

RECEIVED

8:48 am, Apr 16, 2010

Alameda County Environmental Health

April 15, 2010

Re: Well Installation Report

Shell-Branded Service Station 4895 Hacienda Drive Dublin, California

Dear Mr. Jerry Wickham:

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely, Shell Oil Products US

Denis L. Brown Project Manager April 15, 2010 Project SCA4895H1D SAP# 165112

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject:

Well Installation Report Shell-branded Service Station

4895 Hacienda Drive Dublin, California

Dear Mr. Wickham,

On behalf of Equilon Enterprises LLC *dba* Shell Oil Products US (Shell), Delta Consultants (Delta) has prepared the following *Well Installation Report* to document the installation of six groundwater monitoring wells (MW-1 to MW-6) and at the site referenced above. The wells were installed in general accordance with Delta's *Soil and Groundwater Investigation Work Plan* dated September 28, 2009 and the conditions specified in the letter to Shell from Alameda County Environmental Health (ACEH) dated November 17, 2009. A copy of the ACEH letter is included as Attachment A.

SITE DESCRIPTION

The subject property is located on the northeast corner at the intersection of Hacienda Drive and Hacienda Crossings/Martinelli Way in Dublin, California (Figure 1). The property is currently an active Shell-branded service station. The station facilities include a convenience store, a car wash, two underground storage tanks (USTs) and a large canopy covering two dispenser islands with six total dispenser stations (Figure 2).

FIELD ACTIVITIES

On February 16, 17 and 18, 2010, groundwater monitoring wells MW-1 through MW-6, were installed on-site (Figure 2). Due to utility conflicts, Well MW-4 was moved to the location proposed for Well MW-3. As requested by ACEH, Well MW-3 was moved to the planter box in the southwest corner of the property. Per an additional request from the ACEH, the boring for Well MW-5 was drilled to a total depth of approximately 60 feet below ground surface (bgs). Unfortunately, due to specific drilling equipment requirements and limited availability, Delta was not able to drill the boring for Well MW-3 to a minimal depth of 50 feet bgs as requested by ACEH.

Prior to field activities, Delta obtained a well construction permit from the Zone 7 Water Agency (Attachment B). The proposed well locations were marked and Underground Service Alert was contacted a minimum of 48 hours prior to field mobilization to notify subscribers of our proposed activities prior to drilling. In addition, Delta had a private subsurface utility locator perform a geophysical survey of the proposed well locations.

GROUNDWATER MONITORING WELL INSTALLATIONS

Prior to drilling activities, the proposed well locations were excavated by air-knife and water-knife to a minimum depth of 5 feet bgs to avoid potential damage to subsurface utilities. The boreholes for monitoring wells MW-1 through MW-6 were drilled to total depths of 25 or 30 feet bgs using 10-inch diameter hollow-stem auger drilling equipment. Prior to drilling the borehole for well MW-5 with the hollow-stem auger, direct-push drilling equipment was utilized to advance a boring in the location of MW-5 to approximately 60 feet bgs for the collection of depth-discrete ground-water samples.

Wells MW-1, MW-2 and MW-5 were each installed at a depth of 30 feet bgs; wells MW-3 and MW-6 were installed at a depth of 25 feet bgs, and well MW-4 was installed at a depth of 27 feet bgs. The wells were constructed using 4-inch diameter, Schedule 40, polyvinylchloride (PVC) casing with 10 to 20 feet of 0.010-inch machine slotted well screen. In the annular space of the wells, a sand pack of #2/12 sand was placed from the bottom of the boring to approximately 2 feet above the top of the screened interval. A sanitary seal consisting of hydrated, granular bentonite and cement grout was placed from the top of the sand pack to within approximately one foot of the surface. Upon completion, the top of each well was secured with a flush-mounted, trafficrated vault box anchored in concrete.

All down-hole drilling and sampling equipment was cleaned prior to use and between boring locations. All soils, water and debris generated during the well installation activities were stored onsite in Department of Transportation (DOT) rated 55-gallon drums pending characterization and appropriate disposal. Investigation-derived waste has been removed from the site and disposed of.

SOIL DATA

Soils encountered in the borings for wells MW-1 through MW-6 consisted of low permeability clay from the surface to approximately 20 feet bgs. Underlying the clay, higher permeability sandy clay, clayey sand and sand were encountered between approximately 20 and 30 feet bgs. Beneath the permeable sand horizon, clay was observed in most of the boreholes to the total depth of the boring. In the deepest boring (MW-5), permeable horizons of clayey sand and sand were encountered at depths of 40 to 43 feet bgs, 45 to 48 feet bgs and 55 feet bgs to total depth. Boring logs with well construction details are included as Attachment C, and cross-sections are presented on Figures 3 and 4. A sieve analysis of selected samples is provided as Attachment D.

All work was performed by a Delta staff engineer under the direction of a California Professional Geologist (PG). Soil samples were collected continuously for lithologic characterization, and logged by Delta field staff in accordance with the Unified Soil Classifications System (USCS). Photo-ionization detector (PID) readings were taken of the soil at approximate 5-foot depth intervals and recorded on the boring logs (Attachment C). At least one soil sample from each boring was submitted for laboratory analysis. Selected soil samples were retained from the permeable horizons, and in some cases from the bottom of the boreholes.

Soil samples were submitted to a California state-certified laboratory and analyzed for the presence total petroleum hydrocarbons as diesel (TPH-d) by Environmental Protection Agency (EPA) Method 8015M, and for TPH as gasoline (TPH-g), benzene, toluene, ethylbenzene, and xylenes (BTEX compounds), methyl tert-butyl ether (MTBE) di-isopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME), tert-butyl alcohol (TBA), ethanol, 1,2-dichloroethane (1,2-DCA) and 1,2-dibromoethane (EDB) by EPA Method 8260B.

MTBE was detected in soil collected from approximately 20 feet bgs in MW-2 and from approximately 24 feet bgs in MW-5 at concentrations of 0.0097 milligrams per kilogram (mg/kg) and 0.057 mg/kg, respectively. No petroleum hydrocarbons or fuel oxygenates were detected above the laboratory reporting limits in any of the other soil samples. Soil analytical data are summarized in Table 1. The certified analytical reports are provided as Attachment E.

GROUNDWATER DATA

Groundwater was first-encountered during drilling at depths between 17.5 and 22.5 feet bgs. Upon reaching the permeable horizon, groundwater rose 5 to 10 feet within the boreholes indicating locally confined conditions. In the deeper boring (MW-5), a depth discrete groundwater sample was collected from approximately 42 feet bgs. An attempt was made to collect a groundwater sample from the bottom of the boring at 60 feet bgs, but flowing sand heaved up into the direct-push rods and collapsed the borehole.

On March 15, 2010, Blaine Tech Services, Inc. (Blaine) developed Wells MW-1 through MW-6 using a surge and bail technique. The wells were surged for 10 minutes prior to the removal (purging) of ten casing volumes of water. Groundwater quality parameters (turbidity, pH, electric conductivity [EC] and temperature) and a relative change in groundwater clarity were recorded for each well. The field data sheets are included as Attachment F.

On March 19, 2010 Blaine gauged and sampled new wells MW-1 through MW-6. Depth to water ranged from 11.75 feet (MW-1) to 13.16 feet (MW-2) below top of casing (TOC). Groundwater flow direction was calculated to the south-southeast at a gradient of approximately 0.002 feet per foot (ft/ft), as noted on the groundwater contour map (Figure 5). The field data sheets are included as Attachment F.

Groundwater samples from wells MW-1 through MW-6 were submitted to a California state certified laboratory and analyzed for the presence of TPH-d by EPA Method 8015M, and for THP-g, BTEX compounds, MTBE, TBA, DIPE, ETBE, and TAME by EPA Method 8260B. The depth discrete groundwater sample collected from the deep boring was also analyzed for ethanol, 1,2-DCA and EDB by EPA Method 8260B.

TPH-g concentrations of 230 micrograms per liter (μ g/L) and 410 μ g/L were detected in the groundwater collected from wells MW-2 and MW-5, respectively. A TPH-d concentration of 55 μ g/L was detected in the depth-discrete groundwater sample collected from the deep boring (MW-5 at 42 feet bgs). MTBE was detected in wells MW-2 through MW-6 at concentrations ranging from 310 μ g/L (MW-5) to 3.3 μ g/L (MW-4). MTBE was also detected in the groundwater sample collected from the deep boring (MW-5 at 42 feet bgs) at a concentration of 1.2 μ g/L. TPH-g, TPH-d, and MTBE were not detected above the laboratory reporting limits in any of the other groundwater samples. None of the other analytes were detected above the laboratory reporting limits in any of the groundwater samples analyzed. The groundwater analytical data are summarized in Table 2. The certified analytical reports are included in Attachment E.

WELL SURVEY

On March 17, 2010, the newly installed wells were surveyed by a licensed surveyor for latitude, longitude and elevation relative to mean sea level using both conventional survey techniques and GPS technology. The survey results will be uploaded to the California State GeoTracker database and are included as Attachment G.

SUMMARY AND RECOMMENDATIONS

Residual petroleum hydrocarbon impacts to soil are negligible. Only minor impacts of MTBE were detected in soil analyzed during the current investigation, which is consistent with the Phase II investigation performed at the site in August 2008. Concentrations of 0.0097 milligrams per kilogram (mg/kg) and 0.057 mg/kg MTBE were detected in soil from the borings for wells MW-2 and MW-5, respectively.

Concentrations of TPH-g and the highest concentrations of MTBE were detected in the groundwater samples collected from wells MW-2 (230 µg/L TPH-g and 180 µg/L MTBE) and MW-5 (410 µg/L TPH-g and 310 µg/L MTBE). Well MW-2 is located close to the UST complex and Well MW-5 is located down-gradient of the UST complex and product dispenser islands, which are both potential source areas. Relative to the USTs and dispenser islands, TPH-g and MTBE are delineated to below the laboratory reporting limits or to relatively low concentrations in the cross-gradient direction by wells MW-3, MW-4 and MW-6, and in the up-gradient direction by Well MW-1. The boring log for the deep boring (MW-5) shows three additional permeable zones at depths of 40 to 43 feet bgs, 45 to 48 feet bgs and 55 feet bgs. Minor concentrations of 55 µg/L TPH-d and 1.2 µg/L MTBE were detected in the depth-discrete groundwater sample collected at approximately 42 feet bgs. Additional investigation may be warranted to complete lateral and vertical delineation of impacts to groundwater. The new wells have been incorporated into a quarterly monitoring and sampling program and a first quarter report for 2010 will be issued in May.

Based on the results of this investigation, Delta recommends advancing two deep borings near wells MW-2 and MW-5 using cone penetration test (CPT) equipment, and installing one offsite groundwater monitoring well down-gradient of Well MW-5 to complete lateral and vertical delineation in groundwater. In the proposed borings, depth-discrete groundwater samples will be collected from the permeable zones identified in the deep boring advanced during the current investigation. The proposed offsite monitoring well will be built in the shallow water-bearing zone like those installed onsite. Upon concurrence from ACEH, Delta will prepare a work plan for the additional proposed investigation.

REMARKS

This document represents Delta's professional opinions based upon currently available information and is arrived at in accordance with currently acceptable professional standards. This document is based upon a specific scope of work requested by the client. The Contract between Delta and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this document were performed. This document is intended only for the use of Delta's Client and anyone else specifically listed on this document. Delta will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Delta makes no express or implied warranty as to the contents of this document.

If you have any questions, please call Regina Bussard (Delta) at (408) 826-1876 or Denis Brown (Shell) at (707) 865-0251.

Sincerely,

Delta Consultants

Abhik Dufta

Staff Engineer

Regina Bussard, P.G. Project Manager

Pagin Bussal

REGINA M.
BUSSARD
No. 8288
EXP. 1/31/12

ATTACHMENTS:

Figure 1 – Site Location Map

Figure 2 – Site Map

Figure 3 – Cross-Section A-A' Figure 4 – Cross-Section B-B'

Figure 5 - Groundwater Contour Map - 3/19/2010

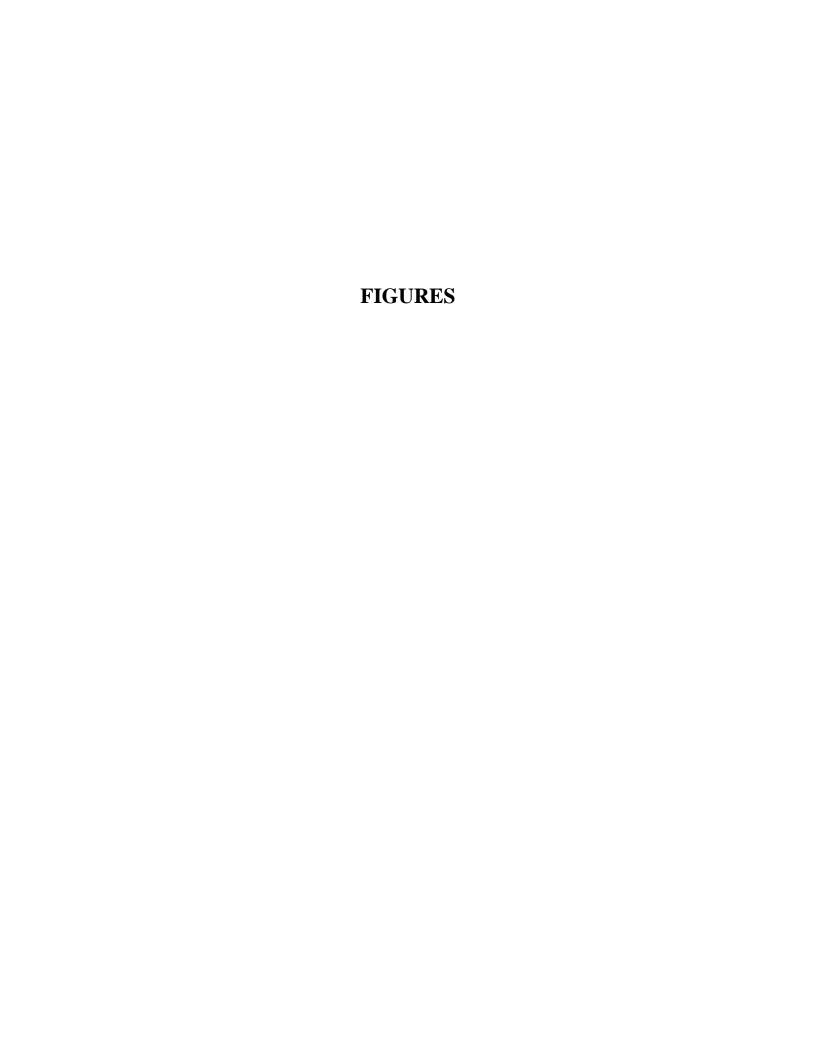
Table 1 – Soil Analytical Data

Table 2 - Groundwater Analytical Data

Attachment A – Regulatory Letter from ACEH dated November 17, 2009

Attachment B – Zone 7 Water Agency Well Permit

Attachment C - Boring Logs

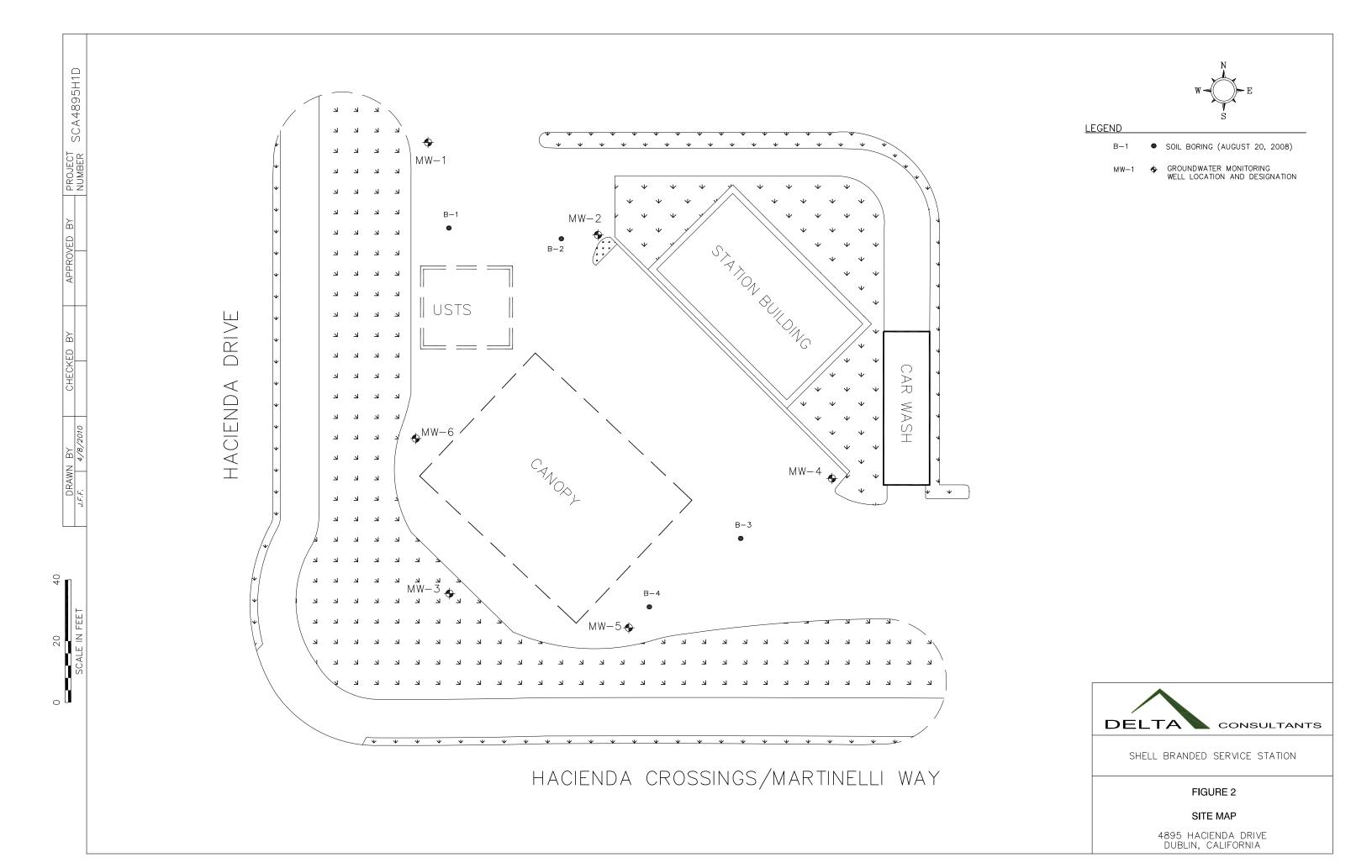

Attachment D – Sieve Analysis Results

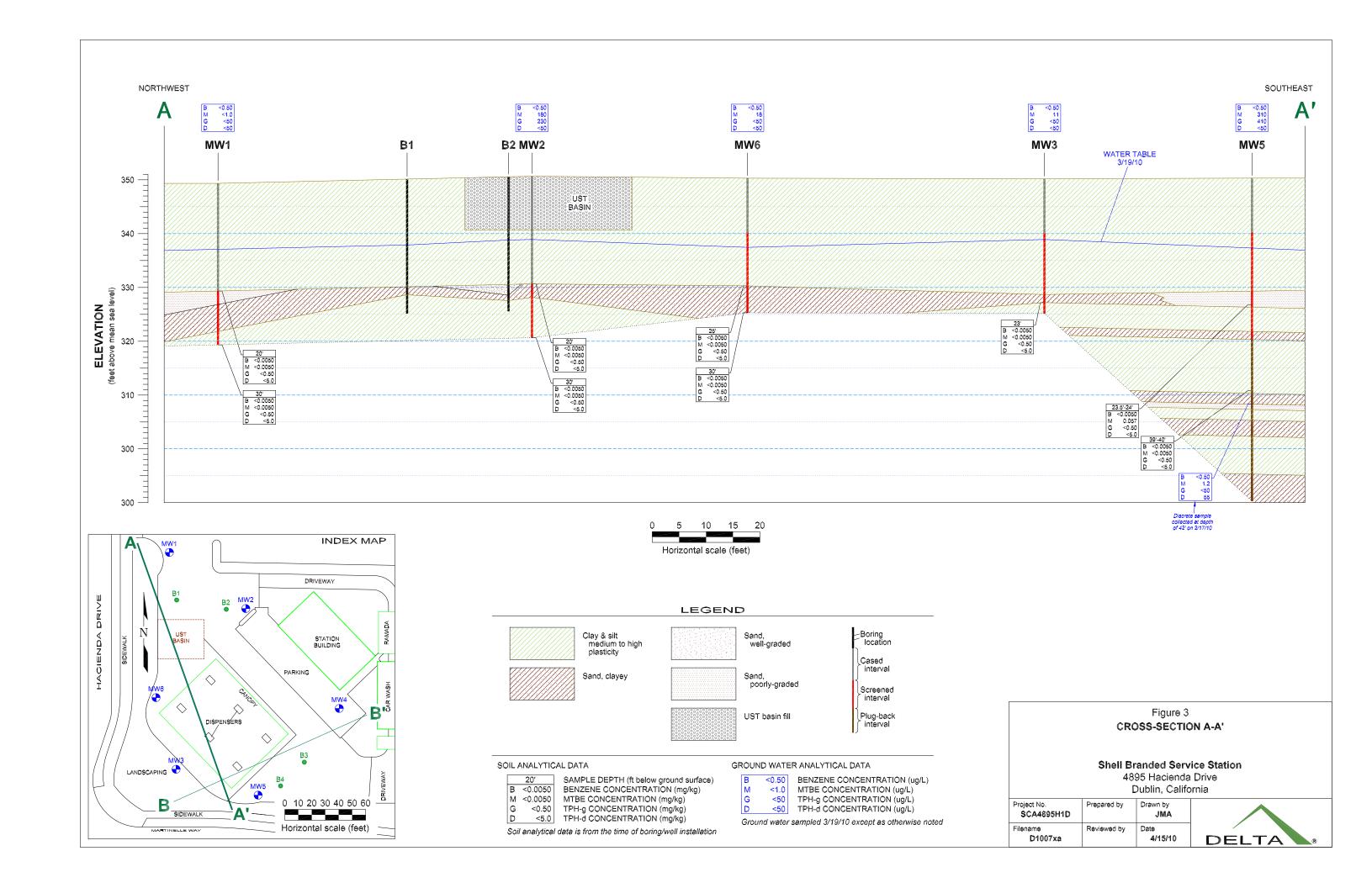
Attachment E – Certified Analytical Reports with Chain-of-Custody Documentation

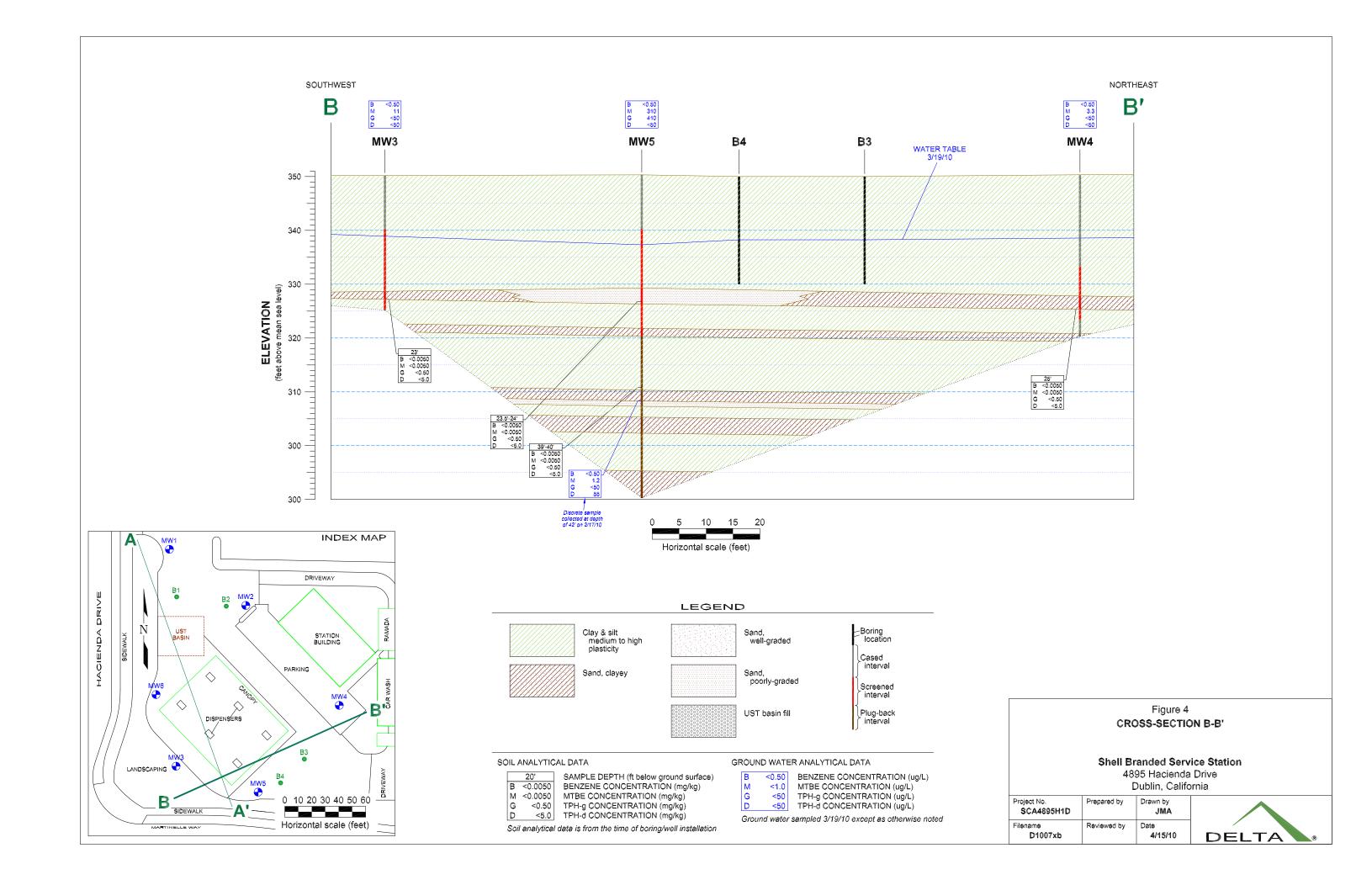
Attachment F - Field Data Sheets

Attachment G – Well Survey Results

cc: Denis Brown, Shell Oil Products US, Carson Carl Cox, C and J Cox Corporation, Pleasanton Cheryl Dizon, Zone 7 Water Agency, Livermore


APPROX. SCALE


FIGURE 1 SITE LOCATION MAP


SHELL-BRANDED SERVICE STATION 4895 HACIENDA DRIVE DUBLIN, CALIFORNIA

PROJECT NO. SCA4895H1	DRAWN BY AD SEPT, 2009
FILE NO.	PREPARED BY AD
REVISION NO.	REVIEWED BY

LEGEND

SOIL BORING (AUGUST 20, 2008)

337.5

GROUNDWATER ELEVATION IN FEET ABOVE MEAN SEA LEVEL (Ft/MSL)

337.35 — —

GROUNDWATER CONTOUR IN FEET ABOVE MEAN SEA LEVEL (Ft/MSL) CONTOUR INTERVAL=0.05 FEET

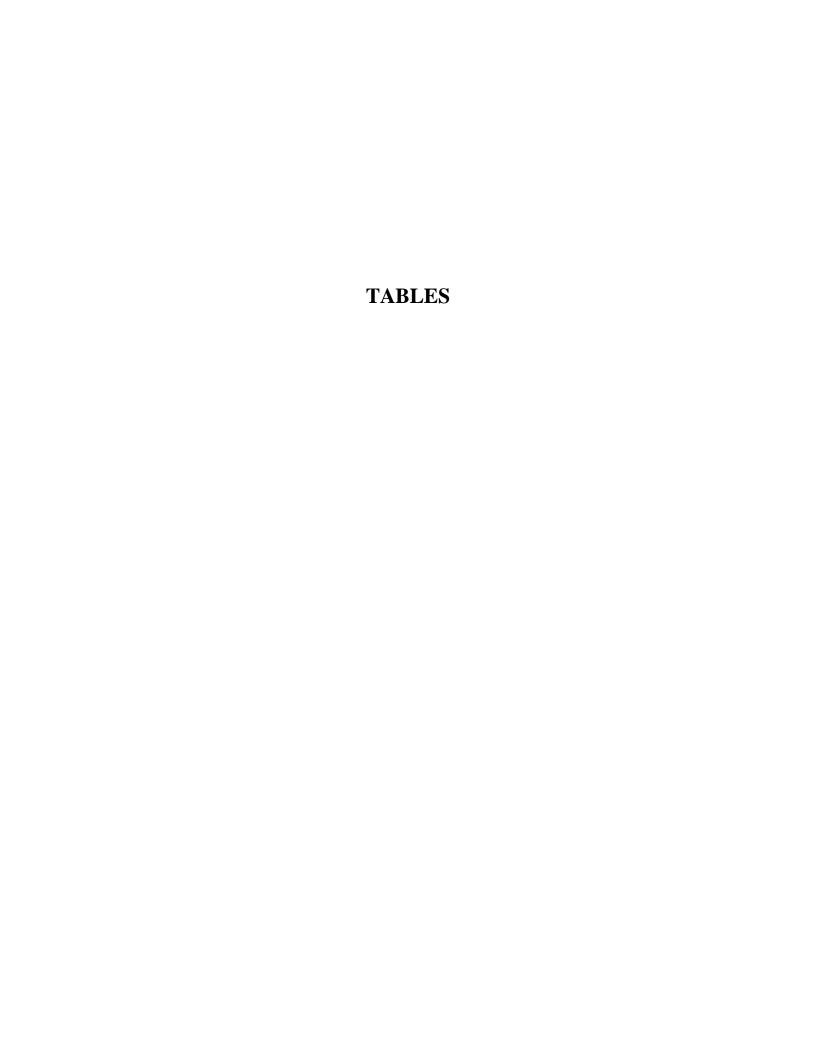
0.002 ft/ft

APPROXIMATE GROUNDWATER GRADIENT DIRECTION (FT/FT)

WELL	DTW	TOC	GW
MW-1	11.75	349.33	337.58
MW-2	13.16	350.66	337.50
MW-3	12.84	350.18	337.34
MW-4	12.98	350.32	337.34
MW-5	12.99	350.31	337.32
MW-6	12.84	350.29	337.45

DTW DEPTH TO WATER

TOC TOP OF CASING


GW GROUNDWATER ELEVATION

SHELL BRANDED SERVICE STATION

FIGURE 5 GROUNDWATER CONTOUR MAP 3/19/2010

> 4895 HACIENDA DRIVE DUBLIN, CALIFORNIA

TABLE 1 SOIL ANALYTICAL DATA Shell-Branded Service Station 4895 Hacienda Drive Dublin, California

Sample ID	Date Collected	TPH-g (mg/kg)	TPH-d (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	X (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	Ethanol (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)
MW-1@20'	02/16/10	ND< 0.50	ND< 5.0	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.050	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.50	ND< 0.0050	ND< 0.0050
MW-1@30'	02/16/10	ND< 0.50	ND< 5.0	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.050	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.50	ND< 0.0050	ND< 0.0050
MW-2@20'	02/16/10	ND< 0.50	ND< 5.0	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.0050	0.0097	ND< 0.050	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.50	ND< 0.0050	ND< 0.0050
MW-2@30'	02/16/10	ND< 0.50	ND< 5.0	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.050	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.50	ND< 0.0050	ND< 0.0050
MW-3@23'	02/18/10	ND< 0.50	ND< 5.0	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.050	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.50	ND< 0.0050	ND< 0.0050
MW-4@25'	02/17/10	ND< 0.50	ND< 5.0	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.050	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.50	ND< 0.0050	ND< 0.0050
MW-6@20'	02/17/10	ND< 0.50	ND< 5.0	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.050	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.50	ND< 0.0050	ND< 0.0050
MW-6@25'	02/17/10	ND< 0.50	ND< 5.0	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.050	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.50	ND< 0.0050	ND< 0.0050
MW5@23.5-24'	02/17/10	ND< 0.50	ND< 5.0	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.0050	0.057	ND< 0.050	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.50	ND< 0.0050	ND< 0.0050
MW5@39.5-40'	02/17/10	ND< 0.50	ND< 5.0	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.0050	ND< 0.050	ND< 0.010	ND< 0.010	ND< 0.010	ND< 0.50	ND< 0.0050	ND< 0.0050

Abbreviations:

TPH-g = Total petroleum hydrocarbons as gasoline by EPA Method 8260B, identified by the laboratory as total purgeable petroleum hydrocarbons (TPPH)

TPH-d = Total petroleum hydrocarbons as diesel by EPA Method 8015, identified by the laboratory as diesel range organics (DRO)

B = Benzene, analyzed by EPA Method 8260B

T = Toluene, analyzed by EPA Method 8260B

E = Ethylbenzene, analyzed by EPA Method 8260B

X = Xylenes, analyzed by EPA Method 8260B

MTBE = Methyl tert-butyl ether, analyzed by EPA Method 8260B

TBA = Tert-butyl alcohol, analyzed by EPA Method 8260B

DIPE = diisopropyl ether, analyzed by EPA Method 8260B

ETBE = ethyl tert-butyl ether, analyzed by EPA Method 8260B

TAME = tert-amyl methyl ether, analyzed by EPA Method 8260B

1,2-DCA = 1,2 dichloroethane

EDB = 1,2 dibromoethane

mg/kg = milligrams per killigrams, equivalent to Parts per billion

ND(<n) = Not detected above the shown detection limit (n)

TABLE 2 GROUNDWATER ANALYTICAL DATA

Shell-Branded Service Station 4895 Hacienda Drive Dublin, California

Sample ID	Date Collected	TPH-g (ug/L)	TPH-d (ug/L)	B (ug/L)	T (ug/L)	E (ug/L)	X (ug/L)	MTBE (ug/L)	TBA (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	Ethanol (ug/L)	1,2-DCA (ug/L)	EDB (ug/L)
MW-5@42'	2/17/2010	ND < 50	55	ND< 0.50	ND < 1.0	ND < 1.0	ND < 1.0	1.2	ND<10	ND<2.0	ND<2.0	ND<2.0	ND<100	ND<0.50	ND<1.0
MW-1	3/19/2010	ND < 50	ND< 50	ND< 0.50	ND < 1.0	ND < 1.0	ND < 1.0	<1.0	ND < 10	ND<2.0	ND<2.0	ND<2.0	NA	NA	NA
MW-2 MW-3	3/19/2010 3/19/2010	230 ND < 50	ND< 50 ND< 50	ND< 0.50 ND< 0.50	_	ND < 1.0 ND < 1.0	_	180 11	ND < 10 ND < 10	ND<2.0 ND<2.0	ND<2.0 ND<2.0	ND<2.0 ND<2.0	NA NA	NA NA	NA NA
MW-4	3/19/2010	ND < 50	ND< 50			ND < 1.0			ND < 10	ND<2.0	ND<2.0	ND<2.0	NA	NA	NA

ND < 1.0

ND < 1.0

310

18

ND < 10

ND < 10

ND<2.0

ND<2.0

ND<2.0

ND<2.0

ND<2.0

ND<2.0

NA

NA

NA

NA

NA

NA

Abbreviations:

MW-5

MW-6

TPH-g = Total petroleum hydrocarbons as gasoline by EPA Method 8260B, identified by the laboratory as total purgeable petroleum hydrocarbons (TPPH)

ND < 1.0

ND < 1.0

ND < 1.0

ND < 1.0

TPH-d = Total petroleum hydrocarbons as diesel by EPA Method 8015, identified by the laboratory as diesel range organics (DRO)

ND< 0.50

ND< 0.50

B = Benzene, analyzed by EPA Method 8260B

3/19/2010

3/19/2010

T = Toluene, analyzed by EPA Method 8260B

E = Ethylbenzene, analyzed by EPA Method 8260B

X = Xylenes, analyzed by EPA Method 8260B

MTBE = Methyl tert-butyl ether, analyzed by EPA Method 8260B

410

ND < 50

ND< 50

ND< 50

TBA = Tert-butyl alcohol, analyzed by EPA Method 8260B

DIPE = diisopropyl ether, analyzed by EPA Method 8260B

ETBE = ethyl tert-butyl ether, analyzed by EPA Method 8260B

TAME = tert-amyl methyl ether, analyzed by EPA Method 8260B

1.2-DCA = 1.2 dichloroethane

EDB = 1.2 dibromoethane

ug/L = micrograms per liter, equivalent to Parts per billion

ND(<n) = Not detected above the shown detection limit (n)

NA = Not Analyzed

ATTACHMENT A

REGULATORY LETTER FROM ACEH DATED NOVEMBER 17, 2009

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

ALEX BRISCOE, Acting Director

D S	EC	E	I	W E	
Ĭ	NOV	2	0	₩ <u>2</u>	

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

November 17, 2009

Mr. Denis Brown Shell Oil Products US 20945 S. Wilmington Ave. Carson, CA 90810-1039

Subject: Fuel Leak Case No. RO0002985 and Geotracker Global ID T10000000423, Shell #16-5112, 4895 Hacienda Drive, Dublin, CA 94568 – Conditional Work Plan Approval

Dear Mr. Brown:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the above-referenced site, including the recent work plan entitled, "Soil and Groundwater Investigation Work Plan, Shell-branded Service Station, 4895 Hacienda Drive, Dublin, California," dated September 28, 2009. The September 28, 2009 Work Plan proposes the installation of monitoring wells at six locations across the site

Four soil borings were advanced at the site on August 20, 2008 as part of a Phase II Environmental Site Assessment. Soil samples from two of the four soil borings contained MTBE at concentrations up to 0.073 milligrams per kilogram. Groundwater samples were collected from two of the four soil borings. Total petroleum hydrocarbons as gasoline (TPHg) were detected in one of the two groundwater samples at a concentration of 320 micrograms per liter (μ g/L). MTBE was detected in both groundwater samples at concentrations of 2.3 and 370 μ g/L. The source of the TPHg and MTBE is unknown. The September 28, 2009 Work Plan proposes the installation of monitoring wells at six locations across the site.

Four of the six proposed well locations are outside the general area of the suspected sources, the dispensers, piping, and USTs. Therefore, it is likely that an additional phase of investigation will be required to define the nature and extent of contamination using sampling locations that are more proximal to the suspected sources of contamination. However, we do not object to the proposed scope of work as an initial phase of investigation to assess general site conditions.

The proposed scope of work is conditionally approved and may be implemented provided that the technical comments below are addressed during the proposed field investigation. Submittal of a revised Work Plan or Work Plan Addendum is not required unless an alternate scope of work outside that described in the Work Plan and technical comment below is proposed. We request that you address the following technical comments, perform the proposed work, and send us the reports described below.

TECHNICAL COMMENTS

1. Proposed Well Locations. The proposed well locations are generally acceptable; however, we request one modification to the proposed well locations as shown on the attached figure entitled, "Modified Site Plan." We request that well MW-3 be moved to a location that is more likely to be downgradient from the fuel system. Please present the soil boring logs, well completion diagrams, screening results, and analytical results from the wells in the Well Installation and Destruction Report requested below.

- 2. Soil Sampling. We request that soil samples be collected continuously for logging and screening purposes. Sampling at the proposed interval of every five feet is not expected to provide sufficient definition of the site stratigraphy. We note that coarse-grained layers described on boring logs from the August 20, 2008 Phase II Environmental Site Assessment are typically two feet in thickness or less and likely would be missed with a sampling interval of five feet. The selection of soil samples for laboratory analysis using PID readings or indications of petroleum hydrocarbons such as odor or staining is acceptable.
- 3. Deeper Boring Locations. The Work Plan proposes that boring MW-2 be advanced to a depth of 50 feet bgs to define soil conditions and collect depth-discrete groundwater samples. Proposed boring MW-2 is located in a likely cross gradient or upgradient position to the suspected sources of contamination. We request that proposed borings MW-3 and MW-5 be advanced to depths of 50 feet bgs for collection of depth-discrete grab groundwater samples from coarse-grained water-bearing layers. Please present the results in the Well Installation and Destruction Report requested below.
- 4. **Groundwater Monitoring.** The newly installed wells are to be monitored on a quarterly basis for a period of one year. Please present the results in the quarterly groundwater reports requested below.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule:

- April 15, 2010 Site Investigation Report
- 40 days following the end of each quarter Quarterly Monitoring Reports

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells,

Mr. Denis Brown RO0002985 November 17, 2009 Page 3

and other data to the Geotracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/cleanup/electronic reporting).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

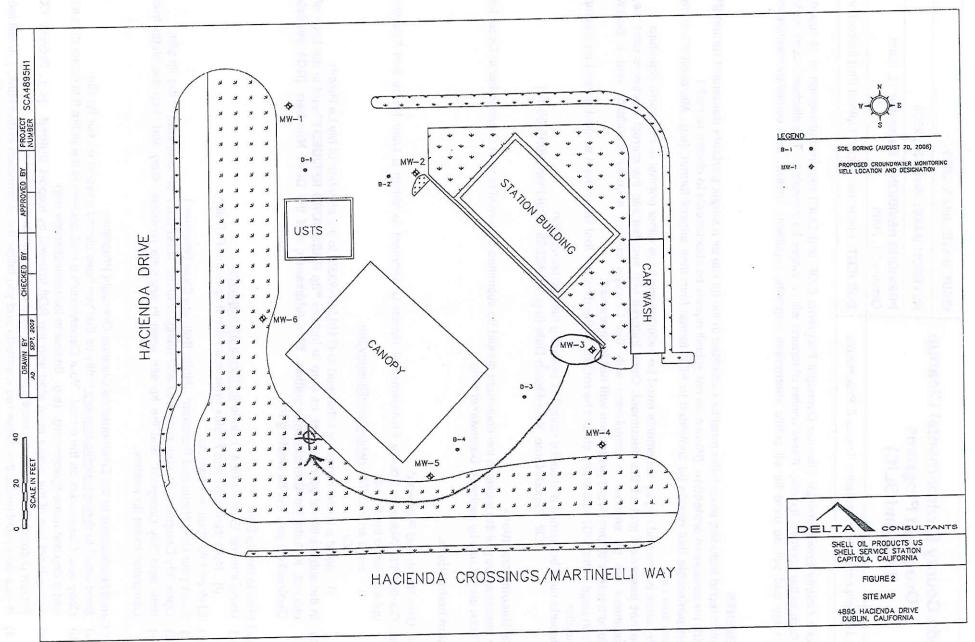
If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Mr. Denis Brown RO0002985 November 17, 2009 Page 4

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

Jorn Wickham, California PG 3766, CEG 1177, and CHG 297


Senior Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Cheryl Dizon, QIC 80201 Zone 7 Water Agency 100 North Canyons Parkway Livermore, CA 94551

> Regina Brussard Delta Environmental Consultants, Inc. 312 Piercy Road San Jose, CA 95138

Donna Drogos, ACEH Jerry Wickham, ACEH Geotracker, File

Attachment:

Modified Site Plan

Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

ISSUE DATE: July 5, 2005

REVISION DATE: March 27, 2009

PREVIOUS REVISIONS: December 16, 2005,

October 31, 2005

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection. (Please do not submit reports as attachments to electronic mail.)

It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.

Signature pages and perjury statements must be included and have either original or electronic signature.

Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.

Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer

monitor.

Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Additional Recommendations

A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in Excel format. These are for use by assigned Caseworker only.

Submission Instructions

1) Obtain User Name and Password:

- a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to dehloptoxic@acgov.org

0

ii) Send a fax on company letterhead to (510) 337-9335, to the attention of My Le Huynh.

- b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site

a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org

(i) Note: Netscape and Firefox browsers will not open the FTP site.

b) Click on File, then on Login As.

c) Enter your User Name and Password. (Note: Both are Case Sensitive.)

d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.

- e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs

a) Send email to dehloptoxic@acgov.org notify us that you have placed a report on our ftp site.

b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)

c) The subject line of the e-mail must start with the RO# followed by Report Upload. (e.g., Subject: RO1234

Report Upload) If site is a new case without an RO# use the street address instead.

d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

ATTACHMENT B

ZONE 7 WATER AGENCY WELL PERMIT

ZONE

ATTACH SITE PLAN OR SKETCH

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL <u>whong@zone7water.com</u>

DRILLING PERMIT APPLICATION

PERMIT NUMBER 2010001 WELL NUMBER 3S/1E-5H7 to 5H12 (MW-1 to MW-6) APN 986-0008-013-00 PERMIT CONTINUES S. WITMING A Methone 70 7 - 965 - 025 APROLICANT Summe Core Office Place of Control of Strings of Stri	FOR APPLICANT TO COMPLETE		FOR OFFICE USE	
Coordinates Source				
Coordinates Source It. LONG: It. Lo		PERMI	TNUMBER 2010001	
API Signer 8 - 13 CLIENT Shell Oi Projects Name Address 2.0 145 S. Wilminujan Archone 70.7 - 9.65 City Carson Signer Si		WELL	NUMBER 3S/1E-5H7 to 5H12 (MW-1	to MW-6)
APPLICANT		APN	986-0008-013-00	
CLIENT SWELL OI PROJECT Address 20945 S. Wilmingtan Averhone 207-865-025 APPLICANT APPLICANT APPLICANT APPLICANT Email COISON FOR Delta CONSUMINE Email COISON FOR Delta Consumination for permitte work the original pepartment of Water Resources Water We work the original pepartment of Water Resources Water We work the original pepartment of Water Resources Water We work the original pepartment of Water Resources Water We work the original pepartment of Water Resources Water We work the original pepartment is four inches greater than the well casing diameter is four inches greater than the well casing diameter is four inches greater than the well casing diameter. Minimum surface seal diameter is four inches greater than the well consult and upper two feet for water level measurements. A sample port is required on the discharge pipe near the well-east or water well and the well-east or water well on the well-east or water well-east or water well and the well-east or water well a	LAT:tt. LONG:tt.		PERMIT CONDITIONS	
Address 2 0 415 s. WILMYNIJA Methone 70 7 96 5 0 2 5 1 2 9 60 5 10 2 1 9 60 5 10 2 1 9 9 60 5 10 2 1 9 9 9 10 10 year proposed starting date. APPLICANT Name (0 12 0 15 0 16 1			(Circled Permit Requirements Apply)	
TYPE OF PROJECT: Well Construction 9	Address 20945 S. Wilmington Nephone 707-865-025 City Carson Zip 90810 APPLICANT Name (nra Olson for Delta Consultants Email Colson@deltaenu.com Fax 408-225-85 Address 312 Piercy Rcl. Phone 408-8260-187	506 3	 A permit application should be submitted so as Zone 7 office five days prior to your proposed st. Submit to Zone 7 within 60 days after completic work the original <u>Department of Water Resource Drillers Report (DWR Form 188), signed by fig.</u> Permit is void if project not begun within 90 days 	arting date. on of permitted es Water Well ne driller.
Dewatering 9 Other 9 DRILLING METHOD: Mud Rotary 9 Air Rotary 9 Other 9 DRILLING COMPANY RST Drilling DRILLER'S LICENSE NO. 802334 WELL SPECIFICATIONS: Drill Hole Diameter 10 in. Casing Diameter 4 in. Number 6 wells Surface Seal Depth 15 ft. Number 6 Borings 100 in. Depth 50 ft. ESTIMATED STARTING DATE 1/28/10 ESTIMATED STARTING DATE 1/28/10 I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68. APPLICANT'S OROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS 1. Minimum surface seal diameter is four inches greater that the well or piezometer casing diameter. 2. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. 3. Grout placed by tremie. D. GEOTECHNICAL. Backfill bore hole with compacted cuttings of heavy bentonite and upper two feet with compacted material. It areas of known or suspected contamination, tremied cemer grout shall be used in place of compacted cuttings. E. CATHODIC. Fill hole above anode zone with concrete placed by tremie. F. WELL DESTRUCTION. See attached. G. SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after completion of permitted work the well installation repoined including all soil and water laboratory analysis results. Approved Mamam Hone 1/5/10	TYPE OF PROJECT: Well Construction 9 Geotechnical Investigation 9 Well Destruction 9 Contamination Investigation 9 Cathodic Protection 9 Other 9 PROPOSED WELL USE: Domestic 9 Irrigation 9 Municipal 9 Remediation 9	3 2	 Minimum surface seal diameter is four inches g well casing diameter. Minimum seal depth is 50 feet for municipal and or 20 feet for domestic and irrigation wells unless is specially approved. Grout placed by tremie. An access port at least 0.5 inches in diameter is on the wellhead for water level measurements. A sample port is required on the discharge pipe 	industrial wells a lesser depth required
Drill Hole Diameter 10 in. Maximum Casing Diameter 4 in. Surface Seal Depth 15 ft. Number 6 Well's MW-1 to MW-6 SOIL BORINGS: Number of Borings 2 Maximum Hole Diameter 10 in. Depth 50 ft. ESTIMATED STARTING DATE 1/25/10 Ft. ESTIMATED COMPLETION DATE 1/28/10 I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68. APPLICANT'S Approved 4 Maximum Ft. Beavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cemer grout shall be used in place of compacted cuttings. CATHODIC. Fill hole above anode zone with concrete placed be tremie. F. WELL DESTRUCTION. See attached. SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after completion of permitted work the well installation report including all soil and water laboratory analysis results. Approved 4 Maximum Approved 4 Approved 4 Maximum Approved 4 Approved	Dewatering 9 Other 9 DRILLING METHOD: Mud Rotary 9 Air Rotary 9 Hollow Stem Auger 9 Cable Tool 9 Direct Push 9 Other 9 DRILLING COMPANY RSI Drilling DRILLER'S LICENSE NO. 802334	2	GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS I. Minimum surface seal diameter is four inches the well or piezometer casing diameter. Minimum seal depth for monitoring wells is depth practicable or 20 feet. Grout placed by tremie.	s greater than the maximum
Number of Borings 2. Maximum Hole Diameter 10 in. Depth 50 ft. ESTIMATED STARTING DATE 1/25/10 F. ESTIMATED COMPLETION DATE 1/28/10 I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68. APPLICANT'S Approved Maximum Local Place of the Second Place of the	Drill Hole Diameter 10 in. Maximum Casing Diameter 4 in. Depth 30 ft. Surface Seal Depth 15 ft. Number 6 wells	ł	neavy bentonite and upper two feet with compacted areas of known or suspected contamination, tre	d material. In mied cement
ESTIMATED COMPLETION DATE 1/28/10 I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68. APPLICANT'S Approved Appro	Number of Borings 2, Maximum			rete placed by
I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68. APPLICANT'S Approved Approved Completion of permitted work the well installation report including all soil and water laboratory analysis results. Approved Approved Approved Date 1/5/10	ESTIMATED STARTING DATE 1/25/10 ESTIMATED COMPLETION DATE 1/28/10		s	00.1
		\mathcal{O}	completion of permitted work the well insta	llation report
	APPLICANT'S COM CMC Date 12/9/09	Approv	ved Wyman Hong Dat	e <u>1/5/10</u>

Revised: April 23, 2008

ATTACHMENT C

BORING LOGS

DELTA	Client Shell Oil Products U	Well No. MW-1			
Address: 4895 Hacienda Drive Dublin, CA Logged By: Cora Olson	Drilling Date(s): 02/16/10 Drilling Company: RSI Drilling Method: HSA Boring Depth (ft): 30'	Boring diameter (in.): 10" Sampling Method: 5' Core-barrel Well Depth (ft.): 30' Casing Diameter (in.): 4"	Casing Material: Sch 40 PVC Screen Interval: 2 Screen slot size: 0.010" Sand Pack: 2/12		
Depth (ft.) Water Level Soil/Rock Graphic Sampled Interval Blow Counts (blows/ft)	%) Soil/Rock \	Visual Description	PID Reading (ppm)	Well Completion Depth (ft.)	
15— 20— 20— 25—	SC: Clayey SAND, brown, mediuclay.	, trace sand, dry.	d, 30% 0.0	0	

DELTA		Client Shell Oil Products U Project Number SCA4895H	Well No. MW-2			
Address: 4895 Hacienda Drive Dublin, CA Logged By: Cora Olson	Dri RS Dri HS	illing Method:	Boring diameter (in.): 10" Sampling Method: 5' Core-barrel Well Depth (ft.): 30' Casing Diameter (in.): 4"	Casing Material: Sch 40 PVC Screen Interval: 2 Screen slot size: 0.010" Sand Pack: 2/12		
Depth (ft.) Water Level Soil/Rock Graphic Sampled Interval Blow Counts (blows/ft)	Recovery (%)	Soil/Rock \	Visual Description	PID Reading (ppm)	Well Completion Depth (ft.)	
0 5- 10- 15- 20- ✓ 25- 30- 35-	80% 50% 75%	CL: CLAY, brown, high plasticity,	asticity, wet, 30% fine to medium greand, damp.	0.0	0 5	

			BORING LOG				
DELTA		Client Shell Oil Products U			No.		
XInogen'		Project Number SCA4895h	11D	MW-	-3		
Address:		illing Date(s): 02/18/10	Boring diameter (in.): 10"	Casing M			
4895 Hacienda Drive	RS		Sampling Method: 5' Core-barrel	Screen In		0' - 25' b	gs
Dublin, CA		illing Method:	Well Depth (ft.): 25'	Screen sle 0.010"	ot size:		
Logged By: Cora Olson HSA Boring Depth (ft): 25' Casing Diameter (in.): 4" O.010" Sand Pac							
Depth (ft.) Water Level Soil/Rock Graphic Sampled Interval Blow Counts (blows/ft)	Recovery (%)	Soil/Rock \	/isual Description		PID Reading (ppm)	Well Completion	Depth (ft.)
0					I 8		0
-							
]		Airknifed to 5' bgs.					_
5—		No recovery.					-5
		No recovery.					
							_
10 —	20%	CL: CLAY, brown, high plasticity,	dry		0.0		- 10
		OL. OL. (1, blown, mg/r placeon)	, diy.				-
-							-
15 —	75%	CL: CLAY, brown, high plasticity	, trace fine grained sand (<10%), dr	V.	0.0		 15
		e i e i e i e i e i e i e i e i e i e i	, macee grames cans (1.070), an	,.			
		(as above)			0.0		
-							-
20	80%	CL: CLAY with fine grained sand	, brown, high plasticity, 80% clay, 2	0% sand.	0.0		- 20
		dry.		/	0.0		
- '/.://		SC: Clayey SAND, brown, wet, 6	· · · · · · · · · · · · · · · · · · ·		0.0		_
-		CL: Sandy CLAY, light brown, higgrained sand.	gh plasticity, wet, 70% clay, 30% fin	е	0.0		-
25 —		Bottom of boring = 25' bgs.				<u> </u>	 25
-							-
							-
30						I	<u></u> 30
Page 1 of 1							
1 490 1 01 1							

		BORING LOG	Well No.			
DELTA	Client Shell Oil Products U Project Number SCA4895I		MW-4			
Address: 4895 Hacienda Drive Dublin, CA Logged By: Cora Olson	Drilling Date(s): 02/17/10 Drilling Company: RSI Drilling Method: HSA Boring Depth (ft): 30'	Boring diameter (in.): 10" Sampling Method: 5' Core-barrel Well Depth (ft.): 27' Casing Diameter (in.): 4"	Casing Material: Sch 40 PVC Screen Interval: 17' - 27' bgs Screen slot size: 0.010" Sand Pack: 2/12			
Depth (ft.) Water Level Soil/Rock Graphic Sampled Interval Blow Counts (blows/ft)	Soil/Rock \	Visual Description	PID Reading (ppm)	Well Completion Depth (ft.)		
15 —	000	, trace sand, dry. , 10% fine grained sand.	0.0 0.0 0.0 0.0 0.0	0 7		
Page 1 of 1						

DELTA Inogen	Client Shell Oil Products U		Well No. MW-5		
4895 Hacienda Drive Dublin, CA Logged By:	Orilling Date(s): 02/16/10-02/17/10 Drilling Company: RSI Drilling Method: HSA/DP Boring Depth (ft): 57'	Boring diameter (in.): 2"/10" Sampling Method: Acetate Liner Well Depth (ft.): 30' Casing Diameter (in.): 4"	Casing Material: Sch 40 PVC Screen Interval: 1 Screen slot size: 0.010" Sand Pack: 2/12	0' - 30' bgs	
Depth (ft.) Water Level Soil/Rock Graphic Sampled Interval Blow Counts (blows/ft) Recovery (%)	Soil/Rock \	Visual Description	PID Reading (ppm)	Well Completion Depth (ft.)	
0 10 30 15 20 25 100 30 30 100 100 100 100 100	(as above, light brown) (CL: Sandy CLAY, brown, 60% clubrated control of trace gravel (<5%). SP: Poorly graded SAND, brown Note: Lab CLAY, mottled light broplasticity, moist. SC: Clayey SAND, brown, low public clubrate clubrate control of the control of the control of the clubrate clubra	lay, 40% sand. lighter brown, medium to high plasting, fine grained, wet, loose, <10% clasts ab sample taken from 23.5' - 24' bgs own to white, brown, medium to high lasticity, moist, 80% sand, 20% clay plasticity, damp.	0.6 y fines. 1.5 1.6 fines. 0.1	0 -5 - 10 - 15 - 20 - 25 - 30 - 35 - 40 - 40 - 1	
45 — 100 50 — 100 55 — 100 60 — 0%	25% clay. SP: Poorly graded SAND, brown CL: Lean CLAY with trace sand. SC: Clayey SAND, brown, fine g CL: Lean CLAY, brown, mottled SC: Clayey SAND, fine to mediu	n, wet, loose. grained, low plasticity, 60% sand, 40	% clay.	- 45 - 50 - 55 - 60	
Page 1 of 1				65	

		Client Shell Oil Products U	BORING LOG	Well	No.				
DELTA Inogen		Project Number SCA4895h		MW-					
Address: 4895 Hacienda Drive Dublin, CA Logged By: Cora Olson	Dril RSI Dril HS	ling Method:	Boring diameter (in.): 10" Sampling Method: 5' Core-barrel Well Depth (ft.): 25' Casing Diameter (in.): 4"	Sch 40 P Screen Int Screen sk 0.010"	Casing Material: Sch 40 PVC Screen Interval: 10' - 25' bgs Screen slot size: 0.010" Sand Pack: 2/12				
Depth (ft.) Water Level Soil/Rock Graphic Sampled Interval Blow Counts (blows/ft)	Recovery (%)	Soil/Rock \	/isual Description		PID Reading (ppm)	Well Completion Depth (ft.)			
5		Airknifed to 5' bgs. No recovery.				0			
	20%	CL: CLAY, brown, dry, some asp	halt.		0.0	1			
	70%	CL: CLAY with fine grained sand sand.	, brown, high plasticity, dry, 80% cla	lay, 20%					
-		CL: CLAY with fine grained sand	, brown, high plasticity, wet.		0.5				
20 —	00%	SC: Clayey SAND, brown, fine gr	rained, wet, 70% sand, 30% clay.		0.9	-2	0		
		SC: Clayey SAND, brown, fine g	rained, damp, 70% sand, 30% clay.		0.3				
25 — 777		Bottom of boring = 25' bgs.	·			- 2 	30		
Page 1 of 1						_			

ATTACHMENT D

SIEVE ANALYSIS RESULTS

March 08, 2010

Subcontract analyses are reported as a stand-alone report.

Regina Bussard Delta Environmental Consultants, Inc. 312 Piercy Rd. San Jose, CA 95138-1401

Subject: Calscience Work Order No.: 10-02-1762

Client Reference: 4895 Hacienda Drive, Dublin, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 2/20/2010 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Philip Samelle for

Laboratories, Inc.

Xuan H. Dang Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Glossary of Terms and Qualifiers

Work Order Number: 10-02-1762

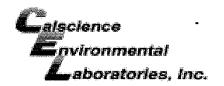

<u>Qualifier</u>	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
E	Concentration exceeds the calibration range.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

LAB (LOCATION)				(She	II C	Dil	Pr	od	uct	s C	ha	in O	F C	115	tod	lv F	226	/ `^*	·A				
Z CALSCIENCE ()	Pi							Oil Products Chain Of Custody I																		
☐ SPL ()	ENV. SERVICE						VIL									_	DENT # TENV SERVICES)									
XENCO ()								=								7	7 9 5 8 9 3 _{DATE:} Z					E: Z-19-10				
LI TEST AMERICA ()									PO #								SAP#									
OTHER ()		HELL PIPELIN	Œ □	OTHER				J)										1	6	5	1	Τı	2		PAG	GE: of
SAMPLING COMPANY:		<u> </u>		LOG COD	E:			7	SITE A	DDRES	S: Stree	t and C	ty		<u> </u>	_		State				BAL ID N	1 1			
Delta Consultants									4	4895 Hacienda Drive; Dublin CA F DELIVERABLE TO (Namo, Company, Office Location): PHONE NO.																
L	2 Piercy Road;	San Jose, C	CA 95138															E-MAIL: CONSULTANT PROJECT NO.:								
PROJECT CONTACT (Hardcopy or PDF Report to):	Pegina	Bussard	-						Angela Pico 408-826-186							1862	2 apico@deltaenv.com SCA4895H1D									
TELEPHONE: FAX: 408-2	25-8506	E-MAIL:	IL;						SAMPLER NAME(S) (Print): COTA OISON											LAB USE ONLY						
TURNAROUND TIME (CALENDAR DAYS):	.23-0300		- ADE	Rbussard@deltaenv.com																10-02-1762						
	3 DAYS	2 DAYS	RESULTS NEEDED ON WEEKEND						REQUESTE									EQUE	STE	D ANALYSIS						
☐ LA - RWQCB REPORT FORMAT ☐ UST AG	GENCY:								All sites + diesel tank +								4	Waste								
SPECIAL INSTRUCTIONS OR NOTES :			☑ SHELL CONTRACT RATE APPLIES					7						Jiesei tarik	+ waste oi				TTTT			Cha	Characterization		EMPERATURE ON RECEIPT	
colson@delta	2011 0000		STATE REIMBURSEMENT RATE APPLIES						(8260B)	8	(8015M) (8015M) (8015M) (0B) (0B) (0B) (0B) (0D)							li	12							
Send results to:	env.com		☐ EDD NOT NEEDED						(826	9	5 Shell Oxygenates (3260B) EDB (8260B) EDC (8260B) Ethanol (8260B) TPH-D Extractable (8015M) full suite VOCs (8260B) 1.2-DCA and EDB (8260B) CAM 5 Metals (6010) PNA and cresote (8270) PCBs (8082) TPH-D Extractable (8015M) Oil and grease (8015M) CAM 17 Metals (6010) Sieue Amulysis								`							
			RECE	IPT VERIFI	ICATION R	EQUESTE	D	- [:	Purgeable		Jate	Ì	(a	tabl		(82	:DB	(60	ote (a		able	(80	99			
	SA	MPLING	PRESERVATIVE						agur de	809	EDB (8260B) EDC (8260B) Ethanol (8260B) TPH-D Extractable TPH-D Extractable Ull suite VOCs (826 CAM 5 Metals (601C) NA and cresote (870C) CBS (8082)								ract	ase	etals	+				
гда Field Sample Identification	on T		MATRIX			Τ		. OF	5 S	8 8	0 828	(826	9)			suite \	Ç	2 Me	pug	80	Exi	d gre	M /	3		
USE ONLY	DAT	TIME		HCI HV	NO3 H2SO4	NONE	CO	NT. 5	5 N	BIEX (8260B)	S S	EDC (8260B)	Ethanol (8260B)	TPH-D		full su	,2-D	CAM 5 Metals (6010)	NA	PCBs (8082)	품	ii and	CAM 17 Metals (6010)	Sieve		Container PID Readings or Laboratory Notes
1 MW-Z@ZO'	2/6/	9:50	Soil		100 11200 1	X			x	× / >	x x	1	X	X		-		0		<u> </u>	F	-			+	5- Shell Oxygenates =
2 MW-Z @ 30'	2/14/	10:05						\forall			111	T	\square	\top			T					一	+	· ·		MTBE, TBA, DIPE
3 MW-10 20'	7/16/1							-H		-	H	+	++				╅					\dashv		- -		ETBE, TAME
4 MW-1 @ 30' CE	0 2-1740 16 16	14:00		1 +	_		-	\exists			Ш		††	\dagger		-	+					\neg		\dashv	+	
5 MW-4@ 25+2	51 4,71	12:00						\dashv	\vdash	$\dagger \dagger \dagger$		+		11	+	+	+	-				-	+	+	-	
6 MW-6@ 70'	2/17/10	15:70		+	+	-		+	\vdash	111	+	+	+++	+		-		-					-		+	
7 MW-6@ 25'		15.30		+	-	\vdash		+	-	H	- -	-	╫╢	+			+				-		-		-	
				+ -	+	-		-		Ш		-				_	+						_			
8 MW-3€ 23'	2 18 -10	9:45						_\V	V	/ V	' V		٧	V			<u> </u>									
	İ	.		i i																						
								\top	+													7	_	$\dashv \dashv$	-	
Relinquished by: (Signature)			Received by: (Si	gnature)									L_I							Date:					Time:	
1 mil																	- Z-19-10									
Relinquished (Signature)		Received by: (Signature)														Date:				10	Time:					
								And the second of the second o									2.20.10				D	9:30				
Relinquished by: (Signature)		Received by: (Signature)															Date:				Time:					
		-	3	/																Date:					i ii ii d.	1

Page 3 of 12

05/2/06 Revision

•	1 DATE 18-10 COMPANY DELTA (E ADDRESS 12 PIECE			GOLDEN STATE OVERNIGHT	SHIPPING AIR BILL 4 PACKAGE INFORMATION LETTER (MAX 8 OZ) PACKAGE (WT) DECLARED VALUE \$	0
PRESS FRIMLY	O CITY Soin Tose Senders CITY Solon (715)	STE/ ROOM ZIP CODE PHONE # NUMBER #	951 30 08 526-187	1-800-322-5555 WWW.GSO.COM DELIVERY OVERNIGH BY 10:30 A DELIVERY TIMES MAY BE LATER IN SOME AREA	COD AMOUNT \$ (CASH NOT ACCEPTED) TEARLY PRIORITY SATURDAY	
PLEASE	2 CAL SCIERCE NAME T ADDRESS 7400 LINCOLN VARY O ADDRESS	PHONE NUMBER		6 RELEASE SIGNATURE SIGN TO AUTHORIZE 7 8 PICK UP	DELIVERY WITHOUT OBTAINING SIGNATURE	***
	CITY CARDEW CROVE 3 YOUR INTERNAL BILLING REFERENCE WILL APPEAR ON YOUR INVOICE SPECIAL INSTRUCTIONS	ROOM ZIP CODE	929441	105723794 g gso tracking number	PEEL OFF HERE 105723794	



WORK ORDER #: 10-02- 1 7 6 2

SAMPLE RECEIPT FORM

Cooler ___ of ___

CLIENT: Deita	DATE: _	02/20	/ 10
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not froz Temperature 3 • 1 °C + 0.5 °C (CF) = 3 • 6 °C Sample(s) outside temperature criteria (PM/APM contacted by:). Sample(s) outside temperature criteria but received on ice/chilled on same of the contacted by:).	□ Blank	_ ∑-Sample	
☐ Received at ambient temperature, placed on ice for transport by C		9.	
Ambient Temperature: ☐ Air ☐ Filter ☐ Metals Only ☐ PCBs	Only	Initial:	ap
CUSTODY SEALS INTACT: □ Cooler □ □ No (Not Intact) ✓ Not Present □ Sample □ No (Not Intact) ✓ Not Present		Initial:	D.C
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	⊿′		
COC document(s) received complete	🗆	\mathbb{Z}	
Collection date/time, matrix, and/or # of containers logged in based on sample labels	S.		
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.		•	
Sampler's name indicated on COC	. 🗾		
Sample container label(s) consistent with COC	. 🗷		
Sample container(s) intact and good condition	. 🗆		
Proper containers and sufficient volume for analyses requested	. Z		
Analyses received within holding time	. 🗹		
Proper preservation noted on COC or sample container	. 🗆		\square
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace	🗆		\mathbf{Z}_{\cdot}
Tedlar bag(s) free of condensation	🗆		
CONTAINER TYPE:			
Solid: □4ozCGJ □8ozCGJ □16ozCGJ ☑Sleeve () □EnCore	es [®] □Terra	Cores [®] □	
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp	□1AGB [□1AGB na ₂ □	1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGB	s □1PB [□500PB □50	0PB na
□250PB □250PBn □125PB □125PB z nna □100PJ □100PJna₂ □	□	□	
Air: □Tedlar [®] □Summa [®] Other: □ Trip Blank Lot#:		Checked by:	Dev
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E	: Envelope F		- pl

WORK ORDER #: 10-02- □ 7 6 2

SAMPLE ANOMALY FORM

SAMPLI	ES - CC	NTAIN	ERS & L	ABELS:			Comme	ents:			
Sam Hold Insuf Sam Sam Sam Sam Sam Air s	ples/Cooling time fficient of oper cooling labe ple labe Sample Date ar Project # of Cool Analysi Deaking Withou Sample of Use the conto	ntainers e expired quantitie ntainer(s tive note Is illegit Is do no e ID nd/or Tir Informa ntainers is tainers of g t Labels containe g (Not tr g (transf	received I - list san es for ana s)/preser ed on CO ole - note t match (ne Collect ation comprom ers comp ume ansferred ferred int	CEIVED but I but NOT LI mple ID(s) an Ilysis – list to vative used C or label – test/containe COC – Note ised – Note d - duplicate o Calscience o Client's Te	est	t & notify lab ents ents emts emted) Bag*)	in	to (-8) water ce was	- wh	,	Submerge.
-		Comm	•			4/ • •				. 	
HEADSI	PACE -	- Contai	ners wit	h Bubble >	6mm o	r ¼ inch:	——————————————————————————————————————				
Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Cont. received		Anal	ysis
				· · · · · · · · · · · · · · · · · · ·							
							<u> </u>				
Commen	ts:										
*Transferr	ed at Clie	ent's requ	est.				Ir	nitial / Dat	:e:	b.L	02/국고/10

SOP T100_090 (01/29/10)

Petroleum Services Division 2 3437 Landco Dr.

Bakersfield, California 93308 Tel: 661-325-5657 Fax: 661-325-5808 www.corelab.com

March 1, 2010

Philip Sanelle Calscience Environmental Laboratories, Inc. 7440 Lincoln Way Garden Grove, CA 92641-1432

Re: Physical Properties Analyses

Project: 10-02-1762 CL File No: 410017EN

Dear Mr. Sanelle:

Enclosed are final grain size distribution results for samples submitted from your Project # 10-02-1762. An electronic version of the report has previously been sent to your attention.

Appropriate ASTM, EPA or API methodologies were used for this project and SOP's are available on request. Samples for this project are currently in storage and will be retained for thirty days past completion of testing at no charge. At the end of thirty days the samples will be disposed. You may contact me regarding continued storage, disposal or return of the samples.

We appreciate the opportunity to be of service to Calscience Environmental Laboratories, Inc. and trust these data will prove beneficial in the development of this project. Please do not hesitate to contact us (661-325-5657) if you have any questions regarding these results, or if we can be of any additional service.

Sincerely.

Core Laboratories LP

I mile

ARP Supervisor

Encl.

SIEVE and LASER PARTICLE SIZE SUMMARY

(METHODOLOGY: ASTM D422/D4464M)

Petroleum Services

Calscience Environmental Laboratories, Inc.

Proj. No.: 10-02-1762

Core Lab File No: 57111-410017EN

Date: 2/25/2010

	T Company	Grain Size	Median			Silt						
	ł	Description	Grain Size,				Sand Size					&
Sample ID	Depth, ft.	(Mean from Folk)	mm	Gravel	VCoarse	Coarse	Medium	Fine	VFine	Silt	Clay	Clay
MW-2-20'	20.0	vfgr	0.218	9.41	2.58	11.11	22.91	14.68	6.52	18.93	13.86	32.8
MW-3-23'	23.0	silt	0.086	2.60	1.16	4.66	11.53	19.66	15.93	29.37	15.07	44.4

Company: Calscience Environmental Laboratories, Inc.

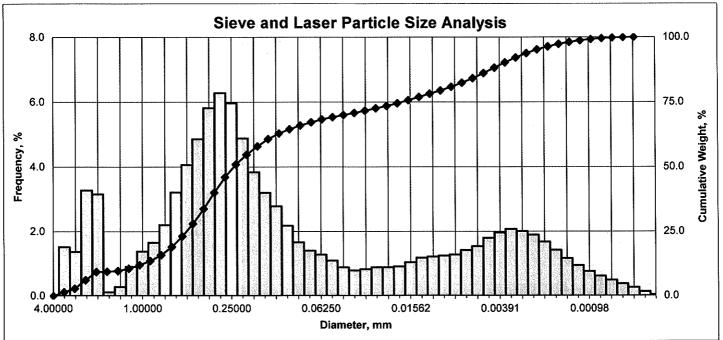
Proj. No.: 10-02-1762

C.L. File No.: 57111-410017EN

Date: 2/25/2010

Sieve and Laser Particle Size Analysis (Metric)

Sample	l		Comp	onent F	ercent	ages							Perce	entiles						Sortin	g Statisti	cs (Folk)							
ID	Gravel			Sand			Fin	es		Particle Diameter (mm) Mo							Particle Diameter (mm)								Median	Mean	Sorting	Skew.	Kurt.
		vcgr	cgr	mgr	fgr	vfgr	silt	clay	5	10	16	25	40	50	75	84	90	95	mm	mm	ф		<u> </u>						
MW-2-20'	9.41	2.58	11.11	22.91	14.68	6.52	18.93	13.86	2.5516	1.3187	0.7000	0.4644	0.2977	0.2179	0.0145	0.0047	0.0028	0.0017	0.218	0.090	3.403	0.430	0.865						
																silt			fgr	vfgr	v. Poor	str. fine	platykurtic						
MW-3-23'	2.60	1.16	4.66	11.53	19.66	15.93	29.37	15.07	0.7104	0.4370	0.3000	0.2019	0.1236	0.0858	0.0086	0.0042	0.0026	0.0016	0.086	0.048	2.871	0.359	0.791						
									cgr					vfgr			clay		vfgr	silt	v. Poor	str. fine	platykurtic						



Company: Calscience Environmental Laboratories, Inc.

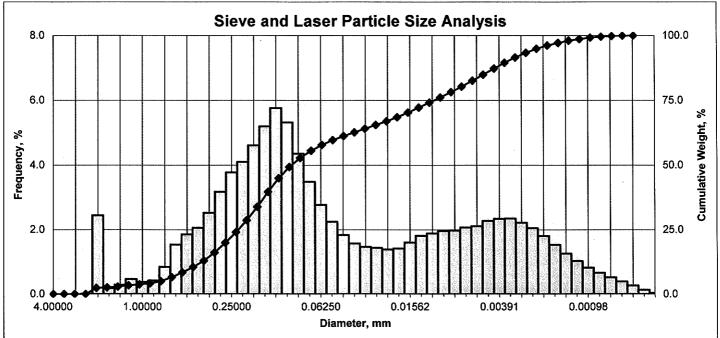
Proj. No.: 10-02-1762

CL File No.: 57111-410017EN

Sample ID: MW-2-20'

			Size Distrib	ution	West	LA 0/
	[US Mesh]	Diam fin.1	eter [mm]	[6]	Weig	nt %
		0.157480	4.00000	-2.00	0.000	0.00
	5 6	0.132425	3.36359	-1.75	1.519	1.52
Granule	7	0.132425	2.82843	-1.50	1.369	2.89
Granuse	8	0.093638	2.37841	-1.25	3.273	6.16
	10	0.078740	2.00000	-1.00	3.153	9.31
	12	0.066212	1.68179	-0.75	0.115	9.43
V Crse	14	0.055678	1.41421	-0.50	0.279	9.71
Sand	16	0.046819	1.18921	-0.25	0.905	10.61
- Cunu	18	0.039370	1.00000	0.00	1.377	11.99
	20	0.033106	0.84090	0.25	1.648	13.64
Coarse	25	0.027839	0.70711	0.50	2.197	15.83
Sand	30	0.023410	0.59460	0.75	3.209	19.04
	35	0.019685	0.50000	1.00	4.056	23.10
	40	0.016553	0.42045	1.25	4.855	27.95
Medium	45	0.013919	0.35355	1.50	5.812	33.77
Sand	50	0.011705	0.29730	1.75	6.281	40.05
	60	0.009843	0.25000	2.00	5.962	46.01
	70	0.008277	0.21022	2.25	4.877	50.89
Fine	80	0.006960	0.17678	2.50	3.834	54.72
Sand	100	0.005852	0.14865	2.75	3.195	57.91
	120	0.004921	0.12500	3.00	2.777	60.69
	140	0.004138	0.10511	3.25	2. <u>777</u> 2.177	62.87
V. Fine	170	0.003480	0.08839	3.50	1.661	64.53
Sand	200	0.002926	0.07433	3.75	1.400	65.93
	230	0.002461	0.06250	4.00	1.280	67.21
	270	0.002069	0.05256	4.25	1.096	68.31
	325	0.001740	0.04419	4.50	0.886	69.19
e::#	400	0.001463	0.03716	4.75	0.787	69.98
Silt	450	0.001230	0.03125	5.00	0.824	70.80
	500 635	0.001035 0.000870	0.02628 0.02210	5.25 5.50	0.886 0.884	71.69 72.57
	633	0.00070	0.02210	5.75	0.911	73.49
		0.000615	0.01562	6.00	1.039	74.52
		0.000517	0.01314	6.25	1.178	75.70
		0.000435	0.01105	6.50	1.215	76.92
		0.000366	0.00929	6.75	1.243	78.16
		0.000308	0.00781	7.00	1.276	79.44
		0.000259	0.00657	7.25	1.416	80.85
		0.000217	0.00552	7.50	1.535	82.39
		0.000183	0.00465	7.75 8.00	1.793 1.960	84.18 86.14
		0.000154 0.000129	0.00391 0.00328	8.00 8.25	2.066	88.21
		0.000129	0.00326	8.50	2.005	90.21
		0.000091	0.00270	8.75	1.892	92.10
Clay		0.000077	0.00195	9.00	1.676	93.78
		0.000065	0.00164	9.25	1.420	95.20
		0.000054	0.00138	9.50	1.163	96.36
		0.000046	0.00116	9.75	0.947	97.31
		0.000038	0.00098	10.00	0.759	98.07
		0.000032	0.00082	10.25	0.619	98.69
		0.000027	0.00069	10.50	0.494	99.18
		0.000023	0.00058	10.75	0.379	99.56
		0.000019 0.000016	0.00049 0.00041	11.00 11.25	0.264 0.134	99.82 99.96

	Sorti	ng Statistic	s (Folk)							
Param	neter	Trask	Inman	Folk						
Med	ian	F	ine sand size	d						
((in)	0.0086	0.0086	0.0086						
•	(mm)	0.2179	0.2179	0.2179						
Mea	an	Ver	γ fine sand si	zed						
	(in)	0.0094	0.0023	0.0035						
	(mm)	0.2395	0.0575	0.0897						
Sort	ing	1 2	V. Poor							
		5.661	0.082	3.403						
Skew	ness	Stro	ongly fine ske	wed						
		0.376	0.480	0.430						
Kurte	osis		Platykurtic	and the						
		0.171	0.465	0.865						
Crovel 3		ponent Perce Silt	entages Clay	Silt + Clav						
Gravel 1	Sand									
9.41	57.80	18.93	13.86	32.79						
Perce		Particle Diameter								
[Weigl										
5		0.1005	2.5516	-1.3514						
10	0	0.0519	1.3187	-0.3991						
10	6	0.0276	0.7000	0.5145						
25	5	0.0183	0.4644	1.1065						
40	0	0.0117	0.2977	1.7481						
51	0	0.0086	0.2179	2.1982						
7:	5	0.0006	0.0145	6.1087						
8-	4	0.0002	0.0047	7.7241						
91	0	0.0001	0.0028	8.4733						
9:	5	0.0001	0.0017	9.2119						
** Distribution	n pattern preci	udes calculation	of these statistic	cal parameters.						



Company : Calscience Environmental Laboratories, Inc.

Proj. No.: 10-02-1762

CL File No.: 57111-410017EN

Sample ID: MW-3-23'

			Size Distrib	oution		
, !	[US Mesh]	Diam	eter [mm]			iht % [Cum.]
			4.00000	[6]	[Incl.]	
+	5 6	0.157480		-2.00 -1.75	0.000	0.00
Granule	7	0.132425 0.111355	3.36359 2.82843	-1.75 -1.50	0.000 0.000	0.00 0.00
Granus	8	0.111355	2.82843	-1.50 -1.25	0.000	0.00
1	10	0.093638	2.37841	-1.25 -1.00	0.011 2.444	0.01 2.45
	12	0.078740	1.68179	-1.00 -0.75	0.178	2.45
V Crse	12	0.066212	1.68179 1.41421	-0.75 -0.50	0.178 0.286	2.63 2.92
V Crse Sand	16	0.055678	1.41421	-0.50 -0.25	0.286	3.39
Janu	18		1.00000	0.00	0.469	
	120	0.039370 0.033106	0.84090	0.25	0.422	<u>3.77</u> 4.19
Coarse	25	0.033106	0.70711	0.25	0.422	4.19 5.04
Sand	30	0.027839	0.70711	0.50	1.535	6.57
Sallu	35	0.023410	0.50000	1.00	1.857	8.43
	40	0.016553	0.42045	1.25	2.060	10,49
Medium	45	0.018919	0.35355	1.25	2.523	13.01
Sand	50 50	0.013919	0.35355	1.75	2.523 3.175	16.19
Saliu	60	0.011705	0.25730	1./5 2.00	3.175 3.776	16.19
	70	0.008277	0.21022	2.25	4.095	24.06
Fine	80	0.008277	0.21022	2.25	4.608	28.66
Sand	100	0.005852	0.17676	2.75	5.198	33.86
Janu	120	0.005852	0.14665	3.00	5.763	39.63
	140	0.004921	0.12500	3.25	5.318	44.94
V. Fine	170	0.004138	0.10511	3.25	4.353	49.30
V. Fine Sand	200	0.003460	0.07433	3.50	4.353 3.488	52.78
- Oanu	230	0.002926	0.07433	3.75 4.00	2.770	55.55
	270	0.002461	0.05256	4.00	2.770	57.80
	325	0.002069	0.05256	4.50	1.834	59.63
	400	0.001740	0.03716	4.75	1.569	61.20
Silt	450	0.001230	0.03125	5.00	1.469	62.67
	500	0.001035	0.02628	5.25	1.435	64.11
	635	0.000870	0.02210	5.50	1.387	65.49
	1	0.000732	0.01858	5.75	1.418	66.91
ľ	1	0.000615	0.01562	6.00	1.600	68.51
	1 .	0.000517	0.01314	6.25	1.808	70.32
	1 "	0.000435	0.01105	6.50	1.886	72.21
	1	0.000366 0.000308	0.00929 0.00781	6.75 7.00	1.961 1.975	74.17 76.14
,		0.000308	0.00781	7.00 7.25	1.975 2.066	76.14 78.21
	1	0.000239	0.00552	7.50	2.108	80.32
		0.000183	0.00352	7.75	2.274	82.59
	l	0.000154	0.00391	8.00	2.338	84.93
		0.000129	0.00328	8.25	2.348	87.28
	1	0.000109	0.00276	8.50	2.216	89.49
~. !	1	0.000091	0.00232	8.75	2.050	91.54
Clay		0.000077	0.00195	9.00	1.803	93.35
,		0.000065	0.00164	9.25	1.529	94.87
1	l	0.000054 0.000046	0.00138 0.00116	9.50 9.75	1.258 1.027	96.13 97.16
		0.000046	0.00116	10.00	1.027 0.820	97.16 97.98
	1	0.000038	0.00098	10.25	0.662	98.64
. !	1	0.000032	0.00069	10.50	0.520	99.16
	1	0.000027	0.00058	10.75	0.392	99.55
ľ	1	0.000019	0.00049	11.00	0.269	99.82
ľ	1	0.000016	0.00041	11.25	0.135	99.96
	1	0.000015	0.00038	11.50	0.042	100.00
				,	i	

	Sorti	ng Statistic	s (Folk)	
Param		Trask	Inman	Folk
Medi	an	Ver	y fine sand si	zed
0	in)	0.0034	0.0034	0.0034
0	mm)	0.0858	0.0858	0.0858
Mea	n		Silt sized	
(in)	0.0041	0.0014	0.0019
ſ	mm)	0.1052	0.0354	0.0476
Sorti	ng	. 1745-374	V. Poor	
		4.839	0.118	2.871
Skewr	iess	Stre	ngly fine ske	wed
		0.486	0.435	0.359
Kurto	sis	Special and Special Special	Platykurtic	Zirin K
		0.222	0.424	0.791
		ponent Perce		
Grave	Sand	Silt	Clay	
0.00			<u> </u>	Silt + Clav
2.60	52.95	29.37	15.07	44.45
Perce	ntile	ed teath P	15.07	44.45 er
	ntile		15.07	44.45
Perce	ntile	ed teath P	15.07	44.45 er
Perce (Weigh	ntile t. %1		15.07 article Dlame Imml	44.45 er Iphil
Perce Weigh 5	ntile t. %1	0.0280	15.07 article Dlamef Imml 0.7104	44.45 er [phi] 0.4933
Perce IWeigh 5	ntile t. %1	0.0280 0.0172	15.07 article Diame Immi 0.7104 0.4370	44.45 er [phi] 0.4933 1.1944
Percentweigh 5 10	ntile	0.0280 0.0172 0.0118	15.07 article Dlame [mm] 0.7104 0.4370 0.3000	44.45 er Iphil 0.4933 1.1944 1.7369
Perce Welch 5 10 16	ntile t. %]	0.0280 0.0172 0.0118 0.0079	15.07 article Diame fmm 0.7104 0.4370 0.3000 0.2019	44.45 9r
Percei Welch 5 10 16 25 40	ntile t. %1	0.0280 0.0172 0.0118 0.0079 0.0049	15.07 article Diametrium 0.7104 0.4370 0.3000 0.2019 0.1236	44.45 gr
Percent Weigh 5 10 16 25 40 50	ntile .t. %]	0.0280 0.0172 0.0118 0.0079 0.0049 0.0034	15.07 article Diametrium 0.7104 0.4370 0.3000 0.2019 0.1236 0.0858	44.45 er 1phil 0.4933 1.1944 1.7369 2.3085 3.0168 3.5435
Percei Welch 5 10 16 25 40 50	ntile	0.0280 0.0172 0.0118 0.0079 0.0049 0.0034 0.0003	15.07 article Diame fmm 0.7104 0.4370 0.3000 0.2019 0.1236 0.0858 0.0086	44.45 9r
Percei Welch 5 10 16 25 40 50 75	ntile	0.0280 0.0172 0.0118 0.0079 0.0049 0.0034 0.0003 0.0002	15.07 article Diametrium 0.7104 0.4370 0.3000 0.2019 0.1236 0.0858 0.0086 0.0042	97

** Distribution pattern precludes calculation of these statistical parameters.

Calscience Environmental Laboratories, inc.

7440 LINCOLN WAY

GARDEN GROVE, CA 92841-1427

TEL: (714) 895-5494 . FAX: (714) 894-7501

TO:	Core	Labs	

> 1/00 FM CHAIN OF CUSTODY RECORD

| DATE: 02/22/10 | PAGE: 1 OF 1

LABORATORY CLIENT:						CLIE	NT PROJE	CT NAM	E/NUN	BER:						1	P.O. NO.:					
	nmental Laboratories, In	ic.							1	0-0	2-17	762						1	0-02	2-1762	2	
ADDRESS:			under mit			BBO	JECT CON	TACT								-	OLIO	TE NO				
7440 Lincoln Way						PRO.	JECT CON	IACI.	ь	hilin	Sar	ماام				ļ					*5*5*5*5*	030000000
Garden Grove, CA 92	2841-1427					CAM	PLER(S): (אואום:		niiiþ	Sar	iene				-	LAB	USEO	NLY			
TEL: (714) 895-5494	E-MAIL psanell	e@calscience	e.com			SAM	PLEN(3). (-KIN1)														
TURNAROUND TIME	, pod.10				**						F-5 F	-011		- D A	NIAI	VCIO	_					
SAME DAY 24	4 HR	5 DAYS	S X	NORN	NAL	İ					K	QUE	-51E	:UA	NAL	. 1 313	<u> </u>					
SPECIAL REQUIREMENTS (ADD	ITIONAL COSTS MAY APPLY)																					
RWQCB REPORT	ING ARCHIVE SAMPLE	S UNTIL	<u>//</u>											1								
SPECIAL INSTRUCTIONS											ł		-									
											1			1								1 1
											ŧ		1	ł			l					
						sis							İ				l				1	
sécicés écite		SAMPLI	NC .		<u> </u>	Sieve Analysis																
LAB	SAMPLE ID	SAMPLI	NG	Walris.	*Con	ě e		1		li	i		1				-			- 1		
USE	SAMIFLE ID	DATE	TIME	174	97.	Siev								İ					ı		-	
ONLY					1			1	1				1								\top	
	VIW-2@20'	02/16/10	09:50	S	1	Х		_			-	_	_	<u> </u>				1	\dashv		+	
ı	MW-3@23' ✓	02/18/10	9:45	S	1	Х								_							\perp	
																			Ī			
					-	-	 		╁┈	├	\dashv		+		\vdash	\vdash		\dashv	\dashv		+	
					<u> </u>	\vdash		+	┼	\vdash		+		+	┼	\vdash	\rightarrow		+	+	+	+
	✓									1 1												
		3		<u> </u>	ļ			—					_	+-	 			_	_		+	
	210	DIO																				
	***************************************							<u> </u>														
				Bossi	od by '	∧ ffiliosi	on: (Signa	ture)								Date			+	Time:		
Relinquished by: (Signature)	· Mant			1			in (signa う\ろ)		<u>~</u> Δ	٦.						1 1	22	lio	- 1	161	5	
	Nobatt.	(CALS	CIENCE)	1			ハン) n: (Signa			``						Date	h:	<u> </u>	\dashv	Time:	<u> </u>	
Relinquished by: (Signature)	It wil	LŦ			. AA	ایمان	A.		++		า					2.	<u>፟</u> ንን [,]	10		120	70	. [
Jarel	Timp	Γ			Vel.	N	MN	41,150	IN	119						Date			_	Time:	/	
Relinquished by: (Signature)	. '			Keceiv	rea by / .	ATINATIO	(Signa	iure)		,									l			l

ATTACHMENT E

CERTIFIED ANALYTICAL REPORTS WITH CHAIN-OF-CUSTODY DOCUMENTATION

March 05, 2010

Regina Bussard
Delta Environmental Consultants, Inc.
312 Piercy Rd.
San Jose, CA 95138-1401

Subject: Calscience Work Order No.: 10-02-1762

Client Reference: 4895 Hacienda Drive, Dublin, CA

Dear Client:

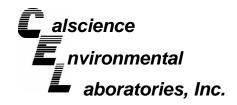
Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 2/20/2010 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental


Philip Samelle for

Laboratories, Inc.

Xuan H. Dang Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Date Received:

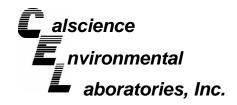
10-02-1762

Preparation:

EPA 3550B

Method: EPA 8015B

Project: 4895 Hacienda Drive, Dublin, CA


Page 1 of 3

1 Toject. +000 Hacienda	Direct, Dublin, O.						1 (age i oi o
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-2@20'		10-02-1762-1-A	02/16/10 09:50	Solid	GC 43	02/23/10	02/24/10 02:35	100223B04
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl	111	61-145						
MW-2@30'		10-02-1762-2-A	02/16/10 10:05	Solid	GC 43	02/23/10	02/24/10 02:55	100223B04
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl	118	61-145						
MW-1@20'		10-02-1762-3-A	02/16/10 13:50	Solid	GC 43	02/23/10	02/24/10 03:15	100223B04
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl	120	61-145						
MW-1@30'		10-02-1762-4-A	02/16/10 14:00	Solid	GC 43	02/23/10	02/24/10 03:35	100223B04
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg			
<u>Surrogates:</u>	<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl	120	61-145						

RL - Reporting Limit

DF - Dilution Factor ,

Qual - Qualifiers

Delta Environmental Consultants, Inc.

Date Received:

Work Order No:

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Date Received:

10-02-1762

EPA 3550B

Method: EPA 8015B

Project: 4895 Hacienda Drive, Dublin, CA Page 2 of 3

Project: 4895 Hacienda	A					Pa	age 2 of 3	
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-4@25'		10-02-1762-5-A	02/17/10 12:00	Solid	GC 43	02/23/10	02/24/10 03:55	100223B04
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl	117	61-145						
MW-6@20'		10-02-1762-6-A	02/17/10 15:20	Solid	GC 43	02/23/10	02/24/10 04:16	100223B04
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl	114	61-145						
MW-6@25'		10-02-1762-7-A	02/17/10 15:30	Solid	GC 43	02/23/10	02/24/10 04:36	100223B04
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl	118	61-145						
MW-3@23'		10-02-1762-8-A	02/18/10 09:45	Solid	GC 43	02/23/10	02/24/10 04:56	100223B04
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl	111	61-145						

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received:

Work Order No: Preparation:

Method:

02/20/10

10-02-1762

EPA 3550B

EPA 8015B

Project: 4895 Hacienda Drive, Dublin, CA

Page 3 of 3

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		099-12-025-983	N/A	Solid	GC 43	02/23/10	02/23/10 18:52	100223B04
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			_
Diesel Range Organics	ND	5.0	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	98	61-145						

Qual - Qualifiers

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received:

02/20/10

Work Order No:

10-02-1762

Preparation: Method:

EPA 5030B

Units:

LUFT GC/MS / EPA 8260B

mg/kg

Project: 4895 Hacienda Drive, Dublin, CA

Page 1 of 5

Client Sample Number			L	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
MW-2@20'			10-02	-1762-1-A	02/16/10 09:50	Solid	GC/MS RR	02/26/10	02/26 16:		100226L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1	
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et	ther (ETBE	≣)	ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (TAME)	ND	0.010	1	
Toluene	ND	0.0050	1		Ethanol			ND	0.50	1	
Xylenes (total)	ND	0.0050	1		TPPH			ND	0.50	1	
Methyl-t-Butyl Ether (MTBE)	0.0097	0.0050	1								
Surrogates:	REC (%)	Control Limits	<u>Qu</u>	<u>ıal</u>	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>Qual</u>
Dibromofluoromethane	101	71-137			1,2-Dichloroeth	nane-d4		98	58-160		
Toluene-d8	100	87-111			1.4-Bromofluoi	robenzene		92	66-126		
Toluene-d8-TPPH	105	87-111			,						
MW-2@30'			10-02	-1762-2-A	02/16/10 10:05	Solid	GC/MS RR	02/26/10	02/26 16:4		100226L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1	
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	, ,		ND	0.010	1	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et	` ,	≣)	ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (ΓAΜE)	ND	0.010	1	
Toluene	ND	0.0050	1		Ethanol			ND	0.50	1	
Xylenes (total)	ND	0.0050	1		TPPH			ND	0.50	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1								
Surrogates:	REC (%)	Control Limits	Qu	<u>ıal</u>	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>Qual</u>
Dibromofluoromethane	104	71-137			1,2-Dichloroeth	nane-d4		107	58-160		
Toluene-d8	99	87-111			1,4-Bromofluoi	robenzene		93	66-126		
Toluene-d8-TPPH	104	87-111			,						

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received:

02/20/10

Work Order No:

10-02-1762

Preparation: Method:

EPA 5030B

Units:

LUFT GC/MS / EPA 8260B

mg/kg

Project: 4895 Hacienda Drive, Dublin, CA

Page 2 of 5

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Anal		QC Batch ID
MW-1@20'			10-0	2-1762-3-A	02/16/10 13:50	Solid	GC/MS RR	02/26/10	02/20 17:		100226L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1	
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth			ND	0.010	1	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et			ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Tert-Amyl-Metl	hyl Ether (T	AME)	ND	0.010	1	
Toluene	ND	0.0050	1		Ethanol			ND	0.50	1	
Xylenes (total)	ND	0.0050	1		TPPH			ND	0.50	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1		_			550 (01)			
Surrogates:	<u>REC (%)</u>	Control Limits	<u>C</u>	<u>)ual</u>	Surrogates:			REC (%)	Control Limits	<u>(</u>	<u>Qual</u>
Dibromofluoromethane	104	71-137			1,2-Dichloroeth	nane-d4		99	58-160		
Toluene-d8	99	87-111			1,4-Bromofluor	robenzene		90	66-126		
Toluene-d8-TPPH	103	87-111									
MW-1@30'			10-0	2-1762-4-A	02/16/10 14:00	Solid	GC/MS RR	02/26/10	02/20 17:		100226L01
MW-1@30' Parameter	Result	RL	10-0	2-1762-4-A Qual	14:00	Solid	GC/MS RR	02/26/10 Result			100226L01 Qual
Parameter		<u>RL</u>	DF		14:00 Parameter		GC/MS RR	Result	17:	41 DF	
Parameter Benzene	Result ND ND	0.0050	<u>DF</u>		Parameter Tert-Butyl Alco	ohol (TBA)	GC/MS RR		17: RL 0.050	41 <u>DF</u> 1	
Parameter	ND		DF		Parameter Tert-Butyl Alco	ohol (TBA) ner (DIPE)		Result ND	17:	41 DF	
Parameter Benzene 1,2-Dibromoethane	ND ND	0.0050 0.0050	DF 1		Parameter Tert-Butyl Alco	ohol (TBA) ner (DIPE) ther (ETBE)	Result ND ND	17: RL 0.050 0.010	DF 1 1	
Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane	ND ND ND	0.0050 0.0050 0.0050	DF 1 1		Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Et	ohol (TBA) ner (DIPE) ther (ETBE)	Result ND ND ND	17: RL 0.050 0.010 0.010	DF 1 1 1	
Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene	ND ND ND ND	0.0050 0.0050 0.0050 0.0050	DF 1 1 1		Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Et Tert-Amyl-Metl	ohol (TBA) ner (DIPE) ther (ETBE)	Result ND ND ND ND	RL 0.050 0.010 0.010 0.010	DF 1 1 1 1	
Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene	ND ND ND ND ND	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	DF 1 1 1 1		Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Et Tert-Amyl-Metl Ethanol	ohol (TBA) ner (DIPE) ther (ETBE)	Result ND ND ND ND ND ND	RL 0.050 0.010 0.010 0.010 0.50 0.50	DF 1 1 1 1	
Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total)	ND ND ND ND ND ND	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	DF 1 1 1 1 1 1		Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Et Tert-Amyl-Metl Ethanol	ohol (TBA) ner (DIPE) ther (ETBE)	Result ND ND ND ND ND	RL 0.050 0.010 0.010 0.010 0.50	DF 1 1 1 1 1 1	
Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Methyl-t-Butyl Ether (MTBE)	ND ND ND ND ND ND ND	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 Control	DF 1 1 1 1 1 1	Qual	Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Et Tert-Amyl-Metl Ethanol TPPH	ohol (TBA) ner (DIPE) ther (ETBE hyl Ether (T)	Result ND ND ND ND ND ND	RL 0.050 0.010 0.010 0.010 0.50 0.50 Control	DF 1 1 1 1 1 1	Qual
Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Methyl-t-Butyl Ether (MTBE) Surrogates:	ND ND ND ND ND ND ND ND ND ND	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 Control Limits	DF 1 1 1 1 1 1	Qual	Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Et Tert-Amyl-Metl Ethanol TPPH Surrogates:	ohol (TBA) her (DIPE) ther (ETBE hyl Ether (T)	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	RL 0.050 0.010 0.010 0.50 0.50 Control Limits	DF 1 1 1 1 1 1	Qual

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received:

02/20/10 Work Order No: 10-02-1762

Preparation: **EPA 5030B**

Method: LUFT GC/MS / EPA 8260B

Units: mg/kg

Project: 4895 Hacienda Drive, Dublin, CA

Page 3 of 5

Client Sample Number MW-4@25'			ļ	b Sample Number 1762-5-A	Date/Time Collected 02/17/10 12:00	Matrix Solid	Instrument GC/MS RR	Date Prepared 02/26/10	Date/\\ Analy 02/26	zed 5/10	QC Batch ID 100226L01
					12.00				14.	,,,	
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1	
1,2-Dibromoethane		0.0050	1		Diisopropyl Eth	` ,		ND	0.010	1	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et	her (ETBE)	ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Tert-Amyl-Meth	nyl Ether (T	AME)	ND	0.010	1	
Toluene	ND	0.0050	1		Ethanol			ND	0.50	1	
Xylenes (total)	ND	0.0050	1		TPPH			ND	0.50	1	
Methyl-t-Butyl Ether (MTBE)		0.0050	1								
Surrogates:		Control Limits	<u>Qua</u>	<u>al</u>	Surrogates:			REC (%)	Control Limits	<u>(</u>	<u>Qual</u>
Dibromofluoromethane	106	71-137			1,2-Dichloroeth	ane-d4		105	58-160		
Toluene-d8	100	87-111			1.4-Bromofluor			92	66-126		
Toluene-d8-TPPH	106	87-111			.,						
MW-6@20'			10-02-	1762-6-A	02/17/10 15:20	Solid	GC/MS RR	02/26/10	02/26 18:0		100226L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1	
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	1	
1,2-Dichloroethane		0.0050	1		Ethyl-t-Butyl Et	`	,	ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Tert-Amyl-Meth	w Ether /T		ND	0.010	1	
•					,	iyi Luici (i	$\triangle VVIL$				
Toluene	ND	0.0050	1		Ethanol	iyi Lulei (i	AIVIL)	ND	0.50	1	
Xylenes (total)	ND ND	0.0050 0.0050	1 1		,	iyi Luici (i	AIVIL)			1 1	
	ND ND ND	0.0050 0.0050 0.0050	1 1 1		Ethanol TPPH	iyi Etilel (1	AIVIL	ND ND	0.50 0.50	1	
Xylenes (total)	ND ND	0.0050 0.0050	1 1	<u>al</u>	Ethanol	iyi Lulei (1	AIVIL)	ND	0.50	1	<u>Qual</u>
Xylenes (total) Methyl-t-Butyl Ether (MTBE)	ND ND ND <u>REC (%)</u>	0.0050 0.0050 0.0050 Control	1 1 1	<u>al</u>	Ethanol TPPH		AIVIL)	ND ND	0.50 0.50 Control	1	Qual
Xylenes (total) Methyl-t-Butyl Ether (MTBE) Surrogates:	ND ND ND REC (%)	0.0050 0.0050 0.0050 Control Limits	1 1 1	<u>al</u>	Ethanol TPPH Surrogates: 1,2-Dichloroeth	ane-d4	AWIL)	ND ND REC (%)	0.50 0.50 Control Limits	1	<u>Qual</u>
Xylenes (total) Methyl-t-Butyl Ether (MTBE) Surrogates: Dibromofluoromethane	ND ND ND REC (%) 102 99	0.0050 0.0050 0.0050 Control Limits 71-137	1 1 1	<u>al</u>	Ethanol TPPH Surrogates:	ane-d4	AWL)	ND ND REC (%) 102	0.50 0.50 Control Limits 58-160	1	<u>Qual</u>

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received:

Work Order No:

10-02-1762 EPA 5030B

02/20/10

Preparation: Method:

Units:

LUFT GC/MS / EPA 8260B

mg/kg

Page 4 of 5

Project: 4895 Hacienda Drive, Dublin, CA

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T I Analy		QC Batch ID
MW-6@25'			10-02-1	1762-7-A	02/17/10 15:30	Solid	GC/MS W	02/26/10	02/27 04:3		100226L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1	
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et	ther (ETBE	.)	ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Tert-Amyl-Meth	nyl Ether (T	AME)	ND	0.010	1	
Toluene	ND	0.0050	1		Ethanol			ND	0.50	1	
Xylenes (total)	ND	0.0050	1		TPPH			ND	0.50	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1								
Surrogates:	REC (%)		Qual	<u>1</u>	Surrogates:			REC (%)	Control	<u>(</u>	<u>Qual</u>
-		<u>Limits</u>							<u>Limits</u>		
Dibromofluoromethane	96	71-137			1,2-Dichloroeth	nane-d4		100	58-160		
Toluene-d8	96	87-111			1,4-Bromofluor	robenzene		94	66-126		
Toluene-d8-TPPH	95	87-111									
MW-3@23'			10-02-1	1762-8-Δ	02/18/10	Solid	GC/MS W	02/26/10	02/27	7/10	1002261.02

MW-3@23'			10-02-1	1762-8-A	02/18/10 09:45	Solid	GC/MS W	02/26/10	02/27 02:4		100226L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.0050	1		Tert-Butyl Alco	ohol (TBA)		ND	0.050	1	
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl E	ther (ETBE)	ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1	
Toluene	ND	0.0050	1		Ethanol			ND	0.50	1	
Xylenes (total)	ND	0.0050	1		TPPH			ND	0.50	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1								
Surrogates:	REC (%)	Control Limits	<u>Qua</u>	<u>l</u>	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>Qual</u>
Dibromofluoromethane	94	71-137			1,2-Dichloroetl	hane-d4		93	58-160		
Toluene-d8	97	87-111			1,4-Bromofluo	robenzene		99	66-126		
Toluene-d8-TPPH	96	87-111									

MANA REL-RO

DF - Dilution Factor ,

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received:

02/20/10 Work Order No: 10-02-1762

Preparation: **EPA 5030B**

Method: LUFT GC/MS / EPA 8260B

Units: mg/kg

Project: 4895 Hacienda Drive, Dublin, CA

Page 5 of 5

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
Method Blank			099-	12-798-847	N/A	Solid	GC/MS RR	02/26/10	02/20 14:		100226L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.0050	1		Tert-Butyl Alco	ohol (TBA)		ND	0.050	1	
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth			ND	0.010	1	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et			ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Tert-Amyl-Met	hyl Ether (T	AME)	ND	0.010	1	
Toluene	ND	0.0050	1		Ethanol			ND	0.50	1	
Xylenes (total)	ND	0.0050	1		TPPH			ND	0.50	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1		_						
Surrogates:	REC (%)	Control Limits	<u>Q</u>	<u>tual</u>	Surrogates:			REC (%)	Control Limits	<u> </u>	<u>Qual</u>
Dibromofluoromethane	103	71-137			1,2-Dichloroeth	nane-d4		101	58-160		
Toluene-d8	99	87-111			1,4-Bromofluoi	robenzene		91	66-126		
Toluene-d8-TPPH	103	87-111			•						
Method Blank			099-	12-798-850	N/A	Solid	GC/MS W	02/26/10	02/2 02:		100226L02
	Dogult	DI				Solid	GC/MS W		02:	12	
Parameter	Result	RL	DF	12-798-850 Qual	<u>Parameter</u>		GC/MS W	Result	02:	12 DF	100226L02 Qual
Parameter Benzene	ND	0.0050	<u>DF</u> 1		Parameter Tert-Butyl Alco	ohol (TBA)	GC/MS W	Result ND	02: RL 0.050	12 DF 1	
Parameter Benzene 1,2-Dibromoethane	ND ND	0.0050 0.0050	DF 1		Parameter Tert-Butyl Alco	ohol (TBA) ner (DIPE)		Result ND ND	02: RL 0.050 0.010	DF 1 1	
Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane	ND ND ND	0.0050 0.0050 0.0050	DF 1 1		Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl E	ohol (TBA) ner (DIPE) ther (ETBE)	Result ND ND ND	02: RL 0.050 0.010 0.010	DF 1 1 1	
Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene	ND ND ND ND	0.0050 0.0050 0.0050 0.0050	DF 1 1 1		Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Et Tert-Amyl-Metl	ohol (TBA) ner (DIPE) ther (ETBE)	Result ND ND ND ND	RL 0.050 0.010 0.010 0.010	DF 1 1 1 1	
Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene	ND ND ND ND ND	0.0050 0.0050 0.0050 0.0050 0.0050	DF 1 1 1 1		Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Et Tert-Amyl-Metl Ethanol	ohol (TBA) ner (DIPE) ther (ETBE)	Result ND ND ND ND ND	RL 0.050 0.010 0.010 0.010 0.50	DF 1 1 1 1 1	
Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total)	ND ND ND ND ND ND	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	DF 1 1 1 1 1		Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Et Tert-Amyl-Metl	ohol (TBA) ner (DIPE) ther (ETBE)	Result ND ND ND ND	RL 0.050 0.010 0.010 0.010	DF 1 1 1 1	
Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene	ND ND ND ND ND	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 Control	DF 1 1 1 1 1 1		Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Et Tert-Amyl-Metl Ethanol	ohol (TBA) ner (DIPE) ther (ETBE)	Result ND ND ND ND ND	RL 0.050 0.010 0.010 0.010 0.50 0.50 Control	DF 1 1 1 1 1 1	
Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Methyl-t-Butyl Ether (MTBE) Surrogates:	ND ND ND ND ND ND ND ND ND	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 Control Limits	DF 1 1 1 1 1 1	Qual	Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Ei Tert-Amyl-Meti Ethanol TPPH Surrogates:	ohol (TBA) ner (DIPE) ther (ETBE hyl Ether (T)	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	RL 0.050 0.010 0.010 0.50 0.50 Control Limits	DF 1 1 1 1 1 1	Qual
Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Methyl-t-Butyl Ether (MTBE)	ND ND ND ND ND ND ND ND REC (%)	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 Control Limits 71-137	DF 1 1 1 1 1 1	Qual	Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl E: Tert-Amyl-Meti Ethanol TPPH	ohol (TBA) ner (DIPE) ther (ETBE hyl Ether (T)	Result ND ND ND ND ND ND ND ND ND ND	02: RL 0.050 0.010 0.010 0.010 0.50 0.50 Control Limits 58-160	DF 1 1 1 1 1 1	Qual
Parameter Benzene 1,2-Dibromoethane 1,2-Dichloroethane Ethylbenzene Toluene Xylenes (total) Methyl-t-Butyl Ether (MTBE) Surrogates:	ND ND ND ND ND ND ND ND ND	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 Control Limits	DF 1 1 1 1 1 1	Qual	Parameter Tert-Butyl Alco Diisopropyl Eth Ethyl-t-Butyl Ei Tert-Amyl-Meti Ethanol TPPH Surrogates:	ohol (TBA) her (DIPE) ther (ETBE hyl Ether (T)	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	RL 0.050 0.010 0.010 0.50 0.50 Control Limits	DF 1 1 1 1 1 1	Qual

Delta Environmental Consultants, Inc. 312 Piercy Rd.

San Jose, CA 95138-1401

Date Received:
Work Order No:
Preparation:
Method:

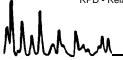
02/20/10 10-02-1762 EPA 3550B EPA 8015B

Project 4895 Hacienda Drive, Dublin, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
10-02-1758-5	Solid	GC 43	02/23/10	02/23/10	100223S04
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD RPD	OCL Qualifiers
Diesel Range Organics	88	88	64-130	1 0-	15

Mulling.

RPD - Relative Percent Difference , CL - Control Limit



Delta Environmental Consultants, Inc. 312 Piercy Rd. San Jose, CA 95138-1401

Date Received: Work Order No: Preparation: Method: 02/20/10 10-02-1762 EPA 5030B LUFT GC/MS / EPA 8260B

Project 4895 Hacienda Drive, Dublin, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
MW-4@25'	Solid	GC/MS RR	02/26/10		02/26/10	100226S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	92	94	40-142	2	0-18	
Carbon Tetrachloride	95	97	37-139	2	0-20	
Chlorobenzene	93	92	43-127	1	0-26	
1,2-Dibromoethane	95	91	70-130	4	0-30	
1,2-Dichlorobenzene	89	89	40-160	0	0-36	
1,1-Dichloroethene	96	100	16-178	4	0-25	
Ethylbenzene	97	96	70-130	1	0-30	
Toluene	94	94	44-128	1	0-15	
Trichloroethene	96	97	47-131	2	0-19	
Vinyl Chloride	100	107	29-161	6	0-42	
Methyl-t-Butyl Ether (MTBE)	88	90	42-150	2	0-34	
Tert-Butyl Alcohol (TBA)	101	101	61-109	0	0-47	
Diisopropyl Ether (DIPE)	87	91	73-133	4	0-25	
Ethyl-t-Butyl Ether (ETBE)	89	92	73-132	4	0-25	
Tert-Amyl-Methyl Ether (TAME)	91	93	82-120	3	0-25	
Ethanol	88	107	39-117	19	0-99	

RPD - Relative Percent Difference , CL - Control Limit

Delta Environmental Consultants, Inc. 312 Piercy Rd. San Jose, CA 95138-1401

Date Received: Work Order No: Preparation:

EPA 5030B LUFT GC/MS / EPA

0-99

Method:

8260B

02/20/10

10-02-1762

Project 4895 Hacienda Drive, Dublin, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-02-1670-2	Solid	GC/MS W	02/26/10		02/26/10	100226S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	85	83	40-142	2	0-18	
Carbon Tetrachloride	73	73	37-139	1	0-20	
Chlorobenzene	79	77	43-127	2	0-26	
1,2-Dibromoethane	78	77	70-130	2	0-30	
1,2-Dichlorobenzene	73	73	40-160	1	0-36	
1,1-Dichloroethene	94	93	16-178	2	0-25	
Ethylbenzene	80	79	70-130	2	0-30	
Toluene	82	81	44-128	2	0-15	
Trichloroethene	88	86	47-131	2	0-19	
Vinyl Chloride	99	98	29-161	1	0-42	
Methyl-t-Butyl Ether (MTBE)	60	49	42-150	6	0-34	
Tert-Butyl Alcohol (TBA)	67	64	61-109	4	0-47	
Diisopropyl Ether (DIPE)	85	82	73-133	4	0-25	
Ethyl-t-Butyl Ether (ETBE)	86	83	73-132	3	0-25	
Tert-Amyl-Methyl Ether (TAME)	84	82	82-120	4	0-25	

78

89

Allena_

Ethanol

39-117

13

Delta Environmental Consultants, Inc. 312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No: Preparation: Method:

10-02-1762 EPA 3550B EPA 8015B

N/A

Project: 4895 Hacienda Drive, Dublin, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyze	d	LCS/LCSD Batc Number	h
099-12-025-983	Solid	GC 43	02/23/10	02/23/10)	100223B04	
<u>Parameter</u>	LCS %	REC LCSD	<u>%REC</u> <u>%</u>	REC CL	<u>RPD</u>	RPD CL	Qualifiers
Diesel Range Organics	117	117	•	75-123	1	0-12	

Mulling.

RPD - Relative Percent Difference , CL - Control Limit

 $\label{eq:DeltaEnvironmentalConsultants} \ \ \text{Inc.}$

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No:

N/A 10-02-1762

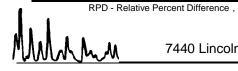
Preparation:

Method:

EPA 5030B

LUFT GC/MS / EPA 8260B

Project: 4895 Hacienda Drive, Dublin, CA


Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD Numbe	
099-12-798-847	Solid	GC/MS RR	02/26/10	02/26	/10	100226L	01
Parameter	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	96	98	85-115	80-120	3	0-11	
Carbon Tetrachloride	95	96	68-134	57-145	2	0-14	
Chlorobenzene	95	98	83-119	77-125	3	0-9	
1,2-Dibromoethane	99	99	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	94	97	57-135	44-148	2	0-10	
1,1-Dichloroethene	93	92	72-120	64-128	1	0-10	
Ethylbenzene	98	101	80-120	73-127	3	0-20	
Toluene	98	99	67-127	57-137	1	0-10	
Trichloroethene	97	100	88-112	84-116	4	0-9	
Vinyl Chloride	96	94	57-129	45-141	2	0-16	
Methyl-t-Butyl Ether (MTBE)	98	98	76-124	68-132	0	0-12	
Tert-Butyl Alcohol (TBA)	79	98	31-145	12-164	22	0-23	
Diisopropyl Ether (DIPE)	96	98	74-128	65-137	2	0-10	
Ethyl-t-Butyl Ether (ETBE)	99	98	77-125	69-133	1	0-9	
Tert-Amyl-Methyl Ether (TAME)	102	101	81-123	74-130	1	0-10	
Ethanol	72	91	44-152	26-170	24	0-24	
TPPH	100	102	65-135	53-147	1	0-30	

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No:

N/A 10-02-1762

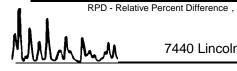
Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Project: 4895 Hacienda Drive, Dublin, CA


Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD Numbe	
099-12-798-850	Solid	GC/MS W	02/26/10	02/27	/10	100226L	02
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	95	95	85-115	80-120	0	0-11	
Carbon Tetrachloride	63	67	68-134	57-145	6	0-14	ME
Chlorobenzene	91	93	83-119	77-125	3	0-9	
1,2-Dibromoethane	89	90	80-120	73-127	2	0-20	
1,2-Dichlorobenzene	93	91	57-135	44-148	2	0-10	
1,1-Dichloroethene	87	87	72-120	64-128	0	0-10	
Ethylbenzene	91	92	80-120	73-127	1	0-20	
Toluene	94	95	67-127	57-137	1	0-10	
Trichloroethene	90	93	88-112	84-116	3	0-9	
Vinyl Chloride	91	92	57-129	45-141	0	0-16	
Methyl-t-Butyl Ether (MTBE)	95	94	76-124	68-132	1	0-12	
Tert-Butyl Alcohol (TBA)	87	85	31-145	12-164	2	0-23	
Diisopropyl Ether (DIPE)	90	90	74-128	65-137	0	0-10	
Ethyl-t-Butyl Ether (ETBE)	96	95	77-125	69-133	1	0-9	
Tert-Amyl-Methyl Ether (TAME)	98	98	81-123	74-130	0	0-10	
Ethanol	109	92	44-152	26-170	17	0-24	
TPPH	84	83	65-135	53-147	1	0-30	

Total number of LCS compounds: 17

Total number of ME compounds: 1

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 10-02-1762

Qualifier *	<u>Definition</u> See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

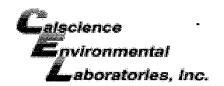
	LAB (LOCATION)									Sh	ell	Oi	ΙP	ro	du	ct	s C	Cha	ain	O 1	F C	usi	tod	ly F	?ec	/ COI	.q						
	ALSCIENCE (ease Chec				Вох								ct N					1444			CIDENT # TENV SERVICES) CHECK IF NO INCIDENT # APPLIES								
				IV. SERVICE	s 📗	MOTIVA	RETA	IL	v	SHELL R	ETAIL												9	T 7	7	1	5	7-1.	100	,	CHECK I	F NO INCIDENT #	APPLIES
	ENCO (□м	OTTVA SD&C	M 🗆	CONSUL	TANT		76	LUBES				-::::::		100-2	PO	#	- -(-:(-(:				1 3	<u> </u>			٠,,,	8	9	3	DATE:	Z-19-	10
	OTHER ()	□ s⊦	(ELL PIPELIN	IE	OTHER							T	T	T	<u> </u>	Ť	' ? *:	<u> </u>	100000 T					7		P#	1			PAGE:	of _	
SAMPLIN	IG COMPANY:					Log co	DE:			_=		SITE	ADDE	DECC.	Street	and Cit					<u> </u>		1	6	5		1	2] ,				
	Consultants											3111					orive	· Dul	hlin				State			GLO	BAL ID	NO.:					
ADDRE	SS:	312 Piercy	Road; Sa	an Jose, C	A 95138	•					_	EDF D			O (Name	Compar	ny, Office	Location			PHONE	NO.;	┸	CA		E-MAI	L:					CONSULTANT PROJE	ECT NO.:
PROJ	ECT CONTACT (Hardcopy or F): F									L				igela ——	Pico					408	-826-	1862			<u>api</u>	co@	deltae	env.co	<u>om</u>	SCA489	5H1D
TELE	PHONE:	FAX:		Bussard E-MAIL:				_				1	PLER N. a Ols		(Print):																ISE ONLY		
TUR	408-826-1876 NAROUND TIME (CALENDAR I	408-225-850	6	<u> </u>	Rbu	issard@	@delta					Con	a Ok	SOII						_	_		_							10) <i>-</i> ()	2-17	62
		5 DAYS 3 DAYS		2 DAYS	☐ 24 H	DURS		☐ R		WEEKE												RE	QUE	STE	O AN	ALY:	SIS			4:1:1:1:1:1:	<u>. (1</u> 2222224 <u>32</u> 22	<u> </u>	-017101010101010101
	A - RWQCB REPORT FORMAT	☐ UST AGENCY:												۸.	sites		_	Τ.				_	_				_	Г	Wa	ste	T		
SP	ECIAL INSTRUCTIONS (OP NOTES :			☑ SHELL	L CONTR	ACT R	ATE APP	PLIES			 		$\overline{}$		1	T		diesel	tank	Τ		+ wa	iste oi	l tank	Τ.		Ch	aracte	erizatio	n TEM	PERATURE ON	RECEIPT
"		colson@deltaenv.com			☐ STATI			4ENT RA	ATE APPI	LIES		(8260B)		(8260B)				(8015M)			<u></u>	(8260B)		6		TPH-D Extractable (8015M)		H		3	ł		
	Send results to:	<u> </u>										9 (82		es (8				e (8			260E	3 (82	(6010)	(827)		(8)	15M	010)		-3	·		
					RECE	IPT VERI	FICAT	TON RE	QUESTE	:D		Purgeable	<u>6</u>	5 Shell Oxygenates	_		(B)	Extractable			VOCs (8260B)	and EDB	s (60	PNA and cresote (8270)	ĺ	table	Oil and grease (8015M)	CAM 17 Metals (6010)	اً	Ana			
			SAM	IPLING			PR	RESERVA	ATIVE			Purg	3260	ő	260B	260B	(826	Extra			Š	, and	/etal	cre	082)	xtrac	reas	Meta		9	ı		
LAB USE	Field Sample	Identification	DATE	TIME	MATRIX]]					NO. OF CONT.	TPH-G	втех (8260в)	hell	EDB (8260B)	EDC (8260B)	Ethanol (8260B)	TPH-D			full suite	1,2-DCA	CAM 5 Metals	A and	PCBs (8082)	글	g pur	117		Sieve	C	ontainer PID Re	eadings
ONLY	MW-7 @	0 1	2/11			HCL I	ниоз	H2SO4	NONE	OTHER		占	BT	55		유	ᇤ	旦	<u> </u>		₫	1,2	S	_ <u>à</u>	PC	효	≅	CAN		1		or Laboratory i	Notes
1		520,	7/6/10	9:50	Soil	\perp			Х		1	×	¥	ļΫ́	Ιž		Ι×	ľ			_	X								X	5-	Shell Oxygen	ates =
2	MW-Z@	301	7/4/0	10:0≤	· 	Ш.	_					Ш					Ш	Ш														MTBE, TBA, I	DIPE
3	MW-10	20'	716/10	13:50											H			П				1										ETBE, TAN	/E
4	MW-1@	30 CEUZ-1746	1/6/10	14:00								1						П															
5	MW-4@	25 25'	4,7/1.	12:00								\Box			П		П	П				1					-						
6	MW-60	70'	2/17/10	15:70										1	1		Н						7					\dashv					
7	MW-6@ Z	5'.	2-17.10	15.30					7			1	+		1		Н		-									\dashv		+	+		
Ġ	MW-38 Z		218	9:45			7					\dagger	+	V	t			V			1	1						\dashv			+		
V	710 30 0	<u>. </u>	-10	,		\vdash	\dashv	-		-		V	¥	•	-		Ľ	~			-	•						_		4_	_		
				·																													
							İ				.																						
Relinquis	shed by: (Signature)		_		Received by: (Sig	nature)													<u> </u>						Date						me:		
Data - T	4000				_						_														'		Z	-)0	7-1	0			1
Keiinquis	shed (Signature)				Received by: (Sig	jnature)				\angle		-		_						~					Date					Ti	me:		
Polic	had by (6)				O.		U	/(آ ر		1			_	> -	and the second				$\overline{}$	>				2		20	۱٠ (0		9	30	
reinquis	thed by: (Signature)				Received by: (Sig	nature)					V			The same											Date					Ti	ime:		
																														1			

Page 17 of 20

05/2/06 Revision

	PATEZ - 18-10 MANA SOMPANY DELLA CEN ADDRESS 312 PIECEN	is Harts Rel		N STATE OVERNIGHT	SHIPPING AIR BILL PACKAGE INFORMATION LETTER (MAX 8 OZ) PACKAGE (WT) DECLARED VALUE \$	PACKAGE LABEL
ESS FRMLY	ADDRESS CITY Suin Jose SENDERS COLL CISC COMPANY	STE/ HOOM ZIP 95 CODE 95 PHONE 1408			COD AMOUNT \$ (CASH NOT ACCEPTED) EARLY PRIORITY BY 8:00 AM	URDAY. IVERY
LEASE	CAL SCHERCE NAME ADDRESS 7440 LINCOLN WAY	PHONE NUMBER	6 RELEAS SIGNATU	IRE .	Y WITHOUT OBTAINING SIGNATURE	
3 SPEC	ADDRESS CITY COARDEN GROVE YOUR INTERNAL BILLING BEFERENCE WILL APPEAR BILL APPEAR BILL AUCTIONS AUCTIONS AUCTIONS	STE/ ROOM ZIP CODE: 92		23794 PEEL OFF HERE		

(1762)



WORK ORDER #: 10-02- 1 7 6 2

SAMPLE RECEIPT FORM

Cooler ___ of ___

CLIENT: Deita	DATE: _	02/20	/ 10
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not froz Temperature 3 • 1 °C + 0.5 °C (CF) = 3 • 6 °C Sample(s) outside temperature criteria (PM/APM contacted by:). Sample(s) outside temperature criteria but received on ice/chilled on same of the contacted by:).	□ Blank	_ ∑-Sample	
☐ Received at ambient temperature, placed on ice for transport by C		9.	
Ambient Temperature: ☐ Air ☐ Filter ☐ Metals Only ☐ PCBs	Only	Initial:	ap
CUSTODY SEALS INTACT: □ Cooler □ □ No (Not Intact) ✓ Not Present □ Sample □ No (Not Intact) ✓ Not Present		Initial:	D.C
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples	⊿′		
COC document(s) received complete	🗆	\mathbb{Z}	
Collection date/time, matrix, and/or # of containers logged in based on sample labels	S.		
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.		•	
Sampler's name indicated on COC	. 🗾		
Sample container label(s) consistent with COC	. 🗷		
Sample container(s) intact and good condition	. 🗆		
Proper containers and sufficient volume for analyses requested	. Z		
Analyses received within holding time	. 🗹		
Proper preservation noted on COC or sample container	. 🗆		\square
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace	🗆		\mathbf{Z}_{\cdot}
Tedlar bag(s) free of condensation	🗆		
CONTAINER TYPE:			
Solid: □4ozCGJ □8ozCGJ □16ozCGJ ☑Sleeve () □EnCore	es [®] □Terra	Cores [®] □	
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp	□1AGB [□1AGB na ₂ □	1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGB	s □1PB [□500PB □50	0PB na
□250PB □250PBn □125PB □125PB z nna □100PJ □100PJna₂ □	□	□	
Air: □Tedlar [®] □Summa [®] Other: □ Trip Blank Lot#:		Checked by:	Dev
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E	: Envelope F		- pl

WORK ORDER #: 10-02- □ 7 6 2

SAMPLE ANOMALY FORM

SAMPLE	ES - CC	NTAIN	ERS & L	ABELS:			Comme	ents:	
☐ Sample Holdi ☐ Insuf ☐ Impre ☐ No pe ☐ Sample Gample	ples/Coring time fficient correservate ple labe ple labe Sample	ntainers e expired quantitie ntainer(s tive note ls illegit ls do note ID nd/or Tir	received I – list san s for ana s)/preser ed on CO ble – note t match (CEIVED but I but NOT LI Inple ID(s) ar Ilysis – list to vative used C or label – test/containe COC – Note	STED or nd test est - list tes list test & er type	t & notify lab	iu 	to (-8) water ce was	Samples Submerged. when received. all melted)
	-	Informa						-	
		ntainers	i						
	Analysi		omprom	i sed – Note	in comm	onto			
	Leaking		omprom	iseu – Note	III COITIIII	EIIIS	-		
	Broken								
		t Labels							
				romised – N	lote in co	mments	-		
	Flat					.,,,,,			
	Very lo	w in vol	ume						
	•			d - duplicate	bag sul	omitted)		<u> </u>	
				o Calscienc	-				
				o Client's Te	edlar [®] Ba	ag*)			
✓ Othe	r: <u>See</u>	Comm	ents.						· · · · · · · · · · · · · · · · · · ·
HEADSI	PACE -	Contai	ners wit	h Bubble >	6mm o	r ¼ inch:			
Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Cont. received	Analysis
	-	_							
Comment	:s:								
									
*Transferr	ed at Clie	ent's requ	est.				Ir	nitial / Dat	e: b.L 02/22/10

SOP T100_090 (01/29/10)

March 04, 2010

Regina Bussard Delta Environmental Consultants, Inc. 312 Piercy Rd. San Jose, CA 95138-1401

Subject: **Calscience Work Order No.:** 10-02-1670

> Client Reference: 4895 Hacienda Drive, Dublin, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 2/19/2010 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Philip Samelle for

Laboratories, Inc.

Xuan H. Dang Project Manager

NELAP ID: 03220CA **CSDLAC ID: 10109** SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received:

Work Order No: Preparation:

Method:

02/19/10

10-02-1670 EPA 3550B

EPA 8015B

Project: 4895 Hacienda Drive, Dublin, CA

Page 1 of 1

Project: 4895 Hacienda Driv	re, Dublin, C	A					Pa	ige 1 of 1
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW5@39.5-40		10-02-1670-1-A	02/17/10 12:17	Solid	GC 49	02/20/10	02/20/10 20:28	100220B04
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	109	61-145						
MW5@23.5-24		10-02-1670-2-A	02/17/10 12:02	Solid	GC 49	02/20/10	02/20/10 20:59	100220B04
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	106	61-145						
Method Blank		099-12-025-980	N/A	Solid	GC 49	02/20/10	02/20/10 16:47	100220B04
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	109	61-145						

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received:

02/19/10 10-02-1670

Work Order No: Preparation:

EPA 5030B

Method: LUFT GC/MS / EPA 8260B Units:

mg/kg

Project: 4895 Hacienda Drive, Dublin, CA

Page 1 of 2

Client Sample Number			L	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
MW5@39.5-40			10-02-	-1670-1-A	02/17/10 12:17	Solid	GC/MS W	02/26/10	02/26 16:2		100226L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
Benzene	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1	
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	ner (DIPE)		ND	0.010	1	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et	ther (ETBE)	ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Tert-Amyl-Metl	nyl Ether (T	AME)	ND	0.010	1	
Toluene	ND	0.0050	1		Ethanol			ND	0.50	1	
Xylenes (total)	ND	0.0050	1		TPPH			ND	0.50	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1								
Surrogates:	REC (%)	Control Limits	<u>Qu</u>	<u>al</u>	Surrogates:			<u>REC (%)</u>	Control Limits	<u>(</u>	<u>Qual</u>
Dibromofluoromethane	103	71-137			1,2-Dichloroeth	nane-d4		114	58-160		
Toluene-d8	100	87-111			1,4-Bromofluor	obenzene		100	66-126		
Toluene-d8-TPPH	97	87-111			,						
MW5@23.5-24			10-02-	-1670-2-A	02/17/10 12:02	Solid	GC/MS W	02/26/10	02/26 14:		100226L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1	
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	,		ND	0.010	1	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et	,)	ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Tert-Amyl-Metl	nyl Ether (T	AME)	ND	0.010	1	
Toluene	ND	0.0050	1		Ethanol	,	ŕ	ND	0.50	1	
Xylenes (total)	ND	0.0050	1		TPPH			ND	0.50	1	
Methyl-t-Butyl Ether (MTBE)	0.057	0.0050	1								
Surrogates:	REC (%)	Control Limits	Qu	<u>al</u>	Surrogates:			<u>REC (%)</u>	Control Limits	<u>(</u>	<u>Qual</u>
Dibromofluoromethane	103	71-137			1,2-Dichloroeth	nane-d4		113	58-160		
Toluene-d8	99	87-111			1.4-Bromofluor			98	66-126		
Toluene-d8-TPPH	97	87-111			,				- '-		

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received:

Work Order No: 10-02-1670

Preparation: **EPA 5030B**

Method: LUFT GC/MS / EPA 8260B Units:

mg/kg

Project: 4895 Hacienda Drive, Dublin, CA

Page 2 of 2

02/19/10

Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
Method Blank			099-12	2-798-848	N/A	Solid	GC/MS W	02/26/10	02/26 14:		100226L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1	
1,2-Dibromoethane	ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	1	
1,2-Dichloroethane	ND	0.0050	1		Ethyl-t-Butyl Et	her (ETBE	(1)	ND	0.010	1	
Ethylbenzene	ND	0.0050	1		Tert-Amyl-Meth	nyl Ether (T	AME)	ND	0.010	1	
Toluene	ND	0.0050	1		Ethanol			ND	0.50	1	
Xylenes (total)	ND	0.0050	1		TPPH			ND	0.50	1	
Methyl-t-Butyl Ether (MTBE)	ND	0.0050	1								
Surrogates:	REC (%)	Control	<u>Qua</u>	<u>al</u>	Surrogates:			REC (%)	Control	<u>C</u>	<u>Qual</u>
_		<u>Limits</u>							<u>Limits</u>		
Dibromofluoromethane	102	71-137			1,2-Dichloroeth	ane-d4		109	58-160		
Toluene-d8	101	87-111			1,4-Bromofluor	obenzene		97	66-126		
Toluene-d8-TPPH	100	87-111									

Delta Environmental Consultants, Inc. 312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No: Preparation: Method: 02/19/10 10-02-1670 EPA 3550B EPA 8015B

Project 4895 Hacienda Drive, Dublin, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	,	Date Analyzed	MS/MSD Batch Number
10-02-1619-22	Solid	GC 49	02/20/10	(02/20/10	100220S04
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Diesel Range Organics	102	100	64-130	3	0-15	

MMMM_

RPD - Relative Percent Difference , CL - Control Limit

Delta Environmental Consultants, Inc. 312 Piercy Rd. San Jose, CA 95138-1401

Date Received: Work Order No: Preparation:

10-02-1670 EPA 5030B

02/19/10

Method:

LUFT GC/MS / EPA 8260B

0-99

Project 4895 Hacienda Drive, Dublin, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
MW5@23.5-24	Solid	GC/MS W	02/26/10		02/26/10	100226\$01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	85	83	40-142	2	0-18	
Carbon Tetrachloride	73	73	37-139	1	0-20	
Chlorobenzene	79	77	43-127	2	0-26	
1,2-Dibromoethane	78	77	70-130	2	0-30	
1,2-Dichlorobenzene	73	73	40-160	1	0-36	
1,1-Dichloroethene	94	93	16-178	2	0-25	
Ethylbenzene	80	79	70-130	2	0-30	
Toluene	82	81	44-128	2	0-15	
Trichloroethene	88	86	47-131	2	0-19	
Vinyl Chloride	99	98	29-161	1	0-42	
Methyl-t-Butyl Ether (MTBE)	60	49	42-150	6	0-34	
Tert-Butyl Alcohol (TBA)	67	64	61-109	4	0-47	
Diisopropyl Ether (DIPE)	85	82	73-133	4	0-25	
Ethyl-t-Butyl Ether (ETBE)	86	83	73-132	3	0-25	
Tert-Amyl-Methyl Ether (TAME)	84	82	82-120	4	0-25	

78

89

RPD - Relative Percent Difference ,
7440 Lincoln

Ethanol

e, CL - Control Limit

39-117

13

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No: Preparation:


10-02-1670 EPA 3550B

N/A

Method: EPA 8015B

Project: 4895 Hacienda Drive, Dublin, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyz		LCS/LCSD Bato Number	'n
099-12-025-980	Solid	GC 49	02/20/10	02/22/	10	100220B04	
<u>Parameter</u>	LCS %	6REC LCSD	%REC %	REC CL	RPD	RPD CL	Qualifiers
Diesel Range Organics	94	95		75-123	1	0-12	

RPD - Relative Percent Difference , CL - Control Limit

Quality Control - LCS/LCS Duplicate

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No:

N/A 10-02-1670

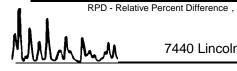
Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Project: 4895 Hacienda Drive, Dublin, CA


Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD I Numbe	
099-12-798-848	Solid	GC/MS W	02/26/10	02/26	/10	100226L	01
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	94	92	85-115	80-120	2	0-11	
Carbon Tetrachloride	77	82	68-134	57-145	6	0-14	
Chlorobenzene	94	93	83-119	77-125	1	0-9	
1,2-Dibromoethane	92	92	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	89	91	57-135	44-148	1	0-10	
1,1-Dichloroethene	94	99	72-120	64-128	5	0-10	
Ethylbenzene	94	93	80-120	73-127	1	0-20	
Toluene	95	91	67-127	57-137	4	0-10	
Trichloroethene	96	95	88-112	84-116	2	0-9	
Vinyl Chloride	95	99	57-129	45-141	3	0-16	
Methyl-t-Butyl Ether (MTBE)	94	96	76-124	68-132	2	0-12	
Tert-Butyl Alcohol (TBA)	86	85	31-145	12-164	1	0-23	
Diisopropyl Ether (DIPE)	93	97	74-128	65-137	4	0-10	
Ethyl-t-Butyl Ether (ETBE)	97	101	77-125	69-133	4	0-9	
Tert-Amyl-Methyl Ether (TAME)	98	96	81-123	74-130	2	0-10	
Ethanol	107	104	44-152	26-170	3	0-24	
ТРРН	92	91	65-135	53-147	1	0-30	

Total number of LCS compounds: 17

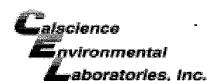
Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

CL - Control Limit

Glossary of Terms and Qualifiers


Work Order Number: 10-02-1670

Qualifier	Definition
<u>\u00e4uaimer</u> *	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

Section Sect	LAB (LOCATION)					CHIN	?		Sh	reli	Oi	ΙP	ro	du	cts	C	hai	n O	f C	ust	ody	y R	ec	orc	k					
Constitute Con	CALSCIENCE ()	14144	Ple	ease Chec	k Aı	prop	riate	Вох														·				ERV	/ICF	S): Ir	7 ८००	CV IE NO INCIDENT # APPLIEC
		□ 6			MOTIV	A RETAI	L L	7	SHELL P	RETAIL	1							٠	*.*.*.*.*		• • • •		· · · ·							
TO MARCH			MOTTLYA SD&CI								ببار			9:11				אי כי			9	·	Ц.,			<u> </u>	9	٦	DAT	LE:
STATE STAT									LUBES							PO	#							SAP	#				PΔC	ar //
STATE CONTINUES SAMPLING SA	OTHER ()	☐ SI	HELL PIPELINE		OTHER	·															1	6	5	1	1	2			FAC	DE 01
Section Sect	PLING COMPANY:				LOG	CODE:			-		SITE	E ADDR	RESS: S	Street a	nd City				ــــــــــــــــــــــــــــــــــــــ		State		_	GLOB.	AL ID N	0.:		—		
STATE PROPERTY P	elta Consultants											489	95 Ha	acien	da Di	rive ;	Dubli	п				CA								
Regina Bussard Regina Bussard		ercy Road: S	an iose C	Δ 95138							EDF D	ELIVERA	ABLE TO	(Name,	Company	, Office i	Location):		PHONE	NO.;				E-MAIL;						CONSULTANT PROJECT NO.:
SPANCH Mode 22-1-1876 Mo	ROJECT CONTACT (Hardcopy or PDF Report to):	, o , roud, o									┨			An	gela l	Pico				408-	826-1	1862			<u>apic</u>	0000	deltae	env.cc	<u>mc</u>	SCA4895H1D
## 405-22-9506 RD08980[0]cellatery xcon 19 0ms 19 0		Regina f	Bussard								SAMI	PLER NA	AME(S) ((Print):														LAB	USE O	NLY
PECIAL INSTRUCTIONS OR NOTES:		8506	E-MAIL:	Rhu	eeard	Mdelta	anv c	om			Con	a Ols	son																•	7- 1/20
At sites	URNAROUND TIME (CALENDAR DAYS):				33410	waterie			NECDE		₩		_															<u> </u>	ن	/(101 ·
PECIAL INSTRUCTIONS OR NOTES: Send results for: Solico@@delitaenv.com Send results for: Solico@delitaenv.com Solic	STANDARD (14 DAY) 5 DAYS 3	DAYS	2 DAYS	☐ 24 HC	DURS		шк				1									RE	QUE	STED	ANA	LYS	IS		Λ.			
PECIAL INSTRUCTIONS OR NOTES: STATE EMBRIAGNESH PATE NOT RECEDED SCHOOL NOTES IN CHEEN PRICES STATE AND RECEDED SOUTH PATE S	LA - RWQCB REPORT FORMAT UST AGENC	.Y:									一								T								Wà	iste	\top	
STATE REPORTED STAT											ــ		All :	sites			+ di	esel tank	1		+ wa	ste oil	tank			Ch	aracte	erizatio	on i	TEMPERATURE ON RECEIPT
MWS @ 39.5-40	SPECIAL INSTRUCTIONS OR NOTES :										m m		0B)				5M)			e e				Σ̈́						U-
MWS @ 39.5-40	colson@deltaenv	.com					IENT RA	ATE APP	LIES		260		826				801		<u>@</u>	260		70)		3015	(N	اء				
MWS @ 39.5-40	Send results to:										(8)		es (] e		3260	3 (8)	910)	(82		B) el	1015	3016			L	
MWS @ 39.5-40				☐ RECE	IPT VE	RIFICAT.	ION RE	QUESTE	ED .		aple	<u>۾</u>	enat			0B)	ctat		S (8	ED)9) s	sote		ctab	9) es)) sir				
MWS @ 39.5-40		SAI	MPLING		Т	PR	ESERV	ATIVE			urg	360E	xyg() (8)	30B)	826	xtra		No.	and	etal	cĭē	182)	ktrak	reas	Mete				
MWS @ 39.5-40	Field Sample Identification			MATRIX		Π				NO. OF	G P	(8)	0	(826	(826	0		İ	ije	δ	2 ≥	and	(8)	D E	ıd bı	171		1	1	O-ut-in-u DID Ddin
MWS @ 39.5-40		DATE	: TIME							CONT.	높	ΙĚ	l S	BB	20	thar	王] s	2-D	₹	Š	CBs	王	il an	ΑM		1 }		
Beceived by (Signature) Received by (Signature) Received by (Signature) Received by (Signature) Received by (Signature) Date: Time: 2 (9 W 1000) Received by (Signature) Received by (Signature) Date: Time:	111100 200 110	215	10.15	 ,	HCL	HNO3	H2SO4		OTHER		-	 	1		Ш				=		0	Δ.	_	_	٥_	ာ			-	
Authorid by (Signature) Received by (Signature) Received by (Signature) Received by (Signature) Received by (Signature) Caste: 1 C	MWS & 39.5-40	-6/17	12:17	Soil	-	\vdash					\vdash	!	—	١			\vdash		 					_				\sqcup	\dashv	
Tene CSO Received by (Signature) Received by (Signature) Received by (Signature) Date Tome	_ MWS @23.6-24		12:02	!	<u> </u>	\sqcup		X		t	×	X	×	×		×				X								Ш		MTBE, TBA, DIPE
Additional Company (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Date: Time: Date: Time:									i		l			Ì																ETBE, TAME
Additional Company (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Date: Time: Date: Time:											П																			
Additional Company (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Date: Time: Date: Time:			+		+-	╁					 			├			\vdash	\perp	\vdash		\vdash		_	_		\vdash		\vdash	\dashv	
Additional Company (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Date: Time: Date: Time:													<u> </u>						L.,										\perp	
Additional Company (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Date: Time: Date: Time:					1						'						1													
Additional Company (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Date: Time: Date: Time:				-		\vdash								 									-					\vdash	十	
Additional Company (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Date: Time: Date: Time:	<u>용</u> 병 용향		+								<u> </u>			-	1	_	-									Ш		\vdash	\dashv	· · · · · · · · · · · · · · · · · · ·
Additional Company (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Date: Time: Date: Time:					}	H			İ																				İ	
Additional Company (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Date: Time: Date: Time:																												\Box	一十	
Additional Company (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Date: Time: Date: Time:	[6] 		\longrightarrow									L																		
Additional Company (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Date: Time: Date: Time:	_								1		'							1											1	
Additional Company (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Date: Time: Date: Time:	nquished by: (Signature)			Received by: (Si	gnature	<u> </u>					 _			1			Щ.						Date			ш	Щ.	\vdash	Time:	
Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Date: Time: Date: Time: Time: Time: Time: Time: Time: Time: Time: Time: Time: Time: Time: Time: Time:	Mast 0/12 0/	18/10		• •																										
GSO Waste CE 2 1910 1000 Received by: (Signature) Received by: (Signature)		-1 -																												
quished by: (Signature) Received by: (Signature) Date: Time:			T	Received by: (Si	gnature)			1	1													Date:	1	1			\neg	Time:	
quished by: (Signature) Received by: (Signature) Date: Time:	650'						(1)	Q^{N}	\mathcal{T}		()	1=	7									1](<	91	W			١	600
	nquished by: (Signature)		+	Received by: (Si	gnature)		\sim	- 70	~~		_	_										Date:	+,	VI			\dashv		. • • • • • • • • • • • • • • • • • • •
05/2/06 Revision			1																											
05/2/06 Revision						_																								
																														05/2/06 Revision

1 F R O M	COMPANY ADDRESS ADD	1 5	
2	COMPANY CALL SCIENCE	• •	BY 10:30 AM BY 8:00 AM DELIVERY TIMES MAY BE LATER IN SOME AREAS • CONSULT YOUR SERVICE GUIDE OR CALL GOLDEN STATE OVERNIGHT. RELEASE
Т	ADDRESS INCOLN WAY	7	SIGN TO AUTHORIZE DELIVERY WITHOUT OBTAINING SIGNATURE
0	ADDRESS STE/ ROOM CITYARDEN GROVE ZIP CODE 92841	8	
3 SPE INST	YOUR INTERNAL BILLING REFERENCE WILL APPEAR ON YOUR INVOICE CIAL RUCTIONS	9	9 GSO TRACKING NUMBER > 6010

Page 11 of 12

SAMPLE RECEIPT FORM

Cooler \ of \

CLIENT: VELTA CONSULTANTS	DATE:	02/19/10
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C - 6.0 °C, not frozente	Blank day of samp ourier.	□ Sample ling. Initial: <u>₩</u>
CUSTODY SEALS INTACT: □ Cooler □ □ □ No (Not Intact) ☑ Not Present □ Sample □ □ No (Not Intact) ☑ Not Present		Initial: WB
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples COC document(s) received complete	7-19-10	No N/A
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished. Sampler's name indicated on COC	. ¤	
Sample container(s) intact and good condition Proper containers and sufficient volume for analyses requested Analyses received within holding time	. Ø . Ø	
Proper preservation noted on COC or sample container	🗆	
CONTAINER TYPE: Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve (es [®] □Terra	aCores [®] □
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGB □250PB □250PB □125PB □125PBznna □100PJ □100PJna₂ □Air: □Tedlar® □Summa® Other: □ Trip Blank Lot#:	s 🗆 1PB	□500PB □500PB na
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E	: Envelope	Reviewed by:

March 04, 2010

Regina Bussard Delta Environmental Consultants, Inc. 312 Piercy Rd. San Jose, CA 95138-1401

Subject: **Calscience Work Order No.:** 10-02-1668

> Client Reference: 4895 Hacienda Drive, Dublin, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 2/19/2010 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Philip Samelle for

Laboratories, Inc.

Xuan H. Dang Project Manager

NELAP ID: 03220CA 7440 Lincoln Way, Garden Grove, CA 92841-1427 ·

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

TEL:(714) 895-5494 ·

FAX: (714) 894-7501

Analytical Report

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received:

Work Order No:

Preparation:

Date Received:

10-02-1668

EPA 3510C

Method: EPA 8015B

Project: 4895 Hacienda Drive, Dublin, CA

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-5@42	10-02-1668-1-H	02/17/10 02:05	Aqueous	GC 45	02/23/10	02/24/10 08:00	100223B05

Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation

of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

ParameterResultRLDFQualUnitsDiesel Range Organics55501ug/L

Surrogates: REC (%) Control Limits Qual

Decachlorobiphenyl 90 68-140

	Method Blank		099-12-211-1,557	N/A	Aqueous	GC 45	02/23/10	02/24/10 02:59	100223B05	
E	Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>				
[Diesel Range Organics	ND	50	1		ug/L				
5	Surrogates:	REC (%)	Control Limits		<u>Qual</u>					
[Decachlorobiphenyl	85	68-140							

Analytical Report

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received:

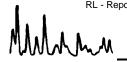
02/19/10

Work Order No:

10-02-1668

Preparation:

EPA 5030B


Method: Units: LUFT GC/MS / EPA 8260B

ug/L

Project: 4895 Hacienda Drive, Dublin, CA

Page 1 of 1

1 10,0011 1000 1140101140	x 2 0, 2 a.	J, O7	•							. ~	90 . 0
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch I
MW-5@42			10-02-1	668-1-A	02/17/10 02:05	Aqueous	GC/MS X	02/24/10	02/24 18:		100224L0 ⁻
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.50	1		Tert-Butyl Ale	cohol (TBA)		ND	10	1	
1,2-Dibromoethane	ND	1.0	1		Diisopropyl E	ther (DIPE)		ND	2.0	1	
1,2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl	Ether (ETBE)	ND	2.0	1	
Ethylbenzene	ND	1.0	1		Tert-Amyl-Me	ethyl Ether (T	AME)	ND	2.0	1	
Toluene	ND	1.0	1		Ethanol			ND	100	1	
Xylenes (total)	ND	1.0	1		TPPH			ND	50	1	
Methyl-t-Butyl Ether (MTBE)	1.2	1.0	1								
Surrogates:	REC (%)	Control	Qua	<u>l</u>	Surrogates:			REC (%)	Control	(<u>Qual</u>
		<u>Limits</u>							<u>Limits</u>		
Dibromofluoromethane	113	80-132			1,2-Dichloroe	ethane-d4		117	80-141		
Toluene-d8	95	80-120			Toluene-d8-1	ГРРН		95	88-112		
1,4-Bromofluorobenzene	83	76-120									
Method Blank			099-12-	-767-3,485	N/A	Aqueous	GC/MS X	02/24/10	02/24 18:		100224L0 ⁻
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.50	1	<u> </u>	Tert-Butyl Ale	cohol (TRA)		ND	10	1	
1.2-Dibromoethane	ND	1.0	1		Diisopropyl E			ND	2.0	1	
1,2-Dichloroethane	ND	0.50	1		Ethyl-t-Butyl)	ND	2.0	1	
Ethylbenzene	ND	1.0	1		Tert-Amyl-Me	•	,	ND	2.0	1	
Toluene	ND	1.0	1		Ethanol	, (.	,	ND	100	1	
Xylenes (total)	ND	1.0	1		TPPH			ND	50	1	
Methyl-t-Butyl Ether (MTBE)	ND	1.0	1								
Surrogates:	REC (%)	Control Limits	Qua	<u>l</u>	Surrogates:			REC (%)	Control Limits	<u>(</u>	<u>Qual</u>
Dibromofluoromethane	106	80-132			1,2-Dichloroe	ethane-d4		107	80-141		
Toluene-d8	97	80-120			Toluene-d8-7	ГРРН		96	88-112		
1,4-Bromofluorobenzene	82	76-120									

Quality Control - Spike/Spike Duplicate

Delta Environmental Consultants, Inc. 312 Piercy Rd. San Jose, CA 95138-1401

Date Received: Work Order No: Preparation: Method:

02/19/10 10-02-1668 EPA 5030B LUFT GC/MS / EPA 8260B

Project 4895 Hacienda Drive, Dublin, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
MW-5@42	Aqueous	GC/MS X	02/24/10		02/24/10	100224S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	<u>Qualifiers</u>
Benzene	103	100	72-120	4	0-20	
Carbon Tetrachloride	90	86	63-135	4	0-20	
Chlorobenzene	104	102	80-120	2	0-20	
1,2-Dibromoethane	111	108	80-120	3	0-20	
1,2-Dichlorobenzene	101	100	80-120	1	0-20	
1,1-Dichloroethene	106	100	60-132	5	0-24	
Ethylbenzene	116	114	78-120	2	0-20	
Toluene	104	103	74-122	1	0-20	
Trichloroethene	102	100	69-120	2	0-20	
Vinyl Chloride	103	103	58-130	0	0-20	
Methyl-t-Butyl Ether (MTBE)	109	103	72-126	5	0-21	
Tert-Butyl Alcohol (TBA)	95	103	72-126	8	0-20	
Diisopropyl Ether (DIPE)	113	109	71-137	3	0-23	
Ethyl-t-Butyl Ether (ETBE)	111	107	74-128	3	0-20	
Tert-Amyl-Methyl Ether (TAME)	113	111	76-124	2	0-20	
Ethanol	90	89	35-167	1	0-48	

MMMM_

RPD - Relative Percent Difference , CL - Control Limit

Quality Control - LCS/LCS Duplicate

Delta Environmental Consultants, Inc. 312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No: Preparation:

10-02-1668 EPA 3510C EPA 8015B

N/A

Method: EPA 8015B

Project: 4895 Hacienda Drive, Dublin, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analy:		LCS/LCSD Batc Number	h
099-12-211-1,557	Aqueous	GC 45	02/23/10	02/24/	10	100223B05	
<u>Parameter</u>	LCS %	6REC LCSD	%REC <u>%</u>	6REC CL	<u>RPD</u>	RPD CL	Qualifiers
Diesel Range Organics	97	94		75-117	4	0-13	

RPD - Rel

RPD - Relative Percent Difference , CL - Control Limit

Quality Control - LCS/LCS Duplicate

Delta Environmental Consultants, Inc.

312 Piercy Rd.

San Jose, CA 95138-1401

Date Received: Work Order No:

N/A 10-02-1668

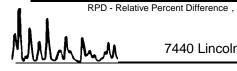
Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Project: 4895 Hacienda Drive, Dublin, CA


Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD Numbe	
099-12-767-3,485	Aqueous	GC/MS X	02/24/10	02/24	/10	100224L	01
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers
Benzene	100	98	80-122	73-129	2	0-20	
Carbon Tetrachloride	88	83	68-140	56-152	6	0-20	
Chlorobenzene	97	101	80-120	73-127	4	0-20	
1,2-Dibromoethane	103	101	80-121	73-128	2	0-20	
1,2-Dichlorobenzene	98	101	80-120	73-127	3	0-20	
1,1-Dichloroethene	103	97	72-132	62-142	5	0-25	
Ethylbenzene	110	112	80-126	72-134	2	0-20	
Toluene	100	100	80-121	73-128	1	0-20	
Trichloroethene	97	97	80-123	73-130	1	0-20	
Vinyl Chloride	104	94	67-133	56-144	10	0-20	
Methyl-t-Butyl Ether (MTBE)	106	99	75-123	67-131	7	0-20	
Tert-Butyl Alcohol (TBA)	87	99	75-123	67-131	13	0-20	
Diisopropyl Ether (DIPE)	112	108	71-131	61-141	4	0-20	
Ethyl-t-Butyl Ether (ETBE)	113	106	76-124	68-132	6	0-20	
Tert-Amyl-Methyl Ether (TAME)	108	109	80-123	73-130	0	0-20	
Ethanol	89	108	61-139	48-152	19	0-27	
TPPH	86	87	65-135	53-147	1	0-30	

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 10-02-1668

Qualifier *	<u>Definition</u> See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

	AB (LOCATION)								5	Shel	10	il li	Pr	od	luc	ts	C	hai	in	Of	Cı	ıst	od	y R	ec	or	d							
	CIENCE (Dì	ease Chec	k An	nronris	ite R						ΙΤο					1414141		-(+(+)+)-((+(+)+(-		-				ÉR	VICE	2S)	Пс	JECK IE VII	O INCIDENT # APPLIES	
SPL	()	□ EN	IV. SERVICE			RETAIL	<u>د</u>		LL RETAII									رواد در در در در معر	1			9	7	7	9		8		3			2/18/10	_
☐ XENO	co ()		OTIVA SD&C		CONSUL			LUB		= -	1,	<u></u>	2ું	V CE	1 . 335,534	20	155	· OV	4	:::::::	· (*) (*)			<u> </u>	٠	٠		1 3	1	D/	λΤΕ:	Chale	
☐ TEST	AMERICA ()					. FAN I		LUB	E5	- 🗓					•	o	#							<u> </u>	SAI	#				P/	AGE:	of	.
□ отн	R ()	☐ SH	IELL PIPELIN		OTHER .					╝												1	6	5	1	1	2						
SAMPLING C						LOG CO	DDE:				SI	ITE AD	DDRES	SS: Stre	eet an	d City							State			GLO	BAL ID N	0.:						
Delta C	onsultants										EDF			Haci LE TO (N					in		PHONE	10.:	L	CA		E-MAIL						GC	DISULTANT PROJECT NO.:	_
		312 Piercy	Road; Sa	an Jose, C	A 95138											ela P		,-					826-	1862				:0@	delta	env.c	com		SCA4895H1D	
PROJEC	T CONTACT (Hardcopy o	' '	D = =i==								s/	AMPLE	R NAM!	E(S) (Prir	_																	ONLY		
TELEPH	ONE:	FAX:	Regina E	E-MAIL:								ora (1110	
	108-826-1876	408-324-68	01 ·		<u>SMcClurk</u>	in-Nel	son@d	eltaei	nv.con	1		014	0.00	,,,																	_ (<u>) </u>	- 1668	
	ROUND TIME (CALENDAI DARD (14 DAY)	R DAYS):	s	2 DAYS	☐ 24 HO	URS		RESI	ULTS NE													RE	QUE	STE	AN.	ALY:	SIS							
	RWQCB REPORT FORMAT								ON WE	LIXLIND	┿									_								1	W	aste			-	\dashv
	NY QUE REPORT FORMAT			<u> </u>							_ _		- 1	All sit	ites		_	+ d	iesel 1	tank			+ wa	ste oi	l tank			C	harac	teriza	tion	TEMPE	ERATURE ON RECE C°	EIPT
SPEC	IAL INSTRUCTIONS	S OR NOTES :					RACT RATE			_	ا ا	<u>. </u>		(BO				5M)				ô				ξ	į						Ü	
		colson@deltaenv.cor	n		_		SURSEMEN'	T RATE	APPLIES	5	090	Fulgeable (62005)	ŀ	5 Shell Oxygenates (8260B)				Extractable (8015M)			(B)	1,2-DCA and EDB (8260B)	2	PNA and cresote (8270)		TPH-D Extractable (8015M)	2M3	<u>©</u>				l		
	Send results to:		_		☐ EDD I						٩	<u>n</u>	İ	tes				əlq			826	3) B(3010	e (8;		ple (801	(601				\vdash		
					☐ RECE	IPT VER	IFICATION	REQU	JESTED		4	<u> </u>	<u>@</u>	gens	<u></u>	<u></u>	Ethanol (8260B)	acta			full suite VOCs (8260B)	J P	CAM 5 Metals (6010)	esot		acta	Oil and grease (8015M)	CAM 17 Metals (6010)				ĺ		
			SAN	APLING		L	PRESE	RVATI	VE			ה ה	3260	οχν	1 See	260E	(82	Extr			8	y an	Meta	d cre	3082	l ä	grea	₹						
LAB	Field Sampl	le Identification	DATE	71345	MATRIX					NO.	OF C	5 5	BTEX (8260B)	Jel (EDB (8260B)	EDC (8260B)	anol	TPH-D			suite	700	Z 5	4 an	PCBs (8082)	구	and	5					ntainer PID Reading	ıs
USE			DATE	TIME		HCL	HNO3 H25	504 N	ONE OT	- 1	OF C	= }	H H	5 St		ED	ŧ	币			3	1,2	3	Νď	2	₽	Ö	3				or	r Laboratory Notes	
	MIN-56	2 <i>4</i> 2	2/17	2:05	water	X				8	. >	× :	×	х	х		х	х				х										5- S	Shell Oxygenates	=
	•		1																													N	TTBE, TBA, DIPE	
				<u> </u>					\top	\top	-	\top	\top												1	-		T		1	-		ETBE, TAME	\neg
								\dashv			\dagger	+	\dashv			\dashv	寸								1			T						
			+	 				_	-			+	\dashv		\dashv	-	-				_				╁		┢	┢	┼	+	-			
								_ _			_	_															_	ļ				ــــــ		
										ļ							ł											<u> </u>				<u> </u>		
																												1				l		
	 										\top	\top	\top			\neg	一								†-			<u> </u>	\top					
								_			_	_	_			_	_									<u> </u>	1-	_		ــــــ	ļ <u> </u>	⊢		
									- 1	İ																	1							
				1				\dashv			_	\top	\dashv		\dashv	一	ヿ	\Box			-				†				+	—			 	
	45-10-5				B 11					_			l		_										Date	<u> </u>		<u></u>			Time			
///	ed by: (Signature)	~ 5/18	110		Received by: (S	ignature)	1																		Date	9					Time	•		
	ed by: (Signature)				Received by: (S	ignature))			_					···										Date	1	- 1				Time):		
•	<u> </u>	50							١.	, ۵		+	-	۲	\ ~	コ									12	١,	ام	l i i	`		Ι,	001	ϵ_{α}	-
		<i></i>			<u> </u>				<u>V</u>	7 c/X	<i>ii</i>	<u>人</u>			<u> </u>	\subseteq									1	1	9	10	<u> </u>		ļ			
Relinquish	ed by: (Signature)				Received by: (\$	ignature)			-																Date	: -					Time	4		
						_																										05/2/06	Revision	
																																		-

1	DATE 16 O SHIPPERS GSO 9255		GOLDEN STRTE OVERNIGHT	SHIPPING AIR BILL 4 PACKAGE INFORMATION LETTER (MAX 8 OZ)	GSO COPY
F R O M	ADDRESS PLASCY TO STEA FROM CITS and JOSER (A CODE 95 138 SENDERS MAH GOVEY PHONE 408 826 1876	5 5	800-322-5555 WWW.GSO.COM DELIVERY PRIORITY DELIVERY OVERNIGH BY 10:30 AN		
2 T	COMPANY CLEMEE NAME PHONE NUMBER 714 895 5494 ADDRESS LINCOLN WAY	6 ; 7 °	RELEASE SIGNATURE SIGN TO AUTHORIZE D	DELIVERY WITHOUT OBTAINING SIGNATURE CREDIT: CARD NUMBER	
Ö	ADDRESS STE/ROOM CITIARDEN CHROVE ZIP CODE 92841	8	PICK UP INFORMATION	DRIVER #	e de la companya de l
	YOUR INTERNAL BILLING REFERENCE WILL APPEAR ON YOUR INVOICE CIAL TRUCTIONS	9	GSO TRACKING NUMBER	37/60/0	

Page 9 of 10

WORK ORDER #: 10-02- [] 6 6 6

SAMPLE RECEIPT FORM

Cooler <u>\</u> of <u>\</u>

CLIENT: DELTA CONSULTANTS	DATE: _	02/19/10
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C − 6.0 °C, not frozente	Blank day of sampli	□ Sample ng. Initial: □
CUSTODY SEALS INTACT: □ Cooler □ □ □ No (Not Intact) □ Not Present □ Sample □ □ No (Not Intact) □ Not Present		Initial: WB
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples COC document(s) received complete	🗆	No N/A
Collection date/time, matrix, and/or # of containers logged in based on sample label. □ No analysis requested. □ Not relinquished. □ No date/time relinquished. Sampler's name indicated on COC		
Sample container label(s) consistent with COC		
Sample container(s) intact and good condition		
Proper containers and sufficient volume for analyses requested	/	
Analyses received within holding time		
Proper preservation noted on COC or sample container	🗹	
Volatile analysis container(s) free of headspace	🗹	
Tedlar bag(s) free of condensation		
CONTAINER TYPE:		
Solid: 40zCGJ 80zCGJ 160zCGJ Sleeve () EnCon		
Water: □VOA ☑VOÅh □VOAna₂ □125AGB □125AGBh □125AGBþ	o ⊿1AGB	□1AGB na ₂ □1AGB s
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGB	s 🗆 1PB	□500PB □500PB na
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna ₂ □_		
Air: ☐Tedlar® ☐Summa® Other: ☐ Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E	: Envelo p e	Reviewed by:

ATTACHMENT F

FIELD DATA SHEETS

SHELL WELLHEAD INSPECTION FORM

(FOR SAMPLE TECHNICIAN)

Site Address	429	it 1	1A	CIF	NI	DA I)R	DUBL	in, ca	Date <u>3</u>	15 /12 1 of _/
Job Number	1003	315-	wh) (Tec	hnician	nn		Page	
Well ID	Well Inspected - No Corrective Action Required	Well Box Meets Compliance Requirements *See Below	Water Bailed From Wellbox	Cap Replaced	Lock Replaced	Well Not Inspected (explain in notes)	New Deficiency Identified	Previously Identified Deficiency Persists		Notes	
MW-1	X	*			X				•		
MW-2	100	9			6						
Mw-3	K	4			10						
MW-Y	×	4			χ,						
MW-1 MW-2 MW-3 MW-4 MW-5	10	K			Ø						
Mw-6	8	7,	X		دعا						
£.		138									
Tan											
5- 11. 1											
		M. C.									
(1) (N)	To the state of th	***									
								in twee			
						!- na					
						Die					
*Well box must me "MONITORING WE										2) WELL IS MARKED	WITH THE WORDS
Notes:		4,3	ş								
	····			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				:	7.
BLAINE TECH SE	RVICES, IN	IC.		SAN.	JOSE	SACRA	MENTO	LOS ANGELES	S SAN DIEGO	SEATTLE	www.blainetech.com

WELL GAUGING DATA

Project # 1003 IJ - WW I	Date 3/15/10	Client SHEU
Site 4895 HACKENDA	DR. DUBLIN; CA	

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)			Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
PW-1	670E	<u>L</u> f	Odoi	Elquid (it.)	Elquiu (it.)	(1111)	11.65	30.19	1	Notes
MW-3 MW-4 MW-5 MW-6	0812	4					12915	29.60	** See A. Tought 4-9 camp (Compression)	
MW-3	0823	Ч					12.62	25.07	Armine access page afficiency of the	
MW-Y	0216	4					12.85	26007	y gype, glacus d'y ellocation de l'action	
MW-5	0819	Ĺ		i de la companya di santa di s		5	12 80			
Mw-6	027	Ч				48 A	12,79	25.22	Y	
			fa _a	·				1. 1 A.		
								4		
							. \			
		•								

Project #: 100315-	-WW(14. Ži	Client:	SHELL	,			
Developer: WW		V		Date De	eveloped:	3/15/1	0		
Well I.D. MW-1				Well Di	ameter: (d	circle one)	2 3	4)6'_	13
Total Well Depth:				Depth to) Water:				
Before 30.19 Af	ter 3d	19		Before	11.65	After //	.73		
Reason not developed:				If Free 1	Product, tl	hickness:			
Additional Notations:	SWAL	bed	we	11 10	mins	prior			
Volume Conversion Factor (VCF): $\{12 \times (d^2/4) \times \pi\} / 231$		Well dia. 2"	= 0.1	F					
where		3"	= 0.3					1	
12 = in / foot		4"	= 0.6	55					
d = diameter (in.)		6"	= 1.4	17		•			
$\pi = 3.1416$		10"	= 4.0	_		6			
231 = in 3/gal		12"	= 6.8	17					
12	X		1	D			121		
1 Case Volume		Sı	ecifie	i Volumes	S = ==	•	gallons		
Purging Device:		Bailer				Electr	ic Submer	sible	
		Suctio	n Pum	p		Positi	ve Air Dis	placement	

ř	I .		Cond			
		*,	Cond.	TURBIDITY	VOLUME	ş.
TIME	TEMP (F)	pН	(mS or as)	(NTUs)	REMOVED:	NOTATIONS:
0858	start	price				
0910	62-1	7.20	1742	>/000	12.1	brown/cloucky HARPON
923	64.4	7.33	1317	>/000 *	24.2	it et e
SWIT	TCHER	s To	3" 2	S AM	}	SWAP PUMP)
0930	61.2	7. Us	1632	7600	36.3	brown cloudy HARD
0932	63,9	7.28	1659	7/000	48.4	11
0936	64,1	7.30	1780	>1000	60,5	(C + P)
0939	66.3	7.20	16 4b	>> 0 ∞	72.6	u · · · · · · · · · · · · · · · · · · ·
0943	63.6	7.42	1646	>1000	24.7	(4 /4 / 4
0946	15.3	7,30	1602	2/000	96.8	ii s 🦅 l p
0949	B.2	7.50	1597	2/000	108,9	e(Sec. ed
0952	65.0	7.33	1579	7/000	121.0	brown/clovely HARD, BOTTOM
1,20			i i			λ, %
Did Well Dew	ater? NO	If yes, note abov	ve.	Gallons Actuall	y Evacuated:	121

Project #: 100315-	-WW(Cli	ient: S	HELL			
Developer: WW				Da	te Dev	reloped:	3/15	10	
Well I.D. MW-)			W	ell Dia	meter: (c	ircle o	ne) 2 3 (4) 6	
Total Well Depth:	***************************************					Water:			
Before 29.60 Af	ter 29.	73		Ве	fore	285	After	13.20	
Reason not developed:				If I	Free P	roduct, th	icknes	s:	51
Additional Notations:	5Wabb	red	w	ell	10	Min S	prio	Y	
Volume Conversion Factor (VCF): $\{12 \times (d^2/4) \times \pi\} / 231$ where 12 = in / foot d = diameter (in.) $\pi = 3.1416$ 231 = in 3/gal		3" 4" 6"		VCF 0.16 0.37 0.65 1.47 4.08 6.87		· · · · · · · · · · · · · · · · · · ·	ij.		
3.01	X			10		36		108	
1 Case Volume	-	Sp	ecifi	ed Vo	lumes	=		gallons	
Purging Davice:	Пв	ailer					DD E1	ectric Submersible	

Type of Installed Pump
Other equipment used

| Midelle by 7

(5

☐ Suction Pump

Positive Air Displacement

			Cond.	TURBIDITY	VOLUME			
TIME	TEMP (F)	рН	(mS or nS)	(NTUs)	REMOVED:		NOTATIO	NS:
1026	STATI	et Pu	ROE					, , , , , , , , , , , , , , , , , , ,
1033	68.3	7,45	2499	>1000	10.2	bown/	closely	HARD BOTTOM
1043	68.4	7.46	2396	>1000	21.6	7.6		. ,
	SWIT	CHED 7	0 3"	ES PVA	AP	-		
(05)	62.2	7.54	2394	71000	324	brown /	duly	BUTTON
1054	68.4	7.35	2359	>1000	43.2	4 <	i «	ŧ (
1056	6.2	7.27	2322	>1000	54.0	À P(((- (
1058	69.2	7.24	2305	7/000	64.8	1 (ę r	. /
1100	69,4	7,05	2284	5/000	75.6	17	//	"
1101	69.0	7-18	2287	71,00	86.4	Cr	l (//
1103	69.5	7.15	2302	>1000	97.2	€ _t	<i>(</i> :	*/
1105	4.5	7.99	2273	>1000	108.0	brown	chudy	/ Born
-				i V				l
Did Well Dew	ater? NO	If yes, note abov	/e.	Gallons Actuall	y Evacuated:	108		

Project #: 100315.	-WW1		C1	ient: 5	HELL		
Developer: WW			Da	ate Dev	eloped:	3/15/10	
Well I.D. MW - 3	3		W	ell Dia	meter: (ci	rcle one) 2 3 4 6	
Total Well Depth:			De	epth to	Water:		
1	ter 25.0	Z	Ве	efore V	262	After 3-78	
Reason not developed:	•		If	Free Pi	oduct, th	ickness:	
Additional Notations:	5W abbe	eli	nell	15	mins	prior	
Volume Conversion Factor (VCF): $ \{12 \times (d^2/4) \times \pi\} / 231 $ where $ 12 = \text{in / foot} $ $ d = \text{diameter (in.)} $ $ \pi = 3.1416 $ $ 231 = \text{in 3/gal} $	Well d 2" 3" 4" 6" 10"		VCF 0.16 0.37 0.65 1.47 4.08 6.87		in a		
1 Case Volume	Χ	Spec	/o ified Vo	olumes	-	Z l gallons	
Purging Device:	☐ Bail	er				Electric Submersible	

👺 Positive Air Displacement

Type of Installed Pump
Other equipment used

midalle byrg

''' well swab

☐ Suction Pump

			Cond.	TURBIDITY	VOLUME	
TIME	TEMP (F)	pН	(mS or µS)	(NTUs)	REMOVED:	NOTATIONS:
1230	Start	oural		* 1		-
1238	67.4	7.96	3632	>/000	8.1	brown/cloudy/BUTTOM
1247	66.2	7.76	3679	2000	16-2	in the contraction of the contra
	SWIT	CHED	73 3"	ES P	UMP	
1250	65.6	7.5%	3658	21000	24.3	brown; cloudy, Bottom
1252	65.1	7.35	3640	>1000	32.4	te ex · ·
1253	65-4	7.25	3700	>/১০০০	40.5	fr to
1254	65-4	7.05	3710	>/000	48.6	(i Co co
1255	65-M	7.03	3753	>1000	56.7	4 . 4
1257	65-6	7-33	3631	>1000	64.8	10 (1
1258	65.5	7012	3643	994	72.9	(1 -1 -1
12,00	65.6	7,02	3637	634	81.0	brown churchy BOTOM
	700					
Did Well Dew	ater? N 6	If yes, note abo	ve.	Gallons Actuall	y Evacuated:	81

Project #: 100315.	-WW(Client: SHELL				
Developer: WW			I	Date Developed: 3 / 15 / 10				
Well I.D. MW - L	1		V	Well Diameter: (circle one) 2 3 (4) 6				
Total Well Depth:				epth to	Water:		The state of the s	
	fter 2	7.47	! E	Before	12.85	After	14.50	
Reason not developed	•		I	f Free F	roduct, t	hickness:		
Additional Notations:	5Wabb	red	well	10	mins	prior		
Volume Conversion Factor (VCF): $\{12 \times (d^2/4) \times \pi\}$ /231 where 12 = in / foot d = diameter (in.) $\pi = 3.1416$ 231 = in 3/gal	<u>w</u>	'ell dia. 2" = 3" = 4" = 6" = 10" = 12" =	VCF 0.16 0.37 0.65 1.47 4.08 6.87					
8.6	X		10			•	36	
1 Case Volume		Spe	cified Y	Volumes		-	gallons	
Purging Device:	□ E	Bailer				☐ Elect	tric Submersi	ble

Suction Pump Type of Installed Pump middle burg

6.97

MO If yes, note above.

1300

1302

Did Well Dewater?

70.0

70.0

PUMP HIT

pump/

87.50

DEVELOPED

87.50

Positive Air Displacement

Other equipment used swab 4" well Cond. NOTES: TURBIDITY VOLUME DTW: NOTATIONS: (mS or uS) REMOVED: (NTUs) TEMP (F) TIME pН FOR 10 MINS. PUMP PRICE USING SUPGED TO WELL 8.75 >1000 13.43 TURBID/THICK 69.7 7.60 2410 1226 21000 17.5 68.8 2431 13.30 7.52 HARD BOTTOM 1237 ES Pump 70 3' SWITCH HIT Pump 69.5 7.08 >1000 2451 TURBID 26.25 1248 HIT 7.04 TURB ID 2455 35.00 >1000 69.9 PUMP 1250 HIT >1000 43.25 70.0 7.03 1252 2461 HARD BOTTON HIT 6.99 52.50 69.8 2452 640 CLEARING Pump 1254 Pump 840 69.9 7.00 61.25 1256 2467 HARD BOTTOM HITM P 70.00 CLEARING 701 69.9 2475 1258 6.97 HIT 963 78.75 HARD BOTTON 6.96 2488

925

Gallons Actually Evacuated:

2489

Project #: 10031	5-WW1		Client:	Client: SHELL					
Developer: WW			Date De	veloped:	3/15/10				
Well I.D. MW	and Cillianian		Well Di	ameter: (circle one) 2 3 (4) 6				
Total Well Depth:			Depth to	Water:					
Before 28.53	After 29	.53	Before	Before 12.80 After 12.80					
Reason not develo			If Free F	roduct, t	hickness:				
Additional Notation	. 6	obed n	rell 20	mins	prior				
Volume Conversion Factor (Vi $\{12 \times (d^2/4) \times \pi\} / 231$ where $12 = \text{in / foot}$ $d = \text{diameter (in.)}$ $\pi = 3.1416$ $231 = \text{in 3/gal}$	CF):	Well dia. 2" = 3" = 4" = 6" = 10" = 12" =	VCF 0.16 0.37 0.65 1.47 4.08 6.87	P					
10.2	X		10						
1 Case Volume		Specif	ied Volumes		gallons				
Purging Device:	Type of Insta		-	ovra Svab	☐ Electric Submersible ✓ Positive Air Displacement				

TIME	TEMP (F)	рН	Cond. (mS or $\mu \overline{S}$)	TURBIDITY (NTUs)	VOLUME REMOVED:	PTW; NOTATIONS:
SUPKED			lo MI	us Pric	12 TO L	DINK PUMP
1411	67.6	7.56	2353	>1000	10.50	13.47 MRBID
1425	67.2	7.21	2207	>1000	21.0	13.60 / HARDBOTTOM
PLACED	3" E	S PUMP	1N W	IEL .		
1431	67.7	7.25	2288	>1000	31.50	17.20 / HARBOTTOM
1433	67.9	7.19	2419	>1000	42.0	18.69 / TURBID
1435	68.1	7.13	2345	>1000	52.50	19.80 / HARD BOTTOM
1437	68.3	7.13	2222	>1000	63.00 h	21.06 / TURBID
1439	68.4	7.14	2310	>1000	73.50 A	22.31 / HARDBOTTEM
1441	68.3	7.11	2225	>1000	84.00	23.59/ TURBID
1443	68.3	7.09	2140	>1000	94,50	24.82 / HARD BOTTEN
1445	68-4	7.10	2119	>1000	105.00	HIT PUMP/ DEVELOPED
Did Well Dewater? NO If yes, note above.				Gallons Actuall	y Evacuated:	109.0

Project #: 100315-	-WW (Client: SHELL				
Developer: WW		Date Developed: 3 / 15 / 10				
Well I.D. MW-	7	Well Diameter: (circle one) 2 3 (4 6 _				
Total Well Depth:		Depth to Water:				
Before 25:22 Af	ter 25.22	Before 12.75 After 12-84				
Reason not developed:		If Free Product, thickness:				
Additional Notations:	swabbed we	11 20 mins prior				
Volume Conversion Factor (VCF): $\{12 \times (d^2/4) \times \pi\} / 231$ where $12 = \text{in / foot}$ $d = \text{diameter (in.)}$ $\pi = 3.1416$ $231 = \text{in 3/gal}$ 1 Case Volume	7.	6 57 55 17 18				
Purging Device:	☐ Bailer ☐ Suction Pump	☐ Electric Submersible				

Type of Installed Pump
Other equipment used

middle byrg

// well swab

			Cond.	TURBIDITY	VOLUME			4
TIME	TEMP (F)	pН	(mS or ps)	(NTUs)	REMOVED:		NOTATI	ONS:
1347	start,	ourge						
1354	65.5	7.68	3250	>/000	8.1	brown/	chudy,	14 ARD BUTTOM
1406	64.4	7.81	3203	>/200	16.2	į(r (٠,
	SWITC	HED TO	0 3"	ES F	UMP			
1410 .	64.7	7,28	3186	>1000	24.3	brown	loboly	HARD BUTTOM
1411	65-6	7.17	3136	とこの	32,4	17	₹ e	(
1412	65-6	7.18	3038	>1000	40.5	11	٠.	,
1413	65-6	7,22	2939	>/000	48.6	Ü	٠ (. ,
1416	65.2	7.18	2924	>1000	56.7	۲,	r e	e
1416	65-6	7,17	2905	2/300	64.8	۲,	(c	۲,
1417	65.7	7,18	2905	>1000	72.9	ĺ į	i t	* (
1418	65.8	7.14	2920	5/000	रा. ०	Pum	clovely	Bottom
						·		
Did Well Dew	ater? NO	If yes, note abov	/e.	Gallons Actuall	81			

SHELL WELLHEAD INSPECTION FORM

(FOR SAMPLE TECHNICIAN)

	Site Address		489	5		Ha	ciena	da D	r 4	Publin CA	_Date <u>3 - / 9</u>	7-10
										Pane 11		
	Well ID	Well Inspected - No Corrective Action Required	Well Box Meets Compliance Requirements *See Below	Water Bailed From Wellbox	Cap Replaced	Lock Replaced	Well Not Inspected (explain in notes)	New Deficiency Identified	Previously Identified Deficiency Persists		Notes	
	MW-1	X						X		NO TAG NO TAG NO TAG NO TAG NO TAG		
	MW-Z	X						X		NO TAG		
	MW-3	X						×		NO TAG	NA 2001 - 1	
	MW-4	X						×		NO TAG	**************************************	
	MW-5 MW-6	X						X		NO TAG		
	MW-6	X								NO TAG		
	vest for many							185		,		
										W. W. W. W. W. W. W. W. W. W. W. W. W. W		
						-						
								·				
	110/ - 11 fe	- 11 42									Miles of the second second second second second second second second second second second second second second	
•	'MONITORING WELL	an thre _" (12"d	e criteria or less) 3	to be) WEL	comp L TA	oliant: G IS P	1) WELL I RESENT,	S SECURA SECURE, A	BLE BY DE	SIGN (12"or less) 2) WELL ! ECT	S MARKED WITH THE	WORDS
	Notes:											Market 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
_												****
	BLAINE TECH SERVICES INC.											

BLAINE TECH SERVICES, INC.

SAN JOSE

SACRAMENTO

LOS ANGELES

SAN DIEGO

SEATTLE

www.blainetech.com

WELL GAUGING DATA

Project # 100319-151 Date 3-19-10 Client		
--	--	--

Site 4895 Hacienda Dr Dublin CA

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOC	Notes
MW-1 MW-2 MW-3 MW-4 MW-5 MW-6	742	۷1					11.75	30.29		
MW-Z	737	4					13.16	29.94 25.03		
MW-3	752	4					12.84	25.08		
MW-4	802	4					12.98	27.32		September 1997
MW-5	757	4					12.99	29.69		//
MW-B	747	4					12.84	25.26	4	
6		·		***************************************						
5 ⁶ .			MANAGEMENT OF THE STATE OF THE							
\$ ice								***************************************		
AND THE REAL PROPERTY AND THE PROPERTY A								1		

SHE: WELL MONITORING DAT HEET

BTS #: /0	03 19-	BPI		Site: 4895 Hacienda Or, Dublin CA					
Sampler:				Date: 3-19-10					
Well I.D.:	MW-1			Well Diameter: 2 3 4 6 8					
Total Well)): 3	0.29	Depth to Water (DTW): 11. 75					
Depth to Fi	ee Produc			Thickness of Free Product (feet):					
Referenced	to:	(PVC)) Grade	D.O. Meter (if req'd): YSI HACH					
DTW with	80% Rech	arge [(F	leight of Water	Column x 0.20) + DTW]:	15.46			
Purge Method:	Bailer Disposable B Positive Air I Ælectric Subn	Displaceme	Other		Sampling Method: Other:	≯Bailer Disposable Bailer Extraction Port Dedicated Tubing			
12.0 (1) 1 Case Volume	Gals.) XSpeci	3 fied Volum	= 36.0		er Multiplier Well [0.04 4" 0.16 6" 0.37 Other	Diameter Multiplier 0.65 1.47 radius² * 0.163			
Time	Temp (°F)	рН	Cond. (mS or (LS)	Turbidity (NTUs)	Gals. Removed	Observations			
833	65.5	7.35	1602	489	12.0				
835	67.0	7,23	1638	226	24.0				
838	67.3	7.20	1657	120	36.0				
			•						
Did well de	water?	Yes (No	Gallons actuall	y evacuated:	36.0			
Sampling D	ate: 3-19	'-10	Sampling Time	845	Depth to Water	12.52			
Sample I.D.	: MW	-1		Laboratory: c	CalScience Colu	mbia Other			
Analyzed fo	or: TPH-G	BTEX	MTBE (TPH-D)	Oxygenates (5)	Other:				
EB I.D. (if a	applicable)			Duplicate I.D. ((if applicable):				
Analyzed fo	or: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates (5)	Other:				
D.O. (if req'	d): Pr	e-purge:		mg/L Po	ost-purge:	nig/L			
ORP (if re	ra'd)· Pr	e-purge	-	mV Po	ost-purge:	mV			

SHE: WELL MONITORING DAT HEET

						ide			
BTS #: 10	03 19-	BPI		Site: 4895 Hacienda Dr. Dublin CA					
Sampler:				Date: 3-19-10					
Well I.D.:				Well Diameter: 2 3 4 6 8					
Total Well			7.94	Depth to Water (DTW): 13.16					
Depth to Fr	ee Produc	:		Thickness of Free Product (feet):					
Referenced	to:	(PVC)	Grade	D.O. Meter (if req'd): YSI HACH					
DTW with	80% Rech	arge [(H	eight of Water	Column x 0.20) + DTW]: /	16.52			
Purge Method:	Bailer Disposable B Positive Air I ≮Electric Subn	Displaceme	Other	Waterra Peristaltic stion Pump C. 78 Well Diamete	Sampling Method: Other:	Disposable Bailer Extraction Port Dedicated Tubing			
10. 9 (0		3 fied Volum	= 32.7	_ Gals. 1" 2"	0.04 4" 0.16 6" 0.37 Othe	0.65			
Time	Temp (°F)	рН	Cond. (mS or (uS)	Turbidity (NTUs)	Gals. Removed	Observations			
859	65.9	7.47	2606	7/000	10.9				
901	67.1	7.27	2384	614	21.8				
903	67.5		23 16	227	32.7				
Did well de	water?	Yes C	No	Gallons actuall	y evacuated:	33.0			
Sampling D	ate: 3-/	9-10	Sampling Time	e: 910	Depth to Water	r: 13.64			
Sample I.D.	: M 4)	-2		Laboratory: <	CalScience Colu	ımbia Other			
Analyzed fo	or: (TPH-G	BTEX	МТВЕ ТРН-Ф	Oxygenates (5)	Other:				
EB I.D. (if a	applicable)		@ Time	Duplicate I.D. ((if applicable):				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req'	d): Pr	e-purge:		mg/L P	ost-purge:	nig/L			
O.R.P. (if re	ea'd): Pr	e-purge:		mV P	ost-purge:	mV			

SHE WELL MONITORING DAT HEET

BTS #: /0	03 19	- BP1		Site: 4895 Hacienda Or, Dublin CA						
Sampler:				Date: 3-19-10						
Well I.D.:				Well Diameter: 2 3 4 6 8						
Total Well			5.08	Depth to Water (DTW): 12.84						
Depth to Fi	ree Produc	t:		Thickness of Free Product (feet):						
Referenced		(PVC)) Grade	D.O. Meter (if req'd): YSI HACH						
DTW with	80% Rech	arge [(F	leight of Water	Column x	0.20) + DTW]:	15. 29			
Purge Method:	Bailer Disposable E Positive Air Ælectric Subr	Displaceme	ent Extrac Other	Waterra Peristaltic tion Pump		Sampling Method	Disposable Bailer Extraction Port Dedicated Tubing			
S. O (1) Case Volume	Gals.) XSpeci	3 ified Volum	= 24.0	2 Gals.	<u>Diamete</u> 1" 2" 3"	er <u>Multiplier</u> <u>Well</u> 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 r radius ² * 0.163			
Time	Temp (°F)	рН	Cond. (mS or (uS)	Turbidi (NTUs	-	Gals. Removed	Observations			
1035	65.5	7.38	3508	57	?	8.0				
1037	65.4	7.21	3636	365	5	16.0				
1038	65.6	7.14	3680	>1000	O	24.0				
Did well de	water?	Yes (Ng)	Gallons ac	ctuall	y evacuated:	24.0			
Sampling D	ate: 3-/	9-10	Sampling Time	: 1045	5	Depth to Wate	r: 14.73			
Sample I.D.	: M 4)	-3		Laborator	y: ‹	CalScience Colu	ımbia Other			
Analyzed fo	or: (TPH-G	BTEX) мтве (ТРН-D) (Oxygenates	(5)	Other:				
EB I.D. (if a	applicable)	•	(i) Time	Duplicate	I.D. ((if applicable):				
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates	(5)	Other:				
D.O. (if req'	'd): Pr	e-purge:		mg/L	P	ost-purge:	nig/L			
O.R.P. (if re	eq'd): Pr	e-purge:	-	mV	Po	ost-purge:	mV			

SHE: WELL MONITORING DAT HEET

		CALAC.								
BTS #: /0	03 19.	- BP1		Site: 48 "	95 Hacienda	Or Dublin CA				
Sampler:				Date: 3-19-10						
Well I.D.:	MW-	4		Well Diam	Well Diameter: 2 3 4 6 8					
Total Well	Depth (TI)): 2	7.32	Depth to W	Vater (DTW): /	12.98				
Depth to Fi	ree Produc	t:		Thickness of Free Product (feet):						
Referenced	to:	(PVC)) Grade	D.O. Meter	(if reg'd):	YSI HACH				
DTW with	80% Rech	arge [(F	leight of Water	Column x C	0.20) + DTW]:	15.85				
Purge Method:	Bailer Disposable B Positive Air I Ælectric Subr	Displaceme	ent Extrac Other WC:/		Sampling Method Othe	d: XBailer Disposable Bailer Extraction Port Dedicated Tubing er: Diameter Multiplier				
9,3 (() 1 Case Volume		ろ ified Volum	$= \frac{27.9}{\text{Calculated Vo}}$		0.04 4" 0.16 6" 0.37 Oth	0.65 1.47 her radius ² * 0.163				
Time	Temp (°F)	рН	Cond. (mS or (LS)	Turbidity (NTUs)	Gals. Removed	l Observations				
1015	68.7	7.42	2527	71000	9.3					
1017	69.4	7.26	7515	71000	18.6					
1019	69.7	7.21	2522	778	Z7.9					
Did well dev	water?	Yes (No	Gallons acti	ually evacuated: Z	28.01 CBP				
Sampling Da	ate: 3-/ 4	1-10	Sampling Time	: 1025	Depth to Wate	er: 14.72				
Sample I.D.:	: M 4)	- 4		Laboratory:	CalScience Col					
Analyzed fo	r: TPH-G	BTEX	МТВЕ (ТРН-Д)	Oxygenates (5	Other:					
EB I.D. (if a	pplicable)		(a) Tune	Duplicate I.	D. (if applicable):					
Analyzed fo	r: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates (5	o) Other:					
D.O. (if req'o	d): Pro	e-purge:		nig/L	Post-purge:	mg/L				
O.R.P. (if re	q'd): Pro	e-purge:	•	mV	Post-purge:	mV				

SHE. WELL MONITORING DAT HEET

			<u> </u>							
BTS #: /0	03 19.	- BP1		Site: 4895 Horienda Or, Dublin CA						
Sampler:				Date: 3-19-10						
Well I.D.:				Well Diameter: 2 3 4 6 8						
Total Well			29.69	Depth to Water (DTW): / Z.99						
Depth to Fr	ee Produc			Thickness of Free Product (feet):						
Referenced		(PVC)) Grade	D.O. Meter (if req'd): YSI HACH						
DTW with	80% Rech	iarge [(H	leight of Water	Column x 0.20) + DTW]:	16.33				
	Bailer Disposable E Positive Air XElectric Subr Gals.) X Speci	Displaceme mersible	Other	6. 7 Well Diamet	Other Multiplier Well 0.04 4" 0.16 6" 0.37 Other	Disposable Bailer Extraction Port Dedicated Tubing : Diameter Multiplier 0.63 1.47				
7 case volume		Tred Fording	Cond.	Turbidity						
Time	Temp (°F)	рН	(mS or (LS))	(NTUs)	Gals. Removed	Observations				
952	65.8	7.69	2256	868	10.9					
954	66.3	7.40	2193	568	21.8					
956	67.0	7.35	2200	819	32,7					
Did well dev	water?	Yes (No)	Gallons actuall	y evacuated:	3 3,0				
Sampling Da	ate: 3-/9	7-10	Sampling Time	e: 1000	Depth to Wate	r: 14.92				
Sample I.D.:	: MW	-5		Laboratory:	CalScience Colu	ımbia Other				
Analyzed fo	r: TPH-G	BTEX	MTBE (TPH-D)	Oxygenates (5)	Other:					
EB I.D. (if a	pplicable)):		Duplicate I.D.	(if applicable):					
Analyzed fo	r: TPH-G	ВТЕХ	МТВЕ ТРН-D	Oxygenates (5)	Other:					
D.O. (if req'	d): Pr	e-purge:		nig/L P	ost-purge:	mg/L				
O.R.P. (if re	q'd): Pr	e-purge:	-	mV P	ost-purge:	mV				

SHE WELL MONITORING DAT HEET

BTS #: /c	0319.	- BP1		Site: 489	35 Hacienda	Or Dublin CA				
1	B. Pane			Date: 3-19-10						
Well I.D.:				Well Diameter: 2 3 4 6 8						
Total Well			5.26	Depth to Water (DTW): 12.84						
Depth to F	ree Produc			Thickness of Free Product (feet):						
Referenced	l to:	(PVC)	Grade	D.O. Meter (if req'd): YSI HACH						
DTW with	80% Rech	arge [(H	eight of Water	Column x 0	.20) + DTW]:	15.32				
Purge Method:	Bailer Disposable B Positive Air I ≭Electric Subn	Displacemen			Sampling Method Other iameter Multiplier Well 0.04 4"	Disposable Bailer Extraction Port Dedicated Tubing				
8.0 (1 Case Volume	Gals.) XSpeci:	<u>3</u> fied Volume	= 24.0 es Calculated Vo	_ Gals. 2"	0.16 6" 0.37 Oth	1.47				
Time	Temp (°F)	рН	Cond. (mS or (uS)	Turbidity (NTUs)	Gals. Removed	Observations				
923	63.7	7.50	3159	551	8.0					
924	64.6	7.29	3/49	5/9	16.0					
926	64.9	7.20	300 Z	324	24.0					
		1								
Did well de	water?	Yes (<u>/0)</u>	Gallons actu	ially evacuated:	24.0				
Sampling D	ate: 3-14	7-10 5	Sampling Time	: 430	Depth to Wate					
Sample I.D.	: MW	-6		Laboratory:	CalScience Coli	umbia Other				
Analyzed fo	ŭ		МТВЕ (ТРН-D) (Oxygenates (5	Other:					
EB I.D. (if a	ipplicable)		(A)	Duplicate I.I	D. (if applicable):					
Analyzed fo	r: TPH-G	BTEX M	MTBE TPH-D	Oxygenates (5)) Other:					
D.O. (if req'	d): Pre	e-purge:		nig/L	Post-purge:	mg/L				
O.R.P. (if re	q'd): Pre	e-purge:	-	mV	Post-purge:	mV				

ATTACHMENT G

WELL SURVEY RESULTS

	Α	В	С	D	Е	F	G	Н	Ì
1	SHELL OIL PRO	ODUCTS U	S						
2	SHELL SERVIC								
3	4895 Hacienda								
	Dublin, Californ								
5									
6	DELTA Project								
7									
	Project : 10027								
9	User name	MCE	Date & Time		3 AM 3/				
10									
11	Project Datu								
12	Vertical Datu								
13	Coordinate U								
14	Distance Un								
15	Elevation Un								
16									
17		MW-1	03/19/2010		CGPS			Mid Coast Engineers	-0.43
18		MW-2	03/19/2010			88		Mid Coast Engineers	-0.38
19		MW-3	03/19/2010			88		Mid Coast Engineers	-0.41
20		MW-4	03/19/2010		CGPS			Mid Coast Engineers	-0.35
21		MW-5	03/19/2010		CGPS			Mid Coast Engineers	-0.17
22		MW-6	03/19/2010	350.29	CGPS	88	0.5	Mid Coast Engineers	-0.17

	Α	В	С	D	Е	F	G	Н	I	J	K	L
1	SHELL OIL	PRODUCTS	SUS									
2	SHELL SERVICE STATION											
3	4895 Hacien	da Drive										
4	Dublin, California											
5												
6	DELTA Project Number SCA4895H1											
7												
	Project : 100											
9	User nan			Date & Time	8:58:13 AM 3/19							
10		te System		State Plane	1983 Zone	California Zone 3 04	103					
11	-,		, ,									
12												
13	•											
14												
15	Elevation	Units US	surv	ey feet								
16												
17		MW-1	MW		37.7052552					Mid Coast Engineers		
18		MW-2	MW	03/17/2010	37.7051364					Mid Coast Engineers		
19		MW-3	MW		37.7047970					Mid Coast Engineers		
20		MW-4	MW		37.7048345					Mid Coast Engineers		
21		MW-5		03/17/2010	37.7047654					Mid Coast Engineers		
22		MW-6	MW	03/17/2010	37.7049446	-121.8876819	CGPS	NAD83	1	Mid Coast Engineers	T5800	top of casing