July 7, 2008 Report 0387.R3 BRT16007



### RECEIVED

2:24 pm, Oct 20, 2008

Alameda County
Environmental Health

Mr. Donald Rogers Brandywine Realty Trust 2101 Webster Street, Suite 1600 Oakland, CA 94612

SUBJECT: SUBSURFACE INVESTIGATION (B3-B22 AND C1-C3) AND

WELL INSTALLATION REPORT (MW1 AND MW2)

Brandywine Realty Trust 2100-2150 Franklin Street

Oakland, CA

Dear Mr. Rogers:

RGA Environmental, Inc. (RGA) is pleased to present this report documenting the results of the on- and offsite subsurface investigation of the horizontal and vertical extent of petroleum hydrocarbons in both soil and groundwater associated with the former heating oil underground storage tank (UST) for the subject site. This report also documents the installation of two groundwater monitoring wells designated as MW1 and MW2 at the subject site and excavation of petroleum-impacted soil in the vicinity of the former UST. The onsite subsurface investigation scope of work included the hand augering of onsite boreholes B3 through B12 and C1 through C3, and the collection and analysis of soil and groundwater grab samples. The offsite subsurface investigation scope of work included the drilling of offsite boreholes B13 through B22 and the collection and analysis of groundwater samples. The well installation scope of work included the installation and development of onsite wells MW1 and MW2.

A Site Location Map is attached as Figure 1, a Site Location Map Detail is attached as Figure 2, and a Site Vicinity Map and Site Plan Detail showing the locations of the former UST, the area of over-excavation, and the onsite boreholes and wells are attached as Figures 3 and 4. Site Vicinity maps showing contaminant concentrations in groundwater are attached as Figures 5, 6, 7, and 9, and a geologic cross section showing soil lithology and shallow and deep groundwater contaminant concentrations is attached as Figure 8.

Hand augering and soil boring was performed between June 5, 2006 and March 20, 2007. Excavation of petroleum-impacted soil was performed on August 11, 2006. Groundwater monitoring well installation was performed on August 15, 2006. Both onsite and offsite subsurface investigation was performed in accordance with RGA's Subsurface Investigation Work Plan (B3 Through B17) dated June 1, 2006 (document 0387.W1) addressed to the City of Oakland Fire Department. Based on contaminant concentrations detected in offsite drilling locations B13, B16 and B17 and telephone conversations with Inspector Jesse Kupers of the City of Oakland Fire Department, offsite drilling locations B14 and B15 were moved from the originally proposed

locations identified in the work plan and drilling location B18 was added to the scope of work. Excavation of petroleum-impacted soil from the immediate vicinity of the former UST and hand augering boreholes C1 through C3 was performed in accordance with RGA's Soil Excavation Work Plan dated August 8, 2006 (document 0387.W2) addressed to the City of Oakland Fire Department. Well installation was performed in accordance with RGA's Well Installation Work Plan dated August 14, 2006 (document 0387.W3) addressed to the City of Oakland Fire Department. Additional offsite boreholes B19 through B22 were drilled to delineate the extent of groundwater contamination downgradient of the site following discussions with Inspector Kupers.

All work was performed under the direct supervision of an appropriately registered professional. This investigation was performed in accordance with guidelines set forth in the document "Tri-Regional Board Staff Recommendations for Preliminary Evaluation and Investigation of Underground Tank Sites" dated August 10, 1990 and "Appendix A - Workplan for Initial Subsurface Investigation" dated August 20, 1991.

### BACKGROUND

In the first half of 2006, the subject site was excavated to a depth of approximately 12 feet below the Franklin Street sidewalk for construction of a high-rise office building. During excavation at the site, the top of an UST was discovered on May 12, 2006 at a depth of approximately 8 feet below the Franklin Street sidewalk (see Figure 3). Inspection of the UST showed that the UST had been previously filled with concrete. The UST was measured as approximately four feet four inches in diameter and approximately 12 feet in length. The UST was removed from the UST pit and demolished and stored on site on May 23, 2006. All UST removal and demolition activities were performed following notification to, permitting with, and inspection of the UST by the City of Oakland Fire Department.

At the time of UST removal, soil samples (designated as T1-0.0 and T2-0.0) were collected from directly beneath the UST following excavation of approximately a one foot thick layer of loose, oily soil. The depth of collection for these two samples was equivalent to a depth of approximately 13 feet below the adjacent Franklin Street sidewalk. Two additional soil samples (designated as T1-2.0 and T2-2.0), were collected at a depth of two feet below the first two samples, which was equivalent to a depth of approximately 15 feet below the adjacent Franklin Street sidewalk. In addition, one groundwater grab sample was collected from borehole B1 at a depth of five feet beneath the bottom of the UST (approximately 17 feet below the adjacent Franklin Street sidewalk). A petroleum sheen was observed on the water collected from the borehole. Borehole B1 was hand augered directly beneath the UST. Mr. Jesse Kupers of the Oakland Fire Department was onsite to observe sample collection. The soil sample and borehole locations are shown on Figure 4.

The soil sample results showed that MTBE and benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected in any of the samples. However, Total Petroleum Hydrocarbons as Diesel (TPH-D) was detected in the shallower T1 and T2 soils samples at concentrations of 7,300 and 170 mg/kg respectively, and in the deeper T1 and T2 soil samples at 990 and 780 mg/Kg respectively. Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) was detected in the shallower T1 and T2 samples at concentrations of 5,700 and 150 mg/Kg respectively, and in the deeper T1 and T2 soil samples at 880 and 690 mg/kg respectively (see Table 1). The T1 and T2

soil samples were not analyzed for Total Petroleum Hydrocarbons as Bunker Oil (TPH-BO). The laboratory identified the TPH-D results as fuel oil-range compounds. The groundwater grab sample from borehole B1 (designated as B1-Water) showed that MTBE and BTEX were not detected, and TPH-D, TPH-MO, and TPH-BO were detected at concentrations of 64,000, 57,000, and 96,000 ug/L, respectively (see Table 3).

Borehole B2 was hand augered near the UST pit to first encountered groundwater which was encountered at a depth similar to the depth at which groundwater was encountered in borehole B1 (see Figure 4). Although discolored soil and petroleum hydrocarbon odors were encountered at a depth equivalent to approximately three feet below the bottom of the UST, the discoloration was interpreted to be related to horizontal movement of petroleum hydrocarbons in groundwater and associated capillary fringe wicking of petroleum hydrocarbons. No petroleum sheen was observed on the water in borehole B2. The subsurface materials encountered in boreholes B1 and B2 consisted of interlayered silty clay, fine-grained sand, silt, and clay. Documentation of the UST demolition and associated sample results are presented in RGA's May 25, 2006 Underground Storage Tank Removal Report (document 0387.R1). The UST and concrete that was inside the UST were removed from the site on May 31, 2006. Documentation of the UST and concrete disposal and associated petroleum-impacted soil disposal was provided in RGA's June 19, 2006 Underground Storage Tank Removal Report Addendum (document 0387.L3) addressed to Inspector Kupers.

At the time of UST removal, the entire site had been excavated to a depth of approximately 10 feet below the Franklin Street sidewalk. After the UST was demolished, soil at the site was removed to a depth of approximately 12 feet below the Franklin Street sidewalk. This depth was approximately the same depth as the depth of the bottom of the UST.

As part of the site construction, in July 2006 a grade beam was partially installed at the base of the west wall of the mass excavation, adjacent to Franklin Street. The grade beam trench measured approximately four feet wide and three feet deep. Soil removed from below the former UST and for a distance of approximately 10 feet from each end of the former UST in the grade beam trench was stockpiled on plastic and subsequently disposed of at the Richmond landfill.

As part of the construction activities at the site, a total of five dewatering wells were installed at the south end of the site in June, 2006. It is RGA's understanding that the pump intakes for the dewatering wells were set at a depth of approximately 15 feet below the bottom of the mass excavation (approximately 27 feet below the Franklin Street sidewalk). Groundwater at the site was encountered during UST removal at a depth of approximately five feet below the bottom of the UST prior to site dewatering.

At the time of initial subsurface investigation the groundwater flow direction at the site was unknown. Although Lake Merritt is located to the east and southeast of the site, review of the topographic contours shown in Figures 1 and 2 suggested that the groundwater flow direction at the site could be to the west or southwest. Based on the site vicinity topography offsite boreholes were proposed in the presumed downgradient direction to the west and southwest of the subject site.

### FIELD ACTIVITIES

Prior to the beginning of subsurface hand augering and drilling, boring permits were obtained from the Alameda County Department of Public Works and a health and safety plan was prepared. For offsite drilling locations, encroachment and excavation permits were obtained from the City of Oakland, the drilling locations were marked with white paint, Underground Service Alert was notified for underground utility location, a traffic plan was prepared, and notification of the scheduled drilling date was provided to City of Oakland personnel.

# Onsite Boreholes, Soil Boring and Groundwater Sample Collection, and Petroleum-Impacted Soil Over-Excavation

On June 5 and June 6, 2006 onsite boreholes B7 through B12 were hand augered to first encountered groundwater, which was encountered at a depth of approximately five feet below the bottom of the mass excavation (a depth equivalent to approximately five feet below the bottom of the former UST (approximately 17 feet below the Franklin Street sidewalk). Hand augering of boreholes B7 through B12 occurred before site dewatering. No odors or soil discoloration were observed in boreholes B7 through B12. The onsite borehole locations are shown on Figures 3 and 4.

On July 20, 2006 boreholes B3 through B6 were hand augered in the vicinity of the former UST in an effort to define the horizontal extent of petroleum-impacted soil in the vicinity of the former UST. Soil samples were collected from boreholes B3 through B6 at depths of approximately three feet below the bottom of the mass excavation (approximately three feet below the bottom of the former UST and approximately 15 feet below the Franklin Street sidewalk) on the east side of the former UST. Whereas the top of boreholes B3 through B5 were at the bottom of the mass excavation, the top of borehole B6 was approximately one foot above the bottom of the mass excavation because of the presence of clean stockpiled soil that had been placed in the vicinity of the former UST. Boreholes B3 and B4 were located approximately five feet east of the former UST, and boreholes B5 and B6 were located approximately 10 feet east of the former UST. Petroleum odors and soil discoloration were encountered in boreholes B3 and B4 beginning at a depth of approximately 1.5 feet below the bottom of the mass excavation. No odors or soil discoloration were observed in borehole B5, however odors and soil discoloration were encountered in the lowermost 0.5 feet of borehole B6.

On July 27, 2006 a total of 14.67 tons of stockpiled soil that had been previously removed from the grade beam trench in the vicinity of the former UST pit was removed from the site and disposed of at the Richmond landfill. A copy of the weighmaster certificate documenting disposal of the soil at the landfill is attached with this report.

On August 11, 2006 over-excavation of petroleum-impacted soil was performed to a depth of approximately three feet below the bottom of the mass excavation (to a depth of approximately 15 feet below the Franklin Street sidewalk). Deeper excavation was not possible based on concerns for stability of the mass excavation wall adjacent to Franklin Street, which was located on the west side of the area of over-excavation. Similarly, excavation of petroleum-impacted soil was limited

to the eastern half of the former UST because the western half of the former UST was inaccessible beneath Franklin Street. Confirmation soil samples C1 and C2 were collected from the north and south ends of the area of over-excavation, respectively, at the bottom of the area of over-excavation at the base of the excavation wall, which was at a depth of approximately three feet below bottom of the mass excavation (a depth of approximately 15 feet below the Franklin Street sidewalk). The bottom of the area of over-excavation consisted of gray discolored soil exhibiting a mild petroleum odor. In the south end of the area of over-excavation, soil from the bottom of the excavation contained some fractures that appeared to be filled with black high viscosity oil. The excavated soil was loaded directly into trucks and removed from the site to the Richmond landfill. RGA personnel were on site to observe the excavating and loading of petroleum-impacted soil. A total of 88.13 tons of soil was removed from the site as seven truckloads. One of the trucks did not deliver the soil to the landfill until August 14, 2006 because the landfill closed before the truck arrived at the landfill with the soil. Copies of the weighmaster certificates documenting disposal of the soil at the Richmond landfill are attached with this report.

On August 11, 2006 groundwater grab samples were collected by hand augering at locations C1, C2 and C3. Borehole C3 was located on the eastern side of the area of over-excavation. The boreholes were hand augered to evaluate the vertical extent of discolored soil in the vicinity of the former UST and the groundwater grab samples were collected in an effort to evaluate the extent of petroleum in groundwater in the immediate vicinity of the former UST. Groundwater was encountered in boreholes C1 through C3 at depths of approximately 10 to 12 feet below the bottom of the former UST, which was equivalent to a depth of approximately 22 to 24 feet below the Franklin Street sidewalk. In borehole C1 no odors or soil discoloration were observed in any of the soil from the borehole, and no odor or sheen were observed in the groundwater grab sample from the borehole. In borehole C2 strong odors and soil discoloration were observed in soil beginning at the bottom of the over-excavated area (at a depth of 3 feet below the bottom of the mass excavation) and extending to a depth of 5.5 feet below the bottom of the mass excavation. The strongest odors and highest oil content encountered in boreholes C1, C2 and C3 was encountered in borehole C2. No sheen but a mild petroleum odor was encountered in the groundwater grab sample from borehole C2. In borehole C3 mild hydrocarbon odors were observed in soil between the depths of 3.5 to 4.5 feet below the bottom of the mass excavation, and no odor or sheen were observed in the groundwater grab sample from the borehole. Hand augering and groundwater sample collection from boreholes C1 through C3 on August 11, 2006 occurred following initiation of site dewatering associated with site construction. The dewatering began in June, 2006. The borehole locations and the area of soil over-excavation are shown on Figure 4.

Boreholes B3 through B12 were hand augered using a 3.5-inch outside diameter, stainless steel hand auger, and sampled with a stainless steel sampler lined with a 6-inch long brass tube driven by a slide hammer. Soil samples C1 and C2 were collected from the base of the area of over-excavation by removing loose soil and pushing a 2-inch diameter, 6-inch long brass tube directly into relatively undisturbed soil at the base of the excavation. Following sample collection, the brass tube was removed from the sampler, the ends of the tube were sequentially covered with aluminum foil and plastic endcaps, the tube was labeled, and then placed into a cooler with ice pending delivery to the laboratory. Chain of custody procedures were observed for all sample handling.

The soil from the boreholes was logged in the field in accordance with standard geologic field techniques and the Unified Soil Classification System (USCS). All soil from the boreholes was evaluated with a 10.6 eV Photoionization Detector (PID) calibrated using a 100 ppm isobutylene standard. Observed soil odor conditions and PID readings were recorded on the boring logs. Copies of the boring logs are attached with this report.

All hand augering and sample collection equipment was cleaned with an Alconox solution followed by a clean water rinse prior to use at each location. Soil from the boreholes that was not retained for laboratory analysis was stored onsite pending disposal, and was subsequently disposed of during over-excavation of petroleum-impacted soil in the vicinity of the former UST. Following completion of sample collection activities, the boreholes were filled with neat cement grout.

Groundwater grab samples were collected from the boreholes by placing new, temporary 1-inch diameter slotted PVC pipe in boreholes B7 through B12 and C1 through C3, at depths between 5.0 and 11.0 feet below the excavated area. The water samples were collected from the temporary PVC pipe using polyethylene tubing and a stainless steel foot valve. All water samples were transferred to 1-liter amber bottles and 40-milliliter glass Volatile Organic Analysis (VOA) vials containing hydrochloric acid preservative, which were sealed with Teflon-lined screw caps. The VOAs were overturned and tapped to ensure that air bubbles were not present. The samples were labeled and then placed into a cooler with ice pending delivery to the laboratory. No odors or sheen were observed in any of the groundwater grab samples at the time of collection, with the exception of C2 described above. Chain of custody procedures were observed for all sample handling.

New PVC pipe and polyethylene tubing were used for groundwater grab sample collection in each borehole. All other drilling and sample collection equipment was cleaned with an Alconox solution followed by a clean water rinse prior to use at each location. Soil from the boreholes that was not retained for laboratory analysis was stored onsite pending disposal. Following completion of sample collection activities, the boreholes were filled with neat cement grout using the PVC pipe as a tremie pipe.

### Groundwater Monitoring Well Installation and Development

On August 15, 2006 RGA personnel oversaw the installation of monitoring wells MW1 and MW2 in the mass excavation at the subject site. Vironex, Inc. of San Leandro, California performed the well installation. The wells were installed at anticipated upgradient and transgradient locations in anticipation of future requirements for groundwater monitoring wells while the site mass excavation was still accessible to a drill rig and prior to pouring of the basement floor concrete for the building that was under construction. The locations of the onsite wells are shown in Figure 3.

Each of the boreholes for the monitoring wells was drilled to a total depth of 13.0 feet below the bottom of the mass excavation using a truck-mounted 8-inch outside diameter hollow stem auger drill rig. The soil cuttings from the augers were classified lithologically in the field in accordance with standard geologic field techniques and the Unified Soil Classification System. Groundwater

was initially encountered in boreholes MW1 and MW2 at 8.5 feet below the bottom of the mass excavation (20.5 feet below the ground surface). Copies of the boring logs for the boreholes for the monitoring wells are attached with this report.

Each of the two wells was constructed using 2-inch diameter Schedule 40 PVC pipe with 8 feet of 0.010-inch factory slot placed in the bottom of the borehole between the depths of 5 and 13 feet. The annular space surrounding the PVC pipe was filled with #2/16 RMC Pacific Materials sack sand from 4 to 13 feet below the bottom of the mass excavation (to a height of one foot above the top of the slotted interval). A one-foot thick layer of bentonite pellets was placed above the sand and hydrated. A three-foot thick layer of neat cement grout was placed in the annular space above the bentonite layer. The top of each of the PVC well pipes for the groundwater monitoring wells was secured with a watertight locking plug. A temporary 10-foot section of PVC pipe was placed at the top of each well and spray painted orange and the well surrounded with barricades pending completion of building foundation construction activities.

Watertight traffic-rated well boxes were provided to Pankow Builders, Inc. for installation over the wells at the time of basement floor concrete emplacement. Well construction specifications for wells MW1 and MW2 are provided in the Well Construction Diagrams attached with this report. All drilling and sampling equipment was either previously unused clean material, or was cleaned with an Alconox solution followed by a clean water rinse prior to use in each borehole. Soil generated during drilling was stored in drums at the site pending characterization and disposal.

On January 30, 2007, well MW2 was developed by surging and over-pumping. A total of approximately 50 gallons of water was removed from the well during development. Very rapid recharge of the well was reported during development. Prior to development, the monitoring well was monitored for depth to water to the nearest 0.01 feet using an electric water level indicator. The measured depth to groundwater prior to development on January 30, 2007 in well MW2 was 9.33 feet. During well development RGA personnel did not detect petroleum hydrocarbon odors or sheen on the water purged from the well. Water removed from the well during development was placed into the onsite groundwater treatment system for disposal. The onsite groundwater treatment system was installed in 2006 in the event that petroleum hydrocarbons were encountered in groundwater pumped from the site dewatering wells.

Well MW1 was not accessible for development on January 30, 2007 because the well box had been covered with concrete during the emplacement of the concrete for the basement floor. Following location of well MW1 beneath a thin layer of concrete, well MW1 was developed on February 20, 2007. A total of approximately 50 gallons of water was removed from the well during development. Very rapid recharge of the well was reported during development. Prior to development, the monitoring well was monitored for depth to water to the nearest 0.01 feet using an electric water level indicator. The measured depth to groundwater prior to development on February 20, 2007 in well MW1 was 6.42 feet. During well development RGA personnel did not detect petroleum hydrocarbon odors or sheen on the water purged from the well. Water removed from the well during development was placed into the onsite groundwater treatment system for disposal.

### Offsite Boreholes

From November 8 through November 16, 2006 drilling was performed at offsite locations B13, B16 and B17. Based on the sample results obtained from these locations and telephone conversations with Inspector Jesse Kupers at the City of Oakland Fire Department, proposed drilling locations B14 and B15 were re-located and drilling location B18 was added to the areas of investigation identified in RGA's Subsurface Investigation Work Plan (B3 Through B17) dated June 1, 2006 (document 0387.W1) addressed to the City of Oakland Fire Department. Drilling was performed from January 30 through February 1, 2007 at locations B14, B15 and B18, and from March 19 through March 20, 2007 at locations B19, B20, B21, and B22. Offsite locations B13 through B22 are shown on Figure 5.

Each of the boreholes at the offsite drilling locations was hand augered to a depth of five feet prior to drilling in an effort to identify underground utilities, and was continuously cored below five feet. Boreholes B13, B16, and B17 were continuously cored using a 2-inch outside diameter (O.D.) Geoprobe Macrocore Barrel sampler lined with 4.8-foot long, 1¾-inch O.D. cellulose acetate tubes. Boreholes B14, B15, and B18 were continuously cored using a Geoprobe dual-tube system consisting of a 5-foot-long 3.5-inch O.D. outer casing and a 2.5-inch I.D. inner sleeve lined with 5-foot long, 2-inch O.D. cellulose acetate tubes. Boreholes B19 through B22 were cored using 3.5-inch O.D. Geoprobe Macrocore Barrel sampler lined with 4.8-foot long, 1¾-inch O.D. cellulose acetate tubes.

Boreholes B13 through B18 were continuously cored to total depths of 41, 27, 30, 25, 34, and 25 feet, respectively. At each of these borehole locations (with the exception of B16) a second borehole, designated with an "a" suffix, was drilled with a Hydropunch at a location approximately 1.5 feet from the original boring. Boreholes B13a, B14a, B15a, B17a and B18a were Hydropunched to total depths of 28, 56, 60, 41, and 59 feet, respectively. Boreholes B19 through B22 were each continuously cored with a 3.5-inch O.D. Geoprobe Macrocore Barrel sampler lined with 4.8-foot long, 1¾-inch O.D. cellulose acetate tubes to a total depth of 20 feet. In addition, B19a was drilled with a Hydropunch at a location approximately 1.5 feet horizontally from B19 to a total depth of 52 feet.

Subsurface materials were identified and evaluated based on the continuous cores from boreholes B13 through B22. The soil from the continuous cores was logged in the field in accordance with standard geologic field techniques and the Unified Soil Classification System. All of the soil from the boreholes was evaluated with a 10.6 eV Photoionization Detector (PID) calibrated using a 100 ppm isobutylene standard. Observed soil odor conditions and PID readings were recorded on the boring logs. No odors or soil discoloration were observed in any of the offsite boreholes. Copies of the soil boring logs are attached with this report. Please note that the vertical scale of the offsite boring logs is different from the vertical scale of the majority of the onsite boring logs.

Soil conductivity logs were recorded for each offsite drilling location by pushing a soil conductivity probe at a location adjacent to (approximately 1.5 feet from) the corresponding continuously cored borehole. The soil conductivity probes were pushed to depths ranging from approximately 51 to 72 feet below the ground surface, with the exception of B21 which was only pushed to a total depth of 20 feet. Repeated drilling refusal at location B21 at a depth of 20 feet at

July 7, 2008 Report 0387.R3

multiple locations was interpreted to be the top of the Bay Area Rapid Transit (BART) tube located beneath Broadway.

The soil conductivity logs were used to identify permeable intervals for sample collection at depths below the continuously cored borehole intervals. Copies of the soil conductivity logs are attached with this report. Please note that the vertical scales and conductivity scales of the different soil conductivity logs are different. In addition, the conductivity scale of the soil conductivity log for B21 does not appear to be accurate, however because refusal was encountered at a depth of 20 feet at this location correction of the conductivity scale was not performed.

## Offsite Groundwater Sample Collection

Between November 8, 2006 and March 20, 2007 groundwater grab samples were collected from offsite drilling locations B13 through B22. The depth of first encountered groundwater in these boreholes is recorded on the corresponding boring logs and ranged from 13.5 to 28.0 feet below the ground surface. Groundwater grab samples of first encountered groundwater were collected from the boreholes using temporary one-inch diameter slotted PVC casing set to the bottom of the continuously cored borehole, and polyethylene tubing and a stainless steel foot valve.

Groundwater samples were collected using a Hydropunch from the six boreholes B13a, B14a, B15a, B17a, B18a, and B19a at locations corresponding with locations B13 through B15, and B17 through B19. Following review of subsurface conditions identified in the soil conductivity logs (see below), the six Hydropunch samples were collected from boreholes B13a through B19a at intervals of 24.0 to 28.0, 52.0 to 56.0, 56.0 to 60.0, 37.0 to 41.0, 55.0 to 59.0, and 48.0 to 52.0 feet below the ground surface, respectively. Prior to retracting the drilling rods to expose the Hydropunch screen, the interior of the drilling rods for each borehole was evaluated to determine if water was present inside the drilling rods. No water was measured in any of the drilling rods prior to retracting the drilling rods to expose the Hydropunch screen.

A groundwater grab sample was collected from each of the Hydropunch intervals using polyethylene tubing and a stainless steel foot valve. No sheen or separate phase layers of petroleum hydrocarbons were observed and no petroleum hydrocarbon odors were detected in water in any of the offsite boreholes. All water samples were transferred to 1-liter amber bottles and 40-milliliter glass Volatile Organic Analysis (VOA) vials containing hydrochloric acid preservative, which were sealed with Teflon-lined screw caps. The VOAs were overturned and tapped to ensure that air bubbles were not present. The samples were labeled and then placed into a cooler with ice pending delivery to the laboratory. Chain of custody procedures were observed for all sample handling.

All drilling equipment was steam cleaned prior to use at the site. All sampling equipment was cleaned with an Alconox solution followed by a clean water rinse prior to use in each borehole. Following completion of sample collection activities, the boreholes were filled with neat cement grout. Soil and water generated during drilling were stored in drums at the subject site pending characterization and disposal.

## GEOLOGY AND HYDROGEOLOGY

Based on review of regional geologic maps from U.S. Geological Survey (USGS) Professional Paper 943, "Flatland Deposits - Their Geology and Engineering Properties and Their Importance to Comprehensive Planning," by E.J. Helley and K.R. Lajoie, 1979 the subject site is underlain by Late Pleistocene alluvium (Qpa). The alluvium is described as typically consisting of weakly consolidated slightly weathered poorly sorted irregularly interbedded clay, silt, sand and gravel.

Review of Figures 1 and 2 shows that the topography at the site slopes to the west, and that a southerly-trending stream channel was at one time located immediately to the west of the subject site. The historic channel became an easterly-trending channel approximately 500 feet to the south of the subject site. Lake Merritt is located approximately 1,000 feet to the east of the site at an elevation that is approximately 15 feet lower than the subject site.

The subsurface materials encountered in the UST pit walls consisted of gray sandy silt and clay. Beneath the UST and the bottom of the adjacent mass excavation, the subsurface materials encountered in onsite boreholes B3 through B12 consisted of interlayered gravel, sand, silt and clay layers to the total depths explored. Review of the boring logs and soil conductivity logs for offsite boreholes B13 through B22 shows that the subsurface materials in the site vicinity consist of irregularly interbedded gravel, sand, silt and clay layers. The layers are discontinuous preventing correlation of the layers between boreholes. The location of geologic cross section A-A' is shown on Figure 5, and geologic cross section A-A' is shown in Figure 8.

In the onsite boreholes, groundwater was not encountered while hand augering in boreholes B3 through B6. Groundwater was first encountered during hand augering in onsite boreholes B7 through B12 at depths ranging from approximately 5 to 7 feet below the bottom of the mass excavation, which corresponds with depths of approximately 17 to 19 feet below the adjacent sidewalk surface. In boreholes C1 through C3, groundwater was first encountered during hand augering at depths of 12.0, 10.2 and 12.3 feet below the bottom of the mass excavation, which corresponds with depths of approximately 24.0, 22.2, and 24.3 feet below the adjacent sidewalk surface. The differences in water levels between the B-Series and C-Series borehole water levels can be attributed to dewatering activities at the site. Boreholes B7 through B12 were hand augered before dewatering began at the site, and that boreholes C1 through C3 were hand augered approximately two months after dewatering had begun at the site.

Groundwater was encountered while drilling in all of the offsite boreholes. The depths of first encountered groundwater in boreholes B13 through B22 were 27.0, 24.1, 23.0, 13.5, 28.0, 25.0, 15.0, 18.0, 16.0, and 17.4 feet below the ground surface, respectively.

### **LABORATORY ANALYSIS**

All of the soil and groundwater samples were analyzed for Total Petroleum Hydrocarbons as Diesel (TPH-D) and Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) using EPA Methods 3550C and 3510C in conjunction with modified EPA Method 8015C; for Total Petroleum Hydrocarbons as Gasoline (TPH-G) using EPA Method 5030B in conjunction with

modified EPA Method 8015C; and for methyl tertiary-butyl ether (MTBE), benzene, toluene, ethylbenzene, and total xylenes (BTEX) using EPA Method 8021B. The UST pit perimeter confirmation soil samples from boreholes C1 and C2 were also analyzed for Polychlorinated Biphenyls (PCB's) using EPA Method 3550C in conjunction with EPA Method 8082A. Additional quantification of all of the borehole groundwater sample results for Total Petroleum Hydrocarbons as Bunker Oil (TPH-BO) was also performed.

The onsite borehole soil sample results are summarized in Table 2, the onsite borehole groundwater sample results are summarized in Table 3, and the offsite borehole groundwater sample results are summarized in Table 4. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

# DISCUSSION AND RECOMMENDATIONS

Review of the soil sample results in Table 2 from onsite boreholes B3 through B6 (collected from locations adjacent to the former UST, with B5 and B6 located on the eastern perimeter of the area of UST pit over-excavation), and C1 and C2 (collected at locations on the northern and southern perimeter of the area of UST pit over-excavation) shows that TPH-G concentrations ranged from not detected to 26, mg/kg, and that the laboratory identified all of the TPH-G results as strongly aged gasoline or diesel range compounds. No BTEX compounds or PCBs were detected. The only detected analyte exceeding San Francisco Bay Regional Water Quality Control Board May 2008 Environmental Screening Levels (ESLs) for commercial land use is TPH-D. The soil at locations B3 and B4 was removed during over-excavation (see Figure 4) and samples from locations B5, B6, C1 and C2 show the final UST pit perimeter soil sample concentrations at a depth of approximately 3.0 feet below the bottom of the UST. The highest remaining perimeter soil concentration was 740 mg/kg TPH-D. However, soil at locations B3 and B4 below a depth of 3.0 feet below the bottom of the UST was not excavated.

Review of Figures 1 and 2 shows that the topography in the immediate vicinity of the site slopes to the west. The highest petroleum hydrocarbon concentrations in groundwater (96,000 ug/L TPH-BO) were detected in borehole B1 located directly beneath the former UST. Based on the results of three groundwater samples collected from the perimeter of the area of over-excavation for the site former heating oil UST pit (C1 through C3), the highest petroleum hydrocarbon groundwater concentration was in the sample from borehole C3 at the south end of the pit (9,000 ug/L TPH-BO), with a substantial decrease in groundwater petroleum concentrations to less than regulatory screening levels in the sample from borehole C1 at the north end of the area of over-excavation (a distance of approximately 20 feet from B1). The distribution of petroleum hydrocarbon concentrations in samples C1 through C3 strongly suggests a southwesterly groundwater flow direction in the vicinity of the former UST.

Based on the results of water samples collected from onsite soil borings (see Table 3) at locations upgradient of the former heating oil UST pit (B7 through B10), the extent of impact to groundwater has been defined to the north and east of the former heating oil UST pit. The presence of low concentrations of TPH-G (described by the laboratory as strongly aged gasoline) in conjunction with ethylbenzene and total xylenes in the groundwater sample collected from B8 suggests that an old or degraded gasoline plume may be encroaching on the site from the northeast from an upgradient location. The presence of comparatively low concentrations of TPH-BO in samples

from B10, B11 and B12 relative to samples from B1 and C2 further suggests a southwesterly groundwater flow direction in the vicinity of the former UST. Review of Table 3 shows that the locations where petroleum hydrocarbon concentrations exceed their respective May 2008 ESL values are at locations below the UST (B1), in the immediate UST vicinity (C2 and C3), downgradient of the UST (B11 and B12), and upgrdient of the UST associated with BTEX compounds (B8).

Review of the boring logs and soil conductivity logs for offsite boreholes B13 through B22 shows that the subsurface materials in the site vicinity consist of irregularly interbedded gravel, sand, silt and clay layers. The layers are discontinuous preventing correlation of the layers between boreholes. The location of geologic cross section A-A' is shown on Figure 5, and geologic cross section A-A' is shown in Figure 8. The discontinuous nature of the interbedded layers and the permeable nature of many of the layers appears to allow communication between shallow and deeper groundwater (see discussion of vertical extent of petroleum hydrocarbons in groundwater below).

Groundwater concentrations of TPH-D, TPH-MO and TPH-BO are shown in Figures 5, 6 and 7, respectively. Review of the offsite borehole groundwater sample results in Table 4 shows that TPH-BO was detected in first encountered groundwater (between the depths of approximately 20 and 25 feet) in boreholes B18, B19 and B22 at concentrations of 2,700, 2,100, and 1,500 ug/L, respectively, and has not been defined in the downgradient direction in the vicinity of these boreholes. These boreholes are located approximately 240, 300 and 465 feet, respectively, from the former UST pit. The horizontal transgradient boundaries of petroleum hydrocarbons in first encountered groundwater for the portion of the plume identified to date appears to be defined by boreholes B12, B14, B15, B20 and B21. The horizontal extent of impacted groundwater to the west may be limited by the subsurface presence of the Bay Area Rapid Transit (BART) tube located beneath the west side of Broadway. Repeated attempts to drill at location B21 resulted in drilling refusal at a depth of 20.0 feet, which was interpreted to be the top of the BART tube. Although no petroleum hydrocarbons were detected in deeper groundwater in the vicinity of the former UST pit (B13, B14 and B17), the vertical extent of petroleum hydrocarbons in groundwater has not been defined at downgradient locations in the remaining offsite borings located within the petroleum hydrocarbon plume. However, vertical attenuation of petroleum hydrocarbon concentrations in groundwater was observed at all drilling locations where shallow and deeper groundwater samples were collected within the plume.

Topographic contours in the vicinity of the site (see Figures 1 and 2) suggest that a southerly-trending stream channel was at one time located immediately to the west of the subject site, and that the channel became an easterly-trending channel approximately 500 feet to the south of the subject site. Based on the topography in the vicinity of the site and the distribution of groundwater petroleum hydrocarbon concentrations in the vicinity of the site (see Figures 5, 6 and 7), groundwater is interpreted to flow in an easterly direction immediately to the south of the site towards Lake Merritt, which is located approximately 1,000 feet to the east of the subject site. RGA recommends that an additional four borings designated as B23 through B26 be drilled at locations shown on Figure 9 using procedures described in this report for collection of first encountered groundwater only to determine the horizontal extent of petroleum hydrocarbons in groundwater in the vicinity of the subject site. Following delineation of the horizontal extent of

July 7, 2008 Report 0387.R3

petroleum hydrocarbons in groundwater, additional evaluation of the vertical extent of petroleum hydrocarbons can be performed, as needed.

### **DISTRIBUTION**

A copy of this report should be distributed to Mr. Jesse Kupers at the City of Oakland Fire Department HAZMAT Division. The report should be accompanied by a certification letter signed by a responsible executive officer of the property owner.

### **LIMITATIONS**

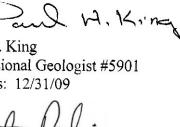
This report was prepared solely for the use of Brandywine Realty Trust. The content and conclusions provided by RGA Environmental, Inc. in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgement based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. RGA Environmental, Inc. is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgement based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

July 7, 2008 Report 0387.R3

Should you have any questions, please do not hesitate to contact us at (510) 547-7771.


Sincerely,

RGA Environmental, Inc.

Paul H. King

Professional Geologist #5901

Expires: 12/31/09



Kenneth Pilgrim Project Manager

Attachments: Table 1 - Summary of Laboratory Analytical Results, UST Pit Soil Samples

Table 2 - Summary of Laboratory Analytical Results, Onsite Borehole Soil Samples

PAUL H. KING No. 5901

Table 3 – Summary of Laboratory Analytical Results, Onsite Groundwater Samples

Table 4 – Summary of Laboratory Analytical Results, Offsite Groundwater Samples

Figure 1 - Site Location Map

Figure 2 - Site Location Map Detail

Figure 3 - Site Location Map Showing Borehole Locations

Figure 4 - Site Plan Detail

Figure 5 - Site Vicinity Map Showing Diesel in Shallow Groundwater

Figure 6 - Site Vicinity Map Showing Motor Oil in Shallow Groundwater

Figure 7 - Site Vicinity Map Showing Bunker Oil in Shallow Groundwater

Figure 8 - Cross Section A-A' Showing Bunker Oil in Shallow and Deep Groundwater

Figure 9 - Site Vicinity Map Showing Bunker Oil in Shallow Groundwater and Rationale for Proposed Boring Locations

Weighmaster Tickets for Excavated Soil Disposal

Soil Boring Logs

Soil Conductivity Logs

Well Construction Diagrams

Laboratory Reports and Chain of Custody Documentation

PHK/sf 0387.R3

# **TABLES**

# TABLE 1 SUMMARY OF LABORATORY ANALYTICAL RESULTS UST PIT SOIL SAMPLES

(Samples Collected on May 23, 2006)

| Sample<br>No. | Depth* (feet) | TPH-G | TPH-D   | ТРН-МО | MTBE   | Benzene | Toluene | Ethyl-<br>benzene | Total<br>Xylenes |
|---------------|---------------|-------|---------|--------|--------|---------|---------|-------------------|------------------|
| T1-0.0        | 0.0           | 300,a | 7,300,b | 5,700  | ND<5.0 | ND<0.5  | ND<0.5  | ND<0.5            | ND<0.5           |
| T1-2.0        | 2.0           | 10,a  | 990,b   | 880    | ND<0.5 | ND<0.5  | ND<0.5  | ND<0.5            | ND<0.5           |
| T2-0.0        | 0.0           | 9.7,a | 170,b   | 150    | ND<0.5 | ND<0.5  | ND<0.5  | ND<0.5            | ND<0.5           |
| T2-2.0        | 2.0           | 6.9,a | 780,b   | 690    | ND<0.5 | ND<0.5  | ND<0.5  | ND<0.5            | ND<0.5           |
| $ESL_1$       |               | 83    | 83      | 2,500  | 0.023  | 0.044   | 2.9     | 3.3               | 2.3              |

### Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil

MTBE = Methyl Tertiary-Butyl Ether

ND = Not Detected.

a = Laboratory report note: strongly aged gasoline or diesel range compounds are significant.

b = Laboratory report note: fuel oil.

 $ESL_1$  = Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB) updated May 2008, from Table A – Shallow Soils, Groundwater is a current or potential source of drinking water (commercial/industrial land use).

## Results in bold exceed their respective ESL value.

Results are in milligrams per kilogram (mg/kg), unless otherwise noted.

<sup>\*</sup> Depth is measured from 1 foot below bottom of mass excavation, which is approximately 13 feet below ground surface.

# TABLE 2 SUMMARY OF LABORATORY ANALYTICAL RESULTS ONSITE BOREHOLE SOIL SAMPLES

(Samples Collected on July 20 and August 11, 2006)

| Sample<br>No. | Depth (feet)* | TPH-G  | TPH-D             | ТРН-ВО | ТРН-МО | MTBE    | BTEX                                                                    | PCBs     |
|---------------|---------------|--------|-------------------|--------|--------|---------|-------------------------------------------------------------------------|----------|
| B3-3.0        | 3.0           | 11, a  | <b>1,100</b> , b  | NA     | 1,100  | ND<0.05 | ND<0.005                                                                | NA       |
| B4-3.0        | 3.0           | 26, a  | <b>1,800</b> , b  | NA     | 1,500  | ND<0.05 | ND<0.005                                                                | NA       |
| B5-3.0        | 3.0           | 1.4, a | <b>300</b> , c, d | NA     | 380    | ND<0.05 | ND<0.005                                                                | NA       |
| B6-3.0        | 3.0           | 6.0, a | <b>740</b> , b    | NA     | 660    | ND<0.05 | ND<0.005                                                                | NA       |
|               |               |        |                   |        |        |         |                                                                         |          |
| C1-3.0        | 3.0           | ND<1.0 | 1.2, d            | NA     | ND<5.0 | ND<0.05 | ND<0.005                                                                | ND<0.025 |
| C2-3.0        | 3.0           | 4.2, a | <b>340</b> , c, d | NA     | 430    | ND<0.05 | ND<0.005                                                                | ND<0.025 |
| $ESL_1$       |               | 83     | 83                | 2,500  | 2,500  | 0.023   | Benzene = 0.044<br>Toluene = 3.3<br>Ethylbenzene = 2.9<br>Xylenes = 2.3 | 0.30     |

### Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-BO = Total Petroleum Hydrocarbons as Bunker Oil.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl Tertiary-Butyl Ether.

BTEX = Benzene, Toluene, Ethylbenzene, Xylenes.

PCBs = Polychlorinated Biphenyls.

ND = Not Detected.

NA = Not Analyzed.

- a = Laboratory Reporting Note: strongly aged gasoline or diesel range compounds are significant.
- b = Laboratory Reporting Note: fuel oil.
- c = Laboratory Reporting Note: oil range compounds are significant.
- d = Laboratory Reporting Note: diesel range compounds are significant; no recognizable pattern.

ESL<sub>1</sub> = Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB) updated May 2008, from Table A – Shallow Soils, Groundwater is a current or potential source of drinking water (commercial/industrial land use).

### Results in bold exceed their respective ESL value.

Results are in milligrams per kilogram (mg/kg), unless otherwise noted.

<sup>\*</sup> Depth is reported as depth below bottom of excavation, which was approximately 12 feet below ground surface, except for borehole B6 which began approximately 1 foot higher.

TABLE 3 SUMMARY OF LABORATORY ANALYTICAL RESULTS ONSITE GROUNDWATER SAMPLES

(Samples Collected on May 23, June 5-6, and August 11, 2006)

| Sample No. | Depth (feet)** | TPH-G | TPH-D    | ТРН-ВО | ТРН-МО | MTBE   | Benzene | Toluene | Ethyl-<br>benzene | Total<br>Xylenes |
|------------|----------------|-------|----------|--------|--------|--------|---------|---------|-------------------|------------------|
| B1-Water   | 5.0            | 54,a  | 64,000,c | 96,000 | 57,000 | ND<5.0 | ND<0.5  | ND<0.5  | ND<0.5            | ND<0.5           |
| B7-Water   | 5.2            | ND<50 | ND<50    | 53,g   | ND<250 | ND<5.0 | ND<0.5  | ND<0.5  | ND<0.5            | ND<0.5           |
| B8-Water   | 5.9            | 54,a  | 78,f     | 120    | ND<250 | ND<5.0 | ND<0.5  | ND<0.5  | 2.4               | 14               |
| B9-Water   | 6.3            | ND<50 | ND<50    | 82,g   | ND<250 | ND<5.0 | ND<0.5  | ND<0.5  | ND<0.5            | 0.70             |
| B10-Water  | 7.3            | ND<50 | ND<50    | 99     | ND<250 | ND<5.0 | ND<0.5  | ND<0.5  | ND<0.5            | ND<0.5           |
| B11-Water  | 6.6            | ND<50 | 200,c    | 400    | 320    | ND<5.0 | ND<0.5  | ND<0.5  | ND<0.5            | ND<0.5           |
| B12-Water  | 6.2            | ND<50 | 60       | 170    | ND<250 | ND<5.0 | ND<0.5  | ND<0.5  | ND<0.5            | ND<0.5           |
| C1-Water   | 13.5           | ND<50 | ND<50    | 63,g   | ND<250 | ND<5.0 | ND<0.5  | ND<0.5  | ND<0.5            | ND<0.5           |
| C2-Water   | 11.0           | ND<50 | 5,700,c  | 9,000  | 6,400  | ND<5.0 | ND<0.5  | ND<0.5  | ND<0.5            | ND<0.5           |
| C3-Water   | 14.0           | ND<50 | 200,c    | 350    | 300    | ND<5.0 | ND<0.5  | ND<0.5  | ND<0.5            | ND<0.5           |
| $ESL_1$    |                | 100   | 100      | 100    | 100    | 5.0    | 1.0     | 40      | 30                | 20               |

### Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-BO = Total Petroleum Hydrocarbons as Bunker Oil.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil

MTBE = Methyl Tertiary-Butyl Ether

ND = Not Detected.

a = Laboratory Reporting Note: strongly aged gasoline or diesel range compounds are significant.

c = Laboratory Reporting Note: oil range compounds are significant.

f = Laboratory Reporting Note: one to a few isolated peaks present.

g = Laboratory Reporting Note: value is an estimate.

 $ESL_1$  = Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB) updated May 2008, from Table A - Groundwater is a current or potential source of drinking water.

### Results in bold exceed their respective ESL value.

Results are in micrograms per Liter (ug/L), unless otherwise noted.

<sup>\*\*</sup> Depth is measured from bottom of mass excavation, which is approximately 12 feet below ground surface.

TABLE 4
SUMMARY OF LABORATORY ANALYTICAL RESULTS
OFFSITE GROUNDWATER SAMPLES

(Samples Collected on November 8, 14, 16, 2006, January 30, February 1, and March 19 and 20, 2007)

| Sample No.<br>B13a-28W<br>B13-41W | Depth (feet) 28.0 41.0 | TPH-G<br>ND<50<br>ND<50 | TPH-D<br><b>150</b> , c<br>ND<50 | 1,300<br>150 | TPH-MO<br><b>890</b><br>ND<250 | MTBE<br>ND<5.0<br>ND<5.0 | Benzene<br>ND<0.5<br>ND<0.5 | Toluene<br>ND<0.5<br>ND<0.5 | Ethylbenzene ND<0.5 ND<0.5 | Total<br>Xylenes<br>ND<0.5<br>ND<0.5 |
|-----------------------------------|------------------------|-------------------------|----------------------------------|--------------|--------------------------------|--------------------------|-----------------------------|-----------------------------|----------------------------|--------------------------------------|
| B14-27W<br>B14a-56W               | 27.0<br>56.0           | ND<50<br>ND<50          | 86, c,f<br>ND<50                 | 650<br>230   | <b>560</b><br>ND<250           | ND<5.0<br>ND<5.0         | ND<0.5<br>ND<0.5            | 0.61<br>ND<0.5              | ND<0.5<br>ND<0.5           | ND<0.5<br>ND<0.5                     |
| B15-30W<br>B15a-60W               | 30.0<br>60.0           | ND<50<br>ND<50          | 68, c<br>63                      | 680<br>290   | <b>630</b><br>ND<250           | ND<5.0<br>ND<5.0         | ND<0.5<br>ND<0.5            | 0.90<br>0.65                | ND<0.5<br>ND<0.5           | 1.9<br>1.0                           |
| B16-25W                           | 25.0                   | ND<50                   | ND<50                            | 380          | 250                            | ND<5.0                   | ND<0.5                      | ND<0.5                      | ND<0.5                     | ND<0.5                               |
| B17a-34W<br>B17b-41W              | 34.0<br>41.0           | ND<50<br>ND<50          | <b>530,</b> c<br>ND<50           | 1,400<br>340 | <b>1,000</b><br>ND<250         | ND<5.0<br>ND<5.0         | ND<0.5<br>ND<0.5            | ND<0.5<br>ND<0.5            | ND<0.5<br>ND<0.5           | ND<0.5<br>ND<0.5                     |
| B18-25W<br>B18a-59W               | 25.0<br>59.0           | ND<50<br>ND<50          | <b>340</b> , c 69                | 2,700<br>240 | <b>2,400</b><br>ND<250         | ND<5.0<br>ND<5.0         | ND<0.5<br>ND<0.5            | ND<0.5<br>ND<0.5            | ND<0.5<br>ND<0.5           | ND<0.5<br>ND<0.5                     |
| B19-20W<br>B19a-52W               | 20.0<br>52.0           | ND<50<br>ND<50          | <b>560</b> , c <b>140</b> , c    | 2,100<br>530 | 1,700<br>560                   | ND<5.0<br>ND<5.0         | ND<0.5<br>ND<0.5            | 0.80<br>ND<0.5              | ND<0.5<br>ND<0.5           | ND<0.5<br>ND<0.5                     |
| B20-20W                           | 20.0                   | ND<50                   | ND<50                            | ND<50        | ND<250                         | ND<5.0                   | ND<0.5                      | ND<0.5                      | ND<0.5                     | ND<0.5                               |
| B21-20W                           | 20.0                   | ND<50                   | ND<50                            | ND<50        | ND<250                         | ND<5.0                   | ND<0.5                      | ND<0.5                      | ND<0.5                     | 1.2                                  |
| B22-20W                           | 20.0                   | ND<50                   | <b>220</b> , c                   | 1,500        | 1,200                          | ND<5.0                   | ND<0.5                      | ND<0.5                      | ND<0.5                     | ND<0.5                               |
| $ESL_1$                           |                        | 100                     | 100                              | 100          | 100                            | 5.0                      | 1.0                         | 40                          | 30                         | 20                                   |

### Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil

TPH-BO = Total Petroleum Hydrocarbons as Bunker Oil.

MTBE = Methyl Tertiary-Butyl Ether

ND = Not detected above laboratory reporting limit.

c = Laboratory Reporting Note: oil range compounds are significant.

f = Laboratory Reporting Note: one to a few isolated peaks present.

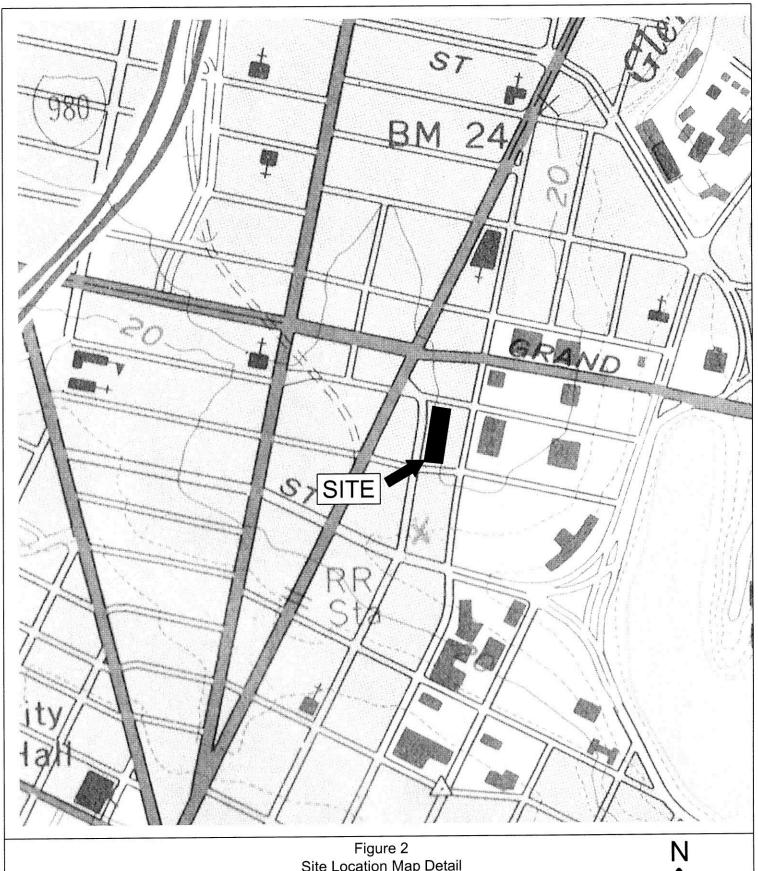
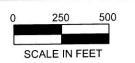
 $ESL_1$  = Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality Control Board (SF-RWQCB) updated May 2008, from Table A - Groundwater is a current or potential source of drinking water.

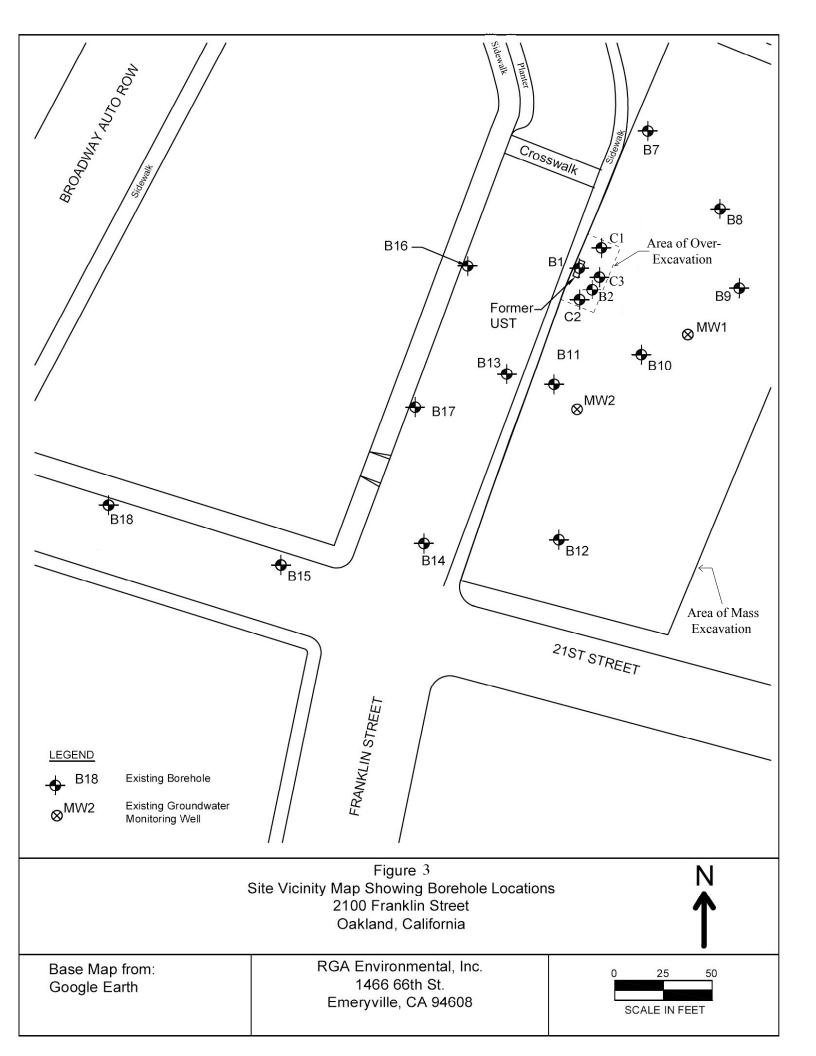
### Results in bold exceed their respective ESL value.

Results are in micrograms per Liter (ug/L), unless otherwise noted.

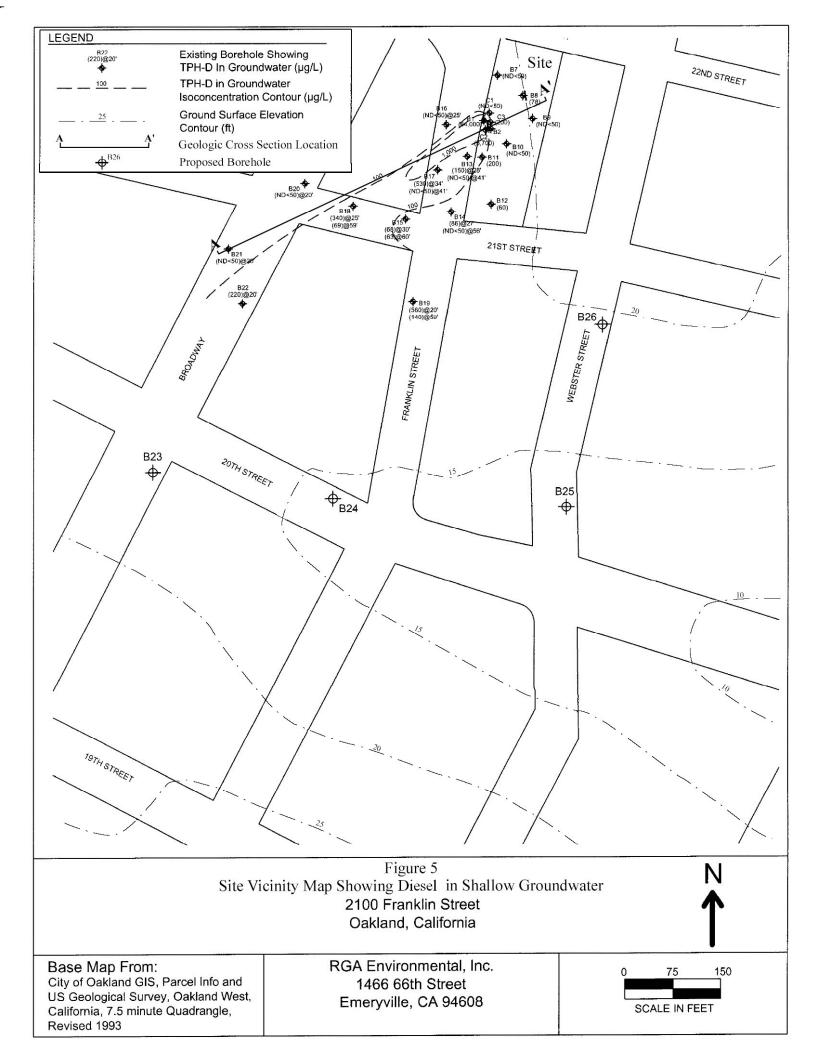
# **FIGURES**

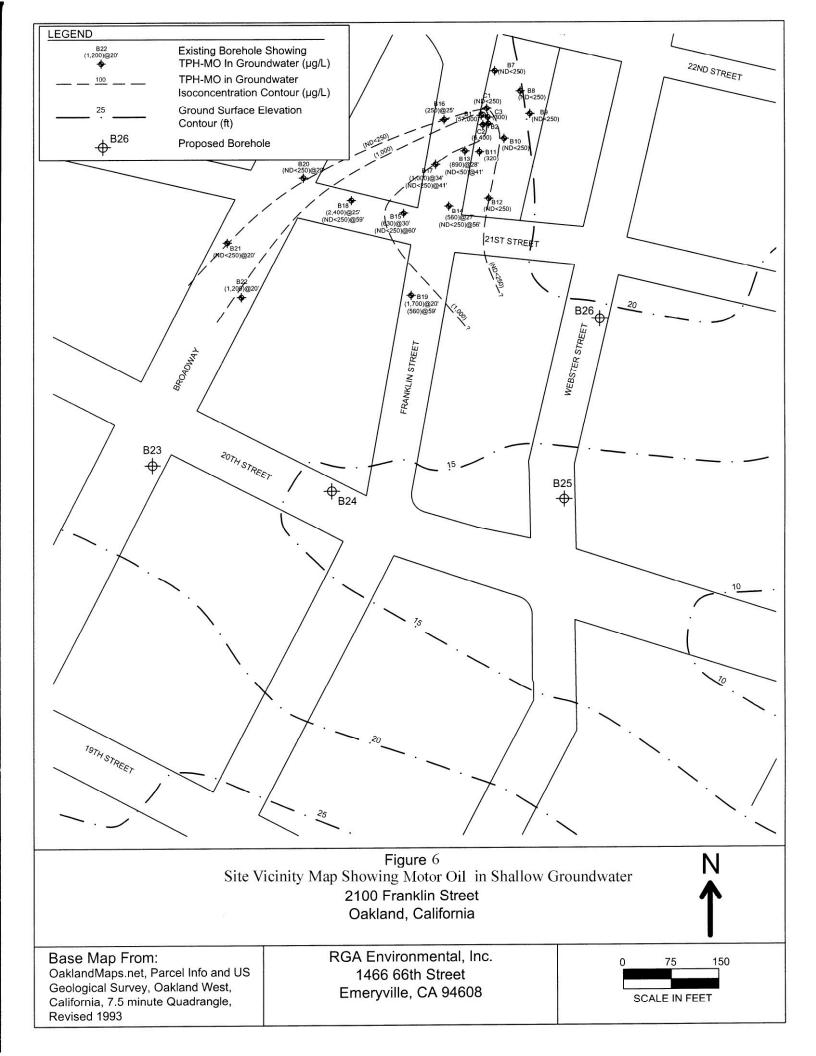


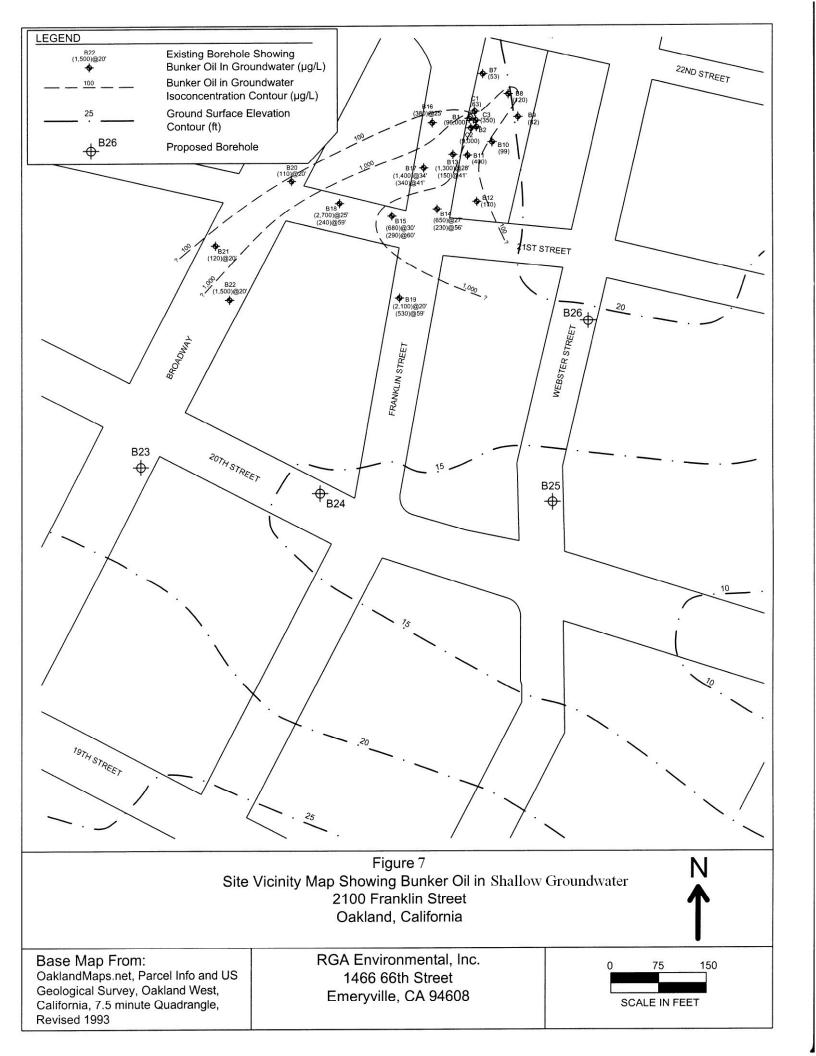



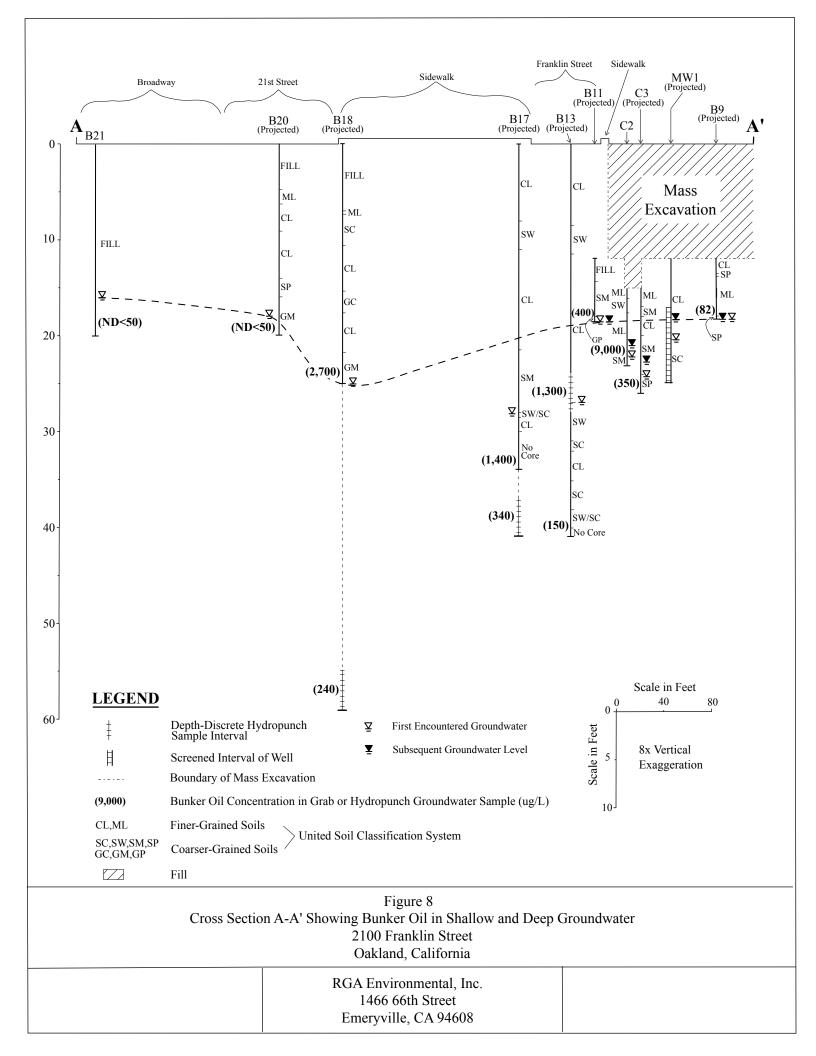


Figure 2 Site Location Map Detail 2100 Franklin Street Oakland, California

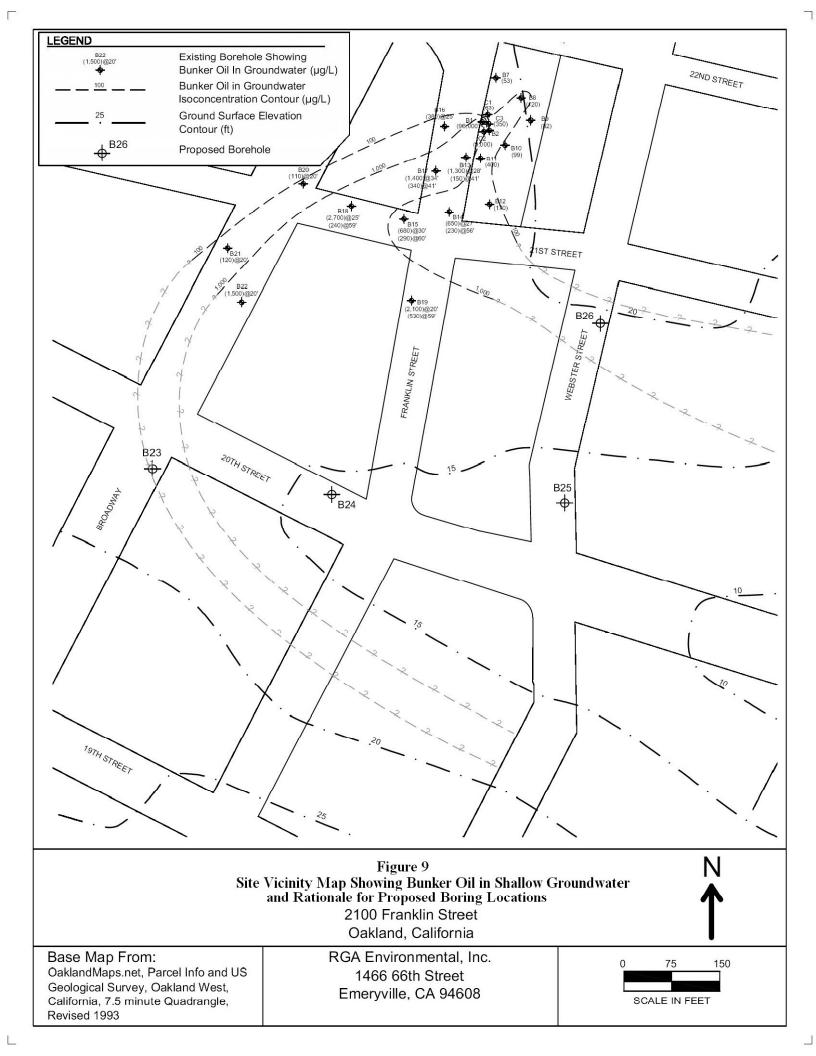



# Base Map From:

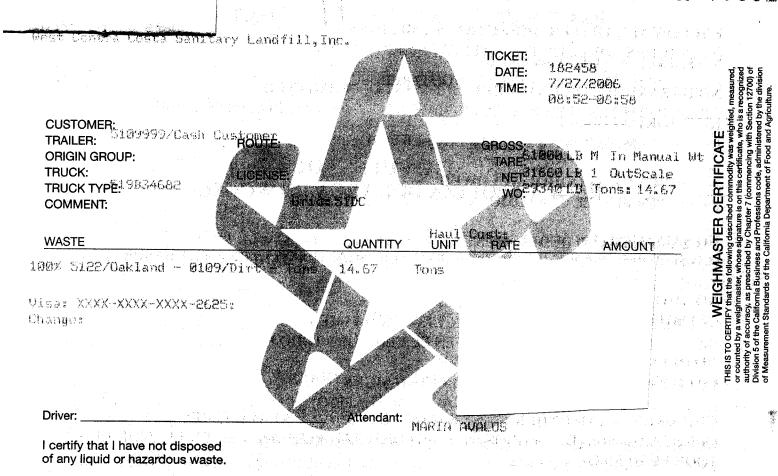

US Geological Survey, Oakland West, California, 7.5 minute Quadrangle, Revised 1993 RGA Environmental, Inc. 1466 66th Street Emeryville, Ca 94608

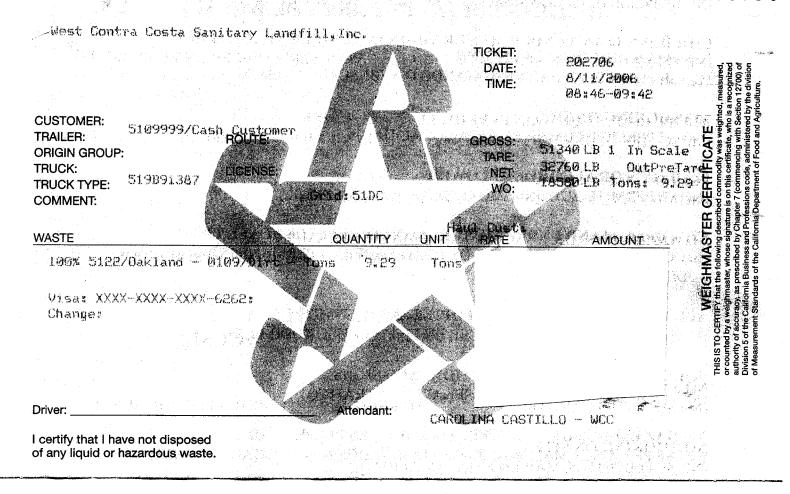


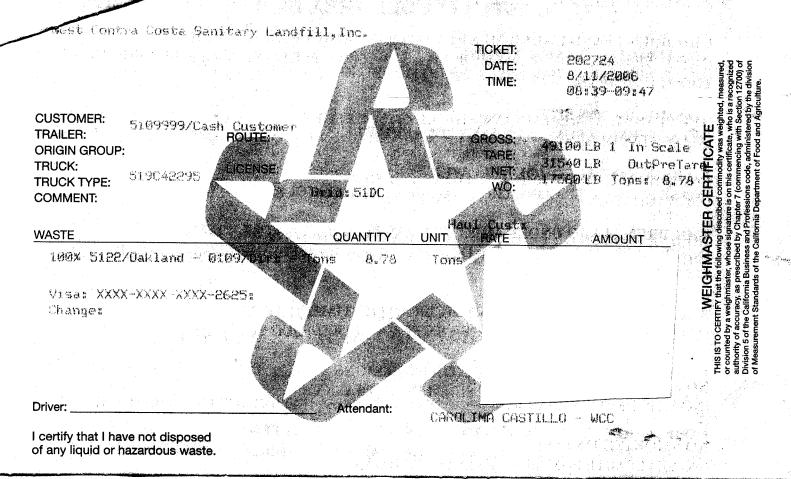



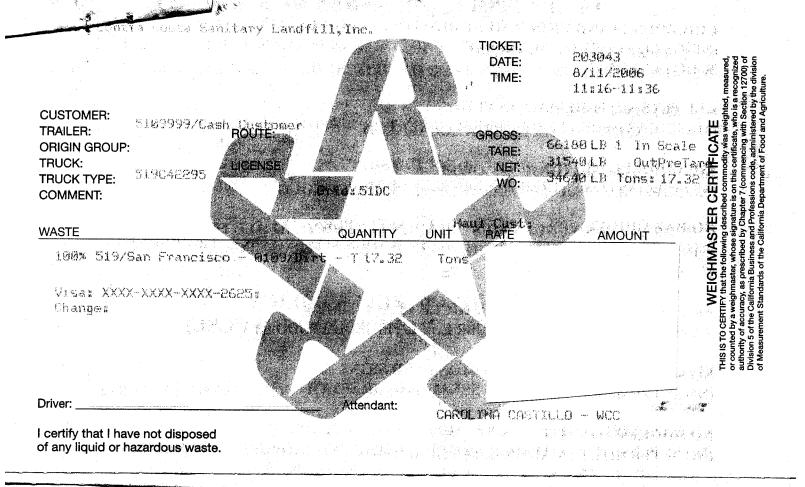



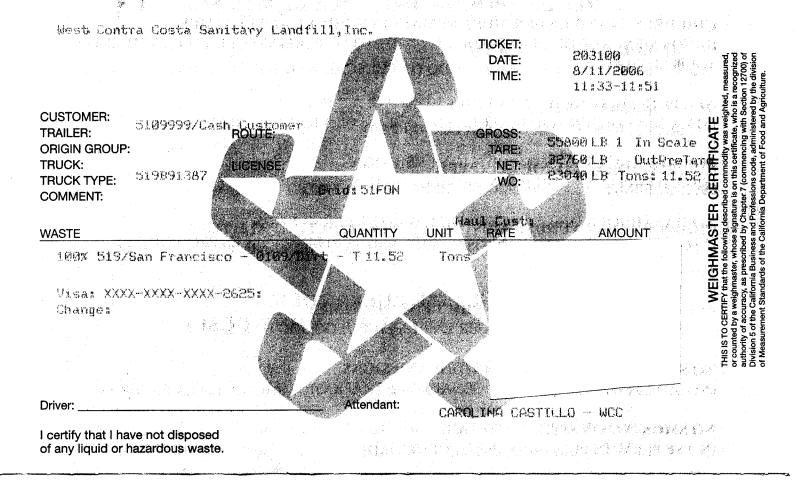


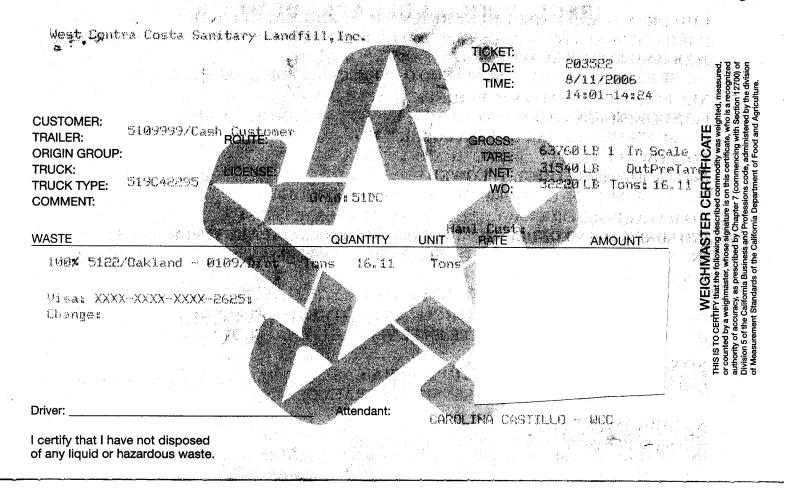



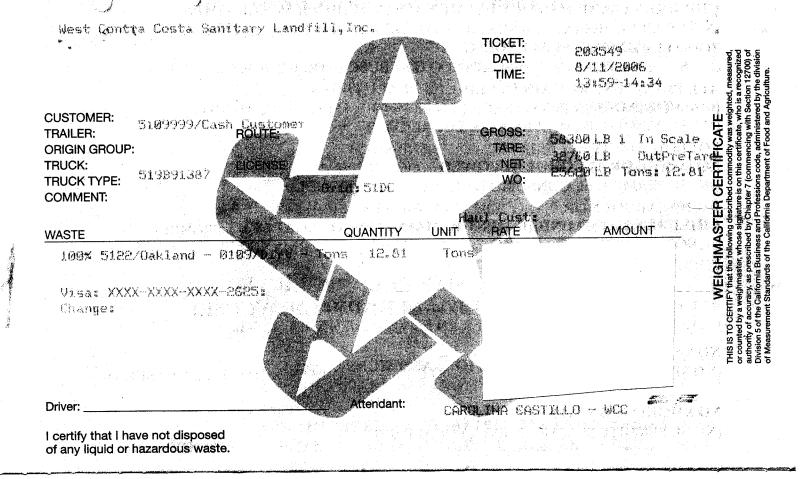



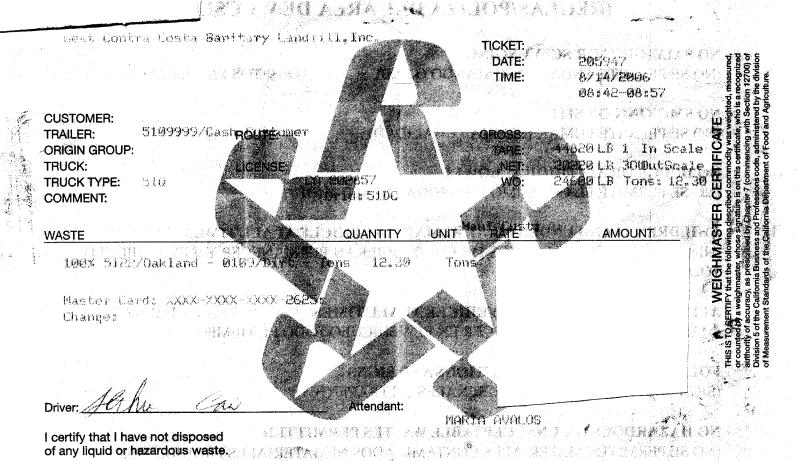





# WEIGHMASTER TICKETS FOR EXCAVATED SOIL DISPOSAL














# SOIL BORING LOGS

|     |            |      |                                  |                             |               |           |                   |                             |                      |       |                                                                                                                          | AGE 1 OF 3                                                                                                                                                                                                            |
|-----|------------|------|----------------------------------|-----------------------------|---------------|-----------|-------------------|-----------------------------|----------------------|-------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ВО  | RING I     | NO.: | C1                               | PROJECT NO.: 0387           | PR            | ROJECT N. | AME: 210          | 0 Franklin Ave, Oaklar      | nd, CA               |       |                                                                                                                          |                                                                                                                                                                                                                       |
| во  | RING L     | LOCA | ATION: At Northeast end          | d of former UST             | EL            | EVATION   | AND DATU          | JM: None                    |                      |       |                                                                                                                          |                                                                                                                                                                                                                       |
| DR  | ILLING     | AGE  | ENCY: RGA Environmen             | ntal, Inc.                  | DRILLER: PH   | к         |                   |                             | DAT                  |       | STARTED:                                                                                                                 | DATE & TIME FINISHED:                                                                                                                                                                                                 |
| DR  | LLING      | EQU  | JIPMENT: 3.5-inch O.D            | . Stainless Steel Hand Auge | er            |           |                   |                             |                      | 8/11, | /06                                                                                                                      | 8/11/06                                                                                                                                                                                                               |
| СО  | MPLE1      | TION | DEPTH: 13.5                      | FEET                        | BEDROCK DEP   | TH: None  | Encounter         | red                         |                      | LOGGE |                                                                                                                          | CHECKED BY:                                                                                                                                                                                                           |
| FIR | ST W       | ATER | DEPTH: 12.0                      | FEET                        | NO. OF SAMPLE | S: 1 Soil | , 1 Water         |                             |                      | PH    | IK<br>                                                                                                                   | P.G. 7804                                                                                                                                                                                                             |
|     | DEPTH(FT.) |      |                                  | DESCRIPTION                 |               |           | GRAPHIC<br>COLUMN | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID   |                                                                                                                          | REMARKS                                                                                                                                                                                                               |
|     | 1 2 3      |      | Excavated Are                    | a                           |               |           |                   | No Well<br>Constructed      |                      |       | using a stainle auger. First w at 12.0 13:40, Water 10.3 ft 13:48, ground sample a Teflo rope. Nodor of                  | ole hand augered a 3.5-inch O.D. ss steel hand atter encountered of the during drilling, 8/11/06.  measured at in borehole, 8/11/06. One dwater grab e collected using on bailer and No sheen or PHC in water sample. |
|     | 5          |      | fine sand, orar<br>Hydrocarbon ( | ŕ                           | etroleum      | or        | ML                |                             |                      |       | collect<br>stainle<br>tube.  Boreho<br>13.5 ft. Boreho<br>neat co<br>8/11/00  NOTE:<br>at botton<br>excavati<br>to depth | ed in 2-inch O.D. ss steel sampling  ble terminated at ,, 8/11/06. ble backfilled with ement grout, 6.  Borehole initiated m of mass ion. Add 12.0 feet as reported on log n depth below                              |
| r   | 6          | 7    | (0                               | continued on page           | 2)            |           |                   |                             |                      |       |                                                                                                                          |                                                                                                                                                                                                                       |

| BOR                 | ING N      | NO.: | C1                      | PROJECT NO.: 0387                                             | PROJEC            | T NAME: 210       | 0 Frank <b>l</b> in Ave, Oakl | and, CA              |       |          |                       |
|---------------------|------------|------|-------------------------|---------------------------------------------------------------|-------------------|-------------------|-------------------------------|----------------------|-------|----------|-----------------------|
| BOR                 | ING L      | LOCA | ATION: At Northeast end | d of former UST                                               | ELEVATI           | ON AND DATU       | M: None                       |                      |       |          |                       |
| DRIL                | LING       | AGE  | ENCY: RGA Environmen    | ntal, Inc.                                                    | DRILLER: PHK      |                   |                               | DAT                  |       | STARTED: | DATE & TIME FINISHED: |
| DRIL                | LING       | EQL  | JIPMENT: 3.5-inch O.D.  | . Stainless Steel Hand Auge                                   | r                 |                   |                               |                      | 8/11/ | 06       | 8/11/06               |
| COM                 | IPLET      | TION | DEPTH: 13.5             | FEET                                                          | BEDROCK DEPTH: N  | lone Encountere   | ed                            |                      | LOGGE | D BY:    | CHECKED BY:           |
| FIRS                | ST WA      | ATER | DEPTH: 12.0             | FEET                                                          | NO. OF SAMPLES: 1 | Soil, 1 Water     |                               |                      | PH    | K        | P.G. 7804             |
|                     | DEPTH(FT.) |      |                         | DESCRIPTION                                                   |                   | GRAPHIC           | WELL<br>CONSTRUCTION<br>LOG   | BLOW COUNT<br>PER 6" | PID   |          | REMARKS               |
|                     |            |      |                         | ontinued from page<br>frown medium sand<br>odor.              |                   | X<br>-<br>SP<br>- |                               |                      |       |          |                       |
|                     | 7          |      | coarse sand, c          | Frown silty clay (CL<br>orange and faint grancist. No PHC odo | ay mottling,      | CL                |                               |                      |       |          |                       |
|                     | 9          |      |                         | Brown silty sand (<br>nse, orange mottlir                     |                   |                   |                               |                      |       |          |                       |
| -<br> -<br> -<br> - | 10         |      |                         |                                                               |                   | _                 | •                             |                      |       |          |                       |
|                     | 11         |      |                         | ft Brown silty sand<br>ay, gray mottlling, c                  |                   | SM                | <u>*</u>                      |                      |       |          |                       |
|                     | 12         |      | (0                      | continued on page                                             | 3)                |                   | $\sum_{\overline{}}$          |                      |       |          |                       |

|          | RING       |       | C1 PROJECT NO.: 0387 PROJECT NAI                                                                     | ME: 210           | 0 Franklin Ave, Oakla       | nd. CA               |          | ·        | AGE 3 OF 3            |
|----------|------------|-------|------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|----------------------|----------|----------|-----------------------|
| $\vdash$ |            |       | ATION: At Northeast end of former UST ELEVATION A                                                    |                   |                             |                      |          |          |                       |
| DF       | ILLING     | i AGE | ENCY: RGA Environmental, Inc. DRILLER: PHK                                                           |                   |                             | DAT                  | E & TIME | STARTED: | DATE & TIME FINISHED: |
| DF       | ILLING     | i EQI | UIPMENT: 3.5-inch O.D. Stainless Steel Hand Auger                                                    |                   |                             | 1                    | 8/11     | /06      | 8/11/06               |
| CC       | MPLET      | TION  | DEPTH: 13.5 FEET BEDROCK DEPTH: None B                                                               | Encounter         | red                         |                      | LOGGE    | D BY:    | CHECKED BY:           |
| FIF      | RST WA     | ATEF  | R DEPTH: 12.0 FEET NO. OF SAMPLES: 1 Soil,                                                           | 1 Water           |                             |                      | PH       | K        | DM GIBBS<br>P.G. 7804 |
|          | DEPTH(FT.) |       |                                                                                                      | GRAPHIC<br>COLUMN | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID      |          | REMARKS               |
|          | 13         |       | (continued from page 2)  12.0 ft to 13.0 ft Brown sand (SP). No PHC odor.                            | SP                |                             |                      |          |          |                       |
|          | 13         |       | 13.0 ft to 13.5 ft Brown sand (SP); fine to coarse sand, gravel up to 1/2" in diameter. No PHC odor. | SP                |                             |                      |          |          |                       |
|          | 14         |       |                                                                                                      |                   |                             |                      |          |          |                       |
|          | 15         |       |                                                                                                      |                   |                             |                      |          |          |                       |
|          | 16         |       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-          |                   |                             |                      |          |          |                       |
|          | 17         |       |                                                                                                      |                   |                             |                      |          |          |                       |
|          | 18         |       |                                                                                                      |                   |                             |                      |          |          |                       |

| во  | RING       | NO.: | C2 P                                                      | PROJECT NO.: 0387                      | PROJ            | ECT N  | AME: 210          | 0 Franklin Ave, Oaklar      | nd, CA               |          |                                                                                                   |                                                                                          |
|-----|------------|------|-----------------------------------------------------------|----------------------------------------|-----------------|--------|-------------------|-----------------------------|----------------------|----------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| во  | RING I     | LOCA | ATION: At East end of form                                | er UST                                 | ELEV            | ATION  | AND DATU          | JM: None                    |                      |          |                                                                                                   |                                                                                          |
| DR  | ILLING     | AGE  | ENCY: RGA Environmental                                   | I, Inc.                                | DRILLER: PHK    |        |                   |                             | DAT                  | E & TIME | STARTED:                                                                                          | DATE & TIME FINISHED:                                                                    |
| DR  | ILLING     | EQU  | JIPMENT: 3.5-inch O.D. St                                 | tainless Steel Hand Auger              |                 |        |                   |                             |                      | 8/11     | /06                                                                                               | 8/11/06                                                                                  |
| CC  | MPLE       | TION | DEPTH: 11.0 F                                             | EET                                    | BEDROCK DEPTH:  | None   | Encounter         | ed                          |                      | LOGGE    | D BY:                                                                                             | CHECKED BY:                                                                              |
| FIF | ST W       | ATEF | DEPTH: 10.2 F                                             | EET                                    | NO. OF SAMPLES: | 1 Soil | , 1 Water         |                             |                      | PH       | K                                                                                                 | DM GIBBS<br>P.G. 7804                                                                    |
|     | DEPTH(FT.) |      |                                                           | DESCRIPTION                            |                 |        | GRAPHIC<br>COLUMN | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID      |                                                                                                   | REMARKS                                                                                  |
|     | 1 2        |      | Excavated Area                                            |                                        |                 |        |                   | No Well<br>Constructed      |                      |          | using a stainle auger. First w at 10.2 14:28, Water ft in bo 8/11/00 One gr sample a Teflorope. N | oundwater grab<br>e collected using<br>n bailer and<br>lo sheen but mild<br>dor on water |
|     | 3          |      | 3.0 ft to 4.0 ft Da<br>clay, stiff, moist.<br>(PHC) odor. | ırk gray sandy sil<br>Strong Petroleur |                 |        | ML                |                             |                      |          | collect<br>stainle<br>tubes.<br>Boreho                                                            | oil sample<br>ed in 2-inch O.D.<br>ss steel sampling<br>ole terminated at<br>, 8/11/06.  |
|     | 5          |      | 4.0 ft to 5.5 ft Gradense, moist. Str                     | rong PHC odor.                         |                 |        | SW                |                             |                      |          | NOTE: at bottom excavatito depth                                                                  | Borehole initiated of mass on. Add 12.0 feet as reported on log depth below              |
|     | 6          |      | 5.5 ft to 7.5 ft Broorange mottling,                      |                                        | HC odor.        | -      | ML                |                             |                      |          | o and                                                                                             |                                                                                          |

| ВС  | RING       | NO.:  | C2 PROJECT NO.: 0387 PROJECT NA                                                                                    | AME: 210  | 00 Franklin Ave, Oakla      | nd, CA               |       |          |                       |
|-----|------------|-------|--------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------|----------------------|-------|----------|-----------------------|
| ВС  | RING I     | LOCA  | TION: At East end of former UST ELEVATION                                                                          | AND DATU  | JM: None                    |                      |       |          |                       |
| DF  | RILLING    | a AGE | NCY: RGA Environmental, Inc. DRILLER: PHK                                                                          |           |                             | DAT                  |       | STARTED: | DATE & TIME FINISHED: |
| DF  | RILLING    | EQL   | JIPMENT: 3.5-inch O.D. Stainless Steel Hand Auger                                                                  |           |                             | 1                    | 8/11  | /06      | 8/11/06               |
| CC  | MPLE       | TION  | DEPTH: 11.0 FEET BEDROCK DEPTH: None                                                                               | Encounter | red                         |                      | LOGGE |          | CHECKED BY:           |
| FIF |            | ATER  | DEPTH: 10.2 FEET NO. OF SAMPLES: 1 Soil                                                                            | , 1 Water |                             | <u> </u>             | PH    | K        | P.G. 7804             |
|     | DEPTH(FT.) |       | DESCRIPTION                                                                                                        | GRAPHIC   | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID   |          | REMARKS               |
|     | 7          |       | (continued from page 1)  5.5 ft to 7.5 ft Brown sandy silt (ML); minor orange mottling, stiff, moist. No PHC odor. | ML        |                             |                      |       |          |                       |
|     | 9          |       | 7.5 ft to 10.0 ft Brown sandy silt (ML); trace coarse sand, minor orange mottling, stiff, moist.  No PHC odor.     | ML        | <b>—</b>                    |                      |       |          |                       |
|     | 10         |       | 10.0 ft to 11.0 ft Brown sand (SM). No PHC odor.                                                                   | SM        | <u>_</u>                    |                      |       |          |                       |
|     | 12         |       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                               |           |                             |                      |       |          |                       |

| BORING NO.:   | C3                                                                | PROJECT NO.: 0387                                                       | PROJI                                   | ECT NAM  | ME: 2100  | Franklin Ave, Oakla         | and, CA              |          |                                                                                                           |                                                                                                                                                                                                                    |
|---------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|----------|-----------|-----------------------------|----------------------|----------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BORING LOCA   | ATION: At Southwest En                                            | d of former UST                                                         | ELEVA                                   | ATION AN | ND DATUM  | M: None                     |                      |          |                                                                                                           |                                                                                                                                                                                                                    |
| DRILLING AGE  | ENCY: RGA Environmen                                              | ntal, Inc.                                                              | DRILLER: PHK                            |          |           |                             | DAT                  | E & TIME | STARTED:                                                                                                  | DATE & TIME FINISHED:                                                                                                                                                                                              |
| DRILLING EQU  | JIPMENT: 3.5-inch O.D.                                            | . Stainless Steel Hand Aug                                              | er                                      |          |           |                             |                      | 8/11     | /06                                                                                                       | 8/11/06                                                                                                                                                                                                            |
| COMPLETION    | DEPTH: 14.0                                                       | FEET                                                                    | BEDROCK DEPTH:                          | None E   | ncountere | d                           |                      | LOGGE    | D BY:                                                                                                     | CHECKED BY:                                                                                                                                                                                                        |
| FIRST WATER   | DEPTH: 12.3                                                       | FEET                                                                    | NO. OF SAMPLES:                         | 1 Water  | •         |                             |                      | PH       | K                                                                                                         | DMG                                                                                                                                                                                                                |
| DEPTH(FT.)    |                                                                   | DESCRIPTION                                                             | N                                       |          | GRAPHIC   | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID      |                                                                                                           | REMARKS                                                                                                                                                                                                            |
|               | Excavated Are                                                     | a                                                                       |                                         |          | FILL      |                             |                      |          | using a stainle auger.  First w at 12.3 12:05,  Water 10.8 ft 12:10, One gr sample a Teflo rope. Nodor of | ole hand augered a 3.5-inch O.D. as steel hand atter encountered at during drilling, 8/11/06.  measured at in borehole, 8/11/06. roundwater grab at collected using an bailer and lo sheen or PHC in water sample. |
| - 3 -<br><br> | fine sand, orar<br>1 to 5 mm in di                                | Brown silt (ML); mage mottling with liameter, medium lirocarbon (PHC) ( | olack macropore<br>stiff, moist. No     | s        | ML        |                             |                      |          | 14.0 ft.<br>Boreho<br>neat ce                                                                             | , 8/11/06.  ole grouted with ement and a 4 in.                                                                                                                                                                     |
| 4 -           | 3.5 ft to 4.5 ft (fine sand, oran macropores 1 stiff, moist. Mile | Gray silt (ML); minge mottling with loto 5 mm in diamed PHC odor.       | nor clay, minor<br>black<br>ter, medium |          | ML        |                             |                      |          | 8/11/06                                                                                                   |                                                                                                                                                                                                                    |
| 5 -           | fine sand, orar                                                   | Brown silt (ML); mage mottling with lameter, medium                     | olack macropore                         | s =      | ML        |                             |                      |          | at botton<br>excavating<br>to depth<br>to obtain                                                          | n of mass<br>on. Add 12.0 feet<br>as reported on log<br>depth below                                                                                                                                                |
|               | 5.0 ft to 5.9 ft E<br>PHC odor.                                   | Brown silty fine sa                                                     | and (SM). No                            |          | SM        |                             |                      |          | ground s                                                                                                  |                                                                                                                                                                                                                    |
| 6 -           | 5.9 ft to 6.0 ft Gra                                              | avel 1/4" diameter (                                                    | GW). No PHC odo                         | r        | GW        |                             |                      |          |                                                                                                           |                                                                                                                                                                                                                    |

| BC  | RING       | NO.:     | C3                                          | PROJECT NO.: 0387                                                                          | PROJE                           | ECT NA  | ME: 2100   | Franklin Ave, Oakla         | nd, CA               |          |          |                       |
|-----|------------|----------|---------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------|---------|------------|-----------------------------|----------------------|----------|----------|-----------------------|
| ВС  | RING       | LOCA     | TION: At Southwest E                        | nd of former UST                                                                           | ELEVA                           | ATION A | ND DATUM   | M: None                     |                      |          |          |                       |
| DF  | RILLING    | AGE      | NCY: RGA Environme                          | ental, Inc.                                                                                | DRILLER: PHK                    |         |            |                             | DAT                  | E & TIME | STARTED: | DATE & TIME FINISHED: |
| DF  | RILLING    | G EQU    | IPMENT: 3.5-inch O.I                        | D. Stainless Steel Hand Auge                                                               | er                              |         |            |                             | 1                    | 8/11     | /06      | 8/11/06               |
| CC  | OMPLE:     | TION     | DEPTH: 14.0                                 | FEET                                                                                       | BEDROCK DEPTH:                  | None I  | Encountere | ed                          |                      | LOGGE    |          | CHECKED BY:           |
| FIF | RST W      | ATER     | DEPTH: 12.3                                 | FEET                                                                                       | NO. OF SAMPLES:                 | 0       |            |                             |                      | PH       | K        | DMG                   |
|     | DEPTH(FT.) |          |                                             | DESCRIPTION                                                                                |                                 |         | GRAPHIC    | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID      |          | REMARKS               |
|     | 7          |          | coarse sand,<br>orange and fa               | Brown silty clay(Cl<br>gravel up to one-in<br>int gray mottling, g<br>medium stiff, moist. | ch in diameter,<br>ray mottling |         | CL         |                             |                      |          |          |                       |
|     | 9          |          | 8.0 ft to 11.0 f<br>minor clay, or<br>odor. | it Brown silty sand<br>ange mottling, den                                                  | (SM); fine sand,<br>se. No PHC  |         | SM         | <u></u>                     |                      |          |          |                       |
|     | 11         | 11111111 |                                             | ft Brown silty sand<br>lay, light gray mott                                                |                                 |         | SM         |                             |                      |          |          |                       |

| BORING NO.:                      | C3                    | PROJECT NO.: 0387                                                            | PROJEC            | T NAME: 210    | 0 Franklin Ave, Oakla       | nd, CA               |       |          |                       |
|----------------------------------|-----------------------|------------------------------------------------------------------------------|-------------------|----------------|-----------------------------|----------------------|-------|----------|-----------------------|
| BORING LOC                       | ATION: At Southwest E | and of former UST                                                            | ELEVAT            | ION AND DATU   | M: None                     |                      |       |          |                       |
| DRILLING AG                      | ENCY: RGA Environme   | ental, Inc.                                                                  | DRILLER: PHK      |                |                             | DAT                  |       | STARTED: | DATE & TIME FINISHED: |
| DRILLING EQ                      | UIPMENT: 3.5-inch O.I | D. Stainless Steel Hand Aug                                                  | er                |                |                             |                      | 8/11  | /06      | 8/11/06               |
| COMPLETION                       | N DEPTH: 14.0         | FEET                                                                         | BEDROCK DEPTH:    | None Encounter | ed                          |                      | LOGGE |          | CHECKED BY:           |
| FIRST WATER                      | R DEPTH: 12.3         | FEET                                                                         | NO. OF SAMPLES: 0 |                |                             |                      | PH    | K        | DMG                   |
| DEPTH(FT.)                       |                       | DESCRIPTION                                                                  | I                 | GRAPHIC        | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID   |          | REMARKS               |
| 13 = 13 = 14 = 15 = 17 = 18 = 18 | silt, one-inch        | ft Brown fine sand<br>thick layer of fine to<br>e and light gray mo<br>odor. | coarse sand at    | SP SP          | ¥-                          |                      |       |          |                       |

|     |            |           | Environmental, me.                                                                          |                   |                             |                      |                  |                                                           | AGE 1 OF 1                                                                                                                 |
|-----|------------|-----------|---------------------------------------------------------------------------------------------|-------------------|-----------------------------|----------------------|------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Н   | RING       |           |                                                                                             |                   | 00 Franklin Street, Oak     | land, C              | Α                |                                                           |                                                                                                                            |
| ВС  | RING L     | _OCA      | TION: Approx. 5 feet East of former UST ELEVATION                                           | AND DAT           | JM: None                    |                      |                  |                                                           |                                                                                                                            |
| H   |            |           | NCY: RGA Environmental, Inc. DRILLER: Dave Gibbs/F                                          | aul King          |                             | DAT                  | E & TIME<br>7/20 | STARTED:<br>/06                                           | DATE & TIME FINISHED:<br>7/20/06                                                                                           |
| DF  | ILLING     | i EQL     | IIPMENT: 3.5 inch O.D. Stainless Steel Hand Auger                                           |                   |                             |                      |                  |                                                           |                                                                                                                            |
| L   |            |           | DEPTH: 3.5 FEET BEDROCK DEPTH: Non                                                          | e Encounte        | red                         |                      | LOGGE            |                                                           | CHECKED BY:<br>DM GIBBS                                                                                                    |
| FIF |            | ATER      | DEPTH: None Encountered NO. OF SAMPLES: 1 So                                                | I<br>I            |                             |                      | DM               | G<br>I                                                    | P.G. 7804                                                                                                                  |
|     | ОЕРТН(FT.) |           | DESCRIPTION                                                                                 | GRAPHIC<br>COLUMN | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID              |                                                           | REMARKS                                                                                                                    |
|     | 1          |           | 0 ft to 1.5 ft Brown silty clay (CL); orange mottling. No Petroleum Hydrocarbon (PHC) odor. | CL                | No Well<br>Constructed      |                      |                  | using a stainles auger.  One so collecte diamete stainles | le hand augered . 3.5-inch O.D. ss steel hand  ill sample ed in a 2-inch er 6-inch long ss steel sampling om the bottom of |
|     | 2          |           | 1.5 ft to 2.0 ft Shiny black sand (SP). Mild PHC odor.                                      | SP                |                             |                      |                  | the bor                                                   |                                                                                                                            |
|     | 3          |           | 2.0 ft to 3.0 ft Gray sand (SP). Strong PHC odor.                                           | SP                |                             |                      |                  | Sample<br>to 3.5 f<br>Boreho                              | le backfilled with<br>ment grout on                                                                                        |
|     | 4          |           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                   |                   |                             |                      |                  | at bottor<br>Add 12.0<br>reported                         | Borehole initiated<br>n of mass excavation.<br>0 feet to depth as<br>on log, to obtain<br>clow ground surface.             |
|     | 5          |           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                   |                             |                      |                  |                                                           |                                                                                                                            |
| E   | 6          | $\exists$ | <u>-</u>                                                                                    |                   |                             |                      |                  |                                                           |                                                                                                                            |

| ВС  | RING       | NO.: | B4 PROJECT NO.: 0387 PROJECT N                                                              | AME: 210  | 00 Franklin Street, Oak     | land, C              | A     |                                                          |                                                                                                                          |
|-----|------------|------|---------------------------------------------------------------------------------------------|-----------|-----------------------------|----------------------|-------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| ВС  | RING       | LOCA | TION: Approx. 5 feet East of former UST ELEVATION                                           | AND DATU  | JM: None                    |                      |       |                                                          |                                                                                                                          |
| DF  | ILLING     | AGE  | NCY: RGA Environmental, Inc. DRILLER: Dave Gibbs/P                                          | aul King  |                             | DAT                  |       | STARTED:                                                 | DATE & TIME FINISHED:                                                                                                    |
| DF  | ILLING     | EQL  | JIPMENT: 3.5 inch O.D. Stainless Steel Hand Auger                                           |           |                             |                      | 7/20  | /06                                                      | 7/20/06                                                                                                                  |
| CC  | MPLE       | TION | DEPTH: 3.5 FEET BEDROCK DEPTH: None                                                         | Encounter | red                         |                      | LOGGE | D BY:                                                    | CHECKED BY:                                                                                                              |
| FIF | RST W      | ATER | DEPTH: None Encountered NO. OF SAMPLES: 1 Soil                                              |           |                             |                      | DM    | G                                                        | P.G. 7804                                                                                                                |
|     | DEPTH(FT.) |      | DESCRIPTION                                                                                 | GRAPHIC   | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID   |                                                          | REMARKS                                                                                                                  |
|     | 1          |      | 0 ft to 1.5 ft Brown silty clay (CL); orange mottling. No Petroleum Hydrocarbon (PHC) odor. | CL        | No Well<br>Constructed      |                      |       | using a stainles auger.  One so collecte diamet stainles | le hand augered 3.5-inch O.D. ss steel hand  ill sample ed in a 2-inch er 6-inch long ss steel sampling om the bottom of |
|     | 2          |      | 1.5 ft to 2.0 ft Shiny black sand (SP). Mild PHC odor.                                      | SP        |                             |                      |       | the bor                                                  |                                                                                                                          |
|     | 3          |      | 2.0 to 3.0 ft Shiny black sand (SP). Strong PHC odor.                                       | SP        |                             |                      |       | Sample<br>to 3.5 f<br>Boreho                             | le backfilled with<br>ment grout on                                                                                      |
|     | 4          |      |                                                                                             |           |                             |                      |       | at botton<br>Add 12.0<br>reported                        | Borehole initiated n of mass excavation. I feet to depth as on log, to obtain low ground surface.                        |
|     | 5          |      |                                                                                             |           |                             |                      |       |                                                          |                                                                                                                          |

|          |            |       |                        |                                        |                 | .=:      | = -       |                             |                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AGE 1 OF 1                                                                                   |
|----------|------------|-------|------------------------|----------------------------------------|-----------------|----------|-----------|-----------------------------|----------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| $\vdash$ | RING       |       |                        | PROJECT NO.: 0387                      |                 |          |           | 0 Franklin Street, Oak      | land, C              | Α                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |
| ВС       | RING       | LOCA  | ATION: Approx. 10 feet | t East of former UST                   | ELEV            | 'ATION   | AND DATU  | JM: None                    |                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                     |
| DF       | RILLING    | i AGE | ENCY: RGA Environm     | ental, Inc.                            | DRILLER: Dave 0 | aibbs/Pa | aul King  |                             | DAT                  | E & TIME<br>7/20 | STARTED:<br>/06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE & TIME FINISHED:<br>7/20/06                                                             |
| DF       | RILLING    | EQU   | JIPMENT: 3.5 inch O.   | D. Stainless Steel Hand Au             | iger            |          |           |                             |                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,25,65                                                                                      |
| CC       | MPLE.      | TION  | DEPTH: 3.5             | FEET                                   | BEDROCK DEPTH   | : None   | Encounter | red                         |                      | LOGGE            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHECKED BY:<br>DM GIBBS                                                                      |
| FII      | RST W      | ATER  | DEPTH: None Enco       | untered                                | NO. OF SAMPLES: | 1 Soil   |           |                             |                      | DM               | IG<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P.G. 7804                                                                                    |
|          | DEPTH(FT.) |       |                        | DESCRIPTIO                             | N               |          | GRAPHIC   | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REMARKS                                                                                      |
|          | 1 2        |       |                        | wn silty clay (CL)<br>roleum Hydrocarb |                 |          | CL        | No Well<br>Constructed      |                      |                  | using a stainles auger.  One so collecte diamet stainles tube from the bore as a second as | le terminated at collected at 3.0 t. le backfilled with                                      |
|          | 5          |       |                        |                                        |                 |          |           |                             |                      |                  | at bottom<br>Add 12.0<br>reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Borehole initiated of mass excavation. feet to depth as on log, to obtain ow ground surface. |

|     | RING       |       | B6 PROJECT NO.: 0387 PROJECT N                                                                                                                                                       | IAMF: 210         | 00 Franklin Street, Oak        | land C               | Δ        |                                                              | 'AGE 1 OF 1                                                                                                                         |
|-----|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------|----------------------|----------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Н   |            |       | ATION: Adjacent to former UST ELEVATION                                                                                                                                              |                   |                                |                      |          |                                                              |                                                                                                                                     |
| DR  | ILLING     | i AGE | ENCY: RGA Environmental, Inc. DRILLER: Dave Gibbs/P                                                                                                                                  | aul King          |                                | DAT                  | E & TIME | STARTED:                                                     | DATE & TIME FINISHED:                                                                                                               |
| DR  | ILLING     | i EQI | JIPMENT: 3.5 inch O.D. Stainless Steel Hand Auger                                                                                                                                    |                   |                                |                      | 8/11,    | /06                                                          | 8/11/06                                                                                                                             |
| СО  | MPLET      | TION  | DEPTH: 4.0 FEET BEDROCK DEPTH: Non-                                                                                                                                                  | e Encounte        | red                            |                      | LOGGE    |                                                              | CHECKED BY:                                                                                                                         |
| FIF |            | ATER  | DEPTH: None Encountered NO. OF SAMPLES: 1 Soi                                                                                                                                        | I                 |                                |                      | DM       | G<br>·                                                       | P.G. 7804                                                                                                                           |
|     | ОЕРТН(FT.) |       | DESCRIPTION                                                                                                                                                                          | GRAPHIC<br>COLUMN | WELL<br>CONSTRUCTION<br>LOG    | BLOW COUNT<br>PER 6" | PID      |                                                              | REMARKS                                                                                                                             |
|     | 1          |       | 0 ft to 1.5 ft Brown silty clay (CL); orange mottling, moist. No Petroleum Hydrocarbon (PHC) odor.                                                                                   | CL                | No We <b>ll</b><br>Constructed |                      |          | using a stainles auger.  One so collecte diamet stainles     | ole hand augered 1 3.5-inch O.D. 2 ss steel hand 2 sil sample 3 in a 2-inch 3 er 6-inch long 3 ss steel sampling 5 om the bottom of |
|     | 2          |       | 1.5 ft to 3.5 ft Brown sand (SP); fine grained sand, orange mottling, moist. No PHC odor.                                                                                            | SP                |                                |                      |          | the bor<br>Boreho<br>4.0 ft.<br>Sample<br>to 4.5 f<br>Boreho | ehole.  Je terminated at e collected at 4.0 t.  Je backfilled with ement grout on                                                   |
|     | 4          |       | 3.5 ft to 4.0 ft Brown and Gray silty sand (SM); fine grained sand, orange mottling with black grains in mottling. No PHC odor.  4.0 ft to 4.5 ft Gray silty sand (SM); no mottling. | SM<br>SM          |                                |                      |          |                                                              |                                                                                                                                     |
|     | 5          |       | Strong PHC odor.                                                                                                                                                                     | - CIVI            |                                |                      |          | 1 ft. abo<br>excavati<br>to depth                            | Borehole initiated ve bottom of mass on. Add 13.0 feet as reported on log, a depth below surface.                                   |
| E   | 6          |       | <u>-</u>                                                                                                                                                                             |                   |                                |                      |          |                                                              |                                                                                                                                     |

| во  | RING       | NO.:  | B7 PROJECT NO.: 0387 PROJECT N                                                                                                             | AME: 210 | 00 Franklin Street, Oak     | and, C               | Ą           |                                                   |                                                                                              |
|-----|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------|----------------------|-------------|---------------------------------------------------|----------------------------------------------------------------------------------------------|
| во  | RING       | LOCA  | ATION: Onsite, North of former UST ELEVATION                                                                                               | AND DAT  | JM: None                    |                      |             |                                                   |                                                                                              |
| DR  | ILLING     | a AGE | ENCY: RGA Environmental, Inc. DRILLER: Paul                                                                                                |          |                             | DAT                  |             | STARTED:                                          | DATE & TIME FINISHED:                                                                        |
| DR  | ILLING     | i EQI | JIPMENT: 3.5 inch O.D. Stainless Steel Hand Auger                                                                                          |          |                             |                      | 6/5/<br>8:4 |                                                   | 6/5/06                                                                                       |
| CC  | MPLE       | TION  | DEPTH: 5.2 FEET BEDROCK DEPTH: None                                                                                                        | Encounte | red                         |                      | LOGGE<br>PH |                                                   | CHECKED BY:<br>DM GIBBS                                                                      |
| FIF |            | ATEF  | R DEPTH: 5.2 FEET NO. OF SAMPLES: 1 Wat                                                                                                    | er       | _                           |                      |             | 1                                                 | P.G. 7804                                                                                    |
|     | ОЕРТН(FT.) |       | DESCRIPTION                                                                                                                                | GRAPHIC  | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID         |                                                   | REMARKS                                                                                      |
|     | 1          |       | 0.0 to 1.2 ft Brown clay (CL); fine grained sand, orange and minor black mottling, very stiff, moist. No Petroleum Hydrocarbon (PHC) odor. | CL       | No Well<br>Constructed      |                      |             | using 3<br>stainle<br>auger.<br>First w<br>at 5.2 | ole hand augered 3.5-inch O.D. ss steel hand atter encountered ft during drilling,           |
|     |            |       | 1.2 to 1.9 ft Brown silt (ML); fine grained sand, abundant orange mottling, medium stiff, moist. No PHC odor.                              | ML       |                             |                      |             | Water<br>in bore<br>6/5/06                        | M, 6/5/06.  measured at 4.2 ft hole, 9:58 AM, approx. 5 min. roundwater first                |
|     | 2          |       | 1.9 to 2.7 ft Brown fine grained silty sand (SM); abundant orange mottling, medium dense, moist. No PHC odor.                              | SM       |                             |                      |             | encour<br>One gr<br>sample<br>Teflon              |                                                                                              |
|     | 3          |       | 2.7 to 4.0 ft Brown sandy silt (ML); abundant orange mottling, stiff, moist. No PHC odor.                                                  | ML       |                             |                      |             | Boreho<br>5.2 ft.,<br>Boreho                      | ter sample.  ble terminated at 8:53, 6/5/06.  ble backfilled with ement grout,               |
|     | 5          |       | 4.0 to 5.2 ft Brown silt (ML); minor fine sand, minor orange mottling, stiff, moist. No PHC odor.                                          | ML       | <b>▼</b> -                  |                      |             |                                                   |                                                                                              |
|     | 6          |       |                                                                                                                                            |          | =                           |                      |             | at bottom<br>Add 12.0<br>reported of              | Borehole initiated of mass excavation. feet to depth as on log, to obtain ow ground surface. |

| ВС                                                                                | RING I     | NO.:      | B8 PROJECT NO.: 0387 PROJECT I                                                                                                       | IAME: 210  | 00 Franklin Street, Oak        | land, C              | 4           |                                                                           |                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------|------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------|----------------------|-------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ВС                                                                                | RING L     | LOCA      | TION: Onsite, Northeast of former UST ELEVATION                                                                                      | AND DAT    | JM: None                       |                      |             |                                                                           |                                                                                                                                                                                                      |
| DF                                                                                | ILLING     | AGE       | NCY: RGA Environmental, Inc. DRILLER: Nick                                                                                           |            |                                | DAT                  |             | STARTED:                                                                  | DATE & TIME FINISHED:                                                                                                                                                                                |
| DF                                                                                | ILLING     | EQL       | JIPMENT: 3.5 inch O.D. Stainless Steel hand auger.                                                                                   |            |                                |                      | 6/5/<br>8:5 |                                                                           | 6/5/06                                                                                                                                                                                               |
| CC                                                                                | MPLET      | TION      | DEPTH: 5.9 FEET BEDROCK DEPTH: Nor                                                                                                   | e Encounte | red                            |                      | LOGGE<br>NR |                                                                           | CHECKED BY:<br>DM GIBBS                                                                                                                                                                              |
| FIF                                                                               |            | ATER      | DEPTH: 5.9 FEET NO. OF SAMPLES: 1 W.                                                                                                 | iter       | ·                              | L.,                  | NH          | IVI                                                                       | P.G. 7804                                                                                                                                                                                            |
|                                                                                   | DEPTH(FT.) |           | DESCRIPTION                                                                                                                          | GRAPHIC    | WELL<br>CONSTRUCTION<br>LOG    | BLOW COUNT<br>PER 6" | PID         |                                                                           | REMARKS                                                                                                                                                                                              |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 1          |           | 0.0 to 2.0 ft Brown silty clay (CL); fine grained sand, abundant orange mottling, stiff, moist. No Petroleum Hydrocarbon (PHC) odor. | CL         | No We <b>ll</b><br>Constructed |                      |             | using 3 stainle auger. First w at 5.9 stainle 9:15 A Water in bore 6/5/06 | ole hand augered<br>3.5-inch O.D.<br>ss steel hand<br>ater encountered<br>it during drilling,<br>M, 6/5/06.<br>measured at 5.0 ft<br>hole, 9:56 AM,<br>approx. 5 min.<br>roundwater first<br>htered. |
|                                                                                   | 3          |           | 2.3 to 3.6 ft Brown silt (ML); fine grained sand, abundant orange mottling, medium stiff, moist.  No PHC odor.                       | ML         |                                |                      |             | One grandlers Sample Teflon No she on wat Boreho 5.9 ft.,                 | roundwater grab e collected using a bailer and rope. een or PHC odor er sample.  ble terminated at 6/5/06. ble backfilled with ement grout,                                                          |
|                                                                                   | 4          |           | 3.6 to 4.1 ft Brown sandy silt (ML); abundant black mottling, medium stiff, moist. No PHC odor.                                      | ML         |                                |                      |             | 6/5/06.                                                                   |                                                                                                                                                                                                      |
|                                                                                   | 5          |           | 4.1 to 5.9 ft Brown silty sand (SM); medium dense, moist. No PHC odor.                                                               | SM         | <u>_</u>                       |                      |             | at bottom<br>Add 12.0<br>reported                                         | Borehole initiated of mass excavation. I feet to depth as on log, to obtain ow ground surface.                                                                                                       |
| E                                                                                 |            | $\exists$ |                                                                                                                                      |            | $\nabla$                       |                      |             |                                                                           |                                                                                                                                                                                                      |
| H                                                                                 | 6          | +         | -                                                                                                                                    | +          | =                              |                      |             |                                                                           |                                                                                                                                                                                                      |

| во                                          | RING I            | NO.:  | B9 PROJ                                                                       | IECT NO.: 0387                 | PROJEC           | T NAME: 21   | 00 Franklin Street, Oak     | land, C              | A           |                                                                      |                                                                                                                            |
|---------------------------------------------|-------------------|-------|-------------------------------------------------------------------------------|--------------------------------|------------------|--------------|-----------------------------|----------------------|-------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| во                                          | RING              | LOCA  | TION: Onsite, East of form                                                    | mer UST                        | ELEVATI          | ON AND DAT   | UM: None                    |                      |             |                                                                      |                                                                                                                            |
| DR                                          | ILL <b>I</b> NG   | AGE   | NCY: RGA Environmenta                                                         | al, Inc.                       | DRILLER: Nick    |              |                             | DAT                  |             | STARTED:                                                             | DATE & TIME FINISHED:                                                                                                      |
| DR                                          | ILL <b>I</b> NG   | i EQL | JIPMENT: 3.5-inch O.D. Stain                                                  | nless Steel Hand Aug           | er               |              |                             |                      | 6/5/<br>10: |                                                                      | 6/5/06                                                                                                                     |
| CC                                          | MPLE <sup>-</sup> | TION  | DEPTH: 6.3 FEET                                                               | 8                              | BEDROCK DEPTH: N | one Encounte | red                         |                      | LOGGE       |                                                                      | CHECKED BY:<br>DM GIBBS                                                                                                    |
| FIRST WATER DEPTH: 6.3 FEET NO. OF SAMPLES: |                   |       |                                                                               |                                |                  |              | T                           | Ь,                   | NH          | IM                                                                   | P.G. 7804                                                                                                                  |
|                                             | DEPTH(FT.)        |       | DE                                                                            | ESCRIPTION                     |                  | GRAPHIC      | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID         |                                                                      | REMARKS                                                                                                                    |
|                                             | 1                 |       | 0.0 to 1.5 ft Brown s sand, abundant oral mottling, stiff, moist. (PHC) odor. | nge mott <mark>li</mark> ng, r | ninor black      | CL           | No Well<br>Constructed      |                      |             | using 3<br>stainle<br>auger.<br>First w<br>at 6.3                    | ole hand augered<br>3.5-inch O.D.<br>ss steel hand<br>ater encountered<br>it during drilling,<br>AM, 6/5/06.               |
|                                             | 2                 |       | 1.5 to 1.8 ft Brown sa<br>mottling, medium de<br>1.8 to 6.2 ft Brown s        | ense. No PHC                   | odor.            | SP SP        |                             |                      |             | sample<br>Teflon<br>No she<br>on wat<br>Boreho<br>6.3 ft.,<br>Boreho | coundwater grab<br>e collected using a<br>bailer and rope.<br>een or PHC odor<br>er sample<br>ble terminated at<br>6/5/06. |
|                                             | 4 5               |       | abundant orange mereduced mottling at No PHC odor.                            | ottling, minor b               | olack mottling,  | ML  ML       |                             |                      |             | NOTE:<br>at bottom<br>Add 12.0<br>reported                           | Borehole initiated of mass excavation. feet to depth as on log, to obtain ow ground surface.                               |
| E                                           | 6                 | Ξ     | (contin                                                                       | nued on page 2                 | 2)               | =            |                             |                      |             |                                                                      |                                                                                                                            |

| BORING     | 3 NO.:         | B9       |            | PROJECT NO                 | O.: 0387    |           | PROJECT N   | AME: 210    | 0 Franklin Street, C        | ak <b>l</b> and, C   | A           |          |                         |
|------------|----------------|----------|------------|----------------------------|-------------|-----------|-------------|-------------|-----------------------------|----------------------|-------------|----------|-------------------------|
| BORING     | G LOCA         | ATION:   | Onsite, Ea | ast of former US           | Т           |           | ELEVATION   | AND DATU    | IM: None                    |                      |             |          |                         |
| DRILLIN    | NG AGI         | ENCY:    | RGA Env    | ironmental, Inc.           |             | DRILLER:  | Nick        |             |                             | DAT                  |             | STARTED: | DATE & TIME FINISHED:   |
| DRILLIN    | NG EQI         | UIPMENT: | 3.5-inch C | D.D. Sta <b>i</b> nless St | eel Hand Au | iger      |             |             |                             |                      | 6/5/<br>10: |          | 6/5/06                  |
| COMPL      | ET <b>I</b> ON | DEPTH:   | 6.3        | FEET                       |             | BEDROCK   | DEPTH: None | e Encounter | ed                          |                      | LOGGE       |          | CHECKED BY:<br>DM GIBBS |
|            |                | R DEPTH: | 6.3        | FEET                       |             | NO. OF SA | MPLES: 1 Wa | ter         |                             |                      | NF          | łM       | P.G. 7804               |
| DEPTH(FT.) |                |          |            | DESCR                      |             |           |             | GRAPHIC     | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID         |          | REMARKS                 |
| F          | =              | 6        |            | ontinued fr                | 100         |           |             | SP          | $\nabla$                    |                      |             |          |                         |
| Ē          | Ξ              | / n      | edium o    | ft Brown s<br>dense, wet.  | No PH       | Codor.    |             | <u> </u>    | <u> </u>                    |                      | ,           |          |                         |
| 7 8 3 4 5  |                |          |            |                            |             |           |             |             |                             |                      |             |          |                         |

| BORING                                 |       | B10 PROJECT NO.: 0387 PROJECT N                                                                                                       | AME: 210          | 00 Franklin Street, Oakl    | land C               | ^           |                                         | AGE 1 OF 2                                                                                    |
|----------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|----------------------|-------------|-----------------------------------------|-----------------------------------------------------------------------------------------------|
| BORING                                 |       |                                                                                                                                       |                   |                             | ianu, U              | •           |                                         |                                                                                               |
| DRILLING                               |       |                                                                                                                                       |                   |                             | DAT                  | E & TIME    | STARTED:                                | DATE & TIME FINISHED:                                                                         |
| DRILLING                               | G EQI | UIPMENT: 3.5 inch O.D. Stainless Steel Hand Auger                                                                                     |                   |                             |                      | 6/5/<br>12: |                                         | 6/5/06                                                                                        |
| COMPLE                                 | TION  | DEPTH: 7.3 FEET BEDROCK DEPTH: None                                                                                                   | Encounte          | red                         |                      | LOGGE       | D BY:                                   | CHECKED BY:                                                                                   |
| FIRST W                                | ATEF  | R DEPTH: 7.3 FEET NO. OF SAMPLES: 1 Wa                                                                                                | ter               |                             | İ                    | NR          | М                                       | DM GIBBS<br>P.G. 7804                                                                         |
| DEPTH(FT.)                             |       | DESCRIPTION                                                                                                                           | GRAPHIC<br>COLUMN | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID         |                                         | REMARKS                                                                                       |
|                                        |       | 0.0 to 1.1 ft Gray/Brown sandy silt (FILL); abundant coarse sand, orange mottling, stiff, moist. No Petroleum Hydrocarbon (PHC) odor. | FILL              | No Well<br>Constructed      |                      |             | using 3<br>stainle<br>auger.<br>First w | ole hand augered<br>3.5 inch O.D.<br>ss steel hand<br>ater encountered<br>it during drilling, |
| _<br>_<br>_<br>_<br>_                  |       | 1.1 to 1.6 ft Brown sand with gravel (FILL) with abundant coarse sand; loose, moist. No PHC odor.                                     | FILL              |                             |                      |             | 14:36,6<br>One gr                       |                                                                                               |
| 2<br>-<br>-                            |       | 1.6 to 2.7 ft Brown sand (FILL); with clay, coarse sand and gravel, orange mottling, loose, moist. No PHC odor.                       | FILL              |                             |                      |             | ft using<br>and rop<br>sheen            | g a Teflon bailer<br>pe, 6/5/06. No<br>or PHC odor on<br>sample.                              |
| _<br>_<br>_<br>_<br>_<br>3             |       | 2.7 to 2.8 ft Brown/Gray silty sand (FILL); abundant coarse sand, orange mottling, medium dense, moist. No PHC odor.                  | FILL              |                             |                      |             | 7.3 ft.,<br>Boreho                      | ole terminated at<br>12/16/06.<br>ole backfilled with<br>dement grout,                        |
| _<br>_<br>_<br>_<br>_<br>_             |       | 2.8 ft to 4.0 ft No Recovery (FILL)                                                                                                   | FILL              |                             |                      |             | at botton                               | Borehole initiated n of mass excavation.                                                      |
| <b>-</b> 4                             |       | 4.0 to 5.6 ft Sandy silt (ML); orange mottling, medium stiff, moist. No PHC odor.                                                     | ML                |                             |                      |             | reported                                | on log, to obtain low ground surface.                                                         |
|                                        |       | 5.6 to 6.5 ft Sandy silt (ML); black mottling, — medium stiff, moist. No PHC odor.                                                    | ML                |                             |                      |             |                                         |                                                                                               |
| ــــــــــــــــــــــــــــــــــــــ |       | (continued on page 2)                                                                                                                 |                   |                             |                      |             |                                         |                                                                                               |

| ВС  | RING I                               | ۱O.:      | B10 PROJECT NO.: 0387 PROJECT NA                                                        | AME: 210  | 0 Franklin Street, Oak      | land, C              | 4           |          |                         |
|-----|--------------------------------------|-----------|-----------------------------------------------------------------------------------------|-----------|-----------------------------|----------------------|-------------|----------|-------------------------|
| ВС  | RING L                               | .OC/      | ATION: Onsite, Southeast of former UST ELEVATION                                        | AND DATU  | JM: None                    |                      |             |          |                         |
| DF  | ILLING                               | AGE       | ENCY: RGA Environmental, Inc. DRILLER: Nick                                             |           |                             | DAT                  | E & TIME    | STARTED: | DATE & TIME FINISHED:   |
| DF  | ILLING                               | EQI       | UIPMENT: 3.5 inch O.D. Stainless Steel Hand Auger                                       |           |                             |                      | 6/5/<br>12: |          | 6/5/06                  |
| CC  | MPLET                                | ΓΙΟΝ      | DEPTH: 7.3 FEET BEDROCK DEPTH: None                                                     | Encounter | red                         |                      | LOGGE       |          | CHECKED BY:<br>DM GIBBS |
| FIF | RST WA                               | TEF       | R DEPTH: 7.3 FEET NO. OF SAMPLES: 1 Wat                                                 | ər        |                             |                      | NR          | M        | P.G. 7804               |
|     | DESCRIPTION  (continued from page 1) |           |                                                                                         |           | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID         |          | REMARKS                 |
|     |                                      |           | (continued from page 1)                                                                 | ML        |                             |                      |             |          |                         |
|     | 7                                    |           | 6.5 to 7.3 ft Clay (CL); abundant orange and black mottling, stiff, moist. No PHC odor. | CL        | $\nabla$                    |                      |             |          |                         |
|     | 8                                    |           |                                                                                         |           |                             |                      |             |          |                         |
|     | 9                                    |           |                                                                                         |           |                             |                      |             |          |                         |
|     | 10                                   |           |                                                                                         |           |                             |                      |             |          |                         |
|     | 11                                   |           |                                                                                         |           |                             |                      |             |          |                         |
| F   | 12                                   | $\exists$ | =                                                                                       |           |                             |                      |             |          |                         |

| ВС | RING I     | .OV  | B11 PROJECT NO.: 0387 PROJECT N                                                        | AME: 210 | 00 Franklin Street, Oak     | land, C              | 4    |                                                                                              |                                                                                                  |
|----|------------|------|----------------------------------------------------------------------------------------|----------|-----------------------------|----------------------|------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| ВС | RING L     | _OCA | ATION: Onsite, South of former UST ELEVATION                                           | AND DATU | JM: None                    |                      |      |                                                                                              |                                                                                                  |
| H  | RILLING    |      |                                                                                        |          |                             | DAT                  | 6/5/ |                                                                                              | DATE & TIME FINISHED:<br>6/5/06                                                                  |
|    |            |      | UIPMENT: 3.5 inch O.D. Stainless Steel Hand Auger                                      |          |                             |                      | 14:4 |                                                                                              | 0115015557                                                                                       |
| L  |            |      | DEPTH: 6.6 FEET BEDROCK DEPTH: None                                                    |          |                             |                      |      | D BY:<br>M                                                                                   | CHECKED BY: DM GIBBS                                                                             |
| H  |            | TIER | R DEPTH: 6.6 FEET NO. OF SAMPLES: 1 Wat                                                |          | 7                           |                      |      |                                                                                              | P.G. 7804                                                                                        |
|    | DEPTH(FT.) |      | DESCRIPTION                                                                            | GRAPHIC  | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID  |                                                                                              | REMARKS                                                                                          |
|    | 1          |      | 0.0 to 1.5 ft Brown gravel (FILL); loose, dry. No Petroleum Hydrocarbon (PHC) odor.    | FILL     | No Well<br>Constructed      |                      |      | using 3 stainles auger.  First wat 6.6 f 15:15,  One gr sample using a rope, 6 PHC or sample | oundwater grab<br>collected at 6.6 ft<br>Teflon bailer and<br>/5/06. No sheen or<br>dor on water |
|    | 3 4 5      |      | 2.5 to 5.1 ft Light brown silty sand (SM); orange mottling, stiff, moist. No PHC odor. | SM       |                             |                      |      | 6.6 ft.,<br>Boreho<br>neat ce<br>6/5/06.<br>NOTE:<br>at bottom<br>Add 12.0<br>reported       | 12/16/06.<br>ble backfilled with<br>ement grout,                                                 |
|    | 6          |      | 5.1 to 6.0 ft Light brown silty sand (SM); black mottling, stiff, moist. No PHC odor.  | SM       |                             |                      |      |                                                                                              |                                                                                                  |
| ш  |            |      | (continued on page 2)                                                                  |          |                             |                      |      |                                                                                              |                                                                                                  |

| _   | RING I            |       | B11 PROJECT NO.: 0387 PROJECT NA                                                               | 0 Franklin Street, Oak | land, C                     | 4                    |             |          |                       |
|-----|-------------------|-------|------------------------------------------------------------------------------------------------|------------------------|-----------------------------|----------------------|-------------|----------|-----------------------|
| во  | RING I            | _OC/  | ATION: Onsite, South of former UST ELEVATION A                                                 | AND DATU               | JM: None                    |                      |             |          |                       |
| DR  | ILLING            | i AGE | ENCY: RGA Environmental, Inc. DRILLER: Nick                                                    |                        |                             | DAT                  | E & TIME    | STARTED: | DATE & TIME FINISHED: |
| DR  | ILLING            | i EQI | UIPMENT: 3.5 inch O.D. Stainless Steel Hand Auger                                              |                        |                             | 1                    | 6/5/<br>14: |          | 6/5/06                |
| СО  | MPLE <sup>-</sup> | ΓΙΟΝ  | I DEPTH: 6.6 FEET BEDROCK DEPTH: None                                                          | Encounter              | ed                          |                      | LOGGE       | ED BY:   | CHECKED BY:           |
| FIR | ST W              | ATEF  | R DEPTH: 6.6 FEET NO. OF SAMPLES: 1 Water                                                      | er                     |                             | 1                    | NR          | М        | DM GIBBS<br>P.G. 7804 |
|     | DEPTH(FT.)        |       |                                                                                                | GRAPHIC<br>COLUMN      | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID         |          | REMARKS               |
|     |                   |       | (continued from page 1)<br>6.0 to 6.5 ft Fine gravel (GP) 1/4-inch in<br>diameter. No PHC odor | GP                     | $\sum$                      |                      |             |          |                       |
|     | 7<br>8<br>9       |       |                                                                                                |                        |                             |                      |             |          |                       |
|     | 12                |       | _                                                                                              |                        |                             |                      |             |          |                       |

| BORIN                                     | G NO.: | B12 PROJECT NO.: 0387 PROJECT N                                                                                                                                                                           | 00 Franklin Street, Oakl | land, C                     | Ą                    |             |                                                                                             |                                                                                                                                                                   |
|-------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|----------------------|-------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BORIN                                     | G LOC  | ATION: Onsite, South of former UST ELEVATION                                                                                                                                                              | AND DAT                  | JM: None                    |                      |             |                                                                                             |                                                                                                                                                                   |
| DRILLII                                   | NG AGI | ENCY: RGA Environmental, Inc. DRILLER: Paul/Nick                                                                                                                                                          |                          |                             | DAT                  |             | STARTED:                                                                                    | DATE & TIME FINISHED:                                                                                                                                             |
| DRILLII                                   | NG EQI | UIPMENT: 3.5 inch O.D. Stainless Steel Hand Auger                                                                                                                                                         |                          |                             |                      | 6/5/<br>13: |                                                                                             | 6/5/06                                                                                                                                                            |
| COMPL                                     | ETION  | DEPTH: 6.2 FEET BEDROCK DEPTH: Non                                                                                                                                                                        | e Encounte               | red                         |                      | LOGGE       |                                                                                             | CHECKED BY:                                                                                                                                                       |
| FIRST                                     | WATER  | R DEPTH: 6.2 FEET NO. OF SAMPLES: 1 Wa                                                                                                                                                                    | iter                     |                             | L.                   | NR          | М                                                                                           | P.G. 7804                                                                                                                                                         |
| DEPTH(FT.)                                | ,      | DESCRIPTION                                                                                                                                                                                               | GRAPHIC                  | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID         |                                                                                             | REMARKS                                                                                                                                                           |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>1 |        | 0.0 to 1.1 ft Brown silty sand (SM); abundant coarse gravel, orange and black mottling, medium dense. No Petroleum Hydrocarbon (PHC) odor.                                                                | FILL                     | No Well<br>Constructed      |                      |             | using 3<br>stainle<br>auger.<br>First w                                                     | ole hand augered<br>3.5 inch O.D.<br>ss steel hand<br>ater encountered<br>it during drilling,                                                                     |
| 2 3                                       |        | 1.1 to 4.2 ft Brown sandy silt (ML); coarse sand, gravel, orange mottling, stiff, moist. No PHC odor.                                                                                                     | ML                       |                             |                      |             | 13:54, One gr sample ft using and roj sheen water s  Boreho 6.2 ft., Boreho neat ce 6/5/06. | 6/5/06.  roundwater grab e collected at 6.2 g a Teflon bailer pe, 6/5/06. No or PHC odor on sample.  ple terminated at 12/16/06. ple backfilled with ement grout, |
| 4                                         |        | 3.9 to 4.2 ft Brown sandy silt (ML); coarse sand, gravel, orange mottling, very stiff, moist.  No PHC odor.  4.2 to 4.8 ft Brown silt (ML); coarse sand, orange and black mottling, very stiff, moist. No | ML<br>ML                 |                             |                      |             | Add 12.0 reported                                                                           | on log, to obtain<br>low ground surface.                                                                                                                          |
| 5 6                                       |        | PHC odor.  4.8 to 6.2 ft Tan silt (ML); coarse sand, orange and black mottling, very stiff, moist. No PHC odor.  (continued on page 2)                                                                    | ML                       |                             |                      |             |                                                                                             |                                                                                                                                                                   |

| BORING N   | NO.: B12     |           | PROJECT NO.:           | 0387       | PR           | OJECT N  | AME: 210          | 0 Frank <b>li</b> n Street, O | akland, C            | A           |          |                       |
|------------|--------------|-----------|------------------------|------------|--------------|----------|-------------------|-------------------------------|----------------------|-------------|----------|-----------------------|
| BORING L   | OCATION:     | Onsite, S | South of former UST    |            | ELE          | EVATION  | AND DATU          | M: None                       |                      |             |          |                       |
| DRILLING   | AGENCY:      | RGA En    | vironmental, Inc.      | DR         | RILLER: N    | ick      |                   |                               | DAT                  |             | STARTED: | DATE & TIME FINISHED: |
| DRILLING   | i EQUIPMENT: | 3.5 inch  | O.D. Stainless Steel I | Hand Auger |              |          |                   |                               |                      | 6/5/<br>14: |          | 6/5/06                |
| COMPLET    | TION DEPTH:  | 6.2       | FEET                   | ВЕ         | DROCK DEPT   | H: None  | Encountere        | ed                            |                      | LOGGE       |          | CHECKED BY:           |
| FIRST WA   | ATER DEPTH:  | 6.2       | FEET                   | NC         | ). OF SAMPLE | S: 1 Wat | er                |                               |                      | NR          | M        | P.G. 7804             |
| DEPTH(FT.) |              |           | DESCRIP                | TION       |              |          | GRAPHIC<br>COLUMN | WELL<br>CONSTRUCTION<br>LOG   | BLOW COUNT<br>PER 6" | PID         |          | REMARKS               |
| E          | 1            | ((        | continued fron         | n page 2)  | )            |          |                   | $\overline{\nabla}$           |                      |             |          |                       |
| 7<br>      |              |           |                        |            |              |          |                   |                               |                      |             |          |                       |

| ВС  | RING       | NO.: | B13 PROJECT NO.: 0387 PROJECT                                                                                                                                                                                                                                                       | CT NAM   | ME: 210           | 0 Franklin Street, Oakl     | land, C              | A                     |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|-----------------------------|----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ВС  | RING L     | _OC# | ATION: On Franklin Street, Southwest of UST ELEVAT                                                                                                                                                                                                                                  | ION AI   | ND DATU           | JM: None                    |                      |                       |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DF  | RILLING    | AGE  | ENCY: Vironex, Inc. DRILLER: Bryan/                                                                                                                                                                                                                                                 | Jeff     |                   |                             | DAT                  | E & TIME              | STARTED:                                                                                                                                                                                                  | DATE & TIME FINISHED:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DF  | RILLING    | EQL  | JIPMENT: Geoprobe 6600                                                                                                                                                                                                                                                              |          |                   |                             |                      | 11/8<br>1:00          |                                                                                                                                                                                                           | 11/8/06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CO  | OMPLET     | TION | DEPTH: 41.0 FEET BEDROCK DEPTH:                                                                                                                                                                                                                                                     | None E   | ncounter          | ed                          |                      | LOGGE                 |                                                                                                                                                                                                           | CHECKED BY:<br>DM GIBBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FII | RST WA     | ATER | DEPTH: 27.0 FEET NO. OF SAMPLES: 2                                                                                                                                                                                                                                                  | Water    | r                 |                             |                      | EF                    | 0                                                                                                                                                                                                         | P.G. 7804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | DEPTH(FT.) |      | DESCRIPTION                                                                                                                                                                                                                                                                         |          | GRAPHIC<br>COLUMN | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID                   |                                                                                                                                                                                                           | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 5 10 15    |      | O.0 to 0.2 ft Asphalt  O.2 to 8.5 ft Light brown sandy clay (CL); stiff, slightly moist. No Petroleum Hydrocarbon (PHC) odor.  8.5 to 11.5 ft Brown sand (SW); loose, moist. No PHC odor.  11.5 to 18.0 ft Gray sandy clay (CL); orange mottling, medium stiff, moist. No PHC odor. | <u> </u> | CL SW             | No Well<br>Constructed      |                      | 0<br>0<br>0<br>0<br>0 | using a 5 Geoprob Sampler. 5-foot in was lined in. O.D. of First wate ft during Borehole Temporar PVC casis and samp Borehol cement a of cool Borehole distan boreho Hydropun back th Hydropur foot depth | e continuously cored -foot long 2-inch O.D. be Macroprobe Barrel Samples collected in tervals. The sampler with 4.8-foot long 1 3/4 ellulose acetate tubes. For encountered at 27.0 g drilling, 11/8/2006.  Iterminated at 41.0 ft. by 1-in. diameter slotteding placed in borehole, alle B13-41W collected. The grouted with neat and a 4-in. surface seal acrete, 11/8/2006.  B13a drilled at a horiz. Ce of 1.5 feet from a child to 28 ft. and pulling a child to 28 ft. and pulling e rod to expose the ach screen from 24-28 for collection of water aple B13a-28W. |
|     | 20         |      | 18.0 to 22.5 ft Gray sandy clay (CL); green mottling, medium stiff, moist. No PHC odor.  22.5 to 27.0 ft Gray sandy clay (CL); orange mottling, medium stiff, moist. No PHC odor.  27.0 to 31.0 ft Brown sand (SW); loose, wet. No                                                  |          | CL                | ₽                           |                      | 0 0 0 0               | Water Sa<br>collected<br>using new<br>with a sta<br>No PHC<br>detected                                                                                                                                    | ample B13a-28W was from the Hydropunch w polyethylene tubing inless steel foot valve. To dor or sheen were ed in water samples 1W or B13a-28W.                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 30         |      | PHC odor.                                                                                                                                                                                                                                                                           |          | SW                |                             |                      | 0                     |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| ВС            | RING N     | 10.:                                    | B13 PROJECT NO.: 0387                                                                  | PROJECT N                              | AME: 210          | 0 Franklin Street, Oakl     | and, C               | A            |          |                       |
|---------------|------------|-----------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------|-------------------|-----------------------------|----------------------|--------------|----------|-----------------------|
| ВС            | RING L     | .OC <i>F</i>                            | ATION: On Franklin Street, Southwest of UST                                            | ELEVATION                              | AND DATU          | M: None                     |                      |              |          |                       |
| DF            | RILLING    | AGE                                     | ENCY: Vironex, Inc. DRILLER:                                                           | Bryan/Jeff                             |                   |                             | DAT                  | E & TIME     | STARTED: | DATE & TIME FINISHED: |
| DF            | RILLING    | EQI                                     | UIPMENT: Geoprobe 6600                                                                 |                                        |                   |                             |                      | 11/8<br>1:00 |          | 11/8/06               |
| CC            | OMPLET     | ION                                     | DEPTH: 41.0 FEET BEDROCK D                                                             | DEPTH: None                            | Encounter         | ed                          |                      | LOGGE        |          | CHECKED BY:           |
| FII           | RST WA     | TER                                     | R DEPTH: 27.0 FEET NO. OF SAM                                                          | IPLES: 2 Wa                            | er                |                             |                      | EF           | 0        | DM GIBBS<br>P.G. 7804 |
|               | DEPTH(FT.) |                                         | DESCRIPTION                                                                            |                                        | GRAPHIC<br>COLUMN | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID          |          | REMARKS               |
| <u>-</u>      |            |                                         | 31.0 to 32.0 ft Brown clayey sand (SC); me dense, wet. No PHC odor.                    | dium –                                 | SC                | No Well<br>Constructed      |                      | 0            |          |                       |
|               |            |                                         | 32.0 to 35.0 ft Brown sandy clay (CL); stiff, No PHC odor.                             | moist.                                 | CL                |                             |                      | 0            |          |                       |
|               | 35         |                                         | 35.0 to 38.0 ft Brown clayey sand (SC); saturated. No PHC odor.                        | _<br>_<br>_                            | sc                |                             |                      | 0            |          |                       |
| -<br> -<br> - |            |                                         | 38.0 to 40.0 ft Brown well graded sand with and gravel (SW-SC); orange mottling, dense |                                        | SW-SC             |                             |                      | 0            |          |                       |
| <u> </u>      | 40         |                                         | No PHC odor.<br>40.0 to 41.0 ft No core collected.                                     |                                        |                   |                             |                      | 0            |          |                       |
| -<br> -<br> - |            |                                         |                                                                                        | —————————————————————————————————————— |                   |                             |                      |              |          |                       |
|               | 45         | ======================================= |                                                                                        | -<br>-<br>-                            |                   |                             |                      |              |          |                       |
|               |            |                                         |                                                                                        |                                        |                   |                             |                      |              |          |                       |
| <u> </u>      | 50         |                                         |                                                                                        |                                        |                   |                             |                      |              |          |                       |
|               |            |                                         |                                                                                        |                                        |                   |                             |                      |              |          |                       |
|               | 55         |                                         |                                                                                        |                                        |                   |                             |                      |              |          |                       |
|               |            |                                         |                                                                                        |                                        |                   |                             |                      |              |          |                       |
|               | 60         |                                         |                                                                                        |                                        |                   |                             |                      |              |          |                       |

| ВС                        | RING       | NO.:      | B14 PROJECT NO.: 0387 PROJECT N                                                          | IAME: 210   | 00 Franklin Ave, Oaklar     | nd, CA               |          |                                                            |                                                                                                                                                                              |  |
|---------------------------|------------|-----------|------------------------------------------------------------------------------------------|-------------|-----------------------------|----------------------|----------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ВС                        | RINGL      | _OC/      | ATION: Franklin Street ELEVATION                                                         | AND DAT     | JM: None                    |                      |          |                                                            |                                                                                                                                                                              |  |
| DF                        | RILLING    | AGI       | NCY: Vironex, Inc. DRILLER: Justin/Brya                                                  | n           |                             | DAT                  | E & TIME | STARTED:                                                   | DATE & TIME FINISHED:                                                                                                                                                        |  |
| DF                        | RILLING    | EQI       | JIPMENT: Geoprobe 6600                                                                   |             |                             |                      | 1/30     | /07                                                        | 1/31/07                                                                                                                                                                      |  |
| CC                        | MPLE       | TION      | DEPTH: 27.0 FEET BEDROCK DEPTH: None                                                     | e Encounter | red                         |                      | LOGGE    |                                                            | CHECKED BY:                                                                                                                                                                  |  |
| FIF                       | RST WA     | ATEF      | DEPTH: 24.1 FEET NO. OF SAMPLES: 2 Wa                                                    | ter         |                             |                      | FJ       | 0                                                          | P.G. 7804                                                                                                                                                                    |  |
|                           | DEPTH(FT.) |           | DESCRIPTION                                                                              | GRAPHIC     | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID      |                                                            | REMARKS                                                                                                                                                                      |  |
|                           |            |           | 0.0 to 3.1 ft Concrete mix (FILL). No Petroleum Hydrocarbon (PHC) odor.                  | FILL        | No Well<br>Constructed      |                      |          | using<br>consis                                            | le continuosly cored<br>dual tube system<br>ting of a 5-foot long<br>h O.D. outer casing                                                                                     |  |
| E                         | 5          |           | 3.1 to 5.1 ft Brown silty clay (CL) with black mottling; medium soft. No PHC odor.       | CL          |                             |                      | 0        | and a<br>samp<br>logged                                    | 2.5-inch I.D. inner<br>le sleeve. Samples<br>d in 5-foot intervals.                                                                                                          |  |
| -<br> -<br> -             |            |           | 5.1 to 7.0 ft Gray-brown silty clay (CL) with black mottling; medium soft. No PHC odor.  | CL          |                             |                      |          | with a                                                     | ng sleeve was lined<br>a 5-foot long 2-inch<br>cellulose acetate<br>tubes.                                                                                                   |  |
|                           | 10         |           | 7.0 to 10.5 ft Brown silt (ML) with yellow and green mottling; soft, loose. No PHC odor. | ML          |                             |                      | 0        | l                                                          | le terminated at 27.0 eet, 01/30/07.                                                                                                                                         |  |
| -<br> -<br> -<br> -<br> - | 10         |           | 10.5 to 13.2 ft Brown sand (SW) with red mottling; medium stiff, moist. No PHC odor.     | SW          |                             |                      | Ü        | slotted<br>in bor<br>B14-27                                | orary 1-in. diameter<br>PVC casing placed<br>ehole, and sample<br>collected. Borehole<br>d with neat cement                                                                  |  |
|                           | 15         |           | 13.2 to 15.8 ft Gray brown clay (CL); medium soft, medium moist. No PHC odor.            | CL          |                             |                      | 0        | со                                                         | 6-inch surface seal of oncrete, 1/31/07.                                                                                                                                     |  |
|                           | 20         |           | 15.8 to 20.9 ft Light brown clay (CL); medium stiff, dry. No PHC odor.                   | CL          |                             |                      | 0        | horiz.<br>from<br>pushir<br>56 ft. a<br>ro<br>Hydro<br>52- | ole B14a drilled at a distance of 1.5 feet borehole B14 by g a Hydropunch to and pulling back the dot to expose the punch screen from 56 foot depth for tion of water sample |  |
| F                         |            | $\exists$ | 20.9 to 21.5 ft Gray gravel (GP); loose, dry.  No PHC odor.                              | GP          |                             |                      |          | Water                                                      | B14a-56W.<br>Sample B14a-56W                                                                                                                                                 |  |
| E                         |            |           | 21.5 to 24.1 ft Light brown silt (ML); stiff, moist. No PHC odor.                        | ML          | $oxed{\nabla}$              |                      |          | was<br>Hydro                                               | collected from the oppunch using new nylene tubing with a                                                                                                                    |  |
| E                         | 25         |           | 24.1 to 26.3 ft Sandy silty gravel (GM); very loose, very moist. No PHC odor.            | GM          | _                           |                      | 0        |                                                            | ess steel foot valve.                                                                                                                                                        |  |
| F                         |            | $\exists$ | 26.3 to 27.0 ft Brown clay (CL); very stiff, slightly moist. No PHC odor.                | CL          |                             |                      |          |                                                            |                                                                                                                                                                              |  |
|                           | 30         |           | Siigittiy Itioist. NO FITC Oddi.                                                         |             |                             |                      |          | were                                                       | HC odor or sheen<br>detected in water<br>ples B14-27W or<br>B14a-56W.                                                                                                        |  |

| ВС                    | RING    | NO.: | B15 PROJECT NO.: 0387 PROJECT N                                                                                                                                                                                                                                                                                                                              | nd, CA         |                             |                             |       |                                                             |                                                                                                                                                                                                                                                                                                                    |  |
|-----------------------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|-----------------------------|-------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ВС                    | RINGL   | _OC/ | ATION: Franklin Street ELEVATION                                                                                                                                                                                                                                                                                                                             | AND DAT        | JM: None                    |                             |       |                                                             |                                                                                                                                                                                                                                                                                                                    |  |
| DF                    | RILLING | AGI  | ENCY: Vironex, Inc. DRILLER: Tim                                                                                                                                                                                                                                                                                                                             |                |                             | DATE & TIME STARTED:        |       |                                                             | DATE & TIME FINISHED:                                                                                                                                                                                                                                                                                              |  |
| DF                    | RILLING | EQI  | JIPMENT: Geoprobe 6600                                                                                                                                                                                                                                                                                                                                       |                |                             | 1/31/07                     |       |                                                             | 2/1/07                                                                                                                                                                                                                                                                                                             |  |
| CC                    | MPLET   | TION | DEPTH: 30.0 FEET BEDROCK DEPTH: None                                                                                                                                                                                                                                                                                                                         | e Encounter    | red                         |                             | LOGGE | D BY:                                                       | CHECKED BY:                                                                                                                                                                                                                                                                                                        |  |
| FII                   | RST WA  | ATEF | R DEPTH: 23.0 FEET NO. OF SAMPLES: 2 Wa                                                                                                                                                                                                                                                                                                                      | ter            |                             |                             | FJ    | )                                                           | DM GIBBS<br>P.G. 7804                                                                                                                                                                                                                                                                                              |  |
| DEPTH(FT.)            |         |      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                  | GRAPHIC        | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6"<br>PID |       |                                                             | REMARKS                                                                                                                                                                                                                                                                                                            |  |
|                       |         |      | 0.0 to 4.3 ft Fill. No Petroleum Hydrocarbon (PHC) odor.                                                                                                                                                                                                                                                                                                     | FILL           | No Well<br>Constructed      |                             |       | using<br>consis<br>3.5-ind<br>and a                         | le continuosly cored dual tube system ting of a 5-foot long h O.D. outer casing 2.5-inch I.D. inner le sleeve. Samples                                                                                                                                                                                             |  |
|                       | 5       |      | 4.3 ft to 10.8 ft Beige-brown sandy silt (SM); loose, slightly moist. No PHC odor.                                                                                                                                                                                                                                                                           | SM             |                             |                             | 0     | logged<br>Sampli<br>with a<br>O.D.                          | d in 5-foot intervals.  ng sleeve was lined  5-foot long 2-inch  cellulose acetate  tubes.                                                                                                                                                                                                                         |  |
|                       | 10      |      |                                                                                                                                                                                                                                                                                                                                                              |                |                             |                             | 0     | Tempo                                                       | tt, 01/31/07.                                                                                                                                                                                                                                                                                                      |  |
|                       | 15      |      | 10.8 to 12.5 ft Brown-gray clay (CL); very stiff, dry. No PHC odor.  12.5 ft to 13.3 ft Brown gray silty clay (CL); stiff, dry. No PHC odor.  13.3 ft to 17.1 ft Brown gray clay (CL) with                                                                                                                                                                   | CL<br>CL       |                             |                             | 0     | in bor<br>B15<br>Boreho<br>cem<br>surfac                    | PVC casing placed ehole, and sample 5-30W collected. le grouted with neat lent and a 6-inch le seal of concrete, 2/1/07.  ole 15a drilled at a distance of 1.5 feet in borehole 15 by leg a Hydropunch to lind pulling back the did to expose the punch screen from 60 foot depth for on of water sample B15a-60W. |  |
|                       | 20      |      | black mottling; very stiff, dry. No PHC odor.  17.1 ft to 18.4 ft Dark brown clay (CL) with yellow mottling; medium stiff, dry. No PHC odor.  18.4 ft to 21.2 ft Dark brown clay (CL) with yellow mottling; medium stiff, dry. No PHC odor.  21.2 ft to 21.6 ft Beige-brown clay (CL); very stiff, dry. No                                                   | CL             |                             |                             | 0     | horiz.<br>fron<br>pushir<br>60 ft. a<br>rod<br>Hydro<br>56- |                                                                                                                                                                                                                                                                                                                    |  |
| _<br>_<br>_<br>_<br>_ | 25      |      | PHC odor.  21.6 ft to 22.5 ft Yellow-brown clayey silt (ML); medium soft, moist. No PHC odor.  22.5 ft to 23.1 ft Gray brown silty clay (ML); medium stiff, moist. No PHC odor.  23.1 ft to 25.1 ft Brown gravel (GW) with yellow mottling; moist. No PHC odor.  25.1 ft to 25.11 ft Gray white sandy clay (CL); moist. No PHC odor.                         | ML<br>ML<br>GW | <u>_</u>                    |                             | 0     | was<br>Hydro<br>polyeth<br>stainle                          | Sample B15a-60W collected from the opunch using new hylene tubing with a cass steel foot valve.  HC odor or sheen                                                                                                                                                                                                  |  |
|                       | 30      |      | 25.11 ft to 26.3 ft Gray white sandy clay (CL); moist. No PHC odor.  26.3 ft to 27.3 ft Beige-gray clay (CL); very stiff, dry. No PHC odor.  27.3 ft to 28.4 ft Brown silty clay (CL); loose, dry. No PHC odor.  28.4 ft to 29.0 ft Brown clay (CL); stiff, dry. No PHC odor.  29.0 ft to 30.0 ft Brown silty sand (SM); loose, slightly moist. No PHC odor. | CL<br>CL<br>SM |                             |                             | 0     | were                                                        | detected in water<br>ples B15-30W or<br>B15a-60W.                                                                                                                                                                                                                                                                  |  |

| В  | BORING NO.: B16 PROJECT NO.: 0387 PROJECT NAME: 2100 Franklin Street, Oakland, CA              |      |                                                                                                                                                                                                                                                                          |                      |                             |                |                |                                      |                                                                                                                       |  |  |  |
|----|------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|----------------|----------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|
| В  | BORING LOCATION: West side of Franklin Street, East-Northeast of UST ELEVATION AND DATUM: None |      |                                                                                                                                                                                                                                                                          |                      |                             |                |                |                                      |                                                                                                                       |  |  |  |
| DI | RILLING                                                                                        | AGE  | ENCY: Vironex, Inc. DRILLER: Tim/Emerse                                                                                                                                                                                                                                  | on                   |                             | DAT            |                | STARTED:                             | DATE & TIME FINISHED:                                                                                                 |  |  |  |
| DI | RILLING                                                                                        | EQI  | JIPMENT: Geoprobe 6600                                                                                                                                                                                                                                                   |                      |                             |                | 11/14<br>12:20 |                                      | 11/14/06                                                                                                              |  |  |  |
| C  | OMPLE                                                                                          | TION | DEPTH: 25.0 FEET BEDROCK DEPTH: None                                                                                                                                                                                                                                     | Encounter            | red                         |                | LOGGE          |                                      | CHECKED BY:                                                                                                           |  |  |  |
| FI | RST WA                                                                                         | ATEF | R DEPTH: 13.5 FEET NO. OF SAMPLES: 1 Water                                                                                                                                                                                                                               |                      |                             | EFO            |                |                                      | DM GIBBS<br>P.G. 7804                                                                                                 |  |  |  |
|    | DEPTH(FT.)                                                                                     |      | DESCRIPTION                                                                                                                                                                                                                                                              | GRAPHIC              | WELL<br>CONSTRUCTION<br>LOG | REMAR DE REMAR |                |                                      | REMARKS                                                                                                               |  |  |  |
|    | 5                                                                                              |      | 0.0 to 0.2 ft Asphalt  0.2 to 5.0 ft Brown sandy clay (CL); black mottling, medium stiff, slightly moist. No Petroleum Hydrocarbon (PHC) odor.                                                                                                                           | CL                   | No Well<br>Constructed      |                | 0              | cored (<br>2-incl<br>Mad<br>Sar      | nole continuously using a 5-foot long n O.D. Geoprobe croprobe Barrel npler. Samples lected in 5-foot                 |  |  |  |
|    | J                                                                                              |      | 5.0 to 8.0 ft Brown clay (CL); black mottling, stiff, slightly moist. No PHC odor.                                                                                                                                                                                       | CL                   |                             |                | 0              | was li<br>Ion                        | als. The sampler<br>ned with 4.8-foot<br>g 1 3/4 in. O.D.<br>se acetate tubes.                                        |  |  |  |
|    | 10                                                                                             |      | 8.0 to 11.0 ft Brown sand (SW); moist. No PHC odor.                                                                                                                                                                                                                      | SW                   |                             |                | 0              | l                                    | vater encountered<br>5 ft during drilling,<br>11/8/2006.                                                              |  |  |  |
|    | 15                                                                                             |      | 11.0 to 11.5 ft Gray clay (CL); black mottling, moist. No PHC odor.  11.5 to 12.0 ft Brown sand (SW); loose, wet. No PHC odor.  12.0 to 13.5 ft Gray sandy clay (CL); green mottling, medium stiff, moist. No PHC odor.  13.5 to 14.0 ft Brown sand (SW); loose, wet. No | CL<br>SW<br>CL<br>SW | \ <u>\</u>                  |                | 0              | 25.0 f<br>diam<br>ca<br>borel<br>B16 | nole terminated at<br>t. Temporary 1-in.<br>eter slotted PVC<br>sing placed in<br>nole, and sample<br>-25W collected. |  |  |  |
|    |                                                                                                |      | PHC odor.  14.0 to 16.0 ft Brown sandy clay (CL); orange mottling, moist. No PHC odor.  16.0 to 21.5 ft Brown sandy clay (CL); orange mottling, moist. No PHC odor.                                                                                                      | CL                   |                             |                | 0              | neat c                               | nole grouted with<br>ement and a 4-in.<br>e seal of concrete,<br>11/8/2006.                                           |  |  |  |
|    | 20                                                                                             |      | Inothing, moist. No i rie ddoi:                                                                                                                                                                                                                                          |                      |                             |                | 0              | were o                               | HC odor or sheen detected on water nple B16-25W.                                                                      |  |  |  |
| F  |                                                                                                |      | 21.5 to 23.0 ft Brown silty sand (SM); soft, — saturated. No PHC odor.                                                                                                                                                                                                   | SM                   |                             |                | 0              |                                      |                                                                                                                       |  |  |  |
|    | 25                                                                                             |      | 23.0 to 25.0 ft Gray sandy clay (CL); moist, stiff.  No PHC odor.                                                                                                                                                                                                        | CL                   |                             |                | 0              |                                      |                                                                                                                       |  |  |  |
|    | 30                                                                                             |      |                                                                                                                                                                                                                                                                          |                      |                             |                |                |                                      |                                                                                                                       |  |  |  |

| ВС  | BORING NO.: B17 PROJECT NO.: 0387 PROJECT NAME: 2100 Franklin Street, Oakland, CA         |      |                                                                                                                                                                          |         |                             |                      |       |                                                          |                                                                                                                                                                                |  |  |  |
|-----|-------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------|----------------------|-------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ВС  | BORING LOCATION: West side of Franklin Street, Southwest of UST ELEVATION AND DATUM: None |      |                                                                                                                                                                          |         |                             |                      |       |                                                          |                                                                                                                                                                                |  |  |  |
| DF  | ILLING                                                                                    | AGI  | ENCY: Vironex, Inc. DRILLER: Tim/Emer                                                                                                                                    | son     |                             | DATE & TIME STARTED: |       |                                                          | DATE & TIME FINISHED:                                                                                                                                                          |  |  |  |
| DF  | ILLING                                                                                    | EQI  | JIPMENT: Geoprobe 6600                                                                                                                                                   |         |                             | 11/14/06<br>9:30 AM  |       |                                                          | 11/14/06<br>11:30 AM                                                                                                                                                           |  |  |  |
| CC  | COMPLETION DEPTH: 34.0 FEET BEDROCK DEPTH: None                                           |      |                                                                                                                                                                          |         | red                         |                      | LOGGE |                                                          | CHECKED BY:                                                                                                                                                                    |  |  |  |
| FIF | ST WA                                                                                     | ATEF | R DEPTH: 28.0 FEET NO. OF SAMPLES: 2 W                                                                                                                                   | ater    |                             |                      | EF    | 0                                                        | DM GIBBS<br>P.G. 7804                                                                                                                                                          |  |  |  |
|     | DEPTH(FT.)                                                                                |      | DESCRIPTION                                                                                                                                                              | GRAPHIC | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID   |                                                          | REMARKS                                                                                                                                                                        |  |  |  |
|     | 5                                                                                         |      | 0.0 to 0.2 ft Asphalt  0.2 to 8.0 ft Brown sandy clay (CL); medium stiff, moist. No Petroleum Hydrocarbon (PHC) odor.                                                    | CL      | No Well<br>Constructed      |                      | 0     | cored<br>2-ind<br>Ma<br>Sample<br>in 5-1<br>samp         | hole continuously using a 5-foot long h O.D. Geoprobe croprobe Barrel r. Samples collected oot intervals. The bler was lined with t long 1 3/4 in. O.D.                        |  |  |  |
|     | 10                                                                                        |      | 8.0 to 11.0 ft Brown sand (SW); loose, moist. No PHC odor.                                                                                                               | SW      |                             |                      | 0 0   | cellule<br>First wa<br>28.0<br>Tempe                     | ater encountered at fit during drilling, 11/14/2006.                                                                                                                           |  |  |  |
|     | 15                                                                                        |      | 11.0 to 17.0 ft Gray sandy clay (CL); orange mottling, moist. No PHC odor.                                                                                               | CL      |                             |                      | 0 0   | in bor<br>B17<br>Borehol<br>ft, 11:3<br>Boreho<br>cement | PVC casing placed ehole, and sample 7-34W collected. e terminated at 34.0 80 AM, 11/14/2006. le grouted with neat and a 4-in. surface eal of concrete, 11/14/2006.             |  |  |  |
|     | 20                                                                                        |      | 17.0 to 21.5 ft Green-gray sandy clay (CL); orange mottling, stiff, moist. No PHC odor.                                                                                  | CL      |                             |                      | 0     | horiz. of from pushing ft. and to expose screed depth    | ole B17a drilled at a distance of 1.5 feet borehole B17 by a Hydropunch to 41 pulling back the rod use the Hydropunch of from 37-41 foot as for collection of sample B17a-41W. |  |  |  |
|     | 25                                                                                        |      | 21.5 to 28.0 ft Brown silty sand (SM); soft, saturated. No PHC odor.                                                                                                     | SM      |                             |                      | 0 0   | Water<br>was<br>Hydro<br>polyeth                         | Sample B17a-41W collected from the pounch using new hylene tubing with a ss steel foot valve.                                                                                  |  |  |  |
|     | 30                                                                                        |      | 28.0 to 28.5 ft Green-gray well-graded sand with clay and gravel (SW-SC); wet. No PHC odor. 28.5 to 30.0 ft Brown clay (CL); orange mottling, stiff, moist. No PHC odor. | SW-SC   | <u> </u>                    |                      | 0     | were                                                     | HC odor or sheen<br>detected in water<br>ples B17-34W or<br>B17a-41W.                                                                                                          |  |  |  |

| BORING NO.: B17 PROJECT NO.: 0387 PROJECT NAME: 2100 Frank |                   |                              |                                         |             | 00 Franklin Street, Oak     | land, C              | A   |          |                       |
|------------------------------------------------------------|-------------------|------------------------------|-----------------------------------------|-------------|-----------------------------|----------------------|-----|----------|-----------------------|
| BORING LOC                                                 | ATION: West side  | of Franklin Street, Southwes | st of UST ELEVATION                     | AND DAT     | JM: None                    |                      |     |          |                       |
| DRILLING AG                                                | ENCY: Vironex, I  | nc.                          | DRILLER: Tim/Emers                      | on          |                             | DAT                  |     | STARTED: | DATE & TIME FINISHED: |
| DRILLING EQ                                                | UIPMENT: Geoprobe | 6600                         |                                         |             |                             | 11/14/06<br>9:30 AM  |     |          | 11/14/06<br>11:30 AM  |
| COMPLETION                                                 | N DEPTH: 34.0     | FEET                         | BEDROCK DEPTH: Non                      | e Encounter | red                         | LOGGED BY:           |     |          | CHECKED BY:           |
| FIRST WATE                                                 | R DEPTH: 28.0     | FEET                         | NO. OF SAMPLES: 2 Wa                    | ater        |                             |                      | EF  | 0        | DM GIBBS<br>P.G. 7804 |
| DEPTH(FT.)                                                 |                   | DESCRIPTION                  |                                         | GRAPHIC     | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID |          | REMARKS               |
|                                                            | 30.0 to 34.0 ft   | No Core Collected            | . = = = = = = = = = = = = = = = = = = = | -           | No Well<br>Constructed      |                      |     |          |                       |
| 35 -                                                       |                   |                              |                                         |             |                             |                      |     |          |                       |

| ВС                  | BORING NO.: B18 PROJECT NO.: 0387 PROJECT NAME: 2100 Franklin Ave, Oakland, CA |               |                                                                                                                             |            |                             |                      |    |                                                                            |                                                                                                                                                                                                                |  |  |  |
|---------------------|--------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|----------------------|----|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ВС                  | BORING LOCATION: 21st Street ELEVATION AND DATUM: None                         |               |                                                                                                                             |            |                             |                      |    |                                                                            |                                                                                                                                                                                                                |  |  |  |
| DF                  | RILLING                                                                        | AGE           | ENCY: Vironex, Inc. DRILLER: Justin/Brya                                                                                    | ın         |                             | DATE & TIME STARTED: |    |                                                                            | DATE & TIME FINISHED:                                                                                                                                                                                          |  |  |  |
| DF                  | RILLING                                                                        | EQL           | JIPMENT: Geoprobe 6600                                                                                                      |            |                             | 1/31/07              |    |                                                                            | 2/1/07                                                                                                                                                                                                         |  |  |  |
| CC                  | MPLE                                                                           | TION          | DEPTH: 25.0 FEET BEDROCK DEPTH: Non                                                                                         | e Encounte | red                         | LOGGED BY:           |    |                                                                            | CHECKED BY:                                                                                                                                                                                                    |  |  |  |
| FII                 | FIRST WATER DEPTH: 25.0 FEET NO. OF SAMPLES: 2 Wa                              |               |                                                                                                                             |            |                             |                      | FJ | 0                                                                          | DM GIBBS<br>P.G. 7804                                                                                                                                                                                          |  |  |  |
|                     | DEPTH(FT.)                                                                     |               | DESCRIPTION                                                                                                                 | GRAPHIC    | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT PER 6"    |    |                                                                            | REMARKS                                                                                                                                                                                                        |  |  |  |
|                     | 5                                                                              |               | 0.0 to 7.0 ft Concrete fill (FILL). No Petroleum  Hydrocarbon (PHC) odor.  7.0 to 8.1 ft Brown-biege silty sand (ML);       | FILL       | No Well<br>Constructed      |                      | 0  | using<br>consis<br>3.5-ind<br>and a<br>sampl<br>logged<br>Sampli<br>with a | le continuosly cored dual tube system ting of a 5-foot long h O.D. outer casing 2.5-inch I.D. inner e sleeve. Samples d in 5-foot intervals. ng sleeve was lined 1.5-foot long 2-inch cellulose acetate tubes. |  |  |  |
| F                   |                                                                                | $\Rightarrow$ | medium stiff, dry. No PHC odor.  8.1 to 9.4 ft Brown clayey sand (SC);                                                      | SC         | _                           |                      |    | Boreho                                                                     | e terminated at 25.0                                                                                                                                                                                           |  |  |  |
| Ė                   | 10                                                                             | $\exists$     | medium stiff, dry. No PHC odor.                                                                                             |            | 1                           |                      | 0  |                                                                            | ft, 01/31/07.                                                                                                                                                                                                  |  |  |  |
| E                   | 10                                                                             | $\exists$     | 9.4 to 11.3 ft Dark brown silt (SC); medium stiff. Grades into unit below. No PHC odor.                                     | SC         |                             |                      | U  |                                                                            | vater encountered<br>25.0 ft, 2/1/2007.                                                                                                                                                                        |  |  |  |
| -<br> -<br> -<br> - |                                                                                |               | 11.3 to 14.4 ft Gray clay (CL) with black — mottling; very stiff. No PHC odor.                                              | CL         |                             |                      |    | Tempo<br>slotted<br>in bor                                                 | orary 1-in. diameter<br>PVC casing placed<br>ehole, and sample<br>3-25W collected.                                                                                                                             |  |  |  |
| E                   | 15                                                                             |               | 14.4 to 16.1 ft Gray clay (CL) with black mottling; very stiff. No PHC odor.                                                | CL         |                             |                      | 0  | cen                                                                        | le grouted with neat<br>nent and a 6-inch<br>se seal of concrete,                                                                                                                                              |  |  |  |
| E                   |                                                                                |               | 16.1 to 18.1 ft Brown gravel with clay (GC); — medium loose, moist. No PHC odor. —                                          | GC         |                             |                      |    |                                                                            | 2/1/07.                                                                                                                                                                                                        |  |  |  |
|                     | 20                                                                             |               | 18.1 to 22.1 ft Brown clay (CL) slowly grading into beige silt in the lower part of unit; medium stiff, moist. No PHC odor. | CL         |                             |                      | 0  | horiz.<br>fron<br>pushir<br>59 ft. a<br>roo<br>Hydro                       | ole 18a drilled at a distance of 1.5 feet borehole 15 by a a Hydropunch to and pulling back the d to expose the punch screen from 59 foot depth for                                                            |  |  |  |
|                     |                                                                                |               | 22.1 to 25.0 ft Brown silty gravel (GM); loose, very moist. No PHC odor.                                                    | GM         |                             |                      |    |                                                                            | on of water sample<br>B18a-59W.                                                                                                                                                                                |  |  |  |
|                     | 25                                                                             |               | -                                                                                                                           |            | =                           |                      | 0  | was<br>Hydro<br>polyeth                                                    | Sample B18a-59W collected from the opunch using new hylene tubing with a less steel foot valve.                                                                                                                |  |  |  |
|                     | 30                                                                             |               |                                                                                                                             |            |                             |                      |    | were                                                                       | HC odor or sheen<br>detected in water<br>ples B18-25W or<br>B18a-59W.                                                                                                                                          |  |  |  |

| ВС         | RING    | NO.: | B19 PROJECT NO.: 0387 PROJECT                                                                                                                                                                             |            |                             |                      |              |                                                                                                                                      |                                                                                                                                      |  |
|------------|---------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| ВС         | RING I  | LOCA | ATION: Franklin Street ELEVATION                                                                                                                                                                          | AND DAT    | JM: None                    |                      |              |                                                                                                                                      |                                                                                                                                      |  |
| DF         | RILLING | AGE  | ENCY: Vironex, Inc. DRILLER: Tim                                                                                                                                                                          |            |                             | DATE & TIME STARTED: |              |                                                                                                                                      | DATE & TIME FINISHED:                                                                                                                |  |
| DF         | RILLING | EQI  | JIPMENT: Geoprobe 6600                                                                                                                                                                                    |            |                             |                      | 3/20<br>8:00 |                                                                                                                                      | 3/20/07<br>10:00 AM                                                                                                                  |  |
| CC         | MPLE    | TION | DEPTH: 20.0 FEET BEDROCK DEPTH: Nor                                                                                                                                                                       | e Encounte | red                         | LOGGED BY:           |              |                                                                                                                                      | CHECKED BY:                                                                                                                          |  |
| FII        | RST WA  | ATER | DEPTH: 15.0 FEET NO. OF SAMPLES: 2 W                                                                                                                                                                      | ater       |                             |                      | FJ           | 0                                                                                                                                    | P.G. 7804                                                                                                                            |  |
| DEPTH(FT.) |         |      | DESCRIPTION                                                                                                                                                                                               | GRAPHIC    | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID          | REMARKS                                                                                                                              |                                                                                                                                      |  |
|            | 5       |      | 0.0 to 1.0 ft Gravel, cement and sand (FILL). No Petroleum Hydrocarbon (PHC) odor.  1.0 to 2.0 ft Brown silty sand (FILL); loose. No PHC odor.  2.0 to 5.1 ft Brown sand (FILL); loose, dry. No PHC odor. | FILL       | No Well<br>Constructed      |                      | 0            | using a<br>O.D. Ge<br>San<br>collecte<br>The sam                                                                                     | e continuosly cored 5-ft long 3.5-inch coprobe Macrocore ppler. Samples ed in 5-ft intervals. ppler was lined with long 1¾-inch O.D. |  |
|            | 3       |      | 5.1 to 9.8 ft Brown sandy silt (ML); medium loose, medium moist. No PHC odor.                                                                                                                             | ML         |                             |                      | 0            | a 4.8-ft long 1¾-inch O.D. cellulose acetate tubes.  First water encountered at 15.0 ft, 3/20/07, 8:30 AM.  Temporary 1-in. diameter |                                                                                                                                      |  |
|            | 10      |      | 9.8 to 11.2 ft Brown sand (SP); fragments of brick, stiff, dry. No PHC odor.  11.2 to 14.1 ft Black clay (CL); medium stiff, medium moist. No PHC odor.                                                   | SP         |                             |                      | 0            | in bore<br>B19-<br>Boreh<br>20.                                                                                                      | PVC casing placed hole, and sample 20W collected. ole terminated at 0 ft, 03/20/07.                                                  |  |
|            | 15      |      | 14.1 to 18.0 ft Green-gray silt (ML); medium stiff, saturated. No PHC odor.                                                                                                                               | ML         | <u>_</u>                    |                      | 0            | neat ce<br>4-inch<br>con                                                                                                             | ble backfilled with<br>ement grout and a<br>in surface seal of<br>crete, 3/20/07.                                                    |  |
|            | 20      |      | 18.0 to 20.0 ft Green-gray silty sand (SM); medium stiff, moist. No PHC odor.                                                                                                                             | SM         |                             |                      | 0            | horiz. d<br>from<br>pushing<br>59 ft. ar                                                                                             | e B19a drilled at a istance of 1.5 feet borehole 15 by g a Hydropunch to ad pulling back the                                         |  |
|            | 20      |      | -<br>-<br>-<br>-<br>-                                                                                                                                                                                     | -          |                             |                      |              | rod to expose the Hydropunch screen froi 48-52 foot depth for collection of water samp B19a-52W.                                     | ounch screen from<br>2 foot depth for<br>on of water sample                                                                          |  |
|            | 25      |      | -<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                           | <br>       |                             |                      |              | was c<br>Hydro<br>polyethy                                                                                                           | Sample B19a-52W ollected from the punch using new ylene tubing with a ss steel foot valve.                                           |  |
|            | 30      |      | -<br>-<br>-<br>-                                                                                                                                                                                          | -          |                             |                      |              | were o                                                                                                                               | IC odor or sheen<br>detected in water<br>les B19-20W or<br>B19a-52W.                                                                 |  |

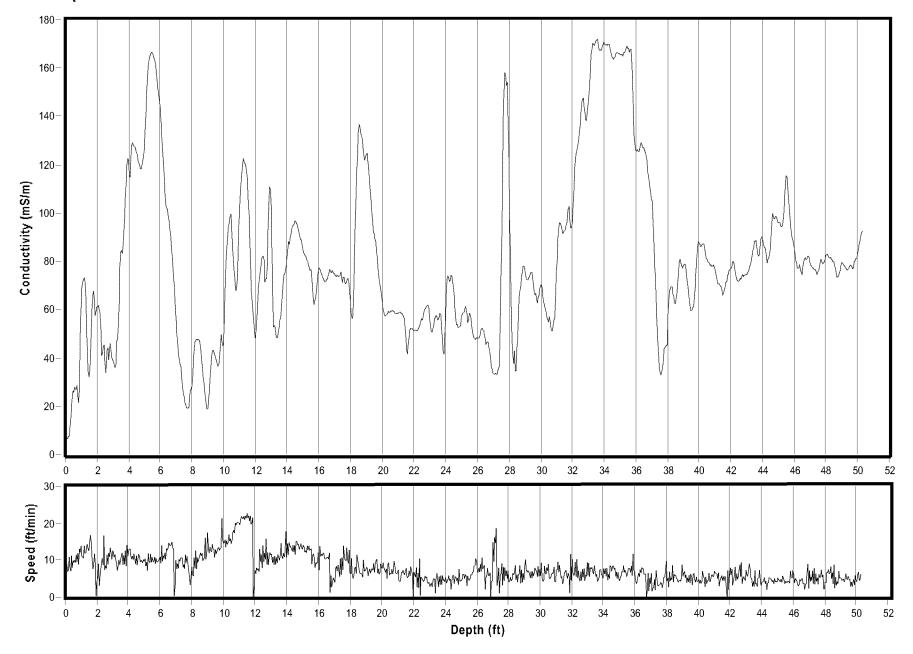
| В  | ORING I    | NO.:  | B20 PROJECT NO.: 0387 PROJECT N                                                                                                                                                                              | AME: 210    | 00 Franklin Ave, Oaklar     | nd, CA               |              |                                                          |                                                                                                                                                             |  |  |
|----|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|----------------------|--------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| В  | DRING I    | LOCA  | ATION: Broadway - Northeast ELEVATION                                                                                                                                                                        | AND DAT     | JM: None                    |                      |              |                                                          |                                                                                                                                                             |  |  |
| DI | RILLING    | AGE   | ENCY: Vironex, Inc. DRILLER: Tim                                                                                                                                                                             |             |                             | DATE & TIME STARTED: |              |                                                          | DATE & TIME FINISHED:                                                                                                                                       |  |  |
| DI | RILLING    | i EQI | JIPMENT: Geoprobe 6600                                                                                                                                                                                       |             |                             | 1                    | 3/19<br>2:20 |                                                          | 3/19/07<br>3:30 PM                                                                                                                                          |  |  |
| C  | OMPLE.     | TION  | DEPTH: 20.0 FEET BEDROCK DEPTH: None                                                                                                                                                                         | e Encounter | red                         |                      | LOGGE        |                                                          | CHECKED BY:                                                                                                                                                 |  |  |
| FI | RST W      | ATEF  | R DEPTH: 18.0 FEET NO. OF SAMPLES: 1 Wa                                                                                                                                                                      | ter         |                             |                      | FJ           | 0                                                        | P.G. 7804                                                                                                                                                   |  |  |
|    | DEPTH(FT.) |       | DESCRIPTION                                                                                                                                                                                                  | GRAPHIC     | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID          |                                                          | REMARKS                                                                                                                                                     |  |  |
|    | 5          |       | 0.0 to 3.0 ft Concrete Slab.  3.0 to 4.8 ft Brown sand (FILL); brick fragments. No Petroleum Hydrocarbon (PHC) odor.  4.8 to 6.3 ft Brown yellow sand (ML); loose,                                           | FILL        | No Well<br>Constructed      |                      | 0            | cored a<br>O<br>Mac<br>Sampl<br>interv                   | hole continuosly a 5-ft long 3.5-inch .D. Geoprobe rocore Sampler. es collected in 5-ft rals. The sampler                                                   |  |  |
|    | 10         |       | medium soft. No PHC odor.  6.3 to 9.1 ft Dark gray clay (CL) with gravel; medium stiff to very stiff. No PHC odor.  9.1 to 14.1 ft Dark gray clay with gravel (CL); medium stiff, medium moist. No PHC odor. | CL CL       |                             |                      | 0            | long<br>celluld<br>First w<br>at 18.<br>Te<br>diam       | ined with a 4.8-ft g 1¾-inch O.D. use acetate tubes.  vater encountered D ft, 3/19/07, 3:00 PM.  emporary 1-in. eter slotted PVC                            |  |  |
|    | 15         |       | 14.1 to 16.0 ft Brown sand (SP); very loose, moist. No PHC odor.  16.0 to 20.0 ft Brown gravel (GM); very loose, saturated. No PHC odor.                                                                     | SP          | <u> </u>                    |                      | 0            | boreh<br>B20<br>Boreh<br>20<br>Boreh<br>neat co<br>4-inc | sing placed in nole, and sample -20W collected. ole terminated at .0 ft, 03/19/07. ole backfilled with ement grout and a h surface seal of ocrete, 3/19/07. |  |  |
|    | 20 25 30   |       |                                                                                                                                                                                                              |             | <del>-</del>                |                      | 0            | No Pl<br>were                                            | HC odor or sheen<br>detected in water<br>mple B20-20W                                                                                                       |  |  |

| В  | RING N     | NO.: | B21 PROJECT NO.: 0387 PROJECT N                                                                                            | AME: 210  | 00 Franklin Ave, Oaklar     | nd, CA               |               |                                   |                                                                                                                       |  |
|----|------------|------|----------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------|----------------------|---------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| В  | RING L     | _OC/ | ATION: Broadway - Southwest ELEVATION                                                                                      | AND DAT   | JM: None                    |                      |               |                                   |                                                                                                                       |  |
| DI | RILLING    | AGI  | ENCY: Vironex, Inc. DRILLER: Tim                                                                                           |           |                             | DATE & TIME STARTED: |               |                                   | DATE & TIME FINISHED:                                                                                                 |  |
| DI | RILLING    | EQI  | JIPMENT: Geoprobe 6600                                                                                                     |           |                             |                      | 3/19/<br>4:06 |                                   | 3/19/07<br>5:00 PM                                                                                                    |  |
| C  | OMPLET     | ΓΙΟΝ | DEPTH: 20.0 FEET BEDROCK DEPTH: None                                                                                       | Encounter | red                         |                      | LOGGE         |                                   | CHECKED BY:                                                                                                           |  |
| FI | RST WA     | ATEF | R DEPTH: 16.0 FEET NO. OF SAMPLES: 1 Wa                                                                                    | ter       |                             | FJO                  |               |                                   | P.G. 7804                                                                                                             |  |
|    | DEPTH(FT.) |      | DESCRIPTION                                                                                                                | GRAPHIC   | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID           |                                   | REMARKS                                                                                                               |  |
|    |            |      | 0 to 4.0 ft Brown gray gravel, sand and cement (FILL); loose. No Petroleum Hydrocarbon (PHC) odor.                         | FILL      | No Well<br>Constructed      |                      | 0             | cored a<br>O<br>Mac               | hole continuosly a 5-ft long 3.5-inch .D. Geoprobe rocore Sampler.                                                    |  |
|    | 5          |      | 4.0 to 5.0 ft Gray gravel (FILL); loose. No PHC odor.  5.0 to 16.0 ft Brown sand (FILL); loose, medium moist. No PHC odor. | FILL      |                             |                      | 0             | interv<br>was l<br>lon<br>cellulo | es collected in 5-ft als. The sampler ined with a 4.8-ft g 1 <sup>3</sup> / <sub>4</sub> -inch O.D. se acetate tubes. |  |
|    | 10         |      |                                                                                                                            | FILL      |                             |                      | 0             | Te<br>diam                        | oft, 3/19/07, 4:30<br>PM.<br>emporary 1-in.<br>eter slotted PVC<br>sing placed in                                     |  |
|    | 15         |      |                                                                                                                            |           | abla                        |                      | 0             | boreh<br>B21<br>Boreh<br>20       | nole, and sample<br>-20W collected.<br>nole terminated at<br>.0 ft, 03/19/07.<br>ole backfilled with                  |  |
|    | 00         |      | 16.0 to 20.0 ft Brown gravel (FILL); loose, saturated. No PHC odor.                                                        | FILL      | =                           |                      | 0             | 4-inc<br>cor<br>No Pł             | ement grout and a h surface seal of acrete, 3/19/07.                                                                  |  |
|    | 20         |      |                                                                                                                            |           |                             |                      |               |                                   | detected in water<br>nple B21-20W                                                                                     |  |
|    | 30         |      |                                                                                                                            |           |                             |                      |               |                                   |                                                                                                                       |  |

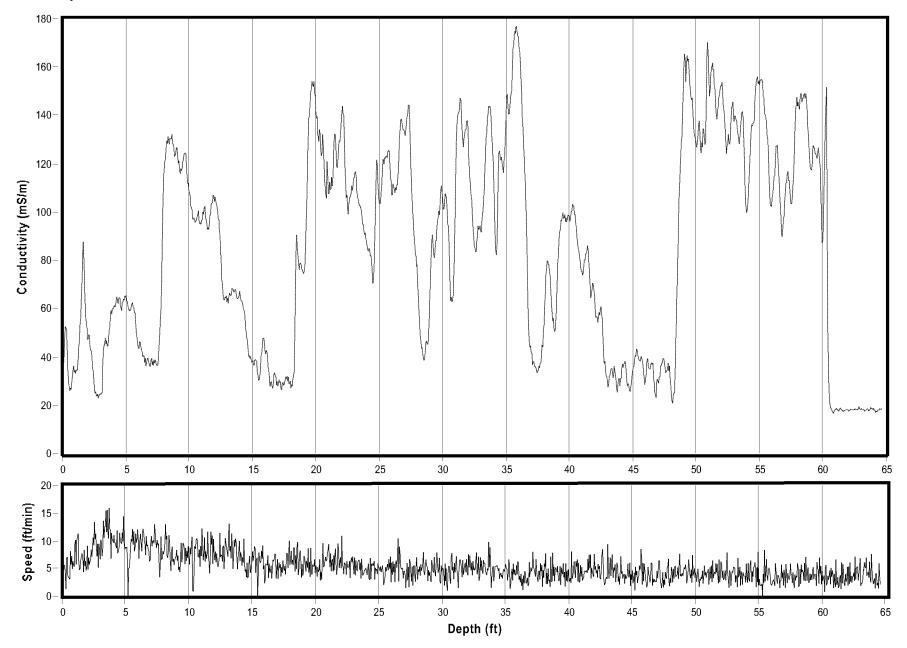
# RGA Environmental, Inc.

| ВС  | ORING I    | NO.: | B22 PROJECT NO.: 0387 PROJECT N                                                                     | AME: 210         | 00 Franklin Ave, Oaklar     | nd, CA               |              |                                                 |                                                                                                                       |  |
|-----|------------|------|-----------------------------------------------------------------------------------------------------|------------------|-----------------------------|----------------------|--------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| ВС  | DRING I    | LOCA | TION: Southeast of Broadway ELEVATION                                                               | AND DAT          | JM: None                    |                      |              |                                                 |                                                                                                                       |  |
| DF  | RILLING    | AGE  | NCY: Vironex, Inc. DRILLER: Tim                                                                     |                  |                             | DAT                  |              | STARTED:                                        | DATE & TIME FINISHED:                                                                                                 |  |
| DF  | RILLING    | EQU  | JIPMENT: Geoprobe 6600                                                                              |                  |                             |                      | 3/20<br>2:00 |                                                 | 3/20/07<br>2:45 PM                                                                                                    |  |
| CC  | OMPLE      | TION | DEPTH: 20.2 FEET BEDROCK DEPTH: None                                                                | None Encountered |                             |                      | LOGGE        |                                                 | CHECKED BY:                                                                                                           |  |
| FII | RST WA     | ATER | DEPTH: 17.4 FEET NO. OF SAMPLES: 1 Wa                                                               | ter              |                             |                      | FJ           | 0                                               | P.G. 7804                                                                                                             |  |
|     | DEPTH(FT.) |      | DESCRIPTION                                                                                         | GRAPHIC          | WELL<br>CONSTRUCTION<br>LOG | BLOW COUNT<br>PER 6" | PID          |                                                 | REMARKS                                                                                                               |  |
|     |            |      | 0 to 4.0 ft Concrete and gravel (FILL); loose. No Petroleum Hydrocarbon (PHC) odor.                 | FILL             | No Well<br>Constructed      |                      | 0            | cored a<br>O<br>Mac                             | hole continuosly<br>a 5-ft long 3.5-inch<br>.D. Geoprobe<br>rocore Sampler.<br>es collected in 5-ft                   |  |
|     | 5          |      | 4.0 to 8.0 ft Brown sand (SP); loose, medium moist. No PHC odor.                                    | SP               |                             |                      | 0            | interv<br>was l<br>lon<br>cellulo               | rals. The sampler lined with a 4.8-ft g $1\%$ -inch O.D. ose acetate tubes.                                           |  |
|     | 10         |      | 8.0 to 13.0 ft Dark gray clay (CL); some organic material, medium stiff, medium moist. No PHC odor. | CL               |                             |                      | 0            | at 17.                                          | vater encountered<br>4 ft, 3/20/07, 2:20<br>PM.<br>emporary 1-in.<br>eter slotted PVC                                 |  |
|     | 15         |      | 13.0 to 17.4 ft Dark green-gray clay (CL); medium soft, medium moist. No PHC odor.                  | CL               | $\nabla$                    |                      | 0            | boreh<br>B22<br>Boreh<br>20<br>Boreh<br>neat ce | using placed in mole, and sample -20W collected. collected at .2 ft, 03/20/07. cole backfilled with ement grout and a |  |
|     | 20         |      | 17.4 to 20.2 ft Dark green silty clay (CL); very moist. No PHC odor.                                | CL               | <del>-</del>                |                      | 0            | cor<br>No Pl                                    | h surface seal of ncrete, 3/20/07.  HC odor or sheen detected in water                                                |  |
|     | 25         |      |                                                                                                     |                  |                             |                      |              |                                                 | mple B22-20W                                                                                                          |  |

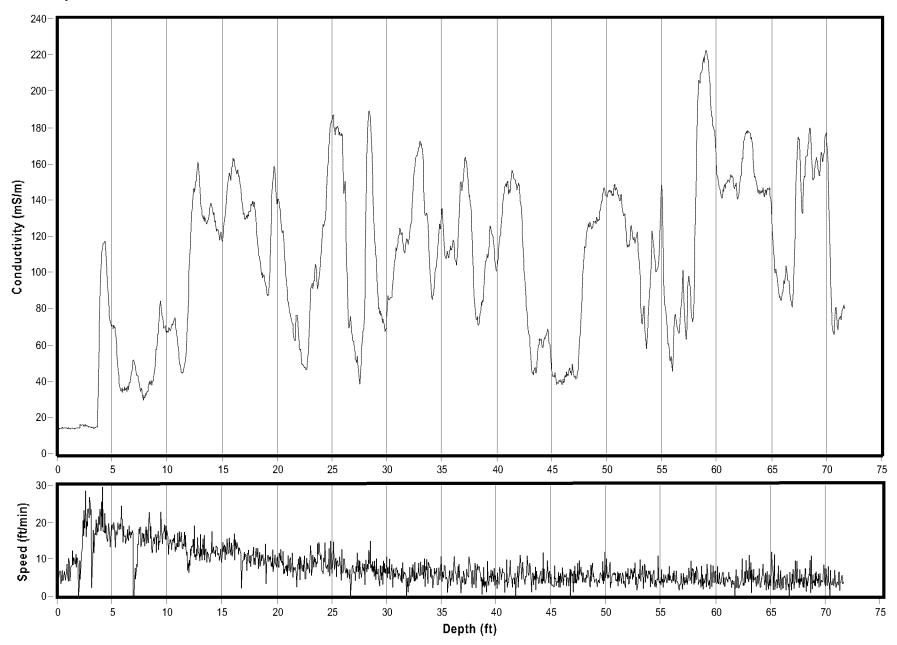
# RGA Environmental, Inc.


| ВС  | RING       | VO.: | MW1 PROJECT NO.: 0387 PROJECT N                                                                                                           | AME:      | 2100 Frank <b>li</b> n Ave, Oal      | kland, 0             | CA       |                          |                                                                                                     |
|-----|------------|------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------|----------------------|----------|--------------------------|-----------------------------------------------------------------------------------------------------|
| ВС  | RING I     | _OC/ | ATION: In mass excavation Southeast of former UST ELEVATION                                                                               | AND DATU  | JM: None                             |                      |          |                          |                                                                                                     |
| DF  | RILLING    | AGE  | ENCY: Vironex, Inc. DRILLER: Tim                                                                                                          |           |                                      | DAT                  | E & TIME | STARTED:                 | DATE & TIME FINISHED:                                                                               |
| DF  | RILLING    | EQI  | JIPMENT: Hollow Stem Auger                                                                                                                |           |                                      |                      | 8/15/    | /06                      | 8/15/06                                                                                             |
| CC  | MPLE       | ΓΙΟΝ | DEPTH: 13.0 FEET BEDROCK DEPTH: None                                                                                                      | Encounter | red                                  |                      | LOGGE    | D BY:                    | CHECKED BY:                                                                                         |
| FIF | RST WA     | ATEF | R DEPTH: 8.5 FEET NO. OF SAMPLES: 0                                                                                                       |           |                                      |                      | DM       | G                        | DM GIBBS<br>P.G. 7804                                                                               |
|     | DEPTH(FT.) |      | DESCRIPTION                                                                                                                               | GRAPHIC   | WELL<br>CONSTRUCTION<br>LOG          | BLOW COUNT<br>PER 6" | PID      |                          | REMARKS                                                                                             |
|     |            |      | 0 to 3.0 ft. Brown clay (CL); moist, trace fine sand, low to medium plasticity.  No Petroleum Hydrocarbon (PHC) odor.                     | CL        |                                      |                      |          | 8-inch<br>s<br>Log co    | g drilled using an<br>diameter hollow<br>tem auger.<br>nstructed from soil<br>d from auger flights. |
|     | 5          | -    | 3.0 to 6.0 ft. Brown clay (CL); moist, fine sand, medium plasticity. No (PHC) odor.  6.0 to 7.5 ft. Brown clay (CL); dry, with fine sand, | CL CL     | See attached<br>Well<br>Construction |                      |          | Grou<br>encou            | andwater initially<br>intered at 8.5 feet,<br>1:10, 8/15/06.                                        |
|     | 10         |      | low plasticity. No (PHC) odor.  7.5 to 8.5 ft. Brown clay (CL); dry, with fine to coarse sand, low plasticity. No (PHC) odor.             | CL<br>∑   | Diagram                              |                      |          | meas                     | ic groundwater<br>ured at 6.4 feet,<br>1:30, 2/20/07.                                               |
|     | 10         |      | 8.5 to 13.0 ft. Brown clayey sand (SC); wet, with fine to coarse sand. No (PHC) odor.                                                     | SC        |                                      |                      |          | at b<br>excav<br>feet to | Borehole initiated oottom of mass vation. Add 12.0 depth as reported in order to obtain             |
|     | 15         |      |                                                                                                                                           |           |                                      |                      |          | dept                     | h below ground<br>surface.                                                                          |
|     | 20         |      |                                                                                                                                           |           |                                      |                      |          | 13.0 fe<br>o             | ble terminated at<br>et (25.0 feet bgs)<br>n 8/15/06.<br>nstructed 8/15/06.                         |
|     |            |      | =<br>=<br>=<br>=<br>=                                                                                                                     |           |                                      |                      |          |                          |                                                                                                     |
|     | 25         | -    | -<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                           |           |                                      |                      |          |                          |                                                                                                     |
|     | 30         |      |                                                                                                                                           |           |                                      |                      |          |                          |                                                                                                     |

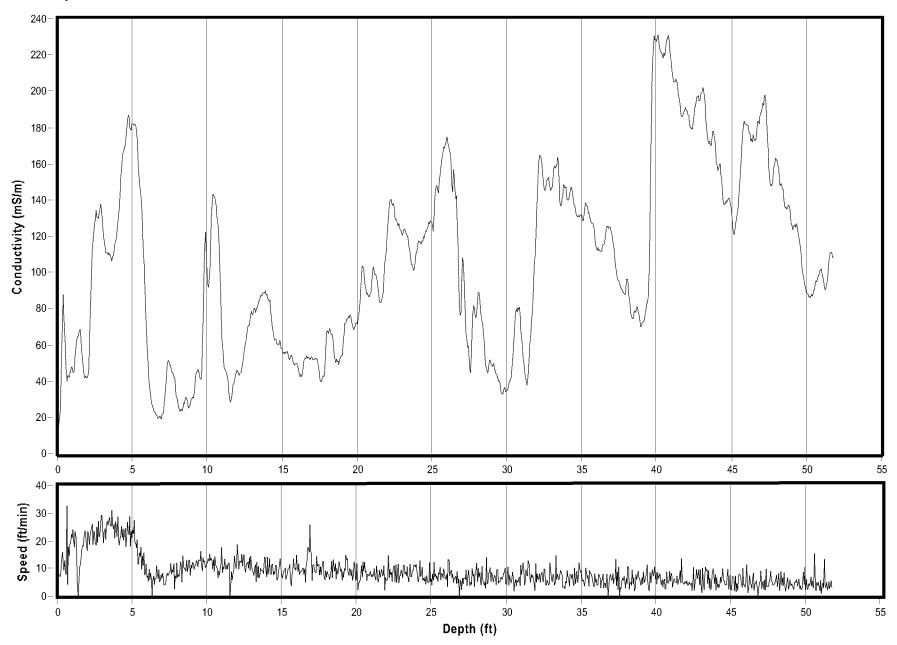
# RGA Environmental, Inc.


| ВС                  | RING       | NO.:  | MW2 PROJECT NO.: 0387 PROJECT N                                                                                          | AME:     | 2100 Franklin Ave, Oal         | kland, C             | CA    |                          |                                                                                         |
|---------------------|------------|-------|--------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------|----------------------|-------|--------------------------|-----------------------------------------------------------------------------------------|
| ВС                  | RING I     | LOC/  | ATION: In mass excavation Southeast of former UST ELEVATION                                                              | AND DAT  | JM: None                       |                      |       |                          |                                                                                         |
| DF                  | ILLING     | AGI   | ENCY: Vironex, Inc. DRILLER: Tim                                                                                         |          |                                | DAT                  |       | STARTED:                 | DATE & TIME FINISHED:                                                                   |
| DF                  | ILLING     | i EQI | JIPMENT: Hollow Stem Auger                                                                                               |          |                                |                      | 8/15/ | 06                       | 8/15/06                                                                                 |
| CC                  | MPLE       | TION  | DEPTH: 13.0 FEET BEDROCK DEPTH: None                                                                                     | Encounte | red                            | LOGGED BY:           |       |                          | CHECKED BY:<br>DM GIBBS                                                                 |
| FIF                 | RST WA     | ATEF  | R DEPTH: 8.5 FEET NO. OF SAMPLES: 0                                                                                      |          |                                |                      | DM    | G<br>                    | P.G. 7804                                                                               |
|                     | DEPTH(FT.) |       | DESCRIPTION                                                                                                              | GRAPHIC  | WELL<br>CONSTRUCTION<br>LOG    | BLOW COUNT<br>PER 6" | PID   |                          | REMARKS                                                                                 |
|                     |            |       | 0 ft to 3.0 ft Brown to deep-brown clay (CL); trace fine sand, low plasticity, dry. No Petroleum Hydrocarbon (PHC) odor. | CL       |                                |                      |       | 8-inch                   | g drilled using an<br>diameter hollow<br>tem auger.<br>nstructed from soil              |
|                     | 5          |       | 3.0 ft to 7.5 ft Brown to deep-brown clay (CL); some_coarse sand, well graded, low plasticity, moist. No PHC odor.       | CL       | See attached Well Construction |                      |       | Grou<br>encou            | d from auger flights. Indwater initially Intered at 8.5 feet, 1:30, 8/15/06.            |
|                     | 10         |       | 7.5 ft to 8.5 ft Brown clayey sand (SC); well graded fine to coarse grained sand, moist.  No PHC odor.                   | SC<br>∑  | Diagram                        |                      |       | meas                     | ic groundwater<br>ured at 6.56 feet,<br>1:30, 2/20/07.                                  |
|                     |            |       | 8.5 ft to 13.0 ft Brown clayey sand (SC); well graded fine to coarse grained sand, wet.                                  | SC       |                                |                      |       | at b<br>excav<br>feet to | Borehole initiated oottom of mass vation. Add 12.0 depth as reported in order to obtain |
|                     | 15         |       |                                                                                                                          |          |                                |                      |       |                          | h below ground surface.                                                                 |
|                     | 20         |       |                                                                                                                          |          |                                |                      |       | 13.0 fe<br>o             | ole terminated at<br>et (25.0 feet bgs)<br>n 8/15/06.<br>nstructed 8/15/06.             |
|                     |            |       |                                                                                                                          |          |                                |                      |       |                          |                                                                                         |
|                     | 25         |       |                                                                                                                          |          |                                |                      |       |                          |                                                                                         |
| -<br> -<br> -<br> - | 30         | -     |                                                                                                                          |          |                                |                      |       |                          |                                                                                         |

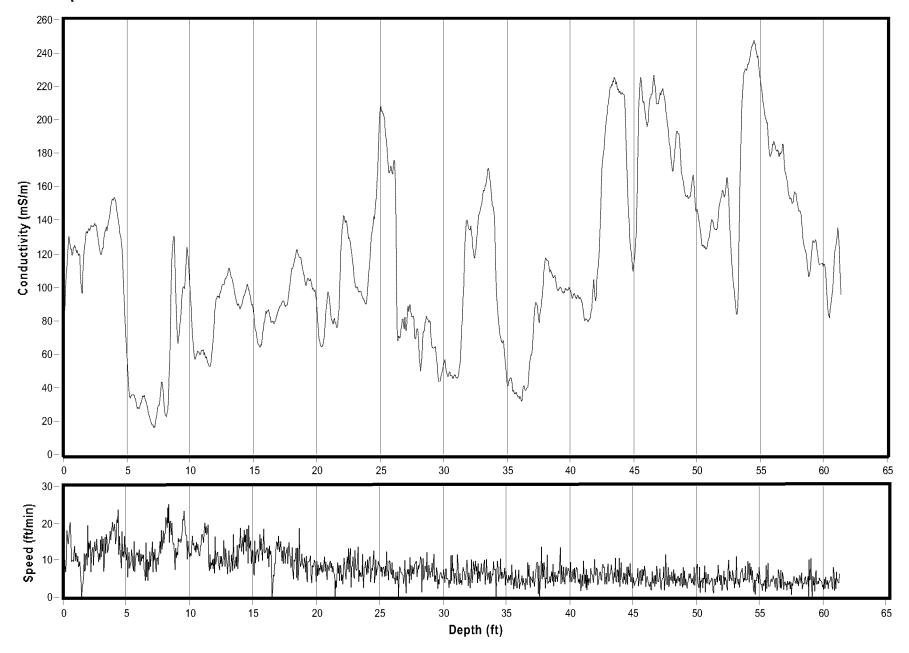
# SOIL CONDUCTIVITY LOGS


LOG: A:\EC0078.DAT



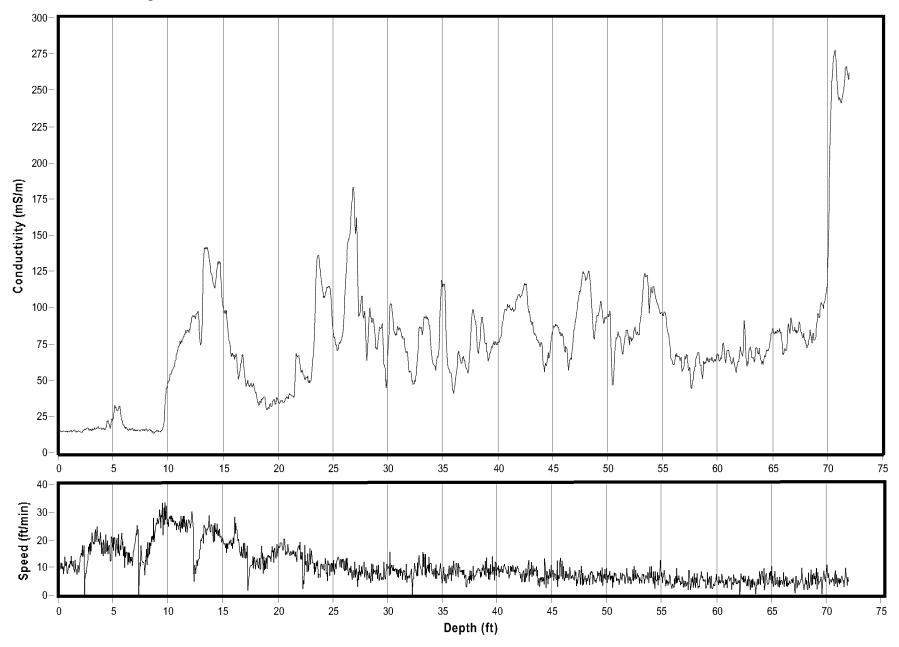

LOG: A:\EC0088.DAT

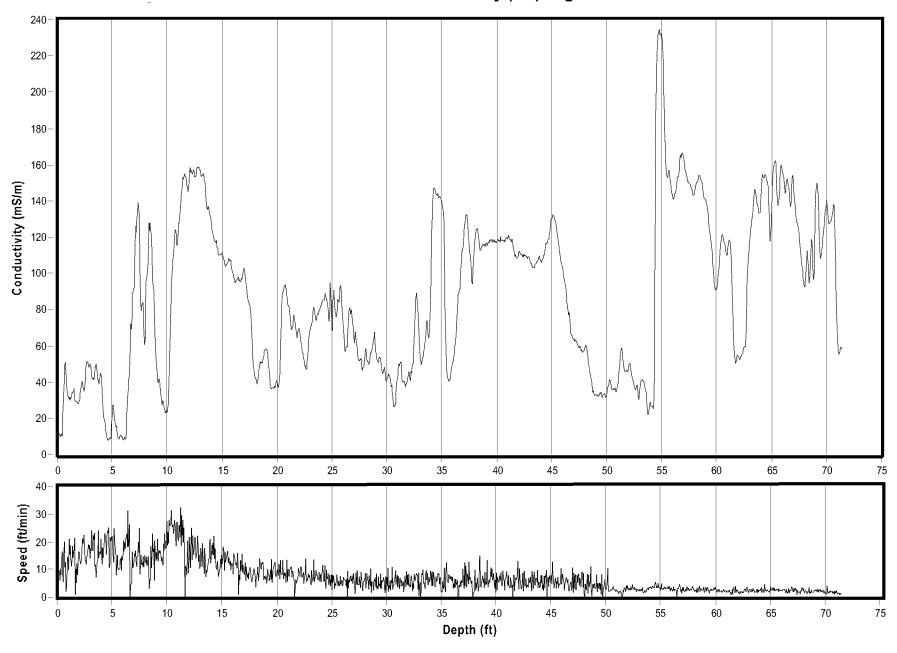


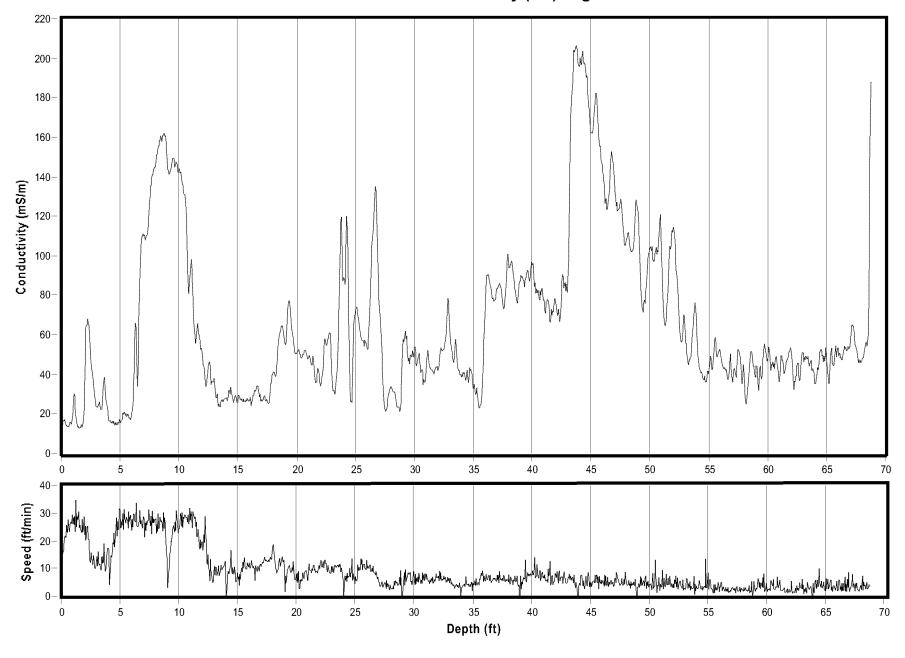

LOG: A:\EC0092.DAT

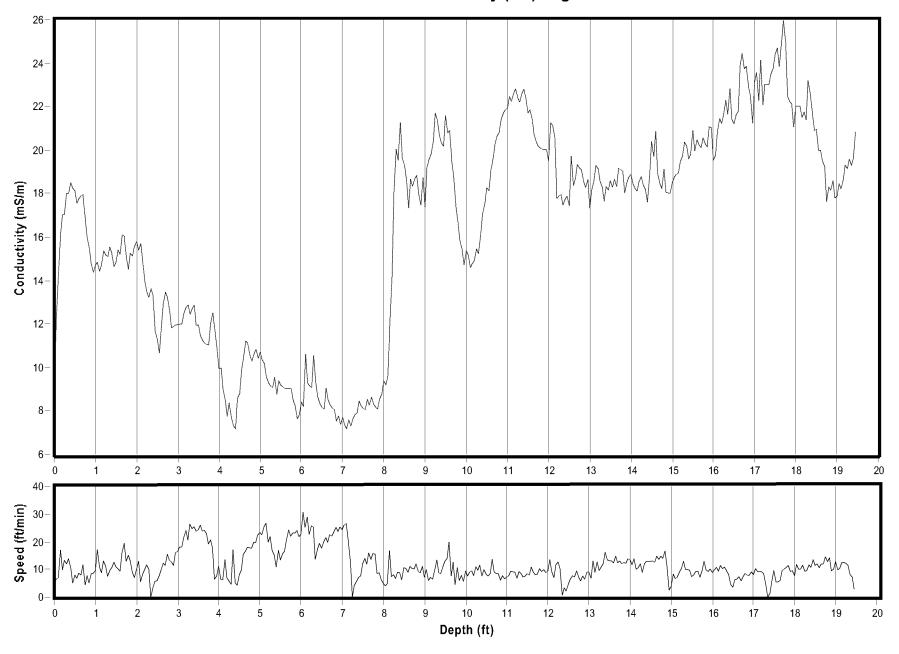


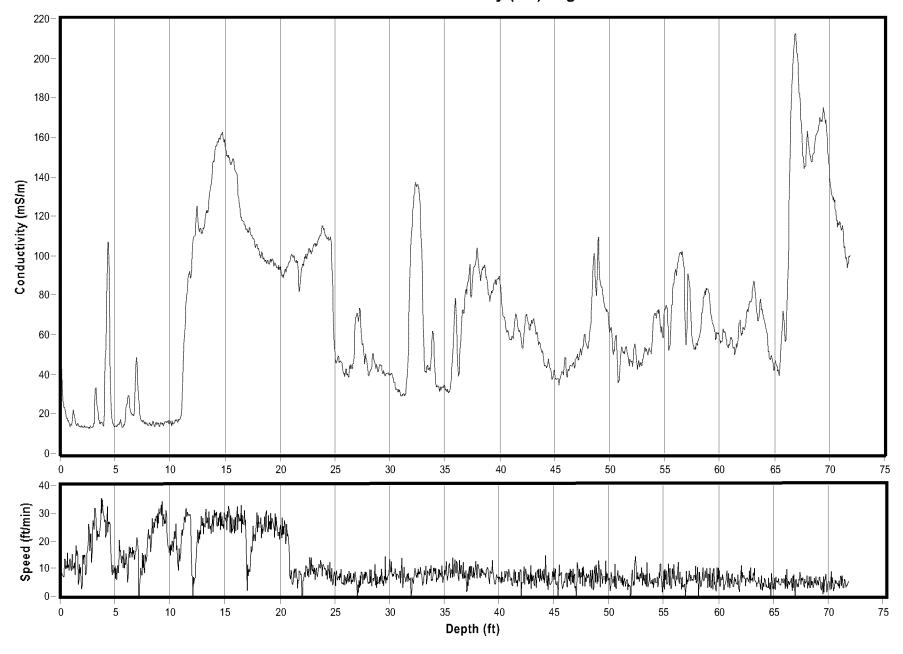
LOG: A:\EC0066.DAT





LOG: A:\EC0080.DAT





## **B18 Electrical Conductivity Log**


## LOG: C:\Dirim95\logfiles\B18\_EC0096.DAT











# WELL CONSTRUCTION DIAGRAMS



1466 - 66<sup>th</sup> Street, Emeryville, CA 94608 Fax: 510-834-0152 Tel: 510-658-4363 Email: RGAEnv@aol.com

## WELL CONSTRUCTION DIAGRAM

| PROJECT NUMBER 0387               | BORING/WELL NO. MW1                          |
|-----------------------------------|----------------------------------------------|
| PROJECT NAME 2100 Franklin Ave    | TOP OF CASING ELEV. N/A                      |
| COUNTYAlameda                     | GROUND SURFACE ELEVATION N/A                 |
| WELL PERMIT NO. <u>W2006-0718</u> | DATUM None                                   |
| Locking water-tight well cover    | DATE(S) CONSTRUCTED 8/15/2006                |
| Locking well plug                 | EXPLORATORY BORING                           |
| Manual Commence                   | a. Total depth <u>13 ft</u> .                |
|                                   | b. Diameter <u>8 in</u> .                    |
|                                   | Drilling method Hollow Stem Auger            |
|                                   | WELL CONSTRUCTION                            |
|                                   | c. Casing length <u>13 ft</u> .              |
| l e l l h                         | d. Material Schedule 40 PVC                  |
|                                   | d. Diameter <u>2 in</u> .                    |
|                                   | e. Depth to top of perforations <u>5</u> ft. |
|                                   | f. Perforated length <u>8 ft</u> .           |
|                                   | Perforated interval from 5 to 13 ft.         |
|                                   | Perforation type Factory Slot                |
|                                   | Perforation size <u>0.01 in</u> .            |
| "                                 | g. Surface sanitary seal <u>1 ft</u> .       |
|                                   | Seal material Neat Cement Grout              |
|                                   | h. Sanitary seal <u>2 ft</u> .               |
|                                   | Seal material Neat Cement Grout              |
|                                   | i. Filter pack seal <u>1 ft</u> .            |
|                                   | Seal material <u>Bentonite Pellet</u>        |
|                                   | j. Filter pack length <u>9 ft</u> .          |
|                                   | Filter pack interval from 4 to 13 ft.        |
|                                   | Pack material #2/16 RMC Pacific              |
|                                   | Materials Sack Sand                          |
|                                   | k. Bottom seal 0 ft.                         |
|                                   | Seal material None                           |
|                                   | I. Sluff in bottom of borehole0 ft.          |



1466 - 66<sup>th</sup> Street, Emeryville, CA 94608 Fax: 510-834-0152 Tel: 510-658-4363 Email: RGAEnv@aol.com

## WELL CONSTRUCTION DIAGRAM

| PROJECT NUMBER 0387               | BORING/WELL NO. MW2                                                         |
|-----------------------------------|-----------------------------------------------------------------------------|
| PROJECT NAME 2100 Franklin Ave    | TOP OF CASING ELEV. N/A                                                     |
| COUNTYAlameda                     | GROUND SURFACE ELEVATION N/A                                                |
| WELL PERMIT NO. <u>W2006-0719</u> | DATUM None                                                                  |
| Locking water-tight well cover    | DATE(S) CONSTRUCTED 8/15/2006                                               |
| Locking well plug                 | EXPLORATORY BORING                                                          |
| Manage Manage                     | a. Total depth <u>13 ft</u> .                                               |
|                                   | b. Diameter <u>8 in</u> .                                                   |
|                                   | Drilling method Hollow Stem Auger                                           |
|                                   | WELL CONCEDUCTION                                                           |
|                                   | WELL CONSTRUCTION                                                           |
| e   d   h                         | <ul><li>c. Casing length13ft.</li><li>d. Material Schedule 40 PVC</li></ul> |
|                                   |                                                                             |
|                                   |                                                                             |
|                                   | e. Depth to top of perforations 5 ft.  f. Perforated length 8 ft.           |
|                                   | Perforated interval from 5 to 13 ft.                                        |
|                                   | Perforation type Factory Slot                                               |
|                                   | Perforation size 0.01 in.                                                   |
|                                   | g. Surface sanitary seal 1 ft.                                              |
|                                   | Seal material Neat Cement Grout                                             |
|                                   | h. Sanitary seal2 ft.                                                       |
| \'. '\ = 3' \                     | Seal material Neat Cement Grout                                             |
|                                   | i. Filter pack seal <u>1 ft</u> .                                           |
|                                   | Seal material Bentonite Pellet                                              |
|                                   | j. Filter pack length 9 ft.                                                 |
|                                   | Filter pack interval from 4 to 13 ft.                                       |
|                                   | Pack material_#2/16 RMC Pacific                                             |
| - ::-=-:-                         | Materials Sack Sand                                                         |
|                                   | k. Bottom seal 0 ft.                                                        |
| k                                 | Seal material None                                                          |
| b                                 | I. Sluff in bottom of borehole 0 ft.                                        |
|                                   |                                                                             |

# LABORATORY ANALYTICAL REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

```
Lab Work Order No. 0605496 for samples T1,T2 (Soil)
Lab Work Order No. 0607547 for samples B3-B6 (Soil)
Lab Work Order No. 0608290 for samples C1,C2 (Soil)

Lab Work Order No. 0605499 for sample B1 (Water)
Lab Work Order No. 0606126 for samples B7-B12 (Water)
Lab Work Order No. 0608291 for samples C1-C3 (Water)
Lab Work Order No. 0611208 for sample B13 (Water)
Lab Work Order No. 0702060 for samples B14,B15,B18 (Water)
Lab Work Order No. 0611337 for samples B16,B17 (Water)
Lab Work Order No. 0611360 for sample B17-34 (Water)
Lab Work Order No. 0703505 for samples B19-B22 (Water)
```

#### 110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 McCampbell Analytical, Inc. Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com Client Project ID: #BRT13945; 2100 RGA Environmental Date Sampled: 05/23/06 Franklin St. Date Received: 05/23/06 1466 66th Street Client Contact: Eric Olson Date Extracted: 05/23/06 Emeryville, CA 94608 Client P.O.: Date Analyzed: 05/23/06-05/24/06 Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil\* Extraction method: SW3550C Analytical methods: SW8015C Work Order: 0605496 Lab ID Client ID Matrix TPH(d) TPH(mo) DF % SS 0605496-001A T1-0.0 S 7300,m 5700 100 105 0605496-002A T2-0.0 S 170,m 150 108 0605496-003A T1-2.0 S 990,m 880 20 104 0605496-004A T2-2.0 S 780.m 690 105 20

| Reporting Limit for DF = 1; ND means not detected at or | W | NA  | NA  | ug/L  |
|---------------------------------------------------------|---|-----|-----|-------|
| above the reporting limit                               | S | 1.0 | 5.0 | mg/Kg |

<sup>\*</sup> water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

<sup>#</sup> cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

| RGA Environmental        | Client Project ID: #BRT13945; 2100 Franklin | Date Sampled: 05/23/06           |
|--------------------------|---------------------------------------------|----------------------------------|
| 1466 66th Street         | St.                                         | Date Received: 05/23/06          |
| Emeryville, CA 94608     | Client Contact: Eric Olson                  | Date Extracted: 05/23/06         |
| Zinory vinte, ex ro 1000 | Client P.O.:                                | Date Analyzed: 05/23/06-05/24/06 |

#### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE\*

| Extraction met | hod: SW5030B |        | Analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tical methods: SV | V8021B/8015Cm |         |              | Work Or | der: 06 | 05496 |
|----------------|--------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|---------|--------------|---------|---------|-------|
| Lab ID         | Client ID    | Matrix | TPH(g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | мтве              | Benzene       | Toluene | Ethylbenzene | Xylenes | DF      | % SS  |
| 001A           | T1-0.0       | S      | 300,g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND<5.0            | ND<0.50       | ND<0.50 | ND<0.50      | ND<0.50 | 100     | 89    |
| 002A           | T2-0.0       | s      | 9.7,g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                | ND            | ND      | ND           | ND      | 1       | 81    |
| 003A           | T1-2.0       | S      | 10,g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                | ND            | ND      | ND           | ND      | 1       | 107   |
| 004A           | T2-2.0       | s      | 6.9 <b>,</b> g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                | ND            | ND      | ND           | ND      | - 1 -   | 98    |
|                |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |         |              |         | -       |       |
|                |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |         |              |         |         |       |
|                |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |         |              |         |         |       |
|                |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |         |              |         |         |       |
|                |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |         |              |         |         |       |
|                |              |        | - H- 10 H- 1 |                   |               |         |              |         |         |       |
|                |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |         |              |         |         |       |
|                |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |         |              |         |         |       |
|                |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |         |              |         |         |       |
|                |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |         |              |         |         |       |
|                | <u> </u>     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |         |              |         | -       |       |
|                |              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |         |              |         |         |       |

| Reporting Limit for DF =1;<br>ND means not detected at or | w | NA  | NA   | NA    | NA    | NA    | NA    | 1 | ug/L  |
|-----------------------------------------------------------|---|-----|------|-------|-------|-------|-------|---|-------|
| above the reporting limit                                 | S | 1.0 | 0.05 | 0.005 | 0.005 | 0.005 | 0.005 | 1 | mg/Kg |

<sup>\*</sup> water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

<sup>#</sup> cluttered chromatogram; sample peak coelutes with surrogate peak.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvem / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; j) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis.



110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com B-mail: main@mccampbell.com

#### QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0605496

| EPA Method: SW8015C | E      | xtraction | SW3550       | С      | BatchID: 21858  |        |                | Spiked Sample ID: 0605496-004A |                         |            |  |
|---------------------|--------|-----------|--------------|--------|-----------------|--------|----------------|--------------------------------|-------------------------|------------|--|
| Analyte             | Sample | Spiked    | MS<br>% Rec. | MSD    | MS-MSD<br>% RPD | LCS    | LCSD<br>% Rec. | LCS-LCSD<br>% RPD              | Acceptance Criteria (%) |            |  |
| , , , , , ,         | mg/Kg  | mg/Kg     |              | % Rec. |                 | % Rec. |                |                                | MS / MSD                | LCS / LCSD |  |
| TPH(d)              | 780    | 20        | NR           | NR     | NR              | 91.2   | 89.9           | 1.42                           | 70 - 130                | 70 - 130   |  |
| %SS:                | 105    | 50        | 104          | 109    | 4.11            | 100    | 99             | 0.854                          | 70 - 130                | 70 - 130   |  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 21858 SUMMARY

| Sample ID    | Date Sampled | Date Extracted | Date Analyzed    | Sample ID    | Date Sampled | Date Extracted | Date Analyzed   |
|--------------|--------------|----------------|------------------|--------------|--------------|----------------|-----------------|
| 0605496-001A | 5/23/06      | 5/23/06        | 5/23/06 11:12 PM | 0605496-002A | 5/23/06      | 5/23/06        | 5/24/06 1:28 AM |
| 0605496-003A | 5/23/06      | 5/23/06        | 5/24/06 3:44 AM  | 0605496-004A | 5/23/06      | 5/23/06        | 5/24/06 7:12 AM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

DHS Certification No. 1644



110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

### QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0605496

| EPA Method: SW8021B/801                 | 5Cm E  | xtraction | SW5030 | Batc             | h <b>ID: 2182</b> 0 | )             | Spiked Sample ID: 0605478-002A |                   |                         |            |  |
|-----------------------------------------|--------|-----------|--------|------------------|---------------------|---------------|--------------------------------|-------------------|-------------------------|------------|--|
| Analyte                                 | Sample | Spiked    | мѕ     | MSD<br>c. % Rec. |                     | LCS<br>% Rec. | LCSD                           | LCS-LCSD<br>% RPD | Acceptance Criteria (%) |            |  |
| . , , , , , , , , , , , , , , , , , , , | mg/Kg  | mg/Kg     | % Rec. |                  |                     |               | % Rec.                         |                   | MS / MSD                | LCS / LCSD |  |
| TPH(btex) <sup>£</sup>                  | ND     | 0.60      | 97.9   | 103              | 4.94                | 107           | 104                            | 2.91              | 70 - 130                | 70 - 130   |  |
| MTBE                                    | ND     | 0.10      | 108    | 102              | 6.03                | 111           | 96.8                           | 13.3              | 70 - 130                | 70 - 130   |  |
| Benzene                                 | ND     | 0.10      | 99     | 95.5             | 3.52                | 97            | 88.7                           | 8.91              | 70 - 130                | 70 - 130   |  |
| Toluene                                 | ND     | 0.10      | 97.7   | 95.4             | 2.42                | 97            | 89.8                           | 7.65              | 70 - 130                | 70 - 130   |  |
| Ethylbenzene                            | ND     | 0.10      | 96.3   | 96.2             | 0.154               | 98            | 92                             | 6.35              | 70 - 130                | 70 - 130   |  |
| Xylenes                                 | ND     | 0.30      | 89.3   | - 94             | 5.09                | - 95          | 90                             | 5.41              | ··· 70 - 130            | 70 - 130   |  |
| %SS:                                    | 92     | 0.10      | 106    | 103              | 3.63                | 103           | 97.4                           | 5.21              | 70 - 130                | 70 - 130   |  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 21820 SUMMARY

| Sample ID    | Date Sampled | Date Extracted | Date Analyzed    | Sample ID    | Date Sampled | Date Extracted | Date Analyzed   |
|--------------|--------------|----------------|------------------|--------------|--------------|----------------|-----------------|
| 0605496-001A | 5/23/06      | 5/23/06        | 5/23/06 11:40 PM | 0605496-002A | 5/23/06      | 5/23/06        | 5/24/06 7:53 AM |
| 0605496-003A | 5/23/06      | 5/23/06        | 5/24/06 1:24 PM  | 0605496-004A | 5/23/06      | 5/23/06        | 5/24/06 1:57 PM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A ≂ not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer



# **CHAIN-OF-CUSTODY RECORD**

Page 1 of 1

WorkOrder: 0605496

ClientID: RGAE

**EDF: NO** 

Report to:

Eric Olson RGA Environmental

1466 66th Street

TEL: (51 FAX: (51

PO:

(510) 547-7771 (510) 547-1983

ProjectNo: #BRT13945; 2100 Franklin St.

Emeryville, CA 94608

Bill to:

Accounts Payable

RGA Environmental 1466 66th Street

Emeryville, CA 94608

Requested TAT:

1 day

Date Received:

05/23/2006

Date Printed: 05/

05/23/2006

| 1           |              |        |                 |       |    | Requested Tests (See legend below) |   |   |              |          |   |              |   |   |                |    |    |              |                |
|-------------|--------------|--------|-----------------|-------|----|------------------------------------|---|---|--------------|----------|---|--------------|---|---|----------------|----|----|--------------|----------------|
| Sample ID   | ClientSampID | Matrix | Collection Date | Hold  | 1  | 2                                  |   | 3 | 4            | <b>I</b> | 5 | 6            | 7 | 8 | 9              |    | 10 | 11           | 12             |
| 0605496-001 | T1-0.0       | Soil   | 5/23/06         |       | Α  | Α                                  | T |   | T            |          |   | Γ            | T |   | T              |    |    | Ţ            | <del>- T</del> |
| 0605496-002 | T2-0.0       | Soil   | 5/23/06         |       | Α  | Α                                  |   |   | 1            |          |   |              | + | + | 1              |    |    |              |                |
| 0605496-003 | T1-2.0       | Soil   | 5/23/06         | 17    | A  | Α                                  | _ |   | †            |          |   |              |   |   | <del> </del> - | +  |    | ļ            | +              |
| 0605496-004 | T2-2.0       | Sail   | 5/23/06         | 1 = 1 | Α. | ^                                  |   |   | <del> </del> |          |   | <del> </del> |   |   | -              | -+ |    | <del> </del> |                |

#### Test Legend:

| 1 G-MBTEX_\$ | 2 TPH(DMO)_S | 3 | 4 | 5   |
|--------------|--------------|---|---|-----|
| 6            | 7            | 8 | 9 | 10  |
| 11           | 12           |   |   | V/. |

Prepared by: Melissa Valles

#### Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.



RGA Environmental, Inc. 1466 - 66<sup>th</sup> St Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com pgal

0605496

CHAIN OF CUSTODY RECORD

**RUSH** 

| PROJECT NAME: BRT 139 45  SAMPLE DOD FORKIN ST.  SAMPLE NUMBER  DATE THE TYPE  SAMPLE LOCATION  T1-0:0  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250  \$250 | pau              | i.mig@igavi                                      |                                       |          |            |                                         |               |          |              |                        | <u> </u>    |             |              | FAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ur           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------|---------------------------------------|----------|------------|-----------------------------------------|---------------|----------|--------------|------------------------|-------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| SAMPLE NUMBER  DATE  TIME  TYPE  SAMPLE LOCATION  \$\frac{2}{2}\frac{3}{6}\frac{3}{6}\frac{1}{6}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1                                                                                                                                                                                                                                                                                                                                    | BRT13945         |                                                  | 2                                     | 100 F    |            | m St.                                   | LL EX         | J'eve    |              |                        | 7/          | 7           | //           | The State of the S |              |
| SAMPLE NUMBER  DATE  TIME  TYPE  SAMPLE LOCATION  \$\frac{2}{2}\frac{3}{6}\frac{3}{6}\frac{1}{6}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}\frac{1}{1}\frac{1}{1}\frac{1}{1}\frac{1}{1                                                                                                                                                                                                                                                                                                                                    | SAMPLED BY: [PRI | NTED AND                                         | SKINKI                                | VREY /   |            |                                         | OK            | 1        | 15           | 1~7                    | 1           | / /         | ///          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DELIADIC     |
| SAMPLE NUMBER  DATE TIME TYPE  SAMPLE LOCATION  28  T1-0:0  523-06  SD:L  UST PIT  1 X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Frieds           | <u> </u>                                         | 1                                     |          |            | *************************************** | MAER          | XX       | N            | A                      | //          | / /         |              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KENMIKS      |
| T2-20 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                | DATE                                             | TIME                                  | TYPE     |            | SAMPLE LOCATION                         | ΣŞ            | 1        | 17 5         |                        | //          | $\angle$    | / å          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| T2-2.0 " " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T1-0:0           | 5-23-06                                          | •                                     | SOIL     | US7        | PIT                                     |               | X        | X            |                        |             |             |              | 24 Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RUSH         |
| T1-2-0  ""  ""  ""  ""  ""  ""  ""  ""  ""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | £ s                                              |                                       | 11       | . 11       | -7                                      |               | K        | X.           |                        |             | <u> </u>    | 11           | 10 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | / (          |
| T2-2-0  11  1. (**)  APPROPRIATE  GOOD CONDUTTON  GOOD CONDUTTON  HEAD STREET MALE APPROPRIATE  DECHLORATED IN LAB.  PRESERVATION  PRESERVATION  DECHLORATED IN LAB.  PRESERVATION  TOTAL No. OF SAMPLES  TOTAL NO. OF CONTINUES  TOTAL NO. OF SAMPLES  TOTAL NO. OF SAMPLES  TOTAL NO. OF CONTINUES                                                                                                                                                                                                                                                                                                                                       | t1-2.0           | "                                                |                                       | (1       | 1 *        | 40                                      |               | X        | X            |                        |             |             | 4            | 10 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r 1          |
| RELINQUISHED BY: (SIGNATURE)  DATE  TIME  RECEIVED FOR LABORATORY BY:  (SIGNATURE)  SAMPLE                                                                                                                                                                                                                                                                                                                                       | T2-2.0           | 70                                               |                                       | "        | 1.         | Cr                                      | Ti            | X        | X.           |                        |             | 1           | 11           | ie ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11           |
| RELINQUISHED BY: (SIGNATURE)  DATE  TIME  RECEIVED BY: (SIGNATURE)  LABORATORY CONTACT:  LABORATORY PHONE NUMBER:  (975) 798-1620  RELINQUISHED BY: (SIGNATURE)  DATE  TIME  RECEIVED FOR LABORATORY BY:  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED: () YES (MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                                  |                                       |          |            |                                         |               |          |              |                        |             |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| RELINQUISHED BY: (SIGNATURE)  DATE  TIME  RECEIVED BY: (SIGNATURE)  LABORATORY CONTACT:  LABORATORY PHONE NUMBER:  (975) 798-1620  RELINQUISHED BY: (SIGNATURE)  DATE  TIME  RECEIVED FOR LABORATORY BY:  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED: () YES (MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                                  |                                       |          |            |                                         |               | $\vdash$ | -            |                        |             | -           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| RELINQUISHED BY: (SIGNATURE)  DATE  TIME  RECEIVED BY: (SIGNATURE)  LABORATORY CONTACT:  LABORATORY PHONE NUMBER:  (975) 798-1620  RELINQUISHED BY: (SIGNATURE)  DATE  TIME  RECEIVED FOR LABORATORY BY:  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED: () YES (MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                                  |                                       | <b> </b> |            |                                         |               | -        | <u> </u>     | $\ \cdot\ $            | +           | $\vdash$    | <del> </del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| RELINQUISHED BY: (SIGNATURE)  DATE  TIME  RECEIVED BY: (SIGNATURE)  LABORATORY CONTACT:  LABORATORY PHONE NUMBER:  (975) 798-1620  RELINQUISHED BY: (SIGNATURE)  DATE  TIME  RECEIVED FOR LABORATORY BY:  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED: () YES (MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                                  |                                       |          |            |                                         |               |          |              |                        |             |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| RELINQUISHED BY: (SIGNATURE)  DATE  TIME  RECEIVED BY: (SIGNATURE)  LABORATORY CONTACT:  LABORATORY PHONE NUMBER:  (975) 798-1620  RELINQUISHED BY: (SIGNATURE)  DATE  TIME  RECEIVED FOR LABORATORY BY:  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED: () YES (MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                |                                                  |                                       |          | 16 · ·     |                                         | <u> </u>      | ╀        | -            | $\left  \cdot \right $ | _           | -           | <u> </u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| RELINQUISHED BY: (SIGNATURE)  DATE  TIME  RECEIVED BY: (SIGNATURE)  LABORATORY CONTACT:  LABORATORY PHONE NUMBER:  (975) 798-1620  RELINQUISHED BY: (SIGNATURE)  DATE  TIME  RECEIVED FOR LABORATORY BY:  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED: () YES (MO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                                  |                                       |          |            | 7 7                                     |               | +        |              | $  \cdot  $            | _           | +           | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| RELINQUISHED BY: (SIGNATURE)  DATE  TIME RECEIVED BY: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  DATE  TIME RECEIVED BY: (SIGNATURE)  LABORATORY CONTACT: LABORATORY PHONE NUMBER:  (975) 798-1620  RELINQUISHED BY: (SIGNATURE)  DATE  TIME RECEIVED FOR LABORATORY BY:  (SIGNATURE)  DATE  TIME RECEIVED FOR LABORATORY BY:  (SIGNATURE)  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED: () YES (WIND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                                  |                                       |          |            | CONDITION APPROPRI                      | AKB /         | $\top$   |              |                        |             |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| RELINQUISHED BY: (SIGNATURE)  DATE  TIME RECEIVED BY: (SIGNATURE)  RECEIVED BY: (SIGNATURE)  DATE  TIME RECEIVED BY: (SIGNATURE)  LABORATORY CONTACT: LABORATORY PHONE NUMBER:  ANGLE PLINQUISHED BY: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  DATE  TIME RECEIVED BY: (SIGNATURE)  LABORATORY CONTACT: LABORATORY PHONE NUMBER:  ANGLE PLINQUISHED BY: (SIGNATURE)  DATE  TIME RECEIVED FOR LABORATORY BY:  (SIGNATURE)  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED: () YES (MO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>         | ļ                                                | <b> </b>                              | +        |            |                                         |               | 1        | 1            |                        | $\neg$      | 1           | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| RELINQUISHED BY: (SIGNATURE)  DATE TIME RECEIVED BY: (SIGNATURE)  LABORATORY CONTACT: LABORATORY PHONE NUMBER:  ANGLA RYCLIUS (975) 798-1620  RELINQUISHED BY: (SIGNATURE)  DATE TIME RECEIVED FOR LABORATORY BY:  (SIGNATURE)  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED: ()YES (MO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | <del>                                     </del> |                                       | 1        |            | VOAS   ONG   METALS                     |               |          | lacksquare   | ╂╾╂                    | -           | +           | <del> </del> | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| RELINQUISHED BY: (SIGNATURE)  DATE TIME RECEIVED BY: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  DATE TIME RECEIVED BY: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  DATE TIME RECEIVED BY: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  DATE TIME RECEIVED FOR LABORATORY BY:  (SIGNATURE)  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED: () YES () NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                                  |                                       |          | PRES       | ERVATION                                | <del>  </del> | +-       | $\dagger$    |                        | _           | +           | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| RELINQUISHED BY: (SIGNATURE)  DATE TIME RECEIVED FOR LABORATORY BY:  (SIGNATURE)  RECEIVED FOR LABORATORY BY:  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED: ()YES (SIGNATURE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RELINOURHED BY   | (SIGNATURE                                       | Ξ)                                    | 1 .      | IME<br>III | RECEIVED BY: (SIGNATURE                 | ,             |          | <b>Charc</b> | CARPLE                 | TWT)        | 3 4         | F M          | ORATORY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ( Analytical |
| RELINQUISHED BY: (SIGNATURE)  DATE TIME RECEIVED FOR LABORATORY BY: SAMPLE ANALYSIS REQUEST SHEET ATTACHED: ()YES ()NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RELINQUISHED BY: | (SIGNATUR                                        | E)                                    | DATE     | TIME       | RECEIVED BY: (SIGNATURE                 | )             |          |              |                        | RY CO       | NTA         | CT: LAE      | 30RATORY PI<br>'75' 798'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HONE NUMBER: |
| REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RELINQUISHED BY: | (SIGNATUR                                        | E)                                    | DATE     | TIME       |                                         | Y BY:         |          | 1            | SA                     | MPLE        | ANA<br>HED: | ALYSIS I     | REQUEST SHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                                                  | · · · · · · · · · · · · · · · · · · · |          |            | REMARKS:                                |               |          |              |                        | <del></del> | -           | .,           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                                                  |                                       |          |            |                                         |               |          |              |                        |             |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |

RGA Environmental, Inc. 1466 - 66<sup>th</sup> St Emeryville, CA 94608 510-658-4363 510-834-0152 fax



| Emeryville, CA 94608 |         |     |          |          |
|----------------------|---------|-----|----------|----------|
|                      | 0114111 | 0.5 | CLICTORY | DECOPO   |
| 510-834-0152 fax     | CHAIN   | UF  | CUSTODY  | KECOKD > |
| naul.king@rgaenv.com |         |     |          | $\sim$   |

|                                        | -834-0152 fa<br>l.king@rgael |                               | (     | HAI       | N OF                                     | CUS      | 5100                           |                         | ( _ (        |         | / \ \ L                                        | √<br>√              | •   |          | PA              | GE L OF L                             |
|----------------------------------------|------------------------------|-------------------------------|-------|-----------|------------------------------------------|----------|--------------------------------|-------------------------|--------------|---------|------------------------------------------------|---------------------|-----|----------|-----------------|---------------------------------------|
| PROJECT NUMBER: 0357 SAMPLED BY: (PRII |                              |                               |       | NAME:     | , St.                                    |          |                                | NUMBER OF<br>CONTAINERS | ANAL YSISIFE |         |                                                | (0)<br>{/<br>/<br>/ |     | PRESERVA | 3 II K          | REMARKS                               |
| SAMPLE NUMBER                          | DATE                         | TIME                          | TYPE  |           | SAMPLE LO                                | CATION   |                                | KON                     |              |         | 170                                            |                     | 4   |          |                 |                                       |
| B3-3,0<br>B4-3.0<br>B6-3.0             | 7/20/20                      | 1512.<br>1447<br>1425<br>1435 |       | E .       | closely leading                          |          |                                | 1                       |              | 1 1 1   |                                                |                     |     | Tie      |                 | - RUSIH                               |
|                                        |                              |                               |       | HEAD S    | CONDITION_<br>PACE ABSENT<br>ORINATED IN | LAB      | APPROPRIA' CONTAINER PRESERVED | IN LAB                  |              |         |                                                |                     |     |          |                 |                                       |
| RELINOUISHED BY                        |                              |                               | DATE  | TIME 1230 | RECEIVED RECEIVED                        | BY: (SIC | P                              |                         | TOTA         | E MOL 1 | OF SAME<br>MEPHON<br>OF COMP<br>MEPHON<br>TOR' | tanto<br>T<br>Y CO  | NTA | T: LAB   | ORATOR'         | Y:<br>Lie And for C<br>Y PHONE NUMBER |
| RELINQUISHED BY:                       | (SIGNATUR                    | RE)                           | 7/3/X | TIME      | RECEIVED<br>(SIGNATUR<br>REMARKS:        | RE)      | PORATORY                       | PY:                     | 1/2          |         | SAM                                            | PLE                 | ANA | LYSIS R  | EQUEST<br>S ( ) | SHEET                                 |



## CHAIN-OF-CUSTODY RECORD

Page 1 of 1

07/31/2006

WorkOrder: 0607547

ClientID: RGAE

EDF: NO

Date Received:

Report to: Bill to: **Requested TAT:** 2 days

Paul King Email: Accounts Payable **RGA Environmental** 

TEL: (510) 547-7771 FAX: (510) 547-1983 **RGA Environmental** ProjectNo: #0387; 2100 Franklin St. 1466 66th Street

1466 66th Street Emeryville, CA 94608 PO: Emeryville, CA 94608 Date Printed: 07/31/2006

|             |              |        |                        |      |   |   |   | Re | questec | d Tests | See leg | end belo | ow) |    |    |    |
|-------------|--------------|--------|------------------------|------|---|---|---|----|---------|---------|---------|----------|-----|----|----|----|
| Sample ID   | ClientSampID | Matrix | <b>Collection Date</b> | Hold | 1 | 2 | 3 | 4  | 5       | 6       | 7       | 8        | 9   | 10 | 11 | 12 |
|             |              |        |                        |      |   |   |   |    |         |         |         |          |     |    | _  |    |
| 0607547-001 | B3-3.0       | Soil   | 7/20/06 3:12:00 PM     |      | Α | Α |   |    |         |         |         |          |     |    |    |    |
| 0607547-002 | B4-3.0       | Soil   | 7/20/06                |      | Α | Α |   |    |         |         |         |          |     |    |    |    |
| 0607547-003 | B5-3.0       | Soil   | 7/20/06                |      | Ā | A |   |    |         |         |         |          |     |    |    |    |
| 0607547-004 | B6-3.0       | Soil   | 7/20/06                |      | A | A |   |    |         |         |         |          |     |    |    |    |

#### **Test Legend:**

| 1 G-MBTEX_S | 2 TPH(DMO)_S | 3 | 4 | 5  |  |
|-------------|--------------|---|---|----|--|
| 6           | 7            | 8 | 9 | 10 |  |
| 11          | 12           |   |   |    |  |

Prepared by: Melissa Valles

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

RGA Environmental
Client Project ID: #0387; 2100 Franklin St.
Date Sampled: 07/20/06
Date Received: 07/31/06

Client Contact: Paul King
Date Extracted: 07/31/06
Client P.O.:
Date Analyzed 08/01/06

#### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE\*

| Extraction | method SW5030B                                      | runge ( | The state of the s | ·    | W8021B/8015Cm |         |              | Work Ore | der: 06 | 07547 |
|------------|-----------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|---------|--------------|----------|---------|-------|
| Lab ID     | Client ID                                           | Matrix  | TPH(g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MTBE | Benzene       | Toluene | Ethylbenzene | Xylenes  | DF      | % SS  |
| 001A       | B3-3.0                                              | S       | 11,g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND   | ND            | ND      | ND           | ND       | 1       | 92    |
| 002A       | B4-3.0                                              | S       | 26,g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND   | ND            | ND      | ND           | ND       | 1       | 90    |
| 003A       | B5-3.0                                              | S       | 1.4,g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND   | ND            | ND      | ND           | ND       | 1       | 96    |
| 004A       | B6-3.0                                              | S       | 6.0,g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND   | ND            | ND      | ND           | ND       | 1       | 97    |
|            |                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |               |         |              |          |         |       |
|            |                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |               |         |              |          |         |       |
|            |                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |               |         |              |          |         |       |
|            |                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |               |         |              |          |         |       |
|            |                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |               |         |              |          |         |       |
|            |                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |               |         |              |          |         |       |
|            |                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |               |         |              |          |         |       |
|            |                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |               | 1       |              |          |         |       |
|            |                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |               |         |              |          |         |       |
|            |                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |               |         |              |          |         |       |
|            |                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |               |         |              |          |         |       |
|            |                                                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |               |         |              |          |         |       |
|            | orting Limit for DF =1;<br>neans not detected at or | W       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA   | NA            | NA      | NA           | NA       | 1       | ug/L  |
|            | ve the reporting limit                              | S       | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05 | 0.005         | 0.005   | 0.005        | 0.005    | 1       | mg/Kg |

<sup>\*</sup> water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis.



<sup>#</sup> cluttered chromatogram; sample peak coelutes with surrogate peak.

| RGA Environ         | mental                    | -             | ID: #0387; 2100 Franklin    | Date Sampled: 07/     | /20/06     |           |
|---------------------|---------------------------|---------------|-----------------------------|-----------------------|------------|-----------|
| 1466 66th Stre      | eet                       | St.           |                             | Date Received: 07/    | /31/06     |           |
| Emeryville, CA      | N 0/1608                  | Client Contac | ct: Paul King               | Date Extracted: 07/   | /31/06     |           |
| Emeryvine, CA       | 1 94000                   | Client P.O.:  |                             | Date Analyzed 07/     | /31/06-08/ | 01/06     |
|                     | Diesel (C10-23) and Oil ( |               | Extractable Hydrocarbons as | Diesel and Motor Oil* |            |           |
| Extraction method S | SW3550C                   | Analytic      | al methods SW8015C          |                       | Work Order | : 0607547 |
| Lab ID              | Client ID                 | Matrix        | TPH(d)                      | TPH(mo)               | DF         | % SS      |
| 0607547-001A        | В3-3.0                    | S             | 1100,m                      | 1100                  | 10         | 101       |
| 0607547-002A        | B4-3.0                    | 1500          | 20                          | 87                    |            |           |
| 0607547-003A        | B5-3.0                    | S             | 300,g,b                     | 380                   | 10         | 81        |
| 0607547-004A        | B6-3.0                    | S             | 740,m                       | 660                   | 10         | 80        |
|                     |                           |               |                             |                       |            |           |
|                     |                           |               |                             |                       |            |           |
|                     |                           |               |                             |                       |            |           |
|                     |                           |               |                             |                       |            |           |
|                     |                           |               |                             |                       |            |           |
|                     |                           |               |                             |                       |            |           |
|                     |                           |               |                             |                       |            |           |
|                     |                           |               |                             |                       |            |           |
|                     |                           |               |                             |                       |            |           |
|                     |                           |               |                             |                       |            |           |
|                     |                           |               |                             |                       |            |           |
|                     |                           |               |                             |                       |            |           |
| ,                   |                           | <u>'</u>      |                             |                       |            | •         |
| Rep                 | porting Limit for DF =1;  | W             | NA                          | NA                    | ug         | :/L       |

1.0

mg/Kg

5.0

ND means not detected at or

above the reporting limit

<sup>\*</sup> water samples are reported in  $\mu$ g/L, wipe samples in  $\mu$ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu$ g/L.

<sup>#</sup> cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m)

## QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0607547

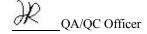
| EPA Method: SW8021B/8015 | Cm E   | xtraction | : SW5030 | В      | Batch  | ID: 22915 | 1      | Spiked Sa | mple ID 0607 | ′536-017a    |
|--------------------------|--------|-----------|----------|--------|--------|-----------|--------|-----------|--------------|--------------|
| Analyte                  | Sample | Spiked    | MS       | MSD    | MS-MSD | LCS       | LCSD   | LCS-LCSD  | Acceptance   | Criteria (%) |
| , mary to                | mg/Kg  | mg/Kg     | % Rec.   | % Rec. | % RPD  | % Rec.    | % Rec. | % RPD     | MS / MSD     | LCS/LCSD     |
| TPH(btex <sup>£</sup>    | ND     | 0.60      | 103      | 108    | 5.11   | 104       | 100    | 3.64      | 70 - 130     | 70 - 130     |
| MTBE                     | ND     | 0.10      | 97.7     | 99.5   | 1.85   | 91.5      | 97.1   | 5.92      | 70 - 130     | 70 - 130     |
| Benzene                  | ND     | 0.10      | 91.4     | 94.6   | 3.42   | 91        | 94.6   | 3.79      | 70 - 130     | 70 - 130     |
| Toluene                  | ND     | 0.10      | 90.2     | 95.9   | 6.19   | 79.6      | 83.1   | 4.22      | 70 - 130     | 70 - 130     |
| Ethylbenzene             | ND     | 0.10      | 97.2     | 101    | 4.31   | 96.1      | 101    | 4.55      | 70 - 130     | 70 - 130     |
| Xylenes                  | ND     | 0.30      | 90.3     | 95.3   | 5.39   | 90.3      | 95     | 5.04      | 70 - 130     | 70 - 130     |
| %SS:                     | 83     | 0.10      | 97       | 95     | 2.08   | 94        | 98     | 4.17      | 70 - 130     | 70 - 130     |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 22915 SUMMARY

| Sample ID    | Date Sampled    | Date Extracted | Date Analyzed   | Sample ID    | Date Sampled | Date Extracted | Date Analyzed   |
|--------------|-----------------|----------------|-----------------|--------------|--------------|----------------|-----------------|
| 0607547-001A | 7/20/06 3:12 PM | 7/31/06        | 8/01/06 5:22 AM | 0607547-002A | 7/20/06      | 7/31/06        | 8/01/06 6:22 AM |
| 0607547-003A | 7/20/06         | 7/31/06        | 8/01/06 6:52 AM | 0607547-004A | 7/20/06      | 7/31/06        | 8/01/06 7:51 AM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = <math>100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.



## QC SUMMARY REPORT FOR SW8015C

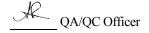
W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0607547

| EPA Method SW8015C | 5C Extraction SW3550C |        |        |        | BatchID: 22896 |        |        | Spiked Sample ID 0607518-001A |            |              |
|--------------------|-----------------------|--------|--------|--------|----------------|--------|--------|-------------------------------|------------|--------------|
| Analyte            | Sample                | Spiked | MS     | MSD    | MS-MSD         | LCS    | LCSD   | LCS-LCSD                      | Acceptance | Criteria (%) |
| Analyte            | mg/Kg                 | mg/Kg  | % Rec. | % Rec. | % RPD          | % Rec. | % Rec. | % RPD                         | MS / MSD   | LCS / LCSD   |
| TPH(d)             | 1.3                   | 20     | 117    | 117    | 0              | 111    | 110    | 0.730                         | 70 - 130   | 70 - 130     |
| %SS:               | 99                    | 50     | 103    | 103    | 0              | 103    | 102    | 0.806                         | 70 - 130   | 70 - 130     |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 22896 SUMMARY

| Sample ID    | Date Sampled    | Date Extracted | Date Analyzed   | Sample ID    | Date Sampled | Date Extracted | Date Analyzed   |
|--------------|-----------------|----------------|-----------------|--------------|--------------|----------------|-----------------|
| 0607547-001A | 7/20/06 3:12 PM | 7/31/06        | 7/31/06 9:55 PM | 0607547-002A | 7/20/06      | 7/31/06        | 8/01/06 2:29 AM |
| 0607547-003A | 7/20/06         | 7/31/06        | 8/01/06 4:47 AM | 0607547-004A | 7/20/06      | 7/31/06        | 7/31/06 9:55 PM |


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = <math>100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.





RGA Environmental, Inc. 1466 - 66<sup>th</sup> St Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com bolar ceneralin

PAGE \_\_\_ OF \_\_

CHAIN OF CUSTODY RECORD

PROJECT NUMBER: PROJECT NAME: 0387/BRT Brandowine Realty Trust-Ochland SAMPLED BY: (PRINTED AND SIGNATURE) REMARKS Paul H. Kina SAMPLE LOCATION TIME TYPE DATE SAMPLE NUMBER TUT Soil Normal 8/11/06 C1-3.0 8/10/06 CZ- 3.0 TOTAL NO. OF SAMPLES RELINQUISHED BY: (SIGNATURE) RECEIVED BY: (SIGNATURE) LABORATORY: DATE TIME (THIS SHIPMENT) 8/11 9:17 Mc Compbell Analytical, TOTAL NO. OF CONTAINERS (THIS SHIPMENT) - Q H. King LABORATORY CONTACT: LABORATORY PHONE NUMBER: RELINQUISHED BY: (SIGNATURE) DATE TIME RECEIVED BY: (SIGNATURE) Angela 12, delins (925) 252-9262 SAMPLE ANALYSIS REQUEST SHEET RELINQUISHED BY: (SIGNATURE) RECEIVED FOR LABORATORY BY: DATE TIME ATTACHED: ( )YES (X)NO (SIGNATURE) APPROPRIATE **REMARKS:** HEAD SPACE ABSENT\_\_\_ DECHLORINATED IN LAB\_\_\_\_PRESERVED IN LAB\_ VOAS | O&G | METALS | OTHER PRESERVATION\_

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

Paul King

## CHAIN-OF-CUSTODY RECORD

Page 1 of 1

5 days

08/11/2006

WorkOrder: 0608290

ClientID: RGAE

EDF: NO

**Requested TAT:** 

Date Received:

Report to: Bill to:

Email: Accounts Payable

RGA Environmental
TEL: (510) 547-7771 FAX: (510) 547-1983 RGA Environmental
1466 66th Street ProjectNo: #0387; BRT; Brandywine Reality Trust1466 66th Street

Emeryville, CA 94608 PO: Emeryville, CA 94608 Date Printed: **08/11/2006** 

Requested Tests (See legend below) ClientSampID 1 2 3 10 Sample ID 11 12 Matrix Collection Date Hold 0608290-001 C1-3.0 Soil 8/11/06 Α Α C2-3.0 0608290-002 Soil 8/11/06 Α Α

#### Test Legend:

| 1 G-MBTEX_S | 2 TPH(DMO)_S | 3 | 4 | 5  |  |
|-------------|--------------|---|---|----|--|
| 6           | 7            | 8 | 9 | 10 |  |
| 11          | 12           |   |   |    |  |

Prepared by: Rosa Venegas

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Client Project ID: #0387; BRT; **RGA** Environmental Date Sampled: 08/11/06 Brandywine Reality Trust-Oakland Date Received: 08/11/06 1466 66th Street Client Contact: Paul King Date Extracted: 08/22/06 Emeryville, CA 94608 Client P.O.: Date Analyzed: 08/22/06 Polychlorinated Biphenyls (PCBs) Aroclors by GC-ECD\* Extraction Method: SW3550C Analytical Method: SW8082A Work Order: 0608290 Lab ID 0608290-001A 0608290-002A Client ID C1-3.0 C2-3.0 Reporting Limit for DF =1 S S Matrix DF 1 1 S W Compound Concentration ug/L mg/kg Aroclor1016 0.025 ND ND NA Aroclor1221 ND ND 0.025 NA Aroclor1232 0.025 ND ND NA Aroclor1242 ND ND 0.025 NA Aroclor1248 0.025 ND ND NA Aroclor1254 ND ND 0.025 NA Aroclor1260 ND ND 0.025 NA PCBs, total ND ND 0.025 NA **Surrogate Recoveries (%)** %SS: 103 113 Comments o

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

<sup>\*</sup> water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L.

<sup>#</sup> surrogate diluted out of range or surrogate coelutes with another peak.

<sup>(</sup>a) PCB aroclor 1016; (b) PCB aroclor 1221; (c) PCB aroclor 1232; (d) PCB aroclor 1242; (e) PCB aroclor 1248; (f) PCB aroclor 1254; (g) PCB aroclor 1260; (h) a lighter than water immiscible sheen/product is present; (i) liquid sample that contains >~1 vol. % sediment; (j) sample diluted due to high organic content; (k) p,p,- is the same as 4,4,-; (l) florisil (EPA 3620) cleanup; (m) silica-gel (EPA 3630) cleanup; (n) elemental sulfur (EPA 3660) cleanup; (o) sulfuric acid permanganate (EPA 3665) cleanup; (r) results are reported on a dry weight basis; (p) see attached narrative.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

|                   | when ou                  | lanty Counts |              |                               | Тетері                 | 1011e. 8/7-232-920      | 32 Fax. 923-232-9 | 209          |         |        |  |
|-------------------|--------------------------|--------------|--------------|-------------------------------|------------------------|-------------------------|-------------------|--------------|---------|--------|--|
| RGA Environmental |                          |              |              | ject ID: #038<br>ust- Oakland | Date Sampled: 08/11/06 |                         |                   |              |         |        |  |
| 1466 66           | th Street                | Reality 11   | ust-Oakiaiiu |                               |                        | Date Received: 08/11/06 |                   |              |         |        |  |
| Emervy            | ille, CA 94608           |              | Client Cor   | ntact: Paul Ki                | ing                    |                         | Date Extracte     | ed: 08/11/06 |         |        |  |
| Elliery           | 10, 6175 1000            |              | Client P.O   | .:                            |                        |                         | Date Analyz       | ed 08/13/06- | -08/16  | 6/06   |  |
|                   | Gasoline                 | e Range (C   | C6-C12) Vola | atile Hydroca                 | rbons as Gaso          | line with BTI           | EX and MTBE       | *            |         |        |  |
| Extraction        | method SW5030B           |              | Anal         | ytical methods SV             | W8021B/8015Cm          |                         |                   | Work Ord     | ler: 06 | 508290 |  |
| Lab ID            | Client ID                | Matrix       | TPH(g)       | MTBE                          | Benzene                | Toluene                 | Ethylbenzene      | Xylenes      | DF      | % SS   |  |
| 001A              | C1-3.0                   | S            | ND           | ND                            | ND                     | ND                      | ND                | ND           | 1       | 82     |  |
| 002A              | C2-3.0                   | S            | 4.2,g        | ND                            | ND                     | ND                      | ND                | ND           | 1       | 98     |  |
|                   |                          |              |              |                               |                        |                         |                   |              |         |        |  |
|                   |                          |              |              |                               |                        |                         |                   |              |         |        |  |
|                   |                          |              |              |                               |                        |                         |                   |              |         |        |  |
|                   |                          |              |              |                               |                        |                         |                   |              |         |        |  |
|                   |                          |              |              |                               |                        |                         |                   |              |         |        |  |
|                   |                          |              |              |                               |                        |                         |                   |              |         |        |  |
|                   |                          |              |              |                               |                        |                         |                   |              |         |        |  |
|                   |                          |              |              |                               |                        |                         |                   |              |         |        |  |
|                   |                          |              |              |                               |                        |                         |                   |              |         |        |  |
|                   |                          |              |              |                               |                        |                         |                   |              |         |        |  |
|                   |                          |              |              |                               |                        |                         |                   |              |         |        |  |
|                   |                          |              |              |                               |                        |                         |                   |              |         |        |  |
|                   |                          |              |              |                               |                        |                         |                   |              |         |        |  |
|                   |                          |              |              |                               |                        |                         |                   |              |         |        |  |
|                   | orting Limit for DF =1;  | W            | NA           | NA                            | NA                     | NA                      | NA                | NA           | 1       | ug/L   |  |
|                   | means not detected at or | S            | 1.0          | 0.05                          | 0.005                  | 0.005                   | 0.005             | 0.005        | 1       | mg/Kg  |  |

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis.



above the reporting limit

<sup>\*</sup> water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

<sup>#</sup> cluttered chromatogram; sample peak coelutes with surrogate peak.

RGA Environmental

Client Project ID: #0387; BRT;
Brandywine Reality Trust- Oakland

Date Sampled: 08/11/06

Date Received: 08/11/06

Client Contact: Paul King

Date Extracted: 08/11/06

Client P.O.:

Date Analyzed 08/13/06

#### Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil\*

| Extraction method SW3550 | OC .      | Analytical me | Analytical methods SW8015C |         |    |      |  |
|--------------------------|-----------|---------------|----------------------------|---------|----|------|--|
| Lab ID                   | Client ID | Matrix        | TPH(d)                     | TPH(mo) | DF | % SS |  |
| 0608290-001A             | C1-3.0    | S             | 1.2,b                      | ND      | 1  | 97   |  |
| 0608290-002A             | C2-3.0    | S             | 340,g,b                    | 430     | 20 | 80   |  |
|                          |           |               |                            |         |    |      |  |
|                          |           |               |                            |         |    |      |  |
|                          |           |               |                            |         |    |      |  |
|                          |           |               |                            |         |    |      |  |
|                          |           |               |                            |         |    |      |  |
|                          |           |               |                            |         |    |      |  |
|                          |           |               |                            |         |    |      |  |
|                          |           |               |                            |         |    |      |  |
|                          |           |               |                            |         |    |      |  |
|                          |           |               |                            |         |    |      |  |
|                          |           |               |                            |         |    |      |  |
|                          |           |               |                            |         |    |      |  |
|                          |           |               |                            |         |    |      |  |
|                          |           |               |                            |         |    |      |  |

| Reporting Limit for DF =1;  | W | NA  | NA  | ug/L  |
|-----------------------------|---|-----|-----|-------|
| ND means not detected at or | C | 1.0 | 5.0 | mg/Kg |
| above the reporting limit   | 3 | 1.0 | 3.0 | mg/Kg |

<sup>\*</sup> water samples are reported in  $\mu$ g/L, wipe samples in  $\mu$ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu$ g/L.

<sup>#</sup> cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m)

## QC SUMMARY REPORT FOR SW8082A

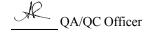
W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0608290

| EPA Method SW8082A | Extraction SW3550C |        |        |        | BatchID: 23291 |        |        | Spiked Sample ID 0608431-011A |            |              |
|--------------------|--------------------|--------|--------|--------|----------------|--------|--------|-------------------------------|------------|--------------|
| Analyte            | Sample             | Spiked | MS     | MSD    | MS-MSD         | LCS    | LCSD   | LCS-LCSD                      | Acceptance | Criteria (%) |
| Analyte            | mg/kg              | mg/kg  | % Rec. | % Rec. | % RPD          | % Rec. | % Rec. | % RPD                         | MS / MSD   | LCS / LCSD   |
| PCBs, total        | ND                 | 0.075  | 89.7   | 86.7   | 3.30           | 93.4   | 92     | 1.54                          | 70 - 130   | 70 - 130     |
| %SS:               | 100                | 0.050  | 88     | 88     | 0              | 88     | 88     | 0                             | 70 - 130   | 70 - 130     |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 23291 SUMMARY

| Sample ID    | Date Sampled | Date Extracted | Date Analyzed   | Sample ID    | Date Sampled | Date Extracted | Date Analyzed   |
|--------------|--------------|----------------|-----------------|--------------|--------------|----------------|-----------------|
| 0608290-001A | 8/11/06      | 6 8/22/06      | 8/22/06 4:30 PM | 0608290-002A | 8/11/06      | 8/22/06        | 8/22/06 5:28 PM |


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.



## QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0608290

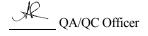
| EPA Method SW8021B/8015 | Cm E   | Extraction SW5030B |        |        | Batch  | ID: 23179 | )      | Spiked Sample ID 0608292-002A |            |              |  |
|-------------------------|--------|--------------------|--------|--------|--------|-----------|--------|-------------------------------|------------|--------------|--|
| Analyte                 | Sample | Spiked             | MS     | MSD    | MS-MSD | LCS       | LCSD   | LCS-LCSD                      | Acceptance | Criteria (%) |  |
| , analyte               | mg/Kg  | mg/Kg              | % Rec. | % Rec. | % RPD  | % Rec.    | % Rec. | % RPD                         | MS / MSD   | LCS / LCSD   |  |
| TPH(btex <sup>£</sup>   | ND     | 0.60               | 114    | 106    | 7.57   | 117       | 116    | 0.868                         | 70 - 130   | 70 - 130     |  |
| MTBE                    | ND     | 0.10               | 85.7   | 81.1   | 5.52   | 81.5      | 87.1   | 6.66                          | 70 - 130   | 70 - 130     |  |
| Benzene                 | ND     | 0.10               | 105    | 102    | 3.32   | 105       | 108    | 2.86                          | 70 - 130   | 70 - 130     |  |
| Toluene                 | ND     | 0.10               | 105    | 101    | 3.19   | 104       | 108    | 3.23                          | 70 - 130   | 70 - 130     |  |
| Ethylbenzene            | ND     | 0.10               | 110    | 106    | 3.72   | 109       | 112    | 2.10                          | 70 - 130   | 70 - 130     |  |
| Xylenes                 | ND     | 0.30               | 113    | 110    | 2.99   | 110       | 110    | 0                             | 70 - 130   | 70 - 130     |  |
| %SS:                    | 82     | 0.10               | 84     | 87     | 3.51   | 92        | 85     | 7.91                          | 70 - 130   | 70 - 130     |  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 23179 SUMMARY

| Sample ID    | Date Sampled | Date Extracted | Date Analyzed    | Sample ID    | Date Sampled | Date Extracted | Date Analyzed   |
|--------------|--------------|----------------|------------------|--------------|--------------|----------------|-----------------|
| 0608290-001A | 8/11/06      | 8/11/06        | 3/13/06 11:06 PM | 0608290-002A | 8/11/06      | 8/11/06        | 8/16/06 5:33 AM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.



## QC SUMMARY REPORT FOR SW8015C

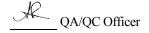
W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0608290

| EPA Method SW8015C | E      | xtraction | SW3550 | С      | Batch  | hID: 23183 Spiked Sample ID 060828 |        |          |            | 3285-016A    |
|--------------------|--------|-----------|--------|--------|--------|------------------------------------|--------|----------|------------|--------------|
| Analyte            | Sample | Spiked    | MS     | MSD    | MS-MSD | LCS                                | LCSD   | LCS-LCSD | Acceptance | Criteria (%) |
| , mary to          | mg/Kg  | mg/Kg     | % Rec. | % Rec. | % RPD  | % Rec.                             | % Rec. | % RPD    | MS / MSD   | LCS / LCSD   |
| TPH(d)             | 1.9    | 20        | 94.6   | 92.7   | 1.83   | 101                                | 102    | 0.898    | 70 - 130   | 70 - 130     |
| %SS:               | 94     | 50        | 98     | 96     | 1.99   | 98                                 | 99     | 0.164    | 70 - 130   | 70 - 130     |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 23183 SUMMARY

| Sample ID    | Date Sampled | Date Extracted | Date Analyzed    | Sample ID    | Date Sampled | Date Extracted | Date Analyzed   |
|--------------|--------------|----------------|------------------|--------------|--------------|----------------|-----------------|
| 0608290-001A | 8/11/06      | 6 8/11/06      | 3/13/06 11:40 AM | 0608290-002A | 8/11/06      | 8/11/06        | 8/13/06 1:01 AM |


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = <math>100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.



|                                           | McCampbell     | Analyti   | cal, Inc.    |                | Tele                                      | phone: 925-798-162 | 7, Pacheco, CA 9455<br>20 Fax: 925-798-1<br>E-mail: main@meca | 622          |         |       |
|-------------------------------------------|----------------|-----------|--------------|----------------|-------------------------------------------|--------------------|---------------------------------------------------------------|--------------|---------|-------|
| RGA E                                     | nvironmental   |           | Client Proj  | ect ID:        | #BRT13945; 210                            | 00 Franklin        | Date Sample                                                   | d: 05/23/06  | j       |       |
| 1466 66                                   | oth Street     |           |              |                |                                           |                    | Date Receiv                                                   | ed: 05/23/06 | 5       |       |
| Emervy                                    | ille, CA 94608 |           | Client Con   | ıtact: Eric    | c Olson                                   |                    | Date Extracted: 05/24/06                                      |              |         |       |
| ,                                         | ,              |           | Client P.O   | • •            |                                           |                    | Date Analyz                                                   | ed: 05/24/06 |         |       |
|                                           | Gasoline       | Range (Co | 5-C12) Volat | tile Hydr      | ocarbons as Ga                            | soline with B      | TEX and MT                                                    | BE*          |         |       |
| Extraction method: SW5030B Analytical met |                |           |              | tical methods: | methods: SW8021B/8015Cm Work Order:       |                    |                                                               |              | ler: 06 | 05499 |
| Lab ID                                    | Client ID      | Matrix    | TPH(g)       | MTBE           | MTBE Benzene Toluene Ethylbenzene Xylenes |                    |                                                               |              |         | % SS  |

| ***    | od: SW5030B         |        |                                       | tical methods: SV | V8021B/8015Cm |         |              | Work Order: 06054 |    |         |
|--------|---------------------|--------|---------------------------------------|-------------------|---------------|---------|--------------|-------------------|----|---------|
| Lab ID | Client ID           | Matrix | TPH(g)                                | MTBE              | Benzene       | Toluene | Ethylbenzene | Xylenes           | DF | % S     |
| 001A   | B1-Water            | w      | 54,g,h                                | ND                | ND            | ND      | ND           | ND                | 1  | 108     |
|        |                     |        |                                       |                   |               |         |              |                   |    |         |
|        |                     |        |                                       |                   |               |         |              |                   |    |         |
|        |                     |        |                                       |                   |               |         |              |                   |    |         |
|        |                     |        | · · · · · · · · · · · · · · · · · · · |                   |               |         |              |                   |    |         |
|        |                     |        |                                       |                   |               |         |              |                   |    |         |
| -      |                     |        |                                       |                   |               |         |              |                   |    |         |
| ~      |                     |        |                                       |                   |               |         |              |                   |    |         |
|        |                     |        |                                       |                   |               |         |              |                   |    |         |
|        |                     |        |                                       |                   |               |         |              |                   |    |         |
|        |                     |        |                                       |                   |               |         |              | 410               |    |         |
|        |                     |        |                                       |                   |               |         |              |                   |    |         |
|        |                     |        |                                       |                   |               |         |              |                   |    |         |
|        |                     |        |                                       |                   |               |         |              |                   |    |         |
|        |                     |        |                                       |                   |               |         |              |                   |    | <u></u> |
|        | ng Limit for DF =1; | W      | 50                                    | 5.0               | 0.5           | 0.5     | 0.5          | 0.5               | 1  | μg/     |

| ND means not detected at or | W | 50 | 5.0 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | μg/L  |
|-----------------------------|---|----|-----|-----|-----|-----|-----|---|-------|
| above the reporting limit   | S | NA | NA  | NA  | NA  | NA  | NA  | 1 | mg/Kg |
|                             |   |    |     |     |     |     |     |   |       |

<sup>•</sup> water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

Angela Rydelius, Lab Manager

<sup>#</sup> cluttered chromatogram; sample peak coelutes with surrogate peak.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

| RGA Environmental          |                          | Client Pro | oject ID: #BRT13      | 3945; 2100 | Date Sampled:   | 05/23/06        |         |
|----------------------------|--------------------------|------------|-----------------------|------------|-----------------|-----------------|---------|
| 1466 66th Street           |                          | Franklin   |                       |            | Date Received:  | 05/23/06        |         |
| Emeryville, CA 94608       |                          | Client C   | ontact: Eric Olso     | n          | Date Extracted: | 05/23/06        |         |
| Emery vine, erry 1000      |                          | Client P.  | O.:                   | 05/23/06   |                 |                 |         |
| Diesel (C10-23) and        | d Oil (C                 | C18+) Ran  | · Oil*                |            |                 |                 |         |
| Extraction Method: SW3510C |                          | Anal       | lytical Method: SW801 | 5C         |                 | Work Order:     | 0605499 |
| Lab ID                     | 06054                    | 99-001B    |                       |            |                 |                 |         |
| Client ID                  | B1-                      | Water      |                       |            |                 | Reporting<br>DF |         |
| Matrix                     |                          | W          |                       |            |                 |                 |         |
| DF                         |                          | 10         |                       |            |                 | S               | W       |
| Compound                   |                          |            | Conce                 | entration  |                 | ug/kg           | μg/L    |
| TPH(bo)                    | 96                       | 5,000      |                       |            |                 | NA              | 50      |
| TPH(d)                     | 64,00                    | 00,b,g,h   |                       |            |                 | NA              | 50      |
| TPH(mo)                    | 57                       | 7,000      |                       |            |                 | NA              | 250     |
|                            | Surrogate Recoveries (%) |            |                       |            |                 |                 |         |
| %SS:                       |                          | 102        |                       |            |                 |                 |         |
| Comments                   | b                        | o,g,h      |                       |            |                 |                 |         |

<sup>\*</sup> water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

<sup>#</sup> cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see Case Narrative.



110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-795-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

### QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0605499

| EPA Method: \$W8021B/  | EPA Method: SW8021B/8015Cm Extraction: SW5030B |        |        |        |        |        |        | Spiked Sample ID: 0605501-001G |            |                |  |
|------------------------|------------------------------------------------|--------|--------|--------|--------|--------|--------|--------------------------------|------------|----------------|--|
| Analyte                | Sample                                         | Spiked | MS     | MSD    | MS-MSD | LCS    | LCSD   | LCS-LCSD                       | Acceptance | e Criteria (%) |  |
|                        | µg/L                                           | µg/∟   | % Rec. | % Rec. | % RPD  | % Rec. | % Rec. | % RPD                          | MS / MSD   | LCS / LCSD     |  |
| TPH(btex) <sup>£</sup> | ND                                             | 60     | 105    | 103    | 2.21   | 102    | 103    | 1.36                           | 70 - 130   | 70 - 130       |  |
| МТВЕ                   | ND                                             | 10     | 104    | 104    | 0      | 111    | 106    | 4.67                           | 70 - 130   | 70 - 130       |  |
| Benzene                | ND                                             | 10     | 107    | 102    | 5.10   | 111    | 106    | 4.09                           | 70 - 130   | 70 - 130       |  |
| Toluene                | ND                                             | 10     | 101    | 95     | 5.99   | 104    | 101    | 3.02                           | 70 - 130   | 70 - 130       |  |
| Ethylbenzene           | ND                                             | 10     | 108    | 102    | 5.79   | 110    | 107    | 2.99                           | 70 - 130   | 70 - 130       |  |
| Xylenes                | ND                                             | 30     | 100    | 95.3   | 4.78   | 100    | 99.7   | 0.334                          | 70 - 130   | 70 - 130       |  |
| %SS:                   | 106                                            | 10     | 103    | 103    | 0      | 107    | 104    | 2.92                           | 70 - 130   | 70 - 130       |  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 21856 SUMMARY

| Sample ID    | Date Sampled | Date Extracted | Date Analyzed    | Sample ID | Date Sampled | Date Extracted | Date Analyzed |
|--------------|--------------|----------------|------------------|-----------|--------------|----------------|---------------|
| 0605499-001A | 5/23/0       | 5 5/24/06      | 5/24/06 11:55 AM |           | (A T) (A)    |                |               |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coefutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

QA/QC Officer



110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

### QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0605499

| EPA Method: SW8015C | E      | xtraction | : SW3510 | С             | Batcl  | nID: 21846 |        | Spiked Sample ID: N/A |            |                |  |
|---------------------|--------|-----------|----------|---------------|--------|------------|--------|-----------------------|------------|----------------|--|
| Analyte             | Sample | Spiked    | MS       | MSD           | MS-MSD | LCS        | LCSD   | LCS-LCSD              | Acceptance | e Criteria (%) |  |
|                     | µg/L   | μg/L      | % Rec.   | % Rec. % Rec. |        | % Rec.     | % Rec. | % RPD                 | MS / MSD   | LCS / LCSD     |  |
| TPH(d)              | N/A    | 1000      | N/A      | N/A           | N/A    | 97.9       | 102    | 3.87                  | N/A        | 70 - 130       |  |
| %SS:                | N/A    | 2500      | N/A      | N/A           | N/A    | 96         | 99     | 3.62                  | N/A        | 70 - 130       |  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

### **BATCH 21846 SUMMARY**

| Sample ID    | Date Sampled | Date Extracted | Date Analyzed   | Sample ID | Date Sampled | Date Extracted | Date Analyzed |
|--------------|--------------|----------------|-----------------|-----------|--------------|----------------|---------------|
| 0605499-001B | 5/23/06      | 5 5/23/06      | 5/23/06 8:55 PM |           |              |                |               |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer



RGA Environmental, Inc. 1466 - 68<sup>th</sup> St Emeryville, CA 94608 510-658-4363 510-834-0152 fax naul kino@rgaeny.com

CHAIN OF CUSTODY RECORD

| pa                                        | ul.king@rgaer | IV.COITI |                |              |                                  |                                         |            |       | V                                        | 0              |      |      |        | <u> </u> | AUE _  | L Ur  | <del></del> |
|-------------------------------------------|---------------|----------|----------------|--------------|----------------------------------|-----------------------------------------|------------|-------|------------------------------------------|----------------|------|------|--------|----------|--------|-------|-------------|
| PROJECT NUMBER: BRT 1394; SAMPLED BY: (PR | INTED AND     | <u></u>  |                | NAME:        | ST.                              | NUMBER OF                               | AWAL YSICH | 100   | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |                | //   | //   | PRESER | MENT     | RE     | MARKS |             |
| SAMPLE NUMBER                             | DATE          | TIME     | TYPE           |              | SAMPLE LOCATION                  | N S S S S S S S S S S S S S S S S S S S | 10,00      |       |                                          | /              |      | /_   | / ª    |          |        |       |             |
| BI-water                                  | 423-06        |          | Water          | Borch        | ele In UST PIT                   | 7                                       | X          | +     |                                          |                |      |      | FCE    | 24       | Hour   | Rush  |             |
|                                           |               |          |                |              |                                  |                                         |            |       |                                          |                |      |      |        |          |        |       |             |
|                                           |               |          |                |              |                                  |                                         |            |       |                                          |                |      |      |        |          |        |       |             |
|                                           |               |          |                |              |                                  |                                         |            |       |                                          |                |      |      |        |          |        |       |             |
|                                           |               |          |                |              |                                  |                                         |            |       |                                          |                |      |      |        |          |        |       |             |
|                                           |               |          |                |              |                                  |                                         | -          | -     |                                          |                |      |      |        |          |        | ,     | ****        |
|                                           |               |          |                | HBAI         | SPACE ABSENT CONTA               | PRIATE<br>INERS<br>IRVEL IN LAB         |            |       |                                          |                |      |      |        |          |        |       |             |
|                                           |               | -        |                | PRES         | SERVATION YOAS ORG META          | LS CITHER                               | -          |       | -                                        |                |      |      |        |          |        |       |             |
| RELIDENTS FEM BY:                         | SIGNATUR      | ]<br>E)  | DATE<br>5-23-6 | TIME<br>S:43 | RECEIVED BY: (SIGNAT)            | IRE)                                    | TOT        | (THES | ) 0F<br>3>67)<br>0F (<br>2-67)           | MENT)<br>MENT) | MERS |      | 7 M    | Cam      | pell   | Analy |             |
| RELINQUISHED BY:                          | (SIGNATUR     | E)       | DATE           | TIME         | RECEIVED BY: (SIGNATU            | IRE)                                    | LA         | 108   | RATO                                     | )RY            | COI  | NTAI | CT: LA | BORATO   | RY PHO | 16 20 | 186         |
| RELINQUISHED BY:                          | (SIGNATUR     | E)       | DATE           | TIME         | RECEIVED FOR LABORAT (SIGNATURE) | гоку ву:                                |            | J     | S                                        | AMP            | IE   | ANA  | ( )YI  |          |        | T     |             |
|                                           |               |          |                |              | REMARKS: VOAS                    | preser                                  | ve 0       | 1     | 4                                        | H              | Û    | )    |        |          | ,      |       |             |

# S R ე **4** 2006 4. 24PM McCAMPBELL ANALYTICAL

# 1 of 1

# McCampbell Analytical, Inc.



110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

**CHAIN-OF-CUSTODY RECORD** 

WorkOrder: 0605499

ClientID: RGAE

**EDF: NO** 

Report to:

Eric Olson

**RGA Environmental** 

1466 66th Street

TEL: FAX:

PO:

(510) 547-7771

(510) 547-1983

ProjectNo: #BRT13945; 2100 Franklin

Emeryville, CA 94608.

Bill to:

Accounts Payable

**RGA Environmental** 1466 66th Street

Emeryville, CA 94608

Date Received:

Requested TAT:

05/23/2006

1 day

Date Printed:

05/23/2006

|             |              |        |                 |      |   |   |   | <br>Req | uested | Tests | (See leg | gend be | low) |    |    |    |
|-------------|--------------|--------|-----------------|------|---|---|---|---------|--------|-------|----------|---------|------|----|----|----|
| Sample ID   | ClientSampID | Matrix | Collection Date | Hold | 1 | 2 | 3 | 4       | 5      | 6     | 7        | В       | 9    | 10 | 11 | 12 |
| 0605499-001 | B1-Water     | Water  | 5/23/06         |      | Α | В |   |         |        |       |          |         |      |    |    |    |

#### Test Legend:

| 1 G-MBTEX_W | 2 TPH(DMO)_W | 3 | 4 | 5  |
|-------------|--------------|---|---|----|
| 6           | 7            | 8 | 9 | 10 |
| 11          | 12           |   |   |    |

Prepared by: Melissa Valles

### Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

9257984612



110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

| RGA Environmental    | Client Project ID: #BRT13979;    | Date Sampled: 06/05/06   |
|----------------------|----------------------------------|--------------------------|
| 1466 66th Street     | Brandywine Reality Trust-Oakland | Date Received: 06/06/06  |
| Emeryville, CA 94608 | Client Contact: Paul King        | Date Reported: 06/07/06  |
| Emeryvine, CA 94000  | Client P.O.:                     | Date Completed: 06/07/06 |

WorkOrder: 0606126

June 07, 2006

Dear Paul:

### Enclosed are:

- 1). the results of 6 analyzed samples from your #BRT13979; Brandywine Reality Trust-Oakland project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager



110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

| RGA Environmental     | Client Project ID: #BRT13979; Brandywine | Date Sampled: 06/05/06-06/06/06   |
|-----------------------|------------------------------------------|-----------------------------------|
| 1466 66th Street      | Reality Trust-Oakland                    | Date Received: 06/06/06           |
| Emeryville, CA 94608  | Client Contact: Paul King                | Date Extracted: 06/06/06-06/07/06 |
| zmery vme, err y root | Client P.O.:                             | Date Analyzed: 06/06/06-06/07/06  |

| Extraction met | Gasoline I                                 | Range (Co |             | atile Hydroca |         | soline with B | TEX and MT   | BE* Work Or | rder: Of | 506126   |
|----------------|--------------------------------------------|-----------|-------------|---------------|---------|---------------|--------------|-------------|----------|----------|
| Lab ID         | Client ID                                  | Matrix    | · · ·ТРН(g) | MTBE          | Benzene | Toluene -     | Ethylbenzene | Xylenes     | DF       | -%·S     |
| 001A           | B7-Water                                   | W         | ND,i        | ND            | ND      | ND            | ND           | ND          | ı        | 104      |
| 002A           | B8-Water                                   | w         | 54,b,i      | ND            | ND      | ND            | 2.4          | 14          | 1        | 101      |
| 003A           | B9-Water                                   | w         | ND,i        | ND            | ND      | ND            | ND           | 0.70        | 1        | 103      |
| 004A           | B10-Water                                  | W         | ND,i        | ND            | ND      | ND            | ND           | ND          | 1        | 99       |
| 005A           | B11-Water                                  | W         | ND          | ND            | ND      | ND            | ND           | ND          | 1        | 113      |
| 006A           | B12-Water                                  | w         | ND,i        | ND            | ND      | ND            | ND           | ND          | 1        | 115      |
|                |                                            |           |             |               |         |               |              |             |          |          |
|                |                                            |           |             |               |         |               |              |             |          | 1        |
|                |                                            |           |             | -             |         |               |              |             |          |          |
|                |                                            |           |             |               |         |               |              |             | <u> </u> |          |
|                |                                            |           |             |               |         | -             |              |             |          |          |
|                |                                            |           |             |               |         |               |              |             | <u>+</u> |          |
|                |                                            |           |             |               |         |               |              |             | -        | <u>.</u> |
|                |                                            |           |             |               |         |               |              |             | +        |          |
|                |                                            |           |             |               |         |               |              |             | <u> </u> | İ        |
|                |                                            |           |             |               |         |               |              | ·           | +        |          |
|                | ing Limit for DF =1;                       | W         | 50          | 5.0           | 0.5     | 0.5           | 0.5          | 0.5         | 1        | μg/L     |
|                | ans not detected at or the reporting limit | S         | NA          | NA            | NA      | NA            | NA           | NA          | 1        | mg/K     |

| ND means not detected at or            | C         | NA                 | NIA               | NI A             | NIA           | NI A           | NIA | ļ . | μ <u>β</u> , Ε |
|----------------------------------------|-----------|--------------------|-------------------|------------------|---------------|----------------|-----|-----|----------------|
| above the reporting limit              | 3         | NA                 | INA               | INA              | NA            | INA            | NA  | 1   | mg/Kg          |
| * water and vapor samples and all TCLP | & SDI D a | vtracte are report | ed in ug/L soil/s | ludge/solid same | loc in ma/lea | na aananlaa in | -/  | :1/ |                |

water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

<sup>#</sup> cluttered chromatogram; sample peak coelutes with surrogate peak.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~I vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

| RGA Environmental    | Client Project ID: #BRT13979;    | Date Sampled: 06/05/06-06/06/06 |
|----------------------|----------------------------------|---------------------------------|
| 1466 66th Street     | Brandywine Reality Trust-Oakland | Date Received: 06/06/06         |
| Emeryville, CA 94608 | Client Contact: Paul King        | Date Extracted: 06/06/06        |
| 2, 6.17.1000         | Client P.O.:                     | Date Analyzed 06/06/06-06/07/06 |

### Bunker Oil (C10+) & Diesel (C10-23) & Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil\*


Extraction Method: SW3510C Analytical Method: SW8015C Work Order: 0606126

| Extraction Method: SW3510C | Ana          | lytical Method: SW801      | 3C           | Work Order:  | 0606126         |      |
|----------------------------|--------------|----------------------------|--------------|--------------|-----------------|------|
| Lab ID                     | 0606126-001B | 0606126-002B               | 0606126-003B | 0606126-004B |                 |      |
| Client ID                  | B7-Water     | B7-Water B8-Water B9-Water |              |              | Reporting<br>DF |      |
| Matrix                     | W            | W W W                      |              | W            |                 |      |
| DF                         | 1            | 1                          | 1            | 1            | S               | W    |
| Compound                   |              | Conce                      | entration    |              | ug/kg           | μg/L |
| TPH(bo)                    | 53,l,p       | 120                        | 82,l,p       | 99,1         | NA              | 50   |
| TPH(d)                     | ND,i         | 78,f,i                     | ND,i         | ND,i         | NA              | 50   |
| TPH(mo)                    | ND           | ND                         | ND           | ND           | NA              | 250  |
|                            | Surr         | ogate Recoveries           | s (%)        |              |                 |      |
| %SS:                       | 106          | 107 106                    |              | 111          |                 |      |
| Comments                   | i            | f,i                        | i            | i            |                 |      |

<sup>\*</sup> water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μg/L.

<sup>#</sup> cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see Case Narrative.



| RGA Environmental      | Client Project ID: #BRT13979; Brandywine | Date Sampled: 06/05/06   |
|------------------------|------------------------------------------|--------------------------|
| 1466 66th Street       | Reality Trust-Oakland                    | Date Received: 06/06/06  |
| Emeryville, CA 94608   | Client Contact: Paul King                | Date Reported: 06/07/06  |
| Emery vine, err 7 1000 | Client P.O.:                             | Date Completed: 03/29/07 |

Work Order: 0606126

March 29, 2007

RE: TPH(bo) Results for Lab ID# 0606126-001B & -003B.

We were unable to re-analyze the samples to confirm the TPH(bo) results, because TPH(bo) was requested on 3/23/2007. Therefore, these samples are reported as an estimate.

Client Project ID: #BRT13979; Date Sampled: 06/05/06-06/06/06 **RGA** Environmental Brandywine Reality Trust-Oakland Date Received: 06/06/06 1466 66th Street Date Extracted: 06/06/06 Client Contact: Paul King Emeryville, CA 94608 Client P.O.: Date Analyzed 06/06/06-06/07/06 Bunker Oil (C10+) & Diesel (C10-23) & Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil\* Analytical Method: SW8015C Extraction Method: SW3510C Work Order: 0606126 Lab ID 0606126-005B 0606126-006B B11-Water B12-Water Client ID Reporting Limit for DF =1 W Matrix W DF 1 1 S W Compound Concentration ug/kg μg/L TPH(bo) 400 170 NA 50

### **Surrogate Recoveries (%)**

ND

60.b.i

200,g,b

320

|          |     | 0   | ( ) |  |
|----------|-----|-----|-----|--|
| %SS:     | 109 | 105 |     |  |
| Comments | g,b | b,i |     |  |

<sup>\*</sup> water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μg/L.

TPH(d)

TPH(mo)

NA

NA

50

250

<sup>#</sup> cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see Case Narrative.



110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

## QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0606126

| EPA Method: SW8021B/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /8015Cm E | xtraction | SW5030                                        | В      | Batc                      | hID: 22053 | 3      | Spiked Sample ID: 0606126-001A |          |            |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------------------------------------------|--------|---------------------------|------------|--------|--------------------------------|----------|------------|--|--|
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample    | Spiked    | iked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptan |        | SD Acceptance Criteria (% |            |        |                                |          |            |  |  |
| Market in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | μg/L      | μg/L      | % Rec.                                        | % Rec. | % RPD                     | % Rec.     | % Rec. | % RPD                          | MS / MSD | LCS / LCSD |  |  |
| TPH(btex) <sup>£</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND        | 60        | 111                                           | 111    | 0                         | 109        | 102    | 5.99                           | 70 - 130 | 70 - 130   |  |  |
| МТВЕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND        | 10        | 111                                           | 111    | 0                         | 105        | 117    | 10.6                           | 70 - 130 | 70 - 130   |  |  |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND        | 10        | 100                                           | 109    | 8.10                      | 101        | 108    | 6.02                           | 70 - 130 | 70 - 130   |  |  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND        | 10        | 92.4                                          | 100    | 8.09                      | 94.2       | 99.9   | 5.89                           | 70 - 130 | 70 - 130   |  |  |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND        | 10        | 96.9                                          | 100    | 3.45                      | 98.5       | 107    | 7.92                           | 70 - 130 | 70 - 130   |  |  |
| Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND        | 30        | 96                                            | 96.3   | 0.347                     | 91.3       | 96.3   | 5.33                           | 70 - 130 | 70 - 130   |  |  |
| %SS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 104       | 10        | 102                                           | 100    | 2.61                      | 98         | 100    | 2.04                           | 70 - 130 | 70 - 130   |  |  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

#### BATCH 22053 SUMMARY

| Sample ID    | Date Sampled | Date Extracted | Date Analyzed    | Sample ID    | Date Sampled | Date Extracted | Date Analyzed    |
|--------------|--------------|----------------|------------------|--------------|--------------|----------------|------------------|
| 0606126-001A | 6/05/06      | 6/06/06        | 6/06/06 11:48 PM | 0606126-002A | 6/06/06      | 6/07/06        | 6/07/06 12:47 AM |
| 0606126-003A | 6/06/06      | 6/07/06        | 6/07/06 1:17 AM  | 0606126-004A | 6/06/06      | 6/07/06        | 6/07/06 3:16 AM  |
| 0606126-005A | 6/06/06      | 6/07/06        | 6/07/06 4:44 AM  | 0606126-006A | 6/06/06      | 6/07/06        | 6/07/06 5:14 AM  |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer



110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

## QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0606126

| EPA Method: SW8015C | E      | xtraction | : SW3510 | С      | Batcl  | nID: 22054 | ı      | Spiked San | % RPD MS/MSD LCS/LCS |                |
|---------------------|--------|-----------|----------|--------|--------|------------|--------|------------|----------------------|----------------|
| Analyte             | Sample | Spiked    | MS       | MSD    | MS-MSD | LCS        | LCSD   | LCS-LCSD   | Acceptance           | e Criteria (%) |
| ,                   | μg/L   | µg/L      | % Rec.   | % Rec. | % RPD  | % Rec.     | % Rec. | % RPD      | MS / MSD             | LCS / LCSD     |
| TPH(d)              | N/A    | 1000      | N/A      | N/A    | N/A    | 100        | 103    | 2.13       | N/A                  | 70 - 130       |
| %SS:                | N/A    | 2500      | N/A      | N/A    | N/A    | 109        | 111    | 1.61       | N/A                  | 70 - 130       |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

### BATCH 22054 SUMMARY

| Sample ID    | Date Sampled | Date Extracted | Date Analyzed   | Sample ID    | Date Sampled | Date Extracted | Date Analyzed   |
|--------------|--------------|----------------|-----------------|--------------|--------------|----------------|-----------------|
| 0606126-001B | 6/05/06      | 6/06/06        | 6/06/06 5:39 PM | 0606126-002B | 6/06/06      | 6/06/06        | 6/06/06 6:52 PM |
| 0606126-003B | 6/06/06      | 6/06/06        | 6/06/06 8:04 PM | 0606126-004B | 6/06/06      | 6/06/06        | 6/07/06 9:56 AM |
| 0606126-005B | 6/06/06      | 6/06/06        | 6/06/06 5:53 PM | 0606126-006B | 6/06/06      | 6/06/06        | 6/07/06 9:55 AM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

# 110 Second Avenue South, #D7 Pacheco, CA 94553-5560

# **CHAIN-OF-CUSTODY RECORD**

1 of 1

(925) 798-1620

WorkOrder: 0606126

ClientID: RGAE

EDF: NO

Report to:

Paul King **RGA Environmental** 

1466 66th Street

Emeryville, CA 94608

TEL:

(510) 547-7771

FAX:

(510) 547-1983

ProjectNo: #BRT13979; Brandywine Reality Trust-O

PO:

Bill to:

Accounts Payable

**RGA Environmental** 

1466 66th Street

Emeryville, CA 94608

Date Received:

Requested TAT:

06/06/2006

1 day

Date Printed: 06/06/2006

|             |              |        |                 |      |        |     |   |             |                                         |   | Re | que      | 9sted Tests (See legend below)  5 6 7 8 9 10 11 12 |   |   |    |   |          |   |   |   |             |    |    |   |
|-------------|--------------|--------|-----------------|------|--------|-----|---|-------------|-----------------------------------------|---|----|----------|----------------------------------------------------|---|---|----|---|----------|---|---|---|-------------|----|----|---|
| Sample ID   | ClientSampID | Matrix | Collection Date | Hold | 1      | . l | 2 |             | 3                                       | : | 4  | L.,      | 5                                                  |   | 6 |    | 7 | 8        | 3 |   | ) | 10          | )  | 11 | 1 |
| 0606126-001 | B7-Water     | Water  | 6/5/06          |      | Δ      | · Ţ | B | <del></del> |                                         |   |    | 1        |                                                    | Τ |   | Т  |   |          |   |   |   |             |    |    |   |
| 0606126-002 | B8-Water     | Water  | 6/6/06          | +    | ^<br>A | +-  | В |             |                                         |   |    | -        |                                                    | - |   | -  |   | <u> </u> |   | - |   |             |    |    | - |
| 0606126-003 | B9-Water     | Water  | 6/6/06          |      | Α      |     | В |             |                                         |   |    |          |                                                    | 1 |   | -  |   | -        |   | - |   | <u> </u>    |    |    | + |
| 0606126-004 | B10-Water    | Water  | 6/6/06          |      | Α      |     | В | ***         |                                         | + |    | T        |                                                    | 1 |   | 1  |   |          |   | - |   |             |    |    |   |
| 0606126-005 | B11-Water    | Water  | 6/6/06          |      | Α      |     | В |             |                                         |   |    | $\vdash$ |                                                    |   |   | 1- |   |          |   |   |   | <del></del> | -+ |    |   |
| 0606126-006 | B12-Water    | Water  | 6/6/06          |      | Α      |     | В | +           | • • • • • • • • • • • • • • • • • • • • | · |    | +-       |                                                    | - |   | -  |   |          |   | - |   |             |    |    | - |

### Test Legend:

| 1 G-MBTEX_W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 TPH(DMO)_W | 3 | 4 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /            |   |   | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 8 | 9 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| process grant and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second a second and a second and a second and a second and a second a second and a second a second and |              |   |   | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10           |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Prepared by: Kathleen Owen

### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.



RGA Environmental, Inc. 1466 - 66<sup>th</sup> St Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com

# 0606126 RGAE



# CHAIN OF CUSTODY RECORD

| 1  |                                                    | ıl.king@rgaeı      |                    |                 |                      |                                |          |                                         |       | <del>,</del> |                                         | .,           | , , | <del>, , ,</del> | PA                 | GE <u>1</u> OF <u>1</u>                 |
|----|----------------------------------------------------|--------------------|--------------------|-----------------|----------------------|--------------------------------|----------|-----------------------------------------|-------|--------------|-----------------------------------------|--------------|-----|------------------|--------------------|-----------------------------------------|
|    | PROJECT NUMBER:                                    | 779                |                    | ROJECT<br>Brand |                      | Realty Trust-                  | Oakland  |                                         | 2     | (S)<br>(ES)  |                                         |              |     |                  | ار<br>الح          |                                         |
|    | SAMPLED BY: (PRI                                   | NTED AND<br>takell | SIGNAT             | URE)            |                      |                                |          | NUMBER OF<br>CONTAINERS                 | 4WAir |              | 1 3 A A A A A A A A A A A A A A A A A A | //           | / / | PRESERVE         | 147                | REMARKS                                 |
|    | SAMPLE NUMBER                                      | DATE               | TIME               | TYPE            |                      | SAMPLE LOCATION                | N        | NON                                     | 1     | 3/8/5/S/     | 9 /                                     | $^{\prime}/$ |     | / 84             |                    |                                         |
| 5  | B7-water                                           | 615706             |                    | wester          |                      |                                |          | 7                                       | X     | 火            |                                         |              |     | ECE              | 24 Hr              | RUSH                                    |
| 15 | 138 - Water                                        | 6/6/06             |                    | 44              |                      |                                |          | י                                       | 八     | X            |                                         |              |     | 11               | 12 17              | ית                                      |
| 5  | 139 - Water                                        | 15                 |                    | 11              |                      |                                |          | 7                                       | ×     | ٨            |                                         |              |     | 11               | n n                | 1)                                      |
| 2  | 1310 - Water                                       | 31                 |                    | "               |                      |                                |          | 7                                       | 二     | X            |                                         |              |     | 41               | 12 34              | 77                                      |
| -  | 1311 - Wilter                                      | 11                 |                    | - 11            |                      |                                |          | 7                                       | ベ     | X            |                                         |              |     | 10               | 23 07              | 31                                      |
| +5 | Biz- water                                         | 11                 |                    | 11              |                      |                                |          | 7                                       | 人     | A            |                                         |              |     | 44               | 33 31              | <b>N</b>                                |
| 1  |                                                    |                    |                    |                 | *                    |                                |          |                                         |       |              |                                         |              |     |                  |                    |                                         |
|    |                                                    |                    | -                  |                 |                      |                                |          |                                         |       |              |                                         |              |     |                  |                    |                                         |
|    |                                                    |                    |                    |                 |                      |                                |          |                                         |       |              |                                         |              |     |                  |                    | <u> </u>                                |
|    |                                                    |                    |                    |                 |                      |                                |          |                                         |       |              |                                         |              |     |                  |                    |                                         |
|    |                                                    |                    |                    |                 |                      | ,                              |          | '                                       |       |              |                                         |              |     |                  |                    |                                         |
|    |                                                    |                    |                    |                 |                      |                                |          |                                         |       |              |                                         |              |     |                  |                    | *************************************** |
|    |                                                    |                    |                    |                 |                      |                                |          | ,                                       |       |              |                                         |              |     |                  |                    |                                         |
| I  |                                                    |                    |                    |                 |                      | ,                              |          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |       |              |                                         |              |     |                  | ·                  |                                         |
| Ī  |                                                    |                    |                    |                 |                      |                                |          |                                         |       |              | 一                                       |              |     |                  |                    |                                         |
| I  |                                                    |                    |                    |                 |                      |                                |          |                                         |       |              |                                         |              |     |                  | ,                  |                                         |
| Ì  | RELINQUISHED BY:                                   | (SIGNATURE         | )                  | DATE 6/6/0      | TIME, 1430           | RECEIVED BY: (SI               | GNATURE) |                                         | ليا   | THIS S       | OF SAM<br>HIPMENT<br>OF CONT<br>HIPMENT | 7            | 6   |                  | DRATORY:           | bell Analytical                         |
| ı  | RELINQUISHED BY:                                   |                    |                    | DATE            | TIME                 | RECEIVED BY: (S                | CNATURE) |                                         | 1     |              | ATORY                                   |              |     |                  |                    | PHONE NUMBER                            |
|    | · :                                                |                    |                    |                 |                      |                                |          |                                         | ١.    |              | la M                                    |              |     | 1                |                    | 8-1650                                  |
|    | RELINQUISHED BY:                                   | (SIGNATURE         |                    | DATE            | TIME                 | RECEIVED FOR LA<br>(SIGNATURE) | BORATORY | BY:                                     |       | -            |                                         |              |     |                  | QUEST S<br>S (べ)NC |                                         |
| I  | GOOD CONDITION<br>HEAD SPACE ABSI<br>DECHLORINATED | ENT                | APPROPR<br>CONTAIN | ERS V           | visition is a second | REMARKS:                       | VOAs     | Pres                                    | 200   | ed           | W                                       | +h           | H   | <u> </u>         |                    |                                         |
| I  |                                                    | VOAS   OAG         |                    | OTHER           | <del></del>          |                                | 1 - 1    | 1                                       |       |              |                                         |              | 1   |                  | ı                  |                                         |

| RGA Environmental    | Client Project ID: #0387/BRT;    | Date Sampled: 08/11/06   |
|----------------------|----------------------------------|--------------------------|
| 1466 66th Street     | Brandywine Realty Trust- Oakland | Date Received: 08/11/06  |
| Emeryville, CA 94608 | Client Contact: Paul King        | Date Reported: 08/14/06  |
| Emeryvine, CA 74000  | Client P.O.:                     | Date Completed: 08/14/06 |

WorkOrder: 0608291

August 14, 2006

Dear Paul:

Enclosed are:

- 1). the results of 3 analyzed samples from your #0387/BRT; Brandywine Realty Trust-Oakland project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

| RGA Environmental       |                           | Date Sampled: 08/11/06   |
|-------------------------|---------------------------|--------------------------|
| 1466 66th Street        | Realty Trust- Oakland     | Date Received: 08/11/06  |
| Emeryville, CA 94608    | Client Contact: Paul King | Date Extracted: 08/12/06 |
| Zintery vine, Gray 1000 | Client P.O.:              | Date Analyzed: 08/12/06  |

### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE\*

| Extraction method: SW5030B | Analytical methods: SW8021B/8015Cm | Work Order: 0608291 |
|----------------------------|------------------------------------|---------------------|
|                            | ·                                  |                     |

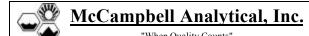
| Extraction me | mod: Sw3030B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | Anaiy                                 | tical methods: Sv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V 80/21B/8013Cm |         |              | work O                                  | rder: 06 | 08291      |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|--------------|-----------------------------------------|----------|------------|
| Lab ID        | Client ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Matrix | TPH(g)                                | MTBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Benzene         | Toluene | Ethylbenzene | Xylenes                                 | DF       | % SS       |
| 001A          | C1-Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | w      | ND,i                                  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND              | ND      | ND           | ND                                      | 1        | 100        |
| 002A          | C2-Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W      | ND,i                                  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND              | ND      | ND           | ND                                      | 1        | 101        |
| 003A          | C3-Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | w      | ND,i                                  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND              | ND      | ND           | ND                                      | 1        | 103        |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | · · · · · · · · · · · · · · · · · · · | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |                 |         |              |                                         |          |            |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         |              |                                         |          | <u>-</u>   |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         |              |                                         |          |            |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7               |         |              |                                         |          | ļ <u>-</u> |
|               | And in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         |              |                                         |          | ļ          |
|               | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |        |                                       | 1 100 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | :<br>:  |              | . , , , , , , , , , , , , , , , , , , , |          |            |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         |              |                                         |          |            |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         |              |                                         |          |            |
| -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         |              |                                         |          |            |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         |              |                                         |          |            |
| Repor         | ting Limit for DF =1;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | w      | 50                                    | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5             | 0.5     | 0.5          | 0.5                                     | 1        | μg/L       |
|               | e the reporting limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S      | NA                                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA              | NA      | NA           | NA                                      | 1        | mg/Kg      |

|                                          |                    |                    |                     |                     |                |               |              | - 1  |
|------------------------------------------|--------------------|--------------------|---------------------|---------------------|----------------|---------------|--------------|------|
| * water and vapor samples and all TCLP & | & SPLP extracts at | e reported in ug/L | , soil/sludge/solid | d samples in mg/kg, | , wipe samples | in μg/wipe, p | roduct/oil/r | ion- |
| aqueous liquid samples in mg/L.          |                    |                    |                     |                     |                |               |              |      |

<sup>#</sup> cluttered chromatogram; sample peak coelutes with surrogate peak.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heaviet gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative

| Brandywine Realty Trust- Oaklar                | IIU                             |
|------------------------------------------------|---------------------------------|
| 1 100 cour succe                               | Date Received: 08/11/06         |
| Emeryville, CA 94608 Client Contact: Paul King | Date Extracted: 08/11/06        |
| Client P.O.:                                   | Date Analyzed 08/11/06-08/12/06 |


### Bunker Oil (C10+) & Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil\*

| Extraction Method: SW3510C | Ana            | Analytical Method: SW8015C |              |    |                |                 |  |  |  |  |
|----------------------------|----------------|----------------------------|--------------|----|----------------|-----------------|--|--|--|--|
| Lab I                      | O 0608291-001B | 0608291-002B               | 0608291-003B |    |                |                 |  |  |  |  |
| Client I                   | C1-Water       | C2-Water                   | C3-Water     | Re | eporting<br>DF | Limit for<br>=1 |  |  |  |  |
| Matri                      | x W            |                            |              |    |                |                 |  |  |  |  |
| D                          | F 1            | 1                          | 1            |    | S              | W               |  |  |  |  |
| Compound                   |                | Conc                       | entration    | ľ  | ug/kg          | μg/L            |  |  |  |  |
| TPH(bo)                    | 63,l,p         | 9000                       | 350          |    | NA             | 50              |  |  |  |  |
| TPH(d)                     | ND,i           | 5700,g,b,i                 | 200,g,b,i    |    | NA             | 50              |  |  |  |  |
| TPH(mo)                    | ND             | 6400                       | 300          |    | NA             | 250             |  |  |  |  |
|                            | Surr           | ogate Recoverie            | s (%)        |    |                |                 |  |  |  |  |
| %SS:                       | 97             | 99                         | 96           |    |                |                 |  |  |  |  |
| Comments                   | i              | g,b,i                      | g,b,i        |    |                | -               |  |  |  |  |

<sup>\*</sup> water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

<sup>#</sup> cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range(?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see Case Narrative.



| RGA Environmental      | Client Project ID: #0387/BRT; Brandywine | Date Sampled: 08/11/06   |
|------------------------|------------------------------------------|--------------------------|
| 1466 66th Street       | Realty Trust- Oakland                    | Date Received: 08/11/06  |
| Emeryville, CA 94608   | Client Contact: Paul King                | Date Reported: 08/14/06  |
| Emery vine, err 7 1000 | Client P.O.:                             | Date Completed: 03/29/07 |

Work Order: 0608291

March 29, 2007

RE: TPH(bo) Result for Lab ID# 0608291-001B.

We were unable to re-analyze this sample to confirm the TPH(bo) result, because TPH(bo) was requested on 3/23/2007. Therefore, this sample is reported as an estimate.

# QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0608291

| EPA Method: SW8021B/   | /8015Cm E | xtraction | SW5030 | В      | Batc   | hID: 23186 | 6      | Spiked Sample ID: 0608295-002A |            |                |  |  |  |
|------------------------|-----------|-----------|--------|--------|--------|------------|--------|--------------------------------|------------|----------------|--|--|--|
| !<br>Analyte           | Sample    | Spiked    | MS     | MSD    | MS-MSD | LCS        | LCSD   | LCS-LCSD                       | Acceptance | e Criteria (%) |  |  |  |
|                        | µg/L      | μg/L      | % Rec. | % Rec. | % RPD  | % Rec.     | % Rec. | % RPD                          | MS / MSD   | LCS / LCSD     |  |  |  |
| TPH(btex) <sup>£</sup> | ND        | 60        | 101    | 101    | 0      | 107        | 113    | 5.16                           | 70 - 130   | 70 - 130       |  |  |  |
| МТВЕ                   | ND        | 10        | 95.4   | 93.2   | 2.34   | 111        | 104    | 6.54                           | 70 - 130   | 70 - 130       |  |  |  |
| Benzene                | ND        | 10        | 107    | 103    | 3.83   | 103        | 97.1   | 5.78                           | 70 - 130   | 70 - 130       |  |  |  |
| Toluene                | ND        | 10        | 98.8   | 90.8   | 8.45   | 99.4       | 93.5   | 6.15                           | 70 - 130   | 70 - 130       |  |  |  |
| Ethylbenzene           | ND        | 10        | 106    | 105    | 0.545  | 105        | 99.5   | 5.53                           | 70 - 130   | 70 - 130       |  |  |  |
| Xylenes                | ND        | 30        | 96.7   | 96     | 0.692  | 100        | 96     | 4.08                           | 70 - 130   | 70 - 130       |  |  |  |
| %SS:                   | 102       | 10        | 107    | 105    | 1.54   | 102        | 99     | 2.17                           | - 70 - 130 | 70 - 130       |  |  |  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

#### **BATCH 23186 SUMMARY**

| Sample ID             | Date Sampled | Date Extracted | Date Analyzed    | Sample ID    | Date Sampled | Date Extracted | Date Analyzed    |
|-----------------------|--------------|----------------|------------------|--------------|--------------|----------------|------------------|
| 0608 <b>2</b> 91-001A | 8/11/06      | 8/12/06        | 8/12/06 11:11 AM | 0608291-002A | 8/11/06      | 8/12/06        | 8/12/06 10:11 AM |
| 0608291-003A          | 8/11/06      | 8/12/06        | 8/12/06 11:41 AM |              |              |                | :                |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

## QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0608291

| EPA Method: SW8015C | E      | xtraction | SW3510 | С      | Batcl  | hID: 23164 | ,      | Spiked Sample ID: N/A |            |                |  |
|---------------------|--------|-----------|--------|--------|--------|------------|--------|-----------------------|------------|----------------|--|
| Analyte             | Sample | Spiked    | MS     | MSD    | MS-MSD | LCS        | LCSD   | LCS-LCSD              | Acceptance | e Criteria (%) |  |
| Analyte             | μg/L   | μg/L      | % Rec. | % Rec. | % RPD  | % Rec.     | % Rec. | % RPD                 | MS/MSD     | LCS / LCSD     |  |
| TPH(d)              | N/A    | 1000      | N/A    | N/A    | N/A    | 101        | 101    | 0                     | N/A        | 70 - 130       |  |
| %SS:                | N/A    | 2500      | N/A    | N/A    | N/A    | 86         | 86     | 0                     | N/A        | 70 - 130       |  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

#### **BATCH 23164 SUMMARY**

| Sample ID    | Date Sampled | Date Extracted | Date Analyzed    | Sample ID    | Date Sampled | Date Extracted | Date Analyzed    |
|--------------|--------------|----------------|------------------|--------------|--------------|----------------|------------------|
| 0608291-001B | 8/11/06      | 8/11/06        | 8/11/06 11÷12 PM | 0608291-002B | 8/1-1/00     | 8/11/06-       | 8/12/06 12:21 AM |
| 0608291-003B | 8/11/06      | 8/11/06        | 8/12/06 1:30 AM  | !<br>·       |              |                |                  |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

# **CHAIN-OF-CUSTODY RECORD**

Page 1 of 1

WorkOrder: 0608291

ClientID: RGAE

EDF: NO

Report to:

Paul King

RGA Environmental 1466 66th Street

Emeryville, CA 94608

Email:

TEL: (510) 547-7771

FAX: (510) 547-1983 ProjectNo: #0387/BRT; Brandywine Realty Trust- O

PO:

Bill to:

Accounts Payable

**RGA Environmental** 1466 66th Street

Emeryville, CA 94608

Date Received:

Requested TAT:

08/11/2006

1 day

Date Printed: 08/11/2006

|             |              |        |                 |      | Requested Tests (See legend below) |   |   |  |   |   |   |   |   |   |   |   |    |    |          |  |    |
|-------------|--------------|--------|-----------------|------|------------------------------------|---|---|--|---|---|---|---|---|---|---|---|----|----|----------|--|----|
| Sample ID   | ClientSampID | Matrix | Collection Date | Hold | 1                                  | 2 | 3 |  | 4 |   | 5 | 6 |   | 7 | 8 | 9 |    | 10 | 11       |  | 12 |
| 0608291-001 | C1-Water     | Water  | 8/11/06         |      | Α                                  | В |   |  |   | T | Т |   | - |   |   | 1 | Ţ. |    | 1        |  |    |
| 0608291-002 | C2-Water     | Water  | 8/11/06         |      | Α                                  | В |   |  |   |   |   |   |   | + |   |   |    |    | <u> </u> |  |    |
| 0608291-003 | C3-Water     | Water  | 8/11/06         | 16   | Α                                  | В | 1 |  |   |   |   |   | + | _ |   |   | +  |    | <u> </u> |  |    |

### Test Legend:

| 1 G-MBTEX_W | 2 TPH(DMO)_W | 3 | 4 | 5  |
|-------------|--------------|---|---|----|
| 6           | 7            | 8 | 9 | 10 |
| 11          | 12           |   |   |    |

Prepared by: Rosa Venegas

### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.



RGA Environmental, Inc. 1466 - 66th St Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com

# Pyal 0608291 RUSH

CHAIN OF CUSTODY RECORD

PAGE 1 OF PROJECT NAME: PROJECT NUMBER: SAMPLED BY: (PRINTED AND SIGNATURE)

SAMPLED BY: (PRINTED AND SIGNATURE)

Parl W. King

Parl W. King REMARKS and H. King SAMPLE LOCATION TIME | TYPE DATE SAMPLE NUMBER ICE 24 HON RUSH 8/11/06 water CI-water cz-witer j ( C3-Water TOTAL HO. OF SAMPLES RELINQUISHED BY: (SIGNATURE) LABORATORY: RECEIVED BY: (SIGNATURE) DATE TIME (THE SHIPMENT) RELINQUISHED BY: (SIGNATURE) TOTAL NO. OF CONTAINERS 9134~ 15 McCampbell Analytical 8/11 (THE SHIPMENT) LABORATORY CONTACT: LABORATORY PHONE NUMBER: RECEIVED BY: (SIGNATURE) DATE TIME Angela Rydelins (925) 252-9269 RELINQUISHED BY: (SIGNATURE) RECEIVED FOR LABORATORY BY: SAMPLE ANALYSIS REQUEST SHEET DATE TIME ATTACHED: ( )YES (失)NO (SIGNATURE) GOOD COMMITTON AT PROPRIATE

END DESCRIPTION AT PROPRIATE

ENCHLOWING HAD IN LAB PROPRIATE

FROM BOTH OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE PROPRIATE OF THE REMARKS: VOAS | CAG | MULTALS | CHUR PRESHRVATION\_

| RGA Environmental      | Client Project ID: #0387; 2100 Franklin St. | Date Sampled: 11/08/06   |
|------------------------|---------------------------------------------|--------------------------|
| 1466 66th Street       |                                             | Date Received: 11/09/06  |
| Emeryville, CA 94608   | Client Contact: Eric Olson                  | Date Reported: 11/15/06  |
| Emery vine, err 7 1000 | Client P.O.:                                | Date Completed: 11/15/06 |

WorkOrder: 0611208

November 15, 2006

Dear Eric:

Enclosed are:

- 1). the results of 2 analyzed samples from your #0387; 2100 Franklin St. project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager



Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com

# CHAIN OF CUSTODY RECORD

|                    |           |        |        |              |           |                                                                                                                |                         |         |              |          |                   |      |     |              | PAG          | E OF         |
|--------------------|-----------|--------|--------|--------------|-----------|----------------------------------------------------------------------------------------------------------------|-------------------------|---------|--------------|----------|-------------------|------|-----|--------------|--------------|--------------|
| PROJECT NUMBER:    |           | P      | ROJECT | NAME:        |           |                                                                                                                |                         | T       | ;            | ::/      | 1//               | 7    | 7   | 11           | 1            |              |
| 0387               |           |        |        |              | m 57.     |                                                                                                                |                         |         | ANAL YSISTER |          | / /               |      |     | / /          | 3AUE         |              |
| SAMPLED BY: (PRI   | NTED AND  | SIGNAT | URE)   |              |           | tin vital til til til state til state til state samme samme han en en sjörknigt til state til som til som en d | A P P                   | 2       | Š            | 12/      |                   |      | /   | ///          | 4            |              |
| Encolse            |           | 5 (H   |        |              |           |                                                                                                                | 1 2 E                   |         | ₹/           | Partir I |                   | / /  | / / | ' / <u>A</u> | <del>,</del> | REMARKS      |
| Checise            | 1         |        | 1      |              |           |                                                                                                                | - B                     |         | ₹/           | JE       | $^{\prime\prime}$ | /    |     | 1 55         |              |              |
| SAMPLE NUMBER      | DATE      | TIME   | TYPE   |              | SAMPLE    | LOCATION                                                                                                       | NUMBER OF               |         | 119          | 131      |                   |      |     | 1            |              |              |
| B13-28Wx50         | 11-806    |        | Currer |              |           |                                                                                                                | 5                       |         | X            | X        |                   |      |     | IEE          | Novm         | Principal    |
| B13-4/WX           | 12        |        | • 6    |              |           |                                                                                                                | 7                       |         | X            | X        | $\top$            |      |     |              |              | /            |
|                    |           |        |        |              |           |                                                                                                                | 1                       |         |              |          |                   |      |     |              |              |              |
|                    |           |        | -      |              |           |                                                                                                                |                         | $\top$  |              |          |                   |      |     |              |              |              |
|                    |           |        |        |              |           |                                                                                                                |                         | $\top$  | 1            |          | $\top$            |      |     |              |              |              |
|                    |           |        |        |              |           |                                                                                                                |                         | $\top$  | 1            | -        | +                 |      |     |              |              |              |
|                    |           |        |        |              |           |                                                                                                                |                         | +       | $\dashv$     |          | +                 |      |     |              |              |              |
|                    |           |        |        |              |           |                                                                                                                |                         | +       | $\dashv$     | +        | +-                |      |     |              |              |              |
|                    |           |        |        | 0.<br>0.50 c |           |                                                                                                                |                         | +       | $\dashv$     | +        | +-                |      |     |              |              |              |
|                    |           |        |        |              |           |                                                                                                                |                         | +       | +            | +        |                   |      |     |              |              |              |
|                    |           |        |        |              |           | <u> </u>                                                                                                       |                         | +       | +            | -        | +-                |      |     |              |              |              |
|                    |           |        |        |              |           |                                                                                                                |                         | +       | $\dashv$     | -        |                   |      |     |              |              |              |
|                    |           |        |        |              |           |                                                                                                                |                         | +       | $\dashv$     | _        | -                 |      |     |              |              |              |
|                    |           |        |        | N<br>Name    |           |                                                                                                                |                         | _       | _            |          |                   |      |     |              |              | 1            |
|                    |           |        |        |              |           |                                                                                                                |                         | $\perp$ |              | $\perp$  |                   |      |     |              |              |              |
|                    |           |        |        |              |           |                                                                                                                |                         | $\perp$ | $\perp$      |          |                   |      |     |              |              |              |
|                    |           |        | ,      |              |           |                                                                                                                |                         |         |              |          |                   |      |     |              |              |              |
| RELINQUISHED BY: ( | SIGNATURE | .)     | DATE/  | TIME         | RECEIVED  | BY: (STENATUR                                                                                                  | RE)                     |         |              |          | SAMPL<br>MENT)    |      | 2   | LABO         | DRATORY:     |              |
| SHOW               |           | 11)    | 19/01. | X/S          |           |                                                                                                                |                         | П       | TATO         | HO. OF   | CONTAI<br>MENT)   | HERS | 12  | 2/1/2        | Cambell      | Auch west    |
| RELINQUISHED BY:   | SIGNATURE | :) /   | DATE   | TIME         | RECEIVED  | BY: (SIGNATUR                                                                                                  | RE)                     | L       | LAB(         | ORAT     | ORY               | CON  | TAC | T: LABO      |              | HONE NUMBER: |
|                    |           | 011    | 19.6A  | 515          |           | *                                                                                                              | (3)                     |         | 4ng          | ila 1    | lute              | lis  |     | 192          | 51252        | 9767         |
| RELINQUISHED BY: ( | SIGNATURE | ) /    | DATE   | TIME         |           | FOR LABORATION                                                                                                 | DRYDB):                 | +       |              | 9        | SAMP              | LE A | NAL |              | QUEST SHE    |              |
| s."<br>"           |           |        |        |              | (SIGNATUI | RE) HEAD<br>DECH                                                                                               | CONDITION<br>SPACE ABSE | N       |              |          | ATT               | ACHE | ED: |              | (NO          |              |
|                    |           |        |        |              | REMARKS   |                                                                                                                | THINTED                 | N LA    | AB_          | DI       | UNTAI             | VERS |     |              |              |              |
|                    |           |        |        |              |           | * NESE                                                                                                         | ERVATION_               | ~~~     | 0.           | &G   h   | ESER              | OTH  | IER | B            |              |              |
|                    |           |        |        |              |           |                                                                                                                |                         |         |              |          |                   |      |     |              |              |              |

1534 Willow Pass Rd (925) 252-9262

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Prepared by: Nickole White

Pittsburg, CA 94565-1701 WorkOrder: 0611208 ClientID: RGAE EDF Fax ✓ Email HardCop ThirdPart Bill t Report to: Requested TAT: 5 days Email: Accounts Payable Eric Olson **RGA Environmental** TEL: (510) 547-777 FAX: (510) 547-198 **RGA Environmental** Date Received 11/09/2006 1466 66th Street ProjectNo: #0387; 2100 Franklin St. 1466 66th Street Emeryville, CA 94608 PO: Emeryville, CA 94608 Date Printed: 11/09/2006 Requested Tests (See legend below) 2 5 8 Sample ID ClientSampID Matrix Collection Date Hold 3 6 7 9 10 11 12 0611208-001 B13-28W Water 11/8/2006 Α В 0611208-002 B13-41W Water 11/8/2006 Α В Test Legend: 5 1 G-MBTEX\_W 2 TPH(DMO)\_W 3 4 7 6 9 10 8 12

#### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

| RGA Er     | nvironmental   |           | Client Proj  | ect ID: #0387     | 7; 2100 Frankl | in St.                        | Date Sampled: 11/08/06           |              |       |      |  |  |
|------------|----------------|-----------|--------------|-------------------|----------------|-------------------------------|----------------------------------|--------------|-------|------|--|--|
| 1466 66    | th Street      |           |              |                   |                |                               | Date Receiv                      | ed: 11/09/06 |       |      |  |  |
| Emervvi    | ille, CA 94608 |           | Client Con   | ntact: Eric Ols   | son            |                               | Date Extracted: 11/10/06-11/14/0 |              |       |      |  |  |
| Linery     |                |           | Client P.O.  | :                 |                | Date Analyzed 11/10/06-11/14/ |                                  |              |       |      |  |  |
|            | Gasoline       | e Range ( | C6-C12) Vola | tile Hydrocar     | bons as Gaso   | line with BTE                 | X and MTBE                       | *            |       |      |  |  |
| Extraction | method SW5030B |           | Analy        | ytical methods SV | V8021B/8015Cm  |                               |                                  | Work Order   | : 061 | 1208 |  |  |
| Lab ID     | Client ID      | Matrix    | TPH(g)       | MTBE              | Benzene        | Toluene                       | Ethylbenzene                     | Xylenes      | DF    | % SS |  |  |
| 001A       | B13-28W        | W         | ND,i         | ND                | ND             | ND                            | ND                               | ND           | 1     | 94   |  |  |
| 002A       | B13-41W        | W         | ND,i         | ND                | ND             | ND                            | ND                               | ND           | 1     | 101  |  |  |
|            |                |           |              |                   |                |                               |                                  |              |       |      |  |  |
|            |                |           |              |                   |                |                               |                                  |              |       |      |  |  |
|            |                |           | •            |                   |                |                               |                                  |              |       |      |  |  |

| Reporting Limit for DF =1;                                                                                                              | W | 50 | 5.0 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | μg/L  |
|-----------------------------------------------------------------------------------------------------------------------------------------|---|----|-----|-----|-----|-----|-----|---|-------|
| ND means not detected at or above the reporting limit                                                                                   | S | NA | NA  | NA  | NA  | NA  | NA  | 1 | mg/Kg |
| * water and vanor samples and all TCLP & SPLP extracts are reported in ug/L soil/sludge/soil/slamples in mg/kg, wine samples in ug/wine |   |    |     |     |     |     |     |   |       |

product/oil/non-aqueous liquid samples in mg/L.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.



<sup>#</sup> cluttered chromatogram; sample peak coelutes with surrogate peak.

| RGA Environmental            |             |        | oject ID: #0387;     | 2100 Franklin  | Date Sampled: 11/08/06 |                 |         |  |  |
|------------------------------|-------------|--------|----------------------|----------------|------------------------|-----------------|---------|--|--|
| 1466 66th Street             | St.         |        |                      |                | Date Received:         | 11/09/06        |         |  |  |
| Emeryville, CA 94608         | Cli         | ent Co | ontact: Eric Olso    | n              | Date Extracted:        | 11/09/06        |         |  |  |
| Efficiency vine, e. r. 54000 | Cli         | ent P. | O.:                  |                | Date Analyzed          | 11/15/06        |         |  |  |
| Diesel (C10-23) an           | d Oil (C18+ | ) Ran  | ge Extractable H     | ydrocarbons as | Diesel and Motor       | ·Oil*           |         |  |  |
| Extraction Method: SW3510C   |             | Anal   | ytical Method: SW801 | 5C             |                        | Work Order:     | 0611208 |  |  |
| Lab ID                       | 0611208-0   | 001B   | 0611208-002B         |                |                        |                 |         |  |  |
| Client ID                    | B13-28V     | W      | B13-41W              |                |                        | Reporting<br>DF |         |  |  |
| Matrix                       | W           |        | W                    |                |                        | 1               |         |  |  |
| DF                           | 1           |        | 1                    |                |                        | S               | W       |  |  |
| Compound                     |             |        | Conce                | entration      |                        | ug/kg           | μg/L    |  |  |
| TPH(bo)                      | 1300        |        | 150,1                |                |                        | NA              | 50      |  |  |
| TPH(d)                       | 150,g,b,    | ,i     | ND,i                 |                |                        | NA              | 50      |  |  |
| TPH(mo)                      | 890         |        | ND                   |                |                        | NA              | 250     |  |  |
|                              |             | Surr   | ogate Recoveries     | s (%)          |                        |                 |         |  |  |
| %SS:                         | 103         |        | 92                   |                |                        |                 |         |  |  |
| Comments                     | g,b,i       | •      | i                    |                |                        |                 |         |  |  |

<sup>\*</sup> water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

<sup>#</sup> cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see attached narrative.

Telephone: 877-252-9262 Fax: 925-252-9269

## QC SUMMARY REPORT FOR SW8021B/8015Cm

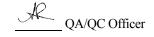
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0611208

| EPA Method SW8021B/8015 | Extraction SW5030B |        |                   |        | BatchID: 24728 |        |        | Spiked Sample ID: 0611206-005A |                         |     |          |     |
|-------------------------|--------------------|--------|-------------------|--------|----------------|--------|--------|--------------------------------|-------------------------|-----|----------|-----|
| Analyte                 |                    | Spiked | MS MSD MS-MSD LCS |        |                | LCS    | LCSD   | LCS-LCSD                       | Acceptance Criteria (%) |     |          | %)  |
| 7 thaty to              | μg/L               | μg/L   | % Rec.            | % Rec. | % RPD          | % Rec. | % Rec. | % RPD                          | MS / MSD                | RPD | LCS/LCSD | RPD |
| TPH(btex)               | ND                 | 60     | 106               | 101    | 3.90           | 103    | 100    | 2.60                           | 70 - 130                | 30  | 70 - 130 | 30  |
| MTBE                    | ND                 | 10     | 91.2              | 92.3   | 1.24           | 91.3   | 87.8   | 3.97                           | 70 - 130                | 30  | 70 - 130 | 30  |
| Benzene                 | ND                 | 10     | 99.8              | 101    | 1.40           | 97.2   | 98.1   | 0.903                          | 70 - 130                | 30  | 70 - 130 | 30  |
| Toluene                 | ND                 | 10     | 94.6              | 95.1   | 0.575          | 90.7   | 91.3   | 0.696                          | 70 - 130                | 30  | 70 - 130 | 30  |
| Ethylbenzene            | ND                 | 10     | 98.7              | 96.7   | 2.11           | 97.5   | 96.2   | 1.35                           | 70 - 130                | 30  | 70 - 130 | 30  |
| Xylenes                 | ND                 | 30     | 90.3              | 91     | 0.735          | 90     | 89.7   | 0.371                          | 70 - 130                | 30  | 70 - 130 | 30  |
| %SS:                    | 117                | 10     | 109               | 107    | 1.47           | 104    | 105    | 0.374                          | 70 - 130                | 30  | 70 - 130 | 30  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

#### BATCH 24728 SUMMARY


| Sample ID   | Date Sampled | Date Extracted | Date Analyzed    | Sample ID   | Date Sampled | Date Extracted | Date Analyzed    |
|-------------|--------------|----------------|------------------|-------------|--------------|----------------|------------------|
| 0611208-001 | 11/08/06     | 11/14/06       | 11/14/06 6:15 AM | 0611208-002 | 11/08/06     | 11/10/06       | 11/10/06 9:17 PM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.



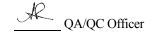
## QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0611208

| EPA Method SW8015C | od SW8015C Extraction SW3510C |        |        |        |        | BatchID: 24705 Spiked Sample ID: N/A |        |          |                         | : N/A |          |     |
|--------------------|-------------------------------|--------|--------|--------|--------|--------------------------------------|--------|----------|-------------------------|-------|----------|-----|
| Analyte            | Sample                        | Spiked | MS     | MSD    | MS-MSD | LCS                                  | LCSD   | LCS-LCSD | Acceptance Criteria (%) |       |          | %)  |
|                    | μg/L                          | μg/L   | % Rec. | % Rec. | % RPD  | % Rec.                               | % Rec. | % RPD    | MS / MSD                | RPD   | LCS/LCSD | RPD |
| TPH(d)             | N/A                           | 1000   | N/A    | N/A    | N/A    | 111                                  | 114    | 3.48     | N/A                     | N/A   | 70 - 130 | 30  |
| %SS:               | N/A                           | 2500   | N/A    | N/A    | N/A    | 107                                  | 109    | 1.92     | N/A                     | N/A   | 70 - 130 | 30  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

#### BATCH 24705 SUMMARY


| Sample ID   | Date Sampled | Date Extracted | Date Analyzed    | Sample ID   | Date Sampled | Date Extracted | Date Analyzed    |
|-------------|--------------|----------------|------------------|-------------|--------------|----------------|------------------|
| 0611208-001 | 11/08/06     | 11/09/06       | 11/15/06 2:59 AM | 0611208-002 | 11/08/06     | 11/09/06       | 11/15/06 5:48 AM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.



| RGA Environmental      | Client Project ID: #0387 BRT15635; 2100 | Date Sampled: 01/30/07   |
|------------------------|-----------------------------------------|--------------------------|
| 1466 66th Street       | Franklin St.                            | Date Received: 02/02/07  |
| Emeryville, CA 94608   | Client Contact: Ferndinand Oberle       | Date Reported: 02/08/07  |
| Linery vine, Cri 54000 | Client P.O.:                            | Date Completed: 02/08/07 |

WorkOrder: 0702060

February 08, 2007

Dear Ferndinand:

Enclosed are:

- 1). the results of 6 analyzed samples from your #0387 BRT15635; 2100 Franklin St. project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager



RGA Environmental, Inc. 1466 - 66<sup>th</sup> St Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com

# RGAE 0702060

# CHAIN OF CUSTODY RECORD

PAGE 1 OF 1

| PROJECT NUMBER:              | PROJECT NAME:<br>2100 Franklin St.                                                    |                         | (ES):                                                                                             |        |
|------------------------------|---------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------|--------|
| SAMPLED BY: (PRINTED AND SIG | NATURE) / // //                                                                       | NUMBER OF<br>CONTAINERS | PRESERVA TIVE                                                                                     |        |
| SAMPLE NUMBER DATE TO        | ME TYPE SAMPLE LOCATION                                                               | S S S                   |                                                                                                   |        |
| B14-27W 01.30.07             | Wate                                                                                  | 6                       | XX I I Lee HCh IN WON'S ourly                                                                     | 1      |
| B14-56W 02.01.07             | Wate                                                                                  | 7                       | XX NOKMAL THAT                                                                                    |        |
| B15-30W 02.01.07             | Water                                                                                 | 6                       | XX                                                                                                |        |
| B15-60W 62.01.07             | Wate                                                                                  | 7                       | XX                                                                                                |        |
| BB-25W 02.0107               | Wester                                                                                | 6                       | XX                                                                                                |        |
| B18-59W 02.01.07             | Water                                                                                 | 7                       | XX                                                                                                |        |
|                              |                                                                                       | -                       |                                                                                                   |        |
|                              |                                                                                       |                         |                                                                                                   |        |
|                              | TCE/I°                                                                                |                         |                                                                                                   |        |
|                              | GOOD CONDITION APPROPRIA  HEAD SPACE ABSENT CONTAINER  DECHLORINATED IN LAB PRESERVED | S_Y_                    |                                                                                                   |        |
|                              | PRESERVATION O&G   METALS   O                                                         | THER                    |                                                                                                   |        |
| RELINQUISHED BY: (SIGNATURE) | DATE TIME RECEIVED BY: (SIGNATURE                                                     | E)                      | TOTAL NO. OF SAMPLES 7 (THES SHEPMENT) 6 LABORATORY: TOTAL NO. OF CONTAINERS 39 Mc Couplelle Lol. | l<br>e |
| RELINQUISHED BY: (SIGNATURE) | DATE TIME RECEIVED BY: (SIGNATURE                                                     |                         | LABORATORY CONTACT: LABORATORY PHONE NUMB<br>Angela Rydelins (925) 252-9262                       |        |
| RELINQUISHED BY: (SIGNATURE) | DATE TIME RECEIVED FOR LABORATOR (SIGNATURE)                                          |                         | SAMPLE ANALYSIS REQUEST SHEET ATTACHED: ( )YES ( )NO                                              | 2.*    |
|                              | REMARKS: Normal                                                                       | TATO                    | on all sumples: VOA's preserved of toll                                                           |        |

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

| RGA Environmental    | Client Project ID: #0387 BRT15635; 2100<br>Franklin St. | Date Sampled: 01/30/07-02/01/07 |
|----------------------|---------------------------------------------------------|---------------------------------|
| 1466 66th Street     | Frankili St.                                            | Date Received: 02/02/07         |
| Emeryville, CA 94608 | Client Contact: Ferndinand Oberle                       | Date Extracted: 02/06/07        |
| 2.100                | Client P.O.:                                            | Date Analyzed: 02/06/07         |

### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE\*

Extraction method: SW5030B Analytical methods: SW8021B/8015Cm Work Order: 0702060 Lab ID Client ID Matrix TPH(g) **MTBE** Benzene Toluene Ethylbenzene Xylenes DF % SS W 001A B14-27W ND ND ND ND ND 0.61 1 107 002A B14-56W W ND ND ND ND ND ND 1 105 003A B15-30W W ND ND ND 0.90 ND 1.9 1 111 004A B15-60W W ND ND ND 0.65 ND 1.0 110 005A B18-25W W ND ND ND ND ND ND 107 006A B18-59W W ND ND ND ND ND ND 107 Reporting Limit for DF =1; 0.5 0.5 ND means not detected at or mg/Kg

| above the reporting limit             | S          | IVA               | IVA             | INA               | IVA            | IVA             | IVA            | 1 | 1. |
|---------------------------------------|------------|-------------------|-----------------|-------------------|----------------|-----------------|----------------|---|----|
| * water and vapor samples and all TC  | LP & SPL   | P extracts are re | ported in ug/L, | soil/sludge/solid | samples in mg/ | kg, wipe sample | es in μg/wipe, |   |    |
| product/oil/non-aqueous liquid sample | s in mg/L. |                   |                 |                   |                |                 |                |   |    |

<sup>#</sup> cluttered chromatogram; sample peak coelutes with surrogate peak.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.



"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

| RGA Environmental    | Client Project ID: #0387 BRT15635;<br>2100 Franklin St. | Date Sampled: 01/30/07-02/01/07 |
|----------------------|---------------------------------------------------------|---------------------------------|
| 1466 66th Street     | 2100 Flankiin St.                                       | Date Received: 02/02/07         |
| Emeryville, CA 94608 | Client Contact: Ferndinand Oberle                       | Date Extracted: 02/02/07        |
| 2 <b>3.</b> 1        | Client P.O.:                                            | Date Analyzed: 02/06/07         |

### Bunker Oil (C10+) & Diesel (C10-23) & Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil\*

Extraction Method: SW3510C Analytical Method: SW8015C Work Order: 0702060

| Extraction Method. 3W3310C | Allai        | lytical Method. 3 w 801 | 30           |              | WOIK OIGEI.               | 0702000 |  |  |  |
|----------------------------|--------------|-------------------------|--------------|--------------|---------------------------|---------|--|--|--|
| Lab ID                     | 0702060-001B | 0702060-002B            | 0702060-003B | 0702060-004B |                           |         |  |  |  |
| Client ID                  | B14-27W      | B14-56W                 | B15-30W      | B15-60W      | Reporting Limit for DF =1 |         |  |  |  |
| Matrix                     | W            | W                       | W            | W            |                           |         |  |  |  |
| DF                         | 1            | 1                       | 1            | 1            | S                         | W       |  |  |  |
| Compound                   |              | Conce                   | entration    |              | ug/kg                     | μg/L    |  |  |  |
| TPH(bo)                    | 650          | 230,1                   | 680          | 290          | NA                        | 50      |  |  |  |
| TPH(d)                     | 86,g,f       | ND                      | 68,g         | 63,b         | NA                        | 50      |  |  |  |
| TPH(mo)                    | 560          | ND                      | 630          | ND           | NA                        | 250     |  |  |  |
|                            | Surr         | ogate Recoveries        | s (%)        |              |                           |         |  |  |  |
| %SS:                       | 104          | 100                     | 100          | 100          |                           |         |  |  |  |
| Comments                   | g,f          |                         | g            | b            |                           |         |  |  |  |

<sup>\*</sup> water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.



<sup>#</sup> cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see attached narrative.

1534 Willow Pass Road, Pittsburg, CA 94565-1701  $Web: www.mccampbell.com \qquad E-mail: main@mccampbell.com$ Telephone: 877-252-9262 Fax: 925-252-9269

| RGA Environmental          |                                         |        | oject ID: #0387 B | Date Sampled: 01/30/07-02/01/07 |           |                 |                 |     |
|----------------------------|-----------------------------------------|--------|-------------------|---------------------------------|-----------|-----------------|-----------------|-----|
| 1466 66th Street           |                                         |        | 2100 Frai         | nklin St.                       |           | Date Received:  | 02/02/07        |     |
| Emeryville, CA 94608       |                                         |        | Client Co         | ontact: Ferndinan               | nd Oberle | Date Extracted: | 02/02/07        |     |
| Linery vine, 2117 1000     |                                         |        | Client P.0        | Э.:                             |           | Date Analyzed:  | 02/06/07        |     |
| Bunker Oil (C10+)          | & Diesel (                              | C10-23 |                   | , 0                             | •         |                 |                 |     |
| Extraction Method: SW3510C | d: SW3510C Analytical Method: SW8015C V |        |                   |                                 |           |                 |                 |     |
|                            | Lab ID                                  | 07020  | )60-005B          | 0702060-006B                    |           |                 |                 |     |
| (                          | Client ID                               | B18    | 8-25W             | B18-59W                         |           |                 | Reporting<br>DF |     |
|                            | Matrix                                  |        | W                 | W                               |           |                 |                 |     |
|                            | DF                                      |        | 2                 | 1                               |           |                 | S               | W   |
| Compound                   |                                         |        |                   | Conce                           |           | ug/kg           | μg/L            |     |
| TPH(bo)                    |                                         | 2      | 2700              | 240                             |           |                 | NA              | 50  |
| TPH(d)                     |                                         | 3.     | 40,g              | 69,b                            |           |                 | NA              | 50  |
| TPH(mo)                    |                                         | 2      | 2400              | ND                              |           |                 | NA              | 250 |
|                            |                                         |        | Surr              |                                 |           |                 |                 |     |
| %SS:                       |                                         |        | 103               | 94                              |           |                 |                 |     |
| Comments                   |                                         | <br>   | g                 | b                               |           |                 |                 |     |

<sup>\*</sup> water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μg/L.

<sup>#</sup> cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see attached narrative.

## QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0702060

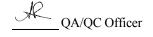
| EPA Method SW8021B/8015Cm | n Extraction SW5030B BatchID: 26072 Spiked Sample ID: 0702056-015 |        |        |        |        |        |        |          | 5A                         |     |          |     |
|---------------------------|-------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|----------|----------------------------|-----|----------|-----|
| Analyte                   | Sample                                                            | Spiked | MS     | MSD    | MS-MSD | LCS    | LCSD   | LCS-LCSD | SD Acceptance Criteria (%) |     |          |     |
| Analyto                   | μg/L                                                              | μg/L   | % Rec. | % Rec. | % RPD  | % Rec. | % Rec. | % RPD    | MS / MSD                   | RPD | LCS/LCSD | RPD |
| TPH(btex <sup>£</sup>     | ND                                                                | 60     | 107    | 97.6   | 9.51   | 106    | 105    | 0.836    | 70 - 130                   | 30  | 70 - 130 | 30  |
| MTBE                      | ND                                                                | 10     | 87.3   | 96.1   | 9.65   | 90.6   | 76.4   | 17.0     | 70 - 130                   | 30  | 70 - 130 | 30  |
| Benzene                   | ND                                                                | 10     | 103    | 107    | 4.23   | 103    | 108    | 4.45     | 70 - 130                   | 30  | 70 - 130 | 30  |
| Toluene                   | ND                                                                | 10     | 93.4   | 97.3   | 4.09   | 93.4   | 97.8   | 4.62     | 70 - 130                   | 30  | 70 - 130 | 30  |
| Ethylbenzene              | ND                                                                | 10     | 103    | 99.1   | 3.46   | 102    | 107    | 5.18     | 70 - 130                   | 30  | 70 - 130 | 30  |
| Xylenes                   | ND                                                                | 30     | 100    | 96.7   | 3.39   | 96.7   | 107    | 9.84     | 70 - 130                   | 30  | 70 - 130 | 30  |
| %SS:                      | 93                                                                | 10     | 100    | 99     | 1.43   | 99     | 105    | 5.75     | 70 - 130                   | 30  | 70 - 130 | 30  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

### **BATCH 26072 SUMMARY**

| Sample ID   | Date Sampled | Date Extracted | Date Analyzed   | Sample ID   | Date Sampled | Date Extracted | Date Analyzed    |
|-------------|--------------|----------------|-----------------|-------------|--------------|----------------|------------------|
| 0702060-001 | 1/30/07      | 2/06/07        | 2/06/07 6:38 AM | 0702060-002 | 2/01/07      | 2/06/07        | 2/06/07 7:07 AM  |
| 0702060-003 | 2/01/07      | 2/06/07        | 2/06/07 8:06 AM | 0702060-004 | 2/01/07      | 2/06/07        | 2/06/07 9:06 AM  |
| 0702060-005 | 2/01/07      | 2/06/07        | 2/06/07 9:35 AM | 0702060-006 | 2/01/07      | 2/06/07        | 2/06/07 10:35 AM |


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.



## QC SUMMARY REPORT FOR SW8015C

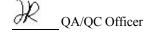
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0702060

| EPA Method SW8015C | 3510C  |        | Bat    | tchID: 26 | 074    | Sp     | iked Samp | ole ID:  | N/A      |         |              |     |
|--------------------|--------|--------|--------|-----------|--------|--------|-----------|----------|----------|---------|--------------|-----|
| Analyte            | Sample | Spiked | MS     | MSD       | MS-MSD | LCS    | LCSD      | LCS-LCSD | Acce     | eptance | Criteria (%) |     |
| ruidiyto           | μg/L   | μg/L   | % Rec. | % Rec.    | % RPD  | % Rec. | % Rec.    | % RPD    | MS / MSD | RPD     | LCS/LCSD     | RPD |
| TPH(d)             | N/A    | 1000   | N/A    | N/A       | N/A    | 111    | 112       | 0.995    | N/A      | N/A     | 70 - 130     | 30  |
| %SS:               | N/A    | 2500   | N/A    | N/A       | N/A    | 102    | 96        | 6.20     | N/A      | N/A     | 70 - 130     | 30  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

### BATCH 26074 SUMMARY

| Sample ID   | Date Sampled | Date Extracted | Date Analyzed   | Sample ID   | Date Sampled | Date Extracted | Date Analyzed   |
|-------------|--------------|----------------|-----------------|-------------|--------------|----------------|-----------------|
| 0702060-001 | 1/30/07      | 2/02/07        | 2/06/07 2:21 AM | 0702060-002 | 2/01/07      | 2/02/07        | 2/06/07 3:29 AM |
| 0702060-003 | 2/01/07      | 2/02/07        | 2/06/07 4:38 AM | 0702060-004 | 2/01/07      | 2/02/07        | 2/06/07 5:46 AM |
| 0702060-005 | 2/01/07      | 2/02/07        | 2/06/07 6:55 AM | 0702060-006 | 2/01/07      | 2/02/07        | 2/06/07 5:46 AM |


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.



| RGA Environmental      | Client Project ID: #0387/BRT 14504 | Date Sampled: 11/14/06   |
|------------------------|------------------------------------|--------------------------|
| 1466 66th Street       |                                    | Date Received: 11/15/06  |
| Emeryville, CA 94608   | Client Contact: Paul King          | Date Reported: 11/22/06  |
| Linery vine, Cri 94000 | Client P.O.:                       | Date Completed: 11/22/06 |

WorkOrder: 0611337

November 22, 2006

Dear Paul:

Enclosed are:

- 1). the results of 2 analyzed samples from your #0387/BRT 14504 project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager



RGA Environmental, Inc. 1466 - 66<sup>th</sup> St Emeryville, CA 94608 510-658-4363

CORD PAGE \_\_ OF \_\_ 510-834-0152 fax paul.king@rgaenv.com PROJECT NAME: PROJECT NUMBER: 0387/BRT14504 Brandywne Realty Trust NUMBER OF CONTAINERS REMARKS SAMPLED BY: (PRINTED AND SIGNATURE) Eric Olson SAMPLE LOCATION TYPE TIME SAMPLE NUMBER DATE Normal Turnaround 11-14-06 Water 16 11 LABORATORY: TOTAL NO. OF SAMPLES RECEIVED BY: (SIGNATURE) TOTAL NO. OF CONTAINERS 14 Mcaupbell Analysical
LABORATORY CONTACT: LABORATORY PHONE NUMBER: (THIS SHIPMENT) TIME RELINGUISHED BY: 7 (SIGNATURE) DATE RECEIVED BY: (SIGNATURE) 92512529262 RELINGUISHED BY: (SIGNATURE) TIME DATE SAMPLE ANALYSIS REQUEST SHEET RECEIVED FOR LABORATORY BY: ATTACHED: ( )YES ( )NO RELINQUISHED CBY: (SIGNATURE) TIME DATE (SIGNATURE) ICE/t°\_2. REMARKS: US AS preserved with HC APPROPRIATE GOOD CONDITION HEAD SPACE ABSENT CONTAINERS PRESERVED IN LAB DECHLORINATED IN LAB VOAS | O&G | METALS | OTHER PRESERVATION

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

## CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Prepared by: Nickole White

WorkOrder: 0611337 ClientID: RGAE

| (923) 232-9202                                                |              |                          |                                 | □EDF            |        | □F  | ax  |       | <b>✓</b> Er                     | mail |        | ПН    | lardCopy  |        | Third             | lParty |    |                |
|---------------------------------------------------------------|--------------|--------------------------|---------------------------------|-----------------|--------|-----|-----|-------|---------------------------------|------|--------|-------|-----------|--------|-------------------|--------|----|----------------|
| Report to: Paul King                                          |              | Email:                   | PDKing0000@                     |                 |        |     |     |       | ts Paya                         |      |        |       |           | Req    | uested            | TAT:   | 5  | days           |
| RGA Environmental<br>1466 66th Street<br>Emeryville, CA 94608 |              | TEL:<br>ProjectNo<br>PO: | (510) 547-777<br>: #0387/BRT 14 |                 | 547-19 | 183 | 140 | 66 66 | ivironm<br>ith Stre<br>ille, CA | et   |        |       |           |        | e Rece<br>e Prini |        |    | /2006<br>/2006 |
|                                                               |              |                          |                                 |                 |        |     |     |       |                                 | Requ | uested | Tests | (See lege | nd bel | ow)               |        |    |                |
| Sample ID                                                     | ClientSampID |                          | Matrix                          | Collection Date | Hold   | 1   | 2   | 3     | 4                               |      | 5      | 6     | 7         | 8      | 9                 | 10     | 11 | 12             |
| 0611337-001                                                   | B16-25W      |                          | Water                           | 11/14/2006      |        | A   | В   |       |                                 |      |        |       |           |        |                   |        |    |                |
| 0611337-002                                                   | B17-41W      |                          | Water                           | 11/14/2006      |        | Α   | В   |       |                                 |      |        |       |           |        |                   |        |    |                |
|                                                               |              |                          |                                 |                 |        |     |     |       |                                 |      |        |       |           |        |                   |        |    |                |
| Test Legend:                                                  |              |                          |                                 |                 |        |     |     | ſ     |                                 |      |        |       |           | F      |                   |        |    |                |
| 1 G-MBTEX_W                                                   | 2            | TPH(D                    | MO)_W                           | 3               |        |     |     | ]     | 9                               |      |        |       |           | _      | 5<br>10           |        |    |                |
| 6 <b>11</b>                                                   | 12           |                          |                                 | 8               |        |     |     |       | 9                               |      |        |       |           | Ľ      | וטן               |        |    |                |
| 11                                                            | 12           |                          |                                 |                 |        |     |     |       |                                 |      |        |       |           |        |                   |        |    |                |

### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

|                      | When Quality Counts |                      | 1 elephone. 877-232-9202 | 2 Fax. 923-232-9209 |          |
|----------------------|---------------------|----------------------|--------------------------|---------------------|----------|
| RGA Environmental    |                     | Client Project ID: # | 60387/BRT 14504          | Date Sampled:       | 11/14/06 |
| 1466 66th Street     |                     |                      |                          | Date Received:      | 11/15/06 |
| Emeryville, CA 94608 |                     | Client Contact: Pa   | ul King                  | Date Extracted:     | 11/17/06 |
|                      |                     | Client P.O.:         |                          | Date Analyzed:      | 11/17/06 |

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE\* Extraction method: SW5030B Analytical methods: SW8021B/8015Cm Work Order: 0611337 Lab ID Client ID Matrix TPH(g) **MTBE** Benzene Toluene Ethylbenzene Xylenes % SS W 001A B16-25W ND,i ND ND ND ND ND 103 1 002A B17-41W W ND.i ND ND ND ND ND 1 105 Reporting Limit for DF =1;

| ND means not detected at or            | S       | NΔ                | NΔ                | NΔ                | NΔ             | NΔ              | NA             | 1 | mg/Kg  |
|----------------------------------------|---------|-------------------|-------------------|-------------------|----------------|-----------------|----------------|---|--------|
| above the reporting limit              | 5       | IVA               | 1171              | 1171              | 1171           | 11/21           | 1171           | 1 | mg/ ix |
| * water and vapor samples and all TCLI | P & SPL | P extracts are re | ported in ug/L, s | soil/sludge/solid | samples in mg/ | kg, wipe sample | es in µg/wipe, |   |        |

<sup>#</sup> cluttered chromatogram; sample peak coelutes with surrogate peak.

product/oil/non-aqueous liquid samples in mg/L.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.



| RGA Environmental          |             |         | Client Pro | oject ID: #0387/B   | Date Sampled: | 11/14/06        |                 |      |
|----------------------------|-------------|---------|------------|---------------------|---------------|-----------------|-----------------|------|
| 1466 66th Street           |             |         |            |                     |               | Date Received:  | 11/15/06        |      |
| Emeryville, CA 94608       |             |         | Client Co  | ontact: Paul King   | ;             | Date Extracted: | 11/15/06        |      |
| Emery vine, C11 54000      |             |         | Client P.  | O.:                 |               | Date Analyzed   | 11/17/06        |      |
| Bunker Oil (C10+)          | & Diesel (0 | C10-23) | and Oil (  | carbons as Diesel   | and Motor     | Oil*            |                 |      |
| Extraction Method: SW3510C |             |         | Anal       | Work Order: 0611337 |               |                 |                 |      |
|                            | Lab ID      | 06113   | 37-001B    | 0611337-002B        |               |                 |                 |      |
|                            | Client ID   | В16     | 5-25W      | B17-41W             |               |                 | Reporting<br>DF |      |
|                            | Matrix      |         | W          | W                   |               |                 |                 |      |
|                            | DF          |         | 1 1        |                     |               |                 | S               | W    |
| Compound                   |             |         |            | Conce               | entration     |                 | ug/kg           | μg/L |
| TPH(bo)                    |             | 3       | 380        | 340,1               |               |                 | NA              | 50   |
| TPH(d)                     |             | N       | D,g,i      | ND,i                |               |                 | NA              | 50   |
| TPH(mo)                    | 2           | 250     | ND         |                     |               | NA              | 250             |      |
|                            |             |         | Surr       | ogate Recoveries    | (%)           |                 |                 |      |
| %SS:                       |             |         | 102        | 107                 |               |                 |                 |      |



Comments

<sup>\*</sup> water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μg/L.

<sup>#</sup> cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see attached narrative.

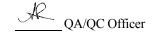
## QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0611337

| EPA Method SW8021B/8015 | iCm E  | xtraction | SW503  | 0B     |        | BatchID: 24787 Spiked Sample ID: 0611321- |        |          |          |                         |          | 009A |  |
|-------------------------|--------|-----------|--------|--------|--------|-------------------------------------------|--------|----------|----------|-------------------------|----------|------|--|
| Analyte                 | Sample | Spiked    | MS     | MSD    | MS-MSD | LCS                                       | LCSD   | LCS-LCSD | Ad       | Acceptance Criteria (%) |          |      |  |
| , mary to               | μg/L   | μg/L      | % Rec. | % Rec. | % RPD  | % Rec.                                    | % Rec. | % RPD    | MS / MSD | RPD                     | LCS/LCSD | RPD  |  |
| TPH(btex <sup>£</sup>   | ND     | 60        | 105    | 106    | 0.900  | 102                                       | 108    | 6.26     | 70 - 130 | 30                      | 70 - 130 | 30   |  |
| MTBE                    | ND     | 10        | 101    | 98.6   | 2.62   | 102                                       | 106    | 4.24     | 70 - 130 | 30                      | 70 - 130 | 30   |  |
| Benzene                 | ND     | 10        | 98.3   | 98.1   | 0.258  | 95.4                                      | 98.5   | 3.17     | 70 - 130 | 30                      | 70 - 130 | 30   |  |
| Toluene                 | ND     | 10        | 90.9   | 90.5   | 0.477  | 89.1                                      | 91.3   | 2.37     | 70 - 130 | 30                      | 70 - 130 | 30   |  |
| Ethylbenzene            | ND     | 10        | 97.4   | 98.7   | 1.40   | 97.9                                      | 101    | 3.30     | 70 - 130 | 30                      | 70 - 130 | 30   |  |
| Xylenes                 | ND     | 30        | 96.7   | 96.7   | 0      | 92                                        | 96.3   | 4.60     | 70 - 130 | 30                      | 70 - 130 | 30   |  |
| %SS:                    | 102    | 10        | 94     | 95     | 1.03   | 94                                        | 96     | 2.96     | 70 - 130 | 30                      | 70 - 130 | 30   |  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

### BATCH 24787 SUMMARY


| Sample ID   | Date Sampled | Date Extracted | Date Analyzed    | Sample ID   | Date Sampled | Date Extracted | Date Analyzed    |
|-------------|--------------|----------------|------------------|-------------|--------------|----------------|------------------|
| 0611337-001 | 11/14/06     | 11/17/06       | 11/17/06 6:54 AM | 0611337-002 | 11/14/06     | 11/17/06       | 11/17/06 7:24 AM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.



1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com

Telephone: 877-252-9262 Fax: 925-252-9269

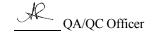
## QC SUMMARY REPORT FOR SW8015C

WorkOrder: 0611337 W.O. Sample Matrix: Water QC Matrix: Water

| EPA Method SW8015C | Extraction SW3510C |        |        |        |        |        | BatchID: 24782 Spiked Sample ID: N/A |          |                         |     | : N/A    |     |
|--------------------|--------------------|--------|--------|--------|--------|--------|--------------------------------------|----------|-------------------------|-----|----------|-----|
| Analyte            | Sample             | Spiked | MS     | MSD    | MS-MSD | LCS    | LCSD                                 | LCS-LCSD | Acceptance Criteria (%) |     | %)       |     |
| , analyte          | μg/L               | μg/L   | % Rec. | % Rec. | % RPD  | % Rec. | % Rec.                               | % RPD    | MS / MSD                | RPD | LCS/LCSD | RPD |
| TPH(d)             | N/A                | 1000   | N/A    | N/A    | N/A    | 107    | 110                                  | 2.41     | N/A                     | N/A | 70 - 130 | 30  |
| %SS:               | N/A                | 2500   | N/A    | N/A    | N/A    | 104    | 104                                  | 0        | N/A                     | N/A | 70 - 130 | 30  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

### BATCH 24782 SUMMARY


| Sample ID   | Date Sampled | Date Extracted | Date Analyzed    | Sample ID   | Date Sampled | Date Extracted | Date Analyzed    |
|-------------|--------------|----------------|------------------|-------------|--------------|----------------|------------------|
| 0611337-001 | 11/14/06     | 11/15/06       | 1/17/06 11:12 AM | 0611337-002 | 11/14/06     | 11/15/06       | 1/17/06 12:19 PM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.



| RGA Environmental      | Client Project ID: #0387; Brandywine | Date Sampled:   | 11/16/06 |
|------------------------|--------------------------------------|-----------------|----------|
| 1466 66th Street       | Realty Trust                         | Date Received:  | 11/16/06 |
| Emeryville, CA 94608   | Client Contact: Paul King            | Date Reported:  | 11/21/06 |
| Linery vine, Cri 54000 | Client P.O.:                         | Date Completed: | 11/22/06 |

WorkOrder: 0611360

November 22, 2006

Dear Paul:

Enclosed are:

- 1). the results of 1 analyzed sample from your #0387; Brandywine Realty Trust project,
- 2). a QC report for the above sample
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager



1466 - 66<sup>th</sup> St Emeryville, CA 94608 510-658-4363 510-834-0152 fax paul.king@rgaenv.com

# CHAIN OF CUSTODY RECORD

KRIK- 0.611360

|                   |             |       |                                                   |                                          |                         |            |                |                 |      |       |                                        |              | PAGE OF _      |
|-------------------|-------------|-------|---------------------------------------------------|------------------------------------------|-------------------------|------------|----------------|-----------------|------|-------|----------------------------------------|--------------|----------------|
| PROJECT NUMBER    | R:          | 1     | PROJEC1                                           | NAME:                                    |                         |            | <del>5</del> 7 | V               | T 7  | 7     | 17                                     |              |                |
| 0387              |             |       | Bran                                              | dywine Realty Trust                      |                         | 1 8        |                | 7 /             |      |       | //                                     | 5 /          |                |
| SAMPLED BY: (P    | RINTED AND  | SIGNA | TURE)                                             |                                          | OF<br>RS                | É          | 12             | ( /             |      |       | / /                                    | E A          |                |
| Steven Car        | mack        | l±    | -46                                               |                                          | S N                     | AWAL YSICK | The House      | 5/              | /    | / /   | / / 8                                  | £ /          | REMARKS        |
| Die Control       | T           | 1     | <del>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </del> | T                                        | MA                      | 1          | 7/4            | 1               | / /  |       | \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | · /          |                |
| SAMPLE NUMBER     | DATE        | TIME  | TYPE                                              | SAMPLE LOCATION                          | NUMBER OF<br>CONTAINERS | 1/F        | 1/2            | 7 /             |      |       | / &                                    | LAVA TVE     |                |
| 0.17              | 1,7         |       | I                                                 |                                          | TI                      | V          |                |                 |      |       | /                                      |              | 1100           |
| B17-30W           | 11/16/06    | 1015  | H20                                               |                                          | 75                      | 1X         | X              |                 |      |       | ICE                                    | STA          | TOLB           |
| B17-34W           | 1,1         | 1030  | 1                                                 |                                          | 1.7                     | X,         | X              | +               | _    | -     | 1                                      | 1 4          |                |
|                   |             |       |                                                   |                                          |                         |            | 1              | _               | +    | _     | -                                      | NE           | ormal Tun A    |
|                   |             |       |                                                   |                                          |                         | H          | $\dashv$       | -               | -    | -     |                                        |              |                |
|                   |             |       |                                                   |                                          |                         | H          | $\dashv$       | +               | -    |       |                                        |              |                |
|                   |             |       | -                                                 |                                          |                         |            |                |                 |      |       |                                        |              |                |
|                   |             |       |                                                   |                                          |                         |            |                |                 |      |       |                                        |              |                |
|                   |             |       |                                                   |                                          |                         |            |                |                 |      |       | -                                      |              |                |
|                   |             |       |                                                   |                                          |                         |            |                |                 |      |       |                                        |              |                |
|                   |             |       |                                                   |                                          |                         |            | +              | +               |      |       |                                        |              |                |
|                   |             |       |                                                   |                                          |                         |            | $\dashv$       | -               |      |       |                                        |              |                |
|                   |             |       |                                                   |                                          |                         |            | -              | -               | H    |       |                                        |              |                |
|                   | 1           |       | TOTAL                                             | 7.00                                     |                         |            |                |                 |      |       |                                        |              |                |
|                   | -           |       | TCE/tº                                            |                                          |                         |            |                |                 |      |       |                                        |              |                |
|                   | -           |       | HEAL<br>DECK                                      | SPACE ABSENT CONTAINERS LORINATED IN LAB |                         |            |                |                 |      |       |                                        |              |                |
|                   |             |       | 777.77                                            | VOAS O&G METALS OTHER                    |                         |            |                |                 |      |       |                                        |              |                |
|                   |             |       | 14668                                             | ERVATION V                               |                         | _          | _              |                 |      | -     |                                        |              |                |
|                   |             |       |                                                   | N-                                       |                         | -          | -              | -               |      |       |                                        |              |                |
| RELINQUISHED BY:  | (SIGNATURE  | )     | DATE /                                            | TIME RECEIVED BY: (SIGNATURE)            |                         | TOTAL      | <u> </u>       | SAMPL           |      |       |                                        |              |                |
| 11 W              |             |       | 17.4                                              |                                          | P                       | CII        | 4S SHIP        | (TKSM           |      |       | LABO                                   | RATORY       |                |
| RELINGUISHED BY:  | (SICNATURE  | -//   | 100                                               | 3/30                                     |                         |            |                | CONTAI<br>MENT) |      |       | Me                                     | (ang         | bell Analytica |
| MEDITORISHED (81: | (SIGNATURE  | 2/.   | DATE                                              | TIME RECEIVED BY (SIGNATURE)             |                         | LABO       | DRAT           | ORY             | CON  | TACT  | : LABO                                 | RATORY       | PHONE NUMBER   |
|                   |             | 111   | 1/4/06                                            | 315                                      |                         | 34         | nal            | la K            | ydel | 11/   | (925                                   | 175          | 2-9262         |
| RELINQUISHED BY:  | (SIGNATURE) | )     | DATE                                              | TIME RECEIVED FOR LABORATORY             | BY:                     |            | 1              | AMPI            | FA   | NAI ' | YSIS REI                               | DIFCT (      | SHEET          |
|                   |             |       |                                                   | (SIGNATURE)                              |                         |            |                | ATTA            | CHE  | D: (  | YES                                    | (X )N        | 0              |
|                   |             |       | 1                                                 | REMARKS:                                 |                         |            |                |                 |      |       |                                        | <i>y /</i> : |                |
|                   |             |       |                                                   | HCL Prese                                | watin                   | e          |                |                 |      |       |                                        |              |                |
|                   |             |       |                                                   | HCL prese                                | ^                       |            |                |                 |      |       |                                        |              |                |
|                   |             |       |                                                   | 1209                                     | 7                       |            |                |                 |      |       |                                        |              |                |

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

## CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0611360 ClientID: RGAE □ EDF ∏Fax ✓ Email HardCopy ☐ ThirdParty Report to: Bill to: **Requested TAT:** 5 days Accounts Payable Paul King Email: PDKing0000@aol.com FAX: (510) 547-1983 TEL: (510) 547-7771 **RGA Environmental RGA Environmental** Date Received: 11/16/2006 1466 66th Street ProjectNo: #0387; Brandywine Realty Trust 1466 66th Street Emeryville, CA 94608 PO: Emeryville, CA 94608 11/16/2006 Date Printed: Requested Tests (See legend below) ClientSampID 2 3 10 Sample ID 1 11 12 Matrix Collection Date Hold 0611360-002 B17-34W Water 11/16/06 10:30:00 Α В

### Test Legend:

| 1 G-MBTEX_W | 2 TPH(DMO)_W | 3 | 4 | 5  |  |
|-------------|--------------|---|---|----|--|
| 6           | 7            | 8 | 9 | 10 |  |
| 11          | 12           |   |   |    |  |

Prepared by: Melissa Valles

### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 

| "When Ouality Counts" Telephone: 877-252-9262 Fax: 925-252-9269               |                                                     |                                                 |                      |                |               |         |              |               |          |      |
|-------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|----------------------|----------------|---------------|---------|--------------|---------------|----------|------|
| RGA Er                                                                        | nvironmental                                        |                                                 | Client Proj<br>Trust | ect ID: #038   | 7; Brandywine | Realty  | Date Sample  | ed: 11/16/06  |          |      |
| 1466 66                                                                       | th Street                                           |                                                 | Trust                |                |               |         | Date Receive | ed: 11/16/06  |          |      |
| Emeryvi                                                                       | lle, CA 94608                                       |                                                 | Client Con           | ntact: Paul Ki | ng            |         | Date Extract | ed: 11/18/06  |          |      |
|                                                                               |                                                     |                                                 | Client P.O.          | :              |               |         | Date Analyz  | zed: 11/18/06 |          |      |
| Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* |                                                     |                                                 |                      |                |               |         |              |               |          |      |
| Extraction                                                                    | method: SW5030B                                     | nod: SW5030B Analytical methods: SW8021B/8015Cm |                      |                |               |         |              |               | : 0611   | 360  |
| Lab ID                                                                        | Client ID                                           | Matrix                                          | TPH(g)               | MTBE           | Benzene       | Toluene | Ethylbenzene | Xylenes       | DF       | % SS |
| 002A                                                                          | B17-34W                                             | W                                               | ND,i                 | ND             | ND            | ND      | ND           | ND            | 1        | 103  |
|                                                                               |                                                     |                                                 |                      |                |               |         |              |               |          |      |
|                                                                               |                                                     |                                                 |                      |                |               |         |              |               |          |      |
|                                                                               |                                                     |                                                 |                      |                |               |         |              |               |          |      |
|                                                                               |                                                     |                                                 |                      |                |               |         |              |               |          |      |
|                                                                               |                                                     |                                                 |                      |                |               |         |              |               |          |      |
|                                                                               |                                                     |                                                 |                      |                |               |         |              |               |          |      |
|                                                                               |                                                     |                                                 |                      |                |               |         |              |               |          |      |
|                                                                               |                                                     |                                                 |                      |                |               |         |              |               |          |      |
|                                                                               |                                                     |                                                 |                      |                |               |         |              |               |          |      |
|                                                                               |                                                     |                                                 |                      |                |               |         |              |               |          |      |
|                                                                               |                                                     |                                                 |                      |                |               |         |              |               |          |      |
|                                                                               |                                                     |                                                 |                      |                |               |         |              |               |          |      |
|                                                                               |                                                     |                                                 |                      |                |               |         |              |               |          |      |
|                                                                               |                                                     |                                                 |                      |                |               |         |              |               |          |      |
|                                                                               |                                                     |                                                 |                      |                |               |         |              |               |          |      |
|                                                                               |                                                     |                                                 |                      | ·              |               | •       | ·<br>        |               | <u> </u> | '    |
| _                                                                             | orting Limit for DF =1;<br>neans not detected at or | W                                               | 50                   | 5.0            | 0.5           | 0.5     | 0.5          | 0.5           | 1        | μg/L |
|                                                                               |                                                     |                                                 |                      |                |               |         |              |               |          |      |

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.



above the reporting limit

<sup>\*</sup> water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe product/oil/non-aqueous liquid samples in mg/L.

<sup>#</sup> cluttered chromatogram; sample peak coelutes with surrogate peak.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

| RGA Environmental          |        |                                                                          | oject ID: #0387;      | Brandywine | Date Sampled:            | 11/16/06  11/17/06  and Motor Oil*  Work Order: 0611360  Reporting Limit for DF =1  S W  ug/kg µg/L  NA 50 |         |  |  |  |
|----------------------------|--------|--------------------------------------------------------------------------|-----------------------|------------|--------------------------|------------------------------------------------------------------------------------------------------------|---------|--|--|--|
| 1466 66th Street           |        | Realty T                                                                 | rust                  |            | Date Received:           | 11/16/06                                                                                                   |         |  |  |  |
| Emeryville, CA 94608       |        | Client Co                                                                | ontact: Paul King     | Ţ,         | Date Extracted: 11/16/06 |                                                                                                            |         |  |  |  |
| Lineryvine, CA 74000       |        | Client P.                                                                | O.:                   |            | Date Analyzed            | 11/17/06                                                                                                   |         |  |  |  |
|                            | C10-23 | 23) & Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil* |                       |            |                          |                                                                                                            |         |  |  |  |
| Extraction Method: SW3510C |        | Anal                                                                     | ytical Method: SW801: | 5C         |                          | Work Order:                                                                                                | 0611360 |  |  |  |
| Lab ID                     | 06113  | 60-002B                                                                  |                       |            |                          |                                                                                                            |         |  |  |  |
| Client ID                  | B17    | 7-34W                                                                    |                       |            |                          |                                                                                                            |         |  |  |  |
| Matrix                     |        | W                                                                        |                       |            |                          |                                                                                                            |         |  |  |  |
| DF                         |        | 1                                                                        |                       |            |                          | S                                                                                                          | W       |  |  |  |
| Compound                   |        |                                                                          | Conce                 | entration  |                          | ug/kg                                                                                                      | μg/L    |  |  |  |
| TPH(bo)                    | 1      | 400                                                                      |                       |            |                          | NA                                                                                                         | 50      |  |  |  |
| TPH(d)                     | 530    | ),g,b,i                                                                  |                       |            |                          | NA                                                                                                         | 50      |  |  |  |
| TPH(mo)                    | 1      | 000                                                                      |                       |            |                          | NA                                                                                                         | 250     |  |  |  |
| Surrogate Recoveries (%)   |        |                                                                          |                       |            |                          |                                                                                                            |         |  |  |  |
| %SS:                       |        | 97                                                                       |                       |            |                          |                                                                                                            |         |  |  |  |
| Comments                   | g      | g,b,i                                                                    |                       |            |                          |                                                                                                            |         |  |  |  |

<sup>\*</sup> water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in  $\mu g/L$ .

<sup>#</sup> cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see attached narrative.

QC SUMMARY REPORT FOR SW8021B/8015Cm

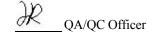
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0611360

| EPA Method SW8021B/8015 | В      |        | Batchil | D: 24796 | 8                                          | Spiked San | nple ID | : 0611351-0 | 05A            |     |          |     |
|-------------------------|--------|--------|---------|----------|--------------------------------------------|------------|---------|-------------|----------------|-----|----------|-----|
| Analyte                 | Sample | Spiked | MS      | MSD      | MS-MSD LCS LCSD LCS-LCSD Acceptance Criter |            |         |             | ce Criteria (º | %)  |          |     |
| , mary to               | μg/L   | μg/L   | % Rec.  | % Rec.   | % RPD                                      | % Rec.     | % Rec.  | % RPD       | MS / MSD       | RPD | LCS/LCSD | RPD |
| TPH(btex <sup>£</sup>   | ND     | 60     | 107     | 103      | 3.84                                       | 105        | 102     | 2.26        | 70 - 130       | 30  | 70 - 130 | 30  |
| MTBE                    | ND     | 10     | 109     | 106      | 2.55                                       | 106        | 105     | 0.315       | 70 - 130       | 30  | 70 - 130 | 30  |
| Benzene                 | ND     | 10     | 107     | 97.6     | 9.26                                       | 105        | 101     | 3.64        | 70 - 130       | 30  | 70 - 130 | 30  |
| Toluene                 | ND     | 10     | 98.6    | 91.1     | 7.85                                       | 98         | 94.2    | 3.96        | 70 - 130       | 30  | 70 - 130 | 30  |
| Ethylbenzene            | ND     | 10     | 108     | 100      | 7.82                                       | 99.4       | 104     | 4.86        | 70 - 130       | 30  | 70 - 130 | 30  |
| Xylenes                 | ND     | 30     | 107     | 96.7     | 9.84                                       | 107        | 100     | 6.45        | 70 - 130       | 30  | 70 - 130 | 30  |
| %SS:                    | 104    | 10     | 96      | 90       | 6.20                                       | 94         | 93      | 1.36        | 70 - 130       | 30  | 70 - 130 | 30  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

#### BATCH 24796 SUMMARY


| Sample ID   | Date Sampled     | Date Extracted | Date Analyzed    | Sample ID | Date Sampled | Date Extracted | Date Analyzed |
|-------------|------------------|----------------|------------------|-----------|--------------|----------------|---------------|
| 0611360-002 | 1/16/06 10:30 AM | 11/18/06       | 11/18/06 2:10 AM |           |              |                |               |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.



Telephone: 877-252-9262 Fax: 925-252-9269

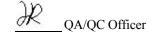
## QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0611360

| EPA Method SW8015C | Extraction SW3510C |        |        |        |        |        | BatchID: 24782 Spiked Sample ID: N/A |          |                         |     | : N/A    |     |
|--------------------|--------------------|--------|--------|--------|--------|--------|--------------------------------------|----------|-------------------------|-----|----------|-----|
| Analyte            | Sample             | Spiked | MS     | MSD    | MS-MSD | LCS    | LCSD                                 | LCS-LCSD | Acceptance Criteria (%) |     | %)       |     |
| , analyte          | μg/L               | μg/L   | % Rec. | % Rec. | % RPD  | % Rec. | % Rec.                               | % RPD    | MS / MSD                | RPD | LCS/LCSD | RPD |
| TPH(d)             | N/A                | 1000   | N/A    | N/A    | N/A    | 107    | 110                                  | 2.41     | N/A                     | N/A | 70 - 130 | 30  |
| %SS:               | N/A                | 2500   | N/A    | N/A    | N/A    | 104    | 104                                  | 0        | N/A                     | N/A | 70 - 130 | 30  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

### BATCH 24782 SUMMARY


| Sample ID   | Date Sampled     | Date Extracted | Date Analyzed    | Sample ID | Date Sampled | Date Extracted | Date Analyzed |
|-------------|------------------|----------------|------------------|-----------|--------------|----------------|---------------|
| 0611360-002 | 1/16/06 10:30 AM | 11/16/06       | 11/17/06 4:48 PM |           |              |                |               |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.



| RGA Environmental      | Client Project ID: #0387//BRT16007; 2100 | Date Sampled:   | 03/19/07-03/20/07 |
|------------------------|------------------------------------------|-----------------|-------------------|
| 1466 66th Street       | Franklin Street                          | Date Received:  | 03/21/07          |
| Emeryville, CA 94608   | Client Contact: Ferndinand Oberle        | Date Reported:  | 03/28/07          |
| Linery vine, Cri 54000 | Client P.O.:                             | Date Completed: | 03/28/07          |

WorkOrder: 0703505

March 28, 2007

Dear Ferndinand:

Enclosed are:

- 1). the results of 5 analyzed samples from your #0387//BRT16007; 2100 Franklin Street project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager



RGA Environmental, Inc 1466 - 65<sup>th</sup> St Emeryville, CA 94608 510-658-4363 510-834-0152 fax naul king@rgaenv.com

VOAS | O&G | METALS | OTHER

## CHAIN OF CUSTODY RECORD

| PROJECT NUMBER:  (387   BYT 16007   2100 FRWKLIN ST  SAMPLE BY (PRINTED AND SIGNATURE)  FROMAND OBJECT   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   10 |                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | _   |         | _    | _      |                | PAGE OF                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|---------|------|--------|----------------|------------------------------|
| SAMPLE NUMBER  DATE  TIME  TYPE  SAMPLE LOCATION  28  TX  XX  TCC LOGAL S-DOG  RELINQUISHED BY: (SICNATURE)  DATE  TIME  RECEIVED BY: (SICNATURE)  PATE  RELINQUISHED BY: (SICNATURE)  DATE  TIME  RECEIVED BY: (SICNATURE)  RELINQUISHED BY: (SICNATURE)  DATE  TIME  RECEIVED BY: (SICNATURE)  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO  TOTAL HAS OF CONTINENT  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO  TAKEN OF CONTINENT  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO  TAKEN OF CONTINENT  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO  THE PROPERTY OF THE PROPERTY BY: (SICNATURE)  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                           | PROJECT  | NAME:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 100 | / X     | 7    | /      | ///            | w /                          |
| SAMPLE NUMBER  DATE  TIME  TYPE  SAMPLE LOCATION  28  TX  XX  TCC LOGAL S-DOG  RELINQUISHED BY: (SICNATURE)  DATE  TIME  RECEIVED BY: (SICNATURE)  PATE  RELINQUISHED BY: (SICNATURE)  DATE  TIME  RECEIVED BY: (SICNATURE)  RELINQUISHED BY: (SICNATURE)  DATE  TIME  RECEIVED BY: (SICNATURE)  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO  TOTAL HAS OF CONTINENT  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO  TAKEN OF CONTINENT  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO  TAKEN OF CONTINENT  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO  THE PROPERTY OF THE PROPERTY BY: (SICNATURE)  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |          | TRANKLIN DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FN    | Sis | 12      | /    | //     | ///            | 14                           |
| SAMPLE NUMBER  DATE  TIME  TYPE  SAMPLE LOCATION  28  TX  XX  TCC LOGAL S-DOG  RELINQUISHED BY: (SICNATURE)  DATE  TIME  RECEIVED BY: (SICNATURE)  PATE  RELINQUISHED BY: (SICNATURE)  DATE  TIME  RECEIVED BY: (SICNATURE)  RELINQUISHED BY: (SICNATURE)  DATE  TIME  RECEIVED BY: (SICNATURE)  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO  TOTAL HAS OF CONTINENT  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO  TAKEN OF CONTINENT  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO  TAKEN OF CONTINENT  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO  THE PROPERTY OF THE PROPERTY BY: (SICNATURE)  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (X)HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLED BY: (PRINTED AND SIG | GNATURE) | 1100/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NER O | 15/ | 3/2     | 1    | //     | //             | REMARKS                      |
| SAMPLE NUMBER  DATE  TIME  TYPE  SAMPLE LOCATION  28  TX  XX  TCC Month S-Day  19-52  03-10-7  10-65  GXX  1 TX  TX  TX  TX  TX  TX  TX  TX  TX  TX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FERDIVANO OPERCE             | 1 Test   | Male                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TAIL  | 3   | 2/3/    | //   | /      | //3            | 8                            |
| RELINQUISHED BY: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  DATE  TIME  RECEIVED FOR LABORATORY BY:  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED () YES (MAD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAMPLE NUMBER DATE           | TYPE     | SAMPLE LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CON   | 12  | 13/     | /    | //     | / / &          |                              |
| RELINQUISHED BY (SIGNATURE)  DATE TIME RECEIVED BY (SIGNATURE)  RELINQUISHED BY (SIGNATURE)  DATE TIME RECEIVED BY (SIGNATURE)  RELINQUISHED BY (SIGNATURE)  DATE TIME RECEIVED FOR LABORATORY BY  SAMPLE ANALYSIS REQUEST SHEET  ATTACHCO () YES (SIGNATURE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | hater    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7     | -   | X       |      |        | Ice            | Mariel 5-Day                 |
| RELINCUISHED BY: (SIGNATURE)  DATE  TIME RECEIVED BY: (SIGNATURE)  POLICY DATE  TOTAL OF SOURCE 34  MCLEMBURSHED BY: (SIGNATURE)  DATE  TIME RECEIVED BY: (SIGNATURE)  POLICY DATE  THE RECEIVED BY: (SIGNATURE)  DATE  TIME RECEIVED FOR LABORATORY BY  SAMPLE ANALYSIS REQUEST, SHEET  ATTACHED: ( ) YES ( ) NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 319-52 03.2007               | Water    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6     | X   | X       |      | -      |                | Turand                       |
| RELINQUISHED BY (SIGNATURE)  DATE TIME RECEIVED BY (SIGNATURE)  TIME RECEIVED BY (SIGNATURE)  TOTAL ME OF CONTINUES 34 STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING STANDING S | 20 - 20 03,19.07             | blok     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7     | X   | X       |      |        |                |                              |
| RELINQUISHED BY: (SIGNATURE)  DATE TIME RECEIVED BY: (SIGNATURE)  NELINQUISHED BY: (SIGNATURE)  PART OF SAMPLE  TOTAL HOLD OF SAMPLE  PART OF SAMPLE  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED: () YES () NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 321 - 20 03,19.07            | lilita   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7     | X   | X       |      |        |                |                              |
| RELINDUISHED BY: (SIGNATURE)  RELINDUISHED BY: (SIGNATURE)  RELINDUISHED BY: (SIGNATURE)  DATE  THE RECEIVED BY: (SIGNATURE)  RELINDUISHED BY: (SIGNATURE)  DATE  THE RECEIVED BY: (SIGNATURE)  DATE  THE RECEIVED BY: (SIGNATURE)  DATE  THE RECEIVED BY: (SIGNATURE)  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED: () YES () NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | 13 3     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F     |     | V       | 100  | - 12 k | 11/            |                              |
| RELINQUISHED BY: (SIGNATURE)  PATE TIME RECEIVED BY: (SIGNATURE)  TOTAL HO OF SHAPES  [PASS SOMEON]  SAMPLE ANALYSIS REQUEST SHEET  (SIGNATURE)  TOTAL HO OF SHAPES  [PASS SOMEON]  TOTAL HO OF SHAPES  [PASS SOMEON]  [PASS SOMEO | ZZ Z 0                       | mu.      | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |       |     |         | 7.   | -      | V              |                              |
| RELINQUISHED BY: (SIGNATURE)  DATE TIME RECEIVED BY: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  DATE TIME RECEIVED BT: (SIGNATURE)  RELINQUISHED BY: (SIGNATURE)  DATE TIME RECEIVED FOR LABORATORY BY  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED: () YES () NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | d &.     | A STATE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |     |         |      |        |                |                              |
| RELINQUISHED BY: (SIGNATURE)  DATE TIME RECEIVED FOR LABORATORY BY:  (SIGNATURE)  DATE TIME RECEIVED FOR LABORATORY BY:  (SIGNATURE)  SAMPLE ANALYSIS REQUEST SHEET  (SIGNATURE)  ATTACHED: () YES (V) NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chipped .                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |         |      |        |                |                              |
| RELINQUISHED BY: (SIGNATURE)  DATE TIME RECEIVED FOR LABORATORY BY:  (SIGNATURE)  DATE TIME RECEIVED FOR LABORATORY BY:  (SIGNATURE)  SAMPLE ANALYSIS REQUEST SHEET  (SIGNATURE)  ATTACHED: () YES (V)NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |         |      | 1      |                |                              |
| RELINQUISHED BY (SIGNATURE)  DATE TIME RECEIVED FOR LABORATORY BY:  (SIGNATURE)  SAMPLE ANALYSIS REQUEST SHEET  ATTACHED: () YES () NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RELINCUISHED BY (SICHATURE)  | - // / 1 | TIME RECEIVEDABY (SIGNATURE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 6   | 45 3-07 | ണ    |        | 5 LAB<br>34 Ma | ORATORY:<br>Comball Arelinel |
| RELINQUISHED BY (SIGNATURE) DATE TIME RECEIVED FOR LABORATORY BY SAMPLE ANALYSIS REQUEST SHEET (SIGNATURE) ATTACHED: ()YES ()NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RELINQUISHED BY: (SICHATURE) | You're 1 | MECEIVED BT. (SIGNATURE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 1 6 |         | 7    |        | 1              | 19) 252 9262                 |
| REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RELINQUISHED BY: (SIGNATURE) | DATE     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BY:   | 2   | S       | AMPL | E AN   | ALYSIS RE      | EQUEST SHEET                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          | REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |     |         |      |        |                |                              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |     |         |      |        |                |                              |



1534 Willow Pass Rd

## CHAIN-OF-CUSTODY RECORD

Page 1 of 1

| Pittsburg<br>(925) 25                                                      | g, CA 94565-1701<br>52-9262 |                                     |                               |                                  |      | Worl | «Order:         | 0703                | 505                                              | (           | ClientID | : RGA   | E      |       |       |                           |    |
|----------------------------------------------------------------------------|-----------------------------|-------------------------------------|-------------------------------|----------------------------------|------|------|-----------------|---------------------|--------------------------------------------------|-------------|----------|---------|--------|-------|-------|---------------------------|----|
|                                                                            |                             |                                     |                               | ☐ EDF                            |      |      | Fax             |                     | <b>✓</b> Email                                   |             | □н       | ardCopy | [      | Third | Party |                           |    |
| Report to:<br>Ferndinand (<br>RGA Enviror<br>1466 66th St<br>Emeryville, C | nmental<br>treet            | Email:<br>TEL:<br>ProjectNo:<br>PO: | (510) 547-777<br>#0387//BRT10 | 7 FAX: (510)<br>6007; 2100 Frank |      |      | RG<br>146<br>Em | 66 66th<br>eryville | eacock<br>ronmen<br>Street<br>, CA 94<br>acock @ | 608         | v.com    |         | Dat    | e Rec |       | 5 o<br>03/21/2<br>03/22/2 |    |
| Sample ID                                                                  | ClientSampID                |                                     | Matrix                        | Collection Date                  | Hold | 1    | 2               | 3                   | Req<br>4                                         | uested<br>5 | Tests (  | See leg | end be | low)  | 10    | 11                        | 12 |
| 0703505-001                                                                | B19-20                      |                                     | Water                         | 03/19/07                         |      | Α    | В               |                     |                                                  |             |          |         |        |       |       |                           |    |
| 0703505-002                                                                | B19-52                      |                                     | Water                         | 03/20/07                         |      | Α    | В               |                     |                                                  |             |          |         |        |       |       |                           |    |
| 0703505-003                                                                | B20-20                      |                                     | Water                         | 03/19/07                         |      | Α    | В               |                     |                                                  |             |          |         |        |       |       |                           |    |
| 0703505-004                                                                | B21-20                      |                                     | Water                         | 03/19/07                         |      | Α    | В               |                     |                                                  |             |          |         |        |       |       |                           |    |
| 0703505-005                                                                | B22-20                      |                                     | Water                         | 03/20/07                         |      | Α    | В               |                     |                                                  |             |          |         |        |       |       |                           |    |
|                                                                            |                             |                                     |                               |                                  |      |      |                 |                     |                                                  |             |          |         |        |       |       |                           |    |

### Test Legend:

| 1 G-MBTEX_W | 2 TPH(DMO)_W | 3 | 4 | 5  |  |
|-------------|--------------|---|---|----|--|
| 6           | 7            | 8 | 9 | 10 |  |
|             |              | 1 |   |    |  |

| Prepared | by: | Rosa | V | enegas |
|----------|-----|------|---|--------|
|----------|-----|------|---|--------|

### **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

| RGA Environmental                                                             | Client Project ID: #0387//BRT16007; 2100 | Date Sampled: 03/19/07-03/20/07   |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|------------------------------------------|-----------------------------------|--|--|--|--|--|--|--|
| 1466 66th Street                                                              | Franklin Street                          | Date Received: 03/21/07           |  |  |  |  |  |  |  |
| Emeryville, CA 94608                                                          | Client Contact: Ferndinand Oberle        | Date Extracted: 03/24/07-03/27/07 |  |  |  |  |  |  |  |
| 2, 6.17 1000                                                                  | Client P.O.:                             | Date Analyzed 03/24/07-03/27/07   |  |  |  |  |  |  |  |
| Casalina Danga (C6 C12) Valatila Hudragarbans as Casalina with DTEV and MTDE* |                                          |                                   |  |  |  |  |  |  |  |

#### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE\*

|          | Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* |        |        |                   |               |         |              |            |       |       |  |  |  |
|----------|-------------------------------------------------------------------------------|--------|--------|-------------------|---------------|---------|--------------|------------|-------|-------|--|--|--|
| Extracti | on method SW5030B                                                             |        | Analy  | ytical methods SV | V8021B/8015Cm |         |              | Work Order | : 070 | 3505  |  |  |  |
| Lab ID   | Client ID                                                                     | Matrix | TPH(g) | MTBE              | Benzene       | Toluene | Ethylbenzene | Xylenes    | DF    | % SS  |  |  |  |
| 001A     | B19-20                                                                        | W      | ND,i   | ND                | ND            | 0.80    | ND           | ND         | 1     | 109   |  |  |  |
| 002A     | B19-52                                                                        | W      | ND,i   | ND                | ND            | ND      | ND           | ND         | 1     | 114   |  |  |  |
| 003A     | B20-20                                                                        | W      | ND,i   | ND                | ND            | ND      | ND           | ND         | 1     | 115   |  |  |  |
| 004A     | B21-20                                                                        | W      | ND,i   | ND                | ND            | ND      | ND           | 1.2        | 1     | 109   |  |  |  |
| 005A     | B22-20                                                                        | W      | ND,i   | ND                | ND            | ND      | ND           | ND         | 1     | 114   |  |  |  |
|          |                                                                               |        |        |                   |               |         |              |            |       |       |  |  |  |
|          |                                                                               |        |        |                   |               |         |              |            |       |       |  |  |  |
|          |                                                                               |        |        |                   |               |         |              |            |       |       |  |  |  |
|          |                                                                               |        |        |                   |               |         |              |            |       |       |  |  |  |
|          |                                                                               |        |        |                   |               |         |              |            |       |       |  |  |  |
|          |                                                                               |        |        |                   |               |         |              |            |       |       |  |  |  |
|          |                                                                               |        |        |                   |               |         |              |            |       |       |  |  |  |
|          |                                                                               |        |        |                   |               |         |              |            |       |       |  |  |  |
|          |                                                                               |        |        |                   |               |         |              |            |       |       |  |  |  |
|          |                                                                               |        |        |                   |               |         |              |            |       |       |  |  |  |
|          |                                                                               |        |        |                   |               |         |              |            |       |       |  |  |  |
|          | porting Limit for DF =1;                                                      | W      | 50     | 5.0               | 0.5           | 0.5     | 0.5          | 0.5        | 1     | μg/L  |  |  |  |
|          | means not detected at or ove the reporting limit                              | S      | NA     | NA                | NA            | NA      | NA           | NA         | 1     | mg/Kg |  |  |  |

<sup>\*</sup> water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.



<sup>#</sup> cluttered chromatogram; sample peak coelutes with surrogate peak.

| RGA Environmental    | Client Project ID: #0387//BRT16007; | Date Sampled: 03/19/07-03/20/07  |
|----------------------|-------------------------------------|----------------------------------|
| 1466 66th Street     | 2100 Franklin Street                | Date Received: 03/21/07          |
| Emeryville, CA 94608 | Client Contact: Ferndinand Oberle   | Date Extracted: 03/22/07         |
| 2                    | Client P.O.:                        | Date Analyzed: 03/23/07-03/27/07 |

## Bunker Oil (C10+) & Diesel (C10-23) & Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil\*

Extraction Method: SW3510C Work Order: 0703505 Analytical Method: SW8015C

| Extraction Method: SW3510C |          | Allal        | yticai Method: SW801 | 30           | Work Order: 0/03505 |                    |      |  |  |  |  |  |
|----------------------------|----------|--------------|----------------------|--------------|---------------------|--------------------|------|--|--|--|--|--|
|                            | Lab ID   | 0703505-001B | 0703505-002B         | 0703505-003B | 0703505-004B        |                    |      |  |  |  |  |  |
| Cl                         | lient ID | B19-20       | B19-52 B20-20        |              | B21-20              | Reporting Limit fo |      |  |  |  |  |  |
|                            | Matrix   | W            | W                    | W            | W                   |                    |      |  |  |  |  |  |
|                            | DF       | 2            | 1                    | 1            | 1                   | S                  | W    |  |  |  |  |  |
| Compound                   |          |              | Conce                | entration    |                     | ug/kg              | μg/L |  |  |  |  |  |
| TPH(bo)                    |          | 2100         | 530                  | 110,1        | 120,1               | NA                 | 50   |  |  |  |  |  |
| TPH(d)                     |          | 560,g,b,i    | 140,g,b,i            | ND,i         | ND,i                | NA                 | 50   |  |  |  |  |  |
| TPH(mo)                    |          | 1700         | 560                  | ND           | ND                  | NA                 | 250  |  |  |  |  |  |
|                            |          | Surre        | ogate Recoveries     | s (%)        |                     |                    |      |  |  |  |  |  |
| %SS:                       |          | 72           | 99                   | 105          | 101                 |                    |      |  |  |  |  |  |
| Comments                   |          | g,b,i        | g,b,i                | i            | i                   |                    | -    |  |  |  |  |  |

<sup>\*</sup> water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

<sup>#</sup> cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see attached narrative.

| RGA Environmental            |                | Project ID: #0387//I                                                    | BRT16007; | Date Sampled:                    | 03/19/07-0      | 3/20/07 |  |  |  |  |  |
|------------------------------|----------------|-------------------------------------------------------------------------|-----------|----------------------------------|-----------------|---------|--|--|--|--|--|
| 1466 66th Street             | 2100 F         | rankiin Street                                                          |           | Date Received:                   | 03/21/07        |         |  |  |  |  |  |
| Emeryville, CA 94608         | Client         | Contact: Ferndinan                                                      | d Oberle  | Date Extracted:                  | 03/22/07        |         |  |  |  |  |  |
| Lineryvine, CA 74000         | Client         | P.O.:                                                                   |           | Date Analyzed: 03/23/07-03/27/07 |                 |         |  |  |  |  |  |
| Bunker Oil (C10+) & Diesel ( | (C10-23) & Oil | 3) & Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil* |           |                                  |                 |         |  |  |  |  |  |
| Extraction Method: SW3510C   | A              | nalytical Method: SW8015                                                | 5C        |                                  | Work Order:     | 0703505 |  |  |  |  |  |
| Lab ID                       | 0703505-005E   | 3                                                                       |           |                                  |                 |         |  |  |  |  |  |
| Client ID                    | B22-20         |                                                                         |           |                                  | Reporting<br>DF |         |  |  |  |  |  |
| Matrix                       | W              |                                                                         |           |                                  |                 |         |  |  |  |  |  |
| DF                           | 2              |                                                                         |           |                                  | S               | W       |  |  |  |  |  |
| Compound                     |                | Conce                                                                   | ntration  |                                  | ug/kg           | μg/L    |  |  |  |  |  |
| TPH(bo)                      | 1500           |                                                                         |           |                                  | NA              | 50      |  |  |  |  |  |
| TPH(d)                       | 220,g,b,i      |                                                                         |           |                                  | NA              | 50      |  |  |  |  |  |
| TPH(mo)                      | 1200           |                                                                         |           |                                  | NA              | 250     |  |  |  |  |  |
|                              | Su             | rrogate Recoveries                                                      |           |                                  |                 |         |  |  |  |  |  |
| %SS:                         | 71             |                                                                         |           |                                  |                 |         |  |  |  |  |  |
| Comments                     | g,b,i          |                                                                         |           |                                  |                 |         |  |  |  |  |  |

<sup>\*</sup> water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

<sup>#</sup> cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil range (?); no recognizable pattern; m) fuel oil; n) stoddard solvent/mineral spirits; p) see attached narrative.

## QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0703505

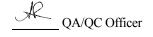
| EPA Method SW8021B/8015Cm | Extra  | ction SW | 5030B  |        | BatchID: 26980 S |        |        |          | piked Sample ID: 0703505-005A |         |              |     |
|---------------------------|--------|----------|--------|--------|------------------|--------|--------|----------|-------------------------------|---------|--------------|-----|
| Analyte                   | Sample | Spiked   | MS     | MSD    | MS-MSD           | LCS    | LCSD   | LCS-LCSD | Acce                          | eptance | Criteria (%) |     |
| 7 and 19 to               | μg/L   | μg/L     | % Rec. | % Rec. | % RPD            | % Rec. | % Rec. | % RPD    | MS / MSD                      | RPD     | LCS/LCSD     | RPD |
| TPH(btex <sup>£</sup>     | ND     | 60       | 95.5   | 94.7   | 0.766            | 93.9   | 90     | 4.28     | 70 - 130                      | 30      | 70 - 130     | 30  |
| MTBE                      | ND     | 10       | 92.7   | 95.1   | 2.57             | 114    | 110    | 4.04     | 70 - 130                      | 30      | 70 - 130     | 30  |
| Benzene                   | ND     | 10       | 101    | 98.1   | 3.17             | 97.8   | 102    | 3.98     | 70 - 130                      | 30      | 70 - 130     | 30  |
| Toluene                   | ND     | 10       | 104    | 99.6   | 4.17             | 89.5   | 93.6   | 4.46     | 70 - 130                      | 30      | 70 - 130     | 30  |
| Ethylbenzene              | ND     | 10       | 101    | 97.8   | 3.29             | 99.4   | 102    | 2.33     | 70 - 130                      | 30      | 70 - 130     | 30  |
| Xylenes                   | ND     | 30       | 95     | 90.7   | 4.67             | 96     | 96.7   | 0.692    | 70 - 130                      | 30      | 70 - 130     | 30  |
| %SS:                      | 114    | 10       | 110    | 106    | 3.16             | 96     | 98     | 2.34     | 70 - 130                      | 30      | 70 - 130     | 30  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

### BATCH 26980 SUMMARY

| Sample ID    | Date Sampled | Date Extracted | Date Analyzed     | Sample ID    | Date Sampled | Date Extracted | Date Analyzed     |
|--------------|--------------|----------------|-------------------|--------------|--------------|----------------|-------------------|
| 0703505-001A | 03/19/07     | 03/27/07       | 03/27/07 11:05 PM | 0703505-002A | 03/20/07     | 03/24/07       | 03/24/07 9:03 AM  |
| 0703505-003A | 03/19/07     | 03/24/07       | 03/24/07 9:33 AM  | 0703505-004A | 03/19/07     | 03/24/07       | 03/24/07 10:03 AM |
| 0703505-005A | 03/20/07     | 03/24/07       | 03/24/07 10:33 AM |              |              |                |                   |


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.



## QC SUMMARY REPORT FOR SW8015C

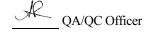
W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0703505

| EPA Method SW8015C | Extra  |        | BatchID: 26957 S |        |        |        | piked Sample ID: N/A |          |          |         |              |     |
|--------------------|--------|--------|------------------|--------|--------|--------|----------------------|----------|----------|---------|--------------|-----|
| Analyte            | Sample | Spiked | MS               | MSD    | MS-MSD | LCS    | LCSD                 | LCS-LCSD | Acc      | eptance | Criteria (%) |     |
|                    | μg/L   | μg/L   | % Rec.           | % Rec. | % RPD  | % Rec. | % Rec.               | % RPD    | MS / MSD | RPD     | LCS/LCSD     | RPD |
| TPH(d)             | N/A    | 1000   | N/A              | N/A    | N/A    | 114    | 117                  | 1.93     | N/A      | N/A     | 70 - 130     | 30  |
| %SS:               | N/A    | 2500   | N/A              | N/A    | N/A    | 104    | 107                  | 2.83     | N/A      | N/A     | 70 - 130     | 30  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

### BATCH 26957 SUMMARY

| Sample ID    | Date Sampled | Date Extracted | Date Analyzed    | Sample ID    | Date Sampled | Date Extracted | Date Analyzed    |
|--------------|--------------|----------------|------------------|--------------|--------------|----------------|------------------|
| 0703505-001B | 03/19/07     | 03/22/07       | 03/24/07 7:22 AM | 0703505-002B | 03/20/07     | 03/22/07       | 03/23/07 9:50 PM |
| 0703505-003B | 03/19/07     | 03/22/07       | 03/23/07 9:50 PM | 0703505-004B | 03/19/07     | 03/22/07       | 03/23/07 8:41 PM |
| 0703505-005B | 03/20/07     | 03/22/07       | 03/27/07 9:21 AM |              |              |                |                  |


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

