Atlantic Richfield Company

Shannon Couch Operations Project Manager

PO Box 1257 San Ramon, CA 94583 Phone: (925) 275-3804 Fax: (925) 275-3815 E-Mail: shannon.couch@bp.com

April 25, 2013

RECEIVED

By Alameda County Environmental Health at 11:14 am, Apr 26, 2013

Re: First Quarter 2013 Monitoring Report Former Richfield Oil Company Station #472 6415 International Boulevard, Oakland, California ACEH Case #RO0002982

I declare that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct.

Submitted by,

Shannon Couch Operations Project Manager

Attachment

April 25, 2013

Project No. 09-88-601

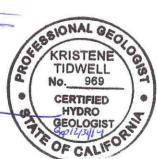
Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 Submitted via ENFOS

Attn.: Ms. Shannon Couch

Re: First Quarter 2013 Monitoring Report, Former Richfield Oil Company Station #472, 6415 International Boulevard, Oakland; ACEH Case #RO0002982

Dear Ms. Couch:

Attached is the First Quarter 2013 Monitoring Report for the Former Richfield Oil Company Station #472 located at 6415 International Boulevard, Oakland, California. This report presents results of groundwater sampling recently conducted and a summary of current developments at the Site through the First Quarter of 2012.


Should you have questions regarding the work performed or results obtained, please do not hesitate to contact me at 707-455-7290.

Sincerely, BROADBENT & ASSOCIATES, INC.

aly the

Alexander J. Martinez Senior Staff Geologist

Kristene Tidwell, P.G., CHG Senior Geologist

Enclosures

cc: Ms. Dilan Roe, P.E.,, Alameda County Environmental Health (submitted via ACEH ftp site) Mr. Mahmud Ghanem, 6207 International Blvd, Oakland, California 94621 Electronic copy uploaded to GeoTracker

FIRST QUARTER 2013 MONITORING REPORT FORMER STATION #472, OAKLAND, CALIFORNIA

Broadbent & Associates, Inc. (Broadbent) is pleased to present this *First Quarter 2013 Monitoring Report* on behalf of Atlantic Richfield Company (a BP affiliated company) for Former Richfield Oil Company Station #472 (also previously known as Pluckey's Liquors) located in Oakland, Alameda County, California. Quarterly reporting is being submitted to the Alameda County Environmental Health Services Agency (ACEH) consistent with their requirements under the legal authority of the California Regional Water Quality Control Board, as codified by the California Code of Regulations Title 23, Section 2652(d). Details of work performed, discussion of results, and recommendations are provided below.

Facility Name / Address:	Former Station #472 / 6415 International Boulevard, Oakland;
	Drawing 1
Client Project Manager / Title:	Ms. Shannon Couch / RM Operations Project Manager
Broadbent Contact:	Ms. Kristene Tidwell, PG, CHG / 707-455-7290
Broadbent Project No.:	09-88-601
Primary Regulatory Agency / ID No.:	ACEH, Case #RO00002982 (GeoTracker ID #T10000000417)
Current phase of project:	Monitoring
List of Acronyms / Abbreviations:	See end of report text for list of acronyms/abbreviations used in
	report.

WORK PERFORMED THIS QUARTER (First Quarter 2013):

- 1. Submitted Fourth Quarter 2012 Status Report on January 25, 2013.
- 2. Conducted groundwater monitoring/sampling for First Quarter 2013 on February 21, 2013.

WORK SCHEDULED FOR NEXT QUARTER (Second Quarter 2013):

- 1. Submit First Quarter 2013 Monitoring Report (contained herein).
- 2. No environmental field work is presently scheduled at Former Station #472 during Second Quarter 2013.

ADDITIONAL WORK RECOMMENDED FOR NEXT QUARTER (Second Quarter 2013)

1. A Case Closure Request will be submitted.

GROUNDWATER MONITORING PLAN SUMMARY:

Groundwater level gauging: Groundwater sample collection: Biodegradation indicator parameter	MW-1 through MW-3 MW-1 through MW-3	(1Q & 3Q) (1Q & 3Q)
monitoring:	MW-1 through MW-3	(1Q & 3Q)
QUARTERLY RESULTS SUMMARY:		
LNAPL		
LNAPL observed this quarter:	No	(yes\no)
LNAPL recovered this quarter:	None	(gal)
Cumulative LNAPL recovered:	None	(gal)
Groundwater Elevation and Gradien	t:	_
Depth to groundwater:	6.89 (MW-2) to 8.39 (MW-3)	(ft below TOC)
Gradient direction:	South-Southeast	(compass direction)
Gradient magnitude:	0.004	(ft/ft)
Average change in elevation:	0.59	(ft since last measurement)

Laboratory Analytical Data

Summary:

DRO was detected above reporting limits in one well with a concentration of 95 μg/L in well MW-3.

ACTIVITIES CONDUCTED & RESULTS:

First Quarter 2013 groundwater monitoring was conducted on February 21, 2013 by Broadbent personnel in accordance with the monitoring plan summary detailed above. No irregularities were noted during water level gauging. Light, Non-Aqueous Phase Liquid (LNAPL, or free product) was not noted to be present in the wells monitored during this event. Depth to water measurements ranged from 6.89 ft at MW-2 to 8.39 ft at MW-3. Resulting groundwater surface elevations ranged from 16.34 ft at MW-3 to 16.73 ft at MW-2. Groundwater elevations are summarized in Table 1. Water level elevations yielded a potentiometric groundwater gradient to the south-southeast at approximately 0.004 ft/ft, which is consistent with historical measurements. Field methods used during groundwater monitoring are provided in Appendix A. Field data sheets are included in Appendix B.

Groundwater samples were collected on February 21, 2013 consistent with the current monitoring schedule. No irregularities were reported during sampling. Samples were submitted under chain-of-custody protocol to TestAmerica Laboratories, Inc. (Irvine, California) for analysis of GRO and DRO by EPA Method 8015M; for BTEX, MTBE, ETBE, TAME, DIPE, EDB, 1,2-DCA, TBA and Ethanol by EPA Method 8260. No significant irregularities were encountered during analysis of the samples.

Results of the sampling event are included in the laboratory analytical summary presented above. The results indicate that the highest overall concentrations of petroleum hydrocarbons are presented in well MW-3. Concentrations of DRO decreased in well MW-3 from 600 μ g/L during the Third Quarter 2012 monitoring event to 95 μ g/L during the First Quarter 2013 monitoring event. No other petroleum hydrocarbons were detected in well MW-3. Concentrations of petroleum hydrocarbons and remaining analytes were not detected in well MW-3. Concentrations of petroleum hydrocarbons and remaining analytes were not detected in wells MW-1 and MW-2 sampled this monitoring event. Groundwater monitoring laboratory analytical results are summarized in Table 1 and Table 2. The most recent GRO, Benzene, and MTBE concentrations are also presented in Drawing 2. Groundwater monitoring data (GEO_WELL) and laboratory analytical results (EDF) were uploaded to the GeoTracker AB2886 database. Upload confirmation receipts are provided in Appendix D.

DISCUSSION:

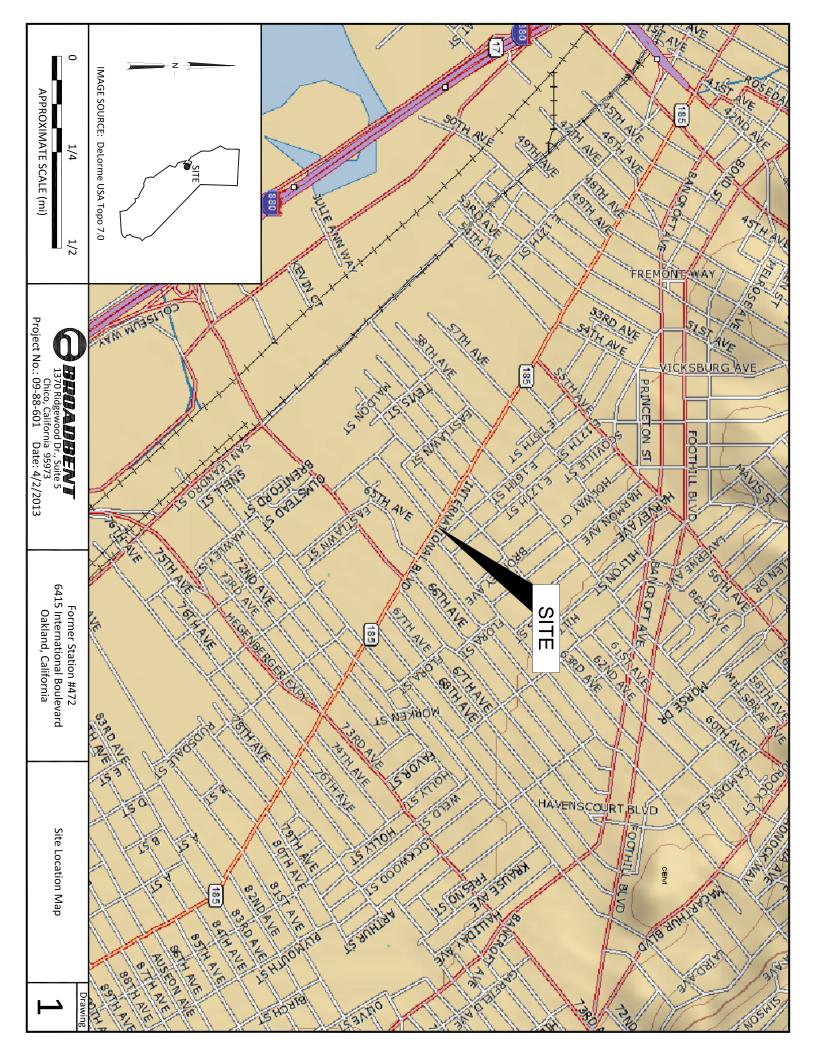
Groundwater levels were between historic minimum and maximum elevations for each well. This event's detected analytical concentrations were within the historic minimum and maximum ranges recorded for each well. Concentrations trends show that petroleum hydrocarbons are decreasing at the site. Other than one minor concentration of DRO, no other hydrocarbons are present in the groundwater.

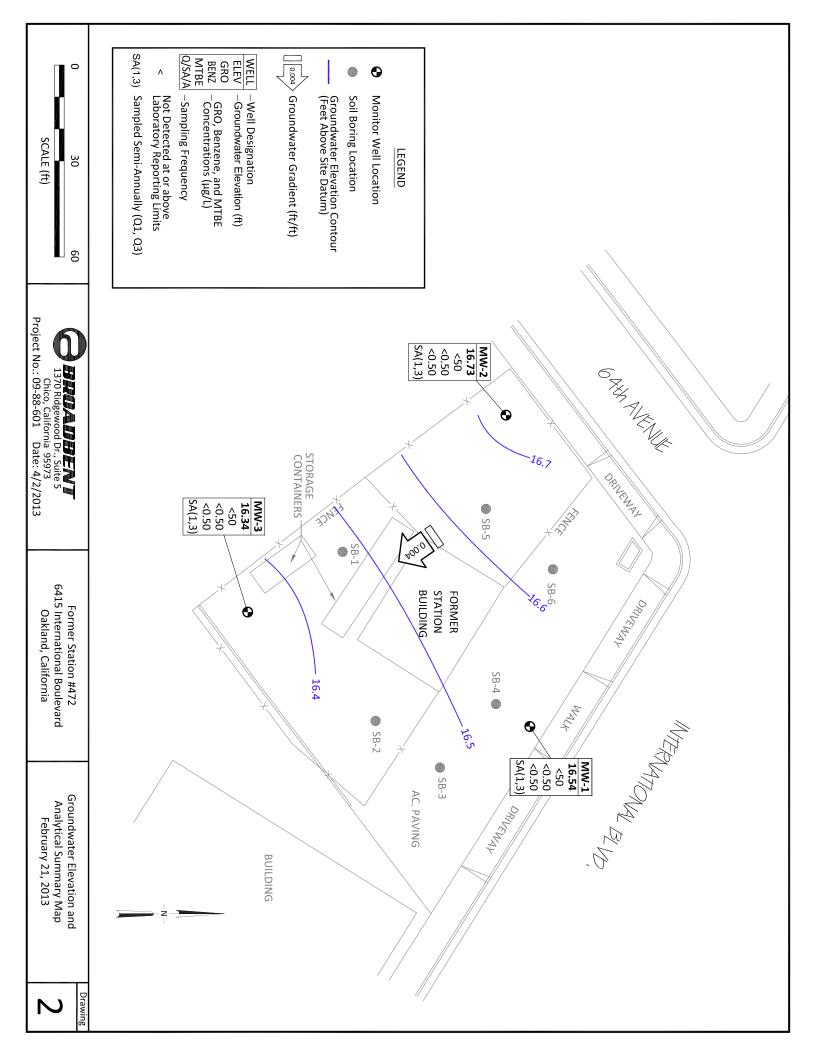
RECOMMENDATIONS:

Consistent with the revised monitoring schedule, no monitoring or sampling field work is planned for Second Quarter 2013. Broadbent is currently evaluating this Site for Case Closure under the Low Threat UST Closure Policy. A closure request will be submitted during the Second Quarter 2013.

LIMITATIONS:

The findings presented in this report are based upon observations of field personnel, points investigated, results of laboratory tests performed by TestAmerica, and our understanding of ACEH requirements. Our services were


performed in accordance with the generally accepted standard of practice at the time this report was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of the Atlantic Richfield Company. It is possible that variations in soil or groundwater conditions could exist beyond points explored in this investigation. Also, changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.


ATTACHMENTS:

Drawing 1:	Site Location Map
Drawing 2:	Groundwater Elevation and Analytical Summary Map, February 21, 2013
Table 1:	Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses
Table 2:	Summary of Fuel Additives Analytical Data
Table 3:	Historic Groundwater Gradient – Direction and Magnitude
Appendix A:	Field Methods
Appendix B:	Field Data Sheets
Appendix C:	Laboratory Report and Chain-of-Custody Documentation
Appendix D:	GeoTracker Upload Confirmation Receipts

LIST OF COMMONLY USED ACCRONYMS/ABBREVIATIONS:

ACEH:	Alameda County Environmental Health	ft/ft:	feet per foot
ACPWA:	Alameda County Public Works Agency	gal:	Gallons
BTEX:	Benzene, Toluene, Ethylbenzene, Total Xylenes	GRO:	Gasoline-Range Organics
1,2-DCA:	1,2-Dichloroethane	LNAPL:	Light Non-Aqueous Phase Liquid
DIPE:	Di-Isopropyl Ether	MTBE:	Methyl Tertiary Butyl Ether
DO:	Dissolved Oxygen	NO₃:	Nitrate as Nitrogen
DRO:	Diesel-Range Organics	ppb:	parts per billion
EDB:	1,2-Dibromomethane	SO ₄ :	Sulfate
Eh:	Oxidation Reduction Potential	TAME:	Tert-Amyl Methyl Ether
EPA:	Environmental Protection Agency	TBA:	Tertiary Butyl Ether
ETBE:	Ethyl Tertiary Butyl Ether	TOC:	Top of Casing
Fe ²⁺ :	Ferrous Iron	μg/L:	micrograms per liter

		тос		Product	Water Level	Concentrations in µg/L										
Well ID and		Elevation	DTW	Thickness	Elevation	GRO/	DRO/			Ethyl-	Total			DO		
Date Monitored	P/NP	(feet)	(feet)	(feet)	(feet)	TPHg	TPHd	Benzene	Toluene	Benzene	Xylenes	MtBE	TOG	(mg/L)	pН	Footnote
MW-1																
8/25/2009	Р	24.17	9.29	0.00	14.88	530	190	< 0.50	< 0.50	< 0.50	< 0.50	0.54			7.21	LX (DRO)
11/11/2009	NP		8.22	0.00	15.95	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
2/17/2010	NP		7.36	0.00	16.81	<50	70	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		1.69	7.03	LX (DRO)
6/2/2010	NP		7.61	0.00	16.56	110	120	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		1.21	7.0	LW (GRO), LX (DRO)
9/3/2010	NP		8.99	0.00	15.18	1,000	190	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		0.74	7.30	LW (GRO), LX (DRO)
2/8/2011	NP		7.69	0.00	16.48	<50	53	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		0.64	6.8	LX (DRO)
7/18/2011	NP		7.99	0.00	16.18	<50	110	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		0.70	7.2	LX (DRO)
3/1/2012	Р		8.20	0.00	15.97	500	140	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		0.71	7.01	
8/15/2012	Р		8.89	0.00	15.28	490	220	< 0.50	< 0.50	< 0.50	<1.0	< 0.50		8.90	7.53	
2/21/2013	Р		7.63	0.00	16.54	<50	<51	<0.50	<0.50	<0.50	<1.0	<0.50		1.78	7.54	
MW-2																
8/25/2009	Р	23.62	9.65	0.00	13.97	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50			7.30	
11/11/2009	NP		8.09	0.00	15.53	<50		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				
2/17/2010	Р		6.80	0.00	16.82	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		2.62	7.15	
6/2/2010	NP		7.11	0.00	16.51	<50	65	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		2.85	7.3	LX (DRO)
9/3/2010	NP		8.79	0.00	14.83	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		1.19	7.90	
2/8/2011	NP		7.21	0.00	16.41	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		2.15	7.0	
7/18/2011																Inaccessible
3/1/2012	Р		7.41	0.00	16.21	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		1.89	7.34	
8/15/2012	Р		8.79	0.00	14.83	<50	<47	< 0.50	< 0.50	< 0.50	<1.0	< 0.50		3.3	7.48	
2/21/2013	Р		6.89	0.00	16.73	<50	<52	<0.50	<0.50	<0.50	<1.0	<0.50		1.35	7.73	
MW-3																
8/25/2009	Р	24.73	11.07	0.00	13.66	63	85	< 0.50	1.2	< 0.50	< 0.50	< 0.50			7.09	
11/11/2009	NP		9.56	0.00	15.17	88		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50				LW (GRO)
2/17/2010	NP		8.52	0.00	16.21	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		2.04	7.09	
6/2/2010	NP		8.64	0.00	16.09	100	130	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		1.22	7.1	LW (GRO), LX (DRO)
9/3/2010	NP		8.41	0.00	16.32	200	140	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		0.87	6.9	LW (GRO), LX (DRO)
2/8/2011	NP		8.82	0.00	15.91	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		0.88	7.0	
7/18/2011	NP		9.20	0.00	15.53	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		0.93	6.9	

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #472, 6415 International Boulevard, Oakland, CA

Well ID and Date Monitored	P/NP	TOC Elevation (feet)	DTW (feet)	Product Thickness (feet)	Water Level Elevation (feet)	GRO/ TPHg	DRO/ TPHd	(Benzene	Concentrat Toluene	ions in µg/] Ethyl- Benzene	L Total Xylenes	MtBE	TOG	DO (mg/L)	рН	Footnote
MW-3 Cont.																
3/1/2012	Р	24.73	9.13	0.00	15.60	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		0.63	6.91	
8/15/2012	Р		10.45	0.00	14.28	<50	600	< 0.50	< 0.50	< 0.50	<1.0	< 0.50		2.99	7.38	*(DRO)
2/21/2013	Р		8.39	0.00	16.34	<50	95	<0.50	<0.50	<0.50	<1.0	<0.50		1.30	7.76	

 Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

 ARCO Service Station #472, 6415 International Boulevard, Oakland, CA

- Symbols & Abbreviations:
- --- = Not analyzed/applicable/measured/available
- < = Not detected at or above specified laboratory reporting limit
- DO = Dissolved oxygen
- DRO = Diesel range organics
- DTW = Depth to water in ft bgs
- GRO = Gasoline range organics
- GWE = Groundwater elevation measured in ft
- HVOC = Halogenated volatile organic compounds
- mg/L = Milligrams per liter
- MTBE = Methyl tert-butyl ether
- NP = Well not purged prior to sampling
- P = Well purged prior to sampling
- TOC = Top of casing measured in ft
- TOG = Total oil and grease
- TPH-d = Total petroleum hydrocarbons as diesel
- TPH-g = Total petroleum hydrocarbons as gasoline
- $\mu g/L =$ Micrograms per liter
- CEL = CalScience Environmental Laboratories, Inc.
- * = Hydrocarbon result partly due to individual peak(s) in the quantitation range
- Footnotes:
- LW = Quantitation of unknown hydrocarbon(s) in sample based on gasoline
- LX = Quantitation of unknown hydrocarbon(s) in sample based on diesel

Table 2. Summary of Fuel Additives Analytical Data

ARCO Service Station #472, 6415 International Boulevard, Oakland, CA

Well ID and				Concentrat	ions in μg/L				
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-1									
8/25/2009	<300	<10	0.54	<0.50	<0.50	<0.50	<0.50	<0.50	
11/11/2009	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
2/17/2010	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/2/2010	<50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.72 µg/L sec-Butylbenzene, 1.4 µg/L tert-Butylben
9/3/2010	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
2/8/2011	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
7/18/2011	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
3/1/2012	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	LW (GRO), LX (DRO)
8/15/2012	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
2/21/2013	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-2									
8/25/2009	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
11/11/2009	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
2/17/2010	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/2/2010	<50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
9/3/2010	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
2/8/2011	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
7/18/2011									Inaccessible
3/1/2012	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
8/15/2012	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
2/21/2013	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-3									
8/25/2009	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
11/11/2009	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
2/17/2010	<300	<20	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
6/2/2010	<50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
9/3/2010	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
2/8/2011	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
7/18/2011	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
3/1/2012	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	

Table 2. Summary of Fuel Additives Analytical Data

Well ID and				Concentrat					
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
MW-3 Cont.									
8/15/2012	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
2/21/2013	<150	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	

ARCO Service Station #472, 6415 International Boulevard, Oakland, CA

Symbols & Abbreviations: -- = Not analyzed/applicable/measured/available < = Not detected at or above specified laboratory reporting limit 1,2-DCA = 1,2-Dichloroethane DIPE = Diisopropyl ether EDB = 1,2-Dibromoethane ETBE = Ethyl tert-butyl ether MTBE = Methyl tert-butyl ether TAME = tert-Amyl methyl ether TBA = tert-Butyl alcohol μg/L = Micrograms per Liter

Notes: All volatile organic compounds were analyzed using EPA Method 8260B

	-	
Date Measured	Approximate Gradient Direction	Approximate Gradient Magnitude (ft/ft)
8/25/2009	Southwest	0.01
11/11/2009	South-Southwest	0.008
2/17/2010	South	0.006
6/2/2010	South	0.003
9/3/2010	North-Northwest	0.015
2/8/2011	South	0.006
7/18/2011	(a)	(a)
3/1/2012	South-Southeast	0.006
8/15/2012	South-Southwest	0.011
2/21/2013	South-Southeast	0.004

Table 3. Historical Groundwater Gradient - Direction and MagnitudeARCO Service Station #472, 6415 International Boulevard, Oakland, CA

Footnotes:

a = Groundwater gradient unable to be calculated due to MW-2 being inaccessible

APPENDIX A

FIELD METHODS

QUALITY ASSURANCE/QUALITY CONTROL FIELD METHODS

Field methods discussed herein were implemented to provide for accuracy and reliability of field activities, data collection, sample collection, and handling. Discussion of these methods is provided below.

1.0 Equipment Calibration

Equipment calibration was performed per equipment manufacturer specifications before use.

2.0 Depth to Groundwater and Light Non-Aqueous Phase Liquid Measurement

Depth to groundwater was measured in wells identified for gauging in the scope of work using a decontaminated water level indicator. The depth to water measurement was taken from a cut notch or permanent mark at the top of the well casing to which the well head elevation was originally surveyed.

Once depth to water was measured, an oil/water interface meter or a new disposable bailer was utilized to evaluate the presence and, if present, to measure the "apparent" thickness of light non-aqueous phase liquid (LNAPL) in the well. If LNAPL was present in the well, groundwater purging and sampling were not performed, unless sampling procedures in the scope of work specified collection of samples in the presence of LNAPL. Otherwise, time allowing, LNAPL was bailed from the well using either a new disposable bailer, or the disposal bailer previously used for initial LNAPL assessment. Bailing of LNAPL continued until the thickness of LNAPL (or volume) stabilized in each bailer pulled from the well, or LNAPL was no longer present. After LNAPL thickness either stabilized or was eliminated, periodic depth to water and depth to LNAPL measurements were collected as product came back into the well to evaluate product recovery rate and to aid in further assessment of LNAPL in the subsurface. LNAPL thickness measurement, the field sampler noted the bailer entry diameter and chamber diameter to enable correction of thickness measurements. Recovered LNAPL was stored on-site in a labeled steel drum(s) or other appropriate container(s) prior to disposal.

3.0 Well Purging and Groundwater Sample Collection

Well purging and groundwater sampling were performed in wells specified in the scope of work after measuring depth to groundwater and evaluating the presence of LNAPL. Purging and sampling were performed using one of the methods detailed below. The method used was noted in the field records. Purge water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal or on-site treatment (in cases where treatment using an on-site system is authorized).

3.1 Purging a Predetermined Well Volume

Purging a predetermined well volume is performed per ASTM International (ASTM) D4448-01. This purging method has the objective of removing a predetermined volume of stagnant water from the well prior to sampling. The volume of stagnant water is defined as either the volume of water contained within the well casing, or the volume within the well casing and sand/gravel in the annulus if natural flow through these is deemed insufficient to keep them flushed out.

This purging method involves removal of a minimum of three stagnant water volumes from the well using a decontaminated pump with new disposable plastic discharge or suction tubing, dedicated well tubing, or using a new disposable or decontaminated reusable bailer. If a new disposable bailer was used for assessment of LNAPL, that bailer may be used for purging. The withdrawal rate used is one that minimizes drawdown while satisfying time constraints.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. Parameters are considered stable when two (2) consecutive readings recorded three (3) minutes apart fall within ranges provided below in Table 1. In the event that the parameters have not stabilized and five (5) well casing volumes have been removed, purging activities will cease and be considered complete. Once the well is purged, a groundwater sample(s) is collected from the well using a new disposable bailer. If a new disposable bailer was used for purging, that bailer may be used to collect the sample(s). A sample is not collected if the well is inadvertently purged dry.

Tuble 1. Chitchia for Bernning Stabilizatio	and water Quality indicator rurameters
Parameter	Stabilization Criterion
Temperature	± 0.2ºC (± 0.36ºF)
рН	± 0.1 standard units
Conductivity	± 3%
Dissolved oxygen	± 10%
Oxidation reduction potential	± 10 mV
Turbidity ¹	± 10% or 1.0 NTU (whichever is greater)

 Table 1. Criteria for Defining Stabilization of Water-Quality Indicator Parameters

3.2 Low-Flow Purging and Sampling

"Low-Flow", "Minimal Drawdown", or "Low-Stress" purging is performed per ASTM D6771-02. It is a method of groundwater removal from within a well's screened interval that is intended to

¹ As stated in ASTM D6771-02, turbidity is not a chemical parameter and not indicative of when formation-quality water is being purged; however, turbidity may be helpful in evaluating stress on the formation during purging. Turbidity measurements are taken at the same time that stabilization parameter measurements are made, or, at a minimum, once when purging is initiated and again just prior to sample collection, after stabilization parameters have stabilized. To avoid artifacts in sample analysis, turbidity should be as low as possible when samples are collected. If turbidity values are persistently high, the withdrawal rate is lowered until turbidity decreases. If high turbidity persists even after lowering the withdrawal rate, the purging is stopped for a period of time until turbidity settles, and the purging process is then restarted. If this fails to solve the problem, the purging/sampling process for the well is ceased, and well maintenance or redevelopment is considered.

minimize drawdown and mixing of the water column in the well casing. This is accomplished by pumping the well using a decontaminated pump with new disposable plastic discharge or suction tubing or dedicated well tubing at a low flow rate while evaluating the groundwater elevation during pumping.

The low flow pumping rate is well specific and is generally established at a volume that is less than or equal to the natural recovery rate of the well. A pump with adjustable flow rate control is positioned with the intake at or near the mid-point of the submerged well screen. The pumping rate used during low-flow purging is low enough to minimize mobilization of particulate matter and drawdown (stress) of the water column. Low-flow purging rates will vary based on the individual well characteristics; however, the purge rate should not exceed 1.0 Liter per minute (L/min) or 0.25 gallon per minute (gal/min). Low-flow purging should begin at a rate of approximately 0.1 L/min (0.03 gal/min)², or the lowest rate possible, and be adjusted based on an evaluation of drawdown. Water level measurements should be recorded at approximate one (1) to two (2) minute intervals until the low-flow rate has been established, and drawdown is minimized. As a general rule, drawdown should not exceed 25% of the distance between the top of the water column and the pump in-take.

To evaluate when purging is complete, one or more groundwater stabilization parameters are monitored and recorded during purging activities until stabilization is achieved. Most commonly, stabilization parameters include temperature, conductivity, and pH, but field procedures detailed in the scope of work may also include monitoring of dissolved oxygen concentrations, oxidation reduction potential, and/or turbidity¹. The frequency between measurements will be at an interval of one (1) to three (3) minutes; however, if a flow cell is used, the frequency will be determined based on the time required to evacuate one cell volume. Stabilization is defined as three (3) consecutive readings recorded several minutes apart falling within ranges provided in Table 1. Samples will be collected by filling appropriate containers from the pump discharge tubing at a rate not to exceed the established pumping rate.

3.3 Minimal Purge, Discrete Depth, and Passive Sampling

Per ASTM D4448-01, sampling techniques that do not rely on purging, or require only minimal purging, may be used if a particular zone within a screened interval is to be sampled or if a well is not capable of yielding sufficient groundwater for purging. To properly use these sampling techniques, a water sample is collected within the screened interval with little or no mixing of the water column within the casing. These techniques include minimal purge sampling which uses a dedicated sampling pump capable of pumping rates of less than 0.1 L/min (0.03 gal/min)², discrete depth sampling using a bailer that allows groundwater entry at a controlled depth (e.g. differential pressure bailer), or passive (diffusion) sampling. These techniques are based on certain studies referenced in ASTM D4448-01 that indicate that under certain conditions, natural groundwater flow is laminar and horizontal with little or no mixing within the well screen.

 $^{^{2}}$ According to ASTM D4448-01, studies have indicated that at flow rates of 0.1 L/min, low-density polyethylene (LDPE) and plasticized polypropylene tubing materials are prone to sorption. Therefore, TFE-fluorocarbon or other appropriate tubing material is used, particularly when tubing lengths of 50 feet or longer are used.

4.0 Decontamination

Reusable groundwater sampling equipment were cleaned using a solution of Alconox or other acceptable detergent, rinsed with tap water, and finally rinsed with distilled water prior to use in each well. Decontamination water was stored on-site in labeled steel drum(s) or other appropriate container(s) prior to disposal.

5.0 Sample Containers, Labeling, and Storage

Samples were collected in laboratory prepared containers with appropriate preservative (if preservative was required). Samples were properly labeled (site name, sample I.D., sampler initials, date, and time of collection) and stored chilled (refrigerator or ice chest with ice) until delivery to a certified laboratory, under chain of custody procedures.

6.0 Chain of Custody Record and Procedure

The field sampler was personally responsible for care and custody of the samples collected until they were properly transferred to another party. To document custody and transfer of samples, a Chain of Custody Record was prepared. The Chain of Custody Record provided identification of the samples corresponding to sample labels and specified analyses to be performed by the laboratory. The original Chain of Custody Record accompanied the shipment, and a copy of the record was stored in the project file. When the samples were transferred, the individuals relinquishing and receiving them signed, dated, and noted the time of transfer on the record.

7.0 Field Records

Daily Report and data forms were completed by staff personnel to provide daily record of significant events, observations, and measurements. Field records were signed, dated, and stored in the project file.

APPENDIX B

FIELD DATA SHEETS

	OADBENT	DAILY REPORT Page of	
Project: BP	472 Project No.:	04-88-64	<u></u>
Field Representa	tive(s): JR Am Day: Thur	day Date: 7.21-13	
Time Onsite: Fr	rom: 1130 To: 200; From: To:	; From:To:	-
🝸 UST Em	IASP X Safety Glasses X Hard Hat ergency System Shut-off Switches Located Level of Barricading Other PPE (describe)	Proper Gloves	
Weather: Su	enny; To'F		
Equipment In U	Jse: peristattic pump; water level	indicator; horiba	
Visitors:			
TIME:	WORK DESCRIPTIO	DN:	N.
1130	Arrived on-site; sterted w/saf Signed in & proceeded to	ery meeting & poperwa	(£
1200	Signed in & proceeded to	talk w/property cavior	
1205	Setup on MW-3		
1235	Setup on MW-1		
1304	Setup on MW-2		
400	Signed aut & left site		
	0		
	л.		
•			
			and the second second
	- <u></u>		
Signature:	drik-	and all the same of the same	Acrision 1/2

GROUNDWATER MONITORING SITE SHEET

Elevation: _

Project No.: 09-88-601 Date: 2/21/13

Page _____ of ____

Project:

BP 472

Field Representative: <u>Am / JR</u>

Formation recharge rate is historically: W. L. Indicator ID #: High Low (circle one)

Oil/Water Interface ID #: _____ (List #s of all equip used.)

N	VELL ID	RECOR	D		W	ELL GA	RECOR	ECORD LAB ANALYS					YSES			
Well ID	Well Sampling Order	As-Built Well Diameter (inches)	As-Built Well Screen Interval (ft)	Previous Depth to Water (ft)	Time (24:00)	Deptih to LNAPL (ft)	Apparent LNAPL Thickness (ft)*	Depth to Water (ft)	Well Total Depth (ît)							
MW-1					1240	~	-	7.63	16,70							
Mw-2				- 6	1307	(6.89	17.07							
Mw-3					1203	-		8.39	17.09						-	
		4														
														and the second se		
								-		-						_
										-						_
	-									-	-				_	-
								+		-	-	-				-
										+	-	1				
								-						1	-	
					-			-			-			1		
en de la composición	1					-		1		-						
				-												
						1										
														_		
		1														
* Device used If bailer use					Baile Entry	er / Diamete			erface Me Ch		er Di		ircle on er			
Signature:	A		-2-		-										ion: 1/24	4/201
	(/		1													

GROUNDWATER SAMPLING DATA SHEET Page <u>7</u> of <u>4</u>

Drojast	20	477			Project No .	10-00	- 601	Date	2-21.13
Project:		472			roject No	04 00) - 00 .	Date.	6.000
Field Repres			M						
Well ID:	Mw-		Start Time:		End Time:		Total Time	(minutes):	
PURGE EQ	UIPMENT		Disp. Bailer		120V Pump	~	Flow Cell		
×	Disp. Tubing		12V Pump	×	Peristaltic Pump	Other/ID#:			
			vault, etc.)	Comments:					
Good	Improvement	Needed	(circle one)						
PURGING/S	SAMPLING	METHOD	Predetermined '	Well Volume	Low-Flow Oth	er:		(c	ircle one)
	PREDETER	MINED WEI	LL VOLUME				LOV	V-FLOW	
	Diameter Unit V					Previous Low-F	low Purge Rate:		(lpm)
1" (0.04)	1.25" (0.08)	2" (0.17)	3" (0.38)	Other:		Total Well Dept	h (a):		<u> </u>
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	"()	a b	Initial Depth to	Water (b):		<u>7.63</u> (ft)
Total Well Dep	th (a):			(ft)		Pump In-take D	epth = b + (a-b)/2	2:	12017 (ft)
Initial Depth to	Water (b):		1	(ft)	¥	Maximum Allo	wable Drawdown	= (a-b)/8:	<u>1,3</u> (ft)
Water Column	Height (WCH)	= (a - b):		(ft)	E	Low-Flow Purg	e Rate:		(Lpm)*
Water Column	Volume (WCV)	= WCH x Unit	Volume:	(gal)		Comments:			
Three Casing	Volumes = WC	CV x 3:		(gal)					
	olumes = WC	/ x 5:	5 	(gal)					s used but should not
Pump Depth (if	f pump used):			(ft)			Carlos and the	t exceed Maximum A	Allowable Drawdown.
				r	LIZATION PAI	1			
Time	Cumulative	Temperature	pH	Conductivity	DO	ORP	Turbidity		NOTES
(24:00)	Volume (L)	°C	101	µS or mS	mg/L	mV	NTU	Odor, colo	or, sheen or other
1244	0.0	18.28	7.82	0.735	2.32	-25	293		
1246	0.5	18.73	7.57	0.723	1.85	~15	257		
1250	1.5	19.10	7.54	0.721	1-78	-11	222		
1970	1.5.5								
			1 P						
Denvious Stabili	and Deserved are								
Previous Stabili				0 Deservations Ob	hla 2 Casia	Naluman & Da	nomatora Stabla	5 Cooing V	/olumec
PURGECC	MPLETION	RECORD	Other:	& Parameters Sta	able 3 Casin	ng volumes & Pa	rameters Stable	5 Casing v	olumes
	SA	MPLE COL	LECTION RE	ECORD			GEOCHEMIC	CAL PARAM	ETERS
Depth to Wate	r at Sampling:	7.92	(ft)			Para	meter	Time	Measurement
Sample Collect	ted Via:	Disp. Bailer	Dedicated Pr	ump Tubing		DO (mg/L)			
X Disp. Put	mp Tubing	Other:				Ferrous Iron (n	ng/L)		
Sample ID:			Sample Collect	ion Time:	(24:00)	Redox Potentia	al (mV)		
a second a second second	F		or unpreser			Alkalinity (mg	/L)		
Containers (#)		NP AM		Other:		Other:			
	Other:			Other:		Other:			
						- Culdi.			
Signature:	d	ly ma	Ass			-			Revision: 7/3/12

GROUNDWATER SAMPLING DATA SHEET

										Page	<u>> of </u>
Project:	BP	472			Pr	ojec	ct No.:	09-8	8-601	Date:	2-21-13
Field Repres	sentative:	JRIAN	٨								
Well ID:		.2	Start Time:		J	End	Time:		Total Time	(minutes):	
PURGE EQ			Disp. Bailer	100	120V		S)	<u>×</u>	Flow Cell		
×	Disp. Tubing		12V Pump	<u></u>	Peris	taltic	Pump	Other/ID#:			
WELL HEA	D INTEGRI' Improvement	TY (cap, lock, v Needed	vault, etc.) (circle one)	Comments:				~			
PURGING/S		in Commendation of the Second Second	Predetermined	Wall Voluma	Cou	-Floy	Oth	or.		(ci	rcle one)
			LL VOLUME		LOW	-1105	our our		LOW	V-FLOW	rele oney
200 00 00	da seriara artis	Volume (gal/ft)				П	Ĩ.	Previous Low-F	75.5	V-I'LOW	(lpm)
1" (0.04)	1.25" (0.08)	2" (0.17)	20	Other:				Total Well Dept			17.09 (ft)
4" (0.66)	6" (1.50)	8" (2.60)	12" (5.81)	" ()			b	Initial Depth to			6.89 (ft)
Total Well Dep	100	8 (2.00)	12 (5.61)	(ft)	a			27.5	epth = b + (a-b)/2		11.99 (ft)
Initial Depth to			Statistics	(ft)			V.		vable Drawdown		1.28 (ft)
Water Column		- (a b);		(ft)		E	=	Low-Flow Purge		= (a - b)/b.	(Lpm)*
Conversion and and a second second	C	= (a - b).) = WCH x Unit	Volume	(rt) (gal)		E		Comments:	raic.		(2pm)
to strengthe second strengthere			volume,	(gal)		E		Comments.			
	Volumes = WC Volumes = WCV			(gal)		E		*7 fl	es about d ba within a	anga of instruments	used but should not
		v x 5.		(gai) (ft)		ΥH					llowable Drawdown.
Pump Depth (if	pump used):		CDOINDW	- X - X	117			RAMETER RI		exceed maximum A	llowable Drawaown.
Time	Cumulative			Conductivity			ON PAI	ORP	Turbidity	Ν	IOTES
Time (24:00)	Volume (L)	Temperature °C	pH	μS or mS			g/L	mV	NTU		r, sheen or other
1310		19.37		0-415		1.6	Contraction of the second		117	0001, 0010	r, sheen or other
1312	0.5	17.34	7.84	0.414	-	1.4		-1	116		
1314	1.0	19.36	7.76	0.414	-	1.4		0	116		
1316	1.5	19.40	7.75	0.414		1.3		2	118		
12.0						0					
											3
						-					
					-						
					-	_					
					-						
					-	_					
Previous Stabili	zed Parameters				-						
		DECORD		L P. Donomatons St.	hla		2 Coali	Nolumon & Dou	i Stobla	5 Cosing V	olumes
PURGECO	MPLETION	RECORD		& Parameters Sta	able		_ 5 Cash	ng Volumes & Par	ameters stable	5 Casing v	olumes
			Other:					1			
	SA		LECTION RE	ECORD					GEOCHEMIC	AL PARAMI	ETERS
Depth to Water	at Sampling:	6.91	(ft)					Para	meter	Time	Measurement
Sample Collect	ed Via:	Disp. Bailer	Dedicated P	ump Tubing				DO (mg/L)			
A	np Tubing							Ferrous Iron (m	ng/L)		I.
	Mn-2		Sample Collect	ion Times 17	20	10	24:00)	Redox Potentia			
 A 10000 	*						1949-1949 (FEED 187		and the second		
Containers (#): 6 VOA (preserved or unpreserved) Li								Alkalinity (mg/	L)		
2 Other: NP AMBON Other:								Other:			
	Other:			_ Other:				Other:			
Signatura	1	0-	~								Pavision: 7/3/12

t

1. A.

Revision: 7/3/12

GROUNDWATER SAMPLING DATA SHEET Page $\underline{4}$ of $\underline{4}$

8	and the second									
Project:	B	P 472			Proj	ect No.:	09-88-	601	Date:	2-21-15
Field Repre	sentative:	JELAM								
Well ID:	Mw-	3	Start Time:		En	d Time:		Total Time	(minutes):	
				ر الاستانية والمراجعة المراجعة						
101	UIPMENT		Disp. Bailer		120V Pi	12		Flow Cell		
				<u>_</u>	Peristalt	ic Pump	Other/ID#:			
	D INTEGRI	Carden and Antonio and Antonio and Antonio and		Comments:						
Good	Improvement		(circle one)			-				
-	SAMPLING			Well Volume 🔇	Low-Fl	ow Oth	er:			rircle one)
11 mar 28 13			LL VOLUME		11	11			W-FLOW	
Sand Streets	Diameter Unit '		and street stores				Previous Low-F	15 10 Co.		(lpm)
1" (0.04)	1.25" (0.08)		3" (0.38)			b	Total Well Dept			<u>i7.09</u> (ft) <u>8.39</u> (ft)
4" (0.66)		8" (2.60)	12" (5.81)	" ()	a	1	Initial Depth to	water (b): epth = b + (a-b)/	.	12074 (ft)
Total Well Dep Initial Depth to	22.22			(ft) (ft)		V. <u>v</u>		wable Drawdown		1.09 (ft)
	Height (WCH)	-(a - b)	2	(ft) (ft)		=	Low-Flow Purge		I = (a - 0)/8.	(lpm)*
221 State Sector California	Volume (WCV)	A	Volume:	(n) (gal)			Comments:	c Rate.		(Epin)
	Volumes = WC			(gal)		V .	connicita.			
Parton Press and to Monitor 1	Volumes = WCV			(gal)			*Low-flow purge ra	te should be within	range of instrument	s used but should not
Pump Depth (i				(ft)						Allowable Drawdown.
	I I /		GROUNDWA	ATER STABI	LIZAT	ION PAI				
Time	Cumulative	Temperature	pH	Conductivity	1	DO	ORP	Turbidity		NOTES
(24:00)	Volume (L)	℃	0.00	µS ormS	n	ng/L	mV	NTU	Odor, col	or, sheen or other
1213	0.0	16.33	7.76	1.05		15	-131	199		
1215	0.5	16.67	7.76	1,04		60	-132	199		
1217	1.0	16.81	7:78	1.04		39	~139	134		
1219	1.5	16.87	1.16	1.04	10	30	1.50			
							2			
	al alternation of the second sec									
					1					
							Y			
Previous Stabil	ized Parameters									
PURGE CC	MPLETION	RECORD	📥 Low Flow a	& Parameters Sta	ble _	3 Casin	ig Volumes & Par	rameters Stable	5 Casing V	/olumes
			Other:							
	SA	MPLE COL	LECTION RE	ECORD			(GEOCHEMIC	CAL PARAM	ETERS
Depth to Wate	r at Sampling:	8.48	(ft)				Para	meter	Time	Measurement
			Dedicated Pt	ump Tubing			DO (mg/L)			
	mp Tubing	(187) Bro	2 ourcarea I t				Ferrous Iron (m	ng/[)		
A			Sample Collecti	ion Time: 17	75 .	24.00)	1			
20 E	1		2				Redox Potentia			
Containers (#)		·	or unpreserv				Alkalinity (mg/	L)		
	Advect of the second second			_ Other:			Other:			
	Other:			_ Other:			Other:			
Signature:	May	moi	bar				_			Revision: 7/3/12

APPENDIX C

LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-39050-1 Client Project/Site: ARCO 0472, Oakland

For: Broadbent & Associates, Inc. 1324 Mangrove Ave Suite 212 Chico, California 95926

Attn: Tom Venus

tæthlein

Authorized for release by: 3/8/2013 4:40:29 PM

Kathleen Robb Project Manager II kathleen.robb@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Chronicle	8
QC Sample Results	9
QC Association	14
Definitions	15
Certification Summary	16
Chain of Custody	17
Receipt Checklists	18

Sample Summary

Matrix

Water

Water

Water

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0472, Oakland

Client Sample ID

MW-1

MW-2

MW-3

Lab Sample ID

440-39050-1

440-39050-2

440-39050-3

TestAmerica Job ID: 440-39050-1

02/21/13 12:55 02/22/13 09:45

Received

02/22/13 09:45

02/22/13 09:45

Collected

02/21/13 13:20

02/21/13 12:25

3
5
8
9

TestAmerica Irvine

Job ID: 440-39050-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-39050-1

Comments

No additional comments.

Receipt

The samples were received on 2/22/2013 9:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.6° C.

GC/MS VOA

No analytical or quality issues were noted.

GC VOA No analytical or quality issues were noted.

GC Semi VOA No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0472, Oakland

Lab Sample ID: 440-39050-1 Matrix: Water

Date Collected: 02/21/13 12:55 Date Received: 02/22/13 09:45

Client Sample ID: MW-1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			03/01/13 00:34	
1,2-Dichloroethane	ND		0.50	ug/L			03/01/13 00:34	
Benzene	ND		0.50	ug/L			03/01/13 00:34	
Ethanol	ND		150	ug/L			03/01/13 00:34	
Ethylbenzene	ND		0.50	ug/L			03/01/13 00:34	
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			03/01/13 00:34	
Isopropyl Ether (DIPE)	ND		0.50	ug/L			03/01/13 00:34	
m,p-Xylene	ND		1.0	ug/L			03/01/13 00:34	
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			03/01/13 00:34	
o-Xylene	ND		0.50	ug/L			03/01/13 00:34	
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			03/01/13 00:34	
tert-Butyl alcohol (TBA)	ND		10	ug/L			03/01/13 00:34	
Toluene	ND		0.50	ug/L			03/01/13 00:34	
Xylenes, Total	ND		1.0	ug/L			03/01/13 00:34	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	91		80 - 120				03/01/13 00:34	
Dibromofluoromethane (Surr)	95		80 - 120				03/01/13 00:34	
Toluene-d8 (Surr)	95		80 - 120				03/01/13 00:34	
Method: 8015B/5030B - Gasoli	ne Range Organi	ics (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
GRO (C6-C12)	ND		50	ug/L			02/28/13 10:41	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	83		65 - 140				02/28/13 10:41	
Method: 8015B - Diesel Range	Organics (DRO)	(GC) Low	Level					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
DRO (C10-C28)	ND		51	ug/L		02/28/13 07:53	03/01/13 03:42	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0472, Oakland

Lab Sample ID: 440-39050-2 Matrix: Water

Date Collected: 02/21/13 13:20 Date Received: 02/22/13 09:45

n-Octacosane

Client Sample ID: MW-2

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			03/01/13 02:02	1
1,2-Dichloroethane	ND		0.50	ug/L			03/01/13 02:02	1
Benzene	ND		0.50	ug/L			03/01/13 02:02	1
Ethanol	ND		150	ug/L			03/01/13 02:02	1
Ethylbenzene	ND		0.50	ug/L			03/01/13 02:02	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			03/01/13 02:02	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			03/01/13 02:02	
m,p-Xylene	ND		1.0	ug/L			03/01/13 02:02	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			03/01/13 02:02	1
o-Xylene	ND		0.50	ug/L			03/01/13 02:02	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			03/01/13 02:02	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			03/01/13 02:02	1
Toluene	ND		0.50	ug/L			03/01/13 02:02	1
Xylenes, Total	ND		1.0	ug/L			03/01/13 02:02	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		80 - 120				03/01/13 02:02	1
Dibromofluoromethane (Surr)	95		80 - 120				03/01/13 02:02	1
Toluene-d8 (Surr)	93		80 - 120				03/01/13 02:02	1
₋ Method: 8015B/5030B - Gasoliı	ne Range Organi	cs (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			02/28/13 11:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		65 - 140				02/28/13 11:09	1
Method: 8015B - Diesel Range	Organics (DRO)	(GC) Low	Level					
Analyte	• • •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
			52	ug/L		02/28/13 07:53	03/01/13 04:02	1
DRO (C10-C28)	ND		52	ug/L		02/20/10 07:00	03/01/13 04.02	

45 - 120

82

TestAmerica Irvine

1

02/28/13 07:53 03/01/13 04:02

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0472, Oakland

Lab Sample ID: 440-39050-3 Matrix: Water

Date Collected: 02/21/13 12:25 Date Received: 02/22/13 09:45

Client Sample ID: MW-3

n-Octacosane

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			03/01/13 02:31	1
1,2-Dichloroethane	ND		0.50	ug/L			03/01/13 02:31	1
Benzene	ND		0.50	ug/L			03/01/13 02:31	1
Ethanol	ND		150	ug/L			03/01/13 02:31	1
Ethylbenzene	ND		0.50	ug/L			03/01/13 02:31	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			03/01/13 02:31	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			03/01/13 02:31	1
m,p-Xylene	ND		1.0	ug/L			03/01/13 02:31	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			03/01/13 02:31	1
o-Xylene	ND		0.50	ug/L			03/01/13 02:31	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			03/01/13 02:31	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			03/01/13 02:31	1
Toluene	ND		0.50	ug/L			03/01/13 02:31	1
Xylenes, Total	ND		1.0	ug/L			03/01/13 02:31	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		80 - 120				03/01/13 02:31	1
Dibromofluoromethane (Surr)	92		80 - 120				03/01/13 02:31	1
Toluene-d8 (Surr)	95		80 - 120				03/01/13 02:31	1
Method: 8015B/5030B - Gasoli	ne Range Organi	cs (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			02/28/13 11:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83		65 - 140				02/28/13 11:36	1
₋ Method: 8015B - Diesel Range	Organics (DRO)	(GC) Low	Level					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C28)	95		49	ug/L		02/28/13 07:53	03/01/13 04:22	1

45 - 120

85

1

02/28/13 07:53 03/01/13 04:22

Initial

990 mL

Dil

1

Client Sample ID: MW-1

Date Collected: 02/21/13 12:55

Date Received: 02/22/13 09:45

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Batch

Туре

Analysis

Analysis

Analysis

Prep

Batch

Method

3510C

8015B

8260B/5030B

8015B/5030B

Lab Sample ID: 440-39050-1

Analyst

WK

SC

KW

JR

Lab Sample ID: 440-39050-2

Lab Sample ID: 440-39050-3

Prepared

or Analyzed

03/01/13 00:34

02/28/13 10:41

02/28/13 07:53

03/01/13 03:42

Matrix: Water

Lab

TAL IRV

TAL IRV

TAL IRV

TAL IRV

Matrix: Water

Matrix: Water

2 3 4 5 6 7 8

Run Factor Amount Amount Number 1 10 mL 10 mL 88644 1 10 mL 10 mL 88200

Final

1 mL

Batch

88449

88547

Client Sample ID: MW-2

Date Collected: 02/21/13 13:20 Date Received: 02/22/13 09:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	88644	03/01/13 02:02	WK	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	88200	02/28/13 11:09	SC	TAL IRV
Total/NA	Prep	3510C			970 mL	1 mL	88449	02/28/13 07:53	KW	TAL IRV
Total/NA	Analysis	8015B		1			88547	03/01/13 04:02	JR	TAL IRV

Client Sample ID: MW-3 Date Collected: 02/21/13 12:25 Date Received: 02/22/13 09:45

Batch Batch Dil Initial Final Batch Prepared Method Prep Type Туре Run Factor Amount Amount Number or Analyzed Lab Analyst 8260B/5030B 03/01/13 02:31 WK TAL IRV Total/NA Analysis 10 mL 88644 1 10 mL Total/NA 8015B/5030B 88200 02/28/13 11:36 SC TAL IRV Analysis 1 10 mL 10 mL Total/NA Prep 3510C 1030 mL 1 mL 88449 02/28/13 07:53 ĸw TAL IRV 8015B 88547 03/01/13 04:22 TAL IRV Total/NA Analysis 1 JR

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Matrix: Water									Sample ID: Metho Prep Type: 1	
									Prep Type:	otal/N
Analysis Batch: 88644	MB	мв								
Analyte		Qualifier	RL		Unit		D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane (EDB)	ND		0.50		ug/L				02/28/13 20:38	
1.2-Dichloroethane	ND		0.50		ug/L				02/28/13 20:38	
Benzene	ND		0.50		ug/L				02/28/13 20:38	
Ethanol	ND		150		ug/L				02/28/13 20:38	
Ethylbenzene	ND		0.50		ug/L				02/28/13 20:38	
Ethyl-t-butyl ether (ETBE)	ND		0.50		ug/L				02/28/13 20:38	
sopropyl Ether (DIPE)	ND		0.50		ug/L				02/28/13 20:38	
m,p-Xylene	ND		1.0		ug/L				02/28/13 20:38	
Methyl-t-Butyl Ether (MTBE)	ND		0.50		ug/L				02/28/13 20:38	
	ND		0.50		.				02/28/13 20:38	
o-Xylene	ND		0.50		ug/L					
Tert-amyl-methyl ether (TAME)					ug/L				02/28/13 20:38	
tert-Butyl alcohol (TBA)	ND		10		ug/L				02/28/13 20:38	
	ND		0.50		ug/L				02/28/13 20:38	
Xylenes, Total	ND		1.0		ug/L				02/28/13 20:38	
	MB	МВ								
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	85		80 - 120						02/28/13 20:38	-
Dibromofluoromethane (Surr)	98		80 - 120						02/28/13 20:38	
			00 - 120						02/20/13 20.30	
Toluene-d8 (Surr)	97		80 - 120						02/28/13 20:38	
	97						Clier	t Samnle	02/28/13 20:38	Samn
Lab Sample ID: LCS 440-88644/5	97						Clier	it Sample	02/28/13 20:38 D: Lab Control	-
Lab Sample ID: LCS 440-88644/5 Matrix: Water	97						Clier	t Sample	02/28/13 20:38	-
Lab Sample ID: LCS 440-88644/5 Matrix: Water	97		80 - 120	LCS	LCS		Clier	it Sample	02/28/13 20:38 ID: Lab Control Prep Type: ٦	-
Lab Sample ID: LCS 440-88644/5 Matrix: Water Analysis Batch: 88644	97		80 - 120 Spike			Unit			02/28/13 20:38 e ID: Lab Control Prep Type: ٦ %Rec.	-
Lab Sample ID: LCS 440-88644/5 Matrix: Water Analysis Batch: 88644	97		80 - 120 Spike Added	Result	LCS Qualifier	Unit uo/L	Clier	%Rec	02/28/13 20:38 ■ ID: Lab Control Prep Type: 1 %Rec. Limits	-
Lab Sample ID: LCS 440-88644/5 Matrix: Water Analysis Batch: 88644 Analyte 1,2-Dibromoethane (EDB)	97		80 - 120 Spike Added 25.0	Result 24.2		ug/L		% Rec	02/28/13 20:38 e ID: Lab Control Prep Type: 1 %Rec. Limits 75 - 125	-
Lab Sample ID: LCS 440-88644/5 Matrix: Water Analysis Batch: 88644 Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane	97		80 - 120 Spike Added 25.0	Result 24.2 23.0		ug/L ug/L		%Rec 97 92	02/28/13 20:38 e ID: Lab Control Prep Type: 7 %Rec. Limits 75 - 125 60 - 140	-
Lab Sample ID: LCS 440-88644/5 Matrix: Water Analysis Batch: 88644 Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene	97		80 - 120 Spike Added 25.0 25.0 25.0	Result 24.2 23.0 20.0		ug/L ug/L ug/L		%Rec 97 92 80	02/28/13 20:38 e ID: Lab Control Prep Type: □ %Rec. Limits 75 - 125 60 - 140 70 - 120	-
Lab Sample ID: LCS 440-88644/5 Matrix: Water Analysis Batch: 88644 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol	97		Spike Added 25.0 25.0 25.0 25.0 25.0	Result 24.2 23.0 20.0 342		ug/L ug/L ug/L ug/L		%Rec 97 92 80 137	02/28/13 20:38 e ID: Lab Control Prep Type: 7 %Rec. Limits 75 - 125 60 - 140 70 - 120 40 - 155	-
Lab Sample ID: LCS 440-88644/5 Matrix: Water Analysis Batch: 88644 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene	97		Spike Added 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Result 24.2 23.0 20.0 342 25.7		ug/L ug/L ug/L ug/L ug/L		%Rec 97 92 80 137 103	02/28/13 20:38 e ID: Lab Control Prep Type: ↑ %Rec. Limits 75 - 125 60 - 140 70 - 120 40 - 155 75 - 125	-
Lab Sample ID: LCS 440-88644/5 Matrix: Water Analysis Batch: 88644 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE)	97		Spike Added 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Result 24.2 23.0 20.0 342 25.7 22.9		ug/L ug/L ug/L ug/L ug/L ug/L		%Rec 97 92 80 137 103 92	02/28/13 20:38 e ID: Lab Control Prep Type: ٦ %Rec. Limits 75 - 125 60 - 140 70 - 120 40 - 155 75 - 125 65 - 135	
Lab Sample ID: LCS 440-88644/5 Matrix: Water Analysis Batch: 88644 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE) Isopropyl Ether (DIPE)	97		Spike Added 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Result 24.2 23.0 20.0 342 25.7 22.9 25.1		ug/L ug/L ug/L ug/L ug/L ug/L		%Rec 97 92 80 137 103 92 100	02/28/13 20:38 e ID: Lab Control Prep Type: ↑ %Rec. Limits 75 - 125 60 - 140 70 - 120 40 - 155 75 - 125 65 - 135 60 - 135	
Lab Sample ID: LCS 440-88644/5 Matrix: Water Analysis Batch: 88644 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE) Isopropyl Ether (DIPE) m,p-Xylene	97		80 - 120 Spike Added 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Result 24.2 23.0 20.0 342 25.7 22.9 25.1 52.0		ug/L ug/L ug/L ug/L ug/L ug/L ug/L		%Rec 97 92 80 137 103 92 100 104	02/28/13 20:38 Prep Type: 7 %Rec. Limits 75 - 125 60 - 140 70 - 120 40 - 155 75 - 125 65 - 135 60 - 135 75 - 125	-
Lab Sample ID: LCS 440-88644/5 Matrix: Water Analysis Batch: 88644 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE) Isopropyl Ether (DIPE) m,p-Xylene Methyl-t-Butyl Ether (MTBE)	97		Spike Added 25.0 250 250 250 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Result 24.2 23.0 20.0 342 25.7 22.9 25.1 52.0 21.6		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		%Rec 97 92 80 137 103 92 100 104 86	02/28/13 20:38 Prep Type: 7 %Rec. Limits 75 - 125 60 - 140 70 - 120 40 - 155 75 - 125 65 - 135 60 - 135 75 - 125 60 - 135 75 - 125 60 - 135	-
Toluene-d8 (Surr) Lab Sample ID: LCS 440-88644/5 Matrix: Water Analysis Batch: 88644 Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE) Isopropyl Ether (DIPE) m,p-Xylene Methyl-t-Butyl Ether (MTBE) o-Xylene Tert-amyl-methyl ether (TAME)	97		80 - 120 Spike Added 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Result 24.2 23.0 20.0 342 25.7 22.9 25.1 52.0		ug/L ug/L ug/L ug/L ug/L ug/L ug/L		%Rec 97 92 80 137 103 92 100 104	02/28/13 20:38 Prep Type: 7 %Rec. Limits 75 - 125 60 - 140 70 - 120 40 - 155 75 - 125 65 - 135 60 - 135 75 - 125	-

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	92		80 - 120
Dibromofluoromethane (Surr)	103		80 - 120
Toluene-d8 (Surr)	96		80 - 120

tert-Butyl alcohol (TBA)

Toluene

125

25.0

128

22.7

ug/L

ug/L

102

91

70 - 135

70 - 120

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 440-88644/6 Matrix: Water

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

							1100		
Analysis Batch: 88644									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane (EDB)	25.0	23.2		ug/L		93	75 _ 125	4	20
1,2-Dichloroethane	25.0	24.6		ug/L		98	60 _ 140	7	20
Benzene	25.0	19.6		ug/L		78	70 - 120	2	20
Ethanol	250	263		ug/L		105	40 _ 155	26	30
Ethylbenzene	25.0	24.3		ug/L		97	75 - 125	6	20
Ethyl-t-butyl ether (ETBE)	25.0	21.8		ug/L		87	65 _ 135	5	20
Isopropyl Ether (DIPE)	25.0	24.6		ug/L		98	60 - 135	2	20
m,p-Xylene	50.0	51.8		ug/L		104	75 ₋ 125	0	20
Methyl-t-Butyl Ether (MTBE)	25.0	21.0		ug/L		84	60 _ 135	3	25
o-Xylene	25.0	24.6		ug/L		98	75 - 125	6	20
Tert-amyl-methyl ether (TAME)	25.0	21.6		ug/L		86	60 _ 135	8	25
tert-Butyl alcohol (TBA)	125	125		ug/L		100	70 _ 135	2	20
Toluene	25.0	22.6		ug/L		90	70 - 120	1	20

	LCSD LC	SD	
Surrogate	%Recovery Qu	ıalifier	Limits
4-Bromofluorobenzene (Surr)	94		80 - 120
Dibromofluoromethane (Surr)	93		80 - 120
Toluene-d8 (Surr)	95		80 - 120

Lab Sample ID: 440-39050-1 MS Matrix: Water

Analysis Batch: 88644

-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dibromoethane (EDB)	ND		25.0	23.3		ug/L		93	70 - 130
1,2-Dichloroethane	ND		25.0	24.7		ug/L		99	60 - 140
Benzene	ND		25.0	18.9		ug/L		76	65 - 125
Ethanol	ND		250	400	LM	ug/L		160	40 - 155
Ethylbenzene	ND		25.0	23.8		ug/L		95	65 - 130
Ethyl-t-butyl ether (ETBE)	ND		25.0	20.9		ug/L		84	60 - 135
Isopropyl Ether (DIPE)	ND		25.0	22.9		ug/L		92	60 - 140
m,p-Xylene	ND		50.0	48.1		ug/L		96	65 ₋ 130
Methyl-t-Butyl Ether (MTBE)	ND		25.0	20.3		ug/L		81	55 - 145
o-Xylene	ND		25.0	23.5		ug/L		94	65 - 125
Tert-amyl-methyl ether (TAME)	ND		25.0	20.3		ug/L		81	60 - 140
tert-Butyl alcohol (TBA)	ND		125	149		ug/L		119	65 - 140
Toluene	ND		25.0	22.1		ug/L		88	70 ₋ 125
	MS	MS							

MS N	IS	
%Recovery G	Qualifier	Limits
91		80 - 120
90		80 - 120
95		80 - 120
	%Recovery 0 91 90	<u>91</u> 90

Client Sample ID: MW-1 Prep Type: Total/NA

Toluene-d8 (Surr)

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-39050-1 Matrix: Water Analysis Batch: 88644	MSD								Client San Prep T	nple ID: ype: Tot	
Analysis Datch. 00044	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane (EDB)	ND		25.0	22.9		ug/L		92	70 - 130	2	25
1,2-Dichloroethane	ND		25.0	24.2		ug/L		97	60 _ 140	2	20
Benzene	ND		25.0	19.4		ug/L		77	65 _ 125	2	20
Ethanol	ND		250	345		ug/L		138	40 _ 155	15	30
Ethylbenzene	ND		25.0	24.4		ug/L		98	65 - 130	3	20
Ethyl-t-butyl ether (ETBE)	ND		25.0	20.8		ug/L		83	60 - 135	0	25
Isopropyl Ether (DIPE)	ND		25.0	22.9		ug/L		92	60 - 140	0	25
m,p-Xylene	ND		50.0	49.3		ug/L		99	65 ₋ 130	2	25
Methyl-t-Butyl Ether (MTBE)	ND		25.0	19.8		ug/L		79	55 _ 145	3	25
o-Xylene	ND		25.0	24.0		ug/L		96	65 - 125	2	20
Tert-amyl-methyl ether (TAME)	ND		25.0	20.3		ug/L		81	60 - 140	0	30
tert-Butyl alcohol (TBA)	ND		125	150		ug/L		120	65 ₋ 140	1	25
Toluene	ND		25.0	22.2		ug/L		89	70 _ 125	0	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	91		80 - 120								
Dibromofluoromethane (Surr)	87		80 - 120								

80 - 120

Method: 8015B/5030B - Gasoline Range Organics (GC)

95

Lab Sample ID: MB 440-8820 Matrix: Water	0/30								Client S	Sample ID: Metho Prep Type: 1	
Analysis Batch: 88200										пер туре. Г	
		мв м	ИВ								
Analyte	Re	sult C	Qualifier	RL		Unit		DI	Prepared	Analyzed	Dil Fac
GRO (C6-C12)		ND		50		ug/L				02/28/13 00:52	1
		мв л	ИВ								
Surrogate	%Recov	very C	Qualifier	Limits				I	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		95		65 - 140	-					02/28/13 00:52	1
I ah Samula ID: I CS 440 993	00/20							Clian	t Somal	Dulah Control	Sampla
Lab Sample ID: LCS 440-882 Matrix: Water	00/29							Clien	t Sample	e ID: Lab Control	•
										Prep Type: 1	IOLAI/INA
Analysis Batch: 88200				Spike	LCS	LCS				%Rec.	
Analyte				Added	Result	Qualifier	Unit	D	%Rec	Limits	
GRO (C4-C12)				800	745		ug/L		93	80 - 120	
	LCS	LCS									
Surrogate	%Recovery	Qualifi	ïer	Limits							
4-Bromofluorobenzene (Surr)	112			65 - 140							
Lab Sample ID: 440-38893-A	-2 MS								Client	Sample ID: Matr	ix Spike
Matrix: Water	-									Prep Type: 1	-
Analysis Batch: 88200											
-	Sample	Sampl	е	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifi	ier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
GRO (C4-C12)	ND			800	720		ug/L		90	65 - 140	

TestAmerica Irvine

Method: 8015B/5030B - Gasoline Range Organics (GC) (Continued)

Lab Sample ID: 440-38893-/ Matrix: Water	A-2 MS							Client	Sample ID: Prep Ty		-
Analysis Batch: 88200										•	
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)			65 - 140								
Lab Sample ID: 440-38893-/	A-2 MSD						Client S	ample ID:	: Matrix Spi	ike Du	plicat
Matrix: Water								-	Prep Ty		-
Analysis Batch: 88200											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RP
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
GRO (C4-C12)	ND		800	733		ug/L		92	65 - 140	2	2
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	<u></u>		65 - 140								
-											
Acthody 2015B Dissol	Banga Organ			aval							
lethod: 8015B - Diesel	Range Organ	ics (DRO) (GC) LOW LO	evei							
Lab Sample ID: MB 440-884	1/9/1_0							Client Sa	ample ID: N	lothor	l Blan
Matrix: Water									Prep Ty		
Analysis Batch: 88547										Batch:	
		МВ МВ							Tiep	Daten	. 0044
Analyte	R	esult Qualifier	RL		Unit		DI	Prepared	Analyze	d	Dil Fa
DRO (C10-C28)		ND	50		ug/L			28/13 07:53	03/01/13 0		-
					- 5						
		MB MB									
Surrogate	%Reco		Limits					Prepared	Analyze		Dil Fa
n-Octacosane		88	45 - 120				02/	28/13 07:53	03/01/13 0	2:02	
- 											
Lab Sample ID: LCS 440-88	3449/2-A						Clien	t Sample	ID: Lab Co		-
Matrix: Water									Prep Ty	-	
A									Prep	Batch	: 8844
Analysis Batch: 88936			Spike	1.00	1.00				-		
-			Spike		LCS	1114		0/ D	%Rec.		
Analyte			Added	Result	LCS Qualifier	Unit	D	%Rec	%Rec. Limits		
-			-			Unit ug/L	<u>D</u>	%Rec	%Rec.		
Analyte			Added	Result			<u>D</u>		%Rec. Limits		
Analyte	LCS %Recovery		Added	Result			<u>D</u>		%Rec. Limits		
Analyte DRO (C10-C28)			Added	Result			<u>D</u>		%Rec. Limits		
Analyte DRO (C10-C28) Surrogate	%Recovery		Added 1000	Result			<u>D</u>		%Rec. Limits		
Analyte DRO (C10-C28) Surrogate n-Octacosane	%Recovery 99		Added 1000	Result				80	%Rec. Limits	ike Du	
Analyte DRO (C10-C28) Surrogate n-Octacosane	%Recovery 99		Added 1000	Result				80	%Rec. Limits 40 - 115	/pe: To	plicat
Analyte DRO (C10-C28) Surrogate n-Octacosane Lab Sample ID: 440-39233-t	%Recovery 99 B-1-A MSD	Qualifier	Added 1000	Result 801	Qualifier			80	%Rec. Limits 40 - 115	/pe: To	plicat
Analyte DRO (C10-C28) Surrogate n-Octacosane Lab Sample ID: 440-39233-F Matrix: Water	8-1-A MSD	<i>Qualifier</i>	Added 1000 <i>Limits</i> 45 - 120 Spike	Result 801				80	%Rec. Limits 40 - 115 Matrix Spi Prep Ty Prep 1 %Rec.	/pe: To Batch:	plicat otal/N/ : 8844
Analyte DRO (C10-C28) Surrogate n-Octacosane Lab Sample ID: 440-39233-E Matrix: Water Analysis Batch: 88547 Analyte	8-1-A MSD	Qualifier	Added 1000 <i>Limits</i> 45 - 120 Spike Added	Result 801	Qualifier	ug/L Unit		80 Sample ID:	%Rec. Limits 40 - 115 Matrix Spi Prep Ty Prep 1 %Rec. Limits	/pe: To	plicat otal/N/ : 8844 RP
Analyte DRO (C10-C28) Surrogate n-Octacosane Lab Sample ID: 440-39233-E Matrix: Water Analysis Batch: 88547	8-1-A MSD	<i>Qualifier</i>	Added 1000 <i>Limits</i> 45 - 120 Spike	Result 801	Qualifier	ug/L	Client S	ample ID:	%Rec. Limits 40 - 115 Matrix Spi Prep Ty Prep 1 %Rec.	/pe: To Batch:	plicati otal/N/ : 8844 RPI Lim
Analyte DRO (C10-C28) Surrogate n-Octacosane Lab Sample ID: 440-39233-E Matrix: Water Analysis Batch: 88547 Analyte	%Recovery 99 B-1-A MSD Sample Result ND	Qualifier Sample Qualifier	Added 1000 <i>Limits</i> 45 - 120 Spike Added	Result 801 MSD Result	Qualifier	ug/L Unit	Client S	80 Sample ID:	%Rec. Limits 40 - 115 Matrix Spi Prep Ty Prep 1 %Rec. Limits	/pe: To Batch: RPD	plicato otal/NA : 88449 RPI Limi
Analyte DRO (C10-C28) Surrogate n-Octacosane Lab Sample ID: 440-39233-E Matrix: Water Analysis Batch: 88547 Analyte	%Recovery 99 B-1-A MSD Sample Result ND	Qualifier Sample Qualifier MSD	Added 1000 <i>Limits</i> 45 - 120 Spike Added	Result 801 MSD Result	Qualifier	ug/L Unit	Client S	80 Sample ID:	%Rec. Limits 40 - 115 Matrix Spi Prep Ty Prep 1 %Rec. Limits	/pe: To Batch: RPD	plicate

Method: 8015B - Diesel Range Organics (DRO) (GC) Low Level (Continued)

Lab Sample ID: 440-39233-E Matrix: Water Analysis Batch: 88936	E-1-A MS							Client	atrix Spike : Total/NA tch: 88449	
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
DRO (C10-C28)	ND		1030	808		ug/L		79	40 - 120	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
n-Octacosane	98		45 - 120							

TestAmerica Irvine

GC/MS VOA

Analysis Batch: 88644

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-39050-1	MW-1	Total/NA	Water	8260B/5030B	
440-39050-1 MS	MW-1	Total/NA	Water	8260B/5030B	
440-39050-1 MSD	MW-1	Total/NA	Water	8260B/5030B	
440-39050-2	MW-2	Total/NA	Water	8260B/5030B	
440-39050-3	MW-3	Total/NA	Water	8260B/5030B	
LCS 440-88644/5	Lab Control Sample	Total/NA	Water	8260B/5030B	
LCSD 440-88644/6	Lab Control Sample Dup	Total/NA	Water	8260B/5030B	
MB 440-88644/4	Method Blank	Total/NA	Water	8260B/5030B	

GC VOA

Analysis Batch: 88200

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-38893-A-2 MS	Matrix Spike	Total/NA	Water	8015B/5030B	
440-38893-A-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8015B/5030B	
440-39050-1	MW-1	Total/NA	Water	8015B/5030B	
440-39050-2	MW-2	Total/NA	Water	8015B/5030B	
440-39050-3	MW-3	Total/NA	Water	8015B/5030B	
LCS 440-88200/29	Lab Control Sample	Total/NA	Water	8015B/5030B	
MB 440-88200/30	Method Blank	Total/NA	Water	8015B/5030B	

GC Semi VOA

Prep Batch: 88449

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-39050-1	MW-1	Total/NA	Water	3510C	
440-39050-2	MW-2	Total/NA	Water	3510C	
440-39050-3	MW-3	Total/NA	Water	3510C	
440-39233-B-1-A MSD	Matrix Spike Duplicate	Total/NA	Water	3510C	
440-39233-E-1-A MS	Matrix Spike	Total/NA	Water	3510C	
LCS 440-88449/2-A	Lab Control Sample	Total/NA	Water	3510C	
MB 440-88449/1-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 88547

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
440-39050-1	MW-1	Total/NA	Water	8015B	88449
440-39050-2	MW-2	Total/NA	Water	8015B	88449
440-39050-3	MW-3	Total/NA	Water	8015B	88449
440-39233-B-1-A MSD	Matrix Spike Duplicate	Total/NA	Water	8015B	88449
MB 440-88449/1-A	Method Blank	Total/NA	Water	8015B	88449

Analysis Batch: 88936

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
440-39233-E-1-A MS	Matrix Spike	Total/NA	Water	8015B	88449
LCS 440-88449/2-A	Lab Control Sample	Total/NA	Water	8015B	88449

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0472, Oakland

Qualifiers

GC/MS VOA

		4
Qualifier	Qualifier Description	
LM	MS and/or MSD above acceptance limits. See Blank Spike (LCS)	5

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CNF	Contains no Free Liquid	8
DER	Duplicate error ratio (normalized absolute difference)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	9
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

 TEF
 Toxicity Equivalent Factor (Dioxin)

 TEQ
 Toxicity Equivalent Quotient (Dioxin)

10

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-13
Arizona	State Program	9	AZ0671	10-13-13
California	LA Cty Sanitation Districts	9	10256	01-31-14
California	NELAP	9	1108CA	01-31-14
California	State Program	9	2706	06-30-14
Guam	State Program	9	Cert. No. 12.002r	03-28-13
Hawaii	State Program	9	N/A	01-31-14
Nevada	State Program	9	CA015312007A	07-31-13
New Mexico	State Program	6	N/A	03-28-13
Northern Mariana Islands	State Program	9	MP0002	03-28-13
Oregon	NELAP	10	4005	09-12-13
USDA	Federal		P330-09-00080	06-06-14
USEPA UCMR	Federal	1	CA01531	01-31-15

TestAmerica Irvine

2	ANA.			Node Path: Facility No:	, 				09-88	-601						Req	Due	Date (mn	n/dd/yy): Number:				(j)	Rush T A <u> 大</u> ひ - ひんのど	NT: Yes Ú	No <u>×</u>
Lab Name: Test America						Facility Address: 6415 International Blvd.									C	Consultant/Contractor: Broadbent and Assoclates											
Lab Address: 17461 Derian Suite #100, Irvine, CA 92641						oxy, State, 21 Cobb.											Consultant/Contractor Project No: 09-88-601										
Lab PM: Kathleen Robb																	ľ	Address: 875 Cotting Lane, Suite G, Vacaville, CA 95688									
Lab P	Pho	one: 949-261-1022			California Global ID No.: T10000000417										<u>ر</u>	Consultant/Contractor PM: Kristene Tidwell											
Lab Shipping Accnt: 1103-6633-7					Enfos	s Proj	posal N	No:	0	05XP	-0002/	WR2	45684	۱ 						Phone: 707-455-7290 Fax: 707-455-7295							
Lab Bottle Order No:				Accounting Mode: Provision <u>x</u> OOC-BU OOC-RM									-	Email EDD To: Hidwell@broadbentinc.com and to lab.enfosdoc@bp.com													
Other Info:				Stage: (GWM) 401 Activity: (GWM) 1080										!	nvoice To	:		BP	X		ctor						
BP P	Proj	ject Manager (PM): Shannon Couch				Mat	rix		No.	Con	taine	rs/P	rese	rvative				Re	que	sted An	alyses	3		·	Report Ty	pe & QC Leve	1
	-	Phone: 925-275-3804		· · · · ·				T	Т	Т		· [_								Standard	
BP P	- M	Email: shannon.couch@bp.con	<u>1</u>						ainer							ISM	8260								Full Data	Package	
Lab No.		Sample Description	Date	Time	Soit / Solid	Water / Liquid	Air / Vapor	Is this location a well?	Total Number of Container	Unpreserved	H2SO4	HN03	HCI	Methanol			BTEX/5 FO + EDB by	1,2-DCA b	Ethanol by 8260				- -		Cor Note: If sample not colloc Sample" in commonts an and initial any preprinted	d singio-strike out	ı.
	T	MW-1	2/21/2013	1255		×			8	2			6		┛	×	×		×				 				
		MW-2	2/21/2013	1320		x		_	8	2			6		_		×		×			<u> </u>		<u> </u>	<u> </u>	•	
		MW-3	2/21/2013	1225		×			8	2			6		_	<u>×</u>	×	×	×			 		-	<u> </u>	n Hold	
	٦	TB-472-02212013	-	-		×		_	1				1		_				_		-				`		
	/							_	_						-	_							<u> </u>		<u></u>		
		144 - C.		<u> </u>	_										_								+		 		
								_														┢			· · ·		
					_										_											<u></u>	
															-				_								
															_								-				
			<u> </u>			<u> </u>		_						┞──┼								-	+				
									_					└──┤-													
					_								· ·	┝─┤╴	\dashv						-			+			
													L		_							<u> </u>	<u> </u>	<u> </u>		Date	Time
San	mpl	ler's Name: Alex Martinez &	James Ramos			Relinquished By / Affiliatis						_		Date Time			Accepted By / Aff				ву/		- Date				
Sampler's Company: Broadbent and Associates							Blen Marie BAI 2/2/13 170												-		n		╂───				
	Shipment Method: FedEx Ship Date: 2/21/13						<u>h_</u>	- (BA1 2-11-B17a					C.	manorta					Jah	Zhaji	0.0						
Ship	Shipment Tracking No: \$017 9017 \$290																										
Sp	ec	ial Instructions:	<u> </u>			1 -				/ 51-	1	<u> </u>		emp on l	2000	int ²)(_°F/	/C	Tri	p Blank	fres	/ No	-	MS/MSD Sample Sub	mitted: Yes No	$\overline{)}$
		THIS LINE - LAB USE ONLY: emediation Management COC - Effective	Custody Seals in	n Place: Yes / 1	NO		Temp	Biani	K Yes					and out					-			÷				AMP COC Rev. 7.	

--

Client: Broadbent & Associates, Inc.

Login Number: 39050 List Number: 1

Creator: Perez, Angel

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	Alex Martinez & James Ramos
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

List Source: TestAmerica Irvine

APPENDIX D

GEOTRACKER UPLOAD CONFIRMATION RECEIPTS

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS					
Processing is complete. No errors were found!					
Your file has been successfully submitted!					
Submittal Type:	EDF				
Report Title:	1Q13 GW Monitoring				
Report Type:	Monitoring Report - Semi-Annually				
Facility Global ID:	T0600101651				
Facility Name:	BP #11104				
File Name:	440-39020-1_08 Mar 13 1611_EDF.zip				
Organization Name:	Broadbent & Associates, Inc.				
Username:	BROADBENT-C				
IP Address:	67.118.40.90				
Submittal Date/Time:	4/4/2013 2:11:18 PM				
Confirmation Number:	7677549242				

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2013 State of California

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:	GEO_WELL
Report Title:	1Q13 GEO_WELL 472
Facility Global ID:	T1000000417
Facility Name:	ARCO # / PLUCKY LIQUORS
File Name:	GEO_WELL.zip
Organization Name:	Broadbent & Associates, Inc.
Username:	BROADBENT-C
IP Address:	67.118.40.90
<u>Submittal Date/Time:</u>	4/4/2013 2:09:11 PM
Confirmation Number:	9170089662

Copyright © 2013 State of California

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:	EDF
Report Title:	1Q13 GW Monitoring
Report Type:	Monitoring Report - Semi-Annually
Facility Global ID:	T1000000417
Facility Name:	ARCO # / PLUCKY LIQUORS
File Name:	440-39050-1_08 Mar 13 1741_EDF.zip
Organization Name:	Broadbent & Associates, Inc.
Username:	BROADBENT-C
IP Address:	67.118.40.90
Submittal Date/Time:	4/4/2013 2:06:19 PM
Confirmation Number:	6485383510

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2013 State of California