ExxonMobil Environmental Services Company 4096 Piedmont Avenue #194 Oakland, California 94611 510.547.8196 510.547.8706 Fax jennifer.c.sedlachek@exxonmobil.com

October 6, 2017

RECEIVED

By Alameda County Environmental Health 11:06 am, Oct 06, 2017

Mr. Mark Detterman Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Room 250 Alameda, California 94502-6577

RE: Former Exxon RAS #79374/990 San Pablo Avenue, Albany, California.

Dear Mr. Detterman:

Attached for your review and comment is a copy of the report entitled *Semi-Annual Soil Vapor Assessment*, *Third Quarter 2017*, dated October 6, 2017, for the above-referenced site. The report was prepared by Cardno of Petaluma, California, and details activities related to the subject site.

I have read and acknowledge the content, recommendations and/or conclusions contained in the attached document or report submitted on my behalf to ACDEH's FTP server and the SWRCB's GeoTracker website.

If you have any questions or comments, please contact me at 510.547.8196.

Sincerely,

C. Sedlachek

Project Manager

Attachment: Cardno's Semi-Annual Soil Vapor Assessment, Third Quarter 2017, dated October 6, 2017

cc: w/ attachment Ms. Muriel T. Blank, Trustee, The Blank Family Trust Reverend Deborah Blank, Trustee, The Blank Family Trust Ms. Marcia Blank Kelly, The Blank Family Trust Mr. Charles Drexler, Esq.

> w/o attachment Mr. Scott Perkins, Cardno

Semi-Annual Soil Vapor Assessment, Third Quarter 2017

Former Exxon Service Station 79374 Alameda County RO 2974

Cardno 2735C.R15

October 6, 2017

Semi-Annual Soil Vapor Assessment, Third Quarter 2017

Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

Alameda County RO 2974

Cardno 2735C.R15

October 6, 2017

Christine M. Capwell Senior Technical Editor for Cardno 707 766 2000 christine.capwell@cardno.com

David R. Daniels P.G. 8737 for Cardno 707 766 2000 david.daniels@cardno.com

Table of Contents

1	Intro	duction	1
2	Site [Description	1
3	Geolo	ogy and Hydrogeology	1
4	Previ	ious Work	2
	4.1	Fueling System Activities	2
	4.2	Site Assessment Activities	2
	4.3	Remediation Activities	2
	4.4	Groundwater Monitoring Activities	3
	4.5	Soil Vapor Monitoring Activities	3
5	Soil \	Vapor Sampling	3
6	Resu	llts	4
	6.1	Near On-Site Commercial Building	4
		6.1.1 Potential Preferential Pathways	4
	6.2	Near Adjacent Residential Building	4
		6.2.1 Potential Preferential Pathways	4
7	Conc	clusions	5
8	Site (Conceptual Model	5
9	Reco	ommendations and Work in Progress	5
10	Conta	act Information	5
11	Limit	ations	5
12	Refer	rences	6
13	Acro	nym List	7

Plates

Plate 1	Site Vicinity Map
Plate 2	Generalized Site Plan
Plate 3	Select Soil Vapor Analytical Results
Plate 4	Utility Location Map

Tables

Table 1	Well Construction Details
Table 2A	Cumulative Soil Vapor Analytical Results
Table 2B	Additional Cumulative Soil Vapor Analytical Results – VOCs

Appendices

Appendix A	Correspondence
Appendix B	Site Conceptual Model
Appendix C	Field Protocols
Appendix D	Field Data Sheets
Appendix E	Laboratory Analytical Reports

1 Introduction

At the request of ExxonMobil Environmental Services (EMES), on behalf of Exxon Mobil Corporation, Cardno prepared this semi-annual soil vapor assessment for the site, as requested by the Alameda County Department of Environmental Health (ACEH) in a letter dated July 21, 2017 (Appendix A). The work included sampling the soil vapor wells at the site continue to evaluate the risk associated with soil vapor concentrations at the site.

2 Site Description

Former Exxon Service Station 79374 is located at 990 San Pablo Avenue, on the northwestern corner of the intersection of Buchanan Street and San Pablo Avenue, Albany, California (Plate 1). The site is a retail outlet for paint and painting products and is located in an area of mixed commercial and residential land use. The neighboring properties include another retail paint store, a restaurant, a beauty supply store, the City of Albany Fire Department, and residential housing. A Generalized Site Plan is included as Plate 2. A tabular site conceptual model for the site detailing additional site information is included as Appendix B.

3 Geology and Hydrogeology

The site lies at an approximate elevation of 40 feet above msl, and the local topography slopes toward the southwest. The site is located along the eastern margin of the San Francisco Bay within the East Bay Plain (Hickenbottom and Muir, 1988). The surficial deposits in the site vicinity are mapped as Holocene alluvial fan and fluvial deposits (Graymer, 2000). The site is located approximately 1,630 feet north-northwest of Cordornices Creek and approximately 1¹/₂ miles southwest of the active northwest trending Hayward fault.

The East Bay Plain is regionally divided into two major groundwater basins: the San Pablo and the San Francisco Basin. These basins are tectonic depressions that are filled primarily with a sequence of coalescing alluvial fans. The San Francisco Basin is further divided into seven sub-areas. The site is located in the Berkeley Sub-Area, which is filled primarily by alluvial deposits that range from 10 to 300 feet thick with poorly defined aquitards (CRWQCB, 1999). Under natural conditions, the direction of groundwater flow in the East Bay Plain is east to west.

Soil boring logs indicate that the soil beneath the site consists predominantly of silt and clay with an apparently continuous coarse-grained unit 2 to 8 feet thick encountered between approximately 8 and 20 feet bgs (EC&A, 2008; Cardno ERI, 2011; Cardno ERI, 2012a). Fill material was encountered in the boring for well SVE3 (located in the former UST pit) to approximately 7 feet bgs. CPT soil borings indicate the presence of predominantly silt and clay between approximately 20 and 60 feet bgs, the maximum depth explored.

Historical groundwater elevation data indicate that DTW ranges from 5 to 11 feet bgs beneath the site with varying groundwater flow directions. The distribution of dissolved-phase hydrocarbons suggests that the dominant groundwater flow direction is west to southwest.

4 Previous Work

Additional site information is included in the FS/CAP, dated February 4, 2015 (Cardno ERI, 2015b).

4.1 Fueling System Activities

In 1983, one used-oil UST and four gasoline USTs were removed and the resulting tank cavity was backfilled with sand and compacted to 90% (City of Albany, 1983).

4.2 Site Assessment Activities

Six exploratory borings (B1 through B6) were advanced on site in 2008. Maximum residual concentrations of TPHg, TPHd, and benzene were reported in the soil samples collected at 10.5 feet bgs from borings B1 and B2, located near the former USTs. Maximum dissolved-phase TPHg, TPHd, and benzene concentrations were also reported in the samples collected from soil borings B1 and B2, and the laboratory reported an immiscible sheen in the samples (EC&A, 2008).

Monitoring wells MW1 through MW6 and borings CPT1/HP1 and CPT2/HP2 were installed on site in 2010. Maximum residual concentrations of TPHg and TPHd in soil were reported in samples collected at 10.5 feet bgs from borings MW3 and MW5, located west of the former USTs. Dissolved-phase hydrocarbons were adequately delineated vertically at the site with petroleum hydrocarbon concentrations below or near the laboratory reporting limits in groundwater samples collected deeper than 27.5 feet bgs (Cardno ERI, 2011).

In January 2012, Cardno ERI installed SVE wells SVE1 through SVE3, AS well AS1, and monitoring well MW3A to be used during feasibility testing (Cardno ERI, 2012a).

In February and March 2014, Cardno ERI installed soil vapor sampling (SVS) wells SVS1 through SVS3 at the site and advanced on-site and off-site borings B7 through B17 (Cardno ERI, 2014).

In December 2014, Cardno ERI installed off-site monitoring wells MW7 and MW8 (Cardno ERI, 2015a).

Off-site wells MW7 and MW8 were installed in December 2014 to evaluate the lateral extent of dissolved-phase hydrocarbons (Cardno ERI, 2015a). Off-site well MW9 and off-site boring B18 were installed in October 2015 along with on-site wells SVE4 through SVE7 (Cardno, 2015a).

4.3 Remediation Activities

According to City of Albany Building Permit 82-0708, the USTs were removed and the resulting excavation backfilled in 1983 (City of Albany, 1983). It is unknown if over-excavation was performed during UST removal.

Between January 31 and February 1, 2012, Cardno ERI conducted three four-hour feasibility tests: a DPE only test, a combined AS and DPE test, and an AS only test. Approximately 93 pounds of TPHg and 0.09 pound of benzene were removed during feasibility testing (Cardno ERI, 2012b).

Cardno ERI prepared a FS/CAP, dated February 4, 2015. Cardno ERI recommended conducting DPE HIT events at the site to remediate hydrocarbon concentrations in soil, soil vapor, and groundwater and installing four extraction wells along the north and west sides of the site and monitoring wells off site to the southwest (Cardno ERI, 2015b).

Between October 21 and 29, 2015, Cardno conducted a HIT event at the site using a mobile SVS system. Approximately 75 pounds of TPHg and 0.09 pound of benzene were removed during approximately 40 hours of operation (Cardno, 2015b).

In March 2017, a site-specific discharge permit was issued by the Bay Area Air Quality Management District (BAAQMD). An additional HIT event will be scheduled as soon as power is acquired from Pacific Gas & Electric (PG&E). A power pole was installed during the first week of October 2017. It is expected to take approximately

four weeks to secure the power connection from PG&E. Remediation activities are expected to commence during November 2017.

4.4 Groundwater Monitoring Activities

Groundwater monitoring began at the site in 2010 with the installation of wells MW1 through MW6. Maximum concentrations were reported in the UST cavity and southwest of the UST cavity in wells MW3, MW3A, MW4, and MW5. Concentrations of MTBE are typically not reported above the laboratory reporting limit.

4.5 Soil Vapor Monitoring Activities

Soil vapor monitoring began at the site in 2014 with the installation of wells SVS1 through SVS3, screened from 5.4 to 5.6 feet bgs (Cardno ERI, 2014). Shallow wells SVS4 through SVS8, screened from 2.1 to 2.3 feet bgs, were installed in 2016 (Cardno, 2016).

Sampling results indicate that maximum concentrations are present in the deeper wells with concentrations of TPHg and benzene exceeding screening levels. Concentrations in the shallow wells are one to three orders of magnitude lower than the deeper wells. The attenuation shown between approximately 5.5 and 2.2 feet indicate that concentrations decrease prior to reaching the building slabs (Cardno, 2016). Concentrations and/or reporting limits have exceeded select screening levels in shallow wells SVS7 and SVS8, located near the commercial building on site.

5 Soil Vapor Sampling

On August 24, 2017, soil vapor samples were collected from the soil vapor wells installed at the site. Due to wet and/or saturated conditions, samples were not collected from well SVS5. Due to a potential leak in the well seal, samples were not collected from well wells SVS1 and SVS2.

On September 5, 2017, Cardno chipped out the top layer of concrete inside the well boxes of wells SVS1, SVS2, and SVS4. Bentonite grout was then poured into the well box, sealing the vault. Cardno collected a sample from well SVS1, but was unable to collect a sample from well SVS2 due to the continued presence of a potential leak.

The samples were collected using a custom-made purging manifold consisting of airtight valves, a flow regulator, pressure and vacuum gauges, and a vacuum pump capable of producing a vacuum of approximately 30 inches of mercury (in Hg). The manifold also includes a port that connects sample collection vessels and/or sorbent tubes (Summa[™] canisters).

Prior to purging and sampling, the manifold was connected to each well, and the tubing and fittings downstream from the wellhead valves were vacuum tested at approximately 20 to 30 in Hg. The sampling manifold and tubing held the applied vacuum for five minutes at each well.

Purge volumes were calculated for each well. One volume of vapor was purged from each well. Prior to sampling, a helium leak test was performed at each well, including a Summa[™] canister and its fittings, to check for leaks in the annulus. To assess the potential for leaks in the well annulus, a shroud was placed over the well and Summa[™] canister, and helium was introduced into the shroud and maintained at a constant concentration. Helium screening was performed in the field by drawing soil gas into a Tedlar bag via a lung-box and screening the contents of the Tedlar bag with a helium meter. The concentration of helium in the sample divided by the concentration of helium in the shroud provides a measure of the proportion of the sample attributable to leakage. A leak that comprises less than 5% of the sample is insignificant. Helium screening was also performed using laboratory analysis of the contents of the Summa[™] canister collected under the shroud. Sampling was conducted at approximately the same rate of purging, at 100 to 200 milliliters per minute. Field data sheets are included in Appendix D.

Cardno submitted soil vapor samples for analysis to H&P Mobil Geochemistry, Inc. and Eurofins Calscience, Inc., California state-certified laboratories, under COC protocol. Laboratory analytical results and sampling methods are summarized in Tables 2A and 2B. Select soil vapor analytical results are illustrated on Plate 3. Laboratory analytical reports are included in Appendix E.

6 Results

The leak detection compound (helium) was reported in wells SVS4 at 0.34% and SVS7 at 0.17%, indicating a minor leak in the well annular seal and sampling equipment. The helium concentration was approximately 10% in the shroud, indicating a leak of approximately 3.4% and 1.7%, respectively. The California EPA states that ambient air leaks of up to 5% are acceptable (DTSC, 2015).

Oxygen concentrations ranged from 5.1% to 9.4% in the deep wells and in shallow well SVS8. Oxygen concentrations ranged from 17% to 21% in the remaining shallow wells, indicating favorable conditions for bio-attenuation at shallower depths.

6.1 Near On-Site Commercial Building

Vapor-phase concentrations in well SVS3 (screened from 5.4 to 5.6 feet bgs) were consistent with or higher than historical results. Concentrations of TPHd, TPHg, and benzene and reporting limits for select constituents exceeded both residential and commercial ESLs in the well.

Vapor-phase concentrations in well SVS7 (screened from 2.1 to 2.3 feet bgs) were below both residential and commercial ESLs, with the exception of TPHd and TPHg, and were one to three orders of magnitude lower than concentrations reported in well SVS3.

Vapor-phase concentrations in well SVS8 (screened from 2.1 to 2.3 feet bgs) increased from the previous result with concentrations of TPHd and TPHg and select reporting limits exceeding both residential and commercial ESLs in the well.

6.1.1 Potential Preferential Pathways

The soil vapor wells near the on-site commercial building are not located within 15 feet of known utilities. Maximum concentrations (well SVS3) are located over 30 feet away from the nearest known utility line. Known utility locations are illustrated on Plate 4.

6.2 Near Adjacent Residential Building

Vapor-phase concentrations in well SVS1 (screened from 5.4 to 5.6 feet bgs) were consistent with historical results. Concentrations of TPHd and TPHg and reporting limits for select constituents exceeded both residential and commercial ESLs.

Vapor-phase concentrations in wells SVS4 and SVS6 (screened from 2.1 to 2.3 feet bgs) were below ESLs, with the exception of chloroform in well SVS4, and were two to four orders of magnitude lower than concentrations reported in well SVS1.

Concentrations of bromodichloromethane and/or chloroform have been reported above ESLs in site wells during select events. Bromodichloromethane and chloroform are common byproducts of drinking water chlorination (ATSDR, 1989; ATSDR, 2016). These concentrations are suspected to be related to leaking water pipes and not operations related to EMES.

6.2.1 Potential Preferential Pathways

An underground electrical line (street lighting) runs adjacent to the wells located along the residential building (Plate 4). Maximum concentrations in this area are present in well SVS1. Concentrations decrease both north along the electrical line (well SVS6) and south along the electrical line (well SVS2) from well SVS1, indicating

that the electrical line is not acting as a conduit for the migration of concentrations. In addition, the electrical line is associated with street lighting and is not installed to depths where maximum concentrations occur.

7 Conclusions

Cardno concludes that concentrations reported in the soil vapor wells warrant additional assessments, additional sampling and active remediation. The attenuation shown between approximately 5 and 2 feet indicate that concentrations decrease prior to reaching the building slabs. Select concentrations in well SVS8 were reported above applicable screening levels during this event, inconsistent with 2016 results for this well and the results of other shallow wells (screened from 2.1 to 2.3 feet bgs) at the site. Continued sampling and the installation of additional sampling points to evaluate fluctuations and effectiveness of remediation is warranted.

8 Site Conceptual Model

A tabular site conceptual model for the site is included in Appendix B.

9 Recommendations and Work in Progress

Cardno recommends initiating active remediation and continued semi-annual soil vapor sampling to further evaluate soil vapor concentrations. Additionally, Cardno recommends performing the additional soil vapor assessment work detailed in the *Work Plan for Additional Soil Vapor Assessment and Response to Comments* (Cardno, 2017).

10 Contact Information

The responsible party contact is Ms. Jennifer C. Sedlachek, ExxonMobil Environmental Services Company, 4096 Piedmont Avenue #194, Oakland, California, 94611. The consultant contact is Mr. Scott Perkins, Cardno, and 601 North McDowell Boulevard, Petaluma, California, 94954. The agency contact is Mr. Mark Detterman, Alameda County Health Care Services Agency, Environmental Health Services, 1131 Harbor Bay Parkway, Suite 250, Alameda, California, 94502-6577.

11 Limitations

For documents cited that were not generated by Cardno, the data taken from those documents is used "as is" and is assumed to be accurate. Cardno does not guarantee the accuracy of this data and makes no warranties for the referenced work performed nor the inferences or conclusions stated in these documents.

This document and the work performed have been undertaken in good faith, with due diligence and with the expertise, experience, capability, and specialized knowledge necessary to perform the work in a good and workmanlike manner and within all accepted standards pertaining to providers of environmental services in California at the time of investigation. No soil engineering or geotechnical references are implied or should be inferred. The evaluation of the geologic conditions at the site for this investigation is made from a limited number of data points. Subsurface conditions may vary away from these data points.

12 References

Agency for Toxic Substances & Disease Registry (ATSDR). December 1989. *Public Health Statement for Bromodichloromethane*. <u>https://www.atsdr.cdc.gov/phs/phs.asp?id=706&tid=127</u>.

Agency for Toxic Substances & Disease Registry (ATSDR). Last accessed October 19, 2016. *Public Health Statement for Chloroform.* <u>http://www.atsdr.cdc.gov/toxprofiles/tp6-c1.pdf</u>.

California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), Los Angeles Regional Water Quality Control Board, San Francisco Regional Water Quality Control Board. July 2015. *Advisory, Active Soil Gas Investigations.*

California Regional Water Quality Control Board San Francisco Bay Region Groundwater Committee (CRWQCB). June 1999. *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda and Contra Costa Counties, CA.*

Cardno. November 12, 2015a. Data Gap, Well Installation, and Remedial Progress Report, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #R000002974.

Cardno. December 17, 2015b. Groundwater Monitoring and Remediation Status Report, Fourth Quarter 2015, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #R000002974.

Cardno. October 27, 2016. Soil Vapor Assessment, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #R000002974.

Cardno. September 28, 2017. Work Plan for Additional Soil Vapor Assessment and Response to Comments, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County Department of Environmental Health RO 2974.

Cardno ERI. February 28, 2011. Site Assessment Report, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #R000002974.

Cardno ERI. April 12, 2012a. Well Installation Report, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #R000002974.

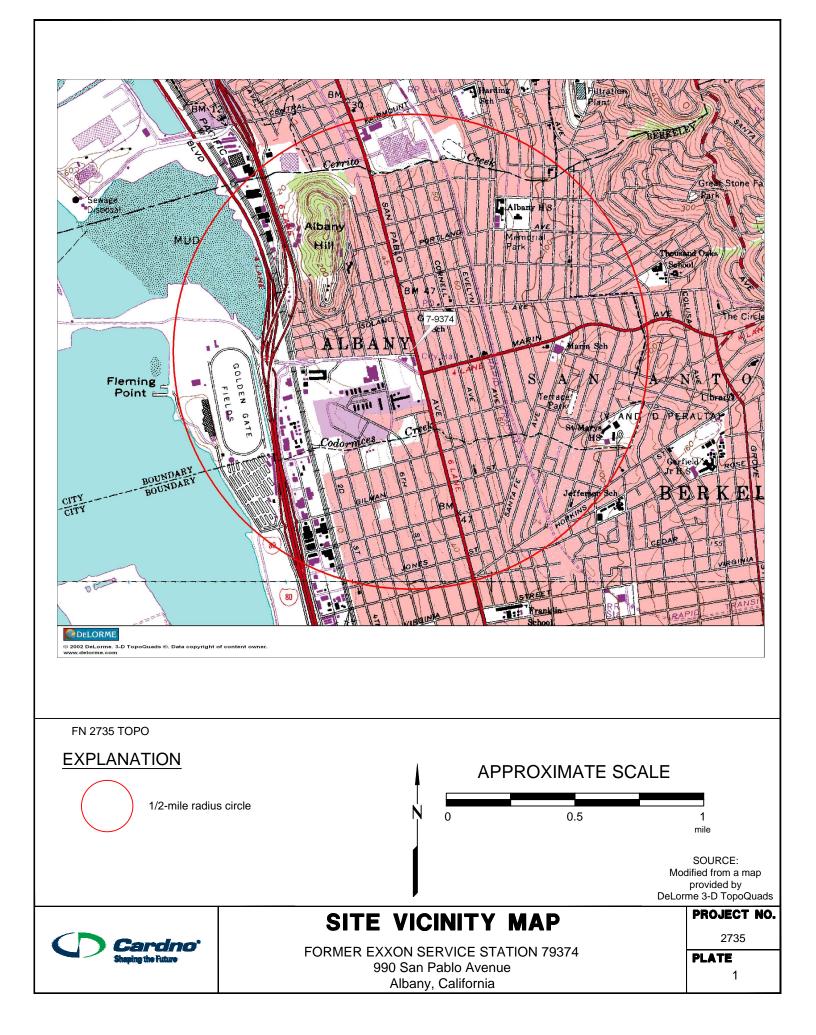
Cardno ERI. April 12, 2012b. Air Sparge and Dual-Phase Extraction and Feasibility Testing, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #RO00002974.

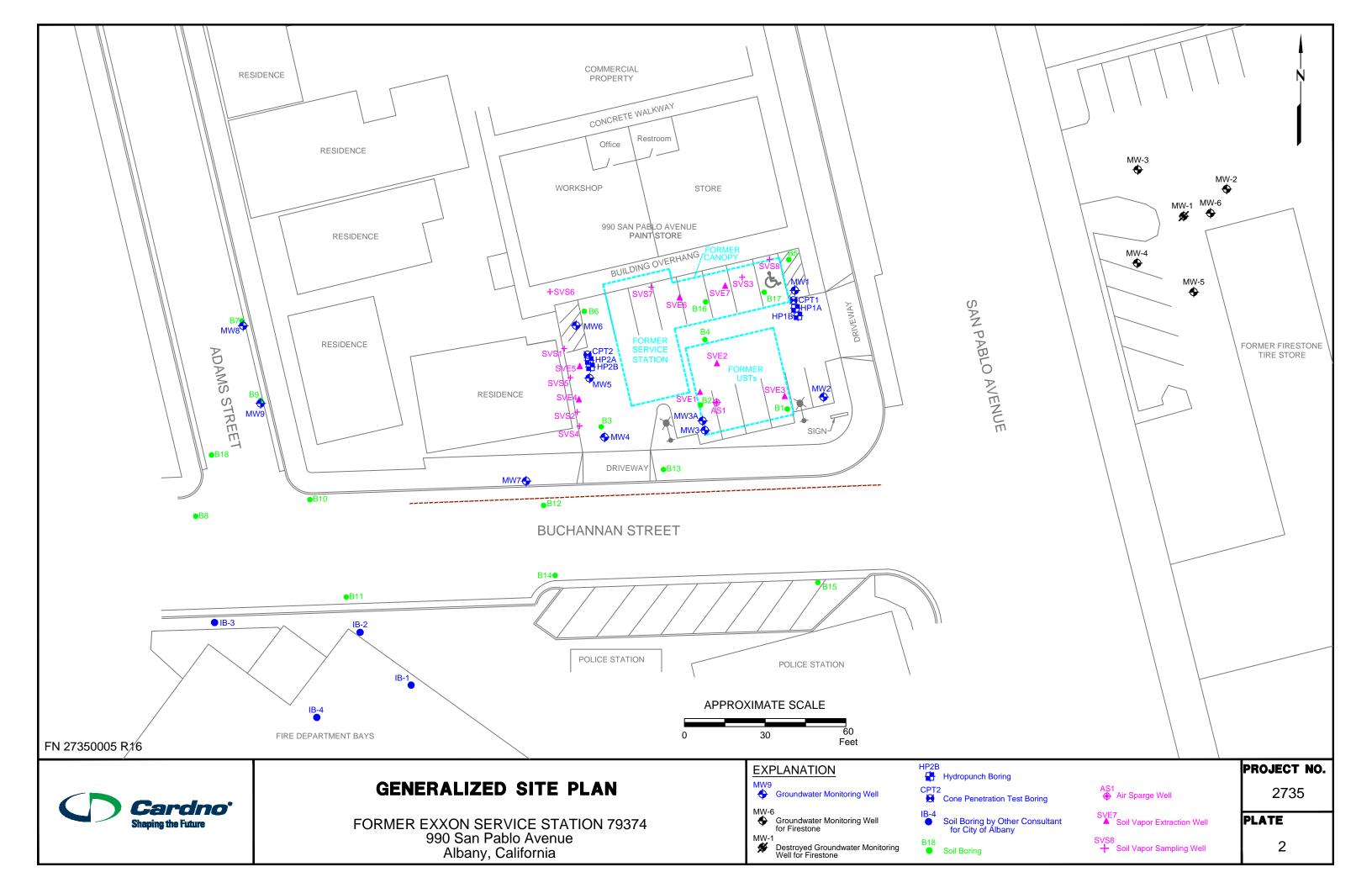
Cardno ERI. May 2, 2014. Soil, Soil Vapor, and Groundwater Investigation Report and Site Conceptual Model, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #R000002974.

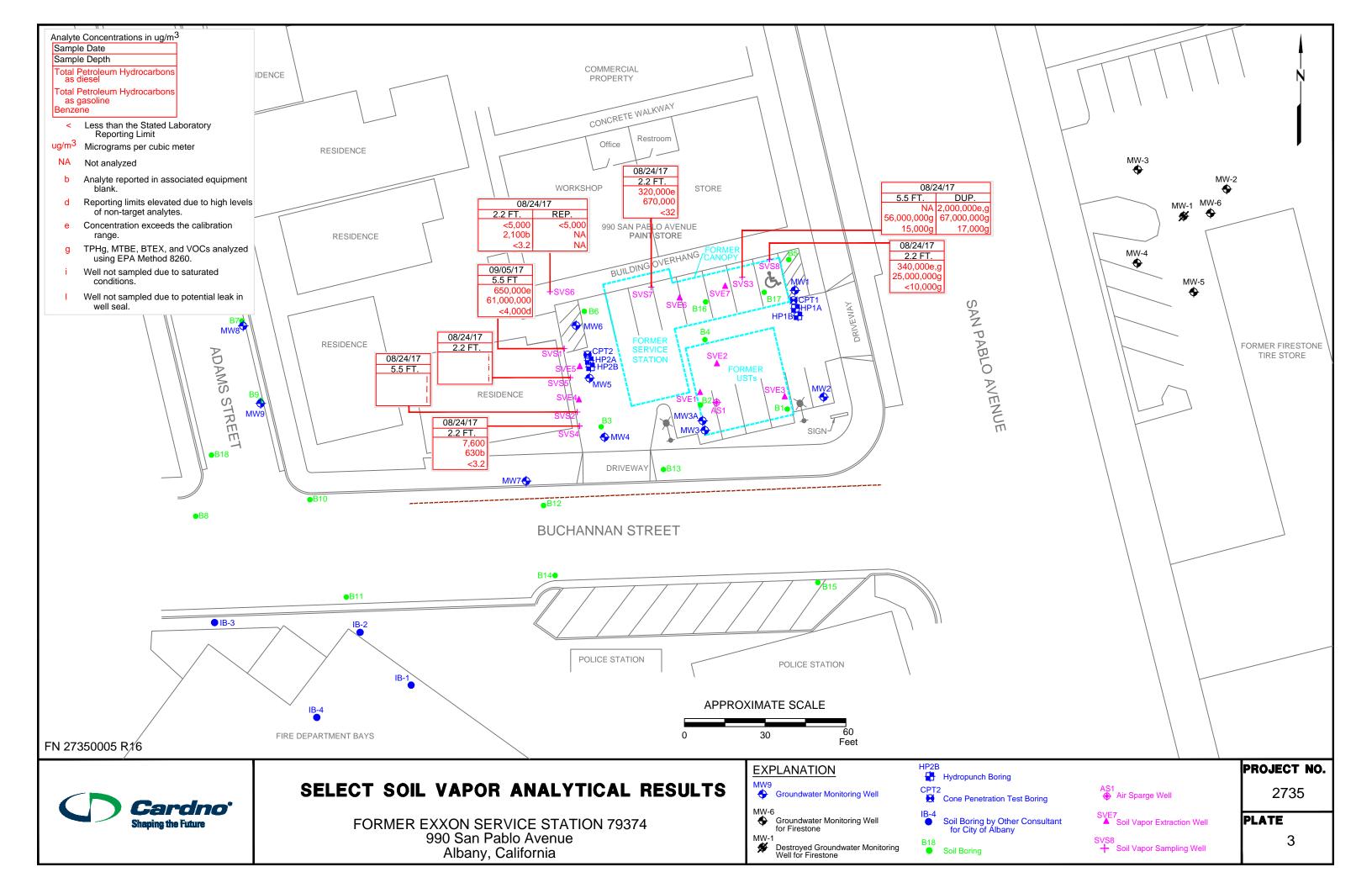
Cardno ERI. January 22, 2015a. Well Installation Report, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #RO00002974.

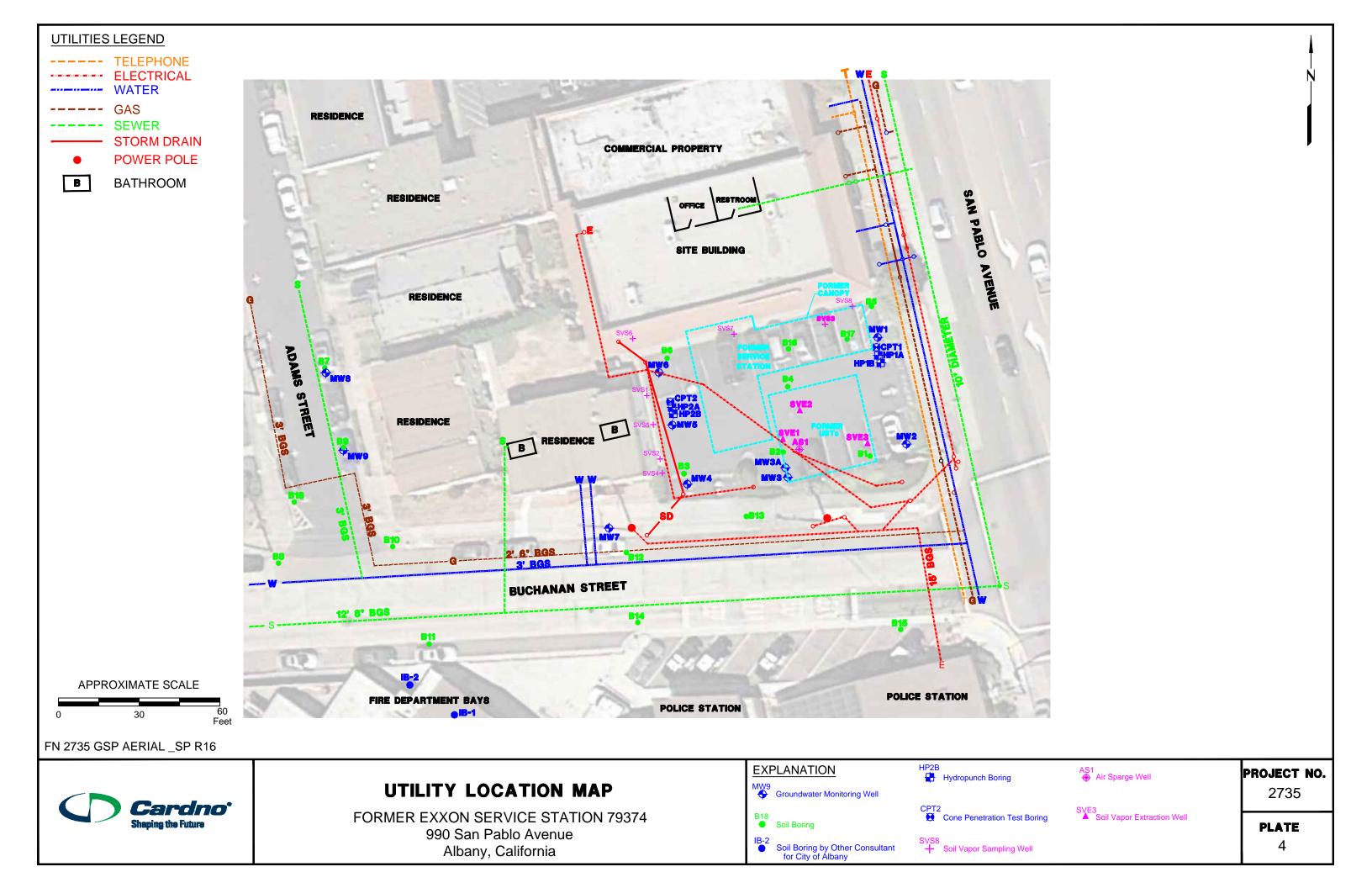
Cardno ERI. February 4, 2015b. Feasibility Study/Corrective Action Plan, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #R000002974.

City of Albany. March 28, 1983. Building Permit 82-0708.


Edd Clark & Associates (EC&A). January 31, 2008. Report of Phase II Environmental Assessment, 990 San Pablo Avenue, Albany, California 94706.


Graymer, R.W. 2000. Geologic map and map database of the Oakland metropolitan area, Alameda, Contra Costa, and San Francisco Counties, California. USGS, Miscellaneous Field Studies MF-2342.


Hickenbottom, Kelvin, and Muir, Kenneth S. June 1988. *Geohydrology and Groundwater Quality Overview of the East Bay Plain Area, Alameda County, CA. Alameda County Flood Control and Water Conservation District.* 83p.


13 Acronym List

µg/L	Micrograms per liter	NAPL	Non-aqueous phase liquid
µg/m ³	Micrograms per cubic meter	NEPA	National Environmental Policy Act
μs	Microsiemens	NGVD	National Geodetic Vertical Datum
1,2-DCA	1,2-dichloroethane	NPDES	National Pollutant Discharge Elimination System
acfm	Actual cubic feet per minute	O&M	Operations and Maintenance
AS	Air sparge	ORP	Oxidation-reduction potential
AST	Aboveground storage tank	OSHA	Occupational Safety and Health Administration
bgs	Below ground surface	OVA	Organic vapor analyzer
BTEX	Benzene, toluene, ethylbenzene, and total xylenes	P&ID	Process and Instrumentation Diagram
cfm	Cubic feet per minute	PAH	Polycyclic aromatic (or polyaromatic) hydrocarbon
COC	Chain-of-Custody	PCB	Polychlorinated biphenyl
CPT	Cone Penetration (Penetrometer) Test	PCE	Tetrachloroethene or perchloroethylene
DIPE	Di-isopropyl ether	PID	Photo-ionization detector
DO	Dissolved oxygen	PLC	Programmable logic control
DOT	Department of Transportation	POTW	Publicly-owned treatment works
DPE	Dual-phase extraction	ppmv	Parts per million by volume
DTW	Depth to water	PQL	Practical quantitation limit
EDB	1,2-dibromoethane	psi	Pounds per square inch
EPA	Environmental Protection Agency	PVC	Polyvinyl chloride
ESL	Environmental screening level	QA/QC	Quality assurance/quality control
ETBE	Ethyl tertiary butyl ether	RBSL	Risk-based screening levels
FID	Flame-ionization detector	RCRA	Resource Conservation and Recovery Act
fpm	Feet per minute	RL	Reporting limit
GAC	Granular activated carbon	scfm	Standard cubic feet per minute
gpd	Gallons per day	SSTL	Site-specific target level
gpm	Gallons per minute	STLC	Soluble threshold limit concentration
GWPTS	Groundwater pump and treat system	SVE	Soil vapor extraction
HIT	High-intensity targeted	SVOC	Semi-volatile organic compound
HVOC	Halogenated volatile organic compound	TAME	Tertiary amyl methyl ether
J	Estimated value between MDL and PQL (RL)	TBA	Tertiary butyl alcohol
LEL	Lower explosive limit	TCE	Trichloroethene
LPC	Liquid-phase carbon	TOC	Top of well casing elevation; datum is msl
LRP	Liquid-ring pump	TOG	Total oil and grease
LUFT	Leaking underground fuel tank	TPH	Total petroleum hydrocarbons
LUST	Leaking underground storage tank	TPHd	Total petroleum hydrocarbons as diesel
MCL	Maximum contaminant level	TPHg	Total petroleum hydrocarbons as gasoline
MDL	Method detection limit	TPHmo	Total petroleum hydrocarbons as motor oil
mg/kg	Milligrams per kilogram	TPHs	Total petroleum hydrocarbons as stoddard solvent
mg/L	Milligrams per liter	TRPH	Total recoverable petroleum hydrocarbons
mg/m ³	Milligrams per cubic meter	UCL	Upper confidence level
MPE	Multi-phase extraction	USCS	Unified Soil Classification System
MRL	Method reporting limit	USGS	United States Geologic Survey
msl	Mean sea level	UST	Underground storage tank
MTBE	Methyl tertiary butyl ether	VCP	Voluntary Cleanup Program
MTCA	Model Toxics Control Act	VOC	Volatile organic compound
NAI	Natural attenuation indicators	VPC	Vapor-phase carbon

TABLE 1 WELL CONSTRUCTION DETAILS Former Exxon Service Station 79374 990 San Pablo Avenue

Well ID	Well Installation Date	TOC Elevation (feet)	Borehole Diameter (inches)	Total Depth of Boring (feet bgs)	Well Depth (feet bgs)	Casing Diameter (inches)	Well Casing Material	Screened Interval (feet bgs)	Slot Size (inches)	Filter Pack Interval (feet bgs)	Filter Pack Material
MW1	11/04/10	44.19	8	17	17	2	Schedule 40 PVC	12-17	0.020	10-17	#3 Sand
MW2	11/04/10	43.99	8	17	17	4	Schedule 40 PVC	12-17	0.020	10-17	#3 Sand
MW3	11/08/10	43.16	8	17	17	4	Schedule 40 PVC	11-16	0.020	9-16	#3 Sand
MW3A	01/18/12	43.42	10	15.5	15.5	4	Schedule 40 PVC	5-15	0.020	4.5-15.5	#2/12 Sand
MW4	11/05/10	42.04	8	17	13	2	Schedule 40 PVC	8-13	0.020	6-13	#3 Sand
MW5	11/05/10	43.12	8	17	14	2	Schedule 40 PVC	9-14	0.020	7-14	#3 Sand
MW6	11/03/10	43.80	10	20	20	2	Schedule 40 PVC	15-20	0.020	13-20	#3 Sand
MW7	12/08/14	41.21	10	15	15	2	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
MW8	12/08/14	39.65	10	15	15	2	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
MW9	10/08/15	39.50	10	16	15	2	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
AS1	01/18/12		8	15.5	15.5	1	Schedule 80 PVC	10.25-13.5	#60 mesh	10.5-15.5	#2/12 Sand
SVE1	01/17/12	43.32	10	15.5	15.5	4	Schedule 40 PVC	5-15	0.020	4.5-15.5	#2/12 Sand
SVE2	01/17/12	43.68	10	15	15	4	Schedule 40 PVC	5-15	0.020	4.5-15	#2/12 Sand
SVE3	01/17/12	43.67	10	15	15	4	Schedule 40 PVC	5-15	0.020	4.5-15.5	#2/12 Sand
SVE4	10/09/15	43.10	12	16	15	4	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
SVE5	10/09/15	43.70	12	16	15	4	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
SVE6	10/09/15	44.37	12	16	15	4	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
SVE7	10/09/15	44.48	12	16	15	4	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
SVS1	02/25/14		4	5.6	5.6	0.25	PVC	5.4-5.6	0.010	4.6-5.6	#3 Sand
SVS2	02/25/14		4	5.6	5.6	0.25	PVC	5.4-5.6	0.010	4.6-5.6	#3 Sand
SVS3	02/25/14		4	5.6	5.6	0.25	PVC	5.4-5.6	0.010	4.6-5.6	#3 Sand
SVS4	09/28/16		2.25	2.5	2.5	0.25	PVC	2.1-2.3	0.010	2-2.5	#3 Sand
SVS5	09/28/16		2.25	2.5	2.5	0.25	PVC	2.1-2.3	0.010	2-2.5	#3 Sand
SVS6	09/28/16		2.25	3.0	2.5	0.25	PVC	2.1-2.3	0.010	2-3	#3 Sand
SVS7	09/28/16		2.25	2.5	2.5	0.25	PVC	2.1-2.3	0.010	2-2.5	#3 Sand
SVS8	09/28/16		2.25	2.5	2.5	0.25	PVC	2.1-2.3	0.010	2-2.5	#3 Sand

Notes: TOC

TOC=Top of well casing elevation; datum is NAVD88.PVC=Polyvinyl chloride.feet bgs=Feet below ground surface.

TABLE 2A CUMULATIVE SOIL VAPOR ANALYTICAL RESULTS Former Exxon Service Station 79374 990 San Pablo Avenue 990 San Pablo Avenue Albany, California Albany

							Albany,	California									
Sample ID	Sampling Depth Date (feet)	TPHd (µg/m³)	TPHg (µg/m³)	MTBE (µg/m³)	B (µg/m³)	T (µg/m³)	E (µg/m³)	o-X (µg/m³)	pm-X (µg/m³)	X (µg/m³)	Methane (%V)	Helium (%V)	CO2 (%V)	O ₂ + Ar (%V)	O2 (%V)	Nitrogen (%V)	Vacuun (in Hg
Environme	ntal Screening Lev	vels, Subslab	/Soil Gas, Tab	le SG-1 (Fe	bruary 20	16)											
Residential Commercia	1/laduatrial	68,000	300,000	5,400	48 420	160,000	560	52,000c 440.000c	52,000c	52,000							
		570,000	2,500,000	47,000	-	1,300,000	4,900	440,0000	440,000c	440,00							
•	cific Criteria for Va	•				•											
Residential Commercia	1				85 280		1,100 3,600										
	ˈ cific Criteria for Va		to Indoor Air				,										
Residential					85,000		1,100,000										
Commercia	I				280,000		3,600,000										
SVS3 SVS3 Dup SVS3	03/07/14 5.5 03/07/14 5.5 08/28/14 5.5 10/03/16 a 5.5	 b	150,000,000 150,000,000 87,000,000 41,000,000	<5,800 <5,800 <36,000	15,000 22,000 21,000 12,000	<1,500 <1,500 13,000	15,000 23,000 31,000	<1,700 <1,700 <11,000	,	<1,700 <1,700 <11,000	6.29 6.73 5.11 3.5	<0.0100 <0.0100 <0.0100	13.3 14.4 14.7 14	4.41 3.10 5.49	 5 4	 77	-5.0(-5.0(-5.0(
SVS3	10/03/16 g 5.5	h	41,000,000	<20,000	12,000	<40,000	<20,000	<20,000	<20,000		3.5	<0.10	14		5.4	77	-5.39
SVS3 Dup	10/03/16 g 5.5	h Tao asa -	34,000,000	<20,000	11,000	<40,000	<20,000	<20,000	<20,000		3.9	<0.10	15		4.6	77	-5.37
SVS3	04/05/17 g 5.5	760,000e	26,000,000	<20,000	12,000	<40,000	<20,000	<20,000 <20,000	<20,000		3.6	<0.10	11		4.7	81	-5.39 -5.61
SVS3 Dup SVS3	04/05/17 g 5.5 08/24/17 g 5.5		23,000,000 56,000,000	<20,000 <50,000	11,000 15,000	<40,000 <100,000	<20,000 <50.000	<50,000	<20,000 <50,000		3.6 3.6	<0.10 <0.10	11 12		4.6 5.6	81 79	-5.01
SVS3 Dup	08/24/17 g 5.5	2,000,000e	67,000,000	<50,000	17,000	<100,000	<50,000	<50,000	<50,000		3.5	<0.10	13		5.1	79	-5.02
•		<u> </u>	· · ·	· · · · ·			· · · · ·										
SVS7	10/03/16 f 2.2	9,000	27,000	42	<16	40	<22	190	71		0.0057	0.35	0.93		20	79	-2.93
SVS7	04/05/17 f 2.2	<5,000	130,000	<18	18	34	<22	38	57		0.41	0.75	2.5		19	78	-8.23
SVS7	08/24/17 2.2	320,000e	670,000	<36	<32	<38	110	<44	<88		0.83	0.17	5.0		17	77	-3.74
SVS8	10/03/16 g 2.2	28,000	350,000	<500	<100	<1,000	<500	<500	<500		0.030	<0.10	1.0		20	79	-3.18
SVS8	04/05/17 g 2.2	250,000e	15,000,000	<10,000d	<2,000d	<20,000d	<10,000d	<10,000d	<10,000d		2.6	<0.10	13		4.6	81	-4.52
SVS8	08/24/17 g 2.2	340,000e	25,000,000	<50,000	<10,000	<100,000	<50,000	<50,000	<50,000		0.84	<0.10	14		5.3	79	-3.54

TABLE 2A CUMULATIVE SOIL VAPOR ANALYTICAL RESULTS Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

Sample ID	Sampling Date	Depth (feet)	TPHd (µg/m³)	TPHg (µg/m³)	MTBE (µg/m³)	B (µg/m³)	T (µg/m³)	E (µg/m³)	o-X (µg/m³)	pm-X (µg/m³)	X (µg/m³)	Methane (%V)	Helium (%V)	CO ₂ (%V)	O₂+ Ar (%V)	O2 (%V)	Nitrogen (%V)	Vacuum (in Hg)
Environme	ntal Screeni	ng Lev	vels, Subslab/	Soil Gas, Tab	le SG-1 (Fe	bruary 20	16)											
Residential Commercia	l/Industrial	-	68,000 570,000	300,000 2,500,000	5,400 47,000	48 420	160,000 1,300,000	560 4,900	52,000c 440,000c	52,000c 440,000c	52,000 440,00							
Media-Spe	cific Criteria	for Va	por Intrusion	to Indoor Air.	No Bioatte	enuation Z	one (SWRC	B. 2012)										
Residential Commercia						85 280		1,100 3,600										
Media-Spe	cific Criteria	for Va	por Intrusion	to Indoor Air,	With Bioa	tenuation	Zone (SWR	CB. 2012)										
Residential			·			85,000		1,100,000										
Commercia						280,000		3,600,000										
Near Resi	dential Bu	ilding	Adjacent to	the Site														
SVS1	03/06/14	5.5		180,000,000	<12.000d	<2,600d	<3,000d	<3,500d	<3,500d	<14,000d	<3.500d	15.5	<0.0100	10.0	2.58			-5.00
SVS1	08/28/14	5.5		90,000,000	<36,000	<8,000	12,000	<11,000	<11,000	<43,000	-	15.3	<0.0100	13.2	2.49			-5.00
SVS1	10/03/16 g	5.5	h	43,000,000	<20,000d	<4,000d	<40,000d	<20,000d	<20,000d	<20,000d		12	<0.10	11		4.8	73	-5.81
SVS1	04/05/17 g		510,000e	25,000,000	<20,000d	<4,000d	<40,000d	<20,000d	<20,000d	<20,000d		12	<0.10	8.8		5.5	76	-5.64
SVS1	08/24/17	5.5																
SVS1	09/05/17	5.5	650,000e	61,000,000	<20,000d	<4,000d	<40,000d	<20,000d	<20,000d	<20,000d		14	<0.10	8.0		9.4	72	-5.65
SVS2	03/06/14	5.5		190.000.000	<1,800	1,700	740	650	<540	3,100	3,100	11.4	<0.0100	8.31	3.62			-5.00
SVS2	08/28/14	5.5		80,000,000	<36,000	<8,000	13,000	<11.000	<11,000	,	,	11.5	<0.0100	9.67	5.54			-5.00
SVS2 Dup	08/28/14	5.5		89,000,000	<36,000	<8,000	13,000	<11,000	<11,000	<43,000	<11,000	13.5	<0.0100	11.3	2.82			-5.00
SVS2	10/03/16 g		h	35,000,000	<20,000d	<4,000d	<40,000d	<20,000d	,	,		16	<0.10	11		3.7	72	-3.26
SVS2	04/05/17 i																	
SVS2	08/24/17	5.5																
SVS4	10/03/16 f	22	9,800	5,900	19	<3.2	11	8.1	16	15		0.0031	0.94	0.86		20	79	3.83
SVS4	04/05/17	2.2	47,000	2,900	<3.6	<3.2	10	4.9	11	18		0.0380	<0.10	2.4		17	81	-5.11
SVS4	08/24/17	2.2	7.600	630b	<3.6	<3.2	<3.8	<4.4	<4.4	<8.8		< 0.001	0.34	0.80		21	78	-4.63
			,			-											-	
SVS5	10/03/16	2.2	16,000	3,000	38	<3.2	82	24	230	97		<0.0010	<0.10	1.2		20	79	-4.52
SVS5 SVS5	04/05/17 j																	-4.52
SVS5	04/03/17 j 08/24/17 i																	
0.00	0,2,,,,,																	
SVS6	10/03/16	2.2	<5,000	440b	4.6	<3.2	4.2	<4.4	4.7	<8.8		<0.0010	<0.10	0.44		20	79	-3.43
SVS6	04/05/17	2.2	<3,000 12,000	3,200	4.0 <3.6	<3.2	4.2	<4.4 8.2	4.7	<0.0 32		0.0010	<0.10	0.44		20 21	79 79	-3.43 -4.31
SVS6	04/05/17	2.2	<5,000	2,100b	<3.6	<3.2	7.4b	<4.4	<4.4	<8.8		<0.0010	<0.10	0.37		21	79	-4.31
SVS6 Rep	08/24/17	2.2	<5,000	2,1000	< 3.0	<3.2	7.40	<4.4	<4.4	<0.0		<0.001	<0.10	0.30		Z I		-4.30
5 60 Kep	00/24/17	2.2	<0,000															

TABLE 2A CUMULATIVE SOIL VAPOR ANALYTICAL RESULTS Former Exxon Service Station 79374 990 San Pablo Avenue

Albany, California

Notes:		
TPHd	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method TO-17(M).
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method TO-3M (March 2014), TO-17 (August 2014), or TO-15 (2016 and onward).
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method TO-15.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method TO-15.
VOCs	=	Volatile organic compounds analyzed using EPA Method TO-15. Naphthalene analyzed using both EPA Method TO-15 and TO-17(M).
Methane	=	Methane analyzed using ASTM Method D-1946 (2014) or EPA Method 8015M (2016 and onward).
Helium	=	Helium analyzed using ASTM Method D-1946 (M).
CO ₂	=	Carbon dioxide analyzed using ASTM Method D-1946.
O ₂ + Ar	=	Oxygen plus argon analyzed using ASTM Method D-1946.
O ₂	=	Oxygen analyzed using ASTM Method D-1946.
Nitrogen	=	Nitrogen analyzed using ASTM Method D-1946.
Vacuum	=	Vacuum measured using a vacuum gauge.
µg/m³	=	Micrograms per cubic meter.
%V	=	Percent by volume.
in Hg	=	Inches of mercury.
ND	=	Not detected. March 2014 samples analyzed for 1,2-dibromoethane, 1,2-dichloroethane, tertiary butyl alcohol, tertiary amyl methyl ether, ethyl tertiary butyl ether, and di-isopropyl only.
Bold	=	Greater than or equal to the most stringent, applicable screening level.
<	=	Less than the stated method detection limit.
	=	Not applicable.
а	=	Possibly biased high due to results of associated standard.
b	=	Analyte reported in associated equipment blank.
С	=	Screening level for total xylenes.
d	=	Reporting limits elevated due to high levels of non-target analytes.
е	=	Concentration exceeds the calibration range.
f	=	Leak detection compound reported. Concentration may have a low bias.
g	=	TPHg, MTBE, BTEX, and VOCs analyzed using EPA Method 8260.
h	=	Unable to sample due to elevated diesel concentrations above instrumentation limits.
i	=	Well not sampled due to saturated conditions.
j	=	Well not sampled due to tight and possibly saturated conditions.
k	=	4-Ethyltoluene.
1	=	Well not sampled due to potential leak in well seal.

= Well not sampled due to potential leak in well seal.

TABLE 2B ADDITIONAL CUMULATIVE SOIL VAPOR ANALYTICAL RESULTS - VOCs Former Exxon Service Station 79374 990 San Pablo Avenue

								990 San Pal Albany, C								
Sample ID	Sampling Date	Depth (feet)	Bromo- dichloro- methane (µg/m ³)	Carbon Disulfide (µg/m³)	Chloro- form (µg/m³)	Chloro- methane (µg/m³)	Dibromo- chloro- methane (µg/m ³)	4-Methyl-2- Pentanone (μg/m³)	Naph- thalene TO-15 (µg/m³)	Naph- thalene TO-17 (µg/m³)	Tri- chloro- ethane (µg/m³)	1,2,4- Trimethyl- benzene (µg/m³)	1,3,5- Trimethyl- benzene (µg/m³)	Tetra- chloro- ethane (µg/m³)	Tertiary Butyl Alcohol (µg/m³)	Add'l VOCs (µg/m³)
Environme	ntal Screen	ing Lev	els, Subslab	/Soil Gas, 1	Table SG-1	(February	2016)									
Residential Commercial	/Industrial		38 330		61 530	47,000 390,000			41 360	41 360	340 3,000			240 2,100		
Media-Spec	cific Criteria	for Va	por Intrusior	n to Indoor	Air, No Bic	attenuatior	n Zone (SWF	RCB, 2012)								
Residential Commercial									93 310	93 310						
Media-Spec	cific Criteria	for Va	oor Intrusior	to Indoor	Air. With B	ioattenuati	on Zone (SV	VRCB, 2012)								
Residential Commercial								 	93,000 310,000	93,000 310,000						
Near Com	mercial B	uilding	on the Site	9												
SVS3	03/07/14	5.5								1.1					<4,900	ND
SVS3 Dup	03/07/14	5.5													<4,900	ND
SVS3	08/28/14	5.5	<17,000	<31,000	<12,000	<5,200	<21,000	<31,000		820a	<13,000	<12,000	<12,000	<17,000	<30,000	ND
SVS3	10/03/16 g	5.5	<20,000	<20,000	<4,000	<20,000	<20,000	<100,000	<4,000	390	<4,000	<20,000	<20,000	<4,000	<200,000	ND
SVS3 Dup	10/03/16 g	5.5	<20,000	<20,000	<4,000	<20,000	<20,000	<100,000	<4,000	480	<4,000	<20,000	<20,000	<4,000	<200,000	ND
SVS3	04/05/17 g		<20,000	<20,000	<4,000	<20,000	<20,000	<100,000	<4,000	470	<4,000	<20,000	<20,000	<4,000	<200,000	ND
SVS3 Dup	04/05/17 g	5.5	<20,000	<20,000	<4,000	<20,000	<20,000	<100,000	<4,000		<4,000	<20,000	<20,000	<4,000	<200,000	ND
SVS3	08/24/17 g	5.5	<50,000	<50,000	<10,000	<50,000	<50,000	<250,000	<10,000	<20	<10,000	<50,000	<50,000	<10,000	<500,000	ND
SVS3 Dup	08/24/17 g	5.5	<50,000	<50,000	<10,000	<50,000	<50,000	<250,000	<10,000		<10,000	<50,000	<50,000	<10,000	<500,000	ND
SVS7	10/03/16 f	2.2	<34	42	58	<10	<43	51	<27	28	<27	55	38	<34	49	ND
SVS7	04/05/17 f	2.2	<34	36	<25	<10	<43	<41	<27	<20	<27	<25	<25	<34	120	ND
SVS7	08/24/17	2.2	<68	<63	<49	<21	<86	<83	<53	<20	<55	200	260	<69	<61	63k
SVS8	10/03/16 g	2.2	<500	<500	<100	<500	<500	<2,500	<100	<20	<100	<500	<500	<100	<5,000	ND
SVS8	04/05/17 g		<10,000d	<10,000d	<2,000d	<10,000d	<10,000d	<40,000d	<2,000d	23	<2,000d	<10,000d	<10,000d	<2,000d	<100,000d	ND
SVS8	08/24/17 g		<50,000	<50,000	<10,000	<50,000	<50,000	<250,000	<10,000	<20	<10,000	<50,000	<50,000	<10,000	<500,000	ND

TABLE 2B ADDITIONAL CUMULATIVE SOIL VAPOR ANALYTICAL RESULTS - VOCs Former Exxon Service Station 79374 990 San Pablo Avenue

								990 San Pal Albany, C								
Sample ID	Sampling [Date (Depth feet)	Bromo- dichloro- methane (µg/m ³)	Carbon Disulfide (µg/m³)	Chloro- form (µg/m³)	Chloro- methane (µg/m³)	Dibromo- chloro- methane (µg/m ³)	4-Methyl-2- Pentanone (µg/m³)	Naph- thalene TO-15 (µg/m³)	Naph- thalene TO-17 (µg/m³)	Tri- chloro- ethane (µg/m³)	1,2,4- Trimethyl- benzene (µg/m³)	1,3,5- Trimethyl- benzene (µg/m³)	Tetra- chloro- ethane (µg/m³)	Tertiary Butyl Alcohol (μg/m³)	Add'l VOCs (µg/m³)
Environme	ntal Screenii	ng Leve	els, Subslab	/Soil Gas, 1	able SG-1	(February	2016)									
Residential Commercia	l/Industrial		38 330		61 530	47,000 390,000			41 360	41 360	340 3,000			240 2,100		
Media-Spee	cific Criteria	for Vap	oor Intrusion	to Indoor	Air, No Bio	pattenuation	n Zone (SWF	RCB, 2012)								
Residential									93	93						
Commercia									310	310						
-	cific Criteria	for Vap					•									
Residential Commercia	1								93,000 310,000	93,000 310,000						
Commercia									310,000	510,000						
Near Resi	dential Bui	lding /	Adjacent to	the Site												
SVS1	03/06/14	5.5								<0.020					<9,700d	ND
SVS1	08/28/14	5.5	<17,000	<31,000	<12,000	<5,200	<21,000	<31,000		<20	<13,000	<12,000	<12,000	<17,000	<30,000	ND
SVS1	10/03/16 g	5.5	<20,000d	<20,000d	<4,000d	<20,000d	<20,000d	<100,000d	<4,000d	<20	<4,000d	<20,000d	<20,000d	<4,000d	<200,000d	ND
SVS1	04/05/17 g	5.5	<20,000d	<20,000d	<4,000d	<20,000d	<20,000d	<100,000d	<4,000d	34	<4,000d	<20,000d	<20,000d	<4,000d	<200,000d	ND
SVS1	08/24/17 I	5.5														
SVS1	09/05/17	5.5	<20,000d	<20,000d	<4,000d	<20,000d	<20,000d	<100,000d	<4,000d	<20	<4,000d	<20,000d	<20,000d	<4,000d	<200,000d	ND
SVS2	03/06/14	5.5								<0.020					<1,500	ND
SVS2	08/28/14	5.5	<17,000	<31,000	<12,000	<5,200	<21,000	<31,000		<20	<13,000	<12,000	<12,000	<17,000	<30,000	ND
SVS2 Dup	08/28/14	5.5	<17,000	<31,000	<12,000	<5,200	<21,000	<31,000			<13,000	<12,000	<12,000	<17,000	<30,000	ND
SVS2	10/03/16 g	5.5	<20,000d	<20,000d	<4,000d	<20,000d	<20,000d	<100,000d	<4,000d	<20	<4,000d	<20,000d	<20,000d	<4,000d	<200,000d	ND
SVS2	04/05/17 i	5.5														
SVS2	08/24/17 I	5.5														
SVS4	10/03/16 f	2.2	48	<6.3	63	2.3	21	8.9	<5.3	<20	<5.5	23	19	<6.9	<6.1	7.5k
SVS4		2.2	<6.8	<6.3	<4.9	<2.1	<8.6	<8.3	<5.3	<20	<5.5	<5.0	<5.0	<6.9	<6.1	ND
SVS4		2.2	20	<6.3	310	<2.1	<8.6	<8.3	<5.3	<20	<5.5	<5.0	<5.0	19	<6.1	ND
SVS5	10/03/16	2.2	38	<6.3	54	<2.1	14	<8.3	<5.3	<20	<5.5	86	34	<6.9	<6.1	16k
SVS5	04/05/17 j															
SVS5	08/24/17 i															
SVS6	10/03/16	2.2	<6.8	<6.3	<4.9	<2.1	<8.6	<8.3	<5.3	<20	<5.5	<5.0	<5.0	<6.9	<6.1	ND
SVS6	04/05/17		<6.8	<6.3	<4.9	<2.1	<8.6	<8.3	<5.3	<20	<5.5	5.0	<5.0	7.5	12	ND
SVS6	08/24/17	2.2	<6.8	<6.3	<4.9	<2.1	<8.6	<8.3	<5.3	<20	<5.5	<5.0	<5.0	<6.9	<6.1	ND
SVS6 Rep	08/24/17	~ ~								<20						

TABLE 2B ADDITIONAL CUMULATIVE SOIL VAPOR ANALYTICAL RESULTS - VOCs Former Exxon Service Station 79374

990 San Pablo Avenue Albany, California

Notes: Total petroleum hydrocarbons as gasoline analyzed using EPA Method TO-17(M). TPHd = Total petroleum hydrocarbons as gasoline analyzed using EPA Method TO-3M (March 2014), TO-17 (August 2014), or TO-15 (2016 and onward). TPHg _ MTBE = Methyl tertiary butyl ether analyzed using EPA Method TO-15. BTEX Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method TO-15. = VOCs Volatile organic compounds analyzed using EPA Method TO-15. Naphthalene analyzed using both EPA Method TO-15 and TO-17(M). = Methane Methane analyzed using ASTM Method D-1946 (2014) or EPA Method 8015M (2016 and onward). = Helium Helium analyzed using ASTM Method D-1946 (M). = CO_2 Carbon dioxide analyzed using ASTM Method D-1946. = $O_2 + Ar$ = Oxygen plus argon analyzed using ASTM Method D-1946. O_2 Oxygen analyzed using ASTM Method D-1946. = Nitrogen Nitrogen analyzed using ASTM Method D-1946. = Vacuum Vacuum measured using a vacuum gauge. = µg/m³ Micrograms per cubic meter. = %V Percent by volume. = in Hg Inches of mercury. = ND Not detected. March 2014 samples analyzed for 1,2-dibromoethane, 1,2-dichloroethane, tertiary butyl alcohol, tertiary amyl methyl ether, ethyl tertiary butyl ether, and di-isopropyl only. = Bold Greater than or equal to the most stringent, applicable screening level. = Less than the stated method detection limit. < = Not applicable. ---_ Possibly biased high due to results of associated standard. а = Analyte reported in associated equipment blank. b _ Screening level for total xylenes. С = Reporting limits elevated due to high levels of non-target analytes. d = Concentration exceeds the calibration range. e = Leak detection compound reported. Concentration may have a low bias. _ TPHg, MTBE, BTEX, and VOCs analyzed using EPA Method 8260. α = Unable to sample due to elevated diesel concentrations above instrumentation limits. h = Well not sampled due to saturated conditions. = Well not sampled due to tight and possibly saturated conditions. = 4-Ethyltoluene. k = Well not sampled due to potential leak in well seal. 1 =

APPENDIX

A

CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

REBECCA GEBHART, Interim Director

July 21, 2017

Ms. Jennifer Sedlachek ExxonMobil 4096 Piedmont Ave., #194 Oakland, CA 94611 (Sent via electronic mail to: jennifer.c.sedlachek@exxonmobil.com) Ms. Muriel Blank Blank Family Trust 1164 Solano Ave., #406 Albany, CA 94706

Subject: Vapor Intrusion Work Plan Request; Fuel Leak Case No. RO0002974 and GeoTracker Global ID T0619716673, Exxon, 990 San Pablo Ave., Albany, CA 94706

Dear Ms. Sedlachek and Ms. Blank:

Alameda County Department of Environmental Health (ACDEH) staff has reviewed the case file for the above referenced site including the *Semi-Annual Soil Vapor Assessment, Second Quarter 2017*, dated May 31, 2017, and the *Semi-Annual Groundwater Monitoring and Remediation Status Report*, dated June 23, 2017. The reports were prepared and submitted on your behalf by Cardno. Thank you for submitting them.

The referenced soil vapor assessment documented seasonal vapor sampling at the subject site, and stated the revised Bay Area Air Quality Management District (BAAQMD) permit was approved December 15, 2016. It is understood that the High Intensity Targeted (HIT) corrective action events will be started when appropriate power is acquired from the Pacific Gas & Electric Company (PGE); however, the report did not provide an estimated date.

The vapor analytical documented both increasing and decreasing vapor concentrations in site wells. Vapor wells are set at two depths, 5.5 feet below grade surface (bgs), and 2.2 feet bgs. The shallow vapor wells were installed to determine the presence of a shallow low-hydrocarbon vapor bio-zone sufficient to be protective of onsite and offsite structures. In general, concentrations in shallow vapor wells, remained consistent, or increased substantially (SVS8). Concentrations in shallow well SVS8 were documented at 15,000,000 micrograms per cubic meter (μ g/m³) Total Petroleum Hydrocarbons as gasoline (TPHg), <2,000 μ g/m³ benzene, <10,000 μ g/m³ ethylbenzene, and 23 μ g/m³ naphthalene. Elevated vapor concentrations at this well, located proximal to groundwater monitoring well MW-1, with non-detectable concentrations at standard reporting limits or very low volatile hydrocarbon concentrations, is problematic. The disjunction between vapor data and groundwater data can be suggestive of undiscovered sources. Regardless of the source of the vapor data, it represents a risk of vapor intrusion to the onsite building.

Thus, based on the review of the case file ACDEH requests that you address the following technical comments and send us the documents requested below.

TECHNICAL COMMENTS

- 1. Vapor Intrusion Work Plan ACDEH requests the submittal of a vapor intrusion work plan by the date referenced below.
- 2. Semi-Annual Vapor Monitoring Due to the substantial vapor concentration fluctuations in soil vapor wells at the site, the recommended semi-annual soil vapor sampling to further evaluate soil vapor concentrations appears appropriate due to potentially sensitive population (residential), and Department of Toxics Substance Control (DTSC) guidance. Please submit the results of the vapor sampling in a report by the dates identified below.

Ms. Sedlachek and Ms. Blank RO0002974 July 21, 2017, Page 2

3. Temporary HIT Events – As noted above, the HIT events are planned once PGE provides appropriate power for the site; however, based on typical PGE timeframes it appears that this timeframe is unpredictable. Therefore, unless an estimated reasonable timeframe for the power drop is known, in the interim, it appears reasonable to request that temporary HIT events resume using previously approved temporary mobile equipment. As noted in the State Water Board (SWB) Low Threat Closure Policy (LTCP), it is expected that the removal or destruction of secondary mass will be completed in one year or less, and the rate of action has been limited by outside events at the site. The presence of a potential vapor intrusion risk additionally indicates the appropriateness of actions.

Please provide 72-hour advance written notification to this office (e-mail preferred to: <u>mark.detterman@acgov.org</u>) prior to the start of field activities.

4. Semi-Annual Groundwater Monitoring – Please continue to conduct groundwater monitoring and sampling at the site on a semi-annual basis, and submit reports by the dates identified below.

SUBMITTAL ACKNOWLEDGEMENT STATEMENT

Please note that ACDEH has updated its Attachment 1 with regard to report submittals to ACDEH. ACDEH will now be requiring a Submittal Acknowledgement Statement, replacing the Perjury Statement, as a cover letter signed by the Responsible Party (RP). The language for the Submittal Acknowledgement Statement is as follows:

I have read and acknowledge the content, recommendations and/or conclusions contained in the attached document or report submitted on my behalf to ACDEH's FTP server and the SWRCB's Geotracker Website.

Please make this change to your submittals to ACDEH.

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACDEH ftp site (Attention: Mark Detterman), and to the State Water Resources Control Board's Geotracker website, in accordance with the specified file naming convention below, according to the following schedule:

- September 29, 2017 Vapor Intrusion Work Plan File to be named: RO2974_WP_R_yyyy-mm-dd
- October 6, 2017 Site Vapor Investigation Report (Can be combined with above report) File to be named: RO2974_SWI_R_yyyy-mm-dd
- **December 15, 2017** Second 2017 Semi-Annual Groundwater Monitoring File to be named: RO2974_GWM_R_yyyy-mm-dd
- June 8, 2018 First 2018 Semi-Annual Groundwater Monitoring File to be named: RO2974_GWM_R_yyyy-mm-dd

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

Online case files are available for review at the following website: <u>http://www.acgov.org/aceh/index.htm</u>. If your email address is not listed on the first page of this letter, or in the list of cc's listed below, ACDEH is requesting your email address to help expedite communications and to help lower overall costs.

Ms. Sedlachek and Ms. Blank RO0002974 July 21, 2017, Page 3

Should you have additional questions, please contact me at (510) 567--6876 or send me an electronic mail message at <u>mark.detterman@acgov.org</u>.

Sincerely,

Marke

Mark E. Detterman, PG, CEG Senior Hazardous Materials Specialist Enclosures: Attachment 1 – Responsible Party (ies) Legal Requirements / Obligations and Electronic Report Upload (ftp) Instructions

cc: Christine Capwell, Cardno, 601 North McDowell Blvd., Petaluma, CA 94954 (Sent via electronic mail to: <u>christine.capwell@cardno.com</u>)

David Daniels, Cardno, 601 North McDowell Blvd., Petaluma, CA 94954 (Sent via electronic mail to: <u>david.daniels@cardno.com</u>)

Mrs. Marcia B. Kelly, 641 SW Morningside Rd., Topeka, KS 66615 (Sent via electronic mail to: marciabkelly@earthlink.net)

Rev. Deborah Blank, 1563 Solano Ave. #344, Berkeley, CA 94707 (Sent via electronic mail to: miracoli@earthlink.net)

Dilan Roe, ACDEH, (Sent via electronic mail to: <u>dilan.roe@acgov.org</u>) Paresh Khatri, ACDEH; (Sent via electronic mail to: <u>paresh.khatri@acgov.org</u>) Mark Detterman, ACDEH, (Sent via electronic mail to: <u>mark.detterman@acgov.org</u>) Electronic File; GeoTracker

APPENDIX

B

SITE CONCEPTUAL MODEL

Element	Description	Data Gaps
Geology and H	ydrogeology	
Regional Geology and Hydrogeology	The site lies at an approximate elevation of 40 feet above msl, and the local topography slopes toward the southwest. The site is located along the eastern margin of the San Francisco Bay within the East Bay Plain (Hickenbottom and Muir, 1988). The surficial deposits in the site vicinity are mapped as Holocene alluvial fan and fluvial deposits (Graymer, 2000). The active northwest trending Hayward fault is located approximately 1.5 miles northeast of the site. The East Bay Plain is regionally divided into two major groundwater basins: the San Pablo and the San Francisco Basin. These basins are tectonic depressions that are filled primarily with a sequence of coalescing alluvial fans. The San Francisco Basin is further divided into seven sub-areas. The site is located in the Berkeley Sub-Area, which is filled primarily by alluvial deposits that range from 10 to 300 feet thick with poorly defined aquitards (CRWQCB, 1999). Under natural conditions, the direction of groundwater flow in the East Bay Plain is east to west.	None
Site Geology, Hydrogeology, Hydraulic Flow, and Groundwater Gradient	Soil boring logs indicate that the soil beneath the site consists predominantly of silt and clay with an apparently continuous coarse-grained unit 2 to 8 feet thick encountered between approximately 8 and 20 feet bgs. Fill material was encountered in the boring for well SVE3 (located in the former UST pit) to approximately 7 feet bgs. CPT borings indicate the presence of predominantly silt and clay between approximately 20 and 60 feet bgs, the maximum depth explored. Coarse-grained layers up to 3 feet thick are interbedded with the silt and clay (EC&A, 2008; Cardno ERI, 2011; Cardno ERI, 2012). Historical groundwater elevation data indicate that DTW ranges from 5 to 11 feet bgs beneath the site with varying groundwater flow directions. The distribution of dissolved-phase hydrocarbons suggests that the dominant groundwater flow direction is west to southwest (Cardno ERI, 2014b). Due to varying well construction, Cardno ERI separated the wells into shallow and deep water-bearing zones. Wells MW3A, MW4, MW5, and SVE1 through SVE3 are screened no deeper than 15 feet bgs and are referred to as the shallow water-bearing zone; wells MW1 through MW3 and MW6 have screened intervals that extend deeper than 15 feet bgs and are referred to as the deep water-bearing zone. The groundwater elevations. Although the water-bearing zones are referred to as shallow and deep, they likely do not represent unique water-bearing zones. During fourth quarter 2016, the groundwater flow direction in the shallow water-bearing zone was towards the southwest with a hydraulic gradient of approximately 0.02 (Cardno, 2016). Due to varying well construction, the groundwater flow in the deep water-bearing zone is not calculated (Cardno ERI, 2014b).	None
Facility History		
Facility Structures and Site Operations	In 1945, a service station owned by Signal Oil Company occupied the site. Humble Oil company acquired the site in 1967 from Standard Oil Company of California (Chevron), rebranding the site as an Enco station. The station was rebranded as an Exxon service station in 1975 (EDR, 2009a; EDR, 2009b). The service station was demolished in 1983. During demolition activities, one used-oil UST and four gasoline USTs were removed and the resulting tank cavity was backfilled with sand and compacted to 90% (City of Albany, 1983). Cardno ERI reviewed eight aerial photographs of the site and site vicinity dated from September 6, 1949, to June 21, 1983 (EDR, 2009b). Based on these photographs, the dispenser islands appeared to be located beneath the station canopy on the northern portion of the site and the former USTs appeared to be located on the southern portion of the site, east of the station's service bays. The location of the former used-oil UST is unknown. The approximate location of the former USTs are shown on the Generalized Site Plan. A retail outlet for Benjamin Moore paints and painting products and associated asphalt parking currently occupy the site.	None

Element	Description	Data Gaps
Sensitive Rece	ptors, Land Use, and Nearby Sites	
Surface Water Bodies	The site is located approximately 1,630 feet north-northwest of Cordornices Creek. No other surface water bodies have been located within a 300-meter radius of the site.	None
Nearby Wells	There are not public water supply, municipal, or domestic wells located within a ¼-mile radius of the site.	None
Public Use Areas	Two public use areas are present within a 100-meter radius of the site: the City of Albany Police, Fire, and City offices located across Buchanan Street at 1000 San Pablo Avenue and a physical therapy office located in the strip mall approximately 50 meters north of the site.	None
Residences	Sixteen residential buildings have been identified within a 300-meter radius of the site; five of those buildings are located within a 100-meter radius of the site.	None
Sub-Grade	Sub-grade structures have not been identified within a 100-meter radius of the site.	None
Utility Vaults	Twenty-three vaults have been identified on or immediately adjacent to the site. Vault uses include: water, telephone, gas meter, electric, sewer, traffic box, traffic signal, and anode.	None
Storm and Sanitary Sewers	Three storm drains are located on or adjacent to the site. The storm drains daylight along the curb and water flows west along Buchanan Street. The City of Albany Public Works Department confirmed that the storm drains discharge directly into the Bay. Two sanitary sewer cleanout vaults are located on site. The City of Albany Public Works Department confirmed that the storm drains discharge directly into the Bay. the East Bay Municipal Utilities District Treatment Plant, located 4.5 miles south of the site, at the entrance to the San Francisco Bay Bridge.	None
Other	Other site receptors have not been identified.	None
Nearby Sites	The surrounding areas consist of residential and commercial properties. The City of Albany Fire Department and Police Department are located south of the site on Buchanan Street. ACEH case number RO0000119, identified as Firestone #3655 in the GeoTracker [™] database, is located across San Pablo Avenue to the east. A Shell Service Station and an Atlantic Richfield Company Service Station (Arco) are located approximately 350 and 500 feet away, respectively, south-southeast of the site.	None
Release Inform	ation	
Release History	The primary sources of petroleum hydrocarbons at the site are the former used-oil UST and the four former gasoline USTs. The USTs were removed in 1983 (City of Albany, 1983).	None
Extent and Distribution of Petroleum Hydrocarbon Concentrations	Non-Aqueous Phase Liquid	None
	An immiscible sheen was reported in groundwater samples collected from borings B1 and B2 (EC&A, 2008). Neither NAPL nor sheen have been observed in the groundwater monitoring wells at the site; however, during fourth quarter 2012, concentrations of TPHg (270,000 µg/L) reported in well MW4 were potentially indicative of the presence of NAPL. Although the TPHg concentrations increased, BTEX concentrations were consistent with previous data. Concentrations of TPHg reported since fourth quarter 2012 are not indicative of the presence of NAPL and second quarter 2015 (22,000 µg/L) data is consistent with historical results. The fourth quarter 2012 TPHd result for well MW4 appears to have been anomalous.	

Element	Description	Data Gaps
	Hydrocarbons in Groundwater	Yes
	Current and historic maximum dissolved-phase petroleum hydrocarbon concentrations have been reported in well MW3 (located in the vicinity of the former USTs) and wells MW4 and MW5 (located west of the former USTs). Concentrations are delineated to the east of the site by wells MW1 and MW2 and to the south of the site by borings B11 and B15.	
	Dissolved-phase hydrocarbons are adequately vertically delineated at the site with petroleum hydrocarbon concentrations below or near the laboratory reporting limits in groundwater samples collected deeper than 27.5 feet bgs (Cardno ERI, 2011).	
	Data Gap: Dissolved-phase petroleum hydrocarbons require monitoring off site to the west and southwest near borings B9 and B12.	
	How to Address: Cardno installed off-site wells MW7 through MW9 to monitor dissolved-phase petroleum hydrocarbons west and southwest of the site. Monitoring and sampling activities in these wells are ongoing. The need for installation of additional wells will be evaluated.	
	Hydrocarbons in Soil	None
	Maximum residual petroleum hydrocarbon concentrations are present at approximately 10.5 feet bgs in the vicinity of the former USTs. With the exception of naphthalene by EPA Method 8310 in boring B13 (5 feet bgs) and TPHg in borings B4 (5 feet bgs) and SVE1 (8.5 feet bgs), residual petroleum hydrocarbon concentrations have been near or below reporting limits in the shallow soil samples collected at the site, including samples collected in the vicinity of the former UST and suspected dispenser island locations. Residual petroleum hydrocarbon concentrations are adequately delineated in both shallow (less than 10 feet bgs) and deep (greater than or equal to 10 feet bgs) soil to the northeast, the northwest, the west, the east, the southwest, and the south by borings B5 through B11, B14, B15, MW1, MW2, and CPT1. Residual TPHg (530 mg/kg) is present to the north at 10 feet bgs in boring B16, but is near or below reporting limits at 5 and 15.5 feet bgs (EC&A, 2008; Cardno ERI, 2011; Cardno ERI, 2014a).	
	Hydrocarbons in Soil Vapor	Yes
	Maximum vapor-phase concentrations are present in well SVS3, located in the vicinity of the suspected locations of the former dispenser islands. Petroleum hydrocarbons exceed ESLs by up to three orders of magnitude in wells SVS1 through SVS3.	
	Data Gap: Vapor-phase concentrations exceed applicable screening levels.	
	How to Address: DPE HIT events and soil vapor sampling are ongoing.	
Exposure Ro	utes and Potential Receptors	
Exposure Routes and Potential Receptors	Utility trench backfill material is not acting as a preferential pathway for petroleum hydrocarbon concentrations (Cardno ERI, 2014a). There are not public water supply, municipal, or domestic wells located within a quarter mile of the site. The nearest surface water body (Cordornices Creek) is located approximately 1,630 feet south-southeast of the site. Residual and dissolved-phase petroleum hydrocarbons are delineated south and east of the site and are not likely to migrate to Cordornices Creek.	Yes
	A construction worker excavating soil at the site is a potential receptor; however, since the site is paved, direct exposure (via ingestion or dermal contact) to chemicals of concern released during Exxon's operations is not likely.	
	The potential exposure route of vapor inhalation may exist in the commercial/industrial setting for workers in the on-site retail outlet.	
	Users of shallow and deep groundwater are potential receptors.	
	Data Gap: See the groundwater and soil vapor data gaps in the Release Information section.	

REFERENCES

California Regional Water Quality Control Board San Francisco Bay Region Groundwater Committee (CRWQCB). June 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda and Contra Costa Counties, CA.

Cardno. December 13, 2016. Groundwater Monitoring Report, Fourth Quarter 2016, Former Exxon Service Station 79375, 990 San Pablo Avenue, Albany, California.

Cardno ERI. February 28, 2011. Site Assessment Report, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California.

Cardno ERI. April 12, 2012. Well Installation Report, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California.

Cardno ERI. July 7, 2014a. Work Plan for Well Installation, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California.

Cardno ERI. September 5, 2014b. Response to Comments and Request for Extension, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California.

City of Albany. March 28, 1983. Building Permit 82-0708.

Edd Clark & Associates (EC&A). January 31, 2008. Report of Phase II Environmental Assessment, 990 San Pablo Avenue, Albany, California.

Environmental Data Resources Inc. (EDR). December 1, 2009a. The EDR-City Directory Abstract, 990 San Pablo Avenue, Albany, CA 94706. Inquiry Number: 2648519.6.

Environmental Data Resources Inc. (EDR). December 1, 2009b. Certified Sanborn® Map Report, 990 San Pablo Avenue, Albany, CA 94706. Inquiry Number: 2648519.36.

Graymer, R.W. 2000. Geological map and map database of the Oakland metropolitan area, Alameda, Contra Costa, and San Francisco Counties, California. USGS, Miscellaneous Field Studies MF-2342.

Hickenbottom, Kelvin, and Muir, Kenneth S. June 1988. Geohydrology and Groundwater Quality Overview of the East Bay Plain Area, Alameda County, CA. Alameda County Flood Control and Water Conservation District. 83p.

FIELD PROTOCOLS

APPENDIX

Soil Vapor Sampling Well Installation and Sampling Field Protocol

Preliminary Activities

Prior to the onset of field activities at the site, Cardno obtains the appropriate permit(s) from the governing agency(s). Advance notification is made as required by the agency(s) prior to the start of work. Cardno marks the borehole locations and contacts the local one call utility locating service at least 48 hours prior to the start of work to mark buried utilities. Borehole locations may also be checked for buried utilities by a private geophysical surveyor. Prior to drilling, the borehole location is cleared in accordance with the client's procedures. Fieldwork is conducted under the advisement of a registered professional geologist and in accordance with an updated site-specific safety plan prepared for the project, which is available at the job site during field activities.

Well Construction

The borehole is advanced to the desired depth using either a direct-push rig, hand auger, or air vacuum rig. Lithologic conditions are recorded on a boring log during borehole advancement, and select soil matrix sampling may be conducted based on soil characteristics.

Each soil vapor sampling (SVS) well is constructed using inert screen material attached to ¹/₈- to ¹/₄-inch outer diameter inert tubing. A gas-tight vacuum fitting or valve is attached to the top of each length of tubing using a female compression fitting. Each screen is set within a minimum of a 12-inch thick appropriately sized sand pack, with a minimum of 3 inches of sand pack above the top of the screen. A minimum of 4 inches of dry granular bentonite is set above each screen and associated sand pack. In SVS wells with multiple and separate casings and screens, the annular space between the top of the dry granular bentonite above the deep screen and the bottom of the sand pack associated with the shallow screen is sealed with a minimum of 18 inches of hydrated bentonite. The remainder of the annular space of the well is sealed with hydrated bentonite to 1 foot below ground surface. Wellheads are finished with traffic-rated well boxes set in concrete flush with the surrounding grade. No glues, chemical cements, or solvents are used in well construction.

A boring log is completed with the construction details for each well, including the materials of construction, depth of the borehole, screen length, and annular seal thickness.

Soil Vapor Sampling

Samples are collected using a soil vapor purging and sampling manifold consisting of a flow regulator, vacuum gauges, vacuum pump, shroud, and laboratory-prepared, gas-tight, opaque containers such as Summa[™] canisters. Samples may also be collected using a syringe and analyzed by a mobile laboratory. Prior to use, Summa[™] canisters are checked to ensure they are under the laboratory induced vacuum between 31 and 25 inches of mercury (in. Hg). New inert tubing is used to purge and sample each well. Prior to purging and sampling each SVS well, the sampling manifold is connected to the gas-tight vacuum fitting or valve at the wellhead, and the downstream tubing and fittings are vacuum tested at approximately 24 to 28 in. Hg. Purging and sampling are conducted only on SVS wells when the tubing and fittings hold the applied vacuum for 5 minutes per vacuum gauge reading.

When required, Cardno conducts a purge volume versus constituent concentration test on at least one SVS well prior to purging and sampling activities. The purge volume test well is selected based on the location of the anticipated source of chemical constituents at the site and on the location of anticipated maximum soil vapor concentrations based on lithologic conditions. If the SVS well has been in place for more than 1 week, it is assumed that soil vapor in the sand pack has equilibrated with the surrounding soil, and only the screen and tubing volumes are included in the purge volume calculation. If the SVS well has been in place for less than 1 week, the volume of the sand pack around the screen is included in the purge volume calculation. A photo-ionization detector (PID) or on-site mobile laboratory is used to evaluate concentrations of chemical constituents in the vapor stream after 1, 3, and 10 volumes of vapor have been purged from the SVS well. Purging is conducted at a rate of 100 to 200

Cardno Soil Vapor Sampling Well Installation Field Protocol

milliliters per minute (ml/min). The purge volume exhibiting the highest concentration is the volume of vapor purged from each SVS well prior to sampling. If the three separate purge volumes produce equal concentrations a default of 3 purge volumes is extracted prior to sampling.

Prior to sampling, a helium leak test is performed at each SVS well, including a summa canister and its fittings, to check for leaks in the SVS annulus. To assess the potential for leaks in the SVS well annulus, a shroud is placed over the SVS well and summa canister and the shroud is filled with a measured amount of helium. Helium screening is performed in the field by drawing soil gas into a Tedlar bag via a lung-box and screening the contents of the Tedlar bag with a helium meter. The concentration of helium in the sample divided by the concentration of helium in the shroud provides a measure of the proportion of the sample attributable to leakage. A leak that comprises less than 5% of the sample is insignificant. Helium screening is also performed using laboratory analysis of the contents of the summa canister collected under the shroud. Sampling is conducted at approximately the same rate of purging, at 100 to 200 ml/min. Soil vapor samples are submitted under chain-of-custody protocol for the specified laboratory analyses.

At a minimum, weather conditions (temperature, barometric pressure and precipitation), the sampling flow rate, the purge volume, the helium leak detection percentage results, the sample canister identification number, the method of sample collection, and the vacuum of the sampling canister at the start and end of sample collection (if applicable) are recorded on a log for each SVS well purged and sampled.

Decontamination Procedures

If soil samples are collected, Cardno or the contracted driller decontaminates the soil sampling equipment between each sampling interval using a non-phosphate solution, followed by a minimum of two tap water rinses. De-ionized water may be used for the final rinse. Downhole drilling equipment is steam-cleaned or triple-rinsed prior to advancing each borehole.

Waste Treatment and Disposal

Soil cuttings generated from the well installation are stored on site in labeled, Department of Transportationapproved, 55-gallon drums or other appropriate storage container. The soil is removed from the site and transported under manifest to a client- and regulatory-approved facility for recycling or disposal. Decontamination water is stored on site in labeled, regulatory-approved storage containers, and is subsequently transported under manifest to a client- and regulatory-approved facility for disposal or treated with a permitted mobile or fixed-base carbon treatment system.

APPENDIX

D

FIELD DATA SHEETS

y.

Soil Vapor Sampling Datasheet

Site ID: Former Exxon 79374		Cardno Project #: 2735		
Site Address: 990 San Pablo Ave, Albany, G	CA	Weather / Air Temp (F°): 65°		
Location ID: $5 \vee 5 \downarrow$	Well Depth: 5.6'	Atmospheric Pressure (in Hg): 29.95		
Date: 8-24-17		Helium Detector #: MGD 2002		
Field Personnel: Nadya Vicente		Purge Volume (mL - 3PV): 32 54 ml		

Pre-Sampling Information									
Shut In Test : Start Time: <u>1150</u> End Time: <u>1155</u> Initial Vacuum <u>20</u> (in Hg) Final Vacuum <u>20</u> (in Hg)									
	Start Time	End Time	Maintained % Helium in Shroud	Flow Rate (cc/min)	Down-hole Vacuum (in Hg)	Helium Leak (ppm)	Notes: He > limit. Change summ		
Well Purge	1/55	1214	+10%	200 cc/min	0	+2%	itubing-same result.		

	Sample Information								
Sample ID	Start Time	End Time	Maintained % Helium in Shroud	Canister ID	Flow Controller #	Initial Vacuum (in Hg)	Final Vacuum (in Hg)	Down-hole Vacuum (in Hg)	
	No SAMPLE				-				
Duplicate									

Sorbant Tube ID #

Time:

Comments:

Site ID: Former Exxon 79374	Cardno Project #: 2735		
Site Address: 990 San Pablo Ave, Albany, CA	Weather / Air Temp (F°): 69		
Location ID: SVS 2. Well Depth: 5.6"	Atmospheric Pressure (in Hg): 29.93		
Date: $8 - 24 - 17$	Helium Detector #: MGD 2002		
Field Personnel: Nadya Vicente	Purge Volume (mL - 3PV): 3254 M(

Pre-Sampling Information									
Shut In Test : Start Time: <u>1255</u> End Time: <u>1300</u> Initial Vacuum <u>19</u> (in Hg) Final Vacuum <u>19</u> (in Hg)									
	Start TimeEnd TimeMaintained % Helium in ShroudFlow Rate (cc/min)Down-hole Vacuum (in Hg)Helium Leak (ppm)Notes: He > limit. Change Summa : tubing. Same								
Well Purge	1302	1318	<i>t101.</i>	200 celmin	0	+2%	result.		

	Sample Information									
Sample ID	Start Time	End Time	Maintained % Helium in Shroud	Canister ID	Flow Controller #	Initial Vacuum (in Hg)	Final Vacuum (in Hg)	Down-hole Vacuum (in Hg)		
1	NO SAMPLE					· ·				
Duplicate			and the second							

Sorbant Tube ID #

Time:

Comments:

Site ID: Former Exxon 79374	Cardno Project #: 2735
Site Address: 990 San Pablo Ave, Albany, CA	Weather / Air Temp (F°): 63°
Location ID: 5VS 3 Well Depth: 5.6	Atmospheric Pressure (in Hg): 29. 94 "
Date: $8 - 24 - 17$	Helium Detector #: MGD 2002
Field Personnel: Nadya Vicente	Purge Volume (mL - 3PV): 3254 m/

Pre-Sampling Information									
Shut In Test : Start Time: <u>0940</u> End Time: <u>0945</u> Initial Vacuum <u>19</u> (in Hg) Final Vacuum <u>19</u> (in Hg)									
	Start Time	End Time	Maintained % Helium in Shroud	Flow Rate (cc/min)	Down-hole Vacuum (in Hg)	Helium Leak (ppm)	Notes:		
Well Purge	0945	1001	+10%	200 cc/min	0	Oppm			

	Sample Information									
Sample ID	Start Time	End Time	Maintained % Helium in Shroud	Canister ID	Flow Controller #	Initial Vacuum (in Hg)	Final Vacuum (in Hg)	Down-hole Vacuum (in Hg)		
SVS 3	1002	1006	+10%	380	226	-27	- 5	0		
Duplicate	1002	1006	+10%	275	226	-27	- 5	0		

Sorbant Tube ID # G-0141338 Time: 1012

Comments:					
			2		
	3				

Site ID: Former Exxon 79374		Cardno Project #: 2735				
Site Address: 990 San Pablo Ave, A	Ibany, CA	Weather / Air Temp (F°): 68°				
Location ID: 5VS 4	Well Depth: 2	Atmospheric Pressure (in Hg): <i>29.96</i> "				
Date: 8-24-17	the v	Helium Detector #: MGD 2002				
Field Personnel: Nadya Vicente		Purge Volume (mL - 3PV): 889m/				

Pre-Sampling Information								
Shut In Test : Start Time: 1320 End Time: 1325 Initial Vacuum 19 (in Hg) Shut In Test : Start Time: 1320 End Time: 1325 Initial Vacuum 19 (in Hg)								
	Start Time	End Time	Maintained % Helium in Shroud	Flow Rate (cc/min)	Down-hole Vacuum (in Hg)	Helium Leak (ppm)	Notes:	
Well Purge	1328	/333	+10%.	200 cc/min	0	1660 ppm		

	Sample Information											
Sample ID	Start Time	End Time	Maintained % Helium in Shroud	Canister ID	Flow Controller #	Initial Vacuum (in Hg)	Final Vacuum (in Hg)	Down-hole Vacuum (in Hg)				
	1337	1340	+10%	134	081	-30	- 5	0				
Duplicate		•										

1.0

1

Sorbant Tube ID # G-0/89328 Time: 7342

Comments:

Site ID: Former Exxon 79374		Cardno Project #: 2735
Site Address: 990 San Pablo Ave, Alba	ny, CA	Weather / Air Temp (F°): 68
Location ID: SVS 5	Well Depth: 2	Atmospheric Pressure (in Hg): 29.96
Date: 8-24-17		Helium Detector #: MGD 2002
Field Personnel: Nadya Vicente		Purge Volume (mL - 3PV): 889m/

	Pre-Sampling Information												
Shut In Test :	Start Time: /2	End Ti	me: <u>1240</u>	-	Initial Vacuum_ 20	(in Hg) Fina	al Vacuum_20 (in Hg)						
	Start Time	End Time	Maintained % Helium in Shroud	Flow Rate (cc/min)	Down-hole Vacuum (in Hg)		Notes: @ 7.5"/Hq after 2 minute purging @ 50 cc/min.						
Well Purge	1244		+10%				Purge with syringe - WE						
							Hzo in well.						

	Sample Information											
Sample ID	Start Time	End Time	Maintained % Helium in Shroud	Canister ID	Flow Controller #	Initial Vacuum (in Hg)	Final Vacuum (in Hg)	Down-hole Vacuum (in Hg)				
	NO SAI	MPLE		WET								
Duplicate												

Sorbant Tube ID #

Time:

Comments:

Site ID: Former Exxon 79374		Cardno Project #: 2735
Site Address: 990 San Pablo Ave, Alban	y, CA	Weather / Air Temp (F°): 65
Location ID: SVS 6	Well Depth: 💙	Atmospheric Pressure (in Hg): 29.95
Date: 8-24-17		Helium Detector #: MGD 2002
Field Personnel: Nadya Vicente		Purge Volume (mL - 3PV): 1365

	Pre-Sampling Information												
Shut In Test :	Start Time:	120 End Ti	me: 1125	_	Initial Vacuum 20	(in Hg)	al Vacuum 20 (in Hg)						
	Start Time	End Time	Maintained % Helium in Shroud	Flow Rate (cc/min)	Down-hole Vacuum (in Hg)	Helium Leak (ppm)	Notes:						
Well Purge	1126	1133	+ 10%.	200 cc/min	0	O ppm							

	Sample Information											
Sample ID	Start Time	End Time	Maintained % Helium in Shroud	Canister ID	Flow Controller #	Initial Vacuum (in Hg)	Final Vacuum (in Hg)	Down-hole Vacuum (in Hg)				
SVS6	1133	1136	+10%	321	143	-30	-5	0				
Duplicate			90			-						

Sorbant Tube ID # $GO14/370$	Time: //39	
Replicate - 60141306	Time: 1140	

Comments:	
~	

Site ID: Former Exxon 79374		Cardno Project #: 2735
Site Address: 990 San Pablo Ave, Albar	η γ , CA	Weather / Air Temp (F°): 63°
Location ID: 5VS 7	Well Depth: 2	Atmospheric Pressure (in Hg): 29.64 "
Date: 8 - 24 - 17	•	Helium Detector #: MGD 2002
Field Personnel: Nadya Vicente		Purge Volume (mL - 3PV): 889 mL

			1	Pre-Sampling Infor	mation		
Shut In Test :	Start Time:	<u>030</u> End Ti	me: 1035		Initial Vacuum <u>19</u>	(in Hg) Fina	al Vacuum (in Hg)
	Start Time	End Time	Maintained % Helium in Shroud	Flow Rate (cc/min)	Down-hole Vacuum (in Hg)	Helium Leak (ppm)	Notes: 3 minutes @ 150 ce/minutes @ 100
Well Purge	1035	1043	+10%	100 - 150	0-6.5	0 ppm	Tight Conditions

[Sample Informa	ition			
Sample ID	Start Time	End Time	Maintained % Helium in Shroud	Canister ID	Flow Controller #	Initial Vacuum (in Hg)	Final Vacuum (in Hg)	Down-hole Vacuum (in Hg)
SVS7	1047	1054	tioi.	057	039	-29	0275	0-7
Duplicate							-5	

Sorbant Tube ID # 6-014-1358 Time: 1100

Comments:

Site ID: Former Exxon 79374	Cardno Project #: 2735
Site Address: 990 San Pablo Ave, Albany, CA	Weather / Air Temp (F°): 63
Location ID: 5V58 Well Depth: 2	Atmospheric Pressure (in Hg): 29.99
Date: 8-24-17	Helium Detector #: MGD 2002
Field Personnel: Nadya Vicente	Purge Volume (mL - 3PV): 889 m/

				Pre-Sampling Infor	mation			
Shut In Test :	Start Time:	855 End T	ime: <u>0900</u>	<u>.</u>	Initial Vacuum19	(in Hg) Fina	al Vacuum_19_ (in Hg)	
	Start Time	End Time	Maintained % Helium in Shroud	Flow Rate (cc/min)	Down-hole Vacuum (in Hg)	Helium Leak (ppm)	Notes:	
Well Purge	0902	0907	+10%	200 cc/min	0	O ppm		

	Sample Information												
Sample ID	Start Time	End Time	Maintained % Helium in Shroud	Canister ID	Flow Controller #	Initial Vacuum (in Hg)	Final Vacuum (in Hg)	Down-hole Vacuum (in Hg)					
5158	0909	0912	+ 10%	390	099	-27	- 5	0					
Duplicate							1 x						

N

Sorbant Tube ID # G-0150657 Time: 0920

Comments:	

APPENDIX

LABORATORY ANALYTICAL REPORTS

08 September 2017

Mr. Scott Perkins Cardno ERI - Petaluma 601 N. McDowell Blvd Petaluma, CA 94954

H&P Project: CAR082917-13 Client Project: Former Exxon 79374 / 990 San Pablo Ave.

Dear Mr. Scott Perkins:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 29-Aug-17 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody
- Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Ganis La Roux

Janis La Roux Laboratory Director

H&P Mobile Geochemistry, Inc. is certified under the California ELAP and the National Environmental Laboratory Accreditation Conference (NELAC). H&P is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs, accreditation number 69070 for EPA Method TO-15, H&P Method TO-15, EPA Method 8260B and H&P 8260SV.

Quality. Accuracy. Experience.

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA P 1.800.834.9888 / 760.804.9678 F 760.804.9159 W handpmg.com

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma 601 N. McDowell Blvd Petaluma, CA 94954	Project: CAR082917-13 Project Number: Former Exxon 79374 / 990 San Project Manager: Mr. Scott Perkins	Pablo Ave. Reported: 08-Sep-17 12:27
	ANALYTICAL REPORT FOR SAMPLES	

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SVS3	E708119-01	Vapor	24-Aug-17	29-Aug-17
SVS3 DUP	E708119-02	Vapor	24-Aug-17	29-Aug-17
SVS4	E708119-03	Vapor	24-Aug-17	29-Aug-17
SVS6	E708119-04	Vapor	24-Aug-17	29-Aug-17
SVS7	E708119-05	Vapor	24-Aug-17	29-Aug-17
SVS8	E708119-06	Vapor	24-Aug-17	29-Aug-17
QCEB	E708119-07	Vapor	24-Aug-17	29-Aug-17
QCTB	E708119-08	Vapor	24-Aug-17	29-Aug-17

Due to the presence of elevated analytes, samples SVS3, SVS3 DUP and SVS8 were analyzed using H&P 8260SV rather than EPA Method TO-15. The following EPA Method TO-15 analytes are not reported by H&P 8260SV: Dichlorotetrafluoroethane

4-Ethyltoluene

Cardno ERI - Petaluma 501 N. McDowell Blvd		Project: CAR082917-13 Project Number: Former Exxon 79374 / 990 San Pablo Ave.								
Petaluma, CA 94954	Project Manager: Mr.	Scott Perkins			Reported: 08-Sep-17 12:27					
	DETECTIONS SU	MMARY								
Sample ID: SVS3	Laboratory ID:	E708119-01								
		Reporting								
Analyte	Result	Limit	Units	Method	Notes					
Carbon dioxide	12	0.20	%	ASTM D1945						
Oxygen	5.6	0.20	%	ASTM D1945						
Nitrogen	79	0.20	%	ASTM D1945						
Methane	36000	100	ppmv	EPA 8015M						
Benzene	15000	10000	ug/m3	H&P 8260SV						
TPHv (C6-C12)	56000000	2000000	ug/m3	H&P 8260SV						
Sample ID: SVS3 DUP	Laboratory ID:	E708119-02								
		Reporting								
Analyte	Result	Limit	Units	Method	Notes					
Carbon dioxide	13	0.20	%	ASTM D1945						
Oxygen	5.1	0.20	%	ASTM D1945						
Nitrogen	79	0.20	%	ASTM D1945						
Methane	35000	100	ppmv	EPA 8015M						
Benzene	17000	10000	ug/m3	H&P 8260SV						
ТРНу (С6-С12)	67000000	2000000	ug/m3	H&P 8260SV						
Sample ID: SVS4	Laboratory ID:	E708119-03								
		Reporting								
Analyte	Result	Limit	Units	Method	Notes					
Helium (LCC)	0.34	0.10	%	ASTM D1945N	1					
Carbon dioxide	0.80	0.20	%	ASTM D1945						
Oxygen	21	0.20	%	ASTM D1945						
Nitrogen	78	0.20	%	ASTM D1945						
Chloroform	310	4.9	ug/m3	EPA TO-15						
Bromodichloromethane	20	6.8	ug/m3	EPA TO-15						
Tetrachloroethene	19	6.9	ug/m3	EPA TO-15						
TPHv (C6 - C12)	630	100	ug/m3	EPA TO-15						
Sample ID: SVS6	Laboratory ID:	E708119-04								
		Reporting								
Analyte	Result	Limit	Units	Method	Notes					
Carbon dioxide	0.38	0.20	%	ASTM D1945						
Oxygen	21	0.20	%	ASTM D1945						
Nitrogen	79	0.20	%	ASTM D1945						
Toluene	7.4	3.8	ug/m3	EPA TO-15						
ТРНу (С6 - С12)	2100	100	ug/m3	EPA TO-15						

Cardno ERI - Petaluma 601 N. McDowell Blvd	Project: CA Project Number: For	mer Exxon 79374 / 9	990 San Pablo	Ave.	Reported:				
Petaluma, CA 94954	Project Manager: Mr.		08-Sep-17 12:27						
Sample ID: SVS7	Laboratory ID:	Laboratory ID: E708119-05							
		Reporting							
Analyte	Result	Limit	Units	Method	Notes				
Helium (LCC)	0.17	0.10	%	ASTM D1945M					
Carbon dioxide	5.0	0.20	%	ASTM D1945					
Oxygen	17	0.20	%	ASTM D1945					
Nitrogen	77	0.20	%	ASTM D1945					
Methane	8300	10	ppmv	EPA 8015M					
Ethylbenzene	110	44	ug/m3	EPA TO-15					
4-Ethyltoluene	63	50	ug/m3	EPA TO-15					
1,3,5-Trimethylbenzene	260	50	ug/m3	EPA TO-15					
1,2,4-Trimethylbenzene	200	50	ug/m3	EPA TO-15					
TPHv (C6 - C12)	670000	5000	ug/m3	EPA TO-15					
Sample ID: SVS8	Laboratory ID:	E708119-06							
		Reporting							
Analyte	Result	Limit	Units	Method	Notes				
Carbon dioxide	14	0.20	%	ASTM D1945					
Oxygen	5.3	0.20	%	ASTM D1945					
Nitrogen	79	0.20	%	ASTM D1945					
Methane	8400	10	ppmv	EPA 8015M					
TPHv (C6-C12)	25000000	2000000	ug/m3	H&P 8260SV					
Sample ID: QCEB	Laboratory ID:	E708119-07							
		Reporting							
Analyte	Result	Limit	Units	Method	Notes				
Oxygen	21	0.20	%	ASTM D1945					
Nitrogen	79	0.20	%	ASTM D1945					
Toluene	10	3.8	ug/m3	EPA TO-15					
TPHv (C6 - C12)	700	100	ug/m3	EPA TO-15					
Sample ID: QCTB	Laboratory ID:	E708119-08							
		Reporting							
Analyte	Result	Limit	Units	Method	Notes				
Oxygen	2.1	0.20	%	ASTM D1945					

Cardno ERI - Petaluma		Pr	oiect: CA	R082917-13	3					
601 N. McDowell Blvd						San Pablo Av	e.	Reported:		
Petaluma, CA 94954		Project Manager: Mr. Scott Perkins						08-Sep-17 12:27		
		Soil Gas a	nd Van	or Analy	reie			i i i i		
			-	•						
	H	&P Mobil	e Geoch	nemistry,	, Inc.					
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes	
SVS3 (E708119-01) Vapor Sampled: 2	4-Aug-17 Received: 29	-Aug-17								
Carbon dioxide	12	0.20	%	1	EH73017	30-Aug-17	30-Aug-17	ASTM D1945		
Oxygen	5.6	0.20		"	"	"	"	"		
Nitrogen	79	0.20		"	"	"	"	"		
Helium (LCC)	ND	0.10	"	"	EH73016	30-Aug-17	30-Aug-17	ASTM D1945M		
Methane	36000	100	ppmv	10	EH73015	30-Aug-17	30-Aug-17	EPA 8015M		
SVS3 DUP (E708119-02) Vapor Samp	led: 24-Aug-17 Receive	d: 29-Aug-17	,							
Carbon dioxide	13	0.20	%	1	EH73017	30-Aug-17	30-Aug-17	ASTM D1945		
Oxygen	5.1	0.20	"	"	"	"	"	"		
Nitrogen	79	0.20		"	"	"	"	"		
Helium (LCC)	ND	0.10	"	"	EH73016	30-Aug-17	30-Aug-17	ASTM D1945M		
Methane	35000	100	ppmv	10	EH73015	30-Aug-17	30-Aug-17	EPA 8015M		
SVS4 (E708119-03) Vapor Sampled: 2	4-Aug-17 Received: 29	-Aug-17								
Carbon dioxide	0.80	0.20	%	1	EH73017	30-Aug-17	30-Aug-17	ASTM D1945		
Oxygen	21	0.20	"		"	"	"	"		
Nitrogen	78	0.20	"	"	"	"	"	"		
Helium (LCC)	0.34	0.10	"	"	EH73016	30-Aug-17	30-Aug-17	ASTM D1945M		
Methane	ND	10	ppmv	"	EH73015	30-Aug-17	30-Aug-17	EPA 8015M		
SVS6 (E708119-04) Vapor Sampled: 2	4-Aug-17 Received: 29	-Aug-17								
Carbon dioxide	0.38	0.20	%	1	EH73017	30-Aug-17	30-Aug-17	ASTM D1945		
Oxygen	21	0.20	"	"	"	"	"	"		
Nitrogen	79	0.20	"	"	"	"	"	"		
Helium (LCC)	ND	0.10	"	"	EH73016	30-Aug-17	30-Aug-17	ASTM D1945M		
Methane	ND	10	ppmv	"	EH73015	30-Aug-17	30-Aug-17	EPA 8015M		

Cardno ERI - Petaluma			•	R082917-13		G D 11 4		- ·	
601 N. McDowell Blvd	Project Number: Former Exxon 79374 / 990 San Pablo Ave. Reported Project Manager: Mr. Scott Perkins 08-Sep-1								
Petaluma, CA 94954		Project Mar	lager: Mr.	Scott Perki	ns			08-Sep-17 12:27	
		Soil Gas a	nd Vap	or Analy	vsis				
	H	I&P Mobil	e Geocl	hemistry,	, Inc.				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
-			enits	1 actor	Buten	Tiepureu	7 mary 20a	memou	
, , , , , , , , , , , , , , , , , , ,	ampled: 24-Aug-17 Received: 29	0							
Carbon dioxide	5.0	0.20	%	1	EH73017	30-Aug-17	30-Aug-17	ASTM D1945	
Oxygen	17	0.20						"	
Nitrogen	77	0.20							
Helium (LCC)	0.17	0.10			EH73016	30-Aug-17	30-Aug-17	ASTM D1945M	
Methane	8300	10	ppmv		EH73015	30-Aug-17	30-Aug-17	EPA 8015M	
SVS8 (E708119-06) Vapor Sa	ampled: 24-Aug-17 Received: 29	9-Aug-17							
Carbon dioxide	14	0.20	%	1	EH73017	30-Aug-17	30-Aug-17	ASTM D1945	
Oxygen	5.3	0.20	"	"	"	"	"	"	
Nitrogen	79	0.20	"	"	"	"	"	"	
Helium (LCC)	ND	0.10	"	"	EH73016	30-Aug-17	30-Aug-17	ASTM D1945M	
Methane	8400	10	ppmv	"	EH73015	30-Aug-17	30-Aug-17	EPA 8015M	
QCEB (E708119-07) Vapor	Sampled: 24-Aug-17 Received: 2	29-Aug-17							
Carbon dioxide	ND	0.20	%	1	EH73017	30-Aug-17	30-Aug-17	ASTM D1945	
Oxygen	21	0.20	"	"	"	"	"	"	
Nitrogen	79	0.20	"	"	"	"	"	"	
Helium (LCC)	ND	0.10	"	"	EH73016	30-Aug-17	30-Aug-17	ASTM D1945M	
Methane	ND	10	ppmv		EH73015	30-Aug-17	30-Aug-17	EPA 8015M	
QCTB (E708119-08) Vapor	Sampled: 24-Aug-17 Received: 2	29-Aug-17							
Carbon dioxide	ND	0.20	%	1	EH73017	30-Aug-17	30-Aug-17	ASTM D1945	
Oxygen	2.1	0.20	"	"	"	"	"	"	
Nitrogen	98	0.20	"	"	"	"	"	"	
Helium (LCC)	ND	0.10	"	"	EH73016	30-Aug-17	30-Aug-17	ASTM D1945M	
Methane	ND	10	ppmv	"	EH73015	30-Aug-17	30-Aug-17	EPA 8015M	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project: (CAR082917-13	
601 N. McDowell Blvd	Project Number: 1	Former Exxon 79374 / 990 San Pablo Ave.	Reported:
Petaluma, CA 94954	Project Manager: 1	Mr. Scott Perkins	08-Sep-17 12:27

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SVS4 (E708119-03) Vapor Sampled: 24-Aug-17	7 Received: 29-	Aug-17							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EH73112	31-Aug-17	31-Aug-17	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1		"	"	"		"	
Vinyl chloride	ND	2.6		"	"	"	"	"	
Bromomethane	ND	16		"	"	"		"	
Chloroethane	ND	8.0		"	"	"		"	
Trichlorofluoromethane (F11)	ND	5.6		"	"	"	"	"	
1,1-Dichloroethene	ND	4.0		"	"	"		"	
Tertiary-butyl alcohol (TBA)	ND	6.1	"	"	"	"		"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"		"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"		"	
Carbon disulfide	ND	6.3	"	"	"	"	"		
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"		
Methyl tertiary-butyl ether (MTBE)	ND	3.6	"	"	"	"	"		
1,1-Dichloroethane	ND	4.1	"	"	"	"	"		
2-Butanone (MEK)	ND	30	"	"	"	"	"		
cis-1,2-Dichloroethene	ND	4.0		"	"	"		"	
Diisopropyl ether (DIPE)	ND	4.2		"	"	"	"		
Chloroform	310	4.9		"	"	"		"	
Ethyl tert-butyl ether (ETBE)	ND	4.2		"	"	"	"		
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"		
1,2-Dichloroethane (EDC)	ND	4.1		"	"	"		"	
Benzene	ND	3.2		"	"	"	"		
Carbon tetrachloride	ND	6.4		"	"	"		"	
Tertiary-amyl methyl ether (TAME)	ND	4.2		"	"	"	"		
Trichloroethene	ND	5.5	"	"	"	"	"		
1,2-Dichloropropane	ND	9.4		"	"	"		"	
Bromodichloromethane	20	6.8		"	"	"	"		
cis-1,3-Dichloropropene	ND	4.6		"	"	"		"	
4-Methyl-2-pentanone (MIBK)	ND	8.3		"	"	"		"	
trans-1,3-Dichloropropene	ND	4.6		"	"	"	"		
Toluene	ND	3.8		"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.5		"	"	"	"		
2-Hexanone (MBK)	ND	8.3		"	"	"	"		
Dibromochloromethane	ND	8.6		"	"	"	"		
Tetrachloroethene	19	6.9		"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	7.8		"	"	"	"		
1,1,1,2-Tetrachloroethane	ND	7.0		"	"	"	"	"	

2-Butanone (MEK)

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project:	CAR082917-13	
601 N. McDowell Blvd	Project Number:	Former Exxon 79374 / 990 San Pablo Ave.	Reported:
Petaluma, CA 94954	Project Manager:	Mr. Scott Perkins	08-Sep-17 12:27

Volatile Organic Compounds by EPA TO-15

H&P Mobile Geochemistry, Inc.

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SVS4 (E708119-03) Vapor Sampled: 24-Au	g-17 Received: 29-	Aug-17							
Chlorobenzene	ND	4.7	ug/m3	1	EH73112	31-Aug-17	31-Aug-17	EPA TO-15	
Ethylbenzene	ND	4.4	"	"	"	"		"	
m,p-Xylene	ND	8.8	"	"	"	"		"	
Styrene	ND	4.3	"	"	"	"		"	
o-Xylene	ND	4.4	"	"	"	"		"	
Bromoform	ND	10		"	"	"		"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"		"	
4-Ethyltoluene	ND	5.0	"	"	"	"		"	
1,3,5-Trimethylbenzene	ND	5.0		"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0		"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"		"	"		"	
1,4-Dichlorobenzene	ND	12	"	"	"	"		"	
1,2-Dichlorobenzene	ND	12	"	"	"	"		"	
Naphthalene	ND	5.3		"	"	"		"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"		"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		98.3 %	76	134	"	"	"	"	
Surrogate: Toluene-d8		105 %	78-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	77-		"	"	"	"	
SVS6 (E708119-04) Vapor Sampled: 24-Au	g-17 Received: 29-	Aug-17							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EH73112	31-Aug-17	31-Aug-17	EPA TO-15	
Chloromethane	ND	2.1	"		"	"		"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"		"	
Vinyl chloride	ND	2.6	"	"	"	"		"	
Bromomethane	ND	16		"	"	"		"	
Chloroethane	ND	8.0	"	"	"	"		"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"		"	
1,1-Dichloroethene	ND	4.0		"	"	"	"	"	
Tertiary-butyl alcohol (TBA)	ND	6.1	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7		"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3		"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	3.6		"	"	"	"	"	
1,1-Dichloroethane	ND	4.1		"	"	"	"		
	ND	1.1							

ND

30

"

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project: CAR082917-13	
601 N. McDowell Blvd	Project Number: Former Exxon 79374 / 990 San Pablo Ave. Reported:	
Petaluma, CA 94954	Project Manager: Mr. Scott Perkins 08-Sep-17 12:27	

Volatile Organic Compounds by EPA TO-15

					,				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SVS6 (E708119-04) Vapor Sampled: 24-Aug-17	Received: 29-	Aug-17							
cis-1,2-Dichloroethene	ND	4.0	ug/m3	1	EH73112	31-Aug-17	31-Aug-17	EPA TO-15	
Diisopropyl ether (DIPE)	ND	4.2	"	"	"	"		"	
Chloroform	ND	4.9	"	"	"	"		"	
Ethyl tert-butyl ether (ETBE)	ND	4.2	"	"	"	"		"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"		"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"		"	
Benzene	ND	3.2	"	"	"	"		"	
Carbon tetrachloride	ND	6.4	"	"	"	"		"	
Tertiary-amyl methyl ether (TAME)	ND	4.2		"	"	"		"	
Trichloroethene	ND	5.5		"	"	"			
1,2-Dichloropropane	ND	9.4		"	"	"			
Bromodichloromethane	ND	6.8	"	"	"	"		"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"		"	
4-Methyl-2-pentanone (MIBK)	ND	8.3			"	"		"	
trans-1,3-Dichloropropene	ND	4.6			"	"		"	
Toluene	7.4	3.8			"	"		"	
1,1,2-Trichloroethane	ND	5.5			"	"			
2-Hexanone (MBK)	ND	8.3			"	"			
Dibromochloromethane	ND	8.6			"				
Tetrachloroethene	ND	6.9			"				
1,2-Dibromoethane (EDB)	ND	7.8			"				
1,1,1,2-Tetrachloroethane	ND	7.0			"				
Chlorobenzene	ND	4.7			"	"			
Ethylbenzene	ND	4.7			"			"	
m,p-Xylene	ND	4.4 8.8			"			"	
Styrene	ND	0.0 4.3			"			"	
o-Xylene	ND	4.3			"				
Bromoform		4.4 10		"	"				
	ND			"	"				
1,1,2,2-Tetrachloroethane	ND	7.0 5.0							
4-Ethyltoluene	ND								
1,3,5-Trimethylbenzene	ND	5.0							
1,2,4-Trimethylbenzene	ND	5.0							
1,3-Dichlorobenzene	ND	12							
1,4-Dichlorobenzene	ND	12					"		
1,2-Dichlorobenzene	ND	12		"	"				
Naphthalene	ND	5.3	"	"	"	"	"		
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	

Cardno ERI - Petaluma 601 N. McDowell Blvd			-	R082917-13 mer Exxon (San Pablo Av	e	Reported:			
Petaluma, CA 94954											
i ctatulla, CA 94934								08-Sep-17 12:27			
	Volatile	Organic	Compou	inds by I	EPA TO-	15					
H&P Mobile Geochemistry, Inc.											
	D14	Reporting		Dilution					Natas		
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes		
SVS6 (E708119-04) Vapor Sampled: 24-Au	g-17 Received: 29	-Aug-17									
Surrogate: 1,2-Dichloroethane-d4		101 %	76-	134	EH73112	31-Aug-17	31-Aug-17	EPA TO-15			
Surrogate: Toluene-d8		101 %	78-	125	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		104 %	77-	127	"	"	"	"			
SVS7 (E708119-05) Vapor Sampled: 24-Au	g-17 Received: 29	-Aug-17									
Dichlorodifluoromethane (F12)	ND	50	ug/m3	10	EH73112	31-Aug-17	31-Aug-17	EPA TO-15			
Chloromethane	ND	21	"	"	"	"	"	"			
Dichlorotetrafluoroethane (F114)	ND	71	"	"	"		"	"			
Vinyl chloride	ND	26	"	"	"	"	"	"			
Bromomethane	ND	160	"	"	"		"	"			
Chloroethane	ND	80	"	"	"		"	"			
Trichlorofluoromethane (F11)	ND	56	"	"	"		"	"			
1,1-Dichloroethene	ND	40	"	"	"	"	"	"			
Tertiary-butyl alcohol (TBA)	ND	61	"	"	"		"	"			
1,1,2-Trichlorotrifluoroethane (F113)	ND	77	"	"	"	"	"	"			
Methylene chloride (Dichloromethane)	ND	35	"	"	"	"	"	"			
Carbon disulfide	ND	63	"	"	"	"	"	"			
trans-1,2-Dichloroethene	ND	80	"	"	"	"	"	"			
Methyl tertiary-butyl ether (MTBE)	ND	36	"	"	"	"	"	"			
1,1-Dichloroethane	ND	41			"	"	"	"			
2-Butanone (MEK)	ND	300			"		"	"			
cis-1,2-Dichloroethene	ND	40			"	"	"	"			
Diisopropyl ether (DIPE)	ND	42			"		"	"			
Chloroform	ND	49			"		"	"			
Ethyl tert-butyl ether (ETBE)	ND	42			"		"	"			
1,1.1-Trichloroethane	ND	55			"		"	"			
1,2-Dichloroethane (EDC)	ND	41			"	"	"				
Benzene	ND	32			"	"	"				
Carbon tetrachloride					"		"	"			
Tertiary-amyl methyl ether (TAME)	ND	64 42		"	"		"	"			
Trichloroethene	ND						"	"			
	ND	55			"			"			
1,2-Dichloropropane	ND	94									
Bromodichloromethane	ND	68 40						"			
cis-1,3-Dichloropropene	ND	46						"			
4-Methyl-2-pentanone (MIBK)	ND	83									
trans-1,3-Dichloropropene	ND	46			"			"			
Toluene	ND	38									
1,1,2-Trichloroethane	ND	55	"	"	"	"	"	"			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project:	CAR082917-13	
601 N. McDowell Blvd	Project Number:	Former Exxon 79374 / 990 San Pablo Ave.	Reported:
Petaluma, CA 94954	Project Manager:	Mr. Scott Perkins	08-Sep-17 12:27

Volatile Organic Compounds by EPA TO-15

Analyte		Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SVS7 (E708119-05) Vapor	Sampled: 24-Aug-17	Received: 29	-Aug-17							
2-Hexanone (MBK)		ND	83	ug/m3	10	EH73112	31-Aug-17	31-Aug-17	EPA TO-15	
Dibromochloromethane		ND	86		"	"	"		"	
Tetrachloroethene		ND	69		"	"	"		"	
1,2-Dibromoethane (EDB)		ND	78	"	"	"	"		"	
1,1,1,2-Tetrachloroethane		ND	70	"	"	"	"		"	
Chlorobenzene		ND	47	"	"	"	"		"	
Ethylbenzene		110	44	"	"	"	"		"	
m,p-Xylene		ND	88	"	"	"	"		"	
Styrene		ND	43	"	"	"	"		"	
o-Xylene		ND	44	"	"	"	"		"	
Bromoform		ND	100	"	"	"	"		"	
1,1,2,2-Tetrachloroethane		ND	70	"	"	"	"		"	
4-Ethyltoluene		63	50	"	"	"	"		"	
1,3,5-Trimethylbenzene		260	50	"	"	"	"		"	
1,2,4-Trimethylbenzene		200	50	"	"	"	"		"	
1,3-Dichlorobenzene		ND	120	"	"	"	"		"	
1,4-Dichlorobenzene		ND	120	"	"	"	"		"	
1,2-Dichlorobenzene		ND	120	"	"	"	"		"	
Naphthalene		ND	53		"	"	"		"	
1,2,4-Trichlorobenzene		ND	380	"	"	"	"		"	
Hexachlorobutadiene		ND	540	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethar	ne-d4		107 %	76-	134	"	"	"	"	
Surrogate: Toluene-d8			104 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorober	izene		98.0 %	77-	127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project: CA	AR082917-13	
601 N. McDowell Blvd	Project Number: Fo	ormer Exxon 79374 / 990 San Pablo Ave.	Reported:
Petaluma, CA 94954	Project Manager: M	r. Scott Perkins	08-Sep-17 12:27

Volatile Organic Compounds by EPA TO-15

			u Geoer	ienniser y	, 1110.				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
QCEB (E708119-07) Vapor Sampled: 24-Aug-17	Received: 2	9-Aug-17							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EH73112	31-Aug-17	31-Aug-17	EPA TO-15	
Chloromethane	ND	2.1		"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1		"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"		"	
Bromomethane	ND	16	"	"	"	"		"	
Chloroethane	ND	8.0	"	"	"	"		"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"		"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Tertiary-butyl alcohol (TBA)	ND	6.1	"	"	"	"		"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7		"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"		"	
Carbon disulfide	ND	6.3	"	"	"	"		"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"		"	
Methyl tertiary-butyl ether (MTBE)	ND	3.6		"	"	"			
1,1-Dichloroethane	ND	4.1		"	"	"			
2-Butanone (MEK)	ND	30		"	"	"			
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"		"	
Diisopropyl ether (DIPE)	ND	4.2		"	"	"	"	"	
Chloroform	ND	4.9		"	"	"		"	
Ethyl tert-butyl ether (ETBE)	ND	4.2	"	"	"	"		"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"		"	
1,2-Dichloroethane (EDC)	ND	4.1		"	"	"		"	
Benzene	ND	3.2		"	"	"	"	"	
Carbon tetrachloride	ND	6.4		"	"	"		"	
Tertiary-amyl methyl ether (TAME)	ND	4.2		"	"	"	"	"	
Trichloroethene	ND	5.5	"	"	"	"		"	
1,2-Dichloropropane	ND	9.4		"	"	"		"	
Bromodichloromethane	ND	6.8		"	"	"		"	
cis-1,3-Dichloropropene	ND	4.6		"	"	"		"	
4-Methyl-2-pentanone (MIBK)	ND	8.3		"	"		"		
trans-1,3-Dichloropropene	ND	4.6		"	"	"		"	
Toluene	10	3.8		"	"		"		
1,1,2-Trichloroethane	ND	5.5		"	"		"		
2-Hexanone (MBK)	ND	8.3		"	"	"	"	"	
Dibromochloromethane	ND	8.6		"	"		"		
Tetrachloroethene	ND	6.9		"	"	"	"		
1,2-Dibromoethane (EDB)	ND	7.8		"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	7.0		"	"	"	"	"	
-,-,-,		7.0							

1,1-Dichloroethane

2-Butanone (MEK)

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project: CAR082917-13	
601 N. McDowell Blvd	Project Number: Former Exxon 79374 / 990 San Pablo Ave. Reported:	
Petaluma, CA 94954	Project Manager: Mr. Scott Perkins 08-Sep-17 12:27	

Volatile Organic Compounds by EPA TO-15

H&P Mobile Geochemistry, Inc.

	D I	Reporting		Dilution					N T -
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
QCEB (E708119-07) Vapor Sampled: 24-A	ug-17 Received: 29	-Aug-17							
Chlorobenzene	ND	4.7	ug/m3	1	EH73112	31-Aug-17	31-Aug-17	EPA TO-15	
Ethylbenzene	ND	4.4	"	"	"	"		"	
m,p-Xylene	ND	8.8	"	"	"	"		"	
Styrene	ND	4.3	"	"	"	"		"	
o-Xylene	ND	4.4	"	"	"	"		"	
Bromoform	ND	10	"	"	"	"		"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"		"	
4-Ethyltoluene	ND	5.0	"	"	"	"		"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"		"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"		"	
1,2-Dichlorobenzene	ND	12	"	"	"	"		"	
Naphthalene	ND	5.3	"	"	"	"		"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"		"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
		00.1.0/	76	124	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		99.1%		134	"			"	
Surrogate: Toluene-d8		101 %		125	"	,,	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	//-	127					
QCTB (E708119-08) Vapor Sampled: 24-Au	ug-17 Received: 29	-Aug-17							
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3	1	EH73112	31-Aug-17	31-Aug-17	EPA TO-15	
Chloromethane	ND	2.1	"	"	"	"		"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"		"	
Bromomethane	ND	16	"	"	"	"		"	
Chloroethane	ND	8.0	"	"	"	"		"	
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"	
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"	
Tertiary-butyl alcohol (TBA)	ND	6.1	"	"	"	"	"	"	
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"	
Carbon disulfide	ND	6.3	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	3.6	"	"	"	"	"	"	
	=	•							

ND

ND

4.1

30

"

"

..

..

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project:	CAR082917-13	
601 N. McDowell Blvd	5	Former Exxon 79374 / 990 San Pablo Ave.	Reported:
Petaluma, CA 94954	Project Manager:	Mr. Scott Perkins	08-Sep-17 12:27

Volatile Organic Compounds by EPA TO-15

					, 11101				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
QCTB (E708119-08) Vapor Sampled: 24-Aug-	17 Received: 29	9-Aug-17							
cis-1,2-Dichloroethene	ND	4.0	ug/m3	1	EH73112	31-Aug-17	31-Aug-17	EPA TO-15	
Diisopropyl ether (DIPE)	ND	4.2	"	"	"	"		"	
Chloroform	ND	4.9	"	"	"	"		"	
Ethyl tert-butyl ether (ETBE)	ND	4.2	"	"	"	"		"	
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"	
Benzene	ND	3.2	"	"	"	"		"	
Carbon tetrachloride	ND	6.4	"	"	"	"		"	
Tertiary-amyl methyl ether (TAME)	ND	4.2	"	"	"			"	
Trichloroethene	ND	5.5	"	"	"	"		"	
1,2-Dichloropropane	ND	9.4	"	"	"	"		"	
Bromodichloromethane	ND	6.8	"	"	"	"		"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"		"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"		"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"		"	
Toluene	ND	3.8	"	"	"	"		"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"		"	
2-Hexanone (MBK)	ND	8.3	"	"	"	"		"	
Dibromochloromethane	ND	8.6	"					"	
Tetrachloroethene	ND	6.9	"					"	
1,2-Dibromoethane (EDB)	ND	7.8	"					"	
1,1,1,2-Tetrachloroethane	ND	7.0	"					"	
Chlorobenzene	ND	4.7	"					"	
Ethylbenzene	ND	4.4	"	"		"			
m,p-Xylene	ND	4.4 8.8	"	"		"			
Styrene	ND	4.3	"	"		"			
o-Xylene	ND	4.3	"						
Bromoform	ND	4.4 10	"						
1,1,2,2-Tetrachloroethane		7.0							
	ND	7.0 5.0							
4-Ethyltoluene 1,3,5-Trimethylbenzene	ND								
	ND	5.0							
1,2,4-Trimethylbenzene	ND	5.0							
1,3-Dichlorobenzene	ND	12							
1,4-Dichlorobenzene	ND	12			"				
1,2-Dichlorobenzene	ND	12	"		"				
Naphthalene	ND	5.3							
1,2,4-Trichlorobenzene	ND	38	"	"	"		"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone

Cardno ERI - Petaluma 601 N. McDowell Blvd Petaluma, CA 94954	McDowell Blvd Project Number: Former Exxon 79374 / 990 San Pablo Ave. Reported:								
		Organic (&P Mobil	•	·		15			
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
QCTB (E708119-08) Vapor Sampled: 24-Aug-17 Ro	eceived: 2	9-Aug-17							
Surrogate: 1,2-Dichloroethane-d4		98.8 %	76-	134	EH73112	31-Aug-17	31-Aug-17	EPA TO-15	
Surrogate: Toluene-d8		101 %	78-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.7 %	77-	127	"	"	"	"	

760-804-9159 Fax

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma 601 N. McDowell Blvd	5	Exxon 79374 / 990 San Pablo Ave.	Reported:
Petaluma, CA 94954	Project Manager: Mr. Sco	tt Perkins	08-Sep-17 12:27

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SVS3 (E708119-01) Vapor Sampled: 24-Aug-1	7 Received: 29	-Aug-17							
2-Butanone (MEK)	ND	250000	ug/m3	5	EI70710	06-Sep-17	06-Sep-17	H&P 8260SV	
2-Hexanone (MBK)	ND	250000	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	250000	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	50000	"	"	"	"	"	"	
Chloromethane	ND	50000	"	"	"	"	"	"	
Vinyl chloride	ND	5000		"	"	"	"	"	
Bromomethane	ND	50000	"	"	"	"	"	"	
Chloroethane	ND	50000	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	50000	"	"	"	"	"	"	
1,1-Dichloroethene	ND	50000		"	"	"	"		
1,1,2 Trichlorotrifluoroethane (F113)	ND	50000		"	"	"	"		
Carbon disulfide	ND	50000	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	50000	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	50000		"	"		"	"	
trans-1,2-Dichloroethene	ND	50000		"	"	"	"	"	
Diisopropyl ether (DIPE)	ND	100000		"	"		"	"	
1,1-Dichloroethane	ND	50000		"	"	"	"	"	
Ethyl tert-butyl ether (ETBE)	ND	100000		"	"	"	"	"	
cis-1,2-Dichloroethene	ND	50000		"	"		"		
Chloroform	ND	10000		"	"		"		
1,1,1-Trichloroethane	ND	50000		"	"		"		
Carbon tetrachloride	ND	10000		"	"		"		
1,2-Dichloroethane (EDC)	ND	10000		"	"		"		
Tertiary-amyl methyl ether (TAME)	ND	100000		"	"		"		
Benzene	15000	100000		"	"		"	"	
Trichloroethene	ND	10000		"	"		"	"	
1,2-Dichloropropane	ND	50000		"	"		"		
Bromodichloromethane	ND	50000		"	"		"		
cis-1,3-Dichloropropene	ND	50000		"	"		"	"	
Toluene	ND	100000		"	"		"	"	
trans-1,3-Dichloropropene		50000		"	"		"	"	
1,1,2-Trichloroethane	ND	50000		"	"		"		
	ND			"	"		"		
1,2-Dibromoethane (EDB) Tetrachloroethene	ND	50000							
Dibromochloromethane		10000						"	
	ND	50000							
Chlorobenzene	ND	10000							
Ethylbenzene	ND	50000				"		"	
1,1,1,2-Tetrachloroethane	ND	50000		"	"		"		

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project: CAR082917	-13	
601 N. McDowell Blvd	Project Number: Former Exxe	on 79374 / 990 San Pablo Ave.	Reported:
Petaluma, CA 94954	Project Manager: Mr. Scott Pe	rkins	08-Sep-17 12:27

Volatile Organic Compounds by H&P 8260SV

					IIIC.				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SVS3 (E708119-01) Vapor Sampled: 24-Aug	-17 Received: 29	-Aug-17							
m,p-Xylene	ND	50000	ug/m3	5	EI70710	06-Sep-17	06-Sep-17	H&P 8260SV	
o-Xylene	ND	50000	"	"	"	"	"	"	
Styrene	ND	50000	"	"	"	"	"	"	
Bromoform	ND	50000	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	50000	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	50000	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	50000	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	50000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	50000	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	50000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	50000	"	"	"	"	"	"	
Hexachlorobutadiene	ND	50000	"	"	"	"	"	"	
Naphthalene	ND	10000	"	"	"	"	"	"	
Tertiary-butyl alcohol (TBA)	ND	500000	"	"	"	"		"	
Surrogate: Dibromofluoromethane		100 %	75-	125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		96.8 %	75-	125	"	"	"	"	
Surrogate: Toluene-d8		109 %	75-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	75-	125	"	"	"	"	
SVS3 DUP (E708119-02) Vapor Sampled: 24	-Aug-17 Receive	ed: 29-Aug-17	,						
2-Butanone (MEK)	ND	250000	ug/m3	5	EI70710	06-Sep-17	06-Sep-17	H&P 8260SV	
2-Hexanone (MBK)	ND	250000	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	250000	"	"	"	"		"	
Dichlorodifluoromethane (F12)	ND	50000	"	"	"	"	"	"	
Chloromethane	ND	50000	"	"	"	"	"	"	
Vinyl chloride	ND	5000	"	"	"	"	"	"	
Bromomethane	ND	50000	"	"	"	"			
Chloroethane	ND	50000	"	"	"	"			
Trichlorofluoromethane (F11)	ND	50000	"	"	"	"			
1,1-Dichloroethene	ND	50000		"		"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	50000		"		"	"	"	
Carbon disulfide	ND	50000		"		"	"	"	
		50000		"		"	"	"	
Methylene chloride (Dichloromethane)	ND		"	"		"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	50000							
trans-1,2-Dichloroethene Diisopropyl ether (DIPE)	ND	50000							
DUSOPTODVI CIDEP (DIPE)	ND	100000							
1,1-Dichloroethane	ND	50000							

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

Hexachlorobutadiene

Naphthalene

1,2,4-Trichlorobenzene

Tertiary-butyl alcohol (TBA)

Surrogate: Dibromofluoromethane

Surrogate: 1,2-Dichloroethane-d4

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma 601 N. McDowell Blvd Pataluma CA 04054		Project Nu	mber: For		79374 / 990	San Pablo Av	e.	Reported:	
Petaluma, CA 94954		5	0	Scott Perki				08-Sep-17 12:27	
		Organic C	-	•		DSV			
	H	I&P Mobi	le Geocl	hemistry,	Inc.				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SVS3 DUP (E708119-02) Vapor Sampled	: 24-Aug-17 Receiv	ed: 29-Aug-17	7						
Ethyl tert-butyl ether (ETBE)	ND	100000	ug/m3	5	EI70710	06-Sep-17	06-Sep-17	H&P 8260SV	
cis-1,2-Dichloroethene	ND	50000	"	"	"	"	"	"	
Chloroform	ND	10000	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	50000	"	"	"	"	"	"	
Carbon tetrachloride	ND	10000	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	10000	"	"	"	"	"	"	
Tertiary-amyl methyl ether (TAME)	ND	100000	"	"	"	"	"	"	
Benzene	17000	10000	"	"	"	"	"	"	
Trichloroethene	ND	10000	"	"	"	"	"	"	
1,2-Dichloropropane	ND	50000	"	"	"	"	"	"	
Bromodichloromethane	ND	50000	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	50000	"	"	"	"	"	"	
Toluene	ND	100000	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	50000	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	50000	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	50000	"	"	"	"	"	"	
Tetrachloroethene	ND	10000	"	"	"	"	"	"	
Dibromochloromethane	ND	50000	"	"	"	"	"	"	
Chlorobenzene	ND	10000	"	"	"	"	"	"	
Ethylbenzene	ND	50000	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	50000	"	"	"	"	"	"	
m,p-Xylene	ND	50000	"	"	"	"	"	"	
o-Xylene	ND	50000	"	"	"	"	"	"	
Styrene	ND	50000	"	"	"	"	"	"	
Bromoform	ND	50000	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	50000	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	50000	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	50000	"	"	"	"	"	"	
		=							

ND

ND

ND

ND

ND

ND

ND

50000

50000

50000

50000

50000

10000

97.5 %

92.6 %

500000

"

"

"

..

...

..

..

75-125

75-125

"

"

..

...

"

"

"

"

.,

"

"

..

...

"

"

"

"

.,

"

"

"

"

"

"

..

"

"

″

"

Cardno ERI - Petaluma 601 N. McDowell Blvd			-	R082917-13 ner Exxon 7		San Pablo Av	e.	Reported:	
Petaluma, CA 94954		Project Mar	nager: Mr.	Scott Perkin	ıs			08-Sep-17 12:27	
	Volatile	Organic C	ompour	ds by H	&P 8260)SV			
	H	[&P Mobil	e Geoch	emistry,	Inc.				
		Reporting		Dilution					
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
SVS3 DUP (E708119-02) Vapor Sampled: 24-A	ug-17 Receiv	ed: 29-Aug-17	1						
Surrogate: Toluene-d8		111 %	75-	125	EI70710	06-Sep-17	06-Sep-17	H&P 8260SV	
Surrogate: 4-Bromofluorobenzene		103 %	75-	125	"	"	"	"	
SVS8 (E708119-06) Vapor Sampled: 24-Aug-1	7 Received: 2	9-Aug-17							R-05
2-Butanone (MEK)	ND	250000	ug/m3	5	EI70710	06-Sep-17	06-Sep-17	H&P 8260SV	
2-Hexanone (MBK)	ND	250000	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	250000	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	50000		"	"	"	"	"	
Chloromethane	ND	50000		"	"	"	"	"	
Vinyl chloride	ND	5000		"	"	"	"	"	
Bromomethane	ND	50000		"	"	"	"	"	
Chloroethane	ND	50000	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	50000	"	"	"	"	"	"	
1,1-Dichloroethene	ND	50000	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	50000		"	"	"	"	"	
Carbon disulfide	ND	50000		"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	50000			"	"		"	
Methyl tertiary-butyl ether (MTBE)	ND	50000			"	"		"	
rans-1,2-Dichloroethene	ND	50000	"	"	"	"	"	"	
Diisopropyl ether (DIPE)	ND	100000		"	"		"	"	
1,1-Dichloroethane	ND	50000		"	"	"		"	
Ethyl tert-butyl ether (ETBE)	ND	100000		"	"	"		"	
cis-1,2-Dichloroethene	ND	50000		"	"	"		"	
Chloroform	ND	10000			"			"	
1,1,1-Trichloroethane	ND	50000			"			"	
Carbon tetrachloride	ND	10000			"			"	
1,2-Dichloroethane (EDC)	ND	10000			"	"		"	
Fertiary-amyl methyl ether (TAME)	ND	100000			"			"	
Benzene					"	"		"	
Frichloroethene	ND ND	10000 10000						"	
					"			"	
1,2-Dichloropropane Bromodichloromethane	ND	50000						"	
	ND	50000							
cis-1,3-Dichloropropene	ND	50000							
Foluene	ND	100000					"		
rans-1,3-Dichloropropene	ND	50000						"	
1,1,2-Trichloroethane	ND	50000					"	"	
I,2-Dibromoethane (EDB)	ND	50000						"	
Tetrachloroethene	ND	10000	"	"	"				

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project: CAR082917-13	
601 N. McDowell Blvd	Project Number: Former Exxon 79374 / 990 San Pablo Ave.	Reported:
Petaluma, CA 94954	Project Manager: Mr. Scott Perkins	08-Sep-17 12:27

Volatile Organic Compounds by H&P 8260SV

			ie Geoene	iniser y	, me.				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SVS8 (E708119-06) Vapor Sampled: 24	4-Aug-17 Received: 29	-Aug-17							R-05
Dibromochloromethane	ND	50000	ug/m3	5	EI70710	06-Sep-17	06-Sep-17	H&P 8260SV	
Chlorobenzene	ND	10000	"	"	"	"	"	"	
Ethylbenzene	ND	50000	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	50000	"	"	"	"	"	"	
m,p-Xylene	ND	50000	"	"	"	"	"	"	
o-Xylene	ND	50000	"	"	"	"	"	"	
Styrene	ND	50000	"	"	"	"	"	"	
Bromoform	ND	50000	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	50000	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	50000	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	50000	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	50000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	50000	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	50000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	50000	"	"	"	"	"	"	
Hexachlorobutadiene	ND	50000	"	"	"	"	"	"	
Naphthalene	ND	10000	"	"	"	"	"	"	
Tertiary-butyl alcohol (TBA)	ND	500000	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		97.2 %	75-12	25	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		93.4 %	75-12	25	"	"	"	"	
Surrogate: Toluene-d8		106 %	75-12	25	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	75-12	25	"	"	"	"	

Cardno ERI - Petaluma				AR082917-13					
601 N. McDowell Blvd		-				San Pablo Av	e.	Reported:	
Petaluma, CA 94954		5	0	r. Scott Perki				08-Sep-17 12:27	
	Р	etroleum H	lydroc	arbon An	alysis				
		H&P Mobil	e Geoo	hemistry,	, Inc.				
		Reporting		Dilution					
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
SVS3 (E708119-01) Vapor	Sampled: 24-Aug-17 Received: 2	29-Aug-17							
TPHv (C6-C12)	5600000	2000000	ug/m3	5	EI70710	06-Sep-17	06-Sep-17	H&P 8260SV	
SVS3 DUP (E708119-02) Va	apor Sampled: 24-Aug-17 Receiv	ved: 29-Aug-17	,						
TPHv (C6-C12)	6700000	2000000	ug/m3	5	EI70710	06-Sep-17	06-Sep-17	H&P 8260SV	
SVS4 (E708119-03) Vapor	Sampled: 24-Aug-17 Received: 2	29-Aug-17							
ТРНу (Сб - С12)	630	100	ug/m3	1	EH73112	31-Aug-17	31-Aug-17	EPA TO-15	
SVS6 (E708119-04) Vapor	Sampled: 24-Aug-17 Received: 2	9-Aug-17							
TPHv (C6 - C12)	2100	100	ug/m3	1	EH73112	31-Aug-17	31-Aug-17	EPA TO-15	
SVS7 (E708119-05) Vapor	Sampled: 24-Aug-17 Received: 2	9-Aug-17							
TPHv (C6 - C12)	670000	5000	ug/m3	50	EH73112	31-Aug-17	31-Aug-17	EPA TO-15	
SVS8 (E708119-06) Vapor	Sampled: 24-Aug-17 Received: 2	29-Aug-17							
TPHv (C6-C12)	25000000	2000000	ug/m3	5	EI70710	06-Sep-17	06-Sep-17	H&P 8260SV	
QCEB (E708119-07) Vapor	· Sampled: 24-Aug-17 Received:	29-Aug-17							
TPHv (C6 - C12)	700	100	ug/m3	1	EH73112	31-Aug-17	31-Aug-17	EPA TO-15	
QCTB (E708119-08) Vapor	Sampled: 24-Aug-17 Received:	29-Aug-17							
TPHv (C6 - C12)	ND	100	ug/m3	1	EH73112	31-Aug-17	31-Aug-17	EPA TO-15	
			-			-	-		

Cardno ERI - Petaluma 601 N. McDowell Blvd Petaluma, CA 94954		Project: CAR082917-13 Project Number: Former Exxon 79374 / 990 San Pablo Ave. Project Manager: Mr. Scott Perkins								
	Soil Gas	and Vapo	r Analy	ysis - Qua	lity Con	trol				
	I	I&P Mobil	le Geoc	hemistry,	Inc.					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH73015 - GC										
Blank (EH73015-BLK1)				Prepared &	Analyzed:	30-Aug-17				
Methane	ND	10	ppmv							
Batch EH73016 - GC										
Blank (EH73016-BLK1)				Prepared &	Analyzed:	30-Aug-17				
Helium (LCC)	ND	0.10	%							
Batch EH73017 - GC										
Blank (EH73017-BLK1)				Prepared &	Analyzed:	30-Aug-17				
Carbon dioxide	ND	0.20	%							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project: CAR	082917-13	
601 N. McDowell Blvd	Project Number: Form	er Exxon 79374 / 990 San Pablo Ave.	Reported:
Petaluma, CA 94954	Project Manager: Mr. S	cott Perkins	08-Sep-17 12:27

Volatile Organic Compounds by EPA TO-15 - Quality Control

H&P Mobile Geochemistry, Inc.											
		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch EH73112 - TO-15											
Blank (EH73112-BLK1)				Prepared &	Analyzed:	31-Aug-17	,				
Dichlorodifluoromethane (F12)	ND	5.0	ug/m3								
Chloromethane	ND	2.1	"								
Dichlorotetrafluoroethane (F114)	ND	7.1	"								
Vinyl chloride	ND	2.6	"								
Bromomethane	ND	16	"								
Chloroethane	ND	8.0	"								
Frichlorofluoromethane (F11)	ND	5.6	"								
1,1-Dichloroethene	ND	4.0									
Tertiary-butyl alcohol (TBA)	ND	6.1									
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7									
Methylene chloride (Dichloromethane)	ND	3.5	"								
Carbon disulfide	ND	6.3									
rans-1,2-Dichloroethene	ND	8.0	"								
Methyl tertiary-butyl ether (MTBE)	ND	3.6	"								
,1-Dichloroethane	ND	4.1									
2-Butanone (MEK)	ND	30	"								
eis-1,2-Dichloroethene	ND	4.0	"								
Diisopropyl ether (DIPE)	ND	4.2	"								
Chloroform	ND	4.9	"								
Ethyl tert-butyl ether (ETBE)	ND	4.2	"								
1,1,1-Trichloroethane	ND	5.5	"								
,2-Dichloroethane (EDC)	ND	4.1									
Benzene	ND	3.2									
Carbon tetrachloride	ND	6.4									
Fertiary-amyl methyl ether (TAME)	ND	4.2									
Frichloroethene	ND	5.5									
,2-Dichloropropane	ND	9.4									
Bromodichloromethane	ND	6.8									
eis-1,3-Dichloropropene	ND	4.6									
-Methyl-2-pentanone (MIBK)	ND	8.3									
rans-1,3-Dichloropropene	ND	4.6									
Foluene	ND	3.8									
,1,2-Trichloroethane	ND	5.5									
2-Hexanone (MBK)	ND	8.3									

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project: CAR	082917-13	
601 N. McDowell Blvd	Project Number: Form	er Exxon 79374 / 990 San Pablo Ave.	Reported:
Petaluma, CA 94954	Project Manager: Mr. S	cott Perkins	08-Sep-17 12:27

Volatile Organic Compounds by EPA TO-15 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EH73112 - TO-15										
Blank (EH73112-BLK1)				Prepared &	Analyzed:	31-Aug-17	7			
Dibromochloromethane	ND	8.6	ug/m3							
Tetrachloroethene	ND	6.9								
1,2-Dibromoethane (EDB)	ND	7.8								
1,1,1,2-Tetrachloroethane	ND	7.0								
Chlorobenzene	ND	4.7								
Ethylbenzene	ND	4.4								
m,p-Xylene	ND	8.8								
Styrene	ND	4.3								
o-Xylene	ND	4.4								
Bromoform	ND	10								
1,1,2,2-Tetrachloroethane	ND	7.0								
4-Ethyltoluene	ND	5.0								
1,3,5-Trimethylbenzene	ND	5.0								
1,2,4-Trimethylbenzene	ND	5.0								
1,3-Dichlorobenzene	ND	12								
1,4-Dichlorobenzene	ND	12	"							
1,2-Dichlorobenzene	ND	12								
Naphthalene	ND	5.3								
1,2,4-Trichlorobenzene	ND	38								
Hexachlorobutadiene	ND	54	"							
Surrogate: 1,2-Dichloroethane-d4	41.9		"	42.9		97.9	76-134			
Surrogate: Toluene-d8	41.6		"	41.4		100	78-125			
Surrogate: 4-Bromofluorobenzene	71.2		"	72.9		97.7	77-127			
LCS (EH73112-BS1)				Prepared &	Analyzed:	31-Aug-17	,			
Dichlorodifluoromethane (F12)	96	5.0	ug/m3	101		95.5	59-128			
Vinyl chloride	49	2.6	"	52.0		95.0	64-127			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project: CA	R082917-13	
601 N. McDowell Blvd	Project Number: For	rmer Exxon 79374 / 990 San Pablo Ave.	Reported:
Petaluma, CA 94954	Project Manager: Mr.	Scott Perkins	08-Sep-17 12:27

Volatile Organic Compounds by EPA TO-15 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EH73112 - TO-15						
LCS (EH73112-BS1)				Prepared & Anal	lyzed: 31-Aug-17	7
1,1-Dichloroethane	71	4.1	ug/m3	82.4	86.4	68-126
cis-1,2-Dichloroethene	73	4.0	"	80.0	91.7	70-121
Chloroform	92	4.9	"	99.2	92.4	68-123
1,1,1-Trichloroethane	110	5.5	"	111	95.6	68-125
1,2-Dichloroethane (EDC)	77	4.1	"	82.4	93.7	65-128
Benzene	60	3.2	"	64.8	92.4	69-119
Carbon tetrachloride	120	6.4	"	128	97.3	68-132
Trichloroethene	100	5.5	"	110	92.7	71-123
Toluene	54	3.8	"	76.8	70.4	66-119
1,1,2-Trichloroethane	100	5.5	"	111	90.0	73-119
Tetrachloroethene	120	6.9	"	138	89.2	66-124
1,1,1,2-Tetrachloroethane	130	7.0	"	140	96.4	67-129
Ethylbenzene	88	4.4	"	88.4	99.5	70-124
m,p-Xylene	84	8.8	"	88.4	94.5	61-134
o-Xylene	80	4.4	"	88.4	90.7	67-125
1,1,2,2-Tetrachloroethane	110	7.0	"	140	79.4	65-127
Surrogate: 1,2-Dichloroethane-d4	44.2		"	42.9	103	76-134
Surrogate: Toluene-d8	39.6		"	41.4	95.5	78-125
Surrogate: 4-Bromofluorobenzene	74.9		"	72.9	103	77-127

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma 601 N. McDowell Blvd	Project Number:	CAR082917-13 Former Exxon 79374 / 990 San Pablo Ave.	Reported:
Petaluma, CA 94954	Project Manager:	Mr. Scott Perkins	08-Sep-17 12:27

Volatile Organic Compounds by H&P 8260SV - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EI70710 - EPA 5030										
Blank (EI70710-BLK1)				Prepared &	Analyzed:	06-Sep-17				
2-Butanone (MEK)	ND	2500	ug/m3							
2-Hexanone (MBK)	ND	2500	"							
I-Methyl-2-pentanone (MIBK)	ND	2500	"							
Dichlorodifluoromethane (F12)	ND	500	"							
Chloromethane	ND	500	"							
/inyl chloride	ND	50	"							
Bromomethane	ND	500	"							
Chloroethane	ND	500	"							
Frichlorofluoromethane (F11)	ND	500	"							
,1-Dichloroethene	ND	500	"							
,1,2 Trichlorotrifluoroethane (F113)	ND	500	"							
Carbon disulfide	ND	500	"							
Aethylene chloride (Dichloromethane)	ND	500	"							
Aethyl tertiary-butyl ether (MTBE)	ND	500	"							
rans-1,2-Dichloroethene	ND	500	"							
Diisopropyl ether (DIPE)	ND	1000	"							
,1-Dichloroethane	ND	500	"							
Ethyl tert-butyl ether (ETBE)	ND	1000	"							
is-1,2-Dichloroethene	ND	500	"							
Chloroform	ND	100	"							
,1,1-Trichloroethane	ND	500	"							
Carbon tetrachloride	ND	100	"							
,2-Dichloroethane (EDC)	ND	100	"							
ertiary-amyl methyl ether (TAME)	ND	1000	"							
Benzene	ND	100	"							
richloroethene	ND	100	"							
,2-Dichloropropane	ND	500	"							
Bromodichloromethane	ND	500	"							
is-1,3-Dichloropropene	ND	500	"							
oluene	ND	1000	"							
rans-1,3-Dichloropropene	ND	500	"							
,1,2-Trichloroethane	ND	500	"							
,2-Dibromoethane (EDB)	ND	500	"							
Setrachloroethene	ND	100	"							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project: CAR08	2917-13	
601 N. McDowell Blvd	Project Number: Former	Exxon 79374 / 990 San Pablo Ave.	Reported:
Petaluma, CA 94954	Project Manager: Mr. Sco	ott Perkins	08-Sep-17 12:27

Volatile Organic Compounds by H&P 8260SV - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EI70710 - EPA 5030										
Blank (EI70710-BLK1)				Prepared &	Analyzed:	06-Sep-17				
Dibromochloromethane	ND	500	ug/m3							
Chlorobenzene	ND	100	"							
Ethylbenzene	ND	500	"							
1,1,1,2-Tetrachloroethane	ND	500	"							
m,p-Xylene	ND	500	"							
o-Xylene	ND	500	"							
Styrene	ND	500	"							
Bromoform	ND	500	"							
1,1,2,2-Tetrachloroethane	ND	500	"							
1,3,5-Trimethylbenzene	ND	500	"							
1,2,4-Trimethylbenzene	ND	500	"							
1,3-Dichlorobenzene	ND	500	"							
1,4-Dichlorobenzene	ND	500	"							
1,2-Dichlorobenzene	ND	500	"							
1,2,4-Trichlorobenzene	ND	500	"							
Hexachlorobutadiene	ND	500	"							
Naphthalene	ND	100	"							
Tertiary-butyl alcohol (TBA)	ND	5000	"							
Surrogate: Dibromofluoromethane	2580		"	2500		103	75-125			
Surrogate: 1,2-Dichloroethane-d4	2510		"	2500		100	75-125			
Surrogate: Toluene-d8	2500		"	2500		100	75-125			
Surrogate: 4-Bromofluorobenzene	2480		"	2500		99.3	75-125			
LCS (EI70710-BS1)				Droparad P	Analyzed:	06 Sop 17				

LCS (EI70710-BS1)				Prepared & Ana	alyzed: 06-Sep-17	
Dichlorodifluoromethane (F12)	4800	500	ug/m3	5000	95.4	70-130
Vinyl chloride	5300	50	"	5000	106	70-130
Chloroethane	5400	500	"	5000	108	70-130
Trichlorofluoromethane (F11)	5200	500	"	5000	103	70-130
1,1-Dichloroethene	5200	500	"	5000	103	70-130
1,1,2 Trichlorotrifluoroethane (F113)	5200	500	"	5000	105	70-130
Methylene chloride (Dichloromethane)	5100	500	"	5000	101	70-130
trans-1,2-Dichloroethene	5100	500	"	5000	102	70-130
1,1-Dichloroethane	5000	500	"	5000	101	70-130

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project: CAR082917-13		
601 N. McDowell Blvd	Project Number: Former Exxon 793'	74 / 990 San Pablo Ave. Reported:	
Petaluma, CA 94954	Project Manager: Mr. Scott Perkins	08-Sep-17 12:27	

Volatile Organic Compounds by H&P 8260SV - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI70710 - EPA 5030										

Battii E170/10 - E1A 3030						
LCS (EI70710-BS1)				Prepared & Ana	alyzed: 06-Sep-17	
cis-1,2-Dichloroethene	5100	500	ug/m3	5000	102	70-130
Chloroform	5400	100	"	5000	107	70-130
1,1,1-Trichloroethane	5200	500	"	5000	105	70-130
Carbon tetrachloride	5800	100	"	5000	117	70-130
1,2-Dichloroethane (EDC)	5200	100	"	5000	104	70-130
Benzene	5100	100	"	5000	102	70-130
Trichloroethene	5400	100	"	5000	108	70-130
Toluene	5100	1000	"	5000	101	70-130
1,1,2-Trichloroethane	5000	500	"	5000	101	70-130
Tetrachloroethene	5200	100	"	5000	105	70-130
Ethylbenzene	5200	500	"	5000	103	70-130
1,1,1,2-Tetrachloroethane	5700	500	"	5000	114	70-130
m,p-Xylene	11000	500	"	10000	105	70-130
o-Xylene	5000	500	"	5000	100	70-130
1,1,2,2-Tetrachloroethane	4500	500	"	5000	89.1	70-130
Surrogate: Dibromofluoromethane	2500		"	2500	99.8	75-125
Surrogate: 1,2-Dichloroethane-d4	2470		"	2500	98.6	75-125
Surrogate: Toluene-d8	2540		"	2500	102	75-125
Surrogate: 4-Bromofluorobenzene	2380		"	2500	95.3	75-125

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma 601 N. McDowell Blvd Petaluma, CA 94954		Ave.	Reported: 08-Sep-17 12:27							
		n Hydrocar H&P Mobil			·	ontrol				
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EH73112 - TO-15				D 10						
Blank (EH73112-BLK1) FPHv (C6 - C12)	ND	100	ug/m3	Prepared &	Analyzed:	31-Aug-17				
Batch EI70710 - EPA 5030										
Blank (EI70710-BLK1) TPHv (C6-C12)	ND	200000	ug/m3	Prepared &	Analyzed:	06-Sep-17				

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project: CAR082917-13	
601 N. McDowell Blvd	Project Number: Former Exxon 79374 / 990 San Pablo Ave.	Reported:
Petaluma, CA 94954	Project Manager: Mr. Scott Perkins	08-Sep-17 12:27

Notes and Definitions

R-05 The sample was diluted due to the presence of high levels of non-target analytes resulting in elevated reporting limits.

- LCC Leak Check Compound
- ND Analyte NOT DETECTED at or above the reporting limit
- MDL Method Detection Limit
- %REC Percent Recovery
- RPD Relative Percent Difference

All soil results are reported in wet weight.

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs, accreditation number 69070 for EPA Method TO-15, H&P Method TO-15, EPA Method 8260B and H&P 8260SV.

H&P is approved by the State of Arizona as an Environmental Testing Laboratory and Mobile Laboratory, certification numbers AZM758 and AZ0779.

H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743, 2744, 2745, 2754 & 2930.

H&P is approved by the State of Florida Department of Health under the National Environmental Laboratory Accreditation Conference (NELAC) certification number E871100.

The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 8/24/17 Page _ / of _/

Lab Client and Project Information										Sample Receipt (Lab Use Only)						
Lab Client/Consultant:	Cardno			Project Name / #:	Former Exxon 79	9374					Date F	Rec'd: 8	29/17	Contro	1#: [~	10732.02
Lab Client Project Manager:	Scott Perkin	s		Project Location:	990 San Pablo Av	ve, Albany,	. CA				H&P P	roject #	CAR	0820	717-	
Lab Client Address:	601 N.McDov	vell Blvd	1	Report E-Mail(s):	scott.perkins						Lab Work Order # E708119					
Lab Client City, State, Zip:	Petaluma, C	2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	10.04		norcallabs@cardno.com				Sample Intact: Xes No See Notes Below				Notes Below			
Phone Number:	(707) 766-200		S. Sur. Su				<u></u>				Receipt Gauge ID: 11167			Temp: RT		
Reporting Require		1	Turnaroun	Ind Time Sampler Information							Outside	Charles Contraction				
× Standard Report Level II		× 5-7 da		24-Hr Rush	Sampler(s):	Nadya Vic					Receip	t Notes/T	racking #			
× Excel EDD Other EDD:_		3-day		Mobile Lab	Signature:	The way					129377619051798032			032		
× CA Geotracker Global ID:T	0619716673	48-Hr		Other:	D.I.	4/17	No. 1	18. <u>1882</u> - 17 19 19 19	1. 1.16		Lab PM Initial			Lab PM Initials: 🖗		
Additional Instructions to Lal Check if Project Analyte L * Preferred VOC units (pleas μg/L × μg/m ³ ppl	ist is Attached		EDF delive QCEB = E	STIN BECKLEY* erable to norcallab quipment Blank g GC/MS C6-C12	s@eri-us.com QCTB=Trip Bla		8260		TO-15	0	Work w	sorbent tube)	punod	8015m	Gases by ASTM D1945 02 × 02 × N2	
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa or Tedlar or Tube	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List X T0-15M	Oxygenates	Naphthalene × TO-15M	TPHv as Gas ⁴ X ^{-10-3m-}	TPHv as Diesel (sorbent tube)	Leak Check Compound X He	Methane by EPA 8015m	Fixed Gases by A X CO2 X O2	
SVS1	SVS1	8/24/2017		SV	400mL Summa			- X	×	X			x	x	X	
SVS3 🚱	SVS3	8/24/2017	1006	SV	400mL Summa	380	-5.0]	х	x	x	х		х	х	x	
SVS3 DUP 🕼	SVS3	8/24/2017	1006	SV	400mL Summa	275	.5.02	х	x	x	х		х	x	x	
SVS4	SVS4	8/24/2017	1340	SV	400mL Summa	134	.4.63	х	x	x	х		x	х	x	
SVS6	SVS6	8/24/2017	1136	SV	400mL Summa	321	-4.38	х	x	x	x		х	x	x	
SVS7	SVS7	8/24/2017	1054	SV	400mL Summa	057	-3.74	х	x	x	х		х	x	x	
SVS8 🐼	SVS8	8/24/2017	0912	SV	400mL Summa	3988	-3.54	x	x	x	x		x	x	x	
QCEB	QCEB	8/24/2017	1430	SV	400mL Summa	335	-4.01	x	x	x	x		x	х	x	
QCTB	QCTB	8/24/2017	NA	SV	400mL Summa	122NA In	+28.0[x	x	x	x		x	X	x	
Approved/Relinquished by:		Company:		Date:	Time:	Received by:	1			61	Company:	. 10	Date:			Time: 1.1.11C
Approved/Relinquished by:		Cards Company:	10	Date: 8/24/17 Date:	1500 Time:	Received by:	on'l	un	var	R	Company:	-12	B/3 Date:	29/1-	1	^{Time:} /1:45 Time:

*Approval constitutes as authorization to proceed with analysis and acceptance of conditions on back

WORK ORDER NUMBER: 17-08-2466

Calscience

🔅 eurofins

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Cardno Client Project Name: ExxonMobil 79374/022735C Attention: Scott Perkins 601 North McDowell Blvd. Petaluma, CA 94954-2312

Center L. in Dung

Approved for release on 09/13/2017 by: Cecile deGuia Project Manager

ResultLink ▶

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

🔅 eurofins

Calscience

Contents

	ject Name: er Number:	ExxonMobil 79374/022735C 17-08-2466	
1	Work Orc	ler Narrative	3
2	Sample S	Summary	4
3	3.1 EPA	mple Data	5 5 7
4	-	ontrol Sample Data	9 9
5	Sample A	Analysis Summary	11
6	Glossary	of Terms and Qualifiers	12
7	Chain-of-	Custody/Sample Receipt Form	13

Work Order: 17-08-2466

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 08/30/17. They were assigned to Work Order 17-08-2466.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Sample Summary

Client:	Cardno	Work Order:	17-08-2466
	601 North McDowell Blvd.	Project Name:	ExxonMobil 79374/022735C
	Petaluma, CA 94954-2312	PO Number:	022735C
		Date/Time Received:	08/30/17 19:00
		Number of Containers:	6
Attn:	Scott Perkins		

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
ST-SVS3	17-08-2466-1	08/24/17 10:12	1	Air
ST-SVS4	17-08-2466-2	08/24/17 13:42	1	Air
ST-SVS6	17-08-2466-3	08/24/17 11:39	1	Air
ST-SVS7	17-08-2466-4	08/24/17 11:00	1	Air
ST-SVS8	17-08-2466-5	08/24/17 09:20	1	Air
ST-SVS6REP	17-08-2466-6	08/24/17 11:40	1	Air

Cardno			Date Re	eceived:			08/30/17
601 North McDowell Blvd.			Work O	rder:			17-08-2466
Petaluma, CA 94954-2312			Prepara	tion:			N/A
			Method:	:		E	РА ТО-17 (М
			Units:				ug/m3
Project: ExxonMobil 79374/022	735C					Pa	ge 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ST-SVS3	17-08-2466-1-A	08/24/17 10:12	Air	GC/MS MMM	N/A	09/08/17 19:46	170908L01
Parameter		Result		RL	DF	Qua	lifiers
Naphthalene		ND		20	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		1198		57-129	AZ		
ST-SVS4	17-08-2466-2-A	08/24/17 13:42	Air	GC/MS MMM	N/A	09/08/17 20:29	170908L01
Parameter		Result		RL	DF	Qua	lifiers
Naphthalene		ND		20	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		96		57-129			
ST-SVS6	17-08-2466-3-A	08/24/17 11:39	Air	GC/MS MMM	N/A	09/08/17 21:11	170908L01
Parameter		Result		RL	DF	Qua	lifiers
Naphthalene		ND		20	1.00		
_							
<u>Surrogate</u>		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
Surrogate 1,4-Bromofluorobenzene		<u>Rec. (%)</u> 102		<u>Control Limits</u> 57-129	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	17-08-2466-4-A		Air		Qualifiers N/A	09/08/17 21:54	170908L01
1,4-Bromofluorobenzene ST-SVS7 Parameter	17-08-2466-4-A	102 08/24/17 11:00 Result	Air	57-129		21:54	170908L01
1,4-Bromofluorobenzene ST-SVS7	17-08-2466-4-A	102 08/24/17 11:00	Air	57-129 GC/MS MMM	N/A	21:54	
1,4-Bromofluorobenzene ST-SVS7 Parameter	17-08-2466-4-A	102 08/24/17 11:00 Result	Air	57-129 GC/MS MMM RL	N/A DF	21:54	
1,4-Bromofluorobenzene ST-SVS7 Parameter Naphthalene	17-08-2466-4-A	102 08/24/17 11:00 Result ND	Air	57-129 GC/MS MMM RL 20	N/A <u>DF</u> 1.00	21:54	
1,4-Bromofluorobenzene ST-SVS7 Parameter Naphthalene Surrogate 1,4-Bromofluorobenzene	17-08-2466-4-A 17-08-2466-5-A	102 08/24/17 11:00 Result ND <u>Rec. (%)</u>	Air	57-129 GC/MS MMM RL 20 Control Limits	N/A <u>DF</u> 1.00	21:54	
1,4-Bromofluorobenzene ST-SVS7 Parameter Naphthalene Surrogate 1,4-Bromofluorobenzene		102 08/24/17 11:00 Result ND <u>Rec. (%)</u> 98 08/24/17 09:20 Result		57-129 GC/MS MMM RL 20 Control Limits 57-129 GC/MS MMM RL	N/A DE 1.00 Qualifiers N/A DE	21:54 Qua 09/08/17 22:36	lifiers
1,4-Bromofluorobenzene ST-SVS7 Parameter Naphthalene Surrogate 1,4-Bromofluorobenzene ST-SVS8		102 08/24/17 11:00 Result ND Rec. (%) 98 08/24/17 09:20		57-129 GC/MS MMM RL 20 <u>Control Limits</u> 57-129 GC/MS MMM	N/A DF 1.00 Qualifiers N/A	21:54 Qua 09/08/17 22:36	lifiers 170908L01
1,4-Bromofluorobenzene ST-SVS7 Parameter Naphthalene Surrogate 1,4-Bromofluorobenzene ST-SVS8 Parameter		102 08/24/17 11:00 Result ND <u>Rec. (%)</u> 98 08/24/17 09:20 Result		57-129 GC/MS MMM RL 20 Control Limits 57-129 GC/MS MMM RL	N/A DE 1.00 Qualifiers N/A DE	21:54 Qua 09/08/17 22:36	lifiers 170908L01

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Cardno			Date Re	ceived:			08/30/17
601 North McDowell Blvd.			Work O	rder:			17-08-2466
Petaluma, CA 94954-2312			Prepara	N/A			
			Method:			E	PA TO-17 (M)
			Units:				ug/m3
Project: ExxonMobil 79374/022735	5C					Pa	age 2 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ST-SVS6REP	17-08-2466-6-A	08/24/17 11:40	Air	GC/MS MMM	N/A	09/08/17 23:59	170908L01
Parameter		Result		RL	DF	Qua	alifiers
Naphthalene		ND		20	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		109		57-129			
Method Blank	099-15-178-73	N/A	Air	GC/MS MMM	N/A	09/08/17 19:03	170908L01
Comment(s): - MB data is reported in ne	g/sample.						
Parameter		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qua	alifiers
Naphthalene		ND		2.0	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		97		57-129			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Cardno			Date Re	ceived:			08/30/17
601 North McDowell Blvd.			Work O	rder:			17-08-2466
Petaluma, CA 94954-2312			Prepara	tion:			N//
			Method:			E	PA TO-17 (M
			Units:				ug/m
Project: ExxonMobil 79374/022	7250		ornto.			Do	ige 1 of 2
	7550					Гd	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ST-SVS3	17-08-2466-1-A	08/24/17 10:12	Air	GC/MS MMM	N/A	09/08/17 19:46	170908L02
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	<u>alifiers</u>
TPH as Diesel (C10-C21)		2000000		5000	1.00	E	
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		1202		50-150	AZ		
Toluene-d8		1422		50-150	AZ		
ST-SVS4	17-08-2466-2-A	08/24/17 13:42	Air	GC/MS MMM	N/A	09/08/17 20:29	170908L02
Parameter		Result		RL	DF	Qua	alifiers
TPH as Diesel (C10-C21)		7600		5000	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		91		50-150			
Toluene-d8		142		50-150			
ST-SVS6	17-08-2466-3-A	08/24/17 11:39	Air	GC/MS MMM	N/A	09/08/17 21:11	170908L02
Parameter		Result		RL	DF	Qua	alifiers
TPH as Diesel (C10-C21)		ND		5000	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		103		50-150			
Toluene-d8		114		50-150			
ST-SVS7	17-08-2466-4-A	08/24/17 11:00	Air	GC/MS MMM	N/A	09/08/17 21:54	170908L02
Parameter		Result		RL	DF	Qua	alifiers
TPH as Diesel (C10-C21)		320000		5000	1.00	E	
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		85		50-150			
Toluene-d8		122		50-150			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Analytical Report

Method Blank	099-15-426-136	N/A	Air	GC/MS MMM	N/A	09/08/17	170908L02
		100					
Toluene-d8		99 133		50-150 50-150			
1,4-Bromofluorobenzene		<u>1(ec. (78)</u> 99		50-150	Qualmers		
Surrogate		Rec. (%)		Control Limits	Qualifiers		
TPH as Diesel (C10-C21)		ND		5000	1.00		
Parameter		Result		RL	DF	Qua	alifiers
ST-SVS6REP	17-08-2466-6-A	08/24/17 11:40	Air	GC/MS MMM	N/A	09/08/17 23:59	170908L02
Toluene-d8		275		50-150	AZ		
1,4-Bromofluorobenzene		60		50-150			
<u>Surrogate</u>		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
TPH as Diesel (C10-C21)		340000		5000	1.00	E	
Parameter		Result		RL	DF	Qua	alifiers
ST-SVS8	17-08-2466-5-A	08/24/17 09:20	Air	GC/MS MMM	N/A	09/08/17 22:36	170908L02
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Project: ExxonMobil 79374/0227	735C					Pa	ige 2 of 2
			Units:				ug/m3
			Method:			E	PA TO-17 (M)
Petaluma, CA 94954-2312			Prepara				N/A
601 North McDowell Blvd.			Work Or				17-08-2466
Cardno							
Cardna			Date Re	coivod:			08/30/17

						19:03
Comment(s):	- MB data is reported in no	/sample.				
Parameter			<u>Result</u>	<u>RL</u>	DF	<u>Qualifiers</u>
TPH as Diese	el (C10-C21)		ND	500	1.00	
Surrogate			<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluc	probenzene		102	50-150		
Toluene-d8			103	50-150		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

🛟 eurofins

Quality Control - LCS/LCSD

Cardno		Date Received:	08/30/17
601 North McDowell Blvd.		Work Order:	17-08-2466
Petaluma, CA 94954-2312		Preparation:	N/A
		Method:	EPA TO-17 (M)
Project: ExxonMobil 79374/02273	5C		Page 1 of 2
Quality Control Sample ID Typ	e Matrix	Instrument Date Prep	ared Date Analyzed LCS/LCSD Batch Number

099-15-178-73	LCS	Air		GC/MS MMM	N/A	09/0	8/17 15:17	7 170908L01	
099-15-178-73	LCSD	Air		GC/MS MMM	N/A	09/0	8/17 16:00	0 170908L01	
Parameter	Spike Adde	d LCS Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Naphthalene	100.0	98.84	99	98.33	98	40-190	1	0-35	

RPD: Relative Percent Difference. CL: Control Limits

🛟 eurofins

Cardno			Date Receive	ed:		08/30/17
601 North McDowell Blvd.			Work Order:			17-08-2466
Petaluma, CA 94954-2312	2		Preparation:			N/A
			Method:			EPA TO-17 (M)
Project: ExxonMobil 7937	4/022735C					Page 2 of 2
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number
099-15-426-136	LCS	Air	GC/MS MMM	N/A	09/08/17 13:09	170908L02

099-15-426-136	LCSD	Air		GC/MS MMN	I N/A	09/08	8/17 13:52	2 170908L02	
Parameter	Spike Adde	d LCS Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Diesel (C10-C21)	2000	1661	83	2100	105	50-150	23	0-25	

RPD: Relative Percent Difference. CL: Control Limits

Calscience

 Work Order: 17-08-2466
 Page 1 of 1

 Method EPA TO-17 (M)
 Extraction N/A
 Chemist ID 953
 Instrument GC/MS MMM
 Analytical Location 2

Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 17-08-2466

Page 1 of 1

<u>Qualifiers</u>	Definition
AZ	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BA	The MS/MSD RPD was out of control due to suspected matrix interference.
BB	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
DF	Reporting limits elevated due to matrix interferences.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
GE	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
HD	Chromat. profile inconsistent with pattern(s) of ref. fuel stnds.
HO	High concentration matrix spike recovery out of limits
HT	Analytical value calculated using results from associated tests.
HX	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS was in control.
IL	Relative percent difference out of control.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
LD	Analyte presence was not confirmed by second column or GC/MS analysis.
LP	The LCS and/or LCSD recoveries for this analyte were above the upper control limit. The associated sample was non-detected. Therefore, the sample data was reported without further clarification.
LQ	LCS recovery above method control limits.
LR	LCS recovery below method control limits.
ND	Parameter not detected at the indicated reporting limit.
QO	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
RU	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
SG	A silica gel cleanup procedure was performed.
SN	See applicable analysis comment.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

440 Lino	oln Way, Garden Grove, CA 9284					wo #71ab U	se only	-		DATE:		OF CU	STO) Y I	REC	
	er service / sample drop off informa TORY CLIENT: Exxon Mobil / /	ation, contact us26_sales@eurofins Cardno	us.com or call	us.	CLIENT PROJ	JECT NAME / NU	MBER: For	mer Exxon	Service S	tation 7937	4	P.O. NC	.:	*****		******
ADDRES	s: 601 N. McDowell Blvd		ордуу-таланалан талан		PROJECT AD	DRESS:	90 San Pab	lo Avenue		Marchaelander of the contraction of the second s	alamiania antona y ocamatik		735CX		E NO.:	÷1
CITY:	Petaluma	STATE:	ZIP: 9495	4	CITY: Albany STATE: CA ZIP:					LAB CONTACT OF QU				10141	H N	
TEL:		E-MAIL: scott.perkins@c			PROJECT CONTACT: Scott Perkiins						SAMPLI	R(S): (PRI dya	INT)			
	707-766-2000 OUND TIME (Rush surcharges may app	SCOIL DEFRITS C	caruno.cor		ine	J) 				Na	ayn			-12-
		BHR □ 72 HR □ 5 DAY	S & STAN	IDARD	DEDD	√ ¢ΩNITS	ugm	\$					REC	QUES	TED A	ANA
alobal	ing Limits - ug/m ³ ID = T0619716673 eliverable to norcallabs@e			idard , include and emai								ormation	Nanthalene	твила	рни	
T		FIELD ID /	Air Type (I) Indoor	Sampli	ng Equipment Tube	Flow	Start	Sampling Informa	tion Canister	Stop	Sampling Info	ormation Canis				
	SAMDI E ID															
USE	SAMPLE ID	POINT OF COLLECTION	(SV) Soil Vap. (A) Ambient	Media ID #	Size	Controller ID #	Date	Time (24 hr clock)	Pressure ("Hg)	Date	Time (24 hr cloc	Pressi k) ("Hg	1 4		<u>2</u>	
USE	SAMPLE ID	POINT OF COLLECTION			Size	1	Date 8/24/2017			Date 8/24/2017		1			<u>Ś</u> X	
			(A) Ambient	ID #		ID #		(24 hr clock)	("Hg)			k) ("Hg	_	4		
	£T- 8V91	and the second	(A) Ambient	iD #	-100ml	ID #	-8/24/2017-	(24 hr clock)	("Hg)	8/24/2017	(24 hr cloc	k) ("Hg NA NA	>		x	
	.ST-9V31 ST-SVS3	SVS1 SVS3	(A) Ambient	10 # G01 G0141338	100ml 100ml	ID #	8/24/2017 8/24/2017	(24 hr clock)	("Hg) NA NA	8/24/2017 8/24/2017	(24 hr cloc)	k) ("Hg NA NA 2 NA	> > >	<	x x	
USE DNLY 1 2	ST-9V91 ST-SVS3 ST-SVS4	SVS1 SVS3 SVS4	(A) Ambient SV SV SV SV	10# G01 G0141338 G0189328	<u>100ml</u> 100ml 100ml	ID #	- 8/24/2017 8/24/2017 8/24/2017	(24 hr clock) NA NA NA	("Hg) NA NA NA	8/24/2017 8/24/2017 8/24/2017	(24 hr cloc) 1012 1342	k) ("Hg NA NA NA NA NA		<pre>< 3</pre> <pre></pre>	x x x	
USE DNLY 1 2 3	ST-SVS1 ST-SVS3 ST-SVS4 ST-SVS6	SVS1 SVS3 SVS4 SVS6	(A) Ambient SV SV SV SV	10# G01 G01 41338 G01 89328 G01 4/370	100ml 100ml 100ml 100ml	ID # NA NA NA NA	8/24/2017 8/24/2017 8/24/2017 8/24/2017	(24 hr clock) NA NA NA NA	("Hg) NA NA NA NA	8/24/2017 8/24/2017 8/24/2017 8/24/2017	(24 hr cloc) 1012 1342 1139	k) ("Hg NA NA NA NA NA		<pre></pre>	x x x x	
USE DNLY 1 2 3	<u>ST-SVS1</u> ST-SVS3 ST-SVS4 ST-SVS6 ST-SVS7	SVS1 SVS3 SVS4 SVS6 SVS7	(A) Ambient SV SV SV SV SV SV	10# G0141338 G0189328 G0141370 G0141358	100ml 100ml 100ml 100ml 100ml	ID # NA NA NA NA NA	8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017	(24 hr clock) NA NA NA NA NA	("Hg) NA NA NA NA NA	8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017	(24 hr cloc) 1012 1342 1139 1100	k) ("High NA NA		<pre>k = 2 k</pre>	X X X X X	
USE INLY 1 2 3 4 5	ST-8V31 ST-SVS3 ST-SVS4 ST-SVS6 ST-SVS7 ST-SVS8	SVS1 SVS3 SVS4 SVS6 SVS7 SVS8	(A) Ambient SV SV SV SV SV SV SV	10# G01 G0141338 G0189328 G014/370 G0141358 G0150657	100ml 100ml 100ml 100ml 100ml 100ml	ID # NA NA NA NA NA NA	8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017	(24 hr clock) NA NA NA NA NA NA	("Hg) NA NA NA NA NA NA	8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017	(24 hr cloc) 1012 1342 1139 1100 092	k) ("High NA NA		<pre>k = 2 k</pre>	x x x x x x x	
USE INLY 1 2 3 4 5	ST-8V31 ST-SVS3 ST-SVS4 ST-SVS6 ST-SVS7 ST-SVS8	SVS1 SVS3 SVS4 SVS6 SVS7 SVS8	(A) Ambient SV SV SV SV SV SV SV	10# G01 G0141338 G0189328 G014/370 G0141358 G0150657	100ml 100ml 100ml 100ml 100ml 100ml	ID # NA NA NA NA NA NA	8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017	(24 hr clock) NA NA NA NA NA NA	("Hg) NA NA NA NA NA NA	8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017	(24 hr cloc) 1012 1342 1139 1100 092	k) ("High NA NA		<pre>k = 2 k</pre>	x x x x x x x	
USE DNLY 1 2 3 4 5	ST-8V31 ST-SVS3 ST-SVS4 ST-SVS6 ST-SVS7 ST-SVS8	SVS1 SVS3 SVS4 SVS6 SVS7 SVS8	(A) Ambient SV SV SV SV SV SV SV	10# G01 G0141338 G0189328 G014/370 G0141358 G0150657	100ml 100ml 100ml 100ml 100ml 100ml	ID # NA NA NA NA NA NA	8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017	(24 hr clock) NA NA NA NA NA NA	("Hg) NA NA NA NA NA NA	8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017	(24 hr cloc) 1012 1342 1139 1100 092	k) ("High NA NA		<pre>k = 2 k</pre>	x x x x x x x	
USE DNLY 1 2 3 4 5	ST-8V31 ST-SVS3 ST-SVS4 ST-SVS6 ST-SVS7 ST-SVS8	SVS1 SVS3 SVS4 SVS6 SVS7 SVS8	(A) Ambient SV SV SV SV SV SV SV	10# G01 G0141338 G0189328 G014/370 G0141358 G0150657	100ml 100ml 100ml 100ml 100ml 100ml	ID # NA NA NA NA NA NA	8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017	(24 hr clock) NA NA NA NA NA NA	("Hg) NA NA NA NA NA NA	8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017	(24 hr cloc) 1012 1342 1139 1100 092	k) ("High NA NA		<pre>k = 2 k</pre>	x x x x x x x	
USE JNLY 1 2 3 4 5 6	ST-8V31 ST-SVS3 ST-SVS4 ST-SVS6 ST-SVS7 ST-SVS8	SVS1 SVS3 SVS4 SVS6 SVS7 SVS8	(A) Ambient SV SV SV SV SV SV SV	10# G01 G0141338 G0189328 G014/370 G0141358 G0150657	-100ml 100ml 100ml 100ml 100ml 100ml	ID # NA NA NA NA NA NA VA VA V(Signature/A	-8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017	(24 hr clock) NA NA NA NA NA NA	("Hg) NA NA NA NA NA NA	8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017	(24 hr cloc) /012 /342 //39 //00 092 //140	k) ("High NA NA			x x x x x x x x x x x x x x x x x x x): <i>L</i>
USE DNLY 1 2 3 4 5 6 Relingu	.ST-8V91 ST-SVS3 ST-SVS4 ST-SVS6 ST-SVS7 ST-SVS8 ST-SVS & REP	SVS1 SVS3 SVS4 SVS6 SVS7 SVS8 SVS	(A) Ambient SV SV SV SV SV SV SV	10# G01 G0141338 G0189328 G014/370 G0141358 G0150657	100ml 100ml 100ml 100ml 100ml 100ml 100ml	ID # NA NA NA NA NA NA	8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017	(24 hr clock) NA NA NA NA NA NA	("Hg) NA NA NA NA NA NA	8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017 8/24/2017	(24 hr cloc) / 0/2 / 3 4 2 //3 7 //3 //3 7 //3 //3 //3				X X X X X X X X X X X X X X X X X X X):L

Return to Contents

Caliscience SAMPLE RECEIPT CHECKLIST COOLER _1_OF 1 CLIENT:	🔹 eurofins			WORK ORDER	NUMBER:	Pa 17–08	ge 14 of 3- 2	1466
CLIENT: HAP DATE: 08 / 30 / 20 TEMPERATURE: (Criteria: 0.0°C - 6.0°C, not frozen except sediment/lissue) Thermometer ID: SC6 (CF: +0.2°C): Temperature (w/o CF): 3.4 °C; Ø Blank I sample Sample(s) outside temperature criteria (PM/APM contacted by:	-	Calscience						
Thermometer ID: SC6 (CF: +0.2°C); Temperature (w/o CF): 3_2 °C (w/ CF): 4 °C; € Biank □ Sample □ Sample(s) outside temperature criteria (PM/APM contacted by:) □ Sample(s) received at ambient temperature; placed on ice for transport by courier Ambient Temperature: □ Air □ Filter Cooler □ Present and Intact □ Present and Intact □ Present but Not Intact SAMPLE CONDITION: Yes COC document(s) received with samples □ □ Sample(s) is received complete □ □ Sample (s) received complete □ □ Sample (s) received complete □ □ Sample container label(s) consistent with COC □ □ Sample s received within 15-minute holding time □ □ Aqueous samples for cartain analyses requested □ □ Containers for analyses requested □ □ Sample container (s) fraction COC and/or sample container □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ <th>CLIENT: HAP</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	CLIENT: HAP							
Cooler □ Present and Intact □ Present but Not Intact □ Not Present □ N/A Checked by:	Thermometer ID: Se □ Sample(s) out □ Sample(s) out □ Sample(s) receiv	C6 (CF: +0.2°C); 1 tside temperature c tside temperature c red at ambient temp	Temperature (w/o CF): <u>3, 6</u> criteria (PM/APM contacted by: criteria but received on ice/chille perature; placed on ice for trans	A_°C (w/ CF):)) ed on same day or				
Chain-of-Custody (COC) document(s) received with samples □ □ Sampling date □ Sampling time □ Matrix □ Sampling date □ Sampling time □ Matrix □ No analysis requested □ Not relinquished □ No relinquished date □ No relinquished time Sampler's name indicated on COC □ □ □ Sample container label(s) consistent with COC □ □ Sample containers for analyses requested □ □ Sufficient volume/mass for analyses requested □ □ Sufficient volume/mass for analyses requested □ □ Samples received within holding time □ □ Aqueous samples for certain analyses received within 15-minute holding time □ □ □ PH □ Residual Chlorine □ Dissolved Suffide □ Dissolved Oxygen □ □ □ Unpreserved aqueous sample(s) received for certain analyses □ □ □ □ □ Volatile Organics □ Dissolved Gases (RSK-175) □ Dissolved Oxygen (SM 4500) □ □ □ Carbon Dixide (SM 4500) □ Ferrous Iron (SM 3500) □ Hydrogen Sulfide (Hach) □ □ Tedlar™ bag(s) free	Cooler			/			•	
Sampler's name indicated on COC □ □ □ Sample container label(s) consistent with COC □ □ □ Sample container(s) intact and in good condition □ □ □ Proper containers for analyses requested □ □ □ Sufficient volume/mass for analyses requested □ □ □ Samples received within holding time □ □ □ Aqueous samples for certain analyses received within 15-minute holding time □ □ □ PH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen □ □ □ Volatile Organics □ Total Metals □ Dissolved Metals □ □ Container(s) for certain analysis free of headspace □ □ □ Volatile Organics □ Dissolved Gases (RSK-175) □ Dissolved Oxygen (SM 4500) □ □ □ Carbon Dioxide (SM 4500) □ Ferrous Iron (SM 3500) □ Hydrogen Sulfide (Hach) □ □ Tedlar™ bag(s) free of condensation □ □ □ □ CONTAINER TYPE: (Trip Blank Lot Number:	Chain-of-Custody (COC document(s) r	COC) document(s) received complete						N/A
Proper containers for analyses requested □ □ Sufficient volume/mass for analyses requested □ □ Samples received within holding time □ □ Aqueous samples for certain analyses received within 15-minute holding time □ □ □ pH □ □ □ Proper preservation chemical(s) noted on COC and/or sample container □ □ □ Unpreserved aqueous sample(s) received for certain analyses □ □ □ Unpreserved aqueous sample(s) received for certain analyses □ □ □ □ Volatile Organics □ Total Metals □ Dissolved Metals □ □ Container(s) for certain analysis free of headspace □ □ □ □ □ Volatile Organics □ Dissolved Gases (RSK-175) □ Dissolved Oxygen (SM 4500) □ □ □ □ Volatile Organics □ Dissolved Gases (RSK-175) □ Dissolved Oxygen (SM 4500) □ □ □ □ Volatile Organics □ Dissolved Matals □ □ □ □ Container(s) for certain analysis free of headspace □ □ </td <td>Sampler's name inc Sample container la</td> <td>dicated on COC</td> <td>with COC</td> <td></td> <td></td> <td>Ð</td> <td></td> <td></td>	Sampler's name inc Sample container la	dicated on COC	with COC			Ð		
Aqueous samples for certain analyses received within 15-minute holding time □ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen□ □ □ Proper preservation chemical(s) noted on COC and/or sample container□ □ □ Unpreserved aqueous sample(s) received for certain analyses □ □ □ Unpreserved aqueous sample(s) received for certain analyses □ □ □ □ Volatile Organics □ Total Metals □ Dissolved Metals □ □ □ □ Container(s) for certain analysis free of headspace □<	Proper containers for Sufficient volume/m	or analyses reques hass for analyses re	sted					
□ Volatile Organics □ Total Metals □ Dissolved Metals Container(s) for certain analysis free of headspace □ □ □ □ Volatile Organics □ Dissolved Gases (RSK-175) □ Dissolved Oxygen (SM 4500) □ Carbon Dioxide (SM 4500) □ Ferrous Iron (SM 3500) □ Hydrogen Sulfide (Hach) Tedlar™ bag(s) free of condensation □ □ □ CONTAINER TYPE: (Trip Blank Lot Number: □ Aqueous: □ VOA □ VOAh □ VOAna2 □ 100PJ na2 □ 125AGB □ 125AGBp □ 125PB □ 125PBznna □ 250AGB □ 250CGB □ 250CGBs □ 250PB □ 2500AGB □ 500AGJ □ 500AGJs □ 500PB □ 1AGB □ 1AGBs □ 1PB □ 1PBna □ □ □ Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve () □ EnCores [®] () □ TerraCores [®] () □	Aqueous sample □ pH □ Residu	es for certain analysual Chlorine Dis	ses received within 15-minute h ssolved Sulfide □ Dissolved C	nolding time Dxygen				6
□ Carbon Dioxide (SM 4500) □ Ferrous Iron (SM 3500) □ Hydrogen Sulfide (Hach) Tedlar [™] bag(s) free of condensation □ □ CONTAINER TYPE: (Trip Blank Lot Number: Aqueous: □ VOA □ VOAh I 250AGB □ 250CGB □ 250CGBs □ 250PBn □ 125PBznna □ 250AGB □ 250CGBs □ 250PBn □ 500PB □ 1AGBna2 □ 1AGBs □ 1PB □ 1PBna □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Sleeve () □ EnCores [®] () □ TerraCores [®] ()	□ Volatile Orgar Container(s) for cer	nics □ Total Meta tain analysis free c	lls □ Dissolved Metals					6
Aqueous: VOA VOAh VOAna2 100PJ 100PJna2 125AGB 125AGBh 125AGBp 125PB 125PBznna 250AGB 250CGB 250CGBs 250PB 250PBn 500AGB 500AGJ 500AGJs 500PB 1AGB 1AGBna2 1AGBs 1PB 1PBna Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve () EnCores [®] () TerraCores [®] ()	Carbon Dioxid	de (SM 4500) 🛛 F	Ferrous Iron (SM 3500) 🛛 Hyd	lrogen Sulfide (Ha	ach)			Ø
Container: $A = Amber$, $B = Bottle$, $C = Clear$, $E = Envelope$, $G = Glass$, $J = Jar$, $P = Plastic$, and $Z = Ziploc/Resealable Bag$ Preservative: $b = buffered$, $f = filtered$, $h = HCl$, $n = HNO_3$, $na = NaOH$, $na_2 = Na_2S_2O_3$, $p = H_3PO_4$, Labeled/Checked by: \underline{fosO}	Aqueous: □ VOA □ 125PBznna □ 2 □ 500PB □ 1AGB Solid: □ 4ozCGJ □ Air: □ Tedlar™ □ Container: A = Ambe	□ VOAh □ VOAn 50AGB □ 250CGB □ 1AGBna₂ □ 1 □ 8ozCGJ □ 16oz Canister □ Sorber r, B = Bottle, C = Cle	B □ 250CGBs □ 250PB □ 2 AGBs □ 1PB □ 1PBna □ CGJ □ Sleeve () □ EnC nt Tube □ PUF □ ear, E = Envelope, G = Glass, J = J	125AGB □ 125AG 250PBn □ 500AG □ Cores [®] () □ Other Matrix (Jar, P = Plastic, and	GBh □ 125A GB □ 500AGJ □ □ I TerraCores [®]): □ I z = Ziploc/Res	GB p J D 500/ () J sealable B	125PB AGJ s □ ag	

^

2016-09-23 Revision

Return to Contents

15 September 2017

Mr. Scott Perkins Cardno ERI - Petaluma 601 N. McDowell Blvd Petaluma, CA 94954

H&P Project: CAR090617-11 Client Project: Former Exxon 79374 / 990 San Pablo Ave.

Dear Mr. Scott Perkins:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 06-Sep-17 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody
- Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Janis Farloux

Janis La Roux Laboratory Director

H&P Mobile Geochemistry, Inc. is certified under the California ELAP and the National Environmental Laboratory Accreditation Conference (NELAC). H&P is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs, accreditation number 69070 for EPA Method TO-15, H&P Method TO-15, EPA Method 8260B and H&P 8260SV.

Quality. Accuracy. Experience.

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA P 1.800.834.9888 / 760.804.9678 F 760.804.9159 W handpmg.com

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project: CAR090617-	11	
601 N. McDowell Blvd	Project Number: Former Exxo	n 79374 / 990 San Pablo Ave. Reported:	
Petaluma, CA 94954	Project Manager: Mr. Scott Per	kins 15-Sep-17	10:31

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SVS1	E709020-01	Vapor	05-Sep-17	06-Sep-17

Due to an elevated petroleum hydrocarbon concentration, sample SVS1 was analyzed by H&P 8260SV rather than EPA Method TO-15. The following EPA Method TO-15 analytes are not reported by H&P 8260SV: Dichlorotetrafluoroethane

4-Ethyltoluene

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma 601 N. McDowell Blvd Petaluma, CA 94954		AR090617-11 ormer Exxon 79374 / Ir. Scott Perkins	990 San Pablo	Ave.	Reported: 15-Sep-17 10:31
	DETECTIONS SU	J MMARY			
Sample ID: SVS1	Laboratory ID:	E709020-01			
		Reporting			
Analyte	Result	t Limit	Units	Method	Notes
Carbon dioxide	8.0	0.20	%	ASTM D1945	
Oxygen	9.4	0.20	%	ASTM D1945	
Nitrogen	72	0.20	%	ASTM D1945	
Methane	140000	1000	ppmv	EPA 8015M	
TPHv (C6-C12)	6100000	800000	ug/m3	H&P 8260SV	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma 601 N. McDowell Blvd Petaluma, CA 94954		Project Nu	nber: Fo	R090617-11 mer Exxon 7 . Scott Perkir	79374 / 990	San Pablo Av	e.	Reported: 15-Sep-17 10:31	
		Soil Gas a &P Mobil	-	v					
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SVS1 (E709020-01) Vapor Sampled:	05-Sep-17 Received: 06-	-Sep-17							
Carbon dioxide	8.0	0.20	%	1	EI70802	08-Sep-17	08-Sep-17	ASTM D1945	
Oxygen	9.4	0.20	"	"	"	"	"	"	
Nitrogen	72	0.20	"	"	"	"	"	"	
Helium (LCC)	ND	0.10	"	"	EI70803	08-Sep-17	08-Sep-17	ASTM D1945M	
Methane	140000	1000	ppmv	100	EI71504	15-Sep-17	15-Sep-17	EPA 8015M	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project: CAR090617-11	
601 N. McDowell Blvd	Project Number: Former Exxon 79374 / 990 San Pablo Ave.	Reported:
Petaluma, CA 94954	Project Manager: Mr. Scott Perkins	15-Sep-17 10:31

Volatile Organic Compounds by H&P 8260SV

				-	, IIIC.				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SVS1 (E709020-01) Vapor Sampled: 05-Sep-17	Received: 06	-Sep-17							R-05
2-Butanone (MEK)	ND	100000	ug/m3	2	EI71311	11-Sep-17	11-Sep-17	H&P 8260SV	
2-Hexanone (MBK)	ND	100000	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	100000	"	"	"	"	"	"	
Dichlorodifluoromethane (F12)	ND	20000	"	"	"	"	"	"	
Chloromethane	ND	20000	"	"	"	"	"	"	
Vinyl chloride	ND	2000	"	"	"	"	"	"	
Bromomethane	ND	20000	"	"	"	"	"	"	
Chloroethane	ND	20000	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND	20000	"	"	"	"	"	"	
1,1-Dichloroethene	ND	20000	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	20000	"		"	"	"	"	
Carbon disulfide	ND	20000	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	20000	"		"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	20000	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	20000	"	"	"	"	"	"	
Diisopropyl ether (DIPE)	ND	40000	"	"	"	"	"	"	
1,1-Dichloroethane	ND	20000	"		"	"	"	"	
Ethyl tert-butyl ether (ETBE)	ND	40000	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	20000	"		"	"	"	"	
Chloroform	ND	4000	"		"	"	"	"	
1,1,1-Trichloroethane	ND	20000	"	"	"	"	"	"	
Carbon tetrachloride	ND	4000	"		"	"	"	"	
1,2-Dichloroethane (EDC)	ND	4000	"	"	"	"	"	"	
Tertiary-amyl methyl ether (TAME)	ND	40000	"		"	"	"	"	
Benzene	ND	4000	"		"	"	"	"	
Trichloroethene	ND	4000	"		"	"	"	"	
1,2-Dichloropropane	ND	20000	"		"	"	"	"	
Bromodichloromethane	ND	20000	"		"	"	"	"	
cis-1,3-Dichloropropene	ND	20000	"	"	"	"	"	"	
Toluene	ND	40000	"		"	"	"	"	
trans-1,3-Dichloropropene	ND	20000	"		"	"	"	"	
1,1,2-Trichloroethane	ND	20000	"		"	"	"		
1,2-Dibromoethane (EDB)	ND	20000	"		"	"	"		
Tetrachloroethene	ND	4000	"	"	"	"	"	"	
Dibromochloromethane	ND	20000	"	"	"	"	"	"	
Chlorobenzene	ND	4000	"	"	"	"	"	"	
Ethylbenzene	ND	20000	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	20000	"	"	"	"	"	"	
-,-,-,		20000							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project:	CAR090617-11	
601 N. McDowell Blvd	Project Number:	Former Exxon 79374 / 990 San Pablo Ave.	Reported:
Petaluma, CA 94954	Project Manager:	Mr. Scott Perkins	15-Sep-17 10:31

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SVS1 (E709020-01) Vapor Sampled: 05-Sep-	17 Received: 06	-Sep-17							R-05
m,p-Xylene	ND	20000	ug/m3	2	EI71311	11-Sep-17	11-Sep-17	H&P 8260SV	
o-Xylene	ND	20000	"	"	"	"	"	"	
Styrene	ND	20000	"	"	"	"	"	"	
Bromoform	ND	20000	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	20000	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	20000	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	20000	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	20000	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	20000	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	20000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	20000	"	"	"	"	"	"	
Hexachlorobutadiene	ND	20000	"	"	"	"	"	"	
Naphthalene	ND	4000	"	"	"	"	"	"	
Tertiary-butyl alcohol (TBA)	ND	200000	"	"	"	"	"	"	
		04.0.04			"	"	"	"	
Surrogate: Dibromofluoromethane		96.8 %	75-12						
Surrogate: 1,2-Dichloroethane-d4		99.0 %	75-12		"	"	"	"	
Surrogate: Toluene-d8		106 %	75-12		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.5 %	75-12	25	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma		Pro	ject: CA	AR090617-11					
601 N. McDowell Blvd		Project Num	ber: Fo	rmer Exxon 7	9374 / 990	San Pablo Ave	2.	Reported:	
Petaluma, CA 94954		Project Mana	ger: Mi	r. Scott Perkin	IS			15-Sep-17 10:31	
	Pe	troleum H	ydroca	arbon Ana	alysis				
	H	&P Mobile	Geoc	hemistry,	Inc.				
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SVS1 (E709020-01) Vapor Sample	d: 05-Sep-17 Received: 06-	Sep-17							
TPHv (C6-C12)	6100000	800000	ug/m3	2	EI71311	11-Sep-17	11-Sep-17	H&P 8260SV	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma 601 N. McDowell Blvd Petaluma, CA 94954		Project Nu	mber: Fo	AR090617-11 rmer Exxon 7 r. Scott Perkin	79374 / 990	San Pablo	Ave.	-	orted: ep-17 10:31	
	Soil Gas	and Vapo	r Analy	sis - Qua	lity Con	trol				
	I	I&P Mobil	le Geoc	hemistry,	Inc.					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI70802 - GC										
Blank (EI70802-BLK1)				Prepared &	Analyzed:	08-Sep-17				
Carbon dioxide	ND	0.20	%							
Batch EI70803 - GC										
Blank (EI70803-BLK1)				Prepared &	Analyzed:	08-Sep-17				
Helium (LCC)	ND	0.10	%							
Batch EI71504 - GC										
<u>Blank (EI71504-BLK1)</u>				Prepared &	Analyzed:	15-Sep-17				
Methane	ND	10	ppmv							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	5	CAR090617-11	
601 N. McDowell Blvd	Project Number:	Former Exxon 79374 / 990 San Pablo Ave.	Reported:
Petaluma, CA 94954	Project Manager:	Mr. Scott Perkins	15-Sep-17 10:31

Volatile Organic Compounds by H&P 8260SV - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EI71311 - EPA 5030										
Blank (EI71311-BLK1)				Prepared &	Analyzed:	11-Sep-17				
2-Butanone (MEK)	ND	2500	ug/m3							
2-Hexanone (MBK)	ND	2500	"							
4-Methyl-2-pentanone (MIBK)	ND	2500	"							
Dichlorodifluoromethane (F12)	ND	500	"							
Chloromethane	ND	500	"							
Vinyl chloride	ND	50	"							
Bromomethane	ND	500	"							
Chloroethane	ND	500	"							
Trichlorofluoromethane (F11)	ND	500	"							
1,1-Dichloroethene	ND	500	"							
,1,2 Trichlorotrifluoroethane (F113)	ND	500	"							
Carbon disulfide	ND	500	"							
Methylene chloride (Dichloromethane)	ND	500	"							
Methyl tertiary-butyl ether (MTBE)	ND	500	"							
rans-1,2-Dichloroethene	ND	500	"							
Diisopropyl ether (DIPE)	ND	1000	"							
,1-Dichloroethane	ND	500	"							
Ethyl tert-butyl ether (ETBE)	ND	1000	"							
is-1,2-Dichloroethene	ND	500	"							
Chloroform	ND	100	"							
,1,1-Trichloroethane	ND	500	"							
Carbon tetrachloride	ND	100	"							
,2-Dichloroethane (EDC)	ND	100	"							
Fertiary-amyl methyl ether (TAME)	ND	1000	"							
Benzene	ND	100	"							
Trichloroethene	ND	100	"							
,2-Dichloropropane	ND	500	"							
Bromodichloromethane	ND	500	"							
is-1,3-Dichloropropene	ND	500	"							
` oluene	ND	1000	"							
rans-1,3-Dichloropropene	ND	500	"							
,1,2-Trichloroethane	ND	500	"							
,2-Dibromoethane (EDB)	ND	500	"							
etrachloroethene	ND	100	"							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project: CAR090617-11	
601 N. McDowell Blvd	Project Number: Former Exxon 79374 / 990 San Pablo	Ave. Reported:
Petaluma, CA 94954	Project Manager: Mr. Scott Perkins	15-Sep-17 10:31

Volatile Organic Compounds by H&P 8260SV - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EI71311 - EPA 5030										
<u>Blank (EI71311-BLK1)</u>				Prepared &	Analyzed:	11-Sep-17				
Dibromochloromethane	ND	500	ug/m3							
Chlorobenzene	ND	100	"							
Ethylbenzene	ND	500	"							
1,1,1,2-Tetrachloroethane	ND	500	"							
m,p-Xylene	ND	500	"							
o-Xylene	ND	500	"							
Styrene	ND	500	"							
Bromoform	ND	500	"							
1,1,2,2-Tetrachloroethane	ND	500	"							
1,3,5-Trimethylbenzene	ND	500	"							
1,2,4-Trimethylbenzene	ND	500	"							
1,3-Dichlorobenzene	ND	500	"							
1,4-Dichlorobenzene	ND	500	"							
1,2-Dichlorobenzene	ND	500	"							
1,2,4-Trichlorobenzene	ND	500	"							
Hexachlorobutadiene	ND	500	"							
Naphthalene	ND	100	"							
Tertiary-butyl alcohol (TBA)	ND	5000	"							
Surrogate: Dibromofluoromethane	2540		"	2500		102	75-125			
Surrogate: 1,2-Dichloroethane-d4	2250		"	2500		89.9	75-125			
Surrogate: Toluene-d8	2510		"	2500		100	75-125			
Surrogate: 4-Bromofluorobenzene	2340		"	2500		93.5	75-125			
LCS (EI71311-BS1)				Prepared &	Analyzed.	11-Sep-17				

LCS (EI71311-BS1)				Prepared & Ana	lyzed: 11-Sep-17		
Dichlorodifluoromethane (F12)	4500	500	ug/m3	5000	90.5	70-130	
Vinyl chloride	4800	50	"	5000	96.2	70-130	
Chloroethane	4600	500	"	5000	91.9	70-130	
Trichlorofluoromethane (F11)	5000	500	"	5000	100	70-130	
1,1-Dichloroethene	5000	500	"	5000	100	70-130	
1,1,2 Trichlorotrifluoroethane (F113)	5900	500	"	5000	118	70-130	
Methylene chloride (Dichloromethane)	4900	500	"	5000	97.4	70-130	
trans-1,2-Dichloroethene	5000	500	"	5000	100	70-130	
1,1-Dichloroethane	4700	500	"	5000	94.3	70-130	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project: CAR090617-11	
601 N. McDowell Blvd	Project Number: Former Exxon 7937	4 / 990 San Pablo Ave. Reported:
Petaluma, CA 94954	Project Manager: Mr. Scott Perkins	15-Sep-17 10:31

Volatile Organic Compounds by H&P 8260SV - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EI71311 - EPA 5030										

LCS (EI71311-BS1)				Prepared & Ana	lyzed: 11-Sep-17	
cis-1,2-Dichloroethene	5100	500	ug/m3	5000	102	70-130
Chloroform	5000	100	"	5000	99.1	70-130
1,1,1-Trichloroethane	4900	500	"	5000	97.7	70-130
Carbon tetrachloride	5000	100	"	5000	100	70-130
1,2-Dichloroethane (EDC)	4800	100	"	5000	96.5	70-130
Benzene	4900	100	"	5000	97.4	70-130
Trichloroethene	5300	100	"	5000	105	70-130
Toluene	4300	1000	"	5000	85.1	70-130
1,1,2-Trichloroethane	4800	500	"	5000	96.4	70-130
Tetrachloroethene	4900	100	"	5000	97.6	70-130
Ethylbenzene	5000	500	"	5000	100	70-130
1,1,1,2-Tetrachloroethane	5300	500	"	5000	106	70-130
m,p-Xylene	9700	500	"	10000	97.4	70-130
o-Xylene	4900	500	"	5000	97.4	70-130
1,1,2,2-Tetrachloroethane	4700	500	"	5000	93.1	70-130
Surrogate: Dibromofluoromethane	2560		"	2500	102	75-125
Surrogate: 1,2-Dichloroethane-d4	2370		"	2500	94.8	75-125
Surrogate: Toluene-d8	2550		"	2500	102	75-125
Surrogate: 4-Bromofluorobenzene	2570		"	2500	103	75-125

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma 601 N. McDowell Blvd Petaluma, CA 94954				San Pablo	Pablo Ave. Reported: 15-Sep-17 10:31								
Petroleum Hydrocarbon Analysis - Quality Control H&P Mobile Geochemistry, Inc.													
Analyte Batch EI71311 - EPA 5030	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes			
Blank (EI71311-BLK1) TPHv (C6-C12)	ND	200000	ug/m3	Prepared &	z Analyzed:	11-Sep-17							

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Cardno ERI - Petaluma	Project: CAR090617-11	
601 N. McDowell Blvd	Project Number: Former Exxon 79374 / 990 San Pablo Ave.	Reported:
Petaluma, CA 94954	Project Manager: Mr. Scott Perkins	15-Sep-17 10:31

Notes and Definitions

R-05 The sample was diluted due to the presence of high levels of non-target analytes resulting in elevated reporting limits.

- LCC Leak Check Compound
- ND Analyte NOT DETECTED at or above the reporting limit
- MDL Method Detection Limit
- %REC Percent Recovery
- RPD Relative Percent Difference

All soil results are reported in wet weight.

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs, accreditation number 69070 for EPA Method TO-15, H&P Method TO-15, EPA Method 8260B and H&P 8260SV.

H&P is approved by the State of Arizona as an Environmental Testing Laboratory and Mobile Laboratory, certification numbers AZM758 and AZ0779.

H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743, 2744, 2745, 2754 & 2930.

H&P is approved by the State of Florida Department of Health under the National Environmental Laboratory Accreditation Conference (NELAC) certification number E871100.

The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.

HP Mobile Geochemistry Inc. 2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: <u>9-5-17</u> Page ___ of ___

and the Rest of the	t Information											(Lab Us	se Only)			
Lab Client/Consultant:	Cardno			Project Name / #:	Former Exxon 79	374					Date Rec'd: 9/6/17 Control #: 70732.04					
Lab Client Project Manager:	Scott Perkins	s		Project Location:	990 San Pablo Av	e, Albany,	CA	a Yu	- 11 r.,	1.0	H&P Project # CAR090617-11					
Lab Client Address:	601 N.McDov			Report E-Mail(s):	port E-Mail(s): scott.perkins@cardno.com						Lab Work Order # E709020					
Lab Client City, State, Zip:	Petaluma, CA				norcallabs@cardno.com						Sample Intact: Yes No See Notes Below					and the second
Phone Number:	(707) 766-200				<u>noreanable et</u>						Recei	pt Gauge	ID: 11	167		Temp: KT
Reporting Requ			Furnaroun	d Time	Sampl	er Inform	ation				Outsid	e Lab:				
× Standard Report		× 5-7 da		24-Hr Rush	Sampler(s):	Nadya Vic			•	0	Receip	ot Notes/T	racking #	- 12	21.91	+350
× Excel EDD Other EDD: 3-day Rush			Mobile Lab	Signature:	Afor		Ţ	-	Equal 1	17:	5-1-1-	two	215	561.	7350	
	× CA Geotracker Global ID: T0619716673 48-Hr Rush			Other:	Date: 9/5/			4	1.1.	6/1						Lab PM Initials:
Additional Instructions to I Check if Project Analyte * Preferred VOC units (ple μg/L × μg/m ³	e List is Attached ease choose one):		EDF delive	ISTIN BECKLEY* erable to norcallab quipment Blank ng GC/MS C6-C12	os@eri-us.com QCTB=Trip Bla			Full List	Equul 1	RUSSONES		(sorbent tube)	punodu	, 8015m	ASTM D1945 2 X N2	
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa or Tedlar or Tube	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List × TO-15M 8200	Oxygenates %	Naphthalene X TO-15ME	TPHv as Gas	TPHv as Diesel (sorbent tube)	Leak Check Compound X He	Methane by EPA 8015m	Fixed Gases by ASTM D1945 X CO2 X O2 X N2	
SVS1	SVS1	9/5/2017	1147	SV	400mL Summa	240	-5,65	х	x	x	X	-	x	x	X	
	2	Company:		Date:	Time:	Received by: -			-		Company:		Date:			Time:
Approved/Relinquished by:	And	Card	no	9/5/17	1430		Tonic	un	ant	w.	Company:	FP	910	0/17		10:45

*Approval constitutes as authorization to proceed with analysis and acceptance of conditions on back

WORK ORDER NUMBER: 17-09-0292

Calscience

The difference is service

🔅 eurofins

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Cardno Client Project Name: ExxonMobil 79374/022735C Attention: Scott Perkins 601 North McDowell Blvd. Petaluma, CA 94954-2312

vor for

Approved for release on 09/21/2017 by: Cecile deGuia Project Manager

ResultLink ▶

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

CA ELAP ID: 2944 | ACLASS DoD-ELAP ID: ADE-1864 (ISO/IEC 17025:2005) | CSDLAC ID: 10109

🔅 eurofins

Calscience

Contents

	ject Name: er Number:	ExxonMobil 79374/022735C 17-09-0292	
1	Work Orc	ler Narrative	3
2	Sample S	Summary	4
3	3.1 EPA	mple Data	5 5 6
4		ontrol Sample Data	7 7
5	Sample A	Analysis Summary	9
6	Glossary	of Terms and Qualifiers	10
7	Chain-of-	Custody/Sample Receipt Form	11

Work Order: 17-09-0292

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 09/06/17. They were assigned to Work Order 17-09-0292.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Air

Sample lo	dentification	Lab Number	Collection Date and Time	Number of Matrix Containers	
Attn:	Scott Perkins				
			Number of Containers:		1
			Date/Time Received:	09/06/17 18	:30
	Petaluma, CA 94954-2	2312	PO Number:	02273	5C
	601 North McDowell B	lvd.	Project Name:	ExxonMobil 79374/02273	5C
Client:	Cardno		Work Order:	17-09-02	292

ST-SVS1

17-09-0292-1

09/05/17 11:49

Containers

1,4-Bromofluorobenzene

Analytical Report

Cardno			Date Re	ceived:			09/06/17
601 North McDowell Blvd.			Work Or	rder:			17-09-0292
Petaluma, CA 94954-2312			Prepara	tion:			N/A
			Method:			E	PA TO-17 (M)
			Units:				ug/m3
Project: ExxonMobil 79374/0227350	C					Pa	ge 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ST-SVS1	17-09-0292-1-A	09/05/17 11:49	Air	GC/MS MMM	N/A	09/08/17 23:18	170908L01
Parameter		Result		RL	DF	Qua	lifiers
Naphthalene		ND		20	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		1273		57-129	AZ		
Method Blank	099-15-178-73	N/A	Air	GC/MS MMM	N/A	09/08/17 19:03	170908L01
Comment(s): - MB data is reported in ng/	/sample.						
Parameter		Result		<u>RL</u>	DF	<u>Qua</u>	ifiers
Naphthalene		ND		2.0	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		

97

57-129

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Analytical Report

Cardno			Date Re	eceived:			09/06/17
601 North McDowell Blvd.			Work O	rder:			17-09-0292
Petaluma, CA 94954-2312			Prepara	tion:			N/A
			Method:			E	PA TO-17 (M)
			Units:				ug/m3
Project: ExxonMobil 79374/022	735C		•			Pa	ige 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
ST-SVS1	17-09-0292-1-A	09/05/17 11:49	Air	GC/MS MMM	N/A	09/08/17 23:18	170908L02
Parameter	·	Result		RL	DF	Qua	alifiers
TPH as Diesel (C10-C21)		650000		5000	1.00	E	
Surrogate		<u>Rec. (%)</u>		Control Limits	Qualifiers		
1,4-Bromofluorobenzene		1206		50-150	AZ		
Toluene-d8		2880		50-150	AZ		
Method Blank	099-15-426-136	N/A	Air	GC/MS MMM	N/A	09/08/17 19:03	170908L02
Comment(s): - MB data is reported i	n ng/sample.						
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	alifiers
TPH as Diesel (C10-C21)		ND		500	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		102		50-150			
Toluene-d8		103		50-150			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

🛟 eurofins

Quality Control - LCS/LCSD

Cardno			Date Recei	ved:		09/06/17			
601 North McDowell Blvd.			Work Order			17-09-0292			
Petaluma, CA 94954-2312			Preparation	1:		N/A			
			Method:			EPA TO-17 (M)			
Project: ExxonMobil 79374	/022735C					Page 1 of 2			
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number			

099-15-178-73	LCS	Air		GC/MS MMM	N/A	09/08	B/17 15:17	170908L01	
099-15-178-73	LCSD	Air		GC/MS MMM	N/A	09/08	8/17 16:00	170908L01	
Parameter	Spike Addee	<u>LCS Conc.</u>	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Naphthalene	100.0	98.84	99	98.33	98	40-190	1	0-35	

RPD: Relative Percent Difference. CL: Control Limits

RPD CL

0-25

<u>Qualifiers</u>

🔅 eurofins

Cardno			Date Receive	ed:	09/06/17		
601 North McDowell Blvd.			Work Order:		17-09-0292		
Petaluma, CA 94954-2312	2		Preparation:		N/A		
			Method:		EPA TO-17 (M)		
Project: ExxonMobil 7937	4/022735C					Page 2 of 2	
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number	
099-15-426-136	LCS	Air	GC/MS MMM	N/A	09/08/17 13:09	170908L02	
099-15-426-136	LCSD	Air	GC/MS MMM	N/A	09/08/17 13:52	170908L02	

099-15-426-136	LCSD	Air		GC/MS MMM	N/A	09/08/17 13:5		
Parameter	Spike Added	LCS Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	
TPH as Diesel (C10-C21)	2000	1661	83	2100	105	50-150	23	

RPD: Relative Percent Difference. CL: Control Limits

Calscience

 Work Order: 17-09-0292
 Page 1 of 1

 Method EPA TO-17 (M)
 Extraction N/A
 Chemist ID 953
 Instrument GC/MS MMM
 Analytical Location 2

Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 17-09-0292

Page 1 of 1

Qualifiers	Definition
AZ	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BA	The MS/MSD RPD was out of control due to suspected matrix interference.
BB	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
DF	Reporting limits elevated due to matrix interferences.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
GE	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
HD	Chromat. profile inconsistent with pattern(s) of ref. fuel stnds.
НО	High concentration matrix spike recovery out of limits
HT	Analytical value calculated using results from associated tests.
HX	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS was in control.
IL	Relative percent difference out of control.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
LD	Analyte presence was not confirmed by second column or GC/MS analysis.
LP	The LCS and/or LCSD recoveries for this analyte were above the upper control limit. The associated sample was non-detected. Therefore, the sample data was reported without further clarification.
LQ	LCS recovery above method control limits.
LR	LCS recovery below method control limits.
ND	Parameter not detected at the indicated reporting limit.
QO	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
RU	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
SG	A silica gel cleanup procedure was performed.
SN	See applicable analysis comment.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

170733.03 OAR090017-021	AIR CHAIN OF CUSTODY RECORD	9/5/2017	1 OF 1	P.O. NO.: 0007350 X	LAB CONTACT OR QUOTE NO.: LAB CONTACT OR QUOTE NO.:	OCILE OLITUTI	Nadya Viente	EQUESTED ANALYSE	əu	əlshi	ldel	Stop Sampling Information Canister 1777	() ((Hg)	1149 NA X X					Date: Date:	Date:
ee tou	AIR CHAI	DATE:	PAGE:	ation 79374						100ml Sumped -Kri 9/6/17		Stop Sampli		9/5/2017 1						DB A
ICCI				Former Exxon Service Station 79374		CA ^{ZIP:}				IL Sum		ation . Canister Dressure	(6H")	A						C W
			3 2	rmer Exxon	lo Avenue	STATE:	s	3		100m		Start Sampling Information	(24 hr clock)	A						er fran
		ISE ONLY	17-09-0292	JMBER: FO	990 San Pablo Avenue		Scott Perkiins	(DEDD LOUNITS WAY M3				Start	Date	9/5/2017					tilliation) workt	ffiliation) ffiliation)
		WO # / LAB USE ONLY		DJECT NAME / NI		Albany		LT UNITS	1Will			f Flow Controller	# QI	¥	 				Received by: (Signature/Affiliation)	Referred by: (Signature/Affiliation) Referred by: (Signature/Affiliation)
				CLIENT PROJEC	PROJECT ADDRESS	citY: A	PROJECT CONTACT:		innteoli-turi			Sampling Equipment Tube		100ml			 		Received	Repered
			ú					DARD				Media	#OI	G0141323						
			sus.com or call us			ZIP: 94954	cardno.com	S ₩ STAND	2 tubes Returned			Air Type (I) Indoor	(A) Ambient	S۷						
•		calse ence	440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494 For courtier service / sample drop off information. contact us26 sales@eurofinsus.com or call us.	/ Cardno		STATE: CA	E-MAIL: scott.perkins@cardno.com	may apply to any TAT not "STANDARD"):	2 tu	 -	eri-us.com	FIELD ID /		SVS1					je k	
	😵 eurofins		coln Way, Garden Grove, CA 9284 er service / sample drop off inform	atory client: Exxon Mobil / Cardno	ss: 601 N. McDowell Blvd	Petaluma	707-766-2000	surcharges 24 HR	SPECIAL INSTRUCTIONS:	Reporting Limits - ug/m ³ Global ID = T0619716673	EDF deliverable to norcallabs@eri-us.com	SAMPLE ID		ST-SVS1					Relinquished by: (Signature)	Relinquished by: (Signature) KMM/W Relindufshay by: (Sunature)
))))	440 Lini or couri	LABOR	ADDRESS:	CITY:	TEL:	TURNAI SA	SPECIA	Report 3lobal	EDF d	LAB USE	ONLY	_					Relinq	Reling

Return to Contents

🖑 eurofins		WORK ORDER	R NUMBER:	Pa 17-0	ige 12 of 9– <i>(</i>)	12 292
Calscienc	SAMPLE RECEIPT	CHECKLIST	С	OOLEF	z) (OF
CLIENT:		••••			1061	-
TEMPERATURE: (Criteria: 0.0°C	- 6.0°C. not frozen except sedim	nent/tissue)				
Thermometer ID: SC6 (CF: +0.2°C			;c <u>; 3_3</u> °c	🗹 Blar	nk 🗆	Sample
	re criteria (PM/APM contacted b					
3	re criteria but received on ice/ch		of sampling			
□ Sample(s) received at ambient t		ansport by courier		Charle	ed by: _	671
Ambient Temperature: Air F	ilter			Спеск		
CUSTODY SEAL:						(7)
Cooler	t DPresent but Not Intact	🗹 Not Present	□ N/A		ed by:	
Sample(s)	t Present but Not Intact	Not Present	□ N/A	Check	ed by:	śr_
SAMPLE CONDITION:				Yes	No	N/A
Chain-of-Custody (COC) documer	nt(s) received with samples		• • • • • • • • • • • • • • • • • • • •	. 1		
COC document(s) received compl	ete			. Ø		
	time ☐ Matrix ☐ Number of c					
	ot relinquished 🛛 No relinquish					
Sampler's name indicated on COC	······	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	. ø		
Sample container label(s) consiste				1		
Sample container(s) intact and in (· -		
Proper containers for analyses rec				/		
Sufficient volume/mass for analyse						
Samples received within holding ti				. , ២		
	nalyses received within 15-minut			-	_	Å
1	Dissolved Sulfide Dissolve					
Proper preservation chemical(s) n		tainer		. Ц		
	s) received for certain analyses					
□ Volatile Organics □ Total N				-		6
Acid/base preserved samples - ph						·
Container(s) for certain analysis fr				LJ	لبا	
	ved Gases (RSK-175) Disso					
Tedlar™ bag(s) free of condensat	□ Ferrous Iron (SM 3500) □ F					Ø
	IOIT		nk Lot Numb			
CONTAINER TYPE:		• •				
Aqueous: □ VOA □ VOAh □ VOAn □ 250AGB □ 250CGB □ 250CGBs	$a_2 \sqcup 100PJ \sqcup 100PJ na_2 \sqcup 125AG$	2) T 500AGB D 50	00AGJ □ 500A	GJs (pH	2) □ 5	00PB
□ 1AGB □ 1AGBna₂ □ 1AGBs (pH_	2) □ 1AGBs (O&G) □ 1PB □ 1PE	3na (pH12) □	0		D	
Solid: □ 4ozCGJ □ 8ozCGJ □ 16oz	:CGJ □ Sleeve () □ EnCorés® (() 🛛 TerraCores [®]	() 🗆	_ □		
Air: □ Tedlar™ □ Canister Ø Sorbe	nt Tube	er Matrix (_): 🛛	□	□ _	
Container: A = Amber, B = Bottle, C =	= Clear, E = Envelope, G = Glass, J	= Jar, P = Plastic, an	d Z = Ziploc/Re	sealable	Bag	0
Preservative: b = buffered, f = filtered	l, h = HCl, n = HNO₃, <mark>na =</mark> NaOH, n	a ₂ = Na ₂ S ₂ O ₃ , p = H ₃	PO₄, Label	ed/Chec	ked by:	- ov
	re, x = Na ₂ SO ₃ +NaHSO ₄ .H ₂ O, znn a			Review	wed by: _	<u> </u>

2016

Return to Contents