PERJURY STATEMENT

Subject: Fuel Lake Case No. Ro0002981 and Geotracker Clobal ID T1000000416, Red Hanger Cleaners, 6335-6339 College Ave., Oakland, CA 94618

" I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge."

Ted Cleveland Nice President – Eastern Region EFI Global, Inc.

P&D ENVIRONMENTAL, INC.

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

December 14, 2015 Report 0461.R4

Mr. Gary Bates EFI Global, Inc. 11000 Richmond Avenue, Suite 250 Houston, TX 77042

SUBJECT: SUB-SLAB DEPRESSURIZATION FEASIBILITY TEST REPORT Spills Leaks, Investigation and Cleanup Leak Case No RO0002981 Geotracker Global ID T10000000416 Red Hanger Cleaners 6239 College Avenue Oakland, CA 94618

Dear Mr. Bates:

P&D Environmental (P&D) has prepared this report documenting a sub-slab depressurization (SSD) feasibility test for the subject site on behalf of the property owner Ronald Elvidge and EFI Global, Inc. (EFI). The feasibility test was performed on November 16, 2015 to determine if sub-slab depressurization is feasible as a mitigation measure for vapor intrusion of the dry cleaning chemical tetrachloroethene (PCE) at the site. The work scope included extracting sub-slab vapors at four different locations in the former dry cleaner space designated as SSE1 through SSE4, monitoring vacuum at surrounding locations (including at soil gas wells SG9-17 and SG10-7 and at Vapor Pins VP1 through VP8), and collection of soil gas samples from each of the extraction locations at the conclusion of extraction for each of the extraction locations.

This work was performed in accordance with procedures set forth in P&D's Sub-Slab Depressurization Feasibility Test Work Plan dated November 9, 2015 (document 0461.W2). The work plan was approved in an e-mail from Keith Nowell of the Alameda County Department of Environmental Health (ACDEH) dated November 10, 2015. All work was performed under the direct supervision of a professional geologist.

During coring in the floor slab for construction of the extraction locations, a sub-slab concrete grade beam was encountered at one of the locations, and one additional extraction location was constructed in addition to the proposed extraction locations identified in the work plan. A Site Location Map is attached as Figure 1 and a Site Plan showing the feasibility test extraction and monitoring locations is attached as Figure 2.

BACKGROUND

It is P&D's understanding that the former Red Hanger Kleaners store (also identified in various reports as Red Hanger Cleaners) occupied the ground floor of the subject site building at 6235–6239 College Avenue in Oakland, California from 1987 until 2015 (approximately 28 years), and that the Red Hanger Kleaners business vacated the premises in 2015. The second building to the north at 6251-6255 College Avenue (located at the corner of College Avenue and 63rd Street, see

Figure 2) was reported to have been occupied by dry cleaner stores from 1953 to 1987 (approximately 34 years) with Red Hanger Kleaners identified at this location from either 1970 or 1982 to 1987.

The building at 6251 to 6255 College Avenue is occupied by three tenant spaces along College Avenue. Based on discussions with individuals in the dry cleaning industry who report that they were familiar with the owner of the dry cleaning store at 6251 to 6255 College Avenue, the dry cleaning store originally occupied the southernmost of the three tenant spaces and eventually expanded to include the middle tenant space before moving to 6239 College Avenue.

It is unknown when the dry cleaning operations began utilizing tetrachloroethene (PCE) as the dry cleaning solvent. However, it is P&D's understanding that review of Hazardous Materials Business Plans for 6239 College Avenue from April 1991 through March 2007 identified the presence of PCE at the site as early as April 1991 and as late as March 2007.

Review of Figure 2 shows that the first floor of 6239 College Avenue consists of the former Red Hanger Kleaners store occupying the southern portion of the building, with open parking and storage located immediately to the north of the west end of the former Red Hanger Kleaners store. The second and third floor of the building above the first floor parking and storage areas are occupied by offices, bathrooms, hallways and stairwells. The first floor tenant space (the former Red Hanger Kleaners store) is presently vacant. The former dry cleaning machines were located to the south and west of the elevator (see Figure 2).

The locations of features shown inside the Red Hanger Kleaners store, including the locations of the elevator and boiler room, are based on measurements made with a steel tape. Comparison of the locations of the elevator and the boiler room with the locations shown on site plans for each of the floors for the subject property shows that the site plans for the different floors of the building are approximate but not completely accurate regarding the locations of the elevator and the boiler room. The sanitary sewer trench was also determined to be located several feet further to the east than shown in figures in the work plan based on the location of the sanitary sewer cleanout that is located immediately to the north of Red Hanger Kleaners building parking and storage area, and markings of the sanitary sewer location made by a plumber who identified the sanitary sewer location.

Additionally, measurements using a steel tape of the locations of features shown on Figure 2 (as measured from the sidewalk along 63rd Street to the north side of the Red Hanger Kleaners building parking and storage area) shows that site features shown on Figure 2 are accurate, however measurements using a steel tape of the locations of features shown on Figure 2 (as measured from the southwest corner of the property to the north side of the Red Hanger Kleaners building parking and storage area) shows that the parking and storage area as shown on Figure 2 is approximately 3 feet longer than as measured with the steel tape. Measurements made with a steel tape from the

west side of the property to College Avenue and from College Avenue to the west side of the property show that the features shown on Figure 2 are accurately shown. These measurements suggest that the southwest corner of the property shown on Figure 2 should be approximately 3 feet further north than shown, with the length of the Red Hanger Kleaners parking and storage area reduced by approximately 3 feet to the north of the stairs. Reconciliation of these site dimensions and site plans is beyond the current scope of work.

Historical investigations at the subject site have detected PCE in soil, groundwater, soil gas, and indoor air. Trichloroethene (TCE) has only been detected in indoor air at the site. A complete discussion of the historical dry cleaner operations and historical investigations of the property is provided in the July 27, 2015 Youngdahl Phase II Environmental Site Assessment Soil Gas Investigation Report for the subject site (identified in the report title as located at 6335-6339 College Avenue). A site conceptual model is also provided in the October 21, 2014 Youngdahl Phase II Environmental Site Assessment Soil Gas Investigation Work Plan for the subject site. A summary of historical subsurface investigations at the site and the site geology and hydrogeology are also provided in P&D's October 16, 2015 Soil Gas Investigation Work Plan (document 0461.W1).

FIELD ACTIVITIES

Field activities consisted of installation of Vapor Pins for sub-slab vacuum monitoring, installation of 4-inch diameter PVC pipe in the floor slab for sub-slab vapor extraction, and sub-slab depressurization feasibility testing. Prior to the beginning of field activities a health and safety plan was prepared, and notification of the scheduled dates of field activities was provided to the ACDEH and the Bay Area Air Quality Management District.

Vapor Pin and Sub-Slab Soil Gas Extraction Pipe Installation

Eight Vapor Pins with flush-mounted secure covers were installed by P&D at locations VP1 through VP8 on November 11, 2015 at locations shown on Figure 2 in accordance with manufacturer recommended methods as follows: A rotohammer was used to drill a 1.5-inch diameter hole to a depth of 1.75 inches into the concrete slab. A 5/8-inch diameter hole was then drilled through the center of the 1.5-inch diameter hole in the slab to a depth of two inches below the bottom of the concrete slab. The total concrete floor slab thickness was measured to be approximately 6.0 inches at all Vapor Pin drilling locations. Once drilling was completed a steel rod was inserted into the hole and pushed into the sub-slab materials to a depth of approximately 6 inches below the slab several times to puncture any vapor barrier that might be present, and the hole was then installed in the 5/8-inch diameter hole in the concrete slab and covered with a flush-mounted stainless steel cover. Prior to placement of the flush-mounted stainless steel cover, a plastic cap was placed on the top of the Vapor Pin barb fitting. Prior to performing the

sub-slab depressurization feasibility test a ¹/₄-inch diameter brass ball valve with a brass barb was installed at each Vapor Pin using new silicone tubing for vacuum monitoring during the feasibility test.

Sub-slab soil gas extraction locations were installed in the concrete floor slab On November 11, 2015 by coring a 5-inch diameter hole in the floor at locations shown in Figure 2 and inserting a 4-inch inside diameter (4.5-inch outside diameter) Schedule 40 PVC pipe into the cored hole so that the bottom of the PVC pipe was at a depth of approximately 6 inches below the top of the concrete floor slab. The PVC pipe also extended approximately 6 inches above the top of the floor slab. During concrete coring at proposed location SSE2 a sub-slab grade beam was encountered. The concrete core at proposed location SSE2 was extended to the bottom of the sub-slab grade beam and one additional soil gas extraction location more than was proposed in the work plan was cored in the floor slab at a location approximately 9 feet to the east of location SSE2 in anticipation of the possibility of reduced air flow from beneath the grade beam.

The PVC pipe was secured in the cored hole in the concrete floor at each location using strips of supermarket paper shopping bags that were twisted into a coil and inserted into the annular space between the PVC pipe and the concrete floor slab. Following placement and securing of the PVC pipe in the concrete cored hole, the top of the annular space between the PVC pipe and the concrete floor was caulked with low-VOC latex caulk to provide an airtight seal. In addition, a sampling port consisting of a ¹/₄-inch diameter brass ball valve with a brass barb was installed in the side of each of the PVC pipes in preparation for vacuum monitoring and soil gas sample collection at the completion of soil gas extraction at each location.

Prior to installation of the PVC pipe at each soil gas extraction location the materials beneath the concrete floor slab were excavated to determine the thickness of sub-slab coarse-grained fill materials and the presence of a vapor barrier. A vapor barrier consisting of a sheet of plastic was encountered at each soil gas extraction location. Beneath the coarse-grained fill material silty clay was encountered at all soil gas extraction locations. The thickness of the floor slab and the thickness and type of underlying materials at each soil gas extraction location are summarized in Table 1.

Sub-Slab Depressurization Feasibility Testing

On November 16, 2015 vacuum was applied to each of the extraction locations beginning with location SSE1 and subsequently at locations SSE2, SSE3, and SSE4 using a 1 horsepower regenerative blower capable of generating a maximum air flow of 92 cubic feet per minute (cfm) and a maximum vacuum of 48 inches of water column. During extraction at each location vacuum was simultaneously monitored at the following monitoring locations shown on Figure 2:

- Extraction locations where extraction was not being performed,
- Vapor Pins VP1 through VP8, and
- Soil gas wells SG9-17 and SG10-7.

The blower was connected sequentially to each extraction location with a flexible 2-inch diameter hose. An 8-foot long section of 4-inch diameter PVC pipe was installed in the exhaust hose from the blower and air flow measurements were periodically recorded using a hot wire anemometer through a monitoring port located approximately mid-way along the length of the pipe. Vacuum was monitored using a Dwyer Model 476A-0 digital manometer calibrated to measure vacuums of 0 to 20 inches of water with an accuracy of 0.3 inches of water column vacuum except at SSE2 where vacuum was measured with a mechanical diaphragm vacuum gage with an accuracy of 0.2 inches of Mercury vacuum. Air quality was also periodically evaluated with a Photoionization Detector (PID) at monitoring ports located upstream of the blower and immediately before the inlet and immediately after the outlet from the carbon drum by using a vacuum chamber to pull air into a 1-liter Tedlar bag and then connecting the PID intake to the Tedlar bag. The PID was equipped with a 10.6 eV bulb and was calibrated with a 100 parts per million (ppm) isobutylene standard prior to the beginning of the feasibility test.

All air exhausted from the blower was directed through a 55-gallon drum containing 200-pounds of granular activated carbon before being exhausted to the atmosphere. The drum was labeled and stored at the site pending appropriate disposal. Air flow, temperature, PID values and the time of recording were recorded on an Extraction Monitoring Log. Copies of the Extraction Monitoring Logs for each extraction location are attached with this report in Appendix A. The Extraction Monitoring Log information is summarized in Tables 2A, 2B, 2C and 2D.

Prior to the application of vacuum at each extraction location the vacuum at all monitoring locations was monitored and recorded on a vacuum monitoring log to identify baseline vacuum conditions. At locations where vacuum was greater than 0.25 inches of water column the vacuum was measured with a Dwyer Model 476A-0 digital manometer calibrated to measure vacuums of 0 to 20 inches of water with an accuracy of 0.3 inches of water column vacuum. At locations where vacuum was less than 0.25 inches of water column the vacuum was measured with an Omnigard Model 4 digital manometer calibrated to measure vacuums of 0 to 0.250 inches of water with an accuracy of 0.003 inches of water column vacuum. Vacuum, location, and the time of recording were recorded on a Vacuum Monitoring Log.

One person monitored locations VP1 through VP5 during the feasibility test in addition to recording information on the Extraction Monitoring Log, and a different person monitored extraction locations SSE1 through SSE4, Vapor Pins VP6 through VP8, and soil gas wells SG9-17 and SG10-7 during the feasibility test. Copies of the Vacuum Monitoring Logs for each extraction location are attached with this report in Appendix A. The maximum vacuum measured at each monitoring location during extraction at each extraction location is summarized in Table 3. The

maximum vacuum value recorded during extraction at each of locations SSE1 through SSE4 is shown in Figures 3 through 6, respectively. At the beginning of the application of vacuum at each location, the vacuum was observed at values near the maximum vacuum value almost instantaneously (in less than 5 seconds) for sub-slab locations, and in approximately one minute in the soil gas wells. Extraction was performed for approximately 90 minutes at the first extraction location, and based on the stable vacuums observed at monitoring locations was performed for approximately 45 to 60 minutes at each of the other extraction locations.

At the conclusion of extraction for each of the four extraction locations and prior to shutting off the blower, an air sample was collected from the sampling port installed in the side of the 4-inch diameter PVC extraction pipe into a 1-liter Summa canister for laboratory analysis. An unused manifold equipped with a nominal 150 cubic centimeter per minute flow restrictor was located between the sampling Summa canister and the sampling port (see Figure 8, no purge canister was used) to regulate flow from the extraction location into the Summa canister. Once the vacuum in the Summa canister was observed to be approximately 5 inches of Mercury the valve to the Summa canister was labeled and stored in a box pending shipment to Eurofins Air Toxics, Ltd. (Air Toxics) of Folsom, California. Chain of custody procedures were observed for all sample handling.

Sample collection times, beginning and ending Summa canister vacuums, and PID values at the extraction location sampling port for each extraction location were recorded on an Air Sampling Log. A copy of the Air Sampling Log is attached with this report as Appendix A. The PCE concentrations detected in the air samples are shown on Figure 7.

GEOLOGY AND HYDROGEOLOGY

Based on a review of the USGS Oakland West, California Quadrangle topographic map, the subject property is located approximately 200 feet above mean sea level, and the local topography slopes to the southwest (see Figure 1). The nearest surface water is Lake Temescal, located approximately 1.1 mile east of the subject site. Based on local topography and consistent southwesterly groundwater flow directions identified from groundwater monitoring well water level data at nearby sites, the assumed groundwater flow direction at the subject site is to the southwest.

Based on review of regional geologic maps from U. S. Geological Survey Professional Paper 943, "Flatland Deposits - Their Geology and Engineering Properties and Their Importance to Comprehensive Planning," by E. J. Helley and K. R. Lajoie, 1979, the subject site is underlain by Late Pleistocene Alluvium (Qpa), which is described as weakly consolidated slightly weathered poorly sorted irregularly interbedded clay, silt, sand, and gravel.

The subsurface materials encountered in the boreholes drilled to a depth of 17 feet bgs during soil gas well installation in November 2015 consisted predominantly of silt, silty clay and clay, with

layers of coarse grained materials consisting of gravelly clayey sand, sandy gravel and clayey gravel measuring from 1 to 5 feet in thickness. The subsurface materials encountered in the soil gas well boreholes are consistent with the Qpa description provided above. No groundwater was encountered in any of the soil gas well boreholes.

Review of boring logs for historical boreholes at the site shows that the subsurface materials beneath the west end of the Red Hanger Kleaners store where the dry cleaning machines were located consists predominantly of silty clay to a depth of approximately 12 to 14 feet bgs, beneath which the subsurface materials consist predominantly of clayey silt and silt with layers of gravelly silty sand or sandy gravelly silt of variable thickness to the total depth explored of 35 feet bgs. To the north of the Red Hanger Kleaners building the subsurface materials consist predominantly of silty sand or sandy gravelly silt of variable thickness to the total depth explored of 35 feet bgs. To the north of the Red Hanger Kleaners building the subsurface materials consist predominantly of layers of silty clay and silt, with layers of gravelly silty sand or sandy gravelly silt of variable thickness to the total depth explored of 35 feet bgs. At one borehole located immediately downgradient of the former Kay's Cleaners a gravelly silty sand layer measuring approximately 10 feet in thickness was encountered between the depths of approximately 12 and 22 feet bgs.

Groundwater has historically been encountered at the site as follows:

- By AEI Consultants in May 2005 in borehole SB1 during drilling at a depth of 17.5 feet bgs and was subsequently measured after 5 minutes at a depth of 15.8 feet bgs.
- By Ecology Control Associates under the supervision of EFI on June 28, 2005 during drilling in borehole SB-6 at a depth of 20 feet bgs and was subsequently measured in the borehole at a depth of approximately 16 feet bgs.
- By P&D in August 2008 in boreholes B7 and B8 at depths of 21.3 and 22.6 feet bgs, and was subsequently measured at depths of 22.3 and 21.2 feet bgs prior to groundwater sample collection.
- By ERM West, Inc. in October 2009 in boreholes A-1, AD-3 and AUST-6 during drilling at a depth of 35 feet bgs, and was subsequently measured in these boreholes at a depth of approximately 22 feet bgs. Groundwater was not encountered in borehole A-2.

Groundwater has historically been encountered at depths of approximately 22 feet bgs or greater with the exception of borehole SB1 where groundwater was encountered during drilling at a depth of 17.5 feet bgs and was subsequently measured after 5 minutes at a depth of 15.8 feet bgs, and borehole SB-6 where groundwater was encountered during drilling at a depth of approximately 20 feet bgs and was subsequently measured at a depth of approximately 16 feet bgs. Both of these boreholes where groundwater was historically encountered at depths of less than 20 feet bgs are located at the southern boundary of the property in the western half of the property.

LABORATORY ANALYSIS

All four of the soil gas samples collected from extraction locations SSE1 through SSE4 were analyzed at Air Toxics for Volatile Organic Compounds (VOCs), including PCE, Trichloroethene (TCE), cis-1,2-Dichloroethene (cis-1,2-DCE), trans-1,2-Dichloroethene (trans-1,2-DCE), Vinyl Chloride, Methyl-tert-Butyl Ether (MTBE), benzene, toluene, ethylbenzene, and total xylenes (BTEX) using EPA Method TO-15. The sample results are summarized in Table 4. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report as Appendix B.

PCE was detected in samples SSE1, SSE2, SSE3, and SSE4 at concentrations of 890, 580, 280, and 88 micrograms per cubic meter (ug/m³), respectively, and ethanol was detected at concentrations of 22, 15, 17, and 26 ug/m³, respectively. The only other analytes that were detected were carbon disulfide in sample SSE3 at a concentration of 17 ug/m³, and benzene, acetone, methyl ethyl ketone (MEK), and cumene in sample SSE4 at concentrations of 4.6, 56, 21, and 7.4 ug/m³, respectively.

DISCUSSION AND RECOMMENDATIONS

Review of Table 1 shows that a vapor barrier consisting of a plastic sheet was encountered at each of the soil gas extraction locations, and that coarse-grained material consisting primarily of gravel was encountered beneath the floor slab and the sub-slab grade beam to a depth of approximately 8 to 9.5 inches (the total coarse-grained material thickness beneath the slab at location SSE1 was 9 inches).

Review of Tables 2A through 2D shows that the measured extraction vacuum at all extraction locations was between 12 and 13 inches of water column with the exception of SSE2 where the sub-slab grade beam was encountered and the measured extraction vacuum was approximately 31 inches of water column. Similarly, the measured air flow at all extraction locations ranged from approximately 76 to 80 scfm with the exception of SSE2 where the measured air flow ranged from approximately 58 to 60 scfm. No organic vapors were detected with the PID.

A sub-slab perimeter footing is assumed to be present at the building, and the sub-slab grade beam encountered at location SSE2 is assumed to extend continuously from the south side of the building to the north side of the building. Review of Table 3 and Figures 3 through 6 shows that although the sub-slab grade beam encountered at extraction location SSE2 was a barrier to the propagation of sub-slab vacuum, that vacuum was measured at all monitoring locations during sub-slab soil gas extraction at all extraction locations. Additionally, vacuum was also measured in both of the monitored soil gas wells during sub-slab soil gas extraction at all extraction locations. At the beginning of the application of vacuum at each location, the vacuum was observed at values near the maximum vacuum value almost instantaneously (in less than 5 seconds) for sub-slab locations,

and in approximately one minute in the soil gas wells, indicating very good sub-slab and subsurface vacuum communication at the site.

Review of Table 4 and Figure 7 shows that the detected PCE sub-slab soil gas concentrations were highest at location SSE1 in the vicinity of the former dry cleaning machines and were lowest at SSE4 at the location farthest from the former dry cleaning machines. Additionally, the PCE concentrations shown on Figure 7 suggest that the sub-slab grade beam may be a barrier to the eastward movement of sub-slab PCE vapors.

The maximum sub-slab soil gas PCE concentration detected during the sub-slab depressurization feasibility test was 880 ug/m³ at location SSE1. Based on one ppm of PCE being equivalent to 6,783 ug/m³ PCE, the maximum PCE concentrations extracted during the feasibility test were all below the PID minimum detection concentration for the PID used to monitor extracted soil gas vapor concentrations during the feasibility test.

Based on the sub-slab depressurization feasibility test results, P&D recommends that sub-slab depressurization be performed in an effort to mitigate PCE vapor intrusion into the subject site building. P&D recommends that as part of the vapor intrusion mitigation effort that sub-slab depressurization extraction be performed at accessible locations surrounding the elevator pit in an effort to mitigate PCE vapor intrusion into the elevator pit where the highest historical PCE air concentrations have been detected.

DISTRIBUTION

A copy of this report should be uploaded to the GeoTracker and ACDEH websites.

LIMITATIONS

This report was prepared solely for the use of Ron Elvidge and EFI Global, Inc. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

Paul H. King California Professional Geologist #5901 Expires: 12/31/17

Attachments:

Table 1 - Summary of Floor Slab and Sub-Slab Material Thicknesses

Table 2A - Summary of ESE1 Vapor Extraction Data

 Table 2B - Summary of ESE2 Vapor Extraction Data

Table 2C - Summary of ESE3 Vapor Extraction Data

Table 2D - Summary of ESE4 Vapor Extraction Data

Table 3 - Summary of Maximum Vacuum Measurements at Observation Locations

Table 4 - Summary of Extracted Sub-Slab Soil Gas Sample Laboratory Analytical Results

Figure 1 - Site Location Map

Figure 2 - Site Plan Showing Sub-Slab Soil Gas Extraction and Feasibility Test Monitoring Locations

Figure 3 - Site Plan Showing Maximum Sub-Slab Vacuum During Extraction at Location SSE1

Figure 4 - Site Plan Showing Maximum Sub-Slab Vacuum During Extraction at Location SSE2

Figure 5 - Site Plan Showing Maximum Sub-Slab Vacuum During Extraction at Location SSE3

Figure 6 - Site Plan Showing Maximum Sub-Slab Vacuum During Extraction at Location SSE4

Figure 7 - Site Plan Showing Sub-Slab PCE Concentrations at the Conclusion of Extraction at Locations SSE1 Through SSE4

Figure 8 - Typical Soil Gas Sampling Manifold

Appendix A - Field Data Sheets Appendix B - Laboratory Reports and Chain of Custody Documentation

PHK/jhm/sjc 0461.R4

TABLES

Table 1	
Summary of Floor Slab and Sub-Slab Materia	l Thicknesses

Donth to Matorial										
		Depth to	Material							
		Vapor	Between	Gravel						
		Barrier	Concrete	Thickness						
	Concrete	Beneath	Slab	Beneath						
	Slab	Concrete	and	Vapor						
Extraction	Thickness	Slab	Vapor	Barrier						
Location	(Inches)	(Inches)*	Barrier	(Inches)						
SSE1	7	Sand	7							
SSE2	15	0	None	8						
SSE3	6	0	None	9.5						
SSE4	6	0	None	9						
Notes:										
The material b	eneath the grave	l consisted of	native silty clay	at all locations.						
* = Vapor barri	ier consisting of a	a plastic sheet	was encountered	ed beneath the						
floor slab at all	four extraction lo	ocations.								

Table 2ASummary of SSE1 Vapor Extraction Data

Date	11/16/2015			
Extractio	n Location	SSE1		
			PID	PID
Time	Vacuum	Flow	Carbon Inlet	Carbon Outlet
	(Inches of Water)	(Standard Cubic	(parts per million)	(parts per million)
		Feet per Minute)		
09:02	12.60	79.78		
09:08			0.00	0.00
09:24	12.60			
09:28		77.90		
09:33			0.00	
09:35				0.00
09:47	12.61			
09:50		77.08		
09:54			0.00	
09:57				0.00
10:05	12.39			
10:09		77.78		
10:13			0.00	
10:14				0.00
10:23	12.54			
10:27		77.21		
10:32			0.00	
10:33				0.00

Table 2BSummary of SSE2 Vapor Extraction Data

	1	-	1		
Date	11/16/2015				
Extractio	n Location	SSE2			
			PID	PID	
Time	Vacuum	Flow	Carbon Inlet	Carbon Outlet	
	(Inches of Hg/	(Standard Cubic	(parts per million)	(parts per million)	
	Inches of Water	Feet per Minute)	,	,	
	Column)				
	,				
11:18	2.30/31.3	58.36			
11:24			0.00	0.00	
11:27					
11:36	2.30/31.3	59.05			
11:44			0.00		
11:46				0.00	
11:52	2.30/31.3				
11:56		59.95			
12:01			0.00		
12:03				0.00	
Note: Va	cuum measured in	inches of mercury	and converted on t	his table to inches o	of water
		include of meroury			

Report 0461.R4

Table 2CSummary of SSE3 Vapor Extraction Data

Date	11/16/2015			
Extraction	n Location	SSE3		
			PID	PID
Time	Vacuum	Flow	Carbon Inlet	Carbon Outlet
	(Inches of Water)	(Standard Cubic	(parts per million)	(parts per million)
		Feet per Minute)		
13:15	12.84			
13:18		77.26		
13:23			0.00	
13:24				0.00
13:32	12.58	77.36		
13:38			0.00	
13:39				0.00
13:43	12.59			
13:45			0.00	
13:46				0.00
13:52		76.24		

Report 0461.R4

Table 2DSummary of SSE4 Vapor Extraction Data

Date	11/16/2015			
Extraction	n Location	SSE4		
			PID	PID
Time	Vacuum	Flow	Carbon Inlet	Carbon Outlet
	(Inches of Water)	(Standard Cubic	(parts per million)	(parts per million)
		Feet per Minute)		
14:39	12.30			
14:48		76.84		
14:52			0.00	0.00
14:55	12.25			
15:00		76.72		
15:02			0.00	0.00
15:04	12.27			
15:09		80.54		
15:13			0.00	0.00

Report 0461.R4

 Table 3

 Summary of Maximum Vacuum Measurements at Observation Locations

Date	11/16/201	15												
Extraction														
Location	SSE1	SSE2	SSE3	SSE4	VP1	VP2	VP3	VP4	VP5	VP6	VP7	VP8	SG9-17	SG10-7
SSE1	1.700	0.650	0.204	0.137	0.099	0.086	0.180	0.850	0.970	1.110	0.880	0.162	0.103	0.037
SSE2	0.490	20.760	0.370	0.310	0.162	0.140	0.400	0.600	0.450	0.470	0.700	0.340	0.062	0.042
SSE3	0.152	0.410	1.900	0.800	0.590	0.490	0.980	0.199	0.126	0.144	0.223	0.980	0.038	0.098
SSE4	0.107	0.260	0.790	1.770	0.750	0.560	0.690	0.145	0.087	0.096	0.158	0.790	0.027	0.097
Note:														
Vacuum m	easureme	nts report	ed in Inch	es of wate	er.									

 Table 4

 Summary of Extracted Sub-Slab Soil Gas Sample Laboratory Analtytical Results

Sample ID	Sample	Benzene	Toluene	Ethyl-	m,p-Xylenes	o-Xylenes	PCE	TCE	cis-1,2-	trans-1,2-	Vinyl	Other VOCs by EPA TO-15
	Date			benzene					DCE	DCE	Chloride	
CCE 1	11/16/2015	ND -2.9	ND 4.5	ND -5-2	NID -5 0	ND -5 2	900	ND (4	ND 47	ND 47	ND 20	ND
SSEI	11/16/2015	ND<3.8	ND<4.5	ND<5.2	ND<5.2	ND<5.2	890	ND<6.4	ND<4./	ND<4./	ND<3.0	ND, except
												Ethanol = 22
CCE2	11/16/2015	ND -2.9	ND :4.5	ND -5-2	ND -5-2	ND -5-2	590	ND (6.4	ND -4.9	ND -4.9	ND -2.1	ND amount
55E2	11/10/2013	ND<3.8	ND<4.5	ND<3.2	ND<3.2	ND<3.2	380	ND<0.4	ND<4.8	ND<4.8	ND<5.1	ND, except
												Ethanol = 15
SSE3	11/16/2015	ND <2.9	ND <4.5	ND -5 2	ND <5.2	ND <5.2	280	ND <6.5	ND <4.9	ND <4.9	ND-21	ND avcant
3313	11/10/2013	ND<5.0	ND<4.5	ND<3.2	ND<3.2	ND<3.2	280	ND<0.5	ND<4.0	ND<4.0	ND<5.1	Ethenol = 17
												Ethanor $= 17$, Carbon Disulfida $= 17$
												Carbon Disunde = 17
SSE4	11/16/2015	16	ND-48	ND-5.5	ND-5.5	ND <5.5	88	ND < 6.8	ND <5.0	ND<5.0	ND <3.2	ND avcant
55E4	11/10/2013	4.0	ND<4.0	ND<3.5	ND<3.5	ND<3.5	00	ND<0.8	ND<5.0	ND<5.0	ND<5.2	Ethanol = 26
												$\frac{1}{200} = \frac{1}{2000}$
												MEK = 21
												MEK = 21,
												Cumene = 7.4
-												
ESL ¹		420	1.300.000	4.900	Combined =	440.000	2.100	3.000	31.000	260.000	160	Acetone = 140.000.000.
202			-,,	.,,		,	_,	-,				MEK = 22,000,000
												Ethanol = No Value
												Carbon Disulfide = No Value
												Cumene = No Value
												Cumene - No Vulue
ESL ²		0.42	1 300	49	Combined	- 440	21	3.0	31	260	0.16	Acetone = 140 000
LUL		0.12	1,500	1.2	comotited	- 110	2.1	5.0	51	200	0.10	MFK = 22,000
												Fthanol = No Value
												Carbon Disulfide – No Value
												Cumene – No Value
												Cumene - No Vulue
$20 - ESL^2$		01	26.000	08	Combined	- 8 800	12	60	620	5 200	2.2	4 a a toma = 2,800,000
20 x ESL		0.4	20,000	90	Combinea	- 0,000	42	00	020	5,200	3.2	Acetone = 2,800,000, MEV = 440,000
												MEK = 440,000,
												Einanoi = No Value,
												Carbon Disulfide = No Value,
												Cumene = No Value
NOTES												
NOTES. Samplas wa	ra collected a	t the end o	f cub clob co	il gos ovtro	ction activities	at aach locati	on					
DCE – Totre	achloroothon		i sub-siab so	n gas extra	ction activities	at each locath	011.					
TCE = Teuz	hloroothono											
TCE = TTCE	$r_{\rm r} = a_{\rm r} = 1.2 \rm Di$	ahlaraatha										
trans 1.2 TCL	C = cis-1, 2-Di	2 Dichloro	it.									
MEV = Mat	L = uans-1,	topa (2 Pu	tonona)									
$ND = Not \Gamma$	Detected	ione (2-Bu	lanone).									
	velected.	· •	11.0	.			0		. 15	1 0010 0	m • • •	
$ESL^{*} = Envi$	ironmental So	creening Le	evel, by San	Francisco I	Bay – Regional	Water Qualit	y Control	Board, upda	ated Decem	iber 2013 fi	om Table E	-2 - Soil Gas Screening
Levels for E	valuation of	Potential V	apor Intrusio	on for Com	merical/Industr	ial Land Use.		L				
$ESL^2 = Envi$	ironmental So	creening Le	evel, by San	Francisco I	Bay – Regional	Water Qualit	y Control	Board, upda	ted Decem	ber 2013 fr	om Table E	-3 – Ambient and
Indoor Air S	Screening Lev	vels for Cor	mmercial/Ind	dustrial Lar	d Use.							
Underlined	results are fo	r extracted	sub-slab soil	gas sample	e results that ex-	ceed their res	pective 20	x ESL ² va	lue.			
Results and	ESL values i	n microgra	ms per cubic	meter (µg/	m3), unless ot	herwise indic	ated.					

FIGURES

Base Map From: U.S. Geologic Survey 7.5 Minute Quadrangles Oakland East, and Oakland West, both maps edited 1996.

P&D Environmental, Inc. 55 Santa Clara Avenue, Suite 240 Oakland CA 94610

APPENDIX A

Field Data Sheets

- Extraction Monitoring Logs
- Vacuum Monitoring Logs
- Air Sampling Log

Extraction Monitoring Logs

	1.1.		EXTRACTION	MONITORING	LOG		Page	1	of	4
Date:	W/16/15									
Site Ad	dress:	6239 College	Ave, Oakland							
Job #:		Red Hanger H	(leaners, # 0461							
Initials of	of Person Monit	oring: JHM						-		
Extracti	ng Location:	SSE								
			Flow							
			(Standard							
	Vacuum	Flow	Cubic	Temp	Carbon INLET	CarbonOUTLET				
	(Inches of	(Feet per	Feet Per	(Degrees	Inlet CII	Outlet CO				
Time	Water)	Minute)	Minute)	Celsius) F	(ppm)	(ppm)	NOTES			
0902	-120 60	914	79.78	62.3						
0400	12 (0				000.0	000,0				
OGLA	- I LeLeO	800								
0920		813	77.90	72,4	000 0					
0425					000,0					
0930	-12 (1					000.0				
141	12.161	0.9.2	77 00	20 0						
0950		009	11,00	10,0	000 0					
1957					ano	000 0				
1005	-12.59					au.o				
1009	160 01	198	77 78	68.7						
10/3			11.10		000 0					
1014					aco	00.0				
1023	-12,55					ace o				
1027		885	57.21	71.6						
1032			1100	, inse	000.0					
1033						000.0				
<i>м</i> ,										1.F
										112-28-183
-										
<u> </u>	1	1		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-					
		-								
					-					
2								-		
			and the second							
			7							
		1								
					-					

			EXTRACTION	MONITORIN	GLOG	-	Page	2	of	4
Date:	11/16/15									
Site Ad	dress:	6239 College	e Ave, Oakland							
Job #:		Red Hanger	Kleaners, # 0461							
Initials	of Person Monit	toring:					1			
Extract	ing Location:	55E2					1			
			Flow							
			(Standard		1.					
	Vacuum	Flow	Cubic	Temp	Carbon	Carbon				
71	(Inches of	(Feet per	Feet Per	(Degrees	Inlet	Outlet				
Time	Water)	Minute)	Minute)	Gelsius) F	(ppm)	(ppm)	NOTES			
1118	-2,2+19	664	58,56	67.5	0.00					
1129					000.0	0.00				
1131	-2311	100	FORE	71.7		all.o				
1144	-Cro Hg	æ/1	51.05	16.1	200.0					
1140					000.0	000 0				
1150	-2,346	E				000,0	-			
1156	-1.01.19	627	59,95	78.1						
1201			2.1.10		000,0					
1202			-			COD.A				
						aque				
1.1.11					6		JISTE	M	COFF	
							1721			
-		2					1			
					and the second	_				
		-			-					
ine care								-		
		-								
		1.								
-		17		7.00		1	-			
-									the first set	
17 4-4 18 10 1										
		+							Section 2	

			EXTRACTION	MONITORING	GLOG		Page	2	of	1
Date:	1110/15						, age			-1
Site Ad	dress:	6239 College	Ave, Oakland							
Job #:	OACel	Red Hanger	Kleaners # 0461							
Initials	of Person Moni	itoring:								
Extracti	ing Location:	5553							-	
	Ū		Flow							
			(Standard	1						
	Vacuum	Flow	Cubic	Temp	Carbon	Carbon				
	(Inches of	(Feet per	Feet Per	(Degrees	Inlet	Outlet				
Time	Water)	Minute)	Minute)	Celsius)	(ppm)	(mad)	NOTES			
1315 -	-12.84									
1318		885	27,26	70.4						
1323					000.0					
1324						000.0				
1332	-12,58	886								
1335		334	77.36e	75,8						
1338					000,0					
1339						0,000				
1343	-12.59		-							
1345					000,0					
1346						000,0				
1352		874	76.24	78,7						
-										
6. A										
						-				
					-					
							_			
	1									
	1			1					20121026	
-)								a danata		
1-4										
2										
						_				
-										
		-								
			A second s							

			EXTRACTION	MONITORING	LOG		Page	4	of	4
Date:	11/16/15									
Site Ad	dress:	6239 College	Ave, Oakland							
Job #:		Red Hanger	Kleaners, # 0461							
Initials	of Person Mon	itorina:	NHM							
Extracti	ing Location:	SSE4								
	9	QUET.	Flow						-	
			Chandend							
	Maguum	Flow	(Standard							
	vacuum	Flow	Cubic	Temp	Carbon	Carbon				
	(Inches of	(Feet per	Feet Per	(Degrees	Inlet	Outlet				
Time	Water)	Minute)	Minute)	Celsius)	(ppm)	(ppm)	NOTES			
1431	-12,30									
1448		882	76,84	75,5						
1352					0,000	0.000				
1355	= 12,25								ł	
1500		.878	76,77	79.7.						
1502				11.0	0.000	0.000				
1504	-12.37				0.000					
1509	· CACI	928	80.54	SO. 1.						
1512	1	150	00154	0014	a 000	000 0				
PIZ	-				0.000	00000				
			15							
			A CONTRACTOR	- 200 m						
_										-
				- And - warden						
75.127 J.										
-			6							
			1 32, 32, 57							
-										
					and the second					
-										
			-							
										S

Vacuum Monitoring Logs
						VACU	UM MO	NITORI	NG LOG		Page	1	of	2
Date:	11/161	15												
Site Add	iress:	6239 C	ollege A	ve. Oak	land									
Job #:	1461	Red Ha	anger Kle	eaners,	# 0461									
Initials o	of Person	Monito	ring: L	LOD	17	MK								
Extractio	ng Locat	ion: SS	SE1											
						Vacuu	m in Inc	hes of V	Vater					5610-2
Time	SSE1	SSE2	SSE3	SSE4	VP1	VP2	VP3	VP4	VP5	VP6	VP7	VP8	SG9-17	NOTES
0741			Contraction of the second							0,000		-		
0743											0:000			
0746												0.000		
0754	0.000													
0755	•	0.000												
0756			0.000)			1.4			-	. Ste			
5758				0,000							1	10.79 million		
6800													0.000	,
3802											20			0.000
	start													
9:00	-37-										0.80			
9:08		0.64												
9:10													0,100	6.01
9:12			0.204	F										1000
9:14												e 161		¥
9:19				0.137	7-									0.017
9:21										1.06				
9:23	1.66													
9;78											0.74			
9:29													0.096	
9.30		0.65					1							
9:31			0,203										(0.024
9:35				1.31									(to 0.43
9:36							-	_				0.160		
7:40														0,033
9:43	1.70			1			-							
9:45										1.11				
9,46							-		-				1.03	
9:47		A 1-									0.88			
7.47		0665		ļ			-	-	-					
4:50							1.32					0.161	1	
9.51			6,205	0.01				+					(0	102202
7.20				0.134	L			-	-				10,	03945
9.56									-					0.035
9.50	, 70									1.09				
7:57	1.10													and the second s
000													0.091	
1002		-10					1 decem				0,88			
1003		0,65	4 00											
10 0 11			0.186											
T	est of the transfer		110-											

	· · ·				1	VACUL	JM MON	NITORI	IG LOG		Page	2	of	2
Date:	11/1	6/15												
Site Add	Iress:	6239 C	ollege A	ve, Oak	land			-						
Job #:0	461	Red Ha	anger Kl	eaners,	# 0461									
Initials o	f Person	n Monito	ring:	MUB	D									
Extractin	ng Locat	tion:SS	EI											
	0					Vacuur	n in Incl	hes of V	Vater					5610-7
Time	SSE1	SSE2	SSE3	SSE4	VP1	VP2	VP3	VP4	VP5	VP6	VP7	VP8	SG9-17	NOTES
										-			(8.023
							13.33						6	0.0300
1008														0.031
1009			-					11-11-		1.03				() () () () () () () () () ()
1010	1.65													
1011													0.101	
1012								1			0,83			
1613		0.63												
1014			0.18	8										
1015	+				4							0.162	+	(0,022).
				0.13	*									0.032
1015				0,130	2	-	-							andt
1017							-	19.1.5	1			0.20	to	0.027
	1	~ 1									1	0.13 N		
	SSE	(Ext	tactic	n SI	to ppic	L at	10-	51					J.	
10.40									_	-			0.024	<u>6</u>
10:41	1							-						
					1		-							
					4	-								
				-					-					
			+											
					vernansel des		4	-						
		+												1 apres
						-	-	10000000	a we want			-		1
		+												+
			-											1
	and the second													
									-					+
							-	+						
	1				-				-					+
			+											<u> </u>
			+				-	-	-					1
						-			- 					
													+	
					+									
		-												
	+													
						1.				1				

44						VACU	UM MO	NITORIN	IG LOG		Page	(of	2
Date:	11/1	1.1.5												
Site Ado	Iress.	6239 C	ollege A	ve. Oak	land		1000	1.00						
Joh #	0461	Red Ha	nger Kle	aners.	# 0461		1							
Initials o	f Persor	Monitor	rina:	MB	D									
Extractin	na Locat	ion [.] <	SF2											
Entraotin	.g	-			5.0	Vacuu	im in Inc	hes of V	Vater					5G10-7
Time	SSE1	SSE2	SSE3	SSE4	VP1	VP2	VP3	VP4	VP5	VP6	VP7	VP8	SG9-17	NOTES
1 Auril										0.000				
10259	}									0.004				
1100	0.000													
	To													
	0,006													
NOI											5.000			
											6			
										19	0:003			
uoa		0,000	>		-				1					
		6												
		0,003												
1103		0=	0:003					_		2400				
			to		-		-							
			0,00	{				-						
1104					1	1.6.						0.000		
		-				-	-					6		
							_		-			0.004		
1105				0,000	-			-						
	-			6	1					_				
				0.004						+				12.000
1100			-			-								Th
								-	-					0.023
1167	-				-	-							A 106	01000
ND I			17.17.14			-	-		-				To	
		+	1	1									0.012.	
M12						-	-			0.28			010100	
1113	0,30)			11111					0.00				
1115				-	-				1		0.49			
1117			0,18		-							_	/	0.033
120		1	10									0,018	(0,042
1.40						1								
1124														0.038
1127	i			0,22	8									
1128		20.76	2											
1128	,												0.050	
1120	i									0,33	•			
1130	0.33	3									1			
121											0,5			
1132		20,6	3		0									
1133				0.99	8							-X.		

Date: $11/16/15'$ Size Address: 6239 College Ave, Oakland Job #: $0+61'$ Initials of Person Monitoring: $120'$ Xetzecting Location: $55 \text{ EA}'$ Vacuum in Inches of Water $0,034'$ Time: SSE1 SSE1 SSE2 SSE1 SSE3 SSE3 SSE4 Vacuum in Inches of Water 0.33 I136 0.31 I137 0.31 I143 0.31 I1442 0.35 I1443 0.35 I1444 0.35 I1445 0.31 I1442 0.33 I1442 0.31 I1443 0.31 I1444 0.33 I153 0.70'		1					VACU	UM MO	NITORI	NG LOG		Page	2	of	2
Sile Address: 6239 College Ave, Oakland Job #: 0+4 / / Red Hanger # 0461 Initials of Person Monitoring: M CBD Extracting Location: SSE2 SSE1 O.37 I136 0.31 I137 0.31 I138 0.45 I142 0.636 I143 0.636 I143 0.636 I143 0.636 I144 0.635 I143 0.636 I144 0.635 I144 0.635 I145 0.70 I148 0.70 I148 0.70 I149 0.70 I150 0.70 I152 0.70 I155 0.70	Date:	11/1	4/15									10000			
Job #: 604/6/ Red Hanger Kleaners, # 0461 milas of Person Monitoring: № (3.0) Vacuum in Inches of Water 0,0734 Constraints 0,734 Vacuum in Inches of Water 0,034 Constraints 0,735 Constraints 0,736 Constraints 0,737 Constraints 0,745 Constraints 0,700 Constraints 0,700 Constraints 0,700 Constraints 0,700 Constraints 0,700 Constraints 0,700 <td< td=""><td>Site Add</td><td>dress:</td><td>6239 C</td><td>ollege A</td><td>ve, Oak</td><td>land</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></td<>	Site Add	dress:	6239 C	ollege A	ve, Oak	land							1		
Initials of Person Monitoring: (LC3D) Extracting Location: SSE3 SSE1 SSE2 SSE1 SSE3 SSE3 SSE4 VPP VPP <	Job #: /	0461	Red Ha	anger Kl	eaners,	# 0461								/	2.
Extracting Location: 55 EQ Vacuum in Inches of Water 0.036 ITme SSE1 SSE2 SSE3 SSE4 VP1 VP2 VP3 VP4 VP5 VP7 VP8 SG9-17 SG7 IT35 0.037 0.036 0.036 0.036 0.036 0.036 0.036 IT36 0.31 0.037 0.036 0.036 0.036 0.036 IT37 0.31 0.045 0.036 0.036 0.036 IT40 0.035 0.45 0.067 0.040 IT43 20.67 0.031 0.067 0.034 IT43 0.035 0.031 0.037 0.037 IT43 0.035 0.031 0.037 0.037 IT45 0.31 0.037 0.037 0.038 IT49 0.37 0.037 0.037 0.038 IT48 0.37 0.37 0.037 0.037 IT55 0.37 0.37 0.37 0.37 IT57 0.37 0.37 0.34 0.042 IT57 0.37 0.042 0.042 IT57 0.37 0.042 0.042 IT57 0.042 0.042	Initials c	of Person	n Monito	ring:	MLB	D							199		0.9704
Vacuum in Inches of Water VP6 VP7 VP8 SG9-17 NOTES 1136 0.31 0.31 0.31 0.036 0.33 0.036 0.060 0.037 0.037 0.037 0.037 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.063 0.060 0.063 0.037 0.037 0.037	Extraction	ng Locat	tion: S	SEZ											0,038-
Imme SSE1 SSE2 SSE3 SSE4 VP1 VP2 VP3 VP4 VP5 VP6 VP7 VP8 SG9-17 NOTES 1134 0.37 0.31 0.31 0.33 0.034 0.034 1134 0.37 0.31 0.030 0.034 0.034 1140 0.31 0.015 0.0167 1141 0.35 0.0167 0.0167 1143 0.35 0.0167 0.0167 1143 0.35 0.31 0.0167 1143 0.35 0.0167 0.0167 1145 0.35 0.0167 0.0167 1144 0.35 0.0167 0.0167 1145 0.31 0.0167 0.0167 1148 0.35 0.0167 0.0167 1149 0.35 0.017 0.0167 1149 0.35 0.017 0.0167 1149 0.35 0.017 0.0167 1149 0.35 0.017 0.0234 1150 0.419 0.0234 0.0234 1151 0.371 0.371 0.341 1152 0.371 0.341 0.341 1155 0.341							Vacuu	m in Ind	ches of V	Vater					5G10-7
(136 (137 (136 (137 (138 (139 (138 (140) (140	Time	SSE1	SSE2	SSE3	SSE4	VP1	VP2	VP3	VP4	VP5	VP6	VP7	VP8	SG9-17	NOTES
$\begin{array}{c cccccc} 0.31 & 0.31 \\ 1137 & 0.37 \\ 1138 \\ 1138 & 0.45 \\ 1140 & 0.45 \\ 1141 & 0.0232 \\ 6 & 0.060 \\ 0.067 \\ 1142 & 0.067 \\ 1144 & 0.35 \\ 1146 & 0.31 \\ 1146 & 0.31 \\ 1146 & 0.31 \\ 1146 & 0.31 \\ 1146 & 0.31 \\ 1146 & 0.31 \\ 1146 & 0.34 \\ 1147 & 0.034 \\ 1148 & 0.034 \\ 1148 & 0.034 \\ 1148 & 0.034 \\ 1149 & 0.034 \\ 1149 & 0.034 \\ 1149 & 0.034 \\ 1152 & 0.031 \\ 1152 & 0.031 \\ 1155 &$	(135														0.036 "
$\begin{array}{c cccccccccccc} 1132 & 0.31 & 0.45 & 0.45 & 0.45 & 0.60 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.67 & 0.635 & 0.67 & 0.67 & 0.635 & 0.67 & 0.635 & 0.67 & 0.635 & 0.$	1134	>		6.57									0.31		-7-
1139 0.45 1140 1141 1141 1141 1142 1143 1144 1144 0.35 1144 0.35 1146 0.31 0.34 0.67 0.636 0.034 0.034 0.034 0.034 0.034 0.034 0.035 0.034	1137	-		0.31			_		_	-		-			
1140 0.032 1141 0.032 1142 0.067 1143 0.067 1144 0.35 1145 0.31 1146 0.31 0.034 0.034 1146 0.31 0.034 0.034 1146 0.31 0.034 0.034 1148 0.038 1149 0.034 1148 0.033 1150 0.047 1153 20.70 1153 20.70 1154 0.37 1155 0.34 1157 0.045 1157 0.045 1157 0.045 1157 0.045 1157 0.045 1157 0.045 1157 0.045	1130	AUS							-		0.75	>	ſ		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1157	0,75							-		9.				
1141 20.032 1142 0.067 1143 0.067 1144 0.35 1145 0.35 1146 0.31 1146 0.31 1147 0.34 1148 0.34 1149 0.34 1149 0.34 1149 0.34 1149 0.34 1149 0.34 1149 0.35 1140 0.31 1140 0.31 1140 0.31 1140 0.31 1140 0.31 1151 0.34 1152 0.37 1153 0.37 1154 0.37 1155 0.34 1157 0.34 1157 0.34 1157 0.34 1157 0.34 1157 0.34 1157 0.34 1157 0.34 1157 0.34 1157 0.34 1157 0.34 1157 0.34 1157 0.34 1157 0.34 1157 0.34 1157 0.34	1140					1		-			-		-		
1143 20.67 1143 20.67 1145 0.35 1146 0.31 0.34 0.34 1146 0.31 0.00 0.34 1146 0.31 0.00 0.34 0.00 0.034 0.00 0.034 0.036 0.036 0.037 0.036 1150 0.37 1155 0.37 1155 0.37 1157 0.34 1157 0.34 1157 0.34 1157 0.34 1157 0.34 1157 0.34 1157 0.34	1141						-		-		1	-	C	002	
1142 20.67 0.67 1142 0.35 0.34 1146 0.31 0.34 1146 0.31 0.34 1146 0.31 0.34 1147 0.35 0.034 1148 0.036 1148 0.036 1150 0.47 1153 20.70 1153 20.70 1154 0.37 1155 0.37 1155 0.37 1155 0.37 1155 0.37 1155 0.34 1157 3.045 5552 Extenction 5552 Extenction 5552 Extenction	-			-		-								6	
1143 20.67 1145 1145 1146 0.35 1146 0.34 0.34 0.34 0.036 0.047 0.042 0.042 0.042 0.042	1112					12					-		0	1060	
1144 1145 1146 0.35 1146 0.34 0.34 0.34 0.036 0.036 0.036 0.036 0.036 0.036 0.038 0.033 0.037 1150 0.37 1155 0.37 1155 0.37 1155 0.37 1155 0.34 0.70 0.70 0.70 0.70 0.70 0.70 0.74 0.70 0.70 0.74 0.70 0.70 0.74 0.70 0.70 0.74 0.70 0.74 0.70 0.74 0.70 0.74 0.70 0.74 0.70 0.74 0.72 0.74 0.75 0.74 0.75 0.74 0.75 0.7	1112		2017	1	2				-			0161			
0.34 0.34 0.34 0.34 0.34 0.34 0.036 0.036 0.036 0.036 0.036 0.036 0.037 0.037 0.049 0.70 0.37 0.34 0.033 0.038 0.039 0.39 0	144		20.61	0 25	1										
1146 0.31 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.033 0.033 0.033 0.033 0.70 0.34 0.34 0.34 0.55 0.34 0.57 0.34 0.54 0.54 0.54 0.54 0.55 0.34 0.55 0	1145			0, 55	-					-			034		
1148 1148 1148 1150 1150 1150 1150 1150 1151 1152 1155 0,37 1155 0,37 1155 0,37 1155 0,37 1155 0,37 1155 0,37 1155 0,34 1157 0,34 1157 0,34 1157 0,34 1157 0,34 1157 0,34 1157 0,34 1157 0,34 1157 0,545 5552 Extraction StopPed At (222)	1146				0.31	1				-			0.27		
1148 HE 0,038 0,038 0,033 0,033 0,033 0,033 0,049 1150 0,37 1155 0,37 1155 0,37 1155 0,37 1155 0,37 1155 0,34 0,34 0,34 0,34 0,045 5 0 0 0 0 0 0 0 0 0 0 0 0 0					0.01										
1148 1150 1150 1150 1150 1150 1150 1150 1150 1150 1150 1151 1155		1	1			-			-	-					0.030
1148 1150 1150 1150 1150 1153 20.70 1154 0,37 1155 1155 0,37 1155 0,37 1155 0,37 1155 0,37 1155 0,37 0,34 0,045 To 0,045	······	line -				1								+ (0030
1148 1150 1150 1150 1151 1152 1154 1155 1154 1155 1154 1155 1154 1155 1154 1155 1154 1155 1154 1155 1156 1157		1-1			1.2										0.030
ние 1150 1150 1153 1153 1154 1155	1148					1				1					0.033
1150 1150 1151 1152 1153 1155	1450					der. "									-10.55
1150 1152 1153 20.70 1154 1155 0.37 1155 0.34 0.043 0.04						1.5				1					
1152 0.70 1153 20:70 1154 0.37 1155 0.39 1155 0.39 1155 0.39 1155 0.39 1157 0.34 1157 0.34 1157 0.34 1157 0.34 0.043 0	1150					10					0,47	1			
1152 0.70 1153 20.70 1154 0.37 1155 0.34 1155 0.34 1156 0.34 1157 0.045 To 0.045 To 0.042 SSE2 EXTRACTION STOPPED AT 12-21	1151	0,49							1						1
1153 20.70 1154 0.37 1155 0.34 1156 0.34 1157 0.34 1157 0.045 To 0.042 55E2 EXTRACTION STOPPED AT [2-2]	1152		1	~								0.70			
1155 1155 1156 0,34 0,34 0,34 0,34 0,045 To 0,045 To 0,042 0,04 0,0	1153		20,70												
1155 1156 0.34 0.34 0.045 1057 0.045 10 0.062 0.062 0.062	1154			0,31					10						
1154 1157 55E2 EXTRACTION STOPPED AT 1221	1155				6 0.0		-		-	08.13			0.34	Sec. 1	
1157 0.045 C 0.062	1154			255	0.29										
1157 															
55EZ EXTRACTION STOPPED AT 1221		-					1.1		1					(D) >	
SSEZ EXTRACTION STOPPED AT 1221	115/							313		1				7.045	
SSEZ EXTRACTION STOPPED AT 1221						Star							-	6	
SSEZ EXTRACTION STOPPED AT 1221									-	-				0,06d	
SSEZ EXTRACTION STOPPED AT 1221									-	-					
DOVERINGCION STOUTED AT 12-21				ECT		2++0	NOT:		2-	Port	1-	15-	1		
	2		-	221	50 6	-1 114	10110	N	STO	res	AI	120	1		
												<pre></pre>			
									1						
									-						

_	. 1.	1.0				VACU	UM MO	NITORI	IG LOG		Page	۸	of	a
ate:	1/1	115	1	1										
ite Ado	dress:	6239 0	College A	Ave, Oak	land	_								
ob #: 0	1461	Red H	anger Kl	leaners,	# 0461									
nitials o	of Perso	n Monito	oring:	ULBI	>									1
xtracti	ng Loca	tion:	SSE	3										
						Vacuu	m in Inc	hes of W	/ater					SEID-
ime	SSE1	SSE2	SSE3	SSE4	VP1	VP2	VP3	VP4	VP5	VP6	VP7	VP8	SG9-17	NOTES
l	ruper	line .	read	inas	~		1/2/2					10	000-11	NOTES
257				0.9	1	1				1.000	>			
258	0.002								1 23	01000			1.003	
259		0,00	2					122.27		1	0.205	1	0,000	
340			0,000	2			-		1200		0,000	·		6000
						1					-	6 000		0,000
301			1			10				-		ojoa	1.12	0007
302	-			0.000	f		1							0,002
							1							
1312		54	R	Esta	814	111	1 -	SCE	2	and the second				
313	1	517	1111	E XVIA	AC 11	NG	AL	220	0	1) 111	1			
314	0.152									0 119-	1			
315	-11.22													
316						-		1000					0,028	
219	<u></u>	0.21				1					0.223	3		
210		0131	104			-	-				4			\sim
319			1,87										/	0,098
321				1220							*	0.87	(0.093
322				0.70	- di							1.2		
224														0,093
2007	DIFI									0.139				
140	0,001											1		
ang -							1 2						0.038	
121										0	1,221			
Nac		0.20	. 0.0											
130			1.80											- Sangy
221				a 10								0.85		
931				0,65									/	1
													(0.083 -
														(190,0
20														
100								1000			3			. 090 4
								1						
7-									85 - C -				1	
100										0.136				
136 (0,152										- 200	(028	
										P	217		.000	
37		0.41						1		0	1211			
38			1.190											
39					- 21									
19.0											-	1 07		
MA								and the second se				A 14 1		

				1		VACUL		ITORIN	IG LOG		Page	2	of	2
Date:	11/	16/15												
Site Add	Iress:	6239 C	ollege A	Ave, Oak	land									
Job #: /	2461	Red Ha	anger Kl	eaners.	# 0461			1.000					1	
Initials o	of Persor	Monito	ring:	M	LBD								0,0	75
Extractin	ng Locat	ion: SS	SE3										0.	102
						Vacuur	m in Inch	nes of V	Vater				<u> </u>	5610-7
Time	SSE1	SSE2	SSE3	SSE4	VP1	VP2	VP3	VP4	VP5	VP6	VP7	VP8	SG9-17	NOTES
1341														a.098 "
1342				6.75	1									01010
1.5 10	•			01.0										
1355										0.13	3			
1356	0.149	6								-110	-			
1357			1					1220			12 .		0.020	
1358											0.217	1	(0,091
1359		0.38											(0.097)
400			1,90				1415719							
14AI			1.1-		1	-		1				0.98		0.094
1402				0.80	,		1							
1.100			-		-									
1422		55	E3 F	XTRA	TIDA	50	OPED	AT	1422		Contraction Characteristics			
1100	•	50		711111		010	vi ce		100					
			-											
							-							
	1		1											
					1	1								
									1.0.1					
				-	1		-							
						1.4				-				
2					1									
200			1	100 87	1			12						
												1		
			1				12.00	1		1				
										1	1113			
			-											
	1						1		1			+	+	
						-								
													+	
								-		1	-			
				-		-		-	-					1
								-					+	
							1				-			
<u></u>	+	+									-	1		
	-						-							
			1						-					

Jata:	11/1	1.1				VACU	UM MO	NITORI	NG LOG		Page	1	of	2
ite Ad	41/16	6220 (2-11											
ab #	oul I	6239 C	Jollege	Ave, Oa	kland			1						
ub #.	07Q1	Red H	anger K	leaners,	# 0461									
vtracti	or Perso		oring:	MIE	3D	-								
Allacti	ng Loca	tion:	SET								C. S. W.		1.1.1.1	
imo	SSE1	0000	0050	0054		Vacuu	m in Incl	hes of V	Vater				13	SEIN-7
D	SSET	SSEZ	SSE3	SSE4	VP1	VP2	VP3	VP4	VP5	VP6	VP7	VP8	SG9-1	NOTES
Da	saune	Ma	airgs		1.318							1000		
												-12		
430		-				-	-				1.0	1		
131	0 063									0,000			1	
437	0,000						-					de la		
433		1						1					0,000	
424		1.00	2	1							0.000			
435		0.000	0.000)	+									
436			- 1000			-								
127												500:0	1	
438				1 NO	2									0.000
429		STAN	TE	TPA	Tul	/ A-T	110							
1.21		SIM		1 mgm	CINE	O AI	225	4						
140										0 101				
441	0.107									0.095				
142	0110]													
143													0,0a1	
144		0.16									0.158			
145		• • •	0.19											
146			+ 10 .											
											(2.74		0,100
1					-									0.094
448				1										
149				1.74										0,097 <
坊														
450			Self.							0.095				
451	0.105						**							
152	1												0 007	
153					1		19 11				5.15/	-	orval	~
154	4	0.15									156		/	1085h
155			0.69								0	.70	(0.097)
156				1.72								. 10	1	and a
51														0.000
													(1089
					1									
									-					·····
		101											and the second second	near mean the same
				and the		and the second second								
										1				
									•					

	1					VACU	JM MON	ITORIN	IG LOG		Page	2	of	2
Date:	1/16/	15												
Site Add	dress:	6239 C	ollege A	ve. Oak	land						8			
Job #: (0461	Red Ha	inger Kle	eaners, #	# 0461		1							
Initials of	of Person	Monito	ring:	MLB	D									
Extracti	ng Locat	ion: S	SEH			1.60								
						Vacuu	m in Incl	nes of W	/ater					5610-7
Time	SSE1	SSE2	SSE3	SSE4	VP1	VP2	VP3	VP4	VP5	VP6	VP7	VP8	SG9-17	NOTES
1505	1									0.094	>			
1506	0,104								1					
1507		*											0.019	(a)
1508											0,13			10089
1509		0.26								1				2.090
1510			0.79			1.	1							
1511												0.19		
1512				1.1										
1513			Ce II	ENE										0,071
15.30)	5	SE4	EXTR	KACTI	ON,	STO PE	ED.						
								-						
						+		-					+	
						-	-						-	
							+		-				-	
							-	-		1			+	
						100000				1				
				· · · · ·		1		-	+					
								1	1					
							+							
											U.			
						1								
32														
								1						
	<u></u>					-								
			1										- Internet	
						-	-					ļ		
							-							
. Berner and														
			ļ											
		-					-		-					

y de

	1					VACU	JM MON	ITORIN	G LOG		Page	1	of	4
Date:	11/16/15	1									v			
Site Ad	dress:	6239 C	College A	Ave, Oak	kland									
Job #:		Red Ha	anger Kl	eaners,	# 0461									
Initials of	of Persor	n Monito	oring:	JHM										
Extracti	ng Locat	tion:	SSEI									191		
					-	Vacuur	n in Inch	nes of W	ater —					
Time	SSE1	SSE2	SSE3	SSE4	VP1	VP2	VP3	VP4	VP5	VP6	VP7	VP8	SG9-17	NOTES
0749					0,000									
0150			-	-		030.0				-	-	•	1	
075							0,000	-					-	
0152								0,000	1 000					
0135									0,000		-			
rou		1			-			- 0 02	5					
0912							-0.13	-0.00						
0913							0112		-0.88		-			
0916				-	D. 097	4			- 40 0					
0917			1			0,083	5							
0936							-	-0,83						
0937								-	0.95					
0938						~	0.18				4			
0939				-	0.096	0.07								
0941				-3	0 091	0,084	2							
1000	-				0,014	0.000			Contraction of					
1002						0,084	0.13							
1003				la se estador				0.85						
1004	1						1998		0,94		1			
1016					1			0,75						
1018									0:05					
1019							-Oell							
1020				-	0.092									
1022					2	0.086								
032						-	- 22 4	-0.8A	0.00					
033			-			2 200		-	Ceri					
1026					0 000	4000	-							
1037		17772-02-001100-0			0.071	-	0152							
1001						-0	2150							
													+	
													1	
		1												
											-			di
										3. 2. 1.				

	1					VACUU	M MON	ITORIN	G LOG		Page	2	of	4
Date:	11/10	15												
Site Ad	dress:	6239 C	College A	ve, Oak	land									*
Job #:		Red Ha	anger Kl	eaners,	# 0461									
Initials of	of Perso	n Monito	oring:	MHC										
Extracti	ng Loca	ation: <	SSE:	2							_			
					-	Vacuun	n in Inch	es of W	ater					
Time	SSE1	SSE2	SSE3	SSE4	VP1	VP2	VP3	VP4	VP5	VP6	VP7	VP8	SG9-17	NOTES
1100				-	0,002								_	
ILet			-	T	-0,011	0.800					-			
1101						0,000					-			
11.2				-	TO	-0,005	0.002							
1103						da a	0.000				-			
1105						10	06016	0 004						
1103				1			- 57	0.009						
									0,002					
								- TO	0.013					
1128				-	0.162									
1129						0,140					-			
1134						-	0.32							
1135							-	0.52		-				
1134								>	0,39					
11400					0.162	Dida								
1147		-				0,140	0 29		-					
1190						~	0,51	0.52						
1149								-01-05	0.44					
1204				-	0,160									
1207						0,138								
1208							0,40		1	1				
1209							-	0,60						
1210								-	0.45					
				1									_	SYSTEM
		_		1										016
														1221
											-			
					-						-	1		
				1										
				1										
** **														
		_												
				1							1			

	2.1					VACUL	IM MON	ITORIN	G LOG		Page	3	of	4
Date:	11/16/15													
Site Add	dress:	6239 C	ollege A	ve, Oak	land		100000							
Job #:	0461	Red Ha	anger Kle	eaners,	# 0461									
Extraction	or Persor			JAN										
LAUACU	iy Local	1011.	2005			Vacuur	n in Inch	nes of W	ater					
Time	SSE1	SSE2	SSE3	SSE4	VP1	VP2	VP3	VP4	VP5	VP6	VP7	VP8	SG9-17	NOTES
1256				-	- O. DOL									
				to-	0,206									
1259						0.000								
					TO	-0.003								
1301							200,0						_	
1.0						10-	0.002							
1:302								0.000			_			
1201							-10	0.004	0.000					
1.50 +									0.004		-			
								10	1001					
1312	545	TEM	STAR	T			1.2							
1325				•	-0.47									
1327							-	0-199			_			
1328					1	- 12		-	0,126					
1330					-	0,43	0 90							
1220					0.52		0.00							
13:40	-					0.49								
1341						-	-0,98							
1392						1	-	-0,196						
1343							1	-	0,126					
1349				-	0.59									
350					-	-0.49	- 0							
1351						?	0.98	0.00						
1252							-	01178	0.126				-	
1255									en de					
											-			
							1.	100						
									K0					
			1											
									6					
									No.					

-

	1					VACU	JM MON	NITORIN	G LOG		Page	4	of	4
Date:	11/16	15		1										
Site Ad	dress:	6239 C	College A	ve, Oal	kland		1.200							
Job #:		Red Ha	anger Kl	eaners,	# 0461									
Initials of	of Persor	n Monito	oring:	1HL	1									
Extracti	ng Locat	ion: S	SE4				12 Dest							
						Vacuur	m in Incl	nes of W	ater					
Time	SSE1	SSE2	SSE3	SSE4	VP1	VP2	VP3	VP4	VP5	VP6	VP7	VP8	SG9-17	NOTES
1430					0,000									
1471	1.			-										
1431				+	-	0.000	-	-			-			
1122			-	-		1.2.6.	0 000							
1456							0,00							
1422						1-	0.000	0:000						
1-125							17 0	0.000						
1434				-			10	craref	0,007					
			+						0.005		-			
5457	EM S	DOVI	1439					1.*	0100					
		12	1 1-1-1	1										
1443				~	0:72									
1444					-	0.56								
1445						-	0,69							
1444								0,143						
1247					0 -7 -				0,0%					
1456					-0.15									
1451					-	0,54	010						-	
1458			1				0,6-1	ALAT						
140.								01145	0.007					
1505					-1.75				0,0001		-			
1506	1				0112	0.54		1						
1507						-	0.109	-		112-02-000				
1508							-	0,142						
1509									-0,085					
		100												
	-			1										
	-										-			
	1													
			· · · · · · · · · · ·	1.1										
	diaman			L	A									

Air Sampling Log

/	1		AIR SAMPLING LO	JG		Page
Date: 11/16	/15					
Site Address:	6239 College Av	e, Oakland	4			
Job # 04/2	Red Hamger Kle	aners # 0461				
Initals of Porsor	Sampling:					
Initals of Person	i Samping.	430				
		0.10.11				
Air Sample		Sample Canister	Begin Sample	End Sample	Post Sampling	1.
Location	18	Check (In Ha)	Vacuum (In	Vacuum (In	PID Value	
Designation	Canister #	and Time	Hg) and Time	Hg) and Time	(ppm)	NOTES
SSE1	33398	vac - 30	vac - 28	vac = 5	0	
		time AGALI	time 1/1915	time 142/25	1779	
		une 010	unepototo	ume lo abao	10000	and the second second costs
0050	210			.5		
SSE2	369	vac -30	vac - 36	vac	0	
		time 0915	time 120915	time 21623		
			12/100			
SSE3	121514	vac -2)	vac - 25	vac - S	0	
		time 1975	time 141111	time 14 18.13		
		une c (a o	une t-Turi	uner r look		
SSEA	11 15 3/	20	- 21.		07	
33E4	111336	vac - 20	vac ore	vac ES	0	
		time 0 7 20	time 51820	time (52624		
AV .	1 2					
	41,	vac	vac	vac		1
		time	time	time		
111/11						
					100	-
in march 1/4		vac	vac	vac		
for the second s		time	time	time		_
		vac	vac	vac		
		time	time	time		
		100	1/22	100		
land the second second		Vac	vac	vac		
<u></u>		time	time	time		
	-					
	8	vac	vac ,	vac		
		time	time	time		
		vac	vac	vac		
	1	Nac	time	time		
		ame	time	ume		
		vac	vac	vac		
		time	time	time		
		vac	vac	vac		
	1	time	time	time		
		ume	ame	ume		
				Anni		
		vac	vac	vac		_
					Distance of the second s	

APPENDIX B

Laboratory Analytical Reports and Chain of Custody Documentation

12/2/2015 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: RED HANGER KLEANERS 6239 COLLEGE AVE OAK Project #: 0461 Workorder #: 1511270

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 11/17/2015 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630

WORK ORDER #: 1511270

Work Order Summary

CLIENT:	Mr. Paul King	BILL TO:	Mr. Paul King
	P & D Environmental		P & D Environmental
	55 Santa Clara		55 Santa Clara
	Suite 240		Suite 240
	Oakland, CA 94610		Oakland, CA 94610
PHONE:	510-658-6916	P.O. #	
FAX:	510-834-0772	PROJECT #	0461 RED HANGER KLEANERS 6239
DATE RECEIVED:	11/17/2015	CONTACT:	COLLEGE AVE OAK Kyle Vagadori
DATE COMPLETED:	12/02/2015	001111011	

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SSE1	TO-15	4.7 "Hg	14.9 psi
02A	SSE2	TO-15	4.7 "Hg	15.4 psi
03A	SSE3	TO-15	4.7 "Hg	15.2 psi
04A	SSE4	TO-15	6.1 "Hg	15 psi
05A	Lab Blank	TO-15	NA	NA
06A	CCV	TO-15	NA	NA
07A	LCS	TO-15	NA	NA
07AA	LCSD	TO-15	NA	NA

Terde CERTIFIED BY:

DATE: <u>12/02/15</u>

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704343-14-7, UT NELAP CA009332014-5, VA NELAP - 460197, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2014, Expiration date: 10/17/2015. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 956: (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

Mayes

LABORATORY NARRATIVE EPA Method TO-15 P & D Environmental Workorder# 1511270

Four 1 Liter Summa Canister samples were received on November 17, 2015. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

The Chain of Custody (COC) information for sample SSE2 did not match the information on the canister with regard to canister identification. The client was notified of the discrepancy and the information on the canister was used to process and report the sample.

Analytical Notes

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds. Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SSE1

Lab ID#: 1511270-01A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Ethanol	4.8	11	9.0	22
Tetrachloroethene	1.2	130	8.1	890

Client Sample ID: SSE2

Lab ID#: 1511270-02A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Ethanol	4.8	8.1	9.0	15
Tetrachloroethene	1.2	86	8.1	580

Client Sample ID: SSE3

Lab ID#: 1511270-03A

Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	4.8	9.2	9.1	17
Carbon Disulfide	4.8	5.4	15	17
Tetrachloroethene	1.2	42	8.2	280

Client Sample ID: SSE4

Lab ID#: 1511270-04A

Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	5.1	14	9.6	26
Acetone	13	24	30	56
2-Butanone (Methyl Ethyl Ketone)	5.1	7.3	15	21
Benzene	1.3	1.4	4.0	4.6
Tetrachloroethene	1.3	13	8.6	88
Cumene	1.3	1.5	6.2	7.4

Client Sample ID: SSE1 Lab ID#: 1511270-01A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17112110 2.39	Date of Collection: 11/16/15 10:26:00 AM Date of Analysis: 11/21/15 04:27 PM		
	Rnt Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	1.2	Not Detected	5.9	Not Detected
Freon 114	1.2	Not Detected	8.4	Not Detected
Chloromethane	12	Not Detected	25	Not Detected
Vinyl Chloride	1.2	Not Detected	3.0	Not Detected
1,3-Butadiene	1.2	Not Detected	2.6	Not Detected
Bromomethane	12	Not Detected	46	Not Detected
Chloroethane	4.8	Not Detected	13	Not Detected
Freon 11	1.2	Not Detected	6.7	Not Detected
Ethanol	4.8	11	9.0	22
Freon 113	1.2	Not Detected	9.2	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.7	Not Detected
Acetone	12	Not Detected	28	Not Detected
2-Propanol	4.8	Not Detected	12	Not Detected
Carbon Disulfide	4.8	Not Detected	15	Not Detected
3-Chloropropene	4.8	Not Detected	15	Not Detected
Methylene Chloride	12	Not Detected	42	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.3	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.7	Not Detected
Hexane	1.2	Not Detected	4.2	Not Detected
1,1-Dichloroethane	1.2	Not Detected	4.8	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.8	Not Detected	14	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.7	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.5	Not Detected
Chloroform	1.2	Not Detected	5.8	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.5	Not Detected
Cyclohexane	1.2	Not Detected	4.1	Not Detected
Carbon Tetrachloride	1.2	Not Detected	7.5	Not Detected
2,2,4-Trimethylpentane	1.2	Not Detected	5.6	Not Detected
Benzene	1.2	Not Detected	3.8	Not Detected
1,2-Dichloroethane	1.2	Not Detected	4.8	Not Detected
Heptane	1.2	Not Detected	4.9	Not Detected
Trichloroethene	1.2	Not Detected	6.4	Not Detected
1,2-Dichloropropane	1.2	Not Detected	5.5	Not Detected
1,4-Dioxane	4.8	Not Detected	17	Not Detected
Bromodichloromethane	1.2	Not Detected	8.0	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.4	Not Detected
4-Methyl-2-pentanone	1.2	Not Detected	4.9	Not Detected
Toluene	1.2	Not Detected	4.5	Not Detected
trans-1,3-Dichloropropene	1.2	Not Detected	5.4	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.5	Not Detected
Tetrachloroethene	1.2	130	8.1	890
2-Hexanone	4.8	Not Detected	20	Not Detected

Client Sample ID: SSE1 Lab ID#: 1511270-01A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	17112110 2.39	Date of Collection: 11/16/15 10:26:00 AM Date of Analysis: 11/21/15 04:27 PM		
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.2	Not Detected
Chlorobenzene	1.2	Not Detected	5.5	Not Detected
Ethyl Benzene	1.2	Not Detected	5.2	Not Detected
m,p-Xylene	1.2	Not Detected	5.2	Not Detected
o-Xylene	1.2	Not Detected	5.2	Not Detected
Styrene	1.2	Not Detected	5.1	Not Detected
Bromoform	1.2	Not Detected	12	Not Detected
Cumene	1.2	Not Detected	5.9	Not Detected
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.2	Not Detected
Propylbenzene	1.2	Not Detected	5.9	Not Detected
4-Ethyltoluene	1.2	Not Detected	5.9	Not Detected
1,3,5-Trimethylbenzene	1.2	Not Detected	5.9	Not Detected
1,2,4-Trimethylbenzene	1.2	Not Detected	5.9	Not Detected
1,3-Dichlorobenzene	1.2	Not Detected	7.2	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.2	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.2	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.2	Not Detected
1,2,4-Trichlorobenzene	4.8	Not Detected	35	Not Detected
Hexachlorobutadiene	4.8	Not Detected	51	Not Detected
1,1-Difluoroethane	4.8	Not Detected	13	Not Detected

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	109	70-130
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	93	70-130

Client Sample ID: SSE2 Lab ID#: 1511270-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17112111 2.40	Date of Collection: 11/16/15 12:16:00 PM Date of Analysis: 11/21/15 05:03 PM		
	Rpt Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	1.2	Not Detected	5.9	Not Detected
Freon 114	1.2	Not Detected	8.4	Not Detected
Chloromethane	12	Not Detected	25	Not Detected
Vinyl Chloride	1.2	Not Detected	3.1	Not Detected
1,3-Butadiene	1.2	Not Detected	2.6	Not Detected
Bromomethane	12	Not Detected	47	Not Detected
Chloroethane	4.8	Not Detected	13	Not Detected
Freon 11	1.2	Not Detected	6.7	Not Detected
Ethanol	4.8	8.1	9.0	15
Freon 113	1.2	Not Detected	9.2	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Acetone	12	Not Detected	28	Not Detected
2-Propanol	4.8	Not Detected	12	Not Detected
Carbon Disulfide	4.8	Not Detected	15	Not Detected
3-Chloropropene	4.8	Not Detected	15	Not Detected
Methylene Chloride	12	Not Detected	42	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.3	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Hexane	1.2	Not Detected	4.2	Not Detected
1,1-Dichloroethane	1.2	Not Detected	4.8	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.8	Not Detected	14	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.5	Not Detected
Chloroform	1.2	Not Detected	5.8	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.5	Not Detected
Cyclohexane	1.2	Not Detected	4.1	Not Detected
Carbon Tetrachloride	1.2	Not Detected	7.6	Not Detected
2,2,4-Trimethylpentane	1.2	Not Detected	5.6	Not Detected
Benzene	1.2	Not Detected	3.8	Not Detected
1,2-Dichloroethane	1.2	Not Detected	4.8	Not Detected
Heptane	1.2	Not Detected	4.9	Not Detected
Trichloroethene	1.2	Not Detected	6.4	Not Detected
1,2-Dichloropropane	1.2	Not Detected	5.5	Not Detected
1,4-Dioxane	4.8	Not Detected	17	Not Detected
Bromodichloromethane	1.2	Not Detected	8.0	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.4	Not Detected
4-Methyl-2-pentanone	1.2	Not Detected	4.9	Not Detected
Toluene	1.2	Not Detected	4.5	Not Detected
trans-1,3-Dichloropropene	1.2	Not Detected	5.4	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.5	Not Detected
Tetrachloroethene	1.2	86	8.1	580
2-Hexanone	4.8	Not Detected	20	Not Detected

Client Sample ID: SSE2 Lab ID#: 1511270-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil Factor:	17112111 2 40	Date of Collection: 11/16/15 12:16:00 PM Date of Analysis: 11/21/15 05:03 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.2	Not Detected
Chlorobenzene	1.2	Not Detected	5.5	Not Detected
Ethyl Benzene	1.2	Not Detected	5.2	Not Detected
m,p-Xylene	1.2	Not Detected	5.2	Not Detected
o-Xylene	1.2	Not Detected	5.2	Not Detected
Styrene	1.2	Not Detected	5.1	Not Detected
Bromoform	1.2	Not Detected	12	Not Detected
Cumene	1.2	Not Detected	5.9	Not Detected
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.2	Not Detected
Propylbenzene	1.2	Not Detected	5.9	Not Detected
4-Ethyltoluene	1.2	Not Detected	5.9	Not Detected
1,3,5-Trimethylbenzene	1.2	Not Detected	5.9	Not Detected
1,2,4-Trimethylbenzene	1.2	Not Detected	5.9	Not Detected
1,3-Dichlorobenzene	1.2	Not Detected	7.2	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.2	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.2	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.2	Not Detected
1,2,4-Trichlorobenzene	4.8	Not Detected	36	Not Detected
Hexachlorobutadiene	4.8	Not Detected	51	Not Detected
1,1-Difluoroethane	4.8	Not Detected	13	Not Detected

Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	110	70-130	
1,2-Dichloroethane-d4	97	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: SSE3 Lab ID#: 1511270-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17112112 2.41	Date Date	of Collection: 11/1 of Analysis: 11/21	6/15 2:18:00 PM /15 05:25 PM
	Rpt Limit	Amount	Rpt. I imit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	1.2	Not Detected	6.0	Not Detected
Freon 114	1.2	Not Detected	8.4	Not Detected
Chloromethane	12	Not Detected	25	Not Detected
Vinyl Chloride	1.2	Not Detected	3.1	Not Detected
1,3-Butadiene	1.2	Not Detected	2.7	Not Detected
Bromomethane	12	Not Detected	47	Not Detected
Chloroethane	4.8	Not Detected	13	Not Detected
Freon 11	1.2	Not Detected	6.8	Not Detected
Ethanol	4.8	9.2	9.1	17
Freon 113	1.2	Not Detected	9.2	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Acetone	12	Not Detected	29	Not Detected
2-Propanol	4.8	Not Detected	12	Not Detected
Carbon Disulfide	4.8	5.4	15	17
3-Chloropropene	4.8	Not Detected	15	Not Detected
Methylene Chloride	12	Not Detected	42	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.3	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Hexane	1.2	Not Detected	4.2	Not Detected
1,1-Dichloroethane	1.2	Not Detected	4.9	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.8	Not Detected	14	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.6	Not Detected
Chloroform	1.2	Not Detected	5.9	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.6	Not Detected
Cyclohexane	1.2	Not Detected	4.1	Not Detected
Carbon Tetrachloride	1.2	Not Detected	7.6	Not Detected
2,2,4-Trimethylpentane	1.2	Not Detected	5.6	Not Detected
Benzene	1.2	Not Detected	3.8	Not Detected
1,2-Dichloroethane	1.2	Not Detected	4.9	Not Detected
Heptane	1.2	Not Detected	4.9	Not Detected
Trichloroethene	1.2	Not Detected	6.5	Not Detected
1,2-Dichloropropane	1.2	Not Detected	5.6	Not Detected
1,4-Dioxane	4.8	Not Detected	17	Not Detected
Bromodichloromethane	1.2	Not Detected	8.1	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.5	Not Detected
4-Methyl-2-pentanone	1.2	Not Detected	4.9	Not Detected
Toluene	1.2	Not Detected	4.5	Not Detected
trans-1,3-Dichloropropene	1.2	Not Detected	5.5	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.6	Not Detected
Tetrachloroethene	1.2	42	8.2	280
2-Hexanone	4.8	Not Detected	20	Not Detected

Client Sample ID: SSE3 Lab ID#: 1511270-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17112112	Date	of Collection: 11/1	6/15 2:18:00 PM
Dil. Factor:	2.41	Date	of Analysis: 11/21	/15 05:25 PM
Compound	Røt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.2	Not Detected
Chlorobenzene	1.2	Not Detected	5.5	Not Detected
Ethyl Benzene	1.2	Not Detected	5.2	Not Detected
m,p-Xylene	1.2	Not Detected	5.2	Not Detected
o-Xylene	1.2	Not Detected	5.2	Not Detected
Styrene	1.2	Not Detected	5.1	Not Detected
Bromoform	1.2	Not Detected	12	Not Detected
Cumene	1.2	Not Detected	5.9	Not Detected
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.3	Not Detected
Propylbenzene	1.2	Not Detected	5.9	Not Detected
4-Ethyltoluene	1.2	Not Detected	5.9	Not Detected
1,3,5-Trimethylbenzene	1.2	Not Detected	5.9	Not Detected
1,2,4-Trimethylbenzene	1.2	Not Detected	5.9	Not Detected
1,3-Dichlorobenzene	1.2	Not Detected	7.2	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.2	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.2	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.2	Not Detected
1,2,4-Trichlorobenzene	4.8	Not Detected	36	Not Detected
Hexachlorobutadiene	4.8	Not Detected	51	Not Detected
1,1-Difluoroethane	4.8	Not Detected	13	Not Detected

Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	109	70-130	
1,2-Dichloroethane-d4	100	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: SSE4 Lab ID#: 1511270-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17112113 2.54	Date Date	of Collection: 11/1 of Analysis: 11/21	6/15 3:26:00 PM /15 06:00 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	1.3	Not Detected	6.3	Not Detected
Freon 114	1.3	Not Detected	8.9	Not Detected
Chloromethane	13	Not Detected	26	Not Detected
Vinyl Chloride	1.3	Not Detected	3.2	Not Detected
1,3-Butadiene	1.3	Not Detected	2.8	Not Detected
Bromomethane	13	Not Detected	49	Not Detected
Chloroethane	5.1	Not Detected	13	Not Detected
Freon 11	1.3	Not Detected	7.1	Not Detected
Ethanol	5.1	14	9.6	26
Freon 113	1.3	Not Detected	9.7	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Acetone	13	24	30	56
2-Propanol	5.1	Not Detected	12	Not Detected
Carbon Disulfide	5.1	Not Detected	16	Not Detected
3-Chloropropene	5.1	Not Detected	16	Not Detected
Methylene Chloride	13	Not Detected	44	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.6	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Hexane	1.3	Not Detected	4.5	Not Detected
1,1-Dichloroethane	1.3	Not Detected	5.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.1	7.3	15	21
cis-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Tetrahydrofuran	1.3	Not Detected	3.7	Not Detected
Chloroform	1.3	Not Detected	6.2	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Cyclohexane	1.3	Not Detected	4.4	Not Detected
Carbon Tetrachloride	1.3	Not Detected	8.0	Not Detected
2,2,4-Trimethylpentane	1.3	Not Detected	5.9	Not Detected
Benzene	1.3	1.4	4.0	4.6
1,2-Dichloroethane	1.3	Not Detected	5.1	Not Detected
Heptane	1.3	Not Detected	5.2	Not Detected
Trichloroethene	1.3	Not Detected	6.8	Not Detected
1,2-Dichloropropane	1.3	Not Detected	5.9	Not Detected
1,4-Dioxane	5.1	Not Detected	18	Not Detected
Bromodichloromethane	1.3	Not Detected	8.5	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	5.8	Not Detected
4-Methyl-2-pentanone	1.3	Not Detected	5.2	Not Detected
Toluene	1.3	Not Detected	4.8	Not Detected
trans-1,3-Dichloropropene	1.3	Not Detected	5.8	Not Detected
1,1,2-Trichloroethane	1.3	Not Detected	6.9	Not Detected
Tetrachloroethene	1.3	13	8.6	88
2-Hexanone	5.1	Not Detected	21	Not Detected

Client Sample ID: SSE4 Lab ID#: 1511270-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17112113 2.54	Date Date	of Collection: 11/1 of Analysis: 11/21	6/15 3:26:00 PM /15 06:00 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.3	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	9.8	Not Detected
Chlorobenzene	1.3	Not Detected	5.8	Not Detected
Ethyl Benzene	1.3	Not Detected	5.5	Not Detected
m,p-Xylene	1.3	Not Detected	5.5	Not Detected
o-Xylene	1.3	Not Detected	5.5	Not Detected
Styrene	1.3	Not Detected	5.4	Not Detected
Bromoform	1.3	Not Detected	13	Not Detected
Cumene	1.3	1.5	6.2	7.4
1,1,2,2-Tetrachloroethane	1.3	Not Detected	8.7	Not Detected
Propylbenzene	1.3	Not Detected	6.2	Not Detected
4-Ethyltoluene	1.3	Not Detected	6.2	Not Detected
1,3,5-Trimethylbenzene	1.3	Not Detected	6.2	Not Detected
1,2,4-Trimethylbenzene	1.3	Not Detected	6.2	Not Detected
1,3-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
alpha-Chlorotoluene	1.3	Not Detected	6.6	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	7.6	Not Detected
1,2,4-Trichlorobenzene	5.1	Not Detected	38	Not Detected
Hexachlorobutadiene	5.1	Not Detected	54	Not Detected
1,1-Difluoroethane	5.1	Not Detected	14	Not Detected

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	108	70-130
1,2-Dichloroethane-d4	102	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: Lab Blank Lab ID#: 1511270-05A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17112106a 1.00	Date Date	of Collection: NA of Analysis: 11/21	/15 01:20 PM
	Rnt Limit	Amount	Rnt Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1511270-05A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17112106a 1.00	Date Date	of Collection: NA of Analysis: 11/21	/15 01:20 PM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
1,1-Difluoroethane	2.0	Not Detected	5.4	Not Detected

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	107	70-130	
1,2-Dichloroethane-d4	98	70-130	
4-Bromofluorobenzene	83	70-130	

Client Sample ID: CCV Lab ID#: 1511270-06A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil Factor:	17112102	Date of Collection: NA
	1.00	
Compound	%Recover	у
Freon 12	93	
Freon 114	90	
Chloromethane	96	
Vinyl Chloride	97	
1,3-Butadiene	93	
Bromomethane	101	
Chloroethane	100	
Freon 11	88	
Ethanol	94	
Freon 113	86	
1,1-Dichloroethene	85	
Acetone	92	
2-Propanol	86	
Carbon Disulfide	98	
3-Chloropropene	88	
Methylene Chloride	99	
Methyl tert-butyl ether	81	
trans-1,2-Dichloroethene	94	
Hexane	89	
1,1-Dichloroethane	101	
2-Butanone (Methyl Ethyl Ketone)	97	
cis-1,2-Dichloroethene	90	
Tetrahydrofuran	89	
Chloroform	96	
1,1,1-Trichloroethane	91	
Cyclohexane	90	
Carbon Tetrachloride	93	
2,2,4-Trimethylpentane	100	
Benzene	107	
1,2-Dichloroethane	100	
Heptane	109	
Trichloroethene	95	
1,2-Dichloropropane	114	
1,4-Dioxane	105	
Bromodichloromethane	104	
cis-1,3-Dichloropropene	96	
4-Methyl-2-pentanone	119	
Toluene	106	
trans-1,3-Dichloropropene	98	
1,1,2-Trichloroethane	104	
Tetrachloroethene	95	
2-Hexanone	120	

Client Sample ID: CCV Lab ID#: 1511270-06A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17112102	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 11/21/15 11:08 AM
Compound		%Recovery
Dibromochloromethane		97
1,2-Dibromoethane (EDB)		101
Chlorobenzene		99
Ethyl Benzene		102
m,p-Xylene		108
o-Xylene		104
Styrene		112
Bromoform		99
Cumene		105
1,1,2,2-Tetrachloroethane		115
Propylbenzene		108
4-Ethyltoluene		108
1,3,5-Trimethylbenzene		115
1,2,4-Trimethylbenzene		102
1,3-Dichlorobenzene		106
1,4-Dichlorobenzene		109
alpha-Chlorotoluene		123
1,2-Dichlorobenzene		111
1,2,4-Trichlorobenzene		102
Hexachlorobutadiene		112
1,1-Difluoroethane		98

Container Type: NA - Not Applicable

		Method			
Surrogates	%Recovery	Limits			
Toluene-d8	113	70-130			
1,2-Dichloroethane-d4	106	70-130			
4-Bromofluorobenzene	96	70-130			

Client Sample ID: LCS Lab ID#: 1511270-07A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil Factor:	17112103	Date of Collection: NA	/15 11·43 AM
	1.00		/ 13 11.43 AIVI
Compound	0/	Receiver	Method
Compound	70	Recovery	Limits
Freon 12		98	70-130
Freon 114		96	70-130
Chloromethane		99	70-130
Vinyl Chloride		102	70-130
1,3-Butadiene		96	70-130
Bromomethane		104	70-130
Chloroethane		102	70-130
Freon 11		92	70-130
Ethanol		93	70-130
Freon 113		85	70-130
1,1-Dichloroethene		85	70-130
Acetone		93	70-130
2-Propanol		91	70-130
Carbon Disulfide		87	70-130
3-Chloropropene		83	70-130
Methylene Chloride		100	70-130
Methyl tert-butyl ether		80	70-130
trans-1,2-Dichloroethene		81	70-130
Hexane		91	70-130
1,1-Dichloroethane		101	70-130
2-Butanone (Methyl Ethyl Ketone)		96	70-130
cis-1,2-Dichloroethene		98	70-130
Tetrahydrofuran		90	70-130
Chloroform		94	70-130
1,1,1-Trichloroethane		92	70-130
Cyclohexane		93	70-130
Carbon Tetrachloride		94	70-130
2,2,4-Trimethylpentane		104	70-130
Benzene		109	70-130
1,2-Dichloroethane		100	70-130
Heptane		107	70-130
Trichloroethene		97	70-130
1,2-Dichloropropane		115	70-130
1,4-Dioxane		104	70-130
Bromodichloromethane		109	70-130
cis-1.3-Dichloropropene		94	70-130
4-Methyl-2-pentanone		125	70-130
Toluene		108	70-130
trans-1.3-Dichloropropene		98	70-130
1.1.2-Trichloroethane		102	70-130
Tetrachloroethene		95	70-130
		121	70-130
		141	10-100

Client Sample ID: LCS Lab ID#: 1511270-07A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17112103 1.00	Date of Co Date of A	ollection: NA nalysis: 11/21/15 11:43 AM
Compound		%Recovery	Method Limits
Dibromochloromethane		100	70-130
1,2-Dibromoethane (EDB)		102	70-130
Chlorobenzene		101	70-130
Ethyl Benzene		105	70-130
m,p-Xylene		106	70-130
o-Xylene		105	70-130
Styrene		112	70-130
Bromoform		101	70-130
Cumene		105	70-130
1,1,2,2-Tetrachloroethane		117	70-130
Propylbenzene		111	70-130
4-Ethyltoluene		106	70-130
1,3,5-Trimethylbenzene		117	70-130
1,2,4-Trimethylbenzene		105	70-130
1,3-Dichlorobenzene		106	70-130
1,4-Dichlorobenzene		110	70-130
alpha-Chlorotoluene		128	70-130
1,2-Dichlorobenzene		108	70-130
1,2,4-Trichlorobenzene		108	70-130
Hexachlorobutadiene		108	70-130
1,1-Difluoroethane		Not Spiked	

Container Type: NA - Not Applicable

Surrogates	%Recoverv	Method Limits
Toluene-d8	113	70-130
1,2-Dichloroethane-d4	101	70-130
4-Bromofluorobenzene	95	70-130

Client Sample ID: LCSD Lab ID#: 1511270-07AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17112104	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 11/21/15 12:05 PM
		Method
Compound	%Recov	very Limits
Freon 12	96	70-130
Freon 114	95	70-130
Chloromethane	97	70-130
Vinyl Chloride	100	70-130
1,3-Butadiene	93	70-130
Bromomethane	102	70-130
Chloroethane	102	70-130
Freon 11	90	70-130
Ethanol	88	70-130
Freon 113	85	70-130
1,1-Dichloroethene	83	70-130
Acetone	92	70-130
2-Propanol	91	70-130
Carbon Disulfide	84	70-130
3-Chloropropene	83	70-130
Methylene Chloride	96	70-130
Methyl tert-butyl ether	78	70-130
trans-1,2-Dichloroethene	80	70-130
Hexane	90	70-130
1,1-Dichloroethane	100	70-130
2-Butanone (Methyl Ethyl Ketone)	93	70-130
cis-1,2-Dichloroethene	95	70-130
Tetrahydrofuran	88	70-130
Chloroform	93	70-130
1,1,1-Trichloroethane	91	70-130
Cyclohexane	90	70-130
Carbon Tetrachloride	90	70-130
2,2,4-Trimethylpentane	102	70-130
Benzene	107	70-130
1,2-Dichloroethane	99	70-130
Heptane	106	70-130
Trichloroethene	96	70-130
1,2-Dichloropropane	115	70-130
1,4-Dioxane	105	70-130
Bromodichloromethane	108	70-130
cis-1,3-Dichloropropene	94	70-130
4-Methyl-2-pentanone	121	70-130
Toluene	107	70-130
trans-1,3-Dichloropropene	96	70-130
1,1,2-Trichloroethane	100	70-130
Tetrachloroethene	92	70-130
2-Hexanone	120	70-130

Client Sample ID: LCSD Lab ID#: 1511270-07AA EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name:	17112104	Date of Colle	ction: NA
	1.00	Date of Affai	VSIS. 11/21/13 12.03 FM
Compound		%Recoverv	l imits
Dibromochloromothono		97	70-130
1.2 Dibromoothono (EDP)		08	70-130
		98	70-130
Chlorobenzene		98	70-130
Ethyl Benzene		102	70-130
m,p-Xylene		106	70-130
o-Xylene		105	70-130
Styrene		110	70-130
Bromoform		99	70-130
Cumene		103	70-130
1,1,2,2-Tetrachloroethane		112	70-130
Propylbenzene		108	70-130
4-Ethyltoluene		98	70-130
1,3,5-Trimethylbenzene		118	70-130
1,2,4-Trimethylbenzene		102	70-130
1,3-Dichlorobenzene		103	70-130
1,4-Dichlorobenzene		106	70-130
alpha-Chlorotoluene		123	70-130
1,2-Dichlorobenzene		106	70-130
1,2,4-Trichlorobenzene		106	70-130
Hexachlorobutadiene		108	70-130
1,1-Difluoroethane		Not Spiked	

Container Type: NA - Not Applicable

Surrogates Toluene-d8		Method
Surrogates	%Recovery	Limits
Toluene-d8	114	70-130
1,2-Dichloroethane-d4	102	70-130
4-Bromofluorobenzene	97	70-130

- <u>1</u>	en en gande bere dit	. 25S	<u>HA</u>	IN (<u> </u>	<u>)US</u>	<u>rony</u>	RI	C	OR	<u>eD</u>)		<u> ; · _</u>					PΔ	<u>ن لي∽≣G</u> ،	OF L-	÷
	P&1)	ENVI 55 Santa Oa	RON a Clara akland, ((510) 6:	IME) Ave., S CA 946 58-6916	NTA arite 24 510	[., I N	IC.				/	//		/	/	/	\prod	[]	/	/		
	PROJECT NUMBER:		רי ע נו	ROJECI 1850 - J 1839 1839	INAME SAGAGAI CALIS GARD,	- FR X 555 (A	LZANIĘ ANIE	ONTAINERS		(Carlester)	/		/									
4	SAMPLED BY (PRI HICHACL BASS D	NTED & STO ESCHENT	GNATU GNATU	31) 11/2	lund	Bes-j	asch-	ARER OF C	WV /	19	/	/ /		/	//	//		M. R. M. L.				
	SAMPLE NUMBER	DALE	TOME	4YPE	SA Cast	MPLE I	DEATION	5	/	7	L	/	/	/		/	1 3	/	10	-MARKS		
_	5821	11.0016	101845 1614-15	ANK	-78	~(5	303638		X]				[T	15.3	1 2 2	治 -125			
	5562	<u>[</u>	1200119		30	- 5	30.17		X	1	<u> </u>	†	+			+	1 1		1			
	<u>-86</u> 83		141.1		28	-5	保護主義	j ž	ĺχ		1	İ			1		! - 	1	1			
	<u></u>		1577 12 1572 - 24	de la	~ Z(c	- 5	l+i (55€		X			<u> </u>	<u> </u>		-	i	; *		*			
		<u> </u>							<u> </u>			<u> </u>	<u> </u>	<u> </u>								
		ļ <u>.</u>							1		 	<u> </u>	<u> </u>		i 							
									-			<u>:</u>			<u> </u>		<u> </u>					
					 -				ļ		<u> </u>	:				<u> </u>	-					
						<u></u>	······	╺┼┄╴	<u> </u>		<u> </u>	-			ŧ—	┡						-
				···-				+	<u> </u>			<u> </u> .			<u> </u>		<u> </u>	- 				
-			/							-	138	ωż	25	57 I	1 .640	3.7	<u> </u>	┿╌				1
			i .						┝╼╌╸	;	5	15	िक्			STAF	 	~ <i>.</i> ~				-
			·						<u> </u>	\vdash	·	<u> </u>			· · · <i>.</i>		1. 757					{
						·	<u> </u>	+	 -	╞╼┪				<u> </u>		2.4.3.0	<u> </u>		· · · ·			ł
						\sim	CAN	木	2						··		<u> </u>				<u> </u>	ł
÷٦.	TROUISHIND DY TSIGNAT	URF) 🦯		DAT	TIME	REPART	VED RY: ISIG	11/	RC)	· . !		<u>)</u> Tural (la af S	i angel de	 `.e	۱ ۸	LABO	RATOR				
<u>.</u>	Michael Jaw-	azchan	ers	$r_{0.1}$	11:20	i 40	▓╱╟┺╱╗	物大	₹-	5		<u>contes</u> 7903 S CSicol	முடிகள் சென்றில் போன்ன	n) Distaine Di	115 42	3	(7- in 13	1 Acres	TTWO CAS	. 940	
136	SQUISHED BY (SIGNAT)	(RI)		DAT	TIME	RIVUI	VED 34 SIC	NĂTU	RË)		I i:	LABC)RAT(∂ √/) X70 X70	ONT LASS	ACU: Si	LABOI (Sta	RAFORS	r Phon	ie numer BBBR	ERI	
εia	UNQUISHED DY, (SRGNAF)	ORI()		DATE	TIME	RECBI (SICENA	ZED FOR LAR TURE)	OKAT	ORY	RY:		5AM ATT/	PUE / ACTIE	ANAI D	X818 (REQU) YE	Л(8175) S	itesti (j≪) N	 0			ĺ
Ros Pre labo	wits and billing to: .) Environmental, Inc. @epdenviro.com		~~~ -	~~~~~		REMA	RKS:	1-3	L (]	1945. -	- 144		;-1, A ,	C.4	ri ju	الإهجار	6 0 4		151	1270		