$\$1: %\$\$3:	105			700,040		102	_	_

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

When Oual		<u>1C.</u>		1534 Willow Pass Road, F Web: www.mccampbell.com Telephone: 877-252-926	E-mail: main@mccampbell.com		
Piers Environmental		roiect I	D: Col		ampled: 01/07/08		
I ICIS Ellynoinnenuu		10,000			eceived: 01/07/08		
1330 S. Bascom Avenue, Ste. F			x 10				
	Client (Contact:	Joel G		ctracted: 01/10/08		
San Jose, CA 95128	Client P	2.0.:		Date A	nalyzed 01/10/08		_
	0	-		d GC/MS (Basic Target Lis SW8260B	t)* Work Order: 0801	147	
Extraction Method: SW5030B	1	thatytical	wichioù.	0801147-004B	Wolk Older. 0001		A (84.5-
Lab ID Client ID	and the second second second			B4 Water			
Matrix				Water			
		DE	Reporting			DE	Report
Compound	Concentration *	DF	Limit	Compound	Concentration *	DF	Lim
Acetone	ND	1.0	10	Acrolein (Propenal)	ND	1.0	5.1
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAM		1.0	0
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.
Bromochloromethane	ND ND	1.0	0.5	Bromodichloromethane Bromomethane	ND ND	1.0	0.
Bromoform		1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.
2-Butanone (MEK)	ND ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.
n-Butyl benzene	ND	1.0	0.5	Carbon Tetrachloride	ND	1.0	0
ert-Butyl benzene Carbon Disulfide	ND	1.0	0.5	Chlorobenzene	ND	1.0	0
	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	
Chloroethane Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0
Dibromochloromethane	ND	1.0	0.5	1.2-Dibromo-3-chloropropane		1.0	0.
1.2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0
1.2-Dichlorobenzene	ND	1.0	0.5	1.3-Dichlorobenzene	ND	1.0	0.
4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.
1.1-Dichloroethane	ND	1.0	0.5	1.2-Dichloroethane (1.2-DCA)	ND	1.0	0.
1.1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.:
rans-1.2-Dichloroethene	ND	1.0	0.5	1.2-Dichloropropane	ND	1.0	0,
1.3-Dichloropropane	ND	1.0	0.5	2.2-Dichloropropane	ND	1.0	0.:
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.
rans-1.3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.
Iexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
sopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene	ND	1.0	0.
Methyl-t-butyl ether (MTBE)	ND	1.0		Methylene chloride	ND	1.0	0.
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.4
1,2,2-Tetrachloroethane	ND 1.3	1.0	0.5	Tetrachloroethene	ND ND	1.0	0.5
Foluene .2.4-Trichlorobenzene	ND I.3	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
.1.2-Trichloroethane	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Frichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1.3.5-Trimethylbenzene	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes	ND	1.0	0.5
		Surro		coveries (%)			
%SS1:	106			%SS2:	99		
%SS3	104			2.55 M m	//		

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell A "When Qualit		nc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
Piers Environmental		Project II	D: Col	iseum Way	Date Sampled:	01/07/08					
		5		2	Date Received:	01/07/08					
1330 S. Bascom Avenue, Ste. F						and the second s					
	Client (Contact:	Joel G	ireger	Date Extracted:	01/10/08					
San Jose, CA 95128	Client P	9.0.:			Date Analyzed	01/10/08					
	Volatile Organ	ics by F	&T an	d GC/MS (Basic Ta	arget List)*						
Extraction Method: SW5030B	8			SW8260B		Work Order: 0801	147				
Lab ID				0801147	-005B	tunun an a		-			
Client ID				B5 W							
Matrix				Wat							
Panarting											
Compound	Concentration *	DF	Limit	Compour	ıd	Concentration *	DF	Reportin			
Acetone	ND	1.0	10	Acrolein (Propenal)		ND	1.0	5.0			
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl et	her (TAME)	ND	1.0	0.5			
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5			
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1_0	0.5			
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5			
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB)	<u>4)</u>	ND	1.0	2.0			
n-Butvl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5			
tert-Butyl benzene	ND	1.0	0.5	Carbon Tetrachloride	2	ND	1.0	0.5			
Carbon Disulfide	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl	Ether	ND ND	1.0	1.0			
Chloroform	ND	1.0	0.5	Chloromethane			1.0	0.5			
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene			1.0	0.5			
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chlor	ropropane	ND	1.0	0.2			
1.2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane		ND	1.0	0.5			
1.2-Dichlorobenzene	ND	1.0	0.5	1.3-Dichlorobenzene		ND	1.0	0.5			
1.4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromet		ND	1.0	0.5			
1.1-Dichloroethane	ND	1.0	0.5	1.2-Dichloroethane (cis-1.2-Dichloroethe		ND	1.0	0.5			
1.1-Dichloroethene	ND	1.0	0.5	1.2-Dichloropropane		ND		0.5			
trans-1.2-Dichloroethene 1.3-Dichloropropane	ND ND	1.0	0.5	2.2-Dichloropropane		ND ND	1.0	0.5			
1.1-Dichloropropene	ND	1.0	0.5	cis-1.3-Dichloroprop		ND	1.0	0.5			
trans-1.3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (D		ND	1.0	0.5			
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether		ND	1.0	0.5			
Freon 113	ND	1.0	10	Hexachlorobutadiene		ND	1.0	0.5			
Hexachloroethane	ND	1.0	0.5	2-Hexanone		ND	1.0	0.5			
Isopropylbenzene	ND	1.0	0.5	4-Isopropyl toluene		ND	1.0	0.5			
Methyl-t-butyl ether (MTBE)	ND	1.0		Methylene chloride		ND	1.0	0.5			
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene		ND	1.0	0.5			
Nitrobenzene	ND	1.0	10	n-Propyl benzene		ND	1.0	0.5			
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroe	thane	ND	1.0	0.5			
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5			
Toluene	0,70	1.0	0.5	1,2,3-Trichlorobenze	ne	ND	1.0	0.5			
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethan	e	ND	1.0	0.5			
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5			
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropa		ND	1.0	0.5			
1,2,4-Trimethylbenzene	ND	1.0	0.5	1.3.5-Trimethylbenze	ene	ND	1.0	0.5			
Vinyl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5			
		Surro	gate Re	coveries (%)							
%SS1:	105			%SS2:		100)				
	103										

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	McCampbell	Analy		<u>.</u>	Web: www.n	ccampbell.com	Pittsburg, CA 94565 E-mail: main@mcca 62 Fax: 925-252-9	mpbell.com				
Piers I	Environmental		1	ject ID: Co	oliseum Way			ed: 01/07/08				
1330 5	5. Bascom Avenue, Ste. F	6					Date Receiv	/ed: 01/07/08				
			Client Cor	ntact: Joel	Greger		Date Extract	cted: 01/07/08				
San Jo	se, CA 95128		Client P.O	.:			Date Analyz	ed 01/08/08	-01/09/	/08		
Extractio	Gasolin on method SW5030B	e Range (carbons as Gaso SW8021B/8015Cm	line with BT	EX and MTBE	* Work Order: 0801147				
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS		
010A	B4d9.5	s	ND	ND	ND	ND	ND	ND	I	91		
011A	B5d3.5	S	ND	ND	ND	ND	ND	ND	1	85		
	,											
Rer	porting Limit for DF =1;	w	NA	NA	NA	NA	NA	NA	1	ug/L		
ND	means not detected at or ove the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg		

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high organic / MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

Angela Rydelius, Lab Manager

	McCampbell	Analy uality Counts		-		Web: www.n	nccampbell.com	Pittsburg, CA 9456 E-mail: main@mcca 52 Fax: 925-252-	ampbell_com		
Piers H	Environmental		Client Proj	ject ID: (Coliseur)-	Date Sample			
1330 \$	S. Bascom Avenue, Ste. F	2						Date Receiv	ed: 01/07/08	0	
Com In	CA 05129		Client Cor	ntact: Joe	l Grege	۲		Date Extract	ed: 01/08/08		
San Jo	se, CA 95128		Client P.O	.:				Date Analyz	zed: 01/08/08		
Extracti	Gasolin on method: SW5030B	e Range (atile Hydr ytical method			line with BTI	EX and MTBE	* Work Order	r: 0801	147
Lab ID	Client ID	Matrix	TPH(g)	МТВЕ	3	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
004A	B4 Water	w	ND,i	ND		ND	1,1	ND	ND	1	90
005A	B5 Water	w	ND,i	ND		ND	ND	ND	ND	1	96
		\searrow								1	
					J.						
					ĺ.						
											+1.7
Rep	orting Limit for DF =1;	w	50	5.0		0.5	0.5	0.5	0.5	1	μg/L
ND	means not detected at or ove the reporting limit	S	NA	NA		NA	NA	NA	NA	1	mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak,

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

	Campbell Analyt	ical, Inc.	Web: www.m	illow Pass Road, Pittsburg, C. nccampbell.com E-mail: mai hone: 877-252-9262 Fax: 92	n@mccampbell.co	ותכ		
Piers Environm 1330 S. Bascom	nental n Avenue, Ste. F	Client Project II	D: Coliseum Way	Date Sampled: Date Received:				
San Jose, CA 95	5128	Client Contact: Client P.O.:	Joel Greger	Date Extracted: 01/07/08 Date Analyzed 01/08/08				
Extraction method: S			actable Hydrocarbons ethods: SW8015C	ns with Silica Gel Clean-Up* Work Order: 0801147				
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS		
0801147-006A	Comp S1A-D	S	9.9,g	84	5	93		
			Maria and Andrewson					
ND me	rting Limit for DF =1; eans not detected at or	W S	NA 1.0	NA 5.0		y/L		
abov	ve the reporting limit	3	1,0	5.0	mg	/Kg		

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; r) results are reported on a dry weight basis

<u>McC</u>	ampbell Analyt	<u>ical, Inc.</u>	1565-1701 nccampbell.co	970					
Piers Environment		Client Project	ID: Coliseum Way	Date Sampled: 0	and the second				
				Date Received: 01					
1330 S. Bascom A	venue, Ste. F								
San Jose, CA 9512	28	Client Contact	t: Joel Greger	Date Extracted: 0					
		Client P.O.:		Date Analyzed 01	1/08/08				
Extraction method: SW3			tractable Hydrocarbons methods: SW8015C	s with Silica Gel Clean-Up Wo	* ork Order: 0	801147			
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS			
0801147-001A	B1 Water	w	ND,i	ND,i	1	102			
0801147-002A	B2 Water	w	95,d,b,i	ND,i	1	100			
0801147-003A	B3 Water	w	ND,i	ND,i	-1	103			
					T				
	<u> </u>								
		_							
	40								
	g Limit for $DF = 1$;	w	50	250	μg	/L			
	s not detected at or he reporting limit	S	NA	NA	mg/	Kg			

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

#) cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; &) low or no surrogate due to matrix interference.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to matrix interference; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; p) see attached narrative.

"When Ouality Counts"

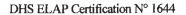
1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8082A

EPA Method SW8082A	Extra	ction SW	3550C		BatchID: 33042 S					piked Sample ID: 0801144-030A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)		
Analyte	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Aroclor1260	ND	0.075	125	124	0.567	124	125	0.640	70 - 130	20	70 - 130	20	
%SS:	124	0.050	116	115	0.143	112	109	2.83	70 - 130	20	70 - 130	20	

BATCH 33042 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0801147-006A	01/07/08 9:29 AM	01/07/08	01/09/08 8:26 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water	QC Matrix: Water WorkOrder 080							Order 08011	47				
EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	tchID: 33	045	Spiked Sample ID: 0801159-001A					
Azakita	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	criteria (%)	1	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex)	ND	60	106	105	1.26	109	111	1.76	70 - 130	30	70 - 130	30	
МТВЕ	ND	10	103	95.3	7.89	96.9	91.7	5.46	70 - 130	30	70 - 130	30	
Benzene	ND	10	99.3	102	2.71	93.1	92.6	0.552	70 - 130	30	70 - 130	30	
Toluene	ND	10	99.7	100	0.682	93.5	93	0.502	70 - 130	30	70 - 130	30	
Ethylbenzene	ND	10	106	106	0	99.9	99	0.918	70 - 130	30	70 - 130	30	
Xylenes	ND	30	117	120	2.82	110	110	0	70 - 130	30	70 - 130	30	
%SS:	89	10	90	92	1,80	88	88	0	70 - 130	30	70 - 130	30	
%SS: All target compounds in the Method E NONE										50	70 - 150		

BATCH 33045 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0801147-004A	01/07/08 10:17 AM	01/08/08	01/08/08 5:08 PM	0801147-005A	01/07/08 10:51 AM	01/08/08	01/08/08 4:34 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak

R____QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water	QC Matrix: Water WorkOrc							Order 08011	47			
EPA Method SW8015C	Extra	ction SW	/3510C/3	630C	BatchID: 33046			Spiked Sample ID: N/A				
Anabito	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	F
Analyte	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	93.9	81.9	13.7	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	114	111	2.39	N/A	N/A	70 - 130	30
%88: All target compounds in the Metho NONE											70-150	

			BATCH 33046 SL	JMMARY			
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0801147-001A	01/07/08 8:10 AM	01/07/08	01/08/08 3:03 PM	0801147-002A	01/07/08 8:51 AM	01/07/08	01/08/08 4:11 PM
0801147-003A	01/07/08 12:15 PM	01/07/08	01/08/08 5:18 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

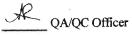
_____ QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015C

WorkOrder 0801147 QC Matrix: Soil W.O. Sample Matrix: Soil BatchiD: 33048 Spiked Sample ID: 0801147-006A EPA Method SW8015C Extraction SW3550C/3630C LCSD LCS-LCSD Acceptance Criteria (%) MS MSD MS-MSD LCS Sample Spiked Analyte LCS/LCSD RPD MS / MSD RPD mg/Kg % Rec. % Rec. % RPD % Rec. % Rec % RPD mg/Kg 30 70.7 71 0.199 93.8 92 1.96 70 - 130 30 70 - 130 9.9 20 TPH(d) 4.21 70 - 130 30 70 - 130 30 114 110 93 50 98 98 0 %SS: All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 33048 SUMMARY										
Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed			
0801147-006A	01/07/08 9:29 AM	01/07/08	01/08/08 6:57 PM							


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Cm

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	tchID: 33	049	Sp	oiked Samp	ole ID:	0801147-01	1 A
Anchito	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%)	
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	0.60	96,9	84,9	13,1	88.5	97.9	10.1	70 - 130	30	70 - 130	30
MTBE	ND	0.10	90,7	92	1.38	91.7	91.7	0	70 - 130	30	70 - 130	30
Benzene	ND	0.10	97.7	97.4	0.250	105	101	3.40	70 - 130	30	70 - 130	30
Toluene	ND	0.10	85.5	84.6	1.06	93.3	91	2.48	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	98.9	97.5	1.39	103	102	1.51	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	91.3	91	0.366	95.3	95.3	0	70 - 130	30	70 - 130	30
%\$\$:	85	0.10	99	96	2.74	105	103	1.45	70 - 130	30	70 - 130	30

BATCH 33049 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0801147-010A	01/07/08 10:02 AM	01/07/08	01/09/08 2:11 AM	0801147-011A	01/07/08 10:37 AM	01/07/08	01/08/08 7:33 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

WcCampbell Au "When Ouality		Web: www.mc	tow Pass Road, Pittsburg, campbell.com E-mail: m me: 877-252-9262 Fax:	ain@mccampbell.com
Piers Environmental	Client Project ID: Coliseur	n Way	Date Sampled:	01/07/08
1330 S. Bascom Avenue, Ste. F			Date Received:	01/07/08
D. J. L. C.A. 06129	Client Contact: Joel Grege	r	Date Reported:	01/14/08
San Jose, CA 95128	Client P.O.:		Date Completed:	01/18/08

WorkOrder: 0801147

January 18, 2008

Dear Joel:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: Coliseum Way,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil				Work	Order 08011	47						
EPA Method SW8260B	Extra	ction SW	5030B		Bat	tchID: 33	044	Sp	iked Sam	ole ID:	0801146-02	5A
0 - shuta	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	6
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	109	110	0.571	115	113	1.57	70 - 130	30	70 - 130	30
Benzene	ND	0.050	118	117	0.433	120	120	0	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	86.5	97.8	12,2	91.4	91.5	0.181	70 - 130	30	70 - 130	30
Chlorobenzene	ND	0.050	93	93.6	0.659	103	104	0.271	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	81.8	84,1	2.82	92.8	90	3.01	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	109	110	1.06	107	108	0.581	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	0.050	126	123	2.42	128	129	0.576	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	127	127	0	129	129	0	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	116	116	0	116	114	1.85	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	105	104	0.775	111	110	1,01	70 - 130	30	70 - 130	30
Toluene	ND	0.050	90.9	91.7	0.916	99.5	99.4	0.0736	70 - 130	30	70 - 130	30
Trichloroethene	ND	0.050	81	82	1.23	84.9	85.9	1.25	70 - 130	30	70 - 130	30
%SS1:	92	0.050	93	92	1.35	98	96	1.38	70 - 130	30	70 - 130	30
%SS2:	101	0.050	92	93	0.836	99	99	0	70 - 130	30	70 - 130	30
%SS3:	100	0.050	99	100	0.574	100	101	0.631	70 - 130	30	70 - 130	30

NONE

BATCH 33044 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0801147-006A	01/07/08 9:29 AM	01/07/08	01/10/08 4:06 AM	0801147-010A	01/07/08 10:02 AM	01/07/08	01/10/08 4:52 AM
0801147-011A	01/07/08 10:37 AM	01/07/08	01/10/08 5:38 AM	L			

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

EPA Method SW8260B	Extra	ction SW	5030B		Bat	tchID: 33	011	Sp	iked Sam	ole ID:	0801172-00	6B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Aco	eptance	e Criteria (%)	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	103	98.4	5_00	115	117	1.71	70 - 130	30	70 - 130	30
Benzene	ND	10	116	113	2.07	121	123	1,56	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	84.5	90.1	6.41	89.1	92.8	4.03	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	101	90,1	11.0	101	103	1.16	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	88.6	80.6	9.42	87.9	88.3	0.464	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	127	125	2.03	110	111	1,29	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	128	129	0.125	126	127	0.223	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	123	126	2.00	129	129	0	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	109	110	0.843	117	120	2.20	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	117	121	3.41	109	111	1.65	70 - 130	30	70 - 130	30
Toluene	ND	10	96.4	85.7	11,2	96.3	98	1,71	70 - 130	30	70 - 130	30
Trichloroethene	8,1	10	84.6	82	1.58	85.6	86.1	0.543	70 - 130	30	70 - 130	.30
%SS1:	103	10	104	106	2.08	93	91	2.17	70 - 130	30	70 - 130	30
%SS2:	100	10	95	90	4.74	97	96	1.12	70 - 130	30	70 - 130	30
%SS3:	99	10	91	88	4.13	100	101	0.500	70 - 130	30	70 - 130	30

BATCH 33011 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0801147-001B	01/07/08 8:10 AM	01/11/08	01/11/08 11:32 AM	0801147-002B	01/07/08 8:51 AM	01/11/08	01/11/08 12:17 PM
0801147-003B	01/07/08 12:15 PM	01/10/08	01/10/08 3:50 AM	0801147-004B	01/07/08 10:17 AM	01/10/08	01/10/08 4:36 AM
0801147-005B	01/07/08 10:51 AM	01/10/08	01/10/08 5:21 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

	Report To: Joe	leCAMP chsite: <u>www.i</u> cephone: (87 Cregor	1534 W PHTTSB <u>Decampli</u> 7) 252-9	H I OW P URG, CA 9 eli com E 262	855 R(94565-) mail: Bill T	DAD (701 main@ Fax o: <i>F</i> A	யுமை ப: (9)	ampi 15) 2	beiLa	(1011)		UI)	41		Geo	2X		OU	JNI SDI) T	IM.	E PĎ Ch	F rek	ROS ROS Mainti Sa	і ан Ех] 42 ceel	HR E		as 1 S ri) HR ite 4 Id **.	Ön (لي ۱۹۲۲ ۱۹۲۲ ۱۹۶۲ ۱۹۶۲	V) Commer	d
_	Tele: (576)53 Project #: Project Location:	pler Signature Control Consciencing, och brid SAMPLING 5 MATRIX ME LOCATION							ETH	IOD	Gan (602 / 802) + 80151 / MTHF	10	Grease 11664 5570 E/B&	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 (8010 / 8021 (BV OCs)	VLY (EPA 602 8015)	() (CI Pesticides)	EPA 608 / 8082 PCB'S ONLY, A forture (angeners	i P. Pesticides)	EPA \$151 8151 (Acidic Cl Herbivides	deo (VOCs.)	1278 (SVOC ₈₁	310 (PAH) PNAS	CANE 17 Nevels (200 T+200.8. 0010 - 6420)	0.7 200.6 6010 612	6010 6026.		ed 115/08 50		Filter Samples for Meta anatysis Yes / No	ais (:			
	SAMPLE ID	Field Point	Date	Time	# Containers	Type	Water	Soil	Sludge	Other	ICE	HCL	HNO, Other	BTEX & TPH as	TPH as Diesel (2015)	Total Petroleum Oil &	Total Petroleum H	EPA 502.27 601 [1	MTBE/BTEN ONLY (EPA 60)	EPA \$05/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PC	EPA 507 - 8141 (NP Pesticides)	EPA SISU 8151 (A	EPA 524.2 / 624 / 8360 (VOCs)	EPA \$25.3 / \$25 / 8170 (SVOCs)	EPA 4270 51% 8310 (PAH PNA	CAM 17 Metals (2	LUFT 5 Metaki (200 7 200.6	Lead (200.7 / 200.6	PCB3	826.0 added			
1	31 wither		17.08	2 10400	Y	35	\mathbf{N}				X	Y		Γ	17									×		1			1			1		
	Bo wyfer			151 pm	K	12	$\left \right\rangle$		-	-	2	7	-	-	1 *		2	-						X	1									_
2.4	63. ster			115p	12	12	12	-+-	-	1	2	×			¢	-		-	2					X										
	24 43 1		· · · · · · · · · · · · · · · · · · ·	1 IFM	34	<u>n-</u>	1	-	-		X.	XI.		X	4.				_			_		X				1						
44	35 water			10 SIAM	1	A	121		1		X	1		1×							1	- 4		×	1	1	4	- 1						
K	2p 21 4 -2/			4.240m	12	11-1	↓ ;	X		+	11	-	4	-	X	1								X	_	1	1			×		. 1		-
1É	510 23			2 OIAM	1		\square	2	+		1		-	100	ANYANA								1	2							88		And	
E	32.1051			8 Hirm	1	J		2	1		7		+	ļ	3		-	- 1				ļ		金星			1				Ø	ł	×.	
12	3 14.5			H'YO AM	<i>t</i>			_۲	_		X	-	+	-	**	1								÷							Ø		For	
1	14.5			IC -UZAM	1	-		<u>}</u>			×	-	1	7	1					1	1000			×		+	Ĩ							
12	\$ 33.5		<u> </u>	1637Am	ł	1		X	-	-	X		1	١×.	1.						,			×				Į.				1		
				4.				_	-		_	-	1		<u>د ا</u>							1				1								
-						e freed		- Lan-			-		-		1				-			-	1		Ì		Ð			1				2
B	alipquished By:		Date:	Time:	Recei	ved B	-	-	1	2		-	y y	IC	E/r*	6.0	-t	į.	÷								_	COR		NTA				_
17	6-1-1-2	ł	7/08	1245,301	3	L	-	1		0	51	1		GC	юn	CON	DITI	ON	Y	ε.,								COV	1379 <i>11</i> .	avið	11			
R	etinquisted By:	1	Date:	Time:	Recei	ved By	10	1	1a	0	0			DE DE	CHI	SPAC JORU PRUZ	NAT	ed n	N LA	NER!		1												
R	clinquished By:		Date:	Time:	Recei	ved By	T		1	~	<u></u>			PR	ESE	RVE	D IN	LAB			1-0-01	V												
L		18												PR	ESE	KY A	1105		A.5	0&		MEI alisz		5 (EU	FR							ž.	

McCampbell Analytical, Inc 1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262					-0F-C		_		ECOI			Page	l of	1
			EDF	Excel	Fax] Email		Hard(Сору	🗌 Thi	rdParty		
Report to: Joel Greger Piers Environmental 1330 S. Bascom Avenue, Ste. F San Jose, CA 95128	Email: TEL: ProjectNo: PO:	piers@pierses (408) 559-1248 Coliseum Way	FAX: (408) 559		ill to: Jennifer Piers Envir 1330 S. Ba San Jose, jennifer@p	scum A CA 951	venue 28	, Ste. I	F	Da Da	quested te Reca te Add te Priv	eived: -On:	01/07 01/15	days 7/2008 5/2008 5/2008
Sample ID ClientSample)	Matrix	Collection Date H	lold 1	2 3	Requ 4	ested 5	Tests 6	(See leg 7	end b 8	elow) 9	10	11	12

0801147-007	B1d2.5'	Soil	01/07/08 8:01:00	A		1		1	T	T	T
0801147-008	B2d0.5'	Soil	01/07/08 8:41:00	A				1		<u> </u>	<u> </u>
0801147-009	B3d4.5'	Soil	01/07/08 9:40:00	A				1			

Test Legend:

1 8260B_S	2	3	4	5	
6	7	8	9	10	
11	12				

Prepared by: Melissa Valles

Comments: B1d2.5', B2d0.5', B3d4.5' off hold for VOCs 1/15/08 5d per J.G

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell A		nc.		Web: www.mccamp	Pass Road, Pittsburg, C bell.com E-mail: ma	in@mccampbell.com		
Piers Environmental		Droject IT		Telephone: 8	Date Sampled:			
Plets Environmental	Chenti	roject IL	<i>.</i> co	iscuili way				0011
1330 S. Bascom Avenue, Ste. F					Date Received:	: 01/07/08		
1550 S. Dascom Avenue, Ste. 1	Client	Contact:	Joel C	ireger	Date Extracted:	01/15/08		
San Jose, CA 95128	Client F				Date Analyzed		-	
					The second second second second			
	Volatile Organ	nics by P	&T an	d GC/MS (Basic Ta	rget List)*			
Extraction Method: SW5030B		Analytical M	lethod:	SW8260B		Work Order: 0801	147	
Lab ID			0.1000.00	0801147	-007A			
Client ID				B1d2				
Matrix				Soi	the second se			
			Reporting	1		1		Reportin
Compound	Concentration *	DF	Limit	Compoun	d	Concentration *	DF	Limit
Acetone	ND	1.0	0.05	Acrolein (Propenal)	1	ND	1.0	0.05
Acrylonitrile	ND					ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	()	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl	Ether	ND	1.0	0.01
Chloroform	ND	1.0	0.005	Chloromethane		ND	1.0	0.005
2-Chlorotoluene	ND	1.0	0.005	4-Chlorotoluene		ND	1.0	0.005
Dibromochloromethane	ND	1.0	0.005	1.2-Dibromo-3-chlor	оргорале	ND	1.0	0.004
1,2-Dibromoethane (EDB)	ND	1.0	0_004	Dibromomethane		ND	1.0	0.005
1.2-Dichlorobenzene	ND	1.0	0.005	1.3-Dichlorobenzene		ND	1.0	0.005
1,4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluorometh		ND	1.0	0.005
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004
1,1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethe	ne	ND	1.0	0.005
trans-1,2-Dichloroethene	ND	1.0	0.005	1.2-Dichloropropane	Sector Contractor	ND	1.0	0.005
1.3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane		ND	1.0	0.005
1,1-Dichloropropene	ND	1.0	0.005	cis-1.3-Dichloroprop	ene	ND	1.0	0.005
trans-1,3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (D	IPE)	ND	1.0	0.005
Ethylbenzene	ND	1.0	0.005	Ethyl tert-butyl ether	(ETBE)	ND	1.0	0.005
Freon 113	ND	1.0	0.1	Hexachlorobutadiene		ND	1.0	0.005
Hexachloroethane	ND		0.005	2-Hexanone		ND	1.0	0.005
Isopropylbenzene	ND		0.005	4-Isopropyl toluene		ND	1.0	0.005
Methyl-t-butyl ether (MTBE)	ND			Methylene chloride		ND	1.0	0.005
4-Methyl-2-pentanone (MIBK)	ND			Naphthalene		ND	1.0	0.005
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.005
Styrene	ND		0.005	1,1,1,2-Tetrachloroe	thane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND		0.005	Tetrachloroethene		ND	1.0	0.005
Toluene	ND		0.005	1.2.3-Trichlorobenze		ND	1.0	0.005
1.2.4-Trichlorobenzene	ND		0.005	1,1,1-Trichloroethan	e	0.061	1.0	0.005
1.1.2-Trichloroethane	ND		0.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	ND 1.0 0.005 1.2.3-Trichloropropane					ND	1.0	0.005
1.2.4-Trimethylbenzene	ND			1.3.5-Trimethylbenze	ene	ND	1.0	0.005
Vinyl Chloride	ND			Xylenes (8()		ND	1.0	0.005
			ate Ke	coveries (%)				
%SS1:	107			%SS2:		101		
%SS3	97							

Comments:

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

<u>McCampbell Analytical, Inc.</u>				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com					
"When Ouality Counts"				Telephone: 877-252-9262 Fax: 925-252-9269					
Piers Environmental	Client Project ID: C			Coliseum Way Date Sampled:		01/07/08			
1330 S. Bascom Avenue, Ste. F					Date Received	Date Received: 01/07/08			
· · · · · · · · · · · · · · · · · · ·		ent Contact	: Joel	Greger	Date Extracted	: 01/15/08			
San Jose, CA 95128 Client P.O.:				-	d 01/15/08				
	Volatile O	vanics by	P&T a	nd GC/MS (Basic]	"arget List)*				
Extraction Method: SW5030B				SW8260B	arget mist)	Work Order: 0801	1147		
Lab ID	1			080114	7-008A				
Client ID	0801147-008A B2d0,5'							_	
Matrix	B2d0.5 [.]						7		
	0	*	Reportin	19	The second second		Report		
Compound	Concentration		Limit	and the second se		Concentration *	DF	Limi	
Acetone	ND	1.0	0.05			ND	1.0	0.0	
Acrylonitrile Benzene	ND ND	1.0	0.02		ether (TAME)	ND ND	1.0	0.00	
Bromochloromethane			0.00;	the second s	Bromobenzene		1.0	0.00	
Bromoform	ND ND	1.0	0.00		Bromodichloromethane		1.0	0.00	
2-Butanone (MEK)	-	1.0			Bromomethane		1.0	0.00	
n-Butvi benzene	ND ND	1.0	0.02	t-Butyl alcohol (TBA)		ND	1.0	0.0	
tert-Butyl benzene	ND	1.0	0.005			ND	1.0	0.00	
Carbon Tetrachloride	ND	1.0	0.005			ND	1.0	0.00	
Chloroethane	ND	1.0	0.005			ND	1.0	0.00	
Chloroform	ND	1.0	0.005			ND ND	1.0	0.01	
2-Chlorotoluene	ND	1.0	0.005				1.0	0.00	
Dibromochloromethane	ND	1.0	0.005			ND ND	1.0	0.00	
1.2-Dibromoethane (EDB)	ND	1.0	0.004			ND	1.0	0.00	
1.2-Dichlorobenzene	ND	1.0	0.005			ND	1.0	0.00	
1.4-Dichlorobenzene	ND	1.0	0.005			ND	1.0	0.00	
1.1-Dichloroethane	ND	1.0	0.005			ND	1.0	0.004	
1.1-Dichloroethene	ND	1.0	0.005	cis-1,2-Dichloroethene		ND	1.0	0.00	
trans-1,2-Dichloroethene	ND	1.0	0.005	1,2-Dichloropropane		ND	1.0	0.00	
1,3-Dichloropropane	ND	1.0	0.005	2,2-Dichloropropane		ND	1.0	0.00	
1,1-Dichloropropene	ND	1.0	0.005	cis-1,3-Dichloropropene		ND	1.0	0.00	
rans-1.3-Dichloropropene	ND	1.0	0.005	Diisopropyl ether (DIPE)		ND	1.0	0.00	
Ethylbenzene	ND	1.0	0.005			ND	1.0	0.005	
Freon 113	ND	1.0	0.1	Hexachlorobutadiene		ND	1.0	0.005	
Hexachloroethane	ND	1.0	0.005			ND	1.0	0.005	
sopropylbenzene	ND	1.0	0.005			ND	1.0	0.005	
Methyl-t-butyl ether (MTBE)	ND	1.0		Methylene chloride		ND	1.0	0.005	
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005	Naphthalene		ND	1.0	0.005	
Nitrobenzene	ND	1.0	0.1	n-Propyl benzene		ND	1.0	0.005	
Styrene	ND	1.0	0.005			ND	1,0	0.005	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005			ND	1.0	0.005	
Coluene	ND	1.0	0.005				1.0	0.005	
2.4-Trichlorobenzene	ND	1.0	0.005			ND	1.0	0.005	
1.2-Trichloroethane	ND ND	1.0	0.005				1.0	0.005	
.2.4-Trimethylbenzene		1.0	0.005			ND	1.0	0.005	
/invl Chloride	ND ND	1.0	0.005	1.3.5-Trimethylbenz Xylenes	ene	ND ND	1.0	0.005	
THE CHARLER				coveries (%)		ND	1.0	0.005	
0/551.			gate Ri						
%SS1: %SS3:	105			%SS2:		101			
70001		97							

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

<u>McCampbell Analytical, Inc.</u>				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com					
"When Oual			-		77-252-9262 Fax:	925-252-9269			
Piers Environmental	Client Project ID: C			Coliseum Way Date Sampled:		: 01/07/08			
1330 S. Bascom Avenue, Ste. F		Client Contact: Joel Greger				Date Received:01/07/08Date Extracted:01/15/08Date Analyzed01/15/08			
1550 S. Bascom Avenue, Ste. F	Client								
San Jose, CA 95128 Client P.O.:									
	Volatile Orga	nice by D	e Car	d GC/MS (Basic Ta					
Extraction Method: SW5030B	8	Analytical I			irget List)"	W-4-0-4 0801	147		
Lab ID		Analytical		0801147	000 4	Work Order: 0801	14/		
Client ID	-			0801147 B3d4	and the second se				
the state of the second s		1000		the second s					
Matrix			Reporting	Soi				Reno	
Compound	Concentration *	DF	Limit	Compour	d	Concentration *	DF	Repor	
Acetone	ND	1.0	0.05	Acrolein (Propenal)		ND	1.0	0.0	
Acrylonitrile	ND	1.0	0.02	tert-Amyl methyl et	her (TAME)	ND	1.0	0.0	
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.0	
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane		ND	1.0	0.0	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.0	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)		ND	1.0	0.0	
n-Butyl benzene	ND	1.0	0.005			ND	1.0	0.0	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.0	
Carbon Tetrachloride	ND	1.0	0.005			ND	1.0	0.0	
Chloroethane	ND	1.0	0.005	2-Chloroethyl Vinyl Ether		ND	1.0	0.0	
Chloroform	ND	1.0	0.005	Chloromethane		ND	1.0	0.0	
2-Chlorotoluene	ND	1.0	0.005			ND	1.0	0.0	
Dibromochloromethane	ND	1.0	0.005	1,2-Dibromo-3-chloropropane		ND	1.0	0.0	
1,2-Dibromoethane (EDB)	ND	1.0	0.004	Dibromomethane		ND	1.0	0.0	
1.2-Dichlorobenzene	ND	1.0	0.005	1.3-Dichlorobenzene		ND	1.0	0.0	
I.4-Dichlorobenzene	ND	1.0	0.005	Dichlorodifluoromethane		ND	1.0	0.0	
1,1-Dichloroethane	ND	1.0	0.005	1,2-Dichloroethane (1,2-DCA)		ND	1.0	0.0	
I.1-Dichloroethene	ND	1.0	0.005	cis-1.2-Dichloroethene		ND	1.0	0.0	
trans-1,2-Dichloroethene	ND	1.0	0.005	1.2-Dichloropropane		ND	1.0	0.0	
1.3-Dichloropropane	ND	1.0	0.005	2.2-Dichloropropane		ND	1.0	0.00	
1.1-Dichloropropene	ND	1.0	0.005			ND	1.0	0.00	
trans-1.3-Dichloropropene	ND	1.0	0.005	Dijsopropyl ether (DIPE)		ND	1.0	0.00	
Ethylbenzene	ND	1.0	0.005			ND	1.0	0.00	
Freon 113	ND	1.0	0.1	Hexachlorobutadiene		ND	1.0	0.00	
Hexachloroethane	ND	1.0	0.005	2-Hexanone		ND	1.0	0.00	
sopropylbenzene	ND	1.0	0.005	4-Isopropyl toluene		ND	1.0	0.00	
Methyl-t-butyl ether (MTBE)	ND	1.0	0.005	Methylene chloride		ND	1.0	0.00	
4-Methyl-2-pentanone (MIBK)	ND	1.0		Naphthalene		ND	1.0	0.00	
Nitrobenzene	ND	1.0	.0.1	n-Propyl benzene		ND	1.0	0.00	
Styrene	ND	1.0		1,1,1,2-Tetrachloroethane		ND	1.0	0.00	
1,2,2-Tetrachloroethane	ND		0.005	Tetrachloroethene		ND	1.0	0.00	
Foluene	ND	1.0		1.2.3-Trichlorobenzene		ND	1.0	0.00	
.2.4-Trichlorobenzene	ND	1.0	0.005	1.1.1-Trichloroethane		ND	1.0	0.00	
1.2-Trichloroethane	ND	1.0	0.005			ND	1.0	0.00	
richlorofluoromethane	ND			1,2,3-Trichloropropane		ND	1.0	0.00	
.2.4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene		ND	1.0	0.00	
Vinyl Chloride	ND	1.0	0.005	Xvlenes		ND	1.0	0.00	
		Surrog	ate Rei	coveries (%)					
%SS1:	104			%SS2;	101				
%SS3-	96								

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference,

"When Ouality Counts"

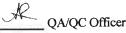
1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

WorkOrder 0801147 QC Matrix: Soil W.O. Sample Matrix: Soil Spiked Sample ID: 0801317-004A Extraction SW5030B BatchID: 33164 EPA Method SW8260B LCS-LCSD LCS LCSD Acceptance Criteria (%) MS-MSD Sample Spiked MS MSD Analyte LCS/LCSD RPD % Rec. % RPD MS / MSD RPD % Rec. % RPD % Rec. mg/Kg mg/Kg % Rec. 30 70 - 130 70 - 130 1.82 116 115 0.723 30 0.050 103 105 ND tert-Amyl methyl ether (TAME) 70 - 130 30 70 - 130 30 104 1.93 117 117 0 ND 0.050 102 Benzene 30 70 - 130 95.4 4.82 70 - 130 30 90 90.2 0.279 100 0.25 t-Butyl alcohol (TBA) ND 103 0.563 70 - 130 30 70 - 130 30 1,93 104 ND 0.050 93.6 95.4 Chlorobenzene 70 - 130 70 - 130 30 0 96.6 1.48 103 103 30 ND 0.050 95.2 1,2-Dibromoethane (EDB) 30 70 - 130 110 111 0.568 70 - 130 30 99.5 102 2.19 ND 0.050 1,2-Dichloroethane (1,2-DCA) 70 - 130 30 128 1.12 70 - 130 30 121 123 1.90 127 ND 0.050 1.1-Dichloroethene 70 - 130 70 - 130 30 2.07 127 128 1.00 30 116 119 ND 0.050 Diisopropyl ether (DIPE) 30 70 - 130 30 119 0.766 70 - 130 ND 0.050 107 108 1.48 120 Ethyl tert-butyl ether (ETBE) 70 - 130 30 120 1.99 70 - 130 30 108 109 1.40 117 ND 0.050 Methyl-t-butyl ether (MTBE) 101 99.4 1.40 70 - 130 30 70 - 130 30 0.050 89.7 91.8 2.26 ND Toluene 30 70 - 130 30 70 - 130 87.8 0.302 ND 0.050 76.9 78.6 2.14 88.1 Trichloroethene 70 - 130 30 70 - 130 30 1.72 103 103 0 105 0.050 103 101 %SS1. 70 - 130 30 70 - 130 30 94 93 93 0 0 0.050 94 %SS2: 98 30 0 107 107 0 70 - 130 30 70 - 130 0.050 106 106 96 %SS3: All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 33164 SUMMARY

Sample ID	Imple ID Date Sampled Date Extracted		Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed	
0801147-007A	01/07/08 8:01 AM	01/15/08	01/15/08 4:36 PM	0801147-008A	01/07/08 8:41 AM	01/15/08	01/15/08 5:21 PM	
0801147-009A	01/07/08 9:40 AM	01/15/08	01/15/08 6:05 PM					


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

APPENDIX B

PERTINENT DATA FROM ENVIRONMENTAL INVESTIGATIONS ON ADJACENT PROPERTIES

PES Environmental, Inc.

SUPERIOR PLASTER CASTINGS PROPERTY

TA	B	LE	1
----	---	----	---

The second state

1 .. X

i nal

.....

- 3

ANALYTICAL RESULTS FOR SOIL AND GROUNDWATER SAMPLES (a)

Sample No.	Benzané	Toluene	Xylene	Ethlybenzene	TPH(b) (gasoline)	TPH (diesel)
Soil Samples						
<u>Soil Boring No. 1</u> SB1-1-2.5	ND<3 (c)	6	ND<3	ND<3	ND<1	ND<10
<u>Soil Boring No. 2</u> SB2-2-4.5	ND<3	ND<3	ND<3	ND<3	ND<1	ND<10
<u>Soil Boring No. 3</u> SB3-3-3.5 SB3-4-8.5	11 ND<3	4 ND<3	5 ND<3	13 ND<3	3 1	690 ND<10
<u>Soil Boring No. 4</u> SB4-5-3.5	ND<3	5	ND<3	ND<3	- ND<1	ND<10
Groundwater Samples	l					123
<u>Soil Boring No. 1</u> SB1-1-W	ND<0.3	ND<0.3	ND<0.3	ND<0.3	NA (d)	NA
<u>Soil Boring No. 2</u> SB2-3-W	ND<0.3	ND<0.3	ND<0.3	0.3	NA	NA
<u>Soil Boring No. 3</u> SB3-5-W	ND<0.3	ND<0.3	ND<0.3	5	NA	NA
<u>Soil Boring No. 4</u> SB4-7-W	ND<0.3	ND<0.3	ND<0.3	ND<0.3	NA	NA

(d) NA = No Analysis Taken

τ.

SIMON-EE Inc.

TABLE	2
-------	---

Parameter	SB1-2-W	Sample SB2-4-W	Number SB3-6-W	5B4-8-W	MCL (a)
Arsenic	0.035	0.054	0.027	0.073	0.050
Barium	1.4	1.6	1.2	3.1	5.000
Cadmium	<0.002(c)	<0.002	<0.002	<0.002	0.005
Chromium	0.49	0.65	0.31	0.88	0.100(b)
Lead	0.042	0.055	0.073	0.15	0.005(b)
Mercury	0.0024	0.0032	0.0020	0.0059	0.002(b)
Selenium	<0.003	<0.003	<0.003	<0.003	0.050(b)
Silver	<0.01	<0.01	<0.01	<0.01	0.050(b)

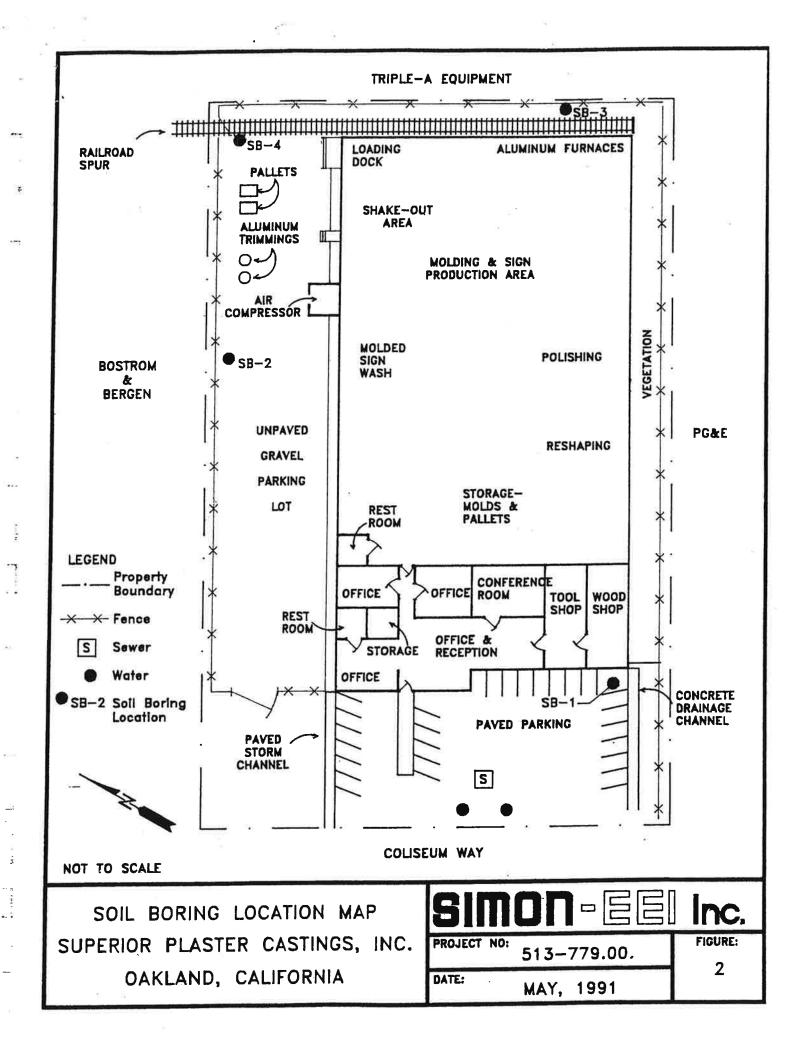
ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES (a)

(a) MCL = Maximum Contaminant Level

(b) PMCL= Proposed Maximum Contaminant Level(c) Not detected at level shown.

1

- 19


1

1 ÷

-1

SIMON-EEI Inc.

TABLE 1A

ANALYTICAL LABORATORY REPORT FOR SOIL SAMPLES

Sample	EPA Method	8015(a)
Number	Gasoline	Diesel
SB6-1-4.5	-56	220
SB14-2-4.5	490	530
SB15-3-4.5	220	370
SB16-4-4.5	ND<10(b)	94

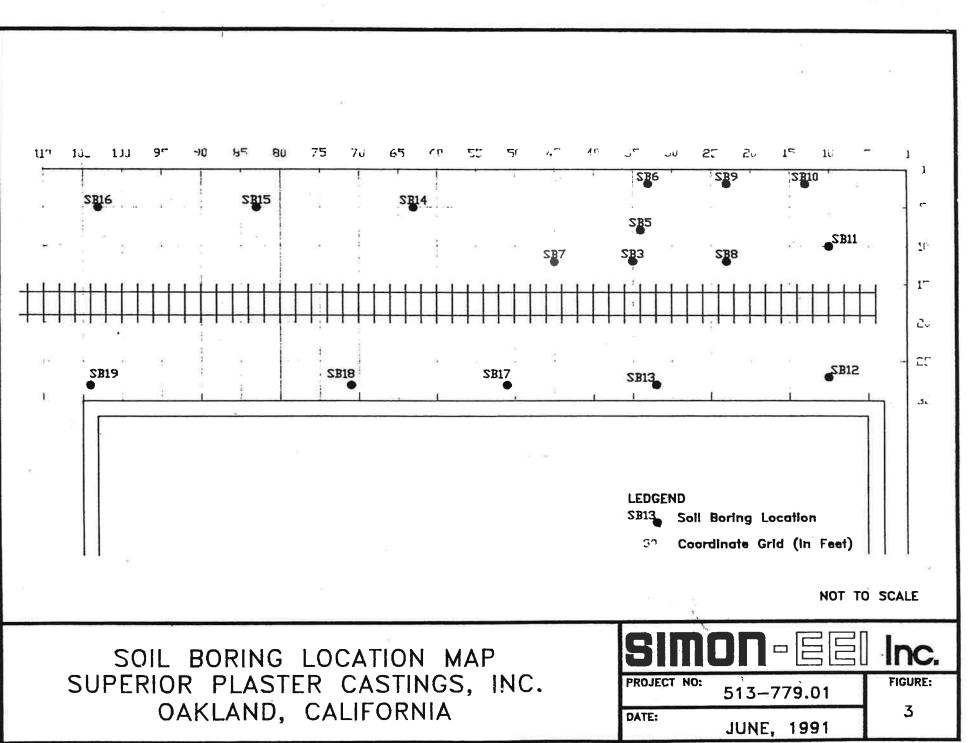
(a) Measured in parts per million (ppm) (b) ND = Not Detected @ level shown

ŧ.ŧ .

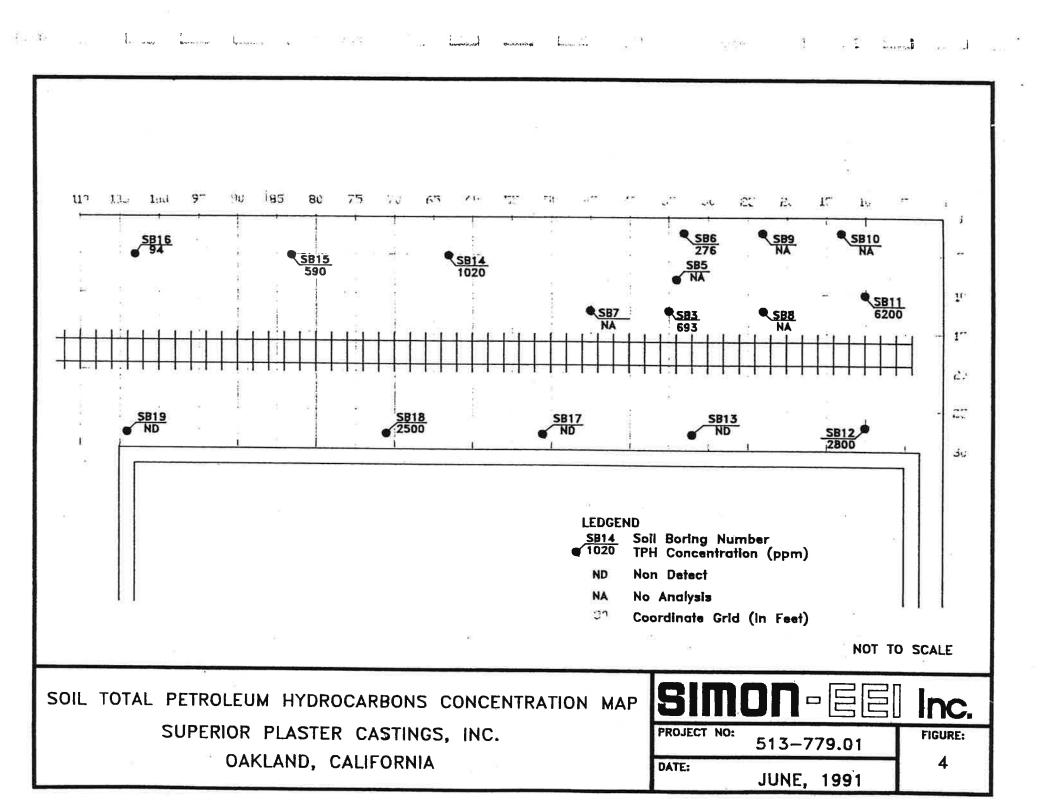
Ì

]

L.


TABLE 1B

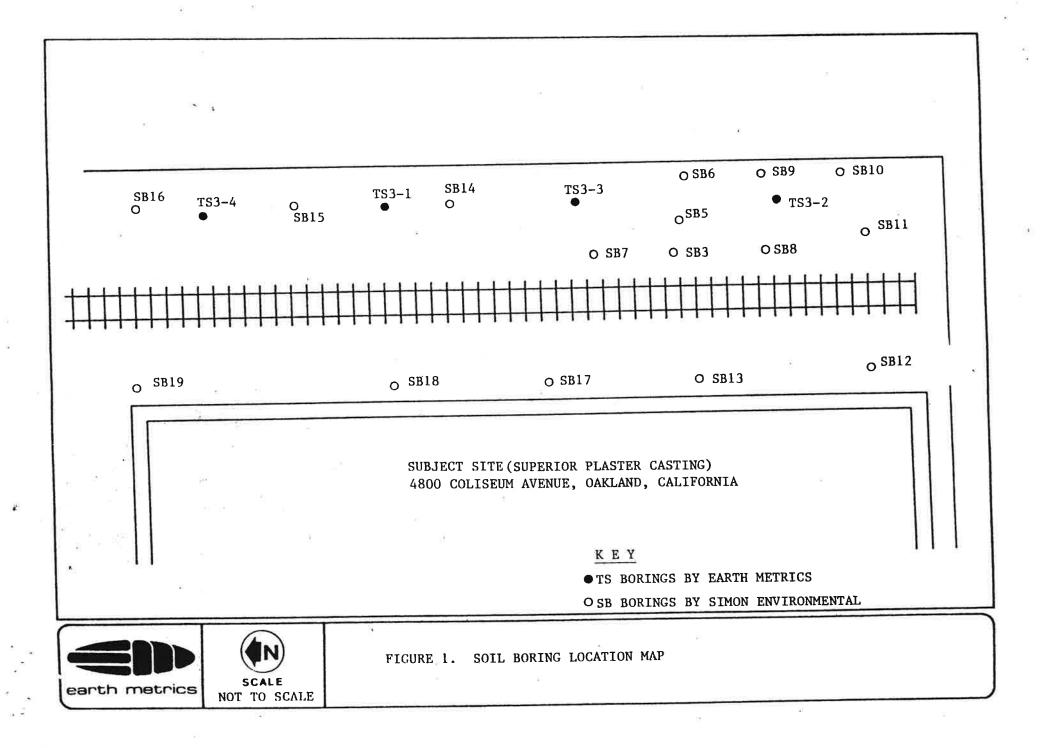
ANALYTICAL LABORATORY REPORT FOR SOIL SAMPLES


Sample	EPA 418.1(a)				
Number	Total Petroleum Hydrocarbons				
SB11-5-5.5	6200				
SB12-6-5.5	2800				
SB13-7-5.5	ND<50(b)				
SB17-8-5.0	ND<50				
SB18-9-5.5	2500				
SB19-10-5.5	ND<50				

SIMON-EEI Inc.

(a) Measured in parts per million (ppm)(b) ND = Not Detected @ level shown

L frame for the first the


integrity. All soil samples were collected in six-inch long brass liners and capped with aluminum, plastic caps, and tape. Immediately after sample collection, the soil samples were placed in a refrigerated ice chest. The chain of custody and the laboratory results are presented in Appendix A.

<u>Test Results</u>. Soil samples were analyzed by Sequoia Analytical using EPAapproved methods. Figure 1 shows the locations at which the samples were collected, while Table 1 presents the laboratory results. Samples TS3-1, TS3-2, and TS3-3 were all tested for the presence of lead and arsenic, as these heavy metals were reported in the previous Phase II assessment (Simon Environmental Engineering, 1991). The maximum detected concentration of lead in Earth Metrics three soil samples was 210 ppm in Sample TS3-2. The maximum concentration of arsenic detected in the three samples tested was 16 ppm. In comparison the California Total Threshold Limit Concentrations (TTLCs) are 1,000 ppm for lead and 500 ppm for arsenic.

Soil sample TS3-2 was also tested for the presence of BTEX. Ethylbenzene was found at a concentration of 0.05 ppm and xylene was detected at a

SAMPLE	TS3-1	TS3-2	TS3-3	TS3-4			
Arsenic (ppm)	16	14	11				
Lead (ppm)	140	210	78	•-			
Total Petroleum Oil and Grease (ppm) EPA 5520 E&F				29,000			
Benzene (ppm) EPA 8020		ND (0.015)					
Toluene (ppm) EPA 8020		ND (0.015)					
Ethylbenzene (ppm) EPA 8020		0.05					
Xylene (ppm) EPA 8020		0.12					
ND: results below detection limit stated in parentheses. : sample not tested for this parameter ppm: parts per million Source: Earth Metrics, Sequoia Analytical, 1992.							

TABLE 1. LABORATORY RESULTS OF SOIL SAMPLES COLLECTED AT 4800 COLISEUM AVENUE, OAKLAND

·		TPH as Gasoli	ne, BTEX, Diesel, Oil an	nd Grease, and HVOC		
Sample ID	Approx. Depth, ft	TPH-g (a)	BTEX (b)	TPH-d (c)	Oil and Grease	HVOC (d)
		EPA Method 8015, mg/kg (e)	EPA Method 8020, mg/kg	EPA Method 8015, mg/kg	EPA Method 5520EF, mg/kg	EPA Method 8010, ug/kg (f)
WCC-1A	6	< 0.5	Benzene <0.005	<10	40	1,3-Dichlorobenzene (2.0)
			Toluene < 0.005			1,4-Dichlorobenzene(4,8)
			Ethylbenzene < 0.005			1,1 Dismorocenzenc(4.0)
			Xylenes < 0.005			
	10.5	< 0.5	Benzene < 0.005	<10	47	None detected
			Toluene < 0.005			None deletter
			Ethylbenzene < 0.005			
			Xylenes 0.007	fi		
WCC-1B	5	< 0.5	Benzene < 0.005	<10	Not Analyzed	None detected
			Toluene < 0.005		,	rione deneties
			Ethylbenzene < 0.005			
			Xylenes < 0.005			

	Table 1
	Summary Soil Analytical Results
H as (Gasoline, BTEX, Diesel, Oil and Grease, and HVO

(a) Total Petroleum Hydrocarbons as Gasoline

(b) Benzene, Toluene, Ethylbenzene, and Total Xylenes

(c) Total Petroleum Hydrocarbons as Diesel

(d) Halogenated Volatile Organic Compounds

(c) Concentrations in milligrams per kilogram (mg/kg)

(f) Concentrations in micrograms per kilogram (ug/kg)

Table 2
Summary Soil Analytical Results
RCRA Metals - Total Concentrations

			Metals	s, EPA 6000 &	7000, milligrams	per kilogram (mg/kg)			and the second second second
	Depth, ft.	Silver (Ag)	Arsenic (As)	Barium (Ba)	Cadmium (Cd)	Total Chromium (Cr)	Mercury (Hg)	Lead (Pb)	Selenium (Se)
WCC-1A	6	<1.2	<5.0	160	< 0.62	47.2	0.34	6.5	<2.5
	10.5	<1.2	6.3	176	< 0.62	72.2	0.14	6.3	<2.5
WCC-1B	5	<1.2	6.2	221	< 0.62	44.5	0.10	15.5	<2.5
WCC-2B	6.5	<1.2	4.3	62.5	< 0.62	45.1	0.15	<5.0	<2.5
WCC-3B	5.5	<1.2	2.2	167	< 0.62	31.8	< 0.10	< 5.0	<2.5
TTLC (a)		500	500	10,000	100	2,500 (Cr III [b])	20	1.000	100

(a) Total Threshold Limit Concentration

14

(b) Chromium III (most common isotope)

Tal	ole	3	
 Water			_

Summary Water Analytical Results

TPH as Gasoline, BTEX, Diesel, Oil and Grease, HVOC, and RCRA Metals

Sample ID	TPH-g (a)	BTEX (b)	TPH-d (c)	Oil and Grease	HVOC (d)	RCRA Metals
	EPA Method 8015, ug/L (c)	EPA Method 8020, ug/L	EPA Method 8015, ug/L	EPA Method 5520, mg/L (f)	EPA Method 601, ug/l	
WCC-IA	4000 (g)	Xylcnes (11)	7,300 (h)	12		EPA 6000 & 7000, ug/L
			, 1500 (II)	12	Chlorobenzene (270)	(2.11) 1013 50)
					1, 3-DCB (1,400; AL=130)(i)	Barium (226; MCL=1,000)
					1, 4-DCB (1,500; MCL≃5)(j)	
11/20 11 12					1, 2-DCB (290; AL=130)	
WCC-IA D	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Chlorobenzene (260)	Not Analyzed
				2	1, 3-Dichlorobenzene (1,300)	
				>	I, 4-Dichlorobenzene (1,400)	
					1, 2-Dichlorobenzene (270)	

(a) Total Petroleum Hydrocarbons as Gasoline

(i) AL indicates California Action Level

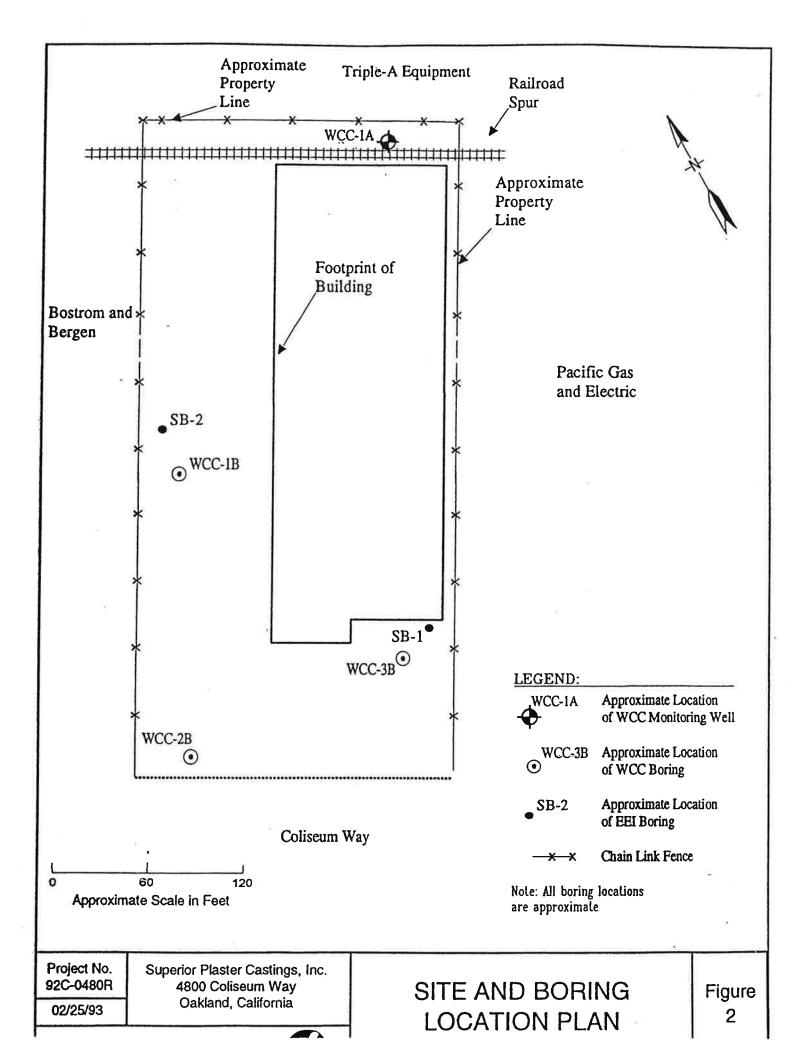
(j) MCL indicates California Maximum Contaminant Level

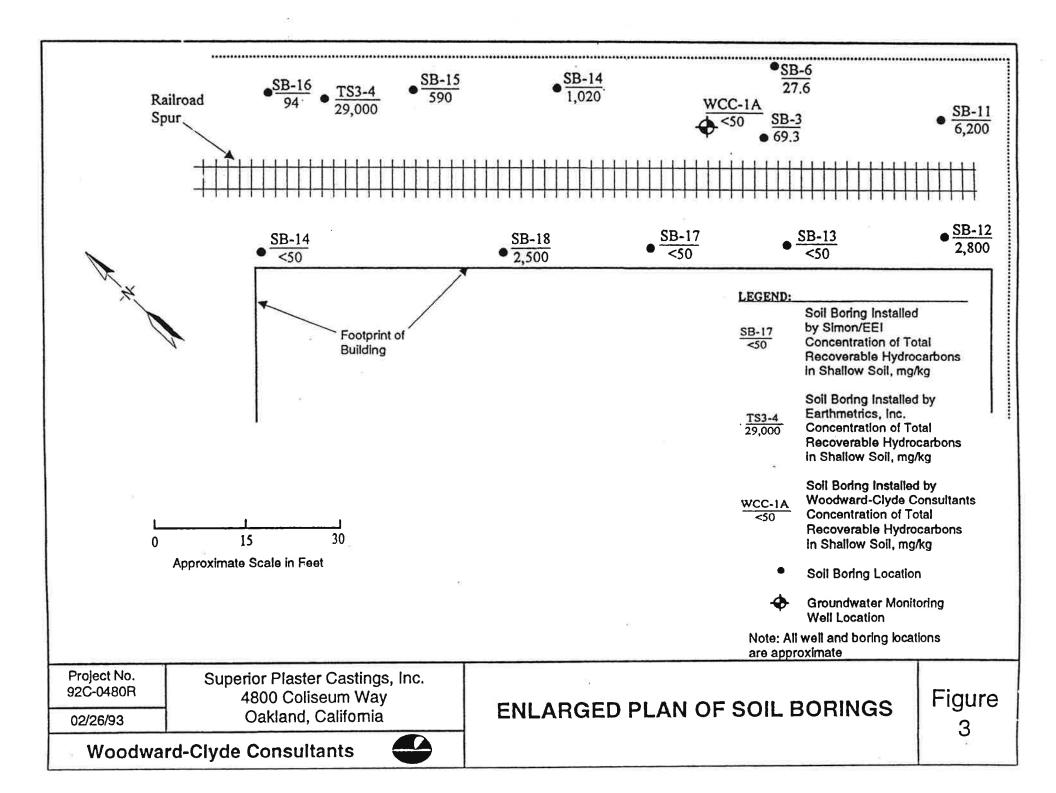
(b) Benzene, Toluene, Ethylbenzene, and Total Xylenes

(c) Total Petroleum Hydrocarbons as Diesel

(d) Halogenated Volatile Organic Compounds

(e) Concentrations reported in micrograms per liter (ug/L)


(f) Concentrations reported in milligrams per liter (mg/L)


(g) Laboratory reported that peaks reported as gasoline were primarily unidentified dichlorobenzene

isomers. Laboratory could not identify specific isomers, because their instrument was not properly calibrated.

(h) Laboratory reported that peaks identified as diesel fuel were primarily a heavier petroleum prioduct, probably hydraulic or motor oil.

ġ[¥]

SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS FOR ORGANIC CONSTITUENTS METALCAST OAKLAND, CALIFORNIA

								2	Det	ected			
					Ethyl-	Total		1		(EPA 801			
Sample ID	Sample Date	TPH-G (mg/kg	Benzene (mg/kg)	Toluene (mg/kg)	benzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)		(I) (I)	m-DCB (ug/kg)	p-DCB (ug/kg)	TPH-M (mg/kg)	(mg/kg)
ATC-1-4ft	10/08/98	1,000	ND 0.50	ND 0.50	ND 0.50	ND 0.50	ND 2.5	ND 5.0	ND 5.0	ND 5.0	ND 5.0	5,700	3,800
ATC-2-4ft	10/08/98	1.9	ND 0.0050	ND 0.0050	ND 0.0050	0.0082	ND 0.025	27	ND 5.0	50	130 ·	45	11
ATC-3-3ft	10/08/98	160	0.056	ND 0.050	ND 0.050	0.12	ND 0.25	3,800	ND 5.0	19,000	33,000	29,000	13, 0 00
ATC-4-4ft	10/08/98	170	ND 0.10	ND 0.10	ND 0.10	ND 0.10	ND 0.50	NA	NA	NA	NA	3,100	1,700
ATC-5-3.5ft	10/08/98	ND 1.0	ND 0.0050	ND 0.0050	ND 0.0050	ND 0:0050	ND 0.025	ND 5.0	ND 5.0	ND 5.0	ND 5.0	2,700	200
ATC-6-1ft	10/08/98	120	ND 0.050		0.18	0.78	ND 0.25	ND 5.0	ND 5.0	ND 5.0	ND 5.0	17,000	6,700
ATC-0-III ATC-7-4ft	10/08/98	700	ND 0.25	ND 0.25	ND 0.25	ND 0.25	ND 1.2	ND 5.0	ND 5.0	ND 5.0	ND 5.0	23,000	11,000
	10/08/98	250	ND 0.12	ND 0.12	ND 0.12	ND 0.12	ND 0.62	NA	NA	NA	NA	630	- 490
ATC-8-4ft ATC-9-4ft	10/08/98	1,000	ND 0.50	ND 0.50	ND 0.50	ND 0.50	ND 2.5	ND 5.0	ND 5.0	ND 5.0	ND 5.0	8,600	7,200

Notes:

TPH-G denotes total petroleum hydrocarbons as gasoline

TPH-D denotes total petroleum hydrocarbons as diesel

TPH-M denotes total petroleum hydrocarbons as motor oil

MCB denotes chlorobenzene

o-DCB denotes 1,2-dichlorobenzene

m-DCB denotes 1,3-dichlorobenzene

p-DCB denotes 1,4-dichlorobenzene

MTBE denotes methyl tert-butyl ether

ug/kg denotes micrograms per kilogram

mg/kg denotes milligrams per kilogram

ND denotes not detected above listed detection limit

NA denotes not analyzed

1,1-Dichlorethane (2,400 ug/kg) was detected in soil sample ATC-3-3ft.

SUMMARY OF SOIL SAMPLE ANAYLTICAL RESULTS FOR INORGANIC CONSTITUENTS METALCAST OAKLAND, CALIFORNIA

Sample	Sample	As	Ag	Ba	Cd	Cr	Hg	Pb	Se
D	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
TTL	С	500	500	10,000	100	500	20	1000	100
ATC-1-4ft	10/08/98	6.6	ND 0.50	320	ND 0.50	50	0.073	13	ND 5.0
ATC-2-4ft	10/08/98	14	ND 0.50	270	0.68	36	0.12	150	ND 5.0
ATC-3-3ft	10/08/98	12	ND 0.50	1,000	0.65	30	0.16	250	ND 5.0
ATC-5-3.5R	10/08/98	ND 5.0	ND 0.50	35	ND 0.50	15	ND 0.050	ND 5.0	ND 5.0
ATC-6-1ft	10/08/98	ND 5.0	ND 0.50	61	0.86	11	ND 0.050	13	ND 5.0
ATC-7-4ft	10/08/98	ND 5.0	ND 0.50	120	ND 0.50	22	0.055	35	ND 5.0
ATC-9-4R	10/08/98	ND 5.0	ND 0.50	160	ND 0.50	35	0.054	7.4	ND 5.0

1

Notes:

TTLC denotes Total Threshold Limit Concentration

Metals symbols taken from the Periodic Table of Elements:

As = Arsenic, Ag = Silver, Ba = Barium, Cd = Cadmium, Cr = Chromium,

Hg = Mercury, Pb = Lead, Se = Selenium

mg/kg denotes milligrams per kilogram

ND denotes not detected above listed detection limit

SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTS FOR ORGANIC CONSTITUENTS METALCAST OAKLAND, CALIFORNIA

											Detecte	d HVOCs	
							Ethyl-	Total			(EPA	A 8010)	_
Sample	Sample	TPH-G	TPH-D	TPH-M	Benzene	Toluene	benzene	Xylenes	MTBE	МСВ	o-DCB	m-DCB	p-DCB
ID	Date	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/I)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/I)	(ug/l)
Primary	MCLs	-	-	-	1	1000	680	1750	-	70	600	130*	5
ATC-1	10/08/98	1,400	19,000	18,000	5.3	ND 5.0	7.5	ND 5.0	ND 25	370	32	370	450
ATC-2	10/08/98	980	1,500	2,300	2.3	ND 2.5	1.4	1.4	ND 12	92	32	590	970-
ATC-3	10/08/98	440	6,700	16,000	ND 2.5	ND 2.5	ND 2.5	ND 2.5	ND 12	ND 50	ND 50	120	250
ATC-4	10/08/98	950	1,400	1,200	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 25	NA	NA	NA	NA
ATC-5	10/08/98	270	20,000	65,000	1.8	9.4	1.7	7.0	ND 25	16	3.3	27	42
ATC-7	10/08/98	1,900	2,200	ND 2,000	ND 5.0	ND 5.0	ND 5.0	ND 5.0	ND 25	210	54	730	1,000
ATC-8	10/08/98	360	15,000	14,000	ND 2.5	ND 2.5	3.5	. 11	ND 12	NA	NA	NA	NA
ATC-9	10/08/98	3,000	9,300	15,000	ND 10	ND 10	ND 10	ND 10	ND 50	33	190	440	380
WELL-1	10/08/98	2,300	1,700	1,600	4.3	ND 5.0	1.3	2.4	ND 25	220	56	900	1,500

Notes:

Primary MCLs (Maximum Contaminant Levels) from California Dept of Health Services; if none exist, USEPA levels are listed

TPH-G denotes total petroleum hydrocarbons as gasoline

TPH-D denotes total petroleum hydrocarbons as diesel

TPH-M denotes total petroleum hydrocarbons as motor oil

MTBE denotes methyl tert-butyl ether

MCB denotes chlorobenzene

o-DCB denotes 1,2-dichlorobenzene

m-DCB denotes 1,3-dichlorobenzene

p-DCB denotes 1,4-dichlorobenzene .

ug/l denotes micrograms per liter

NA denotes not analyzed

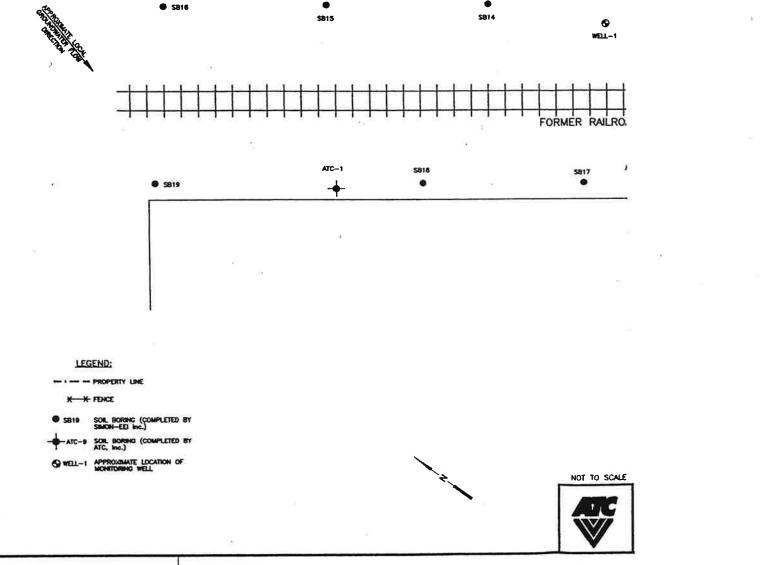
ND denotes not detected above listed detection limit

• State action level for m-DCB is 130 ug/l

SUMMARY OF GROUNDWATER SAMPLE ANAYLTICAL RESULTS FOR INORGANIC CONSTITUENTS METALCAST OAKLAND, CALIFORNIA

Sample	Sample	As	Ag	Ba	Cd	Cr	Hg	Pb	Se
D	Date	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
Primary	MCL	0.050	0.050	-1.000	0.010	0.050	0.002	0.050	0.010
ATC-1	10/08/98	ND 0.10	ND 0.010	0.23	ND 0.010	ND 0.010	ND 0.00020	ND 0.10	ND 0.10
ATC-2	10/08/98	ND 0.10	ND 0.010	0.23	ND 0.010	0.014	ND 0.00020	ND 0.10	ND 0.10
ATC-3	10/08/98	ND 0.10	ND 0.010	0.26	ND 0.010	0.010	ND 0.00020	ND 0.10	ND 0.10
ATC-5	10/08/98	ND 0.10	ND 0.010	0.25	ND 0.010	0.033	0.00041	ND 0.10	ND 0.10
ATC-7	10/08/98	ND 0.10	ND 0.010	0.19	ND 0.010	0.013	ND 0.00020	ND 0.10	ND 0.10
ATC-9	10/08/98	ND 0.10	ND 0.010	0.39	ND 0.010	ND 0.010	ND 0.00020	ND 0.10	ND 0.10
WELL-1	10/08/98	ND 0.10	ND 0.010	0.20	ND 0.010	ND 0.010	ND 0.00020	ND 0.10	ND 0.10

Notes:

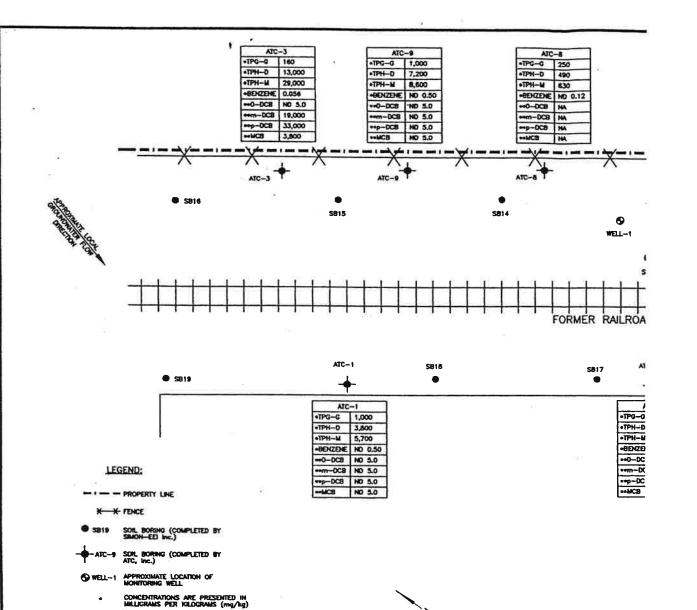

Primary MCLs (Maximum Contaminant Levels) from California Dept. of Health Services; if none exist, USEPA levels are listed

Metals symbols taken from the Periodic Table of Elements:

As = Arsenic, Ag = Silver, Ba = Barium, Cd = Cadmium, Cr = Chromium, Hg = Mercury, Ni = Nickel, Pb = Lead, Sc = Selenium

mg/l denotes milligrams per liter

ND denotes not detected above listed detection limit



ŧ

٠

5 12 1

•

CONCENTRATIONS ARE PRESENTED IN MICROGRAMS PER KLOCRAMS (ug/hg)

1,2-DICHLOROBENZENE

1,3-DICHLOROBENZENE

1.4-DICHLOROGENZENE

CONSTITUENT NOT ANALYZED

CHLOROBENZENE

TOTAL PETROLEUM HYDROCARBONS AS GASOLINE

TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL

TOTAL PETROLEUM HYDROCARBONS AS DIESEL

••

TPH-D

TPH-M

0-DCB

m-DCE

p-DCB

MCB

NA

NOT TO SCALE

reported in μ g/Kg.

Sample Number	Location	Chloro- benzene	1,2- dichlorobenzene	1,3- dichlorobenzene	1,4- dichlorobenzene
E-1	Sidewall	<5	<5	12	10
• E-2	Bottom	<5	27	160	75
E-3	Sidewall	<5	<5	<5	<5
Ę-4	Sidewall	<5	<5	<5	8.6
E-5	Sidewall	<5	<5	80	78
E-6	Bottom	<5	14	130	230
E-7	Sidewall	<5	<5	<5	<5

Note:

<5

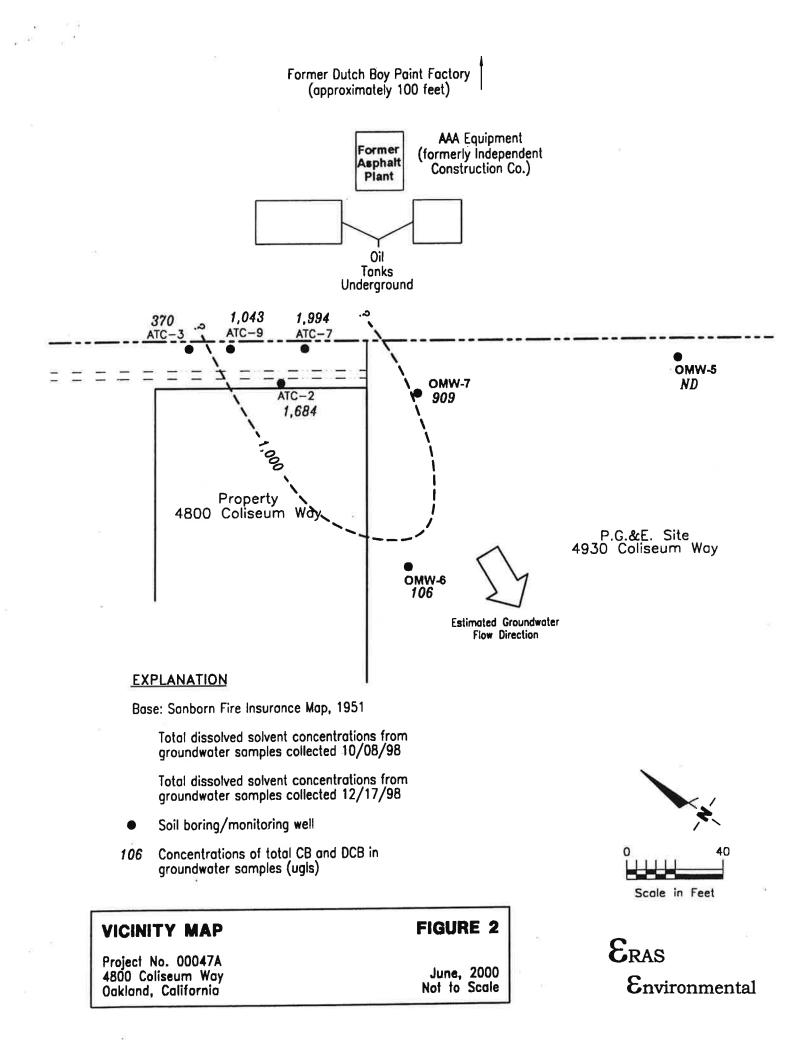
Not detected at or above laboratory detection limit indicated

The four soil samples collected from the stockpiles were analyzed and found to contain 19 μ g/Kg chlorobenzene, 19 μ g/Kg 1,2-DCB, 70 μ g/Kg 1,3-DCB and 110 μ g/Kg 1,4-DCB. Additional analyses were requested on June 23, 2000 to characterize the soil for proper disposal.

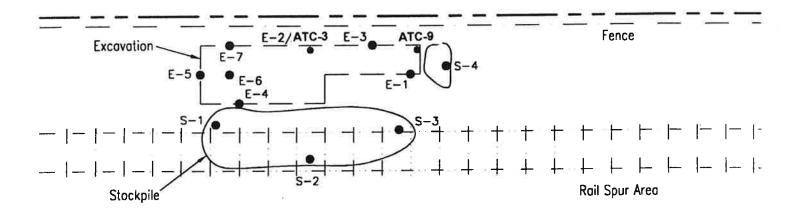
DISCUSSION OF RESULTS

The soil analytical results indicate the elevated concentrations of CB and DCB were removed from the area of soil boring ATC-3. Sample E-2 collected 1.5 feet beneath the sample collected by ATC contained 262 μ g/Kg total solvents compared to a previous concentration of 55,800 μ g/Kg total solvents. Only low concentrations of solvents (maximum of 374 μ g/Kg total solvents) were detected in the other confirmation samples.

The maximum concentration of total solvent in an excavation soil sample $(374 \ \mu g/Kg)$ is roughly 100 times less than the total solvent concentration detected in soil from location ATC-3 in 1998, although the difference in depth is only 1.5 feet. Thus it appears that the clay underlying the tar-bearing fill has retarded the downward migration of the solvents. Furthermore, the dissolved solvents in the groundwater beneath the Property appear to have migrated from an up-gradient source to the north.

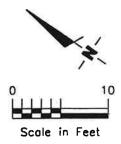

CONCLUSIONS

Based on the work previously performed (Phase 1 ESA) and the results of the soil excavation and sampling, ERAS concludes the following regarding the Property.


 No activities conducted on the Property appear to have contributed to the underlying solvent contamination

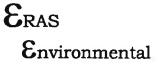
4800 Coliseum Way

ERAS Environmental, Inc.


Outside Storage Yard

Building

EXPLANATION


- E-1 Soil sample (ERAS Env.)
- ATC-3 Soil boring (ATC)
 - E Excovation sample
 - S Stockpile sample

SAMPLE LOCATION MAP

Project No. 00047A 4800 Coliseum Way Oakland, California FIGURE 3

June, 2000 Not to Scale

PG&E PROPERTY

Summary of Groundwater Elevation Data

Pacific Gas and Electric Company Oakland General Construction Yard 4930 Coliseum Way, Oakland, CA

Well Number	Sample Date	TOC Elevation (feet MSL)	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet above MSL)
OW-1	11/6/2007	11.82	4.05	7.77
OW-2	11/6/2007	11.24	4.14	7.10
OW-4	11/6/2007	12.82	4.64	8.18
OW-5	11/6/2007	13.24	4.90	8.34
OW-6	11/6/2007	13.61	5.23	8.38
OW-7	11/6/2007	15.00	6.67	8.33
OW-8	11/6/2007	11.19	3.46	7.73

Notes:

TOC = top of casing

MSL = Mean Sea Level

bgs = below ground surface

NM = Not measured. Well was not found/un-accessible due to storage container. TOC elevation data were referenced from Figure 4.2-Historical Groundwater Elevations, (Semi-Annual Groundwater Monitoring Report, September 2, 2005, CSS Environmental Services, Inc.).

Table 2 Summary of Groundwater Analytical Results (November 6, 2007) Pacific Gas and Electric Oakland General Construction Yard Oakland, California

			roleum Hy Aethod 801	drocarbons IGM	Dissolved Lead Method 6010B								Vok	itile Organi	c Compoun	ds-Metho	1 8260B								
Sample Name	Sample Date	TPHg µg/L	TPHd µg/L	TPHmo µg/L	µg/L.	Benzene µg/L	Toluene µg/L	Ethyl- benzene µg/L	Xylenes µg/L	lsopropyl- benzene µg/L		MTBE µg/L	1,2,3-TCB µg/L	1,2,4-ТСВ µg/L	1,3,5-TMB µg/L	1,2-DCA µg/L	1,2-DCB µg/L	1,3-DCB µg/L	1,4-DCB	CB µg/L	1,1,1-TCA µg/L	1,1-DCA µg/L	1,1-DCE ug/L	VC µg/L	Other VOCs
OW-1	11/06/07	80		<100/<100*		<0.5	<0.5	<0.5	<0,5	<0.5	<5	< 0.5	<0.5	1.6	<0.5	<0.5	2.2	24	68	4.2	<0.5	E 4	6.0	<0.5	hg/L ND
OW-2	11/06/07	- 1	210/<50*	<100/<100*	<8	- 1	-	-	-		-		_	_			_				-0.5	9.I	0.0	<0.5	ND
OW-4	11/06/07	<50	310/<50*	100/<100*	<8	< 0.5	<0.5	< 0.5	< 0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-0.5		-	-	_	_	
OW-5	11/06/07	50	380/<50*	200/<100*	<8	6.8	<0.5	<0.5	<0.5	1.6	-								<0.5	<0.5	<0,5	<0.5	<0.5	<0.5	ND
OW-6	11/06/07	<50			<8						32	<0.5	<0.5	1.2	1.4	<0.5	<0.5	0,8	3,8	<0.5	<0.5	1.4	<0.5	<0.5	(1)
OW-7					-	< 0.5	<0.5	<0.5	<0.5	<0.5	<5	< 0.5	<0.5	<0.5	<0,5	< 0.5	0.8	B.1	28	3.2	<0.5	8.4	5.2	< 0.5	ND
	11/06/07	250			<8	<0.5	<0.5	<0.5	<0.5	<0,5	<5	<0.5	<0.5	22	<0.5	0.9	12	56	200	40	<0.5	5.5	3.3	<0.5	ND
OW-8	11/06/07		280/<50*	100/<100*	<b< td=""><td>-</td><td></td><td>~</td><td>-</td><td>-</td><td>-</td><td>÷</td><td>-</td><td>1</td><td>-</td><td>123</td><td>-</td><td></td><td></td><td>1</td><td></td><td>100</td><td></td><td>-0,0</td><td></td></b<>	-		~	-	-	-	÷	-	1	-	123	-			1		100		-0,0	
FIELD BLANK	11/06/07	-		-	<8	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ND

Notes:

µg/L = Micrograms per liter. < = Not detected at or above the practical quantitation limit.

- = Not enelyzed

ND = Not detected above laboratory reporting limits. See laboratory analytical report for individual reporting limits (Appendix C). J = Estimated result. Result is less then the laboratory practical quantitation limit.

MTBE = Methyl tertiary-butyl ether

CB = Chlorobenzene 1,2-DCB = 1,2-Dichlorobenzene

1,3-DCB = 1,3-Dichlorobenzene

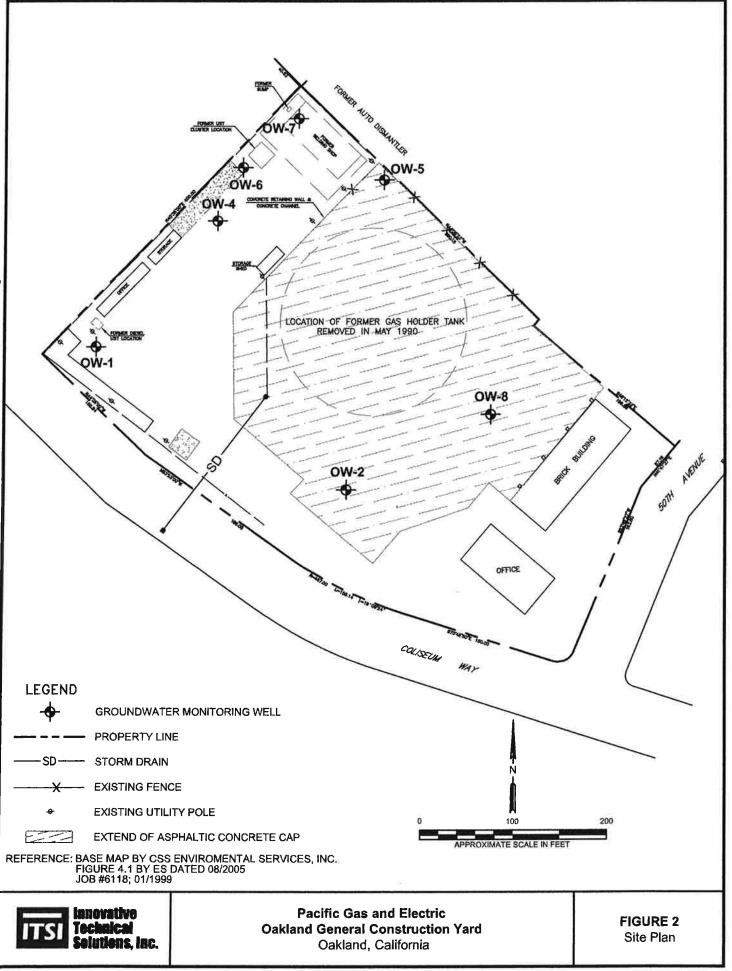
1,4-DCB = 1,4-Dichlorobenzene 1,2-DCA = 1,2-Dichloroethene

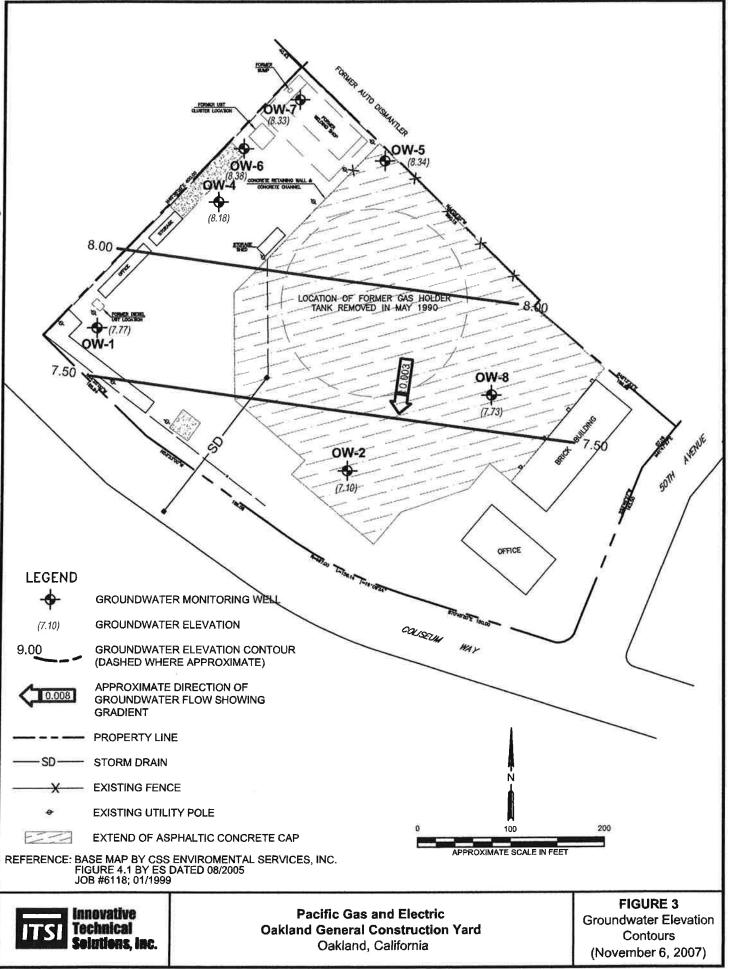
1,1-DCA = 1,1-Dichloroethene 1,1-DCE = 1,1-Dichloroethane

1,1,1-TCA = 1,1,1-Trichloroethane

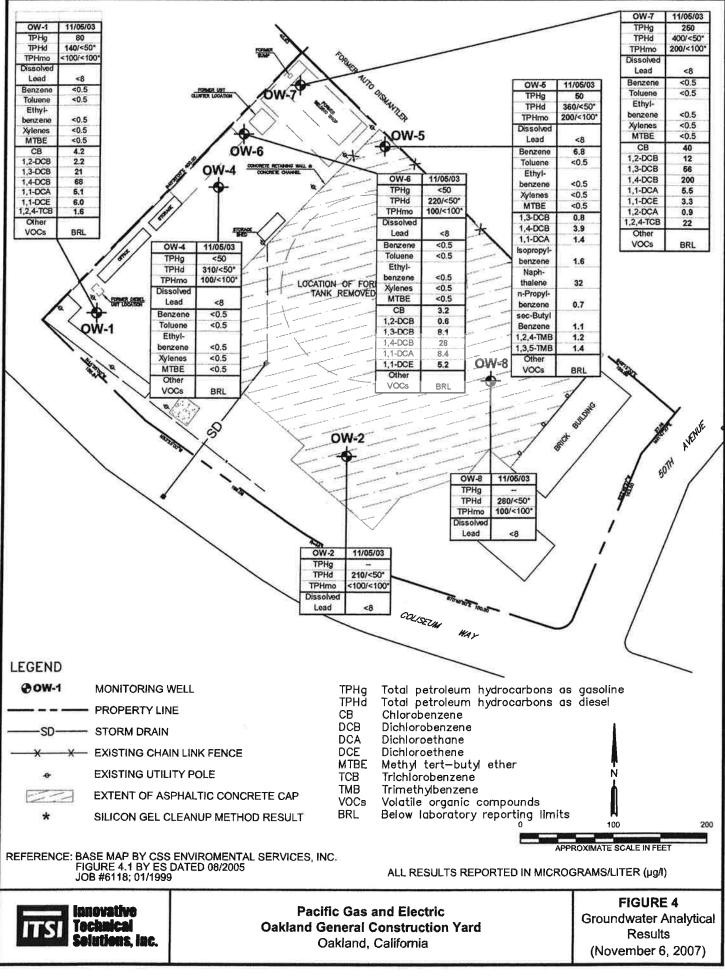
1,2,3-TCE = 1,2,3-Trichlorobenzene

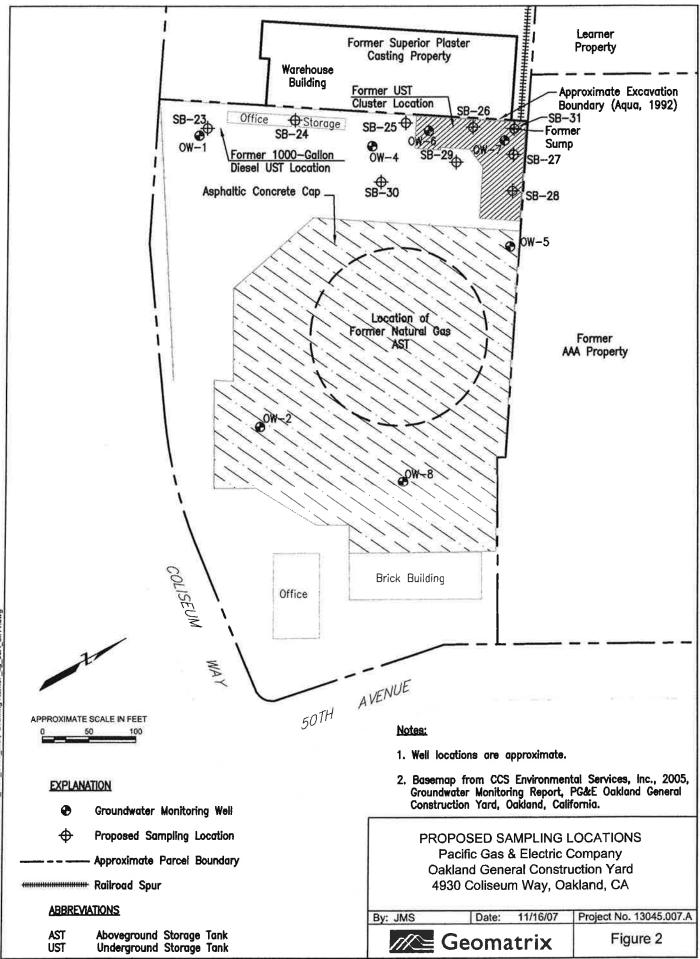
1,2,4-TCB = 1,2,4-Trichlorobenzene

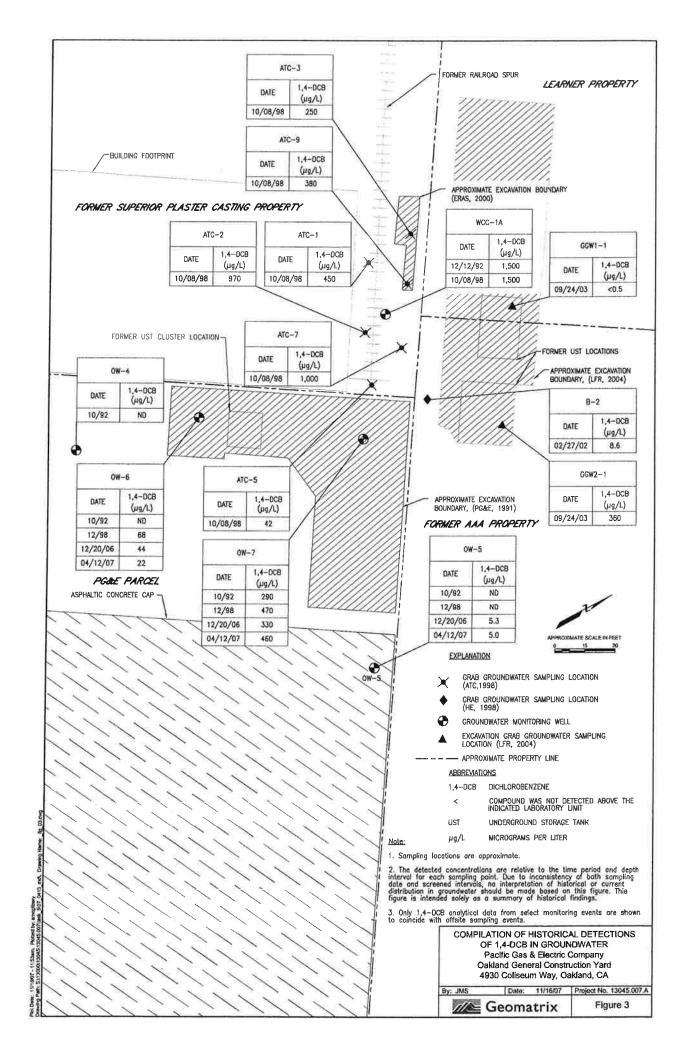

1,3,5-TMB = 1,3,5-Trimethylbenzene

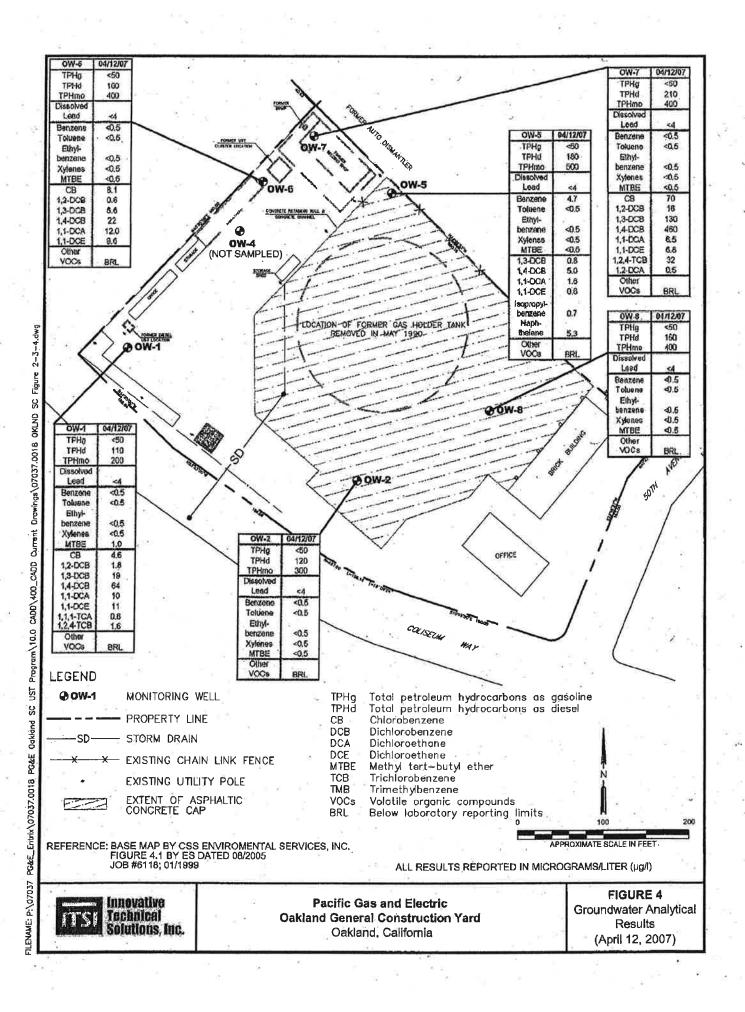

VC = Vinyl Chlorida

* = TPHd/TPHmo analyzed using slitca gel cleanup

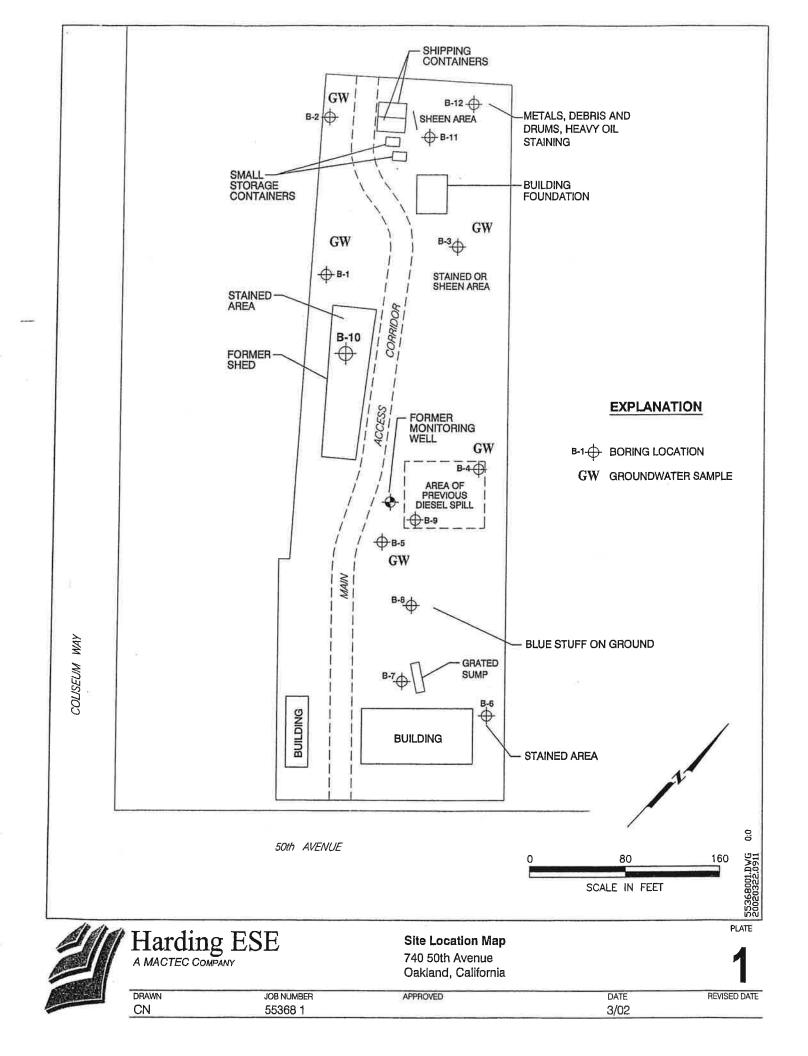



^{(1) =}Sec-butyl Benzane detected at 1.1 µg/L and n-Propylbenzene detected at 0.7 µg/L





2-3-4.dwg Figure S Program/10.0 CADD/400_CADD Current Drawings/07037.0018 OKLND UST 8 PG&E\07037.0018 PGE-14 Oakland FILENAME: C:_FUPE\100_PROJ\ITSI\07037



PES Environmental, Inc.

FORMER AAA EQUIPMENT COMPANY

Table 1

÷.

Westside Building Materials Oakland Facility Sampling Results Sample date February 27, 2002

Boring & Depth	PID Reading ppm	TPHd 8015m mg/kg	TPH Oil 8015m mg/kg	PCE 82608 ug/kg	TCE 82608 ug/kg	Other 8260B ug/kg
				-33	-39	-22
B-1 @ 1'	8.0	31	74	ND	ND	ND
B-1 @ 9'	26,4	30	78	ND	ND	ND
B-2 @ 1'	21 2	520	730	ND	ND	ND
8-2 @ 5'	30.3	1,200	780	ND	ND	n-Butylbenzene 13, sec-Butylbenzene 7.8,2Hexanone 10, isopropylbenzene 6.0, nPropylbenzene
		-	C*			9.5
B-3@1'	5.0	740	680	ND	ND	ND
B-3 @ 4.5'	4.0	6	12	ND	ND	ND
B-4 @ 1'	3.6	12,000	18,000	ND	ND	
	0.0	12,000	10,000	ИЦ	NU	Acetone 700, 2-Butanone 83, p-Isopropyltoluene 22, 4-Methyl-2-pentanone 21, Naphthalene 11, 13, 5, Tdmolbulbpasson, 5, 9, 1, 2, 4, 7, 1, 2, 4,
B-4 @ 6'	26.0	23	67	ND	ND	1,3,5-Trimethylbenzene 5.9, 1,2,4-Trimethylbenzene ND
8-5 @ 1'	6.0	700	1,800	ND	6	1,2,4-Trimelhylbenzene 9.4, m,p-Xylene 7.2, 0-Xylene 22
B-5 @ 5.5	116	43	13	ND	ND	ND
B-6 @ 1'	16,0	2,400	8,200			
B-6 (0, 4'	NA	2,400	8,200	ND ND	ND ND	ND ND
		14	20	NU	ND	ND
B-7 @ 1'	6.0	480	790	ND	ND	Acetone 400, n-Butylbenzene 21, Ethylbenzene 11, 2-Hexanone 21, Isopropylbenzene 5.2, p-
						Isopropyltoluene 12, 4-Methyl-2-pentanone 12, Naphthalene 30, Toluene 19, 1,3,5-
						Trimethylbenzene 150, 1,2,4-Trimethylbenzene 320, m,p-Xylene 150, o-Xylene 120
B-7 @ 4'	NA	6	12	ND	ND	ND
B-8 @ 1'	10.0	630	1,000	ND	ND	
	10.0	050	1,000	ND	ND	n-Butylbenzene 9.3, sec-Butylbenzene 20, 2-Chlorotoluene 5.5, 4-Chlorotoluene 7.8, Ethylbenzene
						8.8, 2-Hexanone 23, Isopropylbenzene 20, p-isopropyltoluene 21, Naphihalene 12, n- Propylbenzene 19, 1,1,2,2-Tetrachloroethane 11, 1,1,2-Trichloroethane 13, 1,3,5-Trimethylbenzene
						72, 1.2.4-Trimelhylbenzene 160, m.p-Xylene 17, o-Xylene 14
B-8 @ 4'	NA	ND	10	ND	ND	Acetone 75, 2-Butanone 20
8-9 @ 1' 8-9 @ 4'	11.0	190	420	ND	NĎ	ND
D-3 (U) 4	NA	390	680	ND	ND	ND
B-10 @ 1'	5.0	ND	ND	ND	ND	ND
B-10 @ 4'	NA	6	ND	ND	ND	ND
-					110	
B-11 @ 1'	19,0	14,000	7,700	ND	ND	ND
B-11 @ 4'	NA	1,900	1,500	ND	ND	ND
	212					
B-12 @ 1' B-12 @ 4'	24_0 NA	8,800	3,100	ND	ND	ND for 8260, 820 mg/kg Mercury
D-12 (U) 4	NA	44	56	ND	ND	ND
		ug/l	ug/t	ug/i	ug/l	ugħ
B-1-GW		1.3	0.5	ND	ND	egri Benzene 3.1, isopropylbenzene 1.3, 1,3,5-Trimethylbenzene 4.2, 1,2,4-Trimethylbenzene 8.5, m,p-
				-		Xylene 1.6, Naphthalene 140
B-2-GW		15.0	13.0	ND	ND	Chlorobenzene 1.2, 1,3-Dichlorobenzene 3.7, 1,4-Dichlorobenzene 8.6, Naphthalene 1.6
B-3-GW		3,6	1.7	ND	ND	Acetone 240, Nephthalene 5.6
8-4-GW 8-5-GW		27 31	3.8	ND	ND	Acetone 14
0-0-044		31	1.6	ND	ND	Acetone 12, Isopropylbenzene 1.2

10

 \sim

-

(-1)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	No
B-7@1' (P203063-13) Soil	Sam pled: 02/27/02 14:15	Received: 0.	3/01/02 12	2:21					
Mercury	0.38	0.018	mg/kg	1	2030108	03/07/02	03/07/02	EPA 7471A	
Antimony	ND	5.8		1	2030109		03/08/02	EPA 6010B	
Arsenic	ND	9.6				0553030755 (4)	"		1.0
Barium	200	0.96	•			3 9 0)	-		
Beryllium	0.11	0.096			11975	(e)		2001). 21	
Cadmium	1.8	0.96			3 .			17	
Chromium	27	0.96		an S	3.				
Cobalt	6.0	0.67				2 12		57- 	
Copper	26	0.96		*		2 2	180	•	
Lead	65	7.2				л. 25	•	•	
Aolybdenum	2.2	1.9		<u></u>			8 9 0	•	
Vickel	37	2.9		7) 12	10 51	11.55	3 8 95	(H)	
elenium	ND		-			(1.4)			
ilver		9.6	•					۲	
'hallium	ND	0.67							
anadium	ND	9.6	•			300		•	
inc v	16	0.96	м	-	•		8		
	120	1.9		T	100				
-8@1' (P203063-15) Soil	Sampled: 02/27/02 14:45	Received: 03/	01/02 12:2	21					
lercury	0.096	0.019	mg/kg		2030108	03/07/02	03/07/02	EPA 7471A	
ntimony	ND	5.9			2030109	03/07/02	03/08/02		
rsenic	ND	9.8					05/08/02	EPA 6010B	
arium	330	0.98			H	725 #		÷	
eryllium	0.32	0.098				20. R			
Idmium	ND	0.98				122			
hromium	48	0.98	÷			12		•	
obalt	8.1	0.69			-	551 225			
pper	18	0.98	-		2	2462		0.00	
ad	51	7.4			8. 23	1. 			3
olybdenum	ND						*		
ckel		2.0					*		
lenium	52	2.9	•		1.				
ver	ND	9.8		3 9 3	3 M (•	
allium	ND	0.69	*	5 8 00		17			
	ND	9.8		in in				2 4 1	
nadium	31	0.98				ŝ		в	
C	110	2.0		×					
				34					
12@1' (P203063-23) Soil	Sampled: 02/28/02 09:10	Deceived. 07	101/02 12.			•			
ercury	820	CHOSE AND					August and		
timony	ND		mg/kg			03/07/02	03/07/02	EPA 7471A	
senic		5.5				03/07/02	03/08/02	EPA 6010B	
rium	ND	9.1					**	•	
yllium	48	0.91	-	•			N	M	
-	ND	0.091		H				с. н	
dmium	3.9	0.91	н.		•	Π		н	
romium	81	0.91		-	-			-	
balt	21	0.64	*	-	-	-			
oper	120	0.91					N	H	
d	140	6.8		-			H		
lybdenum	ND	1.8	н			-		-	
kel	54	2.7	-	n				-	
nium	ND	9.1		nos h	н с		π		
er	ND ·	9.1 0.64		*	н. сс в		H	4	
llium	ND					M	۳ ب		
adium		9.1		N	н			11	
	26	0.91		н	n		67		

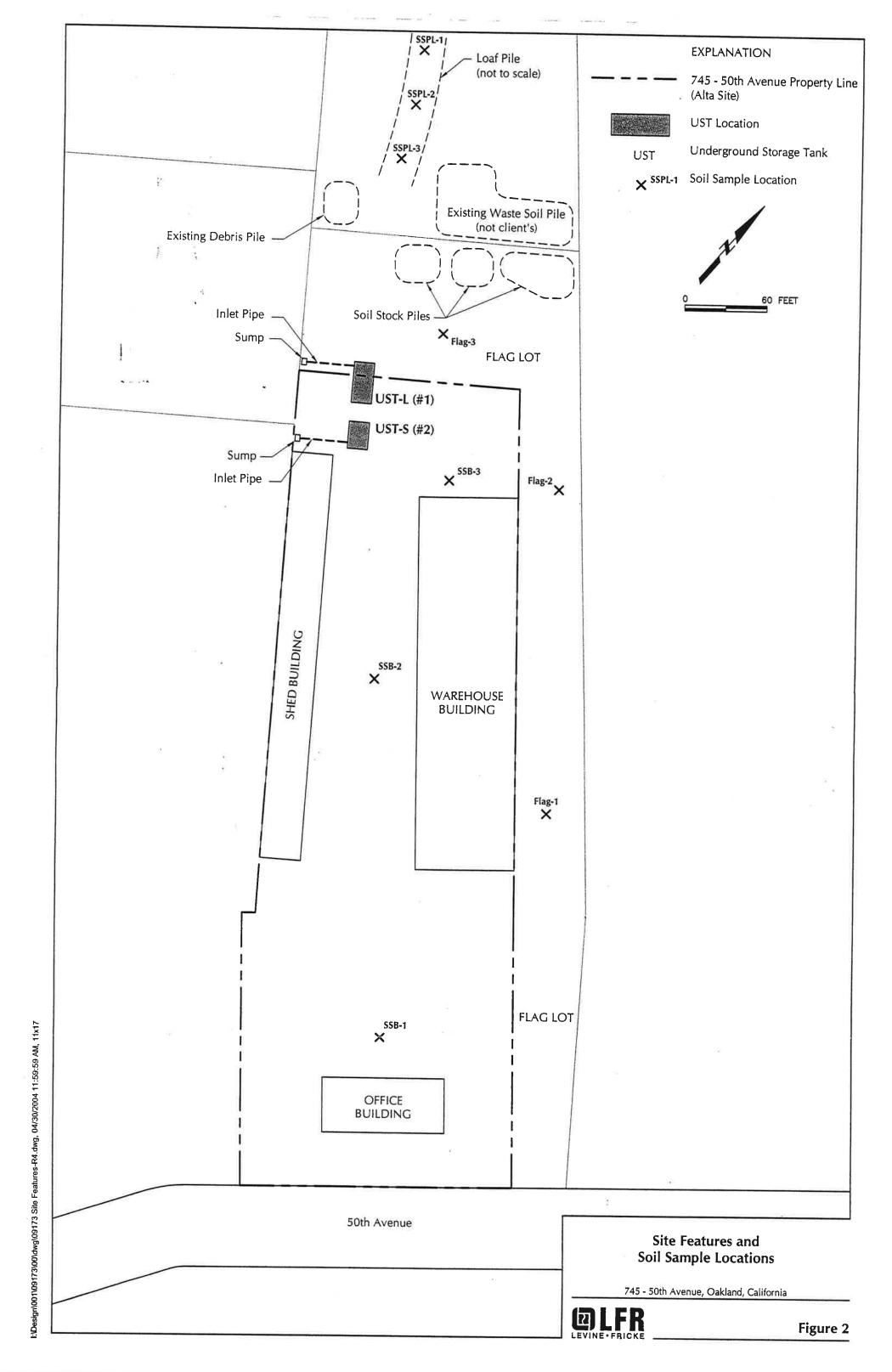
1.8

н

N N

н

н н


•

.....

290

Zinc

TABLE 2

Table 1 Detected TPHd, TPHmo, TPHg, BTEX, and MTBE in Soil Westside/Alta Building Materials Site (Former AAA Equipment Company Site) 745 50th Avenue, Oakland, California

Expressed in milligrams per kilogram (mg/kg) unless otherwise noted

Field ID	Date Sampled	TPHd	TPHmo	TPHg	B	Т	E	X	MTBE
ESLs Table B		5,80	0**	400	0.38	9.3	13	1.5	5.6
Loaf Stockpile/Ba	ackfill Material								010
SSPL-1	2-Sep-03	430 H Y	1,300	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.02
SSPL-2	2-Sep-03	3,500 H Y	2,900 L	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SSPL-3	2-Sep-03	340 H Y	950	1.2 H Y	< 0.0052	< 0.0052	< 0.0052	< 0.0052	< 0.02
Soil Background									
Flag-1-0.5	4-Sep-03	77 H Y	430	< 1.1	< 0.0055	< 0.0055	< 0.0055	< 0.0055	< 0.022
Flag-2-0.5	4-Sep-03	510 H Y	1,400	< 1.1	< 0.0054	< 0.0054	< 0.0054	< 0.0054	< 0.022
Flag-3-0.5	4-Sep-03	180 H Y	650	< 1.0	< 0.0052	< 0.0052	< 0.0052	< 0.0052	< 0.021
SSB-1-0.5	18-Sep-03	190 H Y	800		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
SSB-2-0.5	18-Sep-03	470 H Y	2,000		< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048
SSB-3-1.5	18-Sep-03	280 H	260 L		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005

Data entered by VCH. Proofed by LPL. QA/QC by JBP.

Notes:

Values in **bold** detected above laboratory analytical detection limits.

TPHd = Total petroleum hydrocarbons as diesel; samples analyzed using EPA Method 8015B

TPHmo = Total petroleum hydrocarbons as motor oil; samples analyzed using EPA Method 8015B

TPHg = Total petroleum hydrocarbons as gasoline; samples analyzed using EPA Method 8015B

B = Benzene; samples analyzed using EPA Method 8021B

T = Toluene; samples analyzed using EPA Method 8021B

E = Ethylbenzene; samples analyzed using EPA Method 8021B

X = Total xylenes; samples analyzed using EPA Method 8021B

MTBE = Methyl tertiary-butyl ether; samples analyzed using EPA Method 8021B

ESLs = Environmental Screening Levels

< = Not detected above laboratory analytical detection limits

--- = Not analyzed

** = TPHd/TPHmo as residual fuels, Table B-2

H = Heavier hydrocarbons contributed to the quantitation

Y = Sample exhibits chromatographic pattern which does not resemble standard

L = Lighter hydrocarbons contributed to the quantitation

Table 2

Detected PNAs and PCBs in Soil Westside/Alta Building Materials Site (Former AAA Equipment Company Site) 745 50th Avenue, Oakland, California

Expressed in	milligrams per	kilogram	(ma/ka)
Expressea in	minigrams per	KIIUgrain	(IIIg/Kg/

		1	PNAs															PCBs ⁽¹⁾	
Field ID	Date Sampled	Naph- thalene	Ace- naphthyl- ene	Ace- naphth- ene	Fluorene	Phen- anthrene	Anthra- cene	Fluor- anthene	Pyrene	Benzo(a) anthracene	Chrysene	Benzo(b) fluor- anthene	Benzo(k) fluor- anthene	Benzo(a) pyrene	Indeno (1,2,3-cd) pyrene	Dibenzo (a,h) anthracene	Benzo (g,h,i) perylene	Aroclor- 1254	Aroclor- 1260
ESLs Table	B	4.8	13	19	8.9	11	2.8	40	85	1.3	13	1.3	1.3	0.13	1.3	0.38	27	0.74	0.74
and the second se	ile/Backfill M	aterial																	
SSPL-1	2-Sep-03	< 0.25	< 0.25	0.26	< 0.25	2	0.49	3.8	5.6	2.2	2.7	1.7	1.9	1.9	0.66	< 0.25	0.75	1.3	1.5
SSPL-2	2-Sep-03	< 0.5	< 0.5	1.3	1.3	11	3.4	12	13	5.9	6.3	4.1	4.5	4.2	1.2	< 0.5	1.3	3.5	6.3
SSPL-3	2-Sep-03	< 0.25	< 0.25	< 0.25	< 0.25	0.68	0.27	1.4	2.2	0.92	1.2	1.3	1	0.99	0.37	< 0.25	0.51	1.3	1.1
Soil Backgro			L			A													
Flag-1-0.5	4-Sep-03	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.3	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.18	0.15
Flag-2-0.5	4-Sep-03	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	0.93	< 0.25	0.31	0.79	0.28	0.4	< 0.25	< 0.25	0.27	0.1	0.19
Flag-3-0.5	4-Sep-03	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.65	0.83	< 0.5	0.52	1.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.29	0.42
1146 5 0.5		< 0.5					·····				1 105		< 0.5	< 0.5	1 < 0.5	< 0.5	< 0.5	< 0.24	10
SSB-1-0.5	18-Sep-03	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.7	< 0.5	< 0.5	1.5	< 0.5	< 0.5	< 0.5	< 0.5		< 0.06	2.1
SSB-2-0.5	18-Sep-03	< 0.5	< 0.5	< 0.5	< 0.5	0.83	< 0.5	1.3	1.9	0.71	1.1	0.55	0.83	0.83	< 0.5	< 0.5	< 0.5		
SSB-3-1.5	18-Sep-03	< 0.25	< 0.25	< 0.25	< 0.25	0.3	< 0.25	< 0.25	0.4	< 0.25	0.3	0.74	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.012	< 0.012

Data entered by VCH. Proofed by LPL. QA/QC by JBP.

Notes:

24

(1) = See Laboratory Data Sheets Appendix for full list of analytes included in these analyses.

Values in **bold** detected above laboratory analytical detection limits.

ESLs = Environmental Screening Levels

PNAs = Polynuclear aromatics; samples analyzed using EPA Method 8270C PCBs = Polychlorinated biphenyls; samples analyzed using EPA Method 8082 H = Heavier hydrocarbons contributed to the quantitation

Y = Sample exhibits chromatographic pattern which does not resemble standard

--- = Not analyzed

.

< = Not detected above laboratory analytical detection limits

Table 3

Detected Metals in Soil Westside/Alta Building Materials Site (Former AAA Equipment Company Site) 745 50th Avenue, Oakland, California

Expressed in milligrams per kilogram (mg/kg)

Field ID	Date Sampled	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
ESLs Table B		40	5.5	1,500	8	7.4	58	80	230	750	10	40	150	10	40			
Loaf Stockplle/	Backfill Material				88							40	150	10	40	13	200	600
SSPL-1	2-Sep-03	<2.9	4	340	0.16	4.1	21	6.1	51	120	0.39	1	33	0.27	< 0.24	41	10	
SSPL-2	2-Sep-03	<2.9	4.4	280	0.18	6.2	28	8.2	74	180	0.43	1,1	47	0.34		4.1	19	290
SSPL-2	12-Sep-03						(11.0**	0.45				0.26	5.8	24	510
SSPL-3	2-Sep-03	<2.8	5.2	230	0.21	4.9	48	8.5	40	94	0.26		 E0					
Soil Backgroun	nd				1			010	40	74	0.20	1.1	50	0.31	< 0.23	5.7	30	190
Flag-1-0.5	4-Sep-03	< 0.29	3.5	380	0.15	< 0.24	14	4.1	24	88	0.34	< 0.96	21	0.52				
Flag-2-0.5	4-Sep-03	< 0.28	9.8	200	0.21	< 0.23	24	7.8	16	100	0.34	< 0.96		0.53	< 0.24	3.2	16	120
Flag-3-0.5	4-Sep-03	< 0.28	3.0	190	0.13	< 0.24	27	6.7	30				34	0.5	< 0.23	3.3	19	63
		4 0120	510	170	0.15	< 0.24	41	0.7		59	0.16	< 0.94	40	0.73	< 0.24	3.9	20	110
SSB-1-0.5	18-Sep-03	< 2.4	17	1,000	0.28	1.8	38	8.1	61	340	0.45	1.3	52	< 0.20	0.52	0.59	27	530
SSB-2-0.5	18-Sep-03	< 2.5	5.6	330	0.18	2.2	43	7.2	240	240	0.49	1.7	39	< 0.21	0.32			
SSB-3-1.5	18-Sep-03	< 2.6	2.4	140	0.29	0.25	26	4.6	12	14	0.079	< 0.86	25			0.79	24	260
											0.075	× 0.00		< 0.22	< 0.22	0.23	17	21

Data entered by VCH. Proofed by LPL. QA/QC by JBP.

Notes:

Values in **bold** detected above laboratory analytical detection limits.

--- = Not analyzed

< = Not detected above laboratory analytical detection limits

ESLs = Environmental Screening Levels

Table 4

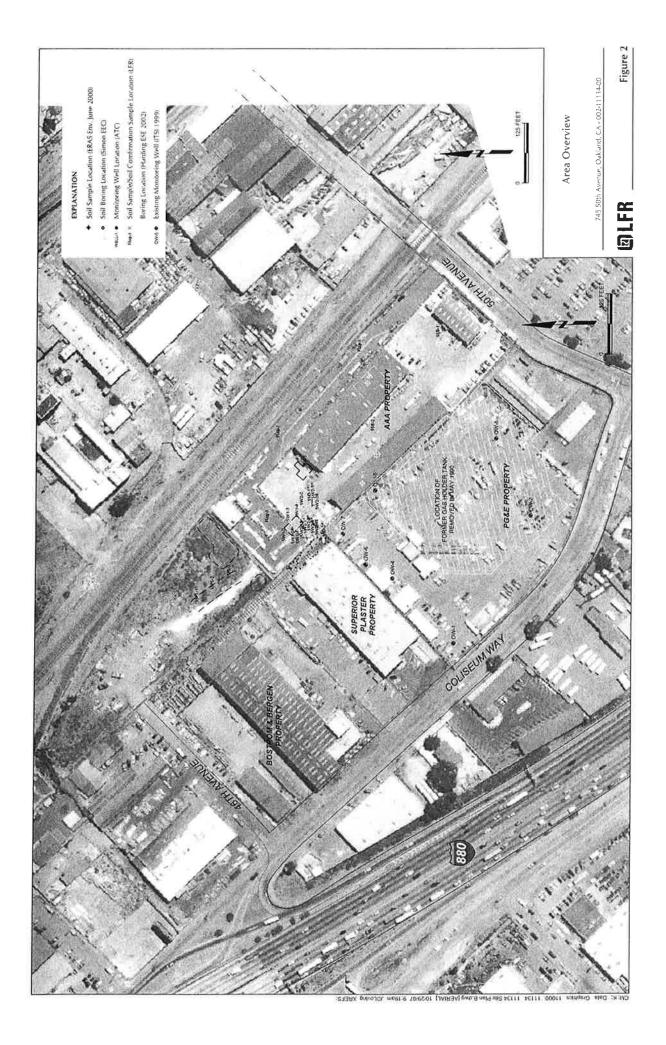
Detected VOCs in Soil⁽¹⁾ Westside/Alta Building Materials Site (Former AAA Equipment Company Site) 745 50th Avenue, Oakland, California Expressed in milligrams per kilogram (mg/kg) unless otherwise noted

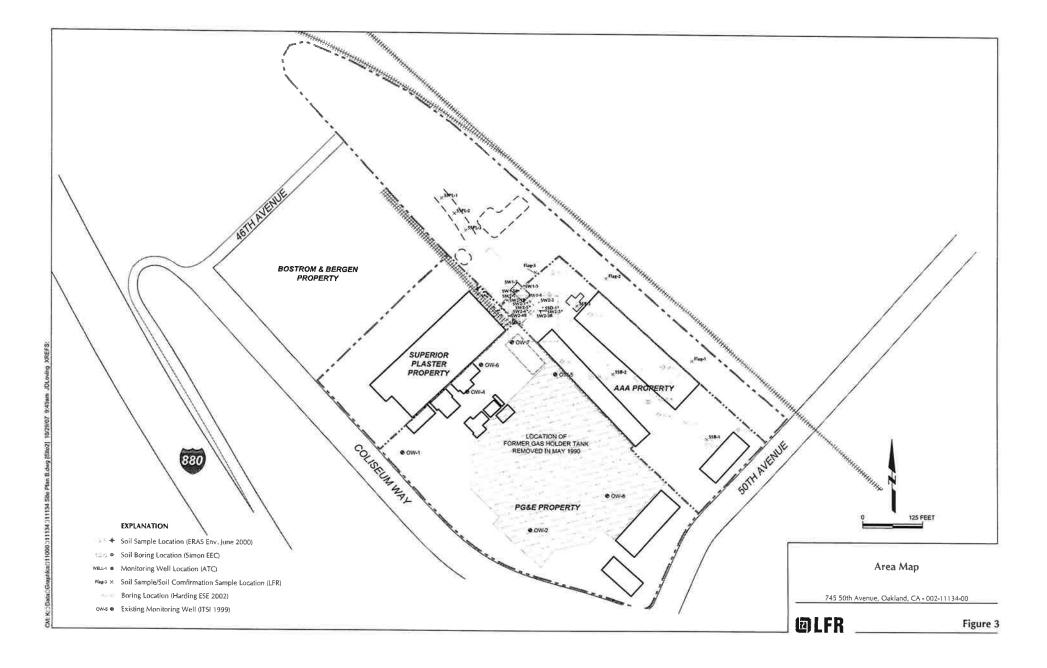
Field ID	Date Sampled	Acetone	Methylene Chloride	2- Butanone	Chloro- benzene	lso- propyl- benzene	Propyl- benzene	1,3,5- Tri- methyl- benzene	1,2,4- Tri- methyl- benzene	sec- Butyl- benzene	para- Iso- propyl Toluene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	n- Butyl- benzene	1,2- Dichloro- benzene
ESLs Table .	B	0.50	1.5	NV	1.5	NV	NV	NV	NV	NV	NV	7.4	0.13	NV	1.6
Loaf Stockp	ile/Backfill N	laterial											0.15	14 4	1.0
SSPL-1	09/02/03				***				1.12						
SSPL-2	09/02/03	< 0.02	< 0.02	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	
SSPL-3	09/02/03	1262				1						< 0.005			< 0.005
Soil Backgro	ound														
Flag-1-0.5	09/04/03	< 0.02	< 0.02	< 0.0098	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0,0049	< 0.0049	< 0.0049
Flag-2-0.5	09/04/03	< 0.018	< 0.018	< 0.0091	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0049
Flag-3-0.5	09/04/03	< 0.018	< 0.018	< 0.0091	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045
SSB-1-0.5	09/18/03	< 0.02	< 0.02	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	1 0 005						< 0.0045
SSB-2-0.5					< 0.005		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	09/18/03	< 0.019	< 0.019	< 0.0096	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048
SSB-3-1.5	09/18/03	0.021	< 0.02	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005

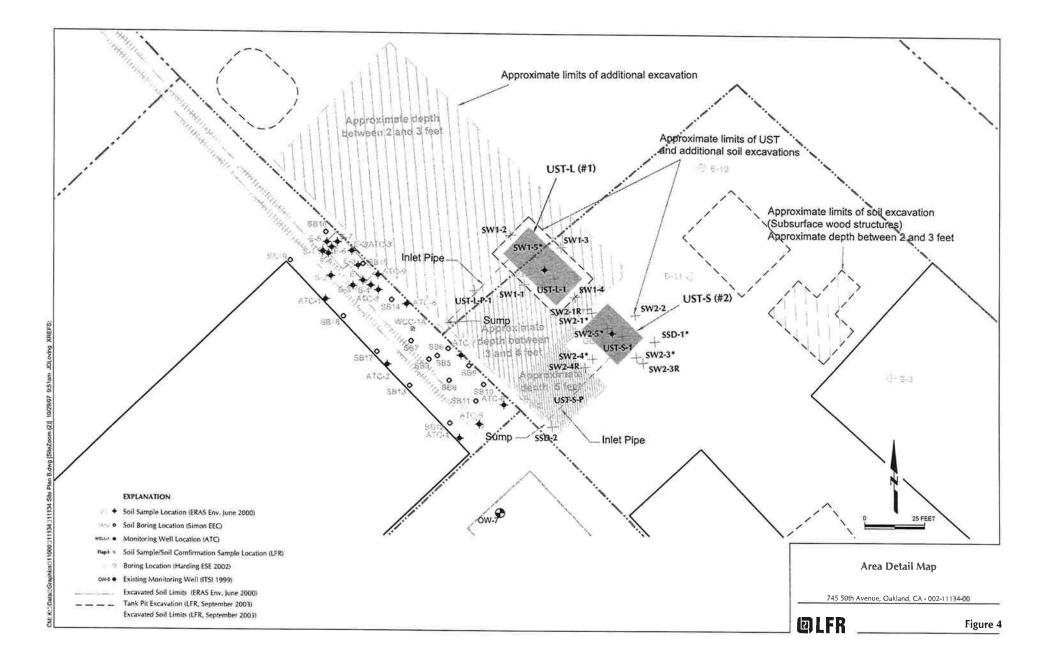
Data entered by VCH. Proofed by LPL. QA/QC by JBP.

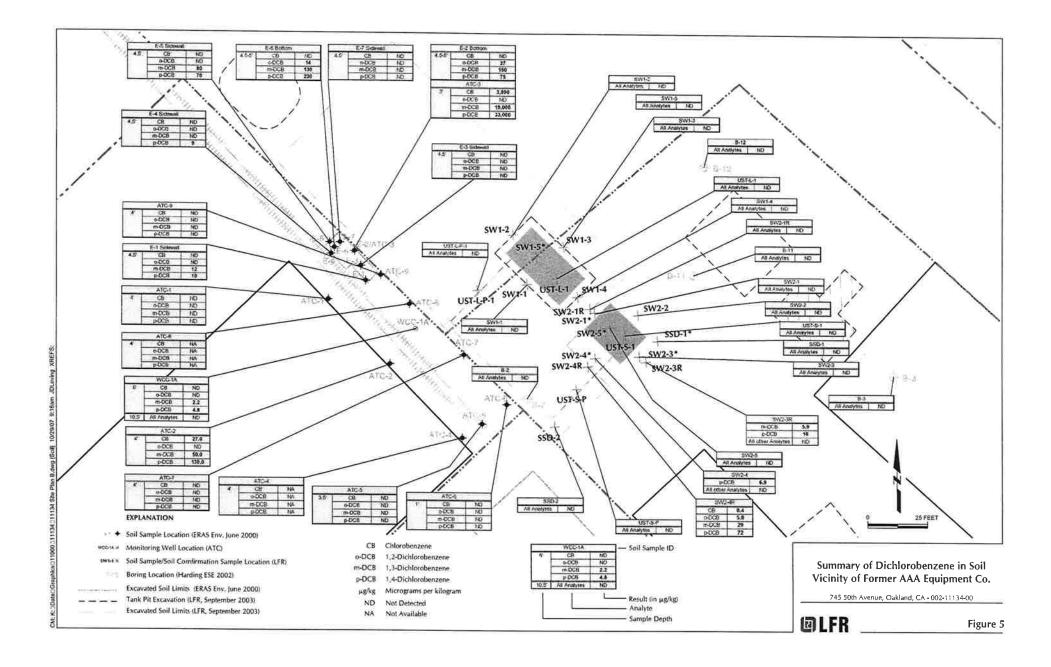
Notes:

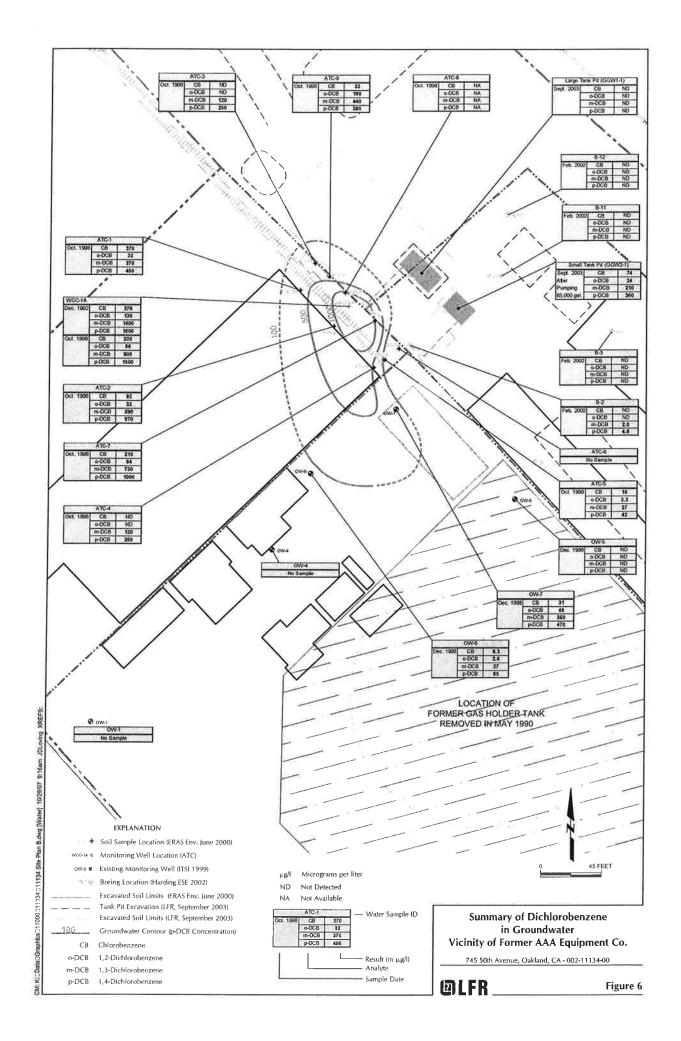
(1) = See Laboratory Data Sheets Appendix for full list of analytes included in these analyses.

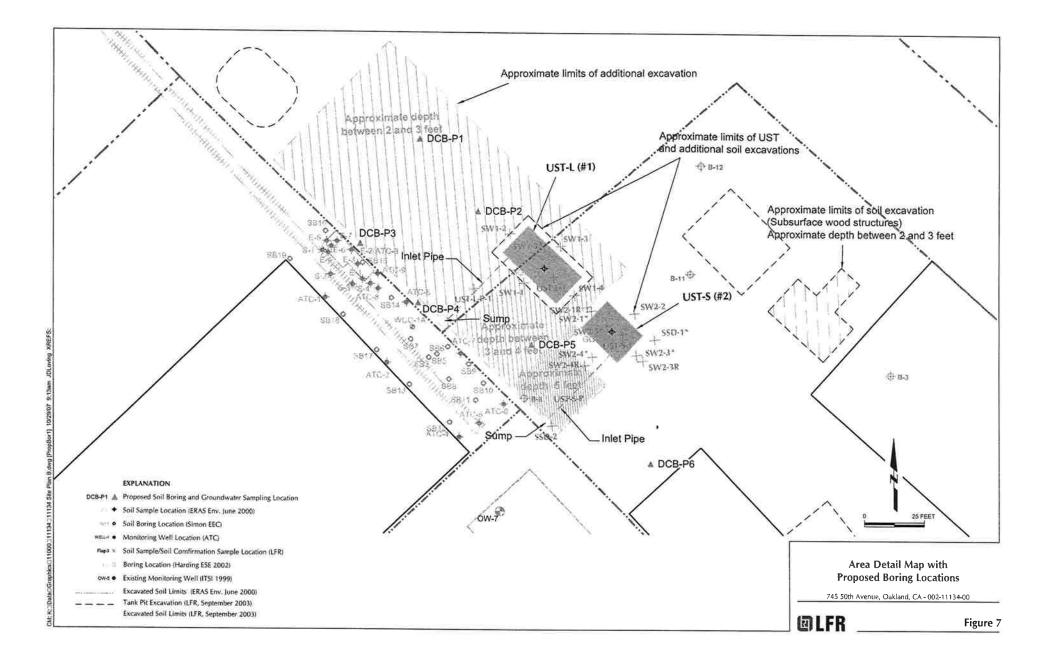

Values in **bold** detected above laboratory analytical detection limits.

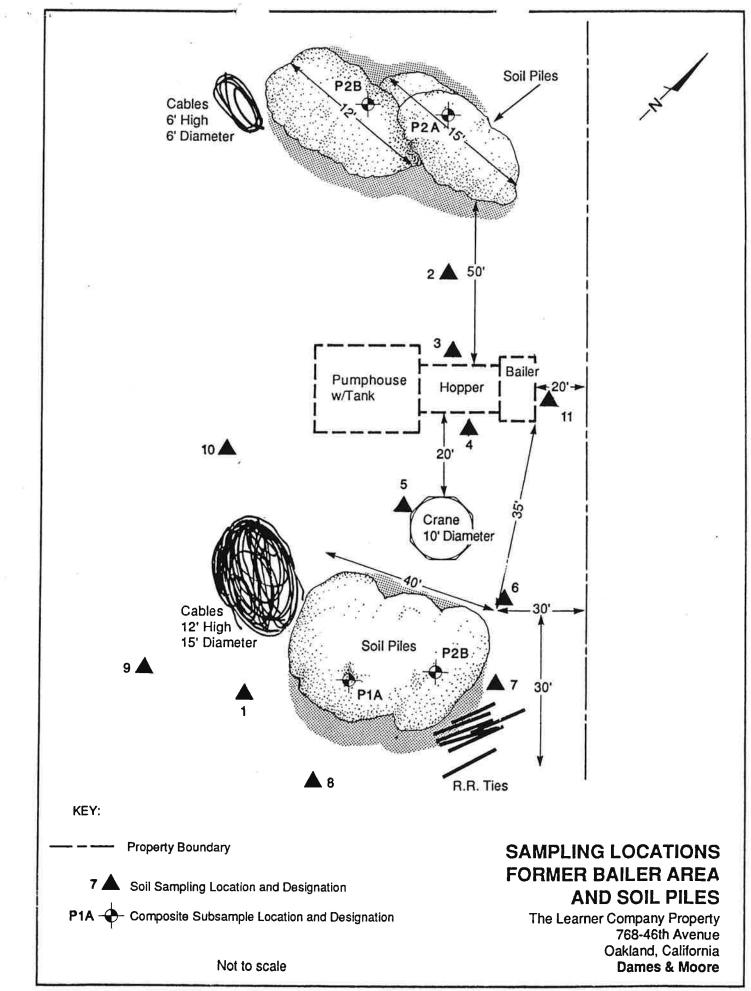

VOCs = Volatile organic compounds; samples analyzed using EPA Method 8260B ESLs = Environmental Screening Levels

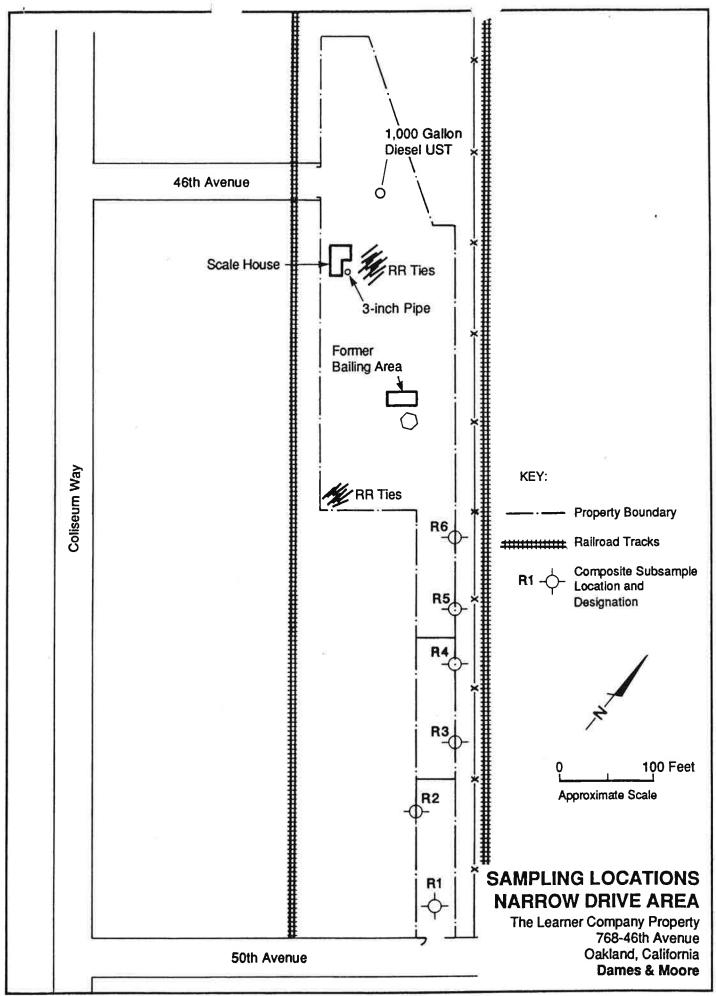

--- = Not analyzed


< = Not detected above laboratory analytical detection limits

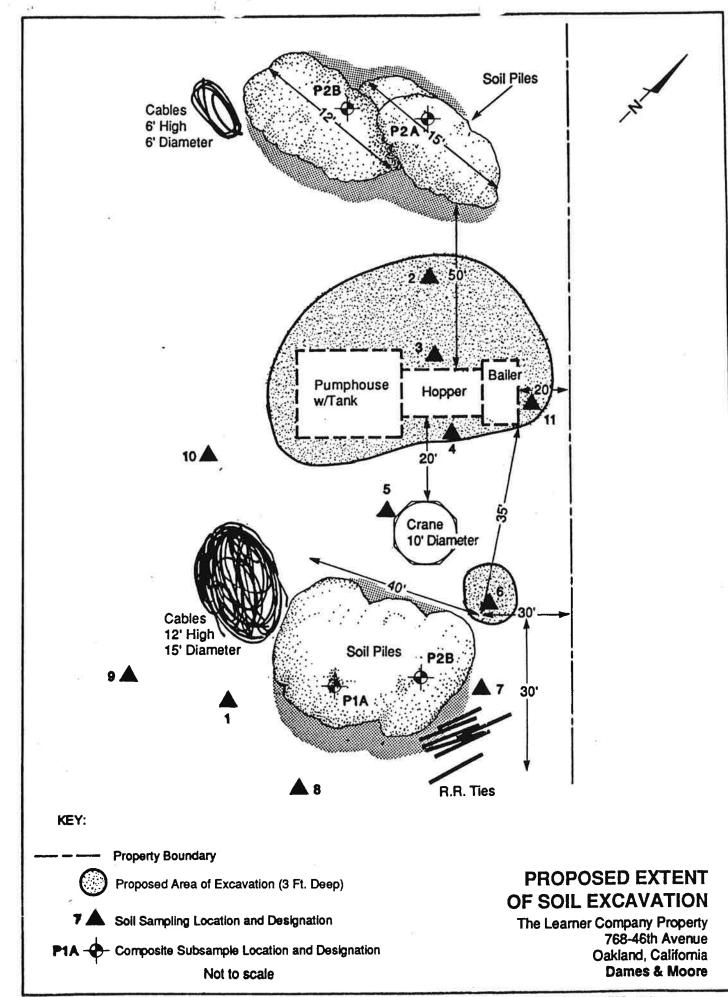

NV = No ESL value for this compound

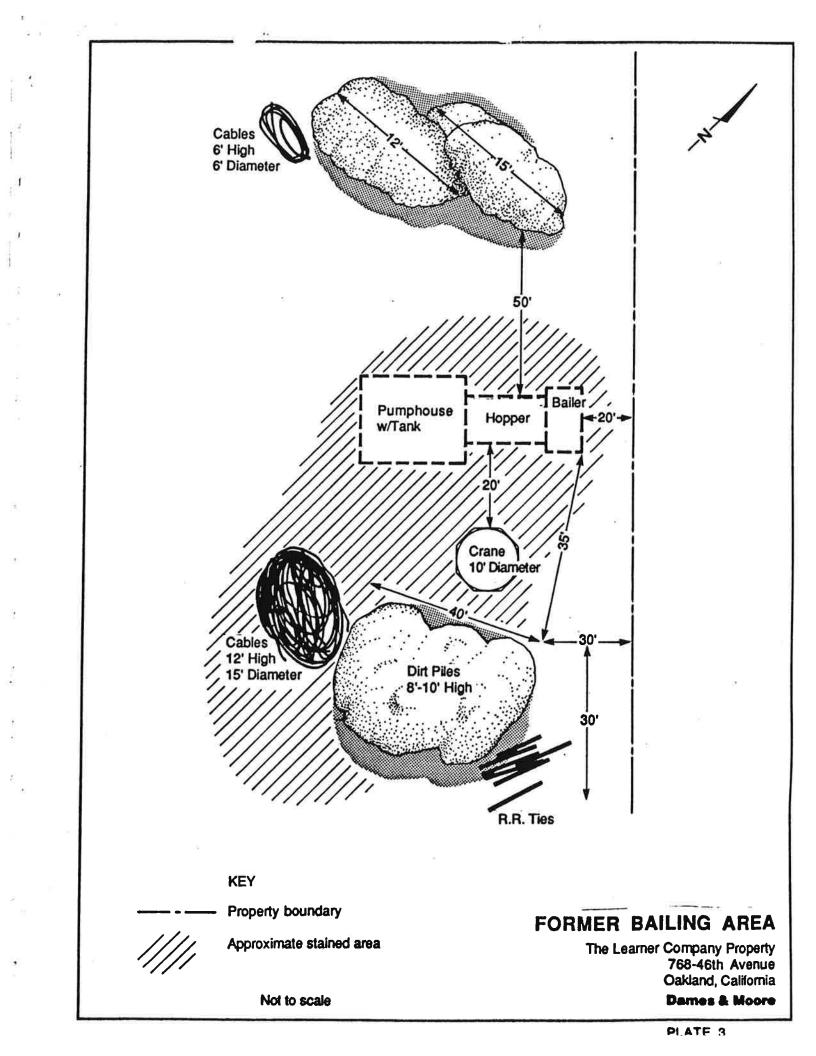






PES Environmental, Inc.


LEARNER INVESTMENT COMPANY PROPERTY


 (\mathbf{a})

FIGHDE 4

TABLE 2 SURFACE SOIL SAMPLING ANALYTICAL RESULTS SUMMARY LEARNER COMPANY OAKLAND, CALIFORNIA

Date Sampled Sample ID # Laboratory ID # Analyzing Lab Sample Locations	B-02 06/22/89 35142 47854-01 Enseco Drive	B-03 06/22/89 35141 47854-02 Enseco Drive	B-04 06/22/89 35140 47854-03 Enseco Drive	B-05 06/22/89 35139 47854-08 Enseco N. Pile	B-06 06/22/89 35138 47854-10 Enseco N. Pile	B-07 06/22/89 35137 47854-09 Enseco Bailing Are	ea		
Petroleum Hydrocarbons	Results	Results	Results	Results	Results	Results	TTLC	STLC L	imit Units
TPH by IR	28000	3500	7700	5400	22000	1800	NA	NA *	mg/Kg
Metals Analysis									
Cadmium Chromium Lead Nickel Zinc	4.7 39 322 44 849	19 218 5150 698 3900	8.7 44 624 61 1530	30 75 1940 149 6600	43 178 1810 265 8820	ND ND 218 ND 531	100 500 1000 2000 5000	$\begin{array}{cccc} 1.0 & 0 \\ 5.0 & 1 \\ 5.0 & 5 \\ 20 & 4 \\ 250 & 1 \end{array}$	
Other Analysis									
Cyanide Reactive Sulfide Reactive pH Ignitability Bioassay	ND ND 6.5 ND >750	ND ND 7.4 ND >750	ND ND 7.5 ND >750	ND ND 7.6 ND >750	ND ND 7.6 ND >750	ND ND 8.9 ND >750		().1 mg/Kg).5 mg/Kg).01 140. ^o F mg/L

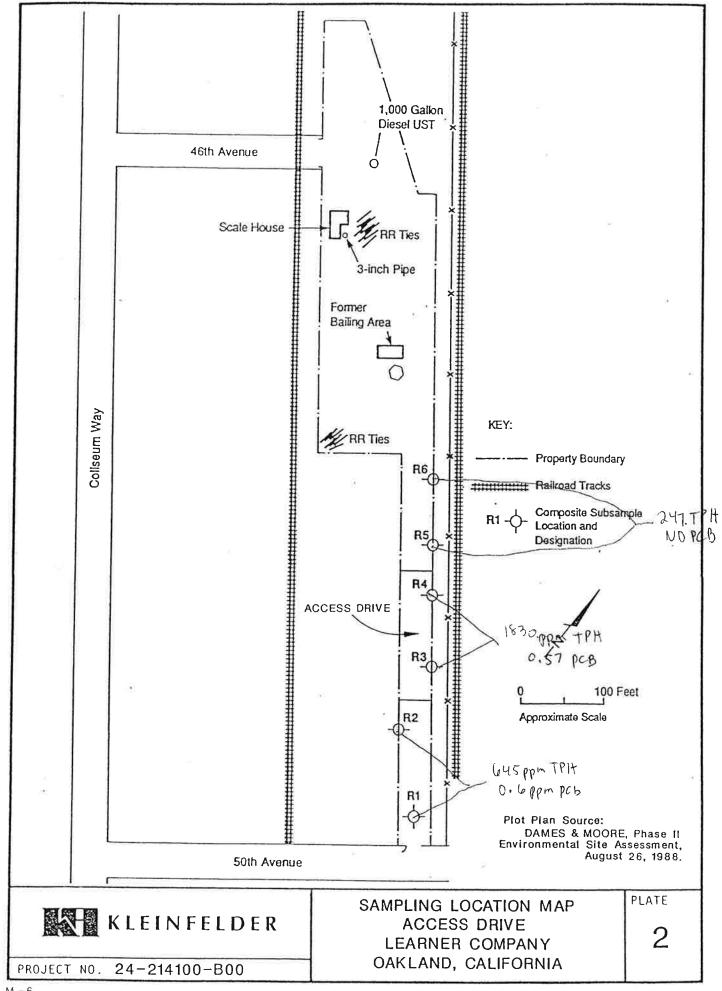
Notes:

- 1

ND - Not detected above laboratory reporting limit.
 * - The detection limit was raised due to high level of analyte present in the sample.
 TTLC - Toxic Threshold Limit & Concentration, mg/kg.
 STLC - Soluble Threshold Limit Concentration, mg/l.

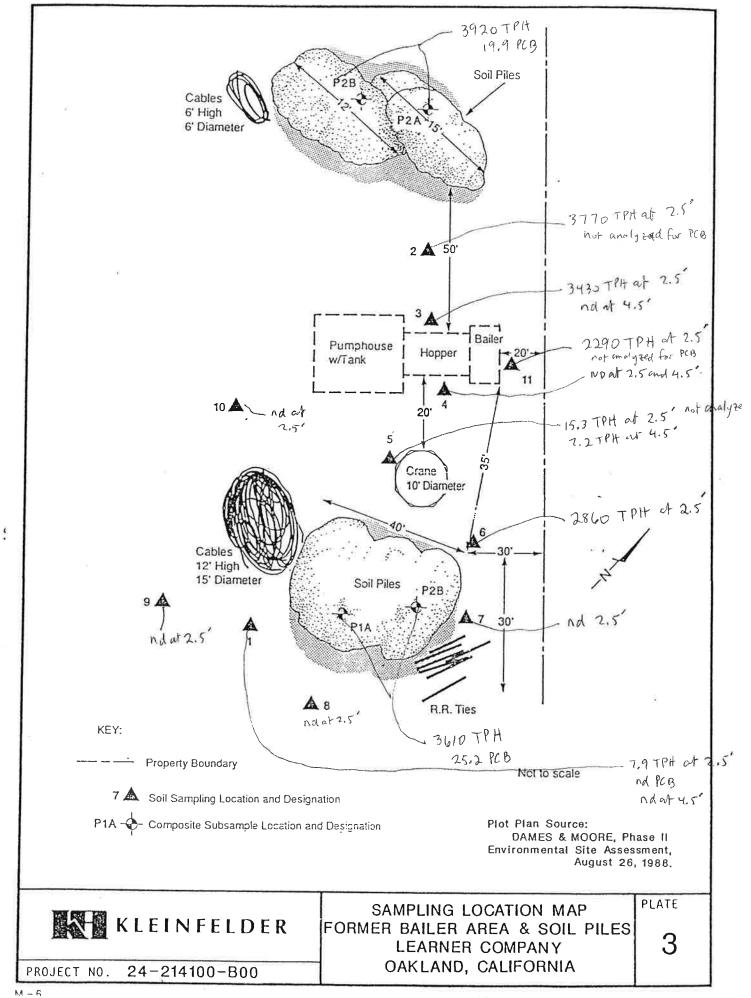
1ET90-3

TABLE 2 (continued) SURFACE SOIL SAMPLING ANALYTICAL RESULTS SUMMARY LEARNER COMPANY OAKLAND, CALIFORNIA

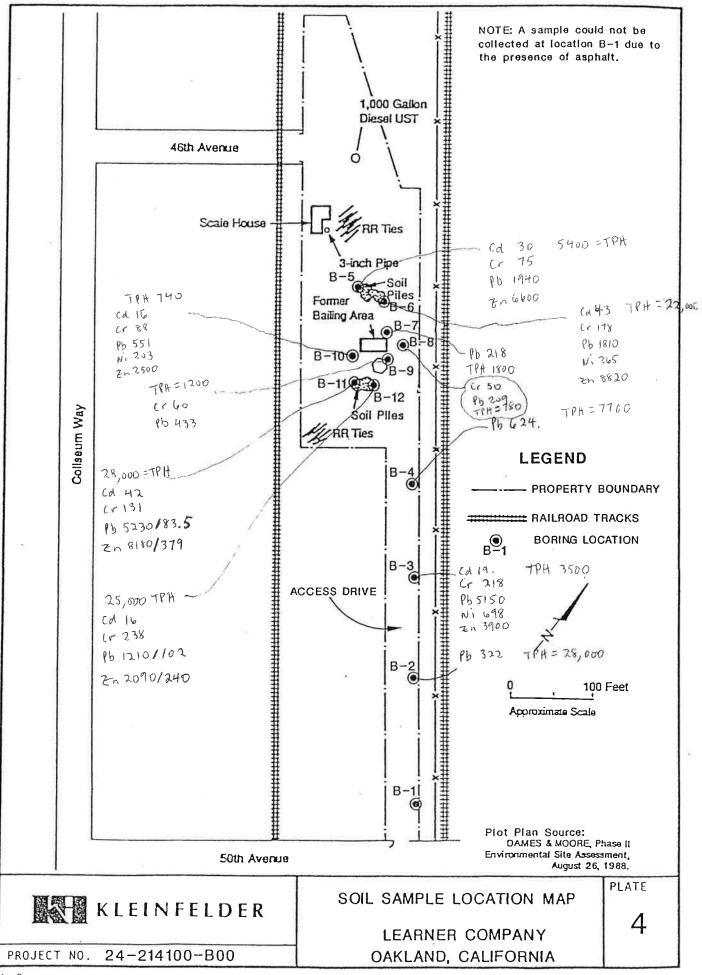

ant	Sure.	where	6	plot
101	/ 0 .	trese	d	ata

Date Sampled Sample ID # Laboratory ID # Analyzing Lab Sample Locations	06/22/89 00 35136 47854-11 4	B-09 5/22/89 35147 7854-07 Enseco Bailing Area	B-10 06/22/89 35146 47854-06 Enseco Bailing Are	B-11 06/22/89 35145 47854-05 Enseco a S. Pile	B-12 06/22/89 35144 47854-04 Enseco S: Pile	Composite 06/22/89 35135 47854-12 Enseco Bench Test	Soil			
Petroleum Hydrocarbons	Results	Results	Results	Results	Results	Results	TTLC	STLC	Limi	t Units
TPH by IR	780	1200	740	28000	25000	11000	NA	NA	*	mg/Kg
Metals Analysis										
Cadmium Chromium Lead (Total, Soluable) Nickel Zinc (Total, Soluable)	3.8 50 209, 9.6 54 779, 68.4	9.7 60 433 69 1760	16 88 551 203 2500	42 131 5230, 83.5 181 8180, 379	16 238 1210,102 129 2090, 240	998, 127 3830, 448	100 500 1000 2000 5000	1.0 5.0 20.0 250.0	4	mg/Kg mg/Kg ng/Kg,mg/L mg/Kg mg/Kg, mg/]
Other Analysis										
CyanideND Sulfide ND pH IgnitabilityND	ND ND 8.0 ND	ND ND 7.6 ND	ND ND 7.2 ND	ND ND 7.1 7 ND	' .4	9 7			0.1 0.5 0.01 140	mg/Kg mg/Kg ⁰ F
Bioassay > 750	>750	>750	>750	>750						mg/L

Notes:


ND - Not detected above laboratory reporting limit.
 * - The detection limit was raised due to high level of analyte present in the sample.
 TTLC - Toxic Threshold Limit & Concentration, mg/kg.
 STLC - Soluble Threshold Limit Concentration, mg/l.

1ET90-3



M - 6

3

.

Table 1Total Petroleum Hydrocarbons and Benzene, Toluene, Ethylbenzene, and Xylenes
in Soil Samples Collected at the Learner Property
768 46th Avenue, Oakland, California

Concentrations in micrograms per kilogram (unless otherwise noted)

Sample ID	Date	TPHd (mg/kg)	TPHg (mg/kg)	TPHmo (mg/kg)	Benzene	Toluene	Ethylbenzene	o-Xylene	m,p-Xylenes
LP-1-4.0	04/07/2008	210Y	< 0.96	650	NA	NA	NA	NA	NA
LP-1-4FT	04/02/2008	NA	NA	NA	<4.5	<4.5	<4.5	<4.5	<4.5
LP-2-1FT	04/04/2008	130Y	NA	670	<3.9	< 3.9	<3.9	<3.9	<3.9
LP-2-5FT	04/04/2008	370Y	NA	1,000	<4.3	<4.3	<4.3	<4.3	<4.3
LP-4-2FT	04/04/2008	190Y	NA	2,600	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
LP-4-4FT	04/04/2008	7.5	NA	51	<4.1	<4.1	<4.1	<4.1	<4.1
LP-5-2FT	04/04/2008	40Y	NA	110	< 3.4	< 3.4	<3.4	<3.4	<3.4
LP-5-4FT	04/04/2008	11	NA	99	<4.0	<4.0	<4.0	<4.0	<4.0
LP-6-2FT	04/04/2008	160Y	NA	760	<4.7	<4.7	<4.7	<4.7	<4.7
LP-6-4FT	04/04/2008	41Y	NA	110	<4.7	<4.7	<4.7	<4.7	<4.7
LP-7-2FT	04/04/2008	120Y	NA	400	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
LP-7-4FT	04/04/2008	< 0.99	NA	< 5.0	<3.9	<3.9	<3.9	<3.9	<3.9
LP-8-2FT	04/04/2008	160Y	NA	450	< 5.7	< 5.7	< 5.7	< 5.7	< 5.7
LP-8-4FT	04/04/2008	340Y	NA	730	<4.0	<4.0	<4.0	<4.0	<4.0
LP-9-1FT	04/04/2008	920Y	NA	2,300	<3.7	<3.7	<3.7	<3.7	<3.7
LP-9-4FT	04/04/2008	230Y	NA	1,100	<4.2	<4.2	<4.2	<4.2	<4.2
LP-10-2FT	04/04/2008	170Y	NA	440	<4.8	<4.8	<4.8	<4.8	<4.8
LP-10-4FT	04/04/2008	160Y	NA	440	<4.8	<4.8	<4.8	<4.8	<4.8
LP-11-2FT	04/04/2008	350Y	NA	1,500	< 5.2	< 5.2	< 5.2	< 5.2	< 5.2
LP-11-4FT	04/04/2008	100Y	NA	660	<4.0	<4.0	<4.0	<4.0	<4.0
LP-13-2FT	04/04/2008	4.9Y	NA	48	<4.5	<4.5	<4.5	<4.5	<4.5
LP-13-4FT	04/04/2008	<1.0	NA	< 5.0	<4.0	<4.0	<4.0	<4.0	<4.0
LP-15-1FT	04/04/2008	360Y	NA	1,500	<4.0	<4.0	<4.0	<4.0	<4.0

Table 1 Total Petroleum Hydrocarbons and Benzene, Toluene, Ethylbenzene, and Xylenes in Soil Samples Collected at the Learner Property 768 46th Avenue, Oakland, California

Concentrations in micrograms per kilogram (unless otherwise noted)

Sample ID	Date	TPHd (mg/kg)	TPHg (mg/kg)	TPHmo (mg/kg)	Benzene	Toluene	Ethylbenzene	o-Xylene	m,p-Xylenes
LP-15-5FT REGULATORY C	04/04/2008 ONCENTRATIONS	330Y S (RWQCB ESLs	NA)	1,300	<4.0	<4.0	<4.0	<4.0	<4.0
	groundwater is not of drinking water -	150	450	2,500	260	29,000	33,000	100,000	100,000

commercial land use

Notes:

(Y) the chromatographic pattern for TPHd and TPHg analyses did not resemble the laboratory standard for either TPHd or TPHg.

TPHd = total petroleum hydrocarbons as diesel

TPHg = total petroleum hydrocarbons as gasoline

TPHmo = total petroleum hydrocarbons as motor oil

NA = parameter not analyzed

mg/kg = milligrams per kilogram

Samples analyzed by: Curtis & Tompkins, Ltd.

Table 2 Volatile Organic Compounds in Soil Samples Collected at the Learner Property 768 46th Avenue, Oakland, California

Concentrations in micrograms per kilogram (unless otherwise noted)

Sample ID	Date	1,2-Dichlorobenzene	2-Butanone	Acetone	Methylene Chloride	sec-Butylbenzene
LP-1-4FT	04/02/2008	<4.5	< 9.1	27	<18	<4.5
LP-2-1FT	04/04/2008	<3.9	<7.8	<16	<16	<3.9
LP-2-5FT	04/04/2008	<4.3	<8.6	<17	<17	<4.3
LP-4-2FT	04/04/2008	< 5.0	<10	<20	< 20	< 5.0
LP-4-4FT	04/04/2008	<4.1	< 8.2	<16	<16	<4.1
LP-5-2FT	04/04/2008	<3.4	< 6.8	< 14	<14	<3.4
LP-5-4FT	04/04/2008	<4.0	8.3	29	<16	<4.0
LP-6-2FT	04/04/2008	<4.7	< 9.4	<19	78	<4.7
LP-6-4FT	04/04/2008	<4.7	< 9.4	<19	19	<4.7
LP-7-2FT	04/04/2008	< 5.0	<10	<20	<20	< 5.0
_P-7-4FT	04/04/2008	<3.9	<7.8	<16	<16	<3.9
_P-8-2FT	04/04/2008	< 5.7	<11	<23	<23	<5.7
_P-8-4F T	04/04/2008	<4.0	<7.9	< 16	<16	<4.0
_P-9-1FT	04/04/2008	<3.7	<7.5	<15	<15	<3.7
_P-9-4FT	04/04/2008	<4.2	< 8.5	<17	<17	<4.2
_P-10-2FT	04/04/2008	<4.8	< 9.6	< 19	<19	<4.8
_P-10-4FT	04/04/2008	<4.8	< 9.6	<19	<19	<4.8
_P-11-2FT	04/04/2008	< 5.2	< 10	<21	<21	< 5.2
LP-11-4FT	04/04/2008	<4.0	<7.9	<16	<16	<4.0
_P-13-2FT	04/04/2008	<4.5	< 8.9	<18	<18	<4.5
_P-13-4FT	04/04/2008	<4.0	<7.9	<16	<16	<4.0
LP-15-1FT	04/04/2008	<4.0	<7.9	<16	<16	<4.0

Table 2 Volatile Organic Compounds in Soil Samples Collected at the Learner Property 768 46th Avenue, Oakland, California

Concentrations in micrograms per kilogram (unless otherwise noted)

Sample ID	Date	1,2-Dichlorobenzene	2-Butanone	Acetone	Methylene Chloride	sec-Butylbenzene
LP-15-5FT	04/04/2008	8.6	<7.9	<16	<16	5.8
	CONCENTRATIONS (RWQCB ESLs) proundwater is not considered a source commercial land use		NE	17,000	16,000	NE

Notes:

NE = none established

Samples analyzed by: Curtis & Tompkins, Ltd.

Volatile organic compounds not reported in this summary table were not detected above the analytical reporting limits.

Table 3 Polychlorinated Biphenyls in Soil Samples Collected at the Learner Property 768 46th Avenue, Oakland, California

Concentrations in micrograms per kilogram (unless otherwise noted)

			in merograms p	ci kilogiani (uni	less otherwise no	ilea)		
Sample ID	Date	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260
LP-2-1FT	04/04/2008	<42	< 84	< 42	<42	800	1,300	490
LP-2-5FT	04/04/2008	<17	<33	<17	650	<17	280	62
LP-4-2FT	04/04/2008	<12	<24	< 12	<12	160	220	160
LP-4-4FT	04/04/2008	<12	<24	< 12	<12	<12	<12	<12
LP-5-2FT	04/04/2008	<83	<170	< 83	<83	<83	340	1,300
LP-5-4FT	04/04/2008	<12	<24	<12	<12	<12	<12	16
LP-6-2FT	04/04/2008	<42	< 83	<42	<42	1,700	3,700	1,700
LP-6-4FT	04/04/2008	<12	<24	<12	<12	<12	<12	22
LP-7-2FT	04/04/2008	<12	<24	<12	<12	<12	310	250
LP-7-4FT	04/04/2008	<12	<24	<12	<12	<12	<12	<12
LP-8-2FT	04/04/2008	<17	<33	< 17	<17	350	970	910
LP-8-4FT	04/04/2008	<170	<330	< 170	<170	4,200	6,800	2,400
LP-9-1FT	04/04/2008	<12	<24	<12	<12	<12	<12	< 12
LP-9-4FT	04/04/2008	<12	<24	<12	<12	<12	14	<12
LP-10-2FT	04/04/2008	<25	< 50	<25	<25	<25	720	1,600
LP-10-4FT	04/04/2008	<42	<83	<42	<42	<42	1,100	2,900
LP-11-2FT	04/04/2008	<25	< 50	<25	<25	<25	670	740
LP-11-4FT	04/04/2008	< 83	<170	< 83	< 83	470	1,800	690
LP-13-2FT	04/04/2008	<12	<24	<12	<12	<12	27	34
LP-13-4FT	04/04/2008	<12	<24	< 12	<12	<12	< 12	<12
LP-15-1FT	04/04/2008	<12	<24	<12	<12	<12	12	13

Table 3 Polychlorinated Biphenyls in Soil Samples Collected at the Learner Property 768 46th Avenue, Oakland, California

		Concentrations	in micrograms p	er kilogram (unl	ess otherwise no	ted)						
Sample ID	Date	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260				
LP-15-5FT	04/04/2008	<17	<33	<17	<17	400	500	290				
REGULATORY CONCENTRATIONS (RWQCB ESLs)												
Shallow soil where groundwat considered a source of drinkin commercial land use		300	300	300	300	300	300	300				

Notes:

Samples analyzed by: Curtis & Tompkins, Ltd.

Table 4	
Metals in Soil Samples Collected at the Learner Property 768 46th Avenue, Oakland, California	ľ
Concentrations in milligrams per kilogram (unless otherwise note	d

Concentrations	in milligrams	per kilogram	(unless otherwise noted)
----------------	---------------	--------------	--------------------------

Sample ID	Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver			122	
LP-1-4,0	04/07/2008	< 0.50	4.9	320	0.27	1.9	36	8.5	48	130	0.53	43	<0.50	Agentionage C.	Thallium	Vanadium	Zinc	Mercury
LP-2-1FT	04/04/2008	7_1	13	660	0.20	14	75	19	370	1.000	6.9	43		< 0,25	< 0.50	32	750	0.46
LP-2-5FT	04/04/2008	0,65	5.2	130	0.41	1.0	55	7.0	32	66	0.9		< 0.50	2_1	< 0.50	27	4,200	1, 8
LP-4-2FT	04/04/2008	17	6.3	540	0.14	2.3	39	8.7	100	1,000	1.7	52	< 0.50	< 0.25	<0 50	32	220	0 21
LP-4-4FT	04/04/2008	< 0.50	1.8	680	0.14	0.40	25	5.8	49	110	<0.25	52	2.7	< 0_25	< 0.50	35	760	0.32
LP-5-2FT	04/04/2008	< 0.50	4.0	150	0.22	0.26	34	5.5	15	19	0.72	15	0.90	< 0.25	< 0_50	24	130	0.13
LP-5-4FT	04/04/2008	< 0,50	13	250	0.34	0.28	42	18	12	63		33	< 0.50	0.33	< 0.50	29	64	0.041
LP-6-2FT	04/04/2008	3.0	12	690	0.23	10	60	13	610	910	0.55	40	2.8	< 0.25	< 0.50	33	43	0_15
LP-6-4FT	04/04/2008	< 0.50	8.3	670	0.33	0.29	43	10	19	83	8.1	86	3.5	1.1	< 0.50	29	2,800	1_7
LP-7-2FT	04/04/2008	< 0.50	4.8	220	0.17	1.9	44	10	55	160	0.30	59	< 0.50	< 0.25	<0.50	31	93	0.15
LP-7-4FT	04/04/2008	< 0.50	6.9	150	0.33	0.39	37	9.7	14		1.7	47	2.5	< 0.25	< 0 50	33	620	1.6
LP-8-2FT	04/04/2008	< 0.50	11	290	0.22	1.1	45	9.7 9.7	44	58	1,1	48	1.8	< 0.25	< 0 50	30	47	0 15
LP-8-4FT	04/04/2008	26	38	990	< 0.10	36	180			180	1,2	48	1.7	< 0.25	< 0 50	29	250	0.36
LP-9-1FT	04/04/2008	22	20	860	< 0.10	29	100	27	1,400	2,700	32	190	8,5	3.8	< 0 50	27	10,000	7.0
LP-9-4FT	04/04/2008	< 0.50	4.8	100	0.37	< 0.25		21	520	2,700	19	280	6.4	1.6	< 0 50	21	8.000	2.7
LP-10-2FT	04/04/2008	< 0.50	7.7	270	0.24	1.2	48	9.2	21	7.7	0.89	81	< 0.50	< 0,25	< 0.50	40	56	0.29
LP-10-4FT	04/04/2008	< 0.50	6.1	210	0,24	0.65	38	8.8	50	170	1.2	52	2.4	< 0.25	< 0,50	27	320	0.26
LP-11-2FT	04/04/2008	< 0.50	4.7	260	0.23		48	8.6	33	66	1.2	44	1.7	<0.25	< 0.50	28	160	0_17
LP-11-4FT	04/04/2008	3_4	6.8	260 450	0.17	0.98	37	9.4	51	120	0.84	45	1.2	< 0,25	< 0.50	29	270	0.31
LP-13-2FT	04/04/2008	< 0.50	4.3	430 260		4.8	47	12	140	310	4.2	75	<2,5	0.32	< 0 50	27	1.800	0.69
LP-13-4FT	04/04/2008	< 0.50	5.6	260 190	0.29	0.35	38	7.1	37	54	0.35	32	1.3	< 0.25	< 0,50	25	110	0.52
LP-15-1FT	04/04/2008	< 0.50	5.7	190	0.36	< 0_25	44	11	15	53	0.26	58	0.51	< 0 25	< 0.50	32	41	0_99
LP-15-5FT	04/04/2008	4_4	3.7 18		0.37	0.30	38	9.8	15	33	1.1	43	1.8	< 0.25	< 0.50	32	56	0.071
REGULATORY CO				350	0.24	11	100	22	500	720	9.6	130	7,7	1_1	< 0,50	34	3,000	l. 8
Shallow soil where g																		
considered a source of commercial land use	f drinking water -	40	1.5	1500	8_0	7,4	750	80	230	750	40	150	10	40	15	190	600	10
Background concentr. Lawrence Berkeley N Study - 2002		NE	19.1	323 6	1 0	2.7	99₌6	22.2	69_4	16.1	7_4	119.8	5.6	1.8	7_6	74.3	106.1	0,4

Notes:

NE = none established

Samples analyzed by: Curtis & Tompkins, Ltd. ESLs = Environmental Screening Levels by San Francisco Bay Regional Water Quality Control Board (RWQCB), November 2007

001-09644-2008.rdl

Table 5 Total Petroleum Hydrocarbons and Benzene, Toluene, Ethylbenzene, and Xylenes in Groundwater Samples Collected at the Learner Property 768 46th Avenue, Oakland, California

		(Concentration	is in microgra	ms per liter (u	nless otherv	vise noted)		
Sample ID	Date	TPHd (mg/kg)	TPHg (mg/kg)	TPHmo (mg/kg)	Benzene	Toluene	Ethylbenzene	o-Xylene	m,p-Xylenes
LP-1	04/02/2008	160Y	NA	680	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
LP-2	04/04/2008	2,500	NA	3,000	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
LP-6	04/04/2008	51Y	NA	< 300	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
LP-13 REGULATOR	04/04/2008 Y CONCENTRATION	< 50 S (RWQCB E	NA SLs)	680	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
Where groundw	ater is not considered a ng water - commercial	2,500	5,000	2,500	540	400	300	5,300	5,300

land use

Notes:

(Y) the chromatographic pattern for TPHd and TPHg analyses did not resemble the laboratory standard for either TPHd or TPHg.

TPHd = total petroleum hydrocarbons as diesel

TPHg = total petroleum hydrocarbons as gasoline

TPHmo = total petroleum hydrocarbons as motor oil

NA = parameter not analyzed

mg/kg = milligrams per kilogram

Samples analyzed by: Curtis & Tompkins, Ltd.

Table 6 Volatile Organic Compounds in Groundwater Samples Collected at the Learner Property 768 46th Avenue, Oakland, California

		1			interogr	anis per ne	cr (unicss our	erwise note	u)		
Sample ID	Date	1,1- DCA	1,2,4- TCB	1,2- DCB	1,2- DCA	BDCM	CB	cis-1,2- DCE	n-BB	sec-Butylbenzene	tert Butylbenzene
LP-1	04/02/2008	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
LP-2	04/04/2008	< 0.5	0.7	1.6	< 0.5	< 0.5	0.9	< 0.5	2.3	3.3	1.4
LP-6	04/04/2008	2.9	< 0.5	< 0.5	2.4	0.7	< 0.5	2.4	< 0.5	< 0.5	< 0.5
LP-13	04/04/2008	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
REGULATOR	Y CONCENTRATION	S (RWQC	B ESLs)								
	ater is not considered a ng water - commercial	1,000	2,500	100	200	NE	500	62,000	NE	NE	NE

Concentrations in micrograms per liter (unless otherwise noted)

Notes:

NE = none established 1,1-DCA =1,1-Dichloroethane 1,2,4-TCB = 1,2,4-Trichlorobenzene 1,2-DCB =1,2-Dichlorobenzene 1,2 DCA =1,2-Dichloroethane BDCM =Bromodichloromethane

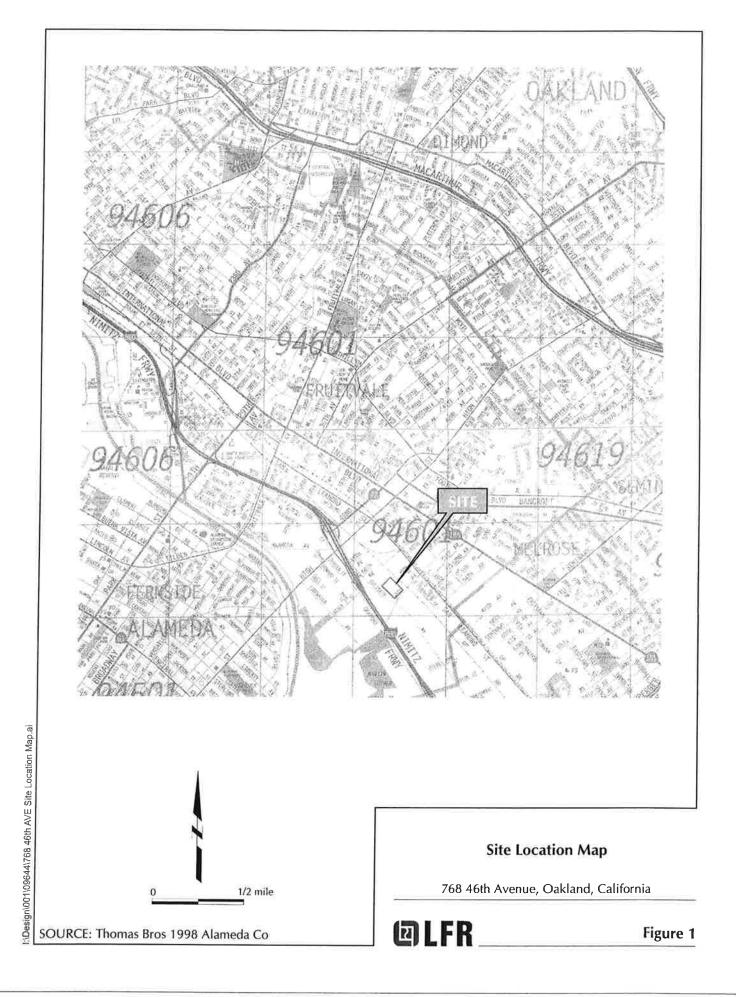
CB = Chlorobenzene

cis-1,2-DCE = cis-1,2-Dichloroethene

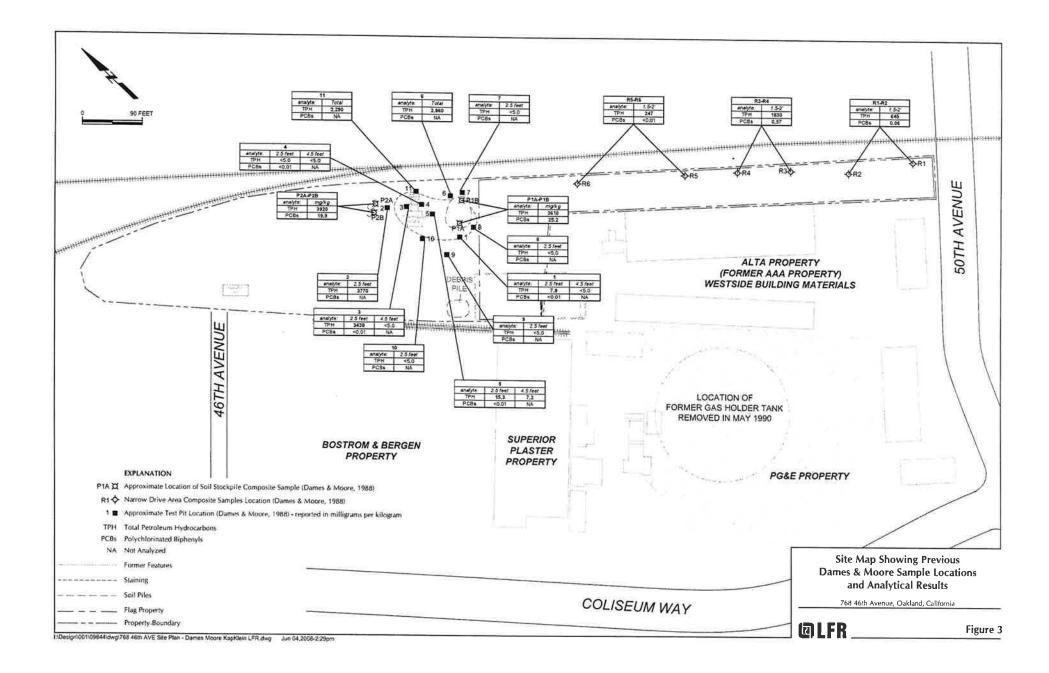
n-BB = n-Butylbenzene

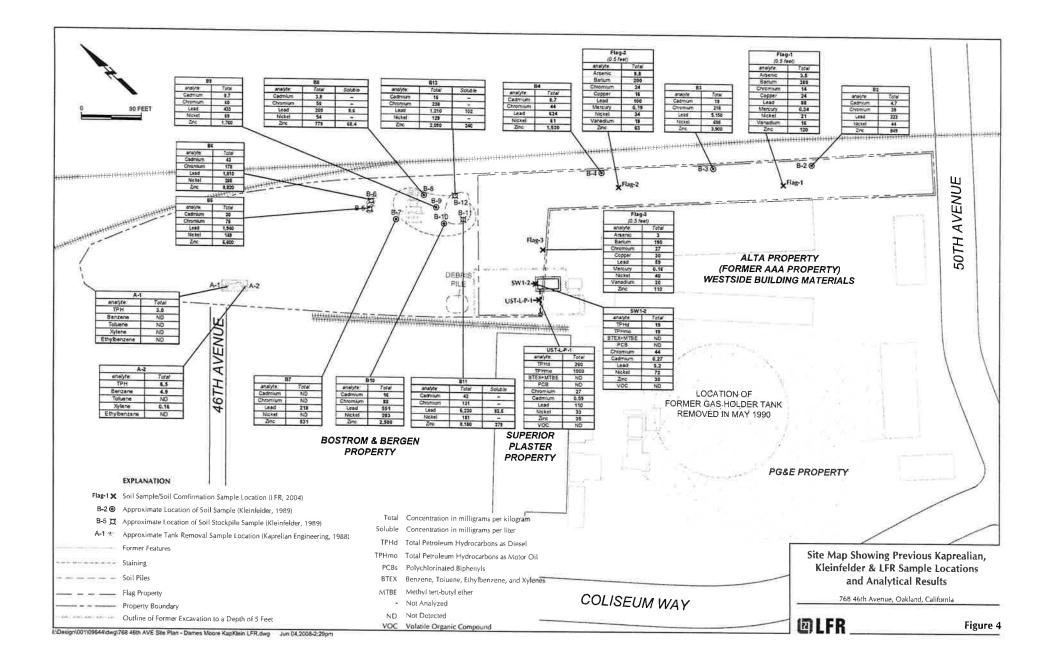
Samples analyzed by: Curtis & Tompkins, Ltd.

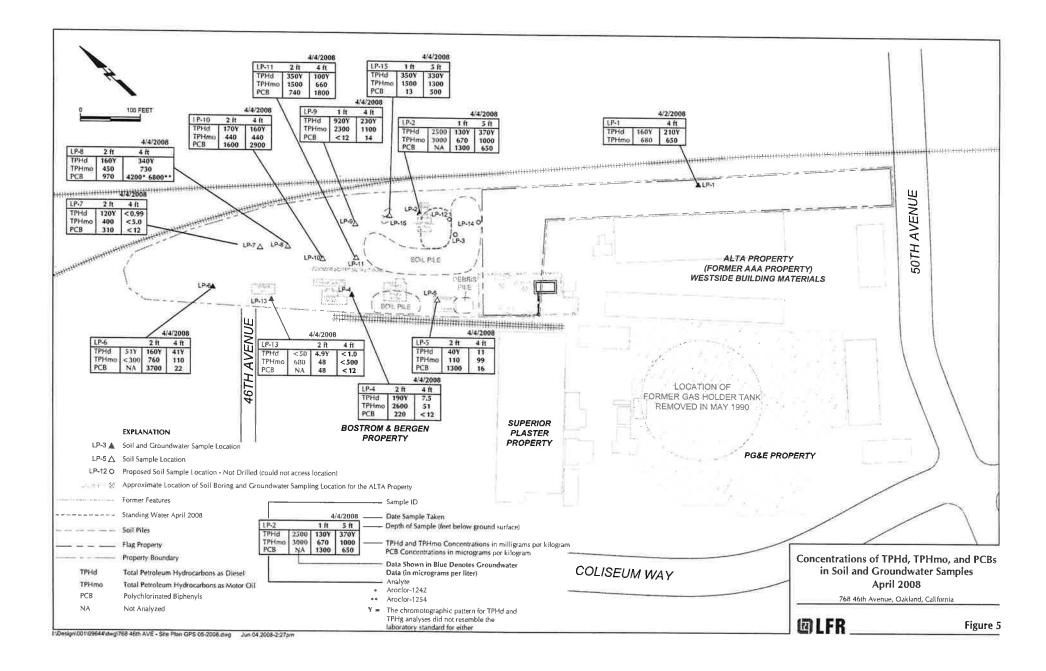
Volatile organic compounds not reported in this summary table were not detected above the analytical reporting limits.

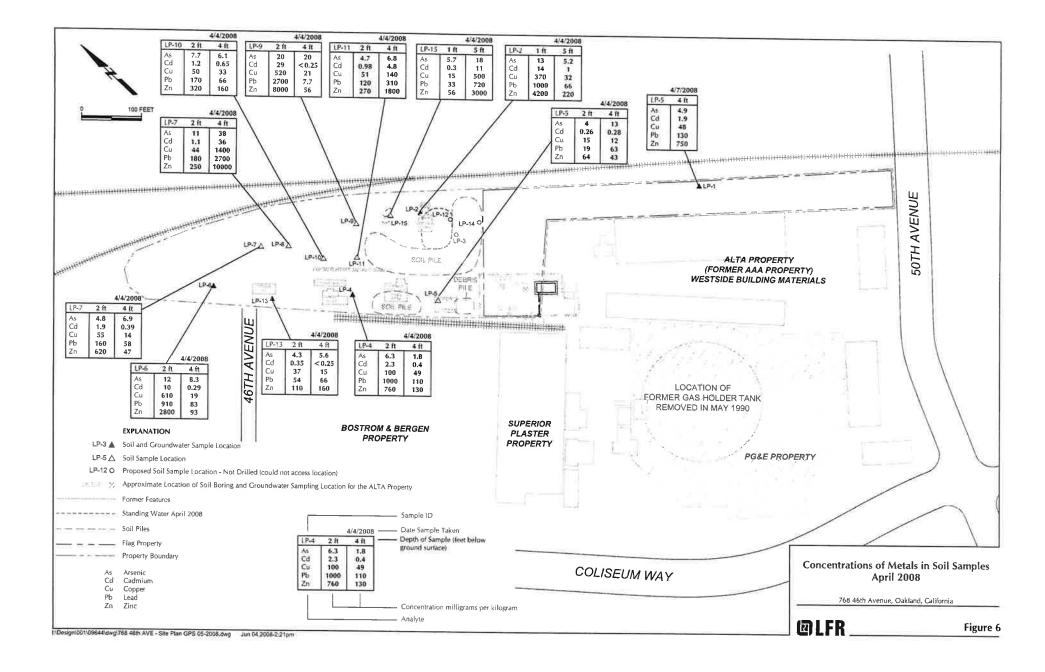

Table 7	
Metals in Groundwater Samples Collected at the Learner Property	
768 46th Avenue, Oakland, California	

Concentrations in micrograms per liter (unless otherwise noted)


Sample ID	Date	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
LP-1	04/02/2008	< 10	< 5.0	60	<2.0	< 5.0	< 5.0	< 5.0	< 5.0	< 3.4	13	30	<10	<5.0			
LP-2	04/04/2008	<10	< 6.1	320	< 2.0	< 5.0	< 5.0	< 5.0	< 5.0	<3.0	36	6.5	<10	< 5.0	< 10	< 5.0	< 20
LP-6	04/04/2008	< 10	< 6.1	76	<2.0	< 5.0	6.1	< 5.0	23	<3.0	11	11	< 10	< 5.0	< 10	< 5.0	<20 42
LP-13	04/04/2008	< 10	< 6.1	180	<2.0	< 5.0	< 5.0	< 5.0	< 5.0	< 3.0	14	8.0	< 10	< 5.0	< 10	< 5.0	< 20
REGULATORY C	CONCENTRATIONS (RWQC	B ESLs)														- 3.0	120
Where groundwater drinking water - cos	r is not considered a source of mmercial land use	50,000	50,000	\$0,000	50.000	50,000	50,000	50,000	50.000	50,000	50.000	50,000	50.000	50.000	50.000	50,000	50,000


Notes:


Samples analyzed by: Curtis & Tompkins, Ltd. ESLs = Environmental Screening Levels by San Francisco Bay Regional Water Quality Control Board (RWQCB). November 2007.



APPENDIX C

ALAMEDA COUNTY PUBLIS WORKS AGENCY DRILLING PERMITS

Public	399 Elmhurst Street Hayward, CA 94544-13 Telephone: (510)670-6633 Fax:(5		
Application Approved	on: 06/24/2008 By jamesy		t Numbers: W2008-0367 06/27/2008 to 06/27/2008
Application Id:	1213806372226	City of Project Site	:Oakland
Site Location: Project Start Date: Requested Inspection		Completion Date	:06/27/2008
	:06/27/2008 at 2:00 PM (Contact your inspector,	Vicky Hamlin at (510) 67	'0-5443, to confirm.)
Applicant:	PES Environmental - Gary Thomas 1682 Novato Blvd #100, Novato, CA 94947	Phone	: 415-899-1600
Property Owner:	John Weber of Cox, Castle & Nicholson also	Phone	: 415-262-5105
Client:	Stuart Block 555 California St, 10th flr., San Francisco, CA S ** same as Property Owner **	94104	
	Receipt Number: WR2008-0218 Payer Name : PES Environmental		\$200.00 \$200.00 PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Geotechnical Study/CPT's - 8 Boreholes Driller: Vironex Inc. - Lic #: 705927 - Method: DP

Work Total: \$200.00

Specificatio	ns				
Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2008-	06/24/2008	09/25/2008	8	3.00 in.	28.00 ft
0367					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

5. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five

(5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

7. Cuttings may also be left on site or spread out as long as the applicants has approval from the property owner and the cuttings will not violate the State and County Clean Water laws (NPDES).

8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

PUBLIC	399 Elmhurst Street Hayward, CA 94544-1399 Telephone: (510)670-6633 Fax:(51	5 0)782-1939
Application Approved	on: 07/22/2008 By jamesy	Permit Numbers: W2008-0491 Permits Valid from 07/31/2008 to 07/31/2008
Application Id:	1216768413253	City of Project Site:Oakland
Site Location: Project Start Date: Requested Inspection	:07/31/2008	Completion Date:07/31/2008
Scheduled Inspection	:07/31/2008 at 1:00 PM (Contact your inspector, F	Ron Smalley at (510) 670-5407, to confirm.)
Applicant:	PES, Environmental, Inc - Gary Thomas 1682 Novato Blvd.,Suite 100, Novato, CA 94947	Phone: 415-899-1600
Property Owner:	John Weber-c/o Cox, Castle Nicholson, LLC	Phone: 415-262-5105
Client:	(Stuart Block-Contact) 555 California Street,. 10th Floor, San Francisco, ** same as Property Owner **	CA 94104
	Receipt Number: WR2008-0251 Payer Name : PES Environmental, Inc	

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 7 Boreholes Driller: Vironex, Inc - Lic #: 705927 - Method: DP

Work Total: \$230.00

Specificatio	ons				
Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2008-	07/22/2008	10/29/2008	7	2.50 in.	15.00 ft
0491					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact Ron Smalley for an inspection time at 510-670-5407 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

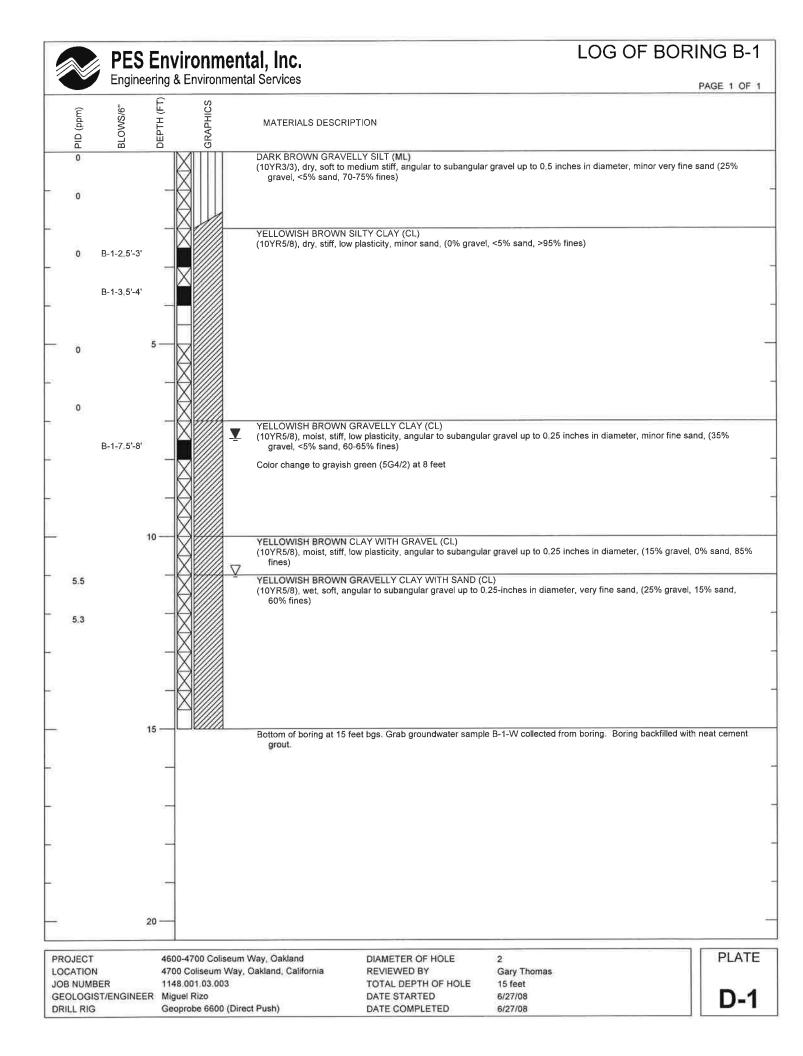
5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

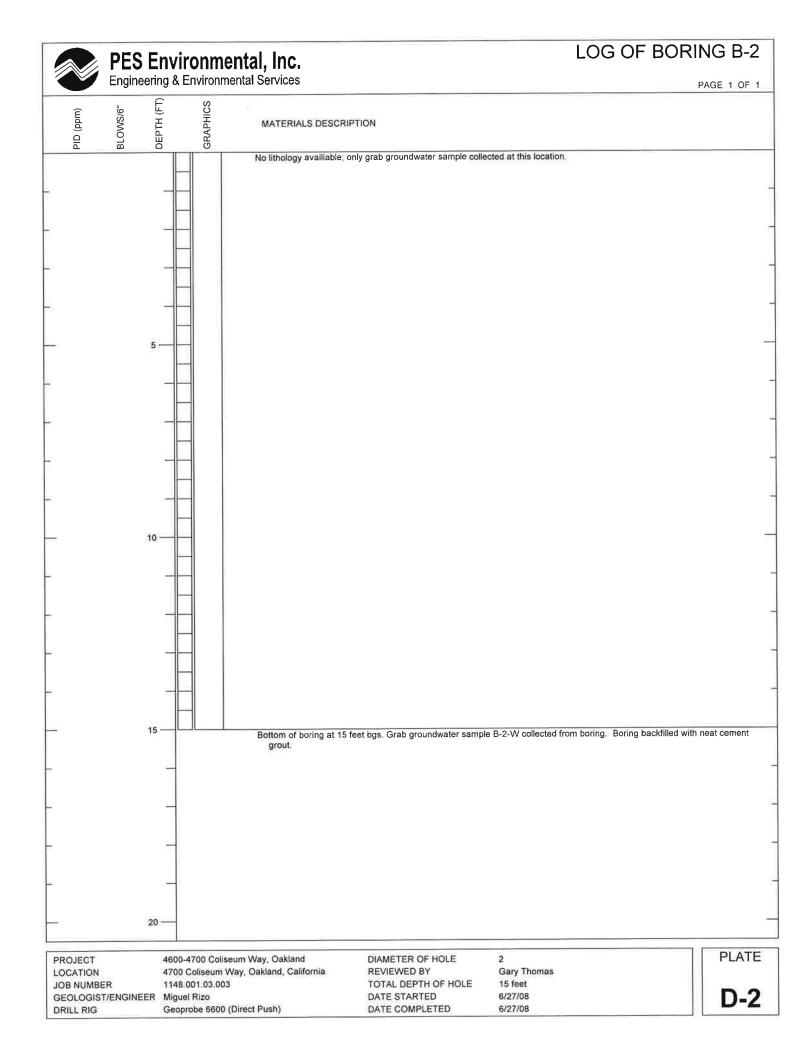
6. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and

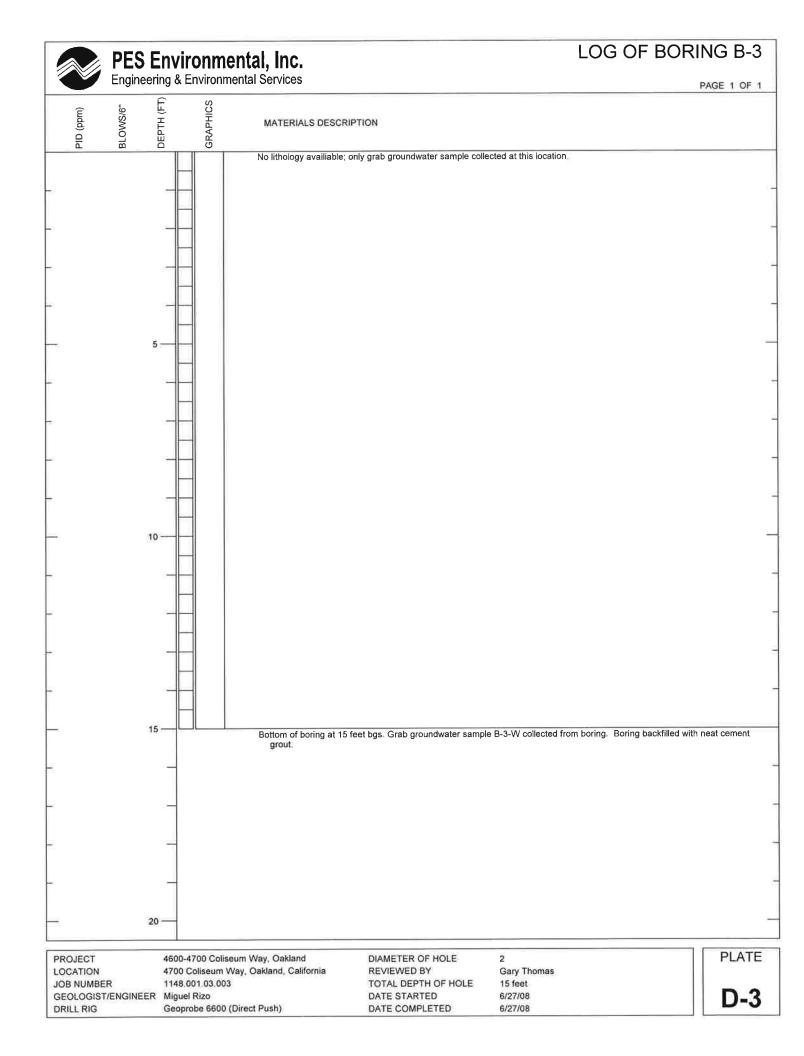
coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

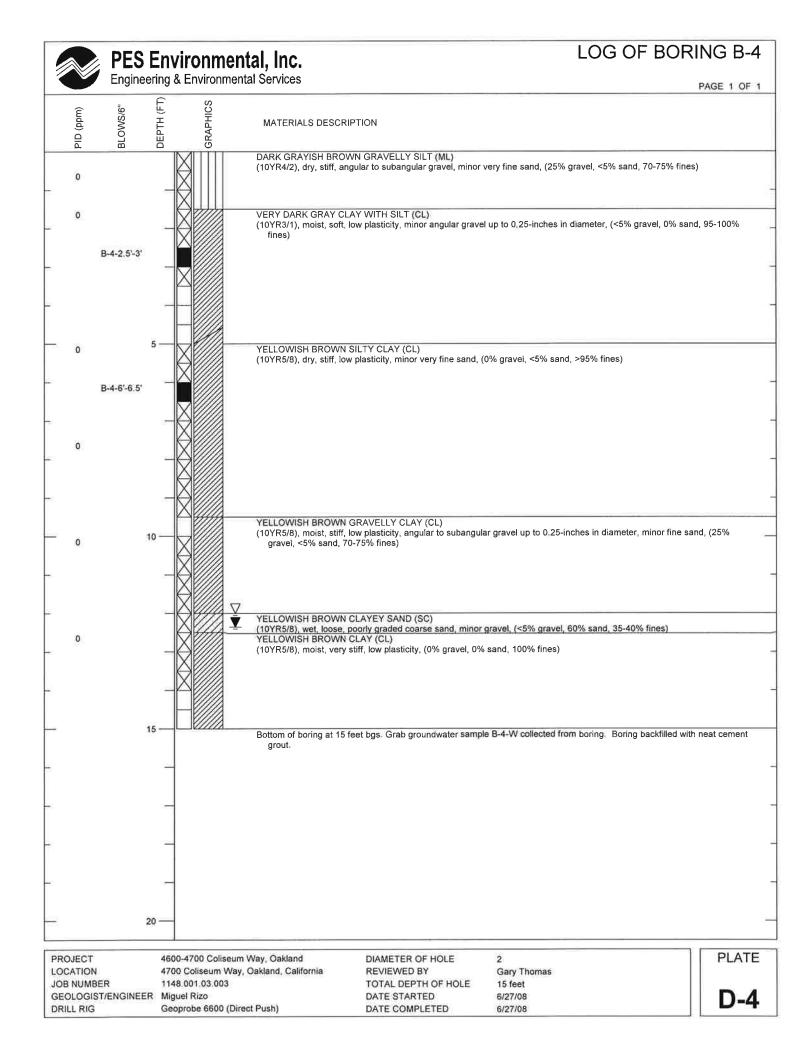
7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

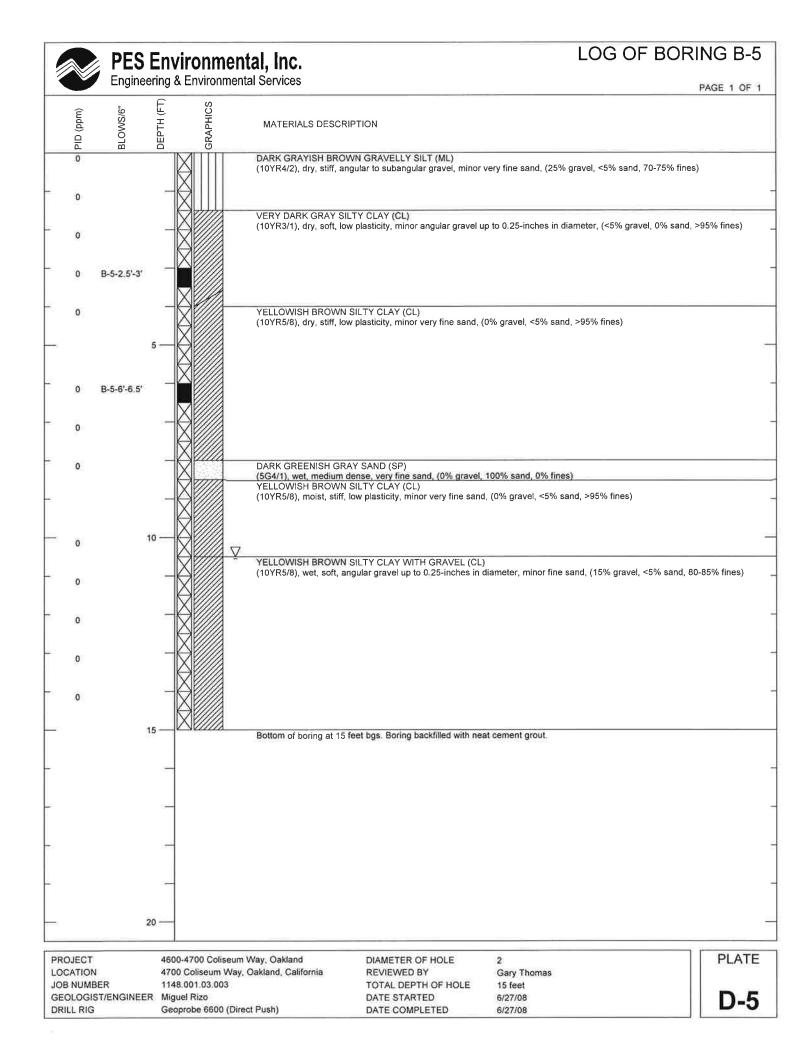
APPENDIX D

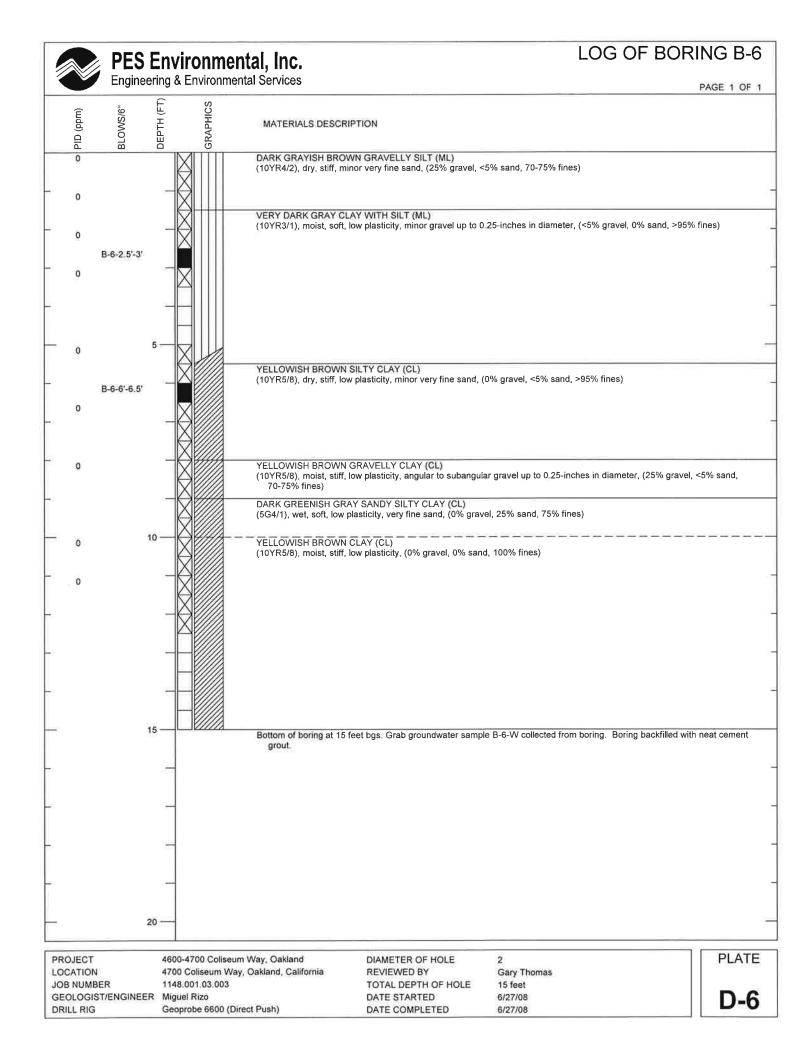

LITHOLOGIC LOGS

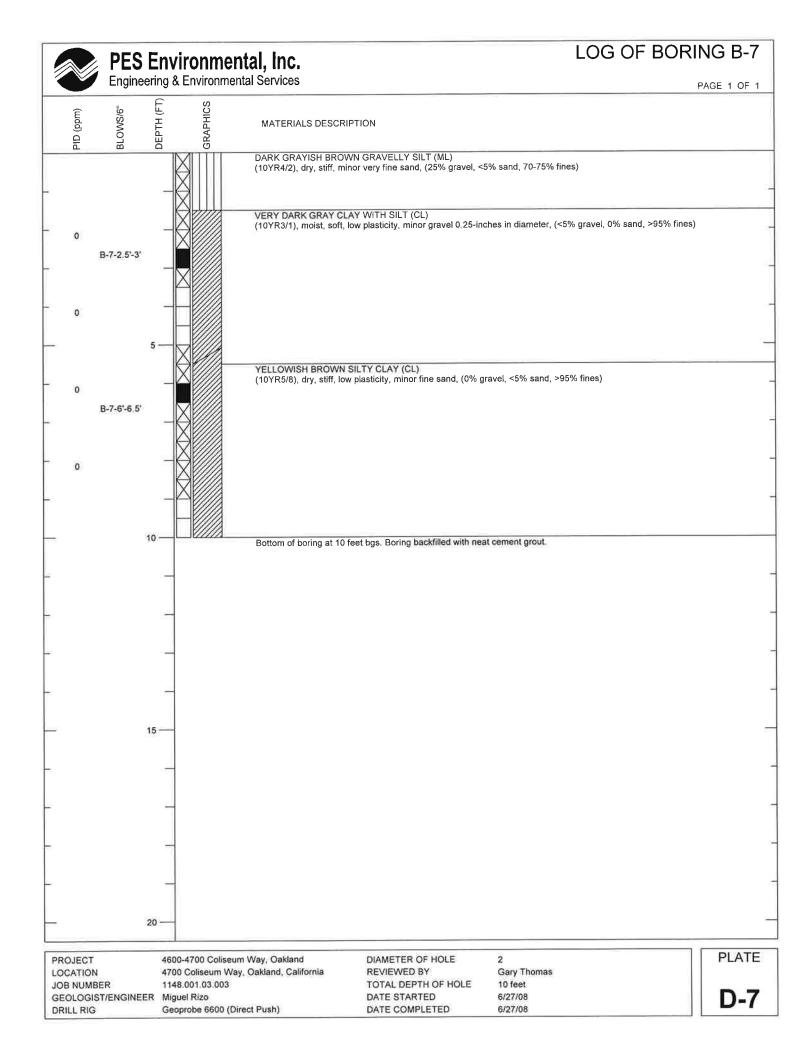

	MAJOR DIVIS	SIONS			TYPICAL NAMES
		CLEAN GRAVELS WITH LESS THAN	GW		WELL-GRADED GRAVELS WITH OR WITHOUT SAND
) SIEVE	GRAVELS MORE THAN HALF	15% FINES	GP		POORLY-GRADED GRAVELS WITH OR WITHOUT SAND
ILS N NO. 200	COARSE FRACTION IS LARGER THAN NO. 4 SIEVE	GRAVELS WITH	GM	0.0	SILTY GRAVELS WITH OR WITHOUT SAND
AINED SO RSER THA		15% OR MORE FINES	GC		CLAYEY GRAVELS WITH OR WITHOUT SAND
COARSE-GRAINED SOILS HALF IS COARSER THAN NO.		CLEAN SANDS	sw		WELL-GRADED SANDS WITH OR WITHOUT GRAVEL
	SANDS MORE THAN HALF	WITH LESS THAN 15% FINES	SP		POORLY-GRADED SANDS WITH OR WITHOUT GRAVEL
MORE THAN	COARSE FRACTION IS FINER THAN NO. 4 SIEVE SIZE	SANDS WITH 15%	SM		SILTY SANDS WITH OR WITHOUT GRAVEL
		OR MORE FINES	sc		CLAYEY SANDS WITH OR WITHOUT GRAVEL
200 SIEVE			ML		INORGANIC SILTS OF LOW TO MEDIUM PLASTICITY WITH OR WITHOUT SAND OR GRAVEL
	SILTS AN	ID CLAYS 50% OR LESS	CL		INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY WITH OR WITHOUT SAND OR GRAVEL
-GRAINED SOILS IS FINER THAN NO.			OL		ORGANIC SILTS OR CLAYS OF LOW TO MEDIUM PLASTICITY WITH OR WITHOUT SAND OR GRAVEL
FINE-GRAI HALF IS FIN			мн		INORGANIC SILTS OF HIGH PLASTICITY WITH OR WITHOUT SAND OR GRAVEL
RE THAN H		ID CLAYS EATER THAN 50%	сн		INORGANIC CLAYS OF HIGH PLASTICITY WITH OR WITHOUT SAND OR GRAVEL
MOR			он		ORGANIC SILTS OR CLAYS OF HIGH PLASTICITY WITH OR WITHOUT SAND OR GRAVEL
	HIGHLY ORGANI	C SOILS	PT	20 20 2 20 20 20 20	PEAT AND OTHER HIGHLY ORGANIC SOILS
	ABBREVIA	TION KEY			SYMBOLS KEY
ID (PP		Detector readings in pa space soil sample scre			lo Soil Sample Recovered artial Soil Sample Recovered
LOWS/	indicated on the lo	drive sampler 6 inches ogs using sample drive inds falling 30 inches.		×υ	Indisturbed Soil Sample Recovered
Y 5/2	- Soil Color accord (1994 Revised Ec	ing to Munsell Soil Cold lition)	or Charts		lydropunch Sample
et MSL et BGS	- feet above Mean	Sea Level			irst Encountered Groundwater Level
. C.	wirenmen	tal Inc			Soil Classification System Chart
	g & Environment			4600-4	700 Coliseum Way

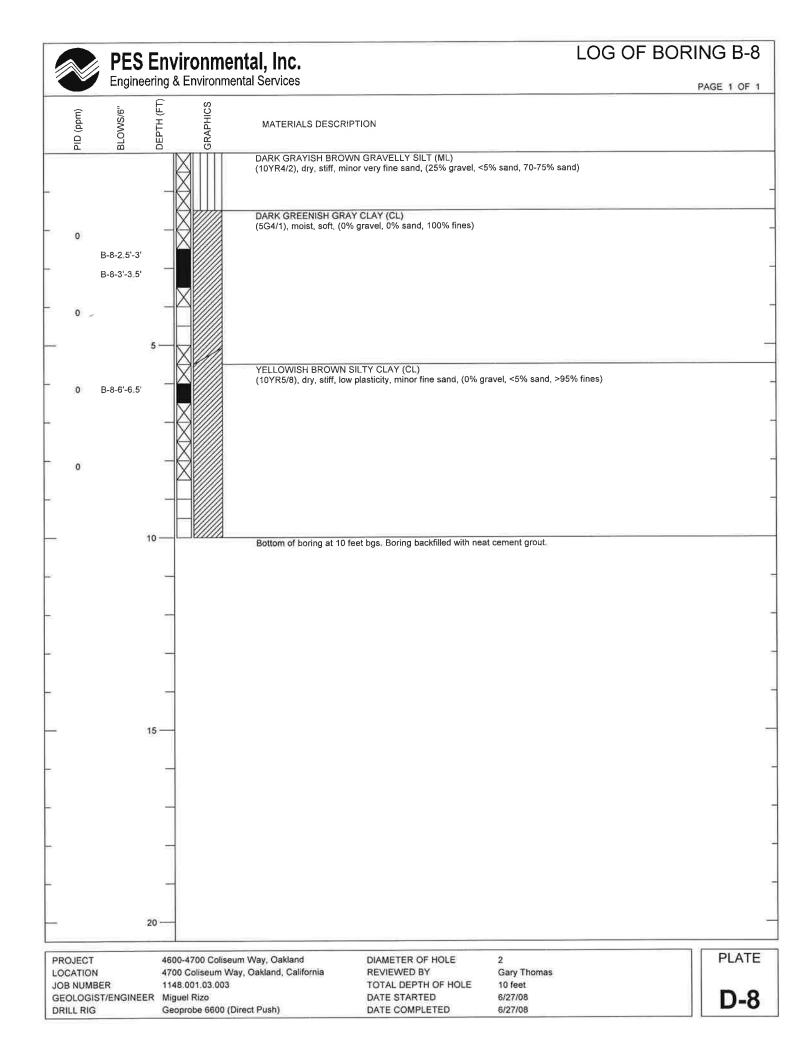

1148.001.03.003

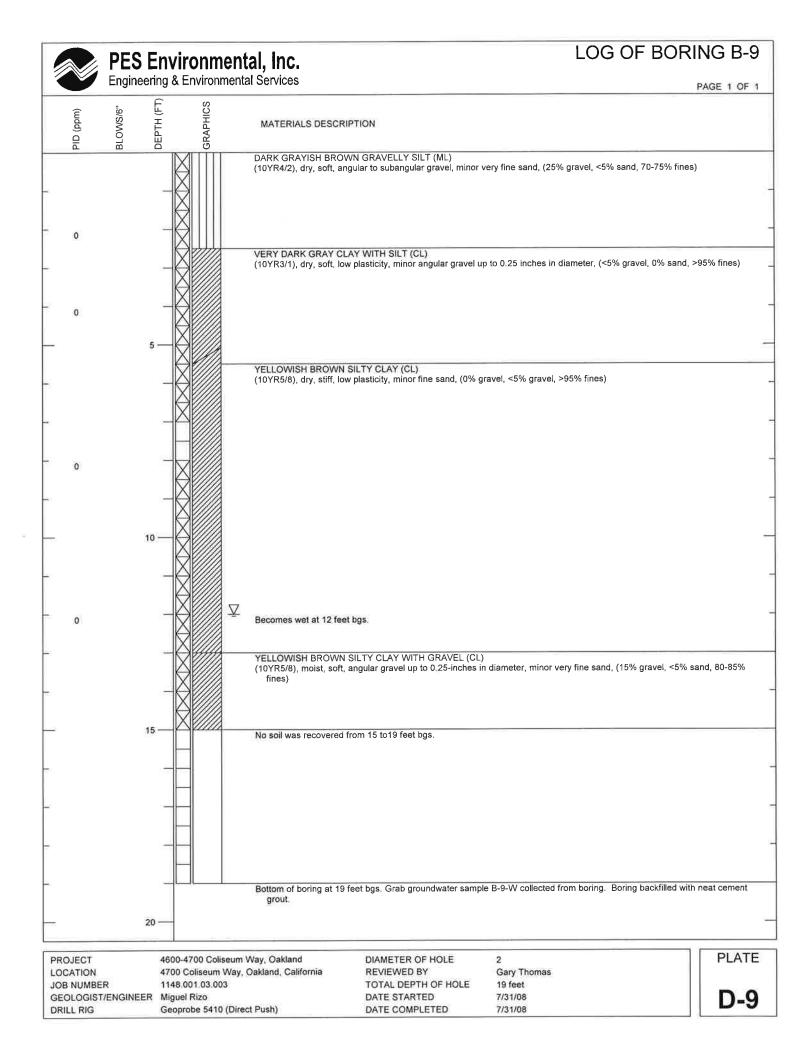

JOB NUMBER

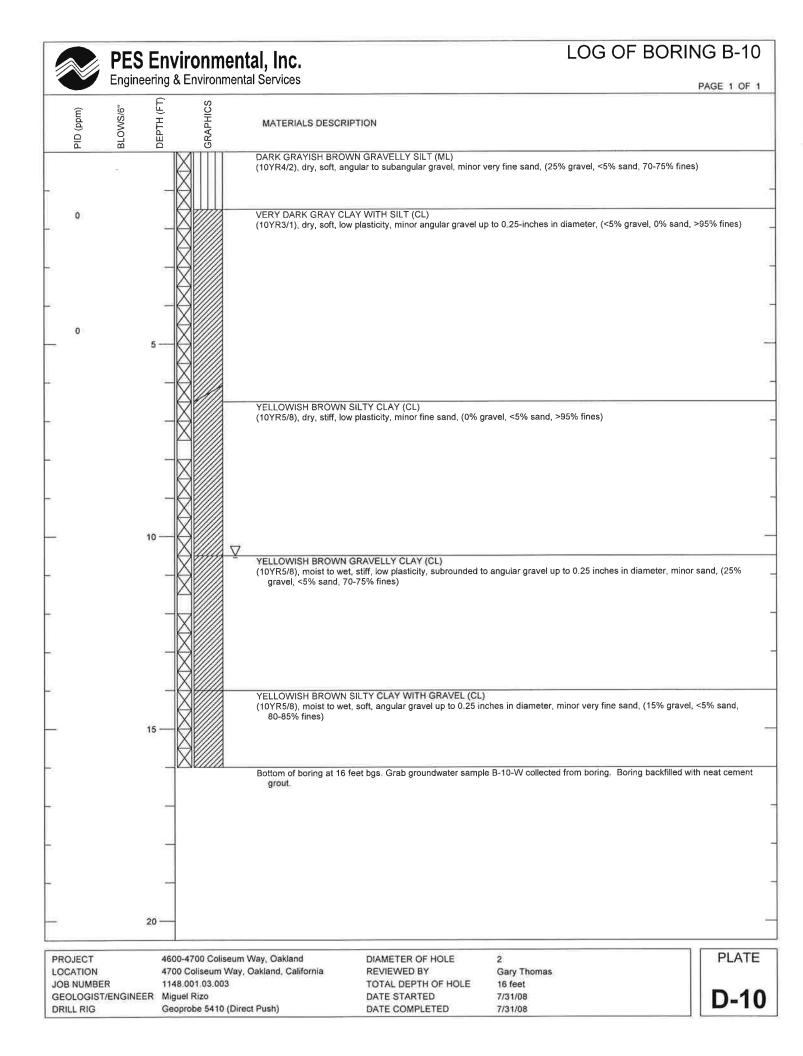

GDT REVIEWED BY

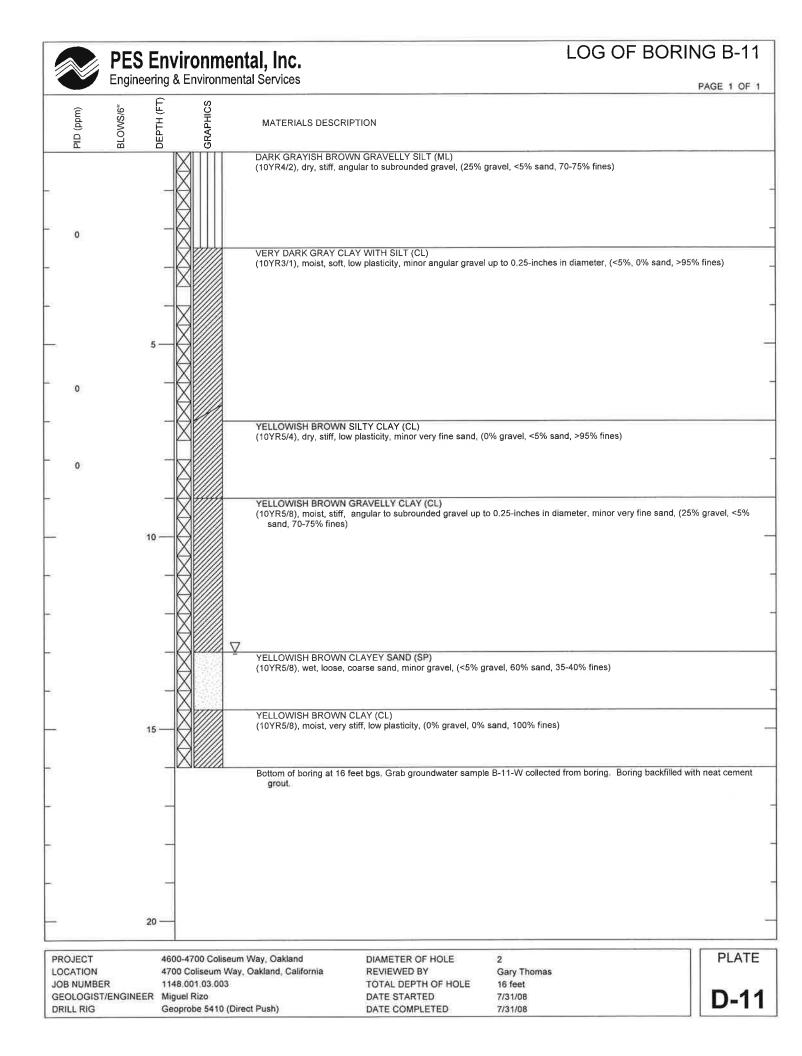


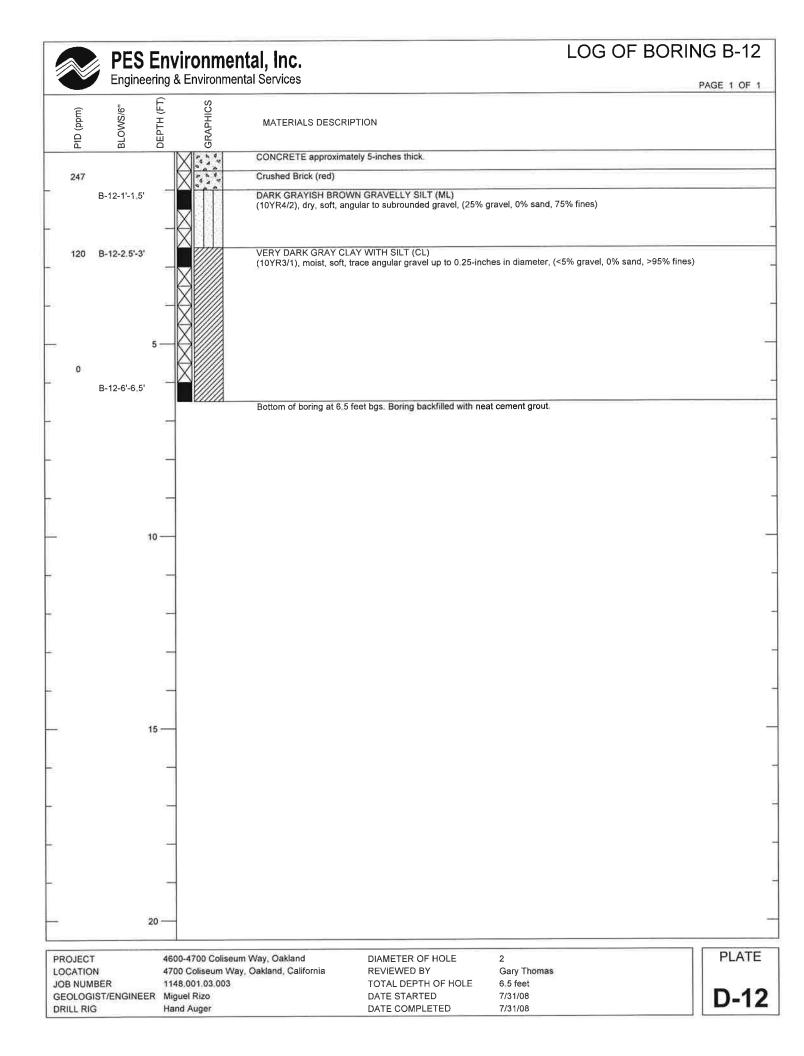


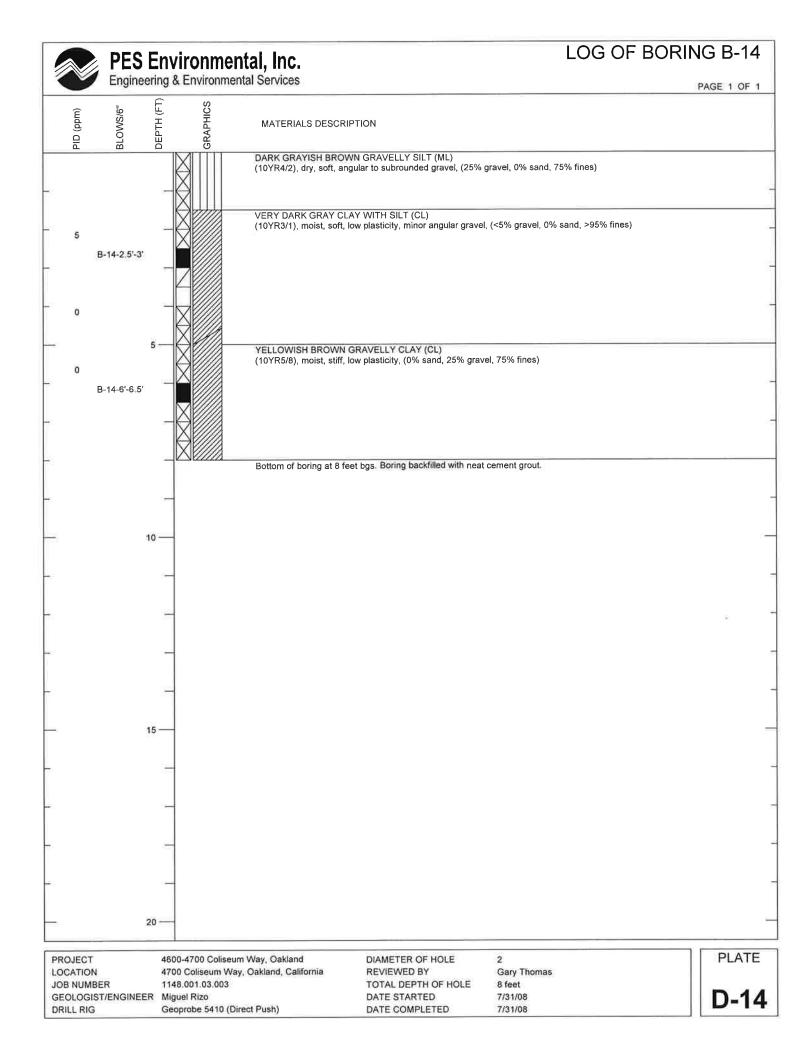


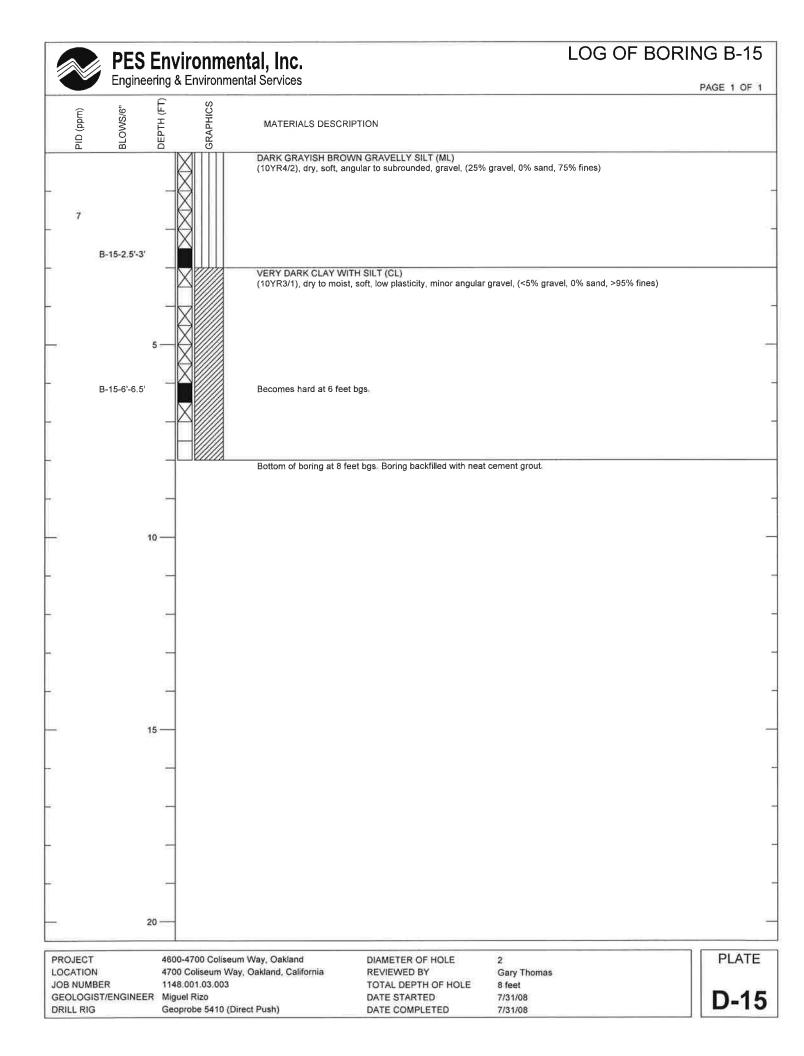












APPENDIX E

CURTIS & TOMPKINS LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

Laboratory Job Number 204298 ANALYTICAL REPORT

PES Environmental, Inc.	Project : 1148.001.02.002
1682 Novato Boulevard	Location : 4700 Coliseum Way Site, Oakland
Novato, CA 94947	Level : II

Sample ID	<u>Lab ID</u>
B-1-2.5'-3'	204298-001
B-1-7.5'-8'	204298-002
B-4-2.5'-3'	204298-003
B-4-6'-6.5'	204298-004
B-5-2.5'-3'	204298-005
B-5-6'-6.5'	204298-006
B-6-2.5'-3'	204298-007
B-6-6'-6.5'	204298-008
B-7-2.5'-3'	204298-009
B-7-6'-6.5'	204298-010
B-8-2.5'-3'	204298-011
B-8-6'-6.5'	204298-012
B-1-W	204298-013
B-2-W	204298-014
B-3-W	204298-015
B-4-W	204298-016
B-6-W	204298-017

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature: Project Manager Signature:

Signature:

Senior Program Manager

Date: <u>07/08/2008</u>

Date: <u>07/11/2008</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received:

204298 PES Environmental, Inc. 1148.001.02.002 4700 Coliseum Way Site, Oakland 06/27/08 06/27/08

This hardcopy data package contains sample and QC results for twelve soil samples and five water samples, requested for the above referenced project on 06/27/08. The samples were received cold and intact.

Volatile Organics by GC/MS (EPA 8260B) Water:

B-4-W (lab # 204298-016) had pH greater than 2. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B) Soil: No analytical problems were encountered.

Dissolved Gases by GC/FID (RSK-175): No analytical problems were encountered.

Ion Chromatography (EPA 300.0): No analytical problems were encountered.

Total Organic Carbon (TOC) (SM5310C): No analytical problems were encountered.

LABOF JOB N	RATORY: UMBER:	6.	18-001-0	nental, Inc.	SAMPLERS:	NOF CUSTODY	RECOR	(415) 899-1600 FA	ORNIA 94 X (415) 89	1947
NAME PROJE	/LOCAT		Kyle 7	im hung Site / Datel Elery	BECORDER	Urennel Bro	-	W W		
		DATE			MATRIX	# of Containers & Preservatives	DEDTH	8010 8021 8260B / 8260B / 825/8015 8015M 8015M 8015M		
YR	мо	DY	TIME	SAMPLE NUMBER / DESIGNATION	Vapor Water Soil Sedim't	Unpres, EnCore H ₂ SO ₄ HNO ₃ HCI	DEPTH IN FEET	EPA 5035/8010 EPA 5035/8021 EPA 5035/8021 EPA 5035/80260B P ¹ //// A1 TPHg by 5035/8015M TPHmo by 8015M EPA 8270C MNA Parameters (see notes)		
0 5	306	27	0825	8-1-2.5-3	X	4		× ×		++
		27	0830	8-1-75-8	X	and the second sec		X		
			0940	B-4-25-31	X	4		X		
			0910	13-4-6-651	X	4				
1	-	1	1040	B-1-2.53	X	4		X		
1	1		1050	8-5-6-65	X	4		X		
		1	11/5	B-6-25-8	X	4		X		
-			1120	3-6-6-65	Χ.	4		XX		
			1140	B-7-25-3	X	4		XYM		
1		\vdash	1195	8-2-6-6.5	K	<u> </u>		X		
			1215	8-8-25-8	X	4		X		
X		1×	IZZ P	3-8-6-65	X	4				
_			NOT			0	CHAIN OF C	CUSTODY RECORD		
Turn A	round Tir	ne: 5	headword.	5-day TAT	C	RELINQUISHED BY: (Security)	RECEIVE	ED BY: (Signature)	DATE	TIME
-			en ice, in	lepet		RELINIQUISHED BY: (Signature)	RECEIVE	ED BY: (Signalure)	DATE	Z. TIME
	_							1		

	RELINQUISHED BY: (Signature)		RECEIVE	D BY: (Signature)				
BEVISED	DISPATCHED BY: (Signeture)	DATE	TIME	TIME RECEIVED FOR LAB BY: (Signal				
	METHOD OF SHIPMENT: Dropped	ett a	+ 10	boratory				

REUSED - rec'd via Fax 4/27/08 1554

WHITE-Laboratory COPY YELLOW-Project Office Copy PINK-Field or Office Copy

DATE

DATE

TIME

TIME

Bes Environmental, Engineering & Environmental Se LABORATORY: Curtis & Tomphic JOB NUMBER: 1148.001.02.002	<u>S</u> SAM	MPLERS: _	6	204298		OULEVARD, SUITE 100 ALIFORNIA 94947 FAX (415) 899-1601 UESTED
NAME / LOCATION: 4700 Coliseum Way PROJECT MANAGER: Kyle Flory	site Oakland, REC		# of Containers		3 Phus 015M M s (see no	
	LE NUMBER / SIGNATION		Preservatives H H NO ³ H H NO ³ H CI H SO ⁴ H H NO ³	DEPTH IN FEET	EPA 5035/8010 EPA 5035/8021 EPA 5035/8021 TPHg by 5035/8015M TPHmo by 8015M EPA 8270C MNA Parameters (see	
10806270825B-1 2 270830B-1	- 2.5'-3' - 7.5'-8'	×	4 4		×	
3 4 5 10940B-4 5 1096B-4 5 1090B-5 1090B-5 1090B-5 1090B-5 10940B-4 10940B	-25-31	×	4 4 4 4			
5 0 9 0 B - 3 6 1 0 5 0 B - 3 7 1 1 5 B - 6	-6-65'	X	- 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7		×	
8 11 ZOB-G 9 1140B-7	- 6'-6.5 - 2.5-3'	×	4			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		XX	4			

NOTES		CHA	IN OF C	USTODY RECORD		
Turn Around Time: Standard 5-day TAT	RE INCUISHED BY: (Signature)	PES	RECEIVE	DBY: (Signature)	DATE 6/27/08	
onice, intact	RELINIQUISHED BY: (Signation)		RECEIVE	DBY/(Signature)	DATE	TIME
	RELINQUISHED BY: (Signature)		RECEIVED	DBY: (Signature)	DATE	TIME
	RELINQUISHED BY: (Signature)		RECEIVED	D BY: (Signature)	DATE	TIME
	DISPATCHED BY: (Signature)	DATE	TIME	RECEIVED FOR LAB BY: (Signature)	DATE	TIME
	METHOD OF SHIPMENT: Droppe	ed off a	+ 10.1	boratory		

J	ABORA OB NUM	idry:	//-	+13-	\$ 00	T 1.0 Col	om 2.	pk oo	1-5		C. Is <u>S:</u> 4e	:/0	ak	SAMI		s: _	AIN A		4	e	/	R	2	5	2	BE	c 12	OR -18	P		Plus MTBE & gashine			(4 ⁻	NC 15) 8 JALY	SIS	O B0 O, C 1600 REC	ALIF FA	ORN X (4 ⁻	IA 9 15) 8	4947	
		C	DATE					SA	MPL	= NI	JMBER	a /			MAT	RIX				(Cont reser			TI		DEI	ртн	0.001	6/8021	5/8260B	5035/80	8015M	y 8015N								
	YR	мо	DY	(TIN	1E					ATION	17		Vapor	Soil	Sedim't		Unpres.	EnCore	H ₂ SO ₄	HN03						l FE	N ET	1001 101	EPA 5035/8021	EPA 5035/8260B	TPHg by 5035/8015M	TPHd by 8015M	TPHmo by 8015M	MNA Parameters							
13	08	20	27	- 0	9	00	B	-	1.	-	W			1	<			2	_	2	Z	5									×				×	5						
14				0	9	20	B		Ζ-	- 1	N				5						1 M	5									×											
15				9	3	0	B	-	3.	- 1	N			1	<						1	5									×											
16				1	0	10		-	4.	-	W			1	X						IN										X											
17	Y	V	V	- 1	1	30	B	-	6	•	W			1	X						14	3								1	×											

NOTES	• 0	CHA	IN OF CL	JSTODY RECORD			
Turn Around Time: Standard 5-day TAT	RELINGUISHED BY: (Signature)	17	RECEIVED	BY: (Signature)	DATE	TIME	
* MNA Parameters include the following:	RELINQUISHED BY: (Signature)		RECEIVED	BY: (Signalure)	DATE	TIME	m
· TOC by EPA Test Mothed 415.2;	-		1	-			
for the of part is the menter source;	RELINQUISHED BY: (Signature)		RECEIVED) BY: (Signature)	DATE	TIME	
· Salfate by EPA Test Method 300.0; · Chloride by EPA Test Method 300.0; and	RELINQUISHED BY: (Signature)		RECEIVED	BY: (Signature)	DATE	TIME	
· Methane, ethane, and ethene by	DISPATCHED BY: (Signature)	DATE	TIME	RECEIVED FOR LAB BY: (Signature)	DATE	TIME	
EPA Test Method RSK-175.							
	METHOD OF SHIPMENT: Propped of	FF a	+ 165	and tory			
on ice, intact							

Login #	COOLER RECEIPT CHECKLIST Curtis & Tompkins, Ltd.
Date Opened $G/27$ By (print) KWellbord (sign) Date Logged in Y By (print) Y (sign) 1. Did cooler come with a shipping slip (airbill, etc)? YES YES New 2A. Were custody scals present? YES (sign) YES No 2B. Were custody scals present? YES (sign) YES NO 3. Were custody scals resent? YES NO YES NO 4. Were custody scals resent? YES NO YES NO 5. User custody papers filled out properly (ink, signed, etc)? NO NO NO 6. Indicate the packing in cooler: (other, describe) NO NO 6. Indicate the packing in cooler: (other, describe) NO NO 7. If required, was sufficient ice used? Samples should be < or = 6°C	Login # 204 298 Date Received 6/27 /08 Number of coolers Client PES Project 4700 Coliseum Way
Shipping info	Date Opened 6/27 By (print) KWellbrock (sign) Hullbrock
How many Name Date 2B. Were custody seals intact upon arrival? YES NO WO 3. Were custody papers filled out properly (ink, signed, etc)? NO 4. Were custody papers filled out properly (ink, signed, etc)? NO 5. Is the project identifiable from custody papers? (if so fill out top of form) NO 6. Indicate the packing in cooler: (if other, describe) None Øbbb Wrap Foam blocks Bags 1. If required, was sufficient ice used? Samples should be < or = 6°C	1. Did cooler come with a shipping slip (airbill, etc)?
4. Were custody papers filled out properly (ink, signed, etc)? NO 5. Is the project identifiable from custody papers? (If so fill out top of form) NO 6. Indicate the packing in cooler: (if other, describe) None Bubble Wrap Foam blocks Bags Cloth material Cardboard Styrofoam Paper towels Trequired, was sufficient ice used? Samples should be < or = 6°C	How many Name Date 2B. Were custody seals intact upon arrival? YES NO N/A
Cloth material □ Cardboard □ Styrofoami □ Paper towels 7. If required, was sufficient ice used? Samples should be < or = 6°C	4. Were custody papers filled out properly (ink, signed, etc)?
Type of ice used: Wet Blue None Temp(°C)	Bubble Wrap 🗌 Foam blocks 🖉 Bags 🗌 None
Samples Received on ice & cold without a temperature blank Samples received on ice directly from the field. Cooling process had begun Samples received on ice directly from the field. Cooling process had begun Sop Volume: Client Services	
★ Samples Received on ice & cold without a temperature blank □ Samples received on ice directly from the field. Cooling process had begun 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 9. Dotte sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? 14. Are the samples appropriately preserved? 15. Are bubbles > form absent in VOA samples? 16. Was us?	Type of ice used: Wet Blue None Temp(°C)
8. Were Method 5035 sampling containers present? ISBN 0 If YES, what time were they transferred to freezer? ISBN 0 9. Did all bottles arrive unbroken/unopened?	Samples Received on ice & cold without a temperature blank
If YES, what time were they transferred to freezer?	Samples received on ice directly from the field. Cooling process had begun
SOP Volume: Client Services SOP Volume: Client Services Rev. 5 Number 1 of 3	If YES, what time were they transferred to freezer? 1530 9. Did all bottles arrive unbroken/unopened?
	ATS- V3 B-2-W VOAs w/ Bubble; V3 B-3-W VOAs w/ Bubble; 2/3 B-4-W VOAs w/ Bubble A12- Water sangles haveW on COC but sample IDs haveGW for B-1.
Section: 1.1.2 Effective: 19 May 2008	

L1.2 Effective: 19 May 2008 1 of IC:\Documents and Settings\carol\Local Settings\Temporary Internet Files\Content.IE5\Q6BXTRDB\Cool6 Page:

181

		Volatile	Organics	1	
Lab #:	204298		Location:	4700 Coliseum Way Site,	Oakland
Client:	PES Environmental,	Inc.		EPA 5030B	
Project#:	1148.001.02.002			EPA 8260B	
Field ID:	B-1-W		Batch#:	139803	
Lab ID:	204298-013		Sampled:	06/27/08	
Matrix:	Water		Received:	06/27/08	
Units:	ug/L		Analyzed:	06/30/08	
Diln Fac:	1.000		4 8		

Analyte	Result	RL
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	14	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	
		0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	0.6	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	5.4	0.5
Benzene	ND	0.5
Trichloroethene	ND	0,5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	41	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	0.6	0.5
m, p-Xylenes	2.1	0.5
o-Xylene	0.8	0.5
Styrene	ND U.U	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	
	ND	0.5
Propylbenzene		0.5

ND= Not Detected RL= Reporting Limit

		Volatile	Organics		
Lab #:	204298			4700 Coliseum Way Site, Oakland	
Client:	PES Environmental,	Inc.	Prep:	EPA 5030B	
Project#:	1148.001.02.002			EPA 8260B	
Field ID:	B-1-W		Batch#:	139803	
Lab ID:	204298-013		Sampled:		
Matrix:	Water		Received:		
Units:	ug/L		Analyzed:	06/30/08	
Diln Fac:	1.000				
Analy		Result		RL	
Bromobenzene		ND		0.5	
1,3,5-Trimethylk		ND		0.5	
2-Chlorotoluene		ND		0.5	
4-Chlorotoluene		ND		0.5	
tert-Butylbenzer		ND		0.5	
1,2,4-Trimethylb	benzene	ND		0.5	
sec-Butylbenzene		ND		0.5	
para-Isopropyl I		ND		0.5	
1,3-Dichlorobenz		ND		0.5	
1,4-Dichlorobenz		ND		0.5	
n-Butylbenzene		ND		0.5	
1,2-Dichlorobenz	ene	ND		0.5	
1,2-Dibromo-3-Ch	lloropropane	ND		2.0	
1,2,4-Trichlorob		ND		0.5	
Hexachlorobutadi		ND		2.0	
Naphthalene		ND		2.0	
1,2,3-Trichlorob	enzene	ND		0.5	

Naphthalene 1,2,3-Trichlorobenzene			2.0 0.5
Surrogate	%REC	Limits	
Dibromofluoromethane	109	80-123	
1,2-Dichloroethane-d4	104	76-138	
Toluene-d8	99	80-120	
Bromofluorobenzene	97	80-120	

-		Vola	atile	Organics	1
Lab #:	204298			Location:	4700 Coliseum Way Site, Oakland
Client:	PES Environmental	Inc.		Prep:	EPA 5030B
Project#:	1148.001.02.002	No Destriction		Analysis:	EPA 8260B
Field ID:	B-2-W			Batch#:	139803
Lab ID:	204298-014			Sampled:	06/27/08
Matrix:	Water			Received:	06/27/08
Units:	ug/L			Analyzed:	06/30/08
Diln Fac:	1.000			Anaryzeu:	00/30/08
DIIII FaC:	1.000				
Anal	yte	Res	ult	1. I.	RL
Freon 12 tert-Butyl Alcc		ND ND			1.0
	IIOI (IBA)				10
Chloromethane	()	ND			1.0
Isopropyl Ether	(DIPE)	ND			0.5
Vinyl Chloride		ND			0.5
Bromomethane		ND			1.0
Ethyl tert-Buty	l Ether (ETBE)	ND			0.5
Chloroethane		ND			1.0
Methyl tert-Amy	l Ether (TAME)	ND			0.5
Trichlorofluoro	methane	ND			1.0
Acetone		ND			10
Freon 113					
		ND	1 0		2.0
1,1-Dichloroeth			1.0		0.5
Methylene Chlor		ND			10
Carbon Disulfid	e	ND			0.5
MTBE		ND			0.5
trans-1,2-Dichl	oroethene	ND			0.5
Vinyl Acetate		ND			10
1,1-Dichloroeth	ane		3.1		0.5
2-Butanone		ND	J. +		10
cis-1,2-Dichlor	oethene	ND			0.5
2,2-Dichloropro	Pane	ND			0.5
Chloroform		ND			0.5
Bromochlorometh		ND			0.5
1,1,1-Trichloro	ethane	ND			0.5
1,1-Dichloropro	pene	ND			0.5
Carbon Tetrachl		ND			0.5
1,2-Dichloroeth			1.5		0.5
Benzene		ND	2.0		0.5
Trichloroethene		ND			0.5
					0.5
1,2-Dichloropro		ND			0.5
Bromodichlorome	tnañe	ND			0.5
Dibromomethane		ND			0.5
4-Methyl-2-Pent		ND			10
cis-1,3-Dichlor	opropene	ND			0.5
Toluene			3.5		0.5
trans-1,3-Dichl	oropropene	ND			0.5
1,1,2-Trichloro		ND			0.5
2-Hexanone		ND			10
1,3-Dichloropro	nane	ND			
					0.5
Tetrachloroethe		ND			0.5
Dibromochlorome		ND			0.5
1,2-Dibromoetha	ne	ND			0.5
Chlorobenzene		ND			0.5
1,1,1,2-Tetrach	loroethane	ND			0.5
Ithylbenzene		ND			0.5
m,p-Xylenes			0.5		0.5
o-Xylene		ND	0.0		0.5
Styrene		ND			0.5
Bromoform	_	ND			1.0
Isopropylbenzen	e	ND			0.5
1,1,2,2-Tetrach	loroethane	ND			0.5
1,2,3-Trichloro	propane	ND			0.5
Propylbenzene		ND			0.5

ND= Not Detected RL= Reporting Limit

		Volatile	Organics	3	
Lab #: Client: Project#:	204298 PES Environmental, 1148.001.02.002	, Inc.	Prep:	4700 Coliseum Way Site, EPA 5030B EPA 8260B	Oakland
Field ID: Lab ID: Matrix: Units: Diln Fac:	B-2-W 204298-014 Water ug/L 1.000		Batch#: Sampled: Received: Analyzed:	06/27/08 06/27/08	
Ar	alyte	Result		RL	
Bromobenzene		ND		0.5	
1,3,5-Trimeth 2-Chlorotolue		ND ND		0.5	
4-Chlorotolue		ND		0.5	
tert-Butylber		ND		0.5	
1,2,4-Trimeth	nylbenzene	ND		0.5	
sec-Butylbenz		ND		0.5	
para-Isopropy		ND		0.5	
para-isopropy		ND		0.5	

1,3-Dichlorobenzene	ND		0.5	
1,4-Dichlorobenzene	ND		0.5	
n-Butylbenzene	ND		0.5	
1,2-Dichlorobenzene	ND		0.5	
1,2-Dibromo-3-Chloropropane	ND		2.0	
1,2,4-Trichlorobenzene	ND		0.5	
Hexachlorobutadiene	ND		2.0	
Naphthalene	ND		2.0	
1,2,3-Trichlorobenzene	ND		0.5	
Surrogate	%REC	Limits		
Dibromofluoromethane	102	80-123		
1,2-Dichloroethane-d4	104	76-138		
Toluene-d8	100	80-120		
Bromofluorobenzene	98	80-120		

	Volati	le Organics
Lab #:	204298	Location: 4700 Coliseum Way Site, Oakland
Client:	PES Environmental, Inc.	Prep: EPA 5030B
Project#:	1148.001.02.002	Analysis: EPA 8260B
Field ID:	B-3-W	Batch#: 139803
Lab ID:	204298-015	Sampled: 06/27/08
Matrix:	Water	Received: 06/27/08
Units:	ug/L	Analyzed: 06/30/08
Diln Fac:	1.000	4 , ,

Analyte	Re	esult	RL	
Freon 12	ND	2044 C	1.0	
tert-Butyl Alcohol (TBA)	ND		10	
Chloromethane	ND		1.0	
Isopropyl Ether (DIPE)	ND	19	0.5	
Vinyl Chloride	ND	ŦĴ	0.5	
Bromomethane	ND		1.0	
	ND		0.5	
Ethyl tert-Butyl Ether (ETBE)	-		1.0	
Chloroethane	ND			
Methyl tert-Amyl Ether (TAME)	ND		0.5	
Trichlorofluoromethane	ND		1.0	
Acetone	ND		10	
Freon 113	ND		2.0	
1,1-Dichloroethene		2.5	0.5	
Methylene Chloride	ND		10	
Carbon Disulfide	ND		0.5	
MTBE	ND		0.5	
trans-1,2-Dichloroethene	ND		0.5	
Vinyl Acetate	ND		10	
1,1-Dichloroethane		11	0.5	
2-Butanone	ND		10	
cis-1,2-Dichloroethene	ND		0.5	
2,2-Dichloropropane	ND		0.5	
Chloroform	ND		0.5	
Bromochloromethane	ND		0.5	
1,1,1-Trichloroethane		7.8	0.5	
1,1-Dichloropropene	ND		0.5	
Carbon Tetrachloride	ND		0.5	
1,2-Dichloroethane		3.9	0.5	
Benzene	ND		0.5	
Trichloroethene	ND		0.5	
1,2-Dichloropropane	ND		0.5	
Bromodichloromethane	ND		0.5	
Dibromomethane	ND		0.5	
4-Methyl-2-Pentanone	ND		10	
cis-1,3-Dichloropropene	ND		0.5	
Toluene	112	1.1	0.5	
trans-1,3-Dichloropropene	ND	1 .1	0.5	
1,1,2-Trichloroethane	ND		0.5	
2-Hexanone	ND		10	
1,3-Dichloropropane	ND		0.5	
Tetrachloroethene	ND		0.5	
Dibromochloromethane	ND		0.5	
1,2-Dibromoethane	ND		0.5	
Chlorobenzene	ND		0.5	
1,1,1,2-Tetrachloroethane	ND		0.5	
Ethylbenzene	ND		0.5	
m,p-Xylenes	ND		0.5	
o-Xylene	ND		0.5	
Styrene	ND		0.5	
Bromoform	ND		1.0	
Isopropylbenzene	ND		0.5	
1,1,2,2-Tetrachloroethane	ND		0.5	
1,2,3-Trichloropropane	ND		0.5	
Propylbenzene	ND		0.5	

ND= Not Detected RL= Reporting Limit

		Volatile	Organics
Lab #: Client: Project#:	204298 PES Environmenta 1148.001.02.002	l, Inc.	Location: 4700 Coliseum Way Site, Oakland Prep: EPA 5030B Analysis: EPA 8260B
Field ID: Lab ID:	B-3-W 204298-015		Batch#: 139803 Sampled: 06/27/08
Matrix: Units: Diln Fac:	Water ug/L 1.000		Received: 06/27/08 Analyzed: 06/30/08
Anal	yte	Result	RL
Bromobenzene	-	ND	0.5
1,3,5-Trimethyl	benzene	ND	0.5
2-Chlorotoluene		ND	0.5
4-Chlorotoluene		ND	0.5
tert-Butylbenze		ND	0.5
1,2,4-Trimethyl	benzene	ND	0.5
sec-Butylbenzer	ie	ND	0.5
para-Isopropyl		ND	0.5
1,3-Dichlorober		ND	0.5
1,4-Dichlorober	izene	ND	0.5
n-Butylbenzene		ND	0.5
1,2-Dichlorober		ND	0.5
1,2-Dibromo-3-C	nioropropane	ND	2.0
1,2,4-Trichloro		ND	0.5
Hexachlorobutad	liene	ND	2.0
Naphthalene		ND	2.0
1,2,3-Trichlord	openzene	ND	0.5
Surro		REC Limits	
Dibromofluorome			
1,2-Dichloroeth			
Toluene-d8	10	61 (S14.56) (S2457- 997)	
Bromofluorobenz	ene 10	2 80-120	

ND= Not Detected RL= Reporting Limit Page 2 of 2

		Volatile	Organics			
Lab #:	204298		Location:	4700 Coliseum Way Site, Oakland		
Client:	PES Environmental,	Inc.		EPA 5030B		
Project#:	1148.001.02.002		Analysis:	EPA 8260B		
Field ID:	B-4-W		Units:	ug/L		
Lab ID:	204298-016		Sampled:	06/27/08		
Matrix:	Water		Received:	06/27/08		

Analyte	Result	RL	Diln Fac	Batch#	Analyzed
Freon 12	ND	5.0	5.000	139803	06/30/08
tert-Butyl Alcohol (TBA)	ND	50	5.000	139803	06/30/08
Chloromethane	ND	5.0	5.000	139803	06/30/08
Isopropyl Ether (DIPE)	2.7	2.5	5.000	139803	06/30/08
Vinyl Chloride	ND	2.5	5.000	139803	06/30/08
Bromomethane	ND	5.0	5.000	139803	06/30/08
Ethyl tert-Butyl Ether (ETBE)	ND	2.5	5.000	139803	06/30/08
Chloroethane	ND	5.0	5.000	139803	06/30/08
Methyl tert-Amyl Ether (TAME)	ND	2.5	5.000	139803	06/30/08
Trichlorofluoromethane	ND	5.0	5.000	139803	06/30/08
Acetone	ND	50	5.000	139803	06/30/08
Freon 113	ND	10	5.000	139803	06/30/08
1,1-Dichloroethene	1,000	10	20.00	139850	07/01/08
Methylene Chloride	ND	50	5.000	139803	06/30/08
Carbon Disulfide	ND	2.5	5.000	139803	06/30/08
MTBE	ND	2.5	5.000	139803	06/30/08
trans-1,2-Dichloroethene	ND	2.5	5.000	139803	06/30/08
Vinyl Acetate	ND	50	5.000	139803	06/30/08
1,1-Dichloroethane	230	2.5	5.000	139803	06/30/08
2-Butanone	ND	50	5.000	139803	06/30/08
cis-1,2-Dichloroethene	ND	2.5	5.000	139803	06/30/08
2,2-Dichloropropane	ND	2.5	5.000	139803	06/30/08
Chloroform	ND	2.5	5.000		06/30/08
Bromochloromethane	ND	2.5	5.000	139803	06/30/08
1,1,1-Trichloroethane	540	10	20.00	139850	07/01/08
1,1-Dichloropropene	ND	2.5	5.000		06/30/08
Carbon Tetrachloride	ND	2.5	5.000		06/30/08
1,2-Dichloroethane	20	2.5	5.000	139803	06/30/08
Benzene	ND	2.5	5.000		06/30/08
Trichloroethene	9.0	2.5	5.000		06/30/08
1,2-Dichloropropane	ND	2.5	5.000		06/30/08
Bromodichloromethane	ND	2,5	5.000		06/30/08
Dibromomethane	ND	2,5	5.000		06/30/08
4-Methyl-2-Pentanone	ND	50	5.000		06/30/08
cis-1,3-Dichloropropene	ND	2.5	5.000		06/30/08
Toluene	2.5	2.5	5.000		06/30/08
trans-1,3-Dichloropropene	ND	2.5	5.000		06/30/08
1,1,2-Trichloroethane	3.5	2.5	5.000		06/30/08
2-Hexanone	ND	50	5.000		06/30/08

ND= Not Detected

RL= Reporting Limit

	Volatile	Organics	
Lab #:	204298	Location: 470	0 Coliseum Way Site, Oakland
Client:	PES Environmental, Inc.		5030B
Project#:	1148.001.02.002	Analysis: EPA	8260B
Field ID:	B-4-W	Units:	ug/L
Lab ID:	204298-016	Sampled:	06/27/08
Matrix:	Water	Received:	06/27/08

Analyte	Result	RL	Diln Fac	Batch#	Analyzed
1,3-Dichloropropane	ND	2.5	5.000	139803	06/30/08
Tetrachloroethene	ND	2.5	5.000	139803	06/30/08
Dibromochloromethane	ND	2.5	5.000	139803	06/30/08
1,2-Dibromoethane	ND	2.5	5.000	139803	06/30/08
Chlorobenzene	ND	2.5	5.000	139803	06/30/08
1,1,1,2-Tetrachloroethane	ND	2,5	5.000	139803	06/30/08
Ethylbenzene	ND	2.5	5.000	139803	06/30/08
m,p-Xylenes	ND	2.5	5.000	139803	06/30/08
o-Xylene	ND	2.5	5.000	139803	06/30/08
Styrene	ND	2.5	5.000	139803	06/30/08
Bromoform	ND	5.0	5.000	139803	06/30/08
Isopropylbenzene	ND	2.5	5.000	139803	06/30/08
1,1,2,2-Tetrachloroethane	ND	2.5	5.000	139803	06/30/08
1,2,3-Trichloropropane	ND	2.5	5.000	139803	06/30/08
Propylbenzene	ND	2.5	5.000	139803	06/30/08
Bromobenzene	ND	2.5	5.000	139803	06/30/08
1,3,5-Trimethylbenzene	ND	2.5	5.000	139803	06/30/08
2-Chlorotoluene	ND	2.5	5.000	139803	06/30/08
4-Chlorotoluene	ND	2.5	5.000	139803	06/30/08
tert-Butylbenzene	ND	2.5	5.000	139803	06/30/08
1,2,4-Trimethylbenzene	ND	2.5	5.000	139803	06/30/08
sec-Butylbenzene	ND	2.5	5.000	139803	06/30/08
para-Isopropyl Toluene	ND	2.5	5.000	139803	06/30/08
1,3-Dichlorobenzene	ND	2.5	5.000	139803	06/30/08
1,4-Dichlorobenzene	ND	2.5	5.000	139803	06/30/08
n-Butylbenzene	ND	2.5	5.000	139803	06/30/08
1,2-Dichlorobenzene	ND	2.5	5.000	139803	06/30/08
1,2-Dibromo-3-Chloropropane	ND	10	5.000	139803	06/30/08
1,2,4-Trichlorobenzene	ND	2.5	5.000	139803	06/30/08
Hexachlorobutadiene	ND	10	5.000	139803	06/30/08
Naphthalene	ND	10	5.000	139803	06/30/08
1,2,3-Trichlorobenzene	ND	2.5	5,000	139803	06/30/08

Surrogate	%REC	Limits	Diln Fac	Batch#	Analyzed
Dibromofluoromethane	110	80-123	5.000	139803	06/30/08
1,2-Dichloroethane-d4	108	76-138	5.000	139803	06/30/08
Toluene-d8	97	80-120	5.000	139803	06/30/08
Bromofluorobenzene	106	80-120	5.000	139803	06/30/08

		Volatile	Organics	3
Lab #:	204298		Location:	4700 Coliseum Way Site, Oakland
Client:	PES Environmental,	Inc.		EPA 5030B
Project#:	1148.001.02.002		Analysis:	EPA 8260B
Field ID:	B-6-W		Batch#:	139803
Lab ID:	204298-017		Sampled:	06/27/08
Matrix:	Water		Received:	
Units:	ug/L		Analyzed:	
Diln Fac:	1.000		1	, ,

Applyte	De		DŤ	
Analyte Freon 12	ND Ke	sult	RL 1.0	
tert-Butyl Alcohol (TBA)	ND		10	
Chloromethane	ND		1.0	
Isopropyl Ether (DIPE)	INL	1.7	0.5	
Vinyl Chloride	ND	1./	0.5	
Bromomethane	ND		1.0	
	ND		0.5	
Ethyl tert-Butyl Ether (ETBE)	ND		1.0	
Chloroethane	ND		0.5	
Methyl tert-Amyl Ether (TAME) Trichlorofluoromethane	ND		1.0	
	ND ND		10	
Acetone Freon 113	ND		2.0	
1,1-Dichloroethene	ND		0.5 10	
Methylene Chloride	ND		0.5	
Carbon Disulfide	ND			
MTBE	ND		0.5	
trans-1,2-Dichloroethene	ND		0.5 10	
Vinyl Acetate	ND	0.0		
1,1-Dichloroethane	NTD	0.9	0.5	
2-Butanone	ND		10	
cis-1,2-Dichloroethene	ND		0.5	
2,2-Dichloropropane	ND		0.5	
Chloroform	ND		0.5	
Bromochloromethane	ND		0.5	
1,1,1-Trichloroethane	ND		0.5	
1,1-Dichloropropene	ND		0.5	
Carbon Tetrachloride	ND	1 0	0.5	
1,2-Dichloroethane	NID	1.8	0.5	
Benzene	ND			
Trichloroethene	ND		0.5	
1,2-Dichloropropane	ND		0.5	
Bromodichloromethane	ND		0.5	
Dibromomethane	ND		0.5	
4-Methyl-2-Pentanone	ND		10	
cis-1,3-Dichloropropene	ND	2.1	0.5	
Toluene	NTD	7.1	0.5	
trans-1,3-Dichloropropene	ND		0.5	
1,1,2-Trichloroethane	ND		0.5	
2-Hexanone	ND		10	
1,3-Dichloropropane	ND		0.5	
Tetrachloroethene	ND		0.5	
Dibromochloromethane	ND		0.5	
1,2-Dibromoethane	ND		0.5	
Chlorobenzene	ND		0.5	
1,1,1,2-Tetrachloroethane	ND		0.5	
Ethylbenzene	ND		0.5	
m,p-Xylenes	ND		0.5	
o-Xylene	ND		0.5	
Styrene	ND		0.5	
Bromoform	ND		1.0	
Isopropylbenzene	ND		0.5	
1,1,2,2-Tetrachloroethane	ND		0.5	
1,2,3-Trichloropropane	ND		0.5	
Propylbenzene	ND		0.5	

	Vola	atile Organics
Lab #: 204298		Location: 4700 Coliseum Way Site, Oakland
Client: PES Envir	onmental, Inc.	Prep: EPA 5030B
Project#: 1148.001.	02.002	Analysis: EPA 8260B
Field ID: B-6-W		Batch#: 139803
Lab ID: 204298-01	7	Sampled: 06/27/08
Matrix: Water		Received: 06/27/08
Units: ug/L		Analyzed: 06/30/08
Diln Fac: 1.000		
Analyte	Resi	
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5 0.5
sec-Butylbenzene	ND	
para-Isopropyl Toluene	ND	0.5 0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND e ND	2.0
1,2-Dibromo-3-Chloropropane	e ND ND	0.5
1,2,4-Trichlorobenzene Hexachlorobutadiene	ND	2.0
	ND	2.0
Naphthalene	ND	0.5
1,2,3-Trichlorobenzene	ND	0.5
Surrogate		nits
Dibromofluoromethane		-123
1,2-Dichloroethane-d4		-138
Toluene-d8	1 THE R. L. CONTRACT 1	-120
Bromofluorobenzene	99 80	-120

		Volatile	Organics	an a		
Lab #:	204298		Location:	4700 Coliseum Way	Site,	Oakland
Client:	PES Environmental,	Inc.		EPA 5030B		
Project#:	1148.001.02.002		Analysis:	EPA 8260B		
Type:	BLANK		Diln Fac:	1.000		
Type: Lab ID:	QC448666		Batch#:	139803		
Matrix:	Water		Analyzed:	06/30/08		
Units:	ug/L					

Analyte	Result	RL
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
	ND	1.0
Bromomethane	ND	0.5
Ethyl tert-Butyl Ether (ETBE)		
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
1 · · · · · · · · · · · · · · · · · · ·	ND	0.5
cis-1,3-Dichloropropene	ND	0.5
Toluene		0.5
trans-1,3-Dichloropropene	ND	
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5

ND= Not Detected RL= Reporting Limit

		Volatile	Organics	1
Lab #:	204298		Location:	4700 Coliseum Way Site, Oakland
Client:	PES Environmental,	Inc.	Prep:	EPA 5030B
Project#:	1148.001.02.002		Analysis:	EPA 8260B
Type: Lab ID:	BLANK		Diln Fac:	1.000
Lab ID:	QC448666		Batch#:	139803
Matrix:	Water		Analyzed:	06/30/08
Units:	ug/L			

Analyte	Result	RL
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	2.0
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5
Surrogate	%REC Limits	
Dibromofluoromethane	111 80-123	
1,2-Dichloroethane-d4	117 76-138	
Toluene-d8	100 80-120	
Bromofluorobenzene	98 80-120	

		Volatile	Organics	
Lab #:	204298		Location:	4700 Coliseum Way Site, Oakland
Client:	PES Environmental,	Inc.	Prep:	EPA 5030B
Project#:	1148.001.02.002		Analysis:	EPA 8260B
Type:	BLANK		Diln Fac:	1.000
Lab ID:	QC448853		Batch#:	139850
Matrix:	Water		Analyzed:	07/01/08
Units:	ug/L		1	

Analyte	Result	RL
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5
Laway 1001100110		v. v

ND= Not Detected RL= Reporting Limit

		Volatile	Organics
Lab #: Client: Project#:	204298 PES Environmental, 1148.001.02.002	Inc.	Location: 4700 Coliseum Way Site, Oakland Prep: EPA 5030B Analysis: EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC448853 Water ug/L		Diln Fac: 1.000 Batch#: 139850 Analyzed: 07/01/08

Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	2.0
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5
Surrogate	%REC Limits	
Dibromofluoromethane	109 80-123	
1,2-Dichloroethane-d4	114 76-138	
Toluene-d8	101 80-120	
Bromofluorobenzene	99 80-120	

	Vola	tile Organics
Lab #: Client: Project#:	204298 PES Environmental, Inc. 1148.001.02.002	Location: 4700 Coliseum Way Site, Oakland Prep: EPA 5030B Analysis: EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: 139803 Analyzed: 06/30/08

Type: BS			Lab ID:	QC4	48664	
Analyte		Spiked		Result	%REC	Limits
tert-Butyl Alcohol (TBA)		125.0		154.4	124	55-158
Isopropyl Ether (DIPE)		25.00		28.85	115	63-122
Ethyl tert-Butyl Ether (ETBE)		25.00		27.20	109	62-133
Methyl tert-Amyl Ether (TAME)		25.00		23.92	96	69-137
1,1-Dichloroethene		25,00		22.96	92	77-132
Benzene		25,00		23.46	94	80-120
Trichloroethene		25.00		21,76	87	80-120
Toluene		25.00		21.12	84	80-121
Chlorobenzene		25,00		22.77	91	80-120
Surrogate	%REC	Limits				
Dibromofluoromethane	113	80-123				
1,2-Dichloroethane-d4	111	76-138				
Toluene-d8	97	80-120				
Bromofluorobenzene	101	80-120				

Type: BSD			Lab ID:	QC448	3665			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)		125.0		158.0	126	55-158	2	20
Isopropyl Ether (DIPE)		25.00		26.97	108	63-122	7	20
Ethyl tert-Butyl Ether (ETBE)		25.00		26.56	106	62-133	2	20
Methyl tert-Amyl Ether (TAME)		25.00		27.55	110	69-137	14	20
1,1-Dichloroethene		25.00		24.62	98	77-132	7	20
Benzene		25.00		27.21	109	80-120	15	20
Trichloroethene		25.00		25.85	103	80-120	17	20
Toluene		25.00		24.25	97	80-121	14	20
Chlorobenzene		25.00		24.63	99	80-120	8	20
Surrogate	%REC	Limits						
Dibromofluoromethane	104	80-123						
1,2-Dichloroethane-d4	111	76-138						
Toluene-d8	100	80-120						
Bromofluorobenzene	101	80-120						

	Volatil	e Organics
Lab #: Client: Project#:	204298 PES Environmental, Inc. 1148.001.02.002	Location: 4700 Coliseum Way Site, Oakland Prep: EPA 5030B Analysis: EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: 139850 Analyzed: 07/01/08

Type: BS		Lab	ID:	QC448851		
Analyte	S	piked	Result	*REC	Limits	
tert-Butyl Alcohol (TBA)		125.0	140.	4 112	55-158	
Isopropyl Ether (DIPE)		25.00	26.	32 105	63-122	
Ethyl tert-Butyl Ether (H	TBE)	25.00	26.	55 106	62-133	
Methyl tert-Amyl Ether (7	AME)	25.00	23.	63 95	69-137	
1,1-Dichloroethene		25.00	24	11 96	77-132	
Benzene		25.00	24	40 98	80-120	
Trichloroethene		25.00	23.	87 95	80-120	
Toluene		25.00	22.	51 90	80-121	
Chlorobenzene		25.00	23	73 95	80-120	
Surrogate	%REC	Limits				
Dibromofluoromethane	108	80-123				
1 2 Dichloroethane-d4	104	76-120				

Dibromofluoromethane	108	80-123
1,2-Dichloroethane-d4	104	76-138
Toluene-d8	99	80-120
Bromofluorobenzene	94	80-120

Type: BSD			Lab ID:	QC44	8852			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)		125.0		146.1	117	55-158	4	20
Isopropyl Ether (DIPE)		25.00		26.54	106	63-122	1	20
Ethyl tert-Butyl Ether (ETBE)		25.00		27.28	109	62-133	3	20
Methyl tert-Amyl Ether (TAME)		25,00		24.62	98	69-137	4	20
1,1-Dichloroethene		25.00		23.96	96	77-132	1	20
Benzene		25.00		25.19	101	80-120	3	20
Trichloroethene		25.00		24.75	99	80-120	4	20
Toluene		25,00		22,83	91	80-121	1	20
Chlorobenzene		25.00		25.12	100	80-120	6	20
Surrogate	%REC	Limits						
Dibromofluoromethane	107	80-123						
1,2-Dichloroethane-d4	104	76-138						
Toluene-d8	97	80-120						
Bromofluorobenzene	104	80-120						

Lab File 204298 Location: 4700 Coliseum Way Site, Oakland Project#: 1148.001.02.002 Analysis: EPA 8260B Project#: 1148.001.02.002 Analysis: EPA 8260B Matrix: Soli Dilh Fac: 0.3381 Matrix: Soli Soli Soli Matrix: Soli </th <th></th> <th></th> <th>Volatile</th> <th>Organics</th> <th>I</th> <th></th>			Volatile	Organics	I	
Client: PES Environmental, Inc. Prep: EPA 5035 Project: 1148,001.02.002 Analyzis: EPA 3260B 111 Piolod 1D: 51.23.53' Diln Pac: 0.5318 Matrix: Soil 001 Sampled: 06/27/08 Matrix: soil 06/27/08 Analyzed: 06/27/08 Basis: as received No 94 Chiormethane ND 94 Chiormethane ND 94 Somonethane ND 9.4 Bromonethane ND 9.4 Bromonethane ND 9.4 Bromonethane ND 9.4 Bromonethane ND 4.7 Trichiorofluoromethane ND 4.7 Methyl tert-Awyl Ether (FMBE) ND 4.7 Methyl tert-Awyl Ether (MAE) ND 4.7 Markin Scatchane ND 4.7 Inin Locathane ND 4.7 Inin Locathane ND 4.7 Intrichioromet	Lab #:	204298		Location:	4700 Coliseum Way Site	e, Oakland
Field ID: B-1-2.5'-3' Diln Fac: 0.9381 Lab D: 204298-001 Batch#: 139928 Matrix: Soil Sampled: 06/27/08 Matrix: Soil Sampled: 06/27/08 Basis: as received Analyzed: 06/27/08 Freen 12 ND 9.4 Ext-Suryl Alcohol (TEA) ND 9.4 Chloromethane ND 9.4 Endoromethane ND 9.4 Chloromethane ND 9.4 Endoromethane ND 9.4 Chloromethane ND 9.4 Endoromethane ND 9.4 Chloroethane ND 9.4 Chloroethane ND 4.7 Vinyl Acetate ND 4.7 Chloropropane ND 4.7 Chlor			Inc.	Prep:	EPA 5035	· · · · · · · · · · · · · · · · · · ·
Lab ID: 204298-001 Batch#: 139828 Matrix: sampled: 06/27/08 06/27/08 Datis: ug/Kg Received: 06/27/08 Date: ug/Kg ND 94 Chormethane ND 94 Chlormethane ND 94 Chlormethane ND 9.4 Etert-Butyl Alcohol (TBA) ND 9.4 Chlormethane ND 9.4 Chlormethane ND 9.4 Chlorotethane ND 9.4 Chlorotethane ND 9.4 Ethyl tert-Swyl Ether (TTBE) ND 4.7 Methyl tert-Swyl Ether (TAME) ND 4.7 Methylene Chloride ND 4.7 Methylene Chloride ND 4.7 MTBB ND 4.7 MTBB ND 4.7 MTCATON 9.4 7 Carbon Disulfide ND 4.7 MTBB ND 4.7						
Natrix: Soil Sampled: 06/37/08 Basis: as received Analyzed: 06/30/08 Easis: as received Analyzed: 06/30/08 Treon 12 Analyzed: 06/30/08 Theore 12 Analyzed: 06/30/08 Theore 12 Alcohol (TBA) ND 9.4 Chloromethane ND 9.4 Envomethane ND 9.4 Envomethane ND 9.4 Envomethane ND 9.4 Envomethane ND 4.7 Wethyl tert-anyl Ether (TAME) ND 4.7 Methylenchloromethane ND 4.7 Acctone ND 4.7 Trichloroflucromethane ND 4.7 Methylenchloroethane ND 4.7 Tablelioroethane ND 4.7 Tablelioroethane ND 4.7 Theoroflucromethane ND 4.7 Theoroflucromethane ND 4.7 Theoroflucroethane <td></td> <td></td> <td></td> <td></td> <td>0.9381</td> <td></td>					0.9381	
Units: ug/Kg Received: 06/30/08 Basis: as received Analyzed: 06/30/08 Freen 12 ND 9.4 Freen 12 ND 9.4 Isopropyl Ether (DIFB) ND 9.4 Isopropyl Ether (DIFB) ND 9.4 Bromomethane ND 9.4 Ethyl tert-Butyl Ether (BTBB) ND 4.7 Chloromethane ND 9.4 Bromomethane ND 9.4 Chioromethane ND 4.7 Mthyl terd-Amyl Ether (TAME) ND 4.7 Methon Ethoromethane ND 4.7 Methon Ethoromethane ND 4.7 Methon Ethoromethane ND 4.7 Methon Ethoromethane ND 4.7 Malketone ND 4.7 I.abilohoroethane ND 4.7 I.abilohoroethane ND 4.7 Itamal A-pichloroethane ND 4.7 Itamal A-pichloroethane ND 4	1. TO TO THE STATE S					
Basis: as received Analyzed: 06/30/08 Analyte Result Rt Fron 12 ND 9.4 Chlormethane ND 9.4 Chlormethane ND 9.4 Birging ND 9.4 Dermomethane ND 9.4 Bthyl tert-Butyl Ether (BTBE) ND 4.7 Chloroethane ND 9.4 Bthyl tert-Auryl Ether (TAME) ND 4.7 Chloroethane ND 4.7 Chloroethane ND 4.7 Acetone ND 4.7 Italylene Chloride ND 4.7 Italylene Chloride ND 4.7 Vinyl Acetate ND 4.7 Vinyl Acetate ND 4.7 Italscothane ND 4.7 Italscothane ND 4.7 Italscothane ND 4.7 Italscothane ND 4.7 Italscothorethane ND 4.7						
Analyte Result Rt Freen 12 ND 9.4 Chloromethane ND 9.4 Chloromethane ND 9.4 Isopropyl Ether (DIPE) ND 4.4 Winyl Chlore ND 9.4 Isopropyl Ether (DIPE) ND 4.7 Chloroethane ND 4.7 Methyl Lert-Amyl Ether (TAME) ND 4.7 Chloroethane ND 4.7 Acctone ND 4.7 Trichlorofluoromethane ND 4.7 Acctone ND 4.7 Winyl Acctate ND 4.7 Winyl Acctate ND 4.7 Yinyl Acctate ND 4.7 Scabioroporpane ND 4.7 Yinyl Acctate ND 4.7 Remochloromethane ND 4.7 IDichloropethane ND 4.7 JDichloropethane ND 4.7 JJDichloropethane ND 4.7 <td>Units:</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Units:					
Freen 12 ND 9,4 chloromethane ND 94 Chloromethane ND 94 Chloromethane ND 94 Exopropyl Ether (DIPE) ND 4.7 Vinyl Chloride ND 9.4 Bromomethane ND 9.4 Bernomethane ND 4.7 Methyl tert-Amyl Ether (TBME) ND 4.7 Trichlorofluoromethane ND 4.7 Acetone ND 19 Freon 113 ND 4.7 Methyl tert-Amyl Ether (TAME) ND 4.7 Methylene Chloride ND 4.7 Methylene Chloride ND 4.7 METABE ND 4.7 Vil-Dichloroethane ND 4.7 Vil-Dichloroethane ND 4.7 Vil-Dichloropethane ND 4.7 Vil-Dichloropethane ND 4.7 Vil-Dichloropethane ND 4.7 Vil-Dichloropethane ND	Basis:	as received		Analyzed:	06/30/08	
Freen 12 ND 9,4 chloromethane ND 94 Chloromethane ND 94 Chloromethane ND 94 Exopropyl Ether (DIPE) ND 4.7 Vinyl Chloride ND 9.4 Bromomethane ND 9.4 Bernomethane ND 4.7 Methyl tert-Amyl Ether (TBME) ND 4.7 Trichlorofluoromethane ND 4.7 Acetone ND 19 Freon 113 ND 4.7 Methyl tert-Amyl Ether (TAME) ND 4.7 Methylene Chloride ND 4.7 Methylene Chloride ND 4.7 METABE ND 4.7 Vil-Dichloroethane ND 4.7 Vil-Dichloroethane ND 4.7 Vil-Dichloropethane ND 4.7 Vil-Dichloropethane ND 4.7 Vil-Dichloropethane ND 4.7 Vil-Dichloropethane ND						
lett-Butyl Alcohol (TBA) ND 94 Chloromethane ND 9,4 Isopropyl Ether (DIPE) ND 9,4 Bromomethane ND 9,4 Entryl tert-Butyl Ether (ETBE) ND 4.7 Chloromethane ND 4.7 Chromethane ND 4.7 Chromethane ND 4.7 Acetone ND 4.7 Acetone ND 4.7 Methylene Chloride ND 4.7 Methylene Chloride ND 4.7 Vinyl Alcohoroethane ND 4.7 MTB8 ND 4.7 Vinyl Acetate ND 4.7 Vinyl Acetate ND 4.7 Schooroethane ND 4.7 Carbon Terachloroethane ND 4.7 I.j. Dichloroethane ND 4.7 Schooroethane ND 4.7 I.j. J. Trichloroethane ND 4.7 I.j. J. Trichloroethane ND 4.7 I.j. J. Trichloroethane ND 4.7 <t< td=""><td></td><td>ie</td><td></td><td></td><td></td><td></td></t<>		ie				
ChloromethaneND9.4Isopropyl Ether (DTPB)ND4.7Vinyl ChlorideND9.4BermomethaneND9.4Ethyl tert-Butyl Ether (ETBE)ND4.7ChloroethaneND9.4Methyl tert-Amyl Ether (TAME)ND4.7AcetoneND19Preon 113ND4.7AcetoneND4.7In-DichloroetheneND4.7In-DichloroetheneND4.7Transl. 2DichloroetheneND4.7Transl. 2DichloroetheneND4.7Vinyl AcetateND4.7Vinyl AcetateND4.7Vinyl AcetateND4.7ChloroformND4.7Vinyl AcetateND4.7ChloroformND4.7PremochloroppaneND4.7ChloroformND4.7StatanoneND4.7Carbon TetrachlorideND4.7Carbon TetrachlorideND4.7I, 1TichloroethaneND4.7I, 2DichloroppeneND4.7I, 2DichloroppeneND4.7I, 3DichloroppeneND4.7I, 1TichloroethaneND4.7I, 1TichloroethaneND4.7I, 1TichloroethaneND4.7I, 1TichloroethaneND4.7I, 1.1TichloroethaneND4.7I, 1.1TichloroethaneND4.7I, 1.2Ti						
Isopropyl Ether (DIPE) ND 4.7 Vinyl Choride ND 9.4 Bromomethane ND 9.4 Bromomethane ND 9.4 Brothyl tert-awyl Ether (ETEB) ND 4.7 Chloroethane ND 9.4 Methyl tert-Awyl Ether (TAME) ND 4.7 Trichlorofluoromethane ND 4.7 Methyl tert-Awyl Ether (TAME) ND 4.7 Methyl etr-Awyl Ether (TAME) ND 4.7 Vinyl Accetate ND 4.7 Vinyl Accetate ND 4.7 Labutone ND 4.7 Labutone ND 4.7 Labutone ND 4.7 Labutonethane ND 4.7						
Vin(1) Chloride ND 9.4 Bromomethane ND 9.4 Bthyl tert-Butyl Ether (FTBR) ND 4.7 Chloroethane ND 4.7 Methyl tert-Amyl Ether (TAME) ND 4.7 Acetone ND 4.7 Acetone ND 4.7 Acetone ND 4.7 Chloroethane ND 4.7 Acetone ND 4.7 Chloroethane ND 4.7 Chloroethane ND 4.7 WTMB ND 4.7 Winyl Acetate ND 4.7 Vinyl Acetate ND 4.7 Vinyl Acetate ND 4.7 Chloroptopane ND 4.7 Chloroptopane ND 4.7 Chloroptopane ND 4.7 Chloroptopane ND 4.7 J.1-Dichloroethane ND 4.7 J.2-Dichloroptopane ND 4.7 Bromochloromet		(DTPE)				
Brommethane ND 9.4 Ethyl tert-Butyl Ether (FTBR) ND 4.7 Chlorethane ND 4.7 Trichlorofluoromethane ND 4.7 Acetone ND 4.7 Trichlorofluoromethane ND 4.7 Acetone ND 19 Freen 113 HE ND 4.7 Methylene Chloride ND 4.7 Carbon Disulfide ND 4.7 MTBB ND 4.7 Vinyl Acetate ND 4.7 Vinyl Acetate ND 4.7 1.1-Dichloroethane ND 4.7 2-autanone ND 4.7 2-bithoroethane ND 4.7 1.1-Dichloroethane ND 4.7 1.1-Dichloroethane ND 4.7 1.2-Dichloropropane ND 4.7 1.1.1-Dichloroethane ND 4.7 1.2-Dichloropropane ND 4.7 1.2-Dichloropropane ND		(DILE/				
Sthyl tert-Butyl Ether (ETBR) ND 4.7 Chloroethane ND 9.4 Methyl tert-Awyl Ether (TAME) ND 4.7 Actone ND 19 Freen 113 ND 4.7 Actone ND 4.7 Methylenc Chloride ND 4.7 Methylenc Chloride ND 4.7 Methylenc Chloride ND 4.7 Trans-1, 2-Dichloroethene ND 4.7 Vinyl Acctate ND 4.7 2Butanone ND 4.7 Chloroform ND 4.7 Chloroform ND 4.7 Chloroform ND 4.7 2.2-Dichloroethane ND 4.7 Chloroform ND 4.7 1.1-Dichloroethane ND 4.7 1.2-Dichloropropane ND 4.7 1.1-Dichloropropane ND 4.7 1.2-Dichloropropane ND 4.7 1.2-Dichloropropane ND 4.						
Chlöroethane ND 9.4 Methyl tert-Amyl Ether (TAME) ND 4.7 Acetone ND 4.7 Acetone ND 4.7 I.1-Dichloroethene ND 4.7 Methylene Chloride ND 4.7 Methylene Chloride ND 4.7 MTBB ND 4.7 Trans-1, 2-Dichloroethene ND 4.7 Vinyl Acetate ND 4.7 Vinyl Acetate ND 4.7 2-Butanone ND 4.7 Chloroethane ND 4.7 J.1-Dichloroethane ND 4.7 Chloroform ND 4.7 Chloroform ND 4.7 J.1-Dichloroethane ND 4.7 Carbon Tetrachloride ND 4.7 J.1, 1-Trichloroethane ND 4.7 J.2-Dichloropropane ND 4.7 J.2-Dichloropropane ND 4.7 J.1, 1.7:Trichloroethane ND 4		Fther (FTRF)				
Methyl tert-Myl Ether (TAME) ND 4.7 Trichlorofluoromethane ND 19 Preon 113 ND 4.7 Acetone ND 4.7 Trichloroethene ND 4.7 Methylene Chloride ND 4.7 Carbon Disulfide ND 4.7 Trans-1, 2-Dichloroethene ND 4.7 Vinyl Acetate ND 4.7 2-Butanone ND 4.7 Chloroethane ND 4.7 Chloroform ND 4.7 JDichloropethane ND 4.7 JDichloropethane ND 4.7 Chloroform ND 4.7 JDichloropethane ND 4.7 JDichloropethane ND 4.7		Hener (HIDH)				
TrichlorofluoromethaneND4.7AcetoneND19Preon 113ND4.7I,1-DichloroetheneND19Carbon DisulfideND4.7MTBBND4.7MTBBND4.7Trans-1,2-DichloroetheneND4.72-ButanoneND4.72-JoichloroetheneND4.72-JoichloroetheneND4.72-JoichloroetheneND4.72.7 -DichloroetheneND4.72.7 -DichloroetheneND4.72.7 -DichloroetheneND4.72.7 -DichloroetheneND4.72.7 -DichloroetheneND4.72.7 -DichloroetheneND4.72.7 -DichloroetheneND4.72.7 -DichloroetheneND4.73.1, 1, TrichloroetheneND4.71, 1, -DichloropropaneND4.71, 2-DichloroetheneND4.71, 2-DichloroetheneND4.71, 2-DichloroetheneND4.71, 2-DichloropropaneND4.71, 2-DichloropropaneND4.7DibromomethaneND4.71, 2-DichloropropaneND4.71, 2-DichloropropaneND4.71, 2-DichloropropaneND4.71, 2-DichloropropaneND4.71, 2-DichloropropaneND4.71, 2-DichloropropaneND4.71, 2-DichloropropaneND4.7 </td <td></td> <td>Ether (TAME)</td> <td></td> <td></td> <td></td> <td></td>		Ether (TAME)				
AcetoneND19Freen 113ND4,71,1-DichloroetheneND4,7Methylene ChlorideND4,7Carbon DisulfideND4,7Trans-1,2-DichloroetheneND4,7Trans-1,2-DichloroetheneND4,7(n) LocataeND4,7(n) Locatae						
Freen 113ND4.7N1.1-DichloroetheneND4.7Methylene ChlorideND4.7MBBND4.7MBBND4.7MTBND4.7Vinyl AcetateND4.71.1-DichloroetheneND4.72-ButanceND4.72-ButanceND4.7ChloropthereND4.7ChloropthaneND4.7ChloropthaneND4.7ChloropthaneND4.7ChloropthaneND4.7ChloropthaneND4.7ChloropthaneND4.7ChloropthaneND4.7ChloropthaneND4.7ChloropthaneND4.7Carbon TetrachlorideND4.7SenzeneND4.7PromodichloromethaneND4.7SenzeneND4.7Carbon TetrachlorideND4.7J.2-DichloroptopaneND4.7PibromorethaneND4.7PibromorethaneND4.7ChloroptopaneND4.7ChloroptopaneND4.7J.2-DichloroptopeneND4.7J.2-DichloroptopeneND4.7J.2-DichloroptopeneND4.7ChloropthaneND4.7J.3-DichloroptopeneND4.7J.3-DichloroptopeneND4.7J.2-DichloropthaneND4.7J.2-Dichloropthan						
1,1-DichloroetheneND4,7Methylene ChlorideND4,7Carbon DisulfideND4,7MTBEND4,7trans-1,2-DichloroetheneND4,71,1-DichloroethaneND4,72-ButanoneND4,72,2-DichloroethaneND4,7ChloroformND4,7BromochloromethaneND4,7BromochloromethaneND4,7L,1-DichloroethaneND4,7BromochloromethaneND4,7L,2-DichloropopaneND4,7L,1-DichloroethaneND4,7L,2-DichloropopaneND4,7L,2-DichloropopaneND4,7L,2-DichloropopaneND4,7L,2-DichloropopaneND4,7L,2-DichloropopaneND4,7L,2-DichloropopaneND4,7L,2-DichloropopaneND4,7L,2-DichloropopaneND4,7L,2-DichloropopaneND4,7L,2-DichloropopaneND4,7DibromodethaneND4,7L,2-DichloropopaneND4,7L,2-DichloropopaneND4,7L,2-DichloropopaneND4,7L,2-DichloropopaneND4,7L,2-DichloropopaneND4,7L,2-DichloropopaneND4,7L,2-DichloropopaneND4,7L,2-DichloropopaneND4,7L,2-DichloropopaneND4,7 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
Methylene ChlorideND19Carbon DisulfideND4.7MTBBND4.7Trans-1, 2-DichloroetheneND4.71.1-DichloroethaneND9.4cis-1, 2-DichloroetheneND9.4cis-1, 2-DichloroetheneND4.7ChloroformND4.7BromochloromethaneND4.7chloropthaneND4.7chloropthaneND4.7chloropthaneND4.7chloropthaneND4.7chloropthaneND4.7chloropthaneND4.7chloropthaneND4.7chloropthaneND4.7chloropthaneND4.7chloropthaneND4.7chloropthaneND4.7chloropthaneND4.7strickloropthaneND4.7pibromomethaneND4.7cis-1, 3-DichloroptopeneND4.7chloropthaneND4.7cis-1, 3-DichloroptopeneND4.7chloropthaneND4.7chloropthaneND4.7chloropthaneND4.7chloropthaneND4.7chloropthaneND4.7chloropthaneND4.7chloropthaneND4.7chloropthaneND4.7chloropthaneND4.7chloropthaneND4.7chloropthaneND4.7<		le				
Carbon DisulfideND4.7MTBBND4.7trans-1, 2-DichloroetheneND4.7vinyl AcctateND4.71.1-DichloroethaneND4.72-ButanoneND4.72,2-DichloroetheneND4.72,2-DichloroethaneND4.72,2-DichloroethaneND4.71,1,1-TrichloroethaneND4.7BromochloromethaneND4.71,1,1-TrichloroethaneND4.71,1,1-TrichloroethaneND4.71,2-DichloropropeneND4.72-DichloroethaneND4.71,2-DichloroethaneND4.71,2-DichloroethaneND4.71,2-DichloroptopaneND4.7SenzeneND4.7TrichloroptopaneND4.7J.2-DichloroptopaneND4.7J.2-DichloroptopaneND4.7DibromomethaneND4.7DibromomethaneND4.7DibromomethaneND4.7I,1,2-TrichloroptopeneND4.7J.1,2-TichloroptopeneND4.7J.3-DichloropropaneND4.7DibromochloromethaneND4.7J.3-DichloropropaneND4.7J.3-DichloropropaneND4.7J.1,2-TichloroptopaneND4.7DibromochloromethaneND4.7DibromochloromethaneND4.7DibromochloromethaneND4						
MTBEND4.7Vinyl AcetateND4.7Vinyl AcetateND4.71,1-DichloroethaneND9.4C-ButanoneND9.4cis-1,2-DichloroetheneND4.72,2-DichloropopaneND4.7ChloroformND4.7TrinchloroethaneND4.71,1-TrichloroethaneND4.71,1,1-TrichloroethaneND4.71,1,1-TrichloroethaneND4.71,1,2-DichloroppeneND4.71,2-DichloroppeneND4.71,2-DichloroethaneND4.71,2-DichloroethaneND4.7TrichloroethaneND4.7SenzeneND4.7TrichloroptopaneND4.7DibromomethaneND4.7SenzeneND4.7TrichloroptopaneND4.7J,2-DichloroptoponeND4.7DibromomethaneND4.7TrichloroptoponeND4.7TolueneND4.7TolueneND4.7trans-1,3-DichloroptopeneND4.7J,1,2-TrichloroethaneND4.7J,1,2-TrichloroethaneND4.7JibromochloromethaneND4.7JibromochloromethaneND4.7JibromochloromethaneND4.7J,2-DichloroptopaneND4.7J,2-DichloroptopaneND4.7J,2-DichloroptopaneND						
trans-1, 2-DichloroetheneND4.7Vinyl AcctateND471. 1-DichloroethaneND4.72-ButanoneND4.72. DichloroetheneND4.72. DichloropropaneND4.7ChloroformND4.7BromochloromethaneND4.71. 1. TrichloroethaneND4.71. 1. 1. TrichloroethaneND4.72. PoichloropropeneND4.72. PoichloropropeneND4.71. 1. DichloropropeneND4.71. 2. PoichloropropeneND4.7DibromomethaneND4.7DibromomethaneND4.7J. 3. DichloropropeneND4.71. 1. 2. TrichloropropeneND4.71. 1. 2. TrichloropropeneND4.71. 2. DichloropropaneND4.72. HexanoneND4.72. PoibromoethaneND4.71. 1. 2. PoitchloropropaneND4.71. 1. 2. TrichloropropaneND4.71. 1. 2. TrichloropropaneND4.71. 2. DichloropropaneND4.71. 3. DichloropropaneND4.71. 3. Dichloropropane						
Vinyl AcetateND471.1-DichloroethaneND9.4cis-1,2-DichloroethaneND4.72,2-DichloropropaneND4.7ChloroformND4.7ChloroformND4.7TrichloroethaneND4.71,1.1-TrichloroethaneND4.71,1.1-TrichloroethaneND4.71,2-DichloropropaneND4.71,1.1-TrichloroethaneND4.71,2-DichloropropaneND4.71,2-DichloropropaneND4.71,2-DichloropropaneND4.71,2-DichloropropaneND4.71,2-DichloropropaneND4.71,2-DichloropropaneND4.7TrichloroethaneND4.7BromodichloromethaneND4.7BromodichloromethaneND4.7I,2-DichloropropaneND4.7JolaroethaneND4.7TrichloropropaneND4.7I,2-DichloropropaneND4.7IolaroethaneND4.7TolueneND4.7TolueneND4.7IolaroethaneND4.7J.3-DichloropropaneND4.7J.3-DichloropropaneND4.7J.3-DichloropropaneND4.7J.3-DichloropropaneND4.7J.3-DichloropropaneND4.7J.3-DichloropropaneND4.7J.3-DichloropropaneND4.7J		cethene				
1,1-DichloroethaneND4,72-ButanoneND9,4cis-1,2-DichloroetheneND4,72,2-DichloropropaneND4,72,2-DichloropropaneND4,7GhoroformND4,7BromochloromethaneND4,71,1,1-TrichloroethaneND4,71,2-DichloropropeneND4,71,2-DichloroethaneND4,7BenzeneND4,7TrichloroethaneND4,7J.2-DichloropropaneND4,7J.2-DichloropropaneND4,7J.2-DichloropropaneND4,7J.2-DichloropropaneND4,7JoromomethaneND4,7JoromomethaneND4,7JibromomethaneND4,7JoichloropropeneND4,7JoichloropropeneND4,7JoichloropropeneND4,7JoichloropropeneND4,7JoichloropropeneND4,7J.1,2-TrichloroethaneND4,7J.1,2-TrichloroethaneND4,7JibromochloromethaneND4,7JibromochloromethaneND4,7JibromochloromethaneND4,7JibromochloromethaneND4,7J.2-DichloropropaneND4,7J.2-DichloropropaneND4,7J.2-DichloropropaneND4,7J.2-DichloropropaneND4,7J.2-TrichloroethaneND4,7		occlienc				
2-ButanoneND9.4cis-1, 2-DichloroptopaneND4.7cis-1, 2-DichloroptopaneND4.7ChloroformND4.7ChloroformND4.7I, 1, 1-TrichloroethaneND4.71, 1, 1-TrichloroethaneND4.7Carbon TetrachlorideND4.7SearceneND4.7BenzeneND4.7TrichloroptopaneND4.7J, 2-DichloroptopaneND4.7BromodichloromethaneND4.7BromodichloromethaneND4.7BromodichloromethaneND4.7J, 2-DichloroptopaneND4.7John SearceneND4.7John Searcene<						
cis-1, 2-DichloroptopaneND4.72, 2-DichloroptopaneND4.7ChloroformND4.7BromochloromethaneND4.71, 1, 1-TrichloroethaneND4.71, 1-DichloroptopeneND4.72, 2-DichloroethaneND4.71, 1-DichloroptopeneND4.72, 2-DichloroethaneND4.7BenzeneND4.7TrichloroethaneND4.71, 2-DichloroptopaneND4.7J. 2-DichloroptopaneND4.7J. 2-DichloroptopaneND4.7J. 2-DichloroptopaneND4.7J. 2-DichloroptopaneND4.7J. 2-DichloroptopaneND4.7J. 3-DichloroptopeneND4.7TolueneND4.7TolueneND4.71, 1, 2-TrichloroptopeneND4.7J. 3-DichloroptopaneND4.7J. 3-DichloroptopaneND4.7J. 3-DichloroptopaneND4.7J. 3-DichloroptopaneND4.7J. 2-HexanoneND4.7DibromochloromethaneND4.7J. 2-DibromoethaneND4.7J. 2-DibromoethaneND4.7J. 2-DibromoethaneND4.7J. 2-DibromoethaneND4.7J. 2-DibromoethaneND4.7J. 2-TetrachloroethaneND4.7J. 1, 1, 2-TetrachloroethaneND4.7J. 1, 2-Te						
2.2-DichloropropaneND4.7ChloroformND4.7BromochloromethaneND4.71,1.1-TrichloroethaneND4.71,1.1-TrichloroethaneND4.7Carbon TetrachlorideND4.7Carbon TetrachlorideND4.7BenzeneND4.7TrichloroethaneND4.7BenzeneND4.7TrichloropropaneND4.7BromodichloromethaneND4.7BromodichloromethaneND4.7BromodichloropropaneND4.7BromodichloropropaneND4.7J.2-DichloropropaneND4.7J.3-DichloropropaneND4.7J.1,2-TrichloroeptopeneND4.7CloureND4.7J.1,2-TrichloropropeneND4.7J.3-DichloropropeneND4.7J.3-DichloropropeneND4.7J.3-DichloropropeneND4.7J.3-DichloropropeneND4.7J.1,2-TrichloroethaneND4.7J.3-DichloropropaneND4.7DibromochloromethaneND4.7DibromochloromethaneND4.7J.2-DichloropropaneND4.7J.2-DichloropropaneND4.7J.2-DichloropropaneND4.7J.2-DichloropropaneND4.7J.2-DichloropropaneND4.7J.2-DichloropropaneND4.7J.2-Tetrachloroethane </td <td></td> <td>thene</td> <td></td> <td></td> <td></td> <td></td>		thene				
ChloroformND4.7BromochloromethaneND4.7J.1.1-TrichloroethaneND4.7J.1.1-TrichloropopeneND4.7J.2-DichloropopeneND4.7BenzeneND4.7TrichloroethaneND4.7J.2-DichloropopaneND4.7BenzeneND4.7J.2-DichloropopaneND4.7BromodichloromethaneND4.7DibromomethaneND4.7DibromomethaneND4.7John Specific All CorporationND4.7John Specific All CorporationND4.7J.3-DichloropropeneND4.7J.3-DichloropropaneND4.7J.3-DichloropropaneND4.7DibromochlaneND4.7DibromochlaneND4.7J.1.1.2-TetrachloroethaneND4.7J.1.2-DibromoethaneND4.7J.1.2-TetrachloroethaneND4.7J.1.1.2-TetrachloroethaneND4.7StyreneND4.7StyreneND4.7J.2.3-TrichloroethaneND4.7J.2.3-TrichloroethaneND </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
BromochloromethaneND4.71,1.1-TrichloroethaneND4.71,1.1-TrichloropropeneND4.7Carbon TetrachlorideND4.7Carbon TetrachlorideND4.7BenzeneND4.7BenzeneND4.7TrichloropropaneND4.7BromodichloromethaneND4.7BromodichloromethaneND4.7BromodichloromethaneND4.7BromodichloromethaneND4.7JibromomethaneND4.7JibromoethaneND4.7JoichloropropeneND4.7JoichloropropeneND4.7JoichloropropeneND4.7J.1,2-TrichloropropeneND4.7J.3-DichloropropeneND4.7J.3-DichloropropeneND4.7J.3-DichloropropeneND4.7J.3-DichloropropeneND4.7J.3-DichloropropaneND4.7J.3-DichloropropaneND4.7J.3-DichloropropaneND4.7DibromochloromethaneND4.7J.2-DiromoethaneND4.7J.1,1,2-TetrachloroethaneND4.7J.1,1,2-TetrachloroethaneND4.7J.1,1,2-TetrachloroethaneND4.7J.1,1,2-TetrachloroethaneND4.7J.3-SupeneND4.7J.3-SupeneND4.7J.3-SupeneND4.7J.3-SupeneND <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
1,1,1-TrichloropthaneND4,71,1-DichloropropeneND4.7(arbon TetrachlorideND4.72-DichloroethaneND4.7BenzeneND4.71,2-DichloroptopaneND4.7BromodichloromethaneND4.7DibromomethaneND4.72-Methyl-2-PentanoneND4.7TolueneND4.71,1,2-TrichloroptopaneND4.71,2-DichloroptopaneND4.71,1,2-TrichloroptopeneND4.71,1,2-TrichloroptopaneND4.71,1,2-TrichloroptopaneND4.71,2-DichloroptopaneND4.71,1,2-TrichloroptopaneND4.72-HexanoneND4.7DibromochlaneND4.71,2-DichloroptopaneND4.7ChlorobenzeneND4.7DibromochlaneND4.7DibromochlaneND4.71,1,1,2-TetrachloroethaneND4.7ChlorobenzeneND4.7TetrachloroethaneND4.7StyreneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7I,2,3-TetrachloroethaneND4.7Isopropylbenzene<)e				
1,1-DichloropropeneND4.7Carbon TetrachlorideND4.7Carbon TetrachlorideND4.7J,2-DichloroethaneND4.7BenzeneND4.7TrichloroptopaneND4.7BromodichloromethaneND4.7DibrommethaneND4.7DibromothaneND4.7Carbon TetrachloropropaneND4.7DibromothaneND4.7DibromothaneND4.7Carbon TetrachloropropeneND4.7TolueneND4.7trans-1, 3-DichloropropeneND4.71, 1, 2-TrichloroptopaneND4.7TetrachloroptopaneND4.71, 2-DibromoethaneND4.71, 2-DibromoethaneND4.71, 2-DibromoethaneND4.71, 2-DibromoethaneND4.71, 1, 2-TetrachloroethaneND4.71, 1, 2-TetrachloroethaneND4.71, 1, 1, 2-TetrachloroethaneND4.7thylbenzeneND4.7m, p-XylenesND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7I, 1, 2, 2-TetrachloroethaneND4.7I, 1, 2, 2-TetrachloroethaneND<						
Carbon TetrachlorideND4.71, 2-DichloroethaneND4.7BenzeneND4.7TrichloroetheneND4.71, 2-DichloropropaneND4.7BromodichloromethaneND4.7DibromomethaneND4.7Other StateND4.7DibromomethaneND4.7Cis-1, 3-DichloropropeneND4.7TolueneND4.71, 1, 2-TrichloroethaneND4.71, 3-DichloropropeneND4.71, 3-DichloropropeneND4.72-HexanoneND4.7TetrachloroethaneND4.7TetrachloroethaneND4.71, 2-DibromoethaneND4.71, 2-DibromoethaneND4.71, 2-DibromoethaneND4.71, 2-DibromoethaneND4.71, 2-DibromoethaneND4.71, 1, 2-TetrachloroethaneND4.7ChlorobenzeneND4.7m, p-XylenesND4.7StyreneND4.7BromoformND4.7StyreneND4.7StoreneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
1,2-DichloroethaneND4.7BenzeneND4.7TrichloroetheneND4.71,2-DichloropropaneND4.7BromodichloromethaneND4.7WommethaneND4.74-Methyl-2-PentanoneND9.4cis-1,3-DichloropropeneND4.7Trans-1,3-DichloropropeneND4.71,1,2-TrichloroethaneND4.72.HexanoneND4.71,3-DichloropropaneND4.71,1,2-TrichloroethaneND4.72.HexanoneND4.71,1,2-TrichloroethaneND4.71,2-DibromoethaneND4.71,1,2-TetrachloroethaneND4.71,1,2-TetrachloroethaneND4.71,1,1,2-TetrachloroethaneND4.71,1,1,2-TetrachloroethaneND4.71,1,1,2-TetrachloroethaneND4.7StyreneND4.7StyreneND4.7StoreoformND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,1,2,2-TetrachloroethaneND4.71,1,2,2-TetrachloroethaneND4.71,1,2,2-TetrachloroethaneND4.71,1,2,3-TrichloropropaneND4.71,1,2,2-TetrachloroethaneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7						
BenzeneND4.7TrichloroetheneND4.7TrichloropropaneND4.7BromodichloromethaneND4.7DibromomethaneND4.7A-Methyl-2-PentanoneND4.7cis-1,3-DichloropropeneND4.7TolueneND4.71,1,2-TrichloroethaneND4.71,3-DichloropropeneND4.71,3-DichloropropeneND4.71,3-DichloropropeneND4.71,1,2-TrichloroethaneND4.72-HexanoneND4.7TetrachloroethaneND4.7DibromochloromethaneND4.7DibromochloromethaneND4.7DibromochloromethaneND4.71,1,2-TetrachloroethaneND4.71,1,1,2-TetrachloroethaneND4.7rethylbenzeneND4.7styreneND4.7styreneND4.7styreneND4.7styreneND4.7styreneND4.7styreneND4.7styreneND4.7styreneND4.7styreneND4.7styreneND4.7styreneND4.7styreneND4.7styreneND4.7styreneND4.7styreneND4.7styreneND4.7styreneND4.7 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
TrichloroetheneND4.71,2-DichloropropaneND4.7BromodichloromethaneND4.7DibromomethaneND4.74-Methyl-2-PentanoneND9.4cis-1,3-DichloropropeneND4.7TolueneND4.7trans-1,3-DichloropropeneND4.72-HexanoneND4.72-HexanoneND9.41,1,2-TrichloroptopaneND4.72-HexanoneND4.7DibromochloromethaneND4.71,2-DibromochloromethaneND4.71,2-DibromochloromethaneND4.71,2-DibromochloromethaneND4.71,1,1,2-TetrachloroethaneND4.71,1,1,2-TetrachloroethaneND4.71,1,2,2-TetrachloroethaneND4.7styreneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.7JopropylbenzeneND4.7JopropylbenzeneND4.7JopropylbenzeneND4.7JopropylbenzeneND4.7JopropylbenzeneND4.7JopropylbenzeneND4.7JopropylbenzeneND4.7JopropylbenzeneND4.7JopropylbenzeneND4.7JopropylbenzeneND4.7JopropylbenzeneND4.7JopropylbenzeneND4.7Jopropylbenzen						
1,2-DichloropropaneND4.7BromodichloromethaneND4.7HermomethaneND4.74-Methyl-2-PentanoneND9.4cis-1,3-DichloropropeneND4.7TolueneND4.7trans-1,3-DichloropropeneND4.71,1,2-TrichloroethaneND4.72-HexanoneND9.41,3-DichloropropaneND4.72-HexanoneND4.7DibromochloromethaneND4.7DibromochloromethaneND4.71,2-DibromoethaneND4.71,1,1,2-TetrachloroethaneND4.71,1,1,2-TetrachloroethaneND4.7chlorobenzeneND4.7n,p-XylenesND4.7m,p-XylenesND4.7BromoformND4.7BromoformND4.7JigoropylbenzeneND4.7JigoropylbenzeneND4.7JigoropylbenzeneND4.7JigoropylbenzeneND4.7JigoropylbenzeneND4.7JigoropylbenzeneND4.7JigoropylbenzeneND4.7JigoropylbenzeneND4.7JigoropylbenzeneND4.7JigoropylbenzeneND4.7JigoropylbenzeneND4.7JigoropylbenzeneND4.7JigoropylbenzeneND4.7JigoropylbenzeneND4.7Jigoropylbenzene						
BromodichloromethaneND4.7DibromomethaneND4.7A-Methyl-2-PentanoneND9.4cis-1,3-DichloropropeneND4.7TolueneND4.7trans-1,3-DichloropropeneND4.7trans-1,3-DichloropropeneND4.71,1,2-TrichloroethaneND4.72-HexanoneND4.71,3-DichloropropaneND4.7TetrachloroetheneND4.7TetrachloroethaneND4.71,2-DibromoethaneND4.71,2-DibromoethaneND4.71,1,2-TetrachloroethaneND4.71,1,2-TetrachloroethaneND4.71,1,2-TetrachloroethaneND4.7StyreneND4.7BromoformND4.7BromoformND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7I,2,2-TetrachloroethaneND4.7I,2,3-TrichloroptopaneND4.7I,2,3-TrichloroptopaneND4.7		ne				
DibromomethaneND4.74-Methyl-2-PentanoneND9.4cis-1,3-DichloropropeneND4.7TolueneND4.7trans-1,3-DichloropropeneND4.71,1,2-TrichloroethaneND4.72-HexanoneND9.41,3-DichloropropaneND4.7TetrachloroethaneND4.71,2-DibromochloromethaneND4.71,2-DibromochloromethaneND4.71,2-DibromochloromethaneND4.71,1,1,2-TetrachloroethaneND4.71,1,1,2-TetrachloroethaneND4.71,1,1,2-TetrachloroethaneND4.7m,p-XylenesND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.7I,2,2-TetrachloroethaneND4.7I,2,3-TrichloroptopaneND4.7I,2,3-TrichloroptopaneND4.7						
4-Methyl-2-PentanoneND9.4cis-1,3-DichloropropeneND4.7TolueneND4.7trans-1,3-DichloropropeneND4.71,1,2-TrichloroethaneND4.72-HexanoneND9.41,3-DichloropropaneND4.7TetrachloroethaneND4.7DibromochloromethaneND4.71,2-DibromoethaneND4.71,2-DibromoethaneND4.71,1,2-TetrachloroethaneND4.71,1,2-TetrachloroethaneND4.71,1,2-TetrachloroethaneND4.7StyreneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.71,2,2-TetrachloroethaneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.71,2,3-TrichloroethaneND4.71,2,3-TrichloroethaneND4.7		iune				
cis-1,3-DichloropropeneND4.7TolueneND4.7trans-1,3-DichloropropeneND4.71,1,2-TrichloroethaneND4.72-HexanoneND9.41,3-DichloropropaneND4.7TetrachloroetheneND4.7DibromochloromethaneND4.71,2-DibromoethaneND4.71,2-DibromoethaneND4.71,1,2-TetrachloroethaneND4.71,1,1,2-TetrachloroethaneND4.7thylbenzeneND4.7m,p-XylenesND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.7JsopropylbenzeneND4.7JsopropylbenzeneND4.7JsopropylbenzeneND4.7JsopropylbenzeneND4.7J,2,3-TrichloropropaneND4.7		lone				
TolueneND4.7trans-1,3-DichloropropeneND4.71,1,2-TrichloroethaneND4.72-HexanoneND9.41,3-DichloropropaneND4.7TetrachloroetheneND4.7DibromochloromethaneND4.71,2-DibromoethaneND4.71,1,1,2-TetrachloroethaneND4.71,1,1,2-TetrachloroethaneND4.71,1,1,2-TetrachloroethaneND4.7thylbenzeneND4.7m,p-XylenesND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.7JoppropylbenzeneND4.7JoppropylbenzeneND4.7JoppropylbenzeneND4.7JoppropylbenzeneND4.7JoppropylbenzeneND4.7JoppropylbenzeneND4.7JoppropylbenzeneND4.7JoppropylbenzeneND4.7JoppropylbenzeneND4.7JoppropylbenzeneND4.7JoppropylbenzeneND4.7JoppropylbenzeneND4.7JoppropylbenzeneND4.7JoppropylbenzeneND4.7JoppropylbenzeneND4.7JoppropylbenzeneND4.7JoppropylbenzeneND4.7JoppropylbenzeneND4.7Joppropylbenzene<						
trans-1,3-DichloropropeneND4.71,1,2-TrichloroethaneND4.72-HexanoneND9.41,3-DichloropropaneND4.7TetrachloroetheneND4.7DibromochloromethaneND4.71,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7thylbenzeneND4.7chylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7IsopropylbenzeneND4.7I,2,2-TetrachloroethaneND4.7I,2,3-TrichloropropaneND4.7		- opene				
1,1,2-TrichloroethaneND4.72-HexanoneND9.41,3-DichloropropaneND4.7TetrachloroetheneND4.7DibromochloromethaneND4.71,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.7J.2,2-TetrachloroethaneND4.7J.1,2,2-TetrachloroethaneND4.7J.1,2,2-TetrachloroethaneND4.7JsopropylbenzeneND4.7JsopropylbenzeneND4.7JsopropylbenzeneND4.7J,2,3-TrichloropropaneND4.7		opropene				
2-HexanoneND9.41,3-DichloropropaneND4.7TetrachloroetheneND4.7DibromochloromethaneND4.71,2-DibromoethaneND4.71,1,1,2-TetrachloroethaneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7StyreneND4.7BromoformND4.7I.3.2-TetrachloroethaneND4.7J.1,2,2-TetrachloroethaneND4.7J.1,2,2-TetrachloroethaneND4.7J.1,2,2-TetrachloroethaneND4.7J.1,2,2-TetrachloroethaneND4.7J.1,2,3-TrichloropropaneND4.7						
1,3-DichloropropaneND4.7TetrachloroetheneND4.7DibromochloromethaneND4.71,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.7J.3,3-TrichloropropaneND4.7						
TetrachloroetheneND4.7DibromochloromethaneND4.71,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.7J.1,2,2-TetrachloroethaneND4.7J.2,3-TrichloropropaneND4.7						
DibromochloromethaneND4.71,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.7I sopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7						
1,2-DibromoethaneND4.7ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.7I sopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7						
ChlorobenzeneND4.71,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7						
1,1,1,2-TetrachloroethaneND4.7EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7						
EthylbenzeneND4.7m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7						
m,p-XylenesND4.7o-XyleneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7						
o-XylèneND4.7StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7						
StyreneND4.7BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7						
BromoformND4.7IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7	Styrene					
IsopropylbenzeneND4.71,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7						
1,1,2,2-TetrachloroethaneND4.71,2,3-TrichloropropaneND4.7						
1,2,3-Trichloropropane ND 4.7	1,1,2,2-Tetrachlo	roethane				
	1,2,3-Trichloropr	opane				
Propyidenzene ND 4.7	Propylbenzene		ND		4.7	

		v	olatile	Organics		
Lab #: Client: Project#:	204298 PES Environmenta 1148.001.02.002	L, II	nc.	Prep:	4700 Coliseum Way Site, EPA 5035 EPA 8260B	Oakland
Field ID:	B-1-2.5'-3'			Diln Fac:	0.9381	
Lab ID:	204298-001			Batch#:	139828	
Matrix:	Soil			Sampled:	06/27/08	
Units:	ug/Kg			Received:	06/27/08	
Basis:	as received	_		Analyzed:	06/30/08	
An	alvte		Result		RL	
Bromobenzene		ND			4.7	
1,3,5-Trimeth	ylbenzene	ND			4.7	
2-Chlorotolue	ne	ND			4.7	
4-Chlorotolue	ne	ND			4.7	
tert-Butylben:	zene	ND			4.7	
1,2,4-Trimeth	ylbenzene	ND			4.7	
sec-Butylbenz	ene	ND			4.7	
para-Isopropy		ND			4.7	
1,3-Dichlorob	enzene	ND			4.7	
1,4-Dichlorob	enzene	ND			4.7	
n-Butylbenzen	e	ND			4.7	
1,2-Dichlorob	enzene	ND			4.7	
1,2-Dibromo-3	-Chloropropane	ND			4.7	
1,2,4-Trichlo:		ND			4.7	
Hexachlorobuta	adiene	ND			4.7	
Naphthalene		ND			4.7	
1,2,3-Trichlo:	robenzene	ND			4.7	
Sur	rogate %	REC	Limits			
Dibromofluoro		5	78-126			
1,2-Dichloroet	thane-d4 88		76-137			
Toluene-d8	94		80-120			
Bromofluorobe	nzene 100	5	80-121			

		Volatile	Organics	•	
Lab #:	204298		Location	4700 Coliseum Way Site,	Oakland
Client:	PES Environmental	Inc	Prep:	EPA 5035	Vakianu
Project#:	1148.001.02.002	,		EPA 8260B	
Field ID:	B-1-7.5'-8'	_	Diln Fac:	1.048	
Lab ID:	204298-002		Batch#:	139828	
Matrix:	Soil				
Units:	ug/Kg		Sampled: Received:	06/27/08	
Basis:				06/27/08	
DASIS:	as received		Analyzed:	06/30/08	
Analy	+ o	Result		RL	
Freon 12	ce.	ND	anner an ann an	10	
tert-Butyl Alcoh		ND		100	
Chloromethane	OI (IDA)	ND		10	
Isopropyl Ether	(הדפד)	ND		5.2	
Vinyl Chloride	(DIPE)	ND		10	
Bromomethane		ND			
	There (THDT)			10	
Ethyl tert-Butyl	Echer (EIBE)	ND		5.2	
Chloroethane		ND		10	
Methyl tert-Amyl		ND		5.2	
Trichlorofluorom	ecnane	ND		5.2	
Acetone		ND		21	
Freon 113		ND		5.2	
1,1-Dichloroethe		ND		5.2	
Methylene Chlorid	de	ND		21	
Carbon Disulfide		ND		5.2	
MTBE		ND		5.2	
trans-1,2-Dichlo	roethene	ND		5.2	
Vinyl Acetate		ND		52	
1,1-Dichloroetha	ne	ND		5.2	
2-Butanone		ND		10	
cis-1,2-Dichloro	ethene	ND		5.2	
2,2-Dichloropropa	ane	ND		5.2	
Chloroform		ND		5.2	
Bromochlorometha	ne	ND		5.2	
1,1,1-Trichloroe	thane	ND		5.2	
1,1-Dichloroprop		ND		5.2	
Carbon Tetrachlo	ride ·	ND		5.2	
1,2-Dichloroethan	ne	ND		5.2	
Benzene		ND		5.2	
Trichloroethene		ND		5.2	
1,2-Dichloropropa	ane	ND		5.2	
Bromodichloromet		ND		5.2	
Dibromomethane		ND		5.2	
4-Methyl-2-Penta	none	ND		10	
cis-1,3-Dichlorop		ND		5.2	
Toluene	F	ND		5.2	
trans-1,3-Dichlo:	ropropene	ND		5.2	
1,1,2-Trichloroet	thane	ND		5.2	
2-Hexanone		ND		10	
1,3-Dichloropropa	ane	ND		5.2	
Tetrachloroethene	2	ND		5.2	
Dibromochlorometh		ND		5.2	
1,2-Dibromoethane		ND		5.2	
Chlorobenzene	-	ND		5.2	
1,1,1,2-Tetrachlo	oroethane	ND		5.2	
Ethylbenzene	02.000114110	ND		5.2	
m,p-Xylenes		ND		5.2	
o-Xylene		ND		5.2	
Styrene		ND		5.2	
Bromoform		ND			
Isopropylbenzene				5.2	
1,1,2,2-Tetrachlo	araathana	ND		5.2	
		ND		5.2	
1,2,3-Trichlorop	Lopane	ND		5.2	
Propylbenzene		ND		5.2	

ND= Not Detected

RL= Reporting Limit Page 1 of 2

	Volatile	Organics
Lab #: 204298		Location: 4700 Coliseum Way Site, Oakland
Client: PES Environme	ntal, Inc.	Prep: EPA 5035
Project#: 1148.001.02.0	02	Analysis: EPA 8260B
Field ID: B-1-7.5'-8'		Diln Fac: 1.048
Lab ID: 204298-002		Batch#: 139828
Matrix: Soil		Sampled: 06/27/08
Units: ug/Kg		Received: 06/27/08
Basis: as received		Analyzed: 06/30/08
9		
Analyte	Result	RL
Bromobenzene	ND	5.2
1,3,5-Trimethylbenzene	ND	5.2
2-Chlorotoluene	ND	5.2
4-Chlorotoluene	ND	5.2
tert-Butylbenzene	ND	5.2
1,2,4-Trimethylbenzene	ND	5.2 5.2
sec-Butylbenzene	ND ND	5.2 5.2
para-Isopropyl Toluene	ND	5.2
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND	5.2
n-Butylbenzene	ND	5.2
1,2-Dichlorobenzene	ND	5.2
1,2-Dibromo-3-Chloropropane	ND	5.2
1,2,4-Trichlorobenzene	ND	5.2
Hexachlorobutadiene	ND	5.2
Naphthalene	ND	5.2
1,2,3-Trichlorobenzene	ND	5.2
a for a name and a state of the		
Surrogate	%REC Limits	
Dibromofluoromethane	105 78-126	
1,2-Dichloroethane-d4	82 76-137	
Toluene-d8	92 80-120	
Bromofluorobenzene	105 80-121	

		Volatile	Organics			
Lab #: 20429				4700 Coliseum Way	Site,	Oakland
	Invironmental,	Inc.	Prep:	EPA 5035		
	001.02.002			EPA 8260B	_	
	1.5'-3'		Diln Fac:	1.068		
Lab ID: 20429 Matrix: Soil	98-003		Batch#: Sampled:	139828 06/27/08		
Units: ug/Ko	r		Received:	06/27/08		
	ceived		Analvzed:	06/30/08		
	,coived		Thinty Dea.	00/00/00		
Analyte		Result		RL		
Freon 12		ND		11		
tert-Butyl Alcohol (TE		ND		110		
Chloromethane		ND		11		
Isopropyl Ether (DIPE)		ND ND		5.3 11		
Vinyl Chloride Bromomethane		ND		11		
Ethyl tert-Butyl Ether		ND		5.3		
Chloroethane		ND		11		
Methyl tert-Amyl Ether		ND		5.3		
Trichlorofluoromethane		ND		5.3		
Acetone		ND		21		
Freon 113		D		5.3		
1,1-Dichloroethene		ND		5.3		
Methylene Chloride		ND		21		
Carbon Disulfide		ND		5.3		
MTBE		ND		5.3 5.3		
trans-1,2-Dichloroethe		ND ND		5.3		
1,1-Dichloroethane	1	44		5.3		
2-Butanone	1	ND		11		
cis-1,2-Dichloroethene		ND		5.3		
2,2-Dichloropropane		ND		5.3		
Chloroform	1	ND		5.3		
Bromochloromethane	1	DND		5.3		
1,1,1-Trichloroethane		5.9		5.3		
1,1-Dichloropropene		ND		5.3		
Carbon Tetrachloride		ND		5.3		
1,2-Dichloroethane Benzene		ND ND		5.3 5.3		
Trichloroethene		ND		5.3		
1,2-Dichloropropane		ND		5.3		
Bromodichloromethane		ND		5.3		
Dibromomethane		ND		5.3		
4-Methyl-2-Pentanone		ND		11		
cis-1,3-Dichloroproper		ND		5.3		
Toluene		ND		5.3		
trans-1,3-Dichloroprop	ene l	ND		5.3		
1,1,2-Trichloroethane		ND		5.3		
2-Hexanone 1,3-Dichloropropane		ND ND		11 5.3		
Tetrachloroethene		ND ND		5.3		
Dibromochloromethane		ND		5.3		
1,2-Dibromoethane		ND		5.3		
Chlorobenzene		ND		5.3		
1,1,1,2-Tetrachloroeth		D		5.3		
Ethylbenzene		ND		5.3		
m,p-Xylenes		ND		5.3		
o-Xylene		ND		5.3		
Styrene		ND		5.3 5.3		
Bromoform Isopropylbenzene		ND ND		5.3		
1,1,2,2-Tetrachloroeth		ND		5.3		
1,2,3-Trichloropropane		ND		5.3		
Propylbenzene		ND		5.3		

			- · ·		
	. V	olatile	Organics		
Lab #: 204298			Location;	4700 Coliseum Way Site,	Oakland
Client: PES Environmen	ital, I	nc.	Prep:	EPA 5035	
Project#: 1148.001.02.00	2		Analysis:	EPA 8260B	
Field ID: B-4-2.5'-3'			Diln Fac:	1.068	
Lab ID: 204298-003			Batch#:	139828	
Matrix: Soil			Sampled:	06/27/08	
Units: ug/Kg			Received:	06/27/08	
Basis: as received			Analyzed:	06/30/08	
· · · ·					
Analyte		Result		RL	
Bromobenzene	ND			5.3	
1,3,5-Trimethylbenzene 2-Chlorotoluene	ND			5.3	
4-Chlorotoluene	ND ND			5.3	
	ND			5.3	
tert-Butylbenzene 1,2,4-Trimethylbenzene	ND ND			5.3 5.3	
sec-Butylbenzene	ND			5.3	
para-Isopropyl Toluene	ND			5.3	
1,3-Dichlorobenzene	ND			5.3	
1,4-Dichlorobenzene	ND			5.3	
n-Butylbenzene	ND			5.3	
1,2-Dichlorobenzene	ND			5.3	
1,2-Dibromo-3-Chloropropane	ND			5.3	
1,2,4-Trichlorobenzene	ND			5.3	
Hexachlorobutadiene	ND			5.3	
Naphthalene	ND			5.3	
1,2,3-Trichlorobenzene	ND			5.3	
Surrogate	%REC	Limits			
Dibromofluoromethane	105	78-126			
1,2-Dichloroethane-d4	81	76-137			
Toluene-d8	92	80-120			
Bromofluorobenzene	105	80-121			

	Vo	latile	Organics			
Lab #: 204298	3		Location:	4700 Coliseum Way	Site,	Oakland
	nvironmental, In	с.	Prep:	EPA 5035	,	
Project#: 1148.0	001.02.002		Analysis:	EPA 8260B		
Field ID: B-4-6	'-6.5'		Diln Fac:	0.9615		·······
Lab ID: 204298	3-004		Batch#:	139828		
Matrix: Soil			Sampled:	06/27/08		
Units: ug/Kg			Received:	06/27/08		
Basis: as red	ceived		Analyzed:	06/30/08		
				RL		
Analyte Freon 12	ND	esult		9.6		and the second second second second
tert-Butyl Alcohol (TBA				96		
Chloromethane	ND			9.6		
Isopropyl Ether (DIPE)	ND			4.8		
Vinyl Chloride	ND			9.6		
Bromomethane	ND			9.6		
Ethyl tert-Butyl Ether	(ETBE) ND			4.8		
Chloroethane	ND			9.6		
Methyl tert-Amyl Ether	(TAME) ND			4.8		
Trichlorofluoromethane	ND			4.8		
Acetone	ND			19		
Freon 113	ND			4.8		
1,1-Dichloroethene		4.9		4.8		
Methylene Chloride	ND			19		
Carbon Disulfide	ND			4.8		
MTBE	ND			4.8		
trans-1,2-Dichloroether				4.8		
Vinyl Acetate 1,1-Dichloroethane	ND	69		$48 \\ 4.8$		
2-Butanone	ND	69		4.0 9.6		
cis-1,2-Dichloroethene	ND			4.8		
2,2-Dichloropropane	ND			4.8		
Chloroform	ND			4.8		
Bromochloromethane	ND			4.8		
1,1,1-Trichloroethane		14		4.8		
1,1-Dichloropropene	ND			4.8		
Carbon Tetrachloride	ND			4.8		
1,2-Dichloroethane	ND			4.8		
Benzene	ND			4.8		
Trichloroethene	ND			4.8		
1,2-Dichloropropane	ND			4.8		
Bromodichloromethane	ND			4.8		
Dibromomethane	ND			4.8		
4-Methyl-2-Pentanone cis-1,3-Dichloropropene	ND ND			9.6 4.8		
Toluene	ND ND			4.8		
trans-1,3-Dichloroprope				4.8		
1,1,2-Trichloroethane	ND ND			4.8		
2-Hexanone	ND			9.6		
1,3-Dichloropropane	ND			4.8		
Tetrachloroethene	ND			4.8		
Dibromochloromethane	ND			4.8		
1,2-Dibromoethane	ND			4.8		
Chlorobenzene	ND			4.8		
1,1,1,2-Tetrachloroetha				4.8		
Ethylbenzene	ND			4.8		
m,p-Xylenes	ND			4.8		
o-Xylene	ND			4.8		
Styrene	ND			4.8		
Bromoform Isopropylbenzene	ND ND			4.8 4.8		
1,1,2,2-Tetrachloroetha				4.8		
1,2,3-Trichloropropane	ND ND			4.8		
Propylbenzene	ND			4.8		
1 LONY INCINCULO	TATA			28 (B) M (

	Volatile	Organics
Lab #: 204298		Location: 4700 Coliseum Way Site, Oakland
Client: PES Environmen	tal, Inc.	Prep: EPA 5035
Project#: 1148.001.02.00	2	Analysis: EPA 8260B
Field ID: B-4-6'-6.5'		Diln Fac: 0.9615
Lab ID: 204298-004		Batch#: 139828
Matrix: Soil		Sampled: 06/27/08
Units: ug/Kg		Received: 06/27/08
Basis: as received		Analyzed: 06/30/08
Analyte	Result	RL
Bromobenzene	ND	4.8
1,3,5-Trimethylbenzene	ND	4.8
2-Chlorotoluene	ND	4.8
4-Chlorotoluene	ND	4.8
tert-Butylbenzene	ND	4.8
1,2,4-Trimethylbenzene	ND	4.8
sec-Butylbenzene	ND	4.8
para-Isopropyl Toluene	ND	4.8
1,3-Dichlorobenzene	ND	4.8
1,4-Dichlorobenzene	ND	4.8
n-Butylbenzene	ND	4.8
1,2-Dichlorobenzene	ND	4.8
1,2-Dibromo-3-Chloropropane	ND	4.8
1,2,4-Trichlorobenzene	ND	4.8
Hexachlorobutadiene	ND	4.8
Naphthalene	ND ND	4.8
1,2,3-Trichlorobenzene	ULU	4.8
Surrogate	%REC Limits	
	110 78-126	
	86 76-137	
Toluene-d8	91 80-120	
Bromofluorobenzene	100 80-121	

	ан С	Volatile	Organics	1	
Lab #:	204298		Location:	4700 Coliseum Way S	Site, Oakland
Client:	PES Environmental	Inc.	Prep:	EPA 5035	,
Project#:	1148.001.02.002		Analysis:	EPA 8260B	
Field ID:	B-5-2.5'-3'		Diln Fac:	0.9416	
Lab ID:	204298-005		Batch#:	139828	
Matrix:	Soil		Sampled:	06/27/08	
Units:	ug/Kg		Received:	06/27/08	
Basis:	as received		Analyzed:	06/30/08	
Analy	te	Result		RL	
Freon 12		ND	******	9.4	
tert-Butyl Alcoho	ol (TBA)	ND		94	
Chloromethane	(,	ND		9.4	
Isopropyl Ether	(DIPE)	ND		4.7	
Vinyl Chloride	·/	ND		9.4	
Bromomethane		ND		9.4	
Ethyl tert-Butyl	Ether (ETBE)	ND		4.7	
Chloroethane	201102 (2122)	ND		9.4	
Methyl tert-Amyl	Ether (TAME)	ND		4,7	
Trichlorofluorome		ND		4.7	
Acetone	CCHAIL	ND		19	
Freon 113		ND		4.7	
1,1-Dichloroether	ne	ND		4.7	
Methylene Chlorid		ND		19	1
Carbon Disulfide	ae	ND		4.7	
MTBE		ND		4.7	
	reathene	ND		4.7	
trans-1,2-Dichlor	roethene				
Vinyl Acetate		ND		47	
1,1-Dichloroethan	ne	ND		4.7	
2-Butanone		ND		9.4	
cis-1,2-Dichloroe		ND		4.7	
2,2-Dichloropropa	ane	ND		4.7	
Chloroform		ND		4.7	
Bromochloromethan		ND		4.7	
1,1,1-Trichloroet		ND		4.7	
1,1-Dichloroprope		ND		4.7	
Carbon Tetrachlor		ND		4.7	
1,2-Dichloroethar	ne	ND		4.7	
Benzene		ND		4.7	
Trichloroethene		ND		4.7	
1,2-Dichloropropa		ND		4.7	
Bromodichlorometh	hane	ND		4.7	
Dibromomethane		ND		4.7	
4-Methyl-2-Pentar		ND		9.4	
cis-1,3-Dichlorop	propene	ND		4.7	
Toluene		ND		4.7	
trans-1,3-Dichlon		ND		4.7	
1,1,2-Trichloroet	thane	ND		4.7	
2-Hexanone		ND		9.4	
1,3-Dichloropropa	ane	ND		4.7	
Tetrachloroethene		ND		4.7	
Dibromochlorometh		ND		4.7	
1,2-Dibromoethane	9	ND		4.7	
Chlorobenzene		ND		4.7	
1,1,1,2-Tetrachlo	oroethane	ND		4.7	
Ethylbenzene		ND		4.7	
m,p-Xylenes		ND		4.7	
o-Xylene		ND		4.7	
Styrene		ND		4.7	
Bromoform		ND		4.7	
Isopropylbenzene		ND		4.7	
1,1,2,2-Tetrachlo	oroethane	ND		4.7	
1,2,3-Trichlorop		ND		4.7	
Propylbenzene	L · · · · ·	ND		4.7	

	Volatile	Organics
Lab #: 204298		Location: 4700 Coliseum Way Site, Oakland
Client: PES Environme	ental Inc	Prep: EPA 5035
Project#: 1148.001.02.0		Analysis: EPA 8260B
Field ID: B-5-2.5'-3'		Diln Fac: 0.9416
Lab ID: 204298-005		Batch#: 139828
Matrix: Soil		Sampled: 06/27/08
Units: ug/Kg		Received: 06/27/08
Basis: as received		Analyzed: 06/30/08
Analyte	Result	RL
Bromobenzene	ND	4.7
1,3,5-Trimethylbenzene	ND	4.7
2-Chlorotoluene	ND	4.7
4-Chlorotoluene	ND	4.7
tert-Butylbenzene	ND	4.7
1,2,4-Trimethylbenzene	ND	4.7
sec-Butylbenzene	ND	4.7
para-Isopropyl Toluene	ND	4.7
1,3-Dichlorobenzene	ND	4.7
1,4-Dichlorobenzene	ND	4.7
n-Butylbenzene	ND	4.7
1,2-Dichlorobenzene	ND	4.7
1,2-Dibromo-3-Chloropropane	ND	4.7
1,2,4-Trichlorobenzene	ND	4.7
Hexachlorobutadiene	ND	4.7
Naphthalene	ND	4.7
1,2,3-Trichlorobenzene	ND	4.7
-	0.000 x 2 12	
Surrogate Dibromofluoromethane	%REC Limits 112 78-126	
	93 76-137	
1,2-Dichloroethane-d4 Toluene-d8	93 76-137 92 80-120	
Bromofluorobenzene	92 80-120 93 80-121	
Leromorraoropensene	93 00-121	

		Volatile	Organics		
Lab #:	204298		Location	4700 Coliseum Way Site,	Oakland
Client:	PES Environmental	Inc	Prep:	EPA 5035	ountaild
Project#:	1148.001.02.002			EPA 8260B	
Field ID:	B-5-6'-6.5'		Diln Fac:	0.9785	
Lab ID:	204298-006		Batch#:	139828	
Matrix:	Soil		Sampled:	06/27/08	
Units:	ug/Kg		Received:	06/27/08	
Basis:	as received		Analvzed:	06/30/08	
Dubib.	ub icccived		ritury zeu.	00/30/00	
Analy	te	Result		RL	
Freon 12		ND		9.8	
tert-Butyl Alcoho	ol (TBA)	ND		98	
Chloromethane	(,	ND		9.8	
Isopropyl Ether	(DIPE)	ND		4.9	
Vinvl Chloride	(2112)	ND		9.8	
Bromomethane		ND		9.8	
Ethyl tert-Butyl	Fther (FTBF)	ND		4.9	
Chloroethane	actice (arbe)	ND		9.8	
Methyl tert-Amyl	F + her (TAME)	ND		9.0 4.9	
Trichlorofluorom		ND		4.9	
	echane				
Acetone		ND		20	
Freon 113	20	ND		4.9	
1,1-Dichloroether		ND		4.9	
Methylene Chlorid	de	ND		20	
Carbon Disulfide		ND		4.9	
MTBE		ND		4.9	
trans-1,2-Dichlo:	roethene	ND		4.9	
Vinyl Acetate		ND		49	
1,1-Dichloroetha	ne	ND		4.9	
2-Butanone		ND		9.8	
cis-1,2-Dichloro		ND		4.9	
2,2-Dichloropropa	ane	ND		4.9	
Chloroform		ND		4.9	
Bromochloromethan	ne	ND		4.9	
1,1,1-Trichloroe	thane	ND		4.9	
1,1-Dichloroprop		ND		4.9	
Carbon Tetrachlo		ND		4.9	
1,2-Dichloroethan		ND		4.9	
Benzene		ND		4.9	
Trichloroethene		ND		4.9	
1,2-Dichloropropa	ane	ND		4.9	
Bromodichloromet		ND		4.9	
Dibromomethane		ND		4.9	
4-Methyl-2-Pentar	none	ND		9.8	
cis-1,3-Dichloro		ND		4.9	
Toluene		ND		4.9	
trans-1,3-Dichlo:	ropropene	ND		4.9	
1,1,2-Trichloroet	thane	ND		4.9	
2-Hexanone		ND		9.8	
1,3-Dichloropropa	ane	ND		4.9	
Tetrachloroethene		ND		4.9	
Dibromochlorometh		ND		4.9	
1,2-Dibromoethane		ND		4.9	
Chlorobenzene	0	ND		4.9	
1,1,1,2-Tetrachlo	oroethane	ND		4.9	
Ethylbenzene		ND		4.9	
m,p-Xylenes		ND		4.9	
o-Xylene		ND		4.9 4.9	
		ND		4.9 4.9	
Styrene Bromoform					
		ND		4.9	
Isopropylbenzene	aracthana	ND		4.9	
1,1,2,2-Tetrachlo	oroetnane	ND		4.9	
1,2,3-Trichlorop	ropane	ND		4.9	
Propylbenzene		ND		4.9	

ND= Not Detected RL= Reporting Limit

	Volatile	Organics
Lab #: 204298		Location: 4700 Coliseum Way Site, Oakland
Client: PES Environmenta	al, Inc.	Prep: EPA 5035
Project#: 1148.001.02.002		Analysis: EPA 8260B
Field ID: B-5-6'-6.5'		Diln Fac: 0.9785
Lab ID: 204298-006		Batch#: 139828
Matrix: Soil		Sampled: 06/27/08
Units: ug/Kg		Received: 06/27/08
Basis: as received		Analyzed: 06/30/08
Analyte	Result	RL
Bromobenzene	ND ND	4.9
1,3,5-Trimethylbenzene 2-Chlorotoluene		4.9
4-Chlorotoluene	ND ND	4.9
		4.9
tert-Butylbenzene	ND ND	4.9 4.9
1,2,4-Trimethylbenzene sec-Butylbenzene	ND	4.9
para-Isopropyl Toluene	ND	4.9
1,3-Dichlorobenzene	ND	4.9
1,4-Dichlorobenzene	ND	4.9
n-Butylbenzene	ND	4.9
1,2-Dichlorobenzene	ND	4.9
1,2-Dibromo-3-Chloropropane	ND	4.9
1,2,4-Trichlorobenzene	ND	4.9
Hexachlorobutadiene	ND	4.9
Naphthalene	ND	4.9
1,2,3-Trichlorobenzene	ND	4.9
	REC Limits	
	.3 78-126	
1,2-Dichloroethane-d4 80		
Toluene-d8 92		
Bromofluorobenzene 98	80-121	

		Volatile	Organics		
	204298		Location:	4700 Coliseum Way Sit	e, Oakland
	PES Environmental,	Inc.	Prep:	EPA 5035	
Project#:	1148.001.02.002			EPA 8260B	
	B-6-2.5'-3'		Diln Fac:	1.050	
	204298-007		Batch#:	139828	
	Soil		Sampled:	06/27/08	
	ug/Kg		Received:	06/27/08	
Basis:	as received		Analyzed:	06/30/08	
Analyt	A	Result		RL	
Freon 12		ND		11	and a second
tert-Butyl Alcoho) (TBA)	ND		110	
Chloromethane	_ (/ / _ / _ / _ / _ / _ / _	ND		11	
Isopropyl Ether (DIPE)	ND		5.3	
Vinyl Chloride	,	ND		11	
Bromomethane		ND		11	
Ethyl tert-Butyl	Ether (ETBE)	ND		5.3	
Chloroethane	. ,	ND		11	
Methyl tert-Amyl	Ether (TAME)	ND		5.3	
Trichlorofluorome		ND		5.3	
Acetone		ND		21	
Freon 113		ND		5.3	
1,1-Dichloroethen		ND		5.3	
Methylene Chlorid	e	ND		21	
Carbon Disulfide		ND		5.3	
MTBE		ND		5.3	
trans-1,2-Dichlor	oethene	ND		5.3	
Vinyl Acetate		ND		53	
1,1-Dichloroethan	le	ND		5.3	
2-Butanone		ND		11	
cis-1,2-Dichloroe		ND		5.3	
2,2-Dichloropropa	ne	ND		5.3 5.3	
Chloroform Bromochloromethan		ND ND		5.3	
1,1,1-Trichloroet		ND		5.3	
1,1-Dichloroprope		ND		5.3	
Carbon Tetrachlor		ND		5.3	
1,2-Dichloroethan		ND		5.3	
Benzene		ND		5.3	
Trichloroethene		ND		5.3	
1,2-Dichloropropa	ne	ND		5.3	
Bromodichlorometh		ND		5.3	
Dibromomethane		ND		5.3	
4-Methyl-2-Pentan		ND		11	
cis-1,3-Dichlorop		ND		5.3	
Toluene		ND		5.3	
trans-1,3-Dichlor		ND		5.3	
1,1,2-Trichloroet	hane	ND		5.3	
2-Hexanone		ND		11	
1,3-Dichloropropa		ND		5.3	
Tetrachloroethene		ND		5.3	
Dibromochlorometh		ND		5.3	
1,2-Dibromoethane		ND		5.3	
Chlorobenzene	reathana	ND		5.3	
1,1,1,2-Tetrachlo Ethylbenzene	roeunane	ND		5.3	
m,p-Xylenes		ND ND		5.3 5.3	
o-Xylene		ND		5.3	
Styrene		ND		5.3	
Bromoform		ND		5.3	
Isopropylbenzene		ND		5.3	
1,1,2,2-Tetrachlo	roethane	ND		5.3	
1,2,3-Trichloropr		ND		5.3	
Propylbenzene		ND		5.3	

ND= Not Detected RL= Reporting Limit

		Volatile	Organics	3
	04298		Location:	4700 Coliseum Way Site, Oakland
	ES Environmental,	Inc.	Prep:	EPA 5035
	48.001.02.002		Analysis:	EPA 8260B
	6-2.5'-3'		Diln Fac:	1.050
	4298-007		Batch#:	139828
	pil		Sampled:	06/27/08
	J/Kg		Received:	
Basis: as	received		Analyzed:	06/30/08
Analyte		Result		RL
Bromobenzene		ND		5.3
1,3,5-Trimethylbenz	ene	ND		5.3
2-Chlorotoluene		ND		5.3
4-Chlorotoluene		ND		5.3
tert-Butylbenzene		ND		5.3
1,2,4-Trimethylbenz	zene	ND		5.3
sec-Butylbenzene		ND		5.3
para-Isopropyl Tolu	iene	ND		5.3
1,3-Dichlorobenzene	2	ND		5.3
1,4-Dichlorobenzene	2	ND		5.3
n-Butylbenzene		ND		5.3
1,2-Dichlorobenzene		ND		5.3
1,2-Dibromo-3-Chlor		ND		5.3
1,2,4-Trichlorobenz		ND		5.3
Hexachlorobutadiene		ND		5.3
Naphthalene		ND		5.3
1,2,3-Trichlorobenz	ene	ND		5.3
Surrogate	*RE	C Limits		
Dibromofluoromethan		78-126		
1,2-Dichloroethane-		76-137		
Toluene-d8	91	80-120		
Bromofluorobenzene	105	80-121		

		Volatile	Organics	F		
Lab #:	204298		Location:	4700 Coliseum Way	Site,	Oakland
Client:	PES Environmental,	Inc.	Prep:	EPA 5035		
Project#:	1148,001.02.002		Analysis:	EPA 8260B		
Field ID:	B-6-6'-6.5'		Diln Fac:	1.006		
Lab ID:	204298-008		Batch#:	139828		
Matrix:	Soil		Sampled:	06/27/08		
Units:	ug/Kg		Received:	06/27/08		
Basis:	as received		Analyzed:	06/30/08		
						
Analyt	ce	Result		RL		
Freon 12	ר מידי א	ND ND		10 100		
tert-Butyl Alcoho Chloromethane	DI (IDA)	ND		100		
Isopropyl Ether	(שמדמ)	ND		5.0		
Vinyl Chloride	(DIFE)	ND		10		
Bromomethane		ND		10		
Ethyl tert-Butyl	Pther (PTPP)	ND		5.0		
Chloroethane	Hence (HIDE)	ND		10		
Methyl tert-Amyl	Ether (TAME)	ND		5.0		
Trichlorofluorome	ethane	ND		5.0		
Acetone		ND		20		
Freon 113		ND		5.0		
1,1-Dichloroether	he	ND		5.0		
Methylene Chlorid	le	ND		20		
Carbon Disulfide		ND		5.0		
MTBE		ND		5.0		
trans-1,2-Dichlor	roethene	ND		5.0		
Vinyl Acetate		ND		50		
1,1-Dichloroethar	ne	ND		5.0		
2-Butanone		ND		10		
cis-1,2-Dichloroe	ethene	ND		5.0		
2,2-Dichloropropa		ND		5.0		
Chloroform		ND		5.0		
Bromochloromethar		ND		5.0		
1,1,1-Trichloroet		ND		5.0		
1,1-Dichloroprope		ND		5.0		
Carbon Tetrachlor		ND		5.0		
1,2-Dichloroethar		ND		5.0		
Benzene		ND		5.0		
Trichloroethene		ND		5.0		
1,2-Dichloropropa		ND		5.0		
Bromodichlorometh	nane	ND		5,0		
Dibromomethane		ND		5.0		
4-Methyl-2-Pentar		ND		10		
cis-1,3-Dichlorop		ND		5.0		
Toluene	_	ND		5.0		
trans-1,3-Dichlor	ropropene	ND		5.0		
1,1,2-Trichloroet	chane	ND		5.0		
2-Hexanone		ND		10		
1,3-Dichloropropa	ane	ND		5.0		
Tetrachloroethene		ND		5.0		
Dibromochlorometh		ND		5.0		
1,2-Dibromoethane	2	ND		5.0		
Chlorobenzene		ND		5.0		
1,1,1,2-Tetrachlo	broethane	ND		5.0		
Ethylbenzene		ND		5.0		
m,p-Xylenes		ND		5.0		
o-Xylene		ND		5.0		
Styrene		ND		5.0		
Bromoform		ND		5.0		
Isopropylbenzene		ND		5.0		
1,1,2,2-Tetrachlo	proetnane	ND		5.0		
1,2,3-Trichloropr		ND		5.0		
Propylbenzene		ND		5.0		

		Volatile	Organics		
	4298		Location:	4700 Coliseum Way Site	e. Oakland
Client: PE	S Environmental,	Inc.	Prep:	EPA 5035	e, ounizana
	48.001.02.002		Analysis:	EPA 8260B	
Field ID: B-	6-6'-6.5'		Diln Fac:	1.006	
	4298-008		Batch#:	139828	
Matrix: So			Sampled:	06/27/08	
	/Kg		Received:	06/27/08	
Basis: as	received		Analyzed:	06/30/08	
Analyte					
Bromobenzene		Result ND		<u>RL</u> 5.0	
1,3,5-Trimethylbenz		ND		5.0	
2-Chlorotoluene		ND		5.0	
4-Chlorotoluene		ND		5.0	
tert-Butylbenzene		ND		5.0	
1,2,4-Trimethylbenz		ND		5.0	
sec-Butylbenzene		ND		5.0	
para-Isopropyl Tolu	ene	ND		5.0	
1,3-Dichlorobenzene		ND		5.0	
1,4-Dichlorobenzene		ND		5.0	
n-Butylbenzene		ND		5.0	
1,2-Dichlorobenzene		ND		5.0	
1,2-Dibromo-3-Chlor	opropane	ND		5.0	
1,2,4-Trichlorobenz	ene	ND		5.0	
Hexachlorobutadiene		ND		5.0	
Naphthalene		ND		5.0	
1,2,3-Trichlorobenz	ene	ND		5.0	
Surrogate	%RE	C Limits			
Dibromofluoromethan	e 113	78-126			
1,2-Dichloroethane-	d4 87	76-137			
Toluene-d8	93	80-120			
Bromofluorobenzene	98	80-121			
DI OMOLI GOLODCHIZCHC		00 121			

		Volatile	Organics		
	204298		Location:	4700 Coliseum Way Si	te, Oakland
	PES Environmental	Inc.	Prep:	EPA 5035	
	1148.001.02.002			EPA 8260B	
	B-7-2.5'-3'		Diln Fac:	1.114	
	204298-009		Batch#:	139859	
	Soil		Sampled:	06/27/08	
	ug/Kg		Received:	06/27/08	
Basis:	as received		Analyzed:	07/01/08	
Analyt	P	Result		RL	
Freon 12	÷	ND		11	
tert-Butyl Alcoho	1 (TBA)	ND		110	
Chloromethane		ND		11	
Isopropyl Ether (1	DIPE)	ND		5.6	
Vinyl Chloride		ND		11	
Bromomethane		ND		11	
Ethyl tert-Butyl I	Ether (ETBE)	ND		5.6	
Chloroethane		ND		11	
Methyl tert-Amyl 1		ND		5.6	
Trichlorofluorome	thane	ND		5.6	
Acetone		ND		22	
Freon 113		ND		5.6	
1,1-Dichloroethene		ND		5.6	
Methylene Chloride	e	ND		22	
Carbon Disulfide		ND		5.6	
MTBE		ND		5.6	
trans-1,2-Dichloro	oethene	ND		5.6	
Vinyl Acetate		ND		56	
1,1-Dichloroethan	e	ND		5.6	
2-Butanone		ND		11	
cis-1,2-Dichloroe		ND		5.6	
2,2-Dichloropropa	ne	ND		5.6	
Chloroform	_	ND		5.6	
Bromochloromethan		ND		5.6 5.6	
1,1,1-Trichloroet		ND ND		5.6	
1,1-Dichloroproper Carbon Tetrachlor:		ND		5.6	
1,2-Dichloroethane		ND		5.6	
Benzene	e	ND		5.6	
Trichloroethene		ND		5.6	
1,2-Dichloropropa	ne	ND		5.6	
Bromodichlorometha		ND		5.6	
Dibromomethane	arre	ND		5.6	
4-Methyl-2-Pentanc	one	ND		11	
cis-1,3-Dichlorop		ND		5.6	
Toluene		ND		5.6	
trans-1,3-Dichloro	opropene	ND		5.6	
1,1,2-Trichloroeth		ND		5.6	
2-Hexanone		ND		11	
1,3-Dichloropropan	ne	ND		5.6	
Tetrachloroethene		ND		5.6	
Dibromochlorometha	ane	ND		5.6	
1,2-Dibromoethane		ND		5.6	
Chlorobenzene		ND		5.6	
1,1,1,2-Tetrachlor	roethane	ND		5.6	
Ethylbenzene		ND		5.6	
m,p-Xylenes		ND		5.6	
o-Xylene		ND		5.6	
Styrene		ND		5.6	
Bromoform		ND		5.6	
Isopropylbenzene		ND		5.6	
1,1,2,2-Tetrachlor		ND		5.6	
1,2,3-Trichloropro	opane	ND		5.6	
Propylbenzene		ND		5.6	

	Volatile	Organics
	VOTACITO	Organites
Lab #: 204298		Location: 4700 Coliseum Way Site, Oakland
Client: PES Environme		Prep: EPA 5035
Project#: 1148.001.02.0	02	Analysis: EPA 8260B
Field ID: B-7-2.5'-3'		Diln Fac: 1.114
Lab ID: 204298-009		Batch#: 139859
Matrix: Soil		Sampled: 06/27/08
Units: ug/Kg		Received: 06/27/08
Basis: as received		Analyzed: 07/01/08
1 1		n+
Analyte	Result ND	
Bromobenzene	ND	5.6
1,3,5-Trimethylbenzene 2-Chlorotoluene	ND ND	5.0
4-Chlorotoluene	ND	5.6
tert-Butylbenzene	ND	5.6
	ND	5.6
1,2,4-Trimethylbenzene sec-Butylbenzene	ND	5.6
para-Isopropyl Toluene	ND	5.6
1,3-Dichlorobenzene	ND	5.6
1,4-Dichlorobenzene	ND	5.6
n-Butylbenzene	ND	5.6
1,2-Dichlorobenzene	ND	5.6
1,2-Dibromo-3-Chloropropane	ND	5.6
1,2,4-Trichlorobenzene	ND	5.6
Hexachlorobutadiene	ND	5.6
Naphthalene	ND	5.6
1,2,3-Trichlorobenzene	ND	5.6
Surrogate	%REC Limits	
Dibromofluoromethane	90 78-126	
1,2-Dichloroethane-d4	100 76-137	
Toluene-d8	98 80-120	
Bromofluorobenzene	112 80-121	

	Volatil	e Organics
Lab #: 204298		Location: 4700 Coliseum Way Site, Oakland
	ronmental, Inc.	Prep: EPA 5035
Project#: 1148.001		Analysis: EPA 8260B
Field ID: B-7-6'-6		Diln Fac: 0.8850
Lab ID: 204298-0		Batch#: 139859
Matrix: Soil		Sampled: 06/27/08
Units: ug/Kg		Received: 06/27/08
Basis: as recei	wed	Analyzed: 07/01/08
Dasis. as iteei	veu	Anary 200. 07/01/00
Analyte	Result	RL
Freon 12	ND	8.8
tert-Butyl Alcohol (TBA)	ND	88
Chloromethane	ND	8.8
Isopropyl Ether (DIPE)	ND	4.4
Isopropyi Ether (DIFE)	ND	8.8
Vinyl Chloride	ND	8.8
Bromomethane		6.8 4.4
Ethyl tert-Butyl Ether (E		4.4 8.8
Chloroethane	ND	
Methyl tert-Amyl Ether (T.		$4 \cdot 4$
Trichlorofluoromethane	ND	4.4
Acetone	ND	18
Freon 113	ND	4.4
1,1-Dichloroethene	ND	4.4
Methylene Chloride	ND	18
Carbon Disulfide	ND	4.4
MTBE	ND	4.4
trans-1,2-Dichloroethene	ND	4.4
Vinyl Acetate	ND	44
1,1-Dichloroethane	ND	4.4
2-Butanone	ND	8.8
cis-1,2-Dichloroethene	ND	4.4
2,2-Dichloropropane	ND	4.4
Chloroform	ND	4.4
Bromochloromethane	ND	4.4
1,1,1-Trichloroethane	ND	4.4
1,1-Dichloropropene	ND	4.4
Carbon Tetrachloride	ND	4.4
1,2-Dichloroethane	ND	4.4
Benzene	ND	4.4
Trichloroethene	ND	4.4
1,2-Dichloropropane	ND	4.4
Bromodichloromethane	ND	4.4
Dibromomethane	ND	4.4
4-Methyl-2-Pentanone	ND	*.* 8.8
cis-1,3-Dichloropropene	ND	0.0
Toluene	ND	4.4
trans-1,3-Dichloropropene	ND	4.4
1 1 2 Trichleroethane	ND	4.4
1,1,2-Trichloroethane		4.4 8.8
2-Hexanone	ND	
1,3-Dichloropropane	ND	4.4
Tetrachloroethene	ND	$\frac{4}{4}$
Dibromochloromethane	ND	4.4
1,2-Dibromoethane	ND	4.4
Chlorobenzene	ND	4.4
1,1,1,2-Tetrachloroethane	ND	4.4
Ethylbenzene	ND	4.4
m,p-Xylenes	ND	4.4
o-Xylene	ND	4.4
Styrene	ND	4.4
Bromoform	ND	4.4
Isopropylbenzene	ND	4.4
1,1,2,2-Tetrachloroethane	ND	4.4
1,2,3-Trichloropropane	ND	4.4
Propylbenzene	ND	4.4

	Volatile	Organics	
Lab #: 204298		Location: 4700 Coliseum Way Site,	Oakland
	ironmental, Inc.	Prep: EPA 5035	
	L.02.002	Analysis: EPA 8260B	
Field ID: B-7-6'-6		Diln Fac: 0.8850 Batch#: 139859	
Lab ID: 204298-0 Matrix: Soil)10	Sampled: 139859	
Units: ug/Kg		Received: 06/27/08	
Basis: as rece:	ved	Analyzed: 07/01/08	
Dasis. ds leee.	L V C U	Alaryzea. 07/01/00	
Analyte	Result	RL	
Bromobenzene	ND	4.4	
1,3,5-Trimethylbenzene	ND	4.4	
2-Chlorotoluene	ND	4.4	
4-Chlorotoluene	ND	4.4	
tert-Butylbenzene	ND	4.4	
1,2,4-Trimethylbenzene	ND	4.4	
sec-Butylbenzene	ND	4.4	
para-Isopropyl Toluene	ND	4.4	
1,3-Dichlorobenzene	ND	4.4	
1,4-Dichlorobenzene	ND	4,4	
n-Butylbenzene	ND	4.4	
1,2-Dichlorobenzene	ND	4.4	
1,2-Dibromo-3-Chloropropa		4.4	
1,2,4-Trichlorobenzene	ND	4.4	
Hexachlorobutadiene	ND	4.4	
Naphthalene	ND	4.4	
1,2,3-Trichlorobenzene	ND	4.4	
Surrogate	%REC Limits		
Dibromofluoromethane	94 78-126		
1,2-Dichloroethane-d4	101 76-137		
Toluene-d8	102 80-120		
Bromofluorobenzene	116 80-121		

		Volatile	Organics		
Lab #:	204298		Location:	4700 Coliseum Way Site,	Oakland
Client:	PES Environmental	Inc.	Prep:	EPA 5035	
Project#:	1148.001.02.002		Analysis:	EPA 8260B	
Field ID:	B-8-2.5'-3'		Diln Fac:	1.014	
Lab ID:	204298-011		Batch#:	139859	
Matrix:	Soil		Sampled:	06/27/08	
Units:	ug/Kg		Received:	06/27/08	
Basis:	as received		Analyzed:	07/01/08	
	•				
Analy	ce	Result		RL	
Freon 12		ND ND		10 100	
tert-Butyl Alcoho	OI (IBA)	ND		10	
Chloromethane Isopropyl Ether		ND		5.1	
	(DIPE)	ND		10	
Vinyl Chloride		ND		10	
Bromomethane	Ethor (ETDE)			5.1	
Ethyl tert-Butyl	Ether (EIBE)	ND		10	
Chloroethane	Ether (TAME)	ND ND		5.1	
Methyl tert-Amyl Trichlorofluorom		ND		5.1	
	echane	ND		20	
Acetone				5.1	
Freon 113	20	ND ND		5.1	
1,1-Dichloroethen Methylene Chlorid		ND		20	
Carbon Disulfide	ue	ND		5.1	
		ND		5.1	
MTBE	a a than a	ND		5.1	
trans-1,2-Dichlo:	roethene			51	
Vinyl Acetate		ND ND		5.1	
1,1-Dichloroethan	ne			10	
2-Butanone cis-1,2-Dichloroe	othono	ND ND		5.1	
ClS-1,2-Dichloroe	ethene	ND		5.1	
2,2-Dichloropropa Chloroform	ane	ND		5.1	
Bromochloromethan	20	ND		5.1	
		ND		5.1	
1,1,1-Trichloroet		ND		5.1	
1,1-Dichloroprope Carbon Tetrachlo:		ND		5.1	
1,2-Dichloroetha		ND		5.1	
Benzene	lie	ND		5.1	
Trichloroethene		ND		5.1	
	220	ND		5.1	
1,2-Dichloropropa Bromodichlorometh		ND		5.1	
Dibromomethane	lialic	ND		5.1	
4-Methyl-2-Pentai	none	ND		10	
cis-1, 3-Dichloro	nonene	ND		5.1	
Toluene	Properte	ND		5.1	
trans-1, 3-Dichlos	ropropene	ND		5.1	
1,1,2-Trichloroet		ND		5.1	
2-Hexanone	CITATIC	ND		10	
1, 3-Dichloropropa	ane	ND		5.1	
Tetrachloroethene		ND		5.1	
Dibromochlorometh		ND		5.1	
1,2-Dibromoethane		ND		5.1	
Chlorobenzene	<u> </u>	ND		5.1	
1,1,1,2-Tetrachlo	oroethane	ND		5.1	
Ethylbenzene		ND		5.1	
m,p-Xylenes		ND		5.1	
o-Xylene		ND		5.1	
Styrene		ND		5.1	
Bromoform		ND		5.1	
Isopropylbenzene		ND		5.1	
1,1,2,2-Tetrachlo	oroethane	ND		5.1	
1,2,3-Trichlorop	ropane	ND		5.1	
Propylbenzene		ND		5.1	
L T OP Y TROUGUE		-1		J. 1	

	Volatile	Organics
Lab #: 204298	131 A.A.	Location: 4700 Coliseum Way Site, Oakland
Client: PES Environm	ental. Inc.	Prep: EPA 5035
Project#: 1148.001.02.		Analysis: EPA 8260B
Field ID: B-8-2.5'-3'		Diln Fac: 1.014
Lab ID: 204298-011		Batch#: 139859
Matrix: Soil		Sampled: 06/27/08
Units: ug/Kg		Received: 06/27/08
Basis: as received		Analyzed: 07/01/08
Analyte	Result	RL
Bromobenzene	ND	5.1
1,3,5-Trimethylbenzene	ND	5.1
2-Chlorotoluene	ND	5.1
4-Chlorotoluene	ND	5.1
tert-Butylbenzene	ND	5.1
1,2,4-Trimethylbenzene	ND	5.1
sec-Butylbenzene	ND	5.1
para-Isopropyl Toluene	ND	5.1
1,3-Dichlorobenzene	ND	5.1
1,4-Dichlorobenzene	ND	5.1
n-Butylbenzene	ND	5.1
1,2-Dichlorobenzene	ND	5.1
1,2-Dibromo-3-Chloropropane	ND	5.1
1,2,4-Trichlorobenzene	ND	5.1
Hexachlorobutadiene	ND	5.1
Naphthalene	ND	5.1
1,2,3-Trichlorobenzene	ND	5.1
Surrogate	%REC Limits	
Dibromofluoromethane	100 78-126	
1,2-Dichloroethane-d4	101 76-137	
Toluene-d8	101 80-120	
Bromofluorobenzene	117 80-121	

		Volatile	Organics		
	204298		Location:	4700 Coliseum Way Site	, Oakland
Client:	PES Environmental,	Inc.	Prep:	EPA 5035	
	1148.001.02.002			EPA 8260B	
	B-8-6'-6.5'		Diln Fac:	0.9615	
	204298-012		Batch#:	139859	
	Soil		Sampled:	06/27/08	
	ug/Kg		Received:	06/27/08	
Basis:	as received		Analyzed:	07/01/08	
Analyt	-	Result		RL	
Freon 12	e	ND		9.6	
tert-Butyl Alcoho	(TBA)	ND		96	
Chloromethane		ND		9.6	
Isopropyl Ether (DIPE	ND		4.8	
Vinyl Chloride	DIIE/	ND		9.6	
Bromomethane		ND		9.6	
Ethyl tert-Butyl	Fther (FTRF)	ND		4.8	
Chloroethane	TCHCT (THTTT)	ND		9.6	
Methyl tert-Amyl	Fther (TAME)	ND		9.6 4.8	
Trichlorofluorome	thane	ND		4.8	
Acetone		ND		4.8 19	
Freon 113		ND		4.8	
				4.8 4.8	
1,1-Dichloroethen Methylene Chlorid		ND ND		4.8 19	
Methylene Chlorid	e				
Carbon Disulfide		ND		4.8	
MTBE	a a than a	ND		4.8	
trans-1,2-Dichlor	oethene	ND		4.8	
Vinyl Acetate	2	ND		48	
1,1-Dichloroethan	.e	ND		4.8	
2-Butanone	there	ND		9.6	
cis-1,2-Dichloroe		ND		4.8	
2,2-Dichloropropa Chloroform	ille	ND ND		4.8 4.8	
Bromochloromethan	0	ND		4.0	
1,1,1-Trichloroet		ND		4.8	
1,1-Dichloroprope		ND		4.8	
Carbon Tetrachlor		ND		4.8	
1,2-Dichloroethan		ND		4.8	
Benzene	.e	ND		4.8	
Trichloroethene		ND		4.8	
1,2-Dichloropropa	20	ND		4.8	
Bromodichlorometh		ND		4.8	
Dibromomethane	alle	ND		4.8	
4-Methyl-2-Pentan	one	ND		9.6	
cis-1, 3-Dichlorop		ND		4.8	
Toluene	TOPCIIC	ND		4.0	
trans-1,3-Dichlor	onronene	ND		4.8	
1,1,2-Trichloroet		ND		4.8	
2-Hexanone		ND		9.6	
1,3-Dichloropropa	ne	ND		4.8	
Tetrachloroethene		ND		4.0	
Dibromochlorometh		ND		4.8	
1,2-Dibromoethane		ND		4.8	
Chlorobenzene		ND		4.8	
1,1,1,2-Tetrachlo	roethane	ND		4.8	
Ethylbenzene		ND		4.8	
m,p-Xylenes		ND		4.8	
o-Xylene		ND		4.8 4.8	
Styrene		ND		4.8 4.8	
Bromoform		ND		4.8 4.8	
Isopropylbenzene		ND		4.8 4.8	
1,1,2,2-Tetrachlo	roethane	ND		4.0	
1,2,3-Trichloropr	opane	ND		4.8 4.8	
Propylbenzene	opune	ND		4.8	
r topy themzene		110		4.0	

		Volatile	Organics		
	1298		Location:	4700 Coliseum Way Site,	Oakland
	5 Environmental, 48.001.02.002	Inc.	Prep: Analysis:	EPA 5035	
	8-6'-6.5'		Diln Fac:	0.9615	
	1298-012		Batch#:	139859	
Matrix: So:	il		Sampled:	06/27/08	
Units: ug	/Kg		Received:	06/27/08	
Basis: as	received		Analyzed:	07/01/08	

Analyte		Result		RL.	
Bromobenzene		ND		4.8	
1,3,5-Trimethylbenze		ND		4.8	
2-Chlorotoluene		ND		4.8	
4-Chlorotoluene		ND		4.8	
tert-Butylbenzene		ND		4.8	
1,2,4-Trimethylbenze		ND		4.8	
sec-Butylbenzene		ND		4.8	
para-Isopropyl Tolue		ND		4.8	
1,3-Dichlorobenzene		ND		4.8	
1,4-Dichlorobenzene		ND		4.8	
n-Butylbenzene		ND		4.8	
1,2-Dichlorobenzene		ND		4.8	
1,2-Dibromo-3-Chloro	opropane l	ND		4.8	
1,2,4-Trichlorobenze		ND		4.8	
Hexachlorobutadiene		ND		4.8	
Naphthalene		ND		4.8	
1,2,3-Trichlorobenze	ene l	ND		4.8	
Surrogate	%RE(C Limits			
Dibromofluoromethan		78-126			
1,2-Dichloroethane-		76-137			
Toluene-d8	98	80-120			
Bromofluorobenzene	121	80-121			

	Vola	tile Organics	
Lab #:	204298	Location: 4700 Coliseum Way Site, Oakland	
Client:	PES Environmental, Inc.	Prep: EPA 5035	
Project#:	1148.001.02.002	Analysis: EPA 8260B	
Type: Lab ID:	BLANK	Basis: as received	
Lab ID:	QC448779	Diln Fac: 1.000	
Matrix:	Soil	Batch#: 139828	
Units:	ug/Kg	Analyzed: 06/30/08	

Unites: ug/kg		Analyzeu. 00/30/08
Analyte	Result	RL
Freon 12	ND	10
tert-Butyl Alcohol (TBA)	ND	100
Chloromethane	ND	10
Isopropyl Ether (DIPE)	ND	5.0
Vinyl Chloride	ND	10
Bromomethane	ND	10
Ethyl tert-Butyl Ether (ETBE)	ND	5.0
Chloroethane	ND	10
Methyl tert-Amyl Ether (TAME)	ND	5.0
Trichlorofluoromethane	ND	5.0
Acetone	ND	20
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ND	5.0
Dibromochloromethane	ND	5.0
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1, 2, 3-Trichloropropane	ND	5.0
	ND	
Propylbenzene		5.0

ND= Not Detected RL= Reporting Limit

		Volatile	Organics	
Lab #: 2	04298		Location:	4700 Coliseum Way Site, Oakland
Client: P	ES Environmental,	Inc.	Prep:	EPA 5035
	148.001.02.002		Analysis:	EPA 8260B
Type: B	LANK		Basis:	as received
Lab ID: Q	C448779		Diln Fac:	1.000
Matrix: S	oil		Batch#:	139828
Units: u	.g/Kg		Analyzed:	06/30/08
Analyte		Result		RL
Bromobenzene		ND		5.0
1,3,5-Trimethylben		ND		5.0
2-Chlorotoluene		ND		5.0
4-Chlorotoluene		ND		5.0
tert-Butylbenzene		ND		5.0
1,2,4-Trimethylben		ND		5.0
sec-Butylbenzene		ND		5.0
para-Isopropyl Tol		ND		5.0
1,3-Dichlorobenzen	e	ND		5.0
1,4-Dichlorobenzen	e	ND		5.0
n-Butylbenzene		ND		5.0
1,2-Dichlorobenzen		ND		5.0
1,2-Dibromo-3-Chlo		ND		5.0
1,2,4-Trichloroben		ND		5.0
Hexachlorobutadien	e	ND		5.0
Naphthalene		ND		5.0
1,2,3-Trichloroben	zene	ND		5.0

Surrogate	%REC	Limits	
Dibromofluoromethane	102	78-126	
1,2-Dichloroethane-d4	85	76-137	
Toluene-d8	92	80-120	
Bromofluorobenzene	105	80-121	

		Volatile	Organics	3
Lab #: Client: Project#:	204298 PES Environmental, 1148.001.02.002	Inc.	Location: 4700 Coliseum Way Site, Oakland Prep: EPA 5035 Analysis: EPA 8260B	
Type: Lab ID: Matrix: Units:	BLANK QC448886 Soil ug/Kg		Basis: Diln Fac: Batch#: Analyzed:	as received

Analyte	Result	RL
Freon 12	ND	10
tert-Butyl Alcohol (TBA)	ND	100
Chloromethane	ND	10
	ND	5.0
Isopropyl Ether (DIPE)		
Vinyl Chloride	ND	10
Bromomethane	ND	10
Ethyl tert-Butyl Ether (ETBE)	ND	5.0
Chloroethane	ND	10
Methyl tert-Amyl Ether (TAME)	ND	5.0
Trichlorofluoromethane	ND	5.0
Acetone	ND	20
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	5.0
1, 1, 1-Trichloroethane	ND	5.0
	ND	5.0
1,1-Dichloropropene		
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ND	5.0
Dibromochloromethane	ND	5.0
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0
LIONAINEUSEUE		5.0

ND= Not Detected RL= Reporting Limit

		Volatile	Organics
Lab #: Client: Project#:	204298 PES Environmental 1148.001.02.002	, Inc.	Location: 4700 Coliseum Way Site, Oakland Prep: EPA 5035 Analysis: EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC448886 Soil ug/Kg		Basis:as receivedDiln Fac:1.000Batch#:139859Analyzed:07/01/08
An	alyte	Result	RL
Bromobenzene 1,3,5-Trimeth 2-Chlorotolue 4-Chlorotolue tert-Butylben 1,2,4-Trimeth sec-Butylbenzen 1,3-Dichlorob 1,4-Dichlorob 1,2-Dichlorob 1,2-Dibromo-3 1,2,4-Trichlo Hexachlorobut Naphthalene 1,2,3-Trichlo	ene ene lizene hylbenzene sene d'I Toluene benzene benzene de ochloropropane probenzene adiene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Sur	rogate %R	EC Limits	
Dibromofluoro 1,2-Dichloroe Toluene-d8 Bromofluorobe	ethane-d4 97 99	78-126 76-137 80-120 80-121	

		Volatile	Organics
Lab #:	204298	Inc.	Location: 4700 Coliseum Way Site, Oakland
Client:	PES Environmental,		Prep: EPA 5035
Project#:	1148.001.02.002		Analysis: EPA 8260B
Matrix:	Soil		Diln Fac: 1.000
Units:	ug/Kg		Batch#: 139828
Basis:	as received		Analyzed: 06/30/08

Type:	BS		Lab ID:	QC44	18780	
Analy	te	Spiked		Result	%REC	Limits
tert-Butyl Alcoh	ol (TBA)	125.0		110.2	88	58-135
Isopropyl Ether	(DIPE)	25.00		25.03	100	62-120
Ethyl tert-Butyl	Ether (ETBE)	25.00		23.23	93	65-121
Methyl tert-Amyl	Ether (TAME)	25.00		24.84	99	71-122
1,1-Dichloroethe		25.00		24.98	100	71-133
Benzene		25.00		25.89	104	79-123
Trichloroethene		25.00		23.86	95	79-124
Toluene		25.00		25.28	101	80-123
Chlorobenzene		25.00		24.06	96	80-120
Surrog	ate %R	EC Limits				
Dibromofluoromet	hane 100	78-126				
1,2-Dichloroetha	ne-d4 87	76-137				
Toluene-d8	95	80-120				
Bromofluorobenze	ne 89	80-121				

Type:	BSD			Lab ID:	QC44	8781			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Buty	1 Alcohol (TBA)		125.0		119.7	96	58-135	8	27
Isopropyl	Ether (DIPE)		25.00		25.17	101	62-120	1	20
	t-Butyl Ether (ETBE)		25.00		23.84	95	65-121	3	20
	ert-Amyl Ether (TAME)		25.00		24.72	99	71-122	0	20
	oroetĥene		25.00		23.87	95	71-133	5	20
Benzene			25.00		25.60	102	79-123	1	20
Trichloro	ethene		25.00		23.76	95	79-124	0	20
Toluene			25.00		24.99	100	80-123	1	20
Chloroben	zene		25.00		24.56	98	80-120	2	20
	Surrogate	%REC	Limits						
Dibromofl	uoromethane	100	78-126						
1,2-Dichl	oroethane-d4	89	76-137						
Toluene-d	8	94	80-120						
Bromofluo	robenzene	90	80-121						

	Volatile	Organics
Lab #:	204298	Location: 4700 Coliseum Way Site, Oakland
Client:	PES Environmental, Inc.	Prep: EPA 5035
Project#:	1148.001.02.002	Analysis: EPA 8260B
Matrix:	Soil	Diln Fac: 1.000
Units:	ug/Kg	Batch#: 139859
Basis:	as received	Analyzed: 07/01/08

Type: BS			Lab ID:	QC4	48884	
Analyte		Spiked		Result	%REC	Limits
tert-Butyl Alcohol (TBA)		125.0		152.9	122	58-135
Isopropyl Ether (DIPE)		25.00		27.12	108	62-120
Ethyl tert-Butyl Ether (ETBE)		25.00		27.11	108	65-121
Methyl tert-Amyl Ether (TAME)		25.00		29.24	117	71-122
1,1-Dichloroethene		25.00		21.02	84	71-133
Benzene		25,00		23.77	95	79-123
Trichloroethene		25.00		23.96	96	79-124
Toluene		25.00		26.12	104	80-123
Chlorobenzene		25.00		24.01	96	80-120
Surrogate	%REC	Limits				
Dibromofluoromethane	91	78-126				
1,2-Dichloroethane-d4	95	76-137				
Toluene-d8	108	80-120				
Bromofluorobenzene	102	80-121				

Туре:	BSD			Lab ID:	QC44	8885			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl	Alcohol (TBA)		125.0	An and the second s	136.6	109	58-135	11	27
Isopropyĺ E	Sther (DIPE)		25.00		26.30	105	62-120	3	20
Ethyl tert-	Butyl Ether (ETBE)		25,00		27.07	108	65-121	0	20
	-Amyl Ether (TAME)		25.00		26.63	107	71-122	9	20
1,1-Dichlor			25.00		22,88	92	71-133	8	20
Benzene			25.00		24,29	97	79-123	2	20
Trichloroet	hene		25.00		25.62	102	79-124	7	20
Toluene			25.00		25.54	102	80-123	2	20
Chlorobenze	ene		25.00		24.06	96	80-120	0	20
S	urrogate	%REC	Limits						
Dibromofluc	promethane	94	78-126						
1,2-Dichlor		99	76-137						
Toluene-d8		102	80-120						
Bromofluoro	benzene	106	80-121						

	Disso	olved Gases	
Lab #:	204298	Location: 470	00 Coliseum Way Site, Oakland
Client:	PES Environmental, Inc.	Prep: MET	THOD
Project#:	1148.001.02.002	Analysis: RSK	(-175
Field ID:	B-1-W	Batch#:	139832
Matrix:	Water	Sampled:	06/27/08
Units:	mg/L	Received:	06/27/08
Diln Fac:	1.000	Analyzed:	06/30/08

 \mathbf{x}_{i}

Type:	SAMPLE	Lab ID:	204298-013	
А	nalyte	Result	RL	
Methane		0.036	0.005	
Ethene		ND	0.005	
Ethane		ND	0.005	

Type:	BLANK		Lab ID:	QC448793
	Analyte	Result		RL
Methane		ND		0.005
Ethene Ethane		ND		0.005
Ethane		ND		0.005

		Dissolv	ed Gases	
Lab #:	204298		Location:	4700 Coliseum Way Site, Oakland
Client:	PES Environmental,	Inc.	Prep:	METHOD
Project#:	1148.001.02.002		Analysis:	RSK-175
Matrix:	Water		Batch#:	139832
Units:	mg/L		Analyzed:	06/30/08
Diln Fac:	1.000			

Type: BS	5	Lab ID: Q	C448791	
Analyte	a Spiked	Result	*RF	C Limits
Methane	0.654	4 0.60	59 93	80-120
Ethene	1.145	1.15	6 101	80-120
Ethane	1.227	1.23	4 101	80-120

Type:	BSD	Lab ID:	QC448	792			
	Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Methane		0.6544	0.5691	87	80-120	6	20
Ethene		1.145	1.088	95	80-120	6	20
Ethane		1.227	1.162	95	80-120	6	20

	Curtis & Tompkins Labor	atories Analytical Report
Lab #:	204298	Location: 4700 Coliseum Way Site, Oakland
Client:	PES Environmental, Inc.	Prep: METHOD
Project#:	1148.001.02.002	Analysis: EPA 300.0
Field ID:	B-1-W	Batch#: 139745
Matrix:	Water	Sampled: 06/27/08 09:00
Units:	mg/L	Received: 06/27/08

Type:	SAMPLE	Lab ID:	2	04298-013	
	Analyte	Result	RL	Diln Fac	Analyzed
Chloride		35	0.40	2.000	06/28/08 01:37
Nitrogen,	Nitrite	ND	0.05	1.000	06/27/08 16:35
Nitrogen,		0.09	0.05	1.000	06/27/08 16:35
Sulfate		73	1.0	2.000	06/28/08 01:37

Type: Lab ID:	BLANK QC448446		Diln Fac: Analyzed:	1.000 06/27/08 08:49
	Analyte	Result	RL	
Chloride		ND		0.20
Nitrogen, N	litrite	ND		0.05
Nitrogen, N Sulfate	litrate	ND		0.05
Sulfate		ND		0.50

	Curtis & Tompkins Lab	ooratories A	malytical Report
Lab #:	204298		4700 Coliseum Way Site, Oakland
Client:	PES Environmental, Inc.		METHOD
Project#:	1148.001.02.002	Analysis:	EPA 300.0
Matrix:	Water	Diln Fac:	1.000
Units:	mg/L	Batch#:	139745

Type: BS Lab ID: QC4

QC448447

Analyte	Spiked	Result	%RE	C Limits	and the
Chloride	4.000	3.725	93	80-120	
Nitrogen, Nitrite	1.000	0.9127	91	80-120	
Nitrogen, Nitrate	1.000	0.9359	94	80-120	
Sulfate	10.00	9.354	94	80-120	

Analyzed: 06/27/08 09:06

06/27/08 09:23

Type: BSD Lab ID: QC44

QC448448

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Chloride	4.000	3.674	92	80-120	1	20
Nitrogen, Nitrite	1.000	0.8714	87	80-120	5	20
Nitrogen, Nitrate	1.000	0.9124	91	80-120	3	20
Sulfate	10.00	9.293	93	80-120	1	20

Analyzed:

	Curtis & Tompkins Labo	oratories Analytical Report
Lab #:	204298	Location: 4700 Coliseum Way Site, Oakland
Client:	PES Environmental, Inc.	Prep: METHOD
Project#:	1148.001.02.002	Analysis: EPA 300.0
Field ID:	ZZZZZZZZZ	Diln Fac: 1.020
MSS Lab ID:	204278-001	Batch#: 139745
Matrix:	Water	Sampled: 06/26/08 14:52
Units:	mg/L	Received: 06/26/08

Type: Lab ID: MS QC448449

Analyte	MSS Result	Spiked	Result	%REC	Limits
Chloride	3.157	2.040	5.009	91	80-120
Nitrogen, Nitrite	<0.01089	0.5100	0.4856	95	80-120
Nitrogen, Nitrate	1.156	0.5100	1.630	93	80-120
Sulfate	<0.08799	5.100	4.833	95	80-120

Туре	2:	
Lab	ID:	

MSD QC448450

Analyzed: 06/27/08 10:46

Analyzed: 06/27/08 10:29

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Chloride	2.040	4.966	89	80-120	1	20
Nitrogen, Nitrite	0.5100	0.4631	91	80-120	5	20
Nitrogen, Nitrate	0.5100	1.628	93	80-120	0	20
Sulfate	5.100	4.779	94	80-120	1	20

Lab #:	204298		4700 Coliseum Way Site, Oakland
Client:	PES Environmental, Inc.	Prep:	METHOD
Project#:	1148.001.02.002	Analysis:	SM5310C
Analyte:	Total Organic Carbon	Batch#:	139965
Field ID:	B-1-W	Sampled:	06/27/08
Matrix:	Water	Received:	06/27/08
Units:	mg/L	Analyzed:	07/03/08

k

68-121 **1**

20 2.000

Batch QC Report

QC449344

MSD

Lab #:	204298	Location:	4700 Coliseum Way Site, Oakland
Client:	PES Environmental, Inc.	Prep:	METHOD
Project#:	1148.001.02.002	Analysis:	SM5310C
Analyte:	Total Organic Carbon	Batch#:	139965
Field ID:	B-1-W	Sampled:	06/27/08
MSS Lab ID:	204298-013	Received:	06/27/08
Matrix:	Water	Analyzed:	07/03/08
Units:	mg/L		
Type Lab ID	MSS Result Spiked	Result	t %REC Limits RPD Lim Diln Fa
LCS QC449342	10.00	10.0	03 100 90-110 1.000
MS 0C449343	24.07 10.00	33.4	44 94 68-121 2.000

33.14

91

10.00

ANALYTICAL REPORT

PES Environmental, Inc. 1682 Novato Boulevard Novato, CA 94947	2	: 1148.001.03.002 : 4700 Coliseum Way Site, Oakland
NOVACO, CA 94947	TEVET	: 11

Sample ID	Lab ID
B-13-2.5-3	205011-001
B-13-6-6.5	205011-002
B-14-2.5-3	205011-003
B-14-6-6.5	205011-004
B-15-2.5-3	205011-005
B-15- 6-6.5	205011-006
B-12-2.5-3	205011-007
B-12-6-6.5	205011-008
B-12-1-1.5	205011-009

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Project Manager

Signature:

Senior Program Manager

Date: 08/15/2008

Date: <u>08/26/2008</u>

NELAP # 01107CA

Page 1 of

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 205011 PES Environmental, Inc. 1148.001.03.002 4700 Coliseum Way Site, Oakland 07/31/08 07/31/08

This hardcopy data package contains sample and QC results for nine soil samples, requested for the above referenced project on 07/31/08. The samples were received on ice and intact, directly from the field.

Volatile Organics by GC/MS (EPA 8260B):

Matrix spikes were not reported for batch 141226 because the parent sample was reanalyzed in another batch. B-12-2.5-3 (lab # 205011-007) was diluted due to high levels of target analytes. B-12-1-1.5 (lab # 205011-009) was diluted due to high levels of hydrocarbons. B-13-6-6.5 (lab # 205011-002) was not diluted; the low sample weight is due to 5035 packaging. Matrix spikes were not reported for batch 141029, batch 141065, and batch 141124, due to insufficient sample volume. No other analytical problems were encountered.

PES Environmental, Inc. Engineering & Environmental Services LABORATORY: Curtis and Tompkins JOB NUMBER: 1148.001.03.002 NAME / LOCATION: 4700 Coliseum Wax Site / Oa PROJECT MANAGER: Kyle Hory	SAMPLERS: Mignel Rive 205 Recorder: Mignel Rive	Image: Second
DATE SAMPLE NUMBER DESIGNATION	MATRIX # of Containers Matrix Regiment to the second to t	H H H H H H H H H H H H H H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

NOTES	CHAIN OF CUSTODY RECORD					
Furn Around Time: Standard 5-day TAT	RELINQUISHED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature)		DBY: (Signature)	PATE	TIME	
Please send appy of Chain of Custody	RELINQUISHED BY: (Signature)		RECEIVED	BY: (Superiore)	DATE	TIME
to Kyle Flory BGary Thomas	RELINQUISHED BY: (Signature)		RECEIVED) BY: (Signature)	DATE	TIME
9thomas@ reserv. com.	RELINQUISHED BY: (Signature)		RECEIVED	BY: (Signature)	DATE	TIME
J - /	DISPATCHED BY: (Signature)	DATE	TIME	RECEIVED FOR LAB BY: (Signature)	DATE	TIME
	METHOD OF SHIPMENT: Dropped	offat	- la	boratory		

WHITE-Laboratory COPY YELLOW-Project Office Copy PINK-Field or Office Copy

on ice, intert

Login # 205011 Date Received 7/31/06 Number of coolers 1 Client Project 7/00 Coli i Seum Way Si Date Logged in By (print) KWellbrock (sign) MWellbock Date Logged in By (print) KWellbrock (sign) MWellbock 1. Did cooler come with a shipping slip (airbill, etc)? YES No 2A. Were custody seals present? YES (circle) on cooler on samples No B. Were custody seals intact upon arrival? YES NO No 2B. Were custody papers dry and intact when received? No No 3. Were custody papers filled out properly (ink, signed, etc)? NO NO 4. Were custody papers filled out properly (ink, signed, etc)? NO NO 6. Indicate the packing in cooler: (if other, describe) No NO Bubble Wrap Hean blocks Hags None Cloth material Cardboard Styrofoam Paper towels 7. Temperature documentation: Type of ice used: Wet Blue/Gel None No 9. Did all bottles arrive unbroken/unopened? Mo NO NO NO <tr< th=""><th>COOLER RECEIPT CHECKLIST</th><th>CUT Curtis & Tompkins, Lto</th></tr<>	COOLER RECEIPT CHECKLIST	CUT Curtis & Tompkins, Lto
Date Opened 7 31 By (print) KWellbooch (sign) KWellbooch (sign) Date Logged in By (print) By (print) Sign) YES 1. Did cooler come with a shipping slip (airbill, etc)? YES No 2A. Were custody seals present? YES (circle) on cooler on samples YES No How many Name Date 2B. Were custody seals intact upon arrival? YES NO 3. Were custody papers dry and intact when received? MES NO 4. Were custody papers filled out properly (ink, signed, etc)? TES NO 5. Is the project identifiable from custody papers? (If so fill out top of form) NO NO 6. Indicate the packing in cooler: (if other, describe) Image: None Image: None Cloth material Cardboard Styrofoam Paper towels 7. Temperature documentation: Type of ice used: Wet Blue/Gel None Image: None 9. Did all bottles arrive unbroken/unopened? Image: None Image: None Image: None Image: None 9. Did all bottles arrive unbroken/unopened? Image: None Image: None Image: None Image: None </th <th>Login # 2050 Date Received Client PES Proj</th> <th>7/31/08 Number of coolers 1 ect 4700 Coliseum Way S</th>	Login # 2050 Date Received Client PES Proj	7/31/08 Number of coolers 1 ect 4700 Coliseum Way S
2A. Were custody seals present?	Date Opened 7/31 By (print) KWellb. Date Logged in J By (print) J	10ch (sign) Rullhoch
2A. Were custody seals present?	1. Did cooler come with a shipping slip (airbill, etc. Shipping info)?YES NO
□ Bubble Wrap □ Cardboard □ Styrofoam □ Paper towels 7. Temperature documentation: □ Styrofoam □ Paper towels 9. Samples Received on ice & cold without a temperature blank □ Samples received on ice directly from the field. Cooling process had begun 8. Were Method 5035 sampling containers present? ○ NO If YES, what time were they transferred to freezer? ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	 2A. Were custody seals present? □ YES (cir How many	cle) on cooler on samples Date Date VES NO March Alphaned, etc)? TES NO NO NO NO Date NO NO NO NO NO NO NO NO NO NO
 □ Samples Received on ice & cold without a temperature blank Samples received on ice directly from the field. Cooling process had begun 8. Were Method 5035 sampling containers present?	Bubble Wrap Cloth material Cardboard	Bags None
 Samples Received on ice & cold without a temperature blank Samples received on ice directly from the field. Cooling process had begun Were Method 5035 sampling containers present?	Type of ice used: KWet 🗌 Blue/Gel	\Box None Temp(°C) $[3, 8]$
 Samples received on ice directly from the field. Cooling process had begun Were Method 5035 sampling containers present?	-1	
 8. Were Method 5035 sampling containers present?		
COMMENTS	 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to fi 9. Did all bottles arrive unbroken/unopened? 10. Are samples in the appropriate containers for in 11. Are sample labels present, in good condition and 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests ro 14. Are the samples appropriately preserved?	dicated tests? dicated tests? complete? c

SOP Volume:Client ServicesSection:1.1.2Page:1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008 F:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

		Volatile	Organics	•	
Lab #:	205011			4700 Coliseum Way Site,	, Oakland
Client:	PES Environmental	, Inc.	Prep:	EPA 5035	
Project#:	1148.001.03.002			EPA 8260B	
Field ID:	B-13-2.5-3		Diln Fac:	1.018	
Lab ID:	205011-001		Batch#:	141029	
Matrix:	soil		Sampled:	07/31/08	
Units:	ug/Kg		Received:	07/31/08	
Basis:	as received		Analyzed:	08/04/08	
Analy	t-a	Result		RL	
Freon 12	re	ND		10	
tert-Butyl Alcoh	ol (TBA)	ND		100	
Chloromethane	· ·	ND		10	
Isopropyl Ether	(DIPE)	ND		5.1	
Vinyl Chloride		ND		10	
Bromomethane		ND		10	
Ethyl tert-Butyl	Ether (ETBE)	ND		5.1	
Chloroethane		ND		10	
Methyl tert-Amyl		ND		5.1	
Trichlorofluorom		ND		5.1	
Acetone		ND		20	
Freon 113		ND		5.1	
1,1-Dichloroethe		ND		5.1	
Methylene Chlori	de	ND		20	
Carbon Disulfide		ND		5.1	
MTBE		ND		5. 1	
trans-1,2-Dichlo	roethene	ND		5.1	
Vinyl Acetate		ND		51	
1,1-Dichloroetha	ne	ND		5.1	
2-Butanone		ND		10	
cis-1,2-Dichloro	ethene	ND		5.1	
2,2-Dichloroprop	ane	ND		5.1	
Chloroform		ND		5.1	
Bromochlorometha		ND		5.1 5.1	
1,1,1-Trichloroe		ND ND		5.1	
1,1-Dichloroprop				5.1	
Carbon Tetrachlo		ND ND		5.1	
Benzene	116	ND		5.1	
Trichloroethene		ND		5.1	
1,2-Dichloroprop	ane	ND		5.1	
Bromodichloromet		ND		5.1	
Dibromomethane		ND		5.1	
4-Methyl-2-Penta	none	ND		10	
cis-1, 3-Dichloro		ND		5.1	
Toluene		ND		5.1	
trans-1, 3-Dichlo	ropropene	ND		5.1	
1,1,2-Trichloroe		ND		5.1	
2-Hexanone		ND		10	
1,3-Dichloroprop	ane	ND		5.1	
Tetrachloroethen		ND		5.1	
Dibromochloromet		ND		5.1	
1,2-Dibromoethan	e	ND		5.1	
Chlorobenzene		ND		5.1	
1,1,1,2-Tetrachl	oroethane	ND		5.1	
Ethylbenzene		ND		5.1	
m,p-Xylenes		ND		5.1	
o-Xylene		ND		5.1	
Styrene		ND		5.1	
Bromoform		ND		5.1	
Isopropylbenzene		ND		5.1	
1,1,2,2-Tetrachl		ND		5.1	
1,2,3-Trichlorop	ropane	ND		5.1	
Propylbenzene		ND		5.1	

		Volatile	Organics	1	aa ta	
Lab #:	205011		Location:	4700 Coliseum Way S	Site, G	Dakland
Client:	PES Environmental,	Inc.	Prep:	EPA 5035		
	1148.001.03.002			EPA 8260B		
and the second	B-13-2.5-3		Diln Fac:	1.018		
	205011-001		Batch#:	141029		
	Soil		Sampled:	07/31/08		
Units: 1	ug/Kg		Received:	07/31/08		
Basis:	as received		Analyzed:	08/04/08		
Analyt	e	Result		RL		
Bromobenzene		ND		5.1 5.1		
1,3,5-Trimethylbe	nzene	ND				
2-Chlorotoluene		ND		5.1		
4-Chlorotoluene		ND		5.1		
tert-Butylbenzene		ND		5.1		
1,2,4-Trimethylber	nzene	ND		5.1		
sec-Butylbenzene	7	ND		5.1		
para-Isopropyl To	luene	ND		5.1		
1,3-Dichlorobenzer		ND		5.1		
1,4-Dichlorobenzer	ne	ND		5.1		
n-Butylbenzene		ND		5.1		
1,2-Dichlorobenzer		ND		5.1		
1,2-Dibromo-3-Chlo	oropropane	ND		5.1		
1,2,4-Trichlorober		ND		5.1		
Hexachlorobutadie	ne	ND		5.1		
Naphthalene		ND		5.1		
1,2,3-Trichlorober	nzene	ND		5.1		
Surroga		C Limits				
Dibromofluorometha		78-126			- and and -	
1,2-Dichloroethane		76-137				
Toluene-d8	104	80-120				
Bromofluorobenzene	e 106	80-121				

a de la companya de l		Volatile	Organics		
Lab #:	205011		Location:	4700 Coliseum Way Si	te, Oakland
Client:	PES Environmental,	Inc.	Prep:	EPA 5035	
Project#:	1148.001.03.002			EPA 8260B	
Field ID:	B-13-6-6.5		Diln Fac:	1.235	
Lab ID:	205011-002		Batch#:	141065	
Matrix:	Soil		Sampled:	07/31/08	
Units:	ug/Kg		Received:	07/31/08	
Basis:	as received		Analyzed:	08/05/08	
11		Result		RL	
Analy Freon 12	ce	ND		12	
tert-Butyl Alcoho	OL (TRA)	ND		120	
Chloromethane	OI (IBA)	ND		12	
Isopropyl Ether	(DTPF)	ND		6.2	
Vinyl Chloride	(DILE)	ND		12	
Bromomethane		ND		12	
Ethyl tert-Butyl	Fther (FTPF)	ND		6.2	
Chloroethane	ection (PIDE)	ND		12	
Methyl tert-Amyl	Fther (TAME)	ND		6.2	
Trichlorofluorom		ND		6.2	
Acetone	Culture	ND		25	
Freon 113		ND		6.2	
1,1-Dichloroethe	ne	ND		6.2	
Methylene Chlorid	de	ND		25	
Carbon Disulfide	ac	ND		6.2	
MTBE		ND		6.2	
trans-1,2-Dichlo:	roethene	ND		6.2	
Vinyl Acetate	roethene	ND		62	
1,1-Dichloroetha	ne	ND		6.2	
2-Butanone	iie	ND		12	
cis-1,2-Dichloro	ethene	ND		6.2	
2,2-Dichloropropa		ND		6.2	
Chloroform	ane	ND		6.2	
Bromochlorometha	ne	ND		6.2	
1,1,1-Trichloroe		ND		6.2	
1,1-Dichloroprop		ND		6.2	
Carbon Tetrachlo		ND		6.2	
1,2-Dichloroethan		ND		6.2	
Benzene		ND		6.2	
Trichloroethene		ND		6.2	
1,2-Dichloropropa	ane	ND		6.2	
Bromodichloromet		ND		6.2	
Dibromomethane		ND		6.2	
4-Methyl-2-Pentar	none	ND		12	
cis-1,3-Dichloro	propene	ND		6.2	
Toluene		ND		6.2	
trans-1,3-Dichlo:	ropropene	ND		6.2	
1,1,2-Trichloroe		ND		6.2	
2-Hexanone		ND		12	
1,3-Dichloropropa		ND		6.2	
Tetrachloroethen	e	ND		6.2	
Dibromochloromet		ND		6.2	
1,2-Dibromoethan	e	ND		6.2	
Chlorobenzene		ND		6.2	
1,1,1,2-Tetrachle	oroethane	ND		6.2	
Ethylbenzene		ND		6.2	
m,p-Xylenes		ND		6.2	
o-Xylene		ND		6.2	
Styrene		ND		6.2	
Bromoform		ND		6.2	
Isopropylbenzene		ND		6.2	
1,1,2,2-Tetrachl	oroethane	ND		6.2	
1,2,3-Trichlorop	ropane	ND		6.2	
Propylbenzene		ND		6.2	

	Volatile	Organics
Lab #: 205011		Location: 4700 Coliseum Way Site, Oakland
	conmental, Inc.	Prep: EPA 5035
Project#: 1148.001.		Analysis: EPA 8260B
Field ID: B-13-6-6.	5	Diln Fac: 1.235
Lab ID: 205011-00	2	Batch#: 141065
Matrix: Soil		Sampled: 07/31/08
Units: ug/Kg		Received: 07/31/08
Basis: as receiv	red	Analyzed: 08/05/08
Analyte	Result	6.2
Bromobenzene 1,3,5-Trimethylbenzene	ND ND	6.2
2-Chlorotoluene	ND	6.2
4-Chlorotoluene	ND	6.2
tert-Butylbenzene	ND	6.2
1,2,4-Trimethylbenzene	ND	6.2
sec-Butylbenzene	ND	6.2
para-Isopropyl Toluene	ND	6.2
1,3-Dichlorobenzene	ND	6.2
1,4-Dichlorobenzene	ND	6.2
n-Butylbenzene	ND	6.2
1,2-Dichlorobenzene	ND	6.2
1,2-Dibromo-3-Chloropropar	ne ND	6.2
1,2,4-Trichlorobenzene	ND	6.2
Hexachlorobutadiene	ND	6.2
Naphthalene	ND	6.2
1,2,3-Trichlorobenzene	ND	6.2
	0.5 m/d + 2	
Surrogate Dibromofluoromethane	%REC Limits 100 78-126	
1,2-Dichloroethane-d4	101 76-137	
Toluene-d8	96 80-120	
Bromofluorobenzene	102 80-121	
DIOHOTINOIODEHZEHE	102 00-121	

Lab F: 225011 Location: 4700 Collecum Way Site. Cakland Project#: 1148.001.03.002 Analysis: EPA 8250B Project#: 1148.001.03.002 Analysis: EPA 8250B Matrix: Soil 003.002 Bashs: Bas received Units: Us/Kg 001.003 Bashs: 00731/08 Analyte Recult ND 15.06 141065 08705/04 Chloromethane ND 7.5 1.506 141065 08705/05 Broch.als ND 7.5 1.506 141065 08705/05 Broch.als <td< th=""><th></th><th>Volatile</th><th>Organics</th><th></th><th></th></td<>		Volatile	Organics		
Client: PES Environmental, Inc. Prep: PPA 5035 Project: 114:001.03.002 Analyzis: PA 8208 Pield ID: 5:14:2.5:3 Basis: se received: Matrix: Soil-003 Soil-003 Soil-003 Basis: Soil-004 Analyzed Soil-004 Precen: Allochol: This Soil-003 Basis: Soil-004 Soil-004 Soil-004 Basis: Soil-004 Soil-004 Soil-004 Basis: Soil-004 Soil-004 Soil-004 Basis: Soil-004 Soil-004 Soil-004 Bord: Soil-004 Soil-004 Soil-004 Bord: Soil-004 <	Lab #: 205011		Location: 4	700 Coliseum Way	Site, Oakland
Field ID: B-14-2.5-3 (2) Basis: as received (2) as received (2) Matrix: Soll Received: C7/31/08 Matrix: Soll Received: C7/31/08 Preon 12 ND 15 1.506 141065 06/05/08 Chloromethane ND 15 1.506 141065 06/05/08 Icopropyl Ether (DIPB) ND 7.5 1.506 141065 06/05/08 Dirotomethane ND 15 1.506 141065 06/05/08 Dirotomethane ND 7.5 1.506 141065 06/05/08 Dirotomethane ND 7.5 1.506 141065 06/05/08 Dirotomethane ND 7.5 1.506 141065 06/05/08 Preon 13 ND 7.5 1.506 141065 06/05/08 Preon 13 ND 7.5 1.506 141065 06/05/08 1.1-Dichlorothene ND 7.5 1.506 141065 06/05/08 1.1-Dichlorothene ND 7.5 1.506 141065 06/05/0			Prep: El	PA 5035	
Field ID: B-14-2.5-3 (2) Basis: as received (2) as received (2) Matrix: Soll Received: C7/31/08 Matrix: Soll Received: C7/31/08 Preon 12 ND 15 1.506 141065 06/05/08 Chloromethane ND 15 1.506 141065 06/05/08 Icopropyl Ether (DIPB) ND 7.5 1.506 141065 06/05/08 Dirotomethane ND 15 1.506 141065 06/05/08 Dirotomethane ND 7.5 1.506 141065 06/05/08 Dirotomethane ND 7.5 1.506 141065 06/05/08 Dirotomethane ND 7.5 1.506 141065 06/05/08 Preon 13 ND 7.5 1.506 141065 06/05/08 Preon 13 ND 7.5 1.506 141065 06/05/08 1.1-Dichlorothene ND 7.5 1.506 141065 06/05/08 1.1-Dichlorothene ND 7.5 1.506 141065 06/05/0	Project#: 1148.001.03.	002	Analysis: El	PA 8260B	
Matrix: Soil Received: 07/31/08 Analyte Result Ri D118 Fac (state) Pact/State Analyte ND 150 1.566 141665 06/05/08 tert-Butyl Alcohol (TBA) ND 150 1.506 141065 06/05/08 Chioromethane ND 15 1.506 141065 06/05/08 Bromomethane ND 15 1.506 141065 06/05/08 Bromomethane ND 1.5 1.506 141065 06/05/08 Bromomethane ND 1.5 1.506 141065 06/05/08 Bromomethane ND 7.5 1.506 141065 06/05/08 Chichtorethene ND 7.5 1.506 141065 06/05/08 Preon 113 ND 7.5 1.506 141065 06/05/08 Linabilitorethene ND 7.5 1.506 141065 06/05/08 Linichtorethene ND 7.5 1.506 141065					l
Matrix: Soil Received: 07/31/08 Inits: u/Kg Differention Differention Differention Preon 12 ND 150 1.506 141065 08/05/08 Chioromethane ND 150 1.506 141065 08/05/08 Eron 12 ND 7.5 1.506 141065 08/05/08 Eromethane ND 15 1.506 141065 08/05/08 Erodicemethane ND 15 1.506 141065 08/05/08 Brownethane ND 7.5 1.506 141065 08/05/08 Brownethane ND 7.5 1.506 141065 08/05/08 Methyl tet-Jauyl Ether (TAME) ND 7.5 1.506 141065 08/05/08 Methyl accone ND 7.5 1.506 141065 08/05/08 I.i.bichloroethane ND 7.5 1.506 141065 08/05/08 I.i.bichloroethane ND 7.5 1.506 141065<	Lab ID: 205011-003		Sampled:		
Analyte Result RL Din Fac Batchiff Analyzed Freon 12 ND 15 1.506 141065 08/05/08 Chioromethane ND 15 1.506 141065 08/05/08 Ideopopil Eide ND 15 1.506 141065 08/05/08 Ideopopil Eide ND 15 1.506 141065 08/05/08 Hyromomethane ND 7.5 1.506 141065 08/05/08 Chioroethane ND 7.5 1.506 141065 08/05/08 Methyl tert-Amyl Ether (TAME) ND 7.5 1.506 141065 08/05/08 Acetone ND 7.5 1.506 141065 08/05/08 Freon 11 ND 7.5 1.506 141065 08/05/08 Carbon Disulfide ND 7.5 1.506 141065	Matrix: Soil			07/31/08	
Freen 12 ND 15 1.506 141065 08/05/08 Chioromethane ND 150 1.506 141065 08/05/08 Laporoyl Ether (DIPE) ND 7.5 1.506 141065 08/05/08 Laporoyl Ether (DIPE) ND 7.5 1.506 141065 08/05/08 Unyl Chloride ND 15 1.506 141065 08/05/08 Mchyl Ether (TAME) ND 7.5 1.506 141065 08/05/08 Mchyl Ether (TAME) ND 7.5 1.506 141065 08/05/08 Acetone ND 7.5 1.506 141065 08/05/08 Acetone ND 7.5 1.506 141065 08/05/08 1.1-Dichloroethene ND 7.5 1.506 141065 08/05/08 Mchylene Chioride ND 7.5 1.506 141065 08/05/08 1.2-Dichloroethane ND 7.5 1.506 141065 08/05/08 1.2-Dichloroethane <t< td=""><td>Units: ug/Kg</td><td></td><td></td><td></td><td></td></t<>	Units: ug/Kg				
Freen 12 ND 15 1.506 141065 08/05/08 Chioromethane ND 150 1.506 141065 08/05/08 Laporoyl Ether (DIPE) ND 7.5 1.506 141065 08/05/08 Laporoyl Ether (DIPE) ND 7.5 1.506 141065 08/05/08 Unyl Chloride ND 15 1.506 141065 08/05/08 Mchyl Ether (TAME) ND 7.5 1.506 141065 08/05/08 Mchyl Ether (TAME) ND 7.5 1.506 141065 08/05/08 Acetone ND 7.5 1.506 141065 08/05/08 Acetone ND 7.5 1.506 141065 08/05/08 1.1-Dichloroethene ND 7.5 1.506 141065 08/05/08 Mchylene Chioride ND 7.5 1.506 141065 08/05/08 1.2-Dichloroethane ND 7.5 1.506 141065 08/05/08 1.2-Dichloroethane <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
tert-Butyl Alcohol (TEA) ND 150 1.506 141065 08/05/08 Isopropyl Ether (DIPE) ND 7.5 1.506 141065 08/05/08 Bromomethame ND 15 1.506 141065 08/05/08 Bromomethame ND 15 1.506 141065 08/05/08 Chioromethame ND 7.5 1.506 141065 08/05/08 Chioromethame ND 7.5 1.506 141065 08/05/08 Chioromethame ND 7.5 1.506 141065 08/05/08 Catone ND 7.5 1.506 141065 08/05/08 Preon 113 ND 7.5 1.506 141065 08/05/08 Catono Disulfide ND 7.5 1.506 141065 08/05/08 Catono Disulfide ND 7.5 1.506 141065 08/05/08 Catono Disulfide ND 7.5 1.506 141065 08/05/08 Caton Teinoromethane ND<					
Chloromethane ND 15 1.506 141065 08/05/08 Vinyl Chloride ND 7.5 1.506 141065 08/05/08 Promomethane ND 15 1.506 141065 08/05/08 Echyl tert-Butyl Ether (ETBE) ND 7.5 1.506 141065 08/05/08 Chloroethane ND 7.5 1.506 141065 08/05/08 Methyl tert-Amyl Ether (TAME) ND 7.5 1.506 141065 08/05/08 Areon 13 ND 7.5 1.506 141065 08/05/08 Areon 13 ND 7.5 1.506 141065 08/05/08 Arean ND 7.5 1.506 141065 08/05/08 Methylene Chlorate ND 7.5 1.506 141065 08/05/08 Vinyl Acetate ND 7.5 1.506 141065 08/05/08 Vinyl Acetate ND 7.5 1.506 141065 08/05/08 2.1-D					
Isopropyl Experiment ND 7.5 1.506 141065 08/05/08 Bromomethane ND 15 1.506 141065 08/05/08 Bromomethane ND 15 1.506 141065 08/05/08 Chioroethane ND 7.5 1.506 141065 08/05/08 Methyl tert-Amyl Ether (TAME) ND 7.5 1.506 141065 08/05/08 Acctone ND 7.5 1.506 141065 08/05/08 Frecon 113 ND 7.5 1.506 141065 08/05/08 Methylene Chioride ND 7.5 1.506 141065 08/05/08 Methylene Chioride ND 7.5 1.506 141065 08/05/08 Crantoride ND 7.5 1.506 141065 08/05/08 Crantoride ND 7.5 1.506 141065 08/05/08 Crantoride ND 7.5 1.506 141065 08/05/08 Crabinforcethane					
Vinyl Chloride ND 15 1.506 141065 08/05/08 Ethyl tert-Butyl Ether (ETBE) ND 7.5 1.506 141065 08/05/08 Chlorecthane ND 7.5 1.506 141065 08/05/08 Methyl tert-Amyl Ether (TAME) ND 7.5 1.506 141065 08/05/08 Arene ND 7.5 1.506 141065 08/05/08 Arene ND 7.5 1.506 141065 08/05/08 Arene ND 7.5 1.506 141065 08/05/08 Methylene Chloride ND 7.5 1.506 141065 08/05/08 Winyl Acetate ND 7.5 1.506 141065 08/05/08 Vinyl Acetate ND 7.5 1.506 141065 08/05/08 1.1-Dichloroethane ND 7.5 1.506 141065 08/05/08 2.1-Dichloroethane ND 7.5 1.506 141065 08/05/08 2.1-Dichloroptopane					
Brommethane ND 15 1.506 141065 08/05/08 Chloroethane ND 7.5 1.506 141065 08/05/08 Chloroethane ND 7.5 1.506 141065 08/05/08 Trichlorofluoromethane ND 7.5 1.506 141065 08/05/08 Acetore ND 30 1.506 141065 08/05/08 Preon 113 ND 7.5 1.506 141065 08/05/08 Methylene Chloride ND 7.5 1.506 141065 08/05/08 Methylene Chloride ND 7.5 1.506 141065 08/05/08 Vinyl Acetate ND 7.5 1.506 141065 08/05/08 1.1-Dichloroethane ND 7.5 1.506 141065 08/05/08 2.2-Dichloropthane ND 7.5 1.506 141065 08/05/08 2.2-Dichloropthane ND 7.5 1.506 141065 08/05/08 1.2-Dichloropthane N	Isopropyl Ether (DIPE)				
Ethyl tert-Butyl Ether (ETEB) ND 7.5 1.506 141065 08/05/08 Methyl tert-Amyl Ether (TAMB) ND 7.5 1.506 141065 08/05/08 Methyl tert-Amyl Ether (TAMB) ND 7.5 1.506 141065 08/05/08 Acctone ND 30 1.506 141065 08/05/08 Preon 113 ND 7.5 1.506 141065 08/05/08 Methylenc Chlorothene ND 7.5 1.506 141065 08/05/08 Methylenc Chlorothene ND 7.5 1.506 141065 08/05/08 MTBE ND 7.5 1.506 141065 08/05/08 1,1-Dichloroethene ND 7.5 1.506 141065 08/05/08 1,2-Dichloropropane ND 7.5 1.506 141065 08/05/08 1,1-Trichloroethane ND 7.5 1.506 141065 08/05/08 1,1-Dichloropropane ND 7.5 1.506 141065 08/05/08					
Chlöroethane ND 15 1.506 141065 08/05/05 Trichlorofluoromethane ND 7.5 1.506 141065 08/05/05 Trichlorofluoromethane ND 30 1.506 141065 08/05/08 Preon 113 ND 7.5 1.506 141065 08/05/08 Methylene Chloride ND 7.5 1.506 141065 08/05/08 MTBE ND 7.5 1.506 141065 08/05/08 MTBE ND 7.5 1.506 141065 08/05/08 Vinyl Acetate ND 7.5 1.506 141065 08/05/08 1.1-Dichloroethane ND 7.5 1.506 141065 08/05/08 2.autanone ND 7.5 1.506 141065 08/05/08 2.autanone ND 7.5 1.506 141065 08/05/08 2.autanone ND 7.5 1.506 141065 08/05/08 1.1-Trichloroethane ND 7.5<					
Methyl tert-Myl Ether (TAME) ND 7.5 1.506 141065 00/05/08 Acctone ND 30 1.506 141065 00/05/08 Preon 113 ND 7.5 1.506 141065 00/05/08 IDichloroethene ND 7.5 1.506 141065 00/05/08 Methylenc Chloride ND 7.5 1.506 141065 00/05/08 Marsn-1,2-Dichloroethene ND 7.5 1.506 141065 00/05/08 Vinyl Acctate ND 7.5 1.506 141065 00/05/08 2Butanone 22 7.5 1.506 141065 00/05/08 2.2-Dichloroethene ND 7.5 1.506 141065 00/05/08 2.2-Dichloropopane ND 7.5 1.506 141065 00/05/08 2.2-Dichloropethane ND 7.5 1.506 141065 00/05/08 1.1-Dichloropethane ND 7.5 1.506 141065 00/05/08 1.1-Dichlor					
Trichlorofluoromethane ND 7.5 1.506 141065 08/05/08 Acetone ND 30 1.506 141065 08/05/08 Preon 113 ND 7.5 1.506 141065 08/05/08 Methylene Chloride ND 30 1.506 141065 08/05/08 Carbon Disulfide ND 7.5 1.506 141065 08/05/08 Vinyl Acetate ND 7.5 1.506 141065 08/05/08 1,1-Dichloroethane 22 7.5 1.506 141065 08/05/08 2,1-Dichloroethane ND 7.5 1.506 141065 08/05/08 2,2-Dichloropropane ND 7.5 1.506 141065 08/05/08 1,1,1-Tichloroethane MD 7.5 1.506 141065 08/05/08 1,1,1-Tichloroethane ND 7.5 1.506 141065 08/05/08 1,2,1-Dichloropropane ND 7.5 1.506 141065 08/05/08 1,2,1,1-Tich					
Acetone ND 30 1.506 141065 08/05/08 Preon 113 ND 7.5 1.506 141065 08/05/08 Methylenc Chloride ND 7.5 1.506 141065 08/05/08 Carbon Disulfide ND 7.5 1.506 141065 08/05/08 MTBE ND 7.5 1.506 141065 08/05/08 Vinyl Acctate ND 7.5 1.506 141065 08/05/08 2-Butanone ND 7.5 1.506 141065 08/05/08 C_2-Dichloroethane ND 7.5 1.506 141065 08/05/08 C_2-Dichloropopane ND 7.5 1.506 141065 08/05/08 C_2-Dichloropethane ND 7.5 1.506 141065 08/05/08 C_1-Dichloropethane ND 7.5 1.506 141065 08/05/08 C_1-Dichloropethane ND 7.5 1.506 141065 08/05/08 C_1-Dichloropethane ND <td></td> <td></td> <td></td> <td></td> <td></td>					
Freen 113 ND 7,5 1.506 141065 88/05/08 N1-1Dichloroethene ND 30 1.506 141065 88/05/08 Methylene Chloride ND 30 1.506 141065 88/05/08 MTBE ND 7.5 1.506 141065 88/05/08 MTBE ND 7.5 1.506 141065 88/05/08 Vinyl Acetate ND 7.5 1.506 141065 88/05/08 2-Butanone ND 7.5 1.506 141065 88/05/08 2-Dichloroethane ND 7.5 1.506 141065 88/05/08 2-Dichloropropane ND 7.5 1.506 141065 88/05/08 2-Dichloropropane ND 7.5 1.506 141065 88/05/08 2-Dichloropropane ND 7.5 1.506 141065 88/05/08 1, 1-Trichloroethane ND 7.5 1.506 141065 88/05/08 1, 1.1-Trichloroethane ND 7.5 1.506 141065 88/05/08 1, 1.1-Trichloroptone ND 7.5 1.506					
1,1-Dichloroethene ND 7,5 1,506 141065 88/05/08 Carbon Disulfide ND 30 1,506 141065 88/05/08 Carbon Disulfide ND 7,5 1,506 141065 88/05/08 trans-1,2-Dichloroethene ND 7,5 1,506 141065 88/05/08 vinyl Acctate ND 7,5 1,506 141065 88/05/08 2-bichloroethene ND 7,5 1,506 141065 88/05/08 2,2-Dichloroptopane ND 7,5 1,506 141065 88/05/08 2,2-Dichloroptopane ND 7,5 1,506 141065 88/05/08 1,1,1-Trichloroethane MD 7,5 1,506 141065 88/05/08 1,1,1-Trichloroethane ND 7,5 1,506 141065 88/05/08 1,2-Dichloroethane ND 7,5 1,506 141065 88/05/08 1,2-Dichloroethane ND 7,5 1,506 141065 88/05/08					
Methylene Chloride ND 30 1.506 141065 08/05/08 MTBE ND 7.5 1.506 141065 08/05/08 MTBE ND 7.5 1.506 141065 08/05/08 Vinyl Acetate ND 7.5 1.506 141065 08/05/08 2.1-Dichloroethane ND 7.5 1.506 141065 08/05/08 2Dichloroethane ND 7.5 1.506 141065 08/05/08 2Dichloroptopane ND 7.5 1.506 141065 08/05/08 2Dichloroptopane ND 7.5 1.506 141065 08/05/08 2Dichloroptopane ND 7.5 1.506 141065 08/05/08 1.1.1-Tichloropthane MD 7.5 1.506 141065 08/05/08 1.1.1-Tichloropthane ND 7.5 1.506 141065 08/05/08 1.2-Dichloroptopane ND 7.5 1.506 141065 08/05/08 1.2-Dichloroptopane					
Carbon Disulfide ND 7.5 1.506 141065 08/05/08 MTBE ND 7.5 1.506 141065 08/05/08 trans-1,2-Dichloroethane ND 7.5 1.506 141065 08/05/08 1-Dichloroethane ND 7.5 1.506 141065 08/05/08 2-Butanone ND 7.5 1.506 141065 08/05/08 2,2-Dichloroethane ND 7.5 1.506 141065 08/05/08 2,2-Dichloroptopane ND 7.5 1.506 141065 08/05/08 1,1,1-Trichloroethane ND 7.5 1.506 141065 08/05/08 1,1,1-Trichloroethane ND 7.5 1.506 141065 08/05/08 1,2-Dichloroethane ND 7.5 1.506 141065 08/05/08 1,2-Dichloroethane ND 7.5 1.506 141065 08/05/08 1,2-Dichloroethane ND 7.5 1.506 141065 08/05/08 1,2-Dich					
MTBE ND 7.5 1.506 141065 08/05/08 Vinyl Acetate ND 75 1.506 141065 08/05/08 Vinyl Acetate ND 75 1.506 141065 08/05/08 2 Butanone ND 75 1.506 141065 08/05/08 2.2 - Dichloroethane ND 7.5 1.506 141065 08/05/08 2.2 - Dichloropthane ND 7.5 1.506 141065 08/05/08 2.2 - Dichloropthane ND 7.5 1.506 141065 08/05/08 Chloroform ND 7.5 1.506 141065 08/05/08 1.1 - Dichloropthane MD 7.5 1.506 141065 08/05/08 1.1 - Dichloropthane ND 7.5 1.506 141065 08/05/08 1.2 - Dichloropthane ND 7.5 1.506 141065 08/05/08 1.2 - Dichloroptopane ND 7.5 1.506 141065 08/05/08 1.2 - Dichloropropane </td <td></td> <td></td> <td></td> <td></td> <td></td>					
trans-1,2-Dichloroethene ND 7.5 1.506 141065 08/05/08 Vinyl Acctate ND 75 1.506 141065 08/05/08 2-Butanone ND 7.5 1.506 141065 08/05/08 2-Butanone ND 7.5 1.506 141065 08/05/08 2,2-Dichloropropane ND 7.5 1.506 141065 08/05/08 2,2-Dichloropropane ND 7.5 1.506 141065 08/05/08 Chloroform ND 7.5 1.506 141065 08/05/08 1,1-Trichloropethane 460 130 25.00 141124 08/05/08 1,2-Dichloroethane ND 7.5 1.506 141065 08/05/08 1,2-Dichloropethane ND 7.5 1.506 141065 08/05/08 1,2-Dichloropropane ND 7.5 1.506 141065 08/05/08 1,2-Dichloropropane ND 7.5 1.506 141065 08/05/08 1,2-Dichlor					
Vinyl Acetate ND 75 1.506 141065 08/05/08 2.1-Dichloroethane ND 7.5 1.506 141065 08/05/08 2-Butanone ND 7.5 1.506 141065 08/05/08 2Dichloroethane ND 7.5 1.506 141065 08/05/08 Chloroform ND 7.5 1.506 141065 08/05/08 Bromochloromethane ND 7.5 1.506 141065 08/05/08 1,1-Dichloroptopane ND 7.5 1.506 141065 08/05/08 1,1-Dichloroptopane ND 7.5 1.506 141065 08/05/08 Carbon Tetrachloride ND 7.5 1.506 141065 08/05/08 J.2-Dichloropthane ND 7.5 1.506 141065 08/05/08 J.2-Dichloropthane ND 7.5 1.506 141065 08/05/08 J.2-Dichloroptopane ND 7.5 1.506 141065 08/05/08 Dibromoethane					
1,1-Dichloroethane 22 7.5 1.506 141065 08/05/08 2-Butanone ND 7.5 1.506 141065 08/05/08 cis-1,2-Dichloroptopane ND 7.5 1.506 141065 08/05/08 2,2-Dichloroptopane ND 7.5 1.506 141065 08/05/08 Chloroform ND 7.5 1.506 141065 08/05/08 Bromochloromethane ND 7.5 1.506 141065 08/05/08 1,1-Trichloroptopene ND 7.5 1.506 141065 08/05/08 1,2-Dichloroptopene ND 7.5 1.506 141065 08/05/08 1,2-Dichloroptopane ND 7.5 1.506 141065 08/05/08 1,2-Dichloroptopane ND 7.5 1.506 141065 08/05/08 1,2-Dichloroptopane ND 7.5 1.506 141065 08/05/08 1,2-Trichloroptopane ND 7.5 1.506 141065 08/05/08 <					
2-Butanone ND 15 1.506 141065 08/05/08 cis-1, 2-Dichloroptopane ND 7.5 1.506 141065 08/05/08 2,2-Dichloroptopane ND 7.5 1.506 141065 08/05/08 Chloroform ND 7.5 1.506 141065 08/05/08 Bromochloromethane ND 7.5 1.506 141065 08/05/08 1,1-Dichloroptopane ND 7.5 1.506 141065 08/05/08 Carbon Tetrachloride ND 7.5 1.506 141065 08/05/08 Benzene ND 7.5 1.506 141065 08/05/08 Grichloroptopane ND 7.5 1.506 141065 08/05/08 Trichloroptopane ND 7.5 1.506 141065 08/05/08 Gris-1, 3-Dichloroptopane ND 7.5 1.506 141065 08/05/08 Gris-1, 3-Dichloroptopene ND 7.5 1.506 141065 08/05/08 Tra					
cis-1,2-Dichloroptnee ND 7.5 1.506 141065 08/05/08 Chloroform ND 7.5 1.506 141065 08/05/08 Bromochloromethane ND 7.5 1.506 141065 08/05/08 Bromochloromethane ND 7.5 1.506 141065 08/05/08 1.1,1-Trichloroethane 460 130 25.00 141124 08/05/08 1.2-Dichloroptopene ND 7.5 1.506 141065 08/05/08 1,2-Dichloroethane ND 7.5 1.506 141065 08/05/08 1,2-Dichloroptopane ND 7.5 1.506 141065 08/05/08 1,2-Dichloroptopane ND 7.5 1.506 141065 08/05/08 1,2-Dichloroptopane ND 7.5 1.506 141065 08/05/08 1,2-Dichloroptopene ND 7.5 1.506 141065 08/05/08 0/bromomethane ND 7.5 1.506 141065 08/05/08					
2,2-Dichloropropane ND 7.5 1.506 141065 08/05/08 Bromochloromethane ND 7.5 1.506 141065 08/05/08 Bromochloromethane MD 7.5 1.506 141065 08/05/08 1,1-Dichloroptopene ND 7.5 1.506 141065 08/05/08 Carbon Tetrachloride ND 7.5 1.506 141065 08/05/08 Benzene ND 7.5 1.506 141065 08/05/08 Trichloroethane ND 7.5 1.506 141065 08/05/08 1,2-Dichloroptopane ND 7.5 1.506 141065 08/05/08 Dibromomethane ND 7.5 1.506 141065 08/05/08 Cisisla .3-Dichloropropene ND 7.5 1.506 141065 08/05/08 Dibromomethane ND 7.5 1.506 141065 08/05/08 Cisla .3-Dichloropropene ND 7.5 1.506 141065 08/05/08<	cis-1,2-Dichloroethene				
Chloroform ND 7.5 1.506 141065 08/05/08 Bromochloromethane ND 7.5 1.506 141065 08/05/08 1,1,1-Trichloroethane 460 130 25.00 141124 08/05/08 1,1-Dichloropropene ND 7.5 1.506 141065 08/05/08 Carbon Tetrachloride ND 7.5 1.506 141065 08/05/08 Benzene ND 7.5 1.506 141065 08/05/08 Trichloroethane ND 7.5 1.506 141065 08/05/08 Bromodichloromethane ND 7.5 1.506 141065 08/05/08 Dibromomethane ND 7.5 1.506 141065 08/05/08 of -Methane ND 7.5 1.506 141065 08/05/08 of anterachloride ND 7.5 1.506 141065 08/05/08 of anterachloride ND 7.5 1.506 141065 08/05/08 Diarchloropropene <td></td> <td>ND</td> <td></td> <td></td> <td></td>		ND			
Bromochloromethane ND 7.5 1.506 141065 08/05/08 1,1,1-Trichloroethane MD 7.5 1.506 141065 08/05/08 1,1-Dichloropropene ND 7.5 1.506 141065 08/05/08 Carbon Tetrachloride ND 7.5 1.506 141065 08/05/08 1,2-Dichloroethane ND 7.5 1.506 141065 08/05/08 Trichloroethene ND 7.5 1.506 141065 08/05/08 1,2-Dichloropropane ND 7.5 1.506 141065 08/05/08 Dibromomethane ND 7.5 1.506 141065 08/05/08 0ibromomethane ND 7.5 1.506 141065 08/05/08 class - 1, 3-Dichloropropene ND 7.5 1.506 141065 08/05/08 class - 1, 3-Dichloropropene ND 7.5 1.506 141065 08/05/08 class - 1, 3-Dichloropropane ND 7.5 1.506 141065 08/05/08		ND			
1,1-Dichloropropene ND 7.5 1.506 141065 08/05/08 Carbon Tetrachloride ND 7.5 1.506 141065 08/05/08 L,2-Dichloroethane ND 7.5 1.506 141065 08/05/08 Benzene ND 7.5 1.506 141065 08/05/08 Trichloroethene ND 7.5 1.506 141065 08/05/08 1,2-Dichloropropane ND 7.5 1.506 141065 08/05/08 Bromodichloromethane ND 7.5 1.506 141065 08/05/08 Dibromomethane ND 7.5 1.506 141065 08/05/08 Gis-1,3-Dichloropropene ND 7.5 1.506 141065 08/05/08 trans-1,3-Dichloropropene ND 7.5 1.506 141065 08/05/08 cl,1,2-Trichloropthane ND 7.5 1.506 141065 08/05/08 1,3-Dichloropropane ND 7.5 1.506 141065 08/05/08 1,3-Dichloropthane ND 7.5 1.506 141065 08/05/08 <td>Bromochloromethane</td> <td>ND</td> <td></td> <td></td> <td>141065 08/05/08</td>	Bromochloromethane	ND			141065 08/05/08
Carbon Tetrachloride ND 7.5 1.506 141065 08/05/08 1,2-Dichloroethane ND 7.5 1.506 141065 08/05/08 Benzene ND 7.5 1.506 141065 08/05/08 Trichloroethene ND 7.5 1.506 141065 08/05/08 J,2-Dichloropropane ND 7.5 1.506 141065 08/05/08 Dibromomethane ND 7.5 1.506 141065 08/05/08 Othoropropene ND 7.5 1.506 141065 08/05/08 Cars1, 3-Dichloropropene ND 7.5 1.506 141065 08/05/08 Trans-1, 3-Dichloropropene ND 7.5 1.506 141065 08/05/08 1, 1, 2-Trichloroethane ND 7.5 1.506 141065 08/05/08 1, 3-Dichloropropane ND 7.5 1.506 141065 08/05/08 1, 3-Dichloropropane ND 7.5 1.506 141065 08/05/08		460			141124 08/06/08
1,2-Dichloroethane ND 7.5 1.506 141065 08/05/08 Benzene ND 7.5 1.506 141065 08/05/08 Trichloroethene ND 7.5 1.506 141065 08/05/08 1,2-Dichloropropane ND 7.5 1.506 141065 08/05/08 Bromodichloromethane ND 7.5 1.506 141065 08/05/08 Dibromomethane ND 7.5 1.506 141065 08/05/08 4-Methyl-2-Pentanone ND 7.5 1.506 141065 08/05/08 Trinchloropropene ND 7.5 1.506 141065 08/05/08 Taris-1, 3-Dichloropropene ND 7.5 1.506 141065 08/05/08 1,1,2-Trichloroethane ND 7.5 1.506 141065 08/05/08 1,3-Dichloropropane ND 7.5 1.506 141065 08/05/08 1,3-Dichloropropane ND 7.5 1.506 141065 08/05/08 Tetrachloroethane ND 7.5 1.506 141065 08/05/08		ND			141065 08/05/08
Benzene ND 7.5 1.506 141065 08/05/08 Trichloroptopane ND 7.5 1.506 141065 08/05/08 Bromodichloromethane ND 7.5 1.506 141065 08/05/08 Dibromomethane ND 7.5 1.506 141065 08/05/08 d-Methyl-2-Pentanone ND 15 1.506 141065 08/05/08 cis-1,3-Dichloropropene ND 7.5 1.506 141065 08/05/08 trans-1,3-Dichloropropene ND 7.5 1.506 141065 08/05/08 1,1,2-Trichloropthane ND 7.5 1.506 141065 08/05/08 1,3-Dichloropropane ND 7.5 1.506 141065 08/05/08 1,2-Dibromochhane ND 7.5 1.506 141065 08/05/08 1,2-Dibromochhane ND 7.5 1.506 141065 08/05/08 1,2-Dibromochhane ND 7.5 1.506 141065 08/05/08				7.5 1.506	141065 08/05/08
Trichloroethene ND 7.5 1.506 141065 08/05/08 1,2-Dichloropropane ND 7.5 1.506 141065 08/05/08 Dibromomethane ND 7.5 1.506 141065 08/05/08 Dibromomethane ND 7.5 1.506 141065 08/05/08 4-Methyl-2-Pentanone ND 15 1.506 141065 08/05/08 Toluene ND 7.5 1.506 141065 08/05/08 Toluene ND 7.5 1.506 141065 08/05/08 trans-1,3-Dichloropropene ND 7.5 1.506 141065 08/05/08 2-Hexanone ND 7.5 1.506 141065 08/05/08 3,3-Dichloropropane ND 7.5 1.506 141065 08/05/08 1,2-Dibromoethane ND 7.5 1.506 141065 08/05/08 1,2-Dibromoethane ND 7.5 1.506 141065 08/05/08 1,1,1,2-Tetrachloroethane <td>1,2-Dichloroethane</td> <td>ND</td> <td></td> <td>7.5 1.506</td> <td>141065 08/05/08</td>	1,2-Dichloroethane	ND		7.5 1.506	141065 08/05/08
1,2-Dichloropropane ND 7.5 1.506 141065 08/05/08 Bromodichloromethane ND 7.5 1.506 141065 08/05/08 0ibromomethane ND 7.5 1.506 141065 08/05/08 4-Methyl-2-Pentanone ND 15 1.506 141065 08/05/08 cis-1,3-Dichloropropene ND 7.5 1.506 141065 08/05/08 Toluene ND 7.5 1.506 141065 08/05/08 trans-1,3-Dichloropropene ND 7.5 1.506 141065 08/05/08 1,12-Trichloroethane ND 7.5 1.506 141065 08/05/08 2-Hexanone ND 7.5 1.506 141065 08/05/08 1,3-Dichloropropane ND 7.5 1.506 141065 08/05/08 Tetrachloroethene ND 7.5 1.506 141065 08/05/08 1,2-Dibromoethane ND 7.5 1.506 141065 08/05/08 1,1,2-Tetrachloroethane ND 7.5 1.506 141065 08/05/08			,	7.5 1.506	
Bromodichlorömethane ND 7.5 1.506 141065 08/05/08 Dibromomethane ND 7.5 1.506 141065 08/05/08 A-Methyl-2-Pentanone ND 7.5 1.506 141065 08/05/08 cis-1,3-Dichloropropene ND 7.5 1.506 141065 08/05/08 Toluene ND 7.5 1.506 141065 08/05/08 trans-1,3-Dichloropropene ND 7.5 1.506 141065 08/05/08 1,12-Trichloroethane ND 7.5 1.506 141065 08/05/08 1,3-Dichloropropane ND 7.5 1.506 141065 08/05/08 1,3-Dichloropropane ND 7.5 1.506 141065 08/05/08 1,2-Dibromochhane ND 7.5 1.506 141065 08/05/08 1,2-Dibromochhane ND 7.5 1.506 141065 08/05/08 1,2-Dibromochhane ND 7.5 1.506 141065 08/05/08			·	7.5 1.506	
Dibromomethane ND 7.5 1.506 141065 08/05/08 4-Methyl-2-Pentanone ND 15 1.506 141065 08/05/08 cis-1,3-Dichloropropene ND 7.5 1.506 141065 08/05/08 Toluene ND 7.5 1.506 141065 08/05/08 trans-1,3-Dichloropropene ND 7.5 1.506 141065 08/05/08 1,1,2-Trichloroethane ND 7.5 1.506 141065 08/05/08 1,3-Dichloropropane ND 7.5 1.506 141065 08/05/08 1,3-Dichloropropane ND 7.5 1.506 141065 08/05/08 1,3-Dichloropropane ND 7.5 1.506 141065 08/05/08 1,2-Dibromochlaroe ND 7.5 1.506 141065 08/05/08 1,1,1,2-Tetrachloroethane ND 7.5 1.506 141065 08/05/08 1,1,1,2-Tetrachloroethane ND 7.5 1.506 141065 08/05/08 <td></td> <td></td> <td>,</td> <td>7.5 1.506</td> <td></td>			,	7.5 1.506	
4-Methyl-2-Pentanone ND 15 1.506 141065 08/05/08 cis-1,3-Dichloropropene ND 7.5 1.506 141065 08/05/08 Toluene ND 7.5 1.506 141065 08/05/08 trans-1,3-Dichloropropene ND 7.5 1.506 141065 08/05/08 1,2-Trichloroethane ND 7.5 1.506 141065 08/05/08 1,3-Dichloropropane ND 7.5 1.506 141065 08/05/08 1,3-Dichloropropane ND 7.5 1.506 141065 08/05/08 Tetrachloroethene ND 7.5 1.506 141065 08/05/08 Dibromochloromethane ND 7.5 1.506 141065 08/05/08 Chlorobenzene ND 7.5 1.506 141065 08/05/08 1,1,1,2-Tetrachloroethane ND 7.5 1.506 141065 08/05/08 1,2-Dibromoethane ND 7.5 1.506 141065 08/05/08 1,1,1,2-Tetrachloroethane ND 7.5 1.506 141065 08/					
cis-1,3-Dichloropropene ND 7.5 1.506 141065 08/05/08 Toluene ND 7.5 1.506 141065 08/05/08 trans-1,3-Dichloropropene ND 7.5 1.506 141065 08/05/08 trans-1,3-Dichloropropene ND 7.5 1.506 141065 08/05/08 2-Hexanone ND 7.5 1.506 141065 08/05/08 1,3-Dichloropropane ND 7.5 1.506 141065 08/05/08 1,3-Dichloropropane ND 7.5 1.506 141065 08/05/08 1,2-Dibromochloromethane ND 7.5 1.506 141065 08/05/08 1,2-Dibromoethane ND 7.5 1.506 141065 08/05/08 1,1,2-Tetrachloroethane ND 7.5 1.506 141065 08/05/08 1,1,2-Tetrachloroethane ND 7.5 1.506 141065 08/05/08 m,p-Xylenes ND 7.5 1.506 141065 08/05/08 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
TolueneND7.51.50614106508/05/08trans-1, 3-DichloropropeneND7.51.50614106508/05/081, 1, 2-TrichloroethaneND7.51.50614106508/05/081, 3-DichloropropaneND151.50614106508/05/081, 3-DichloropropaneND7.51.50614106508/05/08TetrachloroetheneND7.51.50614106508/05/08DibromochloromethaneND7.51.50614106508/05/081, 2-DibromoethaneND7.51.50614106508/05/081, 1, 2-TetrachloroethaneND7.51.50614106508/05/081, 1, 1, 2-TetrachloroethaneND7.51.50614106508/05/081, 1, 1, 2-TetrachloroethaneND7.51.50614106508/05/08m, p-XylenesND7.51.50614106508/05/08styreneND7.51.50614106508/05/08StyreneND7.51.50614106508/05/08BromoformND7.51.50614106508/05/081, 2, 2-TetrachloroethaneND7.51.50614106508/05/081, 2, 3-TrichloropropaneND7.51.50614106508/05/081, 2, 3-TrichloropropaneND7.51.50614106508/05/081, 2, 3-TrichloropropaneND7.51.50614106508/05/081, 2, 3-Trichl					
trans-1,3-DichloropropeneND7.51.50614106508/05/081,1,2-TrichloroethaneND7.51.50614106508/05/082-HexanoneND151.50614106508/05/081,3-DichloropropaneND7.51.50614106508/05/08TetrachloroetheneND7.51.50614106508/05/08DibromochloromethaneND7.51.50614106508/05/081,2-DibromoethaneND7.51.50614106508/05/081,1,1,2-TetrachloroethaneND7.51.50614106508/05/081,1,1,2-TetrachloroethaneND7.51.50614106508/05/081,1,1,2-TetrachloroethaneND7.51.50614106508/05/08m,p-XylenesND7.51.50614106508/05/08StyreneND7.51.50614106508/05/08BromoformND7.51.50614106508/05/08IsopropylbenzeneND7.51.50614106508/05/081,2,2-TetrachloroethaneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/081,2,3-TrichloropropaneND					
1,1,2-TrichloroethaneND7.51.50614106508/05/082-HexanoneND151.50614106508/05/081,3-DichloropropaneND7.51.50614106508/05/08TetrachloroetheneND7.51.50614106508/05/08DibromochloromethaneND7.51.50614106508/05/081,2-DibromoethaneND7.51.50614106508/05/081,1,2-TetrachloroethaneND7.51.50614106508/05/081,1,1,2-TetrachloroethaneND7.51.50614106508/05/081,1,1,2-TetrachloroethaneND7.51.50614106508/05/08m,p-XylenesND7.51.50614106508/05/08o-XyleneND7.51.50614106508/05/08StyreneND7.51.50614106508/05/08BromoformND7.51.50614106508/05/081,2,2-TetrachloroethaneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.5<					
2-HexanoneND151.50614106508/05/081,3-DichloropropaneND7.51.50614106508/05/08TetrachloroetheneND7.51.50614106508/05/08DibromochloromethaneND7.51.50614106508/05/081,2-DibromoethaneND7.51.50614106508/05/081,1,1,2-TetrachloroethaneND7.51.50614106508/05/081,1,1,2-TetrachloroethaneND7.51.50614106508/05/081,1,1,2-TetrachloroethaneND7.51.50614106508/05/08m,p-XylenesND7.51.50614106508/05/08o-XyleneND7.51.50614106508/05/08StyreneND7.51.50614106508/05/08BromoformND7.51.50614106508/05/08IsopropylbenzeneND7.51.50614106508/05/081,1,2,2-TetrachloroethaneND7.51.50614106508/05/081,1,2,2-TetrachloroethaneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.5 <td></td> <td></td> <td></td> <td></td> <td></td>					
1,3-DichloropropaneND7.51.50614106508/05/08TetrachloroetheneND7.51.50614106508/05/08DibromochloromethaneND7.51.50614106508/05/081,2-DibromoethaneND7.51.50614106508/05/08ChlorobenzeneND7.51.50614106508/05/081,1,1,2-TetrachloroethaneND7.51.50614106508/05/08EthylbenzeneND7.51.50614106508/05/08m,p-XylenesND7.51.50614106508/05/08o-XyleneND7.51.50614106508/05/08BromoformND7.51.50614106508/05/08IsopropylbenzeneND7.51.50614106508/05/08J,2,2-TetrachloroethaneND7.51.50614106508/05/08J,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/08J,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/08ND7.51.50614106508/05/08J,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/08					
TetrachloroetheneND7.51.50614106508/05/08DibromochloromethaneND7.51.50614106508/05/081,2-DibromoethaneND7.51.50614106508/05/08ChlorobenzeneND7.51.50614106508/05/081,1,1,2-TetrachloroethaneND7.51.50614106508/05/08EthylbenzeneND7.51.50614106508/05/08m,p-XylenesND7.51.50614106508/05/08o-XyleneND7.51.50614106508/05/08StyreneND7.51.50614106508/05/08BromoformND7.51.50614106508/05/08IsopropylbenzeneND7.51.50614106508/05/081,1,2,2-TetrachloroethaneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/08			Τž		
DibromochloromethaneND7.51.50614106508/05/081,2-DibromoethaneND7.51.50614106508/05/08ChlorobenzeneND7.51.50614106508/05/081,1,1,2-TetrachloroethaneND7.51.50614106508/05/08EthylbenzeneND7.51.50614106508/05/08m, p-XylenesND7.51.50614106508/05/08o-XyleneND7.51.50614106508/05/08StyreneND7.51.50614106508/05/08BromoformND7.51.50614106508/05/081,1,2,2-TetrachloroethaneND7.51.50614106508/05/081,1,2,2-TetrachloroethaneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/08					
1,2-DibromoethaneND7.51.50614106508/05/08ChlorobenzeneND7.51.50614106508/05/081,1,1,2-TetrachloroethaneND7.51.50614106508/05/08EthylbenzeneND7.51.50614106508/05/08m,p-XylenesND7.51.50614106508/05/08o-XyleneND7.51.50614106508/05/08StyreneND7.51.50614106508/05/08BromoformND7.51.50614106508/05/081,1,2,2-TetrachloroethaneND7.51.50614106508/05/081,1,2,2-TetrachloroethaneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/08					
ChlorobenzeneND7.51.50614106508/05/081,1,1,2-TetrachloroethaneND7.51.50614106508/05/08EthylbenzeneND7.51.50614106508/05/08m,p-XylenesND7.51.50614106508/05/08o-XyleneND7.51.50614106508/05/08StyreneND7.51.50614106508/05/08BromoformND7.51.50614106508/05/08IsopropylbenzeneND7.51.50614106508/05/081,1,2,2-TetrachloroethaneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/081,2,0-TetrachloroethaneND7.51.50614106508/05/081,2,0-TrichloropropaneND7.51.50614106508/05/081,2,0-TrichloropropaneND7.51.50614106508/05/08					141065 08/05/08
1,1,1,2-TetrachloroethaneND7.51.50614106508/05/08EthylbenzeneND7.51.50614106508/05/08m,p-XylenesND7.51.50614106508/05/08o-XyleneND7.51.50614106508/05/08StyreneND7.51.50614106508/05/08BromoformND7.51.50614106508/05/08IsopropylbenzeneND7.51.50614106508/05/081,1,2,2-TetrachloroethaneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/08					
EthylbenzeneND7.51.50614106508/05/08m,p-XylenesND7.51.50614106508/05/08o-XyleneND7.51.50614106508/05/08StyreneND7.51.50614106508/05/08BromoformND7.51.50614106508/05/08IsopropylbenzeneND7.51.50614106508/05/081,1,2,2-TetrachloroethaneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08					
m,p-XylenesND7.51.50614106508/05/08o-XyleneND7.51.50614106508/05/08StyreneND7.51.50614106508/05/08BromoformND7.51.50614106508/05/08IsopropylbenzeneND7.51.50614106508/05/081,1,2,2-TetrachloroethaneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/08					
o-XyleneND7.51.50614106508/05/08StyreneND7.51.50614106508/05/08BromoformND7.51.50614106508/05/08IsopropylbenzeneND7.51.50614106508/05/081,1,2,2-TetrachloroethaneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/08	4		-	7 5 1 506	
StyreneND7.51.50614106508/05/08BromoformND7.51.50614106508/05/08IsopropylbenzeneND7.51.50614106508/05/081,1,2,2-TetrachloroethaneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/08			-	7.5 1.506	
Bromoform ND 7.5 1.506 141065 08/05/08 Isopropylbenzene ND 7.5 1.506 141065 08/05/08 1,1,2,2-Tetrachloroethane ND 7.5 1.506 141065 08/05/08 1,2,3-Trichloropropane ND 7.5 1.506 141065 08/05/08 Propylbenzene ND 7.5 1.506 141065 08/05/08			-	7.5 1.506	141065 08/05/08
IsopropylbenzeneND7.51.50614106508/05/081,1,2,2-TetrachloroethaneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/08				7.5 1.506	
1,1,2,2-TetrachloroethaneND7.51.50614106508/05/081,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/08					
1,2,3-TrichloropropaneND7.51.50614106508/05/08PropylbenzeneND7.51.50614106508/05/08	1,1,2,2-Tetrachloroethane		-	7.5 1.506	
Propylbenzene ND 7.5 1.506 141065 08/05/08					
			-	7.5 1.506	
DI 0110DE112E11E /.5 1,506 141065 08/05/08	Bromobenzene	ND		7.5 1.506	141065 08/05/08

	Inc.	Prep:	EPA 503		ite, Oakland
		Basis: Sampled:	inter production and a second	as received 07/31/08 07/31/08	
	lesult		and the second se		Batch# Analyzed
					141065 08/05/08
			7.5		141065 08/05/08
					141065 08/05/08
					141065 08/05/08
			7.5	1.506	141065 08/05/08
			7.5	1.506	141065 08/05/08
			7.5	1.506	141065 08/05/08
			7.5	1.506	141065 08/05/08
			7.5	1.506	141065 08/05/08
ND			7.5	1.506	141065 08/05/08
ND			7.5	1.506	141065 08/05/08
ND			7.5	1.506	141065 08/05/08
ND			7.5	1.506	141065 08/05/08
ND			7.5	1.506	141065 08/05/08
ND			7.5	1.506	141065 08/05/08
ND			7.5	1.506	141065 08/05/08
2.DTC	Timito	Diln Poo	Patabil	Analurod	
		1 506	141065	08/05/08	
	I I ND ND ND ND ND ND ND ND ND ND	Result ND ND	Matal, Inc. Prep: Malysis: Basis: Basis: Sampled: Received: Received: Result ND Seec Limits Diln Fac 101 78-126 1.506 96 80-120 1.506	ntal, Inc. Prep: EPA 50. D2 Analysis: EPA 82. Basis: Sampled: Received: ND 7.5 ND <	ntal, Inc. Prep: EPA 5035 2 Analysis: EPA 8260B Basis: as received Sampled: 07/31/08 Received: 07/31/08 Result RL Diln Fac ND 7.5 1.506 ND

		Volatile	Organics
Lab #:	205011		Location: 4700 Coliseum Way Site, Oakland
Client:	PES Environmental	, Inc.	Prep: EPA 5035
Project#:	1148.001.03.002		Analysis: EPA 8260B
Field ID:	B-14-6-6.5		Diln Fac: 1.111
Lab ID:	205011-004		Batch#: 141065
Matrix:	Soil		Sampled: 07/31/08
Units:	ug/Kg		Received: 07/31/08
Basis:	as received		Analyzed: 08/05/08
Analy	**	Result	RL
Freon 12	Le	ND	11
tert-Butyl Alcoh	ol (TBA)	ND	110
Chloromethane		ND	11
Isopropyl Ether	(DIPE)	ND	5.6
Vinyl Chloride		ND	11
Bromomethane		ND	11
Ethyl tert-Butyl	Ether (ETBE)	ND	5.6
Chloroethane		ND	11
Methyl tert-Amyl		ND	5.6
Trichlorofluorom	ethane	ND	5.6
Acetone		ND	22
Freon 113		ND	5.6
1,1-Dichloroethe		ND	5.6
Methylene Chlori		ND	22
Carbon Disulfide		ND	5.6
MTBE		ND	5.6
trans-1,2-Dichlo	roethene	ND	5.6
Vinyl Acetate		ND	56
1,1-Dichloroetha	ne	26	5.6
2-Butanone		ND	11
cis-1,2-Dichloro		ND	5.6
2,2-Dichloroprop	pane	ND	5.6 5.6
Chloroform		ND	
Bromochlorometha		ND 84	5.6 5.6
1,1,1-Trichloroe		ND 84	5.6
1,1-Dichloroprop Carbon Tetrachlo		ND	5.6
1,2-Dichloroetha		ND	5.6
Benzene		ND	5.6
Trichloroethene		ND	5.6
1,2-Dichloroprop	ane	ND	5.6
Bromodichloromet		ND	5.6
Dibromomethane		ND	5.6
4-Methyl-2-Penta	none	ND	11
cis-1,3-Dichloro		ND	5.6
Toluene	L L	ND	5.6
trans-1,3-Dichlo	ropropene	ND	5.6
1,1,2-Trichloroe	thane	ND	5.6
2-Hexanone		ND	11
1,3-Dichloroprop		ND	5.6
Tetrachloroethen	e	ND	5.6
Dibromochloromet		ND	5.6
1,2-Dibromoethan	le	ND	5.6
Chlorobenzene		ND	5.6
1,1,1,2-Tetrachl	oroethane	ND	5.6
Ethylbenzene		ND	5.6
m,p-Xylenes		ND	5.6
o-Xylene		ND	5.6
Styrene		ND	5.6
Bromoform		ND	5.6
Isopropylbenzene	oroothano	ND	5.6
1,1,2,2-Tetrachl	ropane	ND ND	5.6 5.6
1,2,3-Trichlorop Propylbenzene	or opane	ND	5.6
LETODATPellselle		MD .	0.0

	Volatile	Organics
Lab #: 205011		Location: 4700 Coliseum Way Site, Oakland
Client: PES Environme	ntal, Inc.	Prep: EPA 5035
Project#: 1148.001.03.0		Analysis: EPA 8260B
Field ID: B-14-6-6.5		Diln Fac: 1.111
Lab ID: 205011-004		Batch#: 141065
Matrix: Soil		Sampled: 07/31/08
Units: ug/Kg		Received: 07/31/08
Basis: as received		Analyzed: 08/05/08
Analyte	Result	RL
Bromobenzene	ND	5,6
1,3,5-Trimethylbenzene	ND	5.6
2-Chlorotoluene	ND	5.6
4-Chlorotoluene	ND	5.6
tert-Butylbenzene	ND	5.6
1,2,4-Trimethylbenzene	ND	5.6
sec-Butylbenzene	ND	5.6
para-Isopropyl Toluene	ND	5.6
1,3-Dichlorobenzene	ND	5.6
1,4-Dichlorobenzene	ND	5,6
n-Butylbenzene	ND	5.6
1,2-Dichlorobenzene	ND	5.6
1,2-Dibromo-3-Chloropropane	ND	5.6
1,2,4-Trichlorobenzene	ND	5.6
Hexachlorobutadiene	ND	5.6
Naphthalene	ND	5.6
1,2,3-Trichlorobenzene	ND	5.6
Surrogate	%REC Limits	
Dibromofluoromethane	102 78-126	
1,2-Dichloroethane-d4	104 76-137	
Toluene-d8	97 80-120	
Bromofluorobenzene	99 80-121	

	Volatile	Organics
Lab #: Client: Project#:	205011 PES Environmental, Inc. 1148.001.03.002	Location: 4700 Coliseum Way Site, Oakland Prep: EPA 5035 Analysis: EPA 8260B
Field ID: Lab ID: Matrix: Units:	B-15-2.5-3 205011-005 Soil ug/Kg	Basis: as received Sampled: 07/31/08 Received: 07/31/08

Analyte	Result	RL Di	ln Fac Batch#	Analyzed
Freon 12	ND	9.3 0.9	328 141065	08/05/08
tert-Butyl Alcohol (TBA)	ND	93 0.9	328 141065	08/05/08
Chloromethane	ND	9.3 0.9	328 141065	08/05/08
Isopropyl Ether (DIPE)	ND	4.7 0.9	328 141065	08/05/08
Vinyl Chloride	ND	9.3 0.9	328 141065	08/05/08
Bromomethane	ND	9,3 0.9	328 141065	08/05/08
Ethyl tert-Butyl Ether (ETBE)	ND	4.7 0.9		08/05/08
Chloroethane	ND	9.3 0.9		08/05/08
Methyl tert-Amyl Ether (TAME)	ND	4.7 0.9		08/05/08
Trichlorofluoromethane	ND	4.7 0.9		08/05/08
Acetone	ND			08/05/08
Freon 113	ND			08/05/08
1,1-Dichloroethene	15			08/05/08
Methylene Chloride	ND			08/05/08
Carbon Disulfide	ND			08/05/08
MTBE	ND			08/05/08
trans-1,2-Dichloroethene	ND			08/05/08
Vinyl Acetate	ND			08/05/08
1,1-Dichloroethane	130	130 25.		08/06/08
2-Butanone	ND			08/05/08
cis-1,2-Dichloroethene	ND			08/05/08
	ND			08/05/08
2,2-Dichloropropane	ND			08/05/08
Chloroform	ND			
Bromochloromethane				08/05/08
1,1,1-Trichloroethane	160	130 25.		08/06/08
1,1-Dichloropropene	ND			08/05/08
Carbon Tetrachloride	ND			08/05/08
1,2-Dichloroethane	ND			08/05/08
Benzene	ND			08/05/08
Trichloroethene	ND	4.7 0.9		08/05/08
1,2-Dichloropropane	ND			08/05/08
Bromodichloromethane	ND			08/05/08
Dibromomethane	ND			08/05/08
4-Methyl-2-Pentanone	ND			08/05/08
cis-1,3-Dichloropropene	ND			08/05/08
Toluene	ND			08/05/08
trans-1,3-Dichloropropene	ND			08/05/08
1,1,2-Trichloroethane	ND			08/05/08
2-Hexanone	ND			08/05/08
1,3-Dichloropropane	ND			08/05/08
Tetrachloroethene	ND			08/05/08
Dibromochloromethane	ND			08/05/08
1,2-Dibromoethane	ND			08/05/08
Chlorobenzene	ND			08/05/08
1,1,1,2-Tetrachloroethane	ND			08/05/08
Ethylbenzene	ND			08/05/08
m,p-Xylenes	ND			08/05/08
o-Xylene	ND			08/05/08
Styrene	ND			08/05/08
Bromoform	ND			08/05/08
Isopropylbenzene	ND			08/05/08
1,1,2,2-Tetrachloroethane	ND		328 141065	08/05/08
1,2,3-Trichloropropane	ND	4.7 0.9	328 141065	08/05/08
Propylbenzene	ND		328 141065	08/05/08
Bromobenzene	ND	4.7 0.9	328 141065	08/05/08

ND= Not Detected RL= Reporting Limit

	un -	Volatile	Organics	3			
Client: PE	5011 S Environmental, 48.001.03.002	Inc.	Location: Prep: Analysis:	EPA 503		te, Oak	land
Lab ID: 20 Matrix: So	15-2.5-3 5011-005 il /Kg		Basis: Sampled: Received:		as received 07/31/08 07/31/08		
Analyte		Result		RL	Diln Fac	Batch#	Analyzed
1,3,5-Trimethylbenz 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene para-Isopropyl Tolue 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-Chlore 1,2,4-Trichlorobenzene Naphthalene 1,2,3-Trichlorobenzene	NI NI NI ene NI ene NI NI opropane NI ene NI NI NI NI NI NI NI NI NI NI NI NI NI N			$\begin{array}{c} 4.7\\ 4.7\\ 4.7\\ 4.7\\ 4.7\\ 4.7\\ 4.7\\ 4.7\\$	0.9328 0.9328 0.9328 0.9328 0.9328 0.9328 0.9328 0.9328 0.9328 0.9328 0.9328 0.9328 0.9328 0.9328 0.9328 0.9328 0.9328 0.9328 0.9328 0.9328	$141065 \\ 1$	
Surrogate			Diln Fac		Analyzed		
Dibromofluoromethan 1,2-Dichloroethane- Toluene-d8 Bromofluorobenzene Trifluorotoluene (M	d4 106 93 110	78-126 76-137 80-120 80-121 52-145	0.9328 0.9328 0.9328 0.9328 25.00	141065 141065 141065	08/05/08 08/05/08 08/05/08 08/05/08 08/06/08		

H	V	Volatile Organics	3
Lab #: Client: Project#:	205011 PES Environmental, I 1148.001.03.002	Inc. Prep:	4700 Coliseum Way Site, Oakland EPA 5035 EPA 8260B
Field ID: Lab ID: Matrix: Units:	B-15-6-6.5 205011-006 Soil ug/Kg	Basis: Sampled: Received:	as received 07/31/08 07/31/08

Analyte	Rea	sult	RL	Diln Fac	Batch# Analyz	ed
Freon 12	ND		8.7	0.8681	141065 08/05/	08
tert-Butyl Alcohol (TBA)	ND		87	0.8681	141065 08/05/	08
Chloromethane	ND		8.7	0.8681	141065 08/05/	
Isopropyl Ether (DIPE)	ND		4.3	0.8681	141065 08/05/	
Vinyl Chloride	ND		8.7	0.8681	141065 08/05/	
Bromomethane	ND		8.7	0.8681	141065 08/05/	
Ethyl tert-Butyl Ether (ETBE)	ND		4.3	0.8681	141065 08/05/	
	ND		8.7	0.8681	141065 08/05/	
Chloroethane			4.3	0.8681		
Methyl tert-Amyl Ether (TAME)	ND				141065 08/05/	
Trichlorofluoromethane	ND		4.3	0.8681	141065 08/05/	
Acetone	ND		17	0.8681	141065 08/05/	
Freon 113	ND		4.3	0.8681	141065 08/05/	
1,1-Dichloroethene		31	4.3	0.8681	141065 08/05/	
Methylene Chloride	ND		17	0,8681	141065 08/05/	
Carbon Disulfide	ND		4.3	0.8681	141065 08/05/	
MTBE	ND		4.3	0.8681	141065 08/05/	08
trans-1,2-Dichloroethene	ND		4.3	0.8681	141065 08/05/	80
Vinyl Acetate	ND		43	0.8681	141065 08/05/	08
1,1-Dichloroethane	ND		130	25.00	141226 08/08/	08
2-Butanone	ND		8.7	0.8681	141065 08/05/	08
cis-1,2-Dichloroethene	ND		4.3	0.8681	141065 08/05/	
2,2-Dichloropropane	ND		4.3	0.8681	141065 08/05/	
Chloroform	ND		4.3	0.8681	141065 08/05/	
Bromochloromethane	ND		4.3	0.8681	141065 08/05/	
1,1,1-Trichloroethane	ND		130	25.00	141226 08/08/	
1,1-Dichloropropene	ND		4.3	0.8681	141065 08/05/	
Carbon Tetrachloride	ND		4.3	0.8681	141065 08/05/	
1,2-Dichloroethane	ND		4.3	0.8681	141065 08/05/	
Benzene	ND		4.3	0.8681	141065 08/05/	
Trichloroethene	ND		4.3	0.8681	141065 08/05/	
	ND		4.3	0.8681	141065 08/05/	
1,2-Dichloropropane	ND		4.3	0.8681	141065 08/05/	
Bromodichloromethane			4.3			
Dibromomethane	ND			0.8681	141065 08/05/	
4-Methyl-2-Pentanone	ND		8.7	0.8681	141065 08/05/	
cis-1,3-Dichloropropene	ND		4.3	0.8681	141065 08/05/	
Toluene	ND		4.3	0.8681	141065 08/05/	
trans-1,3-Dichloropropene	ND		4.3	0.8681	141065 08/05/	
1,1,2-Trichloroethane	ND		4.3	0.8681	141065 08/05/	
2-Hexanone	ND		8.7	0.8681	141065 08/05/	
1,3-Dichloropropane	ND		4.3	0.8681	141065 08/05/	
Tetrachloroethene	ND		4.3	0.8681	141065 08/05/	
Dibromochloromethane	ND		4.3	0.8681	141065 08/05/	08
1,2-Dibromoethane	ND		4.3	0.8681	141065 08/05/	08
Chlorobenzene	ND		4.3	0.8681	141065 08/05/	08
1,1,1,2-Tetrachloroethane	ND		4.3	0.8681	141065 08/05/	08
Ethylbenzene	ND		4.3	0.8681	141065 08/05/	08
m,p-Xylenes	ND		4.3	0.8681	141065 08/05/	
o-Xylene	ND		4.3	0.8681	141065 08/05/	
Styrene	ND		4.3	0.8681	141065 08/05/	
Bromoform	ND		4.3	0.8681	141065 08/05/	
Isopropylbenzene	ND		4.3	0.8681	141065 08/05/	
1,1,2,2-Tetrachloroethane	ND		4.3	0.8681	141065 08/05/	
1,2,3-Trichloropropane	ND		4.3	0.8681	141065 08/05/	
Propylbenzene	ND		4.3	0.8681	141065 08/05/	
Bromobenzene	ND		4.3	0.8681	141065 08/05/	
La chick official			1.5			~ ~

	I.	Volatile	Organics	,			
Lab #: 205011 Client: PES Environm Project#: 1148.001.03	nental, I			4700 Co EPA 503		te, Oakl	and
Field ID: B-15-6-6.5 Lab ID: 205011-006 Matrix: Soil Units: ug/Kg	214.65 61		Basis: Sampled: Received:		as received 07/31/08 07/31/08		
Analyte	R	esult	1	RL	Diln Fac	Batch#	Analyzed
1,3,5-Trimethylbenzene	ND			4.3	0.8681	141065	08/05/08
2-Chlorotoluene	ND			4.3	0.8681		08/05/08
4-Chlorotoluene	ND			4.3	0.8681	141065	08/05/08
tert-Butylbenzene	ND			4.3	0.8681	141065	08/05/08
1,2,4-Trimethylbenzene	ND			4.3	0.8681	141065	08/05/08
sec-Butylbenzene	ND			4.3	0.8681		08/05/08
para-Isopropyl Toluene	ND			4.3	0.8681	141065	08/05/08
1,3-Dichlorobenzene	ND			4.3	0.8681		08/05/08
1,4-Dichlorobenzene	ND			4.3	0.8681	141065	08/05/08
n-Butylbenzene	ND			4.3	0.8681	141065	08/05/08
1,2-Dichlorobenzene	ND			4.3	0.8681	141065	08/05/08
1,2-Dibromo-3-Chloropropane	ND			4.3	0.8681	141065	08/05/08
1,2,4-Trichlorobenzene	ND			4.3	0.8681	141065	08/05/08
Hexachlorobutadiene	ND			4.3	0.8681	141065	08/05/08
Naphthalene	ND			4.3	0.8681	141065	08/05/08
1,2,3-Trichlorobenzene	ND			4.3	0.8681	141065	08/05/08
Surrogate	%REC	Limits	Diln Fac	Batch#	Analyzed		
Dibromofluoromethane	99		0.8681		08/05/08		
1,2-Dichloroethane-d4	103		0.8681		08/05/08		
Toluene-d8	96		0.8681		08/05/08		
Bromofluorobenzene	101		0.8681		08/05/08		
Trifluorotoluene (MeOH)	99		25.00		08/08/08		

ķ

		Volatile	Organics		
Lab #:	205011		Location:	4700 Coliseum Way Site,	Oakland
Client:	PES Environmental,	, Inc.	Prep:	EPA 5035	
Project#:	1148.001.03.002			EPA 8260B	
Field ID:	B-12-2.5-3		Diln Fac:	200.0	
Lab ID:	205011-007		Batch#:	141385	
Matrix:	Soil		Sampled:	07/31/08	
Units:	ug/Kg		Received:	07/31/08	
Basis:	as received		Analyzed:	08/13/08	
Analy	+	Result		RL	
Freon 12	r.a	ND		2,000	
tert-Butyl Alcoh	ol (TBA)	ND		20,000	
Chloromethane		ND		2,000	
Isopropyl Ether	(DIPE)	ND		1,000	
Vinyl Chloride	(/	ND		2,000	
Bromomethane		ND		2,000	
Ethyl tert-Butyl	Ether (ETBE)	ND		1,000	
Chloroethane		ND		2,000	
Methyl tert-Amyl	Ether (TAME)	ND		1,000	
Trichlorofluorom	ethane	ND		1,000	
Acetone		ND		4,000	
Freon 113		ND		1,000	
1,1-Dichloroethe:		ND		1,000	
Methylene Chlorid	de	ND		4,000	
Carbon Disulfide		ND		1,000	
MTBE		ND		1,000	
trans-1,2-Dichlo	roethene	ND		1,000	
Vinyl Acetate		ND		10,000	
1,1-Dichloroetha:	ne	2,500		1,000	
2-Butanone		ND		2,000	
cis-1,2-Dichloro		ND		1,000	
2,2-Dichloroprop	ane	ND		1,000	
Chloroform		ND		1,000	
Bromochlorometha		ND		1,000	
1,1,1-Trichloroe		11,000		1,000	
1,1-Dichloroprop		ND ND		1,000 1,000	
Carbon Tetrachlo		ND		1,000	
1,2-Dichloroetha	ne	ND		1,000	
Benzene Trichloroethene		ND		1,000	
1,2-Dichloroprop	ane	ND		1,000	
Bromodichloromet		ND		1,000	
Dibromomethane		ND		1,000	
4-Methyl-2-Penta	none	ND		2,000	
cis-1,3-Dichloro		ND		1,000	
Toluene	r - r	ND		1,000	
trans-1, 3-Dichlo	ropropene	ND		1,000	
1,1,2-Trichloroe	thane	ND		1,000	
2-Hexanone		ND		2,000	
1,3-Dichloroprop	ane	ND		1,000	
Tetrachloroethen		ND		1,000	
Dibromochloromet		ND		1,000	
1,2-Dibromoethan	e	ND		1,000	
Chlorobenzene		ND		1,000	
1,1,1,2-Tetrachl	oroethane	ND		1,000	
Ethylbenzene		ND		1,000	
m,p-Xylenes		ND		1,000	
o-Xylene		ND		1,000	
Styrene		ND		1,000	
Bromoform		ND		1,000	
Isopropylbenzene		ND		1,000	
1,1,2,2-Tetrachl		ND		1,000	
1,2,3-Trichlorop	ropane	ND		1,000	
Propylbenzene		ND		1,000	

		Volatile	Organics			
Lab #:	205011			4700 Coliseum Way	Site,	Oakland
Client:	PES Environmental	, Inc.	Prep:	EPA 5035		
Project#:	1148.001.03.002			EPA 8260B		
Field ID:	B-12-2.5-3		Diln Fac:	200.0		
Lab ID:	205011-007		Batch#:	141385		
Matrix:	Soil		Sampled:	07/31/08		
Units:	ug/Kg		Received:	07/31/08		
Basis:	as received		Analyzed:	08/13/08		
Anal	vte	Result		RL		
Bromobenzene	100	ND		1,000		
1,3,5-Trimethyl	benzene	ND		1,000		
2-Chlorotoluene		ND		1,000		
4-Chlorotoluene		ND		1,000		
tert-Butylbenze	ne	ND		1,000		
1,2,4-Trimethyl	benzene	ND		1,000		
sec-Butylbenzen		ND		1,000		
para-Isopropyl	Toluene	ND		1,000		
1,3-Dichloroben		ND		1,000		
1,4-Dichloroben	zene	ND		1,000		
n-Butylbenzene		ND		1,000		
1,2-Dichloroben		ND		1,000		
1,2-Dibromo-3-C	hloropropane	ND		1,000		
1,2,4-Trichloro	benzene	ND		1,000		
Hexachlorobutad	iene	ND		1,000		
Naphthalene		ND		1,000		
1,2,3-Trichloro	benzene	ND		1,000		
Surro	ate %	EC Limits	auto trac			
Dibromofluorome		78-126				
1,2-Dichloroeth						
Toluene-d8	103					
Bromofluorobenz						
Trifluorotoluen		52-145				

	Volatile	Organics
Lab #: Client: Project#:	205011 PES Environmental, Inc. 1148.001.03.002	Location: 4700 Coliseum Way Site, Oakland Prep: EPA 5035 Analysis: EPA 8260B
Field ID: Lab ID: Matrix: Units:	B-12-6-6.5 205011-008 Soil ug/Kg	Basis: as received Sampled: 07/31/08 Received: 07/31/08

Analyte	Result	RL	Diln Fac	Batch# Analyzed
Freon 12	ND	16	1.603	141065 08/05/08
tert-Butyl Alcohol (TBA)	ND	160	1.603	141065 08/05/08
Chloromethane	ND	16	1.603	141065 08/05/08
Isopropyl Ether (DIPE)	ND	8.0	1.603	141065 08/05/08
Vinyl Chloride	ND	16	1.603	141065 08/05/08
Bromomethane	ND	16	1.603	141065 08/05/08
Ethyl tert-Butyl Ether (ETBE)	ND	8.0	1.603	141065 08/05/08
Chloroethane	ND	16	1.603	141065 08/05/08
Methyl tert-Amyl Ether (TAME)	ND	8.0	1.603	141065 08/05/08
Trichlorofluoromethane	ND	8.0	1.603	141065 08/05/08
Acetone	ND	32	1.603	141065 08/05/08
Freon 113	ND	8.0	1.603	141065 08/05/08
1,1-Dichloroethene	ND	8.0	1.603	141065 08/05/08
Methylene Chloride	ND	32	1.603	141065 08/05/08
Carbon Disulfide	ND	8.0	1.603	141065 08/05/08
MTBE	ND	8.0	1.603	141065 08/05/08
trans-1,2-Dichloroethene	ND	8.0	1.603	141065 08/05/08
Vinyl Acetate	ND	80	1.603	141065 08/05/08
1,1-Dichloroethane	350	130	25.00	141226 08/08/08
2-Butanone	ND	16	1.603	141065 08/05/08
cis-1,2-Dichloroethene	ND	8.0	1.603	141065 08/05/08
	ND	8.0	1.603	141065 08/05/08
2,2-Dichloropropane			1.603	141065 08/05/08
Chloroform	ND	8.0		
Bromochloromethane	ND	8.0	1.603	141065 08/05/08
1,1,1-Trichloroethane	1,000	130	25.00	141226 08/08/08
1,1-Dichloropropene	ND	8.0	1.603	141065 08/05/08
Carbon Tetrachloride	ND	8.0	1.603	141065 08/05/08
1,2-Dichloroethane	ND	8.0	1.603	141065 08/05/08
Benzene	ND	8.0	1.603	141065 08/05/08
Trichloroethene	ND	8.0	1.603	141065 08/05/08
1,2-Dichloropropane	ND	8.0	1.603	141065 08/05/08
Bromodichloromethane	ND	8.0	1.603	141065 08/05/08
Dibromomethane	ND	8.0	1.603	141065 08/05/08
4-Methyl-2-Pentanone	ND	16	1.603	141065 08/05/08
cis-1,3-Dichloropropene	ND	8.0	1.603	141065 08/05/08
Toluene	ND	8.0	1.603	141065 08/05/08
trans-1,3-Dichloropropene	ND	8.0	1.603	141065 08/05/08
1,1,2-Trichloroethane	ND	8.0	1.603	141065 08/05/08
2-Hexanone	ND	16	1,603	141065 08/05/08
1,3-Dichloropropane	ND	8.0	1.603	141065 08/05/08
Tetrachloroethene	ND	8.0	1.603	141065 08/05/08
Dibromochloromethane	ND	8.0	1.603	141065 08/05/08
1,2-Dibromoethane	ND	8.0	1.603	141065 08/05/08
Chlorobenzene	ND	8.0	1.603	141065 08/05/08
1,1,1,2-Tetrachloroethane	ND	8.0	1.603	141065 08/05/08
Ethylbenzene	ND	8.0	1.603	141065 08/05/08
m,p-Xylenes	ND	8.0	1.603	141065 08/05/08
o-Xylene	ND	8.0	1.603	141065 08/05/08
Styrene	ND	8.0	1.603	141065 08/05/08
Bromoform	ND	8.0	1.603	141065 08/05/08
Isopropylbenzene	ND	8.0	1.603	141065 08/05/08
1,1,2,2-Tetrachloroethane	ND	8.0	1.603	141065 08/05/08
1,2,3-Trichloropropane	ND	8.0	1.603	141065 08/05/08
Propylbenzene	ND	8.0	1.603	141065 08/05/08
Bromobenzene	ND	8.0	1.603	141065 08/05/08
DECHONOLING	an time //	9 · V	2.000	

ND= Not Detected RL= Reporting Limit

Page 1 of 2

	Volatil	e Organics	3		
Lab #: 205011 Client: PES Environm Project#: 1148.001.03.		Location: Prep: Analysis:	EPA 50		ite, Oakland
Field ID: B-12-6-6.5 Lab ID: 205011-008 Matrix: Soil Units: ug/Kg		Basis: Sampled: Received:		as received 07/31/08 07/31/08	
Analyte	Result		RL	Diln Fac	Batch# Analyzed
<pre>1,3,5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene</pre>	ND ND ND ND ND ND ND ND ND ND ND ND ND N		8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	1.603 1.603 1.603 1.603 1.603 1.603 1.603 1.603 1.603 1.603 1.603 1.603 1.603 1.603 1.603 1.603	141065 08/05/08 141065 08/05/08
Surrogate	%REC Limits	Diln Fac	Batch#	Analyzed	
Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene Trifluorotoluene (MeOH)	96 78-126 103 76-137 97 80-120 99 80-121 102 52-145	1.603 1.603 1.603 1.603 25.00	141065 141065 141065		

Lab #:205011Location: 4700 Coliseum Way Site, OaklandClient:PES Environmental, Inc.Prep:EPA 5035Project#:1148.001.03.002Analysis: EPA 8260BField ID:B-12-1-1.5Diln Fac:1,000Lab ID:205011-009Batch#:141385Matrix:SoilSampled:07/31/08Units:ug/KgReceived:07/31/08Basis:as receivedAnalyzed:08/13/08ND10,000tert-Butyl Alcohol (TBA)ND100,000ChloromethaneND10,000Isopropyl Ether (DIPE)ND5,000Winyl ChlorideND10,000BromomethaneND10,000BromomethaneND10,000BromomethaneND10,000BromomethaneND10,000BromomethaneND10,000BromomethaneND5,000Methyl tert-Butyl Ether (ETBE)ND5,000ChloroethaneND10,000Analyt etrt-Amyl Ether (TAME)ND5,000Methyl tert-Amyl Ether (TAME)ND5,000AcetoneND20,000	
Client:PES Environmental, Inc.Prep:EPA 5035Project#:1148.001.03.002Analysis:EPA 8260BField ID:B-12-1-1.5Diln Fac:1,000Lab ID:205011-009Batch#:141385Matrix:SoilSampled:07/31/08Matrix:SoilSampled:07/31/08Units:ug/KgReceived:07/31/08Basis:as receivedAnalyzed:08/13/08Matrix:SoilND10,000tert-Butyl Alcohol (TBA)ND100,000ChloromethaneND10,000Isopropyl Ether (DIPE)ND5,000Winyl ChlorideND10,000BromomethaneND10,000Ethyl tert-Butyl Ether (ETBE)ND5,000ChloroethaneND10,000BromomethaneND5,000ChloroethaneND5,000ChloroethaneND20,000ChloroethaneND5,000ChloroethaneND20,000	
Project#: 1148.001.03.002 Analysis: EPA 8260B Field ID: B-12-1-1.5 Diln Fac: 1,000 Lab ID: 205011-009 Batch#: 141385 Matrix: Soil Sampled: 07/31/08 Matrix: ug/Kg Received: 07/31/08 Basis: as received Analyzed: 08/13/08 Matrix: 0 10,000 Basis: as received ND 10,000 Chloromethane ND 100,000 Chloromethane ND Isopropyl Ether (DIPE) ND 5,000 Structure Structure Vinyl Chloride ND 10,000 Structure Structure Bromomethane ND 10,000 Structure Structure Ethyl tert-Butyl Ether (ETBE) ND 5,000 Structure Structure Chloroethane ND 10,000 Structure Structure Matrix ND 5,000 Structure Structure Structure Chloroethane ND 5,000 Structure Structure <	
Field ID: B-12-1-1.5 Diln Fac: 1,000 Lab ID: 205011-009 Batch#: 141385 Matrix: Soil Sampled: 07/31/08 Units: ug/Kg Received: 07/31/08 Basis: as received Analyzed: 08/13/08 Matrix: ND 10,000 Basis: as received ND 10,000 Chloromethane ND 10,000 10,000 Chloromethane ND 10,000 10,000 Isopropyl Ether (DIPE) ND 5,000 10,000 Bromomethane ND 10,000 10,000 Bromomethane ND 10,000 10,000 Bromomethane ND 10,000 10,000 Bromomethane ND 10,000 10,000 Chloroethane ND 5,000 10,000 Methyl tert-Amyl Ether (TAME) ND 5,000 5,000 Methyl tert-Amyl Ether (TAME) ND 5,000 5,000 Acetone ND 20,000 5,000	
Lab ID:205011-009Batch#:141385Matrix:SoilSampled:07/31/08Units:ug/KgReceived:07/31/08Basis:as receivedAnalyzed:08/13/08AnalyteResultRLFreon 12ND10,000tert-Butyl Alcohol (TBA)ND100,000ChloromethaneND10,000Isopropyl Ether (DIPE)ND5,000Vinyl ChlorideND10,000BromomethaneND10,000Ethyl tert-Butyl Ether (ETBE)ND5,000Mathyl tert-Amyl Ether (TAME)ND5,000Methyl tert-Amyl Ether (TAME)ND5,000Mathyl tert-Amyl Ether (TAME)ND5,000AcetoneND20,000	
Units:ug/Kg as receivedReceived:07/31/08 08/13/08AnalyteResultRLAnalyteResultRLFreon 12 tert-Butyl Alcohol (TBA)ND10,000 100,000ChloromethaneND100,000 10,000Isopropyl Ether (DIPE)ND5,000 10,000Vinyl ChlorideND10,000 10,000BromomethaneND10,000 10,000Ethyl tert-Butyl Ether (ETBE)ND5,000 5,000ChloroethaneND10,000 5,000Methyl tert-Amyl Ether (TAME)ND5,000 5,000TrichlorofluoromethaneND5,000 5,000AcetoneND20,000 20,000	
Basis:as receivedAnalyzed:08/13/08AnalyteResultRLFreon 12ND10,000tert-Butyl Alcohol (TBA)ND100,000ChloromethaneND10,000Isopropyl Ether (DIPE)ND5,000Vinyl ChlorideND10,000BromomethaneND10,000Ethyl tert-Butyl Ether (ETBE)ND5,000ChloroethaneND10,000Ethyl tert-Amyl Ether (TAME)ND5,000Methyl tert-Amyl Ether (TAME)ND5,000AcetoneND20,000	
AnalyteResultRLFreon 12ND10,000tert-Butyl Alcohol (TBA)ND100,000ChloromethaneND10,000Isopropyl Ether (DIPE)ND5,000Vinyl ChlorideND10,000BromomethaneND10,000Ethyl tert-Butyl Ether (ETBE)ND5,000ChloroethaneND10,000TrichlorofluoromethaneND5,000TrichlorofluoromethaneND5,000AcetoneND20,000	
Freon 12ND10,000tert-Butyl Alcohol (TBA)ND100,000ChloromethaneND10,000Isopropyl Ether (DIPE)ND5,000Vinyl ChlorideND10,000BromomethaneND10,000Ethyl tert-Butyl Ether (ETBE)ND5,000ChloroethaneND10,000Methyl tert-Amyl Ether (TAME)ND5,000TrichlorofluoromethaneND5,000AcetoneND20,000	
Freen 12ND10,000tert-Butyl Alcohol (TBA)ND100,000ChloromethaneND10,000Isopropyl Ether (DIPE)ND5,000Vinyl ChlorideND10,000BromomethaneND10,000Ethyl tert-Butyl Ether (ETBE)ND5,000ChloroethaneND10,000Methyl tert-Amyl Ether (TAME)ND5,000TrichlorofluoromethaneND5,000AcetoneND20,000	
tert-Butyl Alcohol (TBA)ND100,000ChloromethaneND10,000Isopropyl Ether (DIPE)ND5,000Vinyl ChlorideND10,000BromomethaneND10,000Ethyl tert-Butyl Ether (ETBE)ND5,000ChloroethaneND10,000Methyl tert-Amyl Ether (TAME)ND5,000TrichlorofluoromethaneND5,000AcetoneND20,000	
ChloromethaneND10,000Isopropyl Ether (DIPE)ND5,000Vinyl ChlorideND10,000BromomethaneND10,000Ethyl tert-Butyl Ether (ETBE)ND5,000ChloroethaneND10,000Methyl tert-Amyl Ether (TAME)ND5,000TrichlorofluoromethaneND5,000AcetoneND20,000	
Vinyl ChlorideND10,000BromomethaneND10,000Ethyl tert-Butyl Ether (ETBE)ND5,000ChloroethaneND10,000Methyl tert-Amyl Ether (TAME)ND5,000TrichlorofluoromethaneND5,000AcetoneND20,000	
Vinyl ChlorideND10,000BromomethaneND10,000Ethyl tert-Butyl Ether (ETBE)ND5,000ChloroethaneND10,000Methyl tert-Amyl Ether (TAME)ND5,000TrichlorofluoromethaneND5,000AcetoneND20,000	
Ethyl tert-Butyl Ether (ETBE)ND5,000ChloroethaneND10,000Methyl tert-Amyl Ether (TAME)ND5,000TrichlorofluoromethaneND5,000AcetoneND20,000	
ChloroethaneND10,000Methyl tert-Amyl Ether (TAME)ND5,000TrichlorofluoromethaneND5,000AcetoneND20,000	
Methyl tert-Amyl Ether (TAME)ND5,000TrichlorofluoromethaneND5,000AcetoneND20,000	
TrichlorofluoromethaneND5,000AcetoneND20,000	
Acetone ND 20,000	
The could be a set of the set of	
LEXCOR 112 NU 5 UUU	
Freon 113 ND 5,000 1,1-Dichloroethene ND 5,000	
Methylene Chloride ND 20,000	
Carbon Disulfide ND 5,000	
MTBE ND 5,000	
trans-1,2-Dichloroethene ND 5,000	
Vinyl Acetate ND 50,000	
1,1-Dichloroethane ND 5,000	
2-Butanone ND 10,000	
cis-1.2-Dichloroethene ND 5,000	
2,2-Dichloropropane ND 5,000	
Chloroform ND 5,000	
Bromochloromethane ND 5,000	
1,1,1-Trichloroethane ND 5,000	
1,1-Dichloropropene ND 5,000	
Carbon TetrachlorideND5,0001.2-DichloroethaneND5,000	
BenzeneND5,000TrichloroetheneND5,000	
1,2-DichloropropaneND5,000BromodichloromethaneND5,000	
Dibromomethane ND 5,000	
4-Methyl-2-Pentanone ND 10,000	
cis-1,3-Dichloropropene ND 5,000	
Toluene ND 5,000	
trans-1, 3-Dichloropropene ND 5,000	
1,1,2-Trichloroethane ND 5,000	
2-Hexanone ND 10,000	
1,3-Dichloropropane ND 5,000	
Tetrachloroethene ND 5,000	
Dibromochloromethane ND 5,000	
1,2-Dibromoethane ND 5,000	
Chlorobenzene ND 5,000	
1,1,1,2-TetrachloroethaneND5,000EthylbenzeneND5,000	
o-Xylene ND 5,000 Styrene ND 5,000	
Bromoform ND 5,000	
Isopropylbenzene ND 5,000	
1,1,2,2-Tetrachloroethane ND 5,000	
1,2,3-Trichloropropane ND 5,000	

DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 1 of 2

		- '	
	Volatile	Organics	I
Lab #: 205011			4700 Coliseum Way Site, Oakland
Client: PES Environmen		Prep:	EPA 5035
Project#: 1148.001.03.00	2		EPA 8260B
Field ID: B-12-1-1.5		Diln Fac:	
Lab ID: 205011-009		Batch#:	141385
Matrix: Soil		Sampled: Received:	07/31/08
Units: ug/Kg			
Basis: as received		Analyzed:	08/13/08
Analyte	Result		RL
Propylbenzene	ND		5,000
Bromobenzene	ND		5,000
1,3,5-Trimethylbenzene	ND		5,000
2-Chlorotoluene	ND		5,000
4-Chlorotoluene	ND		5,000
tert-Butylbenzene	ND		5,000
1,2,4-Trimethylbenzene	ND		5,000
sec-Butylbenzene	ND		5,000
para-Isopropyl Toluene	ND		5,000
1,3-Dichlorobenzene	ND		5,000
1,4-Dichlorobenzene	ND		5,000
n-Butylbenzene	ND		5,000
1,2-Dichlorobenzene	ND		5,000
1,2-Dibromo-3-Chloropropane	ND		5,000
1,2,4-Trichlorobenzene	ND		5,000
Hexachlorobutadiene	ND		5,000
Naphthalene	ND		5,000
1,2,3-Trichlorobenzene	ND		5,000
Surrogate	%REC Limits	2.5	
Dibromofluoromethane	94 78-126		
1,2-Dichloroethane-d4	108 76-137		
Toluene-d8	99 80-120		
Bromofluorobenzene	112 80-121		
Trifluorotoluene (MeOH)	DO 52-145		

		Volatile	Organics	
Lab #:	205011		Location:	4700 Coliseum Way Site, Oakland
Client:	PES Environmental,	Inc.	Prep:	EPA 5035
Project#:	1148.001.03.002		Analysis:	EPA 8260B
Type:	BLANK		Basis:	as received
Type: Lab ID:	QC453838		Diln Fac:	1.000
Matrix:	Soil		Batch#:	141029
Units:	ug/Kg		Analyzed:	08/04/08
UNICS:	ug/ Kg		Allalyzeu:	08/04/08

AnalyteResultRLFreon 12ND10tert-Butyl Alcohol (TBA)ND100ChloromethaneND10Isopropyl Ether (DIPE)ND5.0Vinyl ChlorideND10BromomethaneND10Ethyl tert-Butyl Ether (ETBE)ND5.0ChloroethaneND10Methyl tert-Amyl Ether (TAME)ND5.0TrichlorofluoromethaneND5.0TrichlorofluoromethaneND20Freon 113ND5.01, -DichloroetheneND20Methylene ChlorideND5.0MTBEND5.0trans-1, 2-DichloroetheneND5.0Vinyl AcetateND5.01, -DichloroetheneND5.0Cis-1, 2-DichloroetheneND5.02-ButanoneND5.02-ButanoneND5.0ChloropropaneND5.02-DichloroetheneND5.03-1, 2-DichloroetheneND5.03-1, 2-DichloroetheneND5.03-2-ButanoneND5.03-3-3-3-3-3-3-35.03-3-3-3-35.03-3-3-35.03-3-35.03-3-35.03-3-35.03-3-35.03-3-35.03-3-35.03-3-35.03-3-35.03-3-35.03-3-35.03-3-3<	
tert-Butyl Alcohol (TBA)ND100ChloromethaneND10Isopropyl Ether (DIPE)ND5.0Vinyl ChlorideND10BromomethaneND10Ethyl tert-Butyl Ether (ETBE)ND5.0ChloroethaneND10Methyl tert-Amyl Ether (TAME)ND5.0TrichlorofluoromethaneND5.0Freon 113ND5.01, 1-DichloroetheneND5.0MTBEND5.0trans-1, 2-DichloroetheneND5.01, 1-DichloroethaneND5.0Vinyl AcetateND5.01, 1-DichloroetheneND5.0trans-1, 2-DichloroetheneND5.02-ButanoneND10cis-1, 2-DichloroetheneND5.02-ButanoneND5.02-DichloroptopaneND5.02-DichloroetheneND5.02-DichloroetheneND5.02-DichloroptopaneND5.02-DichloroptopaneND5.02-DichloroptopaneND5.02-DichloromethaneND5.02-DichloromethaneND5.02-DichloroptopaneND5.02-DichloroptopaneND5.02-DichloromethaneND5.0BromochloromethaneND5.0	
ChloromethaneND10Isopropyl Ether (DIPE)ND5.0Vinyl ChlorideND10BromomethaneND10Ethyl tert-Butyl Ether (ETBE)ND5.0ChloroethaneND10Methyl tert-Amyl Ether (TAME)ND5.0TrichlorofluoromethaneND5.0AcetoneND5.0Freon 113ND5.01. 1-DichloroetheneND5.0Methylene ChlorideND5.0MTBEND5.0Trans-1, 2-DichloroetheneND5.0Vinyl AcetateND5.02-ButanoneND5.02-ButanoneND5.02-JichloroetheneND5.02-JichloroetheneND5.02-JichloroetheneND5.02-JichloroethaneND5.02-JichloroethaneND5.02-JichloroetheneND5.02-JichloroetheneND5.02-JichloroetheneND5.02-JichloroetheneND5.02-JichloroetheneND5.02-JichloroetheneND5.02-JichloroetheneND5.02-JichloroetheneND5.0BromochloromethaneND5.0BromochloromethaneND5.0	
Isopropyl Ether (DIPE)ND5.0Vinyl ChlorideND10BromomethaneND10Ethyl tert-Butyl Ether (ETBE)ND5.0ChloroethaneND10Methyl tert-Amyl Ether (TAME)ND5.0TrichlorofluoromethaneND5.0AcetoneND20Frecon 113ND5.01, 1-DichloroetheneND5.0Methylene ChlorideND5.0MTBEND5.0trans-1, 2-DichloroetheneND5.01, 1-DichloroethaneND5.0trans-1, 2-DichloroetheneND5.01, 1-DichloroethaneND5.0trans-1, 2-DichloroetheneND5.02-ButanoneND10cis-1, 2-DichloroetheneND5.02-DichloroetheneND5.02-JoichloroetheneND5.02-JoichloroetheneND5.02-JoichloroetheneND5.02-DichloroetheneND5.02-JoichloroetheneND5.02-JoichloroetheneND5.02-JoichloroetheneND5.0ChloroformND5.0BromochloromethaneND5.0BromochloromethaneND5.0	
Vinyl ChlorideND10BromomethaneND10Ethyl tert-Butyl Ether (ETBE)ND5.0ChloroethaneND10Methyl tert-Amyl Ether (TAME)ND5.0TrichlorofluoromethaneND5.0AcetoneND20Freon 113ND5.01, 1-DichloroetheneND5.0Methylene ChlorideND20Carbon DisulfideND5.0MTBEND5.0trans-1, 2-DichloroetheneND5.01, 1-DichloroetheneND5.0Vinyl AcetateND5.02-ButanoneND5.02, 2-DichloroetheneND5.02, 2-DichloroetheneND5.02, 2-DichloroetheneND5.02, 2-DichloroetheneND5.02, 2-DichloroetheneND5.02, 2-DichloroetheneND5.02, 2-DichloroetheneND5.0BromochloromethaneND5.0BromochloromethaneND5.0	
BromomethaneND10BromomethaneND5.0ChloroethaneND10Methyl tert-Amyl Ether (TAME)ND5.0TrichlorofluoromethaneND5.0AcetoneND20Freon 113ND5.01, 1-DichloroetheneND5.0Methyl tert - Amyl EtherND5.0AcetoneND20Freon 113ND5.01, 1-DichloroetheneND5.0Methylene ChlorideND5.0Carbon DisulfideND5.0MTBEND5.0trans-1, 2-DichloroetheneND5.0Vinyl AcetateND5.01, 1-DichloroetheneND5.02-ButanoneND5.0cis-1, 2-DichloroetheneND5.02, 2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.0BromochloromethaneND5.0	
Ethyl tert-Butyl Ether (ETBE)ND5.0ChloroethaneND10Methyl tert-Amyl Ether (TAME)ND5.0TrichlorofluoromethaneND5.0AcetoneND20Freon 113ND5.01,1-DichloroetheneND20Carbon DisulfideND5.0MTBEND5.0trans-1,2-DichloroetheneND5.0Vinyl AcetateND501,1-DichloroetheneND50carbon DisulfideND5.0MTBEND5.0trans-1,2-DichloroetheneND501,1-DichloroetheneND502-ButanoneND5.02-ButanoneND5.02,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.0BromochloromethaneND5.0	
ChloroethaneND10Methyl tert-Amyl Ether (TAME)ND5.0TrichlorofluoromethaneND5.0AcetoneND20Freon 113ND5.01,1-DichloroetheneND5.0Methylene ChlorideND20Carbon DisulfideND5.0MTBEND5.0trans-1,2-DichloroetheneND5.0Vinyl AcetateND5.01,1-DichloroetheneND5.0Trans-1,2-DichloroetheneND5.0Carbon DisulfideND5.0Uinyl AcetateND5.02-ButanoneND5.02,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.0	
Methyl tert-Amyl Ether (TAME)ND5.0TrichlorofluoromethaneND5.0AcetoneND20Freon 113ND5.01,1-DichloroetheneND5.0Methylene ChlorideND20Carbon DisulfideND5.0MTBEND5.0trans-1,2-DichloroetheneND5.0Vinyl AcetateND5.01,1-DichloroetheneND5.0vinyl AcetateND5.02-ButanoneND10cis-1,2-DichloroetheneND5.02-ButanoneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.0BromochloromethaneND5.0	
TrichlorofluoromethaneND5.0AcetoneND20Freon 113ND5.01,1-DichloroetheneND5.0Methylene ChlorideND20Carbon DisulfideND5.0MTBEND5.0trans-1,2-DichloroetheneND5.0Vinyl AcetateND5.01,1-DichloroetheneND5.0trans-1,2-DichloroetheneND5.0vinyl AcetateND5.02-ButanoneND5.02,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.0	
AcetoneND20Freon 113ND5.01,1-DichloroetheneND5.0Methylene ChlorideND20Carbon DisulfideND5.0MTBEND5.0trans-1,2-DichloroetheneND5.0Vinyl AcetateND5.01,1-DichloroethaneND5.02-ButanoneND5.0cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.02,2-DichloropropaneND5.0BromochloromethaneND5.0BromochloromethaneND5.0	
Freen 113ND5.01,1-DichloroetheneND5.0Methylene ChlorideND20Carbon DisulfideND5.0MTBEND5.0trans-1,2-DichloroetheneND5.0Vinyl AcetateND501,1-DichloroethaneND5.02-ButanoneND10cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.0	
1,1-DichloroetheneND5.0Methylene ChlorideND20Carbon DisulfideND5.0MTBEND5.0trans-1,2-DichloroetheneND5.0Vinyl AcetateND501,1-DichloroethaneND5.02-ButanoneND10cis-1,2-DichloroetheneND5.02,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.0	
Methylene ChlorideND20Carbon DisulfideND5.0MTBEND5.0trans-1,2-DichloroetheneND5.0Vinyl AcetateND501,1-DichloroethaneND5.02-ButanoneND10cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.0	
Carbon DisulfideND5.0MTBEND5.0trans-1,2-DichloroetheneND5.0Vinyl AcetateND501,1-DichloroethaneND5.02-ButanoneND10cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.0	
MTBEND5.0trans-1,2-DichloroetheneND5.0Vinyl AcetateND501,1-DichloroethaneND5.02-ButanoneND10cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.0	
trans-1,2-DichloroetheneND5.0Vinyl AcetateND501,1-DichloroethaneND5.02-ButanoneND10cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.0	
Vinyl AcetateND501,1-DichloroethaneND5.02-ButanoneND10cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.0	
1,1-DichloroethaneND5.02-ButanoneND10cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.0	
2-ButanoneND10cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.0	
cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.0	
2,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.0	
ChloroformND5.0BromochloromethaneND5.0	
ChloroformND5.0BromochloromethaneND5.0	
Bromochloromethane ND 5.0	
1,1,1-Trichloroethane ND 5.0	}
1,1-Dichloropropene ND 5.0	
Carbon Tetrachloride ND 5.0	
1,2-Dichloroethane ND 5.0	
Benzene ND 5.0	
Trichloroethene ND 5.0	
1,2-Dichloropropane ND 5.0	
Bromodichloromethane ND 5.0	
Dibromomethane ND 5.0	
4-Methyl-2-Pentanone ND 10	
	1
Tetrachloroethene ND 5.0	
Dibromochloromethane ND 5.0	
1,2-Dibromoethane ND 5.0	
Chlorobenzene ND 5.0	
1,1,1,2-Tetrachloroethane ND 5.0	
Ethylbenzene ND 5.0	
m,p-Xylenes ND 5.0	
o-Xylene ND 5.0	
Styrene ND 5.0	
Bromoform ND 5.0	
Isopropylbenzene ND 5.0	
1,1,2,2-Tetrachloroethane ND 5.0	
1,2,3-Trichloropropane ND 5.0	
Propylbenzene ND 5.0	1

0

		Volatile	Organics	l	
Client: PE)5011 S Environmental, .48.001.03.002	Inc.	Prep:	4700 Coliseum Way Site, EPA 5035 EPA 8260B	Oakland
Type: BL Lab ID: QC	ANK 2453838 511		Basis: Diln Fac: Batch#:	as received	
Units: ug	ſ/Kg		Analyzed:	08/04/08	
Analyte		Result		RL	
Bromobenzene 1,3,5-Trimethylbenz		ND ND		5.0 5.0	
2-Chlorotoluene				5.0	
4-Chlorotoluene		ND		5.0	
tert-Butylbenzene		ND		5.0	
1,2,4-Trimethylbenz	zene l	ND		5.0	
sec-Butylbenzene		ND		5.0	
para-Isopropyl Tolu	iene l	ND		5.0	
1,3-Dichlorobenzene	2	ND		5.0	
1,4-Dichlorobenzene		ND.		5.0	
n-Butylbenzene		ND		5.0	
1,2-Dichlorobenzene	2	ND		5.0	
1,2-Dibromo-3-Chlor	copropane l	ND.		5.0	
1,2,4-Trichlorobenz	zene l	ND		5.0	
Hexachlorobutadiene		ND		5.0	
Naphthalene		ND		5.0	
1,2,3-Trichlorobenz	zene l	ND		5.0	
Surrogate	e %RE				
Dibromofluoromethan		78-126			
1,2-Dichloroethane-	-d4 101	76-137			
Toluene-d8	103	80-120			
Bromofluorobenzene	97	80-121			

	Volatile	Organics	
Lab #:	205011		0 Coliseum Way Site, Oakland
Client:	PES Environmental, Inc.		5035
Project#:	1148.001.03.002		8260B
Type:	BLANK	Basis:	as received
Lab ID:	QC453982	Diln Fac:	1.000
Matrix:	Soil	Batch#:	141065
Units:	ug/Kg	Analyzed:	08/05/08

AnalyteResultRLFreen 12ND10tert-Butyl Alcohol (TBA)ND100ChloromethaneND10Isoproyl Ether (DIPE)ND5.0Vinyl ChlorideND10BromomethaneND10Ethyl tert-Butyl Ether (ETBE)ND5.0ChloroethaneND10Ethyl tert-Amyl Ether (TAME)ND5.0TrichlorofluoromethaneND20Freen 113ND5.01, 1-DichloroetheneND20Garbon DisulfideND5.0Uinyl AcetateND5.0Vinyl AcetateND5.0Vinyl AcetateND5.0Vinyl AcetateND5.02.2-DichloroetheneND5.02.3-DichloroetheneND5.02.4-DichloroetheneND5.02.5-DichloroetheneND5.02.5-DichloroetheneND5.02.5-DichloroetheneND5.02.5-DichloroetheneND5.02.5-DichloroetheneND5.02.5-DichloroetheneND5.01, 1-DichloroetheneND5.01, 1-DichloroetheneND5.01, 1-DichloroetheneND5.01, 1-DichloroetheneND5.01, 1-DichloroetheneND5.01, 1-DichloroetheneND5.01, 1-DichloroetheneND5.01, 1-DichloroetheneND5.0 <td< th=""><th></th></td<>	
tert-Butyl Alcohol (TBA)ND100ChloromethaneND10Isopropyl Ether (DIPE)ND5.0Vinyl ChlorideND10BromomethaneND10Ethyl tert-Butyl Ether (ETBE)ND5.0ChloroethaneND10Methyl tert-Amyl Ether (TAME)ND5.0TrichlorofluoromethaneND5.0Freon 113ND5.01.1-DichloroethaneND5.0Methyl tert-SulfideND5.0AcetoneND5.0Carbon DisulfideND5.0MTBEND5.0Vinyl AcetateND5.01.1-DichloroetheneND5.0Vinyl AcetateND5.02.2-DichloroetheneND5.02.3-DichloroetheneND5.02.4-DichloroetheneND5.01.1-TirchloroethaneND5.02.2-DichloroetheneND5.02.2-DichloroetheneND5.02.2-DichloroetheneND5.01.1-TirchloroethaneND5.01.1-TirchloroethaneND5.01.1-TirchloroethaneND5.01.1-DichloroethaneND5.01.1-DichloroethaneND5.01.1-DichloropropaneND5.01.1-DichloropthaneND5.01.2-DichloroethaneND5.01.2-DichloroethaneND5.01.2-DichloroethaneND5.0 <t< td=""><td></td></t<>	
ChloromethaneND10Isopropyl Ether (DIPE)ND5.0Vinyl ChlorideND10BromomethaneND10Ethyl tert-Butyl Ether (ETBE)ND5.0ChloroethaneND10Methyl tert-Amyl Ether (TAME)ND5.0TrichlorofluoromethaneND20Freon 113ND5.01, 1-DichloroetheneND20MTBEND5.0MTBEND5.01, 1-DichloroetheneND5.0Vinyl AcetateND5.01, 1-DichloroetheneND5.0Vinyl AcetateND5.02, 2-DichloropopaneND5.02, 2-DichloroetheneND5.02, 2-DichloropopaneND5.0BromochloromethaneND5.02, 2-DichloropopaneND5.0BromochloropopaneND5.0BromochloropopaneND5.0BromochloropopaneND5.0J, 1-DichloropopaneND5.0J, 1-DichloropopaneND5.0J, 2-DichloropopaneND5.0J, 2-DichloropopaneND5.0J, 2-DichloropopaneND5.0J, 2-DichloropopaneND5.0J, 2-DichloropopaneND5.0J, 2-DichloropopaneND5.0J, 2-DichloropopaneND5.0J, 2-DichloropopaneND5.0J, 2-DichloropopaneND5.0 <t< td=""><td></td></t<>	
Lisoropyl Ether (DIPE)ND5.0Vinyl ChlorideND10BromomethaneND10Ethyl tert-Butyl Ether (ETBE)ND5.0ChloroethaneND10Methyl tert-Amyl Ether (TAME)ND5.0TrichlorofluoromethaneND5.0AcetoneND20Freon 113ND5.01.1-DichloroetheneND5.0Methylene ChlorideND20Carbon DisulfideND5.0MTBEND5.0Vinyl AcetateND5.01.1-DichloroetheneND5.0Vinyl AcetateND5.0Vinyl AcetateND5.02.2-DichloroetheneND5.02.3-DichloroetheneND5.02.4-DichloroetheneND5.02.5-DichloroetheneND5.02.2-DichloroetheneND5.03.3-DichloroetheneND5.03.4-DichloroetheneND5.03.5-DichloroetheneND5.03.6-DichloroetheneND5.03.7-DichloroetheneND5.03.8-DichloroetheneND5.03.9-DichloroetheneND5.03.9-DichloroetheneND5.03.9-DichloroetheneND5.03.9-DichloroetheneND5.03.9-DichloroetheneND5.03.9-DichloroetheneND5.03.9-DichloroetheneND5.03.9-Dic	
Vinyl ChlorideND10BromomethaneND10Ethyl tert-Butyl Ether (ETBE)ND5.0ChloroethaneND10Methyl tert-Amyl Ether (TAME)ND5.0TrichlorofluoromethaneND5.0AcetoneND20Freon 113ND5.01,1-DichloroetheneND20Carbon DisulfideND5.0MTBEND5.0trans-1,2-DichloroetheneND5.01,1-DichloroethaneND5.0trans-1,2-DichloroetheneND5.0trans-1,2-DichloroetheneND5.0vinyl AcetateND5.02-ButanoneND5.0chloroformND5.0ChloroformND5.0J.1-DichloropropaneND5.0J.2-DichloroethaneND5.0J.1-TrichloroethaneND5.0J.1-DichloropropaneND5.0J.1-DichloropropaneND5.0J.1-DichloropropaneND5.0J.1-DichloropropaneND5.0J.1-DichloropropaneND5.0J.2-DichloroethaneND5.0J.2-DichloroethaneND5.0J.2-DichloroethaneND5.0J.2-DichloroethaneND5.0J.2-DichloroethaneND5.0J.2-DichloroethaneND5.0J.2-DichloroethaneND5.0J.2-DichloroethaneND5.0	
Virg FoundationID10BromomethaneND5.0ChloroethaneND10Methyl tert-Amyl Ether (TAME)ND5.0TrichlorofluoromethaneND20Freon 113ND5.01.1-DichloroetheneND20Carbon DisulfideND20Carbon DisulfideND5.0Vinyl AcetateND5.01.1-DichloroetheneND5.0Vinyl AcetateND5.01.1-DichloroetheneND5.0Vinyl AcetateND5.01.1-DichloroetheneND5.0Vinyl AcetateND5.02.2-DichloroetheneND5.02.2-DichloropropaneND5.02.2-DichloropropaneND5.01.1.1-TrichloroethaneND5.01.1.2-DichloroethaneND5.01.1.2-DichloroethaneND5.02.2-DichloropropaneND5.01.1.2-DichloroethaneND5.01.1.2-TrichloroethaneND5.01.2-DichloroethaneND5.01.2-DichloroethaneND5.01.2-DichloroethaneND5.01.2-DichloroethaneND5.01.2-DichloroethaneND5.01.2-DichloroethaneND5.01.2-DichloroethaneND5.01.2-DichloroethaneND5.01.2-DichloroethaneND5.01.2-DichloroethaneND5.0<	
Ethyl tert-Butyl Ether (ETBE)ND5.0ChloroethaneND10Methyl tert-Amyl Ether (TAME)ND5.0TrichlorofluoromethaneND5.0AcetoneND20Freon 113ND5.01,1-DichloroetheneND20Carbon DisulfideND5.0TrischloroetheneND5.0MTBEND5.0trans-1,2-DichloroetheneND5.01,1-DichloroetheneND5.0trans-1,2-DichloroetheneND5.0trans-1,2-DichloroetheneND5.0trans-1,2-DichloroetheneND5.02-ButanoneND5.0cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.01,1-DichloropropaneND5.01,1-TrichloroethaneND5.01,1,1-TrichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-Dichloroethane<	
InterformerND10ChloroethaneND5.0Methyl tert-Amyl Ether (TAME)ND5.0TrichlorofluoromethaneND20Freon 113ND5.01, 1-DichloroetheneND20Methylene ChlorideND20Carbon DisulfideND20MTBEND5.0trans-1, 2-DichloroetheneND5.01, 1-DichloroethaneND501, 1-DichloroethaneND501, 1-DichloroethaneND502-ButanoneND10cis-1, 2-DichloroetheneND5.02, 2-DichloropropaneND5.0ChloroformND5.01, 1-TrichloroethaneND5.01, 1-DichloroethaneND5.01, 1-DichloroethaneND5.01, 1-TrichloroethaneND5.01, 1-DichloropropaneND5.01, 1-DichloroethaneND5.01, 2-DichloroethaneND5.01, 2-DichloroethaneND <td></td>	
Methyl tert-Amyl Ether (TAME)ND5.0TrichlorofluoromethaneND5.0AcetoneND20Freon 113ND5.01,1-DichloroetheneND5.0Methylene ChlorideND20Carbon DisulfideND5.0MTBEND5.0trans-1,2-DichloroetheneND5.0Vinyl AcetateND5.02-ButanoneND5.0cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.01,1-TrichloroethaneND5.02,2-DichloropropaneND5.01,1,1-TrichloroethaneND5.01,1-DichloroethaneND5.01,2-DichloroptopaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.0	
TrichlorofluoromethaneND5.0AcetoneND20Freon 113ND5.01,1-DichloroetheneND5.0Methylene ChlorideND20Carbon DisulfideND5.0MTBEND5.0trans-1,2-DichloroetheneND5.0Vinyl AcetateND5.02-ButanoneND5.0cis-1,2-DichloroetheneND5.02-ButanoneND5.0chloroformND5.01,1-TrichloroethaneND5.01,1,1-TrichloroethaneND5.01,1,1-TrichloroethaneND5.01,1,2-DichloroethaneND5.01,2-DichloropropaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.0	
ActionND20Freon 113ND5.01, 1-DichloroetheneND5.0Methylene ChlorideND20Carbon DisulfideND5.0MTBEND5.0trans-1, 2-DichloroetheneND5.0Vinyl AcetateND501, 1-DichloroethaneND5.02-ButanoneND5.02, 2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.01, 1-TrichloroethaneND5.02, 2-DichloropeneND5.02, 2-DichloropeneND5.01, 1-TrichloroethaneND5.01, 1-DichloropeneND5.01, 2-DichloropeneND5.01, 2-DichloropeneND5.01, 2-DichloropeneND5.01, 2-DichloropeneND5.01, 2-DichloroethaneND5.01, 2-DichloroethaneND5.01, 2-DichloroethaneND5.01, 2-DichloroethaneND5.01, 2-DichloroethaneND5.01, 2-DichloropropaneND5.01, 2-DichloropropaneND5.01, 2-DichloropropaneND5.01, 2-DichloropropaneND5.01, 2-DichloropropaneND5.01, 2-DichloropropaneND5.01, 2-DichloropropaneND5.01, 2-DichloropropaneND5.0<	
Action 113ND5.01,1-DichloroetheneND5.0Methylene ChlorideND20Carbon DisulfideND5.0MTBEND5.0trans-1,2-DichloroetheneND5.0Vinyl AcetateND5.02-ButanoneND5.0cis-1,2-DichloroetheneND5.02,2-DichloroetheneND5.02,2-DichloroetheneND5.02,2-DichloropropaneND5.01,1-TrichloroethaneND5.01,1,1-TrichloroethaneND5.01,1-DichloropropeneND5.01,2-DichloroethaneND5.01,2-DichloropropeneND5.01,2-DichloropropeneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND </td <td></td>	
1,1-DichloroetheneND5.0Methylene ChlorideND20Carbon DisulfideND5.0MTBEND5.0trans-1,2-DichloroetheneND5.0Vinyl AcetateND501,1-DichloroethaneND502-ButanoneND10cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.01,1-TrichloroethaneND5.01,1-TrichloroethaneND5.01,2-DichloropropaneND5.01,1-TrichloroethaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.01,2-DichloropthaneND5.0<	
Methylene ChlorideND20Carbon DisulfideND5.0MTBEND5.0trans-1,2-DichloroetheneND5.0Vinyl AcetateND501,1-DichloroethaneND5.02-ButanoneND10cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.01,1-TrichloroethaneND5.01,1-DichloropropaneND5.01,1-DichloropropeneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.0TrichloroetheneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND	
Carbon DisulfideND5.0MTBEND5.0trans-1,2-DichloroetheneND5.0Vinyl AcetateND501,1-DichloroethaneND5.02-ButanoneND10cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.01,1,1-TrichloroethaneND5.01,1,1-TrichloroethaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND	
Carbon DisulfideND5.0MTBEND5.0trans-1,2-DichloroetheneND5.0Vinyl AcetateND501,1-DichloroethaneND5.02-ButanoneND10cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.01,1,1-TrichloroethaneND5.01,1,1-TrichloroethaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND	
MTBEND5.0trans-1,2-DichloroetheneND5.0Vinyl AcetateND501,1-DichloroethaneND502-ButanoneND10cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.01,1,1-TrichloroethaneND5.01,1,1-TrichloropropeneND5.01,1,2-DichloropropeneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.0	
Vinyl AcetateND501,1-DichloroethaneND5.02-ButanoneND10cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.01,1,1-TrichloroethaneND5.01,1-DichloropropeneND5.01,2-DichloropropeneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.0TrichloroethaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.0	
Vinyl AcetateND501,1-DichloroethaneND5.02-ButanoneND10cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.01,1-TrichloroethaneND5.01,1-DichloropropeneND5.02-DichloropropeneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.0	
1,1-DichloroethaneND5.02-ButanoneND10cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.01,1-TrichloroethaneND5.01,1-DichloropropeneND5.0Carbon TetrachlorideND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.0	
2-ButanoneND10cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.01,1-TrichloroethaneND5.01,1-DichloropropeneND5.0Carbon TetrachlorideND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.0TrichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.01,2-DichloropropaneND5.0	
cis-1,2-DichloroetheneND5.02,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.01,1,1-TrichloroethaneND5.01,1-DichloropropeneND5.0Carbon TetrachlorideND5.01,2-DichloroethaneND5.01,2-DichloroethaneND5.0TrichloroetheneND5.01,2-DichloropropaneND5.01,2-DichloropropaneND5.0	
2,2-DichloropropaneND5.0ChloroformND5.0BromochloromethaneND5.01,1,1-TrichloroethaneND5.01,1-DichloropropeneND5.0Carbon TetrachlorideND5.01,2-DichloroethaneND5.0BenzeneND5.0TrichloroetheneND5.01,2-DichloropropaneND5.0	
ChloroformND5.0BromochloromethaneND5.01,1,1-TrichloroethaneND5.01,1-DichloropropeneND5.0Carbon TetrachlorideND5.01,2-DichloroethaneND5.0BenzeneND5.0TrichloroetheneND5.01,2-DichloropropaneND5.0	
BromochloromethaneND5.01,1,1-TrichloroethaneND5.01,1-DichloropropeneND5.0Carbon TetrachlorideND5.01,2-DichloroethaneND5.0BenzeneND5.0TrichloroetheneND5.01,2-DichloropropaneND5.0	
1,1,1-TrichloroethaneND5.01,1-DichloropropeneND5.0Carbon TetrachlorideND5.01,2-DichloroethaneND5.0BenzeneND5.0TrichloroetheneND5.01,2-DichloropropaneND5.0	
1,1-DichloropropeneND5.0Carbon TetrachlorideND5.01,2-DichloroethaneND5.0BenzeneND5.0TrichloroetheneND5.01,2-DichloropropaneND5.0	
Carbon TetrachlorideND5.01,2-DichloroethaneND5.0BenzeneND5.0TrichloroetheneND5.01,2-DichloropropaneND5.0	
1,2-DichloroethaneND5.0BenzeneND5.0TrichloroetheneND5.01,2-DichloropropaneND5.0	
ND5.0TrichloroetheneND5.01,2-DichloropropaneND5.0	
TrichloroetheneND5.01,2-DichloropropaneND5.0	
1,2-Dichloropropane ND 5.0	
Bromodichloromethane ND 5.0	
Dibromomethane ND 5.0	
4 Nechy 1 2 Temeditorie	
Clamb 1/5 Brennetopropend	
Dibromochloromethane ND 5.0	
1,2-Dibromoethane ND 5.0	
Chlorobenzene ND 5.0	
1,1,1,2-Tetrachloroethane ND 5.0	
Ethylbenzene ND 5.0	
m,p-Xylenes ND 5.0	
o-Xylène ND 5.0	
Styrene ND 5.0	
Bromoform ND 5.0	
Isopropylbenzene ND 5.0	
1,1,2,2-Tetrachloroethane ND 5.0	
1,2,3-Trichloropropane ND 5.0	
Propylbenzene ND 5.0	

	v	olatile	Organics	
Lab #: 205011 Client: PES Environme Project#: 1148.001.03.0		nc.	Prep: Analysis:	4700 Coliseum Way Site, Oakland EPA 5035 EPA 8260B
Type: BLANK Lab ID: QC453982 Matrix: Soil Units: uq/Kq			Basis: Diln Fac: Batch#: Analyzed:	as received 1.000 141065 08/05/08
Analyte		Result	That y beat	RL
Bromobenzene 1,3,5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene para-Isopropyl Toluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene	ND ND ND ND ND ND ND ND ND ND ND ND ND			5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Surrogate	%REC	Limits		
Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	95 98 94 94	78-126 76-137 80-120 80-121		

	Volatil	e Organics	
Lab #: 205011			4700 Coliseum Way Site, Oakland
	ironmental, Inc.		EPA 5035
	1.03.002	Analysis:	
Type: BLANK		Basis:	as received
Lab ID: QC45421	3	Diln Fac:	1.000
Matrix: Soil		Batch#:	141124
Units: ug/Kg		Analyzed:	08/06/08
Analyte	Result		RL
Freon 12	ND		10
tert-Butyl Alcohol (TBA)	ND		100
Chloromethane	ND		10
Isopropyl Ether (DIPE)	ND		5.0
Vinyl Chloride	ND		10
Bromomethane	ND		10
Ethyl tert-Butyl Ether (ETBE) ND		5.0
Chloroethane	ND		10
Methyl tert-Amyl Ether (TAME) ND		5.0
Trichlorofluoromethane	ND		5.0
Acetone	ND		20
Freon 113	ND		5.0
1,1-Dichloroethene	ND		5.0
Methylene Chloride	ND		20
Carbon Disulfide	ND		5.0
MTBE	ND		5.0
trans-1,2-Dichloroethene	ND		5.0
Vinyl Acetate	ND		50
1,1-Dichloroethane	ND		5.0
2-Butanone	ND		10

Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
	ND	10	
4-Methyl-2-Pentanone	ND	5.0	
cis-1,3-Dichloropropene	ND	5.0	
Toluene		5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	10	
2-Hexanone	ND		
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	

ATON Coligour New Oite Colleged
cation: 4700 Coliseum Way Site, Oakland
ep: EPA 5035
alysis: EPA 8260B
sis: as received
ln Fac: 1.000
tch#: 141124
alyzed: 08/06/08
RL
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0

6
7
0
1

	Volatile	Organics
Lab #:	205011	Location: 4700 Coliseum Way Site, Oakland
Client:	PES Environmental, Inc.	Prep: EPA 5035
Project#:	1148.001.03.002	Analysis: EPA 8260B
	BLANK	Basis: as received
Type: Lab ID:	OC454719	Diln Fac: 1.000
Matrix:	Soil	Batch#: 141226
Units:	ug/Kg	Analyzed: 08/08/08

Analyte	Result	RL
Freon 12	ND	10
tert-Butyl Alcohol (TBA)	ND	100
Chloromethane	ND	10
Isopropyl Ether (DIPE)	ND	5.0
Vinyl Chloride	ND	10
Bromomethane	ND	10
Ethyl tert-Butyl Ether (ETBE)	ND	5.0
Chloroethane	ND	10
Methyl tert-Amyl Ether (TAME)	ND	5.0
Trichlorofluoromethane	ND	5.0
Acetone	ND	20
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ND	5.0
Dibromochloromethane	ND	5.0
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m, p-Xylenes	ND	5.0
o-Xylene	ND	5.0
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0

Batch QC Report					
	Vo	latile	Organics		
Lab #: 205011			Location:	4700 Coliseum Way Site,	Oakland
Client: PES Environmen	ital, Inc		Prep:	EPA 5035	
Project#: 1148.001.03.00)2		Analysis:	EPA 8260B	
Type: BLANK			Basis:	as received	
Lab ID: QC454719			Diln Fac:	1.000	
Matrix: Soil			Batch#:	141226	
Units: ug/Kg			Analyzed:	08/08/08	
Analyte		esult		RL	
Bromobenzene	ND			5.0	
1,3,5-Trimethylbenzene	ND			5.0	
2-Chlorotoluene	ND			5.0	
4-Chlorotoluene	ND			5.0	
tert-Butylbenzene	\mathbb{ND}			5.0	
1,2,4-Trimethylbenzene	ND			5.0	
sec-Butylbenzene	ND			5.0	
para-Isopropyl Toluene	ND			5.0	
1,3-Dichlorobenzene	ND			5.0	
1,4-Dichlorobenzene	ND			5.0	
n-Butylbenzene	ND			5.0	
1,2-Dichlorobenzene	ND			5.0	
1,2-Dibromo-3-Chloropropane	ND			5.0	
1,2,4-Trichlorobenzene	ND			5.0	
Hexachlorobutadiene	ND			5.0	
Naphthalene	ND			5.0	
1,2,3-Trichlorobenzene	ND			5.0	
		- x - <i>t</i>			
Surrogate		limits			
Dibromofluoromethane		78-126			
1,2-Dichloroethane-d4		76-137			
Toluene-d8		30-120			
Bromofluorobenzene	116 8	30-121			

24

		Volatile	Organics	
Lab #:	205011	_	Location: 4700 Coliseum Way Site, Oakland	
Client:	PES Environmental	, Inc.	Prep: EPA 5035	
Project#:	1148.001.03.002		Analysis: EPA 8260B	
Type:	BLANK		Basis: as received	
Lab ID:	QC455494		Diln Fac: 1.000	
Matrix:	Soil		Batch#: 141385	
Units:	ug/Kg		Analyzed: 08/13/08	
An	alyte	Result	RL	
Freon 12		ND	10	
tert-Butyl Al		ND	100	
Chloromethane		ND	10	
Isopropyl Eth	er (DIPE)	ND	5.0	
Vinyl Chlorid	e	ND	10	
Bromomethane		ND	10	
	tyl Ether (ETBE)	ND	5.0 10	
Chloroethane	mal Ethor (UNME)	ND ND	5.0	
	myl Ether (TAME)	ND ND	5.0	
Trichlorofluo	romethane	ND	20	
Acetone		ND ND	5.0	
Freon 113	thene	ND	5.0	
1,1-Dichloroe Methylene Chl	oride	ND	20	
Carbon Disulf		ND	5.0	
MTBE	iue	ND	5.0	
trans-1,2-Dic	hloroethene	ND	5.0	
Vinyl Acetate		ND	50	
1,1-Dichloroe		ND	5.0	
2-Butanone	citatic	ND	10	
cis-1,2-Dichl	oroethene	ND	5.0	
2,2-Dichlorop	ropane	ND	5.0	
Chloroform	ropane	ND	5.0	
Bromochlorome	thane	ND	5.0	
1,1,1-Trichlo		ND	5.0	
1,1-Dichlorop		ND	5.0	
Carbon Tetrac		ND	5.0	
1,2-Dichloroe		ND	5.0	
Benzene		ND	5.0	
Trichloroethe	ne	ND	5.0	
1,2-Dichlorop	ropane	ND	5.0	
Bromodichloro		ND	5.0	
Dibromomethan	e	ND	5.0	
4-Methyl-2-Pe	ntanone	ND	10	
cis-1,3-Dichl	oropropene	ND	5.0	
Toluene		ND	5.0	
trans-1,3-Dic	hloropropene	ND	5.0	
1,1,2-Trichlo	roethane	ND	5.0	
2-Hexanone		ND	10	
1,3-Dichlorop		ND	5.0	
Tetrachloroet		ND	5.0	
Dibromochloro		ND	5.0 5.0	
1,2-Dibromoet		ND	5.0	
Chlorobenzene		ND ND	5.0	
1,1,1,2-Tetra	Chrotoethane	ND	5.0	
Ethylbenzene		ND	5.0	
m,p-Xylenes		ND	5.0	
o-Xylene		ND	5.0	
Styrene		ND	5.0	
Bromoform	ene	ND	5.0	
<pre>Isopropylbenz 1,1,2,2-Tetra</pre>	chloroethane	ND	5.0	
1,2,3-Trichlo	ropropane	ND	5.0	
Propylbenzene	TONT OPALLO	ND	5.0	

		Volatile	Organics	
Lab #: Client: Project#:	205011 PES Environmental 1148.001.03.002	, Inc.	Prep:	4700 Coliseum Way Site, Oakland EPA 5035 EPA 8260B
Type: Lab ID: Matrix:	BLANK QC455494 Soil		Basis: Diln Fac: Batch#:	141385
Units:	ug/Kg		Analyzed:	
	alyte	Result	an daaraa	RL
Bromobenzene		ND		5.0 5.0
1,3,5-Trimeth	lyibenzene	ND ND		5.0
2-Chlorotolue		ND ND		5.0
4-Chlorotolue		ND		5.0
tert-Butylber		ND		5.0
1,2,4-Trimeth	ly ibelizene	ND		5.0
sec-Butylbenz		ND		5.0
para-Isopropy		ND		5.0
1,3-Dichlorob		ND		5.0
1,4-Dichlorok		ND		5.0
n-Butylbenzer		ND		5.0
1,2-Dichlorob	Chloropropano	ND		5.0
1,2,4-Trichlo	-Chloropropane	ND		5.0
Hexachlorobut	adiono	ND		5.0
Hexachiorobuc	autene	ND		5.0
Naphthalene 1,2,3-Trichlo	rohenzene	ND		5.0
<u>1,2,3-1110110</u>	A CDENZENE	1917		
		EC Limits		
Dibromofluoro		78-126		
1,2-Dichloroe				
Toluene-d8	103			
Bromofluorobe	enzene 113	80-121		

		Volatile	Organics	1
Lab #: Client: Project#:	205011 PES Environmental, 1148.001.03.002	Inc.	Prep:	4700 Coliseum Way Site, Oakland EPA 5035 EPA 8260B
Matrix: Units: Basis:	Soil ug/Kg as received		Diln Fac: Batch#: Analyzed:	1.000 141029 08/04/08

Type: BS			Lab ID:	QC45	3836	
Analyte		Spiked		Result	%REC	Limits
tert-Butyl Alcohol (TBA)		125.0		128.6	103	58-135
Isopropyl Ether (DIPE)		25.00		28.91	116	62-120
Ethyl tert-Butyl Ether (ETBE)		25.00		29.75	119	65-121
Methyl tert-Amyl Ether (TAME)		25.00		28.71	115	71-122
1,1-Dichloroethene		25.00		27.73	111	71-133
Benzene		25.00		27.97	112	79-123
Trichloroethene		25.00		27.63	111	79-124
Toluene		25.00		26.96	108	80-123
Chlorobenzene		25.00		26.51	106	80-120
Surrogate	%REC	Limits				
Dibromofluoromethane	98	78-126				
1,2-Dichloroethane-d4	95	76-137				
Toluene-d8	101	80-120				
Bromofluorobenzene	99	80-121				

Type: BSD			Lab ID:	QC45	3837			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)		125.0		150.9	121	58-135	16	27
Isopropyl Ether (DIPE)		25.00		28.37	113	62-120	2	20
Ethyl tert-Butyl Ether (ETBE)		25.00		29.67	119	65-121	0	20
Methyl tert-Amyl Ether (TAME)		25.00		28.88	116	71-122	1	20
1,1-Dichloroethene		25.00		27.64	111	71-133	0	20
Benzene		25.00		27.62	110	79-123	1	20
Trichloroethene		25.00		27.63	111	79-124	0	20
Toluene		25.00		26.67	107	80-123	1	20
Chlorobenzene		25.00		25.93	104	80-120	2	20
Surrogate	%REC	Limits						
Dibromofluoromethane	99	78-126						
1,2-Dichloroethane-d4	94	76-137						
Toluene-d8	100	80-120						
Bromofluorobenzene	99	80-121						

		Volatile	Organics	
Lab #:	205011		Location:	4700 Coliseum Way Site, Oakland
Client:	PES Environmental,	Inc.	Prep:	EPA 5035
Project#:	1148.001.03.002		Analysis:	EPA 8260B
Matrix:	Soil		Diln Fac:	1.000
Units:	ug/Kg		Batch#:	141065
Basis:	as received		Analyzed:	08/05/08

Type: BS			Lab ID:	QC4	53980		
Analyte		Spiked		Result	%REC	Limits	
tert-Butyl Alcohol (TBA)		125.0		128.9	103	58-135	
Isopropyl Ether (DIPE)		25.00		24.95	100	62-120	
Ethyl tert-Butyl Ether (ETBE)		25.00		25.39	102	65-121	
Methyl tert-Amyl Ether (TAME)		25.00		26.61	106	71-122	
1,1-Dichloroethene		25.00		29,18	117	71-133	
Benzene		25.00		26.55	106	79-123	
Trichloroethene		25.00		26,60	106	79-124	
Toluene		25.00		27.71	111	80-123	
Chlorobenzene		25.00		25.30	101	80-120	
Surrogate	%REC	Limits					
Dibromofluoromethane	95	78-126					
1,2-Dichloroethane-d4	94	76-137					
Toluene-d8	98	80-120					
Bromofluorobenzene	90	80-121					

Type:	BSD			Lab ID:	QC453	3981			
[Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Buty	/l Alcohol (TBA)		125.0		124.6	100	58-135	3	27
Isopropy	l Ether (DIPE)		25.00		24.64	99	62-120	1	20
	ct-Butyl Ether (ETBE)		25.00		25.33	101	65-121	0	20
	ert-Amyl Ether (TAME)		25.00		23.77	95	71-122	11	20
	loroethene		25.00		27.49	110	71-133	6	20
Benzene			25.00		25.20	101	79-123	5	20
Trichloro	oethene		25.00		25.80	103	79-124	3	20
Toluene			25.00		25.64	103	80-123	8	20
Chlorober	nzene		25.00		25.65	103	80-120	1	20
	Surrogate	%REC	Limits						
Dibromof	luoromethane	95	78-126						
1,2-Dich]	loroethane-d4	90	76-137						
Toluene-c	18	94	80-120						
Bromofluc	orobenzene	94	80-121						

Э

		Volatile	Organics	
Lab #: Client:	205011 PES Environmental, 1148.001.03.002	Inc.	Location: 4700 Coliseum Way Site, Oakland Prep: EPA 5035 Analysis: EPA 8260B	
Project#: Matrix: Units: Basis:	Soil ug/Kg as received		Diln Fac: 1.000 Batch#: 141124 Analyzed: 08/06/08	

Type: BS			Lab ID:	QC45	4214		
Analyte		Spiked		Result	%REC	Limits	
tert-Butyl Alcohol (TBA)		125.0		111.1	89	58-135	
Isopropyl Ether (DIPE)		25.00		23.08	92	62-120	
Ethyl tert-Butyl Ether (ETBE)		25.00		24.31	97	65-121	
Methyl tert-Amyl Ether (TAME)		25.00		24.61	98	71-122	
1,1-Dichloroethene		25.00		23.59	94	71-133	
Benzene		25.00		23.12	92	79-123	
Trichloroethene		25.00		23.40	94	79-124	
Toluene		25.00		23.28	93	80-123	
Chlorobenzene		25.00		22.17	89	80-120	
Surrogate	%REC	Limits					
Dibromofluoromethane	99	78-126					
1,2-Dichloroethane-d4	97	76-137					
Toluene-d8	101	80-120					
Bromofluorobenzene	98	80-121					

Type:	BSD			Lab ID:	QC45	64215			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Buty.	l Alcohol (TBA)		125.0		116.4	93	58-135	5	27
Isopropyĺ	Ether (DIPE)		25.00		23.55	94	62-120	2	20
	t-Butyl Ether (ETBE)		25.00		24.93	100	65-121	2	20
	rt-Amyl Ether (TAME)		25.00		25.06	100	71-122	2	20
1,1-Dichlo			25.00		25.16	101	71-133	6	20
Benzene			25.00		24.24	97	79-123	5	20
Trichloro	ethene		25.00		24.21	97	79-124	3	20
Toluene			25.00		25.01	100	80-123	7	20
Chloroben	zene		25.00		22.87	91	80-120	3	20
	Surrogate	%REC	Limits						
Dibromofl	uoromethane	100	78-126						
1,2-Dichle	oroethane-d4	99	76-137						
Toluene-d	8	102	80-120						
Bromofluo	robenzene	98	80-121						

)

	Volatile	Organics	An and a second se
Lab #:	205011	Location:	4700 Coliseum Way Site, Oakland
Client:	PES Environmental, Inc.	Prep:	EPA 5035
Project#:	1148.001.03.002	Analysis:	EPA 8260B
Type:	LCS	Basis:	as received
Lab ID:	QC454720	Diln Fac:	1.000
Matrix:	Soil	Batch#:	141226
Units:	ug/Kg	Analyzed:	08/08/08

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	150.4	120	58-135
Isopropyl Ether (DIPE)	25,00	26.33	105	62-120
Ethyl tert-Butyl Ether (ETBE)	25.00	28.26	113	65-121
Methyl tert-Amyl Ether (TAME)	25.00	28.29	113	71-122
1,1-Dichloroethene	25.00	20.68	83	71-133
Benzene	25.00	21.97	88	79-123
Trichloroethene	25.00	23.11	92	79-124
Toluene	25.00	22.46	90	80-123
Chlorobenzene	25.00	22.47	90	80-120
Surrogate	REC Limits			
)1 78-126			

Surrogate	*REC	Limits
Dibromofluoromethane	101	78-126
1,2-Dichloroethane-d4	108	76-137
Toluene-d8	99	80-120
Bromofluorobenzene	105	80-121

		Volatile	Organics	1 1
Lab #:	205011		Location:	4700 Coliseum Way Site, Oakland
Client:	PES Environmental,	Inc.	Prep:	EPA 5035
Project#:	1148.001.03.002		Analysis:	EPA 8260B
Type:	LCS		Basis:	as received
Lab ID:	QC455362		Diln Fac:	1.000
Matrix:	Soil		Batch#:	141385
Units:	ug/Kg		Analyzed:	08/13/08

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	126.5	101	58-135
Isopropyl Ether (DIPE)	25.00	22.19	89	62-120
Ethyl tert-Butyl Ether (ETBE)	25.00	24.28	97	65-121
Methyl tert-Amyl Ether (TAME)	25.00	25.23	101	71-122
1,1-Dichloroethene	25.00	22.66	91	71-133
Benzene	25.00	22.33	89	79-123
Trichloroethene	25.00	23.31	93	79-124
Toluene	25.00	23.78	95	80-123
Chlorobenzene	25.00	22.63	91	80-120
Surrogate	REC Limits			
Dibromofluoromethane 90				

*REC	Limits
99	78-126
107	76-137
102	80-120
101	80-121
	99 107 102

	Volatile	Organics	
Lab #:	205011	Location: 4700 Colise	eum Way Site, Oakland
Client:	PES Environmental, Inc.	Prep: EPA 5035	
Project#:	1148.001.03.002	Analysis: EPA 8260B	
Field ID:	ZZŻZZZZZZZ	Diln Fac: 0.96	
MSS Lab ID:	205190-003	Batch#: 1413	
Matrix:	Soil	Sampled: 08/0	07/08
Units:	ug/Kg		08/08
Basis:	as received	Analyzed: 08/1	L3/08

ſype:	MS			Lab	ID:	QC45	5429		
	Analyte	MSS	Result		Spiked		Result	%REC	Limits
tert-Buty]			<15.71		241.8		202.6	84	43-126
Isopropyl			<0.2999		48.36		41.80	86	48-120
Ethyl tert	-Butyl Ether (ETBE)		<0.2959		48.36		46.11	95	51-121
Methvl ter	t-Amyl Ether (TAME)		<0.2956		48.36		46.17	95	55-120
1.1-Dichlo			<0.3455		48.36		43.13	89	55-139
Benzene			<0,4455		48.36		40.29	83	55-120
Trichloroe	ethene		<0.2660		48.36		41.75	86	47-140
Toluene			<0.4821		48.36		41.58	86	52-121
Chlorobenz	zene		<0.3111		48.36		40.52	84	47-120
	Surrogate	%REC	Limits						
Dibromoflu	loromethane	101	78-126						
1.2-Dichlo	proethane-d4	106	76-137						
Toluene-da		103	80-120						
Bromofluon	robenzene	100	80-121						

Type: MSD			Lab ID:	QC45	5430			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TH	3A)	241.8		189.1	78	43-126	7	39
Isopropyl Ether (DIPE)		48.36		38.97	81	48-120	7	30
Ethyl tert-Butyl Ether		48.36		42.67	88	51-121	8	30
Methyl tert-Amyl Ether		48.36		42.33	88	55-120	9	29
1,1-Dichloroethene	(/	48.36		44.69	92	55-139	4	29
Benzene		48.36		41.31	85	55-120	3	26
Trichloroethene		48.36		43.14	89	47-140	3	28
Toluene		48.36		42.54	88	52-121	2	29
Chlorobenzene		48.36		41.70	86	47-120	3	29
Surrogate	%REC	Limits						
Dibromofluoromethane	101	78-126						
1,2-Dichloroethane-d4	107	76-137						
Toluene-d8	103	80-120						
Bromofluorobenzene	98	80-121						

	PES Environmental, Inc.	Project : 1148.001.03.002	
- 11	1682 Novato Boulevard Novato, CA 94947	Location : 4700 Coliseum Way Site, Oakland Level : II	

Sample ID	<u>Lab ID</u>
B-9-W	205012-001
B-10-W	205012-002
B-11-W	205012- 003

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Laboratory Director

Signature:

Senior Program Manager

Date: 08/14/2008

Date: <u>08/26/2008</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 205012 PES Environmental, Inc. 1148.001.03.002 4700 Coliseum Way Site, Oakland 07/31/08 07/31/08

This hardcopy data package contains sample and QC results for three water samples, requested for the above referenced project on 07/31/08. The samples were received on ice and intact.

Volatile Organics by GC/MS (EPA 8260B):

B-11-W (lab # 205012-003) was analyzed with more than 1 mL of headspace in the VOA vial. B-9-W (lab # 205012-001), B-10-W (lab # 205012-002), and B-11-W (lab # 205012-003) had pH greater than 2. Analyses for m-p Xylenes in samples B-10-W (205012-002) and B-11-W(205012-003) were completed one day after the 7 day hold for unpreserved samples. No other analytical problems were encountered.

LABOR JOB NU NAME	JMBE	RY: <u>C</u> R:	114	tis 8. 700	00	1.	Te O is	om 3. ec	pt . 0	R i 1 00 ; W	ns Z lax	5:10	e/o		AMP	Ca	8: _	N	119	he	21	Ri	70		ГО	20	YI	RE		OF	PD		Pluss MTRE 1 gusoline			(41	N(15) NAL	OVAT 899-	TO BC TO, C/ 1600	ALIFO FAX	ORNI X (41	A 94 5) 89	947	
		DA										BER /				MAT						#	# of (taine: vative				DE	PTH		6/8010	11111	5035/80	8015M	y 8015M	0	ameters						
YR	N	10	DY	1	TIME	E			DESI					Vance	Water	Soil	Sedim't		Innea	Enform	Encore H ₂ SO ₄	HNOs	HCI							N EET		EPA 5035/8010	EPA 5035/8021	TPHa bv 5035/8015M	TPHd by 8015M	TPHmo by 8015M	EPA 8270C	MNA Par						
108	30	7		1	10		В	-	9	- 1	W				>	_							3										Y	1										
209	30	7-	31	Ø	91	45	B	-	10	6.	-1	N			>	\langle							3	>										4										
308	30	7	31			20		3	1	1-	-1	N			×	<			(1)	3			N	ma	1				-				j		-		_	-		_	+	\square		-
			_			_		-	-		+				+	+			+	-	+	+	┝			+	+	+	1		-	-	+		+		-			-		$\left \right $		+
																							t																					
											-											-	-			_		_	-		┥┟	_		-	-		_				_	\parallel		
-	-		-		+	+		_	+	+	+	+	-	┥┝	+	+	-		+	-	+	+	-			-		-	+		┥┟	+	+	+	+		+	+			+	\square	-	
																							T																					
																																					_							

	CHA	IN OF CU	JSTODY RECORD		
RELINQUISHED BY: (Signature)	2	RECEIVED	(BY: (Signature)	7/31/08	TIME 2:32
RELINQUISHED BY: (Signature)	~	RECEIVED	BY: (Signature)	DATE	TIME
RELINQUISHED BY: (Signature)		RECEIVED	BY: (Signature)	DATE	TIME
RELINQUISHED BY: (Signature)		RECEIVED	BY: (Signature)	DATE	TIME
DISPATCHED BY: (Signature)	DATE	TIME	RECEIVED FOR LAB BY: (Signature)	DATE	TIME
METHOD OF SHIPMENT: Droppe	ed of	fat	- laboratory		1
	RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature) DISPATCHED BY: (Signature)	RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature) RELINQUISHED BY: (Signature) DISPATCHED BY: (Signature) DATE	RELINQUISHED BY: (Signature) RECEIVED RELINQUISHED BY: (Signature) RECEIVED RELINQUISHED BY: (Signature) RECEIVED RELINQUISHED BY: (Signature) RECEIVED DISPATCHED BY: (Signature) DATE	Additional and the second s	RELINQUISHED BY: (Signature) RECEIVED BY: (Signature) DATE RELINQUISHED BY: (Signature) DATE DATE DISPATCHED BY: (Signature) DATE TIME RECEIVED FOR LAB BY: (Signature) DATE TIME RECEIVED FOR LAB BY: (Signature) DATE

COOLER RECEIPT CHECKLIST	Curtis & Tompkins, Ltd.
Login # 205012 Date Received $7/31/08$ Client PES Project 9	Number of coolers 1 700 Coliseum Way Site
Date Opened 7/31 By (print) KWellbrock (sign) Date Logged in J By (print) (sign)	Kulloch
1. Did cooler come with a shipping slip (airbill, etc)? Shipping info	YES NO
 2A. Were custody seals present? □ YES (circle) on cooler How many Name 2B. Were custody seals intact upon arrival?	DateYES_NO V/A
Bubble Wrap Exeam blocks Bags Cloth material Cardboard Styrofoam 7. Temperature documentation: Styrofoam	None Paper towels
Type of ice used: Wet 🗌 Blue/Gel 🗌 None	Temp(°C) [3,8
Samples Received on ice & cold without a temperature bl	
Samples received on ice directly from the field. Cooling	
 8. Were Method 5035 sampling containers present?	VES NO VES NO VES NO VES NO VES NO VES NO
14. Are the samples appropriately preserved?	OFS NO N/A
15. Are bubbles > 6mm absent in VOA samples?16. Was the client contacted concerning this sample delivery?	YES NO
If YES, Who was called?By	Date:
SOP Volume Client Services	

SOP Volume: Client Services 1.1.2 Section: Page: 1 of 1

-

Rev. 6 Number 1 of 3 Effective: 23 July 2008 F:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc

	Volatil	e Organics.	1		
Lab #: Client: Project#:	205012 PES Environmental, Inc. 1148.001.03.002	Prep:	4700 Coliseum Way EPA 5030B EPA 8260B	Site,	Oakland
Field ID: Lab ID: Matrix: Units: Diln Fac:	B-9-W 205012-001 Water ug/L 1.000	Batch#: Sampled: Received: Analyzed:	141171 07/31/08 07/31/08 08/07/08		

N		esult	RL
Analyte	ND	.esurc	1.0
Freon 12			1.0
tert-Butyl Alcohol (TBA)	ND		
Chloromethane	ND	0.0	1.0
Isopropyl Ether (DIPE)	3.775	22	0.5
Vinyl Chloride	ND		0.5
Bromomethane	ND		1.0
Ethyl tert-Butyl Ether (ETBE)	ND		0.5
Chloroethane	ND		1.0
Methyl tert-Amyl Ether (TAME)	ND		0.5
Trichlorofluoromethane	ND		1.0
Acetone		12	10
Freon 113	ND		2.0
1,1-Dichloroethene		4.5	0.5
Methylene Chloride	ND		10
Carbon Disulfide	ND		0.5
MTBE	ND		0.5
trans-1,2-Dichloroethene	ND		0.5
Vinyl Acetate	ND		10
1,1-Dichloroethane		5.1	0.5
2-Butanone	ND		10
cis-1,2-Dichloroethene	ND		0.5
2,2-Dichloropropane	ND		0.5
Chloroform	ND		0.5
Bromochloromethane	ND		0.5
1,1,1-Trichloroethane		1.4	0.5
1,1-Dichloropropene	ND		0,5
Carbon Tetrachloride	ND		0.5
1,2-Dichloroethane		0.9	0.5
Benzene	ND	••••	0.5
Trichloroethene	ND		0.5
1,2-Dichloropropane	ND		0.5
Bromodichloromethane	ND		0.5
Dibromomethane	ND		0.5
4-Methyl-2-Pentanone	ND		10
cis-1, 3-Dichloropropene	ND		0.5
Toluene	ND		0.5
trans-1,3-Dichloropropene	ND		0.5
1,1,2-Trichloroethane	ND		0.5
2-Hexanone	ND		10
1, 3-Dichloropropane	ND		0.5
Tetrachloroethene	ND		0.5
Dibromochloromethane	ND		0.5
	ND		0.5
1,2-Dibromoethane	ND		0.5
Chlorobenzene	ND		0.5
1,1,1,2-Tetrachloroethane	ND		0.5
Ethylbenzene	ND		0.5
m,p-Xylenes			0.5
o-Xylene	ND		
Styrene	ND		0.5
Bromoform	ND		1.0
Isopropylbenzene	ND		0.5
1, 1, 2, 2-Tetrachloroethane	ND		0.5
1,2,3-Trichloropropane	ND		0.5
Propylbenzene	ND		0.5

	Volat	ile Organics
Lab #: 205012		Location: 4700 Coliseum Way Site, Oakland
Client: PES Environme	ental, Inc.	Prep: EPA 5030B
Project#: 1148.001.03.0	002	Analysis: EPA 8260B
Field ID: B-9-W		Batch#: 141171
Lab ID: 205012-001		Sampled: 07/31/08
Matrix: Water		Received: 07/31/08
Units: ug/L		Analyzed: 08/07/08
Diln Fac: 1.000		
Analyte	Resul	
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5 0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	2.0
1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	2.0
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5
	INT	0.0
Surrogate	%REC Limi	ts
Dibromofluoromethane	95 80-1	23
1,2-Dichloroethane-d4	102 76-1	38
Toluene-d8	105 80-1	
Bromofluorobenzene	101 80-1	20

	Volatile	Organics
Lab #:	205012	Location: 4700 Coliseum Way Site, Oakland
Client:	PES Environmental, Inc.	Prep: EPA 5030B
Project#:	1148.001.03.002	Analysis: EPA 8260B
Field ID:	B-10-W	Units: ug/L
Lab ID:	205012-002	Sampled: 07/31/08
Matrix:	Water	Received: 07/31/08

Analyte	Result	RL	Diln Fa	
Freon 12	ND	7.1	7.143	141171 08/07/08
tert-Butyl Alcohol (TBA)	ND	71	7.143	141171 08/07/08
Chloromethane	ND	7.1	7.143	141171 08/07/08
Isopropyl Ether (DIPE)	6.3	3.6	7.143	141171 08/07/08
Vinyl Chloride	ND	3.6	7.143	141171 08/07/08
Bromomethane	ND	7.1	7.143	141171 08/07/08
Ethyl tert-Butyl Ether (ETBE)	ND	3.6	7.143	141171 08/07/08
Chloroethane	ND	7.1	7.143	141171 08/07/08
Methyl tert-Amyl Ether (TAME)	ND	3.6	7.143	141171 08/07/08
Trichlorofluoromethane	ND	7.1	7.143	141171 08/07/08
Acetone	610	71	7.143	141171 08/07/08
Freon 113	ND	14	7.143	141171 08/07/08
1,1-Dichloroethene	39	3.6	7.143	141171 08/07/08
Methylene Chloride	ND	71	7.143	141171 08/07/08
Carbon Disulfide	ND	3.6	7.143	1411 71 08/07/08
MTBE	ND	3.6	7.143	141171 08/07/08
trans-1,2-Dichloroethene	ND	3.6	7.143	141171 08/07/08
Vinyl Acetate	ND	71	7.143	141171 08/07/08
1,1-Dichloroethane	48	3.6	7.143	141171 08/07/08
2-Butanone	ND	71	7.143	141171 08/07/08
cis-1,2-Dichloroethene	ND	3.6	7.143	141171 08/07/08
2,2-Dichloropropane	ND	3.6	7.143	141171 08/07/08
Chloroform	ND	3.6	7.143	141171 08/07/08
Bromochloromethane	ND	3.6	7.143	141171 08/07/08
1,1,1-Trichloroethane	ND	3.6	7.143	141171 08/07/08
1,1-Dichloropropene	ND	3.6	7.143	141171 08/07/08
Carbon Tetrachloride	ND	3.6	7.143	141171 08/07/08
1,2-Dichloroethane	ND	3.6	7.143	141171 08/07/08
Benzene	ND	3.6	7.143	141171 08/07/08
Trichloroethene	120	3.6	7.143	141171 08/07/08
1,2-Dichloropropane	ND	3.6	7.143	141171 08/07/08
Bromodichloromethane	ND	3.6	7.143	141171 08/07/08
Dibromomethane	ND	3.6	7.143	141171 08/07/08
4-Methyl-2-Pentanone	ND	71	7.143	141171 08/07/08
cis-1,3-Dichloropropene	ND	3.6	7.143	141171 08/07/08
Toluene	9.6	3.6	7.143	141171 08/07/08
trans-1,3-Dichloropropene	ND	3.6	7.143	141171 08/07/08
1,1,2-Trichloroethane	ND	3.6	7.143	141171 08/07/08
2-Hexanone	ND	71	7.143	141171 08/07/08

		Volatile	Organics	
Lab #:	205012		Location:	4700 Coliseum Way Site, Oakland
Client:	PES Environmental,	Inc.	Prep:	EPA 5030B
Project#:	1148.001.03.002		Analysis:	EPA 8260B
Field ID:	B-10-W		Units:	ug/L
Lab ID:	205012-002		Sampled:	07/31/08
Matrix:	Water		Received:	07/31/08

Analyte	Result	RL	Diln F		
1,3-Dichloropropane	ND	3.6	7.143	141171 08	1211 121
Tetrachloroethene	ND	3.6	7.143	141171 08	
Dibromochloromethane	ND	3.6	7.143	141171 08	
1,2-Dibromoethane	ND	3.6	7.143	141171 08	
Chlorobenzene	ND	3.6	7.143	141171 08	
1,1,1,2-Tetrachloroethane	ND	3.6	7.143	141171 08	
Ethylbenzene	340	3.6	7.143	141171 08	
m,p-Xylenes	1,500	8.3	16.67	141216 08	
o-Xylene	700	3.6	7.143	141171 08	· · ·
Styrene	ND	3.6	7.143	141171 08	
Bromoform	ND	7.1	7.143	141171 08	
Isopropylbenzene	7.3	3.6	7.143	141171 08	· · ·
1,1,2,2-Tetrachloroethane	ND	3.6	7.143	141171 08	
1,2,3-Trichloropropane	ND	3.6	7.143	141171 08	
Propylbenzene	ND	3.6	7.143	141171 08	
Bromobenzene	ND	3.6	7.143	141171 08	
1,3,5-Trimethylbenzene	ND	3.6	7.143	141171 08	· · ·
2-Chlorotoluene	ND	3.6	7.143	141171 08	· · ·
4-Chlorotoluene	ND	3.6	7.143	141171 08	
tert-Butylbenzene	ND	3.6	7.143	141171 08	
1,2,4-Trimethylbenzene	ND	3.6	7.143	141171 08	3/07/08
sec-Butylbenzene	ND	3.6	7.143	141171 08	
para-Isopropyl Toluene	ND	3.6	7.143	141171 08	· · ·
1,3-Dichlorobenzene	ND	3.6	7.143	141171 08	· · ·
1,4-Dichlorobenzene	ND	3.6	7.143	141171 08	· · ·
n-Butylbenzene	ND	3.6	7.143	141171 08	
1,2-Dichlorobenzene	ND	3.6	7.143	141171 08	
1,2-Dibromo-3-Chloropropane	ND	14	7.143	141171 08	
1,2,4-Trichlorobenzene	ND	3.6	7.143	141171 08	
Hexachlorobutadiene	ND	14	7.143	141171 08	
Naphthalene	ND	14	7.143	141171 08	
1,2,3-Trichlorobenzene	ND	3.6	7.143	141171 08	3/07/08

Surrogate	%REC	Limits	Diln F	'ac Batch#	Analyzed
Dibromofluoromethane	100	80-123	7.143	141171	08/07/08
1,2-Dichloroethane-d4	111	76-138	7.143	141171	08/07/08
Toluene-d8	109	80-120	7.143	141171	08/07/08
Bromofluorobenzene	106	80-120	7.143	141171	08/07/08

	Volati	le Organics
Lab #: Client: Project#:	205012 PES Environmental, Inc. 1148.001.03.002	Location: 4700 Coliseum Way Site, Oakland Prep: EPA 5030B Analysis: EPA 8260B
Field ID: Lab ID: Matrix: Units:	B-11-W 205012-003 Water ug/L	Diln Fac: 1.000 Sampled: 07/31/08 Received: 07/31/08

Analyte	Result	RL Batch# Analyzed
Freon 12	ND	1.0 141171 08/07/08
tert-Butyl Alcohol (TBA)	ND	10 141171 08/07/08
Chloromethane	ND	1.0 141171 08/07/08
Isopropyl Ether (DIPE)	ND	0.5 141171 08/07/08
Vinyl Chloride	ND	0.5 141171 08/07/08
Bromomethane	ND	1.0 141171 08/07/08
Ethyl tert-Butyl Ether (ETBE)	ND	0.5 141171 08/07/08
Chloroethane	ND	1.0 141171 08/07/08
Methyl tert-Amyl Ether (TAME)	ND	0.5 141171 08/07/08
Trichlorofluoromethane	ND	1.0 141171 08/07/08
Acetone	ND	10 141171 08/07/08
Freon 113	ND	2.0 141171 08/07/08
1,1-Dichloroethene	10	0.5 141171 08/07/08
Methylene Chloride	ND	10 141171 08/07/08
Carbon Disulfide	ND	0.5 141171 08/07/08
MTBE	ND	0.5 141171 08/07/08
	ND	0.5 141171 08/07/08
trans-1,2-Dichloroethene Vinyl Acetate	ND	10 141171 08/07/08
	7.7	0.5 141171 08/07/08
1,1-Dichloroethane	ND	10 141171 08/07/08
2-Butanone	ND	0.5 141171 08/07/08
cis-1,2-Dichloroethene	ND	0.5 141171 08/07/08
2,2-Dichloropropane		0.5 141171 08/07/08
Chloroform	ND	0.5 141171 08/07/08
Bromochloromethane	ND	0.5 141171 08/07/08
1,1,1-Trichloroethane	12	0.5 141171 08/07/08
1,1-Dichloropropene	ND	0.5 141171 08/07/08
Carbon Tetrachloride	ND	0.5 141171 08/07/08
1,2-Dichloroethane	ND	0.5 141171 08/07/08 0.5 141171 08/07/08
Benzene	ND	
Trichloroethene	ND	
1,2-Dichloropropane	ND	
Bromodichloromethane	ND	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Dibromomethane	ND	
4-Methyl-2-Pentanone	ND	10 141171 08/07/08 0.5 141171 08/07/08
cis-1,3-Dichloropropene	ND	
Toluene	ND	0.5 141171 08/07/08
trans-1,3-Dichloropropene	ND	0.5 141171 08/07/08
1,1,2-Trichloroethane	ND	0.5 141171 08/07/08
2-Hexanone	ND	
1,3-Dichloropropane	ND	0.5 141171 08/07/08
Tetrachloroethene	ND	0.5 141171 08/07/08
Dibromochloromethane	ND	0.5 141171 08/07/08
1,2-Dibromoethane	ND	0.5 141171 08/07/08
Chlorobenzene	ND	0.5 141171 08/07/08
1,1,1,2-Tetrachloroethane	ND	0.5 141171 08/07/08
Ethylbenzene	ND	0.5 141171 08/07/08
m,p-Xylenes	ND	0.5 141216 08/08/08
o-Xylene	ND	0.5 141171 08/07/08
Styrene	ND	0.5 141171 08/07/08
Bromoform	ND	1.0 141171 08/07/08
Isopropylbenzene	ND	0.5 141171 08/07/08
1,1,2,2-Tetrachloroethane	ND	0.5 141171 08/07/08
1,2,3-Trichloropropane	ND	0.5 141171 08/07/08
Propylbenzene	ND	0.5 141171 08/07/08
Bromobenzene	ND	0.5 141171 08/07/08

		Volatile	Organics	l		
Lab #: Client: Project#:	205012 PES Environmental, 1148.001.03.002	Inc.	Prep:	4700 Coliseum EPA 5030B EPA 8260B	n Way Site	, Oakland
Field ID: Lab ID: Matrix: Units:	B-11-W 205012-003 Water ug/L		Diln Fac: Sampled: Received:	1.000 07/31/ 07/31/		
An 1,3,5-Trimeth 2-Chlorotolue	alyte ylbenzene I	Result ND ND		RL 0.5 0.5	Batch# A 141171 0 141171 0	8/07/08
4-Chlorotolue	ne I	ND		0.5	141171 0	8/07/08

1 4-CIITOLOCOLUEUG		0.5	T#TT/T 00/07/00
tert-Butylbenzene	ND	0.5	141171 08/07/08
1,2,4-Trimethylbenzene	ND	0.5	141171 08/07/08
sec-Butylbenzene	ND	0.5	141171 08/07/08
para-Isopropyl Toluene	ND	0.5	141171 08/07/08
1,3-Dichlorobenzene	ND	0.5	141171 08/07/08
1,4-Dichlorobenzene	ND	0.5	141171 08/07/08
n-Butylbenzene	ND	0.5	141171 08/07/08
1,2-Dichlorobenzene	ND	0.5	141171 08/07/08
1,2-Dibromo-3-Chloropropane	ND	2.0	141171 08/07/08
1,2,4-Trichlorobenzene	ND	0.5	141171 08/07/08
Hexachlorobutadiene	ND	2.0	141171 08/07/08
Naphthalene	ND	2.0	141171 08/07/08
1,2,3-Trichlorobenzene	ND	0.5	141171 08/07/08
Surrogate	%REC Limits	Batch# Analyzed	
Dibromofluoromethane	101 80-123	141171 08/07/08	
1,2-Dichloroethane-d4		141171 08/07/08	
Toluene-d8			
Bromofluorobenzene	103 80-120	141171 08/07/08	

*

	Volatile	Organics
Lab #: Client:	205012 PES Environmental, Inc.	Location: 4700 Coliseum Way Site, Oakland Prep: EPA 5030B
Project#:	1148.001.03.002	Analysis: EPA 8260B
Type: Lab ID:	BLANK	Diln Fac: 1.000
Matrix:	QC454433 Water	Batch#: 141171 Analyzed: 08/07/08
Units:	ug/L	

Analytha (Result	RL
Analyte Freon 12	ND	1.0
	ND	1.0
tert-Butyl Alcohol (TBA)		1.0
Chloromethane	ND	0.5
Isopropyl Ether (DIPE)	ND	
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
	ND	0.5
Chloroform	ND	0.5
Bromochloromethane		0.5
1,1,1-Trichloroethane	ND	
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene		0.5
Styrene	ND	0.5
Bromoform	ND	
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5

	Volati	e Organics		
Lab #: Client: Project#:	205012 PES Environmental, Inc. 1148.001.03.002		0 Coliseum Way 5030B 8260B	Site, Oakland
Type: Lab ID: Matrix: Units:	BLANK QC454433 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 141171 08/07/08	

Analyte		Result	RL
Bromobenzene	ND		0.5
1,3,5-Trimethylbenzene	ND		0.5
2-Chlorotoluene	ND		0.5
4-Chlorotoluene	ND		0.5
tert-Butylbenzene	ND		0.5
1,2,4-Trimethylbenzene	ND		0.5
sec-Butylbenzene	ND		0.5
para-Isopropyl Toluene	ND		0.5
1,3-Dichlorobenzene	ND		0.5
1,4-Dichlorobenzene	ND		0.5
n-Butylbenzene	ND		0.5
1,2-Dichlorobenzene	ND		0.5
1,2-Dibromo-3-Chloropropane	ND		2.0
1,2,4-Trichlorobenzene	ND		0.5
Hexachlorobutadiene	ND		2.0
Naphthalene	ND		2.0
1,2,3-Trichlorobenzene	ND		0.5
Surrogate	%REC	Limits	
Dibromofluoromethane	100	80-123	
1,2-Dichloroethane-d4	108	76-138	
Toluene-d8	105	80-120	
Bromofluorobenzene	100	80-120	

	Vo	latile	Organics	
Lab #:	205012		Location:	4700 Coliseum Way Site, Oakland
Client:	PES Environmental, Inc		Prep:	EPA 5030B
Project#:	1148.001.03.002		Analysis:	EPA 8260B
	BLANK		Diln Fac:	1.000
Type: Lab ID:	OC455045		Batch#:	141216
Matrix:	Ŵater		Analyzed:	08/08/08
Units:	ug/L		1	

Analyte	Result	RL	
Freon 12	ND	1.0	
tert-Butyl Alcohol (TBA)	ND	10	
Chloromethane	ND	1.0	
Isopropyl Ether (DIPE)	ND	0.5	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	
Chloroethane	ND	1.0	
Methyl tert-Amyl Ether (TAME)	ND	0.5	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	

		Volatile	Organics	
Lab #: Client:	205012 PES Environmental,	Inc.	Prep:	4700 Coliseum Way Site, Oakland EPA 5030B
Project#: Type: Lab ID:	1148.001.03.002 BLANK		Diln Fac:	
Lab ID: Matrix: Units:	QC455045 Water ug/L		Batch#: Analyzed:	141216 08/08/08

Analyte	Result	RL
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	2.0
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5
Surrogate	%REC Limits	
Dibromofluoromethane	95 80-123	
1,2-Dichloroethane-d4	95 76-138	
Toluene-d8	106 80-120	
Bromofluorobenzene	97 80-120	

	Volatile	Organics	
Lab #: Client: Project#:	205012 PES Environmental, Inc. 1148.001.03.002	Prep:	4700 Coliseum Way Site, Oakland EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	141171 08/07/08

Type: BS			Lab ID:	QC4	54431		
Analyte		Spiked		Result	%REC	Limits	
tert-Butyl Alcohol (TBA)		125.0		136.6	109	55-158	
Isopropyl Ether (DIPE)		25.00		23,10	92	63-122	
Ethyl tert-Butyl Ether (ETBE)		25.00		24,70	99	62-133	
Methyl tert-Amyl Ether (TAME)		25.00		24.17	97	69-137	
1,1-Dichloroethene		25.00		24.10	96	77-132	
Benzene		25.00		22,62	90	80-120	
Trichloroethene		25.00		23.77	95	80-120	
Toluene		25,00		22.53	90	80-121	
Chlorobenzene		25.00		22.32	89	80-120	
Surrogate	%REC	Limits					
Dibromofluoromethane	104	80-123					
1,2-Dichloroethane-d4	106	76-138					
Toluene-d8	108	80-120					
Bromofluorobenzene	104	80-120					

Type:	BSD			Lab ID:	QC45	4432			
An	alvte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butvl Al	cohol (TBA)		125.0		131.4	105	55-158	4	20
Isopropyl Eth			25,00		22.81	91	63-122	1	20
Ethyl tert-Bu	tvl Ether (ETBE)		25.00		24.53	98	62-133	1	20
Methvl tert-A			25.00		23.86	95	69-137	1	20
1,1-Dichloroe			25.00		23.19	93	77-132	4	20
Benzene			25.00		22.29	89	80-120	1	20
Trichloroethe	ne		25,00		22.93	92	80-120	4	20
Toluene			25.00		23.04	92	80-121	2	20
Chlorobenzene			25.00		23.05	92	80-120	3	20
Sur	rogate	%REC	Limits						
Dibromofluoro		97	80-123						
1,2-Dichloroe		95	76-138						
Toluene-d8		103	80-120						
Bromofluorobe	nzene	104	80-120						

	Volatile	Organics
Lab #: Client: Project#:	205012 PES Environmental, Inc. 1148.001.03.002	Location: 4700 Coliseum Way Site, Oakland Prep: EPA 5030B Analysis: EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: 141216 Analyzed: 08/08/08

Type: BS			Lab ID:	QC45	54635	
Analyte		Spiked		Result	%REC	Limits
tert-Butyl Alcohol (TBA)		125.0		117.5	94	55-158
Isopropyl Ether (DIPE)		25.00		23.18	93	63-122
Ethyl tert-Butyl Ether (ETBE)		25.00		23.40	94	62-133
Methyl tert-Amyl Ether (TAME)		25.00		24,39	98	69-137
1,1-Dichloroethene		25.00		23.26	93	77-132
Benzene		25.00		22,60	90	80-120
Trichloroethene		25.00		22.39	90	80-120
Toluene		25.00		23.37	93	80-121
Chlorobenzene		25.00		23.27	93	80-120
Surrogate	%REC	Limits				
Dibromofluoromethane	93	80-123				
1,2-Dichloroethane-d4	95	76-138				
Toluene-d8	105	80-120				
Bromofluorobenzene	106	80-120				

Type: BSD			Lab ID:	QC45	4636			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)		125.0		138.6	111	55-158	16	20
Isopropyl Ether (DIPE)		25.00		23.97	96	63-122	3	20
Ethyl tert-Butyl Ether (ETBE)	25.00		24.63	99	62-133	5	20
Methyl tert-Amyl Ether (TAME)	25.00		25.87	103	69-137	6	20
1,1-Dichloroethene	,	25.00		25.15	101	77-132	8	20
Benzene		25.00		24.20	97	80-120	7	20
Trichloroethene		25.00		23.98	96	80-120	7	20
Toluene		25.00		24.37	97	80-121	4	20
Chlorobenzene		25.00		24.01	97 96	80-120	3	20 20
Surrogate	%REC	Limits						
Dibromofluoromethane	94	80-123						0.000
1,2-Dichloroethane-d4	99	76-138						
Toluene-d8	106	80-120						
Bromofluorobenzene	102	80-120						

PES Environmental, Inc.

APPENDIX F

PTS LABORATORIES LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

8100 Secura Way • Santa Fe Springs, CA 90670 Telephone (562) 347-2500 • Fax (562) 907-3610

July 29, 2008

Kyle Flory PES Environmental, Inc. 1682 Novato Boulevard, Suite 100 Novato, CA 94947

Re: PTS File No: 38581 4700 Coliseum Way Site/Oakland, CA 1148.001.02.002

Dear Mr. Flory:

Please find enclosed report for Physical Properties analyses conducted upon cores received from your 4700 Coliseum Way Site/Oakland, CA; 1148.001.02.002 project. All analyses were performed by applicable ASTM, EPA, or API methodologies. An electronic version of the report has previously been sent to your attention via the internet. The samples are currently in storage and will be retained for thirty days past completion of testing at no charge. Please note that the samples will be disposed of at that time. You may contact me regarding storage, disposal, or return of the samples.

PTS Laboratories appreciates the opportunity to be of service. If you have any questions or require additional information, please give me a call at (562) 347-2504.

Sincerely, PTS Laboratories

Rachel Spitz Project Manager

Encl.

PTS Laboratories

Project Name:	4700 Coliseum Way Site/Oakland, CA
Project Number:	1148.001.02.002

PTS File No: 38581 Client: PES Environmental, Inc.

TEST PROGRAM

CORE ID	Depth ft.	Core Recovery ft.	Dry Bulk Density API RP 40	TOC/foc Walkley- Black	Water Filled Porosity* API RP 40	Notes
		Plugs:	Vert. 1"	Grab	Vert. 1"	
Rcvd. 07/01/08						
B-1-3.5'-4'	3.5-4	0.5	X	X	X	
B-8-3'-3.5'	3-3.5	0.5	X	X	X	
TOTALS:	2 cores	1	2	2	2	2

Laboratory Test Program Notes *Includes total and air-filled porosity

PTS File No:38581Client:PES Environmental, Inc.

PHYSICAL PROPERTIES DATA - AIR FILLED POROSITY

PROJECT NAME:4700 Coliseum Way Site/Oakland, CAPROJECT NO:1148.001.02.002

		METHODS:	API RP40		API RP 40	
		SAMPLE	DRY BULK		POROSITY, %Vb (2)	
SAMPLE ID.	DEPTH, ft.	ORIENTATION (1)	DENSITY, g/cc	TOTAL	AIR-FILLED	WATER-FILLED
B-1-3.5'-4'	3.5-4	V	1.67	35.5	5.3	30.2
B-8-3'-3.5'	3-3.5	V	1.76	32.9	2.4	30.5

(1) Sample Orientation: H = horizontal; V = vertical (2) Total Porosity = no pore fluids in place; all interconnected pore channels; Air Filled = pore channels not occupied by pore fluids; Vb = Bulk Volume, cc

PTS File No:38581Client:PES Environmental, Inc.

ORGANIC CARBON DATA - TOC (foc)

PROJECT NAME:4700 Coliseum Way Site/Oakland, CAPROJECT NO:1148.001.02.002

		METHOD:	WALKLEY-BLACK	WALKLEY-BLACK
SAMPLE ID.	DEPTH, ft.	SAMPLE MATRIX	FRACTION ORGANIC CARBON, 9/9	TOTAL ORGANIC CARBON, mg/kg
B-1-3.5'-4'	3.5-4	SOIL	2.55E-03	2550
B-8-3'-3.5'	3-3.5	SOIL	3.45E-03	3450

		PE Eng	E S ine	Er erin	1 V g &	i rc Er)111 Iviro	m	en 1en	ta tal	I, Sei	lr rvic	IC.	T s	10	58	31										_	_	_	C	ΟY	F	₹E	C	0	RC)						NC	OVA	TO,	CAL	JFC	DRN	IA 9	494	TE 10 7 1601	
PES Environmental, Inc. 2858/ Engineering & Environmental Services LABORATORY: <u>Cartis & Tompletics</u> Ceo Labs SAMPLERS: Mignel Rizo										Γ					_		_		_	_	TED																															
		.	1	14	8.	DI	53.	0	2	0	02													0													Γ					Τ					1	学	Pres.			
JOB NUMBER: 1148.001.02.002 NAME/LOCATION: 4700 Colisen Way Site/Oakland, CA																		otes)	\downarrow	1	本	1-2-10-10-10-10-10-10-10-10-10-10-10-10-10-	-706																													
PROJE	CT M/	ANA	GER			K	410	-	F	for	×	/				_	R	ECO	ORDI	ER:	-	1	Mie	eju	el	1	Ri	20			_								1	15M		_		(see n	Density	Ę	9[141			
	DATE SAMPLE NUMBER / MATRIX # of Containers & Preservatives										DE	PTH		8010	8021	8260B	035/80	015M	8015N		neters		3	110	F.Hew	- Servic																										
YR	м	0	D	Y	-	TIM	E						NUN NATI				Manar	Vapor	Valer	Sadim't	1000		Unpres.	EnCore	H ₂ SO ₄	HNO ₃	HCI								IN EET		EPA 5035/8010	EPA 5035/8021	EPA 5035/8260B	TPHg by 5035/8015M	TPHd by 8015M	TPHmo by 8015M	EPA 82/0C	-	1	1	AIN T'ILEG	Nater-	3			
08	0	6	2	7	1	2	3	5	B	-1	-	3.	5'	-	41				1	2			i										3	5	-4										x>		<;	××				
08	0	6	2	7			3	_	-			3'		3.	5'		F		2	<			i										3	1		•											1		4			

NOTES	CHAIN OF CUSTODY RECORD											
Turn Around Time: Standard TAT	RELINQUISHED BY: (Signature)	RECEIVED PTS LARS PATE TIME										
	RELINQUISHED BY: (Signature)	RECÉIVED BY: (Signature) DATE TIME										
	RELINQUISHED BY: (Signature)	RECEIVED BY: (Signature) DATE TIME										
	RELINQUISHED BY: (Signature)	RECEIVED BY: (Signature) DATE TIME										
	DISPATCHED BY: (Signature) DATE	TIME RECEIVED FOR LAB BY: (signature) DATE TIME										
	METHOD OF SHIPMENT: Overnight mail	l										

Copy No.

DISTRIBUTION

SUBSURFACE INVESTIGATION REPORT 4600-4700 COLISEUM WAY OAKLAND, CALIFORNIA

SEPTEMBER 18, 2008

COPY NO. ____

3 Copies	Mr. John Weber c/o Cox, Castle & Nicholson LLP 555 California Street, 10 th Floor San Francisco, California 94104	1 - 3
	Attention: Stuart I. Block, Esq.	
1 Сору	Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502	4
	Attention: Mr. Jerry Wickham	
3 Copies	PES Job Files	5 - 7
1 Copy	Unbound Original	8