

RECEIVED

1:35 pm, Aug 10, 2009

Alameda County Environmental Health

June 29, 2009

Mr. Paresh Khatri Alameda County Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: GROUNDWATER MONITORING & SAMPLING REPORT CERTIFICATION Brandywine Realty Trust Facility 2100 Franklin Street Oakland, CA

Dear Mr. Khatri:

RGA Environmental, Inc. has prepared the following document:

• Groundwater Monitoring and Sampling Report (May 7, 2009 Sampling Event) dated June 29, 2009 (document 0387.R8).

I declare under penalty of perjury that the contents and conclusions in the document are true and correct to the best of my knowledge.

Should you have any questions, please do not hesitate to contact me at (510) 457-9770.

Sincerely,

Brandywine Realty Trust

Gold

Donald Rogers General Manager

Attachment

June 29, 2009 Report 0387.R8 BRT21257

Mr. Donald Rogers Brandywine Realty Trust 2101 Webster Street, Suite 1600 Oakland, CA 94612

SUBJECT: GROUNDWATER MONITORING AND SAMPLING REPORT (May 7, 2009 Sampling Event) County File # RO 2984 Brandywine Realty Trust 2100-2150 Franklin Street Oakland, CA

Dear Mr. Rogers:

RGA Environmental, Inc. (RGA) is pleased to present this report documenting the monitoring and sampling of monitoring wells MW1 and MW2 at the subject site. This work was performed in accordance with a request from Alameda County Department of Environmental Health (ACDEH) dated April 16, 2009. The wells were purged and sampled on May 7, 2009. A Site Location Map (Figure 1) and a Site Vicinity Map Detail (Figure 2) are attached with this report.

BACKGROUND

A detailed discussion of the site background is provided in RGA's Subsurface Investigation Report (B23 through B33), dated February 2, 2009 (document 0387.R6). A total of two groundwater monitoring wells were installed at the site at the time of construction of the existing building. The wells are presently located in the floor of the subsurface parking structure. The tops of the wells are approximately 12 feet below the surface of the sidewalk that is located adjacent to the building.

FIELD ACTIVITIES

On May 7, 2009 groundwater monitoring wells MW1 and MW2 were monitored and sampled by RGA personnel. The wells were monitored for depth to water and the presence of free product or sheen. Depth to water was measured to the nearest 0.01 foot using an electric water level indicator. The presence of free product or sheen was evaluated using a transparent bailer. No free product, petroleum hydrocarbon sheen, or

June 29, 2009 Report 0387.R8

odors were observed on the water from either of the two wells. The depth to water measurements are presented in Table 1.

Prior to sampling, the wells were purged of a minimum of three casing volumes of water. During purging operations, the field parameters of electrical conductivity, temperature, and pH were monitored. Once a minimum of three casing volumes had been purged, water samples were collected using a new unused disposable polypropylene bailer. The water samples were transferred to 40-milliliter glass Volatile Organic Analysis (VOA) vials and to one-liter amber glass bottles containing hydrochloric acid preservative which were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present.

The sample containers were then transferred to a cooler with ice, and later were transported to McCampbell Analytical, Inc. in Pacheco, California. McCampbell Analytical, Inc. is a State-Certified hazardous waste testing laboratory. Chain of custody documentation accompanied the samples to the laboratory. Records of the field parameters measured during well purging are attached with this report.

Water generated during purging and sampling of the wells was stored in a drum at the subject site pending characterization and disposal.

A total of one drum of groundwater was removed from the subject site on May 8, 2009 as nonhazardous waste. The drum of groundwater was removed by Clearwater Environmental, Inc. of Union City, California, and was transported to the Alviso Independent Oil facility in Alviso, California using non-hazardous waste manifest number 7592. A copy of the manifest is attached with this report.

HYDROGEOLOGY

Water levels in wells MW1 and MW2 were monitored on May 7, 2009. The measured depth to water in wells MW1 and MW2 (as measured from the top of the PVC well pipe) were 3.89 and 4.11 feet, respectively. Depth to water level measurements, including historic measurements, are presented in Table 1. It is not possible to calculate the groundwater flow direction at the site with only two wells.

Based on site vicinity topography buried paleo stream channels appear to be present to the east and south of the subject site. Groundwater flow in the vicinity of the subject site is suspected to be primarily controlled by the buried paleo stream channel deposits. However, based on the highly variable coarse-grained nature of subsurface materials in the vicinity of the subject site, groundwater flow in the vicinity of the site is not considered to be exclusively confined to the paleo channel deposits.

Groundwater flow at the subject site is considered to generally follow the topography and paleochannel deposits, initially moving southwestward from the subject site and eventually moving eastward towards Lake Merritt as the paleo-channel deposits assume an easterly trend approximately 500 feet south of the subject site. June 29, 2009 Report 0387.R8

LABORATORY ANALYSIS

The groundwater samples collected from groundwater wells MW1 and MW2 at the subject site were analyzed for Total Petroleum Hydrocarbons as Bunker Oil (TPH-BO) and Total Petroleum Hydrocarbons as Diesel (TPH-D) using EPA Method 3510C in conjunction with EPA Method 8015B, for Total Petroleum Hydrocarbons as Gasoline (TPH-G), methyl tertiary-butyl ether (MTBE), benzene, toluene, ethylbenzene, and total xylenes (BTEX) using EPA Method 5030B in conjunction with EPA Method 8021B and modified EPA Method 8015B, fuel oxygenates and lead scavengers using EPA Method 5030B in conjunction with modified EPA Method 8260B, and for Polycyclic Aromatic Hydrocarbons (PAHs) using EPA Method 3510C in conjunction with EPA Method 8270C.

None of the analytes were detected in either of the wells. The laboratory analytical results are summarized in Table 2. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report.

DISCUSSION AND RECOMMENDATIONS

Based on the sample results RGA recommends that no further sampling of the wells be performed.

DISTRIBUTION

A copy of this report will be uploaded to the Alameda County ftp website and to GeoTracker.

LIMITATIONS

This report was prepared solely for the use of Brandywine Realty Trust. The content and conclusions provided by RGA Environmental, Inc. in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgement based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a

June 29, 2009 Report 0387.R8

similar nature. RGA Environmental, Inc. is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgement based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 547-7771.

Sincerely, RGA Environmental, Inc.

and H. King

Paul H. King Professional Geologist #5901 Expires: 12/31/09

Here to Pelen

Kenneth Pilgrim Project Manager

Attachments: Table 1 – Summary of Measured Depth to Groundwater in Wells Table 2 – Summary of Monitoring Well Groundwater Sample Laboratory Analytical Results Figure 1 - Site Location Map Figure 2 - Site Vicinity Map Detail Groundwater Monitoring/Well Purging Data Sheets Non-Hazardous Waste Manifest Laboratory Reports and Chain of Custody Documentation

PHK/sjc 0387.R8

TABLES

Table 1 Summary of Measured Depth to Groundwater in Wells

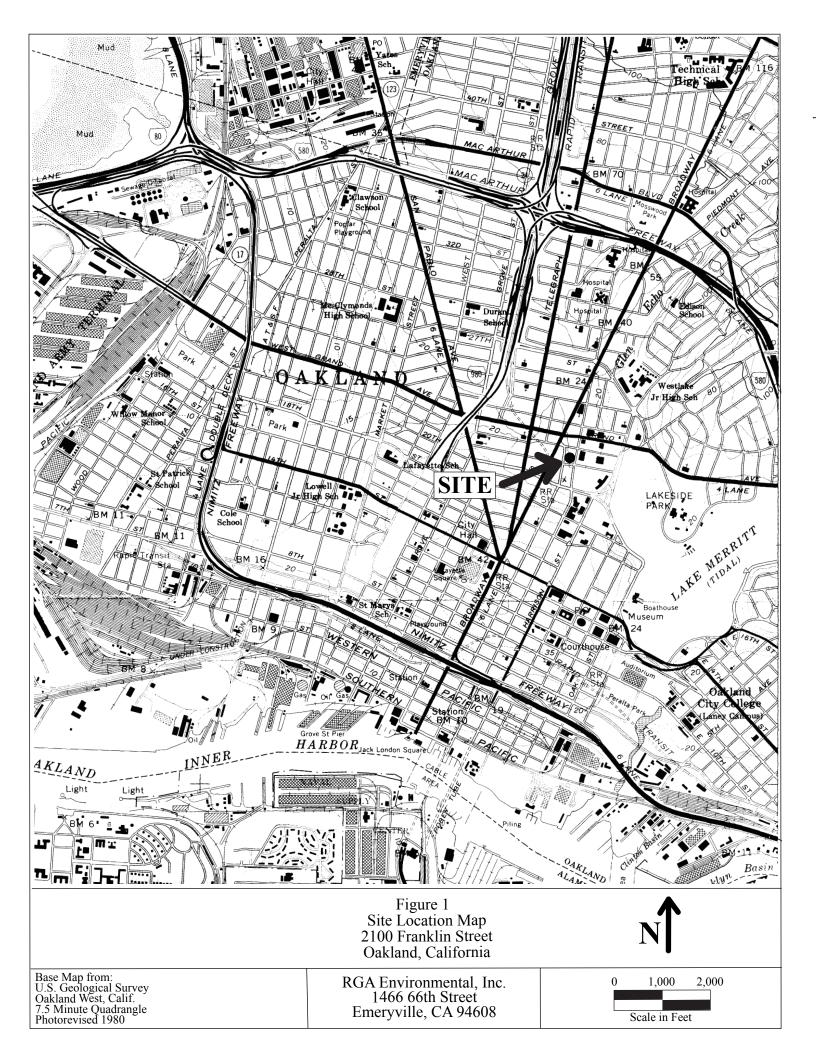
Well No	Date	<u>Top of Casing Elevation (ft)[*]</u>	Depth To Water (ft)	Water Table Elevation (ft)
MW1	5/7/2009	Not Surveyed	3.89	Not Surveyed
	2/20/2007		6.42	Not Surveyed
	8/15/2006		8.50 **	Not Surveyed
MW2	5/7/2009	Not Surveyed	4.11	Not Surveyed
	1/30/2007		9.33***	Not Surveyed
	8/15/2006		8.50 **	Not Surveyed

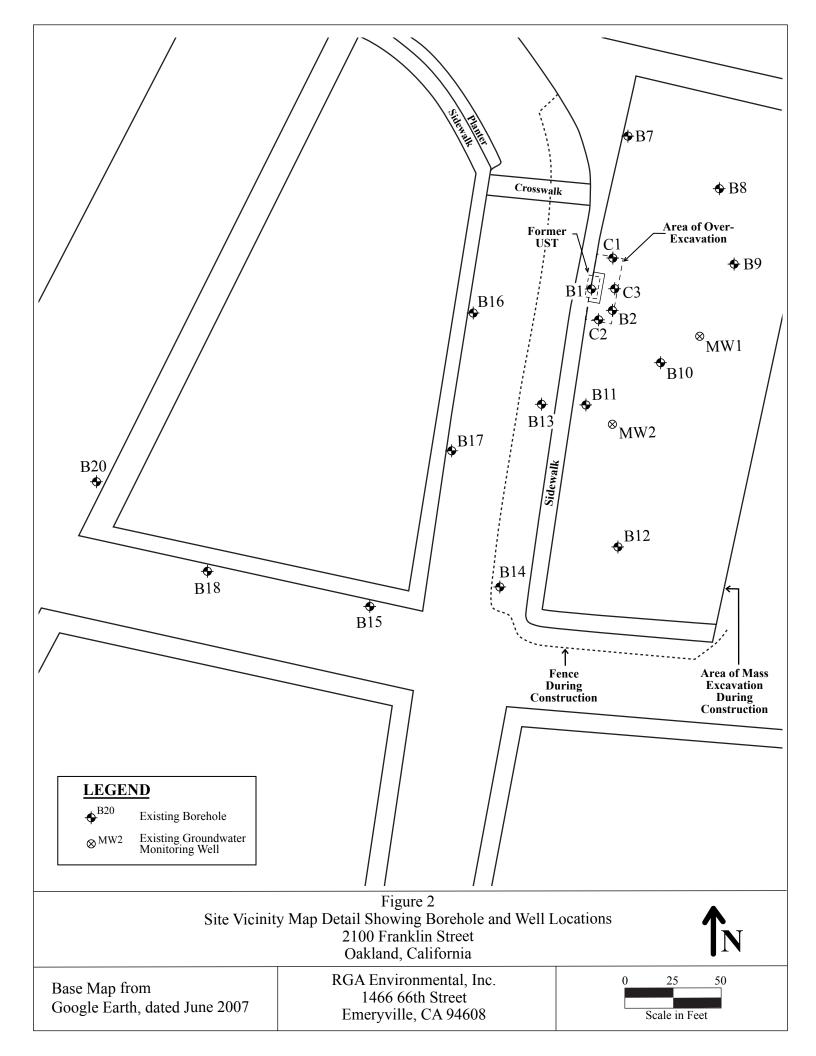
NOTES:

* = Not surveyed.

** = Initial water level measurement in monitoring well borehole.

*** = Prior to well development.


Report 0387.R8


 Table 2

 Summary of Monitoring Well Groundwater Sample Analytical Results

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Well ID	SampleDate	TPH-G	TPH-D	TPH-BO	MTBE	BTEX*	Other VOCs **	PAHs				
MW2 5/7/2009 ND<50 ND<50 ND<100 ND<5.0 ND<0.5 except TBA ND<0.5 ND<2.0 Notes: TPH-G = Total Petroleum Hydrocarbons as Gasoline. TPH-D = Total Petroleum Hydrocarbons as Diesel. TPH-BO = Total Petroleum Hydrocarbons as Bunker Oil. MTBE = Methyl Tertiary Butyl Ether. BTEX* = benzene, toluene, ethylbenzene, & xylenes by EPA Method 8021B.	MW1 5/7/2009 ND<50 ND<50 ND<100 ND<5.0 ND<0.5 except TBA ND<0.5												
TPH-G = Total Petroleum Hydrocarbons as Gasoline. TPH-D = Total Petroleum Hydrocarbons as Diesel. TPH-BO = Total Petroleum Hydrocarbons as Bunker Oil. MTBE = Methyl Tertiary Butyl Ether. BTEX* = benzene, toluene, ethylbenzene, & xylenes by EPA Method 8021B.	MW2	MW2 5/7/2009 ND<50 ND<50 ND<100 ND<5.0 ND<0.5 except TBA ND<0.5 ND<2.0											
TPH-D = Total Petroleum Hydrocarbons as Diesel. TPH-BO = Total Petroleum Hydrocarbons as Bunker Oil. MTBE = Methyl Tertiary Butyl Ether. BTEX* = benzene, toluene, ethylbenzene, & xylenes by EPA Method 8021B.	Notes:												
TPH-BO = Total Petroleum Hydrocarbons as Bunker Oil. MTBE = Methyl Tertiary Butyl Ether. BTEX* = benzene, toluene, ethylbenzene, & xylenes by EPA Method 8021B.	TPH-G = Total Petroleum Hydrocarbons as Gasoline.												
MTBE = Methyl Tertiary Butyl Ether. BTEX* = benzene, toluene, ethylbenzene, & xylenes by EPA Method 8021B.	TPH-D = Total Petroleum Hydrocarbons as Diesel.												
BTEX* = benzene, toluene, ethylbenzene, & xylenes by EPA Method 8021B.	TPH-BO = Total Petroleum Hydrocarbons as Bunker Oil.												
	MTBE = Methyl Tertiary Butyl Ether.												
Other VOCs** = Volatile Organic Compounds; including BTEX using EPA Method 8260B.	BTEX* = benzene, toluene, ethylbenzene, & xylenes by EPA Method 8021B.												
PAHs = Polyaromatic Hydrocarbons.													

FIGURES

GROUNDWATER MONITORING/WELL PURGING DATA SHEETS

GROUNDWA	RGA ENVIRONMENTA TER MONITORING/WE			
GROUNDWA Site Name $\frac{\beta RT / 200 franklind St}{Job No. 0387}$ TOC to Water (ft.) 3.89 Well Depth (ft.) 13.0 Well Diameter $2^{\prime\prime}(0.16)$ Gal./Casing Vol. 1.5 3001-4.5 TIME GAL. PURGED 105 0.5 107 1.0 1.5	TER MONITORING/WE DATA SHEET JOLKlund 5.34 <u>18</u> 5.32 <u>18</u>	SLL PURGING Well No. M Date $5/7/$ Sheen NO Free Product Sample Collect P(spo) d	C9 Thickness	ጥ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.48 18 5.56 18 5.57 18 5.63 18 5.68 18 5.70 18	· · · · · · · · · · · · · · · · · · ·	457 455 455 455 450 450 451 446	
NOTES: No sheen a no odo c Sample time => 113ch				
Sample time => 11 Sch	<u>ന്</u>			

PURGE07.00

GROUNDW	RGA ENVIRON ATER MONITOR DATA SH	ING/WELL PURGING	
Site Name BRT/2/00 Franklin	St., Ockland	Well No. 🖊	167
Job No. 0387		Date 5/7/	
TOC to Water (ft.) 4.11		Sheen N	
Well Depth (ft.) 12.4			t Thickness
Well Diameter $\mathcal{F}^{11}(0.16)$			ection Method
Gal./Casing Vol. 14	-		le bailer
3.11-4.2			
TIME GAL. PURGED	pH	TEMPERATURE	<u>CONDUCTIVITY</u> Jus/cm
$\frac{1156}{1130} 0.4$	6.01	17.9	617
1158 0.9	6.00	17.9	615
1200 1.4	6.10	17.9	610
1202 1.8	6.11	17.8	612
1203 2.3	6.14	17.9	614
1704 2.8	6.18	17.9	616
1205 3.2	6.21	17.9	612
1206 3.7	6.21	17.9	617
1208 4.2	6.22	17.9	619
1209 4.7	6.30	17.9	619
	and the second s		
	<u></u>		
		·····	
	<u> </u>		
NOTES: No Sheen & Noodo.	~		······
NOTES: No Sheen & Noodo. Sampletine = 21	215hrs		

.

PURGE07.00

NON-HAZARDOUS WASTE MANIFEST

	NON-HAZARDOUS	1. Generator's US EPA ID No.	2. Page 1 of	3. Docum	ent Number	
	WASTE MANIFEST		50 52-1	7	7592	
	4. Generator's Name and Mailing Address					
		ranklin Towers				
		0 Franklin Street :land, CA 94612				
	Generator's Phone					
	5. Transporter Company Name	6. US EPA ID Number	7. Transporter	Phone		
	CLEARWATER ENVIRONMENTAL	CAR000007013	(5 [.]	10) 476-1	740	
	8. Designated Facility Name and Site Address	9. US EPA ID Number	10. Facility's P	hone		
	ALVISO INDEPENDENT OIL 5002 ARCHER STREET					
G E N	ALVISO, CA 95002 11. Waste Shipping Name and Description	CAL000161743		0) 476-1	Carlos a second a se	
I E	11. Waste Shipping Name and Description		12. Co No.	ntainers Type	13. Totał Quantity	14. Unit Wt/Vol
R A T O	a. Non-Hazardous waste ームi 4 し	d	001	dn	20	6
R	b.				, 	
	15. Special Handling Instructions and Additional Inf	ormation	Handling Code	for Wastes	1	
	Wear PPE Emergency Contact		11a.		11b.	
	(510) 476-1740					
	Attn: Kirk Hayward					
		haterials described above on this manifest are not subject to state or for	ederal regulations for re	porting prop	er disposal of Hazard	ous Waste.
	X scyes on	behalt of signature	r			Day Year
AN	Denald Rogers 17. Transporter Acknowledgement of Receipt of Ma	tartal6			5	801
PO	Printed/Typed Name	Signature	$-\Lambda$,		
	William Cl	Ark WINY	OV. L		Month L	Pay Year
R	18. Discrepancy Indication Space		M		000	£109
F				÷		
ÂĊ						
L						
Y	19. Facility Owner or Operator: Certification of receiprinted/Typed Name	pt of waste materials covered by this manifest except as noted Signature	in Item 18.			
	•		a		Month E	ay Year
	Charles Seaton	UV le			<u> 5 </u>]	09

ł

LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

McCampbell A		Web: www.mce	ow Pass Road, Pittsburg, campbell.com E-mail: m ne: 877-252-9262 Fax:	nain@mccampbell.com
RGA Environmental	Client Project ID: #BRT21	1257/0387	Date Sampled:	05/07/09
1466 66th Street			Date Received:	05/07/09
Emeryville, CA 94608	Client Contact: Steven Ca	armack	Date Reported:	05/13/09
	Client P.O.:		Date Completed:	05/13/09

WorkOrder: 0905143

May 13, 2009

Dear Steven:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: **#BRT21257/0387**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	1466 - 66 th S Emeryville, 0	CA 94608	СНА	AIN	OF	090S CUST	143 0dy	REC	OR	C			2	Jose 2408		PA	GE _	_ OF _	1
	PROJECT NUMBER: BRT 21257/ SAMPLED BY: (PRI STEVE CAM	NTED AND			100 F	Franklin Kland	St.,		NUMBER OF CONTAINERS	NAL YSISTER	in least	Ogt x	1-1-C	afeed f		-JERVA DVE	RI	EMARKS	i
	SAMPLE NUMBER	DATE	TIME	TYPE		SAMPLE LO	CATION		CONT	Val.		Ter la	Tel 1	//	PRE	/			
++	MW7 MW2	5/7/09	1130 1215	H20					11	X	×	X	x x		ice	Norm	al Tur	morend	time
												-							
	·								à T			+	-						
)				1	ENT_ IN LAI		COPRIATE CONTAINER RESERVE		a <u>M</u> A	r
	RELINQUISHED BY:			DATE	TIME 204 TIME	RECEIVED		1	3	TOTAL	145 3 NO.	OF CO	TARE	52	2 1	BORATOR	bellA	ndytio	ca l ABER:
-	RELINQUISHED BY:		Sp	DATE	TIME	RECEIVED I	TOR LABO	\sim \setminus	<u>в</u> ү:		nge	SAL	(Yd APLE	ANA	J (77) 3 REQUEST S (X)	SHEET	262	
	Results and billin RGA Environments paul.king@rgaenv.	al, Inc.	ndrea.p	also T peacock	e	REMARKS:				Va	15 8				w bli	-e st HCL	ickes		
				June															

1534 Willow Pass Rd CA 04565 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkO	order: 090514	13 Clier	ntCode: RGAE		
		WriteOn	EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				В	ill to:		Req	uested TAT:	5 days
Steven Carmack RGA Environmental	Email: cc:	paul.king@rgaen	v.com; pdking	0000@a	Andrea Pea RGA Enviro				
1466 66th Street	PO:				1466 66th S	Street	Dat	e Received:	05/07/2009
Emeryville, CA 94608 (510) 547-7771 FAX (510) 547-1983	ProjectNo:	#BRT21257/0387	,		Emeryville, invoices@rg		Dat	e Printed:	05/07/2009
						Requested Tes	sts (See legend h	elow)	

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date H	lold	1	2	3	4	5	6	7	8	9	10	11	12
0905143-001	MW1	Water	5/7/2009 11:30		С	А	В									
0905143-002	MW2	Water	5/7/2009 12:15		С	A	В									

Test Legend:

1	8270D-PNA_W	2	G-N
6		7	
11		12	

MBTEX_W

3	MBTEXOXY-8260B_W
8	

4				
9		 	 	

5	
10	

The following SampIDs: 001A, 002A contain testgroup.

Prepared by: Samantha Arbuckle

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	RGA Environmen	tal				Date a	and Time Received:	05/07/09 7	:04:01 PM
Project Name:	#BRT21257/0387					Check	dist completed and	reviewed by:	Samantha Arbuckle
WorkOrder N°:	0905143	Matrix <u>N</u>	<u>Nater</u>			Carrie	r: <u>Rob Pringle (I</u>	MAI Courier)	
			<u>Chain</u>	of Cu	stody (C	OC) Informa	ation		
Chain of custody	present?			Yes	✓	No 🗆			
Chain of custody	signed when relinquis	shed and	received?	Yes	✓	No 🗆			
Chain of custody	agrees with sample la	abels?		Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?			Yes		No 🗆			
Date and Time of	collection noted by Cli	ent on CO	C?	Yes	✓	No 🗆			
Sampler's name r	noted on COC?			Yes		No 🗆			
			<u>Sa</u>	ample	Receipt	Information	!		
Custody seals int	tact on shipping contai	iner/coole	r?	Yes		No 🗆		NA 🔽	
Shipping containe	er/cooler in good cond	ition?		Yes	✓	No 🗆			
Samples in prope	er containers/bottles?			Yes	✓	No 🗆			
Sample containe	rs intact?			Yes	\checkmark	No 🗆			
Sufficient sample	volume for indicated	test?		Yes		No 🗌			
		<u>San</u>	nple Preser	vation	and Ho	old Time (HT)) Information		
All samples recei	ved within holding time	ə?		Yes	✓	No 🗌			
Container/Temp E	Blank temperature			Coole	r Temp:	2.3°C		NA 🗆	
Water - VOA vial	s have zero headspac	ce / no bu	bbles?	Yes	✓	No 🗆	No VOA vials subr	nitted 🗌	
Sample labels ch	necked for correct pres	servation?	?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon recei	pt (pH<2)	?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?			Yes	✓	No 🗆			
			(Ice Type	e: WE	TICE)			
* NOTE: If the "N	lo" box is checked, se	e comme	ents below.						
			·						

Client contacted:

Date contacted:

Contacted by:

Comments:

When Ouality		<u>IC.</u>		ampbell.com E-mail: main ne: 877-252-9262 Fax: 92	n@mccampbell.co 25-252-9269	om		
RGA Environmental		Project ID: #BI		Date Sampled:				
		5		-	Date Received: 05/07/09			
1466 66th Street					03/07/09			
	Client C	Contact: Steve	Date Extracted:	05/07/09				
Emeryville, CA 94608	Client P	2.0.:		Date Analyzed	05/09/09			
Polvnuclear A	romatic Hydrod	carbons (PAHs	s / PNAs) using SI	M Mode by GC/MS				
Extraction Method: SW3510C	•	alytical Method: SV			Work Order:	0905143		
Lab ID	0905143-001C	0905143-002	2C					
Client ID	MW1	MW2			Reporting			
Matrix	W	W			DF	=1		
DF	1	1			S	W		
Compound	_		oncentration		ug/kg	μg/L		
Acenaphthene	ND	ND			NA	0.5		
Acenaphthylene	ND	ND			NA	0.5		
Anthracene	ND	ND			NA	0.5		
Benzo(a)anthracene	ND	ND			NA	0.5		
Benzo(a)pyrene	ND	ND			NA	0.5		
Benzo(b)fluoranthene	ND	ND			NA	0.5		
Benzo(k)fluoranthene	ND	ND			NA	0.5		
Benzo(g,h,i)perylene	ND	ND			NA	0.5		
Chrysene	ND	ND			NA	0.5		
Dibenzo(a,h)anthracene	ND	ND			NA	0.5		
Fluoranthene	ND	ND			NA	0.5		
Fluorene	ND	ND			NA	0.5		
Indeno (1,2,3-cd) pyrene	ND	ND			NA	0.5		
1-Methylnaphthalene	ND	ND			NA	0.5		
2-Methylnaphthalene	ND	ND			NA	0.5		
Naphthalene	ND	ND			NA	0.5		
Phenanthrene	ND	ND			NA	0.5		
Pyrene	ND	ND			NA	0.5		
	Sur	rogate Recove	eries (%)					
%SS1	83	84						
%SS2	77	78						
Comments					1			

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

Angela Rydelius, Lab Manager

	McCampb	ell An		ical, Ir	<u>nc.</u>		: www.mccamp	ass Road, Pittsburg bell.com E-mail: 777-252-9262 Fa	main@mccamp	bell.com			
RGA	Environmental			Client P	roject ID: #	#BRT21257/0387 Date Sampled: 05/07/09							
1466	56th Street					Date Received: 05/07/09							
				Client C	Contact: Ste	ontact: Steven Carmack Date Extracted: 05/08/09							
Emery	ville, CA 94608			Client P	2.0.:			Date Analyz	ed: 05/08	3/09			
Extracti	Gon method: SW5030B	asoline F	Range ((C6-C12)	-	drocarbons		e with BTEX a	and MTBE*		k Order: (0905143	
Lab ID	Client ID	Matrix	TP	PH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments	
001A	MW1	W	1	ND	ND	ND	ND	ND	ND	1	108		
002A	MW2	W]	ND	ND	ND	ND	ND	ND	1	101		
	rting Limit for DF =1; eans not detected at or	W		50	5.0	0.5	0.5	0.5	0.5		μg/L		
	ve the reporting limit	S		1.0	0.05	0.005	0.005	0.005	0.005		mg/K	g	

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

Angela Rydelius, Lab Manager

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

"When Ouality	nalytical, Ir Counts"			ampbell.com E-mail: mail: ma		om	
RGA Environmental		roject ID: #BRT2		Date Sampled:			
		-		Date Received	: 05/07/09		
1466 66th Street	Client (Contact: Steven (⁷ armack	Date Extracted	cted: 05/07/09-05/08/09		
Emeryville, CA 94608			Carmack				
	Client P			Date Analyzed	1: 05/07/09-03	5/08/09	
Enterstice Matheda (WE020D		nates and BTEX	-		West-Orders	0005142	
Extraction Method: SW5030B Lab ID	0905143-001B	lytical Method: SW82 0905143-002B	00B		Work Order:	0905143	
Client ID	MW1	MW2			_		
Cheft ID					Reporting DF		
Matrix	W	W					
DF	1	1			S	W	
Compound		Conc	ug/kg	μg/L			
tert-Amyl methyl ether (TAME)	ND	ND			NA	0.5	
Benzene	ND	ND			NA	0.5	
t-Butyl alcohol (TBA)	ND	ND			NA	2.0	
1,2-Dibromoethane (EDB)	ND	ND			NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND	ND			NA	0.5	
Diisopropyl ether (DIPE)	ND	ND			NA	0.5	
Ethylbenzene	ND	ND			NA	0.5	
Ethyl tert-butyl ether (ETBE)	ND	ND			NA	0.5	
Methyl-t-butyl ether (MTBE)	ND	ND			NA	0.5	
Toluene	ND	ND			NA	0.5	
Xylenes	ND	ND			NA	0.5	
	Suri	ogate Recoverie	es (%)				
%SS1:	77	76					

	TWhen Ouality Count			Web: www.	mccamp	ass Road, Pittsburg, CA bell.com E-mail: main 77-252-9262 Fax: 925				
RGA Environmenta	al	Client Proj	ect ID: #	#BRT21257/0387		Date Sampled:	05/07/0	09		
1466 66th Street						Date Received:	05/07/09			
1400 0001 Succi		Client Contact: Steven Carmack Date Extr			Date Extracted:	05/07/0	09			
Emeryville, CA 946	08	Client P.O	.:		Date Analyzed: 05/09/09					
Extraction method: SW3	510C			e Petroleum Hydroo ods: SW8015B	carbor	15*	We	ork Order:	0905143	
Lab ID				TPH-Diesel (C10-C23)	Т	PH-Bunker Oil (C10-C36)	DF	% SS	Comments	
0905143-001A	MW1	W		ND		ND	1	96		
0905143-002A	MW2	W		ND		ND	1	97		
					<u> </u>				<u> </u>	
									<u> </u>	
					<u> </u>				<u> </u>	
									<u> </u>	

Reporting Limit for $DF = 1$;	W	50	100	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg

* water samples are reported in $\mu g/L$, wipe samples in $\mu g/$ wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / STLC / STLC / TCLP extracts are reported in $\mu g/L$.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

DHS ELAP Certification 1644

"When Ouality Counts"

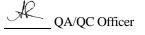
QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Water			QC Matriz	x: Water			Batch	ID: 43122		WorkOrder 0905143											
EPA Method SW8270C	Extra	raction SW3510C					Spiked Sample ID: N/A														
Analyte	Sample	ample Spiked MS MSD MS-MSD			LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%)											
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD									
Benzo(a)pyrene	N/A	10	N/A	N/A	N/A	80.2	80.8	0.664	N/A	N/A	30 - 130	30									
Chrysene	N/A	10	N/A	N/A	N/A	88.1	88.4	0.415	N/A	N/A	30 - 130	30									
1-Methylnaphthalene	N/A	10	N/A	N/A	N/A	101	105	3.23	N/A	N/A	30 - 130	30									
2-Methylnaphthalene	N/A	10	N/A	N/A	N/A	93.8	94.6	0.793	N/A	N/A	30 - 130	30									
Phenanthrene	N/A	10	N/A	N/A	N/A	90.3	90.8	0.565	N/A	N/A	30 - 130	30									
Pyrene	N/A	10	N/A	N/A	N/A	87.1	87.4	0.393	N/A	N/A	30 - 130	30									
%SS1:	N/A	5	N/A	N/A	N/A	81	83	2.06	N/A	N/A	30 - 130	30									
%SS2:	N/A	5	N/A	N/A	N/A	76	77	1.70	N/A	N/A	30 - 130	30									
All target compounds in the Method NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:									

BATCH 43122 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0905143-001C	05/07/09 11:30 AM	05/07/09	05/09/09 6:53 AM	0905143-002C	05/07/09 12:15 PM	05/07/09	05/09/09 8:09 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

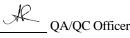
QC Matrix: Water W.O. Sample Matrix: Water BatchID: 43091 WorkOrder 0905143 EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 0905104-004A MSD MS-MSD LCS LCSD LCS-LCSD Spiked MS Sample Acceptance Criteria (%) Analyte % RPD MS / MSD RPD LCS/LCSD RPD µg/L µg/L % Rec. % Rec. % Rec. % Rec. % RPD TPH(btex) ND 108 100 98.7 4.19 70 - 130 70 - 130 60 7.14 94.7 20 20 MTBE 10 88.2 98.8 ND 11.4 97.2 94.5 2.82 70 - 130 2.0 70 - 130 20 Benzene ND 10 99.2 96.4 2.85 105 104 0.979 70 - 130 20 70 - 130 20 94.4 Toluene ND 10 97.2 2.93 99.7 100 0.315 70 - 130 20 70 - 13020 Ethylbenzene ND 10 103 102 0.680 101 104 3.18 70 - 130 20 70 - 130 20 Xylenes ND 30 104 101 2.51 101 104 2.24 70 - 130 2.0 70 - 130 20 99 %SS: 99 10 101 2.15 101 100 0.926 70 - 130 20 70 - 130 20 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 43091 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0905143-001A	05/07/09 11:30 AM	05/08/09	05/08/09 11:08 PM	0905143-002A	05/07/09 12:15 PM	05/08/09	05/08/09 11:39 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

"When Ouality Counts"

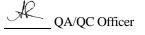
QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water			QC Matri	x: Water			Batch	ID: 43092		WorkOrder 0905143		
EPA Method SW8260B	Extra	ction SW	5030B				Spiked Sample ID: 0905104-004b					04b
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	106	101	5.74	93.3	96	2.87	70 - 130	30	70 - 130	30
Benzene	ND	10	125	118	5.61	97.1	101	3.40	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	87.2	83.2	4.73	103	114	10.0	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	119	113	4.77	117	113	3.13	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	113	107	5.19	90.2	93	3.07	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	111	104	5.85	91.2	94.5	3.48	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	121	114	6.09	99.5	102	2.75	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	105	98.7	6.17	87.1	92.3	5.76	70 - 130	30	70 - 130	30
Toluene	ND	10	122	116	5.00	116	112	3.27	70 - 130	30	70 - 130	30
%SS1:	75	25	83	82	1.29	90	92	3.10	70 - 130	30	70 - 130	30
%SS2:	91	25	101	102	0.704	91	91	0	70 - 130	30	70 - 130	30

BATCH 43092 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0905143-001B	05/07/09 11:30 AM	05/07/09	05/07/09 11:31 PM	0905143-002B	05/07/09 12:15 PM	05/08/09	05/08/09 12:13 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water		QC Matrix: Water					BatchID: 43121		WorkOrder: 0905143			
EPA Method SW8015B	Extra	ction SW	3510C		Spiked Sample ID: N/A							
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	104	105	1.12	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	106	106	0	N/A	N/A	70 - 130	30

BATCH 43121 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0905143-001A	05/07/09 11:30 AM	05/07/09	05/09/09 3:13 AM	0905143-002A	05/07/09 12:15 PM	05/07/09	05/09/09 4:21 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

