RECEIVED

10:43 am, Aug 31, 2009

Alameda County Environmental Health

ADR Environmental Group, Inc.

1760 Creekside Oaks Drive • Suite 120 • Sacramento, CA 95833

(888) 622-3734 • (916) 921-0600 • FAX (916) 648-6688

July 31, 2009

Mr. L. Gerald Hunt Stockbridge/BHV Emerald Place Land Co., LLP c/o Blake Hunt Ventures 390 Railroad Avenue, Suite 200 Danville, California 94526

Re: Remedial Soil Excavation and Sampling Data Report

The Green on Park Place

5411 Martinelli Way (SEC Martinelli Way & Arnold Road) Dublin, California 94568 Fuel Leak Case No. RO0002993 GeoTracker Global ID T10000000822

Dear Mr. Hunt:

ADR Environmental Group, Inc. (ADR) is pleased to submit this letter report discussing the results of soil excavation activities conducted at the future Green on Park Place shopping center located at the 5411 Martinelli Way (southeast corner of Martinelli Way and Arnold Road) in Dublin, California (subject Property). Field work was conducted at the site on May 12, 2009, in accordance with an ADR work plan dated November 10, 2008. ADR provided an environmental scientist to oversee the over-excavation of soil associated with a currently open underground storage tank (UST) pit located on the subject Property. The goal of the remedial activities was to evaluate the vertical and lateral extent of petroleum impacted soil and groundwater (if encountered) and over-excavate around the tank pit to remove the impacted soils that may serve as a source to degrade groundwater.

BACKGROUND

The subject Property is a 13.57 acre parcel of land currently being redeveloped as a shopping center named the Green on Park Place (Figure 1). The subject Property was formerly a portion of Camp Shoemaker, a naval facility built during World War II, and reportedly contained a gatehouse, a guest reception lounge, an athletic field (Forster Field), an athletic field house and a portion of a warehouse receiving area. It is though that the subject Property was later transferred to the County of Alameda and was either a portion of the Santa Rita Correctional Facility or the Parks Air Force Base. The structures on the subject Property are thought to have been demolished in the mid 1990s.

In September 2008, during grading activities associated with redevelopment of the subject Property as a shopping center, a steel UST was discovered near the southwest corner of the subject Property, to the west of future Building 200 that will be utilized as a parking lot for the new shopping center. While it is not certain when or for what purpose the UST was installed, the UST appears to be near the location of the former guest reception lounge and is therefore thought to have been used for fuel oil to heat the former building or dispensing diesel fuel. The UST was located approximately 103 feet east of Arnold Road and 375 feet north of the southern property line. The construction equipment, grading and ripping the site, reportedly tore several

Remedial Excavation and Soil Sampling Data Report The Green on Park Place July 31, 2009 Page 2 of 8

holes in the top of the UST. However, no spills or leakage was noted following the incident. At the time of the incident the UST was reportedly nearly full with a petroleum smelling liquid. Upon hitting the UST, it was demarcated and no further work was done in the immediate area.

As documented in the October 29, 2008, Tank Closure Report prepared by ADR: In October 2008, Ferma Corporation removed and disposed of the approximately 1,100-gallon UST and its contents (915 gallons) under the UST Closure Plan approved by ACDEH on October 1, 2008. Approximately 50 to 55 cubic yards of soil was removed from the UST pit, stockpiled on plastic, and covered pending disposal (Figure 2). Soil samples were collected from the UST pit and stockpiled soil by ADR and submitted to McCampbell Analytical for analysis of total petroleum hydrocarbons as gasoline (TPHg) and diesel (TPHd) by EPA Method 8015 modified, Oil & Grease (O&G) by EPA Method 9071B, 1,4-Dioxane by EPA Method 8260B, polychlorinated biphenyls (PCBs) by EPA Method 8082, volatile organic compounds (VOCs) by EPA Method 8260B, semi-VOCs (SVOCs) by EPA Method 8270C, and cadmium, chromium, lead, nickel, and zinc (LUFT 5 metals) by EPA Method 6010C. Results of the samples indicated that TPHd (190 milligrams per Kilogram (mg/Kg)) and 2-methylnaphthalene (1 mg/Kg) concentrations in the tank excavation at 6 feet below the floor of the excavation (approximately 12 feet below grade) exceeded the shallow soil (<3 meters) Regional Water Quality Control Board - San Francisco Bay Region (RWOCB), Tier 1 Environmental Screening Levels (ESLs) for both commercial and residential land use (also used for unrestricted land use), while naphthalene (2.1 mg/Kg) concentrations exceeded the ESL for residential/unrestricted land use. Additionally, TPHd (590 mg/Kg), naphthalene (3.1 mg/Kg), and 2-methylnaphthalene (15 mg/Kg) in stockpile SP-1 exceeded the ESLs for both commercial and residential/unrestricted land use. Further, TPHd (110 mg/Kg) and 2-methylnaphthalene (15 mg/Kg) concentrations in stockpile SP-2 exceeded the ESLs for both commercial and residential/unrestricted land use.

Based on the observations made during the removal of the UST and the chemical results of tank pit and stockpile soil sampling indicating a release of hydrocarbons at the site, an Unauthorized Release (Leak)/Contamination Site Report was submitted to ACDEH.

On November 10, 2008, ADR prepared a Work Plan for Over-Excavation and Sampling of the UST Pit (*Work Plan*) to evaluate the vertical and lateral extent of soil contamination and characterize the groundwater beneath the floor of the excavation. A copy of ADR's *Work Plan* was submitted to ACDEH for review and comments. In a letter dated March 16, 2009, ACDEH approved the *Work Plan* as submitted with minor technical comments.

OVER-EXCAVATION FIELD ACTIVITIES

In accordance with ADR's *Work Plan*, on May 12, 2009, ADR supervised the tank pit soil over-excavation activities. The tank pit soil was removed using an excavator owned and operated by Ferma Corporation (California License A, C21, C57, B, ASB, & HAZ #236337) of Mountain View, California. Soil over-excavation was conducted both laterally and vertically based on periodically soil screening for the presence of organic vapors using a photoionization detector (PID) as well as other indicators such as staining or odors. Soil over-excavation proceeded vertically until groundwater was encountered at a depth of approximately 21 below ground surface (bgs). Native soil was removed from the sidewalls and floor of the excavation until "clean soil limits" (based on PID readings) were thought to have been reached. The area bounding the eastern and western sidewalls of the excavation were extended an additional 4.5 feet and the areas bounding the northern and southern sidewalls were extended an additional 3 feet. The dimensions of the finished excavation were approximately 32-feet long by 22-feet wide with an average depth of 18-feet (Figure 2).

Remedial Excavation and Soil Sampling Data Report The Green on Park Place July 31, 2009 Page 3 of 8

Native soil exposed along the sidewalls and floor of the excavation, to a depth of between 18 and 20 feet bgs, consisted of olive brown to brown, very fine-grained, medium dense, moist to very moist clayey sand and/or sandy clay.

After removal of the soil from the planned area of excavation, PID readings and field observations indicated that the soil containing petroleum hydrocarbon constituents had largely been removed from the tank pit. Confirmation soil samples were subsequently collected from the floor and from the face of each sidewall (at vertical depth of approximately 17 feet bgs) to verify that soil at the limits of the excavation contained non-detectable petroleum hydrocarbon concentrations. When field screening (PID readings, evidence of odors and staining) indicated that the limits of the soil contamination had been reached, verification soil samples were obtained by removing native material from the floor and sidewalls of the excavation with the bucket of the excavator and collecting the samples in brass tube liners and encore samplers. A total of nine confirmation soil samples were collected from the excavation sidewalls and floor. Additionally, a groundwater "grab" sample was collected from the floor of the excavation. Soil and groundwater sampling locations are shown in Figure 2.

Soil generated from the over-excavation activities was placed near the eastern and western ends of the excavation on plastic sheeting (Figure 2). The soil stockpile (combining the eastern and western material; designated STK P-3) contained approximately 150 to 175 cubic yards of material. For the purposes of soil characterization, the stockpile was measured and divided into four equal area cells of approximately 35 to 45 cubic yards each, labeled SKP-3A, B, C, and D. Four discrete soil samples were then collected at random locations from each cell of the stockpile. The discrete soil samples were collected by removing the upper 2 feet of soil with a shovel and collecting the material in brass tubes and core samplers. To characterize the stockpile, the four discrete soil samples collected from stockpile cell were subsequently combined by the analytical laboratory into one four-point composite soil sample. Following the sampling, the soil stockpiles were covered with plastic sheeting and left on site pending analytical results.

CHEMICAL ANALYSES AND RESULTS

The verification soil samples, the groundwater sample, and the soil stockpile sample were placed in an iced cooler and transported to state of California certified Alpha Analytical, Inc., located in Sparks, Nevada for chemical analysis. The soil and groundwater samples were chemically analyzed for gasoline range organics (GRO), diesel range organics (DRO), and oil range organics (ORO) by EPA Method 8015 modified (silica gel cleanup was used for DRO and ORO), VOCs by EPA method 8260B, and polynuclear aromatics/polycyclic aromatic hydrocarbons (PNA/PAH) by EPA Method 8270C. Soil sample results are compiled in Tables 1 and 2 and the laboratory data sheets and chain-of-custody documentation are included in Appendix A.

TABLE 1 Soil and Groundwater Sample Analytical Results, Petroleum Hydrocarbons The Green on Park Place, Dublin, California Soil Concentrations in milligrams per Kilogram (mg/Kg)

Water Concentrations in micrograms per Liter (µg/L)

Location and Sample Number	Date Sampled	Sample Depth (feet)	GRO ¹	DRO²	ORO ³
Excavation Ground	water				
TK Exc - Water	5/12/09	21	97	500	<500 ⁴
Soil Stockpile					
STK P-3, A,B,C,D	5/12/09	2	19	10	<10
Tank Excavation Flo	oor				
TK Exc 21	5/12/09	21	<1.0	<5.0	<10
Tank Excavation Si	dewalls				
TK SW - 1	5/12/09	17	<1.0	<5.0	<10
TK SW - 2	5/12/09	17	<1.0	<5.0	<10
TK SW - 3	5/12/09	17	<1.0	<5.0	<10
TK SW - 4	5/12/09	17	8.6	6.7	<10
TK SW 5	5/12/09	17	56	520	84
TK SW - 6	5/12/09	17	<1.0	<5.0	<10
TK SW - 7	5/12/09	17	<1.0	<5.0	<10
TK SW - 8	5/12/09	17	<1.0	<5.0	<10
	Regulator	ry Standard Coi	nparisons		
Soil Comme	rcial/Industria	I-ESLs ⁵	83	83	5,000
Soil Re	sidential-ESL	S ⁶	83	83	5,000
Groun	dwater-ESLs	7	100	100	100
	MCLs ⁸		NSL ⁹	NSL	NSL

GRO1	=	Gasoline Range Petroleum Hydrocarbons by Method SW8015Cm.
DRO ²	=	Diesel Range Petroleum Hydrocarbons (with Silica Gel Treatment) by Method SW8015B.
ORO ³	=	Oil Range Petroleum Hydrocarbons (with Silica Gel Treatment) by Method SW8015B.
<500⁴	=	Compound not detected at indicated laboratory reporting limit.
′ ESLs ⁶	¥	Environmental Screening Levels (mg/Kg) for commercial/industrial land use and deep soil (>3 meters bgs) where water is a current of potential source of drinking water established by the California Regional Water Quality Control Board – San Francisco Bay Region.
ESLs ⁶	=	Environmental Screening Levels (mg/Kg) for residential land use and deep soil (>3 meters bgs) where water is a current of potential source of drinking water established by the California Regional Water Quality Control Board – San Francisco Bay Region.
ESLs ⁷	=	Environmental Screening Levels (µg/L) for groundwater where water is a current of potential source of drinking water established by the California Regional Water Quality Control Board – San Francisco Bay Region.
MCLs ⁸	=	Maximum Contaminant Level for drinking water standards established by the California Department of Health Services in μg/L.
NSL ⁹	=	No screening level developed.

TABLE 2

Soil Sample Analytical Results, VOCS and PNA/PAHs The Green on Park Place, Dublin, California Soil Concentrations in milligrams per Kilogram (mg/Kg) Water Concentrations in micrograms per liter (µg/L)

Location and Sample Number	Date Sampled	Sample Depth (feet)	Naphthalene 8260/8270	Phenanthrene	2-Methylnaphthalene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	sec-Butylbenzene	4-IsopropyItoluene	n-Butylbenzene	Remaining PNA/PAHs	Remaining VOCs
Excavation Groundwater												
TK Exc - Water	5/12/09	21	7.8/<10 ¹	<10	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<10	ND ²
Soil Stockpile												
STK P-3, A,B,C,D	5/12/09	2	0.23/<0.66	<0.66	<0.66	0.023	<0.02	<0.02	<0.02	<0.02	<0.66	ND
Tank Excavation Floor												
TK Exc 21	5/12/09	21	<0.04/<.066	<0.66	<0.66	<0.02	<0.02	<0.02	<0.02	<0.02	<0.66	ND
Tank Excavation Sidewalls												
TK SW - 1	5/12/09	17	<0.04/<0.66	<0.66	<0.66	<0.02	<0.02	<0.02	<0.02	<0.02	<0.66	ND
TK SW - 2	5/12/09	17	<0.04/<0.66	<0.66	<0.66	<0.02	<0.02	<0.02	<0.02	<0.02	<0.66	ND
TK SW - 3	5/12/09	17	<0.04/<0.66	<0.66	<0.66	<0.02	<0.02	<0.02	<0.02	<0.02	<0.66	ND
TK SW - 4	5/12/09	17	<0.04/<0.66	<0.66	<0.66	<0.02	<0.02	<0.02	<0.02	<0.02	<0.66	ND
TK SW - 5	5/12/09	17	2.5/2.0	1.1	11	0.088	0.031	0.021	0.037	0.032	<0.66	ND
TK SW - 6	5/12/09	17	<0.04/<0.66	<0.66	<0.66	<0.02	<0.02	<0.02	<0.02	<0.02	<0.66	ND
TK SW - 7	5/12/09	17	<0.04/<0.66	<0.66	<0.66	<0.02	<0.02	<0.02	<0.02	<0.02	<0.66	ND
TK SW - 8	5/12/09	17	<0.04/<0.66	<0.66	<0.66	<0.02	<0.02	<0.02	<0.02	<0.02	<0.66	ND
Regi	ulatory Stan	dard Comp	arisons									
Commercia	l/Industrial-E	ESLs³	3.4	11	0.25	NSL	NSL	NSL	NSL	NSL.		-
Reside	ential-ESLs⁴		3.4	11	0.25	NSL	NSL	NSL	NSL	NSL.	-	
engaging a figure of green and a first and a community and a contract	water-ESLs'		17	4.6	2.1	NSL	NSL	NSL	NSL	NSL	1	-
1	/ICLs ⁶		NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL		•

<10¹	=	Compound not detected at indicated laboratory reporting limit.
ND^2	=	Compound not detected.
ESLs ³	=	Environmental Screening Levels (mg/Kg) for commercial/industrial land use and deep soil (>3 meters bgs) where water is a current of potential source of drinking water established by the California Regional Water Quality Control Board – San Francisco Bay Region.
ESLs⁴	=	Environmental Screening Levels (mg/Kg) for residential land use and deep soil (>3 meters bgs) where water is a current of potential source of drinking water established by the California Regional Water Quality Control Board – San Francisco Bay Region.
ESLs ⁵	=	Environmental Screening Levels (µg/L) for groundwater where water is a current of potential source of drinking water established by the California Regional Water Quality Control Board – San Francisco Bay Region.
MCLs ⁶	#	Maximum Contaminant Level for drinking water standards established by the California Department of Health Services in µg/L.
NSL ⁹	=	No screening level developed.

Soil sample analytical results indicate that samples collected from the northern, eastern, northwestern, and southwestern sidewall areas and the floor of the excavation did not contain detectable concentrations of GRO, DRO, ORO, VOCs, or PNA/PAHs. However, the soil samples collected from the southwest corner of the excavation (TK SW-4 and TK SW-5) contained GRO, DRO, and /or ORO constituents at concentrations ranging from 6.7 to 520 mg/Kg. Additionally, soil sample TK SW-5 detected the presence of various VOC and/or PNA/PAHs at concentrations ranging from 0.021 to 2.5 mg/Kg. Results of the tank excavation floor groundwater sample detected the presence of GRO (97 μ g/L), DRO (550 μ g/L), and naphthalene (7.8 μ g/L). The remaining petroleum hydrocarbons, VOCs, and semi-VOCs were below laboratory reporting limits.

Laboratory results of the stockpile soil sampling indicated that low concentrations of GRO (19 mg/Kg), DRO (10 mg/Kg), naphthalene (0.23 mg/Kg), and 1,2,4-trimethylbenzene (0.023 mg/Kg) were detected in the composited soil sample.

Nature and Distribution of Impact

Analytical results indicate that residual concentrations of contaminants of concern are still present in the southeastern corner of the tank excavation. Sidewall verification soil samples collected in the southeastern corner indicated that soils in this area are impacted with petroleum hydrocarbons and various VOC and PNA/PAH constituents. However, only the DRO and 2-methylnaphthalene concentrations detected in sidewall sample TK SW-5 exceeded the deep soil (>3 meters) Regional Water Quality Control Board – Bay Area Region (RWQCB) Environmental Screening Level (ESLs) for both commercial and residential land use. Laboratory analyses indicate that groundwater beneath the excavation has been impacted with low concentrations of petroleum hydrocarbons. However, none of petroleum hydrocarbons, VOCs, or PNA/PAHs reported in the excavation floor water sample exceeded the groundwater ESLs as established by the RWQCB, except for a concentration of DRO (500 µg/L).

Soil Stockpile

Although composited soil stockpile sample analyses detected elevated concentrations of GRO, DRO, and naphthalene, none of constituents reported exceeded the ESLs for both commercial and residential/unrestricted land use as established by the RWQCB.

CONCLUSIONS

Approximately 150 cubic yards of soil was excavated from the area around the tank excavation. Eight soil samples were collected from the excavation sidewalls and one sample from the floor of the excavation. The soil sample analytical results indicated that the northern and eastern sidewalls and the excavation floor did not contain detectable concentrations of petroleum constituents, VOCs, or PNA/PAHs. However, GRO, DRO, and/or ORO reportedly were detected in sidewall samples TK SW-4 and TK SW-5 (located along the sidewalls of the southeastern corner) at concentrations ranging from 6.7 to 520 mg/Kg. Various VOCs and PNA/PAHs, including naphthalene, were also detected in sidewall sample TK SW-5. Although low concentrations of GRO, DRO, and naphthalene were reported in the groundwater sample collected from the excavation floor, the remaining petroleum hydrocarbons, VOCs, and semi-VOCs were below laboratory reporting limits.

ASSESSMENT OF NEED FOR REMEDIAL ACTION

Based on the reported contaminants detected in the southwestern corner of the excavation, it is ADR's opinion that further action is warranted with respect to remaining soil in that area. Remedial action is generally required in cases where site contamination potentially threaten human or ecologic receptors. In the case of the subject Property, the potential threat exists as the proximity of impacted soil to first encountered groundwater, the site may pose a potential source of degradation to groundwater. Although groundwater beneath the excavation has been impacted with GRO and DRO petroleum hydrocarbons and naphthalene, the concentrations should not require immediate remedial action in order to reduce the risk to exposure to site receptors. Because low concentrations of petroleum hydrocarbons and naphthalene typically attenuate over time due to natural biodegradation, the removal of the soil contaminant source should results in a decrease in groundwater concentrations.

POTENTIAL APPROPRIATE REMEDIAL ALTERNATIVES

Soil

<u>Paving</u> – Prevents contact with material; impedes percolation of rainwater and water-influence leaching and consequent migration of contaminants. Although paving will prohibit contact by site users with impacted soil, it will not prevent contact by construction or utility workers. In light of other viable alternatives, paving by itself is not anticipated to be remedy of agency preference.

<u>Targeted Removal</u> – Consists of excavation and subsequent disposal of impacted soil in the area of concern. As the anticipated volume of soil in not prohibitively large and the excavation remains open, this approach is considered practical and protective of the environment and allows for delineation of the vertical and lateral extent of contamination while permanently removing the source of potential further groundwater degradation. The cost for implementation is anticipated to be low to moderate. Agency and community acceptance is anticipated to be high.

No Action – Requires no remedial action with the exception of possible periodic monitoring and sampling. Practical future contact with contaminants is unlikely and where contaminants are not expected to migrate from the source and with time ultimately degrade/decline in concentration. However, overall protection of human health and the environment is considered low and unlikely to be considered appropriate by regulatory agencies or gain community acceptance.

Groundwater

Since the impacted area is likely localized and contaminate concentrations are not a significant threat to water quality and may be skewed high by excavation activities, active remediation is likely not warranted. Since the contaminant source areas have or will be removed, future contact with groundwater is unlikely. Considering the nature of the low permeability soil (largely clayey sand and/or sandy clay) the contaminants in the groundwater are not expected to migrate further from the source and are amenable to natural degradation processes which will restore water quality over time.

RECOMMENDED REMEDIAL/INVESTIGATIVE APPROACH

Based on the review of remedial alternative, for the reasons stated above, ADR recommends that the Targeted Removal alternative be selected for impacted soil. This work will consist of additional over-excavation of soil utilizing the excavation, disposal, and confirmatory sampling procedures set forth in the November 10, 2008 Work Plan, previously approved by ACEHD. It is anticipated that an additional approximately 100 - 150 bank cubic yards of soil will be over-excavated from the southwest portion of the currently open excavation area to the southwest of the location of sample TK SW-5. In the event that appreciable accumulation of groundwater remains or is encountered during the excavation, groundwater will be pumped from the excavation pit and properly disposed of. Upon results of the confirmation sampling and analysis, further remedial measures, if any, will be evaluated.

CLOSURE

This report was prepared in accordance with generally accepted environmental practices and procedures, employing the degree of care and skill ordinarily exercised under similar circumstances by reputable environmental professionals practicing in this area, as of the date of this report.

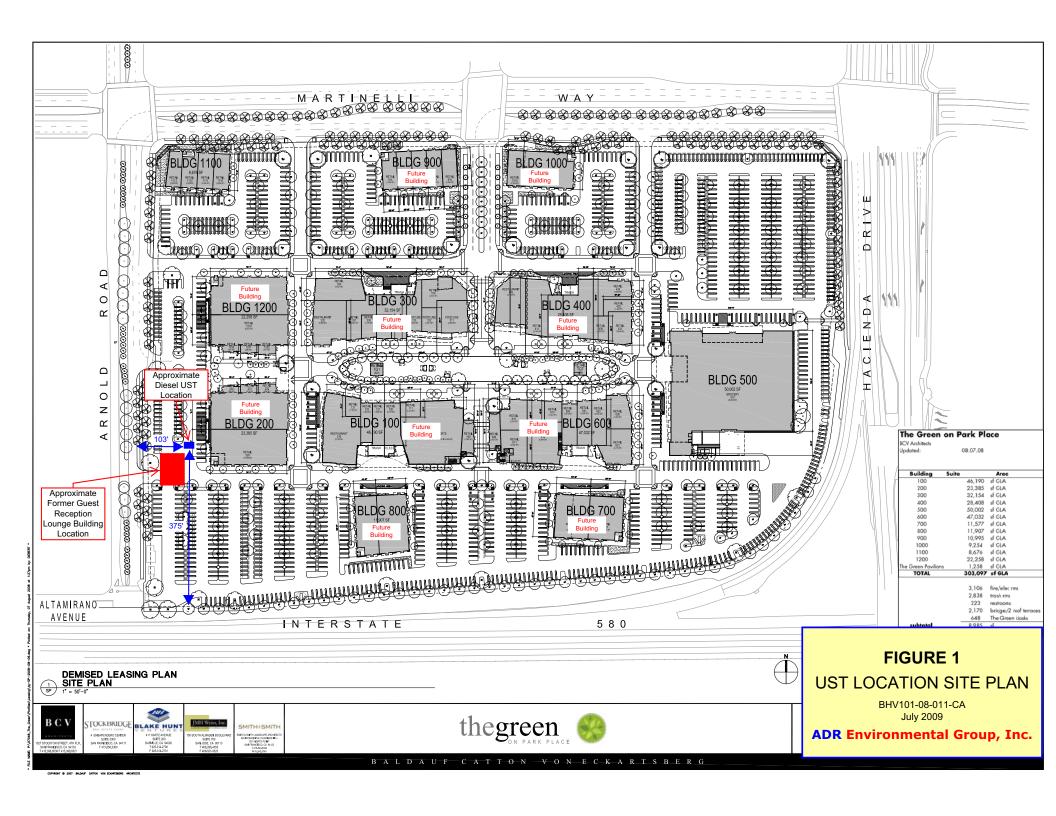
SIONAL GE

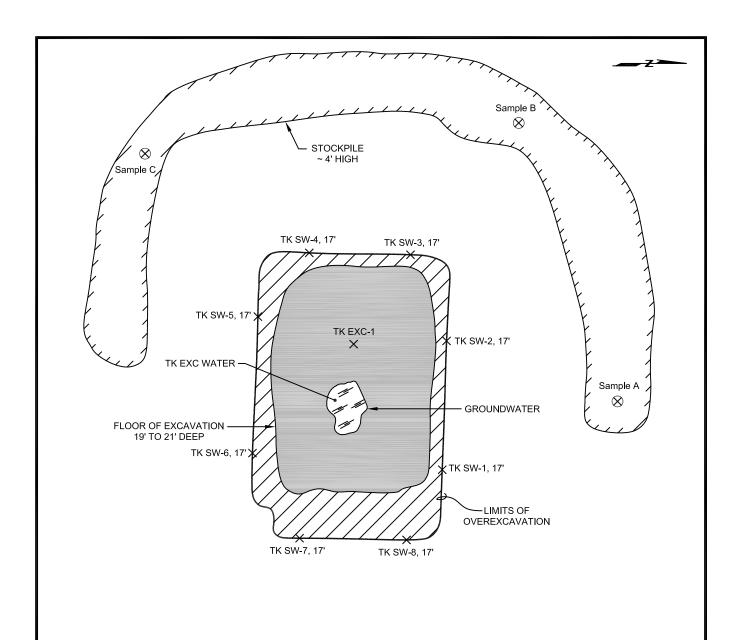
LARRY FLORA No. 4759

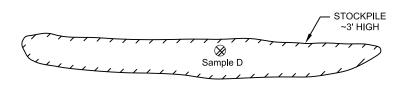
OF CALIFO

Sincerely,

ADR Environmental Group, Inc.


Larry A. Flora, P.G. #4759


Geologist


Attachments:

Figures

Analytical Results and Chain of Custody

OVEREXCAVATION SOIL LITHOLOGY

6' TO 10' = SANDY CLAY-Olive Brown, very fine to fine grained, moist to wet, dense.

LEGEND

- X EXCAVATION SOIL SAMPLE LOCATION, ADR 5/09
- ⊗ STOCKPILE SOIL SAMPLE LOCATION, ADR 5/09

2

ADR Environmental Group, Inc.

Due Diligence and Risk Management Services Nationwide

(888) 622-3734

UNDERGROUND STORAGE TANK OVEREXCAVATION

The Green on Park Place Dublin, California

Figure:

Project Number: BHV1 01-08-011 CA Date: May 2009

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120 Sacramento, CA 95833 Job#: BHV101-08-011 CA Attn:

Larry Flora

Phone: (916) 921-0600

Fax:

(916) 648-6688

Alpha Analytical Number: ADR09051401-01A

Client I.D. Number: TK EXC-Water

Sampled: 05/12/09

Received: 05/14/09 Analyzed: 05/18/09

Semivolatile Organics by GC/MS EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	10 μg/L	
2	2-Methylnaphthalene	ND	10 μg/L	
3	Acenaphthylene	ND	10 μg/L	
4	Acenaphthene	ND	10 μg/L	
5	Fluorene	ND	10 μg/L	
6	Phenanthrene	ND	10 μg/L	
7	Anthracene	ND	10 μg/L	
8	Fluoranthene	ND	10 μg/L	
9	Pyrene	ND	10 μg/L	
10	Benzo(a)anthracene	ND	10 μg/L	
11	Chrysene	ND	10 μg/L	
12	Benzo(b)fluoranthene	ND	10 μg/L	
13	Benzo(k)fluoranthene	ND	10 μg/L	
14	Benzo(a)pyrene	ND	10 μg/L	
15	Indeno(1,2,3-cd)pyrene	ND U	J 10 μg/L	
16	Dibenz(a,h)anthracene	ND U	J 10 μg/L	
17	Benzo(g,h,i)perylene	ND	10 μg/L	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery.

Note: Indeno(1,2,3-cd)pyrene and Dibenz(a,h)anthracene failed the Method CV criteria of 80-120% recoveries @ 78.0 and 78.8%, respectively.

UJ- The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte

This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

ND = Not Detected

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

 $Sacramento, CA \bullet (916)\ 366-9089\ /\ Las\ Vegas, NV \bullet (702)\ 736-7522\ /\ info@alpha-analytical.com$ Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

5/28/09 **Report Date**

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120 Sacramento, CA 95833 Job#: BHV101-08-011 CA Attn:

Larry Flora

Phone: (916) 921-0600

Fax:

(916) 648-6688

Alpha Analytical Number: ADR09051401-06A

Client I.D. Number: Composite of STK P-3 A, B, C, and D

Sampled: 05/12/09

Received: 05/14/09

Analyzed: 05/19/09

Semivolatile Organics by GC/MS EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	660 μg/Kg	
2	2-Methylnaphthalene	ND	660 μg/Kg	
3	Acenaphthylene	ND	660 μg/Kg	
4	Acenaphthene	ND	660 µg/Kg	
5	Fluorene	ND	660 µg/Kg	
6	Phenanthrene	ND	660 µg/Kg	
7	Anthracene	ND	660 µg/Kg	
8	Fluoranthene	ND	660 µg/Kg	
9	Pyrene	ND	660 µg/Kg	
10	Benzo(a)anthracene	ND	660 µg/Kg	
11	Chrysene	ND	660 µg/Kg	
12	Benzo(b)fluoranthene	ND	660 µg/Kg	
13	Benzo(k)fluoranthene	ND	660 µg/Kg	
14	Benzo(a)pyrene	ND	660 µg/Kg	
15	Indeno(1,2,3-cd)pyrene	ND	660 µg/Kg	
16	Dibenz(a,h)anthracene	ND	660 µg/Kg	
17	Benzo(g,h,i)perylene	ND	660 µg/Kg	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery. This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

Sample results were calculated on a wet weight basis.

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

5/28/09

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120 Sacramento, CA 95833 Job#: BHV101-08-011 CA Attn:

Larry Flora

Phone: (916) 921-0600

Fax:

(916) 648-6688

Alpha Analytical Number: ADR09051401-07A

Client I.D. Number: TK EXC 21 ft

Sampled: 05/12/09

Received: 05/14/09 Analyzed: 05/19/09

Semivolatile Organics by GC/MS EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	660 µg/Kg	
2	2-Methylnaphthalene	ND	660 µg/Kg	
3	Acenaphthylene	ND	660 µg/Kg	
4	Acenaphthene	ND	660 μg/Kg	
5	Fluorene	ND	660 µg/Kg	
6	Phenanthrene	ND	660 µg/Kg	
7	Anthracene	ND	660 μg/Kg	
8	Fluoranthene	ND	660 μg/Kg	
9	Pyrene	ND	660 μg/Kg	
10	Benzo(a)anthracene	ND	660 μg/Kg	
11	Chrysene	ND	660 μg/Kg	
12	Benzo(b)fluoranthene	ND	660 μg/Kg	
13	Benzo(k)fluoranthene	ND	660 μg/Kg	
14	Benzo(a)pyrene	ND	660 μg/Kg	
15	Indeno(1,2,3-cd)pyrene	ND	660 µg/Kg	
16	Dibenz(a,h)anthracene	ND	660 µg/Kg	
17	Benzo(g,h,i)perylene	ND	660 μg/Kg	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery. This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

Sample results were calculated on a wet weight basis.

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

5/28/09

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120 Sacramento, CA 95833 Job#:

BHV101-08-011 CA

Attn:

Larry Flora

Phone: (916) 921-0600

Fax:

(916) 648-6688

Alpha Analytical Number: ADR09051401-08A

Client I.D. Number: TK SW-1 17ft

Sampled: 05/12/09

Received: 05/14/09 Analyzed: 05/19/09

Semivolatile Organics by GC/MS EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	660 µg/Kg	
2	2-Methylnaphthalene	ND	660 µg/Kg	
3	Acenaphthylene	ND	660 µg/Kg	
4	Acenaphthene	ND	660 µg/Kg	
5	Fluorene	ND	660 µg/Kg	
6	Phenanthrene	ND	660 µg/Kg	
7	Anthracene	ND	660 µg/Kg	
8	Fluoranthene	ND	660 µg/Kg	
9	Pyrene	ND	660 µg/Kg	
10	Benzo(a)anthracene	ND	660 µg/Kg	
11	Chrysene	ND	660 µg/Kg	
12	Benzo(b)fluoranthene	ND	660 µg/Kg	
13	Benzo(k)fluoranthene	ND	660 µg/Kg	
14	Benzo(a)pyrene	ND	660 µg/Kg	
15	Indeno(1,2,3-cd)pyrene	ND	660 µg/Kg	
16	Dibenz(a,h)anthracene	ND	660 µg/Kg	
17	Benzo(g,h,i)perylene	ND	660 µg/Kg	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery. This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

Sample results were calculated on a wet weight basis.

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

5/28/09

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120 Sacramento, CA 95833 BHV101-08-011 CA Job#:

Attn:

Larry Flora

Phone: (916) 921-0600

Fax:

(916) 648-6688

Alpha Analytical Number: ADR09051401-09A

Client I.D. Number: TK SW-2 17ft

Sampled: 05/12/09

Received: 05/14/09

Analyzed: 05/19/09

Semivolatile Organics by GC/MS EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	660 µg/Kg	
2	2-Methylnaphthalene	ND	660 μg/Kg	
3	Acenaphthylene	ND	660 µg/Kg	
4	Acenaphthene	ND	660 µg/Kg	
5	Fluorene	ND	660 μg/Kg	
6	Phenanthrene	ND	660 μg/Kg	
7	Anthracene	ND	660 µg/Kg	
8	Fluoranthene	ND	660 μg/Kg	
9	Pyrene	ND	660 μg/Kg	
10	Benzo(a)anthracene	ND	660 μg/Kg	
11	Chrysene	ND	660 µg/Kg	
12	Benzo(b)fluoranthene	ND	660 µg/Kg	
13	Benzo(k)fluoranthene	ND	660 μg/Kg	
14	Benzo(a)pyrene	ND	660 µg/Kg	
15	Indeno(1,2,3-cd)pyrene	ND	660 µg/Kg	
16	Dibenz(a,h)anthracene	ND	660 µg/Kg	
17	Benzo(g,h,i)perylene	ND	660 µg/Kg	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery. This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

Sample results were calculated on a wet weight basis.

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

5/28/09 **Report Date**

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120 Sacramento, CA 95833 Job#: BHV101-08-011 CA Attn:

Larry Flora

Phone: (916) 921-0600

Fax:

(916) 648-6688

Alpha Analytical Number: ADR09051401-10A

Client I.D. Number: TK SW-3 17ft

Sampled: 05/12/09

Received: 05/14/09 Analyzed: 05/21/09

Semivolatile Organics by GC/MS EPA Method SW8270C

	Compound	Concentration	Reporting Limit
1	Naphthalene	ND	660 µg/Kg
2	2-Methylnaphthalene	ND	660 μg/Kg
3	Acenaphthylene	ND	660 μg/Kg
4	Acenaphthene	ND	660 μg/Kg
5	Fluorene	ND	660 µg/Kg
6	Phenanthrene	ND	660 μg/Kg
7	Anthracene	ND	660 µg/Kg
8	Fluoranthene	ND	660 μg/Kg
9	Pyrene	ND	660 µg/Kg
10	Benzo(a)anthracene	ND	660 μg/Kg
 11	Chrysene	ND	660 μg/Kg
12	Benzo(b)fluoranthene	ND UJ	660 μg/Kg
13	Benzo(k)fluoranthene	ND	660 µg/Kg
14	Benzo(a)pyrene	ND	660 µg/Kg
15	Indeno(1,2,3-cd)pyrene	ND	660 µg/Kg
16	Dibenz(a,h)anthracene	ND	660 µg/Kg
17	Benzo(g,h,i)perylene	ND	660 μg/Kg

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery. Note: Benzo(b)fluoranthene failed the Method CV criteria of 80-120%, recovery @ 78.8%.

UJ- The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte

This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

Sample results were calculated on a wet weight basis.

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

5/28/09

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120 Sacramento, CA 95833

Job#: BHV101-08-011 CA Attn:

Larry Flora

Phone: (916) 921-0600

Fax:

(916) 648-6688

Alpha Analytical Number: ADR09051401-11A

Client I.D. Number: TK SW-4 17ft

Sampled: 05/12/09

Received: 05/14/09

Analyzed: 05/19/09

Semivolatile Organics by GC/MS EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	660 µg/Kg	
2	2-Methylnaphthalene	ND	660 µg/Kg	
3	Acenaphthylene	ND	660 µg/Kg	
4	Acenaphthene	ND	660 µg/Kg	
5	Fluorene	ND	660 µg/Kg	
6	Phenanthrene	ND	660 µg/Kg	
7	Anthracene	ND	660 µg/Kg	
8	Fluoranthene	ND	660 µg/Kg	
9	Pyrene	ND	660 µg/Kg	
10	Benzo(a)anthracene	ND	660 µg/Kg	
11	Chrysene	ND	660 µg/Kg	
12	Benzo(b)fluoranthene	ND	660 µg/Kg	
13	Benzo(k)fluoranthene	ND	660 µg/Kg	
14	Benzo(a)pyrene	ND	660 µg/Kg	
15	Indeno(1,2,3-cd)pyrene	ND	660 µg/Kg	
16	Dibenz(a,h)anthracene	ND	660 μg/Kg	
17	Benzo(g,h,i)perylene	ND	660 μg/Kg	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery. This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

Sample results were calculated on a wet weight basis.

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120 Sacramento, CA 95833 Job#: BHV101-08-011 CA Attn:

Larry Flora

Phone: (916) 921-0600

Fax:

(916) 648-6688

Alpha Analytical Number: ADR09051401-12A

Sampled: 05/12/09

Client I.D. Number: TK SW-5 17ft

Received: 05/14/09

Analyzed: 05/19/09

Semivolatile Organics by GC/MS EPA Method SW8270C

	Compound	Concentration	Reporting Limit
1	Naphthalene	2,000	660 µg/Kg
2	2-Methylnaphthalene	11,000	· 660 μg/Kg
3	Acenaphthylene	ND	660 µg/Kg
4	Acenaphthene	ND	660 μg/Kg
5	Fluorene	ND	660 µg/Kg
6	Phenanthrene	1,100	660 µg/Kg
7	Anthracene	ND	660 µg/Kg
8	Fluoranthene	ND	660 µg/Kg
9	Pyrene	ND	660 µg/Kg
10	Benzo(a)anthracene	ND	660 μg/Kg
11	Chrysene	ND	660 μg/Kg
12	Benzo(b)fluoranthene	ND	660 µg/Kg
13	Benzo(k)fluoranthene	ND	660 µg/Kg
14	Benzo(a)pyrene	ND	660 µg/Kg
15	Indeno(1,2,3-cd)pyrene	ND	660 µg/Kg
16	Dibenz(a,h)anthracene	ND	660 µg/Kg
17	Benzo(g,h,i)perylene	ND	660 µg/Kg

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery. This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

Sample results were calculated on a wet weight basis.

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

5/28/09

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120 Sacramento, CA 95833

Job#: BHV101-08-011 CA Attn:

Larry Flora

Phone: (916) 921-0600

Fax:

(916) 648-6688

Alpha Analytical Number: ADR09051401-13A

Client I.D. Number: TK SW-6 17ft

Sampled: 05/12/09

Received: 05/14/09 Analyzed: 05/19/09

Semivolatile Organics by GC/MS EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	660 µg/Kg	
2	2-Methylnaphthalene	ND	660 µg/Kg	
3	Acenaphthylene	ND	660 µg/Kg	
4	Acenaphthene	ND	660 μg/Kg	
5	Fluorene	ND	660 µg/Kg	
6	Phenanthrene	ND	660 µg/Kg	
7	Anthracene	ND	660 µg/Kg	
8	Fluoranthene	ND	660 µg/Kg	
9	Pyrene	ND	660 µg/Kg	
10	Benzo(a)anthracene	ND	660 µg/Kg	
11	Chrysene	ND	660 µg/Kg	
12	Benzo(b)fluoranthene	ND	660 µg/Kg	
13	Benzo(k)fluoranthene	ND	660 µg/Kg	
14	Benzo(a)pyrene	ND	660 µg/Kg	
15	Indeno(1,2,3-cd)pyrene	ND	660 µg/Kg	
16	Dibenz(a,h)anthracene	ND	660 µg/Kg	
17	Benzo(g,h,i)perylene	ND	660 µg/Kg	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery. This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

Sample results were calculated on a wet weight basis.

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

5/28/09

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120 Sacramento, CA 95833 Job#: BHV101-08-011 CA

Attn:

Larry Flora

Phone: (916) 921-0600

Fax:

(916) 648-6688

Alpha Analytical Number: ADR09051401-14A

Client I.D. Number: TK SW-7 17ft

Sampled: 05/12/09

Received: 05/14/09 Analyzed: 05/19/09

Semivolatile Organics by GC/MS EPA Method SW8270C

	Compound	Concentration	Reporting Limit	
1	Naphthalene	ND	660 μg/Kg	
2	2-Methylnaphthalene	ND	660 μg/Kg	
3	Acenaphthylene	ND	660 μg/Kg	
4	Acenaphthene	ND	660 μg/Kg	
5	Fluorene	ND	660 μg/Kg	
6	Phenanthrene	ND	660 μg/Kg	
7	Anthracene	ND	660 μg/Kg	
8	Fluoranthene	ND	660 μg/Kg	
9	Pyrene	ND	660 μg/Kg	
10	Benzo(a)anthracene	ND	660 µg/Kg	
11	Chrysene	ND	660 μg/Kg	
12	Benzo(b)fluoranthene	ND	660 μg/Kg	
13	Benzo(k)fluoranthene	ND	660 µg/Kg	
14	Benzo(a)pyrene	ND	660 μg/Kg	
15	Indeno(1,2,3-cd)pyrene	ND	660 µg/Kg	
16	Dibenz(a,h)anthracene	ND	660 μg/Kg	
17	Benzo(g,h,i)perylene	ND	660 µg/Kg	

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery. This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

Sample results were calculated on a wet weight basis.

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

5/28/09

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120 Sacramento, CA 95833 Job#: BHV101-08-011 CA Attn:

Larry Flora

Phone: (916) 921-0600

Fax:

(916) 648-6688

Alpha Analytical Number: ADR09051401-15A

Sampled: 05/12/09

Client I.D. Number: TK SW-8 17ft

Received: 05/14/09 Analyzed: 05/19/09

Semivolatile Organics by GC/MS EPA Method SW8270C

	Compound	Concentration	Reporting Limit
1	Naphthalene	ND	660 µg/Kg
2	2-Methylnaphthalene	ND	660 μg/Kg
3	Acenaphthylene	ND	660 µg/Kg
4	Acenaphthene	ND	660 μg/Kg
5	Fluorene	ND	660 µg/Kg
6	Phenanthrene	ND	660 µg/Kg
7	Anthracene	ND	660 μg/Kg
8	Fluoranthene	ND	660 µg/Kg
9	Pyrene	ND	660 µg/Kg
10	Benzo(a)anthracene	ND	660 μg/Kg
11	Chrysene	ND	660 µg/Kg
12	Benzo(b)fluoranthene	ND	660 μg/Kg
13	Benzo(k)fluoranthene	ND	660 µg/Kg
14	Benzo(a)pyrene	ND	660 µg/Kg
15	Indeno(1,2,3-cd)pyrene	ND	660 µg/Kg
16	Dibenz(a,h)anthracene	ND	660 μg/Kg
17	Benzo(g,h,i)perylene	ND	660 μg/Kg

Note: EPA Method 8270C CC compounds Acenaphthene, Fluoranthene and Benzo(a)pyrene were evaluated in the CV at the method criteria of 80-120% recovery. This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

Sample results were calculated on a wet weight basis.

ND = Not Detected

Roger Scholl

5/28/09

 $Roger\ L.\ Scholl,\ Ph.D.,\ Laboratory\ Director \bullet \bullet Randy\ Gardner,\ Laboratory\ Manager \bullet \bullet Walter\ Hinchman,\ Quality\ Assurance\ Officer\ Manager\ Officer\ Off$ Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

Report Date Page 1 of 1

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120 Sacramento, CA 95833

BHV101-08-011 CA

Alpha Analytical Number: ADR09051401-01A

Client I.D. Number: TK EXC-Water

Larry Flora Attn:

Phone: (916) 921-0600 Fax:

(916) 648-6688

Sampled: 05/12/09

Received: 05/14/09 Analyzed: 05/18/09

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	mit
1	Dichlorodifluoromethane	ND	1.0	μg/L	36	m,p-Xylene	ND	0.50	μg/L
2	Chloromethane	ND	2.0	μg/L	37	Bromoform	ND	1.0	μg/L
3	Vinyl chloride	ND	1.0	μg/L	38	Styrene	ND	1.0	μg/L
4	Chloroethane	ND	1.0	μg/L	39	o-Xylene	ND	0.50	μg/L
5	Bromomethane	ND	2.0	μg/L	40	1,1,2,2-Tetrachloroethane	ND	1.0	μg/L
6	Trichlorofluoromethane	ND	1.0	μg/L	41	1,2,3-Trichloropropane	ND	2.0	μg/L
7	1,1-Dichloroethene	ND	1.0	μg/L	42	Isopropylbenzene	ND	1.0	μg/L
8	Dichloromethane	ND	2.0	μg/L	43	Bromobenzene	ND	1.0	μg/L
9	trans-1,2-Dichloroethene	ND	1.0	μg/L	44	n-Propylbenzene	ND	1.0	μg/L
10	Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	45	4-Chlorotoluene	ND	1.0	μg/L
11	1,1-Dichloroethane	ND	1.0	μg/L	46	2-Chlorotoluene	ND	1.0	μg/L
12	cis-1,2-Dichloroethene	ND	1.0	μg/L	47	1,3,5-Trimethylbenzene	ND	1.0	μg/L
13	Bromochloromethane	ND	1.0	μg/L	48	tert-Butylbenzene	ND	1.0	μg/L
14	Chloroform	ND	1.0	μg/L	49	1,2,4-Trimethylbenzene	ND	1.0	μg/L
15	2,2-Dichloropropane	ND	1.0	μg/L	50	sec-Butylbenzene	ND	1.0	μg/L
16	1,2-Dichloroethane	ND	1.0	μg/L	51	1,3-Dichlorobenzene	ND	1.0	μg/L
17	1,1,1-Trichloroethane	ND	1.0	μg/L	52	1,4-Dichlorobenzene	ND	1.0	μg/L
18	1,1-Dichloropropene	ND	1.0	μg/L	53	4-Isopropyltoluene	ND	1.0	μg/L
19	Carbon tetrachloride	ND	1.0	μg/L	54	1,2-Dichlorobenzene	ND	1.0	μg/L
20	Benzene	ND	0.50	μg/L	55	n-Butylbenzene	ND	1.0	μg/L
21	Dibromomethane	ND	1.0	μg/L	56	1,2-Dibromo-3-chloropropane (DBC	P) ND	3.0	μg/L
22	1,2-Dichloropropane	ND	1.0	μg/L	57	1,2,4-Trichlorobenzene	ND	2.0	μg/L
23	Trichloroethene	ND	1.0	μg/L	58	Naphthalene	7.8	2.0	μg/L
24	Bromodichloromethane	ND	1.0	μg/L	59	Hexachlorobutadiene	ND	2.0	μg/L
25	cis-1,3-Dichloropropene	ND	1.0	μg/L	60	1,2,3-Trichlorobenzene	ND	2.0	μg/L
26	trans-1,3-Dichloropropene	ND	1.0	μg/L					
27	1,1,2-Trichloroethane	ND	1.0	μg/L					
	- .								

This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

ND

ND

ND

ND

ND

ND

ND

ND

ND = Not Detected

28 Toluene

29 1,3-Dichloropropane

32 Tetrachloroethene

34 Chlorobenzene

35 Ethylbenzene

30 Dibromochloromethane

31 1,2-Dibromoethane (EDB)

33 1,1,1,2-Tetrachloroethane

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

0.50

1.0

2.0

1.0

1.0

0.50

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

5/28/09

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120 Sacramento, CA 95833

BHV101-08-011 CA

Alpha Analytical Number: ADR09051401-06A

Client I.D. Number: Composite of STK P-3 A, B, C, and D

Larry Flora Attn:

Phone: (916) 921-0600 Fax:

(916) 648-6688

Sampled: 05/12/09 Received: 05/14/09

Analyzed: 05/15/09

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	mit
1	Dichlorodifluoromethane	ND	20	μg/Kg	36	m,p-Xylene	ND	5.0	μg/Kg
2	Chloromethane	ND	40	μg/Kg	37	Bromoform	ND	20	μg/Kg
3	Vinyl chloride	ND	20	μg/Kg	38	Styrene	ND	20	μg/Kg
4	Chloroethane	ND	20	μg/Kg	39	o-Xylene	ND	5.0	μg/Kg
5	Bromomethane	ND	40	μg/Kg	40	1,1,2,2-Tetrachloroethane	ND	20	μg/Kg
6	Trichlorofluoromethane	ND	20	μg/Kg	41	1,2,3-Trichloropropane	ND	40	μg/Kg
7	1,1-Dichloroethene	ND	20	μg/Kg	42	Isopropylbenzene	ND	20	μg/Kg
8	Dichloromethane	ND	40	μg/Kg	43	Bromobenzene	ND	20	μg/Kg
9	trans-1,2-Dichloroethene	ND	20	μg/Kg	44	n-Propylbenzene	ND	20	μg/Kg
10	Methyl tert-butyl ether (MTBE)	ND	5.0	μg/Kg	45	4-Chlorotoluene	ND	20	μg/Kg
11	1,1-Dichloroethane	ND	20	μg/Kg	46	2-Chlorotoluene	ND	20	μg/Kg
12	cis-1,2-Dichloroethene	ND	20	μg/Kg	47	1,3,5-Trimethylbenzene	ND	20	μg/Kg
13	Bromochloromethane	ND	20	μg/Kg	48	tert-Butylbenzene	ND	20	μg/Kg
14	Chloroform	ND	20	μg/Kg	49	1,2,4-Trimethylbenzene	23	20	μg/Kg
15	2,2-Dichloropropane	ND	20	μg/Kg	50	sec-Butylbenzene	ND	20	μg/Kg
16	1,2-Dichloroethane	ND	20	μg/Kg	51	1,3-Dichlorobenzene	ND	20	μg/Kg
17	1,1,1-Trichloroethane	ND	20	μg/Kg	52	1,4-Dichlorobenzene	ND	20	μg/Kg
18	1,1-Dichloropropene	ND	20	μg/Kg	53	4-Isopropyltoluene	ND	20	μg/Kg
19	Carbon tetrachloride	ND	20	μg/Kg	54	1,2-Dichlorobenzene	ND	20	μg/Kg
20	Benzene	ND	5.0	μg/Kg	55	n-Butylbenzene	ND	20	μg/Kg
21	Dibromomethane	ND	20	μg/Kg	56	1,2-Dibromo-3-chloropropane (DBC	P) ND	60	μg/Kg
22	1,2-Dichloropropane	ND	20	μg/Kg	57	1,2,4-Trichlorobenzene	ND	40	μg/Kg
23	Trichloroethene	ND	20	μg/Kg	58	Naphthalene	230	40	μg/Kg
24	Bromodichloromethane	ND	20	μg/Kg	59	Hexachlorobutadiene	ND	40	μg/Kg
25	cis-1,3-Dichloropropene	ND	20	μg/Kg	60	1,2,3-Trichlorobenzene	ND	40	μg/Kg
26	trans-1,3-Dichloropropene	ND	20	μg/Kg					
~~	4407111 0	1							

µg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

5.0

20

40

20

20

5.0

EnCore sample was received and extracted within holding time.

This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

ND

NΠ

ND

ND

ND

ND

ND

ND

ND

Sample results were calculated on a wet weight basis.

ND = Not Detected

27

28 Toluene

1,1,2-Trichloroethane

29 1,3-Dichloropropane

32 Tetrachloroethene

34 Chlorobenzene

35 Ethylbenzene

30 Dibromochloromethane

31 1,2-Dibromoethane (EDB)

33 1,1,1,2-Tetrachloroethane

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

5/28/09

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120

Sacramento, CA 95833 BHV101-08-011 CA

Alpha Analytical Number: ADR09051401-07A

Client I.D. Number: TK EXC 21 ft

Larry Flora Attn:

Phone: (916) 921-0600 Fax:

(916) 648-6688

Sampled: 05/12/09

Received: 05/14/09 Analyzed: 05/15/09

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	mit
1	Dichlorodifluoromethane	ND	20	μg/Kg	36	m,p-Xylene	ND	5.0	μg/Kg
2	Chloromethane	ND	40	μg/Kg	37	Bromoform	ND	20	μg/Kg
3	Vinyl chloride	ND	20	μg/Kg	38	Styrene	ND	20	μg/Kg
4	Chloroethane	ND	20	μg/Kg	39	o-Xylene	ND	5.0	μg/Kg
5	Bromomethane	ND	40	μg/Kg	40	1,1,2,2-Tetrachloroethane	ND	20	μg/Kg
6	Trichlorofluoromethane	ND	20	μg/Kg	41	1,2,3-Trichloropropane	ND	40	μg/Kg
7	1,1-Dichloroethene	ND	20	μg/Kg	42	Isopropylbenzene	ND	20	μg/Kg
8	Dichloromethane	ND	40	μg/Kg	43	Bromobenzene	ND	20	μg/Kg
9	trans-1,2-Dichloroethene	ND	20	μg/Kg	44	n-Propylbenzene	ND	20	μg/Kg
10	Methyl tert-butyl ether (MTBE)	ND	5.0	μg/Kg	45	4-Chlorotoluene	ND	20	μg/Kg
11	1,1-Dichloroethane	ND	20	μg/Kg	46	2-Chlorotoluene	ND	20	μg/Kg
12	cis-1,2-Dichloroethene	ND	20	μg/Kg	47	1,3,5-Trimethylbenzene	ND	20	μg/Kg
13	Bromochloromethane	ND	20	μg/Kg	48	tert-Butylbenzene	ND	20	μg/Kg
14	Chloroform	ND	20	μg/Kg	49	1,2,4-Trimethylbenzene	ND	20	μg/Kg
15	2,2-Dichloropropane	ND	20	μg/Kg	50	sec-Butylbenzene	ND	20	μg/Kg
16	1,2-Dichloroethane	ND	20	μg/Kg	51	1,3-Dichlorobenzene	ND	20	μg/Kg
17	1,1,1-Trichloroethane	ND	20	μg/Kg	52	1,4-Dichlorobenzene	ND	20	μg/Kg
18	1,1-Dichloropropene	ND	20	μg/Kg	53	4-Isopropyltoluene	ND	20	μg/Kg
19	Carbon tetrachloride	ND	20	μg/Kg	54	1,2-Dichlorobenzene	ND	20	μg/Kg
20	Benzene	ND	5.0	μg/Kg	55	n-Butylbenzene	ND	20	μg/Kg
21	Dibromomethane	ND	20	μg/Kg	56	1,2-Dibromo-3-chloropropane (DBC	P) ND	60	μg/Kg
22	1,2-Dichloropropane	ND	20	μg/Kg	57	1,2,4-Trichlorobenzene	ND	40	μg/Kg
23	Trichloroethene	ND	20	μg/Kg	58	Naphthalene	ND	40	μg/Kg
24	Bromodichloromethane	ND	20	μg/Kg	59	Hexachlorobutadiene	ND	40	μg/Kg
25	cis-1,3-Dichloropropene	ND	20	μg/Kg	60	1,2,3-Trichlorobenzene	ND	40	μg/Kg
26	trans-1,3-Dichloropropene	ND	20	μg/Kg			•		_

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

5.0

20

40

20

5.0

EnCore sample was received and extracted within holding time.

This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

ND

ND

ND

ND

ND

ND

ND

ND

ND

Sample results were calculated on a wet weight basis.

ND = Not Detected

27 1,1,2-Trichloroethane

29 1,3-Dichloropropane

32 Tetrachloroethene

34 Chlorobenzene

35 Ethylbenzene

Dibromochloromethane

31 1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

5/28/09

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120

Sacramento, CA 95833

Job#: BHV10<u>1-08-011</u> CA

Alpha Analytical Number: ADR09051401-08A

Client I.D. Number: TK SW-1 17ft

Larry Flora Attn:

Phone: (916) 921-0600 Fax:

(916) 648-6688

Sampled: 05/12/09

Received: 05/14/09 Analyzed: 05/15/09

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	mit
1	Dichlorodifluoromethane	ND	20	μg/Kg	36	m,p-Xylene	ND	5.0	μg/Kg
2	Chloromethane	ND	40	μg/Kg	37	Bromoform	ND	20	μg/Kg
3	Vinyl chloride	ND	20	μg/Kg	38	Styrene	ND	20	μg/Kg
4	Chloroethane	ND	20	μg/Kg	39	o-Xylene	ND	5.0	μg/Kg
5	Bromomethane	ND	40	μg/Kg	40	1,1,2,2-Tetrachloroethane	ND	20	μg/Kg
6	Trichlorofluoromethane	ND	20	μg/Kg	41	1,2,3-Trichloropropane	ND	40	μg/Kg
7	1,1-Dichloroethene	ND	20	μg/Kg	42	Isopropylbenzene	ND .	20	μg/Kg
8	Dichloromethane	ND	40	μg/Kg	43	Bromobenzene	ND	20	μg/Kg
9	trans-1,2-Dichloroethene	ND	20	μg/Kg	44	n-Propylbenzene	ND	20	μg/Kg
10	Methyl tert-butyl ether (MTBE)	ND	5.0	μg/Kg	45	4-Chlorotoluene	ND	20	μg/Kg
11	1,1-Dichloroethane	ND	20	μg/Kg	46	2-Chlorotoluene	ND	20	μg/Kg
12	cis-1,2-Dichloroethene	ND	20	μg/Kg	47	1,3,5-Trimethylbenzene	ND	20	μg/Kg
13	Bromochloromethane	ND	20	μg/Kg	48	tert-Butylbenzene	ND	20	μg/Kg
14	Chloroform	ND	20	μg/Kg	49	1,2,4-Trimethylbenzene	ND	20	μg/Kg
15	2,2-Dichloropropane	ND	20	μg/Kg	50	sec-Butylbenzene	ND	20	μg/Kg
16	1,2-Dichloroethane	ND	20	μg/Kg	51	1,3-Dichlorobenzene	ND	20	μg/Kg
17	1,1,1-Trichloroethane	ND	20	μg/Kg	52	1,4-Dichlorobenzene	ND	20	μg/Kg
18	1,1-Dichloropropene	ND	20	μg/Kg	53	4-Isopropyltoluene	ND	20	μg/Kg
19	Carbon tetrachloride	ND	20	μg/Kg	54	1,2-Dichlorobenzene	ND	20	μg/Kg
20	Benzene	ND	5.0	μg/Kg	55	n-Butylbenzene	ND	20	μg/Kg
21	Dibromomethane	ND	20	μg/Kg	56	1,2-Dibromo-3-chloropropane (DBC	P) ND	60	μg/Kg
22	1,2-Dichloropropane	ND	20	μg/Kg	57	1,2,4-Trichlorobenzene	ND	40	μg/Kg
23	Trichloroethene	ND	20	μg/Kg	58	Naphthalene	ND	40	μg/Kg
24	Bromodichloromethane	ND	20	μg/Kg	59	Hexachlorobutadiene	ND	40	μg/Kg
25	cis-1,3-Dichloropropene	ND	20	μg/Kg	60	1,2,3-Trichlorobenzene	ND	40	μg/Kg
26	trans-1,3-Dichloropropene	ND	20	μg/Kg					

EnCore sample was received and extracted within holding time.

This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

ND

ND

ND.

ND

ND

ND

ND

ND

ND

Sample results were calculated on a wet weight basis.

ND = Not Detected

27 1,1,2-Trichloroethane

29 1,3-Dichloropropane

32 Tetrachloroethene

34 Chlorobenzene

35 Ethylbenzene

30 Dibromochloromethane

31 1,2-Dibromoethane (EDB)

33 1,1,1,2-Tetrachloroethane

28 Toluene

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

20

20

20

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

5/28/09

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120 Sacramento, CA 95833

Job#: BHV101-08-011 CA

Alpha Analytical Number: ADR09051401-09A

Client I.D. Number: TK SW-2 17ft

Attn: Larry Flora Phone: (916) 921-0600

Fax: (916) 648-6688

Sampled: 05/12/09

Received: 05/14/09 Analyzed: 05/15/09

Volatile Organics by GC/MS EPA Method SW8260B

arranger realize	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	mit
1	Dichlorodifluoromethane	ND	20	μg/Kg	36	m,p-Xylene	ND	5.0	μg/Kg
2	Chloromethane	ND	40	μg/Kg	37	Bromoform	ND	20	μg/Kg
3	Vinyl chloride	ND	20	μg/Kg	38	Styrene	ND	20	μg/Kg
4	Chloroethane	ND	20	μg/Kg	39	o-Xylene	ND	5.0	μg/Kg
5	Bromomethane	ND	40	μg/Kg	40	1,1,2,2-Tetrachloroethane	ND	20	μg/Kg
6	Trichlorofluoromethane	ND	20	μg/Kg	41	1,2,3-Trichloropropane	ND	40	μg/Kg
7	1,1-Dichloroethene	ND	20	μg/Kg	42	Isopropylbenzene	ND	20	μg/Kg
8	Dichloromethane	ND	40	μg/Kg	43	Bromobenzene	ND	20	μg/Kg
9	trans-1,2-Dichloroethene	ND	20	μg/Kg	44	n-Propylbenzene	ND	20	μg/Kg
10	Methyl tert-butyl ether (MTBE)	ND	5.0	μg/Kg	45	4-Chlorotoluene	ND	20	μg/Kg
11	1,1-Dichloroethane	ND	20	μg/Kg	46	2-Chlorotoluene	ND	20	μg/Kg
12	cis-1,2-Dichloroethene	ND	20	μg/Kg	47	1,3,5-Trimethylbenzene	ND	20	μg/Kg
13	Bromochloromethane	ND	20	μg/Kg	48	tert-Butylbenzene	ND	20	μg/Kg
14	Chloroform	ND	20	μg/Kg	49	1,2,4-Trimethylbenzene	ND	20	μg/Kg
15	2,2-Dichloropropane	ND	20	μg/Kg	50	sec-Butylbenzene	ND	20	μg/Kg
16	1,2-Dichloroethane	ND	20	μg/Kg	51	1,3-Dichlorobenzene	ND	20	μg/Kg
17	1,1,1-Trichloroethane	ND	20	μg/Kg	52	1,4-Dichlorobenzene	ND	20	μg/Kg
18	1,1-Dichloropropene	ND	20	μg/Kg	53	4-isopropyltoluene	ND	20	μg/Kg
19	Carbon tetrachloride	ND	20	μg/Kg	54	1,2-Dichlorobenzene	ND	20	μg/Kg
20	Benzene	ND	5.0	μg/Kg	55	n-Butylbenzene	ND	20	μg/Kg
21	Dibromomethane	ND	20	μg/Kg	56	1,2-Dibromo-3-chloropropane (DBC	P) ND	60	μg/Kg
22	1,2-Dichloropropane	ND	20	μg/Kg	57	1,2,4-Trichlorobenzene	ND	40	μg/Kg
23	Trichloroethene	ND	20	μg/Kg	58	Naphthalene	ND	40	μg/Kg
24	Bromodichloromethane	ND	20	μg/Kg	59	Hexachlorobutadiene	ND	40	μg/Kg
25	cis-1,3-Dichloropropene	ND	20	μg/Kg	60	1,2,3-Trichlorobenzene	ND	40	μg/Kg
26	trans-1,3-Dichloropropene	ND	20	μg/Kg			1		, , ,

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

20

40

20

EnCore sample was received and extracted within holding time.

This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

ND

ND

ND

ND

ND

ND

ND

ND

ND

Sample results were calculated on a wet weight basis.

ND = Not Detected

27 1,1,2-Trichloroethane

29 1,3-Dichloropropane

32 Tetrachloroethene

34 Chlorobenzene

35 Ethylbenzene

30 Dibromochloromethane

31 1,2-Dibromoethane (EDB)

33 1,1,1,2-Tetrachloroethane

28 Toluene

loger Scholl Kandy Saulan

Dalter Airihm

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

5/28/09

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Attn:

ADR Envir. Group

1760 Creekside Oak Dr. #120

Sacramento, CA 95833 BHV101-08-011 CA

Larry Flora Phone: (916) 921-0600

Fax: (916) 648-6688

Alpha Analytical Number: ADR09051401-10A

Client I.D. Number: TK SW-3 17ft

Sampled: 05/12/09 Received: 05/14/09

Analyzed: 05/15/09

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	mit
1	Dichlorodifluoromethane	ND	20	μg/Kg	36	m,p-Xylene	ND	5.0	μg/Kg
2	Chloromethane	ND	40	μg/Kg	37	Bromoform	ND	20	μg/Kg
3	Vinyl chloride	ND	20	μg/Kg	38	Styrene	ND	20	μg/Kg
4	Chloroethane	ND	20	μg/Kg	39	o-Xylene	ND	5.0	μg/Kg
5	Bromomethane	ND	40	μg/Kg	40	1,1,2,2-Tetrachloroethane	ND	20	μg/Kg
6	Trichlorofluoromethane	ND	20	μg/Kg	41	1,2,3-Trichloropropane	ND	40	μg/Kg
7	1,1-Dichloroethene	ND	20	μg/Kg	42	Isopropylbenzene	ND	20	μg/Kg
8	Dichloromethane	ND	40	μg/Kg	43	Bromobenzene	ND	20	μg/Kg
9	trans-1,2-Dichloroethene	ND	20	μg/Kg	44	n-Propylbenzene	ND	20	μg/Kg
10	Methyl tert-butyl ether (MTBE)	ND	5.0	μg/Kg	45	4-Chlorotoluene	ND	20	μg/Kg
11	1,1-Dichloroethane	ND	20	μg/Kg	46	2-Chlorotoluene	ND	20	μg/Kg
12	cis-1,2-Dichloroethene	ND	20	μg/Kg	47	1,3,5-Trimethylbenzene	ND	20	μg/Kg
13	Bromochloromethane	ND	20	μg/Kg	48	tert-Butylbenzene	ND	20	μg/Kg
14	Chloroform	ND	20	μg/Kg	49	1,2,4-Trimethylbenzene	ND	20	μg/Kg
15	2,2-Dichloropropane	ND	20	μg/Kg	50	sec-Butylbenzene	ND	20	μg/Kg
16	1,2-Dichloroethane	ND	20	μg/Kg	51	1,3-Dichlorobenzene	ND	20	μg/Kg
17	1,1,1-Trichloroethane	ND	20	μg/Kg	52	1,4-Dichlorobenzene	ND	20	μg/Kg
18	1,1-Dichloropropene	ND	20	μg/Kg	53	4-Isopropyltoluene	ND	20	μg/Kg
19	Carbon tetrachloride	ND	20	μg/Kg	54	1,2-Dichlorobenzene	ND	20	μg/Kg
20	Benzene	ND	5.0	μg/Kg	55	n-Butylbenzene	ND	20	μg/Kg
21	Dibromomethane	ND	20	μg/Kg	56	1,2-Dibromo-3-chloropropane (DBC	P) ND	60	μg/Kg
22	1,2-Dichloropropane	ND	20	μg/Kg	57	1,2,4-Trichlorobenzene	ND	40	μg/Kg
23	Trichloroethene	ND	20	μg/Kg	58	Naphthalene	ND	40	μg/Kg
24	Bromodichloromethane	ND	20	μg/Kg	59	Hexachlorobutadiene	ND	40	μg/Kg
25	cis-1,3-Dichloropropene	ND	20	μg/Kg	60	1,2,3-Trichlorobenzene	ND	40	μg/Kg
26	trans-1,3-Dichloropropene	ND	20	μg/Kg					

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

20

40

20

5.0

EnCore sample was received and extracted within holding time.

This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

ND

ND

ND

ND

ND

ND

ND

ND

ND

Sample results were calculated on a wet weight basis.

ND = Not Detected

1,1,2-Trichloroethane

Dibromochloromethane

31 1,2-Dibromoethane (EDB)

33 1,1,1,2-Tetrachloroethane

29 1,3-Dichloropropane

32 Tetrachloroethene

34 Chlorobenzene

35 Ethylbenzene

28 Toluene

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

5/28/09

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120 Sacramento, CA 95833

BHV101-08-011 CA

Alpha Analytical Number: ADR09051401-11A

Client I.D. Number: TK SW-4 17ft

Larry Flora Attn:

Phone: (916) 921-0600 Fax:

(916) 648-6688

Sampled: 05/12/09

Received: 05/14/09 Analyzed: 05/15/09

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	mit
1	Dichlorodifluoromethane	ND	20	μg/Kg	36	m,p-Xylene	ND	5.0	μg/Kg
2	Chloromethane	ND	40	μg/Kg	37	Bromoform	ND	20	μg/Kg
3	Vinyl chloride	ND	20	μg/Kg	38	Styrene	ND	20	μg/Kg
4	Chloroethane	ND	20	μg/Kg	39	o-Xylene	ND	5.0	μg/Kg
5	Bromomethane	ND	40	μg/Kg	40	1,1,2,2-Tetrachloroethane	ND	20	μg/Kg
6	Trichlorofluoromethane	ND	20	μg/Kg	41	1,2,3-Trichloropropane	ND	40	μg/Kg
7	1,1-Dichloroethene	ND	20	μg/Kg	42	Isopropylbenzene	ND	20	μg/Kg
8	Dichloromethane	ND	40	μg/Kg	43	Bromobenzene	ND	20	μg/Kg
9	trans-1,2-Dichloroethene	ND	20	μg/Kg	44	n-Propylbenzene	ND	20	μg/Kg
10	Methyl tert-butyl ether (MTBE)	ND	5.0	μg/Kg	45	4-Chlorotoluene	ND	20	μg/Kg
11	1,1-Dichloroethane	ND	20	μg/Kg	46	2-Chlorotoluene	ND	20	μg/Kg
12	cis-1,2-Dichloroethene	ND	20	μg/Kg	47	1,3,5-Trimethylbenzene	ND	20	μg/Kg
13	Bromochloromethane	ND	20	μg/Kg	48	tert-Butylbenzene	ND	20	μg/Kg
14	Chloroform	ND	20	μg/Kg	49	1,2,4-Trimethylbenzene	ND	20	μg/Kg
15	2,2-Dichloropropane	ND	20	μg/Kg	50	sec-Butylbenzene	ND	20	μg/Kg
16	1,2-Dichloroethane	ND	20	μg/Kg	51	1,3-Dichlorobenzene	ND	20	μg/Kg
17	1,1,1-Trichloroethane	ND	20	μg/Kg	52	1,4-Dichlorobenzene	ND	20	μg/Kg
18	1,1-Dichloropropene	ND	20	μg/Kg	53	4-Isopropyltoluene	ND	20	μg/Kg
19	Carbon tetrachloride	ND	20	μg/Kg	54	1,2-Dichlorobenzene	ND	20	μg/Kg
20	Benzene	ND	5.0	μg/Kg	55	n-Butylbenzene	ND	20	μg/Kg
21	Dibromomethane	ND	20	μg/Kg	56	1,2-Dibromo-3-chloropropane (DBC	P) ND	60	μg/Kg
22	1,2-Dichloropropane	ND	20	μg/Kg	57	1,2,4-Trichlorobenzene	ND	40	μg/Kg
23	Trichloroethene	ND	20	μg/Kg	58	Naphthalene	ND	40	μg/Kg
24	Bromodichloromethane	ND	20	μg/Kg	59	Hexachlorobutadiene	ND	40	μg/Kg
25	cis-1,3-Dichloropropene	ND	20	μg/Kg	60	1,2,3-Trichlorobenzene	ND	40	μg/Kg
26	trans-1,3-Dichloropropene	ND	20	μg/Kg					

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

5.0

20

40

20

5.0

EnCore sample was received and extracted within holding time.

This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

ND

ND

ND

ND

ND

ND

ND

ND

ND

Sample results were calculated on a wet weight basis.

ND = Not Detected

1,1,2-Trichloroethane

29 1,3-Dichloropropane

32 Tetrachloroethene

34 Chlorobenzene

35 Ethylbenzene

30 Dibromochloromethane

31 1,2-Dibromoethane (EDB)

33 1,1,1,2-Tetrachloroethane

27

28 Toluene

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

5/28/09

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120 Sacramento, CA 95833

BHV101-08-011 CA

Alpha Analytical Number: ADR09051401-12A

Client I.D. Number: TK SW-5 17ft

Larry Flora Attn:

Phone: (916) 921-0600 Fax:

(916) 648-6688

Sampled: 05/12/09

Received: 05/14/09 Analyzed: 05/15/09

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Conce	entration	Reporting Li	mit
1	Dichlorodifluoromethane	ND	20	μg/Kg	36	m,p-Xylene		ND	10	μg/Kg
2	Chloromethane	ND	80	μg/Kg	37	Bromoform		ND	20	μg/Kg
3	Vinyl chloride	ND	20	μg/Kg	38	Styrene		ND	20	μg/Kg
4	Chloroethane	ND	20	μg/Kg	39	o-Xylene		ND	10	μg/Kg
5	Bromomethane	ND	80	μg/Kg	40	1,1,2,2-Tetrachloroethane		ND	20	μg/Kg
6	Trichlorofluoromethane	ND	20	μg/Kg	41	1,2,3-Trichloropropane		ND	80	μg/Kg
7	1,1-Dichloroethene	ND	20	μg/Kg	42	Isopropylbenzene		ND	20	μg/Kg
8	Dichloromethane	ND	80	μg/Kg	43	Bromobenzene		ND	20	μg/Kg
9	trans-1,2-Dichloroethene	ND	20	μg/Kg	44	n-Propylbenzene		ND	20	μg/Kg
10	Methyl tert-butyl ether (MTBE)	ND	10	μg/Kg	45	4-Chlorotoluene		ND	20	μg/Kg
11	1,1-Dichloroethane	ND	20	μg/Kg	46	2-Chlorotoluene		ND	20	μg/Kg
12	cis-1,2-Dichloroethene	ND	20	μg/Kg	47	1,3,5-Trimethylbenzene		31	20	μg/Kg
13	Bromochloromethane	ND	20	μg/Kg	48	tert-Butylbenzene		ND	20	μg/Kg
14	Chloroform	ND	20	μg/Kg	49	1,2,4-Trimethylbenzene		88	20	μg/Kg
15	2,2-Dichloropropane	ND	20	μg/Kg	50	sec-Butylbenzene		21	20	μg/Kg
16	1,2-Dichloroethane	ND	20	μg/Kg	51	1,3-Dichlorobenzene		ND	20	μg/Kg
17	1,1,1-Trichloroethane	ND	20	μg/Kg	52	1,4-Dichlorobenzene		ND	20	μg/Kg
18	1,1-Dichloropropene	ND	20	μg/Kg	53	4-Isopropyltoluene		37	20	μg/Kg
19	Carbon tetrachloride	ND	20	μg/Kg	54	1,2-Dichlorobenzene		ND	20	μg/Kg
20	Benzene	ND	10	μg/Kg	55	n-Butylbenzene		32	20	μg/Kg
21	Dibromomethane	ND	20	μg/Kg	56	1,2-Dibromo-3-chloropropane (DBC	P)	ND	120	μg/Kg
22	1,2-Dichloropropane	ND	20	μg/Kg	57	1,2,4-Trichlorobenzene		ND	. 80	μg/Kg
23	Trichloroethene	ND	20	μg/Kg	58	Naphthalene		2,500	80	μg/Kg
24	Bromodichloromethane	ND	20	μg/Kg	59	Hexachlorobutadiene		ND	80	μg/Kg
25	cis-1,3-Dichloropropene	ND	20	μg/Kg	60	1,2,3-Trichlorobenzene		ND	80	μg/Kg
26	trans-1,3-Dichloropropene	ND	20	μg/Kg						
27	1,1,2-Trichloroethane	ND	20	μg/Kg						
				_						

Some Reporting Limits were increased due to high concentrations of target analytes.

EnCore sample was received and extracted within holding time.

This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

ND

ND

ND

ND

ND

ND

ND

ND

Sample results were calculated on a wet weight basis.

ND = Not Detected

28 Toluene

29 1,3-Dichloropropane

32 Tetrachloroethene

34 Chlorobenzene

35 Ethylbenzene

30 Dibromochloromethane

31 1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

Kandy Saulner Roger Scholl Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples

10

20 μg/Kg

80

20

20

20

10

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

5/28/09

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120 Sacramento, CA 95833

BHV101-08-011 CA

Alpha Analytical Number: ADR09051401-13A

Client I.D. Number: TK SW-6 17ft

Larry Flora Attn:

Phone: (916) 921-0600 Fax:

(916) 648-6688

Sampled: 05/12/09

Received: 05/14/09 Analyzed: 05/15/09

Volatile Organics by GC/MS EPA Method SW8260B

	Compound	Concentration	Reporting	Limit		Compound	Concentration	Reporting Li	mit
1	Dichlorodifluoromethane	ND	20	μg/Kg	36	m,p-Xylene	ND	5.0	μg/Kg
2	Chloromethane	ND	40	μg/Kg	37	Bromoform	ND	20	μg/Kg
3	Vinyl chloride	ND	20	μg/Kg	38	Styrene	ND	20	μg/Kg
4	Chloroethane	ND	20	μg/Kg	39	o-Xylene	ND	5.0	μg/Kg
5	Bromomethane	ND	40	μg/Kg	40	1,1,2,2-Tetrachloroethane	ND	20	μg/Kg
6	Trichlorofluoromethane	ND	20	μg/Kg	41	1,2,3-Trichloropropane	ND	40	μg/Kg
7	1,1-Dichloroethene	ND	20	μg/Kg	42	Isopropylbenzene	ND	20	μg/Kg
8	Dichloromethane	ND	40	μg/Kg	43	Bromobenzene	ND	20	μg/Kg
9	trans-1,2-Dichloroethene	ND	20	μg/Kg	44	n-Propylbenzene	ND	20	μg/Kg
10	Methyl tert-butyl ether (MTBE)	ND	5.0	μg/Kg	45	4-Chlorotoluene	ND	20	μg/Kg
11	1,1-Dichloroethane	ND	20	μg/Kg	46	2-Chlorotoluene	ND	20	μg/Kg
12	cis-1,2-Dichloroethene	ND	20	μg/Kg	47	1,3,5-Trimethylbenzene	ND	20	μg/Kg
13	Bromochloromethane	ND	20	μg/Kg	48	tert-Butylbenzene	ND	20	μg/Kg
14	Chloroform	ND	20	μg/Kg	49	1,2,4-Trimethylbenzene	ND	20	μg/Kg
15	2,2-Dichloropropane	ND	20	μg/Kg	50	sec-Butylbenzene	ND	20	μg/Kg
16	1,2-Dichloroethane	ND	20	μg/Kg	51	1,3-Dichlorobenzene	ND	20	μg/Kg
17	1,1,1-Trichloroethane	ND	20	μg/Kg	52	1,4-Dichlorobenzene	ND	20	μg/Kg
18	1,1-Dichloropropene	ND	20	μg/Kg	53	4-Isopropyltoluene	ND	20	μg/Kg
19	Carbon tetrachloride	ND	20	μg/Kg	54	1,2-Dichlorobenzene	ND	20	μg/Kg
20	Benzene	ND	5.0	μg/Kg	55	n-Butylbenzene	ND	20	μg/Kg
21	Dibromomethane	ND	20	μg/Kg	56	1,2-Dibromo-3-chloropropane (DBC	P) ND	60	μg/Kg
22	1,2-Dichloropropane	ND	20	μg/Kg	57	1,2,4-Trichlorobenzene	ND	40	μg/Kg
23	Trichloroethene	ND	20	μg/Kg	58	Naphthalene	ND	40	μg/Kg
24	Bromodichloromethane	ND	20	μg/Kg	59	Hexachlorobutadiene	ND	40	μg/Kg
25	cis-1,3-Dichloropropene	ND	20	μg/Kg	60	1,2,3-Trichlorobenzene	ND	40	μg/Kg
26	trans-1,3-Dichloropropene	ND	20	μg/Kg					-

EnCore sample was received and extracted within holding time.

This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

ND

ND

ND

ND

ND

ND

ND

ND

ND

Sample results were calculated on a wet weight basis.

ND = Not Detected

1,1,2-Trichloroethane

1,3-Dichloropropane

Dibromochloromethane

31 1,2-Dibromoethane (EDB)

33 1,1,1,2-Tetrachloroethane

32 Tetrachloroethene

34 Chlorobenzene

35 Ethylbenzene

28 Toluene

29

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

20

20

40

20

20

5.0

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

5/28/09 Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120

Sacramento, CA 95833

Job#: BHV101-08-011 CA

Alpha Analytical Number: ADR09051401-14A

Client I.D. Number: TK SW-7 17ft

Attn: Larry Flora

Phone: (916) 921-0600

Fax: (916) 648-6688

Sampled: 05/12/09

Received: 05/14/09 Analyzed: 05/15/09

Volatile Organics by GC/MS EPA Method SW8260B

Compound Co		Concentration	Reporting Limit		Compound		Concentration	Reporting Limit	
1	Dichlorodifluoromethane	ND	20	μg/Kg	36	m,p-Xylene	ND	5.0	μg/Kg
2	Chloromethane	ND	40	μg/Kg	37	Bromoform	ND	20	μg/Kg
3	Vinyl chloride	ND	20	μg/Kg	38	Styrene	ND	20	μg/Kg
4	Chloroethane	ND	20	μg/Kg	39	o-Xylene	ND	5.0	μg/Kg
5	Bromomethane	ND	40	μg/Kg	40	1,1,2,2-Tetrachloroethane	ND	20	μg/Kg
6	Trichlorofluoromethane	ND	20	μg/Kg	41	1,2,3-Trichloropropane	ND	40	μg/Kg
7	1,1-Dichloroethene	ND	20	μg/Kg	42	Isopropylbenzene	ND	20	μg/Kg
8	Dichloromethane	ND	40	μg/Kg	43	Bromobenzene	ND	20	μg/Kg
9	trans-1,2-Dichloroethene	ND	20	μg/Kg	44	n-Propylbenzene	ND	20	μg/Kg
10	Methyl tert-butyl ether (MTBE)	ND	5.0	μg/Kg	45	4-Chlorotoluene	ND	20	μg/Kg
11	1,1-Dichloroethane	ND	20	μg/Kg	46	2-Chlorotoluene	ND	20	μg/Kg
12	cis-1,2-Dichloroethene	ND	20	μg/Kg	47	1,3,5-Trimethylbenzene	ND	20	μg/Kg
13	Bromochloromethane	ND	20	μg/Kg	48	tert-Butylbenzene	ND	20	μg/Kg
14	Chloroform	ND	20	μg/Kg	49	1,2,4-Trimethylbenzene	ND	20	μg/Kg
15	2,2-Dichloropropane	ND	20	μg/Kg	50	sec-Butylbenzene	ND	20	μg/Kg
16	1,2-Dichloroethane	ND	20	μg/Kg	51	1,3-Dichlorobenzene	ND	20	μg/Kg
17	1,1,1-Trichloroethane	ND	20	μg/Kg	52	1,4-Dichlorobenzene	ND	20	μg/Kg
18	1,1-Dichloropropene	ND	20	μg/Kg	53	4-Isopropyltoluene	ND	20	μg/Kg
19	Carbon tetrachloride	ND	20	μg/Kg	54	1,2-Dichlorobenzene	ND	20	μg/Kg
20	Benzene	ND	5.0	μg/Kg	55	n-Butylbenzene	ND	20	μg/Kg
21	Dibromomethane	ND	20	μg/Kg	56	1,2-Dibromo-3-chloropropane (DBC	P) ND	60	μg/Kg
22	1,2-Dichloropropane	ND	20	μg/Kg	57	1,2,4-Trichlorobenzene	ND	40	μg/Kg
23	Trichloroethene	ND	20	μg/Kg	58	Naphthalene	ND	40	μg/Kg
24	Bromodichloromethane	ND	20	μg/Kg	59	Hexachlorobutadiene	ND	40	μg/Kg
25	cis-1,3-Dichloropropene	ND	20	μg/Kg	60	1,2,3-Trichlorobenzene	ND	40	μg/Kg
26	trans-1,3-Dichloropropene	ND	20	μg/Kg					
27	1,1,2-Trichloroethane	ND	20	μg/Kg					

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

μg/Kg

40

20

20

5.0

EnCore sample was received and extracted within holding time.

This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

ND

ND

ND

ND

ND

ND

ND

ND

Sample results were calculated on a wet weight basis.

ND = Not Detected

28 Toluene

29 1,3-Dichloropropane

32 Tetrachloroethene

34 Chlorobenzene

35 Ethylbenzene

30 Dibromochloromethane

33 1,1,1,2-Tetrachloroethane

1,2-Dibromoethane (EDB)

Roger Scholl Kandy Soulur

Walter Hindrey

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

5/28/09

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group

1760 Creekside Oak Dr. #120 Sacramento, CA 95833

BHV101-08-011 CA

Alpha Analytical Number: ADR09051401-15A

Client I.D. Number: TK SW-8 17ft

Larry Flora Attn:

Phone: (916) 921-0600 Fax:

(916) 648-6688

Sampled: 05/12/09

Received: 05/14/09 Analyzed: 05/15/09

Volatile Organics by GC/MS EPA Method SW8260B

Compound Con		Concentration	Reporting	Reporting Limit		Compound	Concentration	Reporting Limit	
1	Dichlorodifluoromethane	ND	20	μg/Kg	36	m,p-Xylene	ND	5.0	μg/Kg
2	Chloromethane	ND	40	μg/Kg	37	Bromoform	ND	20	μg/Kg
3	Vinyl chloride	ND	20	μg/Kg	38	Styrene	ND	20	μg/Kg
4	Chloroethane	ND	20	μg/Kg	39	o-Xylene	ND	5.0	μg/Kg
5	Bromomethane	ND	40	μg/Kg	40	1,1,2,2-Tetrachloroethane	ND	20	μg/Kg
6	Trichlorofluoromethane	ND	20	μg/Kg	41	1,2,3-Trichloropropane	ND	40	μg/Kg
7	1,1-Dichloroethene	ND	20	μg/Kg	42	Isopropylbenzene	ND	20	μg/Kg
8	Dichloromethane	ND	40	μg/Kg	43	Bromobenzene	ND	20	μg/Kg
9	trans-1,2-Dichloroethene	ND	20	μg/Kg	44	n-Propylbenzene	ND	20	μg/Kg
10	Methyl tert-butyl ether (MTBE)	ND	5.0	μg/Kg	45	4-Chlorotoluene	ND	20	μg/Kg
11	1,1-Dichloroethane	ND	20	μg/Kg	46	2-Chlorotoluene	ND	20	μg/Kg
12	cis-1,2-Dichloroethene	ND	20	μg/Kg	47	1,3,5-Trimethylbenzene	ND	20	μg/Kg
13	Bromochloromethane	ND	20	μg/Kg	48	tert-Butylbenzene	ND	20	μg/Kg
14	Chloroform	ND	20	μg/Kg	49	1,2,4-Trimethylbenzene	ND	20	μg/Kg
15	2,2-Dichloropropane	ND	20	μg/Kg	50	sec-Butylbenzene	ND	20	μg/Kg
16	1,2-Dichloroethane	ND	20	μg/Kg	51	1,3-Dichlorobenzene	ND	20	μg/Kg
17	1,1,1-Trichloroethane	ND	20	μg/Kg	52	1,4-Dichlorobenzene	ND	20	μg/Kg
18	1,1-Dichloropropene	ND	20	μg/Kg	53	4-Isopropyltoluene	ND	20	μg/Kg
19	Carbon tetrachloride	ND	20	μg/Kg	54	1,2-Dichlorobenzene	ND	20	μg/Kg
20	Benzene	ND	5.0	μg/Kg	55	n-Butylbenzene	ND	20	μg/Kg
21	Dibromomethane	ND	20	μg/Kg	56	1,2-Dibromo-3-chloropropane (DBC	P) ND	60	μg/Kg
22	1,2-Dichloropropane	ND	20	μg/Kg	57	1,2,4-Trichlorobenzene	ND	40	μg/Kg
23	Trichloroethene	ND	20	μg/Kg	58	Naphthalene	ND	40	μg/Kg
24	Bromodichloromethane	ND	20	μg/Kg	59	Hexachlorobutadiene	ND	40	μg/Kg
25	cis-1,3-Dichloropropene	ND	20	μg/Kg	60	1,2,3-Trichlorobenzene	ND	40	μg/Kg
26	trans-1,3-Dichloropropene	ND	20	μg/Kg					

EnCore sample was received and extracted within holding time.

This replaces the report originally signed 5/21/09, due to a change in the analyte list, per client request.

ND

ND

ND

ND

ND

ND

ND

ND

ND

Sample results were calculated on a wet weight basis.

ND = Not Detected

27 1,1,2-Trichloroethane

29 1,3-Dichloropropane

32 Tetrachloroethene

34 Chlorobenzene

Ethylbenzene

Dibromochloromethane

31 1,2-Dibromoethane (EDB)

33 1,1,1,2-Tetrachloroethane

28 Toluene

Roger Scholl Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

20

20

20

20

20

5.0

µg/Kg

μg/Kg

μg/Kg

ua/Ka

μg/Kg

μg/Kg

μg/Kg

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

5/28/09

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC Sample Preservation Report

Work Order: ADR09051401 Project: BHV101-08-011 CA

Alpha's Sample ID	Client's Sample ID	Matrix	рН	
09051401-01A	TK EXC-Water	Aqueous	2	

5/21/09

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

ADR Envir. Group 1760 Creekside Oak Dr. #120 Sacramento, CA 95833 Attn: Larry Flora
Phone: (916) 921-0600
Fax: (916) 648-6688
Date Received: 05/14/09

Job#: BHV101-08-011 CA

Total Petroleum Hydrocarbons - Extractable (TPH-E) EPA Method SW8015B Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B

		Parameter	Concentration	Reporting Limit	Date Sampled	Date Analyzed
Client ID:	TK EXC-Water	TPH-E (DRO), Silica Gel	0.50	0.050 mg/L	05/12/09	05/15/09
Lab ID :	ADR09051401-01A	TPH-E (ORO), Silica Gel	ND	0.50 mg/L	05/12/09	05/15/09
		TPH-P (GRO)	0.097	0.050 mg/L	05/12/09	05/18/09
Client ID:	Composite of STK P-3 A, B,	TPH-E (DRO), Silica Gel	10	5.0 mg/Kg	05/12/09	05/14/09
	C, and D	TPH-E (ORO), Silica Gel	ND	10 mg/Kg	05/12/09	05/14/09
Lab ID:	ADR09051401-06A	TPH-P (GRO)	19	1.0 mg/Kg	05/12/09	05/15/09
Client ID:	TK EXC 21 ft	TPH-E (DRO), Silica Gel	ND	5.0 mg/Kg	05/12/09	05/14/09
Lab ID :	ADR09051401-07A	TPH-E (ORO), Silica Gel	ND	10 mg/Kg	05/12/09	05/14/09
Buo IB .	715K07031401 07K	TPH-P (GRO)	ND	1.0 mg/Kg	05/12/09	05/15/09
Client ID:	TK SW-1 17ft	TPH-E (DRO), Silica Gel	ND	5.0 mg/Kg	05/12/09	05/14/09
Lab ID:	ADR09051401-08A	TPH-E (ORO), Silica Gel	ND	10 mg/Kg	05/12/09	05/14/09
		TPH-P (GRO)	ND	1.0 mg/Kg	05/12/09	05/15/09
Client ID:	TK SW-2 17ft	TPH-E (DRO), Silica Gel	ND	5.0 mg/Kg	05/12/09	05/14/09
Lab ID:	ADR09051401-09A	TPH-E (ORO), Silica Gel	ND	10 mg/Kg	05/12/09	05/14/09
		TPH-P (GRO)	ND	1.0 mg/Kg	05/12/09	05/15/09
Client ID:	TK SW-3 17ft	TPH-E (DRO), Silica Gel	ND	5.0 mg/Kg	05/12/09	05/14/09
Lab ID:	ADR09051401-10A	TPH-E (ORO), Silica Gel	ND	10 mg/Kg	05/12/09	05/14/09
		TPH-P (GRO)	ND	1.0 mg/Kg	05/12/09	05/15/09
Client ID:	TK SW-4 17ft	TPH-E (DRO), Silica Gel	6.7	5.0 mg/Kg	05/12/09	05/14/09
Lab ID:	ADR09051401-11A	TPH-E (ORO), Silica Gel	ND	10 mg/Kg	05/12/09	05/14/09
		TPH-P (GRO)	8.6	1.0 mg/Kg	05/12/09	05/15/09
Client ID:	TK SW-5 17ft	TPH-E (DRO), Silica Gel	520	5.0 mg/Kg	05/12/09	05/14/09
Lab ID:	ADR09051401-12A	TPH-E (ORO), Silica Gel	84 G	10 mg/Kg	05/12/09	05/14/09
		TPH-P (GRO)	56	2.0 mg/Kg	05/12/09	05/15/09
Client ID:	TK SW-6 17ft	TPH-E (DRO), Silica Gel	ND	5.0 mg/Kg	05/12/09	05/14/09
Lab ID:	ADR09051401-13A	TPH-E (ORO), Silica Gel	ND	10 mg/Kg	05/12/09	05/14/09
		TPH-P (GRO)	ND	1.0 mg/Kg	05/12/09	05/15/09
Client ID:	TK SW-7 17ft	TPH-E (DRO), Silica Gel	ND	5.0 mg/Kg	05/12/09	05/14/09
Lab ID:	ADR09051401-14A	TPH-E (ORO), Silica Gel	ND	10 mg/Kg	05/12/09	05/14/09
		TPH-P (GRO)	ND	1.0 mg/Kg	05/12/09	05/15/09
Client ID:	TK SW-8 17ft	TPH-E (DRO), Silica Gel	ND	5.0 mg/Kg	05/12/09	05/14/09
Lab ID:	ADR09051401-15A	TPH-E (ORO), Silica Gel	ND	10 mg/Kg	05/12/09	05/14/09
		TPH-P (GRO)	ND	1.0 mg/Kg	05/12/09	05/15/09

BHV101-08-011 CA Page 1 of 2

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

G = ORO compounds have varying amounts of recovery.

Gasoline Range Organics (GRO) C4-C13

Sample results were calculated on a wet weight basis.

ND = Not Detected

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer

Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / info@alpha-analytical.com

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

5/21/09

Report Date

Report Date

BHV101-08-011 CA Page 2 of 2

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 29-May-09	QC Summary Report						Work Order: 09051401		
Method Blank		Type M	BLK T	est Code: EPA Me	thod SW82				
File ID: 09051813.D			Ва	atch ID: 22014		Analysis Date:	05/18/2009 21:14		
Sample ID: MBLK-22014	Units : µg/K	g	Run ID: M	SD_14_090515A		Prep Date:	05/15/2009		
Analyte	Result	PQL	SpkVal	SpkRefVal %REC	C LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual	
Naphthalene	ND	660							
2-Methylnaphthalene	ND	660							
Acenaphthylene	ND	660							
Acenaphthene	ND	660							
Fluorene	ND	660							
Phenanthrene	ND	660							
Anthracene Fluoranthene	ND	660							
Pyrene	ND	660							
Benzo(a)anthracene	ND ND	660 660							
Chrysene	ND	660							
Benzo(b)fluoranthene	ND	660							
Benzo(k)fluoranthene	ND	660							
Benzo(a)pyrene	ND	660							
Indeno(1,2,3-cd)pyrene	ND	660							
Dibenz(a,h)anthracene	ND	660							
Benzo(g,h,i)perylene	ND	660							
Surr: Nitrobenzene-d5	5550		6250	89	54	135			
Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14	5410 5570		6250	87	70	130 139			
Suit. 4- respilentys-u 14	5570		6250	89	59	138			
Laboratory Control Spike		Type L	CS Te	est Code: EPA Me	thod SW82	270C			
File ID: 09051814.D			Ва	atch ID: 22014		Analysis Date:	05/18/2009 21:54		
Sample ID: LCS-22014	Units : µg/K	g	Run ID: M	SD_14_090515A		Prep Date:	05/15/2009		
Analyte	Result	PQL			C LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual	
Acenaphthene	6030	660	6250	96	70	130			
Pyrene	6140	660	6250	98	67	137			
Surr: Nitrobenzene-d5	6020		6250	96	54	135			
Surr: 2-Fluorobiphenyl	5910		6250	94	70	130			
Surr: 4-Terphenyl-d14	5760		6250	92	59	139			
Sample Matrix Spike		Type M		est Code: EPA Me	thod SW82				
File ID: 09051835.D			Ва	atch ID: 22014		•	05/19/2009 10:02		
Sample ID: 09051401-15AMS	Units : µg/K	g	Run ID: M	SD_14_090515A		Prep Date:	05/15/2009		
Analyte	Result	PQL	SpkVal	SpkRefVal %REC	C LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual	
Acenaphthene	5710	660	6250	0 91	58	138			
Pyrene	6000	660	6250	0 96	46	152			
Surr: Nitrobenzene-d5	5580		6250	89	54	135			
Surr: 2-Fluorobiphenyl	5260		6250	84	70	130			
Surr: 4-Terphenyl-d14	5360		6250	86	59	139			
Sample Matrix Spike Duplicate		Type M		est Code: EPA Me	thod SW82				
File ID: 09051836.D			Ва	atch ID: 22014		Analysis Date:	05/19/2009 10:39		
Sample ID: 09051401-15AMSD	Units : µg/K	g .	Run ID: M	SD_14_090515A		Prep Date:	05/15/2009		
Analyte	Result	PQL			C LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual	
Acenaphthene	5630	660		0 90	58	138 570			
Pyrene	5800	660		0 93	46	152 600			
Surr: Nitrobenzene-d5	5150	550	6250	82	54	135			
Surr: 2-Fluorobiphenyl	5090		6250	81	70	130			
Surr: 4-Terphenyl-d14	5220		6250	84	59	139			
Comments:									

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

(Work Order: 09051401								
	Type N	IBLK Te	est Code: EP/	A Meth	nod SW82	70C			
		Ва	tch ID: 22006	3		Analys	sis Date:	05/18/2009 16:20	0
Units : ua/L		Run ID: MS	SD 14 09051	4C		Prep [Date:	05/14/2009	
Result	PQL				LCL(ME)	•		Val %RPD(Limit)	Qua
ND	10	· · · · · · · · · · · · · · · · · · ·							
ND									
ND	10)							
ND									
ND									
ND	10)							
ND									
				86	58	132			
61.1		100		61	47	130			
90.2		100		90	65	136			
	Type L	.CS Te	est Code: EP	A Meth	nod SW82	70C			
		Ba	tch ID: 22006	3		Analys	sis Date:	05/18/2009 16:59	9
Units : µq/L		Run ID: MS	SD 14 09051	4C		Prep [Date:	05/14/2009	
Result	PQL				LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qua
81.9	10	100		82	39	130			
100	10			100	63	140			
95.8				96	58				
96.8									
	Type N				nod SW82			0.7/4.0/0.000.00	•
						•			2
Units : μg/L						•			
Result	PQL	SpkVal	SpkRefVal %	6REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qua
99.9	10		0	99.9	30	139			
108	10		0	108	61				
	Tuno I		ot Code: ED						
	rype n				100 34402		sis Date:	05/18/2009 20:39	9
Units : ua/l						-			-
Result	PQL				LCL(ME)				Qua
108					61	140			
102	. •	100	-	102	58	132		• •	
90.2		100		90	47	130			
		100							
103		100		103	65	136			
	Units: µg/L Result ND	Type N Units: µg/L Result PQL ND 10 Security PQL Result PQL 81.9 10 10.95.8 74.1 96.8 Type N Units: µg/L Result PQL 99.9 10 108 10 109.5 Type N Units: µg/L Result PQL 99.5 108 100	Type MBLK Terms and the second of the seco	Type MBLK	Distail Di	Type MBLK Batch D: 22006	Type MBLK Test Code: EPA Method SW8270C Batch ID: 22006 Analys	Type MBLK Test Code: EPA Method SW8270C Batch ID: 22006 Analysis Date: PQL SpkVal SpkRefVal %REC LCL(ME) UCL(ME) RPDRef ND	Type MBLK Test Code: EPA Method SW8270C Batch ID: 22006 Analysis Date: 05/18/2009 16:24

Comments:

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 29-May-09	(QC Sı	ımmar	y Report			Work Orde 09051401	
Method Blank File ID:		Type M		est Code: EPA atch ID: 21999 \$			e: 05/14/2009 09:51	
Sample ID: MBLK-21999SG	Units: mg/h	(g		D_2_090514C		Prep Date:	05/14/2009	
Analyte	Result	PQL	SpkVal	SpkRefVal %F	REC LCL(ME) UCL(ME) RPDR	efVal %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel TPH-E (ORO), Silica Gel Surr: Nonane, Silica Gel	ND ND 100	5 10	100	1	100 67	156		
	100	T		est Code: EPA				
Laboratory Control Spike File ID:		Type L		est Code: EPA atch ID: 21999 \$			e: 05/14/2009 09:25	
Sample ID: LCS-21999SG	Units : mg/k	(g	Run ID: FI	D_2_090514C		Prep Date:	05/14/2009	
Analyte	Result	PQL	SpkVal	SpkRefVal %F	REC LCL(ME) UCL(ME) RPDR	efVal %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel Surr: Nonane, Silica Gel	93.4 101	5	100 100		93 70 101 67	130 156		
		Type M		est Code: EPA				
Sample Matrix Spike File ID:		i ype iv		est Code. EFA atch ID: 21999 \$			e: 05/14/2009 11:06	
Sample ID: 09051352-02AMS	Units : mg/k	(a		D 2 090514C	50	Prep Date:	05/14/2009	
Analyte	Result	PQL			REC LCL(ME	•	efVal %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel Surr: Nonane, Silica Gel	93.7 101	5	100 100	_	94 51 101 67	141 156		
Sample Matrix Spike Duplicate		Type M	SD To	est Code: EPA	Method SW8	015B / E / SG		
File ID:			Ва	atch ID: 21999 \$	SG	Analysis Dat	e: 05/14/2009 11:31	
Sample ID: 09051352-02AMSD	Units : mg/k	(g	Run ID: FI	D_2_090514C		Prep Date:	05/14/2009	
Analyte	Result	PQL			REC LCL(ME) UCL(ME) RPDR	efVal %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel Surr: Nonane, Silica Gel	95.4 111	5		0 9	95 51 111 67		.74 1.8(40)	-

Comments:

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 29-May-09	(QC Sı	ımmar	y Repor	t				Work Orde 09051401	
Method Blank		Type M	BLK To	est Code: EF	A Met	hod SW80	15B / E /	SG		
File ID:			Ва	atch ID: 220 1	10SG		Analy	/sis Date:	05/15/2009 12:24	
Sample ID: MBLK-22010SG	Units : mg/L		Run ID: FI	D_7_090515	D		Prep	Date:	05/15/2009	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel	ND	0.05								
TPH-E (ORO), Silica Gel	ND	0.5								
Surr: Nonane, Silica Gel	99.4		100		99	57	147			
Laboratory Control Spike		Type L	CS To	est Code: EF	A Met	hod SW80	15B / E /	SG		
File ID:			Ва	atch ID: 2201	10SG		Analy	sis Date:	05/15/2009 11:57	
Sample ID: LCS-22010SG	Units : mg/L		Run ID: FI	D_7_090515	D		Prep	Date:	05/15/2009	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel	2.69	0.05	2.5		108	67	130			
Surr: Nonane, Silica Gel	98.7		100		99	57	147			
Sample Matrix Spike		Type M	is To	est Code: EF	A Met	hod SW80	15B / E /	SG		
File ID:			Ва	atch ID: 220 1	10SG		Analy	/sis Date:	05/15/2009 13:17	
Sample ID: 09051421-21AMS	Units : mg/L		Run ID: FI	D_7_090515	D		Prep	Date:	05/15/2009	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel	2.71	0.05	2.5	0	108	49	150			
Surr: Nonane, Silica Gel	77.9		100		78	57	147			
Sample Matrix Spike Duplicate		Type M	ISD T	est Code: EF	A Met	hod SW80	15B / E /	SG		
File ID:			Ва	atch ID: 2201	10SG		Analy	sis Date:	05/15/2009 13:44	
Sample ID: 09051421-21AMSD	Units : mg/L		Run ID: FI	D_7_090515	D		Prep	Date:	05/15/2009	
Analyte	Result	PQL				LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual
TPH-E (DRO), Silica Gel	2.58	0.05		. 0	103	49	150	2.70		
Surr: Nonane, Silica Gel	70	. , ,	100		70	57	147		. ,	

Comments:

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 29-May-09	Ç	C S	Sui	nmar	y Repor	t			Work Orde 09051401	
Method Blank File ID: 09051507.D		Туре	MB		est Code: El				05/15/2009 13:06	
Sample ID: MBLK MS08S2001B	Units : mg/Kg	9	R	un ID: M	SD_08_090	515B		Prep Date:	05/15/2009	
Analyte	Result	PQL		SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	ND 0.193 0.221 0.178		1	0.2 0.2 0.2		96 111 89	70 70 70	130 130 130		
Laboratory Control Spike		Туре	LCS	S Te	est Code: El	PA Meti	nod SW80	15B		
File ID: 09051511.D				Ва	atch ID: MS()8S200 ⁻	1B	Analysis Date:	05/15/2009 14:44	
Sample ID: GLCS MS08S2001B	Units : mg/Kg	9	R	un ID: M	SD_08_090	515B		Prep Date:	05/15/2009	
Analyte	Result	PQL		SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	16.2 0.372 0.439 0.362		2	16 0.4 0.4 0.4		101 93 110 90	70 70 70 70	139 130 130 130		
Sample Matrix Spike		Type	MS	Te	est Code: El	PA Meti	nod SW80	15B		
File ID: 09051512.D		,,,			atch ID: MS				05/15/2009 15:09	
Sample ID: 09051401-09AGS	Units : mg/Kg	9	R	un ID: M \$	SD_08_090	515B		Prep Date:	05/15/2009	
Analyte	Result	PQL		SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	15.3 0.378 0.434 0.359		2	16 0.4 0.4 0.4	0	95 95 109 90	57 70 70 70	147 130 130 130		
Sample Matrix Spike Duplicate	•	Туре	MS	D Te	est Code: El	PA Meti	nod SW80	15B		
File ID: 09051513.D				Ва	atch ID: MS()8S200 ⁻	1B	Analysis Date:	05/15/2009 15:33	
Sample ID: 09051401-09AGSD	Units: mg/Kg	9	R		SD_08_090			Prep Date:	05/15/2009	
Analyte	Result	PQL		SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	15.3 0.38 0.434 0.357		2	16 0.4 0.4 0.4	0	96 95 108 89	57 70 70 70	147 15.2 130 130 130	0.4(20)	

Comments:

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 29-May-09		(QC Si	ummar	y Report					Work Orde 09051401	
Method Bla	nk		Type N	IBLK Te	est Code: EPA	Metho	od SW80	15B			
File ID: D:\MS	DCHEM\MS12\DATA\090518	\09051804.D		Ва	atch ID: MS12	W0518	В	Analys	is Date:	05/18/2009 10:17	
Sample ID:	MBLK MS12W0518B	Units : mg/L		Run ID: MS	SD_12_09051	8A		Prep D	ate:	05/18/2009	
Analyte		Result	PQL				CL(ME)	UCL(ME) F	RPDRef\	/al %RPD(Limit)	Qual
TPH-P (GRO)		ND	0.05								
Surr: 1,2-Dichl	oroethane-d4	0.00947	0.00	0.01		95	70	130			
Surr: Toluene-		0.0102		0.01		102	70	130			
Surr: 4-Bromo	fluorobenzene	0.00978		0.01		98	70	130			
Laboratory	Control Spike		Type L	CS Te	est Code: EPA	Metho	od SW80	15B			
	DCHEM\MS12\DATA\090518	N09051803.D		Ва	atch ID: MS12	W0518	В	Analys	is Date:	05/18/2009 09:55	
Sample ID:	GLCS MS12W0518B	Units : mg/L		Run ID: MS	SD_12_09051	8A		Prep D	ate:	05/18/2009	
Analyte		Result	PQL				.CL(ME)	UCL(ME) F	RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO)		0.407	0.05			102	70	130			
Surr: 1,2-Dichl	oroethane-d4	0.00947		0.01		95	70	130			
Surr: Toluene-		0.01		0.01		100	70	130			
Surr: 4-Bromo	fluorobenzene	0.00981		0.01		98	70	130			
Sample Mat	rix Spike		Type N	IS Te	est Code: EPA	Metho	od SW80	15B			
File ID: D:\MS	DCHEM\MS12\DATA\090518	N09051823.D		Ba	atch ID: MS12	W0518	В	Analys	is Date:	05/18/2009 17:32	
Sample ID:	09051401-01AGS	Units : mg/L		Run ID: MS	SD_12_09051	8A		Prep D	ate:	05/18/2009	
Analyte		Result	PQL	SpkVal	SpkRefVal %	REC L	.CL(ME)	UCL(ME) F	RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO)		2.16	0.25	2	0.09682	103	58	135			
Surr: 1,2-Dich	oroethane-d4	0.0456		0.05		91	70	130			
Surr: Toluene-		0.0506		0.05		101	70	130			
Surr: 4-Bromo	fluorobenzene	0.0501		0.05		100	70	130			
Sample Mat	rix Spike Duplicate		Type N	ISD Te	est Code: EPA	Metho	od SW80	15B			
File ID: D:\MS	DCHEM\MS12\DATA\090518	3\09051824.D		Ва	atch ID: MS12	W0518	В	Analys	is Date:	05/18/2009 17:55	
Sample ID:	09051401-01AGSD	Units: mg/L		Run ID: MS	SD_12_09051	8A		Prep D	ate:	05/18/2009	
Analyte		Result	PQL	SpkVal	SpkRefVal %	REC L	CL(ME)	UCL(ME) F	RPDRef	Val %RPD(Limit)	Qual
TPH-P (GRO)		2.26	0.25	2	0.09682	108	58	135	2.16	1 4.4(20)	
Surr: 1,2-Dich		0.0445		0.05		89	70	130			
Surr: Toluene-		0.0508		0.05		102	70	130			
Surr: 4-Bromo	fluorobenzene	0.0511		0.05		102	70	130			
Comments				T-+ TV-1							

Comments:

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 29-May-09	<u>C</u>	Work Order: 09051401						
Method Blank		Type MB L	K Test Code: E	PA Meth	od SW826	0B		
File ID: 09051507.D			Batch ID: MS	08S2001	Α	Analysis Date	e: 05/15/2009 13:06	
Sample ID: MBLK MS08S2001A	Units : µg/Kg	Ru	n ID: MSD_08_090	515B		Prep Date:	05/15/2009	
Analyte	Result				LCL(ME) L	JCL(ME) RPDRe	efVal %RPD(Limit)	Qua
Dichlorodifluoromethane	ND	20	- p					
Chloromethane	ND	40						
Vinyl chloride	ND	20						
Chloroethane	ND	20						
Bromomethane	ND	40						
Trichlorofluoromethane	ND	20						
1,1-Dichloroethene	ND	20						
Dichloromethane	ND	40						
trans-1,2-Dichloroethene	ND	20						
Methyl tert-butyl ether (MTBE)	ND	5						
1,1-Dichloroethane	ND	20						
cis-1,2-Dichloroethene	ND	20						
Bromochloromethane	ND	20						
Chloroform	ND	20						
2,2-Dichloropropane 1,2-Dichloroethane	ND	20						
1,1,1-Trichloroethane	ND ND	20 20						
1,1-Dichloropropene	ND ND	20 20						
Carbon tetrachloride	ND	20						
Benzene	ND	5						
Dibromomethane	ND	20						
1,2-Dichloropropane	ND	20						
Trichloroethene	ND	20						
Bromodichloromethane	ND	20						
cis-1,3-Dichloropropene	ND	20						
trans-1,3-Dichloropropene	ND	20						
1,1,2-Trichloroethane	ND	20						
Toluene	ND	5						
1,3-Dichloropropane	ND	20						
Dibromochloromethane	ND	20						
1,2-Dibromoethane (EDB)	ND	40						
Tetrachloroethene	ND	20						
1,1,1,2-Tetrachloroethane Chlorobenzene	ND ND	20						
Ethylbenzene	ND ND	20 5						
m,p-Xylene	ND	5						
Bromoform	ND	20						
Styrene	ND	20						
o-Xylene	ND	5						
1,1,2,2-Tetrachloroethane	ND	20						
1,2,3-Trichloropropane	ND	40						
Isopropylbenzene	ND	20						
Bromobenzene	ND	20						
n-Propylbenzene	ND	20						
4-Chlorotoluene	ND	20						
2-Chlorotoluene	ND	20						
1,3,5-Trimethylbenzene	ND	20						
tert-Butylbenzene	ND	20						
1,2,4-Trimethylbenzene sec-Butylbenzene	ND	20						
1.3-Dichlorobenzene	ND	20						
1,4-Dichlorobenzene	ND ND	20 20						
4-Isopropyltoluene	ND ND	20 20						
1,2-Dichlorobenzene	ND ND	20 20						
n-Butylbenzene	ND	20						
1,2-Dibromo-3-chloropropane (DBCP)	ND	60						
1,2,4-Trichlorobenzene	ND	40						
Naphthalene	ND	40						
Hexachlorobutadiene	ND	40						
1,2,3-Trichlorobenzene	ND	40						
Surr: 1,2-Dichloroethane-d4	193	-	200	96	70	130		
Surr: Toluene-d8	221		200	111	70	130		
Surr: 4-Bromofluorobenzene	178		200	89	70 ´	130		

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 29-May-09	(QC Su	ımmary	y Repor	t				Work Orde 09051401	
Laboratory Control Spike File ID: 09051508.D		Type LC		est Code: EF				is Date:	05/15/2009 13:30	
Sample ID: LCS MS08S2001A	Units : µg/Kg	ı	Run ID: MS	SD_08_0905	15B		Prep D	ate: (05/15/2009	
Analyte	Result	PQL				LCL(ME)	•		al %RPD(Limit)	Qual
1,1-Dichloroethene	131	20	400		33	10	143			
Methyl tert-butyl ether (MTBE)	403	10	400		101	65	144			
Benzene	425	10	400		106	70	136			
Trichloroethene	429	20	400		107	70	138			
Toluene	425	10	400		106	70	135			
Chlorobenzene	415	20	400		104	70	135			
Ethylbenzene	415	10	400		104	70	137			
m,p-Xylene	432	10	400		108	70	143			
o-Xylene	446	10	400		111	70	143			
Surr: 1,2-Dichloroethane-d4	398	10	400		99.6	70	130			
Surr: Toluene-d8	410		400		103	70	130			
Surr: 4-Bromofluorobenzene	375		400		94	70	130			
Sample Matrix Spike		Type M		est Code: EF						
File ID: 09051509.D		,,		atch ID: MS0				is Date:	05/15/2009 13:55	
Sample ID: 09051401-09AMS	Units : μg/K ç	2		SD_08_0905			Prep D		05/15/2009	
Analyte	Result	PQL				LCL(ME)	UCL(ME) F	RPDRefV	al %RPD(Limit)	Qual
1,1-Dichloroethene	150	20	400	0	38	10	143			
Methyl tert-butyl ether (MTBE)	340	10	400	0	85	42	156			
Benzene	407	10	400	Ö	102	57	143			
Trichloroethene	404	20	400	0	101	52	154			
Toluene	426	10	400	ő	107	53	142			
Chlorobenzene	408	20	400	ő	102	55	142			
Ethylbenzene	418	10	400	ő	104	56	145			
m,p-Xylene	428	10	400	ő	107	53	154			
o-Xylene	430	10	400	ő	108	60	148			
Surr: 1,2-Dichloroethane-d4	369	10	400	Ū	92	70	130			
Surr: Toluene-d8	427		400		107	70	130			
Surr: 4-Bromofluorobenzene	413		400		103	70	130			
Sample Matrix Spike Duplicate		Type M	SD Te	est Code: EF	A Met	hod SW82	260B			
File ID: 09051510.D		.,,,,		atch ID: MS0				is Date:	05/15/2009 14:19	
Sample ID: 09051401-09AMSD	Units : μg/Kg	1		SD 08_0905			Prep D	ate:	05/15/2009	
Analyte	Result	PQL				LCL(ME)	UCL(ME) F	RPDRefV	al %RPD(Limit)	Qual
1,1-Dichloroethene	146	20	400	0	37	10	143	150.1	2.5(20)	
Methyl tert-butyl ether (MTBE)	374	10	400	0	93	42	156	339.7	9.6(20)	
Benzene	398	10	400	0	99	57	143	406.5	2.1(20)	
Trichloroethene	398	20	400	Ō	99.5	52	154	404.2	1.5(20)	
Toluene	401	10	400	Ö	100	53	142	426.5		
Chlorobenzene	393	20	400	0	98	55	142	408.2		
Ethylbenzene	401	10	400	Ö	100	56	145	417.7		
m,p-Xylene	416	10	400	Ö	104	53	154	427.9		
o-Xylene	422	10	400	Ö	106	60	148	430.1		
Surr: 1,2-Dichloroethane-d4	399		400	· ·	99.7	70	130		- • • •	
Surr: Toluene-d8	410		400		102	70	130			
Surr: 4-Bromofluorobenzene	377		400		94	70	130			
	•					· -				

Comments:

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 29-May-09	(Work Order: 09051401						
Method Blank File ID: D:\MSDCHEM\MS12\DATA\09051	8\09051804 D	Type N	IBLK	Test Code: E				05/18/2009 10:17	
Sample ID: MBLK MS12W0518A	Units: µg/L		Run IF	Datcir ID. MS 0: MSD_12_090		,	Prep Date:	05/18/2009	
Analyte	Result	PQL				CL(ME) HO	-	√al %RPD(Limit)	Qual
Dichlorodifluoromethane			·	vai Spriteiva	1 /6INLO	LOL(IVIL) O	DE(IVIE) IXI DIXEI	vai 7014 D(Liitit)	
Chloromethane	ND ND	1							
Vinyl chloride	ND	1							
Chloroethane	ND	1							
Bromomethane	ND	2	2						
Trichlorofluoromethane	ND	1							
1,1-Dichloroethene Dichloromethane	ND	1	-						
trans-1,2-Dichloroethene	ND ND	2							
Methyl tert-butyl ether (MTBE)	ND	0.5							
1,1-Dichloroethane	ND	1							
cis-1,2-Dichloroethene	ND	1							
Bromochloromethane	ND	1	l						
Chloroform	ND	1							
2,2-Dichloropropane	ND	1							
1,2-Dichloroethane 1,1,1-Trichloroethane	ND ND	1	l I						
1,1-Dichloropropene	ND		l I						
Carbon tetrachloride	ND								
Benzene	ND	0.5	5						
Dibromomethane	ND	•	I						
1,2-Dichloropropane	ND	1	l						
Trichloroethene	ND								
Bromodichloromethane cis-1,3-Dichloropropene	ND ND		l I						
trans-1,3-Dichloropropene	ND ND		l I						
1,1,2-Trichloroethane	ND								
Toluene	ND	0.5	5						
1,3-Dichloropropane	ND	•	l						
Dibromochloromethane	ND	1							
1,2-Dibromoethane (EDB)	ND	2							
Tetrachloroethene 1,1,1,2-Tetrachloroethane	ND ND								
Chlorobenzene	ND								
Ethylbenzene	ND	0.5	•						
m,p-Xylene	ND	0.5							
Bromoform	ND	1							
Styrene	ND								
o-Xylene 1,1,2,2-Tetrachloroethane	ND	0.5							
1,2,3-Trichloropropane	ND ND	2							
Isopropylbenzene	ND	,							
Bromobenzene	ND		1						
n-Propylbenzene	ND		l						
4-Chlorotoluene	ND	•	l						
2-Chlorotoluene	ND		l						
1,3,5-Trimethylbenzene tert-Butylbenzene	ND ND		l 1						
1,2,4-Trimethylbenzene	ND ND		! 						
sec-Butylbenzene	ND								
1,3-Dichlorobenzene	ND	-	١						
1,4-Dichlorobenzene	ND	1	İ						
4-Isopropyltoluene	ND	1	ļ						
1,2-Dichlorobenzene n-Butylbenzene	ND	1	l 1						
1,2-Dibromo-3-chloropropane (DBCP)	ND ND		I 3						
1,2,4-Trichlorobenzene	ND ND	2							
Naphthalene	ND		2						
Hexachlorobutadiene	ND		2						
1,2,3-Trichlorobenzene	ND		2						
Surr: 1,2-Dichloroethane-d4	9.47			10	95	70	130		
Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	10.2			10	102	70 70	130		
ouit. 4-bromonuoropenzene	9.78			10	98	70	130		

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 29-May-09	(QC S	ummary	y Repor	t				Work Ord 09051401	
Laboratory Control Spike		Type L	CS Te	est Code: EF	A Met	hod SW82	:60B			
File ID: D:\MSDCHEM\MS12\DATA\09051	8\09051802.D		Ba	atch ID: MS1	2W051	8A	Analy	sis Date:	05/18/2009 09:32	
Sample ID: LCS MS12W0518A	Units : µg/L		Run ID: MS	SD_12_0905	518A		Prep I	Date:	05/18/2009	
Analyte	Result	PQL				LCL(ME)			/al %RPD(Limit)	Qual
1,1-Dichloroethene	8.08	1			81	80	120			
Methyl tert-butyl ether (MTBE)	8.67	0.5			87	62	136			
Benzene	8.48	0.5			85	70	130			
Trichloroethene	8.28	0.5			83	70	130			
Toluene	8.47	0.5			85	80	120			
Chlorobenzene	8.86	1			89	70	130			
Ethylbenzene	8.94	0.5			89	80	120			
m,p-Xylene	8.46	0.5			85	70	130			
o-Xylene	8.51	0.5			85	70	130			
Surr: 1,2-Dichloroethane-d4	9.05	0.0	10		91	70	130			
Surr: Toluene-d8	10.3		10		103	70	130			
Surr: 4-Bromofluorobenzene	10.3		10		103	70	130			
Sample Matrix Spike		Type N		est Code: El						
File ID: D:\MSDCHEM\MS12\DATA\09051	8\09051821.D	Type II		atch ID: MS1				sis Date:	05/18/2009 16:46	
Sample ID: 09051401-01AMS	Units : µg/L			SD_12_090			Prep		05/18/2009	
Analyte	Result	PQL				LCL(ME)	•		/al %RPD(Limit)	Qual
1,1-Dichloroethene	43.1	2.5		0	86	60	130			
Methyl tert-butyl ether (MTBE)	47.2	1.3		0	94	56	141			
Benzene	45.9	1.3		0	92	67	130			
Trichloroethene	43.5	2.5		0	87	69	130			
Toluene	44.8	1.3		0	90	66	130			
Chlorobenzene	47.1	2.5		0	94	70	130			
Ethylbenzene	47.3	1.3		ő	95	68	130			
m,p-Xylene	45.1	1.3		0	90	64	130			
o-Xylene	45.7	1.3		0	91	70	130			
Surr: 1,2-Dichloroethane-d4	44.2		50	·	88	70	130			
Surr: Toluene-d8	51.3		50		103	70	130			
Surr: 4-Bromofluorobenzene	51.5		50		103	70	130			
Sample Matrix Spike Duplicate		Type N	ISD Te	est Code: El	PA Met	hod SW82	260B			
File ID: D:\MSDCHEM\MS12\DATA\09051	8\09051822.D	•	Ва	atch ID: MS1	2W051	I8A	Analy	sis Date:	05/18/2009 17:09	
Sample ID: 09051401-01AMSD	Units : µg/L		Run ID: MS	SD_12_090	518A		Prep	Date:	05/18/2009	
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual
1,1-Dichloroethene	42.6	2.5	5 50	0	85	60	130	43.06	5 1.1(20)	
Methyl tert-butyl ether (MTBE)	48.5	1.3		0	97	56	141	47.15	5 2.8(20)	
Benzene	44.9	1.3		0	90	67	130	45.92		
Trichloroethene	42.7	2.5		0	85	69	130	43.47	7 1.7(20)	
Toluene	44.2	1.3		0	88	66	130	44.77	7 1.2(20)	
Chlorobenzene	46.9	2.5		0	94	70	130	47.12		
Ethylbenzene	46.4	1.3		0	93	68	130	47.2		
m,p-Xylene	44.5	1.3		0	89	64	130	45.06		
o-Xylene	44.9	1.3	50	0	90	70	130	45.73	3 1.8(20)	
Surr: 1,2-Dichloroethane-d4	43.7		50		87	70	130			
Surr: Toluene-d8	51.9		50		104	70	130			
Surr: 4-Bromofluorobenzene	52.4		50		105	70	130			

Comments

CHAIN-OF-CUSTODY RECORD

AMENDED#2

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Due By: 5:00 PM On: 21-May-2009 Report Attention **Phone Number EMail Address** Larry Flora (916) 921-0600 x lflora@adreg.com David Lambert (916) 921-0600 x dlambert@adreg.com

EDD Required: No

4°C

Sampled by: Larry Flora

Cooler Temp Samples Received

WorkOrder: ADR09051401

Date Printed 14-May-2009 27-May-2009

ADR Envir. Group 1760 Creekside Oak Dr. #120

Sacramento, CA 95833

PO: GPP

Client:

Client's COC #: 024843

OC Level v C2

Job: BHV101-08-011 CA

A1l	A 11 4									Reques	ted Tests				
Alpha Sample ID	Client Sample ID	Matri	Collection x Date	No. of Alpha	Bottles Sub	TAT	BNA_S	BNA_W	COMPOSIT E	TPH/E_SG_ S	TPH/E_SG_ W	TPH/P_S	TPH/P_W	voc_s	Sample Remarks
ADR09051401-01A		AQ	05/12/09 09:30	10	0	5		PNA/PAH+2- Methylnaphth alene	1		Silica Gel		GAS-C		Report w/ silica gel only. 1 unpreserved voa received without a label deciphered through process of elimination.
ADR09051401-02A	STK P-3 A	so	05/12/09 14:00	4	0	5			Composite						(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-03A	STK P-3 B	so	05/12/09 14:00	4	0	5			Composite				1 T A T T T T T T T T T T T T T T T T T		(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-04A		SO	05/12/09 14:00	4	0	5			Composite				The state of the s		(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-05A	STK P-3 D	so	05/12/09 14:00	4	0	5			Composite	The state of the s					(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-06A	Composite of STK P-3 A, B, C, and D	so	05/12/09 14:00	1	0	5	PNA/PAH+2			Silica Gel		GAS-C		8260/MTBE_ C	Report w/ silica gel only.

Methylnaphth

PNA/PAH+2

Methylnaphth

Comments:

Security seals intact. Frozen ice. Amended 5/22/09 @ 8:14: Added comment that sample -15A was logged in per sample containers. EA Amended 5/27/09 @ 8:45: Per email from Larry via Reyna added 8260 extended list plus 2-methylnaphthalene to all samples; and added David Lambert as CC. EA

Silica Gel

Logged in by:

ADR09051401-07A TK EXC 21 ft

Signature

SO

05/12/09

09:45

Print Name

Company Alpha Analytical, Inc.

GAS-C

8260/MTBE_

Date/Time 5-27-097:03

(1) Geoprobe (3) EnCores

Report w/ silica gel only.

CHAIN-OF-CUSTODY RECORD

AMENDED.#2

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

WorkOrder: ADR09051401

Client:

ADR Envir. Group 1760 Creekside Oak Dr. #120

Sacramento, CA 95833

Client's COC #: 024843

	TEL: (775) 355-1044 FAX	(a) (775) 355-0406	Report Due By: 5:00 PM On: 21-May-2009
Report Attention	Phone Number	EMail Address	
Larry Flora	(916) 921-0600 x	lflora@adreg.com	
David Lambert	(916) 921-0600 x	dlambert@adreg.com	EDD Required : No

Sampled by: Larry Flora

PO: GPP

BHV101-08-011 CA

Cooler Temp 4°C

Samples Received 14-May-2009

Date Printed 27-May-2009

QC Level: S3

Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Alpha	Client		.					Requ	uested Tests	
•	Client		Collection	No. of	f Bottles	5	voc_w			
Sample ID	Sample ID	Matri	x Date	Alpha	Sub	TAT				Sample Remarks
ADR09051401-01A	TK EXC-Water	AQ	05/12/09 09:30	10	0	5	8260/MTBE_ C			Report w/ silica gel only. unpreserved voa received without a label deciphered through process of elimination.
ADR09051401-02A	STK P-3 A	so	05/12/09 14:00	4	0	5				(3) 5g EnCore (1) Geoprob Report w/ silica gel only.
ADR09051401-03A		so	05/12/09 14:00	4	0	5				(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-04A	STK P-3 C	so	05/12/09 14:00	4	0	5				(3) 5g EnCore (1) Geoprobe Report w/ silica
ADR09051401-05A	STK P-3 D	SO	05/12/09 14:00	4	0	5				(3) 5g EnCore (1) Geoprobe Report w/ silica
ADR09051401-06A	Composite of STK P-3 A, B, C, and D	so	05/12/09 14:00	1	0	5				Report w/ silica gel only.
ADR09051401-07A	TK EXC 21 ft	so	05/12/09 09:45	1	0	5				(1) Geoprobe (3) EnCores Report w/ silica gel only.

Comments:

Security seals intact. Frozen ice. Amended 5/22/09 @ 8:14: Added comment that sample -15A was logged in per sample containers. EA Amended 5/27/09 @ 8:45: Per email from Larry via Reyna added 8260 extended list plus 2-methylnaphthalene to all samples : and added David Lambert as CC. EA

Signature **Print Name** Company Date/Time Logged in by: Alpha Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

CA

AMENDED#2

WorkOrder: ADR09051401

Report Due By: 5:00 PM On: 21-May-2009

Client:

ADR Envir. Group 1760 Creekside Oak Dr. #120 Report Attention Phone Number EMail Address

Larry Flora (916) 921-0600 x lflora@adreg.com

David Lambert (916) 921-0600 x dlambert@adreg.com

EDD Required : No

Sampled by: Larry Flora

Cooler Temp

Samples Received 14-May-2009 Date Printed 27-May-2009

Sacramento, CA 95833

PO: GPP

QC Level: S3

Client's COC #: 024843

Job: BHV101-08-011 CA

= Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Almha	Oli 4		.							Request	ed Tests				
Alpha	Client		Collection	No. of	f Bottles	S	BNA_S	BNA_W	COMPOSIT	TPH/E_SG_	TPH/E_SG_	TPH/P_S	TPH/P_W	voc_s	
Sample ID	Sample ID	Matri	x Date	Alpha	Sub	TAT			E	S	w				Sample Remarks
ADR09051401-08A	TK SW-1 17ft	SO	05/12/09 10:15	1	0	5	PNA/PAH+2 - Methylnaphth alene			Silica Gel		GAS-C		8260/MTBE_ C	(1) Geoprobe (3) EnCores Report w/ silica gel only.
ADR09051401-09A	TK SW-2 17ft	so	05/12/09 10:17	1	0	5	PNA/PAH+2 - Methylnaphth alene			Silica Gel		GAS-C		8260/MTBE_ C	(1) Geoprobe (3) EnCores Report w/ silica gel only.
ADR09051401-10A	TK SW-3 17ft	SO	05/12/09 11:15	1	0	5	PNA/PAH+2 - Methylnaphth alene			Silica Gel		GAS-C		8260/MTBE_ C	(1) Geoprobe (3) EnCores Report w/ silica gel only.
ADR09051401-11A	TK SW-4 17ft	SO	05/12/09 11:20	1	0	5	PNA/PAH+2 - Methylnaphth alene			Silica Gel		GAS-C		8260/MTBE_ C	(1) Geoprobe (3) EnCores Report w/ silica gel only.
ADR09051401-12A	TK SW-5 17ft	SO	05/12/09 11:45	1	0	5	PNA/PAH+2 - Methylnaphth			Silica Gel		GAS-C		8260/MTBE_ C	(1) Geoprobe (3) EnCores Report w/ silica gel only.
ADR09051401-13A	TK SW-6 17ft	SO	05/12/09 12:00	1	0	5	PNA/PAH+2 - Methylnaphth alene			Silica Gel		GAS-C		8260/ M TBE_ C	(1) Geoprobe (3) EnCores Report w/ silica gel only.

Comments:

Security seals intact. Frozen ice. Amended 5/22/09 @ 8:14: Added comment that sample -15A was logged in per sample containers. EA Amended 5/27/09 @ 8:45: Per email from Larry via Reyna added 8260 extended list plus 2-methylnaphthalene to all samples: and added David Lambert as CC. EA

Logged in by:

Signature Odce

Elizabeth Adcox

Company

Alpha Analytical, Inc.

5:27.09 9:03

Date/Time

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Phone Number **EMail Address** Larry Flora (916) 921-0600 x lflora@adreg.com **David Lambert** (916) 921-0600 x dlambert@adreg.com

WorkOrder: ADR09051401

Report Due By: 5:00 PM On: 21-May-2009

AMENDE

EDD Required: No

4°C

Sampled by : Larry Flora

Cooler Temp Samples Received

Date Printed 14-May-2009 27-May-2009

Sacramento, CA 95833

1760 Creekside Oak Dr. #120

PO: GPP

Client:

Client's COC #: 024843

ADR Envir. Group

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

BHV101-08-011 CA

										Reques	ted Tests				
Alpha	Client	C	Collection	No. o	f Bottle	S	BNA_S	BNA_W	COMPOSIT	TPH/E_SG_	TPH/E_SG_	TPH/P_S	TPH/P_W	voc_s	
Sample ID	Sample ID	Matrix	Date	Alpha	Sub	TAT			E	S	w				Sample Remarks
ADR09051401-14A	TK SW-7 17ft	SO	05/12/09 13:02	1	0	5	PNA/PAH+2 - Methylnaphth alene			Silica Gel		GAS-C		8260/MTBE_ C	(1) Geoprobe (3) EnCores Report w/ silica gel only.
ADR09051401-15A	TK SW-8 17ft	SO (05/12/09 13:05	1	0	5	PNA/PAH+2 - Methylnaphth alene			Silica Gel		GAS-C		8260/MTBE_ C	(1) Geoprobe (3) EnCores Report w/ silica gel only. Logged in per sample ID on sample containers.

Comments:

Security seals intact. Frozen ice. Amended 5/22/09 @ 8:14: Added comment that sample -15A was logged in per sample containers. EA Amended 5/27/09 @ 8:45: Per email from Larry via Reyna added 8260 extended list plus 2-methylnaphthalene to all samples: and added David Lambert as CC. EA

Logged in by:

Signature

Print Name

Company Alpha Analytical, Inc. Date/Time

CHAIN-OF-CUSTODY RECORD

CA

AMENDED

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Phone Number

Client: Report Attention
ADR Envir. Group

EMail Address

Larry Flora (916) 921-0600 x

lflora@adreg.com

EDD Required: No

Sampled by : Larry Flora

WorkOrder: ADR09051401

Report Due By: 5:00 PM On: 21-May-2009

Cooler Temp

Samples Received 14-May-2009 Date Printed
22-May-2009

Sacramento, CA 95833

1760 Creekside Oak Dr. #120

PO: GPP

Client's COC #: 024843

343 Job: BHV101-08-011 CA

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

										Reques	ted Tests				
Alpha	Client	(Collection	No. of	Bottles	•	BNA_S	BNA_W	I	TPH/E_SG_	TPH/E_SG_	TPH/P_S	TPH/P_W	voc_s	-
Sample ID	Sample ID	Matrix	Date	Alpha	Sub	TAT			E	S	W				Sample Remarks
ADR09051401-01A	TK EXC-Water	AQ	05/12/09 09:30	10	0	5		PNA/PAH			Silica Gel		GAS-C		Report w/ silica gel only. 1 unpreserved voa received without a label deciphered through process of elimination.
ADR09051401-02A	STK P-3 A	so	05/12/09 14:00	4	0	5			Composite						(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-03A	STK P-3 B	so	05/12/09 14:00	4	0	5			Composite						(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-04A	STK P-3 C	so	05/12/09 14:00	4	0	5			Composite						(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-05A	STK P-3 D	so	05/12/09 14:00	4	0	5			Composite						(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-06A	Composite of STK P-3 A, B, C, and D	so	05/12/09 14:00	1	0	5	PNA/PAH			Silica Gel		GAS-C		8260/MTBE_ Cs	Report w/ silica gel only.
ADR09051401-07A	TK EXC 21 ft	so	05/12/09 09:45	4	0	5	PNA/PAH			Silica Gel		GAS-C		8260/MTBE_ Cs	(1) Geoprobe (3) EnCores Report w/ silica gel only.

Comments:

Security seals intact. Frozen ice. Amended 5/22/09 @ 8:14: Added comment that sample -15A was logged in per sample containers. EA:

Logged in by: Inabeth

Signature

Print Name

Elizabeth Adcox

Company

Alpha Analytical, Inc.

5.22.09 8:24

Date/Time

CHAIN-OF-CUSTODY RECORD

CA

AMENDED

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

EMail Address

lflora@adreg.com

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention Phone Number

Larry Flora (916) 921-0600 x

EDD Required : No

D Ittequates . I to

Sampled by : Larry Flora

Cooler Temp Samples Received

4 °C 14-May-2009

WorkOrder: ADR09051401

Report Due By: 5:00 PM On: 21-May-2009

Date Printed
22-May-2009

Sacramento, CA 95833

1760 Creekside Oak Dr. #120

ADR Envir. Group

PO: GPP

Client:

FO. GFF

Client's COC #: 024843

24843

b: BHV101-08-011 CA

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Alpha	Client		Collection	No of	f Bottle:	•	V00 W	 Requ	ested Tests	_
Sample ID	Sample ID		x Date	Alpha	Sub	TAT	voc_w			Sample Remarks
ADR09051401-01A		AQ	05/12/09 09:30	10	0	5	8260/MTBE_ Cs			Report w/ silica gel only. 1 unpreserved voa received without a label deciphered through process of elimination.
ADR09051401-02A	STK P-3 A	so	05/12/09 14:00	4	0	5				(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-03A	STK P-3 B	so	05/12/09 14:00	4	0	5				(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-04A	STK P-3 C	SO	05/12/09 14:00	4	0	5				(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-05A	STK P-3 D	SO	05/12/09 14:00	4	0	5				(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-06A	Composite of STK P-3 A, B, C, and D	so	05/12/09 14:00	1	0	5				Report w/ silica gel only.
ADR09051401-07A	TK EXC 21 ft	so	05/12/09 09:45	4	0	5				(1) Geoprobe (3) EnCores Report w/ silica gel only.

Comments:

Security seals intact. Frozen ice. Amended 5/22/09 @ 8:14: Added comment that sample -15A was logged in per sample containers. EA:

Signature Print Name Company Date/Time

Logged in by: Cnabeth Cdcox Elizabeth Adcox Alpha Analytical, Inc. 5.22-09 8.24

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Client: ADR Envir. Group

1760 Creekside Oak Dr. #120

Report Attention **Phone Number EMail Address** Larry Flora (916) 921-0600 x lflora@adreg.com

EDD Required: No

Sampled by : Larry Flora

WorkOrder: ADR09051401

Cooler Temp 4°C

Samples Received 14-May-2009

AMENDE

Report Due By: 5:00 PM On: 21-May-2009

Date Printed 22-May-2009

Sacramento, CA 95833

PO: GPP

Client's COC #: 024843

BHV101-08-011 CA

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Alpha	Client		• " "							Reques	ted Tests				
-		•	Collection	No. of	Bottles	3	BNA_S	BNA_W	COMPOSIT	TPH/E_SG_	TPH/E_SG_	TPH/P_S	TPH/P_W	voc_s	
Sample ID	Sample ID	Matrix	Date	Alpha	Sub	TAT			E	S	w				Sample Remarks
ADR09051401-08A	TK SW-1 17ft	SO	05/12/09 10:15	4	0	5	PNA/PAH			Silica Gel		GAS-C		8260/MTBE_ Cs	(1) Geoprobe (3) EnCores Report w/ silica gel only
ADR09051401-09A	TK SW-2 17ft	SO	05/12/09 10:17	4	0	5	PNA/PAH			Silica Gel		GAS-C		8260/MTBE_ Cs	(1) Geoprobe (3) EnCores Report w/ silica gel only
ADR09051401-10A	TK SW-3 17ft	so	05/12/09 11:15	4	0	5	PNA/PAH			Silica Gel		GAS-C		8260/MTBE_ Cs	(1) Geoprobe (3) EnCores Report w/ silica gel only
ADR09051401-11A	TK SW-4 17ft	so	05/12/09 11:20	4	0	5	PNA/PAH			Silica Gel		GAS-C		8260/MTBE_ Cs	(1) Geoprobe (3) EnCores Report w/ silica gel only
ADR09051401-12A	TK SW-5 17ft	so	05/12/09 11:45	4	0	5	PNA/PAH			Silica Gel		GAS-C		8260/MTBE_ Cs	(1) Geoprobe (3) EnCores Report w/ silica gel only
ADR09051401-13A	TK SW-6 17ft	so	05/12/09 12:00	4	0	5	PNA/PAH			Silica Gel		GAS-C		8260/MTBE_ Cs	(1) Geoprobe (3) EnCores Report w/ silica gel only
ADR09051401-14A	TK SW-7 17ft	so	05/12/09 13:02	4	0	5	PNA/PAH			Silica Gel		GAS-C		8260/MTBE_ Cs	(1) Geoprobe (3) EnCores Report w/ silica gel only.
ADR09051401-15A	TK SW-8 17ft	so	05/12/09 13:05	4	0	5	PNA/PAH			Silica Gel		GAS-C		8260/MTBE_ Cs	(1) Geoprobe (3) EnCores Report w/ silica gel only.
															Logged in per sample ID of sample containers.

Comments:

Security seals intact. Frozen ice. Amended 5/22/09 @ 8:14: Added comment that sample -15A was logged in per sample containers. EA:

Logged in by:

Signature

Print Name

Company Alpha Analytical, Inc. Date/Time

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Phone Number

(916) 921-0600 x

Client: Report Attention ADR Envir. Group Larry Flora

1760 Creekside Oak Dr. #120

EMail Address

lflora@adreg.com

WorkOrder: ADR09051401

Report Due By: 5:00 PM On: 21-May-2009

EDD Required: No

Sampled by: Larry Flora

Cooler Temp

Samples Received 4 °C 14-May-2009

Date Printed 14-May-2009

1 of **2**]

Sacramento, CA 95833

PO: GPP

QC Level: S3

Client's COC #: 024843

Job: BHV101-08-011 CA

= Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Alpha	Client		.							Reques	ted Tests				
Sample ID	Sample ID		Collection x Date	No. of Alpha	f Bottles Sub	TAT	BNA_S	BNA_W	COMPOSIT E	TPH/E_S	TPH/E_SG_ W	TPH/E_W	TPH/P_S	TPH/P_W	Sample Remarks
ADR09051401-01A			05/12/09 09:30	10	0	5		PNA/PAH			Silica Gel	TPH/E_C		GAS-C	Report w/ silica gel only. 1 unpreserved voa received without a label deciphered through process of elimination.
	STK P-3 A	so	05/12/09 14:00	4	0	5			Composite						(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-03A		so	05/12/09 14:00	4	0	5			Composite						(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-04A	STK P-3 C	so	05/12/09 14:00	4	0	5			Composite				i		(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-05A	STK P-3 D	SO	05/12/09 14:00	4	0	5			Composite						(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-06A	Composite of STK P-3 A, B, C, and D	so	05/12/09 14:00	1	0	5	PNA/PAH			TPH/E_C			GAS-C		Report w/ silica gel only.
ADR09051401-07A	TK EXC 21 ft	so	05/12/09 09:45	4	0	5	PNA/PAH			TPH/E_C			GAS-C		(1) Geoprobe (3) EnCores Report w/ silica gel only.

Comments:

Logged in by:

Security seals intact. Frozen ice.:

Signature

Company Alpha Analytical, Inc. Date/Time

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

WorkOrder: ADR09051401

Report Due By: 5:00 PM On: 21-May-2009

Client:

ADR Envir. Group

Sacramento, CA 95833

1760 Creekside Oak Dr. #120

Report Attention **Phone Number**

EMail Address

Larry Flora (916) 921-0600 x

lflora@adreg.com

EDD Required: No

Sampled by: Larry Flora

Cooler Temp

Samples Received

Date Printed

PO: GPP

Client's COC #: 024843

BHV101-08-011 CA

4°C 14-May-2009

14-May-2009

QC Level: S3

= Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Almha	O!! 4						Request	ed Tests	
Alpha	Client		Collection	No. of	f Bottles	5	voc_s voc_w		
Sample ID	Sample ID	Matri	x Date	Alpha	Sub	TAT			Sample Remarks
ADR09051401-01A		AQ	05/12/09 09:30	10	0	5	8260/MTBE_ Cs		Report w/ silica gel only. 1 unpreserved voa received without a label deciphered through process of elimination.
ADR09051401-02A	STK P-3 A	so	05/12/09 14:00	4	0	5			(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-03A		so	05/12/09 14:00	4	0	5			(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-04A		SO	05/12/09 14:00	4	0	5			(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-05A	STK P-3 D	so	05/12/09 14:00	4	0	5			(3) 5g EnCore (1) Geoprobe Report w/ silica gel only.
ADR09051401-06A	Composite of STK P-3 A, B, C, and D	so	05/12/09 14:00	1	0	5	8260/MTBE_ Cs		Report w/ silica gel only.
ADR09051401-07A	TK EXC 21 ft	SO	05/12/09 09:45	4	0	5	8260/MTBE_ Cs		(1) Geoprobe (3) EnCores Report w/ silica gel only.

Comments:

Security seals intact. Frozen ice.:

Logged in by:

Signature

Print Name

Company Alpha Analytical, Inc. Date/Time

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Client:

ADR Envir. Group 1760 Creekside Oak Dr. #120 Report Attention **Phone Number EMail Address** Larry Flora (916) 921-0600 x lflora@adreg.com

EDD Required: No

4°C

Sampled by: Larry Flora

Cooler Temp Samples Received

WorkOrder: ADR09051401

Report Due By: 5:00 PM On: 21-May-2009

Date Printed 14-May-2009 14-May-2009

Sacramento, CA 95833

PO: GPP

Client's COC #: 024843

BHV101-08-011 CA

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

Alpha	Olivera									Reques	ted Tests				
•	Client		Collection	No. of	Bottles	•	BNA_S	BNA_W	COMPOSIT	TPH/E_S	TPH/E_SG_	TPH/E_W	TPH/P_S	TPH/P W	
Sample ID	Sample ID	Matrix	c Date	Alpha	Sub	TAT			E		W	_	_	_	Sample Remarks
ADR09051401-08A	TK SW-1 17ft	SO	05/12/09 10:15	4	0	5	PNA/PAH			TPH/E_C			GAS-C		(1) Geoprobe (3) EnCores Report w/ silica gel only.
ADR09051401-09A	TK SW-2 17ft	so	05/12/09 10:17	4	0	5	PNA/PAH			TPH/E_C			GAS-C		(1) Geoprobe (3) EnCores Report w/ silica gel only.
ADR09051401-10A	TK SW-3 17ft	so	05/12/09 11:15	4	0	5	PNA/PAH			TPH/E_C			GAS-C		(1) Geoprobe (3) EnCores Report w/ silica gel only.
ADR09051401-11A	TK SW-4 17ft	so	05/12/09 11:20	4	0	5	PNA/PAH			TPH/E_C			GAS-C		(1) Geoprobe (3) EnCores Report w/ silica gel only.
ADR09051401-12A	TK SW-5 17ft	so	05/12/09 11:45	4	0	5	PNA/PAH			TPH/E_C			GAS-C		(1) Geoprobe (3) EnCores Report w/ silica gel only.
ADR09051401-13A	TK SW-6 17ft	SO	05/12/09 12:00	4	0	5	PNA/PAH			TPH/E_C			GAS-C		(1) Geoprobe (3) EnCores Report w/ silica gel only.
ADR09051401-14A	TK SW-7 17ft	so	05/12/09 13:02	4	0	5	PNA/PAH			TPH/E_C			GAS-C		(1) Geoprobe (3) EnCores Report w/ silica gel only.
ADR09051401-15A	TK SW-8 17ft	so	05/12/09 13:05	4	0	5	PNA/PAH			TPH/E_C			GAS-C	A. A	(1) Geoprobe (3) EnCores Report w/ silica gel only.

Comments:

Security seals intact. Frozen ice.:

Logged in by:

Signature

Print Name

Company

Date/Time

Alpha Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Alpha Analytical, Inc. WorkOrder: ADR09051401

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Attention **Phone Number EMail Address** Larry Flora (916) 921-0600 x lflora@adreg.com

EDD Required: No

Sampled by: Larry Flora

Cooler Temp Samples Received 14-May-2009 4°C

Report Due By: 5:00 PM On: 21-May-2009

Date Printed 14-May-2009

Sacramento, CA 95833

1760 Creekside Oak Dr. #120

PO: GPP

Client:

Client's COC #: 024843

ADR Envir. Group

BHV101-08-011 CA QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates

									Reque	ested Tests	
Alpha	Client		Collection	No. of	Bottles	•	voc_s	VOC_W		A	
Sample ID	Sample ID	Matri	x Date	Alpha	Sub	TAT					Sample Remarks
ADR09051401-08A	TK SW-1 17ft	so	05/12/09 10:15	4	0	5	8260/MTBE_ Cs				(1) Geoprobe (3) EnCores Report w/ silica gel only
ADR09051401-09A	TK SW-2 17ft	SO	05/12/09 10:17	4	0	5	8260/MTBE_ Cs				(1) Geoprobe (3) EnCores Report w/ silica gel only
ADR09051401-10A	TK SW-3 17ft	SO	05/12/09 11:15	4	0	5	8260/MTBE_ Cs				(1) Geoprobe (3) EnCores Report w/ silica gel only
ADR09051401-11A	TK SW-4 17ft	SO	05/12/09 11:20	4	0	5	8260/MTBE_ Cs				(1) Geoprobe (3) EnCores Report w/ silica gel only
ADR09051401-12A	TK SW-5 17ft	SO	05/12/09 11:45	4	0	5	8260/MTBE_ Cs				(1) Geoprobe (3) EnCores Report w/ silica gel only
ADR09051401-13A	TK SW-6 17ft	so	05/12/09 12:00	4	0	5	8260/MTBE_ Cs				(1) Geoprobe (3) EnCores Report w/ silica gel only
ADR09051401-14A	TK SW-7 17ft	SO	05/12/09 13:02	4	0	5	8260/MTBE_ Cs				(1) Geoprobe (3) EnCores Report w/ silica gel only
ADR09051401-15A	TK SW-8 17ft	SO	05/12/09 13:05	4	0	5	8260/MTBE_ Cs				(1) Geoprobe (3) EnCores Report w/ silica gel only

Comments:

Security seals intact. Frozen ice.:

Signature Logged in by:

Print Name

Company Alpha Analytical, Inc. Date/Time

Billing Information: Name ADR ENVIR, GROUP Address 1760 (Lectroide Chics De, ## City, State, Zip Sacto, CA 9583	7	, Inc. Juite 21 5778	AZ	Z	CA OR	<u>×</u>	NV _	W. R	Pa	024543 ge#_1of_1_		
Phone Number 916-921-0600 Fax 916-648								·············		quirec		
Client Name Style As Above Address	DO. # NAME GPP	Job # BHV 1	. 01- d	08-011 CA	· /	1 4 1	/ /	\ \f	' /	/	/ Re	quired QC Level?
	EMail Address	Abreg.			/	8015-	8256	THE PERSON OF TH		/	/ / /	II III IV
City, State, Zip	Phone # 916-921-0600	Fax #	- 648	5-6688	/9	o /	\\dis	ેતું	/		EDD / E.	DF? YES NO
Time Date Sampled Sembled See Key	Report Attention LARRY FLOW			Total and type		΄/,	3/57	<i>اهنا</i>		/ /	1	#
Sampled Sampled See Key Below Lab ID Number Outside (Use Only)	Sample Description		TAT F	Field ** See below		/ §	5 mc 8	/	/ /			REMARKS
	TK Exc - WATER	10:	عامد	2 L 8 VOA	1	1	人					
1400 50 -02,03-04-6	55TK P-3, A,B,C,D	(Composite)		Tibes 12 ENCOR	. /	1	1				Compr	15ile 7-01
0945 50 .07	TK Fxc ZI'			1 Tube	- 1 1						- Confe	2110) 00
1 1 1 1	TK SW-1, 17'			1	\Box	Π						
	TK SW-2, 17'						П					
	The Sw- 3, 17'		1			\Box	11					
	TK SW- 4, 171						Π					
1 1 1 1 1 1	TK 5W-5, 17'											
	TK SW-6, 17'					11	Π					
	TK SW -7, 17'		11									
: I N I I I	Th SW -7 17'		J	1 1	1	1	1					
1379	,											
ADDITIONAL INSTRUCTIONS:					 							
	- + ouscops ' Sain	cal Class	1	Fai NRC	า					_	A Rahan	crisis CiniTs
Composite STK P-3 ABCD Tab. Signature	Print Name	ger cum	7	1000 1319	C	ompan	y			\top	Date	Time
Rolinguished by	Loren Florer			br En			<u> </u>			-	/13/09	915
Received by Aug The		manner de la companya	1/3				هد ها ۱	<u>, </u>			-13-09	915
Relinquished by												
750 WSUL									1.1	ا	-13-09	1500
Received by Chabeth (Id Cox) Relinquished by	Elizabeth H	d Cox	Elizabeth Id Uly						lph	2 =	5-14-09	9:32
Received by						· · · · · · · · · · · · · · · · · · ·			1		· · · · · · · · · · · · · · · · · · ·	
*Kev: AQ - Aqueous SO - Soil WA - Was	te OT - Other AR - Air	**: L-Liter	V-V	oa S-Soil Ja	ar (O-Orbo	, т	-Tedla	, p	Brass	P-Plastic	OT-Other

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.