Atlantic Richfield Company

Chuck Carmel

Environmental Business Manager

RECEIVED

1:58 pm, Oct 30, 2009

Alameda County Environmental Health

PO Box 1257 San Ramon, CA 94583 Phone: (925) 275-3803 Fax: (925) 275-3815

E-Mail: charles.carmel@bp.com

30 October 2009

Re: Third Quarter 2009 Ground-Water Monitoring Report

Former Richfield Company Station #472

6415 International Boulevard, Oakland, California

ACEH Case #RO0002982

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct.

Submitted by,

Chuck Carmel Environmental Business Manager

Attachment:

Third Quarter 2009 Ground-Water Monitoring Report Former Richfield Oil Company Service Station #472

6415 International Boulevard, Oakland, California
ACEH Case #RO0002982

Prepared for

Mr. Chuck Carmel
Environmental Business Manager
Atlantic Richfield Company
P.O. Box 1257
San Ramon, California 94583

Prepared by

1324 Mangrove Avenue, Suite 212 Chico, California 95926 (530) 566-1400 www.broadbentinc.com

30 October 2009

Project No. 09-88-601

30 October 2009

Project No. 09-88-601

Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583 Submitted via ENFOS

Attn.: Mr. Chuck Carmel

Re: Third Quarter 2009 Ground-Water Monitoring Report, Former Richfield Oil Company

Service Station #472, 6415 International Boulevard, Oakland, California

ACEH Case #RO0002982

Dear Mr. Carmel:

Provided herein is the *Third Quarter 2009 Ground-Water Monitoring Report* for Former Richfield Oil Company Service Station #472 located at 6415 International Boulevard, Oakland, Alameda County, California (Site). This report presents results of the initial ground-water monitoring conducted at the Site during the Third Quarter of 2009.

Should you have questions regarding the work performed or results obtained, please do not hesitate to contact me at (530) 566-1400.

Sincerely,

BROADBENT & ASSOCIATES, INC.

Thomas A. Venus, P.E.

Senior Engineer

Enclosures

cc:

Mr. Paresh Khatri, Alameda County Environmental Health (Submitted via ACEH ftp site)

Electronic copy uploaded to GeoTracker

NEVADA ARIZONA CALIFORNIA TEXAS

STATION #472 GROUND-WATER MONITORING REPORT

Facility: #472 Address: 6415 International Boulevard, Oakland, California

Environmental Business Manager: Mr. Chuck Carmel

Consulting Co./Contact Person: Broadbent & Associates, Inc.(BAI)/Mr. Tom Venus, PE

(530) 566-1400

Consultant Project No.: 09-88-601

Primary Agency/Regulatory ID No.: Alameda County Environmental Health (ACEH)

ACEH Case #RO0002982

Facility Permits/Permitting Agency: NA

WORK PERFORMED THIS QUARTER (Third Quarter 2009):

1. Prepared and submitted Second Quarter 2009 Status Report (BAI, 7/7/2009).

2. Conducted ground-water monitoring/sampling for Third Quarter 2009. Work performed on 25 August 2009 by Stratus Environmental, Inc. (Stratus).

WORK PROPOSED FOR NEXT QUARTER (Fourth Quarter 2009):

1. Prepared and submitted *Third Quarter 2009 Ground-Water Monitoring Report* (contained herein).

2. Conduct ground-water monitoring/sampling for Fourth Quarter 2009.

QUARTERLY RESULTS SUMMARY:

Current phase of project: **Ground-water monitoring/sampling** Frequency of ground-water **Ouarterly = MW-1, MW-2, and MW-3** monitoring: Frequency of ground-water sampling: Quarterly = MW-1, MW-2, and MW-3 Is free product (FP) present on-site: No Current remediation techniques: NA Depth to ground water (below TOC): 9.29 ft (MW-1) to 11.07 ft (MW-3) General ground-water flow direction: Southwest Approximate hydraulic gradient: 0.01 ft/ft

DISCUSSION:

Third Quarter 2009 ground-water monitoring and sampling was conducted at Station #472 on 25 August 2009 by Stratus. Water levels were gauged in each of the three wells at the Site. No irregularities were noted during water level gauging. Depth-to-water measurements ranged from 9.29 ft at MW-1 to 11.07 ft at MW-3. Resulting ground-water surface elevations ranged from 14.88 ft above datum in well MW-1 to 13.66 ft in well MW-3. Initial water level elevations are summarized in Table 1. Water level elevations yielded a potentiometric ground-water flow direction and gradient to the southwest at approximately 0.01 ft/ft. Ground-water monitoring field data sheets are provided within Appendix A. Measured depths to ground water and respective ground-water elevations are summarized in Table 1. Current and historic ground-water flow directions and gradients are provided in Table 3. A Site Location Map is presented as Drawing 1. Potentiometric ground-water elevation contours are presented in Drawing 2.

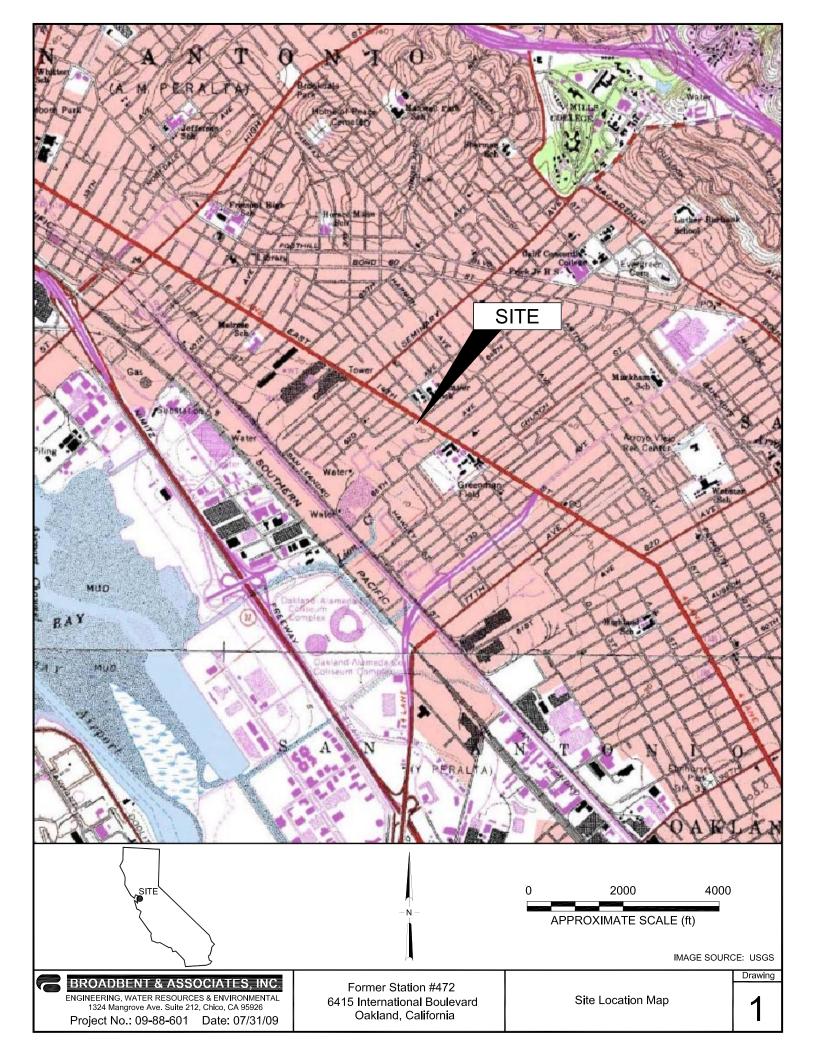
Consistent with the current ground-water sampling schedule, water samples were collected from wells MW-1, MW-2, and MW-3 on 25 August 2009. No irregularities were reported during sampling. Samples were submitted under chain-of-custody protocol to Calscience Environmental Laboratories, Inc.

(Garden Grove, California), for analysis of Gasoline Range Organics (GRO, C6-C12), Diesel Range Organics (DRO, C10-C28), and Oil Range Organics (ORO, C6-C12) by EPA Method 8015B; for Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX) by EPA Method 8260B; and Methyl Tert-Butyl Ether (MTBE), Ethyl Tert-Butyl Ether (ETBE), Tert-Amyl Methyl Ether (TAME), Di-Isopropyl Ether(DIPE), Tert-Butyl Alcohol (TBA), 1,2-Dibromomethane (EDB), 1,2-Dichloroethane (1,2-DCA), and Ethanol by EPA Method 8260B. The laboratory noted that during the DRO analysis of sample MW-1 an unknown hydrocarbon(s) was encountered based on the diesel reference standard. No other significant irregularities were encountered during laboratory analysis of the samples. Ground-water sampling field data sheets and the laboratory analytical report, including chain-of-custody documentation, are provided in Appendix A.

Gasoline Range Organics (GRO) were detected above the laboratory reporting limit in two of the three wells sampled at concentrations of 530 micrograms per liter (μ g/L) in well MW-1 and 63 μ g/L in well MW-3. Toluene was detected above the laboratory reporting limit in well MW-3 at a concentration of 1.2 μ g/L. MTBE was detected above the laboratory reporting limit in well MW-1 at a concentration of 0.54 μ g/L. DRO was detected above the laboratory reporting limit in well MW-1 at 85 μ g/L and at 190 μ g/L in well MW-1 but with the previously mentioned note by the laboratory that the MW-1 chromatogram did not resemble that of the reference diesel standard. The remaining analytes were not detected above their laboratory reporting limits in the three wells sampled this quarter. Initial groundwater monitoring laboratory analytical results are summarized in Table 1 and Table 2. The most recent GRO, Benzene, and MTBE concentrations are also presented in Drawing 2. Ground-water monitoring data (GEO_WELL) and laboratory analytical results (EDF) were uploaded to the GeoTracker AB2886 database. Upload confirmation receipts are provided in Appendix B.

CONCLUSIONS AND RECOMMENDATIONS:

It is somewhat premature to make conclusions based on one round of ground-water monitoring and sampling at Station #472. That stated, ground-water elevations, flow direction, and hydraulic gradient were generally consistent with expectations. An unexpected observation was that the highest concentrations of contaminants were reported in the sample collected from well MW-1, which the documented flow direction puts on the upgradient side of the Site. No petroleum hydrocarbon contaminants were detected in the sample from well MW-2, which is in close proximity to the assumed former underground storage tank pit. BAI recommends that one year of quarterly monitoring and sampling should be performed to seek trends in the ground-water elevations, flow directions, horizontal gradients, and contaminant concentrations. A ground-water monitoring report will be submitted for the next sampling event scheduled for the Fourth Quarter of 2009.


CLOSURE:

The findings presented in this report are based upon: observations of Stratus field personnel (see Appendix A), the points investigated, and results of laboratory tests performed by Calscience Environmental Laboratories, Inc. (Garden Grove, California). Our services were performed in accordance with the generally accepted standard of practice at the time this report was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of Atlantic Richfield Company. It is possible that variations in soil or ground-water conditions could exist beyond points explored in this investigation. Also, changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.

Page 3

ATTACHMENTS:

- Drawing 1. Site Location Map, Station #472, 6415 International Boulevard, Oakland, California
- Drawing 2. Ground-Water Elevation Contour and Analytical Summary Map, 25 August 2009, Station #472, 6415 International Boulevard, Oakland, California
- Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses, Station #472, 6415 International Blvd., Oakland, California
- Table 2. Summary of Fuel Additives Analytical Data, Station #472, 6415 International Blvd., Oakland, California
- Table 3. Historical Ground-Water Flow Direction and Gradient, Station #472, 6415 International Blvd., Oakland, California
- Appendix A. Stratus Ground-Water Sampling Data Package (Includes Field Data Sheets, Laboratory Analytical Report with Chain-of-Custody Documentation, and Field Procedures)
- Appendix B. GeoTracker Upload Confirmation Receipts

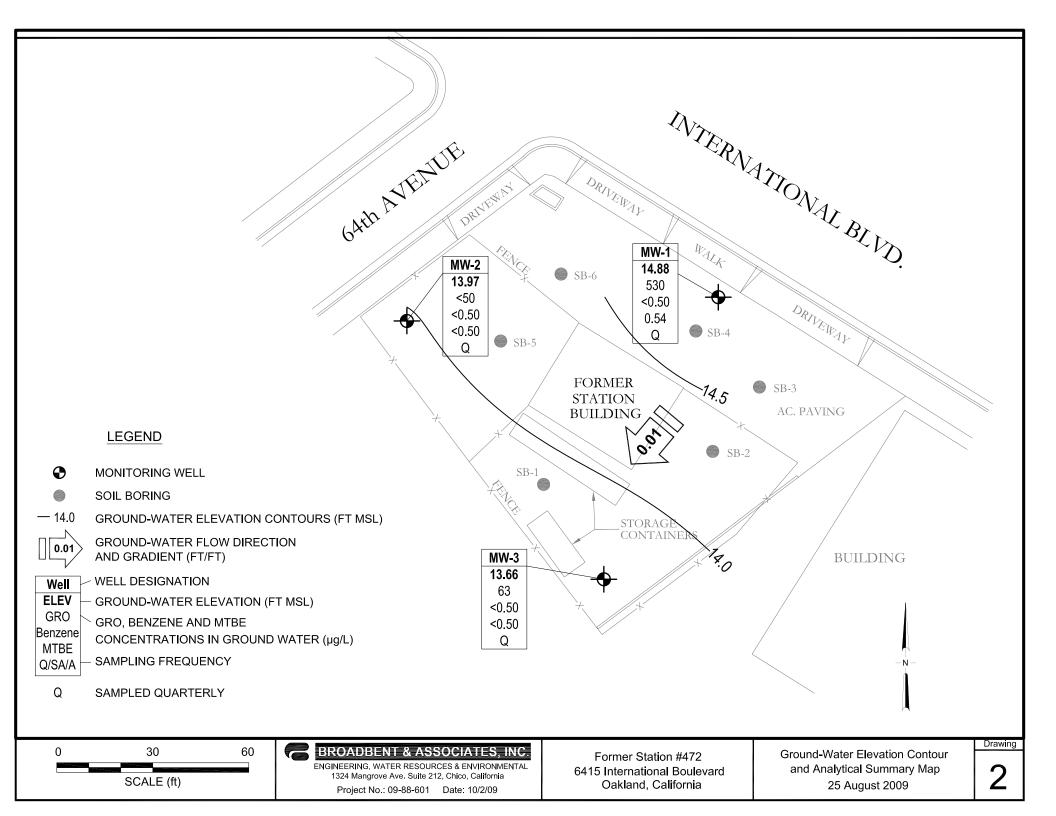


Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #472, 6415 International Boulevard, Oakland, CA

Well and Sample Date	P/NP	Footnote	TOC Elevation (feet)	DTW (feet bgs)	Product Thickness (feet)	Water Level Elevation (feet)	GRO/ TPHg	C Benzene	oncentration Toluene	ons in (µg/l Ethyl- Benzene	L) Total Xylenes	MtBE	DO (mg/L)	Lab	pН	DRO/ TPHd (µg/L)	TOG (μg/L)
MW-1																	
8/25/2009	P	LX (DRO)	24.17	9.29		14.88	530	<0.50	<0.50	<0.50	<0.50	0.54		CEL	7.21	190	
MW-2																	
8/25/2009	P		23.62	9.65		13.97	<50	<0.50	< 0.50	< 0.50	< 0.50	<0.50		CEL	7.30	<50	
MW-3																	
8/25/2009	P		24.73	11.07		13.66	63	<0.50	1.2	<0.50	<0.50	<0.50		CEL	7.09	85	

ABBREVIATIONS & SYMBOLS:

 $\hbox{--/---}= Not\ analyzed/applicable/measured/available}$

< = Not detected at or above specified laboratory reporting limit

DO = Dissolved oxygen

DRO = Diesel range organics

DTW = Depth to water in ft bgs

ft bgs = feet below ground surface

GRO = Gasoline range organics, range C4-C12

GWE = Groundwater elevation measured in ft

HVOC = Halogenated volatile organic compounds

mg/L = Milligrams per liter

MTBE = Methyl tert-butyl ether

NP = Well not purged prior to sampling

P = Well purged prior to sampling

TOC = Top of casing measured in ft

TOG = Total oil and grease

TPH-d = Total petroleum hydrocarbons as diesel

TPH-g = Total petroleum hydrocarbons as gasoline

 $\mu g/L = Micrograms per liter$

CEL = CalScience Environmental Laboratories, Inc.

FOOTNOTES:

LX = Quantitation of unknown hydrocarbon(s) in sample based on diesel.

Table 2. Summary of Fuel Additives Analytical Data Station #472, 6415 International Boulevard, Oakland, CA

Well and				Concentration					
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
MW-1									
8/25/2009	<300	<10	0.54	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-2									
8/25/2009	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-3									
8/25/2009	<300	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	

ABBREVIATIONS & SYMBOLS:

- -- = Not analyzed/applicable/measured/available
- < = Not detected at or above specified laboratory reporting limit

1,2-DCA = 1,2-Dichloroethane

DIPE = Di-isopropyl ether

EDB = 1,2-Dibromoethane

ETBE = Ethyl tert-butyl ether MTBE = Methyl tert-butyl ether

TAME = tert-Amyl methyl ether

TBA = tert-Butyl alcohol

 μ g/L = Micrograms per Liter

NOTES:

All volatile organic compounds were analyzed using EPA Method 8260B.

Table 3. Historical Ground-Water Flow Direction and Gradient Station #472, 6415 International Boulevard, Oakland, CA

Date Sampled	Approximate Flow Direction	Approximate Hydraulic Gradient
8/25/2009	Southwest	0.01

APPENDIX A

STRATUS GROUND-WATER SAMPLING DATA PACKAGE (INCLUDES FIELD DATA SHEETS, LABORATORY ANALYTICAL REPORT WITH CHAIN-OF-CUSTODY DOCUMENTATION, AND FIELD PROCEDURES)

September 17, 2009

Mr. Rob Miller Broadbent & Associates, Inc. 2000 Kirman Avenue Reno, NV 89502

Re: Groundwater Sampling Data Package, ARCO Service Station No. 472, located at 6415 International Boulevard, Oakland, California.

General Information

Data Submittal Prepared / Reviewed by: Carol Huff / Scott Bittinger / Jay Johnson

Phone Number: (530) 676-6000

On-Site Supplier Representative: Collin Fischer

Sampling Date: August 25, 2009

Unusual Field Conditions: None noted.

Scope of Work Performed: Quarterly groundwater monitoring and sampling

Variations from Work Scope: None noted.

This submittal presents the data collected in association with routine groundwater monitoring. The attachments include field data sheets, chain of custody documentation, certified analytical results, and field procedures for groundwater sampling documentation. The information is being provided to BP-ARCO's Scoping Supplier for use in preparing a report for regulatory submittal. This submittal is limited to presentation of collected data and does not include data interpretation or conclusions or recommendations.

Any questions concerning this submittal should be addressed to the Preparer/Reviewer identified above.

Sincerely

STRATUS ENVIRONMENTAL INDONAL GEO

Jay R. Johnson, P.G.

Project Manager

Project Manager

Attachments:

- Field Data Sheets
- Chain of Custody Documentation
- Certified Analytical Results
- Field Procedures for Groundwater Sampling

cc: Mr. Chuck Carmel, BP/ARCO

Site Address	6415	1,00	Blu b	
City	OHEV	1: G :	181-	_
Sampled by:	CF.	- i		
Signature	Collen +	~		

Site Number	472	;
Project Number_	E472	
Project PM_	In Totorson	>
DATE	图[25]04	

Water Level Data					T	Purge V	olume Calc	ulations	·	Purge Method				Sample Record			
(Well ID	Time	Depth to Product (feet)	Depth to Water (feet)	Total Depth (feet)	Waler column (foel)	Diameter (inches)	Multiplier	3 casing volumes (gallons)	Actual water purged	No Purge	D.::	Ритр		DTW at sample time	Ample Reco	C	Field Data - DO (mg/L)
M-J	lozo		1.29	હિ.હજ	7.54	Q u	2	15.08	(gallons)		X,			(feet) 11.12		1143 1147	(mg/c)
14W-2	byg		9.65	F1.F1	7-52	4"	2	15.04	(5		X			9.66		1205	
nw-z	NIZ		11.07	17-17	6.1	4"	7=	12-2	12_		K			11.11		1220	
						and the state of t											
																The state of the s	
															1		
	THE STATE OF																
THE WHAT WAS BUILD					With the state of												
															· · · · · · · · · · · · · · · · · · ·		

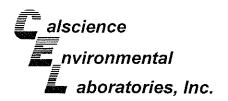
Multiplier 2" : 0.5 3" = 1.0 4" = 2.0 6" = 4.4

Please refer to groundwater sampling field procedures
pH/Conductivity/temperature Meter - Oakton Model PC-10
DO Meter - Oakton 300 Series (DO is always measured before purge)

	CALIBRATION DATE	
pH		
Conductivity	S CONTRACTOR OF THE CONTRACTOR	٠
ijÜ	· ·	

time	1977A	1	ļ.		time	į							
purge stop time		* .			pugre stop time								
Well ID William					Well ID								
purge start time					purge start fine			W197200000 000000	***				
	Temp C	Ha	cond	gallohs	10 March	Temp C	ъH	cond	gailons				
time jobs	22-4	4.15	418	0	time	ļ							
time (026	22.6		464	2	time								
time [03]	22.1	7.08	483	10	ime		?						
time 1037	21.7	7.21	524	IS	time								
purge stop time					purge stop time								
Well ID Was -7	_				Well ID								
purge start time		,	٧.		purge start time								
	Temp C	Нq	cond	gallons		Тетр С	pН	cond	gailons				
time (053	21-3	7-70	477	ັບ	time								
time 1057	21.6	7-35	412	ζ.	time				, ,				
time \lot	21.6	7-56	424	ίO	time								
time ((67	21,5	7.30	417	15	time								
purge stop time					purge stop time	l-ia							
Well ID WWJ-	3	,			Well ID	* **							
purce start time			1		purge start time								
	Temp C	Hq	cond	gallons	We state the	Temp C	ρH	cond	gailons				
time 112 (<u> </u>	535		time (
time 7174	19.9	41	525	4	time .								
time (1127	19.6	7-12	3 28	ઉ	time								
time 1\30	194	7.09	510	7	time								
purge stop time					purge stop time								

ab Name: CASCIONCE


Laboratory Management Program LaMP Chain of Custody Record BP/ARC Project Name:

189409

Page	<u> </u>	of	_1_
_			

Req Due Date (mm/dd/yy): Rush TAT: Yes No

Once abade and an BP/ARC Facility No:	472		Red Due Date (m	m/dd/yy):	Rush TAT: Yes No
Lab PM: FLYING 1 - NAME Lab Phone: (314) 895 - S494 Lab Shipping Accnt: 4255 Lab Bottle Order No: Other Info:	BP/ARC Facility Address City, State, ZIP Code: Lead Regulatory Agence California Global ID No. Enfos Proposal No: Accounting Mode:	64ELWO, CA- CY: 4CEH T. 1000000117 OOU LO-DOOZ Provision OOC-BU	Lab Work Order I	Consultant/Contractor: Start Consultant/Contractor Project N Address: \$236 (www.w.) Consultant/Contractor PM: Start Consultant/Contractor Project N	Menson Menson
BP/ARC EBM: Pag Sugring EBM Phone:		o. Containers / Preservative		Invoice To: BP/ARC	Contractor Report Type & QC Level
EBM Email: Lab No. Sample Description Date Time	Soil / Solid Water / Liquid Air / Vapor Total Number of Containers	Unpreserved H ₂ SO ₄ HNO ₃ HCI Methanol	(900 (800)) 000 (800) 000 (800)	ETIEN (926) TEN BLANK	Standard + Full Data Package Comments
+ Mw-2 08/26/19 1200 2 Mw-2 1205 3 Mw-1 145 4 Mw-1 147 5 Mw-3 1220 7 TER Shingt 14 1220	0 5 7 2 + 6 + 2 + 2	+ + +	+++	* * * *	Note: If sample not collected, indicate "No Sample" in comments and single-strike out and initial any preprinted sample description.
# Mw-3 1220 F Mw-3 1225 F TEUR BLANK V 1330	+ 2 + 6 + 2	+ +	+ + + + + + + + + + + + + + + + + + +	+ + +	
impler's Name: impler's Company: ipment Method: Inspect Ship Date:	Relinquishe	ed By / Affiliation	Date Time	Accepted By / Affilia	ation Date Time
ecial Instructions: THIS LINE - LAB USE ONLY: Custody Seals In Place: Yes / No	Temp Blank: Yes / No	Cooler Temp on Receipt: Laboratory Copy	"F/C	Trip Blank: Yes / No MS//v	ISD Sample Submitted: Yes / No

September 08, 2009

Jay Johnson Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Subject: Calscience Work Order No.: 09-08-2088

> Client Reference: 472

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 8/26/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc. Richard Villafania

Project Manager

Richard Vellar).

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

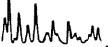
FAX: (714) 894-7501

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method: 08/26/09 09-08-2088 EPA 3510C EPA 8015B (M)

Project: 472							Pa	age 1 of 1
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-2		09-08-2088-1-G	08/25/09 12:00	Aqueous	GC 49	08/26/09	08/27/09 20:25	090826B12
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics (C10-C28)	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	99	68-140						
MW-1		09-08-2088-2-G	08/25/09 11:45	Aqueous	GC 49	08/26/09	08/27/09 20:41	090826B12
Comment(s): -LX = Quantitation Parameter	of unknown hydro <u>Result</u>	carbon(s) in sample t	ased on diese DF	el. <u>Qual</u>	<u>Units</u>			
Diesel Range Organics (C10-C28)	190	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	95	68-140						
MW-3		09-08-2088-3-G	08/25/09 12:20	Aqueous	GC 49	08/26/09	08/27/09 20:57	090826B12
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
Diesel Range Organics (C10-C28)	85	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	98	68-140						
Method Blank	, , , , , , , , , , , , , , , , , , ,	099-12-699-169	N/A	Aqueous	GC 49	08/26/09	08/27/09 19:38	090826B12
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics (C10-C28)	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	97	68-140						

RL - Reporting Limit

DF - Dilution Factor ,


Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received: Work Order No: Preparation: Method:

08/26/09 09-08-2088 EPA 3510C EPA 8015B (M)

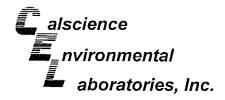
Project: 472							Pa	ge 1 of 1
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-2	-,	09-08-2088-1-G	08/25/09 12:00	Aqueous	GC 49	08/26/09	08/27/09 20:25	090826B11
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Motor Oil Range Organics (C17-C44)	ND	250	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	99	68-140						
MW-1		09-08-2088-2-G	08/25/09 11:45	Aqueous	GC 49	08/26/09	08/27/09 20:41	090826B11
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
Motor Oil Range Organics (C17-C44)	ND	250	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	95	68-140						
MW-3		09-08-2088-3-G	08/25/09 12:20	Aqueous	GC 49	08/26/09	08/27/09 20:57	090826B11
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Motor Oil Range Organics (C17-C44)	ND	250	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	98	68-140						
Method Blank		099-12-711-24	N/A	Aqueous	GC 49	08/26/09	08/27/09 15:58	090826B11
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Motor Oil Range Organics (C17-C44)	NĐ	250	4		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	101	68-140						

DF - Dilution Factor ,

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method:

08/26/09 09-08-2088 EPA 5030B EPA 8015B (M)


Project: 472


Page 1 of 1

ct: 472							Pa	age 1 of 1
ample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
		09-08-2088-1-D	08/25/09 12:00	Aqueous	GC 1	08/26/09	08/26/09 18:00	0908 2 6B01
<u>ter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
e Range Organics (C6-C12)	ND	50	1		ug/L			
tes:	REC (%)	Control Limits		<u>Qual</u>				
nofluorobenzene	85	38-134						
		09-08-2088-2-D	08/25/09 11:45	Aqueous	GC 1	08/26/09	08/26/09 19:35	090826B01
<u>er</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
e Range Organics (C6-C12)	530	50	1		ug/L			
<u>les:</u>	REC (%)	Control Limits		Qual				
nofluorobenzerie	96	38-134						
		09-08-2088-3-D	08/25/09 12:20	Aqueous	GC 1	08/26/09	08/26/09 20:06	090826B01
<u>er</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Range Organics (C6-C12)	63	50	1		ug/L			
es:	REC (%)	Control Limits		Qual				
nofluorobenzene	84	38-134						
d Blank		099-12-695-648	N/A	Aqueous	GC 1	08/26/09	08/26/09 13:13	090826B01
<u>er</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Range Organics (C6-C12)	ND	50	1		ug/L			
es:	REC (%)	Control Limits		Qual				
ofluorobenzene	79	38-134						
es:	ND REC (%)	RL 50 Control Limits	<u>DF</u>	Qual	<u>Units</u>	08/26/09		0908

RL - Reporting Limit ,

DF - Dilution Factor ,

Stratus Environmental, inc.
3330 Cameron Park Drive, Suite 550
Cameron Park, CA 95682-8861

Date Received: Work Order No: Preparation: Method: 08/26/09 09-08-2088 EPA 5030B EPA 8260B ug/L

Units:

Project: 472

Page 1 of 2

FTOJECI. 472										Pag	ge 1 of 2
Client Sample Number			L	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/i i Analy		QC Batch ID
MW-2		·····	09-08-	2088-1-A	08/25/09 12:00	Aqueous	GC/MS BB	08/28/09	08/28 20:		090828L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1		Methyl-t-Butyl	Ether (MTB	E)	ND	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alc	ohol (TBA)		ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Et	ther (DIPE)		ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl E	Ether (ETBE))	ND	0.50	1	
Toluene	ND	0.50	1		Tert-Amyl-Me	thyl Ether (T.	AME)	ND	0.50	1	
Xylenes (total)	ND	0.50	1		Ethanol	,	·	ND	300	1	
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		1	REC (%)	Control Limits	·	Qual
1,2-Dichloroethane-d4	97	80-128			Dibromofluoro	methane		100	80-127		
Toluene-d8	89	80-120			1,4-Bromofluo	orobenzene		96	68-120		
MW-1			09-08-	2088-2-A	08/25/09 11:45	Aqueous	GC/MS BB	08/28/09	08/28 20:3		090828L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.50	1	<u> </u>	Methyl-t-Butyl	Ether /MTRI	Ε\	0.54	0.50		Quai
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alce	•	<i>□)</i>	ND		1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Et	, ,		ND	10	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl E			ND	0.50	1	
Toluene	ND	0.50	1		Tert-Amyl-Met	, ,		ND	0.50	1	
Xylenes (total)	ND	0.50	1		Ethanol	ulyi⊏ul e ≀(17	HIVIE)		0.50	1	
Surrogates:	REC (%)	Control	,	Qual	Surrogates:			ND C(%)	300	1	01
Surrogales.	ILC (78)	Limits		Grai	Surroyates,		Ī	REC (%)	<u>Control</u>		<u>Qual</u>
1,2-Dichloroethane-d4	90	80-128			Dibromofluoro	methane		99	<u>Limits</u> 80-127		
Foluene-d8	86	80-120			1,4-Bromofluo			102	68-120		
	:	00 120									
MW-3			09-08-	2088-3-A	08/25/09 12:20	Aqueous	GC/MS BB	08/28/09	08/28 21:0		090828L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	<u>DF</u>	Qual
Benzene	ND	0.50	1		Methyl-t-Butyl	Ether (MTBI	Ξ)	ND	0.50	1	
,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alco	•	,	ND	10	1	
,2-Dichloroethane	ND	0.50	1		Diisopropyl Etl	, ,		ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl E	, ,		ND	0.50	1	
Foluene	1.2	0.50	1		Tert-Amyl-Met		AME)	ND	0.50	1	
	ND	0.50	1		Ethanol	., (.,	/	–	300	1	
(ylenes (total)			•				_				
		Control		Qual	Surrogates:		F	REC (%)	Control		Oual
	REC (%)	Control Limits		Qual	Surrogates:		<u> </u>	REC (%)	Control Limits		Qual
Kylenes (total) Surrogates: 1,2-Dichloroethane-d4				Qual	Surrogates: Dibromofluoro	methane	<u> </u>		Control Limits 80-127		Qual

RL - Reporting Limit

DF - Dilution Factor ,

Stratus Environmental, inc.

3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Project: 472

Date Received: Work Order No: Preparation: Method:

08/26/09 09-08-2088

EPA 5030B EPA 8260B ug/L

Units:

Page 2 of 2

Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti d Analyz		QC Batch ID
Method Blank			099-12	2-703-1,059	N/A	Aqueous	GC/MS BB	08/28/09	08/28/ 13:0		090828L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	DF	Qual
Benzene	ND	0.50	1		Methyl-t-Butyl	Ether (MTB	E)	ND	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyi Aic	chol (TBA)	•	ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl Et	her (DIPE)		ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl E	ther (ETBE)		ND	0.50	1	
Toluene	ND	0.50	1		Tert-Amyl-Met	thyl Ether (T.	AME)	ND	0.50	1	
Xylenes (total)	ND	0.50	1		Ethanol		-	ND	300	1	
Surrogates:	REC (%)	<u>Control</u>		<u>Qual</u>	Surrogates:]	REC (%)	Control		Qual
		Limits					•		Limits		
1,2-Dichloroethane-d4	94	80-128			Dibromofluoro	methane		97	80-127		
Toluene-d8	80	80-120			1,4-Bromofluo	robenzene		93	68-120		

Quality Control - Spike/Spike Duplicate

aboratories, Inc.

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550

Cameron Park, CA 95682-8861

Date Received: Work Order No: Preparation: Method:

08/26/09 09-08-2088 EPA 5030B EPA 8015B (M)

Project 472

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
MW-2	Aqueous	GC1	08/26/09		08/26/09	090826S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Gasoline Range Organics (C6-C12)	103	97	38-134	5	0-25	

RPD - Relative Percent Difference,

CL - Control Limit

Quality Control - Spike/Spike Duplicate

0-30

0-20

0-72

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550

Cameron Park, CA 95682-8861

Date Received: Work Order No: Preparation: Method: 08/26/09 09-08-2088 EPA 5030B EPA 8260B

Project 472

Ethyl-t-Butyl Ether (ETBE)

Ethanol

Tert-Amyl-Methyl Ether (TAME)

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
09-08-2297-5	Aqueous	GC/MS BB	08/28/09		08/28/09	090828S01	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers	
Benzene	106	109	76-124	3	0-20		
Carbon Tetrachloride	93	95	74-134	2	0-20		
Chlorobenzene	104	107	80-120	3	0-20		
1,2-Dibromoethane	94	100	80-120	6	0-20		
1,2-Dichlorobenzene	100	105	80-120	4	0-20		
1,1-Dichloroethene	109	109	73-127	0	0-20		
Ethylbenzene	100	100	78-126	0	0-20		
Toluene	100	96	80-120	4	0-20		
Trichloroethene	102	106	77-120	5	0-20		
Vinyl Chloride	92	98	72-126	6	0-20		
Methyl-t-Butyl Ether (MTBE)	93	100	67-121	7	0-49		
Tert-Butyl Alcohol (TBA)	111	109	36-162	3	0-30		
Diisopropyl Ether (DIPE)	100	105	60-138	5	0-45		

98

95

121

89

144

69-123

65-120

30-180

6

6

17

Muhan_

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received: Work Order No: Preparation: Method:

N/A 09-08-2088 EPA 3510C EPA 8015B (M)

Project: 472

Quality Control Sample ID	Matrix	Instrument	Date ment Prepared		Date Analyzed		LCS/LCSD Bate Number	h
099-12-699-169	Aqueous	GC 49	08/26	5/09	08/27	/09	090826B12	
Parameter	LCS %	<u> KREC LCS</u>	D %REC	<u>%RE</u>	C CL	RPD	RPD CL	Qualifiers
Diesel Range Organics (C10-C28)	95	1	00	75-	117	4	0-20	

RPD - Relative Percent Difference,

CL - Control Limit

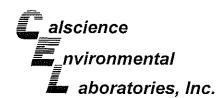
Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received: Work Order No: Preparation: Method:

N/A 09-08-2088 EPA 3510C EPA 8015B (M)

Project: 472

Quality Control Sample ID	Matrix	Matrix Instrum		Date ument Prepared		Date Analyzed		LCS/LCSD Bate Number	h
099-12-711-24	Aqueous	GC	49	08/26	/09	08/27	/09	090826B11	
<u>Parameter</u>	LCS %	<u> REC</u>	LCSD 9	%REC	<u>%R</u> E	C CL	RPD	RPD CL	Qualifiers
Motor Oil Range Organics (C17-C44)	101		113		53	-141	11	0-25	



Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861

Date Received: Work Order No: Preparation: Method: N/A 09-08-2088 EPA 5030B EPA 8015B (M)

Project: 472

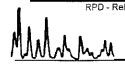
Quality Control Sample ID	Matrix	Instrument	Date ument Prepared		ite yzed	LCS/LCSD Bato Number	h
099-12-695-648	Aqueous	GC 1	08/26/09	08/26	5/09	090826B01	
Parameter	LCS %	GREC LCSD	%REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Gasoline Range Organics (C6-C12)	104	111		78-120	7	0-20	

Stratus Environmental, inc. 3330 Cameron Park Drive, Suite 550 Cameron Park, CA 95682-8861 Date Received: Work Order No: Preparation: Method:

09-08-2088 EPA 5030B EPA 8260B

N/A

Project: 472


Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed 08/28/09		LCS/LCSD Numbe	
099-12-703-1,059	Aqueous	GC/MS BB	08/28/09			090828L	01
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	106	104	80-120	73-127	2	0-20	
Carbon Tetrachloride	94	89	74-134	64-144	6	0-20	
Chlorobenzene	104	101	80-120	73-127	3	0-20	
1,2-Dibromoethane	97	100	79-121	72-128	2	0-20	
1,2-Dichlorobenzene	101	103	80-120	73-127	1	0-20	
1,1-Dichloroethene	113	107	78-126	70-134	6	0-28	
Ethylbenzene	102	97	80-120	73-127	5	0-20	
Toluene	112	104	80-120	73-127	7	0-20	
Trichloroethene	107	103	79-127	71-135	4	0-20	
Vinyl Chloride	104	102	72-132	62-142	2	0-20	
Methyl-t-Butyl Ether (MTBE)	93	97	69-123	60-132	4	0-20	
Tert-Butyl Alcohol (TBA)	105	106	63-123	53-133	1	0-20	
Diisopropyl Ether (DIPE)	99	99	59-137	46-150	0	0-37	
Ethyl-t-Butyl Ether (ETBE)	93	94	69-123	60-132	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	89	93	70-120	62-128	5	0-20	
Ethanol	124	133	28-160	6-182	7	0-57	

Total number of LCS compounds: 16

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 09-08-2088

Qualifier	<u>Definition</u>
AX	Sample too dilute to quantify surrogate.
ВА	Relative percent difference out of control.
BA,AY	BA = Relative percent difference out of control. AY = Matrix interference suspected.
BB	Sample > 4x spike concentration.
BF	Reporting limits raised due to high hydrocarbon background.
ВН	Reporting limits raised due to high level of non-target analytes.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
BY	Sample received at improper temperature.
BZ	Sample preserved improperly.
CL	Initial analysis within holding time but required dilution.
CQ	Analyte concentration greater than 10 times the blank concentration.
CU	Surrogate concentration diluted to not detectable during analysis.
DF	Reporting limits elevated due to matrix interferences.
DU	Insufficient sample quantity for matrix spike/dup matrix spike.
ET	Sample was extracted past end of recommended max. holding time.
EY	Result exceeds normal dynamic range; reported as a min est.
GR	Internal standard recovery is outside method recovery limit.
IB	CCV recovery abovelimit; analyte not detected.
ΙΗ	Calibrtn. verif. recov. below method CL for this analyte.
IJ	Calibrtn. verif. recov. above method CL for this analyte.
J, DX	J=EPA Flag -Estimated value; DX= Value < lowest standard (MQL), but > than MDL.
LA	Confirmatory analysis was past holding time.
LG,AY	LG= Surrogate recovery below the acceptance limit. AY= Matrix interference suspected.
LH,AY	LH= Surrogate recovery above the acceptance limit. AY= Matrix interference suspected.
LM,AY	LM= MS and/or MSD above acceptance limits. See Blank Spike (LCS). AY= Matrix interference suspected.
LN,AY	LN= MS and/or MSD below acceptance limits. See Blank Spike (LCS). AY= Matrix interference suspected.
LQ	LCS recovery above method control limits.

Work Order Number: 09-08-2088

<u>Qualifier</u>	<u>Definition</u>					
LR	LCS recovery below method control limits.					
LW	Quantitation of unknown hydrocarbon(s) in sample based on gasoline.					
LX	Quantitation of unknown hydrocarbon(s) in sample based on diesel.					
MB	Analyte present in the method blank.					
PC	Sample taken from VOA vial with air bubble > 6mm diameter.					
PI	Primary and confirm results varied by > than 40% RPD.					
RB	RPD exceeded method control limit; % recoveries within limits.					
SG	A silica gel cleanup procedure was performed.					
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.					

Compan	
RICHTE	1
romban	\

BP/ARC Project Name:

Laboratory Management Program LaMP Chain of Custody Record 189409

Req Due Date (mm/dd/yy):


١	Page	1 of 1	
_	Rush TAT: Yes	No	1

472 **BP/ARC Facility No:** Lab Work Order Number: CAISCIBLE BP/ARC Facility Address: 6415 INT. Consultant/Contractor: Stearus Bluo. 7440 Lincoln Was, Grange City, State, ZIP Code: ratimo, ca-Consultant/Contractor Project No: 6472 Lead Regulatory Agency: Address: \$276 CANNERS PARK DR. \$550 Lab Phone: 995 - 5494 California Global ID No.: TEBM 060417 Consultant/Contractor PM: 34 584561 Lab Shipping Acent: Enfos Proposal No: 004 LO-000Z 676 6000 Lab Bottle Order No: Accounting Mode: 00C-RM 🗶 CHUTE O STRATUSHIC NET Email EDD To: Other Info: Stage: APPRAISE Activity: FIELD CHAPMETERIZATION Invoice To: Contractor_ BP/ARC EBM: Matrix No. Containers / Preservative Requested Analyses Report Type & QC Level EBM Phone: Standard _____ of Containers EBM Email: 8058 64.8 80SB \$17.00 \$17.00 Full Data Package _ Lab Water / Liquid Total Number Sample Description Unpreserved Date Soil / Solid Air / Vapor Time No. Comments Methanol 30 H₂SO₄ Note: If sample not collected, indicate "No Sample" in comments and single-strike out and initial any preprinted sample description. 08/25/09 MW-Z 1200 MW-2 1205 + 6 4 4 Mw-1 **YUS** MW-1 ાપમ + 4 MW-3 1220 MW-3 1225 X TEUR BLANK 1330 Sampler's Name: Relinquished By / Affiliation Date Time Accepted By / Affiliation Date Time Sampler's Company: STEPHENS 6 25 09 1830 Shipment Method: Ship Date: 1250 1030 Shipment Tracking No: 106160267 -Special Instructions: THIS LINE - LAB USE ONLY: Custody Seals in Place: Yes / No Temp Blank: Yes / No. Cooler Temp on Receipt: °F/C Trip Blank: Yes / No MS/MSD Sample Submitted: Yes / No

Laboratory Copy

BP/ARC LaMP COC Rev. 6 01/01/2009

Page 9

WORK ORDER #: 09-08-2 @ 8

SAMPLE RECEIPT FORM Cooler 1 of 1

CLIENT: Stratus DA	TE: <u>&</u>	126109			
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature 3 • 7 °C - 0.2 °C (CF) = 3 • 5 °C Blank Sample Sample(s) outside temperature criteria (PM/APM contacted by:). Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling. Received at ambient temperature, placed on ice for transport by Courier. Ambient Temperature: Air Filter Metals Only PCBs Only Initial:					
CUSTODY SEALS INTACT: □ Cooler □ □ No (Not Intact) Not Present □ □ Sample □ □ No (Not Intact) Not Present	N/A	Initial:			
SAMPLE CONDITION: Yes	No	N/A			
Chain-Of-Custody (COC) document(s) received with samples					
COC document(s) received complete					
\square Collection date/time, matrix, and/or # of containers logged in based on sample labels.					
☐ COC not relinquished. ☐ No date relinquished. ☐ No time relinquished.		•			
Sampler's name indicated on COC					
Sample container label(s) consistent with COC					
Sample container(s) intact and good condition		. 🗀			
Correct containers and volume for analyses requested					
Analyses received within holding time					
Proper preservation noted on COC or sample container					
☐ Unpreserved vials received for Volatiles analysis		:			
Volatile analysis container(s) free of headspace	Ø				
Tedlar bag(s) free of condensation					
CONTAINER TYPE:					
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores® □TerraC	Cores® □	1			
Water: □VOA □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB □1AGBna₂ □1AGBs					
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1Pl	B □500P	B □500PBna			
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □ □ □					
Air: ☐Tedlar® ☐Summa® ☐ Other: ☐ Checked/Labeled by:					
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelop Reviewed by: Preservative: h: HCL n: HNO3 na ₂ :Na ₂ S ₂ C ₃ Na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ znnq: ZnAc ₂ +NaOH f: Field-filtered Scanned by: // (

WORK ORDER #: **09-09- 2 0 8 8**

SAMPLE ANOMALY FORM

SAMPLES - CONTAINERS & LABELS: Comments:								
Samples NOT RECEIVED but listed on COC Samples received but NOT LISTED on COC Holding time expired – list sample ID(s) and test Insufficient quantities for analysis – list test Improper container(s)/preservative used – list test No preservative noted on COC or label – list test & notify lab Sample labels illegible – note test/container type Sample labels do not match COC – Note in comments Sample ID Date and/or Time Collected Project Information # of Containers Analysis Sample containers compromised – Note in comments Leaking Broken Without Labels Air sample containers compromised – Note in comments Flat Very low in volume Leaking (transferred into Calscience Tedlar® Bag*) Leaking (transferred into Client's Tedlar® Bag*)								
Other: HEADSPACE – Containers with Bubble > 6mm or ½ inch:								
Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of Vials Received	Sample #	Container ID(s)	# of RSK or CO ₂ or DO Received
Comments:	LOT # 100	<u>1-7-</u>						
*Transferred	at Client's requ	est.				nitial / Dat	te PS g	[26/09

ATTACHMENT

FIELD PROCEDURES FOR GROUNDWATER SAMPLING

The sampling procedures for groundwater monitoring events are contained in this appendix.

Groundwater and Liquid-Phase Petroleum Hydrocarbon Depth Assessment

Prior to measuring the depth to liquid in the well, the well caps are removed and the liquid level allowed to stabilize. A water/hydrocarbon interface probe is used to assess the liquid-phase petroleum hydrocarbon (LPH) thickness, if present, and a water level indicator is used to measure the groundwater depth in monitoring wells that do not contain LPH. Depth to groundwater or LPH is measured from a datum point at the top of each monitoring well casing. The datum point is typically a notch cut in the north side of the casing edge. If a water level indicator is used, the tip is subjectively analyzed for hydrocarbon sheen.

Subjective Analysis of Groundwater

Prior to purging, a water sample is collected from the monitoring well for subjective assessment. The sample is retrieved by gently lowering a clean, disposable bailer to approximately one-half the bailer length past the air/liquid interface. The bailer is then retrieved, and the sample contained within the bailer is examined for floating LPH and the appearance of a LPH sheen.

Monitoring Well Sampling

In many cases, determining whether to purge or not to purge wells prior to sample collection is made in the field and is often based on depth to water relative to the screen interval of the well. Site-specific field data sheets present details associated with the purge method and equipment used.

Monitoring wells, when purged, use a pump or bailer until pH, temperature, and conductivity of the purge water has stabilized and a minimum of three well volumes of water has been removed. Field measuring equipment is calibrated and maintained according to the manufacturer's instructions. If three well volumes cannot be removed in one half hour's time the well is allowed to recharge to 80% of original level. After recharging, a groundwater sample is then collected from each of the wells using disposable bailers.

A Teflon bailer, electric submersible or bladder pump will be the only equipment used for well sampling. When samples for volatile organic analysis are being collected, the pump flow will be regulated at approximately 100 milliliters per minute to minimize pump effluent turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa will be used in sampling for volatile organics. These

bottles will be filled completely to prevent air accumulation in the bottle. A positive meniscus forms when the bottle is completely full. A convex Teflon septum will be placed over the positive meniscus to eliminate air. After the bottle is capped, it is inverted and tapped to verify that it contains no air bubbles. The sample containers for other parameters will be filled, filtered as required, and capped. Glass and plastic bottles used by Stratus to collect groundwater samples are supplied by the laboratory.

Groundwater Sample Labeling and Preservation

Samples are collected in appropriate containers supplied by the laboratory. All required chemical preservation is added to the bottles prior to delivery to Stratus. Sample label information includes a unique sample identification number, job identification number, date, and time. After labeling, all groundwater samples are placed in a Ziploc[®] type bag and placed in an ice chest cooled to approximately 4° Celsius. Upon arriving at Stratus' office the samples are transferred to a locked refrigerator cooled to approximately 4° Celsius. Chemical preservation is controlled by the required analysis and is noted on the chain-of-custody form. Trip and temperature blanks supplied by the laboratory accompany the groundwater sample containers and groundwater samples.

Sample Identification and Chain-of-Custody Procedures

Sample identification and chain-of-custody procedures document sample possession from the time of collection to ultimate disposal. Each sample container submitted for analysis has a label affixed to identify the job number, sampler, date and time of sample collection, and a sample number unique to that sample. This information, in addition to a description of the sample, field measurements made, sampling methodology, names of on-site personnel, and any other pertinent field observations, is recorded in the field records. The samples are analyzed by a California-certified laboratory.

A chain-of-custody form is used to record possession of the sample from time of collection to its arrival at the laboratory. When the samples are shipped, the person in custody of them relinquishes the samples by signing the chain-of-custody form and noting the time. The sample-control officer at the laboratory verifies sample integrity and confirms that the samples are collected in the proper containers, preserved correctly, and contain adequate volumes for analysis. These conditions are noted on a Laboratory Sample Receipt Checklist that becomes part of the laboratory report upon request.

If these conditions are met, each sample is assigned a unique log number for identification throughout analysis and reporting. The log number is recorded on the chain-of-custody form and in the legally-required log book maintained by the laboratory. The sample description, date received, client's name, and other relevant information is also recorded.

Equipment Cleaning

All reusable sampling equipments are cleaned using phosphate-free detergents and rinsed with de-ionized water.

APPENDIX B

GEOTRACKER UPLOAD CONFIRMATION RECEIPTS

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: GEO_WELL

Submittal Title: 3Q09 GEO_WELL 472

Facility Global ID: T10000000417

Facility Name: ARCO # / PLUCKY LIQUORS

File Name: GEO_WELL.zip

Organization Name: Broadbent & Associates, Inc.

Username: BROADBENT-C IP Address: 67.118.40.90

Submittal Date/Time: 9/29/2009 1:41:39 PM

Confirmation Number: 2892702400

Copyright © 2008 State of California

1 of 1 9/29/2009 1:41 PM

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

<u>Submittal Type:</u> EDF - Monitoring Report - Quarterly

Submittal Title: 3Q09 GW Monitoring

Facility Global ID: T10000000417

Facility Name: ARCO # / PLUCKY LIQUORS

File Name: 09082088.zip

Organization Name: Broadbent & Associates, Inc.

Username: BROADBENT-C IP Address: 67.118.40.90

<u>Submittal Date/Time:</u> 9/29/2009 1:44:39 PM

Confirmation Number: 9909532845

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2008 State of California

1 of 1 9/29/2009 1:44 PM