ExxonMobil Environmental Services Company 4096 Piedmont Avenue #194 Oakland, California 94611 510.547.8196 Telephone 510.547.8706 Facsimile jennifer.c.sedlachek@exxonmobil.com

ExonMobil

November 12, 2015

RECEIVED

By Alameda County Environmental Health 2:16 pm, Nov 13, 2015

Mr. Mark Detterman Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Room 250 Alameda, California 94502-6577

RE: Former Exxon RAS #79374/990 San Pablo Avenue, Albany, California.

Dear Mr. Detterman:

Attached for your review and comment is a copy of the letter report entitled *Data Gap Investigation, Well Installation, and Remedial Progress Report,* dated November 12, 2015, for the above-referenced site. The report was prepared by Cardno of Petaluma, California, and details activities at the subject site.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions or comments, please contact me at 510.547.8196.

Sincerely,

Sedbulk____

Jennifer C. Sedlachek Project Manager

Attachment: Cardno's *Data Gap Investigation, Well Installation, and Remedial Progress Report,* dated November 12, 2015

w/ attachment
 Ms. Muriel T. Blank, Trustee, The Blank Family Trusts
 Reverend Deborah Blank, Trustee, The Blank Family Trusts
 Ms. Marcia Blank, Trustee, The Family Trusts

w/o attachment Mr. Scott Perkins, Cardno

Data Gap Investigation, Well Installation, and Remedial Progress Report

Former Exxon Service Station 79374 Alameda County RO 2974

Cardno 2735C.R12

November 12, 2015

Data Gap Investigation, Well Installation, and Remedial Progress Report

Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

Alameda County RO 2974

Cardno 2735C.R12

November 12, 2015

Christine M. Capwell Senior Technical Editor for Cardno 707 766 2000 Email: christine.capwell@cardno.com

David R. Daniels P.G. 8737 for Cardno 707 766 2000 Email: david.daniels@cardno.com

Table of Contents

1	Introduction 1								
2	Site Description 1								
3	Geology and Hydrogeology								
4	Previous Work								
	4.1	Fueling System Activities	2						
	4.2	Site Assessment Activities	2						
	4.3	Remediation Activities	2						
	4.4	Groundwater Monitoring Activities	2						
	4.5 Soil Vapor Monitoring Activities								
5	5 Soil Borings and Well Installation								
	5.1	Pre-Drilling Activities	3						
	5.2	Well Installation and Soil Boring Activities	3						
	5.3	3							
	5.4	3							
	5.5	Site Survey	3						
	5.6	Waste Containment and Disposal	3						
6	Dual-F	Phase Extraction HIT Events	4						
7	Resul	ts and Conclusions	4						
8	Site C	conceptual Model	4						
9	Recommendations								
10	Contact Information								
11	Document Distribution								
12	Limitations								
13	References 5								
14	Acronym List 7								

Plates

Plate 1	Site Vicinity Map
Plate 2	Generalized Site Plan
Plate 3	Select Soil Analytical Results
Plate 4	Select Groundwater Analytical Results

Tables

Table 1A	Cumulative Groundwater Monitoring and Sampling Data
Table 1B	Additional Cumulative Groundwater Monitoring and Sampling Data
Table 2	Well Construction Details
Table 3A	Cumulative Soil Analytical Results
Table 3B	Additional Cumulative Soil Analytical Results – HVOCs and PAHs

Appendices

Appendix A	Correspondence
Appendix B	Site Conceptual Model
Appendix C	Field Protocols
Appendix D	Permits
Appendix E	Boring Logs
Appendix F	Field Data Sheets
Appendix G	Laboratory Analytical Reports
Appendix H	Survey Data

1 Introduction

At the request of ExxonMobil Environmental Services (EMES), on behalf of Exxon Mobil Corporation, Cardno prepared this data gap investigation, well installation, and remedial progress report for the site. The work was conducted in accordance with the *Feasibility Study/Corrective Action Plan* (FS/CAP), dated February 4, 2015 (Cardno ERI, 2015b), which was approved by the Alameda County Department of Environmental Health (ACEH) in a letter dated August 26, 2015 (Appendix A). The work included the drilling of borings, the installation of wells, and initiating DPE high-intensity targeted (HIT) events at the site to progress the site towards closure.

2 Site Description

Former Exxon Service Station 79374 is located at 990 San Pablo Avenue, on the northwestern corner of the intersection of Buchanan Street and San Pablo Avenue, Albany, California (Plate 1). The site is a retail outlet for paint and painting products and is located in an area of mixed commercial and residential land use. The neighboring properties include another retail paint store, a restaurant, a beauty supply store, the City of Albany Fire Department, and residential housing. A Generalized Site Plan is included as Plate 2. A tabular site conceptual model for the site detailing additional site information is included as Appendix B.

3 Geology and Hydrogeology

The site lies at an approximate elevation of 40 feet above msl, and the local topography slopes toward the southwest. The site is located along the eastern margin of the San Francisco Bay within the East Bay Plain (Hickenbottom and Muir, 1988). The surficial deposits in the site vicinity are mapped as Holocene alluvial fan and fluvial deposits (Graymer, 2000). The site is located approximately 1,630 feet north-northwest of Cordornices Creek and approximately 1½ miles southwest of the active northwest trending Hayward fault.

The East Bay Plain is regionally divided into two major groundwater basins: the San Pablo and the San Francisco Basin. These basins are tectonic depressions that are filled primarily with a sequence of coalescing alluvial fans. The San Francisco Basin is further divided into seven sub-areas. The site is located in the Berkeley Sub-Area, which is filled primarily by alluvial deposits that range from 10 to 300 feet thick with poorly defined aquitards (CRWQCB, 1999). Under natural conditions, the direction of groundwater flow in the East Bay Plain is east to west.

Soil boring logs indicate that the soil beneath the site consists predominantly of silt and clay with an apparently continuous coarse-grained unit 2 to 8 feet thick encountered between approximately 8 and 20 feet bgs (EC&A, 2008; Cardno ERI, 2011; Cardno ERI, 2012a). Fill material was encountered in the boring for well SVE3 (located in the former UST pit) to approximately 7 feet bgs. CPT soil borings indicate the presence of predominantly silt and clay between approximately 20 and 60 feet bgs, the maximum depth explored.

Historical groundwater elevation data indicate that DTW ranges from 5 to 11 feet bgs beneath the site with varying groundwater flow directions. The distribution of dissolved-phase hydrocarbons suggests that the dominant groundwater flow direction is west to southwest.

4 Previous Work

Cumulative groundwater monitoring and sampling data are summarized in Tables 1A and 1B. Well construction details are presented in Table 2. Cumulative soil analytical results are summarized in Tables 3A and 3B.

Additional site information is included in the FS/CAP, dated February 4, 2015 (Cardno ERI, 2015b).

4.1 Fueling System Activities

In 1983, one used-oil UST and four gasoline USTs were removed and the resulting tank cavity was backfilled with sand and compacted to 90% (City of Albany, 1983).

4.2 Site Assessment Activities

Six exploratory borings (B1 through B6) were advanced on site in 2008. Maximum residual concentrations of TPHg, TPHd, and benzene were reported in the soil samples collected at 10.5 feet bgs from borings B1 and B2, located near the former USTs. Maximum dissolved-phase TPHg, TPHd, and benzene concentrations were also reported in the samples collected from soil borings B1 and B2, and the laboratory reported an immiscible sheen in the samples (EC&A, 2008).

Monitoring wells MW1 through MW6 and borings CPT1/HP1 and CPT2/HP2 were installed on site in 2010. Maximum residual concentrations of TPHg and TPHd in soil were reported in samples collected at 10.5 feet bgs from borings MW3 and MW5, located west of the former USTs. Dissolved-phase hydrocarbons were adequately delineated vertically at the site with petroleum hydrocarbon concentrations below or near the laboratory reporting limits in groundwater samples collected deeper than 27.5 feet bgs (Cardno ERI, 2011).

In January 2012, Cardno ERI installed SVE wells SVE1 through SVE3, AS well AS1, and monitoring well MW3A to be used during feasibility testing (Cardno ERI, 2012a).

In February and March 2014, Cardno ERI installed soil vapor sampling (SVS) wells SVS1 through SVS3 at the site and advanced on-site and off-site borings B7 through B17 (Cardno ERI, 2014a).

In December 2014, Cardno ERI installed off-site monitoring wells MW7 and MW8 (Cardno ERI, 2015a).

4.3 Remediation Activities

According to City of Albany Building Permit 82-0708, the USTs were removed and the resulting excavation backfilled in 1983 (City of Albany, 1983). It is unknown if over-excavation was performed during UST removal.

Between January 31 and February 1, 2012, Cardno ERI conducted three four-hour feasibility tests: a DPE only test, a combined AS and DPE test, and an AS only test. Approximately 93 pounds of TPHg and 0.09 pound of benzene were removed during feasibility testing (Cardno ERI, 2012b).

Cardno ERI prepared a FS/CAP, dated February 4, 2015. Cardno ERI recommended conducting DPE HIT events at the site to remediate hydrocarbon concentrations in soil, soil vapor, and groundwater and installing four extraction wells along the north and west sides of the site and monitoring wells off site to the southwest (Cardno ERI, 2015b).

4.4 Groundwater Monitoring Activities

Groundwater monitoring began at the site in 2010 with the installation of wells MW1 through MW6. Maximum concentrations were reported in the UST cavity and southwest of the UST cavity in wells MW3, MW3A, MW4, and MW5. Concentrations of MTBE are typically not reported above the laboratory reporting limit.

4.5 Soil Vapor Monitoring Activities

Soil vapor monitoring began at the site in 2014 with the installation of wells SVS1 through SVS3 (Cardno ERI, 2014a). Reported vapor-phase TPHg concentrations are similar in each of the wells and exceed applicable screening levels by up to three orders of magnitude.

5 Soil Borings and Well Installation

In October 2015, Cardno began implementation of the work proposed in the FS/CAP. Field work was conducted in general accordance with the FS/CAP, standard field protocols (Appendix C), a site-specific health and safety plan, and applicable regulatory guidelines under the advisement of a professional geologist.

Due to the presence of several subsurface utilities, planned well MW9 was converted into a soil boring (B18). During clearance activities the drillers were able to clear a hole large enough for a boring but were unable to widen the cleared hole to accommodate the augers. Proposed well MW10 was subsequently renamed well MW9.

5.1 **Pre-Drilling Activities**

Prior to drilling activities, Cardno obtained well installation permits from the Alameda County Public Works Agency and an encroachment permit from the City of Albany (Appendix D). Cardno personnel visited the site to check for obstructions and to mark the proposed locations. Underground Service Alert was notified at least 48 hours prior to the onset of field activities.

5.2 Well Installation and Soil Boring Activities

From October 9 to 12, 2015, Cardno observed the drilling of soil boring B18 and the installation of wells MW9 and SVE4 through SVE7. Boring locations were manually excavated with hand tools to approximately 5.5 feet bgs in accordance with EMES' subsurface clearance protocol. The borings were subsequently drilled using a hollow-stem drill rig to approximately 16 feet bgs. The borings were sampled at a minimum of approximately 5-foot intervals to total depth for geologic logging purposes. Select soil samples were submitted for laboratory analysis.

Wells were constructed in borings MW9 and SVE4 through SVE7 using 2-inch diameter (MW9) and 4-inch diameter (SVE4 through SVE7), Schedule 40, PVC casing with a 10-foot screened interval from approximately 5 to 15 feet bgs. Well construction details are included in Table 2 and in the boring logs included in Appendix E.

5.3 Development and Sampling

On October 15, 2015, Cardno developed the newly-installed wells using a surge block and an electric pump in accordance with the protocols provided in Appendix C. On October 16, 2015, Cardno gauged and sampled the wells. Groundwater monitoring and sampling results are included in Tables 1A and 1B. Field data sheets are included in Appendix F.

5.4 Laboratory Analyses

Cardno submitted soil and groundwater samples for analysis to Eurofins Calscience, Inc., a California statecertified laboratory, under COC protocol. Laboratory analytical results and sampling methods are summarized in Tables 1A, 1B, 3A, and 3B. Laboratory analytical reports are included in Appendix G.

5.5 Site Survey

On October 26, 2015, Cardno observed Morrow Surveying survey the locations and elevations of the newlyinstalled wells. The survey report is included in Appendix H.

5.6 Waste Containment and Disposal

Soil and water generated during assessment activities were temporarily stored on site in 55-gallon drums. Waste disposal documentation will be included under separate cover.

6 Dual-Phase Extraction HIT Events

The first targeted HIT event began on October 20, 2015, and continued through October 30, 2015. Results of the DPE HIT event will be included in the fourth quarter 2015 groundwater monitoring and sampling report due to the ACEH on December 18, 2015.

7 Results and Conclusions

Sediments observed during this investigation consist largely of sands, clays, and silts to 16 feet bgs, the maximum depth explored. Groundwater was encountered at 8 feet bgs in boring MW9 and at 12 to 12.5 feet bgs in borings SVE4 through SVE7.

Residual petroleum hydrocarbons were below screening levels in boring B18, located west of the site. Concentrations of TPHd and TPHg were present from approximately 9 to 12 feet bgs in borings MW9 and SVE4 through SVE7, including the following ESL exceedances:

- SVE5, 11.5 feet bgs: TPHd (160 mg/kg), ethylbenzene (5.1 mg/kg), and total xylenes (7.0 mg/kg).
- SVE6, 12 feet bgs: TPHg: (520 mg/kg) ethylbenzene (17 mg/kg), and total xylenes (11 mg/kg).

Dissolved-phase TPHd, TPHg, and BTEX concentrations were reported in each of the newly-installed wells. Maximum TPHg concentrations were reported in well SVE5 (1,700 μ g/L) and maximum benzene concentrations were reported in well SVE4 (37 μ g/L).

8 Site Conceptual Model

Based on historical data and the results of the current investigation, Cardno updated the tabular site conceptual model for the site (Appendix B).

9 Recommendations

Cardno recommends the continued implementation of the work proposed in the FS/CAP and continued semi-annual groundwater monitoring and sampling at the site. Additionally, Cardno recommends adding well MW9 to the groundwater sampling schedule and evaluating the need for an additional downgradient well.

10 Contact Information

The responsible party contact is Ms. Jennifer C. Sedlachek, ExxonMobil Environmental Services Company, 4096 Piedmont Avenue #194, Oakland, California, 94611. The consultant contact is Mr. Scott Perkins, Cardno, 601 North McDowell Boulevard, Petaluma, California, 94954. The agency contact is Mr. Mark Detterman, Alameda County Health Care Services Agency, Environmental Health Services, 1131 Harbor Bay Parkway, Suite 250, Alameda, California, 94502-6577.

11 Document Distribution

Cardno recommends submitted a copy of this report to the following:

Mr. Mark Detterman Alameda County Health Care Services Agency, Environmental Health Services 1131 Harbor Bay Parkway Suite 250, Alameda, California 94502-6577

Ms. Muriel T. Blank, Trustee The Blank Family Trusts 1164 Solano Avenue, #406 Albany, California 94706

Reverend Deborah Blank, Trustee The Blank Family Trusts 1563 Solano Avenue, #344 Berkeley, California 94707

Ms. Marcia Blank, Trustee The Blank Family Trusts 641 SW Morningside Road Topeka, Kansas 66606

12 Limitations

For documents cited that were not generated by Cardno, the data taken from those documents is used "as is" and is assumed to be accurate. Cardno does not guarantee the accuracy of this data and makes no warranties for the referenced work performed nor the inferences or conclusions stated in these documents.

This document and the work performed have been undertaken in good faith, with due diligence and with the expertise, experience, capability, and specialized knowledge necessary to perform the work in a good and workmanlike manner and within all accepted standards pertaining to providers of environmental services in California at the time of investigation. No soil engineering or geotechnical references are implied or should be inferred. The evaluation of the geologic conditions at the site for this investigation is made from a limited number of data points. Subsurface conditions may vary away from these data points.

13 References

California Regional Water Quality Control Board San Francisco Bay Region Groundwater Committee (CRWQCB). June 1999. *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda and Contra Costa Counties, CA.*

Cardno ERI. February 28, 2011. Site Assessment Report, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #R000002974.

Cardno ERI. April 12, 2012a. Well Installation Report, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #R000002974.

Cardno ERI. April 12, 2012b. Air Sparge and Dual-Phase Extraction and Feasibility Testing, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #R000002974.

Cardno ERI. May 2, 2014a. Soil, Soil Vapor, and Groundwater Investigation Report and Site Conceptual Model, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #R000002974.

Cardno ERI. January 22, 2015a. Well Installation Report, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #R000002974.

Cardno ERI. February 4, 2015b. Feasibility Study/Corrective Action Plan, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #RO00002974.

City of Albany. March 28, 1983. Building Permit 82-0708.

Edd Clark & Associates (EC&A). January 31, 2008. Report of Phase II Environmental Assessment, 990 San Pablo Avenue, Albany, California 94706. EC&A Project No 0589,002.07.

Graymer, R.W. 2000. Geologic map and map database of the Oakland metropolitan area, Alameda, Contra Costa, and San Francisco Counties, California. USGS, Miscellaneous Field Studies MF-2342.

Hickenbottom, Kelvin and Muir, Kenneth S. June 1988. *Geohydrogeology and Groundwater Quality Overview of the East Bay Plain Area, Alameda County, CA. Alameda County Flood Control and Water Conservation District.* 83p.

14 Acronym List

µg/L	Micrograms per liter
μs	Microsiemens
1,2-DCA	1,2-dichloroethane
acfm	Actual cubic feet per minute
AS	Air sparge
bgs	Below ground surface
BTEX	Benzene, toluene, ethylbenzene, and total xylenes
CEQA	California Environmental Quality Act
cfm	Cubic feet per minute
COC	Chain of Custody
CPT	Cone Penetration (Penetrometer) Test
DIPE	Di-isopropyl ether
DO	Dissolved oxygen
DOT	Department of Transportation
DPE	Dual-phase extraction
DTW	Depth to water
EDB	1,2-dibromoethane
EPA	Environmental Protection Agency
EPH	Extractable petroleum hydrocarbons
ESL	Environmental screening level
ETBE	Ethyl tertiary butyl ether
FID	Flame-ionization detector
fpm	Feet per minute
GAC	Granular activated carbon
gpa	Gallons per day
gpm	Gallons per minute
GRU	Gasoline-range organics
GWPIS	Groundwater pump and treat system
пуОС	Fatimeted volatile organic compound
J 1 E1	Estimated value between MDL and PQL (RL)
	Lower explosive infin
	Liquid-ring pump
	Leaking underground fuel tank
LUST	Leaking underground storage tank
MCI	Maximum contaminant level
MDI	Method detection limit
ma/ka	Milligrams per kilogram
ma/l	Milligrams per liter
ma/m^3	Milligrams per cubic meter
MPE	Multi-phase extraction
MRL	Method reporting limit
msl	Mean sea level
MTBE	Methyl tertiary butyl ether
MTCA	Model Toxics Control Act
NAI	Natural attenuation indicators

NAPI	Non-aqueous phase liquid
	National Environmental Policy Act
	National Coodetic Vortical Datum
NDDES	National Deductic Venical Datum
NPDE5	National Polititant Discharge Elimination System
O&IVI	Operations and Maintenance
ORP	Oxidation-reduction potential
OSHA	Occupational Safety and Health Administration
OVA	Organic vapor analyzer
P&ID	Process & Instrumentation Diagram
PAH	Polycyclic aromatic hydrocarbon
PCB	Polychlorinated biphenyl
PCF	Tetrachloroethene or perchloroethylene
	Photo-ionization detector
	Programmable logic control
	Programmable logic control
POTV	Publicly owned treatment works
ppmv	Parts per million by volume
PQL	Practical quantitation limit
psi	Pounds per square inch
PVC	Polyvinyl chloride
QA/QC	Quality assurance/quality control
RBSL	Risk-based screening levels
RCRA	Resource Conservation and Recovery Act
RL	Reporting limit
scfm	Standard cubic feet per minute
SSTI	Site-specific target level
STLC	Soluble threshold limit concentration
SVE	Soil vapor extraction
SVOC	Somi-volatilo organic compound
	Tertiony and method other
	Tertiary arrive neuron ener
TBA	
TCE	Irichloroethene
TOC	Top of well casing elevation; datum is msl
TOG	Total oil and grease
TPHd	Total petroleum hydrocarbons as diesel
TPHg	Total petroleum hydrocarbons as gasoline
TPHmo	Total petroleum hydrocarbons as motor oil
TPHs	Total petroleum hydrocarbons as stoddard solvent
TRPH	Total recoverable petroleum hydrocarbons
UCL	Upper confidence level
USCS	Unified Soil Classification System
USGS	United States Geologic Survey
	Underground storage tank
	Voluntary Cleanup Program
	Volatile organia compound

VPC Vapor-phase carbon

	Analyte Sample Sample	Concentrations in mg/kg e Date e Depth	1
	Total F as d	Petroleum Hydrocarbons liesel	
	Total F as g Benze	Petroleum Hydrocarbons Jasoline ne	
	< <	Less than the Stated La Reporting Limit	boratory
	a	The chromatographic pa does not match that of specified standard.	attern of the
	b	Heavier gasoline range significant.	compounds are
	С	Diesel range compound no recognizable patte	s are significant; ern.
0 <5.0	d	Gasoline range compou	nds are significant.
0 <0.50 0 <0.0050	е	Strongly aged gasoline compounds are signi	or diesel range ficant.
	f	No recognizable pattern	
	j	Estimated value; analyte concentration above dection limit but below limit.	e present at the method w the reporting
	I	The reporting limit is ele from matrix interferen	evated resulting
0 0	m	Reporting limits raised of non-target analytes	lue to high level s.
T. .0 50 50			

1/06/08						
Т.	10.5 FT.					
.7c	1,400b,c					
1.0	7,200b,f					
05	2					

Analyte Concentrations in ug/L Sample Date
Total Petroleum Hydrocarbons as diesel
Total Petroleum Hydrocarbons as gasoline Benzene
< Less than the Stated La

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA
Former Exxon Service Station 79374

990 San Pablo Avenue Albany, California															
Well ID	Sampling Date	Depth (feet)	TOC Elev. (feet)	DTW (feet)	GW Elev.	NAPL (feet)	O&G (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)
Monitoring	Well Samples														
MW1	11/04/10		Well insta	lled.											
MW1	12/01/10		41.45	Well sur	veyed.										
MW1	12/16/10		41.45	9.18	32.27	No		<250	71a	54	<0.50	1.4	0.65	0.58	1.6
MW1	01/31/11		41.45	8.78	32.67	No		<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW1	04/07/11		41.45	8.45	33.00	No		<250	65a	160a	<0.50	2.9	0.92	<0.50	1.7
MW1	07/18/11		41.45	9.49	31.96	No		<250	<50	63a	<0.50	<0.50	<0.50	<0.50	<0.50
MW1	10/13/11		41.45	9.86	31.59	No		<250	54	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW1	04/06/12		41.45	8.11	33.34	No		<250	130	130	<0.50	2.1	<0.50	<0.50	<0.50
MW1	10/19/12		41.45	10.42	31.03	No		<250	<50	<50	<0.50	0.51	2.2	<0.50	0.65
MW1	06/11/13		41.45	10.48	30.97	No		<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW1	12/19/13		41.45	10.67	30.78	No		<250	<50	<50	<0.50	<0.50	1.3	<0.50	0.53
MW1	04/03/14		44.19	Elevatio	n convert	ed to NA\	/D88.								
MW1	04/30/14		44.19	9.49	34.70	No									
MW1	05/01/14		44.19					<240	<48	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW1	10/28/14		44.19	10.85	33.34	No		<250	61a	59	<0.50	1.2	<0.50	0.64	<0.50
MW1	06/02/15		44.19	10.35	33.84	No		<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	11/04/10		Well insta	lled.											
MW2	12/01/10		41.25	Well sur	veyed.										
MW2	12/16/10		41.25	8.11	33.14	No		<250	110a	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	01/31/11		41.25	9.29	31.96	No		<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	04/07/11		41.25	8.21	33.04	No		<250	<50	<50	0.51	<0.50	<0.50	<0.50	<0.50
MW2	07/18/11		41.25	9.52	31.73	No		<250	<50	54a	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	10/13/11		41.25	9.56	31.69	No		<250	98	75a	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	04/06/12		41.25	8.68	32.57	No		<250	60	68	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	10/19/12		41.25	11.03	30.22	No		<250	<50	59a	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	06/11/13		41.25	10.67	30.58	No		<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	12/19/13		41.25	10.77	30.48	No		<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	04/03/14		43.99	Elevatio	n convert	ed to NA	/D88.								
MW2	04/30/14		43.99	9.63	34.36	No									
MW2	05/01/14		43.99					<240	<48	53a	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	10/28/14		43.99	11.03	32.96	No		<250	78a	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	06/02/15		43.99	10.50	33.49	No		<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW3	11/08/10		Well insta	lled.											
MW3	12/01/10		40.42	Well sur	veyed.										
MW3	12/16/10		40.42	8.18	32.24	No		<250	2,900a	19,000	<12	350	130	940	290
MW3	01/31/11		40.42	7.64	32.78	No		390	2,800a	17,000a	<12	540	140	700	270
MW3	04/07/11		40.42	5.88	34.54	No		<250	2,700a	14,000	<10	600	150	780	230
MW3	07/18/11		40.42	8.31	32.11	No		<250	1,700a	19,000	<10	650	140	660	220
MW3	10/13/11		40.42	8.76	31.66	No		<250	1,900a	16,000	<10	520	150	900	270

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA
Former Exxon Service Station 79374
990 San Pablo Avenue
Albany, California

								Albany, Ca	amorna						
Well ID	Sampling Date	Depth (feet)	TOC Elev. (feet)	. DTW (feet)	GW Elev.	NAPL (feet)	O&G (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	B (µg/L)	Τ (μg/L)	E (µg/L)	X (µg/L)
MW3	04/06/12		40.42	8.13	32.29	No		<250	3,200a	18,000	<20	300	120	1,100	180
MW3	10/19/12		40.42	9.37	31.05	No		<250	1,700a	11,000a	<10	380	120	740	150
MW3	06/11/13		40.42	9.48	30.94	No		<250	2,700a	17,000	<10	270	110	990	140
MW3	12/19/13		40.42	10.00	30.42	No									
MW3	12/20/13		40.42					<250	2,000a	16,000	<10	310	120	710	120
MW3	04/03/14		43.16	Elevatio	n conver	ted to NA	/D88.								
MW3	04/30/14		43.16	9.17	33.99	No									
MW3	05/01/14		43.16					<240	3,100a	18,000	<10	230	110	1,100	170
MW3	10/28/14		43.16	10.10	33.06	No		<250	4,800a	17,000	<20	330	120	1,200	150
MW3	06/02/15		43.16	9.30	33.86	No		<250	3,900a	18,000a	<20	290	110	850	140
MW3A	01/18/12		Well insta	alled.											
МWЗA	02/06/12		40.68	Well sur	rveyed.										
МW3A	04/06/12		40.68	6.02	34.66	No		<250	170a	1,300	<2.0	41	7.5	140	38
MW3A	10/19/12		40.68	10.44	30.24	No		<250	860a	4,400a	<5.0	390	59	410	82
МWЗA	06/11/13		40.68	9.75	30.93	No		<250	160a	1,100	<2.0	99	14	110	3.6
МW3A	12/19/13		40.68	10.05	30.63	No		<250	270a	1,800	<2.0	150	18	65	4.7
МW3A	04/03/14		43.42	Elevatio	n conver	ted to NA	/D88.								
МW3A	04/30/14		43.42	7.55	35.87	No									
МW3A	05/01/14		43.42					<240	<48	130a	<0.50	7.0	1.2	7.4	1.3
МWЗA	10/28/14		43.42	10.33	33.09	No		<250	330a	1,600	<0.50	150	17	26	4.0
MW3A	06/02/15		43.42	9.48	33.94	No		<250	89a	170a	<0.50	14	0.95	6.7	1.8
MW4	11/05/10		Well insta	alled.											
MW4	12/01/10		39.30	Well sur	rveyed.										
MW4	12/16/10		39.30	6.10	33.20	No		<250	2,000a	9,900	<5.0	440	40	170	380
MW4	01/31/11		39.30	6.84	32.46	No		260	3,900a	13,000	<10	500	59	320	740
MW4	04/07/11		39.30	5.29	34.01	No		<250	1,900a	9,600	<10	530	59	250	340
MW4	07/18/11		39.30	7.36	31.94	No		<250	2,800a	14,000	<10	570	66	320	510
MW4	10/13/11		39.30	7.83	31.47	No		320	7,200a	14,000	<10	350	43	340	690
MW4	04/06/12		39.30	6.21	33.09	No		<250	1,800a	9,100a	<10	380	40	220	410
MW4	10/19/12		39.30	10.64	28.66	No		1,400a	20,000a	270,000	<10	440	88	2,100	3,800
MW4	03/06/13		39.30	8.02	31.28	No									
MW4	06/11/13		39.30	9.05	30.25	No		<250	3,400a	16,000	<10	430	48	520	820
MW4	12/19/13		39.30	8.95	30.35	No									
MW4	12/20/13		39.30					<250	2,800a	13,000	<10	590	41	430	530
MW4	03/05/14		39.30			No									
MW4	04/03/14		42.04	Elevatio	n conver	ted to NA	/D88.								
MW4	04/30/14		42.04	6.25	35.79	No									
MW4	05/01/14		42.04					<240	3,000a	13,000	<10	520	46	310	340
MW4	10/28/14		42.04	10.20	31.84	No		<250	7,400a	15,000	<10	590	42	360	230
MW4	06/02/15		42.04	9.60	32.44	Sheen		<250	5,100a	22,000	<10	490	36	280	170
MW5	11/11/10		Well insta	alled.											

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA
Former Exxon Service Station 79374
990 San Pablo Avenue
Albany, California

								Albany, Oa	mornia						
Well ID	Sampling	Depth	TOC Elev	. DTW	GW	NAPL	O&G	TPHmo	TPHd	TPHg	MTBE	В	Т	E	Х
	Date	(feet)	(feet)	(feet)	Elev.	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW5	12/01/10		40.38	Well sur	veyed.										
MW5	12/16/10		40.38	7.69	32.69	No		<250	1,100a	6,200	<2.5	150	96	270	980
MW5	01/31/11		40.38	8.00	32.38	No		270	4,600a	15,000	<10	520	310	1,100	2,500
MW5	04/07/11		40.38	6.73	33.65	No		<250	610a	2,500	<2.5	61	32	180	390
MW5	07/18/11		40.38	7.63	32.75	No		<250	2,000a	11,000	<2.5	340	160	990	1,800
MW5	10/13/11		40.38	9.31	31.07	No		660	7,600a	23,000	<20	390	160	1,200	3,100
MW5	04/06/12		40.38	6.77	33.61	No		<250	880a	6,000a	<5.0	62	17	360	680
MW5	10/19/12		40.38	10.64	29.74	No		280a	2,100a	15,000	<20	580	63	950	1,400
MW5	06/11/13		40.38	10.06	30.32	No		<250	2,700a	13,000	<20	540	36	930	1,200
MW5	12/19/13		40.38	9.85	30.53	No									
MW5	12/20/13		40.38					<250	2,100a	21,000	<20	370	36	1,500	1,400
MW5	04/03/14		43.12	Elevatio	n convert	ted to NA	/D88.								
MW5	04/30/14		43.12	7.51	35.61	No									
MW5	05/01/14		43.12					<240	2,000a	10,000	<10	170	10	600	510
MW5	10/28/14		43.12	10.00	33.12	No		360a	6,200a	16,000	<10	550	17	890	360
MW5	06/02/15		43.12	9.68	33.44	Sheen		340a	4,400a	19,000	<20	340	<20	880	430
MW6	11/03/10		Well inst	alled.											
MW6	12/01/10		41.06	Well sur	veyed.										
MW6	12/16/10		41.06	8.55	32.51	No		<250	110a	1,700	<0.50	2.8	1.2	61	46
MW6	01/31/11		41.06	8.52	32.54	No		<250	800a	2,000a	<1.0	6.0	<1.0	30	24
MW6	04/07/11		41.06	7.78	33.28	No		<250	660a	2,000	<0.50	10	1.0	20	19
MW6	07/18/11		41.06	9.27	31.79	No		<250	350a	1,000a	<0.50	2.5	<0.50	3.8	3.5
MW6	10/13/11		41.06	10.21	30.85	No		<250	370a	890a	<0.50	2.8	<0.50	7.9	5.5
MW6	04/06/12		41.06	7.19	33.87	No		<250	440a	1,400a	<0.50	2.4	<0.50	13	15
MW6	10/19/12		41.06	11.36	29.70	No		<250	99a	510a	<0.50	4.2	1.6	8.0	7.0
MW6	06/11/13		41.06	10.81	30.25	No		<250	150a	500	<0.50	<0.50	<0.50	2.4	1.1
MW6	12/19/13		41.06	10.78	30.28	No		<250	68a	440	<0.50	<0.50	<0.50	2.3	0.87
MW6	04/03/14		43.80	Elevatio	n convert	ted to NA	/D88.								
MW6	04/30/14		43.80	8.23	35.57	No									
MW6	05/01/14		43.80					<240	450a	1,500	<0.50	2.8	0.57	13	4.8
MW6	10/28/14		43.80	10.91	32.89	No		<250	94a	260	<0.50	0.60	<0.50	0.56	<0.50
MW6	06/02/15		43.80	10.40	33.40	No		<250	360a	1,000	<0.50	0.81	<0.50	2.0	1.1
MW7	12/08/14		Well inst	alled.											
MW7	12/23/14		41.21	Well sur	veyed.										
MW7	12/30/14		41.21	5.36	35.85	No		<250	2,900a	7,300a	<5.0	52	8.9	32	15
MW7	06/02/15		41.21	8.75	32.46	No		<250	2,700a	7,800a	<5.0	110	13	39	16
WW8	12/08/14		Well inst	alled.											
MW8	12/23/14		39.65	Well sur	veyed.										
MW8	12/30/14		39.65	3.20	36.45	No		<250	<49	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW8	06/02/15		39.65	6.33	33.32	No		<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50

TABLE 1A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

Well ID	Sampling Date	Depth (feet)	TOC Elev. (feet)	. DTW (feet)	GW Elev.	NAPL (feet)	O&G (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)
MW9	10/08/15		Well inst	alled.											
MW9	10/16/15		39.50	6.45	33.05	No		<250	270a	360a	<0.50	<0.50	<0.50	<0.50	<0.50
MW9	10/26/15		39.50	Well su	veyed.										
	04/40/40														
AS1	01/18/12		vveli insta	alled.		N1.									
AS1	10/19/12			10.32		NO									
AS1	06/11/13			9.82		NO No									
AST	12/19/13			10.12		INO Na									
AST	04/30/14			7.95		INO Na									
AST	10/28/14			10.35		INO Na									
AS1	06/02/15			9.50		NO									
SVE1	01/17/12		Well insta	alled.											
SVE1	02/06/12		40.58	Well sur	veved.										
SVE1	10/19/12		40.58	10.21	30.37	No									
SVE1	06/11/13		40.58	9.63	30.95	No									
SVE1	12/19/13		40.58	9.89	30.69	No									
SVE1	04/03/14		43.32	Elevation	n convert	ed to NAV	/D88.								
SVE1	04/30/14		43.32	7.70	35.62	No									
SVE1	10/28/14		43.32	10.17	33.15	No									
SVE1	06/02/15		43.32	9.35	33.97	No									
SVE2	01/17/12		Well insta	alled.											
SVE2	02/06/12		40.94	Well sur	veyed.										
SVE2	10/19/12		40.94	10.48	30.46	No									
SVE2	06/11/13		40.94	9.94	31.00	No									
SVE2	12/19/13		40.94	10.20	30.74	No									
SVE2	04/03/14		43.68	Elevation	n convert	ed to NAV	/D88.								
SVE2	04/30/14		43.68	8.09	35.59	No									
SVE2	10/28/14		43.68	10.50	33.18	No									
SVE2	06/02/15		43.68	9.69	33.99	No									
SV/E3	01/17/12		Wall insta	bled											
SVE3	01/17/12		10 03	Woll sur	vovod										
SVE3	10/10/12		40.33	10 30	30 54	No									
SVE3	06/11/12		40.93	0.65	21.29	No									
SVE3	12/10/12		40.93	9.00	20.62	No									
SVE3	12/19/13		40.93	Flovation	30.02	nu od to NAV									
3VE3	04/03/14		43.07		25 00		000.								
SVES	04/30/14 10/29/17		43.07	10.19	33.00 33.10	No									
SVE3	10/20/14		43.07	0.40	24.27	No									
SVES	00/02/13		43.07	9.40	34.27	INU									
SVE4	10/09/15		Well inst	alled.											
SVE4	10/16/15		43.10	10.28	32.82	No		<250	840a	830a	<0.50	37	1.2	5.0	26
SVE4	10/26/15		43.10	Well su	veyed.										

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA
Former Exxon Service Station 79374
990 San Pablo Avenue

								Albany, C	alifornia						
Well ID	Sampling Date	Depth (feet)	TOC Elev (feet)	. DTW (feet)	GW Elev.	NAPL (feet)	O&G (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)
SVE5 SVE5 SVE5	10/09/15 10/16/15 10/26/15	 	Well inst 43.70 43.70	alled. 10.55 Well su	33.15 rveyed.	No		<250	2,000a	1,700a	<20	29	25	130	2,300
SVE6 SVE6 SVE6	10/09/15 10/16/15 10/26/15	 	Well inst 44.37 44.37	alled. 10.87 Well su	33.50 rveyed.	No		<240	390a	490	<0.50	31	1.8	4.2	15
SVE7 SVE7 SVE7	10/09/15 10/16/15 10/26/15	 	Well inst 44.48 44.48	alled. 11.07 Well su	33.41 rveyed.	No		<240	240a	440a	<0.50	<0.50	<0.50	0.70	2.3
Grab Groundw	vater Samples														
B-1W	01/06/08						26r,s	<5,000	99,000o,n,r	76,000m,p,r	<50	<50	93	3,100	9,600
B-2W	01/06/08							310s	23,000o,r,s	77,000 l,r,s	<50	1,500	300	2,000	6,800
B-3W	01/06/08							<250s	2,000o,s	6,200 l,s	<10	170	32	740	250
B-4W	01/06/08							<250s	3,100o,s	7,700 l,s	<10	360	<10	240	20
B-5W	01/06/08							<250s	120o,s	120q,s	<0.5	<0.5	<0.5	<0.5	<0.5
B-6W	01/06/08							<250s	830o,s	1,700 l,s	<2.5	5.2	<2.5	100	8.6
DR-W	01/06/08							<250	960	730m,p	<0.5	<0.5	<0.5	6.9	14
W-27.5-HP1A	10/28/10	27.5						260	330a	63a	<0.50	<0.50	<0.50	<0.50	<0.50
W-36-HP1A	10/28/10	36						<250	220a	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-46.5-HP1A	10/28/10	46.5						<420	<83	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-59-HP1B	10/27/10	59						<250	130	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-27.5-HP2A	10/29/10	27.5						<250	100a	340	<0.50	1.7	2.1	20	46
W-52-HP2A	10/29/10	52						<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-60.5-HP2B	10/27/10	60.5						<250	62	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-10-SVE1-1	01/31/12	10						990a	1.900a	2.000	<2.0	87	2.1	13	23
W-10-SVE1-2	01/31/12	10						890a	1,500a	1,400	<1.0	46	2.0	24	23
W-5-B7	02/27/14	5						<310	<62	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-12-B8	02/28/14	12						<240	130a	<50	<0.50	<0.50	<0.50	<0.50	<0.50

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA
Former Exxon Service Station 79374
990 San Pablo Avenue

								Albany, Ca	lifornia							
Well ID	Sampling Date	Depth (feet)	TOC Elev. (feet)	DTW (feet)	GW Elev.	NAPL (feet)	O&G (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	В (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	
W-5-B9	02/27/14	5						<310	370a	1,400a	<0.50	<0.50	<0.50	<0.50	<0.50	
W-5.5-B10	02/27/14	5.5						<310	<62	<50	<0.50	<0.50	<0.50	<0.50	<0.50	
W-14-B11	03/05/14	14						<310	<62	<50	<0.50	<0.50	<0.50	<0.50	<0.50	
W-10-B12	02/26/14	10						<250	800a	5,900	<2.0	<2.0	<2.0	7.5	<2.0	
W-10-B13	02/28/14	10						<250	1,500a	6,300	<5.0	12	8.8	290	22	
B14	03/05/14 t															
W-14-B15	03/05/14	14						<310	<62	<50	1.3	<0.50	<0.50	<0.50	<0.50	
W-14-B16	02/26/14	14						<250	180a	170a	<0.50	1.1	<0.50	5.4	<0.50	
W-10-B17	02/27/14	10						<270	<54	110a	<0.50	<0.50	<0.50	<0.50	<0.50	

TABLE 1A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

Notes:		
TOC	=	Top of well casing elevation; datum is NAVD88, prior to April 2014, datum was mean sea level.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is NAVD88, prior to April 2014, datum was mean sea level. If liquid-phase hydrocarbons present, elevation adjusted using TOC - [DTW - (PT x 0.76)].
NAPL	=	Non-aqueous phase liquid.
O&G	=	Oil and grease with silica gel clean-up analyzed using Standard Method 5520B/F.
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015 (modified).
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015 (modified).
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015 (modified).
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
ТВА	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
PCE	=	Tetrachloroethene analyzed using EPA Method 8260B.
TCE	=	Trichloroethene analyzed using EPA Method 8260B.
Add'l VOCs	=	Additional volatile organic compounds or halogenated volatile organic compounds analyzed using EPA Method 8260B.
Add'I SVOCs	=	Additional semi-volatile organic compounds analyzed using EPA Method 8270C.
µg/L	=	Micrograms per liter.
ND	=	Not detected at or above laboratory reporting limits.
	=	Not measured/Not sampled/Not analyzed.
<	=	Less than the stated laboratory reporting limit.
а	=	The chromatographic pattern does not match that of the specified standard.
b	=	n-butylbenzene.
С	=	sec-butylbenzene.
d	=	Isopropylbenzene.
е	=	n-propylbenzene.
f	=	1,2,4-trimethylbenzene.
g	=	1,3,5-trimethylbenzene.
h	=	Naphthalene.
i	=	1-butanone.
j	=	1,2-dibromo-3-chloropropane.
k	=	2-methylnapthalene.
I	=	Unmodified or weakly modified gasoline is significant.
m	=	Heavier gasoline-range compounds are significant.
n	=	Diesel-range compounds are significant; no recognizable pattern.
0	=	Gasoline-range compounds are significant.
р	=	No recognizable pattern.
q	=	Strongly aged gasoline or diesel compounds are significant.
r	=	Lighter than water immiscible sheen/product is present.
S	=	Liquid sample that contains greater than approximately 1 volume % sediment.
t	=	Groundwater did not enter boring, sample not collected.
ш	_	Analyzed beyond the EPA-recommended hold time

Notes:		
v	=	tert-butylbenzene.

- w = cis-1,2-dichloroethene.
- x = p-isopropyltoluene.
- y = Chloroform.
- z = Bromodichloromethane.
- α = 1,2-Dichlorobenzene.

TABLE 1B
ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA
Former Exxon Service Station 79374

							990 A) San Pablo Albany, Cali	Avenue			
Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (µg/L)	TAME (µg/L)	TBA (µg/L)	ETBE (µg/L)	DIPE (µg/L)	PCE (µg/L)	TCE (µg/L)	Add'l VOCs (µg/L)	Add'l SVOCs (µg/L)
Monitoring	g Well Samples											
MW1	11/04/10		Well in:	stalled.								
MW1	12/16/10		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
MW1	01/31/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
MW1	04/07/11		<0.50	<0.50	<0.50	10	<0.50	<0.50				
/W1	07/18/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
/W1	10/13/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
/W1	04/06/12		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
ЛW1	10/19/12		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
۸W1	06/11/13		<0.50	<0.50	< 0.50	<5.0	<0.50	<0.50				
ЛW1	12/19/13		< 0.50	< 0.50	< 0.50	<5.0	< 0.50	< 0.50				
۸W1	05/01/14		< 0.50	< 0.50	< 0.50	5.1	< 0.50	< 0.50				
/W1	10/28/14		<0.50	<0.50	< 0.50	<5.0	< 0.50	< 0.50	85u	9.8	0.67f. 18w	
/IVV 1	06/02/15		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	110	9.3	19w	
/W2	11/04/10		Well in:	stalled.								
IW2	12/16/10		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
1W2	01/31/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
1W2	04/07/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
1W2	07/18/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
1W2	10/13/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
/W2	04/06/12		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
/W2	10/19/12		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
/W2	06/11/13		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
/W2	12/19/13		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
/W2	05/01/14		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
/W2	10/28/14		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	73u	8.9	8.8e	
1W2	06/02/15		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	78	6.9	8.4w	
1W3	11/08/10		Well in:	stalled.								
IW3	12/16/10		<12	<12	<12	<120	<12	<12				
IW3	01/31/11		<12	<12	<12	<120	<12	<12				
1W3	04/07/11		<10	<10	<10	<100	<10	<10				
1W3	07/18/11		<10	<10	<10	<100	<10	<10				
1W3	10/13/11		<10	<10	<10	<100	<10	<10				
1W3	04/06/12		<20	<20	<20	<200	<20	<20				
/W3	10/19/12		<10	<10	<10	<100	<10	<10				
/W3	06/11/13		<10	<10	<10	<100	<10	<10				
/W3	12/20/13		<10	<10	<10	<100	<10	<10				
/W3	05/01/14		<10	<10	<10	<100	<10	<10				
/W3	10/28/14		<20	<20	<20	<200	<20	<20	<20	<20	30b, 110d, 210e, 36g, 290h	
/W3	06/02/15		<20	<20	<20	<200	<20	<20	<20	<20	21b, 90d, 130e, 40g, 240h	
ЛWЗA	01/18/12		Well in:	stalled.								

TABLE 1B
ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA
Former Exxon Service Station 79374
990 San Pablo Avenue

Weill D Samping Depth EDB 1,2-DCA TAM TBA ETBE DIFE PCE TCE Add VCCa Add VCCa Add VCCa Add VCCa Math VCCa <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>F</th><th>Albany, Cali</th><th>fornia</th><th></th><th></th><th></th></t<>								F	Albany, Cali	fornia			
Low Low <thlow< th=""> <thlow< th=""> <thlow< th=""></thlow<></thlow<></thlow<>	Well ID	Sampling Date	Depth (feet)	EDB (ug/L)	1,2-DCA	TAME	TBA (ug/L)	ETBE	DIPE	PCE	TCE	Add'I VOCs	Add'l SVOCs
MM38 001912	M\\/34	04/06/12	(1001)	(µg/Ľ)	(µg/L)	(µg/L)	(µg/Ľ) <20	(µg/L)	(µg/Ľ) <2 0	(µg/ ⊑)	(µg/ ⊑)	(19, -)	(µ9/⊏)
MM3A OP11113 -2.0 <	MW3A	10/19/12		<5.0	<5.0	<5.0	<50	<5.0	<5.0				
NMMA 121973 4.20 <t< td=""><td>MW3A</td><td>06/11/13</td><td></td><td><2.0</td><td><2.0</td><td><2.0</td><td><20</td><td><2.0</td><td><2.0</td><td></td><td></td><td></td><td></td></t<>	MW3A	06/11/13		<2.0	<2.0	<2.0	<20	<2.0	<2.0				
NM3A 050/14 <	MW3A	12/19/13		<2.0	<2.0	<2.0	<20	<2.0	<2.0				
NMMA 10/2814 e, 150 e, 050 e, 050 <td>MW3A</td> <td>05/01/14</td> <td></td> <td>< 0.50</td> <td>< 0.50</td> <td>< 0.50</td> <td><5.0</td> <td>< 0.50</td> <td>< 0.50</td> <td></td> <td></td> <td></td> <td></td>	MW3A	05/01/14		< 0.50	< 0.50	< 0.50	<5.0	< 0.50	< 0.50				
NM3A OB02/15	MW3A	10/28/14		< 0.50	<0.50	< 0.50	<5.0	< 0.50	< 0.50	<0.50	<0.50	5.4b. 6.3c. 20d. 28e. 4.6f. 1.6g. 4.6h. 2.9v. 2.0x	
NNM4 1105/10 Well installed NM44 121610 <10	MW3A	06/02/15		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	1.1b, 2.5c, 2.4d, 3.3e, 2.5f, 0.61g, 1.4h, 0.89v	
MM4 12/16/10 5.0 -5.0 -5.0 -5.0 -5.0 MM4 0407/11 -10	MW4	11/05/10		Well in	stalled.								
MM4 0/31/11 <10	MW4	12/16/10		<5.0	<5.0	<5.0	<50	<5.0	<5.0				
MM4 Q407/11 <10	MW4	01/31/11		<10	<10	<10	<100	<10	<10				
MW4 07/18/11 <10	MW4	04/07/11		<10	<10	<10	<100	<10	<10				
MW4 10/13/11 <10	MW4	07/18/11		<10	<10	<10	<100	<10	<10				
MM4 04/06/12	MW4	10/13/11		<10	<10	<10	<100	<10	<10				
MM4 10/19/12 -	MW4	04/06/12		<10	<10	<10	<100	<10	<10				
MW4 06/11/13 <10	MW4	10/19/12		<10	<10	<10	<100	<10	<10				
MW4 12/20/13 <10	MW4	06/11/13		<10	<10	<10	<100	<10	<10				
MW4 0501/14 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	MW4	12/20/13		<10	<10	<10	<100	<10	<10				
MW4 10/28/4 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	MW4	05/01/14		<10	<10	<10	<100	<10	<10				
MW4 06/02/15 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	MW4	10/28/14		<10	<10	<10	<100	<10	<10	<10	<10	72b, 24c, 75d, 190e, 350f, 160g, 270h	
MWS 11/11/10 Vell installet. MWS 12/16/10 -2.5 <2.5	MW4	06/02/15		<10	<10	<10	<100	<10	<10	<10	<10	83b, 27c, 70d, 170e, 320f, 130g, 170h, 10v	
MW5 12/16/10 <2.5	MW5	11/11/10		Well in	stalled.								
MW5 01/31/11 <10	MW5	12/16/10		<2.5	<2.5	<2.5	<25	<2.5	<2.5				
MW5 04/07/11 <2.5	MW5	01/31/11		<10	<10	<10	<100	<10	<10				
MW5 07/18/11 <2.5	MW5	04/07/11		<2.5	<2.5	<2.5	<25	<2.5	<2.5				
MW5 10/13/11 <20	MW5	07/18/11		<2.5	<2.5	<2.5	<25	<2.5	<2.5				
MW5 04/06/12 <.0.50	MW5	10/13/11		<20	<20	<20	<200	<20	<20				
MW5 10/19/12 <20	MW5	04/06/12		<0.50	<5.0	<5.0	<50	<5.0	<5.0				
MW5 06/11/13 <20	MW5	10/19/12		<20	<20	<20	<200	<20	<20				
MW5 12/20/13 <20	MW5	06/11/13		<20	<20	<20	<200	<20	<20				
MW5 05/01/14 <10	MW5	12/20/13		<20	<20	<20	<200	<20	<20				
MW5 10/28/14 <10	MW5	05/01/14		<10	<10	<10	<100	<10	<10				
MW5 06/02/15 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20	MW5	10/28/14		<10	<10	<10	<100	<10	<10	<10	<10	82b, 33c, 120d, 380e, 730f, 130g, 250h, 14x	
MW6 11/03/10 Well installed.	MW5	06/02/15		<20	<20	<20	<200	<20	<20	<20	<20	110b, 42c, 120d, 390e, 820f, 150g, 210h	
MW6 12/16/10 <0.50	MW6	11/03/10		Well in	stalled.								
MW6 01/31/11 <1.0	MW6	12/16/10		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
MW6 04/07/11 <0.50	MW6	01/31/11		<1.0	<1.0	<1.0	<10	<1.0	<1.0				
MW6 07/18/11 <0.50	MW6	04/07/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
MW6 10/13/11 <0.50	MW6	07/18/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
MW6 04/06/12 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50	MW6	10/13/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
MW6 10/19/12 <0.50 <0.50 <0.50 <0.50 <0.50 </td <td>MW6</td> <td>04/06/12</td> <td></td> <td><0.50</td> <td><0.50</td> <td><0.50</td> <td><5.0</td> <td><0.50</td> <td><0.50</td> <td></td> <td></td> <td></td> <td></td>	MW6	04/06/12		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
MW6 06/11/13 <0.50 <0.50 <0.50 <5.0 <0.50	MW6	10/19/12		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
	MW6	06/11/13		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				

TABLE 1B
ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA
Former Exxon Service Station 79374
990 San Pablo Avenue

Albany, California												
Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (µg/L)	TAME (µg/L)	TBA (µg/L)	ETBE (µg/L)	DIPE (µg/L)	PCE (µg/L)	TCE (µg/L)	Add'I VOCs (µg/L)	Add'l SVOCs (µg/L)
MW6	12/19/13		<0.50	< 0.50	<0.50	<5.0	<0.50	<0.50				
MW6	05/01/14		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
MW6	10/28/14		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	0.73c, 0.84d, 1.9e, 1.4h	
MW6	06/02/15		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	3.2b, 2.9c, 4.6d, 11e, 3.3h	
MW7	12/08/14		Well in	stalled.								
MW7	12/30/14		<5.0	<5.0	<5.0	<50	<5.0	13				
MW7	06/02/15		<5.0	<5.0	<5.0	<50	<5.0	19	<5.0	<5.0	45b, 24c, 110d, 270e, 150h	
MW8	12/08/14		Well in	stalled.								
MW8	12/30/14		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50				
MW8	06/02/15		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	23y, 0.85z	
MW9	10/08/15		Well ir	stalled.								
MW9	10/16/15		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	1.4b, 0.93c, 1.6d, 1.9e, 4.1y	
AS1	01/18/12		Well in	stalled.								
AS1	10/19/12 - Pr	esent Not san	npled.									
SVE1	01/17/12		Well in	stalled.								
SVE1	10/19/12 - Pr	esent Not san	npled.									
SVE2	01/17/12		Well in	stalled.								
SVE2	10/19/12 - Pr	esent Not san	npled.									
SVE3	01/17/12		Well in	stalled.								
SVE3	10/19/12 - Pr	esent Not san	npled.									
SVE4	10/09/15		Well in	stalled.								
SVE4	10/16/15		<0.50	<0.50	<0.50	5.4	<0.50	<0.50	<0.50	<0.50	2.5b, 1.5c, 4.3d, 2.8e, 7.2f, 11g, 15h, 0.75v, 0.59x, 0.68α	
SVE5	10/09/15		Well in	stalled.								
SVE5	10/16/15		<20	<20	<20	<200	<20	<20	<20	<20	24b, 28d, 520f, 210g, 140h	
SVE6	10/09/15		Well ir	stalled.								
SVE6	10/16/15		<0.50	<0.50	<0.50	5.7	<0.50	<0.50	<0.50	<0.50	3.1b, 1.0c, 1.3d, 0.80e, 1.8f, 14g, 1.9h, 0.99x	
SVE7	10/09/15		Well ir	stalled.								
SVE7	10/16/15		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	0.97b, 1.7c, 2.2d, 2.4e	
Grab Grou	ndwater Sample	es										
B-1W	01/06/08		<50	<50	<50	<200	<50	<50	<50	<50	210b, 68c, 370d, 1,100e, 3,800f, 1,300g, 1,500h	4,000h, 3,900k
B-2W	01/06/08		<50	<50	<50	<200	<50	<50	<50	<50	110b, 140e, 440f, 2,400g, 730h, 610i, 32j	
B-3W	01/06/08		<10	<10	<10	<40	<10	<10	<10	<10	25b, 11c, 74d, 190e, 290f, 49g, 55i	
B-4W	01/06/08		<10	<10	<10	<40	<10	<10	<10	<10	46b 19c 48d 160e 16f 100b	
	01/00/00											
B-5W	01/06/08		ND	<0.5	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	2.6b, 0.83e, 4.8t, 1.2g, 6.5h	

TABLE 1B
ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA
Former Exxon Service Station 79374
990 San Pablo Avenue

	Albany, California													
Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (µg/L)	TAME (µg/L)	TBA (µg/L)	ETBE (µg/L)	DIPE (µg/L)	PCE (µg/L)	TCE (µg/L)	Add'l VOCs (µg/L)	Add'l SVOCs (µg/L)		
B-6W	01/06/08		<2.5	<2.5	<2.5	<10	<2.5	<2.5	<2.5	<2.5	14b, 5.6c, 17d, 60e, 32f, 5.8g, 38h, 10i			
DR-W	01/06/08		<0.5	<0.5	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	6.9b, 2.4c, 2.5d, 11e, 17f, 5.5g, 7.0h			
W-27.5-HP1A	10/28/10	27.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50						
W-36-HP1A	10/28/10	36	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50						
W-46.5-HP1A	10/28/10	46.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50						
W-59-HP1B	10/27/10	59	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50						
W-27.5-HP2A	10/29/10	27.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50						
W-52-HP2A	10/29/10	52	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50						
W-60.5-HP2B	10/27/10	60.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50						
W-10-SVE1-1	01/31/12	10	<2.0	<2.0	<2.0	62	<2.0	<2.0						
W-10-SVE1-2	01/31/12	10	<1.0	<1.0	<1.0	57	<1.0	<1.0						
W-5-B7	02/27/14	5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50						
W-12-B8	02/28/14	12	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50						
W-5-B9	02/27/14	5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50						
W-5.5-B10	02/27/14	5.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50						
W-14-B11	03/05/14	14	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50						
W-10-B12	02/26/14	10	<2.0	<2.0	<2.0	<20	<2.0	<2.0						
W-10-B13	02/28/14	10	<5.0	<5.0	<5.0	<50	<5.0	<5.0						
B14	03/05/14 t													
W-14-B15	03/05/14	14	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50						
W-14-B16	02/26/14	14	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50						
W-10-B17	02/27/14	10	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50						

TABLE 1B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

Notes:		
TOC	=	Top of well casing elevation; datum is NAVD88, prior to April 2014, datum was mean sea level.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is NAVD88, prior to April 2014, datum was mean sea level. If liquid-phase hydrocarbons present, elevation adjusted using TOC - [DTW - (PT x 0.76)].
NAPL	=	Non-aqueous phase liquid.
O&G	=	Oil and grease with silica gel clean-up analyzed using Standard Method 5520B/F.
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015 (modified).
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015 (modified).
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015 (modified).
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
PCE	=	Tetrachloroethene analyzed using EPA Method 8260B.
TCE	=	Trichloroethene analyzed using EPA Method 8260B.
Add'l VOCs	=	Additional volatile organic compounds or halogenated volatile organic compounds analyzed using EPA Method 8260B.
Add'l SVOCs	=	Additional semi-volatile organic compounds analyzed using EPA Method 8270C.
µg/L	=	Micrograms per liter.
ND	=	Not detected at or above laboratory reporting limits.
	=	Not measured/Not sampled/Not analyzed.
<	=	Less than the stated laboratory reporting limit.
а	=	The chromatographic pattern does not match that of the specified standard.
b	=	n-butylbenzene.
с	=	sec-butylbenzene.
d	=	Isopropylbenzene.
е	=	n-propylbenzene.
f	=	1,2,4-trimethylbenzene.
g	=	1,3,5-trimethylbenzene.
h	=	Naphthalene.
i	=	1-butanone.
j	=	1,2-dibromo-3-chloropropane.
k	=	2-methylnapthalene.
I	=	Unmodified or weakly modified gasoline is significant.
m	=	Heavier gasoline-range compounds are significant.
n	=	Diesel-range compounds are significant; no recognizable pattern.
0	=	Gasoline-range compounds are significant.
р	=	No recognizable pattern.
q	=	Strongly aged gasoline or diesel compounds are significant.
r	=	Lighter than water immiscible sheen/product is present.
S	=	Liquid sample that contains greater than approximately 1 volume % sediment.
t	=	Groundwater did not enter boring, sample not collected.
u	=	Analyzed beyond the EPA-recommended hold time.

Notes:		
v	=	tert-butylbenzene.
w	=	cis-1,2-dichloroethene.

- x = p-isopropyltoluene.
- y = Chloroform.
- z = Bromodichloromethane.
- α = 1,2-Dichlorobenzene.

TABLE 2 WELL CONSTRUCTION DETAILS Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California Albany, California

Well ID	Well Installation Date	WellTOCBeInstallationElevationDiDate(feet)(i		Total Depth of Boring (feet bgs)	Well Depth (feet bgs)	Casing Diameter (inches)	Well Casing Material	Screened Interval (feet bgs)	Slot Size (inches)	Filter Pack Interval (feet bgs)	Filter Pack Material
MW1	11/04/10	44.19	8	17	17	2	Schedule 40 PVC	12-17	0.020	10-17	#3 Sand
MW2	11/04/10	43.99	8	17	17	4	Schedule 40 PVC	12-17	0.020	10-17	#3 Sand
MW3	11/08/10	43.16	8	17	17	4	Schedule 40 PVC	11-16	0.020	9-16	#3 Sand
MW3A	01/18/12	43.42	10	15.5	15.5	4	Schedule 40 PVC	5-15	0.020	4.5-15.5	#2/12 Sand
MW4	11/05/10	42.04	8	17	13	2	Schedule 40 PVC	8-13	0.020	6-13	#3 Sand
MW5	11/05/10	43.12	8	17	14	2	Schedule 40 PVC	9-14	0.020	7-14	#3 Sand
MW6	11/03/10	43.80	10	20	20	2	Schedule 40 PVC	15-20	0.020	13-20	#3 Sand
MW7	12/08/14	41.21	10	15	15	2	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
MW8	12/08/14	39.65	10	15	15	2	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
MW9	10/08/15	39.50	10	16	15	2	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
AS1	01/18/12		8	15.5	15.5	1	Schedule 80 PVC	10.25-13.5	#60 mesh	10.5-15.5	#2/12 Sand
SVE1	01/17/12	43.32	10	15.5	15.5	4	Schedule 40 PVC	5-15	0.020	4.5-15.5	#2/12 Sand
SVE2	01/17/12	43.68	10	15	15	4	Schedule 40 PVC	5-15	0.020	4.5-15	#2/12 Sand
SVE3	01/17/12	43.67	10	15	15	4	Schedule 40 PVC	5-15	0.020	4.5-15.5	#2/12 Sand
SVE4	10/09/15	43.10	12	16	15	4	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
SVE5	10/09/15	43.70	12	16	15	4	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
SVE6	10/09/15	44.37	12	16	15	4	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
SVE7	10/09/15	44.48	12	16	15	4	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
SVS1	02/25/14		4	5.6	5.6	0.25	PVC	5.4-5.6	0.010	4.6-5.6	#3 Sand
SVS2	02/25/14		4	5.6	5.6	0.25	PVC	5.4-5.6	0.010	4.6-5.6	#3 Sand
SVS3	02/25/14		4	5.6	5.6	0.25	PVC	5.4-5.6	0.010	4.6-5.6	#3 Sand

Notes:

TOC = Top of well casing elevation; datum is NAVD88.

PVC = Polyvinyl chloride.

feet bgs = Feet below ground surface.

TABLE 3A CUMULATIVE SOIL ANALYTICAL RESULTS Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 1 of 5)

	.						-	-	_								Naph-		
Sample	Sampling	Depth	TPHmo	TPHd	TPHg	MIBE	В	Ţ	E	X	EDB	1,2-DCA	TBA	DIPE	ETBE	TAME	thalene	VOCs	Lead
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Environmental Scree	ning Levels, Pote	ential Drinki	ng Water S	ource (Dec	cember 201	3)													
Shallow (<10 feet bgs)	, Residential (Tab	ole A-1)		100	100	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		80
Shallow (<10 feet bgs)	, Commercial (Ta	ble A-2)		110	500	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		320
Deep (≥10 feet bgs), R	esidential (Table	C-1)		110	500	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		80
Deep (≥10 feet bgs), C	commercial (Table	e C-2)		110	770	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		320
	01/06/09	6.0	-E 0	2.70	.1.0	-0.05	-0.005	-0.005	-0.005	-0.005									
	01/06/08	0.U	<0.0	3.70 1 400h a	<1.0 7 200h f	<0.05	<0.005	<0.005	<0.005	<0.005									
D-1	01/06/08	10.5	<100	1,4000,0	7,2000,1	<5.0	2	51	110	400									
B-2	01/06/08	55	<5.0	~10	~10	<0.05	<0.005	<0.005	<0.005	<0.005									
B-2	01/06/08	10.5	<100	1 400d	4 500b f	<5.0	13	35	100	380									
02	01/00/00	10.0	<100	1,4000	4,0005,1	NO.0	10		100	500									
B-3	01/06/08	55	<5.0	<10	<10	<0.50	<0.005	<0.005	<0.005	<0.005									
B-3	01/06/08	10.5	<5.0	53d	130e.f	<0.00	0.37	0.29	26	0.44									
20	01,00,00		1010	000	,.	10100		0.20	2.0	0									
B-4	01/06/08	55	<5.0	62d	140e.f	<0.50	<0.005	10	0.066	0 094									
B-4	01/06/08	10.5	<5.0	15d	140e.f	< 0.50	0.25	1.5	1.3	0.11									
					,														
B-5	01/06/08	5.5	<5.0	<1.0	<1.0	<0.05	<0.005	< 0.005	<0.005	<0.005									
B-5	01/06/08	11.5	<5.0	5.4c,d	32e,f	<0.25	0.038	0.24	0.051	0.035									
B-6	01/06/08	5.5	<5.0	<1.0	<1.0	<0.05	<0.005	<0.005	<0.005	<0.005									
B-6	01/06/08	10.5	<5.0	6.0c,d	32e,f	<0.05	0.009	0.41	<0.005	0.039									
S-5-B7	02/27/14	5.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0099	<0.0099	<0.0099	<0.050		
S-11.5-B7	02/27/14	11.5	<25	<5.0	<0.49	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-5-B8	02/28/14	5.0	<25	<5.0	<0.52	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.050		
S-11.5-B8	02/28/14	11.5	<25	<5.0	<0.51	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0098	<0.0098	<0.0098			
S-15.5-B8	02/28/14	15.5	<26	<5.1	<0.48	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-5-B9	02/27/14	5.0	<25	<5.0	<0.52	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.050		
S-11.5-B9	02/27/14	11.5	<25	<5.0	<0.52	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0098	<0.0098	<0.0098			
0 - 5 0	00/07/44																		
S-5-B10	02/27/14	5.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.050		
S-11.5-B10	02/27/14	11.5	<24	<4.9	<0.49	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
0 E D11	02/20/44	5.0	-05	-E 0	-0 50	-0.0051	-0.0051	-0.00E1	-0.0051	-0.0051	-0.0051	-0.00F1	-0.0E1	-0.010	-0.010	-0.010	-0.051		
0-0-DII 0 11 5 D11	02/20/14	5.U 11 5	<20	<5.0	<0.50	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.051	<0.010	<0.010	<0.010	<0.051		
S-11.3-D11	03/05/14	11.0	<20	< 3.0	<0.50	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.052	<0.010	<0.010	<0.010			
3-13-011	03/03/14	15.0	<24	<4.9	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-5-B12	02/26/14	5.0	<25	<5.0	<0.50	<0.0049	<0 0049	<0.0049	<0.0049	<0 0049	<0 0049	<0 0049	<0 049	<0 0098	<0 0008	<0.0008	<0.049		
S-11 5-B12	02/26/14	11.5	<25	<5.0	0.502	<0.00-9	0.00074i	<0.0049	0.00026i	<0.0049	<0.0049	<0.0049	<0.049	<0.0030	<0.0000	<0.0000	~0.043		
C DIL	02,20,14	11.0	~20	-0.0	0.000	10.000Z	5.0001 Hj	10.000Z	0.00020j	10.000Z	10.000Z	10.000Z	-0.00Z	\$0.010	-0.010	\$0.010			
S-5-B13	02/25/14	5.0	<24	<4.9	<0.48	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.052	<0.010	<0.010	<0.010	<0.052		
S-11 5-B13	02/28/14	11.5	<25	160a	1.800	<1.0	<1.0	<1.0	16	1.5	<1.0	<1.0	<10	<20	<20	<20			
2 11.0 210	52/20/14	11.0	-20		1,000	\$1.0	\$1.0	\$1.0		1.0	\$1.0	\$1.0	10	~2.0	~2.0	~0			

TABLE 3A CUMULATIVE SOIL ANALYTICAL RESULTS Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 2 of 5)

																	NL I		
	o "						_	-	_					D 105		T	Napn-		
Sample	Sampling	Deptn	IPHmo	I PHa	TPHg	MIBE	В (I	E,	Χ	EDB	1,2-DCA	IBA	DIPE	EIBE	IAME	thalene	VOCs	Lead
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Environmental Screek	ning Levels, Pote	ential Drinki	ng Water S	ource (Dec	cember 201	3)													
Shallow (<10 feet bgs)	, Residential (Tab	le A-1)		100	100	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		80
Shallow (<10 feet bgs)	, Commercial (Tat	ole A-2)		110	500	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		320
Deep (≥10 feet bgs), R	esidential (Table (C-1)		110	500	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		80
Deep (≥10 feet bgs), C	Commercial (Table	C-2)		110	770	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		320
S-5-B14	03/05/14	5.0	<25	<5.0	< 0.53	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.050		
S-11.5-B14	03/05/14	11.5	<25	<5.0	< 0.50	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-15.5-B14	03/05/14	15.5	<24	<4.9	<0.51	<0.0051	<0.0051	<0.0051	< 0.0051	<0.0051	<0.0051	<0.0051	<0.051	<0.010	<0.010	<0.010			
S-19-B14	03/05/14	19.0	<25	<5.0	<0.50	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.048	<0.0096	<0.0096	<0.0096			
0 E D1E	02/05/14	5.0	-05	-E 0	-0.40	-0.0051	-0.0051	-0.0051	-0.00F1	-0.0051	-0.00E1	-0.0051	-0 OF1	-0.010	-0.010	-0.010	-0.051		
S-D-D15	03/05/14	5.0	<20	<5.0	<0.49	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.051	<0.010	<0.010	<0.010	<0.051		
S-10-B15	03/05/14	10.0	<24	<4.9	<0.52	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-14.0-B15	03/05/14	14.0	<25	<5.0	<0.48	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-5-B16	02/26/14	5.0	~25	~5.0	0.625	~0.0050	<0.0050	~0.0050	~0.0050	~0.0050	~0.0050	~0.0050	0.030i	~0 0000	~0 0000	~0 0000	~0.050		
S-10-B16	02/26/14	10.0	<24	430	520	<0.0000	0.0000	<0.0000	<0.0000 0.10i	0.0000	<0.0000	<0.0000	-4 Q	<0.0033	<0.0033	<0.0033	0.000		
S-15 5-B16	02/20/14	10.0	<24	45a ~5 0	-0.51	<0.49	<0.020j	<0.49	0.10j	<0.000j	<0.49	<0.49	<4.9	<0.97	<0.97	<0.97	0.04j		
5-15.5-010	02/20/14	15.5	<25	<3.0	<0.51	<0.0030	<0.0030	<0.0050	0.00021j	<0.0030	<0.0030	<0.0030	<0.050	<0.010	<0.010	<0.010			
S-5-B17	02/26/14	50	<25	< 5.0	<0.48	<0.0050	0 00014i	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0 011i	<0.010	<0.010	<0.010	0.0021i		
S-10-B17	02/26/14	10.0	<25	<5.0	8 4 9	<0.0000	0.0063	<0.0000	<0.0000	0.00081i	<0.0000	<0.0000	<0.050	<0.010	<0.010	<0.010	<0.0021		
S-15 5-B17	02/26/14	15.5	<24	<4.9	<0.4u	<0.0052	<0.0000	<0.0000	<0.0000	<0.00001	<0.0052	<0.0000	<0.000	<0.010	<0.010	<0.010			
0 10.0 D11	02,20,11	10.0	121	\$ 1.0	\$0.01	\$0.000L	\$0.000Z	40.000Z	<0.000Z	40.000Z	10.0002	40.000L	10.002	\$0.010	10.010	\$0.010			
S-5-B18	10/08/15	5.0		<5.0	<0.51	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0099	<0.0099	<0.0099			
S-10-B18	10/08/15	10.0		<4.9	<0.49	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0098	<0.0098	<0.0098			
S-15-B18	10/08/15	15.0		<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0099	<0.0099	<0.0099			
Cone Penetration Tes	st Borings																		
S-5-CPT1	10/20/10	5.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-5-CPT2	10/20/10	5.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
Monitoring Wells																			
S-5-MW1	10/20/10	5.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-10-MW1	11/04/10	10.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-14.5-MW1	11/04/10	14.5	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-10-MW2	11/04/10	10.0	<25	<5.0	3.1a	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-15-MW2	11/04/10	15.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
0 5 1440	40/00/40	5.0	05	5.0	0.50	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.050	0.040	0.040	0.040			
S-5-MW3	10/20/10	5.0	<25	<5.0	< 0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-10.5-MW3	11/08/10	10.5	<25	11a	220	< 0.50	< 0.50	< 0.50	2.0	1.1	< 0.50	< 0.50	<5.0	<1.0	<1.0	<1.0			
5-15.5-IVIV/3	11/08/10	15.5	<25	<5.0	2.2	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
C 0 MW/2A	01/10/10	0.0	-05	-E 0	-0.50	-0.0050	-0.0050	-0.0050	0.0050	-0.0050	-0.0050	-0.0050	0.050	-0.010	-0.010	-0.010			
S-O-IVIVVSA	01/18/12	0.U	<25	<0.U	<0.50				<0.0050	<0.0050			<0.050	<0.010	<0.010	<0.010			
3-14.3-1VIV/3A	01/18/12	14.5	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	0.015	0.0052	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-5-MW/4	10/20/10	5.0	~25	~5.0	~0.50		~0.0050	~0.0050		~0.0050			~0.050	~0.010	~0.010	~0.010			
S-10-M/M/A	11/05/10	10.0	<20 20E	<0.0	<0.00 44o	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.000	<0.010	<0.010	<0.010			
3-10-10104	11/05/10	10.0	<20	<0.0	448	<0.50	<0.50	<0.50	<0.00	<0.50	<0.50	<0.50	<0.0	<1.0	<1.0	<1.0			

TABLE 3A CUMULATIVE SOIL ANALYTICAL RESULTS Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 3 of 5)

																	Nanh-		
Sample	Sampling	Depth	TPHmo	TPHd	TPHa	MTRE	в	т	F	x	EDB	1 2-DCA	TRΔ	DIPE	FTRE	TAME	thalene	VOCs	Lead
	Date	(feet bas)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)
Environmontal Scroon	ing Lovels Pote	(leet bys)	(IIIg/Kg)		(IIIg/Kg)	(IIIg/Kg) 2)	(IIIg/Kg)												
Shollow (10 foot bgo)	Regidential (Tab		ing water o	100	100	3)	0.044	2.0	2.2	2.2	0 00022	0.0045	0.075				1.2		00
Shallow (<10 feet bgs),	Commorbial (Tab	A - 1		110	500	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		220
Shallow (< to leet bys),	Commercial (Table)	(1)		110	500	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		320
Deep (210 feet bgs), Re		(-1)		110	500	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		00
Deep (210 feet bgs), Co	ommerciai (Table	(-2)		110	770	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.Z		320
C 4E MINIA	11/05/10	15.0	-05	-5.0	-0 50	-0.0050	-0.0050	-0.0050	-0.0050	-0.0050	-0.0050	-0.0050	-0.050	-0.010	.0.010	-0.010			
5-15-1VIV4	11/05/10	15.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
5-16.5-101074	11/05/10	16.5	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
	10/20/10	E 0	-05	-E 0	-0.50	-0.0050	-0.0050	0.0050	-0.0050	-0.0050	-0.0050	-0.0050	-0.050	-0.010	.0.010	.0.010			
5-5-IVIV5	10/20/10	5.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
5-10.5-IVIV5	11/05/10	10.5	29	93a	450a	<0.050	<0.050	0.00F0	<0.50	<0.50	<0.50	<0.50	<5.0	<1.0	<1.0	<1.0			
5-16.5-101005	11/05/10	16.5	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-5-MW6	10/20/10	50	<25	<50	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-10-MW6	11/02/10	10.0	<25	8 2a	8.7a	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.000	<0.010	<0.010	<0.010			
S-14 5-MW6	11/02/10	14.5	<25	<5 0	1.8a	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.000	<0.010	<0.010	<0.010			
S-20-MW6	11/02/10	20.0	~25	<5.0	~0.50	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.000	<0.010	<0.010	<0.010			
0-20-10100	11/02/10	20.0	N20	<0.0	<0.50	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.000	<0.010	<0.010	<0.010			
S-5-MW7	12/08/14	5.0		<5.0	<0.52	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048			<0.048	<0.0096	<0.0096	<0.0096			
S-10-MW7	12/08/14	10.0		120a	540a	<2.0	<2.0	<2.0	<2.0	<2.0			<20	<4.0	<4.0	<4.0			
S-15-MW7	12/08/14	15.0		<5.0	< 0.51	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048			< 0.048	< 0.0096	< 0.0096	< 0.0096			
S-5-MW8	12/08/14	5.0		<5.0	<0.48	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051			<0.051	<0.010	<0.010	<0.010			
S-10-MW8	12/08/14	10.0		<5.0	<0.52	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048			<0.048	<0.0096	<0.0096	<0.0096			
S-15-MW8	12/08/14	15.0		<5.0	<0.49	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049			<0.049	<0.0097	<0.0097	<0.0097			
S-5-MW9	10/08/15	5.0		<5.1	<0.49	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-10.5-MW9	10/08/15	10.5		6.3a	36a	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0098	<0.0098	<0.0098			
S-15.5-MW9	10/08/15	15.5		<5.0	<0.49	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0099	<0.0099	<0.0099			
Remediation Wells																			
S-10-AS1	01/18/12	10.0	<25	800a	2,900	<2.5	<2.5	<2.5	47	<2.5	<2.5	<2.5	<25	<5.0	<5.0	<5.0			
S-8.5-SVE1	01/17/12	8.5	<25	87a	480a	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	< 0.50	<5.0	<1.0	<1.0	<1.0			
S-11.5-SVE1	01/17/12	11.5	<25	<5.0	18	<0.0050	<0.50	0.010	0.084	0.11	<0.0050	<0.0050	<0.50	<0.010	<0.010	<0.010			
	04/47/40	10.0	50-	07-	200-	0.50	0.50	0.50	0.50	0.50	0.50	0.50		4.0	1.0	1.0			
S-10-SVE2	01/17/12	10.0	53a	37a	390a	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<1.0	<1.0	<1.0			
S-14-SVE2	01/17/12	14.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	<0.010	<0.010	<0.010			
S-12 5-SV/E3	01/17/12	12.5	57a	760a	1 900a	~25	~25	~25	~25	~25	<0.50	<0.50	<5.0	~10	~10	~10			
S-15-SV/E3	01/17/12	15.0	<25	~5.0	~0.50	<0.0050	~0.0050	~0.0050	0.015	0.033	<0.00	<0.00	<0.0	~0.010	~0.010	<0.010			
0-10-0720	01/17/12	10.0	~ 25	<0.0	<0.00	<0.0000	<0.0000	<0.0000	0.015	0.000	<0.0000	<0.0000	<0.000	<0.010	<0.010	<0.010			
S-5-SVE4	10/09/15	5.0		<5.0	<0.49	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0099	<0.0099	<0.0099			
S-9.5-SVE4	10/09/15	9.5		9.2a	82a	<0.501	<0.501	<0.501	<0.50	<0.50	<0.50	<0.50	<5.01	<1.01	<1.01	<1.01			
S-15.5-SVE4	10/09/15	15.5		<4.9	< 0.51	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010			
													-0.000						
S-5-SVE5	10/09/15	5.0		<5.0	<0.49	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0099	<0.0099	<0.0099			
S-11.5-SVE5	10/09/15	11.5		160a	390	<0.49	<0.49	<0.49	5.1	7.0	<0.49	<0.49	<4.9	<0.98	<0.98	<0.98			
S-15.5-SVE5	10/09/15	15.5		<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	< 0.050	<0.010	< 0.010	< 0.010			

TABLE 3A CUMULATIVE SOIL ANALYTICAL RESULTS Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 4 of 5)

																	Naph-		
Sample	Sampling	Depth	TPHmo	TPHd	TPHg	MTBE	В	Т	E	Х	EDB	1,2-DCA	TBA	DIPE	ETBE	TAME	thalene	VOCs	Lead
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Environmental Screenin	g Levels, Pote	ential Drinkir	ng Water S	ource (Dec	ember 201	3)													
Shallow (<10 feet bgs), Re	esidential (Tab	le A-1)		100	100	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		80
Shallow (<10 feet bgs), Commercial (Table A-2)				110	500	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		320
Deep (≥10 feet bgs), Residential (Table C-1)				110	500	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		80
Deep (≥10 feet bgs), Commercial (Table C-2)				110	770	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		320
S-5-SVE6	10/09/15	5.0		<4.9	<0.51	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.048	<0.0097	<0.0097	<0.0097			
S-12-SVE6	10/09/15	12.0		76a	520	<1.0	<1.0	<1.0	17	11	<1.0	<1.0	<10	<2.0	<2.0	<2.0			
S-5-SVE7	10/09/15	5.0		<4.9	<0.50	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0098	<0.0098	<0.0098			
S-10-SVE7	10/09/15	10.0		<5.0	2.0a	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.050	< 0.0099	< 0.0099	< 0.0099			
S-12-SVF7	10/09/15	12.0		<5.0	11	<0.49m	<4.9m	<0.98m	<0.98m	<0.98m									
S-15 5-SVF7	10/09/15	15.5		<5.0	<0.50	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0099	<0.0099	<0.0099			
	10,00,10			1010	10100	1010010	1010010	1010010	1010010		1010010	1010010	101010	1010000	1010000				
Soil Vapor Sampling We	lls																		
S-5-SVS1	02/25/14	5.0	<25	<5.0	<0.50	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0099	<0.0099	<0.0099	<0.049		
S-5-SVS2	02/25/14	5.0	<25	<5.0	<0.49	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.048	<0.0096	<0.0096	<0.0096	<0.048		
S-5-SVS3	02/25/14	5.0	<25	<5.0	5.0a	<0.0050	0.00036j	<0.0050	0.0030j	0.00088j	<0.0050	<0.0050	0.016j	<0.010	<0.010	<0.010	0.0038j		
							-		-	-			-				-		
Drum Samples																			
DR-1	01/06/08		<5.0	2.5c,d	4.9e,f	<0.050	< 0.005	0.027	0.035	0.035									9.7
Soil Stockpile Samples																			
COMP(S-Profile-1-4)	11/08/10		<25	7.1a	14a	<0.0050	<0.0050	<0.0050	0.069	0.049	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			6.93
S-SP1 (1-4)	01/18/12		190a	39a	230	<0.0050	0.20	0.66	4.3	14	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			37.6
SP1	03/05/14		<24	<4.9	<0.49	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.050	ND	5.34
SP-1	10/08/15			<4.9	0.79a	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010		<0.25k	5.74

TABLE 3A CUMULATIVE SOIL ANALYTICAL RESULTS Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 5 of 5)

Notes:		
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015B.
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015B.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015B.
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B; analyzed using EPA Method 8020 in 2008.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
EDB	=	1,2-Dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-Dicholorethane analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
Lead	=	Total lead analyzed using EPA Method 6010B.
VOCs	=	Volatile organic compounds analyzed using EPA Method 8260B.
SVOCs		Semi-volatile organic compounds analyzed using EPA Method 8270C.
HVOCs	=	Halogenated volatile organic compounds analyzed using EPA Method 8260B.
PAHs	=	Polyaromatic hydrocarbons analyzed using EPA Method 8310.
feet bgs	=	Feet below ground surface.
ND	=	Not detected.
	=	Not analyzed/Not applicable
<	=	Less than the laboratory reporting limit.
а	=	The chromatographic pattern does not match that of the specified standard.
b	=	Heavier gasoline range compounds are significant.
С	=	Diesel range compounds are significant; no recognizable pattern.
d	=	Gasoline range compounds are significant.
е	=	Strongly aged gasoline or diesel range compounds are significant.
f	=	No recognizable pattern.
g	=	1-Methylnaphthalene.
h	=	2-Methylnaphthalene.
i	=	Phenanthrene.
j	=	Estimated value; analyte present at concentration above the method detection limit but below the reporting limit.
k	=	Ethanol.
I	=	The reporting limit is elevated resulting from matrix interference.
m	=	Reporting limits raised due to high level of non-target analytes.
TABLE 3B ADDITIONAL CUMULATIVE SOIL ANALYTICAL RESULTS - HVOCs AND PAHs Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 1 of 4)

						HV	'OCs							PA	Hs
			1,2,4-trimethyl-	1,3,5-trimethyl-	Isopropyl-	Naph-	n-Butyl-	p-Isopropyl-	sec-Butyl-	t-Butyl-			Naph-		
Sample	Sampling	Depth	benzene	benzene	benzene	thalene	benzene	toluene	benzene	benzene	HVOCs	SVOCs	thalene	Pyrene	PAHs
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Environmental Screenin	g Levels, Poten	tial Drinking	Water Source (De	ecember 2013)											
Shallow (<10 feet bgs), Re	esidential (Table	A-1)				1.2							1.2	85	
Shallow (<10 feet bgs), Co	ommercial (Table	e A-2)				1.2							1.2	85	
Deep (≥10 feet bgs), Resi	dential (Table C-	1)				1.2							1.2	85	
Deep (≥10 feet bgs), Com	mercial (Table C	-2)				1.2							1.2	85	
O sil D seinen															
Soli Borings	alutaa ariar ta 20														
Not analyzed for these and	alytes prior to 20	14.													
S-5-B7	02/27/14	5.0													
S-11.5-B7	02/27/14	11.5													
S-5-B8	02/28/14	5.0													
S-11.5-B8	02/28/14	11.5													
S-15.5-B8	02/28/14	15.5													
S-5-B9	02/27/14	5.0													
S-11.5-B9	02/27/14	11.5													
0.000															
S-5-B10	02/27/14	5.0													
S-11.5-B10	02/27/14	11.5													
S-5-B11	02/28/14	5.0													
S-11 5-B11	03/05/14	11 5													
S-15-B11	03/05/14	15.0													
0 10 2 11		1010													
S-5-B12	02/26/14	5.0											<15	<10	ND
S-11.5-B12	02/26/14	11.5													
S-5-B13	02/25/14	5.0											16	<10	ND
S-11.5-B13	02/28/14	11.5													
S-5-B14	03/05/14	5.0													
S-11.5-B14	03/05/14	11.5													
S-15.5-B14	03/05/14	15.5													
S-19-B14	03/05/14	19.0													
S 5 B15	02/05/14	5.0													
5-0-010 S-10-B15	03/05/14	5.U 10.0													
S-14 0-B15	03/05/14	14.0													
0.100010	00/00/14	1 1.0													

TABLE 3B ADDITIONAL CUMULATIVE SOIL ANALYTICAL RESULTS - HVOCs AND PAHs Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 2 of 4)

						HV	OCs							P	AHs
			1,2,4-trimethyl-	1,3,5-trimethyl-	Isopropyl-	Naph-	n-Butyl-	p-lsopropyl-	sec-Butyl-	t-Butyl-			Naph-		
Sample	Sampling	Depth	benzene	benzene	benzene	thalene	benzene	toluene	benzene	benzene	HVOCs	SVOCs	thalene	Pyrene	PAHs
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Environmental Screening	g Levels, Potent	ial Drinking	Water Source (De	cember 2013)											
Shallow (<10 feet bgs), Re	sidential (Table	A-1)				1.2							1.2	85	
Shallow (<10 feet bgs), Co	mmercial (Table	e A-2)				1.2							1.2	85	
Deep (≥10 feet bgs), Resid	lential (Table C-	1)				1.2							1.2	85	
Deep (≥10 feet bgs), Com	mercial (Table C	-2)				1.2							1.2	85	
0.5.540	00/00/44	5.0											45	40	
S-5-B16	02/26/14	5.0											<15	<10	ND
S-10-B16	02/26/14	10.0											<15	<10	ND
S-15.5-B16	02/26/14	15.5													
S-5-B17	02/26/14	5.0											<15	<10	ND
S-10-B17	02/26/14	10.0											<15	<10	ND
S-15.5-B17	02/26/14	15.5													
S-5-B18	10/08/15	5.0											<0.020	<0.020	ND
S-10-B18	10/08/15	10.0											<0.020	<0.020	ND
S-15-B18	10/08/15	15.0											<0.020	<0.020	ND
Cone Penetration Test B	orings														
Not analyzed for these ana	alytes.														
Monitoring Wells															
Not analyzed for these and	alytes prior to 207	15.													
S-5-MW9	10/08/15	5.0											<0.020	<0.020	ND
S-10.5-MW9	10/08/15	10.5											<0.020	<0.020	ND
S-15.5-MW9	10/08/15	15.5											<0.020	<0.020	ND
Remediation Wells															
Not analyzed for these ana	alytes prior to 207	15.													
S-5-SVE4	10/09/15	5.0											<0.020	<0.020	ND
S-9.5-SVE4	10/09/15	9.5											<0.020	<0.020	0.060g, 0.14h
S-15.5-SVE4	10/09/15	15.5											<0.020	<0.020	ND
S-5-SVE5	10/09/15	5.0											<0.020	<0.020	ND
S-11.5-SVE5	10/09/15	11.5											1.2	<0.099	1.0g, 2.1h
S-15.5-SVE5	10/09/15	15.5											<0.020	<0.020	ND
S-5-SVE6	10/09/15	5.0											<0.020	<0.020	ND
S-12-SVE6	10/09/15	12.0											0.39	<0.020	0.38g, 0.81h, 0.024i

TABLE 3B ADDITIONAL CUMULATIVE SOIL ANALYTICAL RESULTS - HVOCs AND PAHs Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 3 of 4)

						HV	OCs						PAHs		
			1,2,4-trimethyl-	1,3,5-trimethyl-	Isopropyl-	Naph-	n-Butyl-	p-Isopropyl-	sec-Butyl-	t-Butyl-			Naph-		
Sample	Sampling	Depth	benzene	benzene	benzene	thalene	benzene	toluene	benzene	benzene	HVOCs	SVOCs	thalene	Pyrene	PAHs
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
nvironmental Screening Levels, Potential Drinking Water Source (December 2013)															
Shallow (<10 feet bgs), Res	idential (Table	A-1)				1.2							1.2	85	
Shallow (<10 feet bgs), Con	nmercial (Table	e A-2)				1.2							1.2	85	
Deep (≥10 feet bgs), Reside	ential (Table C-	1)				1.2							1.2	85	
Deep (≥10 feet bgs), Comm	ercial (Table C	-2)				1.2							1.2	85	
S-5-SVE7	10/09/15	5.0											<0.020	<0.020	ND
S-10-SVE7	10/09/15	10.0											<0.020	<0.020	ND
S-12-SVE7	10/09/15	12.0											<0.020	<0.020	ND
S-15.5-SVE7	10/09/15	15.5											<0.020	<0.020	ND
Soil Vapor Sampling Wells	5														
S-5-SVS1	02/25/14	5.0											<15	11	ND
S-5-SVS2	02/25/14	5.0											<15	<10	ND
S-5-SVS3	02/25/14	5.0											<15	<10	ND
Drum Samples															
Not analyzed for these anal	ytes.														
Soil Stockpile Samples															
COMP(S-Profile-1-4)	11/08/10		0.0053	0.062	0.061	0.098	0.14	0.012	0.053	0.018	ND				
S-SP1 (1-4)	01/18/12		8.3	2.2	0.12	<5.0	0.20	0.018	0.051	<0.0050	2.5j				
SP1	03/05/14														
SP-1	10/08/15											ND			

TABLE 3B ADDITIONAL CUMULATIVE SOIL ANALYTICAL RESULTS - HVOCs AND PAHs Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 4 of 4)

Notes:		
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015B.
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015B.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015B.
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B; analyzed using EPA Method 8020 in 2008.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
EDB	=	1,2-Dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-Dicholorethane analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
Lead	=	Total lead analyzed using EPA Method 6010B.
VOCs	=	Volatile organic compounds analyzed using EPA Method 8260B.
SVOCs		Semi-volatile organic compounds analyzed using EPA Method 8270C.
HVOCs	=	Halogenated volatile organic compounds analyzed using EPA Method 8260B.
PAHs	=	Polyaromatic hydrocarbons analyzed using EPA Method 8310.
feet bgs	=	Feet below ground surface.
ND	=	Not detected.
	=	Not analyzed/Not applicable
<	=	Less than the laboratory reporting limit.
а	=	The chromatographic pattern does not match that of the specified standard.
b	=	Heavier gasoline range compounds are significant.
С	=	Diesel range compounds are significant; no recognizable pattern.
d	=	Gasoline range compounds are significant.
е	=	Strongly aged gasoline or diesel range compounds are significant.
f	=	No recognizable pattern.
g	=	1-Methylnaphthalene.
h	=	2-Methylnaphthalene.
i	=	Phenanthrene.
j	=	Estimated value; analyte present at concentration above the method detection limit but below the reporting limit.
k	=	Ethanol.
I	=	The reporting limit is elevated resulting from matrix interference.
k	=	Reporting limits raised due to high level of non-target analytes.

= Reporting limits raised due to high level of non-target analytes.

NI 4

CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES

ALEX BRISCOE, Agency Director

AGENCY

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

August 26, 2015

Ms. Jennifer Sedlachek ExxonMobil 4096 Piedmont Ave., #194 Oakland, CA 94611 (Sent via E-mail to: jennifer.c.sedlachek@exxonmobil.com) Ms. Muriel Blank Blank Family Trust 1164 Solano Ave., #406 Albany, CA 94706

- Subject: Corrective Action Plan Implementation Approval; Fuel Leak Case No. RO0002974 and GeoTracker Global ID T0619716673, Exxon, 990 San Pablo Ave., Albany, CA 94706
- Dear Ms. Sedlachek and Ms. Blank:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the above referenced site including the recent email from Mr. Scott Perkins of Cardno, dated August 21, 2015. This communication reports that no public comments were received by Cardno as a result of the public notice of proposed corrective actions. Additionally, ACEH has not received any public comments as a result of the notice.

Based on ACEH staff review, the corrective action plan is approved for implementation provided that the technical comments below are incorporated during the proposed work. We request that you address the following technical comments, perform the proposed work, and send us the report described below. Please provide 72-hour advance written notification to this office (e-mail preferred to: mark.detterman@acgov.org) prior to the start of field activities.

TECHNICAL COMMENTS

- 1. Corrective Action Plan Approval The referenced corrective action plan proposes a series of actions with which ACEH is in general agreement of undertaking; however, ACEH requests the following. Please submit reports as outlined below.
 - a. Remedial Progress Reporting Due to the planned corrective action time period of up to three years, monthly Remedial Progress Reports (RPR) are requested, by the dates identified below. These are intended to monitor site progress and DPE system effectiveness. These can be included in groundwater monitoring reports, when appropriate. Please copy ACEH on system discharge reports to the POTW and the BAAQMD.
- 2. Groundwater Monitoring and Chlorinated Solvent Analytical Data In future groundwater monitoring reports please tabulate chlorinated solvents under separate column headers or as a separate table. The intent is to quickly discern contaminant trends. Please continue to analyze for chlorinated solvents at the site.

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACEH ftp site (Attention: Mark Detterman), and to the State Water Resources Control Board's Geotracker website, in accordance with the specified file naming convention below, according to the following schedule:

Ms. Sedlachek and Mrs. Blank RO0002974 August 26, 2015, Page 2

- November 13, 2015 Data Gap Investigation, Vapor Well Installation, and First Monthly DPE System Remedial Progress Report(s); File to be named: RO2974_SWI_REM_R_yyyy-mm-dd
- December 18, 2015 Fourth Quarter 2015 Semi-Annual Groundwater Monitoring File to be named: RO2974_GWM_R_yyyy-mm-dd
- December 18, 2015 Second Monthly Remedial Progress Report File to be named: RO2974_REM_R_yyyy-mm-dd
- **TBD** Monthly DPE System Remedial Progress Reports File to be named: RO2974_REM_R_yyyy-mm-dd

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

Should you have any questions, please contact me at (510) 567--6876 or send me an electronic mail message at mark.detterman@acgov.org.

Sincerely,

Marke

Digitally signed by Mark E. Detterman DN: cn=Mark E. Detterman, o, ou, email, c=US Date: 2015.08.26 15:34:02 -07'00'

Mark E. Detterman, PG, CEG Senior Hazardous Materials Specialist

- Enclosures: Attachment 1 Responsible Party (ies) Legal Requirements / Obligations and Electronic Report Upload (ftp) Instructions
- cc: Scott Perkins, Cardno, 601 North McDowell Blvd., Petaluma, CA 94954 (Sent via E-mail to: scott.perkins@cardno.com)

David Daniels, Cardno, 601 North McDowell Blvd., Petaluma, CA 94954 (Sent via E-mail to: david.daniels@cardno.com)

Mrs. Marcia B. Kelly, 641 SW Morningside Rd., Topeka, KS 66615 (Sent via E-mail to: marciabkelly@earthlink.net)

Rev. Deborah Blank, 1563 Solano Ave. #344, Berkeley, CA 94707 (Sent via E-mail to: miracoli@earthlink.net)

Dilan Roe (sent via electronic mail to <u>dilan.roe@acgov.org</u>) Mark Detterman (sent via electronic mail to <u>mark.detterman@acgov.org</u>) Electronic File, GeoTracker

B

SITE CONCEPTUAL MODEL

Element	Description	Data Gaps
Geology and Hy	/drogeology	
Regional Geology and Hydrogeology	The site lies at an approximate elevation of 40 feet above msl, and the local topography slopes toward the southwest. The site is located along the eastern margin of the San Francisco Bay within the East Bay Plain (Hickenbottom and Muir, 1988). The surficial deposits in the site vicinity are mapped as Holocene alluvial fan and fluvial deposits (Graymer, 2000). The active northwest trending Hayward fault is located approximately 1.5 miles northeast of the site. The East Bay Plain is regionally divided into two major groundwater basins: the San Pablo and the San Francisco Basin. These basins are tectonic depressions that are filled primarily with a sequence of coalescing alluvial fans. The San Francisco Basin is further divided into seven sub-areas. The site is located in the Berkeley Sub-Area, which is filled primarily by alluvial deposits that range from 10 to 300 feet thick with poorly defined aquitards (CRWQCB, 1999). Under natural conditions, the direction of groundwater flow in the East Bay Plain is east to west.	None
Site Geology, Hydrogeology, Hydraulic Flow, and Groundwater Gradient	Soil boring logs indicate that the soil beneath the site consists predominantly of silt and clay with an apparently continuous coarse-grained unit 2 to 8 feet thick encountered between approximately 8 and 20 feet bgs. Fill material was encountered in the boring for well SVE3 (located in the former UST pit) to approximately 7 feet bgs. CPT borings indicate the presence of predominantly silt and clay between approximately 20 and 60 feet bgs, the maximum depth explored. Coarse-grained layers up to 3 feet thick are interbedded with the silt and clay (EC&A, 2008; Cardno ERI, 2011; Cardno ERI, 2012). Historical groundwater elevation data indicate that DTW ranges from 5 to 11 feet bgs beneath the site with varying groundwater flow directions. The distribution of dissolved-phase hydrocarbons suggests that the dominant groundwater flow direction is west to southwest (Cardno ERI, 2014b). Due to varying well construction, Cardno ERI separated the wells into shallow and deep water-bearing zones. Wells MW3A, MW4, MW5, and SVE1 through SVE3 are screened no deeper than 15 feet bgs and are referred to as the shallow water-bearing zone; wells MW1 through MW3 and MW6 have screened intervals that extend deeper than 15 feet bgs and are referred to as the deep water-bearing zone. The groundwater elevations. Although the water-bearing zones are referred to as shallow and deep, they likely do not represent unique water-bearing zones. During second quarter 2015, the groundwater flow direction in the shallow water-bearing zone was towards the southwest with a hydraulic gradient of approximately 0.038 (Cardno, 2015). Due to varying well construction, the groundwater flow in the deep water-bearing zone is not calculated (Cardno ERI, 2014b).	None
Facility History		
Facility Structures and Site Operations	In 1945, a service station owned by Signal Oil Company occupied the site. Humble Oil company acquired the site in 1967 from Standard Oil Company of California (Chevron), rebranding the site as an Enco station. The station was rebranded as an Exxon service station in 1975 (EDR, 2009a; EDR, 2009b). The service station was demolished in 1983. During demolition activities, one used-oil UST and four gasoline USTs were removed and the resulting tank cavity was backfilled with sand and compacted to 90% (City of Albany, 1983). Cardno ERI reviewed eight aerial photographs of the site and site vicinity dated from September 6, 1949, to June 21, 1983 (EDR, 2009b). Based on these photographs, the dispenser islands appeared to be located beneath the station canopy on the northern portion of the site and the former USTs appeared to be located on the southern portion of the site, east of the station's service bays. The location of the former used-oil UST is unknown. The approximate location of the former USTs are shown on Plate 2. A retail outlet for Benjamin Moore paints and painting products and associated asphalt parking currently occupy the site.	None
		1

Element	Description	Data Gaps
Sensitive Rece	otors, Land Use, and Nearby Sites	
Surface Water Bodies	The site is located approximately 1,630 feet north-northwest of Cordornices Creek. No other surface water bodies have been located within a 300-meter radius of the site.	None
Nearby Wells	There are not public water supply, municipal, or domestic wells located within a ¼-mile radius of the site.	None
Public Use Areas	Two public use areas are present within a 100-meter radius of the site: the City of Albany Police, Fire, and City offices located across Buchanan Street at 1000 San Pablo Avenue and a physical therapy office located in the strip mall approximately 50 meters north of the site.	None
Residences	Sixteen residential buildings have been identified within a 300-meter radius of the site; five of those buildings are located within a 100-meter radius of the site.	None
Sub-Grade	Sub-grade structures have not been identified within a 100-meter radius of the site.	None
Utility Vaults	Twenty-three vaults have been identified on or immediately adjacent to the site. Vault uses include: water, telephone, gas meter, electric, sewer, traffic box, traffic signal, and anode.	None
Storm and Sanitary Sewers	Three storm drains are located on or adjacent to the site. The storm drains daylight along the curb and water flows west along Buchanan Street. The City of Albany Public Works Department confirmed that the storm drains discharge directly into the Bay. Two sanitary sewer cleanout vaults are located on site. The City of Albany Public Works Department confirmed that sewage is discharged at the East Bay Municipal Utilities District Treatment Plant, located 4.5 miles south of the site, at the entrance to the San Francisco Bay Bridge.	None
Other	Other site receptors have not been identified.	None
Nearby Sites	The surrounding areas consist of residential and commercial properties. The City of Albany Fire Department and Police Department are located south of the site on Buchanan Street. ACEH case number RO0000119, identified as Firestone #3655 in the GeoTracker™ database, is located across San Pablo Avenue to the east. A Shell Service Station and an Atlantic Richfield Company Service Station (Arco) are located approximately 350 and 500 feet away, respectively, south-southeast of the site.	None
Release Information	ation	
Release History	The primary sources of petroleum hydrocarbons at the site are the former used-oil UST and the four former gasoline USTs. The USTs were removed in 1983 (City of Albany, 1983).	None
Extent and	Non-Aqueous Phase Liquid	None
Distribution of Petroleum Hydrocarbon Concentrations	An immiscible sheen was reported in groundwater samples collected from borings B1 and B2 (EC&A, 2008). Neither NAPL nor sheen have been observed in the groundwater monitoring wells at the site; however, during fourth quarter 2012, concentrations of TPHg (270,000 µg/L) reported in well MW4 were potentially indicative of the presence of NAPL. Although the TPHg concentrations increased, BTEX concentrations were consistent with previous data. Concentrations of TPHg reported since fourth quarter 2012 are not indicative of the presence of NAPL and second quarter 2015 (22,000 µg/L) data is consistent with historical results. The fourth quarter 2012 TPHd result for well MW4 appears to have been anomalous.	

Element	Description	Data Gaps					
	Hydrocarbons in Groundwater	Yes					
	Current and historic maximum dissolved-phase petroleum hydrocarbon concentrations have been reported in well MW3, located in the vicinity of the former USTs, and wells MW4 and MW5, located west of the former USTs. Concentrations are delineated to the east of the site by wells MW1 and MW2 and to the south of the site by borings B11 and B15.						
	Dissolved-phase hydrocarbons are adequately vertically delineated at the site with petroleum hydrocarbon concentrations below or near the laboratory reporting limits in groundwater samples collected deeper than 27.5 feet bgs (Cardno ERI, 2011).						
	Data Gap: Dissolved-phase petroleum hydrocarbons require monitoring off site to the west and southwest near borings B9 and B12.						
	How to Address: Cardno installed off-site wells MW7 through MW9 to monitor dissolved-phase petroleum hydrocarbons west and southwest of the site. Monitoring and sampling activities in these wells are ongoing. The need for installation of additional wells will be evaluated.						
	Hydrocarbons in Soil						
	Maximum residual petroleum hydrocarbon concentrations are present at approximately 10.5 feet bgs in the vicinity of the former USTs. We the exception of naphthalene by EPA Method 8310 in boring B13 (5 feet bgs) and TPHg in borings B4 (5 feet bgs) and SVE1 (8.5 feet bgs) residual petroleum hydrocarbon concentrations have been near or below reporting limits in the shallow soil samples collected at the site, including samples collected in the vicinity of the former UST and suspected dispenser island locations. Residual petroleum hydrocarbon concentrations are adequately delineated in both shallow (less than 10 feet bgs) and deep (greater than or equal to 10 feet bgs) soil to the northeast, the northwest, the west, the southwest, and the south by borings B5 through B11, B14, B15, MW1, MW2, and CPT1. Residual TPHg (530 mg/kg) is present to the north at 10 feet bgs in boring B16, but is near or below reporting limits at 5 and 15.5 feet bgs (EC&A, 2008; Cardno ERI, 2011; Cardno ERI, 2014a).						
	Hydrocarbons in Soil Vapor	Yes					
	Maximum vapor-phase concentrations are present in well SVS3, located in the vicinity of the suspected locations of the former dispenser islands. Petroleum hydrocarbons exceed ESLs by up to three orders of magnitude in wells SVS1 through SVS3.						
	How to Address: DPE high-intensity targeted (HIT) events are ongoing.						
Exposure Route	es and Potential Receptors						
Exposure	Utility trench backfill material is not acting as a preferential pathway for petroleum hydrocarbon concentrations (Cardno ERI, 2014a).	Yes					
Routes and Potential Receptors	There are not public water supply, municipal, or domestic wells located within a quarter mile of the site. The nearest surface water body (Cordornices Creek) is located approximately 1,630 feet south-southeast of the site. Residual and dissolved-phase petroleum hydrocarbons are delineated south and east of the site and are not likely to migrate to Cordornices Creek.						
	A construction worker excavating soil at the site is a potential receptor; however, since the site is paved, direct exposure (via ingestion or dermal contact) to chemicals of concern released during Exxon's operations is not likely.						
	The potential exposure route of vapor inhalation may exist in the commercial/industrial setting for workers in the on-site retail outlet.						
	Users of shallow and deep groundwater are potential receptors.						
	Data Gap: See the groundwater and soil vapor data gaps in the Release Information section.						

REFERENCES

California Regional Water Quality Control Board San Francisco Bay Region Groundwater Committee (CRWQCB). June 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda and Contra Costa Counties, CA.

Cardno. July 9, 2015. Groundwater Monitoring Report, Second Quarter 2015, Former Exxon Service Station 79375, 990 San Pablo Avenue, Albany, California.

Cardno ERI. February 28, 2011. Site Assessment Report, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California.

Cardno ERI. April 12, 2012. Well Installation Report, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California.

Cardno ERI. July 7, 2014a. Work Plan for Well Installation, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California.

Cardno ERI. September 5, 2014b. Response to Comments and Request for Extension, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California.

City of Albany. March 28, 1983. Building Permit 82-0708.

Edd Clark & Associates (EC&A). January 31, 2008. Report of Phase II Environmental Assessment, 990 San Pablo Avenue, Albany, California.

Environmental Data Resources Inc. (EDR). December 1, 2009a. The EDR-City Directory Abstract, 990 San Pablo Avenue, Albany, CA 94706. Inquiry Number:2648519.6.

Environmental Data Resources Inc. (EDR). December 1, 2009b. Certified Sanborn® Map Report, 990 San Pablo Avenue, Albany, CA 94706. Inquiry Number 2648519.36.

Graymer, R.W. 2000. Geological map and map database of the Oakland metropolitan area, Alameda, Contra Costa, and San Francisco Counties, California. USGS, Miscellaneous Field Studies MF-2342.

Hickenbottom, Kelvin and Muir, Kenneth S. June 1988. Geohydrogeology and Groundwater Quality Overview of the East Bay Plain Area, Alameda County, CA. Alameda County Flood Control and Water Conservation District. 83p.

Cardno Soil Boring and Well Installation Field Protocol

Preliminary Activities

Prior to the onset of field activities at the site, Cardno obtains the appropriate permit(s) from the governing agency(s). Advance notification is made as required by the agency(s) prior to the start of work. Cardno marks the borehole locations and contacts the local one call utility locating service at least 48 hours prior to the start of work to mark buried utilities. Borehole locations may also be checked for buried utilities by a private geophysical surveyor. Prior to drilling, the borehole location is cleared in accordance with the client's procedures. Fieldwork is conducted under the advisement of a registered professional geologist and in accordance with an updated site-specific safety plan prepared for the project, which is available at the job site during field activities.

Drilling and Soil Sampling Procedures

Cardno contracts a licensed driller to advance the boring and collect soil samples. The specific drilling method (e.g., hollow-stem auger, direct push method, or sonic drilling), sampling method [e.g., core barrel or Californiamodified split spoon sampler (CMSSS)] and sampling depths are documented on the boring log and may be specified in a work plan. Soil samples are typically collected at the capillary fringe and at 5-foot intervals to the total depth of the boring. To determine the depth of the capillary fringe prior to drilling, the static groundwater level is measured with a water level indicator in the closest monitoring well to the boring location, if available.

The borehole is advanced to just above the desired sampling depth. For CMSSSs, the sampler is placed inside the auger and driven to a depth of 18 inches past the bit of the auger. The sampler is driven into the soil with a standard 140-pound hammer repeatedly dropped from a height of 30 inches onto the sampler. The number of blows required to drive the sampler each 6-inch increment is recorded on the boring log. For core samplers (e.g., direct push), the core is driven 18 inches using the rig apparatus.

Soil samples are preserved in the metal or plastic sleeve used with the CMSSS or core sampler, in glass jars or other manner required by the local regulatory agency (e.g., Environmental Protection Agency Method 5035). Sleeves are removed from the sample barrel, and the lowermost sample sleeve is immediately sealed with Teflon[™] tape, capped, labeled, placed in a cooler chilled to 4^o Celsius and transported to a state-certified laboratory. The samples are transferred under chain-of-custody (COC) protocol.

Field Screening Procedures

Cardno places the soil from the middle of the sampling interval into a plastic re-sealable bag. The bag is placed away from direct sunlight for a period of time which allows volatilization of chemical constituents, after which the tip of a photo-ionization detector (PID) or similar device is inserted through the plastic bag to measure organic vapor concentrations in the headspace. The PID measurement is recorded on the boring log. At a minimum, the PID or other device is calibrated on a daily basis in accordance with manufacturer's specifications using a hexane or isobutylene standard. The calibration gas and concentrations of volatilized hydrocarbons, but they do not measure the concentration of petroleum hydrocarbons in the soil matrix with the same precision as laboratory analysis. Cardno trained personnel describe the soil in the bag according to the Unified Soil Classification System and record the description on the boring log, which is included in the final report.

Air Monitoring Procedures

Cardno performs a field evaluation for volatile hydrocarbon concentrations in the breathing zone using a calibrated photo-ionization detector or lower explosive level meter.

Cardno Soil Boring and Well Installation Field Protocol

Groundwater Sampling

A groundwater sample, if desired, is collected from the boring by using Hydropunch[™] sampling technology or installing a well in the borehole. In the case of using Hydropunch[™] technology, after collecting the capillary fringe soil sample, the boring is advanced to the top of the soil/groundwater interface and a sampling probe is pushed to approximately 2 feet below the top of the static water level. The probe is opened by partially withdrawing it and thereby exposing the screen. A new or decontaminated bailer is used to collect a water sample from the probe. The water sample is then emptied into laboratory-supplied containers constructed of the correct material and with the correct volume and preservative to comply with the proposed laboratory test. The container is slowly filled with the retrieved water sample until no headspace remains and then promptly sealed with a Teflon-lined cap, checked for the presence of bubbles, labeled, entered onto a COC record and placed in chilled storage at 4° Celsius. Laboratory-supplied trip blanks accompany the water samples as a quality assurance/quality control procedure. Equipment blanks may be collected as required. The samples are kept in chilled storage and transported under COC protocol to a client-approved, state-certified laboratory for analysis.

Backfilling of Soil Boring

If a well is not installed, the boring is backfilled from total depth to approximately 5 feet below ground surface (bgs) with either neat cement or bentonite grout using a tremie pipe and either the boring is backfilled from 5 feet bgs to approximately 1 foot bgs with hydrated bentonite chips or backfill is continued to just below grade with neat cement grout. The borehole is completed to surface grade with material that best matches existing surface conditions and meets local agency requirements. Site-specific backfilling details are shown on the respective boring log.

Well Construction

A well (if constructed) is completed using materials documented on the boring log or specified in a work plan. The well is constructed with slotted casing across the desired groundwater sampling depth(s) and completed with blank casing to within 6 inches of surface grade. No further construction is conducted on temporary wells. For permanent wells, the annular space of the well is backfilled with Monterey sand from the total depth to approximately 2 feet above the top of the screened casing. A hydrated granular bentonite seal is placed on top of the sand filter pack. Grout may be placed on top of the bentonite seal to the desired depth using a tremie pipe. The well may be completed to surface grade with a 1-foot thick concrete pad. A traffic-rated well vault and locking cap for the well casing may be installed to protect against surface-water infiltration and unauthorized entry. Site-specific well construction details including type of well, well depth, casing diameter, slot size, length of screen interval and sand size are documented on the boring log or specified in the work plan.

Well Development and Sampling

If a permanent groundwater monitoring well is installed, the grout is allowed to cure a minimum of 48 hours before development. Cardno personnel or a contracted driller use a submersible pump or surge block to develop the newly installed well. Prior to development, the pump is decontaminated by allowing it to run and re-circulate while immersed in a non-phosphate solution followed by successive immersions in potable water and de-ionized water baths. The well is developed until sufficient well casing volumes are removed so that turbidity is within allowable limits and pH, conductivity and temperature levels stabilize in the purge water. The volume of groundwater extracted is recorded on a log.

Following development, groundwater within the well is allowed to recharge until at least 80% of the drawdown is recovered. A new or decontaminated bailer is slowly lowered past the air/water interface in the well, and a water sample is collected and checked for the presence of non-aqueous phase liquid, sheen or emulsions. The water sample is then emptied into laboratory-supplied containers as discussed above.

Cardno Soil Boring and Well Installation Field Protocol

Surveying

If required, wells are surveyed by a licensed land surveyor relative to an established benchmark of known elevation above mean sea level to an accuracy of +/- 0.01 foot. The casing is notched or marked on one side to identify a consistent surveying and measuring point.

Decontamination Procedures

Cardno or the contracted driller decontaminates soil and water sampling equipment between each sampling event with a non-phosphate solution, followed by a minimum of two tap water rinses. De-ionized water may be used for the final rinse. Downhole drilling equipment is steam-cleaned prior to drilling the borehole and at completion of the borehole.

Waste Treatment and Soil Disposal

Soil cuttings generated from the drilling or sampling are stored on site in labeled, Department of Transportationapproved, 55-gallon drums or other appropriate storage container. The soil is removed from the site and transported under manifest to a client- and regulatory-approved facility for recycling or disposal. Decontamination fluids and purge water from well development and sampling activities, if conducted, are stored on site in labeled, regulatory-approved storage containers. Fluids are subsequently transported under manifest to a client- and regulatory-approved facility for disposal or treated with a permitted mobile or fixed-base carbon treatment system.

D

PERMITS

	Total Due:	\$1059.00
Receipt Number: WR2015-0433	Total Amount Paid:	\$1059.00
Payer Name : Scott Perkins	Paid By: MC	PAID IN FULL

Works Requesting Permits:

Remediation Well Construction-Vapor Remediation Well - 4 Wells Driller: Gregg Drilling - Lic #: 485165 - Method: hstem

Specifications Permit # Issued Date Expire Date Owner Well Hole Diam. Casing Seal Depth Max. Depth ld Diam. W2015-09/01/2015 12/20/2015 SVE4 4.00 in. 15.00 ft 10.00 in. 4.00 ft 0820 09/01/2015 12/20/2015 SVE5 15.00 ft W2015-10.00 in. 4.00 in. 4.00 ft 0820 09/01/2015 12/20/2015 SVE6 15.00 ft W2015-10.00 in. 4.00 in. 4.00 ft 0820 W2015-09/01/2015 12/20/2015 SVE7 10.00 in. 4.00 in. 4.00 ft 15.00 ft 0820

Specific Work Permit Conditions

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755

Work Total: \$265.00

(Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.

4. Applicant shall submit the copies of the approved encroachment permit to this office within 10 days.

5. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Minimum seal depth (Neat Cement Seal) is 2 feet below ground surface (BGS).

7. Minimum surface seal thickness is two inches of cement grout placed by tremie.

8. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

9. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

10. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

Well Construction-Monitoring-Monitoring - 2 Wells	
Driller: Gregg Drilling - Lic #: 485165 - Method: hstem	Work Total: \$794.00

Specificati	Specifications										
Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth				
W2015- 0821	09/01/2015	12/20/2015	MW10	8.00 in.	2.00 in.	4.00 ft	15.00 ft				
W2015- 0822	09/01/2015	12/20/2015	MW9	8.00 in.	2.00 in.	4.00 ft	15.00 ft				

Specific Work Permit Conditions

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.

5. Applicant shall submit the copies of the approved encroachment permit to this office within 10 days.

6. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

8. Minimum surface seal thickness is two inches of cement grout placed by tremie.

9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.

10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

11. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

Total Due:	\$1059.00
Total Amount Paid:	\$1059.00
Paid By: MC	PAID IN FULL
	Total Due: Total Amount Paid: Paid By: MC

Work Total: \$265.00

Works Requesting Permits:

Remediation Well Construction-Vapor Remediation Well - 4 Wells Driller: Gregg Drilling - Lic #: 485165 - Method: hstem

Specifications Permit # Issued Date Expire Date Owner Well Hole Diam. Casing Seal Depth Max. Depth ld Diam. W2015-09/01/2015 12/20/2015 SVE4 10.00 in. 4.00 in. 4.00 ft 15.00 ft 0820 W2015-09/01/2015 12/20/2015 SVE5 10.00 in. 4.00 in. 4.00 ft 15.00 ft 0820 09/01/2015 12/20/2015 15.00 ft W2015-SVE6 10.00 in. 4.00 in. 4.00 ft 0820 15.00 ft W2015-09/01/2015 12/20/2015 SVE7 10.00 in. 4.00 in. 4.00 ft 0820

Specific Work Permit Conditions

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with

appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.

4. Applicant shall submit the copies of the approved encroachment permit to this office within 10 days.

5. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Minimum seal depth (Neat Cement Seal) is 2 feet below ground surface (BGS).

7. Minimum surface seal thickness is two inches of cement grout placed by tremie.

8. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

9. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

10. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

Driller: Gr	regg Drilling	Work Total: \$794.00						
Specificatio	ons							
Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth	
W2015- 0821	09/01/2015	12/20/2015	MW10	8.00 in.	2.00 in.	4.00 ft	15.00 ft	
W2015- 0822	09/01/2015	12/20/2015	MW9	8.00 in.	2.00 in.	4.00 ft	15.00 ft	

Specific Work Permit Conditions

Wall Construction Monitoring Monitoring 2 Walls

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or

waterways or be allowed to move off the property where work is being completed.

3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Include permit number and site map.

5. Applicant shall submit the copies of the approved encroachment permit to this office within 10 days.

6. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

8. Minimum surface seal thickness is two inches of cement grout placed by tremie.

9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.

10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

11. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

City of Albany

APP CANT COPY

ENCROACHMENT PERMIT PERMANENT OR TEMPORARY CONSTRUCTION WITHIN CITY RIGHT OF WAY PERMIT NO. $\frac{15-228}{2}$

LOCATION: ____Intersection Adams and Buchanan Street

NAME	ADDRESS	Phone No. Normal/Emergency	Business Lic. No. Workers Comp. No.
Applicant Cardno	601 N. McDowell Blvd, Petaluma, CA, 94954	(707) 766-2000	WC039901297
Owner:			
Engineer / Architect			
Contractor			
	TYPE OF WORK	er 🗍 🤅	Street-Tree
Utility Co.	Permanent Structure IX Othe	r: Install 2 groundwa	ater monitoring wells for
Install MW9 on Adams Stre Install MW10 approximately	DESCRIPTION OF WORK et, approximately 35 feet North of Buchanan S 15 feet North of Buchanan Street (left side)	Street (right side)	
	REQUIRED CONDITIONS		
 No refund after 120 days Permanent structures re CALL USA 1-800-227-26 Call for Final Inspection Special Conditions may Applicant's Signature: Do 	or work begins, 70% of fee refundable within quire City Council approval (City Code 14-2). 500 before excavating. and Sign-Off 48 hr. in advance at 🛛 (510) 528 be imposed following City review and prior to the swith R. Daviel	120 days provided r 3-5760 (510) 524 ssuance of this perm Date:	-9543. -9543. hit.
STAFF USE ONLY Permit Fee Computation Total construction cost subj New construction at 8% of c In-Ligu slury seal fee (when Minimum fee per schedule of Total Fee due (transfer to fe	ect to fee construction cost n street is out) if greater than % fee) ie schedule from) (Utilities to be billed, copy of	permit to Finance).	/37.59
Special Conditions:	Please see Engineer's Spe	use Conditi	ons.
Issued by:			114/2015
Permit Expiration Date:	<u>2/14/2016</u> (not	to exceed 180 da	ys for date issued)
Final Sign Off by:		Date:	

J:/Forms/EncroachmentPermitFirstPgDec04

City of Albany

ENVIRONMENTAL PROTECTION STATEMENT OF RESPONSIBILITY FOR DISCHARGES & DAMAGE

I. PURPOSE

This statement is to provide notice to property owners, contractors, and others of the responsibility for compliance with Albany Municipal Code (AMC) as it relates to protection of public trees and waterways.

<u>Public Trees:</u> Damage to street trees or other trees located on public property is considered damage to public property. Damage to trees includes, but is not limited to cutting any amount of trees roots, ripping or tearing of branches, and peeling, tearing or scarring of tree bark. Damage may cause death and/or a dangerous condition by destabilizing the tree. Restoring a tree to its pre-damaged state can take years. Therefore, preventing damage to trees is a priority to the City of Albany.

<u>Waterways:</u> The City's storm water runoff system conveys rain water directly to the San Francisco Bay through a network of surface flows, underground pipes, and creek channels. Materials discharged to a sidewalk, street gutter, storm drain or creek can cause creeks and the Bay to become polluted. Any material other than rain water is considered an illicit discharge under the Federal Clean Water Act. Examples of illicit discharges include: concrete wash water, stucco wash water, paint wash water, chemicals, and runoff from stockpiled materials such as dirt aggregate, soil products, and other construction materials.

II. RESPONSIBILITY FOR DAMAGE TO PUBLIC TREES AND/OR ILLICIT DISCHARGES TO WATERWAYS

<u>Public Trees</u>: Pursuant to Albany Municipal Code Section 14-1.2., it is unlawful to cause damage to public property. When a public tree is damaged the cost of the damage and the value of the tree will be calculated by a certified arborist in accordance with International Society of Arboriculture Standards. Because valuable resources such as time, energy and money are invested in trees over many years, the calculated value of a tree can be high. The party damaging the tree is liable for all costs associated with the loss of the tree and the repair or replacement of the tree.

<u>Waterways:</u> Pursuant to Albany Municipal Code Section 15.4, it is unlawful to discharge materials (liquid or solid) to a sidewalk, street, gutter, storm drain or creek. An illicit discharge is defined as "any discharge to the City storm drain system that is not composed entirely of storm water...". The contractor and/or property owner is responsible for all fines and costs associated with the illicit discharge.

III. CERTIFICATION OF COMPLIANCE

I understand that as the applicant I am responsible for any damage to public trees and or all illicit discharges resulting from this project and that I am responsible for all fees and fines as a result or non-compliance.

Cardno	/
Property Owner or Permitte	
Cardno - David Daniels	LURAL
Business Name & Contract	ok's Authorized Representative

Date

Location or Title of Project: 990 San Pablo Ave, Albany, CA (Former Exxon 79374)

For more information, contact the Community Development & Environmental Resources Department at (510) 528-5760

City of Albany

SPECIAL PROVISIONS FOR ENCROACHMENT PERMIT FOR PERMANENT IMPROVEMENT IN CITY RIGHT-OF-WAY

Location: 990 San Pablo Ave, Albany, CA (Former Exxon 79374)

This APPLICATION MUST BE ACCOMPANIED by the DATA and PLANS indicated below:

x Description of Job

APPROVED Construction Plans and/or Documents

An Engineer's Estimate of the value of all public improvements and utility services within the public right-of-way A Soils Report prepared by a Registered Civil Engineer.

X Others: Specify Workplan

ALL FEES SHALL BE PAID AND DEPOSITS MADE PRIOR TO THE ISSUANCE OF THIS PERMIT: except Utility Companies. Utility Companies will be invoiced.

STANDARDS/SPECIFICATION:

The following conditions and provisions of the Albany Municipal Code apply to this permit. All work shall be in accordance with City Standard Specifications and Drawings.

COMMENCEMENT OF WORK

The permittee shall begin the work or use authorized by a permit issued pursuant to this chapter within ninety (90) days from the date of issuance unless a different period is stated in the permit, or an extension of time is granted by the Director of Community Development & Environmental Resources. If the work or use is not begun accordingly the permit shall become void.

INSPECTION

In general, inspection producers and requirements shall be as established by the Director of Community Development & Environmental Resources. Unless specifically exempted by the City Code, no encroachment work shall take place without inspection by the Director of Community Development & Environmental Resources or his/her authorized agent. Inspections by the City must be requested at least TWENTY-FOUR (24) HOURS (excluding weekends) IN ADVANCE of the work to be performed. No work shall be performed on weekends without PRIOR AUTHORIZATION of the Director of Community Development & Environmental Resources.

DISPLAY OF PERMIT

The permittee shall keep a copy of this permit at the site of the work, or in the cab of a vehicle when movement on a public street is involved. The permit shall be shown to any authorized representative of the Director of Community Development & Environmental Resources or Law Enforcement Officer on demand.

ACCEPTANCE OF PERMIT BY APPLICANT

Acceptance by the applicant of the permit shall be conclusive evidence of the resonableness of the terms imposed and shall constitute a waiver of any right to legislative determination thereof.

NON-ASSIGNMENT OF PERMIT

Permits shall be issued only to the person making application and may not be assigned to another person by the permittee. If any permittee assigns his permit to another, the permit will be revoked.

CHANGES IN PERMIT AND WORK

No changes may be made in the location, dimensions, character, or duration of the encroachment or use as granted by the permit except upon written authorization of the Director of Community Development & Environmental Resources.

City of Albany

EXCAVATION OF PAVED STREETS

No excavations shall be permitted within the paved area of the public streets unless the applicant can prove to the satisfaction of the Director of Community Development & Environmental Resources that the following conditions exist:

- 1. Boring of the utility is not feasible; and
- 2. No reasonable alternative utility alignment is available outside the paved street area; and
- 3. The cut area and an adjacent area shall be resurfaced as approved by the Director of Community Development & Environmental Resources. The limits of resurfacing shall be as determined by the Director of community Development & Environmental Resources to insure the excavating area blends visually with the surrounding area. The applicant shall be responsible for the replacement of any and all obliterated or removed pavement markers or striping.

REVOCATION OF PERMIT

This encroachment permit may be revoked at any time at the option of the Director of Community Development & Environmental Resources, whenever:

- 1. It appears that continuing allowance of the permitted work, whether because of changed conditions or otherwise, interferes with full, adequate or safe public use of the right-of-way involved; or
- 2. The permittee fails to comply with or violates any city ordinance, city standard, safety regulations, or any condition of the issuance of the permit.

Upon revocation of the permit, the premittee shall immediately restore the public right-of-way to a condition as required by the Director of Community Development & Environmental Resources. If the restoration is not completed within the time specified by the Director of Community Development & Environmental Resources, the City may take any and all necessary action so required to restore the right-of-way. Any and all costs incurred by the City will be deducted from any deposits posted by the permittee and if necessary recovered by legal action.

HOURS OF WORK

No work shall commence prior to 8:00 AM and no work shall be conducted after 6:00 PM Monday through Saturday and before 10:00 AM or after 6:00 PM on Sunday and Holidays.

COMPLETION OF WORK

The permittee must complete the work or use authorized by a permit issued pursuant to this chapter within the time specified in the permit. If at any time the Director of Community Development & Environmental Resources finds that the delay in the prosecution or completion of the work or use authorized is due to lack of diligence on the part of the permittee, the permit may be revoked.

PERMITTEE LIABILITY

The permittee shall agree to hold the City, its officers, and employees harmless from any and all liability, claims, suits or actions for any and all damages alleged to have been suffered by any person or property by reason of the permittee's installation, operation, maintenance or removal of the encroachment.

BY MY SIGNATURE HEREUNDER, I state that I have read and understand the above conditions and agree to comply therewith. I hereby attest that I am either the owner of the property or duly authorized agent of the applicant.

Comply merewin. Thereby and the the	1		-locil 10	
APPLICANT'S SIGNATURE	/		Date: 10815	
NAME (print): David R. Daniels	_ COMPANY:	Cardno		<u>, , , , , , , , , , , , , , , , , , , </u>

J:\Forms\Encroach.doc

City of Albany

Date: 8/14/15

Special Conditions

Encroachment Permit for

Cardno at the request of Exxon Mobil Environmental Services (EMES), to install 2 monitoring wells on Adams Street.

- 1. Working hours on the City of Albany shall be from 8:00AM to 6:00PM Monday through Saturday; and 10:00AM to 5:00PM Sunday and Holidays. No startup of heavy equipment is allowed prior to 8:00 AM. Written permission must be obtained from the City Engineer prior to any weekend and holiday work.
- 2. Applicant shall maintain access to private property and driveways, or provide alternate/temporary access, at all times.
- 3. Provide for traffic control and pedestrian safety and lane closures per the General Provisions of the City and Caltrans California MUTCD <u>http://www.dot.ca.gov/hg/traffops/engineering/mutcd/ca_mutcd2014.htm</u>.
- 4. Contact Albany Police Dept. (510-525-7300), Albany Fire Dept. (510-528-5770), and Albany Building Division (510-528-5760) minimum of 48 hours before work begins.
- 5. The driveway and access at the Fire Department and Police Department shall never be blocked at any time.
- 6. All exploratory holes (borings) under this permit are subject to the Alameda County Public Works Agency Guidelines, Policies & Procedures, the State Water Well Standards, and any instruction by the Health Department. Applicant is required to submit a copy of the Alameda County Permit before any drilling is done.
- 7. All drill cuttings and boring development water and soil shall be properly and legally handled and disposed of.
- 8. All soil boring must be completely filled with cement grout mixture. The top 6" of the borings shall be backfilled to match original surface material. The applicant shall be responsible for the replacement of any and all obliterated or removed pavement markings or striping.
- 9. Provide for traffic control and pedestrian safety and lane closures per the General Provisions of the City and Caltrans Standard Specifications.
- 10. No open excavations shall be left unsupervised. All excavations shall be back filled or covered at the end the working day.
- 11. Post for no parking in advance per City requirements. (Minimum of 48 hours)
- 12. Prior to drilling, notify USA to identify any potential drilling obstructions. At the end of exploratory work, all USA markings shall be removed.
- 13. Conform to the requirements of the City's monument preservation plan. Any survey monument encountered shall be referenced and preserved or restored per State law.
- 14. Do not drill within 5 feet of existing sanitary sewers main or laterals and other utilities.
- 15. Permitee shall be responsible for full compliance with the City's Storm Water program and the Alameda County NPDES permit requirements. For additional information, visit the Alameda Countywide Clean Water Program at http://www.cleanwaterprogram.org
- 16. Contact the City's Inspector at 510-528-5760 to schedule inspection a minimum of 48 hours in advance of drilling.

BORING LOGS

11-05-2015 L:\EXXONMOBIL\ExxonMobil Projects\022735C (79374) Albany\2735 AutoCad\Boring Logs\SVE7.bor

FIELD DATA SHEETS

Daily Field Report Cardno' Project ID #: 79374, ALBONY CA ERI Job # 2735 Subject: WELL DEVELOPEMENT Date: 10-15-15 Equipment Used: HAAA TOILS & Frances Sheet: 1 of Name(s): CARL Migued Time Arrived On Site: 7 1.5 Time Departed Site: 1.5 1.5 Total Travel: I AARIVAN AND HELD A SAFRETT MTG, RILVIEWED THE JSA AND POSTRO A GENRAM WORK PERMIT. IT WENT DEX (D S CASE VOLUMAS. I DEURLOPED MNG AS PER SOP, ATHE RECHARGE RITTE WAS VERY SLOW - 33% RECOURARS IN O.S HOURS I WENT TO SUE 7 AND DRURLOPED IT AS PRA THE SOP IT WRAT DAY AFTRA 2 CASE VOLUMRS. THE KECHAAGE KATE WAS VRAY SLOW. 26% RECOLARD IN I HOUR 10mm I WENT TO SURG AND DEVELOPED IT AS PER THE SOP IT WENT DAY AFTRA Z CASE VOLUMES THERREHARGER RATE = 43% IN ONE HOUR I WRAT TO SURS AND DEVELOPED IT AS PRA THE SOP IT WENT DAY AFTRA 2 CASE VOLUMES RECHARGE ROTA = 33% in ONE HOUR I WEAT TO SURY AND DEVELOPED IT AS PILL FIFE SON YT WENT DRY AFTRE 2.5 GASE VOLUMES RACHARCA RATE = 29% IN ONE HOUR I DECONNED AND ORGANIZED ALL EQUIDMENT FOR TRANSPORT 2 50 gals (miceriding DECON WASER) GEMENATED PODAY 7 DEPARTED @ 1515 601 North McDowell Blvd, Petaluma, CA 94954 Office: 707-766-200 Fax: 707-789-0414

an approximation of

Client/Site: Former lower 79374 Start 7 Location: 990 Start Parts Ave Arbany CA Start Sample Tech.: CAAL MIKLICH Start DATE: $U - 15 - IS$ Start Weather: CONC 2 CLEAR Start WELL ID M W Q Itemp COND TIME PURGE Temp COND F hr:min Gal deg C F u u 1 deg 10% 0 0 $2 S$ $4 \cdot 2$ $2 \cdot 3$ $4 \cdot 5 \cdot 3$ 9 2 5 $4 \cdot 2$ $2 \cdot 3$ $4 \cdot 5 \cdot 3$ $5 \cdot 5 \cdot 3$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Location: $q q o som Pages AvelArborn CAStartSample Tech.:Ca A c MiklucolStartDATE:(U-15-15)StartWeather:Cool 2 CleakStartWetLL IDM W qIdeg10%nrminGaldeg C Fu1 deg10%00 2 02.621.0446g 2 02.621.0446g 2 02.621.0475g 2 02.621.0475g 2 06.521.0475g 2 06.521.0475g 2 0absabsg 2 0absabs$	Stop Stop Stop H Turbidity nit NTU 1 Less Than 5 63 57068 39575 253 (DRY) (Scu
Sample Tech.: $(A \land M) K \cup C \land M) K \cup M)$	Stop Stop Stop H Turbidity nit NTU 1 Less Than 5 63 57068 30575 253 (DRT) (Sco
DATE: $10 - 15 - 15$ Start Weather: $200 \le 2 \le 2 \le 0.4$ Start WELL ID M & Q TIME PURGE Temp COND F hr.min Gal deg C F u 1 deg 10% 0	Stop Stop H Turbidity nit NTU 1 Less Than 5 63 57068 38575 253 (DRY) (Scu
Weather: $LPPC$ Z $ZLEAX$ Start WELL ID $M UQ$ $TIME$ PURGE Temp COND F hr.min Gal deg C F u u $1 deg$ 10% 0 0 2.6 21.0 4.46 $s.$ $s.$ $s.$ 0 2.5 4.2 21.3 4.57 $s.$ 9 2.5 4.2 21.0 $4.7.5$ $s.$ 9 2.5 4.2 21.0 $4.7.5$ $s.$ 9 2.5 4.2 21.0 $4.7.5$ $s.$ 0 0.5 21.0 $4.7.5$ $s.$ $s.$ 0 0.5 21.0 $4.7.5$ $s.$ $s.$ 0 0.5 <	Stop H Turbidity $h Turbidity$ $h Turbid$
WELL ID $\mathcal{M} \& \mathcal{G}$ TIME PURGE VOLUME Temp COND F hrmin Gal deg C F u 1 deg 10% 0 \mathcal{O} 2.0 2.6 21.0 446 5. \mathcal{O} 2.5 4.2 21.3 457 5. \mathcal{O} 2.5 4.2 21.0 47.5 5. \mathcal{O} 2.6 21.0 47.5 5. \mathcal{O} 2.6 21.0 47.5 5. \mathcal{O} 2.6 21.0 47.5 5. \mathcal{O} \mathcal	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
TIME PURGE VOLUME Temp COND F hr:min Gal deg C F u 1 deg 10% 0 9 2 0 2.6 21.0 446 5. 9 2 0 2.6 21.0 446 5. 9 2 0 6.5 21.0 47.5 5. 9 2 0 6.5 21.0 47.5 5. 9 2 0 6.5 21.0 47.5 5. 9 2 0 6.5 21.0 47.5 5. 9 2 0 6.5 21.0 47.5 5. 9 2 0 6.5 21.0 47.5 5. 9 2 0 6.5 21.0 47.5 5. 9 2 0 9.0 9.0 9.0 9.0 9 2 0 9.0 9.0 9.0 9.0 9 2 0 9.0 9.0 9.0 9.0 9 9 10 9.0 9.0 9.0 9.0 9 9 10 9.0 9.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
TIME PURGE VOLUME Temp COND r hrmin Gal deg C F u 1 deg 10% 0 9 2 0 2.6 21.0 446 5. 9 2 5 4.2 21.3 457 5. 9 2 0 6.5 21.0 47.5 5. 9 2 0 6.5 21.0 47.5 5. 9 2 0 6.5 21.0 47.5 5. 9 2 0 6.5 21.0 47.5 5. 9 2 0 6.5 21.0 47.5 5. 9 2 0 6.5 21.0 47.5 5. 9 2 0 6.5 21.0 47.5 5. 9 2 0 6.5 21.0 47.5 5. 9 2 0 6.5 1.0 1.0 1.0 9 2 0 1.0 1.0 1.0 1.0 9 10 1.0 1.0 1.0 1.0 9 10 1.0 1.0	TurbiditynitNTU1Less Than 5 63 570 68 305 75 253
hr.min Gal deg C F u 1 deg 10% 0 9 2 0 2.6 21.0 446 5. 9 2 5 4.2 21.3 457 5. 9 2 5 4.2 21.3 457 5. 9 2 5 6.5 21.0 47.5 5. 9 2 6 6.5 21.0 47.5 5. 9 2 7 6.5 21.0 47.5 5. 9 2 7 6.5 21.0 47.5 5. 9 2 7 6.5 21.0 47.5 5. 9 2 7 6.5 21.0 47.5 5. 9 2 7 6.5 21.0 47.5 5. 9 2 7 6.5 21.0 47.5 5. 9 2 7 6.5 21.0 47.5 5. 9 2 7 7 7.5 7.5 7.5 9 2 7 7 7.5 7.5 7.5 9 2 7 7 7.5 7	nit NTU 1 Less Than 5 63 570 68 305 75 253 (DRY) (Scu
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 Less Than 5 <u>63</u> <u>570</u> <u>68</u> <u>305</u> <u>75</u> <u>253</u> (DRY) (Scu
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	63 570 68 385 75 253 (DRY) (Sec
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	68 305 75 253 (DRY) (Sci
	<u>75 253 (DRT) PET</u>
Image: Section of the section of th	
Image: set of the	
Image: set of the set of	
Image: set of the set of	
Image: set of the set of	r
Image: Section of the section of th	
Image: Constraint of the sector of the se	
> - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <	
Image: Sector of the sector	
Image: set of the set of th	
Image: select	•
otal Purge Volume Gallons 6.5	
CASING VOL. FACTOR WELL INFORMATION	
diameter TD: (T. 20	
2"-dia: DTW ₁ : 6:10	
4"-dia: h: 0,02	
6"-dia: CSg VOI: (153	
B'02 DTW 11.01 TOU MALL FIME ALCORD FOR 1	

Cardno Job# こつろう	Quarter 4	Year 2015		Su	ırging
Client/Site: Former	Eprov 7.9	374		Start 950	Stop // 03
Location: 990	Som PARA 1	here here.	· · · ·	Start	Stop
Sample Tech.:	AL MILL	(1)	T, UA	Start	Stop
DATE: /0 -	15-15			Start	Stop
Weather: CLRAA	h summ	7		Start	Stop
WELLID SUE	1		MARAN I.	ANIMAN I	
TIME	PURGE	Temp	COND	рН	Turbidity
hr:min	Gal	deg C F	,	unit	NTU
		1 deg	10%	0.1	Less Than 5
1005	2.2	23.9	RID	6.35	1524
10 19	64	78 2	643	6.25	1142
Total Purge Volume	Gallons	5.4			
rotari algo volunto	CASING VOL. FACTOR	WELL INFO	RMATION		Second in the
and a stand a strate state and a state	diameter	TD:	14.79		
	2"-dia:	DTW _i :	10.68		
	4"-dia:	h:	4.11		
		and value	2.7 01		

er (200)

Cardno Job#273 5	Quarter 7	Year Call		Su	rging	7
Client/Site: Forman (7933	14		Start 10 50	Stop 1105	1
Location: a a a	C. D. C.	And And		Start	Stop	1
Sample Tech.:	Sitre Provo T	rve, Mabi	my cm	Start	Stop	-
DATE: IN	- miker	-4		Start	Stop	-
Weather:	5-15			Start	Stop	-
WELL ID	7 mil	0		111111111111111	NACHARD STR	1 C
prov 6	SVE6					
TIME		Temp	COND	рН	Turbidity	
hr:min	Gal	deg C F		unit	NTU	1
		1 deg	10%	0.1	Less Than 5	
11 (1	2.7	25.1	636	5.93	346	· (· · · ·)
11 19	2.7	2 4.3	628	5.79	66.3	Der (220)
						-
						-
						-
· · · · · · · · · · · · · · · · · · ·						
						1
		100				
						1
				1		
Total Purge Volume	Gallons	5.4				
	CASING VOL. FACTOR	WELL INFO	RMATION		State of the second second	1
	diameter	TD:	19.95	-		
9	2"-dia:	DTW _i :	10.78			4
	4"-dia:	h:	7,17			
		CSG VOI:	<u> </u>	E.e.		1
11 55 - 13,3	3 DTW	& TOUMUS	it find n	RIEDRO FOR R	2 CHARTE.	
1219 131	ر ^م ال ر)				

i.

1282
and the
18454484348
18 12 19
rbidity
ın 5
76
3.1
3.2
1
BUT AND A DESCRIPTION OF
aler in
1
NALLO

AT (200)

11.1 = 80%

語言では「たい」にすうなどのない

ardno Job# 271C	Quarter 4	Year 201	5	Su	rging
Client/Site: Forma	L CRRCH	79378		Start 130-5	Stop 13 22
ocation: 990	Sa. A.a.	A in A.	BANK CA	, Start	Stop
Sample Tech.:	- TATABLO	AUE., IT	or y	Start	Stop
DATE: In the	C minuca			Start	Stop
Weather: Surg II	61-1-2	0 110.10		Start	Stop
VELL ID	- Sunny	& mill	111111111	GAREN STAN	A CALL CONTRACT
SVR 4		He Hall	an a		A Barris Contractor
TIME		Temp	COND	pН	Turbidity
hr:min	Gal	deg C F		unit	NTU
		1 deg	10%	0.1	Less Than 5
1326	2.9	23.2	625	6.73	49.4
1330	5.8	23,1	611	6.20	296
1334	6.5	23.4	621	6.12	105
					1
				×	
	L.		· /		1. A.
				8. C	
			•		
				3	
					1
otal Purge Volume	Gallons	6.5	ø		
olari algo tolanic	CASING VOL. FACTOR	WELL INFOR	RMATION		
ماندوس بالارد و المار الاربية المراجع المراجع المراجع الاربية الاربية المراجع المراجع المراجع المراجع المراجع	diameter	TD:	14.48		
	2"-dia:	DTW _i :	9.95	S	
	4"-dia:	h:	4.53		
	6"-dia:	csg vol:	2.9	1 Co.	
14'07 .0	UI DTW	2 COMMENT	0		

(2.5 cv)

10. 8 = 80%

APPENDIX

LABORATORY ANALYTICAL REPORTS

WORK ORDER NUMBER: 15-10-1423

Calscience

ResultLink ▶

Email your PM >

🔅 eurofins

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Cardno Client Project Name: ExxonMobil 79374/022735C Attention: Scott Perkins 601 North McDowell Blvd. Petaluma, CA 94954-2312

sitt for

Approved for release on 11/03/2015 by: Cecile deGuia Project Manager

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

CA ELAP ID: 2944 | ACLASS DoD-ELAP ID: ADE-1864 (ISO/IEC 17025:2005) | CSDLAC ID: 10109

🔅 eurofins

Client Project Name:

Calscience

ExxonMobil 79374/022735C

Contents

Work Orde	er Number: 15-10-1423	
1	Work Order Narrative	3
2	Sample Summary	4
3	Client Sample Data. 3.1 EPA 8015B (M) TPH Motor Oil (Aqueous). 3.2 EPA 8015B (M) TPH Diesel (Aqueous). 3.3 EPA 8015B (M) TPH Gasoline (Aqueous). 3.4 EPA 8260B Volatile Organics (Aqueous).	5 5 7 9 11
4	Quality Control Sample Data.4.1 MS/MSD.4.2 LCS/LCSD.	32 32 36
5	Sample Analysis Summary	42
6	Glossary of Terms and Qualifiers.	43
7	Chain-of-Custody/Sample Receipt Form	44

Work Order: 15-10-1423

Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 10/20/15. They were assigned to Work Order 15-10-1423.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

Client: Cardno		Work Order:	15-10-14		
601 North McDowell Blvd.		Project Name:	ExxonMo	bil 79374/022735C	
Petaluma, CA 94954-2312		4954-2312	PO Number:	C	
			Date/Time Received:		10/20/15 11:00
			Number of Containers:		
Attn: Scott Perkins Sample Identification Lab Number					
		Lab Number	Collection Date and Time	Number of Containers	Matrix
QCBB 15-10-1423-1		15-10-1423-1	10/16/15 12:50	2	Aqueous

			oontainer 3	
QCBB	15-10-1423-1	10/16/15 12:50	2	Aqueous
MW9	15-10-1423-2	10/16/15 13:15	10	Aqueous
SVE4	15-10-1423-3	10/16/15 14:55	10	Aqueous
SVE5	15-10-1423-4	10/16/15 14:35	10	Aqueous
SVE6	15-10-1423-5	10/16/15 14:10	10	Aqueous
SVE7	15-10-1423-6	10/16/15 13:40	10	Aqueous

Cardno			Date Recei	ved:			10/20/15
601 North McDowell Blvd.			Work Order	r:			15-10-1423
Petaluma, CA 94954-2312			Preparation	n:			EPA 3510C
			Method:			E	PA 8015B (M)
			Units:				ug/L
Project: ExxonMobil 79374/02273	5C					Pa	ige 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW9	15-10-1423-2-J	10/16/15 13:15	Aqueous	GC 46	10/22/15	10/26/15 18:38	151022B11
Parameter		Result	RL		DF	Qua	alifiers
TPH as Motor Oil		ND	25	0	1.00	SG	
Surrogate		<u>Rec. (%)</u>	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		115	68-	-140			
SVE4	15-10-1423-3-J	10/16/15 14:55	Aqueous	GC 46	10/22/15	10/26/15 18:55	151022B11
Parameter		Result		:	DF	Qua	alifiers
TPH as Motor Oil		ND	250	0	1.00	SG	
Surrogate		<u>Rec. (%)</u>	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		125	68-	-140			
SVE5	15-10-1423-4-J	10/16/15 14:35	Aqueous	GC 46	10/22/15	10/26/15 19:13	151022B11
Parameter		Result	RL	:	DF	Qua	alifiers
TPH as Motor Oil		ND	250	0	1.00	SG	
Surrogate		<u>Rec. (%)</u>	<u>Co</u>	ntrol Limits	Qualifiers		
n-Octacosane		111	68-	-140			
SVE6	15-10-1423-5-J	10/16/15 14:10	Aqueous	GC 46	10/22/15	10/26/15 19:31	151022B11
Parameter		Result	RL	:	DF	Qua	alifiers
TPH as Motor Oil		ND	240	0	1.00	SG	
Surrogate		<u>Rec. (%)</u>	Co	ntrol Limits	<u>Qualifiers</u>		
n-Octacosane		117	68-	-140			
SVE7	15-10-1423-6-J	10/16/15 13:40	Aqueous	GC 46	10/22/15	10/26/15 19:48	151022B11
Parameter		Result	RL		DF	Qua	alifiers
TPH as Motor Oil		ND	24	0	1.00	SG	
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers		
. Ostanova							
n-Octacosane		105	68-	-140			

Return to Contents

Cardno			Date Rec	eived:			10/20/15	
601 North McDowell Blvd.				ler:			15-10-1423	
Petaluma, CA 94954-2312				on:		EPA 3510C		
						EPA 8015B (M		
			Units:				ug/L	
Project: ExxonMobil 79374/0227350	;					Pa	ge 2 of 2	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrume	nt Date Prepared	Date/Time Analyzed	QC Batch ID	
Method Blank	099-15-278-1028	N/A	Aqueou	s GC 46	10/22/15	10/26/15 17:09	151022B11	
Parameter		Result	ļ	RL	DF	Qua	lifiers	
TPH as Motor Oil		ND	2	250	1.00			
Surrogate		<u>Rec. (%)</u>	<u>(</u>	Control Limits	Qualifiers			
n-Octacosane		105	(68-140				

Cardaa			Data Baaai	vod			10/20/15
			Dale Recei	veu.			10/20/13
				•			15-10-1423
Petaluma, CA 94954-2312			Preparation	1:		-	EPA 3510C
			vietnod:			E	PA 8015B (M)
	-		Units:			_	ug/L
Project: ExxonMobil 79374/022735	С					Pa	age 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW9	15-10-1423-2-J	10/16/15 13:15	Aqueous	GC 46	10/22/15	10/26/15 18:38	151022B10
Parameter		Result	RL		DF	<u>Qu</u>	alifiers
TPH as Diesel		270	49		1.00	SG	i,HD
Surrogate		Rec. (%)	Co	ntrol Limits	Qualifiers		
n-Octacosane		115	68-	-140			
SVE4	15-10-1423-3-J	10/16/15 14:55	Aqueous	GC 46	10/22/15	10/26/15 18:55	151022B10
Parameter		Result	RL		DF	Qu	alifiers
TPH as Diesel		840	50		1.00	SG	i,HD
Surrogata		$D_{\alpha\alpha}$ (9()	Co	ntrol Limito	Qualifiara		
<u>Surrogate</u>		<u>Rec. (%)</u> 125	<u>C0</u> 68.		Quaimers		
		125	00	140			
SVE5	15-10-1423-4-J	10/16/15 14:35	Aqueous	GC 46	10/22/15	10/26/15 19:13	151022B10
SVE5 Parameter	15-10-1423-4-J	10/16/15 14:35 <u>Result</u>	Aqueous	GC 46	10/22/15 DE	10/26/15 19:13 Qu	151022B10 alifiers
SVE5 Parameter TPH as Diesel	15-10-1423-4-J	10/16/15 14:35 <u>Result</u> 2000	Aqueous <u>RL</u> 50	GC 46	10/22/15 DF 1.00	10/26/15 19:13 Qu SG	151022B10 alifiers i,HD
SVE5 Parameter TPH as Diesel Surrogate	15-10-1423-4-J	10/16/15 14:35 <u>Result</u> 2000 Rec. (%)	Aqueous RL 50 Co	GC 46	10/22/15 DF 1.00 Qualifiers	10/26/15 19:13 Qu SG	151022B10 alifiers ;HD
SVE5 Parameter TPH as Diesel Surrogate n-Octacosane	15-10-1423-4-J	10/16/15 14:35 <u>Result</u> 2000 <u>Rec. (%)</u> 111	Aqueous <u>RL</u> 50 <u>Co</u> 68-	GC 46	10/22/15 DF 1.00 Qualifiers	10/26/15 19:13 Qu SG	151022B10 <u>alifiers</u> ;,HD
SVE5 Parameter TPH as Diesel <u>Surrogate</u> n-Octacosane	15-10-1423-4-J	10/16/15 14:35 <u>Result</u> 2000 <u>Rec. (%)</u> 111	Aqueous <u>RL</u> 50 <u>Co</u> 68-	GC 46 ntrol Limits -140	10/22/15 DE 1.00 Qualifiers	10/26/15 19:13 Qu SG	151022B10 alifiers ;,HD
SVE5 Parameter TPH as Diesel <u>Surrogate</u> n-Octacosane SVE6	15-10-1423-4-J 15-10-1423-5-J	10/16/15 14:35 <u>Result</u> 2000 <u>Rec. (%)</u> 111 10/16/15 14:10	Aqueous RL 50 <u>Co</u> 68: Aqueous	GC 46 ntrol Limits 140 GC 46	10/22/15 DF 1.00 Qualifiers 10/22/15	10/26/15 19:13 Qu SG 10/26/15 19:31	151022B10 alifiers ;,HD 151022B10
SVE5 Parameter TPH as Diesel Surrogate n-Octacosane SVE6 Parameter	15-10-1423-4-J 15-10-1423-5-J	10/16/15 14:35 Result 2000 Rec. (%) 111 10/16/15 14:10 Result	Aqueous RL 50 Co 68 Aqueous RL	GC 46 ntrol Limits 140 GC 46	10/22/15 DF 1.00 Qualifiers 10/22/15 DF	10/26/15 19:13 Qu SG 10/26/15 19:31 Qu	151022B10 alifiers ;,HD 151022B10 alifiers
SVE5 Parameter TPH as Diesel Surrogate n-Octacosane SVE6 Parameter TPH as Diesel	15-10-1423-4-J 15-10-1423-5-J	10/16/15 14:35 Result 2000 <u>Rec. (%)</u> 111 10/16/15 14:10 <u>Result</u> 390	Aqueous RL 50 Co 68 Aqueous RL 47	GC 46 ntrol Limits 140 GC 46	10/22/15 DF 1.00 Qualifiers 10/22/15 DF 1.00	10/26/15 19:13 Qu SG 10/26/15 19:31 Qu SG	151022B10 alifiers ;,HD 151022B10 alifiers ;,HD
SVE5 Parameter TPH as Diesel Surrogate n-Octacosane SVE6 Parameter TPH as Diesel Surrogate	15-10-1423-4-J 15-10-1423-5-J	10/16/15 14:35 Result 2000 Rec. (%) 111 10/16/15 14:10 Result 390 Rec. (%)	Aqueous RL 50 Co 68 Aqueous RL 47 Co	GC 46	10/22/15 DF 1.00 Qualifiers 10/22/15 DF 1.00 Qualifiers	10/26/15 19:13 Qu SG 10/26/15 19:31 Qu SG	151022B10 <u>alifiers</u> i,HD 151022B10 <u>alifiers</u> i,HD
SVE5 Parameter TPH as Diesel Surrogate n-Octacosane SVE6 Parameter TPH as Diesel Surrogate n-Octacosane n-Octacosane	15-10-1423-4-J 15-10-1423-5-J	10/16/15 14:35 Result 2000 <u>Rec. (%)</u> 111 10/16/15 14:10 <u>Result</u> 390 <u>Rec. (%)</u> 117	Aqueous RL 50 Co 68: Aqueous RL 47 Co 68:	GC 46 ntrol Limits 140 GC 46 ntrol Limits 140	10/22/15 DE 1.00 Qualifiers 10/22/15 DE 1.00 Qualifiers	10/26/15 19:13 Qu SG 10/26/15 19:31 Qu SG	151022B10 alifiers ;,HD 151022B10 alifiers ;,HD
SVE5 Parameter TPH as Diesel Surrogate n-Octacosane SVE6 Parameter TPH as Diesel Surrogate n-Octacosane	15-10-1423-4-J 15-10-1423-5-J	10/16/15 14:35 Result 2000 <u>Rec. (%)</u> 111 10/16/15 14:10 <u>Result</u> 390 <u>Rec. (%)</u> 117	Aqueous RL 50 Co 68- Aqueous RL 47 Co 68-	GC 46 ntrol Limits 140 GC 46 ntrol Limits 140	10/22/15 DF 1.00 Qualifiers 10/22/15 DF 1.00 Qualifiers	10/26/15 19:13 Qu SG 10/26/15 19:31 Qu SG	151022B10 <u>alifiers</u> ;,HD 151022B10 <u>alifiers</u> ;,HD
SVE5 Parameter TPH as Diesel Surrogate n-Octacosane SVE6 Parameter TPH as Diesel Surrogate n-Octacosane SvE6 Parameter TPH as Diesel Surrogate n-Octacosane SvE7	15-10-1423-4-J 15-10-1423-5-J 15-10-1423-6-J	10/16/15 14:35 Result 2000 Rec. (%) 111 10/16/15 14:10 Result 390 Rec. (%) 117 10/16/15 13:40	Aqueous RL 50 Co 68 Aqueous RL 47 Co 68 Aqueous Aqueous	GC 46 ntrol Limits 140 GC 46 ntrol Limits 140 GC 46	10/22/15 DF 1.00 Qualifiers 10/22/15 DF 1.00 Qualifiers 10/22/15	10/26/15 19:13 Qu SG 10/26/15 19:31 Qu SG 10/26/15 19:48	151022B10 alifiers ;,HD 151022B10 alifiers ;,HD 151022B10
SVE5 Parameter TPH as Diesel Surrogate n-Octacosane SVE6 Parameter TPH as Diesel Surrogate n-Octacosane Surrogate n-Octacosane Surrogate n-Octacosane Surrogate n-Octacosane SvE7 Parameter	15-10-1423-4-J 15-10-1423-5-J 15-10-1423-6-J	10/16/15 14:35 Result 2000 Rec. (%) 111 10/16/15 14:10 Result 390 Rec. (%) 117 10/16/15 13:40 Result	Aqueous RL 50 Co 68: Aqueous RL 47 Co 68: Aqueous RL 47 Co 68: Aqueous RL 47 Co 68: Aqueous RL Aqueous	GC 46 ntrol Limits 140 GC 46 ntrol Limits 140 GC 46	10/22/15 DF 1.00 Qualifiers 10/22/15 DF 1.00 Qualifiers 10/22/15 DE	10/26/15 19:13 Qu SG 10/26/15 19:31 Qu SG 10/26/15 19:48 Qu	151022B10 <u>alifiers</u> ,HD 151022B10 <u>alifiers</u> ,HD 151022B10 <u>alifiers</u>
SVE5 Parameter TPH as Diesel Surrogate n-Octacosane SVE6 Parameter TPH as Diesel Surrogate n-Octacosane Sver6 Parameter TPH as Diesel Surrogate n-Octacosane Sver7 Parameter TPH as Diesel	15-10-1423-4-J 15-10-1423-5-J 15-10-1423-6-J	10/16/15 14:35 Result 2000 Rec. (%) 111 10/16/15 14:10 Result 390 Rec. (%) 117 10/16/15 13:40 Result 240	Aqueous RL 50 Co 68- Aqueous RL 47	GC 46 ntrol Limits 140 GC 46 ntrol Limits 140 GC 46	10/22/15 DF 1.00 Qualifiers 10/22/15 DF 1.00 Qualifiers 10/22/15 DF 1.00 Qualifiers 10/22/15 DF 1.00	10/26/15 19:13 Qu SG 10/26/15 19:31 Qu SG 10/26/15 19:48	151022B10 alifiers i,HD 151022B10 alifiers i,HD 151022B10 alifiers i,HD
SVE5 Parameter TPH as Diesel Surrogate n-Octacosane SVE6 Parameter TPH as Diesel Surrogate n-Octacosane Surrogate n-Octacosane Surrogate n-Octacosane Surrogate n-Octacosane SvE7 Parameter TPH as Diesel Surrogate Surrogate Surrogate	15-10-1423-4-J 15-10-1423-5-J 15-10-1423-6-J	10/16/15 14:35 Result 2000 Rec. (%) 111 10/16/15 14:10 Result 390 Rec. (%) 117 10/16/15 13:40 Result 240 Rec. (%)	Aqueous RL 50 Co 68 Aqueous RL 47 Co 68 Aqueous RL 47 Co	GC 46	10/22/15 DF 1.00 Qualifiers 10/22/15 DF 1.00 Qualifiers DF 1.00	10/26/15 19:13 Qu SG 10/26/15 19:31 Qu SG 10/26/15 19:48 Qu SG	151022B10 alifiers alifiers alifiers alifiers alifiers alifiers alifiers alifiers alifiers alifiers
SVE5 Parameter TPH as Diesel Surrogate n-Octacosane SVE6 Parameter TPH as Diesel Surrogate n-Octacosane Surrogate n-Octacosane Surrogate n-Octacosane SVE7 Parameter TPH as Diesel Surrogate n-Octacosane	15-10-1423-4-J 15-10-1423-5-J 15-10-1423-6-J	10/16/15 14:35 Result 2000 Rec. (%) 111 10/16/15 14:10 Result 390 Rec. (%) 117 10/16/15 13:40 Result 240 Result 240 Rec. (%) 105	Aqueous RL 50 Co 68- Aqueous RL 47 Co 68-	GC 46 ntrol Limits 140 GC 46 ntrol Limits 140 GC 46 ntrol Limits 140	10/22/15 DF 1.00 Qualifiers 10/22/15 DF 1.00 Qualifiers 10/22/15 DF 1.00 Qualifiers 10/22/15 DF 1.00 Qualifiers 0 Qualifiers	10/26/15 19:13 Qu SG 10/26/15 19:31 Qu SG 10/26/15 19:48	151022B10 alifiers i,HD 151022B10 alifiers i,HD alifiers i,HD

Return to Contents

Cardno			Date Rece	eived:			10/20/15	
601 North McDowell Blvd.				er:			15-10-1423	
Petaluma, CA 94954-2312				on:		EPA 3510C		
						EPA 8015B (M		
			Units:				ug/L	
Project: ExxonMobil 79374/0227350)					Pa	ge 2 of 2	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
Method Blank	099-15-304-1203	N/A	Aqueous	GC 46	10/22/15	10/26/15 17:09	151022B10	
Parameter		Result	<u> </u>	<u>RL</u>	DF	Qual	ifiers	
TPH as Diesel		ND	5	60	1.00			
Surrogate		<u>Rec. (%)</u>	<u>(</u>	Control Limits	<u>Qualifiers</u>			
n-Octacosane		105	6	8-140				

Cardno			Date Receiv	ved:			10/20/15
601 North McDowell Blvd.			Work Order	:			15-10-1423
Petaluma, CA 94954-2312			Preparation	:			EPA 5030C
			Method:			E	PA 8015B (M)
			Units:				ug/L
Project: ExxonMobil 79374/0227	735C					Pa	ige 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW9	15-10-1423-2-F	10/16/15 13:15	Aqueous	GC 1	10/29/15	10/30/15 01:30	151029L043
Parameter		Result	RL		DF	Qua	alifiers
TPH as Gasoline		360	50		1.00	HD	
Surrogate		<u>Rec. (%)</u>	<u>Co</u>	ntrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		60	38-	134			
SVE4	15-10-1423-3-F	10/16/15 14:55	Aqueous	GC 1	10/29/15	10/30/15 03:16	151029L043
Parameter		Result	RL		DF	Qua	alifiers
TPH as Gasoline		830	50		1.00	HD	
Surrogate		<u>Rec. (%)</u>	<u>Co</u>	ntrol Limits	Qualifiers		
1,4-Bromofluorobenzene		65	38-	134			
SVE5	15-10-1423-4-F	10/16/15	Aqueous	GC 1	10/29/15	10/30/15 06:14	151029L043
		14.55				••••	
Parameter		Result	<u></u>		DE	Qua	alifiers
Parameter TPH as Gasoline		<u>Result</u> 1700	<u>RL</u> 100)	<u>DF</u> 2.00	Qua HD	alifiers
Parameter TPH as Gasoline Surrogate		<u>Result</u> 1700 <u>Rec. (%)</u>	<u>RL</u> 100 <u>Co</u>) ntrol Limits	<u>DF</u> 2.00 <u>Qualifiers</u>	Qua HD	alifiers
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene		<u>Result</u> 1700 <u>Rec. (%)</u> 65	<u>RL</u> 100 <u>Co</u> 38-) <u>ntrol Limits</u> 134	<u>DF</u> 2.00 <u>Qualifiers</u>	Qua HD	<u>alifiers</u>
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene SVE6	15-10-1423-5-F	Result 1700 Rec. (%) 65 10/16/15 14:10	RL 100 <u>Co</u> 38- Aqueous) n <u>trol Limits</u> 134 GC 1	DF 2.00 Qualifiers 10/29/15	<u>Qua</u> HD 10/30/15 05:03	alifiers 151029L043
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene SVE6 Parameter	15-10-1423-5-F	Result 1700 Rec. (%) 65 10/16/15 14:10 Result	RL 100 <u>Co</u> 38- Aqueous <u>RL</u>) ntrol Limits 134 GC 1	DF 2.00 Qualifiers 10/29/15 DF	Qua HD 10/30/15 05:03 Qua	alifiers 151029L043 alifiers
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene SVE6 Parameter TPH as Gasoline	15-10-1423-5-F	Result 1700 <u>Rec. (%)</u> 65 10/16/15 14:10 Result 490	RL 100 38- Aqueous RL 50) ntrol Limits 134 GC 1	DF 2.00 Qualifiers 10/29/15 DF 1.00	Qua HD 10/30/15 05:03 Qua	alifiers 151029L043 alifiers
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene SVE6 Parameter TPH as Gasoline Surrogate	15-10-1423-5-F	Result 1700 Rec. (%) 65 10/16/15 14:10 Result 490 Rec. (%)	RL 100 Co 38- Aqueous RL 50 Co) ntrol Limits 134 GC 1	DF 2.00 Qualifiers 10/29/15 DF 1.00 Qualifiers	Qua HD 10/30/15 05:03 Qua	alifiers 151029L043 alifiers
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene SVE6 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene	15-10-1423-5-F	Result 1700 Rec. (%) 65 10/16/15 14:10 Result 490 Rec. (%) 59	RL 100 Co 38- Aqueous RL 50 Co 38-) ntrol Limits 134 GC 1 ntrol Limits 134	DF 2.00 Qualifiers 10/29/15 DF 1.00 Qualifiers	Qua HD 10/30/15 05:03	alifiers 151029L043 alifiers
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene SVE6 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene Surrogate 1,4-Bromofluorobenzene	15-10-1423-5-F 15-10-1423-6-F	Result 1700 Rec. (%) 65 10/16/15 14:10 Result 490 Rec. (%) 59 10/16/15 13:40	RL 100 <u>Co</u> 38- Aqueous RL 50 <u>Co</u> 38- Aqueous RL 50 <u>Co</u> 38- Aqueous) ntrol Limits 134 GC 1 ntrol Limits 134 GC 1	DF 2.00 Qualifiers 10/29/15 DF 1.00 Qualifiers 10/29/15	Qua HD 10/30/15 05:03 Qua 10/30/15 05:38	alifiers 151029L043 alifiers 151029L043
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene SVE6 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene Sverameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene Sverameter TPH as Gasoline	15-10-1423-5-F 15-10-1423-6-F	Result 1700 Rec. (%) 65 10/16/15 14:10 Result 490 Rec. (%) 59 10/16/15 13:40 Result	RL 100 Co 38- Aqueous RL 50 Co 38- Aqueous RL 50 Co 38- Aqueous RL 50 Co 38- Aqueous RL) ntrol Limits 134 GC 1 ntrol Limits 134 GC 1	DE 2.00 Qualifiers 10/29/15 DE 1.00 Qualifiers 10/29/15 DE	Qua HD 10/30/15 05:03 Qua 10/30/15 05:38	alifiers 151029L043 alifiers 151029L043 alifiers
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene SVE6 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene Surrogate 1,4-Bromofluorobenzene Surrogate 1,4-Bromofluorobenzene Surrogate 1,4-Bromofluorobenzene TPH as Gasoline	15-10-1423-5-F 15-10-1423-6-F	Result 1700 Rec. (%) 65 10/16/15 14:10 Result 490 Rec. (%) 59 10/16/15 13:40 Result 440	RL 100 Co 38- Aqueous RL 50 Co 38- Aqueous RL 50 Aqueous RL 50 Co 38- Aqueous RL 50) ntrol Limits 134 GC 1 ntrol Limits 134 GC 1	DF 2.00 Qualifiers 10/29/15 DF 1.00 Qualifiers 10/29/15 DF 1.00	Qua HD 10/30/15 05:03 Qua 10/30/15 05:38 Qua HD	alifiers 151029L043 alifiers 151029L043 alifiers
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene SVE6 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene Surrogate 1,4-Bromofluorobenzene Surrogate 1,4-Bromofluorobenzene SvE7 Parameter TPH as Gasoline Surrogate Surrogate Surrogate	15-10-1423-5-F 15-10-1423-6-F	Result 1700 Rec. (%) 65 10/16/15 14:10 Result 490 Rec. (%) 59 10/16/15 13:40 Result 440 Rec. (%)	RL 100 Co 38- Aqueous RL 50 Co 38- Aqueous RL 50 Co 38- Aqueous RL 50 Co 38- Aqueous Co 50 Co Co) <u>ntrol Limits</u> 134 GC 1 <u>ntrol Limits</u> 134 GC 1 <u>GC 1</u>	DF 2.00 Qualifiers 10/29/15 DF 1.00 Qualifiers DF 1.00 DE 1.00	Qua HD 10/30/15 05:03 Qua 10/30/15 05:38 Qua HD	alifiers 151029L043 alifiers 151029L043 alifiers
Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene SVE6 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene Surrogate 1,4-Bromofluorobenzene Surrogate 1,4-Bromofluorobenzene SvE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene	15-10-1423-5-F 15-10-1423-6-F	Result 1700 Rec. (%) 65 10/16/15 14:10 Result 490 Rec. (%) 59 10/16/15 13:40 Result 440 Rec. (%) 66	RL 100 Co 38- Aqueous RL 50 Co 38-) ntrol Limits 134 GC 1 ntrol Limits 134 GC 1 ntrol Limits 134	DF 2.00 Qualifiers 10/29/15 DF 1.00 Qualifiers DE 1.00 Qualifiers	Qua HD 10/30/15 05:03 Qua 10/30/15 05:38 Qua HD	alifiers 151029L043 alifiers 151029L043 alifiers

Return to Contents

Cardno			Date Rece	ived:			10/20/15
601 North McDowell Blvd.			Work Orde	er:			15-10-1423
Petaluma, CA 94954-2312			Preparatio	n:			EPA 5030C
			Method:			E	PA 8015B (M)
			Units:				ug/L
Project: ExxonMobil 79374/0227350	;					Pa	ge 2 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-436-10397	N/A	Aqueous	GC 1	10/29/15	10/29/15 20:10	151029L043
Parameter		Result	<u>R</u>		DF	Qua	lifiers
TPH as Gasoline		ND	50)	1.00		
Surrogate		<u>Rec. (%)</u>	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		56	38	3-134			

Cardno	Date Received:	10/20/15
601 North McDowell Blvd.	Work Order:	15-10-1423
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: ExxonMobil 79374/022735C		Page 1 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW9	15-10-1423-2-A	10/16/15 13:15	Aqueous	GC/MS L	10/28/15	10/29/15 05:52	151028L067
Parameter		Result	RL	:	DF	Qua	lifiers
Benzene		ND	0.5	50	1.00		
Toluene		ND	0.5	50	1.00		
Ethylbenzene		ND	0.5	50	1.00		
o-Xylene		ND	0.5	50	1.00		
p/m-Xylene		ND	0.5	50	1.00		
Xylenes (total)		ND	0.5	50	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	0.5	50	1.00		
Tert-Butyl Alcohol (TBA)		ND	5.0)	1.00		
Diisopropyl Ether (DIPE)		ND	0.5	50	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	0.5	50	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	0.5	50	1.00		
1,1,1,2-Tetrachloroethane		ND	0.5	50	1.00		
1,1,1-Trichloroethane		ND	0.5	50	1.00		
1,1,2,2-Tetrachloroethane		ND	0.5	50	1.00		
1,1,2-Trichloroethane		ND	0.5	50	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND	0.5	50	1.00		
1,1-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	0.5	50	1.00		
1,1-Dichloropropene		ND	0.5	50	1.00		
1,2,3-Trichlorobenzene		ND	0.5	50	1.00		
1,2,3-Trichloropropane		ND	1.0)	1.00		
1,2,4-Trichlorobenzene		ND	0.5	50	1.00		
1,2,4-Trimethylbenzene		ND	0.5	50	1.00		
1,3,5-Trimethylbenzene		ND	0.5	50	1.00		
c-1,2-Dichloroethene		ND	0.5	50	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	0.5	50	1.00		
1,2-Dichlorobenzene		ND	0.5	50	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,2-Dichloropropane		ND	0.5	50	1.00		
t-1,2-Dichloroethene		ND	0.5	50	1.00		
c-1,3-Dichloropropene		ND	0.5	50	1.00		
1,3-Dichlorobenzene		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
t-1,3-Dichloropropene		ND	0.5	50	1.00		

Cardno	Da	10/20/15		
601 North McDowell Blvd.	W	15-10-1423		
Petaluma, CA 94954-2312	Pr	EPA 5030C		
,	M	ethod:		EPA 8260B
	Lh	nits:		
Project: ExxonMobil 79374/022735C		into.		Page 2 of 21
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qualifiers</u>
1,4-Dichlorobenzene	ND	0.50	1.00	
2,2-Dichloropropane	ND	1.0	1.00	
2-Chlorotoluene	ND	0.50	1.00	
4-Chlorotoluene	ND	0.50	1.00	
4-Methyl-2-Pentanone	ND	5.0	1.00	
Acetone	ND	10	1.00	
Bromobenzene	ND	0.50	1.00	
Bromochloromethane	ND	1.0	1.00	
Bromoform	ND	0.50	1.00	
Bromomethane	ND	1.0	1.00	
Carbon Disulfide	ND	1.0	1.00	
Carbon Tetrachloride	ND	0.50	1.00	4
Chlorobenzene	ND	0.50	1.00	
Dibromochloromethane	ND	0.50	1.00	
Chloroethane	ND	0.50	1.00	
Chloroform	4.1	0.50	1.00	
Chloromethane	ND	0.50	1.00	
Dibromomethane	ND	0.50	1.00	
Bromodichloromethane	ND	0.50	1.00	
Dichlorodifluoromethane	ND	1.0	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	1.00	
Isopropylbenzene	1.6	0.50	1.00	
2-Butanone	ND	5.0	1.00	
Methylene Chloride	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Naphthalene	ND	1.0	1.00	
n-Butylbenzene	1.4	0.50	1.00	
n-Propylbenzene	1.9	0.50	1.00	
p-Isopropyltoluene	ND	0.50	1.00	
sec-Butylbenzene	0.93	0.50	1.00	
Styrene	ND	0.50	1.00	
tert-Butylbenzene	ND	0.50	1.00	
Tetrachloroethene	ND	0.50	1.00	
Trichloroethene	ND	0.50	1.00	
Trichlorofluoromethane	ND	0.50	1.00	

1,4-Bromofluorobenzene

RL: Reporting Limit.

Vinyl Chloride

Surrogate

DF: Dilution Factor. MDL: Method Detection Limit.

Rec. (%)

ND

100

0.50

68-120

Control Limits

1.00

Qualifiers

Cardno	Da	te Received:		10/20/15		
601 North McDowell Blvd.	Wo	ork Order:		15-10-1423		
Petaluma, CA 94954-2312	Pre	eparation:		EPA 5030C		
	Me	thod:		EPA 8260B		
	Un		ug/L			
Project: ExxonMobil 79374/022735C				Page 3 of 21		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
Dibromofluoromethane	100	80-127				
1,2-Dichloroethane-d4	100	80-128				
Toluene-d8	102	80-120				

Cardno	Date Received:	10/20/15
601 North McDowell Blvd.	Work Order:	15-10-1423
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: ExxonMobil 79374/022735C		Page 4 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVE4	15-10-1423-3-B	10/16/15 14:55	Aqueous	GC/MS L	10/29/15	10/29/15 19:44	151029L046
Parameter		<u>Result</u>	RL		DF	Qua	lifiers
Toluene		1.2	0.5	0	1.00		
Ethylbenzene		5.0	0.5	0	1.00		
o-Xylene		6.8	0.5	0	1.00		
p/m-Xylene		20	0.5	0	1.00		
Xylenes (total)		26	0.5	0	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	0.5	0	1.00		
Tert-Butyl Alcohol (TBA)		5.4	5.0)	1.00		
Diisopropyl Ether (DIPE)		ND	0.5	0	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	0.5	0	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	0.5	0	1.00		
1,1,1,2-Tetrachloroethane		ND	0.5	0	1.00		
1,1,1-Trichloroethane		ND	0.5	0	1.00		
1,1,2,2-Tetrachloroethane		ND	0.5	0	1.00		
1,1,2-Trichloroethane		ND	0.5	0	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND	0.5	0	1.00		
1,1-Dichloroethane		ND	0.5	0	1.00		
1,1-Dichloroethene		ND	0.5	0	1.00		
1,1-Dichloropropene		ND	0.5	0	1.00		
1,2,3-Trichlorobenzene		ND	0.5	0	1.00		
1,2,3-Trichloropropane		ND	1.0)	1.00		
1,2,4-Trichlorobenzene		ND	0.5	0	1.00		
1,2,4-Trimethylbenzene		7.2	0.5	0	1.00		
1,3,5-Trimethylbenzene		11	0.5	0	1.00		
c-1,2-Dichloroethene		ND	0.5	0	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	0.5	0	1.00		
1,2-Dichlorobenzene		0.68	0.5	0	1.00		
1,2-Dichloroethane		ND	0.5	0	1.00		
1,2-Dichloropropane		ND	0.5	0	1.00		
t-1,2-Dichloroethene		ND	0.5	0	1.00		
c-1,3-Dichloropropene		ND	0.5	0	1.00		
1,3-Dichlorobenzene		ND	0.5	0	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
t-1,3-Dichloropropene		ND	0.5	60	1.00		
1,4-Dichlorobenzene		ND	0.5	0	1.00		

Cardno	D	ate Received:		10/20/15		
601 North McDowell Blvd.	W	/ork Order:		15-10-1423		
Petaluma. CA 94954-2312	P		EPA 5030C			
	М	lethod:		EPA 8260B		
	U	nits:		ua/l		
Project: ExxonMobil 79374/022735C				Page 5 of 21		
Parameter	Result	RL	DF	Qualifiers		
2,2-Dichloropropane	ND	1.0	1.00			
2-Chlorotoluene	ND	0.50	1.00			
4-Chlorotoluene	ND	0.50	1.00			
4-Methyl-2-Pentanone	ND	5.0	1.00			
Acetone	ND	10	1.00			
Bromobenzene	ND	0.50	1.00			
Bromochloromethane	ND	1.0	1.00			
Bromoform	ND	0.50	1.00			
Bromomethane	ND	1.0	1.00			
Carbon Disulfide	ND	1.0	1.00			
Carbon Tetrachloride	ND	0.50	1.00			
Chlorobenzene	ND	0.50	1.00			
Dibromochloromethane	ND	0.50	1.00			
Chloroethane	ND	0.50	1.00			
Chloroform	ND	0.50	1.00			
Chloromethane	ND	0.50	1.00			
Dibromomethane	ND	0.50	1.00			
Bromodichloromethane	ND	0.50	1.00			
Dichlorodifluoromethane	ND	1.0	1.00			
Hexachloro-1,3-Butadiene	ND	2.0	1.00			
Isopropylbenzene	4.3	0.50	1.00			
2-Butanone	ND	5.0	1.00			
Methylene Chloride	ND	1.0	1.00			
2-Hexanone	ND	10	1.00			
Naphthalene	15	1.0	1.00			
n-Butylbenzene	2.5	0.50	1.00			
n-Propylbenzene	2.8	0.50	1.00			
p-Isopropyltoluene	0.59	0.50	1.00			
sec-Butylbenzene	1.5	0.50	1.00			
Styrene	ND	0.50	1.00			
tert-Butylbenzene	0.75	0.50	1.00			
Tetrachloroethene	ND	0.50	1.00			
Trichloroethene	ND	0.50	1.00			
Trichlorofluoromethane	ND	0.50	1.00			
Vinyl Chloride	ND	0.50	1.00			
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	100	68-120				
Dibromofluoromethane	97	80-127				

Cardno			Date Reco	eived:			10/20/15
601 North McDowell Blvd.			Work Ord	er:			15-10-1423
Petaluma, CA 94954-2312			Preparatio	on:			EPA 5030C
			Method:				EPA 8260B
			Units:				ug/L
Project: ExxonMobil 79374/0227350	;					Pa	ge 6 of 21
Surrogate		<u>Rec. (%)</u>	<u>(</u>	Control Limits	<u>Qualifiers</u>		
1,2-Dichloroethane-d4		97	8	30-128			
Toluene-d8		100	8	30-120			
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVE4	15-10-1423-3-C	10/16/15 14:55	Aqueous	s GC/MS L	10/30/15	10/30/15 11:21	151030L013
Parameter		Result	<u>F</u>	RL	DF	Qua	ifiers
Benzene		37	1	.0	2.00		
Surrogate		<u>Rec. (%)</u>	<u>(</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		98	6	68-120			
Dibromofluoromethane		97	8	30-127			
Dibromofluoromethane 1,2-Dichloroethane-d4		97 96	3 8	80-127 80-128			

Cardno	Date Received:	10/20/15
601 North McDowell Blvd.	Work Order:	15-10-1423
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: ExxonMobil 79374/022735C		Page 7 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVE5	15-10-1423-4-A	10/16/15 14:35	Aqueous	GC/MS L	10/28/15	10/29/15 06:49	151028L067
Parameter		<u>Result</u>	RL		DF	Qua	lifiers
Benzene		29	20		40.0		
Toluene		25	20		40.0		
Ethylbenzene		130	20		40.0		
o-Xylene		650	20		40.0		
p/m-Xylene		1600	20		40.0		
Xylenes (total)		2300	20		1.00		
Methyl-t-Butyl Ether (MTBE)		ND	20		40.0		
Tert-Butyl Alcohol (TBA)		ND	200	D	40.0		
Diisopropyl Ether (DIPE)		ND	20		40.0		
Ethyl-t-Butyl Ether (ETBE)		ND	20		40.0		
Tert-Amyl-Methyl Ether (TAME)		ND	20		40.0		
1,1,1,2-Tetrachloroethane		ND	20		40.0		
1,1,1-Trichloroethane		ND	20		40.0		
1,1,2,2-Tetrachloroethane		ND	20		40.0		
1,1,2-Trichloroethane		ND	20		40.0		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND	20		40.0		
1,1-Dichloroethane		ND	20		40.0		
1,1-Dichloroethene		ND	20		40.0		
1,1-Dichloropropene		ND	20		40.0		
1,2,3-Trichlorobenzene		ND	20		40.0		
1,2,3-Trichloropropane		ND	40		40.0		
1,2,4-Trichlorobenzene		ND	20		40.0		
1,2,4-Trimethylbenzene		520	20		40.0		
1,3,5-Trimethylbenzene		210	20		40.0		
c-1,2-Dichloroethene		ND	20		40.0		
1,2-Dibromo-3-Chloropropane		ND	200	D	40.0		
1,2-Dibromoethane		ND	20		40.0		
1,2-Dichlorobenzene		ND	20		40.0		
1,2-Dichloroethane		ND	20		40.0		
1,2-Dichloropropane		ND	20		40.0		
t-1,2-Dichloroethene		ND	20		40.0		
c-1,3-Dichloropropene		ND	20		40.0		
1,3-Dichlorobenzene		ND	20		40.0		
1,3-Dichloropropane		ND	40		40.0		
t-1,3-Dichloropropene		ND	20		40.0		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit. Return to Contents

Cardno		Date Received:		10/20/15		
601 North McDowell Blvd.	Work Order:	15-10-1423				
Petaluma. CA 94954-2312		Preparation:		EPA 5030C		
		Method:		EPA 8260B		
		Units:		ua/L		
Project: ExxonMobil 79374/022735C				Page 8 of 21		
Parameter	Result	RL	DF	Qualifiers		
1,4-Dichlorobenzene	ND	20	40.0			
2,2-Dichloropropane	ND	40	40.0			
2-Chlorotoluene	ND	20	40.0			
4-Chlorotoluene	ND	20	40.0			
4-Methyl-2-Pentanone	ND	200	40.0			
Acetone	ND	400	40.0			
Bromobenzene	ND	20	40.0			
Bromochloromethane	ND	40	40.0			
Bromoform	ND	20	40.0			
Bromomethane	ND	40	40.0			
Carbon Disulfide	ND	40	40.0			
Carbon Tetrachloride	ND	20	40.0			
Chlorobenzene	ND	20	40.0			
Dibromochloromethane	ND	20	40.0			
Chloroethane	ND	20	40.0			
Chloroform	ND	20	40.0			
Chloromethane	ND	20	40.0			
Dibromomethane	ND	20	40.0			
Bromodichloromethane	ND	20	40.0			
Dichlorodifluoromethane	ND	40	40.0			
Hexachloro-1,3-Butadiene	ND	80	40.0			
Isopropylbenzene	28	20	40.0			
2-Butanone	ND	200	40.0			
Methylene Chloride	ND	40	40.0			
2-Hexanone	ND	400	40.0			
Naphthalene	140	40	40.0			
n-Butylbenzene	24	20	40.0			
n-Propylbenzene	ND	20	40.0			
p-lsopropyltoluene	ND	20	40.0			
sec-Butylbenzene	ND	20	40.0			
Styrene	ND	20	40.0			
tert-Butylbenzene	ND	20	40.0			
Tetrachloroethene	ND	20	40.0			
	ND	20	40.0			
I richlorofluoromethane	ND	20	40.0			
Vinyl Chloride	NĎ	20	40.0			
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	99	68-120				

Cardno	Dat	10/20/15		
601 North McDowell Blvd.	Wa	ork Order:		15-10-1423
Petaluma, CA 94954-2312	Pre	eparation:		EPA 5030C
	Ме		EPA 8260B	
	Uni		ug/L	
Project: ExxonMobil 79374/022735C				Page 9 of 21
<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
Dibromofluoromethane	95	80-127		
1,2-Dichloroethane-d4	95	80-128		
Toluene-d8	100	80-120		

Cardno	Date Received:	10/20/15	
601 North McDowell Blvd.	Work Order:	15-10-1423	
Petaluma, CA 94954-2312	Preparation:	EPA 5030C	
	Method:	EPA 8260B	
	Units:	ug/L	
Project: ExxonMobil 79374/022735C		Page 10 of 21	

Project: ExxonMobil 79374/022735C

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVE6	15-10-1423-5-B	10/16/15 14:10	Aqueous	GC/MS L	10/29/15	10/29/15 20:13	151029L046
Parameter		<u>Result</u>	RL		DF	Qua	lifiers
Benzene		31	0.5	50	1.00		
Toluene		1.8	0.5	50	1.00		
Ethylbenzene		4.2	0.5	50	1.00		
o-Xylene		6.4	0.5	50	1.00		
p/m-Xylene		8.2	0.5	50	1.00		
Xylenes (total)		15	0.5	50	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	0.5	50	1.00		
Tert-Butyl Alcohol (TBA)		5.7	5.0)	1.00		
Diisopropyl Ether (DIPE)		ND	0.5	50	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	0.5	50	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	0.5	50	1.00		
1,1,1,2-Tetrachloroethane		ND	0.5	50	1.00		
1,1,1-Trichloroethane		ND	0.5	50	1.00		
1,1,2,2-Tetrachloroethane		ND	0.5	50	1.00		
1,1,2-Trichloroethane		ND	0.5	50	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND	0.5	50	1.00		
1,1-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	0.5	50	1.00		
1,1-Dichloropropene		ND	0.5	50	1.00		
1,2,3-Trichlorobenzene		ND	0.5	50	1.00		
1,2,3-Trichloropropane		ND	1.0)	1.00		
1,2,4-Trichlorobenzene		ND	0.5	50	1.00		
1,2,4-Trimethylbenzene		1.8	0.5	50	1.00		
1,3,5-Trimethylbenzene		14	0.5	50	1.00		
c-1,2-Dichloroethene		ND	0.5	50	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	0.5	50	1.00		
1,2-Dichlorobenzene		ND	0.5	50	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,2-Dichloropropane		ND	0.5	50	1.00		
t-1,2-Dichloroethene		ND	0.5	50	1.00		
c-1,3-Dichloropropene		ND	0.5	50	1.00		
1,3-Dichlorobenzene		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
t-1,3-Dichloropropene		ND	0.5	50	1.00		

Cardno		Date Received:		10/20/15
601 North McDowell Blvd.	Work Order:	15-10-1423		
Petaluma, CA 94954-2312		Preparation:		EPA 5030C
		Method:		EPA 8260B
		Units:		ua/L
Project: ExxonMobil 79374/022735C				Page 11 of 21
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
1,4-Dichlorobenzene	ND	0.50	1.00	
2,2-Dichloropropane	ND	1.0	1.00	
2-Chlorotoluene	ND	0.50	1.00	
4-Chlorotoluene	ND	0.50	1.00	
4-Methyl-2-Pentanone	ND	5.0	1.00	
Acetone	ND	10	1.00	
Bromobenzene	ND	0.50	1.00	
Bromochloromethane	ND	1.0	1.00	
Bromoform	ND	0.50	1.00	
Bromomethane	ND	1.0	1.00	
Carbon Disulfide	ND	1.0	1.00	
Carbon Tetrachloride	ND	0.50	1.00	
Chlorobenzene	ND	0.50	1.00	
Dibromochloromethane	ND	0.50	1.00	
Chloroethane	ND	0.50	1.00	
Chloroform	ND	0.50	1.00	
Chloromethane	ND	0.50	1.00	
Dibromomethane	ND	0.50	1.00	
Bromodichloromethane	ND	0.50	1.00	
Dichlorodifluoromethane	ND	1.0	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	1.00	
Isopropylbenzene	1.3	0.50	1.00	
2-Butanone	ND	5.0	1.00	
Methylene Chloride	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Naphthalene	1.9	1.0	1.00	
n-Butylbenzene	3.1	0.50	1.00	
n-Propylbenzene	0.80	0.50	1.00	
p-Isopropyltoluene	0.99	0.50	1.00	
sec-Butylbenzene	1.0	0.50	1.00	
Styrene	ND	0.50	1.00	
tert-Butylbenzene	ND	0.50	1.00	
I etrachloroethene	ND	0.50	1.00	
	ND	0.50	1.00	
	ND	0.50	1.00	
vinyi Chioriae	NU	0.50	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	97	68-120		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Return to Contents

Cardno	Da	10/20/15		
601 North McDowell Blvd.	Wo		15-10-1423	
Petaluma, CA 94954-2312	Pre	eparation:		EPA 5030C
	Ме		EPA 8260B	
	Un		ug/L	
Project: ExxonMobil 79374/022735C				Page 12 of 21
<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
Dibromofluoromethane	96	80-127		
1,2-Dichloroethane-d4	94	80-128		
Toluene-d8	99	80-120		

Cardno	Date Received:	10/20/15
601 North McDowell Blvd.	Work Order:	15-10-1423
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	ug/L
Project: ExxonMobil 79374/022735C		Page 13 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVE7	15-10-1423-6-A	10/16/15 13:40	Aqueous	GC/MS L	10/28/15	10/29/15 07:47	151028L067
Parameter		Result	RL	:	DF	Qua	lifiers
Benzene		ND	0.5	50	1.00		
Toluene		ND	0.5	50	1.00		
Ethylbenzene		0.70	0.5	50	1.00		
o-Xylene		1.0	0.5	50	1.00		
p/m-Xylene		1.3	0.5	50	1.00		
Xylenes (total)		2.3	0.5	50	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	0.5	50	1.00		
Tert-Butyl Alcohol (TBA)		ND	5.0)	1.00		
Diisopropyl Ether (DIPE)		ND	0.5	50	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	0.5	50	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	0.5	50	1.00		
1,1,1,2-Tetrachloroethane		ND	0.5	50	1.00		
1,1,1-Trichloroethane		ND	0.5	50	1.00		
1,1,2,2-Tetrachloroethane		ND	0.5	50	1.00		
1,1,2-Trichloroethane		ND	0.5	50	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND	0.5	50	1.00		
1,1-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	0.5	50	1.00		
1,1-Dichloropropene		ND	0.5	50	1.00		
1,2,3-Trichlorobenzene		ND	0.5	50	1.00		
1,2,3-Trichloropropane		ND	1.0)	1.00		
1,2,4-Trichlorobenzene		ND	0.5	50	1.00		
1,2,4-Trimethylbenzene		ND	0.5	50	1.00		
1,3,5-Trimethylbenzene		ND	0.5	50	1.00		
c-1,2-Dichloroethene		ND	0.5	50	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	0.5	50	1.00		
1,2-Dichlorobenzene		ND	0.5	50	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,2-Dichloropropane		ND	0.5	50	1.00		
t-1,2-Dichloroethene		ND	0.5	50	1.00		
c-1,3-Dichloropropene		ND	0.5	50	1.00		
1,3-Dichlorobenzene		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
t-1,3-Dichloropropene		ND	0.5	50	1.00		

Cardno	D	ate Received:	10/20/15			
601 North McDowell Blvd.	V	/ork Order:		15-10-1423		
Petaluma, CA 94954-2312	Р		EPA 50300			
	N	lethod:		EPA 8260B		
	U	Inits:		ug/L		
Project: ExxonMobil 79374/022735C				Page 14 of 21		
Parameter	<u>Result</u>	<u>RL</u>	DF	Qualifiers		
1,4-Dichlorobenzene	ND	0.50	1.00			
2,2-Dichloropropane	ND	1.0	1.00			
2-Chlorotoluene	ND	0.50	1.00			
4-Chlorololuene		0.50	1.00			
Acetone	ND	10	1.00			
Bromobenzene	ND	0.50	1.00			
Bromochloromethane	ND	1.0	1.00			
Bromoform	ND	0.50	1.00			
Bromomethane	ND	1.0	1.00			
Carbon Disulfide	ND	1.0	1.00			
Carbon Tetrachloride	ND	0.50	1.00			
Chlorobenzene	ND	0.50	1.00			
Dibromochloromethane	ND	0.50	1.00			
Chloroethane	ND	0.50	1.00			
Chloroform	ND	0.50	1.00			
Chloromethane	ND	0.50	1.00			
Dibromomethane	ND	0.50	1.00			
Dichlorodifluoromethane		0.50	1.00			
Hexachloro-1 3-Butadiene		2.0	1.00			
Isonronylbenzene	2.2	0.50	1.00			
2-Butanone	ND	5.0	1.00			
Methylene Chloride	ND	1.0	1.00			
2-Hexanone	ND	10	1.00			
Naphthalene	ND	1.0	1.00			
n-Butylbenzene	0.97	0.50	1.00			
n-Propylbenzene	2.4	0.50	1.00			
p-Isopropyltoluene	ND	0.50	1.00			
sec-Butylbenzene	1.7	0.50	1.00			
Styrene	ND	0.50	1.00			
tert-Butylbenzene	ND	0.50	1.00			
Tetrachloroethene	ND	0.50	1.00			
Trichloroethene	ND	0.50	1.00			
	ND	0.50	1.00			
Vinyi Unionae	NU	0.50	1.00			
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	97	68-120				

RL: Reporting Limit. DF: Dilution Factor.

MDL: Method Detection Limit.

Cardno	Dat	10/20/15		
601 North McDowell Blvd.	Wo		15-10-1423	
Petaluma, CA 94954-2312	Pre	paration:		EPA 5030C
	Me		EPA 8260B ug/L	
	Uni			
Project: ExxonMobil 79374/022735C				Page 15 of 21
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
Dibromofluoromethane	94	80-127		
1,2-Dichloroethane-d4	93	80-128		
Toluene-d8	98	80-120		

Cardno	Date Received:	10/20/15	
601 North McDowell Blvd.	Work Order:	15-10-1423	
Petaluma, CA 94954-2312	Preparation:	EPA 5030C	
	Method:	EPA 8260B	
	Units:	ug/L	
Project: ExxonMobil 79374/022735C		Page 16 of 21	

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-880-1399	N/A	Aqueous	GC/MS L	10/28/15	10/28/15 22:33	151028L067
Parameter		Result	RL	:	DF	Qua	lifiers
Benzene		ND	0.5	50	1.00		
Toluene		ND	0.5	50	1.00		
Ethylbenzene		ND	0.5	50	1.00		
o-Xylene		ND	0.5	50	1.00		
p/m-Xylene		ND	0.5	50	1.00		
Xylenes (total)		ND	0.5	50	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	0.5	50	1.00		
Tert-Butyl Alcohol (TBA)		ND	5.0)	1.00		
Diisopropyl Ether (DIPE)		ND	0.5	50	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	0.5	50	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	0.5	50	1.00		
1,1,1,2-Tetrachloroethane		ND	0.5	50	1.00		
1,1,1-Trichloroethane		ND	0.5	50	1.00		
1,1,2,2-Tetrachloroethane		ND	0.5	50	1.00		
1,1,2-Trichloroethane		ND	0.5	50	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND	0.5	50	1.00		
1,1-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	0.5	50	1.00		
1,1-Dichloropropene		ND	0.5	50	1.00		
1,2,3-Trichlorobenzene		ND	0.5	50	1.00		
1,2,3-Trichloropropane		ND	1.0)	1.00		
1,2,4-Trichlorobenzene		ND	0.5	50	1.00		
1,2,4-Trimethylbenzene		ND	0.5	50	1.00		
1,3,5-Trimethylbenzene		ND	0.5	50	1.00		
c-1,2-Dichloroethene		ND	0.5	50	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	0.5	50	1.00		
1,2-Dichlorobenzene		ND	0.5	50	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,2-Dichloropropane		ND	0.5	50	1.00		
t-1,2-Dichloroethene		ND	0.5	50	1.00		
c-1,3-Dichloropropene		ND	0.5	50	1.00		
1,3-Dichlorobenzene		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
t-1,3-Dichloropropene		ND	0.5	50	1.00		

Page 27 of 45

Cardno	Date Received:			10/20/15		
601 North McDowell Blvd.	Work Order:			15-10-1423		
Petaluma CA 94954-2312		Preparation:		EPA 5030C		
		Method:		EPA 8260B		
		Units:				
Project: ExxonMobil 79374/022735C		Crinto.		Page 17 of 21		
Parameter	Result	RL	DF	Qualifiers		
1,4-Dichlorobenzene	ND	0.50	1.00			
2,2-Dichloropropane	ND	1.0	1.00			
2-Chlorotoluene	ND	0.50	1.00			
4-Chlorotoluene	ND	0.50	1.00			
4-Methyl-2-Pentanone	ND	5.0	1.00			
Acetone	ND	10	1.00			
Bromobenzene	ND	0.50	1.00			
Bromochloromethane	ND	1.0	1.00			
Bromoform	ND	0.50	1.00			
Bromomethane	ND	1.0	1.00			
Carbon Disulfide	ND	1.0	1.00			
Carbon Tetrachloride	ND	0.50	1.00			
Chlorobenzene	ND	0.50	1.00			
Dibromochloromethane	ND	0.50	1.00			
Chloroethane	ND	0.50	1.00			
Chloroform	ND	0.50	1.00			
Chloromethane	ND	0.50	1.00			
Dibromomethane	ND	0.50	1.00			
Bromodichloromethane	ND	0.50	1.00			
Dichlorodifluoromethane	ND	1.0	1.00			
Hexachloro-1,3-Butadiene	ND	2.0	1.00			
Isopropylbenzene	ND	0.50	1.00			
2-Butanone	ND	5.0	1.00			
Methylene Chloride	ND	1.0	1.00			
2-Hexanone	ND	10	1.00			
Naphthalene	ND	1.0	1.00			
n-Butylbenzene	ND	0.50	1.00			
n-Propylbenzene	ND	0.50	1.00			
p-Isopropyltoluene	ND	0.50	1.00			
sec-Butylbenzene	ND	0.50	1.00			
Styrene	ND	0.50	1.00			
tert-Butylbenzene	ND	0.50	1.00			
Tetrachloroethene	ND	0.50	1.00			
Trichloroethene	ND	0.50	1.00			
Trichlorofluoromethane	ND	0.50	1.00			
Vinyl Chloride	ND	0.50	1.00			
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	96	68-120				

RL: Reporting Limit. DF: Dilution Factor.

MDL: Method Detection Limit.

Cardno	Dat	te Received:	10/20/15		
601 North McDowell Blvd.	Wa	Work Order:			
Petaluma, CA 94954-2312	Pre	Preparation:			
	Method: Units:			EPA 8260B ug/L	
Project: ExxonMobil 79374/022735C				Page 18 of 21	
<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
Dibromofluoromethane	102	80-127			
1,2-Dichloroethane-d4	101	80-128			
Toluene-d8	96	80-120			

Cardno	Date Received:	10/20/15	
601 North McDowell Blvd.	Work Order:	15-10-1423	
Petaluma, CA 94954-2312	Preparation:	EPA 5030C	
	Method:	EPA 8260B	
	Units:	ug/L	
Project: ExxonMobil 79374/022735C	Page 19 of 21		

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-880-1400	N/A	Aqueous	GC/MS L	10/29/15	10/29/15 12:17	151029L046
Parameter		Result	RL	:	DF	Qua	lifiers
Benzene		ND	0.5	50	1.00		
Toluene		ND	0.5	50	1.00		
Ethylbenzene		ND	0.5	50	1.00		
o-Xylene		ND	0.5	50	1.00		
p/m-Xylene		ND	0.5	50	1.00		
Xylenes (total)		ND	0.5	50	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	0.5	50	1.00		
Tert-Butyl Alcohol (TBA)		ND	5.0)	1.00		
Diisopropyl Ether (DIPE)		ND	0.5	50	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND	0.5	50	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND	0.5	50	1.00		
1,1,1,2-Tetrachloroethane		ND	0.5	50	1.00		
1,1,1-Trichloroethane		ND	0.5	50	1.00		
1,1,2,2-Tetrachloroethane		ND	0.5	50	1.00		
1,1,2-Trichloroethane		ND	0.5	50	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND	0.5	50	1.00		
1,1-Dichloroethane		ND	0.5	50	1.00		
1,1-Dichloroethene		ND	0.5	50	1.00		
1,1-Dichloropropene		ND	0.5	50	1.00		
1,2,3-Trichlorobenzene		ND	0.5	50	1.00		
1,2,3-Trichloropropane		ND	1.0)	1.00		
1,2,4-Trichlorobenzene		ND	0.5	50	1.00		
1,2,4-Trimethylbenzene		ND	0.5	50	1.00		
1,3,5-Trimethylbenzene		ND	0.5	50	1.00		
c-1,2-Dichloroethene		ND	0.5	50	1.00		
1,2-Dibromo-3-Chloropropane		ND	5.0)	1.00		
1,2-Dibromoethane		ND	0.5	50	1.00		
1,2-Dichlorobenzene		ND	0.5	50	1.00		
1,2-Dichloroethane		ND	0.5	50	1.00		
1,2-Dichloropropane		ND	0.5	50	1.00		
t-1,2-Dichloroethene		ND	0.5	50	1.00		
c-1,3-Dichloropropene		ND	0.5	50	1.00		
1,3-Dichlorobenzene		ND	0.5	50	1.00		
1,3-Dichloropropane		ND	1.0)	1.00		
t-1,3-Dichloropropene		ND	0.5	50	1.00		

Cardno		Date Received:	10/20/15	
601 North McDowell Blvd.	N N	Work Order:	15-10-1423	
Petaluma, CA 94954-2312		Preparation:		EPA 5030C
· · · · · · · · · · · · · · · · · · ·	1	Vethod:		EPA 8260B
		Inits:		
Project: ExxonMobil 79374/022735C			Page 20 of 21	
Parameter	Result	RL	DF	Qualifiers
1,4-Dichlorobenzene	ND	0.50	1.00	
2,2-Dichloropropane	ND	1.0	1.00	
2-Chlorotoluene	ND	0.50	1.00	
4-Chlorotoluene	ND	0.50	1.00	
4-Methyl-2-Pentanone	ND	5.0	1.00	
Acetone	ND	10	1.00	
Bromobenzene	ND	0.50	1.00	
Bromochloromethane	ND	1.0	1.00	
Bromoform	ND	0.50	1.00	
Bromomethane	ND	1.0	1.00	
Carbon Disulfide	ND	1.0	1.00	
Carbon Tetrachloride	ND	0.50	1.00	
Chlorobenzene	ND	0.50	1.00	
Dibromochloromethane	ND	0.50	1.00	
Chloroethane	ND	0.50	1.00	
Chloroform	ND	0.50	1.00	
Chloromethane	ND	0.50	1.00	
Dibromomethane	ND	0.50	1.00	
Bromodichloromethane	ND	0.50	1.00	
Dichlorodifluoromethane	ND	1.0	1.00	
Hexachloro-1,3-Butadiene	ND	2.0	1.00	
Isopropylbenzene	ND	0.50	1.00	
2-Butanone	ND	5.0	1.00	
Methylene Chloride	ND	1.0	1.00	
2-Hexanone	ND	10	1.00	
Naphthalene	ND	1.0	1.00	
n-Butylbenzene	ND	0.50	1.00	
n-Propylbenzene	ND	0.50	1.00	
p-Isopropyltoluene	ND	0.50	1.00	
sec-Butylbenzene	ND	0.50	1.00	
Styrene	ND	0.50	1.00	
tert-Butylbenzene	ND	0.50	1.00	
Tetrachloroethene	ND	0.50	1.00	
Trichloroethene	ND	0.50	1.00	
Trichlorofluoromethane	ND	0.50	1.00	
Vinyl Chloride	ND	0.50	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>	
1,4-Bromofluorobenzene	97	68-120		

RL: Reporting Limit. DF: Dilution Factor.

MDL: Method Detection Limit.

Cardno			Date Rece	eived:			10/20/15
601 North McDowell Blvd.			Work Orde	er:			15-10-1423
Petaluma, CA 94954-2312			Preparatio	n:			EPA 5030C
			Method:				EPA 8260B
			Units:				ug/L
Project: ExxonMobil 79374/0227350	C					Page	e 21 of 21
Surrogate		<u>Rec. (%)</u>	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
Dibromofluoromethane		96	8	0-127			
1,2-Dichloroethane-d4		91	8	0-128			
Toluene-d8		97	8	0-120			
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-880-1401	N/A	Aqueous	GC/MS L	10/30/15	10/30/15 10:20	151030L013
Parameter		Result	<u>R</u>	L	DF	Qual	fiers
Benzene		ND	0.	.50	1.00		
<u>Surrogate</u>		<u>Rec. (%)</u>	<u>C</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		95	6	8-120			
Dibromofluoromethane		101	8	0-127			
1,2-Dichloroethane-d4		100	8	0-128			
Toluene-d8		97	8	0-120			

Quality Control - Spike/Spike Duplicate

Cardno				Dat	te Received:					10/20/15
601 North McDowell Blvd.				Wo	ork Order:				15	-10-1423
Petaluma, CA 94954-2312				Pre	eparation:				EP	A 5030C
				Me	thod:				EPA 8	015B (M)
Project: ExxonMobil 79374/02	22735C								Page 1	of 4
Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepared	Date Anal	yzed	MS/MSD Bate	h Number
15-10-1440-1	Sample		Aqueous		GC 1	10/29/15	10/29/15	20:46	151029S025	
15-10-1440-1	Matrix Spike		Aqueous		GC 1	10/29/15	10/29/15	21:21	151029S025	
15-10-1440-1	Matrix Spike	Ouplicate	Aqueous		GC 1	10/29/15	10/29/15	21:57	151029S025	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Re	<u>MSD</u> c. <u>Conc.</u>	<u>MSD</u> <u>%Rec.</u>	%Rec. CL	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
TPH as Gasoline	ND	2000	1908	95	1913	96	68-122	0	0-18	

Calscience

Cardno	Date Received:	10/20/15
601 North McDowell Blvd.	Work Order:	15-10-1423
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 79374/022735C		Page 2 of 4

Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
15-10-1705-14	Sample		Aqueous		GC/MS L	10/28/15	10/28/15	23:11	151028S024	
15-10-1705-14	Matrix Spike		Aqueous		GC/MS L	10/28/15	10/28/15	23:40	151028S024	
15-10-1705-14	Matrix Spike	Duplicate	Aqueous		GC/MS L	10/28/15	10/29/15	00:08 [·]	151028S024	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Red	<u>MSD</u> c. <u>Conc.</u>	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Benzene	ND	10.00	11.06	111	10.91	109	75-125	1	0-20	
Toluene	ND	10.00	11.11	111	10.96	110	75-125	1	0-20	
Ethylbenzene	ND	10.00	11.15	112	11.02	110	75-125	1	0-20	
o-Xylene	ND	10.00	10.93	109	10.76	108	75-127	1	0-20	
p/m-Xylene	ND	20.00	22.45	112	22.03	110	75-125	2	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	8.970	90	9.905	99	71-131	10	0-20	
Tert-Butyl Alcohol (TBA)	23.41	50.00	74.84	103	74.36	102	20-180	1	0-40	
Diisopropyl Ether (DIPE)	2.226	10.00	12.25	100	12.16	99	64-136	1	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	10.00	9.606	96	9.619	96	73-133	0	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	10.00	10.03	100	9.844	98	75-125	2	0-20	
1,1-Dichloroethene	ND	10.00	11.89	119	11.59	116	66-126	2	0-20	
1,2-Dibromoethane	ND	10.00	10.02	100	9.912	99	75-126	1	0-20	
1,2-Dichlorobenzene	ND	10.00	10.26	103	10.44	104	75-125	2	0-20	
1,2-Dichloroethane	169.2	10.00	183.4	142	176.8	75	75-127	4	0-20	HX
Carbon Tetrachloride	ND	10.00	11.62	116	11.13	111	69-135	4	0-20	
Chlorobenzene	ND	10.00	10.48	105	10.42	104	75-125	1	0-20	
Trichloroethene	ND	10.00	10.90	109	10.80	108	75-125	1	0-20	
Vinyl Chloride	38.26	10.00	47.23	90	47.51	93	52-142	1	0-20	

Return to Contents

Calscience

Cardno	Date Received:	10/20/15
601 North McDowell Blvd.	Work Order:	15-10-1423
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 79374/022735C		Page 3 of 4

Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
15-10-1810-10	Sample		Aqueous		GC/MS L	10/29/15	10/29/15	13:30	151029S004	
15-10-1810-10	Matrix Spike		Aqueous		GC/MS L	10/29/15	10/29/15	13:59	151029S004	
15-10-1810-10	Matrix Spike	Duplicate	Aqueous		GC/MS L	10/29/15	10/29/15	14:28	151029S004	
Parameter	<u>Sample</u> Conc.	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Red	<u>MSD</u> c. <u>Conc.</u>	<u>MSD</u> %Rec.	%Rec. CL	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Benzene	8.026	50.00	56.13	96	58.09	100	75-125	3	0-20	
Toluene	8.965	50.00	58.55	99	60.86	104	75-125	4	0-20	
Ethylbenzene	ND	50.00	50.63	101	53.07	106	75-125	5	0-20	
o-Xylene	ND	50.00	49.81	100	52.55	105	75-127	5	0-20	
p/m-Xylene	ND	100.0	101.8	102	107.3	107	75-125	5	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	50.00	44.28	89	49.98	100	71-131	12	0-20	
Tert-Butyl Alcohol (TBA)	74.34	250.0	320.0	98	318.2	98	20-180	1	0-40	
Diisopropyl Ether (DIPE)	ND	50.00	45.34	91	47.67	95	64-136	5	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	50.00	47.00	94	50.02	100	73-133	6	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	50.00	48.92	98	52.62	105	75-125	7	0-20	
1,1-Dichloroethene	20.68	50.00	67.28	93	67.73	94	66-126	1	0-20	
1,2-Dibromoethane	ND	50.00	47.54	95	50.64	101	75-126	6	0-20	
1,2-Dichlorobenzene	ND	50.00	50.22	100	53.17	106	75-125	6	0-20	
1,2-Dichloroethane	910.0	50.00	900.6	0	903.4	0	75-127	0	0-20	HX
Carbon Tetrachloride	ND	50.00	49.40	99	51.32	103	69-135	4	0-20	
Chlorobenzene	3.714	50.00	51.45	95	53.43	99	75-125	4	0-20	
Trichloroethene	19.89	50.00	67.56	95	69.51	99	75-125	3	0-20	
Vinyl Chloride	540.8	50.00	551.3	21	533.6	0	52-142	3	0-20	HX

Calscience

Cardno	Date Received:	10/20/15
601 North McDowell Blvd.	Work Order:	15-10-1423
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 79374/022735C		Page 4 of 4

Quality Control Sample ID	Туре		Matrix	I	Instrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
15-10-1810-2	Sample		Aqueous	; (GC/MS L	10/30/15	10/30/15 10/30/15 10:52		2 151030S005	
15-10-1810-2	Matrix Spike		Aqueous	; (GC/MS L	10/30/15	10/30/15	11:49	151030S005	
15-10-1810-2	Matrix Spike	Duplicate	Aqueous	; (GC/MS L	10/30/15	10/30/15	12:18	151030S005	
Parameter	<u>Sample</u> Conc.	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec	<u>MSD</u> c. Conc.	<u>MSD</u> %Rec.	%Rec. CL	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Benzene	4.108	10.00	14.15	100	14.33	102	75-125	1	0-20	
Toluene	ND	10.00	10.09	101	10.51	105	75-125	4	0-20	
Ethylbenzene	ND	10.00	10.16	102	10.61	106	75-125	4	0-20	
o-Xylene	ND	10.00	9.998	100	10.28	103	75-127	3	0-20	
p/m-Xylene	ND	20.00	20.18	101	20.92	105	75-125	4	0-20	
Methyl-t-Butyl Ether (MTBE)	ND	10.00	10.23	102	10.50	105	71-131	3	0-20	
Tert-Butyl Alcohol (TBA)	27.54	50.00	82.59	110	80.79	106	20-180	2	0-40	
Diisopropyl Ether (DIPE)	ND	10.00	9.400	94	9.462	95	64-136	1	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	10.00	9.414	94	9.769	98	73-133	4	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	10.00	9.884	99	10.30	103	75-125	4	0-20	
1,1-Dichloroethene	2.961	10.00	12.37	94	12.52	96	66-126	1	0-20	
1,2-Dibromoethane	ND	10.00	9.529	95	10.07	101	75-126	5	0-20	
1,2-Dichlorobenzene	ND	10.00	9.845	98	10.31	103	75-125	5	0-20	
1,2-Dichloroethane	55.32	10.00	59.69	44	66.04	107	75-127	10	0-20	HX
Carbon Tetrachloride	ND	10.00	9.621	96	10.52	105	69-135	9	0-20	
Chlorobenzene	ND	10.00	9.872	99	10.31	103	75-125	4	0-20	
Trichloroethene	15.12	10.00	23.73	86	24.58	95	75-125	4	0-20	
Vinyl Chloride	216.1	10.00	167.0	0	204.1	0	52-142	20	0-20	HX

Cardno			Date Receive	ed:		10/20/15
601 North McDowell Blvd.			Work Order:			15-10-1423
Petaluma, CA 94954-2312		Preparation:		EPA 3510C		
			Method:			EPA 8015B (M)
Project: ExxonMobil 79374/0	22735C					Page 1 of 6
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number
099-15-278-1028	LCS	Aqueous	GC 46	10/22/15	10/26/15 18:02	151022B11

099-15-278-1028	LCSD	Aqu	eous	GC 46	10/22/15	10/26	/15 18:20	151022B11	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Motor Oil	2000	2341	117	2325	116	75-117	1	0-13	

Quality Control - LCS/LCSD

Cardno			Date Receiv	ved:		10/20/15		
601 North McDowell Blvd.		:	15-10-1423					
Petaluma, CA 94954-2312	2		Preparation	:	EPA 351			
			Method:			EPA 8015B (M)		
Project: ExxonMobil 7937	4/022735C					Page 2 of 6		
Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number		
099-15-304-1203	LCS	Aqueous	GC 46	10/22/15	10/26/15 17:27	151022B10		
000 45 004 4000	1 000	•		10/00/15	40/00/45 47 44	454000040		

099-15-304-1203	LCSD	Aqu	eous	GC 46	10/22/15	10/26	6/15 17:44 ·	151022B10	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Diesel	2000	2120	106	2085	104	75-117	2	0-13	

Cardno	Date Received:	10/20/15
601 North McDowell Blvd.	Work Order:	15-10-1423
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8015B (M)
Project: ExxonMobil 79374/022735C		Page 3 of 6

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-12-436-10397	LCS	Aqueous	GC 1	10/29/15	10/29/15 19:35	151029L043
Parameter		Spike Added	Conc. Recove	red LCS %Re	ec. <u>%Rec</u>	. CL Qualifiers
TPH as Gasoline		2000	1917	96	78-120)

Cardno	Date Received:	10/20/15
601 North McDowell Blvd.	Work Order:	15-10-1423
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 79374/022735C		Page 4 of 6

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Num	nber
099-12-880-1399	LCS	Aqueous	GC/MS L	10/28/15	10/28/15 21:55	151028L067	
Parameter	<u>Spike</u> A	Added Conc.	Recovered LCS	<u>%Rec.</u> %R	ec. CL MI	<u>ECL</u> Q	ualifiers
Benzene	10.00	10.64	106	80-1	120 73	3-127	
Toluene	10.00	10.65	106	80-1	120 73	3-127	
Ethylbenzene	10.00	10.94	109	80-1	120 73	3-127	
o-Xylene	10.00	10.80	108	80-1	120 73	3-127	
p/m-Xylene	20.00	21.84	109	80-1	120 73	3-127	
Methyl-t-Butyl Ether (MTBE)	10.00	8.363	84	75-2	123 67	'-131	
Tert-Butyl Alcohol (TBA)	50.00	50.59	101	80-1	120 73	3-127	
Diisopropyl Ether (DIPE)	10.00	9.559	96	73-1	121 65	5-129	
Ethyl-t-Butyl Ether (ETBE)	10.00	9.206	92	76-1	124 68	3-132	
Tert-Amyl-Methyl Ether (TAME)	10.00	9.249	92	80-1	120 73	3-127	
1,1-Dichloroethene	10.00	10.30	103	77-1	120 70)-127	
1,2-Dibromoethane	10.00	9.435	94	80-1	120 73	3-127	
1,2-Dichlorobenzene	10.00	10.44	104	80-1	120 73	3-127	
1,2-Dichloroethane	10.00	10.12	101	80-1	122 73	3-129	
Carbon Tetrachloride	10.00	10.48	105	80-1	129 72	2-137	
Chlorobenzene	10.00	10.33	103	80-1	120 73	3-127	
Trichloroethene	10.00	10.19	102	80-1	120 73	3-127	
Vinyl Chloride	10.00	10.52	105	63-7	135 51	-147	

Total number of LCS compounds: 18 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

🛟 eurofins Calscience

Cardno	Date Received:	10/20/15
601 North McDowell Blvd.	Work Order:	15-10-1423
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 79374/022735C		Page 5 of 6

Quality Control Sample ID	Туре	Matrix	Instrume	ent	Date Prepare	d Date Analyze	d LCS Batch Nu	umber
099-12-880-1400	LCS	Aqueous	s GC/MS	L	10/29/15	10/29/15 09:4	44 151029L046	
Parameter	<u>S</u>	pike Added	Conc. Recovere	d LCS	<u>%Rec.</u> <u>%</u>	%Rec. CL	ME CL	Qualifiers
Benzene	10	0.00	10.17	102	8	30-120	73-127	
Toluene	10	0.00	10.16	102	8	30-120	73-127	
Ethylbenzene	10	0.00	10.66	107	8	30-120	73-127	
o-Xylene	10	0.00	10.62	106	8	30-120	73-127	
p/m-Xylene	20	0.00	21.20	106	8	30-120	73-127	
Methyl-t-Butyl Ether (MTBE)	10	0.00	10.34	103	7	75-123	67-131	
Tert-Butyl Alcohol (TBA)	50	0.00	50.12	100	8	30-120	73-127	
Diisopropyl Ether (DIPE)	10	0.00	9.586	96	7	73-121	65-129	
Ethyl-t-Butyl Ether (ETBE)	10	0.00	9.712	97	7	76-124	68-132	
Tert-Amyl-Methyl Ether (TAME)	10	0.00	9.900	99	8	30-120	73-127	
1,1-Dichloroethene	10	0.00	9.225	92	7	7-120	70-127	
1,2-Dibromoethane	10	0.00	9.776	98	8	30-120	73-127	
1,2-Dichlorobenzene	10	0.00	10.34	103	8	30-120	73-127	
1,2-Dichloroethane	10	0.00	9.689	97	8	30-122	73-129	
Carbon Tetrachloride	10	0.00	9.901	99	8	30-129	72-137	
Chlorobenzene	10	0.00	10.09	101	8	30-120	73-127	
Trichloroethene	10	0.00	9.852	99	8	30-120	73-127	
Vinyl Chloride	10	0.00	8.970	90	6	63-135	51-147	

Total number of LCS compounds: 18 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

Cardno	Date Received:	10/20/15
601 North McDowell Blvd.	Work Order:	15-10-1423
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 79374/022735C		Page 6 of 6

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepar	ed Date Analyze	d LCS Batch Nu	umber
099-12-880-1401	LCS	Aqueous	GC/MS L	10/30/15	10/30/15 09:4	46 151030L013	
Parameter	Sp	bike Added C	onc. Recovered	LCS %Rec.	<u>%Rec. CL</u>	ME CL	Qualifiers
Benzene	10	0.00 10	0.26	103	80-120	73-127	
Toluene	10	0.00 10	0.20	102	80-120	73-127	
Ethylbenzene	10).00 1 ²	1.01	110	80-120	73-127	
o-Xylene	10	0.00 10	0.71	107	80-120	73-127	
p/m-Xylene	20	0.00 22	2.19	111	80-120	73-127	
Methyl-t-Butyl Ether (MTBE)	10	0.00 8.	.626	86	75-123	67-131	
Tert-Butyl Alcohol (TBA)	50	0.00 47	7.97	96	80-120	73-127	
Diisopropyl Ether (DIPE)	10	9.00	.208	92	73-121	65-129	
Ethyl-t-Butyl Ether (ETBE)	10	0.00 8.	.501	85	76-124	68-132	
Tert-Amyl-Methyl Ether (TAME)	10	0.00 8.	.546	85	80-120	73-127	
1,1-Dichloroethene	10).00 1 ²	1.37	114	77-120	70-127	
1,2-Dibromoethane	10	0.00 8.	.724	87	80-120	73-127	
1,2-Dichlorobenzene	10	0.00 10	0.00	100	80-120	73-127	
1,2-Dichloroethane	10	9.00	.833	98	80-122	73-129	
Carbon Tetrachloride	10	0.00 10	0.84	108	80-129	72-137	
Chlorobenzene	10	0.00 10	0.22	102	80-120	73-127	
Trichloroethene	10	0.00 10	0.05	100	80-120	73-127	
Vinyl Chloride	10	9.00	.896	99	63-135	51-147	

Total number of LCS compounds: 18 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

Page 1 of 1

Return to Contents

Calscience

Work Order: 15-10-1423

Extraction	Chemist ID	Instrument	Analytical Location
EPA 3510C	974	GC 46	1
EPA 5030C	902	GC 1	2
EPA 5030C	316	GC/MS L	2
	Extraction EPA 3510C EPA 5030C EPA 5030C	Extraction Chemist ID EPA 3510C 974 EPA 5030C 902 EPA 5030C 316	Extraction Chemist ID Instrument EPA 3510C 974 GC 46 EPA 5030C 902 GC 1 EPA 5030C 316 GC/MS L

Calscience

Glossary of Terms and Qualifiers

Work Order: 15-10-1423

Page 1 of 1

<u>Qualifiers</u>	Definition
AZ	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BA	The MS/MSD RPD was out of control due to suspected matrix interference.
BB	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
DF	Reporting limits elevated due to matrix interferences.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
GE	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
HD	Chromat. profile inconsistent with pattern(s) of ref. fuel stnds.
HO	High concentration matrix spike recovery out of limits
HT	Analytical value calculated using results from associated tests.
HX	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS was in control.
IL	Relative percent difference out of control.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
LD	Analyte presence was not confirmed by second column or GC/MS analysis.
LP	The LCS and/or LCSD recoveries for this analyte were above the upper control limit. The associated sample was non-detected. Therefore, the sample data was reported without further clarification.
LQ	LCS recovery above method control limits.
LR	LCS recovery below method control limits.
ND	Parameter not detected at the indicated reporting limit.
QO	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
RU	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
SG	A silica gel cleanup procedure was performed.
SN	See applicable analysis comment.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Eurofins Calscience7440 Lincoln WayEnvironmentalGarden Grove, CA 92841Laboratories, Inc.

Phone: 714-895-5494

Fax: 714-894-7501

	. 5 24	Consu	ultant Name:	Cardno ER														A	cco	unt #	: <u>NA</u>					F	<u>0#</u>	:		Direc	≿t Bi	II Ca	rdno)
		Consulta	nt Address:	601 N. McE	Dowell Boul	levaro	1											In	voi	се То	: <u>Dir</u>	ect Bill	Car	dno	ER	1								
		Consultant Ci	ty/State/Zip:	Petaluma,	California,	94954	1											R	epo	ort To	: <u>Sc</u>	ott Perk	ins											
		ExxonMobil	Project Mgr:	Jennifer Se	edlachek													Proje	ect l	Name	: 02	2735 C												
	100 A	Consultant	Project Mgr:	Scott Perk	ins											_ E:	ххог	nMot	oil S	ite #:			79	937	74			aj	or Proje	ect (A	FE 1			
		Consultant Telepho	one Number:	707-766-20	000				Fax	(No.:	707	-789	-041	4				Site	Ad	dress	: 99	0 San F	ablo	o Av	venu	ue								
		Sampler N	Name (Print):	CAI	ey m	1/26	164	2								Si	te C	ity, S	State	e, Zip	: <u>Al</u> t	any, C	alifo	rnia	1									
		Sample	er Signature:		444	//				······						_ 0)ver	sigh	t Aç	jency	: <u>Ala</u>	imeda (Cour	nty I	Env	iron	men	ital I	Health D	epart	men	t		
					//	<u> </u>						Pres	erva	tive		1		Mat	rix		18				An	nalyz	E Fo	or:		-				
	Sample ID		Field Point Name	Date Sampled	Time Sampled	No. of Containers Shippe	Grab	Composite	Field Filtered	Methanol Sodium Bisulfate	HCI	NaOH LI SO Disetio	H ₂ SO ₄ Glass	HNO ₃	Ice Other: Unpreserved	None	Groundwater	Wastewater Drinking Water	Sludge	Soil	Other (specify): Distilled Wate				TPHmo 8015M	BTEX 8260B	7 Oxygenates 8260	8260B Full Scan			RUSH TAT (Pre-Schedu	5-day TAT	Standard 10-day TAT	Due Date of Report
ſ		QCBB	QCBB	10/16/15	1250	2					2v			┨╌┠				·			⊥×	ļ		H	이	L	D	_						
2		MW9	MW9	10/16/15	1315	10					<u>8v</u>	╄╌╄╴		++	2/		Х		╇			X	_	×	X	X	×	X	·				<u> </u>	
3		SVE4	SVE4	10/16/15	1455-	10					<u>8v</u>	\square			2/		Х		_	└─┤-		X		×	시	X	×	<u>×</u>					X	
4		SVE5	SVE5	10/16/15	1435	10					<u>8v</u>	\square		\downarrow	2/	¥	X		-			X		×	X	X	X	X					X	
5		SVE6	SVE6	10/16/15	1410	10					<u>8</u> v	\square		╇	2/	\	Х		_		_	X	_	<u>×</u>	X	X	X	씌		\bot			Х	
6		SVE7	SVE7	10/16/15	1340	10					<u>8</u> v	┡		\downarrow	2/	Ч	Х		_			X		쐰	X	시	X	시					X	
						ļ								+					_			ļ	_	_				\downarrow		<u> </u>				
														ŀ							_	ļ	_	_	_							ļ		
																						 					_							
																			ļ									_			ļ	ļ		
											<u> </u>	\square										ļ	\square	\downarrow	_			_						
																															Ľ			
	Comments/S norcallabs(GLOBAL ID	Special Instructions: PLEASE E-MAIL ALL P @eri-us.com; # T0619716673	DF FILES TO					Use Oxyg	silica jenat	ael cl es = N	eanı //TBI	up on E, ET	BE,	TPHo DIPE	і/трн Е, та	Imo ME,	ana TB/	livses A, 1,2	3 2-D(CA, EI		Temp Samp VOCs	ry C erati le C Fre	om ure onta e o	Upo Upo aine f He	nts: on R ers li eads	ece ntac pac	ipt: t? e?			Y Y		N N	
	Relinquished		LAADNO) <i>[0]]</i>	ate /////			Rece	eived	by: M	d	hy	k	5		10			ľ	Time CSS	Le Le	<u>C Delive</u> vel 2 vel 3	rable	<u>es (</u> j	plea	Se C	ircle	one)					
-	Relinquished	mally 70 C	650	10/19	ate	175	me O	Rece	eived			xonn		Y/X	y_	0	12		; /	<u>/ 00</u>	Si Pr	ver 4 e Speci oject Ma	fic - i inag	if ye er o	es, p or att	leas tach	e att spe	iach cific	pre-sche instructio	dule v	w/ la	b		
		//									//	/		ntonto																				

seurofins		WORK ORDER	NUMBER:	₽∂ 15−1	age 45 of 0ー <u>]</u> ト	145 12)
Calscience	SAMPLE RECEIPT	CHECKLIST	C	OOLER	e i c	DF
CLIENT: Candha EI	RI		DA	те: 10	120	/ 2015
	6.0°C not frozen except sedim	ent/tissue)				
Thermometer ID: SC2 (CF:-0.4°C);	Temperature (w/o CF): <u>}</u>	<u>1</u> °C (w/ CF): <u>3</u> y:) illed on same day c	∑ O_°C; ₪ f sampling	Blank	🗆 Sampi	e
Ambient Temperature:	emperature; placed on ice for the Iter	ansport by couner		Check	ed by:	15
Cooler Present and Intact Sample(s) Present and Intact	□ Present but Not Intact □ Present but Not Intact	□ Not Present ☑ Not Present	□ N/A □ N/A	Check Check	ed by: ed by:	15 a65
SAMPLE CONDITION:				Yes	No	N/A
Chain-of-Custody (COC) document	t(s) received with samples		·····			
COC document(s) received comple	ete					
□ Sampling date □ Sampling	time I Matrix I Number of c	ontainers	: - :	_		
□ No analysis requested □ No	ot relinquished D No relinquish	ed date LI No relir	nquisnea time	е : гъ	-	n :
Sampler's name indicated on COC			•••••			
Sample container label(s) consister	nt with COC			. 2		
Sample container(s) intact and in g			••••	<u>p</u> r		
Proper containers for analyses requ	uested			x		
Sufficient volume/mass for analyse	s requested			xu		
Samples received within holding tir	ne					
Aqueous samples for certain an	alyses received within 15-minut	e holding time			_	
pH 🗆 Residual Chlorine 🗆	Dissolved Sulfide Dissolve	d Oxygen	••••••••••••••••••	Ll 		
Proper preservation chemical(s) no Unpreserved aqueous sample(s	oted on COC and/or sample con s) received for certain analyses letals □ Dissolved Metals	tainer				
Container(s) for certain analysis fre	ee of headspace					
✓ Volatile Organics □ Dissolv □ Carbon Dioxide (SM 4500)	ed Gases (RSK-175) □ Dissol □ Ferrous Iron (SM 3500) □ F	ved Oxygen (SM 4 lydrogen Sulfide (H	500) ach)	- - - -		
Tedlar™ bag(s) free of condensati	on			🗆		\mathbf{P}
CONTAINER TYPE:	· ·	(Trip Bla	nk Lot Numb	oer:)
Aqueous: □ VOA □ VOAh □ VOAh □ 125PBznna □ 250AGB □ 250AGB □ 250AGB □ 500PB □ 1AGB □ 1AGBna₂ □ Solid: □ 4ozCGJ □ 8ozCGJ □ 1 Air: □ Tedlar™ □ Canister □ So	DAna₂ □ 100PJ □ 100PJna₂ CGB □ 250CGBs □ 250PB □ □ 1AGBs □ 1PB □ 1PBna □ 6ozCGJ □ Sleeve () □ E rbent Tube □ PUF □	□ 125AGB □ 125A □ 250PBn □ 500A(] □ EnCores [®] () □ Other Matrix (GBh □ 125. GB ☑ 500AC □ □ TerraCores):	AGBp □ 6J □ 500 [[®] () □	125PB DAGJs D D	
Container: A = Amber, B = Bottle, C = Preservative: b = buffered, f = filtered, s = H ₂ SO ₄ , u = ultra-pur	Clear, E = Envelope, G = Glass, J h = HCl, n = HNO ₃ , na = NaOH, n e, znna = Zn(CH ₃ CO ₂) ₂ + NaOH	= Jar, P = Plastic, and a ₂ = Na ₂ S ₂ O ₃ , p = H ₃ F	d Z = Ziploc/R∉ PO₄, Label	esealable ed/Checl Reviev	Bag ked by: _ ved by: _	965 802

.

•

Return to Contents

Calscience

Supplemental Report 1

The original report has been revised/corrected.

WORK ORDER NUMBER: 15-10-0905

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Cardno Client Project Name: ExxonMobil 79374/022735C Attention: Scott Perkins 601 North McDowell Blvd. Petaluma, CA 94954-2312

Center L. in Anga

Approved for release on 10/28/2015 by: Cecile deGuia Project Manager

ResultLink)

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

Client Project Name:

Calscience

ExxonMobil 79374/022735C

Contents

Work Orde	er Number: 15-10-0905	
1	Work Order Narrative.	3
2	Sample Summary	4
3	Client Sample Data. 3.1 EPA 8015B (M) TPH Diesel (Solid). 3.2 EPA 8015B (M) TPH Gasoline (Solid). 3.3 EPA 8270C SIM PAHs (Solid). 3.4 EPA 8260B Volatile Organics + Oxygenates (Solid).	5 9 14 35
4	Quality Control Sample Data.4.1 MS/MSD.4.2 LCS/LCSD.	59 59 68
5	Sample Analysis Summary	80
6	Glossary of Terms and Qualifiers.	81
7	Chain-of-Custody/Sample Receipt Form	82

Work Order: 15-10-0905

Page 1 of 1

Return to Contents

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 10/13/15. They were assigned to Work Order 15-10-0905.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

The report has been amended to correct the units for VOCs + Oxygenates by EPA 8260B from uk/kg to mg/kg.

Please note that sample S-15.5-SVE4 was extracted and analyzed twice. Sample was first extracted on 10/16/15 and analyzed on 10/17/15. However, the sample surrogate recoveries were below the control limits, prompting confirmation analysis. The results for the confirmation also yielded low surrogate recoveries. As per laboratory protocol, the next step was to re-extract the sample. Sample was re-extracted on 10/20/15 and analyzed on 10/22/15. The results were within criteria and reported. However, the results from the original extract needed to be reported since the same sample was spiked for MS/MSD. Note that all the samples for this WO were included in this MS/MSD QC batch (151016L05). The QC batch for the re-extraction was 151020L11.

Return to Contents

Client:	Cardno
Onern.	Caruno

601 North McDowell Blvd. Petaluma, CA 94954-2312

Work Order:	15-10-0905
Project Name:	ExxonMobil 79374/022735C
PO Number:	022735C
Date/Time Received:	10/13/15 10:00
Number of Containers:	18

Attn: Scott Perkins

Sample Identification	l ah Number	Collection Date and Time	Number of	Matrix
Sample identification		Conection Date and Time	Containers	Matrix
S-5-B18	15-10-0905-1	10/08/15 10:00	1	Solid
S-10-B18	15-10-0905-2	10/08/15 10:40	1	Solid
S-15-B18	15-10-0905-3	10/08/15 11:15	1	Solid
S-5-MW9	15-10-0905-4	10/08/15 13:00	1	Solid
S-10.5-MW9	15-10-0905-5	10/08/15 13:10	1	Solid
S-15.5-MW9	15-10-0905-6	10/08/15 13:15	1	Solid
S-5-SVE5	15-10-0905-7	10/09/15 08:50	1	Solid
S-11.5-SVE5	15-10-0905-8	10/09/15 09:00	1	Solid
S-15.5-SVE5	15-10-0905-9	10/09/15 09:05	1	Solid
S-5-SVE4	15-10-0905-10	10/09/15 11:30	1	Solid
S-9.5-SVE4	15-10-0905-11	10/09/15 12:40	1	Solid
S-15.5-SVE4	15-10-0905-12	10/09/15 11:40	1	Solid
S-5-SVE7	15-10-0905-13	10/09/15 13:30	1	Solid
S-10-SVE7	15-10-0905-14	10/09/15 13:55	1	Solid
S-12-SVE7	15-10-0905-15	10/09/15 14:00	1	Solid
S-15.5-SVE7	15-10-0905-16	10/09/15 14:05	1	Solid
S-5-SVE6	15-10-0905-17	10/09/15 14:55	1	Solid
S-12-SVE6	15-10-0905-18	10/09/15 15:00	1	Solid

Cardno			Date Re	eceived:			10/13/15
601 North McDowell Blvd.			Work O	rder:			15-10-0905
Petaluma, CA 94954-2312			Prepara	tion:			EPA 3550B
			Method:			E	PA 8015B (M)
			Units:				mg/kg
Project: ExxonMobil 79374/0227	735C					Ра	ige 1 of 4
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-B18	15-10-0905-1-A	10/08/15 10:00	Solid	GC 48	10/15/15	10/15/15 17:10	151015B03
Parameter		Result		RL	DF	Qua	alifiers
TPH as Diesel		ND		5.0	1.00	SG	
Surrogate		<u>Rec. (%)</u>		Control Limits	Qualifiers		
n-Octacosane		103		61-145			
S-10-B18	15-10-0905-2-A	10/08/15 10:40	Solid	GC 48	10/15/15	10/15/15 17:27	151015B03
Parameter		Result		RL	DF	Qua	alifiers
TPH as Diesel		ND		4.9	1.00	SG	
<u>Surrogate</u>		<u>Rec. (%)</u>		Control Limits	Qualifiers		
n-Octacosane		104		61-145			
S-15-B18	15-10-0905-3-A	10/08/15 11:15	Solid	GC 48	10/15/15	10/15/15 17:43	151015B03
S-15-B18 Parameter	15-10-0905-3-A	10/08/15 11:15 <u>Result</u>	Solid	GC 48	10/15/15 DE	10/15/15 17:43 Qua	151015B03 alifiers
S-15-B18 Parameter TPH as Diesel	15-10-0905-3-A	10/08/15 11:15 <u>Result</u> ND	Solid	GC 48 RL 5.0	10/15/15 DF 1.00	10/15/15 17:43 <u>Qua</u> SG	151015B03 alifiers
S-15-B18 Parameter TPH as Diesel Surrogate	15-10-0905-3-A	10/08/15 11:15 <u>Result</u> ND <u>Rec. (%)</u>	Solid	GC 48 RL 5.0 Control Limits	10/15/15 DF 1.00 Qualifiers	10/15/15 17:43 Qua SG	151015B03 alifiers
S-15-B18 Parameter TPH as Diesel Surrogate n-Octacosane	15-10-0905-3-A	10/08/15 11:15 Result ND <u>Rec. (%)</u> 102	Solid	GC 48 RL 5.0 Control Limits 61-145	DE 1.00 Qualifiers	10/15/15 17:43 Qua SG	151015B03 alifiers
S-15-B18 Parameter TPH as Diesel Surrogate n-Octacosane S-5-MW9	15-10-0905-3-A 15-10-0905-4-A	10/08/15 11:15 Result ND <u>Rec. (%)</u> 102 10/08/15 13:00	Solid	GC 48 RL 5.0 Control Limits 61-145 GC 48	10/15/15 DF 1.00 Qualifiers 10/15/15	10/15/15 17:43 SG 10/15/15 17:59	151015B03 alifiers 151015B03
S-15-B18 Parameter TPH as Diesel Surrogate n-Octacosane S-5-MW9 Parameter	15-10-0905-3-A 15-10-0905-4-A	10/08/15 11:15 Result ND Rec. (%) 102 10/08/15 13:00 Result	Solid	GC 48 RL 5.0 Control Limits 61-145 GC 48 RL	10/15/15 DF 1.00 Qualifiers 10/15/15 DF	10/15/15 17:43 Qua SG 10/15/15 17:59 Qua	151015B03 alifiers 151015B03 alifiers
S-15-B18 Parameter TPH as Diesel Surrogate n-Octacosane S-5-MW9 Parameter TPH as Diesel	15-10-0905-3-A 15-10-0905-4-A	10/08/15 11:15 Result ND <u>Rec. (%)</u> 102 10/08/15 13:00 <u>Result</u> ND	Solid	GC 48 RL 5.0 Control Limits 61-145 GC 48 RL 5.1	10/15/15 DF 1.00 Qualifiers 10/15/15 DF 1.00	10/15/15 17:43 SG 10/15/15 17:59 Qua SG	151015B03 alifiers 151015B03 alifiers
S-15-B18 Parameter TPH as Diesel Surrogate n-Octacosane S-5-MW9 Parameter TPH as Diesel Surrogate Surrogate	15-10-0905-3-A 15-10-0905-4-A	10/08/15 11:15 Result ND <u>Rec. (%)</u> 102 10/08/15 13:00 Result ND Rec. (%)	Solid	GC 48 RL 5.0 Control Limits 61-145 GC 48 RL 5.1 Control Limits	10/15/15 <u>DF</u> 1.00 <u>Qualifiers</u> 10/15/15 <u>DF</u> 1.00 <u>Qualifiers</u>	10/15/15 17:43 SG SG 10/15/15 17:59 Qua SG	151015B03 alifiers 151015B03 alifiers
S-15-B18 Parameter TPH as Diesel Surrogate n-Octacosane S-5-MW9 Parameter TPH as Diesel Surrogate n-Octacosane	15-10-0905-3-A 15-10-0905-4-A	10/08/15 11:15 Result ND Rec. (%) 102 10/08/15 13:00 Result ND Rec. (%) 105	Solid	GC 48RL 5.0Control Limits 61-145GC 48RL 5.1Control Limits 61-145	10/15/15 DF 1.00 Qualifiers 10/15/15 DF 1.00 Qualifiers	10/15/15 17:43 SG SG 10/15/15 17:59 Qua SG	151015B03 alifiers 151015B03 alifiers
S-15-B18 Parameter TPH as Diesel Surrogate n-Octacosane S-5-MW9 Parameter TPH as Diesel Surrogate n-Octacosane Surrogate Surrogate n-Octacosane	15-10-0905-3-A 15-10-0905-4-A 15-10-0905-5-A	10/08/15 11:15 Result ND <u>Rec. (%)</u> 102 10/08/15 13:00 <u>Result</u> ND <u>Rec. (%)</u> 105 10/08/15 13:10	Solid	GC 48RL 5.0Control Limits 61-145GC 48RL 5.1Control Limits 61-145GC 48	10/15/15 DF 1.00 Qualifiers 10/15/15 DF 1.00 Qualifiers 10/15/15	10/15/15 17:43 Qua SG SG 10/15/15 17:59 Qua SG SG 10/15/15 18:15	151015B03 alifiers 151015B03 alifiers 151015B03
S-15-B18 Parameter TPH as Diesel Surrogate n-Octacosane S-5-MW9 Parameter TPH as Diesel Surrogate n-Octacosane S-5-MW9 Parameter TPH as Diesel Surrogate n-Octacosane Surrogate n-Octacosane S-10.5-MW9 Parameter	15-10-0905-3-A 15-10-0905-4-A 15-10-0905-5-A	10/08/15 11:15 Result ND Rec. (%) 102 10/08/15 13:00 Result ND <u>Rec. (%)</u> 105 10/08/15 13:10 Result	Solid	GC 48RL 5.0Control Limits 61-145GC 48RL 5.1Control Limits 61-145GC 48RL 61-145	10/15/15 DF 1.00 Qualifiers 10/15/15 DF 1.00 Qualifiers 10/15/15	10/15/15 17:43 SG SG 10/15/15 17:59 Qua SG 10/15/15 18:15	151015B03 alifiers 151015B03 alifiers 151015B03 alifiers
S-15-B18 Parameter TPH as Diesel Surrogate n-Octacosane S-5-MW9 Parameter TPH as Diesel Surrogate n-Octacosane S-10.5-MW9 Parameter TPH as Diesel	15-10-0905-3-A 15-10-0905-4-A 15-10-0905-5-A	10/08/15 11:15 Result ND Rec. (%) 102 10/08/15 13:00 Result ND Result ND Result ND Result 105 10/08/15 13:10 Result 6.3	Solid	GC 48 RL S.0 Control Limits 61-145 S.0 GC 48 GC 48 S.0 RL S.1 S.1 S.1 GC 48 GC 48 S.1 S.1 RL S.1 GC 48 S.1 GC 48 GC 48 S.1 S.1 GC 48 GC 48 S.1 S.1	10/15/15 DF 1.00 Qualifiers 10/15/15 DF 1.00 Qualifiers 10/15/15	10/15/15 17:43 SG SG 10/15/15 17:59 Qua SG 10/15/15 18:15 Qua HD,	151015B03 alifiers 151015B03 alifiers 151015B03 alifiers SG
S-15-B18 Parameter TPH as Diesel Surrogate n-Octacosane S-5-MW9 Parameter TPH as Diesel Surrogate n-Octacosane Surrogate n-Octacosane Surrogate n-Octacosane Surrogate n-Octacosane Surrogate TPH as Diesel Surrogate Surrogate Surrogate Surrogate Surrogate Surrogate	15-10-0905-3-A 15-10-0905-4-A 15-10-0905-5-A	10/08/15 11:15 Result ND Rec. (%) 102 10/08/15 13:00 Result ND Rec. (%) 105 10/08/15 13:10 Result 6.3 Rec. (%)	Solid	GC 48RL 5.0Control Limits 61-145GC 48RL 5.1Control Limits 61-145GC 48RL 5.0Control Limits 5.0	10/15/15 DF 1.00 Qualifiers 10/15/15 DF 1.00 Qualifiers 10/15/15 DF 1.00 Qualifiers	10/15/15 17:43 SG SG 10/15/15 17:59 Qua SG SG 10/15/15 18:15	151015B03 alifiers 151015B03 alifiers 151015B03 alifiers SG
S-15-B18 Parameter TPH as Diesel Surrogate n-Octacosane S-5-MW9 Parameter TPH as Diesel Surrogate n-Octacosane S-10.5-MW9 Parameter TPH as Diesel Surrogate n-Octacosane	15-10-0905-3-A 15-10-0905-4-A 15-10-0905-5-A	10/08/15 11:15 Result ND Rec. (%) 102 10/08/15 13:00 Result ND Result ND Result 105 10/08/15 13:10 Result 6.3 Rec. (%) 102	Solid	GC 48 RL S.0 Control Limits GC 48 S.0 GC 48 GC 48 S.0 RL S.1 GC 48 S.1 GC 48 GC 48 RL S.1 GC 48 S.1 GC 48 GC 48 GC 48 GC 48 GC 48 GC 48 GC 48 GC 48 GL 45 GC 48 GC 48	10/15/15 DF 1.00 Qualifiers 10/15/15 DF 1.00 Qualifiers 10/15/15	10/15/15 17:43 SG SG 10/15/15 17:59 Qua SG 10/15/15 18:15 Qua HD,	151015B03 alifiers 151015B03 alifiers 151015B03 alifiers SG

Cardno			Date Re	ceived:			10/13/15
601 North McDowell Blvd.		,	Work O	rder:			15-10-0905
Petaluma, CA 94954-2312		I	Prepara	tion:			EPA 3550B
		I	Method:			E	PA 8015B (M)
		I	Units:				mg/kg
Project: ExxonMobil 79374/0227350	2					Pa	ge 2 of 4
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-15.5-MW9	15-10-0905-6-A	10/08/15 13:15	Solid	GC 48	10/15/15	10/15/15 18:32	151015B03
Parameter		Result		RL	DF	Qua	alifiers
TPH as Diesel		ND		5.0	1.00	SG	
Surrogate		Rec. (%)		Control Limits	Qualifiers		
n-Octacosane		104		61-145			
S-5-SVE5	15-10-0905-7-A	10/09/15 08:50	Solid	GC 48	10/15/15	10/15/15 18:48	151015B03
Parameter		Result		RL	DF	Qua	alifiers
TPH as Diesel		ND		5.0	1.00	SG	
Surrogate		Rec (%)		Control Limits	Qualifiers		
n-Octacosane		<u>103</u>		61-145	Quamers		
S-11.5-SVE5	15-10-0905-8-A	10/09/15	Solid	GC 48	10/15/15	10/15/15	151015B03
		09:00	oona			19:04	101010200
Parameter		09:00 Result		RL	DF	19:04	alifiers
Parameter TPH as Diesel		09:00 <u>Result</u> 160		<u>RL</u> 4.9	<u>DF</u> 1.00	19:04 Qua HD,	alifiers SG
Parameter TPH as Diesel Surrogate		09:00 Result 160 Rec. (%)		RL 4.9 Control Limits	<u>DF</u> 1.00 Qualifiers	19:04 Qua HD,	alifiers SG
Parameter TPH as Diesel <u>Surrogate</u> n-Octacosane		09:00 <u>Result</u> 160 <u>Rec. (%)</u> 99		RL 4.9 <u>Control Limits</u> 61-145	<u>DF</u> 1.00 <u>Qualifiers</u>	19:04 Qua HD,	<u>alifiers</u> SG
Parameter TPH as Diesel <u>Surrogate</u> n-Octacosane		09:00 <u>Result</u> 160 <u>Rec. (%)</u> 99		RL 4.9 <u>Control Limits</u> 61-145	<u>DF</u> 1.00 <u>Qualifiers</u>	19:04 Qua HD,	alifiers SG
Parameter TPH as Diesel <u>Surrogate</u> n-Octacosane S-15.5-SVE5	15-10-0905-9-A	09:00 <u>Result</u> 160 <u>Rec. (%)</u> 99 10/09/15 09:05	Solid	RL 4.9 <u>Control Limits</u> 61-145 GC 48	DF 1.00 Qualifiers 10/15/15	19:04 Qua HD, 10/15/15 19:20	alifiers SG 151015B03
Parameter TPH as Diesel Surrogate n-Octacosane S-15.5-SVE5 Parameter	15-10-0905-9-A	09:00 <u>Result</u> 160 <u>Rec. (%)</u> 99 10/09/15 09:05 <u>Result</u>	Solid	RL 4.9 Control Limits 61-145 GC 48 RL	DF 1.00 Qualifiers 10/15/15 DE	19:04 Qua HD, 10/15/15 19:20 Qua	alifiers SG 151015B03 alifiers
Parameter TPH as Diesel Surrogate n-Octacosane S-15.5-SVE5 Parameter TPH as Diesel	15-10-0905-9-A	09:00 <u>Result</u> 160 <u>Rec. (%)</u> 99 10/09/15 09:05 <u>Result</u> ND	Solid	RL 4.9 Control Limits 61-145 GC 48 RL 5.0	DF 1.00 Qualifiers 10/15/15 DF 1.00	19:04 Qua HD, 10/15/15 19:20 Qua SG	alifiers SG 151015B03 alifiers
Parameter TPH as Diesel Surrogate n-Octacosane S-15.5-SVE5 Parameter TPH as Diesel Surrogate	15-10-0905-9-A	09:00 <u>Result</u> 160 <u>Rec. (%)</u> 99 10/09/15 09:05 <u>Result</u> ND Rec. (%)	Solid	RL 4.9 Control Limits 61-145 GC 48 RL 5.0 Control Limits	DE 1.00 Qualifiers 10/15/15 DE 1.00 Qualifiers	19:04 Qua HD, 10/15/15 19:20 Qua SG	alifiers SG 151015B03 alifiers
Parameter TPH as Diesel Surrogate n-Octacosane S-15.5-SVE5 Parameter TPH as Diesel Surrogate n-Octacosane	15-10-0905-9-A	09:00 <u>Result</u> 160 <u>Rec. (%)</u> 99 10/09/15 09:05 <u>Result</u> ND <u>Rec. (%)</u> 100	Solid	RL 4.9 Control Limits 61-145 GC 48 RL 5.0 Control Limits 61-145	DF 1.00 Qualifiers 10/15/15 DF 1.00 Qualifiers	19:04 Qua HD, 10/15/15 19:20 Qua SG	alifiers SG 151015B03 alifiers
Parameter TPH as Diesel Surrogate n-Octacosane S-15.5-SVE5 Parameter TPH as Diesel Surrogate n-Octacosane	15-10-0905-9-A	09:00 <u>Result</u> 160 <u>Rec. (%)</u> 99 10/09/15 09:05 <u>Result</u> ND <u>Rec. (%)</u> 100	Solid	RL 4.9 Control Limits 61-145 GC 48 RL 5.0 Control Limits 61-145	DF 1.00 Qualifiers 10/15/15 DF 1.00 Qualifiers	19:04 Qua HD, 10/15/15 19:20 Qua SG	alifiers SG 151015B03 alifiers
Parameter TPH as Diesel Surrogate n-Octacosane S-15.5-SVE5 Parameter TPH as Diesel Surrogate n-Octacosane Surrogate Surrogate s Diesel Surrogate s Diesel Surrogate n-Octacosane S-5-SVE4	15-10-0905-9-A 15-10-0905-10-A	09:00 Result 160 Rec. (%) 99 10/09/15 09:05 Result ND Rec. (%) 100 11:30	Solid	RL 4.9 Control Limits 61-145 GC 48 RL 5.0 Control Limits 61-145	DF 1.00 Qualifiers 10/15/15 DF 1.00 Qualifiers 10/15/15	19:04 Qua HD, 10/15/15 19:20 Qua SG 10/15/15 19:53	alifiers SG 151015B03 alifiers 151015B03
Parameter TPH as Diesel Surrogate n-Octacosane S-15.5-SVE5 Parameter TPH as Diesel Surrogate n-Octacosane Surrogate Surrogate n-Octacosane Surrogate n-Octacosane Surrogate n-Octacosane Surrogate n-Octacosane Parameter	15-10-0905-9-A 15-10-0905-10-A	09:00 Result 160 Rec. (%) 99 10/09/15 09:05 Result ND Rec. (%) 100 100 10/09/15 100 Result 100 Result 100 Result 100	Solid	RL 4.9 Control Limits 61-145 GC 48 RL 5.0 Control Limits 61-145 GC 48 RL 5.0 Gontrol Limits 61-145 GC 48 RL 5.0 RL 5.0	DE 1.00 Qualifiers 10/15/15 DE 1.00 Qualifiers 10/15/15	19:04 Qua HD, 10/15/15 19:20 Qua SG 10/15/15 19:53 Qua	alifiers SG 151015B03 alifiers 151015B03 alifiers
Parameter TPH as Diesel Surrogate n-Octacosane S-15.5-SVE5 Parameter TPH as Diesel Surrogate n-Octacosane Surrogate n-Octacosane Surrogate n-Octacosane Surrogate n-Octacosane Surrogate n-Octacosane Parameter TPH as Diesel	15-10-0905-9-A 15-10-0905-10-A	09:00 Result 160 Rec. (%) 99 10/09/15 09:05 Result ND Rec. (%) 100 10/09/15 100 Rec. (%) 100 Result ND Result ND	Solid	RL 4.9 Control Limits 61-145 GC 48 RL 5.0 Control Limits 61-145 GC 48 GC 48 State GC 48	DF 1.00 Qualifiers 10/15/15 DF 1.00 Qualifiers 10/15/15	19:04 Qua HD, 10/15/15 19:20 Qua SG 10/15/15 19:53 Qua SG	Alifiers SG 151015B03 Alifiers 151015B03 Alifiers
Parameter TPH as Diesel Surrogate n-Octacosane S-15.5-SVE5 Parameter TPH as Diesel Surrogate n-Octacosane Surrogate n-Octacosane Surrogate n-Octacosane Surrogate n-Octacosane Surrogate TPH as Diesel Surrogate Surrogate Surrogate Surrogate Surrogate	15-10-0905-9-A 15-10-0905-10-A	09:00 <u>Result</u> 160 <u>Rec. (%)</u> 99 10/09/15 09:05 <u>Result</u> ND <u>Rec. (%)</u> 100 <u>10/09/15</u> 11:30 <u>Result</u> ND <u>Result</u> ND	Solid	RL 4.9 Control Limits 61-145 GC 48 RL 5.0 Control Limits 61-145 GC 48 RL 5.0 Control Limits 61-145 GC 48 Solo Control Limits Solo Control Limits	DF 1.00 Qualifiers 10/15/15 DF 1.00 Qualifiers DF 1.00	19:04 Qua HD, 10/15/15 19:20 Qua SG 10/15/15 19:53 Qua SG	Alifiers SG 151015B03 Alifiers 151015B03 Alifiers
Parameter TPH as Diesel Surrogate n-Octacosane S-15.5-SVE5 Parameter TPH as Diesel Surrogate n-Octacosane Surrogate n-Octacosane Surrogate n-Octacosane Surrogate n-Octacosane Surrogate n-Octacosane	15-10-0905-9-A 15-10-0905-10-A	09:00 <u>Result</u> 160 <u>Rec. (%)</u> 99 10/09/15 09:05 <u>Result</u> ND <u>Rec. (%)</u> 100 10/09/15 11:30 <u>Result</u> ND <u>Result</u> ND <u>Result</u> ND	Solid	RL 4.9 Control Limits 61-145 GC 48 RL 5.0 GC 48 State GC 48 State GC 48 State GC 48 GC 48 GC 48 GC 48 GC 48 GC 48 GL 43	DF 1.00 Qualifiers 10/15/15 DF 1.00 Qualifiers DF 1.00 Qualifiers	19:04 Qua HD, 10/15/15 19:20 Qua SG 10/15/15 19:53 Qua SG	Alifiers SG 151015B03 Alifiers 151015B03 Alifiers

Calscience

Cardno			Date Re	eceived:			10/13/15
601 North McDowell Blvd.			Work O	rder:			15-10-0905
Petaluma, CA 94954-2312			Prepara	tion:			EPA 3550B
			Method	:		E	PA 8015B (M)
			Units:				mg/kg
Project: ExxonMobil 79374/02273	5C					Pa	ige 3 of 4
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-9.5-SVE4	15-10-0905-11-A	10/09/15 12:40	Solid	GC 48	10/15/15	10/15/15 20:09	151015B03
Parameter		Result		RL	DF	Qua	alifiers
TPH as Diesel		9.2		4.9	1.00	HD,	SG
Surrogate		Rec. (%)		Control Limits	Qualifiers		
n-Octacosane		99		61-145			
S-15.5-SVE4	15-10-0905-12-A	10/09/15 11:40	Solid	GC 48	10/15/15	10/15/15 20:26	151015B03
Parameter		Result		RL	DF	Qua	alifiers
TPH as Diesel		ND		4.9	1.00	SG	
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
n-Octacosane		91		61-145			
S-5-SVE7	15-10-0905-13-A	10/09/15 13:30	Solid	GC 48	10/15/15	10/15/15 20:42	151015B03
Parameter		Result		RL	DF	Qua	alifiers
TPH as Diesel		ND		4.9	1.00	SG	
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
n-Octacosane		94		61-145			
S-10-SVE7	15-10-0905-14-A	10/09/15 13:55	Solid	GC 48	10/15/15	10/15/15 20:58	151015B03
Parameter		Result		RL	DF	Qua	alifiers
TPH as Diesel		ND		5.0	1.00	SG	
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
n-Octacosane		98		61-145			
S-12-SVE7	15-10-0905-15-A	10/09/15 14:00	Solid	GC 48	10/15/15	10/15/15 21:14	151015B03
Parameter		Result		RL	DF	Qua	alifiers
TPH as Diesel		ND		5.0	1.00	SG	
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
n-Octacosane		97		61-145			

Cardno			Date Re	ceived:			10/13/15
601 North McDowell Blvd.			Work O	rder:			15-10-0905
Petaluma, CA 94954-2312			Prepara	tion:			EPA 3550B
			Method:			E	PA 8015B (M)
			Units:				mg/kg
Project: ExxonMobil 79374/0227350)					Pa	age 4 of 4
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-15.5-SVE7	15-10-0905-16-A	10/09/15 14:05	Solid	GC 48	10/15/15	10/15/15 21:30	151015B03
Parameter		Result		RL	DF	Qua	alifiers
TPH as Diesel		ND		5.0	1.00	SG	
Surrogate		Rec. (%)		Control Limits	Qualifiers		
n-Octacosane		105		61-145			
S-5-SVE6	15-10-0905-17-A	10/09/15 14:55	Solid	GC 48	10/15/15	10/15/15 21:47	151015B03
Parameter		Result		RL	DF	Qua	alifiers
TPH as Diesel		ND		4.9	1.00	SG	
Surrogate		<u>Rec. (%)</u>		Control Limits	Qualifiers		
n-Octacosane		88		61-145			
S-12-SVE6	15-10-0905-18-A	10/09/15 15:00	Solid	GC 48	10/15/15	10/15/15 22:02	151015B03
Parameter		Result		RL	DF	Qua	alifiers
TPH as Diesel		76		5.0	1.00	HD	,SG
Surrogate		Rec. (%)		Control Limits	Qualifiers		
n-Octacosane		90		61-145			
Method Blank	099-15-422-2111	N/A	Solid	GC 48	10/15/15	10/15/15 15:49	151015B03
Parameter		Result		RL	DF	Qua	alifiers
TPH as Diesel		ND		5.0	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
n-Octacosane		92		61-145			

Cardno			Date Re	ceived:			10/13/15
601 North McDowell Blvd.			Work O	rder:			15-10-0905
Petaluma, CA 94954-2312			Prepara	tion:			EPA 5030C
			Method:			E	PA 8015B (M)
			Units:				mg/kg
Project: ExxonMobil 79374/022735	С					Pa	ige 1 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-B18	15-10-0905-1-A	10/08/15 10:00	Solid	GC 1	10/20/15	10/21/15 09:03	151020L058
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline		ND		0.51	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		64		42-126			
S-10-B18	15-10-0905-2-A	10/08/15 10:40	Solid	GC 1	10/20/15	10/21/15 10:49	151020L058
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline		ND		0.49	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		64		42-126			
S-15-B18	15-10-0905-3-A	10/08/15 11:15	Solid	GC 1	10/20/15	10/21/15 11:25	151020L058
S-15-B18 Parameter	15-10-0905-3-A	10/08/15 11:15 <u>Result</u>	Solid	GC 1	10/20/15 DF	10/21/15 11:25 Qua	151020L058
S-15-B18 Parameter TPH as Gasoline	15-10-0905-3-A	10/08/15 11:15 <u>Result</u> ND	Solid	GC 1 <u>RL</u> 0.50	10/20/15 DF 1.00	10/21/15 11:25 Qua	151020L058 alifiers
S-15-B18 Parameter TPH as Gasoline Surrogate	15-10-0905-3-A	10/08/15 11:15 <u>Result</u> ND <u>Rec. (%)</u>	Solid	GC 1 <u>RL</u> 0.50 <u>Control Limits</u>	10/20/15 DF 1.00 Qualifiers	10/21/15 11:25 Qua	151020L058 alifiers
S-15-B18 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID	15-10-0905-3-A	10/08/15 11:15 <u>Result</u> ND <u>Rec. (%)</u> 62	Solid	GC 1 RL 0.50 Control Limits 42-126	10/20/15 DE 1.00 Qualifiers	10/21/15 11:25 <u>Qua</u>	151020L058 alifiers
S-15-B18 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-5-MW9	15-10-0905-3-A 15-10-0905-4-A	10/08/15 11:15 Result ND <u>Rec. (%)</u> 62 10/08/15 13:00	Solid	GC 1 RL 0.50 Control Limits 42-126 GC 1	10/20/15 DF 1.00 Qualifiers 10/20/15	10/21/15 11:25 Qua 10/21/15 12:00	151020L058 alifiers 151020L058
S-15-B18 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-5-MW9 Parameter	15-10-0905-3-A 15-10-0905-4-A	10/08/15 11:15 Result ND Rec. (%) 62 10/08/15 13:00 Result	Solid	GC 1 RL 0.50 Control Limits 42-126 GC 1 RL	10/20/15 DF 1.00 Qualifiers 10/20/15 DF	10/21/15 11:25 Qua 10/21/15 12:00 Qua	151020L058 alifiers 151020L058 alifiers
S-15-B18 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-5-MW9 Parameter TPH as Gasoline	15-10-0905-3-A 15-10-0905-4-A	10/08/15 11:15 Result ND Rec. (%) 62 10/08/15 13:00 Result ND	Solid	GC 1 RL 0.50 Control Limits 42-126 GC 1 RL 0.49	10/20/15 DF 1.00 Qualifiers 10/20/15 DF 1.00	10/21/15 11:25 Qua 10/21/15 12:00 Qua	151020L058 alifiers 151020L058 alifiers
S-15-B18 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-5-MW9 Parameter TPH as Gasoline Surrogate	15-10-0905-3-A 15-10-0905-4-A	10/08/15 11:15 Result ND <u>Rec. (%)</u> 62 10/08/15 13:00 Result ND Rec. (%)	Solid	GC 1 RL 0.50 Control Limits 42-126 GC 1 RL 0.49 Control Limits	10/20/15 DF 1.00 Qualifiers 10/20/15 DF 1.00 Qualifiers	10/21/15 11:25 Qua 10/21/15 12:00 Qua	151020L058 alifiers 151020L058 alifiers
S-15-B18 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-5-MW9 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID	15-10-0905-3-A 15-10-0905-4-A	10/08/15 11:15 Result ND 62 10/08/15 13:00 Result ND Rec. (%) 65	Solid	GC 1 RL 0.50 Control Limits 42-126 GC 1 RL 0.49 Control Limits 42-126	10/20/15 DF 1.00 Qualifiers 10/20/15 DF 1.00 Qualifiers	10/21/15 11:25 Qua 10/21/15 12:00 Qua	151020L058 alifiers 151020L058 alifiers
S-15-B18 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-5-MW9 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Surrogate 1,4-Bromofluorobenzene - FID Surrogate 1,4-Bromofluorobenzene - FID Surrogate 1,4-Bromofluorobenzene - FID	15-10-0905-3-A 15-10-0905-4-A 15-10-0905-5-A	10/08/15 11:15 Result ND Rec. (%) 62 10/08/15 13:00 Result ND Result ND 62 10/08/15 65 10/08/15 13:10	Solid	GC 1RL 0.50Control Limits 42-126GC 1RL 0.49Control Limits 42-126Control Limits 42-126	10/20/15 DE 1.00 Qualifiers 10/20/15 DE 1.00 Qualifiers 10/20/15	10/21/15 11:25 Qua 10/21/15 12:00 Qua 10/21/15 12:36	151020L058 alifiers 151020L058 alifiers 151020L058
S-15-B18 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-5-MW9 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Surrogate 1,4-Bromofluorobenzene - FID Surrogate 1,4-Bromofluorobenzene - FID S-10.5-MW9 Parameter	15-10-0905-3-A 15-10-0905-4-A 15-10-0905-5-A	10/08/15 11:15 Result ND 62 10/08/15 13:00 Result ND Rec. (%) 65 10/08/15 13:10 Result	Solid	GC 1 RL 0.50 Control Limits 42-126 GC 1 RL 0.49 Control Limits 42-126 GC 1 RL 0.49 GC 1 GC 1 RL 0.49 Control Limits 42-126	10/20/15 DF 1.00 Qualifiers 10/20/15 DF 1.00 Qualifiers 10/20/15 DF	10/21/15 11:25 Qua 10/21/15 12:00 Qua 10/21/15 12:36	151020L058 alifiers 151020L058 alifiers 151020L058 alifiers
S-15-B18 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-5-MW9 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Surrogate 1,4-Bromofluorobenzene - FID Surrogate 1,4-Bromofluorobenzene - FID S-10.5-MW9 Parameter TPH as Gasoline	15-10-0905-3-A 15-10-0905-4-A 15-10-0905-5-A	10/08/15 11:15 Result ND Rec. (%) 62 10/08/15 13:00 Result ND Result ND Result ND Result 36	Solid	GC 1RL 0.50Control Limits 42-126GC 1RL 0.49Control Limits 42-126GC 1RL 0.48	10/20/15 DF 1.00 Qualifiers 10/20/15 DF 1.00 Qualifiers DF 1.00	10/21/15 11:25 Qua 10/21/15 12:00 Qua 10/21/15 12:36	151020L058 alifiers 151020L058 alifiers 151020L058 alifiers
S-15-B18 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-5-MW9 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Surrogate Surrogate TPH as Gasoline Surrogate Surrogate	15-10-0905-3-A 15-10-0905-4-A 15-10-0905-5-A	10/08/15 11:15 Result ND Rec. (%) 62 10/08/15 13:00 Result ND Rec. (%) 65 10/08/15 13:10 Result 36 Rec. (%)	Solid	GC 1 RL 0.50 Control Limits 42-126 GC 1 GC 1 GC 1 Control Limits 42-126 GC 1 RL 0.49 Control Limits 42-126	10/20/15 DF 1.00 Qualifiers 10/20/15 DF 1.00 Qualifiers 10/20/15 DF 1.00 Qualifiers	10/21/15 Qua Qua 10/21/15 12:00 Qua 10/21/15 12:36 Qua HD	151020L058 alifiers 151020L058 alifiers 151020L058 alifiers
S-15-B18 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-5-MW9 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-10.5-MW9 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Surrogate 1,4-Bromofluorobenzene - FID	15-10-0905-3-A 15-10-0905-4-A 15-10-0905-5-A	10/08/15 11:15 Result ND 62 10/08/15 13:00 Result ND 65 10/08/15 13:10 Result 36 Result 36 Result 36	Solid	GC 1RL 0.50Control Limits 42-126GC 1Control Limits 42-126Control Limits 42-126GC 1RL 0.48Control Limits 42-126	10/20/15 DF 1.00 Qualifiers 10/20/15 DF 1.00 Qualifiers DE 1.00 Qualifiers AZ	10/21/15 Qua 10/21/15 12:00 Qua 10/21/15 12:36 Qua HD	151020L058 alifiers 151020L058 alifiers 151020L058

Cardno			Date Re	ceived:			10/13/15
601 North McDowell Blvd.			Work O	rder:			15-10-0905
Petaluma, CA 94954-2312			Prepara	tion:			EPA 5030C
			Method:			E	PA 8015B (M)
			Units:				mg/kg
Project: ExxonMobil 79374/022735	5C					Pa	ge 2 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-15.5-MW9	15-10-0905-6-A	10/08/15 13:15	Solid	GC 1	10/20/15	10/21/15 13:11	151020L058
Parameter		Result		RL	DF	Qua	lifiers
TPH as Gasoline		ND		0.49	1.00		
<u>Surrogate</u>		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		64		42-126			
S-5-SVE5	15-10-0905-7-A	10/09/15 08:50	Solid	GC 1	10/20/15	10/21/15 13:47	151020L058
Parameter		Result		RL	DF	Qua	lifiers
TPH as Gasoline		ND		0.49	1.00		
<u>Surrogate</u>		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1.4-Bromofluorobenzene - FID		64		42-126			
.,							
S-11.5-SVE5	15-10-0905-8-A	10/09/15 09:00	Solid	GC 1	10/20/15	10/21/15 21:02	151020L059
S-11.5-SVE5 Parameter	15-10-0905-8-A	10/09/15 09:00 <u>Result</u>	Solid	GC 1	10/20/15 DF	10/21/15 21:02 Qua	151020L059
S-11.5-SVE5 Parameter TPH as Gasoline	15-10-0905-8-A	10/09/15 09:00 <u>Result</u> 390	Solid	GC 1 <u>RL</u> 20	10/20/15 DF 40.0	10/21/15 21:02 Qua	151020L059 lifiers
S-11.5-SVE5 Parameter TPH as Gasoline Surrogate	15-10-0905-8-A	10/09/15 09:00 <u>Result</u> 390 <u>Rec. (%)</u>	Solid	GC 1 RL 20 Control Limits	10/20/15 DF 40.0 Qualifiers	10/21/15 21:02 Qua	151020L059 lifiers
S-11.5-SVE5 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID	15-10-0905-8-A	10/09/15 09:00 <u>Result</u> 390 <u>Rec. (%)</u> 98	Solid	GC 1 RL 20 Control Limits 42-126	10/20/15 DF 40.0 Qualifiers	10/21/15 21:02	151020L059 lifiers
S-11.5-SVE5 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-15.5-SVE5	15-10-0905-8-A 15-10-0905-9-A	10/09/15 09:00 Result 390 Rec. (%) 98 10/09/15 09:05	Solid	GC 1 RL 20 Control Limits 42-126 GC 1	10/20/15 DE 40.0 Qualifiers 10/20/15	10/21/15 21:02 Qua 10/21/15 14:22	151020L059 lifiers 151020L058
S-11.5-SVE5 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-15.5-SVE5 Parameter	15-10-0905-8-A 15-10-0905-9-A	10/09/15 09:00 Result 390 <u>Rec. (%)</u> 98 10/09/15 09:05 Result	Solid	GC 1 RL 20 Control Limits 42-126 GC 1 RL	10/20/15 DF 40.0 Qualifiers 10/20/15 DF	10/21/15 21:02 Qua 10/21/15 14:22 Qua	151020L059 lifiers 151020L058 lifiers
S-11.5-SVE5 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-15.5-SVE5 Parameter TPH as Gasoline	15-10-0905-8-A 15-10-0905-9-A	10/09/15 09:00 Result 390 <u>Rec. (%)</u> 98 10/09/15 09:05 Result ND	Solid	GC 1 RL 20 Control Limits 42-126 GC 1 RL 0.50	10/20/15 DF 40.0 Qualifiers 10/20/15 DF 1.00	10/21/15 21:02 Qua 10/21/15 14:22 Qua	151020L059 lifiers 151020L058 lifiers
S-11.5-SVE5 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-15.5-SVE5 Parameter TPH as Gasoline Surrogate	15-10-0905-8-A 15-10-0905-9-A	10/09/15 09:00 Result 390 <u>Rec. (%)</u> 98 10/09/15 09:05 <u>Result</u> ND <u>Rec. (%)</u>	Solid	GC 1 RL 20 Control Limits 42-126 GC 1 RL 0.50 Control Limits	10/20/15 DF 40.0 Qualifiers 10/20/15 DF 1.00 Qualifiers	10/21/15 21:02 Qua 10/21/15 14:22 Qua	151020L059 lifiers 151020L058 lifiers
S-11.5-SVE5 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-15.5-SVE5 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID	15-10-0905-8-A 15-10-0905-9-A	10/09/15 09:00 Result 390 Rec. (%) 98 10/09/15 09:05 Result ND Rec. (%) 64	Solid	GC 1 RL 20 Control Limits 42-126 GC 1 RL 0.50 Control Limits 42-126	10/20/15 DE 40.0 Qualifiers 10/20/15 DE 1.00 Qualifiers	10/21/15 21:02 Qua 10/21/15 14:22 Qua	151020L059 lifiers 151020L058 lifiers
S-11.5-SVE5 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-15.5-SVE5 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-15.5-SVE5 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-5-SVE4	15-10-0905-8-A 15-10-0905-9-A 15-10-0905-10-A	10/09/15 09:00 Result 390 Rec. (%) 98 10/09/15 09:05 Result ND Rec. (%) 64 10/09/15 11:30	Solid	GC 1 RL 20 Control Limits 42-126 GC 1 RL 0.50 Control Limits 42-126	10/20/15 DF 40.0 Qualifiers 10/20/15 DF 1.00 Qualifiers 10/20/15	10/21/15 21:02 Qua 10/21/15 14:22 Qua 10/21/15 14:57	151020L059 lifiers 151020L058 lifiers 151020L058
S-11.5-SVE5 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-15.5-SVE5 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Surrogate 1,4-Bromofluorobenzene - FID Surrogate 1,4-Bromofluorobenzene - FID S-5-SVE4 Parameter	15-10-0905-8-A	10/09/15 09:00 Result 390 Rec. (%) 98 10/09/15 09:05 Result ND Rec. (%) 64 10/09/15 11:30 Result	Solid	GC 1 RL 20 Control Limits 42-126 GC 1 RL 0.50 Control Limits 42-126	10/20/15 DE 40.0 Qualifiers 10/20/15 DE 1.00 Qualifiers 10/20/15 DE	10/21/15 21:02 Qua 10/21/15 14:22 Qua 10/21/15 14:57	151020L059 lifiers 151020L058 lifiers 151020L058 lifiers
S-11.5-SVE5 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-15.5-SVE5 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-15.5-SVE5 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-5-SVE4 Parameter TPH as Gasoline	15-10-0905-8-A	10/09/15 09:00 Result 390 Rec. (%) 98 10/09/15 09:05 Result ND Rec. (%) 64 10/09/15 11:30 Result ND	Solid	GC 1 RL 20 Control Limits 42-126 GC 1 RL 0.50 Control Limits 42-126 GC 1 RL 0.50 Control Limits 42-126 Control Limits 42-126	10/20/15 DF 40.0 Qualifiers 10/20/15 DF 1.00 Qualifiers DF 1.00	10/21/15 21:02 Qua 10/21/15 14:22 Qua 10/21/15 14:57 Qua	151020L059 lifiers 151020L058 lifiers 151020L058
S-11.5-SVE5 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-15.5-SVE5 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-15.5-SVE5 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-5-SVE4 Parameter TPH as Gasoline Surrogate Surrogate Surrogate	15-10-0905-8-A	10/09/15 09:00 Result 390 Rec. (%) 98 10/09/15 09:05 Result ND Rec. (%) 64 10/09/15 11:30 Result ND Result ND	Solid	GC 1 RL 20 Control Limits 42-126 GC 1 RL 0.50 Control Limits 42-126 GC 1 RL 0.50 Control Limits 42-126 Control Limits 0.49 Control Limits	10/20/15 DF 40.0 Qualifiers 10/20/15 DF 1.00 Qualifiers DF 1.00 Qualifiers	10/21/15 21:02 Qua 10/21/15 14:22 Qua 10/21/15 14:57	151020L059 lifiers 151020L058 lifiers 151020L058 lifiers

Cardno			Date Re	ceived:			10/13/15
601 North McDowell Blvd.			Work O	rder:			15-10-0905
Petaluma, CA 94954-2312			Prepara	tion:			EPA 5030C
			Method:			E	PA 8015B (M)
			Units:				mg/kg
Project: ExxonMobil 79374/022735	C					Pa	ge 3 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-9.5-SVE4	15-10-0905-11-A	10/09/15 12:40	Solid	GC 24	10/22/15	10/22/15 23:50	151022L050
Parameter		Result		RL	DF	Qua	lifiers
TPH as Gasoline		82		4.0	8.00	HD	
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		151		42-126	AZ		
S-15.5-SVE4	15-10-0905-12-A	10/09/15 11:40	Solid	GC 1	10/20/15	10/21/15 15:33	151020L058
Parameter		Result		RL	DF	Qua	lifiers
TPH as Gasoline		ND		0.51	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		63		42-126			
S-5-SVE7	15-10-0905-13-A	10/09/15 13:30	Solid	GC 1	10/20/15	10/21/15 16:44	151020L058
S-5-SVE7 Parameter	15-10-0905-13-A	10/09/15 13:30 <u>Result</u>	Solid	GC 1	10/20/15 DF	10/21/15 16:44 Qua	151020L058
S-5-SVE7 Parameter TPH as Gasoline	15-10-0905-13-A	10/09/15 13:30 <u>Result</u> ND	Solid	GC 1 <u>RL</u> 0.50	10/20/15 DF 1.00	10/21/15 16:44 Qua	151020L058 lifiers
S-5-SVE7 Parameter TPH as Gasoline Surrogate	15-10-0905-13-A	10/09/15 13:30 Result ND Rec. (%)	Solid	GC 1 RL 0.50 Control Limits	10/20/15 DF 1.00 Qualifiers	10/21/15 16:44 Qua	151020L058 lifiers
S-5-SVE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID	15-10-0905-13-A	10/09/15 13:30 Result ND Rec. (%) 45	Solid	GC 1 RL 0.50 Control Limits 42-126	10/20/15 DF 1.00 Qualifiers	10/21/15 16:44 Qua	151020L058 lifiers
S-5-SVE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-10-SVE7	15-10-0905-13-A	10/09/15 13:30 Result ND <u>Rec. (%)</u> 45 10/09/15 13:55	Solid	GC 1 RL 0.50 Control Limits 42-126 GC 1	10/20/15 DF 1.00 Qualifiers 10/20/15	10/21/15 16:44 Qua 10/21/15 17:19	151020L058 Ilifiers 151020L058
S-5-SVE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-10-SVE7 Parameter	15-10-0905-13-A 15-10-0905-14-A	10/09/15 13:30 Result ND Rec. (%) 45 10/09/15 13:55 Result	Solid	GC 1 RL 0.50 Control Limits 42-126 GC 1 RL	10/20/15 DF 1.00 Qualifiers 10/20/15 DF	10/21/15 16:44 Qua 10/21/15 17:19 Qua	151020L058 Ilifiers 151020L058 Ilifiers
S-5-SVE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-10-SVE7 Parameter TPH as Gasoline	15-10-0905-13-A 15-10-0905-14-A	10/09/15 13:30 Result ND Rec. (%) 45 10/09/15 13:55 Result 2.0	Solid	GC 1 RL 0.50 Control Limits 42-126 GC 1 RL 0.49	10/20/15 DF 1.00 Qualifiers 10/20/15 DF 1.00	10/21/15 16:44 Qua 10/21/15 17:19 Qua HD	151020L058 Ilifiers 151020L058 Ilifiers
S-5-SVE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-10-SVE7 Parameter TPH as Gasoline Surrogate	15-10-0905-13-A 15-10-0905-14-A	10/09/15 13:30 Result ND <u>Rec. (%)</u> 45 10/09/15 13:55 Result 2.0 <u>Rec. (%)</u>	Solid	GC 1 RL 0.50 Control Limits 42-126 GC 1 RL 0.49 Control Limits	10/20/15 DF 1.00 Qualifiers 10/20/15 DF 1.00 Qualifiers	10/21/15 16:44 Qua 10/21/15 17:19 Qua HD	151020L058 Ilifiers 151020L058 Ilifiers
S-5-SVE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-10-SVE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID	15-10-0905-13-A 15-10-0905-14-A	10/09/15 13:30 Result ND Rec. (%) 45 10/09/15 13:55 Result 2.0 Rec. (%) 75	Solid	GC 1 RL 0.50 Control Limits 42-126 GC 1 RL 0.49 Control Limits 42-126	10/20/15 DF 1.00 Qualifiers 10/20/15 DF 1.00 Qualifiers	10/21/15 16:44 Qua 10/21/15 17:19 Qua HD	151020L058 Ilifiers 151020L058 Ilifiers
S-5-SVE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-10-SVE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Surrogate 1,4-Bromofluorobenzene - FID	15-10-0905-13-A	10/09/15 13:30 Result ND A5 10/09/15 13:55 Result 2.0 Rec. (%) 75 10/09/15 14:00	Solid	GC 1RL 0.50Control Limits 42-126GC 1RL 0.49Control Limits 42-126GC 1	10/20/15 DF 1.00 Qualifiers 10/20/15 DF 1.00 Qualifiers 10/20/15	10/21/15 16:44 Qua 10/21/15 17:19 Qua HD	151020L058 Ilifiers 151020L058 Ilifiers 151020L058 Ilifiers
S-5-SVE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-10-SVE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-12-SVE7 Parameter Parameter	15-10-0905-13-A 15-10-0905-14-A 15-10-0905-15-A	10/09/15 13:30 Result ND Rec. (%) 45 10/09/15 13:55 Result 2.0 Rec. (%) 75 10/09/15 14:00 Result	Solid	GC 1 RL 0.50 Control Limits 42-126 GC 1 RL 0.49 Control Limits 42-126 GC 1 RL 0.49 Gontrol Limits 42-126	10/20/15 DF 1.00 Qualifiers 10/20/15 DF 1.00 Qualifiers 10/20/15	10/21/15 16:44 Qua 10/21/15 17:19 Qua HD	151020L058 difiers 151020L058 difiers 151020L058 difiers
S-5-SVE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-10-SVE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Surrogate 1,4-Bromofluorobenzene - FID	15-10-0905-13-A 15-10-0905-14-A 15-10-0905-15-A	10/09/15 13:30 Result ND Rec. (%) 45 10/09/15 13:55 Result 2.0 Result 75 10/09/15 14:00 Result 11	Solid	GC 1RL 0.50Control Limits 42-126GC 1RL 0.49Control Limits 42-126GC 1RL 0.50	10/20/15 DE 1.00 Qualifiers 10/20/15 DE 1.00 Qualifiers 10/20/15	10/21/15 16:44 Qua 10/21/15 17:19 Qua HD	151020L058 difiers 151020L058 difiers 151020L058 difiers
S-5-SVE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-10-SVE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-10-SVE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-12-SVE7 Parameter TPH as Gasoline Surrogate Surrogate Surrogate	15-10-0905-13-A	10/09/15 13:30 Result ND Rec. (%) 45 10/09/15 13:55 Result 2.0 Rec. (%) 75 10/09/15 14:00 Result 11 Rec. (%)	Solid	GC 1RL 0.50Control Limits 42-126GC 1RL 0.49Control Limits 42-126GC 1RL 0.50Control Limits 0.50	10/20/15 DF 1.00 Qualifiers 10/20/15 DF 1.00 Qualifiers DF 1.00 Qualifiers	10/21/15 16:44 Qua 10/21/15 17:19 Qua HD	151020L058 difiers 151020L058 difiers lifiers
S-5-SVE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID S-10-SVE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Surrogate 1,4-Bromofluorobenzene - FID S-12-SVE7 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Surrogate 1,4-Bromofluorobenzene - FID	15-10-0905-13-A	10/09/15 13:30 Result ND Rec. (%) 45 10/09/15 13:55 Result 2.0 Rec. (%) 75 10/09/15 14:00 Result 11 Result 11 10	Solid	GC 1RL 0.50Control Limits 42-126GC 1RL 0.49Control Limits 42-126GC 1RL 0.50Control Limits 42-126	10/20/15 DF 1.00 Qualifiers 10/20/15 DF 1.00 Qualifiers DE 1.00 Qualifiers	<u>10/21/15</u> <u>Qua</u> <u>10/21/15</u> <u>17:19</u> <u>Qua</u> HD	151020L058 Ilifiers 151020L058 Ilifiers 151020L058 Ilifiers

Cardno			Date Re	eceived:			10/13/15
601 North McDowell Blvd.		,	Work O	rder:			15-10-0905
Petaluma, CA 94954-2312			Prepara	tion:			EPA 5030C
			Method	:		E	PA 8015B (M)
			Units:				mg/kg
Project: ExxonMobil 79374/02273	5C					Pa	ige 4 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-15.5-SVE7	15-10-0905-16-A	10/09/15 14:05	Solid	GC 1	10/20/15	10/21/15 18:04	151020L058
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline		ND		0.50	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		64		42-126			
S-5-SVE6	15-10-0905-17-A	10/09/15 14:55	Solid	GC 1	10/20/15	10/21/15 18:40	151020L058
Parameter		Result		RL	DF	Qua	alifiers
TPH as Gasoline		ND		0.51	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		59		42-126			
S-12-SVE6	15-10-0905-18-A	10/09/15 15:00	Solid	GC 1	10/20/15	10/21/15 21:37	151020L059
S-12-SVE6 Parameter	15-10-0905-18-A	10/09/15 15:00 <u>Result</u>	Solid	GC 1	10/20/15 DF	10/21/15 21:37 Qua	151020L059
S-12-SVE6 Parameter TPH as Gasoline	15-10-0905-18-A	10/09/15 15:00 <u>Result</u> 520	Solid	GC 1 <u>RL</u> 50	10/20/15 DF 100	10/21/15 21:37 Qua	151020L059 alifiers
S-12-SVE6 Parameter TPH as Gasoline Surrogate	15-10-0905-18-A	10/09/15 15:00 Result 520 Rec. (%)	Solid	GC 1 RL 50 Control Limits	10/20/15 DE 100 Qualifiers	10/21/15 21:37 Qua	151020L059 alifiers
S-12-SVE6 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID	15-10-0905-18-A	10/09/15 15:00 Result 520 Rec. (%) 78	Solid	GC 1 RL 50 Control Limits 42-126	10/20/15 DF 100 Qualifiers	10/21/15 21:37 Qua	151020L059 alifiers
S-12-SVE6 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank	15-10-0905-18-A	10/09/15 15:00 Result 520 Rec. (%) 78 N/A	Solid	GC 1 RL 50 Control Limits 42-126 GC 1	10/20/15 DF 100 Qualifiers 10/20/15	10/21/15 21:37 Qua 10/21/15 07:52	151020L059 alifiers 151020L058
S-12-SVE6 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter	15-10-0905-18-A	10/09/15 15:00 Result 520 Rec. (%) 78 N/A Result	Solid	GC 1 RL 50 Control Limits 42-126 GC 1 RL	10/20/15 DF 100 Qualifiers 10/20/15 DF	10/21/15 21:37 Qua 10/21/15 07:52	151020L059 alifiers 151020L058 alifiers
S-12-SVE6 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline	15-10-0905-18-A 099-14-571-2677	10/09/15 15:00 Result 520 Rec. (%) 78 N/A Result ND	Solid	GC 1 RL 50 Control Limits 42-126 GC 1 RL 0.50	10/20/15 DF 100 Qualifiers 10/20/15 DF 1.00	10/21/15 21:37 Qua 10/21/15 07:52 Qua	151020L059 alifiers 151020L058 alifiers
S-12-SVE6 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate	15-10-0905-18-A 099-14-571-2677	10/09/15 15:00 Result 520 Rec. (%) 78 N/A Result ND Rec. (%)	Solid	GC 1 RL 50 Control Limits 42-126 GC 1 RL 0.50 Control Limits	10/20/15 DE 100 Qualifiers 10/20/15 DE 1.00 Qualifiers	10/21/15 21:37 Qua 10/21/15 07:52 Qua	151020L059 alifiers 151020L058 alifiers
S-12-SVE6 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID	15-10-0905-18-A	10/09/15 15:00 Result 520 <u>Rec. (%)</u> 78 N/A Result ND <u>Rec. (%)</u> 62	Solid	GC 1 RL 50 Control Limits 42-126 GC 1 RL 0.50 Control Limits 42-126	10/20/15 DF 100 Qualifiers 10/20/15 DF 1.00 Qualifiers	10/21/15 21:37 Qua 10/21/15 07:52 Qua	151020L059 alifiers 151020L058 alifiers
S-12-SVE6 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank	15-10-0905-18-A 099-14-571-2677	10/09/15 15:00 Result 520 Rec. (%) 78 N/A Result ND Rec. (%) 62 N/A	Solid	GC 1 RL 50 Control Limits 42-126 GC 1 RL 0.50 Control Limits 42-126	10/20/15 DF 100 Qualifiers 10/20/15 DF 1.00 Qualifiers 10/20/15	10/21/15 21:37 Qua 10/21/15 07:52 Qua 10/21/15 08:28	151020L059 alifiers 151020L058 alifiers
S-12-SVE6 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter Parameter	15-10-0905-18-A 099-14-571-2677 099-14-571-2678	10/09/15 15:00 Result 520 Rec. (%) 78 N/A Result ND Rec. (%) 62 N/A Result	Solid	GC 1 RL 50 Control Limits 42-126 GC 1 RL 0.50 Control Limits 42-126 Control Limits 42-126	10/20/15 DF 100 Qualifiers 10/20/15 DF 1.00 Qualifiers 10/20/15 DF	10/21/15 21:37 Qua 10/21/15 07:52 Qua 10/21/15 08:28	151020L059 alifiers 151020L058 alifiers 151020L059 alifiers
S-12-SVE6 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline	15-10-0905-18-A 099-14-571-2677 099-14-571-2678	10/09/15 15:00 Result 520 Rec. (%) 78 N/A Result ND 62 N/A Result ND	Solid	GC 1 RL 50 Control Limits 42-126 GC 1 RL 0.50 Control Limits 42-126 GC 1 RL 0.50 Control Limits 42-126	10/20/15 DF 100 Qualifiers 10/20/15 DF 1.00 Qualifiers 10/20/15 DF 8.00	10/21/15 21:37 Qua 10/21/15 07:52 Qua 10/21/15 08:28	151020L059 alifiers 151020L058 alifiers 151020L059 alifiers
S-12-SVE6 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate Surrogate Surrogate	15-10-0905-18-A 099-14-571-2677 099-14-571-2678	10/09/15 15:00 Result 520 <u>Rec. (%)</u> 78 N/A Result ND 62 N/A Result ND Rec. (%) 62	Solid	GC 1 RL 50 Control Limits 42-126 GC 1 RL 0.50 Control Limits 42-126 GC 1 RL 0.50 Control Limits 42-126 GC 1 GC 1 GC 1 Control Limits 4.0 Control Limits	10/20/15 DF 100 Qualifiers 10/20/15 DF 1.00 Qualifiers 10/20/15 DF 8.00 Qualifiers	10/21/15 21:37 Qua 10/21/15 07:52 Qua 10/21/15 08:28	151020L059 alifiers 151020L058 alifiers 151020L059 alifiers
S-12-SVE6 Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID Method Blank Parameter TPH as Gasoline Surrogate 1,4-Bromofluorobenzene - FID	15-10-0905-18-A 099-14-571-2677 099-14-571-2678	10/09/15 15:00 Result 520 Rec. (%) 78 N/A Result ND 62 N/A Result ND Rec. (%) 66	Solid	GC 1 RL 50 Control Limits 42-126 GC 1 RL 0.50 Control Limits 42-126 GC 1 RL 42-126 GC 1 Control Limits 42-126	10/20/15 DF 100 Qualifiers 10/20/15 DF 1.00 Qualifiers 10/20/15 DF 8.00 Qualifiers	10/21/15 21:37 Qua 10/21/15 07:52 Qua 10/21/15 08:28	151020L059 alifiers 151020L058 alifiers 151020L059 alifiers

Return to Contents

Cardno			Date Re	ceived:			10/13/15
601 North McDowell Blvd.			Work O	rder:			15-10-0905
Petaluma, CA 94954-2312			Prepara	tion:			EPA 5030C
			Method:			E	PA 8015B (M)
			Units:				mg/kg
Project: ExxonMobil 79374/022735	С					Pa	ge 5 of 5
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-14-571-2680	N/A	Solid	GC 24	10/22/15	10/22/15 14:23	151022L050
Parameter		Result		RL	DF	Qua	lifiers
TPH as Gasoline		ND		4.0	8.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		76		42-126			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C SIM PAHs
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 1 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-B18	15-10-0905-1-A	10/08/15 10:00	Solid	GC/MS AAA	10/16/15	10/17/15 15:41	151016L05
Parameter		<u>Result</u>		<u>RL</u>	DF	Qualif	iers
Naphthalene		ND		0.020	1.00		
2-Methylnaphthalene		ND		0.020	1.00		
1-Methylnaphthalene		ND		0.020	1.00		
Acenaphthylene		ND		0.020	1.00		
Acenaphthene		ND		0.020	1.00		
Fluorene		ND		0.020	1.00		
Phenanthrene		ND		0.020	1.00		
Anthracene		ND		0.020	1.00		
Fluoranthene		ND		0.020	1.00		
Pyrene		ND		0.020	1.00		
Benzo (a) Anthracene		ND		0.020	1.00		
Chrysene		ND		0.020	1.00		
Benzo (k) Fluoranthene		ND		0.020	1.00		
Benzo (b) Fluoranthene		ND		0.020	1.00		
Benzo (a) Pyrene		ND		0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1.00		
Dibenz (a,h) Anthracene		ND		0.020	1.00		
Benzo (g,h,i) Perylene		ND		0.020	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		90		22-130			
Nitrobenzene-d5		86		20-145			
p-Terphenyl-d14		90		33-147			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C SIM PAHs
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 2 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10-B18	15-10-0905-2-A	10/08/15 10:40	Solid	GC/MS AAA	10/16/15	10/17/15 16:02	151016L05
Parameter		<u>Result</u>		RL	DF	Qualif	iers
Naphthalene		ND		0.020	1.00		
2-Methylnaphthalene		ND		0.020	1.00		
1-Methylnaphthalene		ND		0.020	1.00		
Acenaphthylene		ND		0.020	1.00		
Acenaphthene		ND		0.020	1.00		
Fluorene		ND		0.020	1.00		
Phenanthrene		ND		0.020	1.00		
Anthracene		ND		0.020	1.00		
Fluoranthene		ND		0.020	1.00		
Pyrene		ND		0.020	1.00		
Benzo (a) Anthracene		ND		0.020	1.00		
Chrysene		ND		0.020	1.00		
Benzo (k) Fluoranthene		ND		0.020	1.00		
Benzo (b) Fluoranthene		ND		0.020	1.00		
Benzo (a) Pyrene		ND		0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1.00		
Dibenz (a,h) Anthracene		ND		0.020	1.00		
Benzo (g,h,i) Perylene		ND		0.020	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		77		22-130			
Nitrobenzene-d5		70		20-145			
p-Terphenyl-d14		89		33-147			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C SIM PAHs
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 3 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-15-B18	15-10-0905-3-A	10/08/15 11:15	Solid	GC/MS AAA	10/16/15	10/17/15 16:22	151016L05
Parameter		<u>Result</u>		RL	DF	Qualit	iers
Naphthalene		ND		0.020	1.00		
2-Methylnaphthalene		ND		0.020	1.00		
1-Methylnaphthalene		ND		0.020	1.00		
Acenaphthylene		ND		0.020	1.00		
Acenaphthene		ND		0.020	1.00		
Fluorene		ND		0.020	1.00		
Phenanthrene		ND		0.020	1.00		
Anthracene		ND		0.020	1.00		
Fluoranthene		ND		0.020	1.00		
Pyrene		ND		0.020	1.00		
Benzo (a) Anthracene		ND		0.020	1.00		
Chrysene		ND		0.020	1.00		
Benzo (k) Fluoranthene		ND		0.020	1.00		
Benzo (b) Fluoranthene		ND		0.020	1.00		
Benzo (a) Pyrene		ND		0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1.00		
Dibenz (a,h) Anthracene		ND		0.020	1.00		
Benzo (g,h,i) Perylene		ND		0.020	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		74		22-130			
Nitrobenzene-d5		67		20-145			
p-Terphenyl-d14		80		33-147			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C SIM PAHs
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 4 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-MW9	15-10-0905-4-A	10/08/15 13:00	Solid	GC/MS AAA	10/16/15	10/17/15 16:42	151016L05
Parameter		<u>Result</u>		RL	DF	Qualif	iers
Naphthalene		ND		0.020	1.00		
2-Methylnaphthalene		ND		0.020	1.00		
1-Methylnaphthalene		ND		0.020	1.00		
Acenaphthylene		ND		0.020	1.00		
Acenaphthene		ND		0.020	1.00		
Fluorene		ND		0.020	1.00		
Phenanthrene		ND		0.020	1.00		
Anthracene		ND		0.020	1.00		
Fluoranthene		ND		0.020	1.00		
Pyrene		ND		0.020	1.00		
Benzo (a) Anthracene		ND		0.020	1.00		
Chrysene		ND		0.020	1.00		
Benzo (k) Fluoranthene		ND		0.020	1.00		
Benzo (b) Fluoranthene		ND		0.020	1.00		
Benzo (a) Pyrene		ND		0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1.00		
Dibenz (a,h) Anthracene		ND		0.020	1.00		
Benzo (g,h,i) Perylene		ND		0.020	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		95		22-130			
Nitrobenzene-d5		87		20-145			
p-Terphenyl-d14		98		33-147			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C SIM PAHs
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 5 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10.5-MW9	15-10-0905-5-A	10/08/15 13:10	Solid	GC/MS AAA	10/16/15	10/17/15 17:03	151016L05
Parameter		<u>Result</u>		RL	DF	Quali	fiers
Naphthalene		ND		0.020	1.00		
2-Methylnaphthalene		ND		0.020	1.00		
1-Methylnaphthalene		ND		0.020	1.00		
Acenaphthylene		ND		0.020	1.00		
Acenaphthene		ND		0.020	1.00		
Fluorene		ND		0.020	1.00		
Phenanthrene		ND		0.020	1.00		
Anthracene		ND		0.020	1.00		
Fluoranthene		ND		0.020	1.00		
Pyrene		ND		0.020	1.00		
Benzo (a) Anthracene		ND		0.020	1.00		
Chrysene		ND		0.020	1.00		
Benzo (k) Fluoranthene		ND		0.020	1.00		
Benzo (b) Fluoranthene		ND		0.020	1.00		
Benzo (a) Pyrene		ND		0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1.00		
Dibenz (a,h) Anthracene		ND		0.020	1.00		
Benzo (g,h,i) Perylene		ND		0.020	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		88		22-130			
Nitrobenzene-d5		83		20-145			
p-Terphenyl-d14		97		33-147			

Cardno	Date Received:	10/13/15		
601 North McDowell Blvd.	Work Order:	15-10-0905		
Petaluma, CA 94954-2312	Preparation:	EPA 3545		
	Method:	EPA 8270C SIM PAHs		
	Units:	mg/kg		
Project: ExxonMobil 79374/022735C		Page 6 of 21		

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-15.5-MW9	15-10-0905-6-A	10/08/15 13:15	Solid	GC/MS AAA	10/16/15	10/17/15 17:23	151016L05
Parameter		<u>Result</u>		<u>RL</u>	DF	Quali	fiers
Naphthalene		ND		0.020	1.00		
2-Methylnaphthalene		ND		0.020	1.00		
1-Methylnaphthalene		ND		0.020	1.00		
Acenaphthylene		ND		0.020	1.00		
Acenaphthene		ND		0.020	1.00		
Fluorene		ND		0.020	1.00		
Phenanthrene		ND		0.020	1.00		
Anthracene		ND		0.020	1.00		
Fluoranthene		ND		0.020	1.00		
Pyrene		ND		0.020	1.00		
Benzo (a) Anthracene		ND		0.020	1.00		
Chrysene		ND		0.020	1.00		
Benzo (k) Fluoranthene		ND		0.020	1.00		
Benzo (b) Fluoranthene		ND		0.020	1.00		
Benzo (a) Pyrene		ND		0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1.00		
Dibenz (a,h) Anthracene		ND		0.020	1.00		
Benzo (g,h,i) Perylene		ND		0.020	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		79		22-130			
Nitrobenzene-d5		73		20-145			
p-Terphenyl-d14		84		33-147			

Cardno	Date Received:	10/13/15		
601 North McDowell Blvd.	Work Order:	15-10-0905		
Petaluma, CA 94954-2312	Preparation:	EPA 3545		
	Method:	EPA 8270C SIM PAHs		
	Units:	mg/kg		
Project: ExxonMobil 79374/022735C		Page 7 of 21		

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-SVE5	15-10-0905-7-A	10/09/15 08:50	Solid	GC/MS AAA	10/16/15	10/17/15 17:44	151016L05
Parameter		<u>Result</u>		<u>RL</u>	DF	Qualifiers	
Naphthalene		ND		0.020	1.00		
2-Methylnaphthalene		ND		0.020	1.00		
1-Methylnaphthalene		ND		0.020	1.00		
Acenaphthylene		ND		0.020	1.00		
Acenaphthene		ND		0.020	1.00		
Fluorene		ND		0.020	1.00		
Phenanthrene		ND		0.020	1.00		
Anthracene		ND		0.020	1.00		
Fluoranthene		ND		0.020	1.00		
Pyrene		ND		0.020	1.00		
Benzo (a) Anthracene		ND		0.020	1.00		
Chrysene		ND		0.020	1.00		
Benzo (k) Fluoranthene		ND		0.020	1.00		
Benzo (b) Fluoranthene		ND		0.020	1.00		
Benzo (a) Pyrene		ND		0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1.00		
Dibenz (a,h) Anthracene		ND		0.020	1.00		
Benzo (g,h,i) Perylene		ND		0.020	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		80		22-130			
Nitrobenzene-d5		80		20-145			
p-Terphenyl-d14		83		33-147			

Cardno	Date Received:	10/13/15	
601 North McDowell Blvd.	Work Order:	15-10-0905	
Petaluma, CA 94954-2312	Preparation:	EPA 3545	
	Method:	EPA 8270C SIM PAHs	
	Units:	mg/kg	
Project: ExxonMobil 79374/022735C		Page 8 of 21	

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-11.5-SVE5	15-10-0905-8-A	10/09/15 09:00	Solid	GC/MS AAA	10/16/15	10/20/15 13:48	151016L05
Parameter		<u>Result</u>		RL	DF	Qualif	iers
Naphthalene		1.2		0.099	5.00		
2-Methylnaphthalene		2.1		0.099	5.00		
1-Methylnaphthalene		1.0		0.099	5.00		
Acenaphthylene		ND		0.099	5.00		
Acenaphthene		ND		0.099	5.00		
Fluorene		ND		0.099	5.00		
Phenanthrene		ND		0.099	5.00		
Anthracene		ND		0.099	5.00		
Fluoranthene		ND		0.099	5.00		
Pyrene		ND		0.099	5.00		
Benzo (a) Anthracene		ND		0.099	5.00		
Chrysene		ND		0.099	5.00		
Benzo (k) Fluoranthene		ND		0.099	5.00		
Benzo (b) Fluoranthene		ND		0.099	5.00		
Benzo (a) Pyrene		ND		0.099	5.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.099	5.00		
Dibenz (a,h) Anthracene		ND		0.099	5.00		
Benzo (g,h,i) Perylene		ND		0.099	5.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		64		22-130			
Nitrobenzene-d5		59		20-145			
p-Terphenyl-d14		83		33-147			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C SIM PAHs
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 9 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-15.5-SVE5	15-10-0905-9-A	10/09/15 09:05	Solid	GC/MS AAA	10/16/15	10/17/15 18:24	151016L05
Parameter		<u>Result</u>		<u>RL</u>	DF	Qualif	fiers
Naphthalene		ND		0.020	1.00		
2-Methylnaphthalene		ND		0.020	1.00		
1-Methylnaphthalene		ND		0.020	1.00		
Acenaphthylene		ND		0.020	1.00		
Acenaphthene		ND		0.020	1.00		
Fluorene		ND		0.020	1.00		
Phenanthrene		ND		0.020	1.00		
Anthracene		ND		0.020	1.00		
Fluoranthene		ND		0.020	1.00		
Pyrene		ND		0.020	1.00		
Benzo (a) Anthracene		ND		0.020	1.00		
Chrysene		ND		0.020	1.00		
Benzo (k) Fluoranthene		ND		0.020	1.00		
Benzo (b) Fluoranthene		ND		0.020	1.00		
Benzo (a) Pyrene		ND		0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1.00		
Dibenz (a,h) Anthracene		ND		0.020	1.00		
Benzo (g,h,i) Perylene		ND		0.020	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		53		22-130			
Nitrobenzene-d5		49		20-145			
p-Terphenyl-d14		58		33-147			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C SIM PAHs
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 10 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-SVE4	15-10-0905-10-A	10/09/15 11:30	Solid	GC/MS AAA	10/16/15	10/17/15 18:45	151016L05
Parameter		<u>Result</u>		RL	DF	Qualif	iers
Naphthalene		ND		0.020	1.00		
2-Methylnaphthalene		ND		0.020	1.00		
1-Methylnaphthalene		ND		0.020	1.00		
Acenaphthylene		ND		0.020	1.00		
Acenaphthene		ND		0.020	1.00		
Fluorene		ND		0.020	1.00		
Phenanthrene		ND		0.020	1.00		
Anthracene		ND		0.020	1.00		
Fluoranthene		ND		0.020	1.00		
Pyrene		ND		0.020	1.00		
Benzo (a) Anthracene		ND		0.020	1.00		
Chrysene		ND		0.020	1.00		
Benzo (k) Fluoranthene		ND		0.020	1.00		
Benzo (b) Fluoranthene		ND		0.020	1.00		
Benzo (a) Pyrene		ND		0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1.00		
Dibenz (a,h) Anthracene		ND		0.020	1.00		
Benzo (g,h,i) Perylene		ND		0.020	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		79		22-130			
Nitrobenzene-d5		68		20-145			
p-Terphenyl-d14		91		33-147			

Cardno	Date Received:	10/13/15	
601 North McDowell Blvd.	Work Order:	15-10-0905	
Petaluma, CA 94954-2312	Preparation:	EPA 3545	
	Method:	EPA 8270C SIM PAHs	
	Units:	mg/kg	
Project: ExxonMobil 79374/022735C		Page 11 of 21	

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-9.5-SVE4	15-10-0905-11-A	10/09/15 12:40	Solid	GC/MS AAA	10/16/15	10/17/15 19:05	151016L05
Parameter		<u>Result</u>		RL	DF	Qualif	iers
Naphthalene		ND		0.020	1.00		
2-Methylnaphthalene		0.14		0.020	1.00		
1-Methylnaphthalene		0.060		0.020	1.00		
Acenaphthylene		ND		0.020	1.00		
Acenaphthene		ND		0.020	1.00		
Fluorene		ND		0.020	1.00		
Phenanthrene		ND		0.020	1.00		
Anthracene		ND		0.020	1.00		
Fluoranthene		ND		0.020	1.00		
Pyrene		ND		0.020	1.00		
Benzo (a) Anthracene		ND		0.020	1.00		
Chrysene		ND		0.020	1.00		
Benzo (k) Fluoranthene		ND		0.020	1.00		
Benzo (b) Fluoranthene		ND		0.020	1.00		
Benzo (a) Pyrene		ND		0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1.00		
Dibenz (a,h) Anthracene		ND		0.020	1.00		
Benzo (g,h,i) Perylene		ND		0.020	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		86		22-130			
Nitrobenzene-d5		79		20-145			
p-Terphenyl-d14		93		33-147			

Cardno	Date Received:	10/13/15	
601 North McDowell Blvd.	Work Order:	15-10-0905	
Petaluma, CA 94954-2312	Preparation:	EPA 3545	
	Method:	EPA 8270C SIM PAHs	
	Units:	mg/kg	
Project: ExxonMobil 79374/022735C		Page 12 of 21	

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-15.5-SVE4	15-10-0905-12-A	10/09/15 11:40	Solid	GC/MS AAA	10/16/15	10/17/15 19:26	151016L05
Parameter		<u>Result</u>		RL	DF	Qual	fiers
Naphthalene		ND		0.020	1.00		
2-Methylnaphthalene		ND		0.020	1.00		
1-Methylnaphthalene		ND		0.020	1.00		
Acenaphthylene		ND		0.020	1.00		
Acenaphthene		ND		0.020	1.00		
Fluorene		ND		0.020	1.00		
Phenanthrene		ND		0.020	1.00		
Anthracene		ND		0.020	1.00		
Fluoranthene		ND		0.020	1.00		
Pyrene		ND		0.020	1.00		
Benzo (a) Anthracene		ND		0.020	1.00		
Chrysene		ND		0.020	1.00		
Benzo (k) Fluoranthene		ND		0.020	1.00		
Benzo (b) Fluoranthene		ND		0.020	1.00		
Benzo (a) Pyrene		ND		0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1.00		
Dibenz (a,h) Anthracene		ND		0.020	1.00		
Benzo (g,h,i) Perylene		ND		0.020	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		10		22-130	AZ		
Nitrobenzene-d5		7		20-145	AZ		
p-Terphenyl-d14		11		33-147	AZ		

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C SIM PAHs
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 13 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-15.5-SVE4	15-10-0905-12-A	10/09/15 11:40	Solid	GC/MS AAA	10/20/15	10/22/15 20:12	151020L11
Parameter		<u>Result</u>		RL	DF	Qualit	iers
Naphthalene		ND		0.020	1.00		
2-Methylnaphthalene		ND		0.020	1.00		
1-Methylnaphthalene		ND		0.020	1.00		
Acenaphthylene		ND		0.020	1.00		
Acenaphthene		ND		0.020	1.00		
Fluorene		ND		0.020	1.00		
Phenanthrene		ND		0.020	1.00		
Anthracene		ND		0.020	1.00		
Fluoranthene		ND		0.020	1.00		
Pyrene		ND		0.020	1.00		
Benzo (a) Anthracene		ND		0.020	1.00		
Chrysene		ND		0.020	1.00		
Benzo (k) Fluoranthene		ND		0.020	1.00		
Benzo (b) Fluoranthene		ND		0.020	1.00		
Benzo (a) Pyrene		ND		0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1.00		
Dibenz (a,h) Anthracene		ND		0.020	1.00		
Benzo (g,h,i) Perylene		ND		0.020	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		57		22-130			
Nitrobenzene-d5		62		20-145			
p-Terphenyl-d14		59		33-147			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C SIM PAHs
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 14 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-SVE7	15-10-0905-13-A	10/09/15 13:30	Solid	GC/MS AAA	10/16/15	10/17/15 19:46	151016L05
Parameter		<u>Result</u>		RL	DF	Qualif	iers
Naphthalene		ND		0.020	1.00		
2-Methylnaphthalene		ND		0.020	1.00		
1-Methylnaphthalene		ND		0.020	1.00		
Acenaphthylene		ND		0.020	1.00		
Acenaphthene		ND		0.020	1.00		
Fluorene		ND		0.020	1.00		
Phenanthrene		ND		0.020	1.00		
Anthracene		ND		0.020	1.00		
Fluoranthene		ND		0.020	1.00		
Pyrene		ND		0.020	1.00		
Benzo (a) Anthracene		ND		0.020	1.00		
Chrysene		ND		0.020	1.00		
Benzo (k) Fluoranthene		ND		0.020	1.00		
Benzo (b) Fluoranthene		ND		0.020	1.00		
Benzo (a) Pyrene		ND		0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1.00		
Dibenz (a,h) Anthracene		ND		0.020	1.00		
Benzo (g,h,i) Perylene		ND		0.020	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		71		22-130			
Nitrobenzene-d5		65		20-145			
p-Terphenyl-d14		87		33-147			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C SIM PAHs
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 15 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10-SVE7	15-10-0905-14-A	10/09/15 13:55	Solid	GC/MS AAA	10/16/15	10/17/15 20:06	151016L05
Parameter		<u>Result</u>		RL	DF	Qualif	iers
Naphthalene		ND		0.020	1.00		
2-Methylnaphthalene		ND		0.020	1.00		
1-Methylnaphthalene		ND		0.020	1.00		
Acenaphthylene		ND		0.020	1.00		
Acenaphthene		ND		0.020	1.00		
Fluorene		ND		0.020	1.00		
Phenanthrene		ND		0.020	1.00		
Anthracene		ND		0.020	1.00		
Fluoranthene		ND		0.020	1.00		
Pyrene		ND		0.020	1.00		
Benzo (a) Anthracene		ND		0.020	1.00		
Chrysene		ND		0.020	1.00		
Benzo (k) Fluoranthene		ND		0.020	1.00		
Benzo (b) Fluoranthene		ND		0.020	1.00		
Benzo (a) Pyrene		ND		0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1.00		
Dibenz (a,h) Anthracene		ND		0.020	1.00		
Benzo (g,h,i) Perylene		ND		0.020	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		65		22-130			
Nitrobenzene-d5		61		20-145			
p-Terphenyl-d14		92		33-147			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C SIM PAHs
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 16 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-12-SVE7	15-10-0905-15-A	10/09/15 14:00	Solid	GC/MS AAA	10/16/15	10/17/15 20:27	151016L05
Parameter		<u>Result</u>		RL	DF	Qualif	fiers
Naphthalene		ND		0.020	1.00		
2-Methylnaphthalene		ND		0.020	1.00		
1-Methylnaphthalene		ND		0.020	1.00		
Acenaphthylene		ND		0.020	1.00		
Acenaphthene		ND		0.020	1.00		
Fluorene		ND		0.020	1.00		
Phenanthrene		ND		0.020	1.00		
Anthracene		ND		0.020	1.00		
Fluoranthene		ND		0.020	1.00		
Pyrene		ND		0.020	1.00		
Benzo (a) Anthracene		ND		0.020	1.00		
Chrysene		ND		0.020	1.00		
Benzo (k) Fluoranthene		ND		0.020	1.00		
Benzo (b) Fluoranthene		ND		0.020	1.00		
Benzo (a) Pyrene		ND		0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1.00		
Dibenz (a,h) Anthracene		ND		0.020	1.00		
Benzo (g,h,i) Perylene		ND		0.020	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	Qualifiers		
2-Fluorobiphenyl		53		22-130			
Nitrobenzene-d5		52		20-145			
p-Terphenyl-d14		68		33-147			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C SIM PAHs
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 17 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-15.5-SVE7	15-10-0905-16-A	10/09/15 14:05	Solid	GC/MS AAA	10/16/15	10/17/15 20:47	151016L05
Parameter		<u>Result</u>		RL	DF	Quali	fiers
Naphthalene		ND		0.020	1.00		
2-Methylnaphthalene		ND		0.020	1.00		
1-Methylnaphthalene		ND		0.020	1.00		
Acenaphthylene		ND		0.020	1.00		
Acenaphthene		ND		0.020	1.00		
Fluorene		ND		0.020	1.00		
Phenanthrene		ND		0.020	1.00		
Anthracene		ND		0.020	1.00		
Fluoranthene		ND		0.020	1.00		
Pyrene		ND		0.020	1.00		
Benzo (a) Anthracene		ND		0.020	1.00		
Chrysene		ND		0.020	1.00		
Benzo (k) Fluoranthene		ND		0.020	1.00		
Benzo (b) Fluoranthene		ND		0.020	1.00		
Benzo (a) Pyrene		ND		0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1.00		
Dibenz (a,h) Anthracene		ND		0.020	1.00		
Benzo (g,h,i) Perylene		ND		0.020	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		66		22-130			
Nitrobenzene-d5		58		20-145			
p-Terphenyl-d14		110		33-147			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C SIM PAHs
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 18 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-SVE6	15-10-0905-17-A	10/09/15 14:55	Solid	GC/MS AAA	10/16/15	10/17/15 21:07	151016L05
Parameter		<u>Result</u>		RL	DF	Qualif	iers
Naphthalene		ND		0.020	1.00		
2-Methylnaphthalene		ND		0.020	1.00		
1-Methylnaphthalene		ND		0.020	1.00		
Acenaphthylene		ND		0.020	1.00		
Acenaphthene		ND		0.020	1.00		
Fluorene		ND		0.020	1.00		
Phenanthrene		ND		0.020	1.00		
Anthracene		ND		0.020	1.00		
Fluoranthene		ND		0.020	1.00		
Pyrene		ND		0.020	1.00		
Benzo (a) Anthracene		ND		0.020	1.00		
Chrysene		ND		0.020	1.00		
Benzo (k) Fluoranthene		ND		0.020	1.00		
Benzo (b) Fluoranthene		ND		0.020	1.00		
Benzo (a) Pyrene		ND		0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1.00		
Dibenz (a,h) Anthracene		ND		0.020	1.00		
Benzo (g,h,i) Perylene		ND		0.020	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	Qualifiers		
2-Fluorobiphenyl		85		22-130			
Nitrobenzene-d5		80		20-145			
p-Terphenyl-d14		95		33-147			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C SIM PAHs
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 19 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-12-SVE6	15-10-0905-18-A	10/09/15 15:00	Solid	GC/MS AAA	10/16/15	10/17/15 21:28	151016L05
Parameter		<u>Result</u>		RL	DF	Qualif	iers
Naphthalene		0.39		0.020	1.00		
2-Methylnaphthalene		0.81		0.020	1.00		
1-Methylnaphthalene		0.38		0.020	1.00		
Acenaphthylene		ND		0.020	1.00		
Acenaphthene		ND		0.020	1.00		
Fluorene		ND		0.020	1.00		
Phenanthrene		0.024		0.020	1.00		
Anthracene		ND		0.020	1.00		
Fluoranthene		ND		0.020	1.00		
Pyrene		ND		0.020	1.00		
Benzo (a) Anthracene		ND		0.020	1.00		
Chrysene		ND		0.020	1.00		
Benzo (k) Fluoranthene		ND		0.020	1.00		
Benzo (b) Fluoranthene		ND		0.020	1.00		
Benzo (a) Pyrene		ND		0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1.00		
Dibenz (a,h) Anthracene		ND		0.020	1.00		
Benzo (g,h,i) Perylene		ND		0.020	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		102		22-130			
Nitrobenzene-d5		98		20-145			
p-Terphenyl-d14		85		33-147			

Calscience

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C SIM PAHs
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 20 of 21

Date/Time Collected Matrix Date Prepared Date/Time QC Batch ID **Client Sample Number** Lab Sample Instrument Number Analyzed 10/17/15 15:21 GC/MS AAA Method Blank 151016L05 099-06-010-2457 N/A Solid 10/16/15 Parameter Result <u>RL</u> <u>DF</u> Qualifiers ND 0.020 Naphthalene 1.00 ND 0.020 1.00 2-Methylnaphthalene 1-Methylnaphthalene ND 0.020 1.00 Acenaphthylene ND 0.020 1.00 Acenaphthene ND 0.020 1.00 Fluorene ND 0.020 1.00 Phenanthrene ND 0.020 1.00 Anthracene ND 1.00 0.020 Fluoranthene ND 0.020 1.00 Pyrene ND 0.020 1.00 Benzo (a) Anthracene ND 0.020 1.00 Chrysene ND 0.020 1.00 Benzo (k) Fluoranthene ND 0.020 1.00 Benzo (b) Fluoranthene ND 0.020 1.00 Benzo (a) Pyrene ND 0.020 1.00 ND 0.020 1.00 Indeno (1,2,3-c,d) Pyrene ND 0.020 1.00 Dibenz (a,h) Anthracene ND 0.020 1.00 Benzo (g,h,i) Perylene <u>Rec. (%)</u> Surrogate Control Limits **Qualifiers** 2-Fluorobiphenyl 93 22-130 Nitrobenzene-d5 88 20-145 p-Terphenyl-d14 92 33-147

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C SIM PAHs
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 21 of 21

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-06-010-2458	N/A	Solid	GC/MS AAA	10/20/15	10/21/15 10:26	151020L11
Parameter		<u>Result</u>		RL	DF	Qualif	iers
Naphthalene		ND		0.020	1.00		
2-Methylnaphthalene		ND		0.020	1.00		
1-Methylnaphthalene		ND		0.020	1.00		
Acenaphthylene		ND		0.020	1.00		
Acenaphthene		ND		0.020	1.00		
Fluorene		ND		0.020	1.00		
Phenanthrene		ND		0.020	1.00		
Anthracene		ND		0.020	1.00		
Fluoranthene		ND		0.020	1.00		
Pyrene		ND		0.020	1.00		
Benzo (a) Anthracene		ND		0.020	1.00		
Chrysene		ND		0.020	1.00		
Benzo (k) Fluoranthene		ND		0.020	1.00		
Benzo (b) Fluoranthene		ND		0.020	1.00		
Benzo (a) Pyrene		ND		0.020	1.00		
Indeno (1,2,3-c,d) Pyrene		ND		0.020	1.00		
Dibenz (a,h) Anthracene		ND		0.020	1.00		
Benzo (g,h,i) Perylene		ND		0.020	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl		99		22-130			
Nitrobenzene-d5		91		20-145			
p-Terphenyl-d14		100		33-147			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 1 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-B18	15-10-0905-1-A	10/08/15 10:00	Solid	GC/MS O	10/13/15	10/15/15 05:15	151014L039
Parameter		<u>Result</u>		RL	DF	Quali	fiers
Benzene		ND		0.0049	1.00		
Toluene		ND		0.0049	1.00		
Ethylbenzene		ND		0.0049	1.00		
o-Xylene		ND		0.0049	1.00		
p/m-Xylene		ND		0.0049	1.00		
Xylenes (total)		ND		0.0049	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.0049	1.00		
Tert-Butyl Alcohol (TBA)		ND		0.049	1.00		
Diisopropyl Ether (DIPE)		ND		0.0099	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.0099	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.0099	1.00		
1,2-Dibromoethane		ND		0.0049	1.00		
1,2-Dichloroethane		ND		0.0049	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		99		60-132			
Dibromofluoromethane		106		63-141			
1,2-Dichloroethane-d4		120		62-146			
Toluene-d8		104		80-120			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 2 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10-B18	15-10-0905-2-A	10/08/15 10:40	Solid	GC/MS O	10/13/15	10/15/15 05:44	151014L039
Parameter		<u>Result</u>		<u>RL</u>	DF	Quali	<u>fiers</u>
Benzene		ND		0.0049	1.00		
Toluene		ND		0.0049	1.00		
Ethylbenzene		ND		0.0049	1.00		
o-Xylene		ND		0.0049	1.00		
p/m-Xylene		ND		0.0049	1.00		
Xylenes (total)		ND		0.0049	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.0049	1.00		
Tert-Butyl Alcohol (TBA)		ND		0.049	1.00		
Diisopropyl Ether (DIPE)		ND		0.0098	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.0098	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.0098	1.00		
1,2-Dibromoethane		ND		0.0049	1.00		
1,2-Dichloroethane		ND		0.0049	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		97		60-132			
Dibromofluoromethane		104		63-141			
1,2-Dichloroethane-d4		113		62-146			
Toluene-d8		104		80-120			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 3 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-15-B18	15-10-0905-3-A	10/08/15 11:15	Solid	GC/MS O	10/13/15	10/15/15 06:13	151014L039
Parameter		<u>Result</u>		<u>RL</u>	DF	<u>Quali</u>	<u>fiers</u>
Benzene		ND		0.0050	1.00		
Toluene		ND		0.0050	1.00		
Ethylbenzene		ND		0.0050	1.00		
o-Xylene		ND		0.0050	1.00		
p/m-Xylene		ND		0.0050	1.00		
Xylenes (total)		ND		0.0050	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.0050	1.00		
Tert-Butyl Alcohol (TBA)		ND		0.050	1.00		
Diisopropyl Ether (DIPE)		ND		0.0099	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.0099	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.0099	1.00		
1,2-Dibromoethane		ND		0.0050	1.00		
1,2-Dichloroethane		ND		0.0050	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		98		60-132			
Dibromofluoromethane		100		63-141			
1,2-Dichloroethane-d4		113		62-146			
Toluene-d8		104		80-120			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 4 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-MW9	15-10-0905-4-A	10/08/15 13:00	Solid	GC/MS O	10/13/15	10/15/15 06:42	151014L039
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	lifiers
Benzene		ND		0.0050	1.00		
Toluene		ND		0.0050	1.00		
Ethylbenzene		ND		0.0050	1.00		
o-Xylene		ND		0.0050	1.00		
p/m-Xylene		ND		0.0050	1.00		
Xylenes (total)		ND		0.0050	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.0050	1.00		
Tert-Butyl Alcohol (TBA)		ND		0.050	1.00		
Diisopropyl Ether (DIPE)		ND		0.010	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.010	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.010	1.00		
1,2-Dibromoethane		ND		0.0050	1.00		
1,2-Dichloroethane		ND		0.0050	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		98		60-132			
Dibromofluoromethane		100		63-141			
1,2-Dichloroethane-d4		106		62-146			
Toluene-d8		103		80-120			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 5 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10.5-MW9	15-10-0905-5-A	10/08/15 13:10	Solid	GC/MS O	10/13/15	10/16/15 16:36	151016L026
Parameter		<u>Result</u>		<u>RL</u>	DF	<u>Quali</u>	<u>fiers</u>
Benzene		ND		0.0049	1.00		
Toluene		ND		0.0049	1.00		
Ethylbenzene		ND		0.0049	1.00		
o-Xylene		ND		0.0049	1.00		
p/m-Xylene		ND		0.0049	1.00		
Xylenes (total)		ND		0.0049	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.0049	1.00		
Tert-Butyl Alcohol (TBA)		ND		0.049	1.00		
Diisopropyl Ether (DIPE)		ND		0.0098	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.0098	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.0098	1.00		
1,2-Dibromoethane		ND		0.0049	1.00		
1,2-Dichloroethane		ND		0.0049	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		105		60-132			
Dibromofluoromethane		103		63-141			
1,2-Dichloroethane-d4		107		62-146			
Toluene-d8		105		80-120			

Calscience

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 6 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-15.5-MW9	15-10-0905-6-A	10/08/15 13:15	Solid	GC/MS O	10/13/15	10/15/15 07:11	151014L039
Parameter		<u>Result</u>		RL	DF	Qua	lifiers
Benzene		ND		0.0049	1.00		
Toluene		ND		0.0049	1.00		
Ethylbenzene		ND		0.0049	1.00		
o-Xylene		ND		0.0049	1.00		
p/m-Xylene		ND		0.0049	1.00		
Xylenes (total)		ND		0.0049	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.0049	1.00		
Tert-Butyl Alcohol (TBA)		ND		0.049	1.00		
Diisopropyl Ether (DIPE)		ND		0.0099	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.0099	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.0099	1.00		
1,2-Dibromoethane		ND		0.0049	1.00		
1,2-Dichloroethane		ND		0.0049	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		98		60-132			
Dibromofluoromethane		102		63-141			
1,2-Dichloroethane-d4		114		62-146			
Toluene-d8		104		80-120			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 7 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-SVE5	15-10-0905-7-A	10/09/15 08:50	Solid	GC/MS O	10/13/15	10/15/15 07:40	151014L039
Parameter		<u>Result</u>		<u>RL</u>	<u>DF</u>	<u>Quali</u>	fiers
Benzene		ND		0.0050	1.00		
Toluene		ND		0.0050	1.00		
Ethylbenzene		ND		0.0050	1.00		
o-Xylene		ND		0.0050	1.00		
p/m-Xylene		ND		0.0050	1.00		
Xylenes (total)		ND		0.0050	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.0050	1.00		
Tert-Butyl Alcohol (TBA)		ND		0.050	1.00		
Diisopropyl Ether (DIPE)		ND		0.0099	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.0099	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.0099	1.00		
1,2-Dibromoethane		ND		0.0050	1.00		
1,2-Dichloroethane		ND		0.0050	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		96		60-132			
Dibromofluoromethane		102		63-141			
1,2-Dichloroethane-d4		111		62-146			
Toluene-d8		106		80-120			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 8 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-11.5-SVE5	15-10-0905-8-A	10/09/15 09:00	Solid	GC/MS O	10/13/15	10/16/15 20:30	151016L049
Parameter		<u>Result</u>		<u>RL</u>	DF	Qua	<u>lifiers</u>
Benzene		ND		0.49	50.0		
Toluene		ND		0.49	50.0		
Ethylbenzene		5.1		0.49	50.0		
o-Xylene		1.8		0.49	50.0		
p/m-Xylene		5.2		0.49	50.0		
Xylenes (total)		7.0		0.49	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.49	50.0		
Tert-Butyl Alcohol (TBA)		ND		4.9	50.0		
Diisopropyl Ether (DIPE)		ND		0.98	50.0		
Ethyl-t-Butyl Ether (ETBE)		ND		0.98	50.0		
Tert-Amyl-Methyl Ether (TAME)		ND		0.98	50.0		
1,2-Dibromoethane		ND		0.49	50.0		
1,2-Dichloroethane		ND		0.49	50.0		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		99		60-132			
Dibromofluoromethane		89		63-141			
1,2-Dichloroethane-d4		77		62-146			
Toluene-d8		99		80-120			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 9 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-15.5-SVE5	15-10-0905-9-A	10/09/15 09:05	Solid	GC/MS O	10/13/15	10/15/15 08:10	151014L039
Parameter		<u>Result</u>		RL	DF	Quali	fiers
Benzene		ND		0.0050	1.00		
Toluene		ND		0.0050	1.00		
Ethylbenzene		ND		0.0050	1.00		
o-Xylene		ND		0.0050	1.00		
p/m-Xylene		ND		0.0050	1.00		
Xylenes (total)		ND		0.0050	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.0050	1.00		
Tert-Butyl Alcohol (TBA)		ND		0.050	1.00		
Diisopropyl Ether (DIPE)		ND		0.010	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.010	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.010	1.00		
1,2-Dibromoethane		ND		0.0050	1.00		
1,2-Dichloroethane		ND		0.0050	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		99		60-132			
Dibromofluoromethane		101		63-141			
1,2-Dichloroethane-d4		111		62-146			
Toluene-d8		105		80-120			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	15-10-090 EPA 5030 EPA 8260
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 10 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-SVE4	15-10-0905-10-A	10/09/15 11:30	Solid	GC/MS O	10/13/15	10/15/15 08:39	151014L039
Parameter		<u>Result</u>		<u>RL</u>	<u>DF</u>	Qual	<u>ifiers</u>
Benzene		ND		0.0049	1.00		
Toluene		ND		0.0049	1.00		
Ethylbenzene		ND		0.0049	1.00		
o-Xylene		ND		0.0049	1.00		
p/m-Xylene		ND		0.0049	1.00		
Xylenes (total)		ND		0.0049	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.0049	1.00		
Tert-Butyl Alcohol (TBA)		ND		0.049	1.00		
Diisopropyl Ether (DIPE)		ND		0.0099	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.0099	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.0099	1.00		
1,2-Dibromoethane		ND		0.0049	1.00		
1,2-Dichloroethane		ND		0.0049	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		103		60-132			
Dibromofluoromethane		102		63-141			
1,2-Dichloroethane-d4		117		62-146			
Toluene-d8		108		80-120			

1,2-Dichloroethane-d4

Toluene-d8

Cardno			Date Red	eived:			10/13/15
601 North McDowell Blvd.			Work Ord	der:			15-10-0905
Petaluma, CA 94954-2312			Preparati	on:			EPA 5030C
			Method:				EPA 8260B
			Units:				ma/ka
Project: ExxonMobil 79374/022735	С					Page	e 11 of 24
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-9.5-SVE4	15-10-0905-11-A	10/09/15 12:40	Solid	GC/MS O	10/13/15	10/19/15 22:04	151019L010
Comment(s): - The reporting limit is elev	ated resulting from m	natrix interfere	nce.				
Parameter		Result		<u>RL</u>	DF	Qua	lifiers
Benzene		ND		0.50	50.0		
Toluene		ND		0.50	50.0		
Ethylbenzene		ND		0.50	50.0		
o-Xylene		ND		0.50	50.0		
p/m-Xylene		ND		0.50	50.0		
Xylenes (total)		ND		0.50	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.50	50.0		
Tert-Butyl Alcohol (TBA)		ND		5.0	50.0		
Diisopropyl Ether (DIPE)		ND		1.0	50.0		
Ethyl-t-Butyl Ether (ETBE)		ND		1.0	50.0		
Tert-Amyl-Methyl Ether (TAME)		ND		1.0	50.0		
1,2-Dibromoethane		ND		0.50	50.0		
1,2-Dichloroethane		ND		0.50	50.0		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		109		60-132			
Dibromofluoromethane		100		63-141			

98

104

62-146

80-120

Calscience

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 12 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-15.5-SVE4	15-10-0905-12-A	10/09/15 11:40	Solid	GC/MS O	10/13/15	10/19/15 18:40	151019L029
Parameter		<u>Result</u>		RL	DF	Qua	lifiers
Benzene		ND		0.0050	1.00		
Toluene		ND		0.0050	1.00		
Ethylbenzene		ND		0.0050	1.00		
o-Xylene		ND		0.0050	1.00		
p/m-Xylene		ND		0.0050	1.00		
Xylenes (total)		ND		0.0050	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.0050	1.00		
Tert-Butyl Alcohol (TBA)		ND		0.050	1.00		
Diisopropyl Ether (DIPE)		ND		0.010	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.010	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.010	1.00		
1,2-Dibromoethane		ND		0.0050	1.00		
1,2-Dichloroethane		ND		0.0050	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		91		60-132			
Dibromofluoromethane		99		63-141			
1,2-Dichloroethane-d4		105		62-146			
Toluene-d8		102		80-120			

Date Received:	10/13/15
Work Order:	15-10-0905
Preparation:	EPA 5030C
Method:	EPA 8260B
Units:	mg/kg
	Page 13 of 24
	Date Received: Work Order: Preparation: Method: Units:

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-SVE7	15-10-0905-13-A	10/09/15 13:30	Solid	GC/MS O	10/13/15	10/19/15 19:09	151019L029
Parameter		<u>Result</u>		<u>RL</u>	DF	<u>Quali</u>	<u>fiers</u>
Benzene		ND		0.0049	1.00		
Toluene		ND		0.0049	1.00		
Ethylbenzene		ND		0.0049	1.00		
o-Xylene		ND		0.0049	1.00		
p/m-Xylene		ND		0.0049	1.00		
Xylenes (total)		ND		0.0049	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.0049	1.00		
Tert-Butyl Alcohol (TBA)		ND		0.049	1.00		
Diisopropyl Ether (DIPE)		ND		0.0098	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.0098	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.0098	1.00		
1,2-Dibromoethane		ND		0.0049	1.00		
1,2-Dichloroethane		ND		0.0049	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		100		60-132			
Dibromofluoromethane		99		63-141			
1,2-Dichloroethane-d4		106		62-146			
Toluene-d8		100		80-120			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 14 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-10-SVE7	15-10-0905-14-A	10/09/15 13:55	Solid	GC/MS O	10/13/15	10/19/15 21:06	151019L029
Parameter		<u>Result</u>		<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>ifiers</u>
Benzene		ND		0.0050	1.00		
Toluene		ND		0.0050	1.00		
Ethylbenzene		ND		0.0050	1.00		
o-Xylene		ND		0.0050	1.00		
p/m-Xylene		ND		0.0050	1.00		
Xylenes (total)		ND		0.0050	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.0050	1.00		
Tert-Butyl Alcohol (TBA)		ND		0.050	1.00		
Diisopropyl Ether (DIPE)		ND		0.0099	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.0099	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.0099	1.00		
1,2-Dibromoethane		ND		0.0050	1.00		
1,2-Dichloroethane		ND		0.0050	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		103		60-132			
Dibromofluoromethane		89		63-141			
1,2-Dichloroethane-d4		96		62-146			
Toluene-d8		102		80-120			

Toluene-d8

Cardno			Date Rec	eived:			10/13/15
601 North McDowell Blvd.			Work Orc	ler:			15-10-0905
Petaluma, CA 94954-2312			Preparati	on:			EPA 5030C
			Method:				EPA 8260B
			Units:				ma/ka
Project: ExxonMobil 79374/0227	'35C		Crinto:			Pag	je 15 of 24
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-12-SVE7	15-10-0905-15-A	10/09/15 14:00	Solid	GC/MS O	10/13/15	10/19/15 22:33	151019L010
Comment(s): - BH Reporting limits	raised due to high level of	of non-target a	nalytes.				
Parameter		Result		<u>RL</u>	DF	Qua	alifiers
Benzene		ND		0.49	50.0		
Toluene		ND		0.49	50.0		
Ethylbenzene		ND		0.49	50.0		
o-Xylene		ND		0.49	50.0		
p/m-Xylene		ND		0.49	50.0		
Xylenes (total)		ND		0.49	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.49	50.0		
Tert-Butyl Alcohol (TBA)		ND		4.9	50.0		
Diisopropyl Ether (DIPE)		ND		0.98	50.0		
Ethyl-t-Butyl Ether (ETBE)		ND		0.98	50.0		
Tert-Amyl-Methyl Ether (TAME)		ND		0.98	50.0		
1,2-Dibromoethane		ND		0.49	50.0		
1,2-Dichloroethane		ND		0.49	50.0		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		106		60-132			
Dibromofluoromethane		89		63-141			
1,2-Dichloroethane-d4		88		62-146			

101

80-120

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 16 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-15.5-SVE7	15-10-0905-16-A	10/09/15 14:05	Solid	GC/MS O	10/13/15	10/19/15 19:38	151019L029
Parameter		<u>Result</u>		<u>RL</u>	DF	<u>Quali</u>	<u>fiers</u>
Benzene		ND		0.0049	1.00		
Toluene		ND		0.0049	1.00		
Ethylbenzene		ND		0.0049	1.00		
o-Xylene		ND		0.0049	1.00		
p/m-Xylene		ND		0.0049	1.00		
Xylenes (total)		ND		0.0049	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.0049	1.00		
Tert-Butyl Alcohol (TBA)		ND		0.049	1.00		
Diisopropyl Ether (DIPE)		ND		0.0099	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.0099	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.0099	1.00		
1,2-Dibromoethane		ND		0.0049	1.00		
1,2-Dichloroethane		ND		0.0049	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		97		60-132			
Dibromofluoromethane		97		63-141			
1,2-Dichloroethane-d4		101		62-146			
Toluene-d8		107		80-120			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 17 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-5-SVE6	15-10-0905-17-A	10/09/15 14:55	Solid	GC/MS O	10/13/15	10/19/15 20:08	151019L029
Parameter		<u>Result</u>		RL	DF	Qua	lifiers
Benzene		ND		0.0048	1.00		
Toluene		ND		0.0048	1.00		
Ethylbenzene		ND		0.0048	1.00		
o-Xylene		ND		0.0048	1.00		
p/m-Xylene		ND		0.0048	1.00		
Xylenes (total)		ND		0.0048	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.0048	1.00		
Tert-Butyl Alcohol (TBA)		ND		0.048	1.00		
Diisopropyl Ether (DIPE)		ND		0.0097	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.0097	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.0097	1.00		
1,2-Dibromoethane		ND		0.0048	1.00		
1,2-Dichloroethane		ND		0.0048	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		93		60-132			
Dibromofluoromethane		97		63-141			
1,2-Dichloroethane-d4		102		62-146			
Toluene-d8		101		80-120			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 18 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
S-12-SVE6	15-10-0905-18-A	10/09/15 15:00	Solid	GC/MS O	10/13/15	10/20/15 19:43	151020L010
Parameter		<u>Result</u>	<u>RI</u>	L	<u>DF</u>	<u>Quali</u>	fiers
Benzene		ND	1.	0	100		
Toluene		ND	1.	0	100		
Ethylbenzene		17	1.	0	100		
o-Xylene		1.3	1.	0	100		
p/m-Xylene		9.3	1.	0	100		
Xylenes (total)		11	1.	0	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	1.	0	100		
Tert-Butyl Alcohol (TBA)		ND	10)	100		
Diisopropyl Ether (DIPE)		ND	2.	0	100		
Ethyl-t-Butyl Ether (ETBE)		ND	2.	0	100		
Tert-Amyl-Methyl Ether (TAME)		ND	2.	0	100		
1,2-Dibromoethane		ND	1.	0	100		
1,2-Dichloroethane		ND	1.	0	100		
Surrogate		<u>Rec. (%)</u>	<u>Co</u>	ontrol Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		108	60)-132			
Dibromofluoromethane		91	63	3-141			
1,2-Dichloroethane-d4		98	62	2-146			
Toluene-d8		105	80)-120			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 19 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-882-1766	N/A	Solid	GC/MS O	10/14/15	10/15/15 01:51	151014L039
Parameter		<u>Result</u>		RL	DF	Qual	fiers
Benzene		ND		0.0050	1.00		
Toluene		ND		0.0050	1.00		
Ethylbenzene		ND		0.0050	1.00		
o-Xylene		ND		0.0050	1.00		
p/m-Xylene		ND		0.0050	1.00		
Xylenes (total)		ND		0.0050	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.0050	1.00		
Tert-Butyl Alcohol (TBA)		ND		0.050	1.00		
Diisopropyl Ether (DIPE)		ND		0.010	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.010	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.010	1.00		
1,2-Dibromoethane		ND		0.0050	1.00		
1,2-Dichloroethane		ND		0.0050	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		94		60-132			
Dibromofluoromethane		101		63-141			
1,2-Dichloroethane-d4		108		62-146			
Toluene-d8		102		80-120			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 20 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-882-1770	N/A	Solid	GC/MS O	10/16/15	10/16/15 13:12	151016L026
Parameter		<u>Result</u>		<u>RL</u>	DF	Quali	<u>fiers</u>
Benzene		ND		0.0050	1.00		
Toluene		ND		0.0050	1.00		
Ethylbenzene		ND		0.0050	1.00		
o-Xylene		ND		0.0050	1.00		
p/m-Xylene		ND		0.0050	1.00		
Xylenes (total)		ND		0.0050	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.0050	1.00		
Tert-Butyl Alcohol (TBA)		ND		0.050	1.00		
Diisopropyl Ether (DIPE)		ND		0.010	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.010	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.010	1.00		
1,2-Dibromoethane		ND		0.0050	1.00		
1,2-Dichloroethane		ND		0.0050	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		95		60-132			
Dibromofluoromethane		99		63-141			
1,2-Dichloroethane-d4		105		62-146			
Toluene-d8		105		80-120			

Cars	CIII	

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 21 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-882-1771	N/A	Solid	GC/MS O	10/16/15	10/16/15 13:41	151016L049
Parameter		<u>Result</u>		RL	DF	Qua	lifiers
Benzene		ND		0.50	50.0		
Toluene		ND		0.50	50.0		
Ethylbenzene		ND		0.50	50.0		
o-Xylene		ND		0.50	50.0		
p/m-Xylene		ND		0.50	50.0		
Xylenes (total)		ND		0.50	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.50	50.0		
Tert-Butyl Alcohol (TBA)		ND		5.0	50.0		
Diisopropyl Ether (DIPE)		ND		1.0	50.0		
Ethyl-t-Butyl Ether (ETBE)		ND		1.0	50.0		
Tert-Amyl-Methyl Ether (TAME)		ND		1.0	50.0		
1,2-Dibromoethane		ND		0.50	50.0		
1,2-Dichloroethane		ND		0.50	50.0		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		106		60-132			
Dibromofluoromethane		114		63-141			
1,2-Dichloroethane-d4		123		62-146			
Toluene-d8		109		80-120			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 22 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-882-1775	N/A	Solid	GC/MS O	10/19/15	10/19/15 15:45	151019L010
Parameter		<u>Result</u>		<u>RL</u>	DF	Qualif	iers
Benzene		ND		0.50	50.0		
Toluene		ND		0.50	50.0		
Ethylbenzene		ND		0.50	50.0		
o-Xylene		ND		0.50	50.0		
p/m-Xylene		ND		0.50	50.0		
Xylenes (total)		ND		0.50	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.50	50.0		
Tert-Butyl Alcohol (TBA)		ND		5.0	50.0		
Diisopropyl Ether (DIPE)		ND		1.0	50.0		
Ethyl-t-Butyl Ether (ETBE)		ND		1.0	50.0		
Tert-Amyl-Methyl Ether (TAME)		ND		1.0	50.0		
1,2-Dibromoethane		ND		0.50	50.0		
1,2-Dichloroethane		ND		0.50	50.0		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		106		60-132			
Dibromofluoromethane		102		63-141			
1,2-Dichloroethane-d4		107		62-146			
Toluene-d8		107		80-120			

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 23 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-882-1774	N/A	Solid	GC/MS O	10/19/15	10/19/15 15:16	151019L029
Parameter		<u>Result</u>		RL	DF	Qualif	iers
Benzene		ND		0.0050	1.00		
Toluene		ND		0.0050	1.00		
Ethylbenzene		ND		0.0050	1.00		
o-Xylene		ND		0.0050	1.00		
p/m-Xylene		ND		0.0050	1.00		
Xylenes (total)		ND		0.0050	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.0050	1.00		
Tert-Butyl Alcohol (TBA)		ND		0.050	1.00		
Diisopropyl Ether (DIPE)		ND		0.010	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.010	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.010	1.00		
1,2-Dibromoethane		ND		0.0050	1.00		
1,2-Dichloroethane		ND		0.0050	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		95		60-132			
Dibromofluoromethane		97		63-141			
1,2-Dichloroethane-d4		100		62-146			
Toluene-d8		100		80-120			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Calscience

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 24 of 24

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-882-1777	N/A	Solid	GC/MS O	10/20/15	10/20/15 14:51	151020L010
Parameter		<u>Result</u>	ŀ	RL	DF	Qua	lifiers
Benzene		ND	(0.50	50.0		
Toluene		ND	(0.50	50.0		
Ethylbenzene		ND	(0.50	50.0		
o-Xylene		ND	(0.50	50.0		
p/m-Xylene		ND	(0.50	50.0		
Xylenes (total)		ND	(0.50	1.00		
Methyl-t-Butyl Ether (MTBE)		ND	(0.50	50.0		
Tert-Butyl Alcohol (TBA)		ND	ę	5.0	50.0		
Diisopropyl Ether (DIPE)		ND		1.0	50.0		
Ethyl-t-Butyl Ether (ETBE)		ND		1.0	50.0		
Tert-Amyl-Methyl Ether (TAME)		ND		1.0	50.0		
1,2-Dibromoethane		ND	(0.50	50.0		
1,2-Dichloroethane		ND	(0.50	50.0		
Surrogate		<u>Rec. (%)</u>	<u>(</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		106	6	60-132			
Dibromofluoromethane		107	6	63-141			
1,2-Dichloroethane-d4		116	6	62-146			
Toluene-d8		107	8	80-120			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Calscience

Quality Control - Spike/Spike Duplicate

Cardno				Date R	Received:					10/13/15
601 North McDowell Blvd.				Work (Order:				1	5-10-0905
Petaluma, CA 94954-2312				Prepar	ation:				E	PA 3550B
				Metho	d:				EPA 8	3015B (M)
Project: ExxonMobil 79374/02	22735C								Page 1	of 9
Quality Control Sample ID	Туре		Matrix	Insti	rument	Date Prepared	Date Analy	yzed	MS/MSD Ba	tch Number
15-10-0906-5	Sample		Solid	GC	48	10/15/15	10/15/15 1	6:54	151015S03	
15-10-0906-5	Matrix Spike		Solid	GC	48	10/15/15	10/15/15 1	6:22	151015S03	
15-10-0906-5	Matrix Spike I	Duplicate	Solid	GC	48	10/15/15	10/15/15 1	6:38	151015S03	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	%Rec. CL	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
TPH as Diesel	ND	400.0	454.4	114	490.6	123	64-130	8	0-15	

Return to Contents

Calscience

Quality Control - Spike/Spike Duplicate

Cardno				Date Re	eceived					10/13/15
601 North McDowell Blvd.				Work O	rder:				15	-10-0905
Petaluma, CA 94954-2312				Prepara	ation:				EP	A 5030C
				Method	:				EPA 8	015B (M)
Project: ExxonMobil 79374/02	22735C								Page 2	of 9
Quality Control Sample ID	Туре		Matrix	Instru	iment	Date Prepared	Date Analy	/zed	MS/MSD Bato	h Number
S-5-B18	Sample		Solid	GC 1		10/20/15	10/21/15 0	9:03	151020S030	
S-5-B18	Matrix Spike		Solid	GC 1		10/20/15	10/21/15 0	9:39	151020S030	
S-5-B18	Matrix Spike	Duplicate	Solid	GC 1		10/20/15	10/21/15 1	0:14	151020S030	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	%Rec. CL	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
TPH as Gasoline	ND	10.00	8.978	90	9.849	98	48-114	9	0-23	

Return to Contents

Calscience

Quality Control - Spike/Spike Duplicate

Cardno				Date F	Received:					10/13/15
601 North McDowell Blvd.				Work (Order:				15	-10-0905
Petaluma, CA 94954-2312				Prepar	ation:				EF	PA 5030C
				Metho	d:				EPA 8	015B (M)
Project: ExxonMobil 79374/02	22735C								Page 3	of 9
Quality Control Sample ID	Туре		Matrix	Insti	rument	Date Prepared	Date Anal	yzed	MS/MSD Bat	ch Number
S-9.5-SVE4	Sample		Solid	GC	24	10/22/15	10/22/15 2	23:50	151022S021	
S-9.5-SVE4	Matrix Spike		Solid	GC	24	10/22/15	10/23/15 (00:23	151022S021	
S-9.5-SVE4	Matrix Spike	Duplicate	Solid	GC	24	10/22/15	10/23/15 (00:56	151022S021	
Parameter	<u>Sample</u> Conc.	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	81.78	80.00	147.5	82	139.5	72	48-114	6	0-23	

Return to Contents

Calscience

Cardno	Date Received:	10/13/15		
601 North McDowell Blvd.	Work Order:	15-10-0905		
Petaluma, CA 94954-2312	Preparation:	EPA 3545		
	Method:	EPA 8270C SIM PAHs		
Project: ExxonMobil 79374/022735C		Page 4 of 9		

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
S-15.5-SVE4	Sample		Solid	GC	/MS AAA	10/16/15	10/17/15	19:26	151016S05	
S-15.5-SVE4	Matrix Spike		Solid	GC	/MS AAA	10/16/15	10/17/15	21:48	151016S05	
S-15.5-SVE4	Matrix Spike I	Duplicate	Solid	GC	/MS AAA	10/16/15	10/17/15	22:09	151016S05	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> <u>%Rec.</u>	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Naphthalene	ND	0.2000	0.1450	73	0.1506	75	20-150	4	0-33	
2-Methylnaphthalene	ND	0.2000	0.1877	94	0.1907	95	29-137	2	0-31	
1-Methylnaphthalene	ND	0.2000	0.1496	75	0.1668	83	34-136	11	0-29	
Acenaphthylene	ND	0.2000	0.1354	68	0.1444	72	29-131	6	0-32	
Acenaphthene	ND	0.2000	0.1465	73	0.1515	76	29-137	3	0-28	
Fluorene	ND	0.2000	0.1462	73	0.1511	76	36-132	3	0-27	
Phenanthrene	ND	0.2000	0.1579	79	0.1584	79	20-144	0	0-27	
Anthracene	ND	0.2000	0.1525	76	0.1564	78	26-134	2	0-27	
Fluoranthene	ND	0.2000	0.1646	82	0.1672	84	20-151	2	0-26	
Pyrene	ND	0.2000	0.1466	73	0.1475	74	20-150	1	0-32	
Benzo (a) Anthracene	ND	0.2000	0.1537	77	0.1596	80	24-150	4	0-24	
Chrysene	ND	0.2000	0.1509	75	0.1584	79	25-145	5	0-28	
Benzo (k) Fluoranthene	ND	0.2000	0.1602	80	0.1562	78	28-148	3	0-26	
Benzo (b) Fluoranthene	ND	0.2000	0.1521	76	0.1736	87	21-153	13	0-26	
Benzo (a) Pyrene	ND	0.2000	0.1513	76	0.1579	79	29-149	4	0-22	
Indeno (1,2,3-c,d) Pyrene	ND	0.2000	0.1417	71	0.1470	73	20-154	4	0-25	
Dibenz (a,h) Anthracene	ND	0.2000	0.1365	68	0.1401	70	20-132	3	0-26	
Benzo (g,h,i) Perylene	ND	0.2000	0.1502	75	0.1563	78	20-148	4	0-27	

Calscience

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C SIM PAHs
Project: ExxonMobil 79374/022735C		Page 5 of 9

Quality Control Sample ID	Туре		Matrix	Instru	iment	Date Prepared	Date Anal	yzed I	MS/MSD Bat	ch Number
15-10-0454-1	Sample		Solid	GC/N	IS AAA	10/20/15	10/21/15	11:47	151020S11	
15-10-0454-1	Matrix Spike		Solid	GC/N	IS AAA	10/20/15	10/21/15	12:27 ·	151020S11	
15-10-0454-1	Matrix Spike I	Duplicate	Solid	GC/N	IS AAA	10/20/15	10/21/15	11:26 ·	151020S11	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Naphthalene	ND	0.2000	0.1916	96	0.1783	89	20-150	7	0-33	
2-Methylnaphthalene	ND	0.2000	0.2005	100	0.1887	94	29-137	6	0-31	
1-Methylnaphthalene	ND	0.2000	0.1849	92	0.1729	86	34-136	7	0-29	
Acenaphthylene	ND	0.2000	0.1761	88	0.1682	84	29-131	5	0-32	
Acenaphthene	ND	0.2000	0.1827	91	0.1734	87	29-137	5	0-28	
Fluorene	ND	0.2000	0.1788	89	0.1709	85	36-132	5	0-27	
Phenanthrene	ND	0.2000	0.1844	92	0.1768	88	20-144	4	0-27	
Anthracene	ND	0.2000	0.1747	87	0.1690	84	26-134	3	0-27	
Fluoranthene	ND	0.2000	0.1827	91	0.1775	89	20-151	3	0-26	
Pyrene	ND	0.2000	0.1819	91	0.1724	86	20-150	5	0-32	
Benzo (a) Anthracene	ND	0.2000	0.1740	87	0.1677	84	24-150	4	0-24	
Chrysene	ND	0.2000	0.1695	85	0.1613	81	25-145	5	0-28	
Benzo (k) Fluoranthene	ND	0.2000	0.1650	82	0.1453	73	28-148	13	0-26	
Benzo (b) Fluoranthene	ND	0.2000	0.1958	98	0.1879	94	21-153	4	0-26	
Benzo (a) Pyrene	ND	0.2000	0.2059	103	0.1931	97	29-149	6	0-22	
Indeno (1,2,3-c,d) Pyrene	ND	0.2000	0.1548	77	0.1652	83	20-154	6	0-25	
Dibenz (a,h) Anthracene	ND	0.2000	0.1663	83	0.1750	87	20-132	5	0-26	
Benzo (g,h,i) Perylene	ND	0.2000	0.1562	78	0.1746	87	20-148	11	0-27	

Calscience

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 79374/022735C		Page 6 of 9

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
15-10-0867-1	Sample		Solid	GC	/MS O	10/12/15	10/15/15	02:49	151014S017	
15-10-0867-1	Matrix Spike		Solid	GC	/MS O	10/12/15	10/15/15	03:18	151014S017	
15-10-0867-1	Matrix Spike	Duplicate	Solid	GC	/MS O	10/12/15	10/15/15	03:47	151014S017	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Benzene	ND	0.05000	0.03821	76	0.04363	87	61-127	13	0-20	
Toluene	ND	0.05000	0.03824	76	0.04415	88	63-123	14	0-20	
Ethylbenzene	ND	0.05000	0.03894	78	0.04690	94	57-129	19	0-22	
o-Xylene	ND	0.05000	0.04019	80	0.04671	93	70-130	15	0-30	
p/m-Xylene	ND	0.1000	0.08036	80	0.09573	96	70-130	17	0-30	
Methyl-t-Butyl Ether (MTBE)	ND	0.05000	0.04098	82	0.04261	85	57-123	4	0-21	
Tert-Butyl Alcohol (TBA)	ND	0.2500	0.1987	79	0.2074	83	30-168	4	0-34	
Diisopropyl Ether (DIPE)	ND	0.05000	0.03791	76	0.04210	84	57-129	10	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	0.05000	0.03724	74	0.04163	83	55-127	11	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	0.05000	0.04043	81	0.04279	86	58-124	6	0-20	
1,2-Dibromoethane	ND	0.05000	0.03697	74	0.04080	82	64-124	10	0-20	
1,2-Dichloroethane	ND	0.05000	0.04643	93	0.04848	97	80-120	4	0-20	

Calscience

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 79374/022735C		Page 7 of 9

Quality Control Sample ID	Туре		Matrix	Ins	trument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
15-10-1128-1	Sample		Solid	GC	/MS O	10/15/15 10/16/15 14:10		14:10	151016S001	
15-10-1128-1	Matrix Spike		Solid	GC	/MS O	10/15/15	10/16/15	14:39	151016S001	
15-10-1128-1	Matrix Spike I	Duplicate	Solid	GC	/MS O	10/15/15	10/16/15	15:09	151016S001	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> <u>%Rec.</u>	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	ND	0.05000	0.04151	83	0.04323	86	61-127	4	0-20	
Toluene	ND	0.05000	0.04035	81	0.04305	86	63-123	6	0-20	
Ethylbenzene	ND	0.05000	0.04007	80	0.04407	88	57-129	10	0-22	
o-Xylene	ND	0.05000	0.04005	80	0.04472	89	70-130	11	0-30	
p/m-Xylene	ND	0.1000	0.08085	81	0.08962	90	70-130	10	0-30	
Methyl-t-Butyl Ether (MTBE)	ND	0.05000	0.04482	90	0.04675	93	57-123	4	0-21	
Tert-Butyl Alcohol (TBA)	ND	0.2500	0.2358	94	0.2280	91	30-168	3	0-34	
Diisopropyl Ether (DIPE)	ND	0.05000	0.04125	83	0.04381	88	57-129	6	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	0.05000	0.04219	84	0.04424	88	55-127	5	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	0.05000	0.04326	87	0.04485	90	58-124	4	0-20	
1,2-Dibromoethane	ND	0.05000	0.03880	78	0.04138	83	64-124	6	0-20	
1,2-Dichloroethane	ND	0.05000	0.04872	97	0.04929	99	80-120	1	0-20	

Calscience

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 79374/022735C		Page 8 of 9

Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
15-10-1074-4	Sample		Solid	GC	/MS O	10/19/15	10/19/15	16:14	151019S001	
15-10-1074-4	Matrix Spike		Solid	GC	/MS O	10/19/15	10/19/15	16:43	151019S001	
15-10-1074-4	Matrix Spike I	Duplicate	Solid	GC	/MS O	10/19/15	10/19/15	17:13	151019S001	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Benzene	ND	0.05000	0.04206	84	0.04331	87	61-127	3	0-20	
Toluene	ND	0.05000	0.04037	81	0.04109	82	63-123	2	0-20	
Ethylbenzene	ND	0.05000	0.04102	82	0.04268	85	57-129	4	0-22	
o-Xylene	ND	0.05000	0.04148	83	0.04210	84	70-130	1	0-30	
p/m-Xylene	ND	0.1000	0.08358	84	0.08546	85	70-130	2	0-30	
Methyl-t-Butyl Ether (MTBE)	ND	0.05000	0.04404	88	0.04466	89	57-123	1	0-21	
Tert-Butyl Alcohol (TBA)	ND	0.2500	0.2194	88	0.2145	86	30-168	2	0-34	
Diisopropyl Ether (DIPE)	ND	0.05000	0.04246	85	0.04344	87	57-129	2	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	0.05000	0.04044	81	0.04161	83	55-127	3	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	0.05000	0.04075	81	0.04028	81	58-124	1	0-20	
1,2-Dibromoethane	ND	0.05000	0.04093	82	0.04238	85	64-124	3	0-20	
1,2-Dichloroethane	ND	0.05000	0.04765	95	0.04759	95	80-120	0	0-20	

Return to Contents

🛟 eurofins

Calscience

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 79374/022735C		Page 9 of 9

Quality Control Sample ID	Туре		Matrix	In	strument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number
15-10-1316-1	Sample		Solid	G	C/MS O	10/17/15	10/20/15	15:20	151020S003	
15-10-1316-1	Matrix Spike		Solid	G	C/MS O	10/17/15	10/20/15	15:49	151020S003	
15-10-1316-1	Matrix Spike I	Duplicate	Solid	G	C/MS O	10/17/15	10/20/15	16:18	151020S003	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	Qualifiers
Benzene	ND	0.05000	0.04288	86	0.04511	90	61-127	5	0-20	
Toluene	ND	0.05000	0.04216	84	0.04488	90	63-123	6	0-20	
Ethylbenzene	ND	0.05000	0.04366	87	0.04676	94	57-129	7	0-22	
o-Xylene	ND	0.05000	0.04395	88	0.04829	97	70-130	9	0-30	
p/m-Xylene	ND	0.1000	0.08744	87	0.09630	96	70-130	10	0-30	
Methyl-t-Butyl Ether (MTBE)	ND	0.05000	0.04257	85	0.04401	88	57-123	3	0-21	
Tert-Butyl Alcohol (TBA)	ND	0.2500	0.2159	86	0.2286	91	30-168	6	0-34	
Diisopropyl Ether (DIPE)	ND	0.05000	0.04230	85	0.04443	89	57-129	5	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	0.05000	0.04127	83	0.04341	87	55-127	5	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	0.05000	0.04307	86	0.04474	89	58-124	4	0-20	
1,2-Dibromoethane	ND	0.05000	0.03864	77	0.04029	81	64-124	4	0-20	
1,2-Dichloroethane	ND	0.05000	0.04809	96	0.04986	100	80-120	4	0-20	

🛟 eurofins Calscience

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 3550B
	Method:	EPA 8015B (M)
Project: ExxonMobil 79374/022735C		Page 1 of 12

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-422-2111	LCS	Solid	GC 48	10/15/15	10/15/15 16:05	151015B03
Parameter		Spike Added	Conc. Recovered	ed LCS %Re	<u>ec. %Rec</u>	. CL Qualifiers
TPH as Diesel		400.0	470.5	118	75-123	3

Calscience

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8015B (M)
Project: ExxonMobil 79374/022735C		Page 2 of 12

Quality Control Sample ID	Туре	Matrix	Instrument	Date	Prepared	Date Analyzed	LCS Batch Nu	umber
099-14-571-2677	LCS	Solid	GC 1	10/2	0/15	10/21/15 07:17	151020L058	
<u>Parameter</u>		Spike Added	Conc. Recov	vered	LCS %Re	<u>ec. %Rec.</u>	<u>CL</u> C	Qualifiers
TPH as Gasoline		10.00	10.07		101	70-124	1	

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8015B (M)
Project: ExxonMobil 79374/022735C		Page 3 of 12

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-571-2678	LCS	Solid	GC 1	10/20/15	10/21/15 07:17	151020L059
Parameter		Spike Added	Conc. Recover	ed LCS %Re	ec. <u>%Rec</u>	. CL Qualifiers
TPH as Gasoline		10.00	10.07	101	70-124	4

🛟 eurofins Calscience

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8015B (M)
Project: ExxonMobil 79374/022735C		Page 4 of 12

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-571-2680	LCS	Solid	GC 24	10/22/15	10/22/15 13:17	151022L050
Parameter		Spike Added	Conc. Recover	red LCS %Re	<u>%Rec</u>	. CL Qualifiers
TPH as Gasoline		10.00	8.655	87	70-12-	4

Page 5 of 12

eurofins Calscience

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C SIM PAHs

Project: ExxonMobil 79374/022735C

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	d LCS Batch Nu	umber
099-06-010-2457	LCS	Solid	GC/MS AAA	10/16/15	10/17/15 15:0	0 151016L05	
Parameter	<u>Spik</u>	e Added Conc	Recovered LCS	<u>S %Rec. %</u> F	Rec. CL N	ME CL	<u>Qualifiers</u>
Naphthalene	0.20	00 0.198	7 99	51-	-129 3	38-142	
2-Methylnaphthalene	0.20	00 0.208	8 104	50-	-127 3	37-140	
1-Methylnaphthalene	0.20	00 0.191	9 96	54-	-132 4	41-145	
Acenaphthylene	0.20	00 0.189	8 95	50-	-123 3	38-135	
Acenaphthene	0.20	0.198	9 99	53-	-125 4	11-137	
Fluorene	0.20	00 0.193	2 97	55-	-127 4	13-139	
Phenanthrene	0.20	0.198	5 99	50-	-122 3	38-134	
Anthracene	0.20	00 0.193	6 97	50-	-132 3	36-146	
Fluoranthene	0.20	00 0.197	6 99	55-	-127 4	13-139	
Pyrene	0.20	00 0.176	1 88	50-	-134 3	36-148	
Benzo (a) Anthracene	0.20	00 0.186	5 93	50-	-133 3	36-147	
Chrysene	0.20	00 0.181	8 91	51-	-129 3	38-142	
Benzo (k) Fluoranthene	0.20	00 0.176	0 88	49-	-150 3	32-167	
Benzo (b) Fluoranthene	0.20	00 0.209	1 105	5 50-	-142 3	35-157	
Benzo (a) Pyrene	0.20	00 0.190	8 95	50-	-134 3	36-148	
Indeno (1,2,3-c,d) Pyrene	0.20	00 0.209	6 105	5 50-	-148 3	34-164	
Dibenz (a,h) Anthracene	0.20	00 0.214	1 107	7 50-	-133 3	36-147	
Benzo (g,h,i) Perylene	0.20	00 0.217	2 109	50-	-130 3	37-143	

Total number of LCS compounds: 18 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

Page 6 of 12

eurofins Calscience

Date Received:	10/13/15
Work Order:	15-10-0905
Preparation:	EPA 3545
Method:	EPA 8270C SIM PAHs
	Date Received: Work Order: Preparation: Method:

Project: ExxonMobil 79374/022735C

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Nu	umber
099-06-010-2458	LCS	Solid	GC/MS AAA	10/20/15	10/21/15 10:46	6 151020L11	
Parameter	<u>Spike</u>	e Added Conc.	Recovered LCS	<u>S %Rec.</u> <u>%</u> F	Rec. CL <u>N</u>	IE CL	<u>Qualifiers</u>
Naphthalene	0.200	0.182	0 91	51-	-129 3	8-142	
2-Methylnaphthalene	0.200	0.192	4 96	50-	-127 3	7-140	
1-Methylnaphthalene	0.200	0.176	9 88	54-	-132 4	1-145	
Acenaphthylene	0.200	0.178	9 89	50-	-123 3	8-135	
Acenaphthene	0.200	0.184	4 92	53-	-125 4	1-137	
Fluorene	0.200	0.182	9 91	55-	-127 4	3-139	
Phenanthrene	0.200	0.187	1 94	50-	-122 3	8-134	
Anthracene	0.200	0.180	1 90	50-	-132 3	6-146	
Fluoranthene	0.200	0.181	3 91	55-	-127 4	3-139	
Pyrene	0.200	0.176	1 88	50-	-134 3	6-148	
Benzo (a) Anthracene	0.200	0.172	4 86	50-	-133 3	6-147	
Chrysene	0.200	0.166	2 83	51-	-129 3	8-142	
Benzo (k) Fluoranthene	0.200	0.166	4 83	49-	-150 3	2-167	
Benzo (b) Fluoranthene	0.200	0.188	1 94	50-	-142 3	5-157	
Benzo (a) Pyrene	0.200	0.175	2 88	50-	-134 3	6-148	
Indeno (1,2,3-c,d) Pyrene	0.200	0.180	B 90	50-	-148 3	4-164	
Dibenz (a,h) Anthracene	0.200	0.186	6 93	50-	-133 3	6-147	
Benzo (g,h,i) Perylene	0.200	0.190	2 95	50-	-130 3	7-143	

Total number of LCS compounds: 18 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass Return to Contents

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 79374/022735C		Page 7 of 12

Project: ExxonMobil 79374/022735C

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-12-882-1766	LCS	Solid	GC/MS O	10/14/15	10/14/15 23:54	151014L039
Parameter	<u>Spike</u>	Added Conc.	Recovered LCS	<u>%Rec.</u> <u>%Re</u>	<u>c. CL</u> <u>ME</u>	CL Qualifiers
Benzene	0.0500	0.0502	29 101	78-1	20 71-	127
Toluene	0.0500	0.0502	23 100	77-1	20 70-	127
Ethylbenzene	0.0500	0.0543	32 109	76-1	20 69-	127
o-Xylene	0.0500	0.0547	7 110	75-1	25 67-	133
p/m-Xylene	0.1000	0.1111	111	75-1	25 67-	133
Methyl-t-Butyl Ether (MTBE)	0.0500	0.0515	51 103	77-1	20 70-	127
Tert-Butyl Alcohol (TBA)	0.2500	0.2489) 100	68-1	22 59-	131
Diisopropyl Ether (DIPE)	0.0500	0.0471	5 94	78-1	20 71-	127
Ethyl-t-Butyl Ether (ETBE)	0.0500	0.0484	15 97	78-1	20 71-	127
Tert-Amyl-Methyl Ether (TAME)	0.0500	0.0504	6 101	75-1	20 68-	128
1,2-Dibromoethane	0.0500	0.0509	0 102	80-1	20 73-	127
1,2-Dichloroethane	0.0500	0.0580)8 116	80-1	20 73-	127

Total number of LCS compounds: 12

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 79374/022735C		Page 8 of 12

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-12-882-1770	LCS	Solid	GC/MS O	10/16/15	10/16/15 11:13	151016L026
Parameter	<u>Spike</u>	Added Conc	Recovered LCS	<u>%Rec. %R</u>	ec. CL MI	E CL Qualifiers
Benzene	0.050	00 0.049	01 98	78-1	120 71	-127
Toluene	0.050	00 0.049	70 99	77-1	120 70)-127
Ethylbenzene	0.050	00 0.053	40 107	76-1	120 69)-127
o-Xylene	0.050	00 0.052	.96 106	75-1	125 67	7-133
p/m-Xylene	0.100	0 0.109	1 109	75-1	125 67	7-133
Methyl-t-Butyl Ether (MTBE)	0.050	00 0.047	76 96	77-1	120 70)-127
Tert-Butyl Alcohol (TBA)	0.250	0 0.255	2 102	68-1	122 59	9-131
Diisopropyl Ether (DIPE)	0.050	00 0.046	06 92	78-1	120 71	-127
Ethyl-t-Butyl Ether (ETBE)	0.050	00 0.046	05 92	78-1	120 71	-127
Tert-Amyl-Methyl Ether (TAME)	0.050	00 0.048	13 96	75-1	120 68	3-128
1,2-Dibromoethane	0.050	00 0.046	43 93	80-1	120 73	3-127
1,2-Dichloroethane	0.050	00 0.053	23 106	80-1	120 73	3-127

Total number of LCS compounds: 12

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 79374/022735C		Page 9 of 12

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number	
099-12-882-1771	LCS	Solid	GC/MS O	10/16/15	10/16/15 11:13	151016L049	
Parameter	<u>Spike</u>	Added Conc.	Recovered LCS	<u>%Rec.</u> <u>%R</u>	ec. CL <u>M</u> I	<u>ECL</u> Qualifier	s
Benzene	0.050	00 0.0490)1 98	78-1	120 71	-127	
Toluene	0.050	00 0.0497	<i>'</i> 0 99	77-1	120 70	-127	
Ethylbenzene	0.050	00 0.0534	40 107	76-1	120 69	-127	
o-Xylene	0.050	00 0.0529	96 106	75-1	125 67	-133	
p/m-Xylene	0.100	0 0.1091	109	75-1	125 67	-133	
Methyl-t-Butyl Ether (MTBE)	0.050	00 0.0477	<i>'</i> 6 96	77-1	120 70	-127	
Tert-Butyl Alcohol (TBA)	0.250	0 0.2552	2 102	68-1	122 59	-131	
Diisopropyl Ether (DIPE)	0.050	00 0.0460)6 92	78-1	120 71	-127	
Ethyl-t-Butyl Ether (ETBE)	0.050	00 0.0460)5 92	78-1	120 71	-127	
Tert-Amyl-Methyl Ether (TAME)	0.050	00 0.0481	3 96	75-1	120 68	-128	
1,2-Dibromoethane	0.050	00 0.0464	43 93	80-1	120 73	-127	
1,2-Dichloroethane	0.050	00 0.0532	23 106	80-1	120 73	-127	

Total number of LCS compounds: 12

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 79374/022735C		Page 10 of 12

Project: ExxonMobil 79374/022735C

Quality Control Sample ID	Туре	Matrix	Instrument D	ate Prepared Date	Analyzed LCS Batch N	umber
099-12-882-1775	LCS	Solid	GC/MS O 1	0/19/15 10/19	/15 13:19 151019L010	
Parameter	<u>Spike A</u>	dded <u>Conc. R</u>	Recovered LCS %	Rec. <u>%Rec. CL</u>	ME CL	<u>Qualifiers</u>
Benzene	0.05000	0.04744	4 95	78-120	71-127	
Toluene	0.05000	0.04650) 93	77-120	70-127	
Ethylbenzene	0.05000	0.05189	9 104	76-120	69-127	
o-Xylene	0.05000	0.05109	9 102	75-125	67-133	
p/m-Xylene	0.1000	0.1051	105	75-125	67-133	
Methyl-t-Butyl Ether (MTBE)	0.05000	0.04487	90	77-120	70-127	
Tert-Butyl Alcohol (TBA)	0.2500	0.2455	98	68-122	59-131	
Diisopropyl Ether (DIPE)	0.05000	0.04379	88	78-120	71-127	
Ethyl-t-Butyl Ether (ETBE)	0.05000	0.04447	7 89	78-120	71-127	
Tert-Amyl-Methyl Ether (TAME)	0.05000	0.04426	8 89	75-120	68-128	
1,2-Dibromoethane	0.05000	0.04588	3 92	80-120	73-127	
1,2-Dichloroethane	0.05000	0.05043	3 101	80-120	73-127	

Total number of LCS compounds: 12

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 79374/022735C		Page 11 of 12

Project: ExxonMobil 79374/022735C

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepar	ed Date Analyze	ed LCS Batch Nu	Imber
099-12-882-1774	LCS	Solid	GC/MS O	10/19/15	10/19/15 13:	19 151019L029	
Parameter	<u>Spi</u>	ke Added Co	onc. Recovered	LCS %Rec.	<u>%Rec. CL</u>	ME CL	Qualifiers
Benzene	0.0	5000 0.0	04744	95	78-120	71-127	
Toluene	0.0	5000 0.0	04650	93	77-120	70-127	
Ethylbenzene	0.0	5000 0.0	05189	104	76-120	69-127	
o-Xylene	0.0	5000 0.0	05109	102	75-125	67-133	
p/m-Xylene	0.10	000 0.4	1051	105	75-125	67-133	
Methyl-t-Butyl Ether (MTBE)	0.0	5000 0.0	04487	90	77-120	70-127	
Tert-Butyl Alcohol (TBA)	0.2	500 0.2	2455	98	68-122	59-131	
Diisopropyl Ether (DIPE)	0.0	5000 0.0	04379	88	78-120	71-127	
Ethyl-t-Butyl Ether (ETBE)	0.0	5000 0.0	04447	89	78-120	71-127	
Tert-Amyl-Methyl Ether (TAME)	0.0	5000 0.0	04426	89	75-120	68-128	
1,2-Dibromoethane	0.0	5000 0.0	04588	92	80-120	73-127	
1,2-Dichloroethane	0.0	5000 0.0	05043	101	80-120	73-127	

Total number of LCS compounds: 12

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0905
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 79374/022735C		Page 12 of 12

Project: ExxonMobil 79374/022735C

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepar	ed Date Analyze	ed LCS Batch Nu	umber
099-12-882-1777	LCS	Solid	GC/MS O	10/20/15	10/20/15 12:	25 151020L010	
Parameter	<u>Spi</u>	ike Added	Conc. Recovered	LCS %Rec.	<u>%Rec. CL</u>	ME CL	<u>Qualifiers</u>
Benzene	0.0	05000	0.04757	95	78-120	71-127	
Toluene	0.0	05000	0.04703	94	77-120	70-127	
Ethylbenzene	0.0	05000	0.05130	103	76-120	69-127	
o-Xylene	0.0	05000	0.05120	102	75-125	67-133	
p/m-Xylene	0.1	000	0.1051	105	75-125	67-133	
Methyl-t-Butyl Ether (MTBE)	0.0	05000	0.04795	96	77-120	70-127	
Tert-Butyl Alcohol (TBA)	0.2	2500	0.2577	103	68-122	59-131	
Diisopropyl Ether (DIPE)	0.0	05000	0.04652	93	78-120	71-127	
Ethyl-t-Butyl Ether (ETBE)	0.0	05000	0.04717	94	78-120	71-127	
Tert-Amyl-Methyl Ether (TAME)	0.0	05000	0.04775	95	75-120	68-128	
1,2-Dibromoethane	0.0	05000	0.04646	93	80-120	73-127	
1,2-Dichloroethane	0.0	05000	0.05027	101	80-120	73-127	

Total number of LCS compounds: 12

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

Work Order: 15-10-0905

Work Order: 15-10-0905				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 8015B (M)	EPA 3550B	974	GC 48	1
EPA 8015B (M)	EPA 5030C	715	GC 24	2
EPA 8015B (M)	EPA 5030C	902	GC 1	2
EPA 8260B	EPA 5030C	867	GC/MS O	2
EPA 8270C SIM PAHs	EPA 3545	1038	GC/MS AAA	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Glossary of Terms and Qualifiers

Work Order: 15-10-0905

Page 1 of 1

<u>Qualifiers</u>	Definition
AZ	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BA	The MS/MSD RPD was out of control due to suspected matrix interference.
BB	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
DF	Reporting limits elevated due to matrix interferences.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
GE	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
HD	Chromat. profile inconsistent with pattern(s) of ref. fuel stnds.
HO	High concentration matrix spike recovery out of limits
HT	Analytical value calculated using results from associated tests.
HX	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS was in control.
IL	Relative percent difference out of control.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
LD	Analyte presence was not confirmed by second column or GC/MS analysis.
LP	The LCS and/or LCSD recoveries for this analyte were above the upper control limit. The associated sample was non-detected. Therefore, the sample data was reported without further clarification.
LQ	LCS recovery above method control limits.
LR	LCS recovery below method control limits.
ND	Parameter not detected at the indicated reporting limit.
QO	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
RU	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
SG	A silica gel cleanup procedure was performed.
SN	See applicable analysis comment.
	Solid - Unless otherwise indicated solid sample data is reported on a wet weight basis not corrected for % moisture. All OC results are

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Sandy Tat

From: Sent: To: Subject: Attachments: David R. Daniels <david.daniels@cardno.com> Wednesday, October 14, 2015 4:15 PM Sandy Tat RE: ExxonMobil 79374/022735C (15-10-0905) 15-10-0905 Revised.pdf

Revised COC attached

David Daniels PG PROJECT GEOLOGIST ENGINEERING & ENVIRONMENTAL SERVICES DIVISION CARDNO

Direct (+1) 707-766-2024 Mobile (+1) 707-338-6997 Fax (+1) 707-789-0414 Address 601 North McDowell Blvd., Petaluma, CA 94954 Email <u>david.daniels@cardno.com</u> Web <u>www.cardno.com</u>

This email and its attachments may contain confidential and/or privileged information for the sole use of the intended recipient(s). All electronically supplied data must be checked against an applicable hardcopy version which shall be the only document which Cardno warrants accuracy. If you are not the intended recipient, any use, distribution or copying of the information contained in this email and its attachments is strictly prohibited. If you have received this email in error, please email the sender by replying to this message and immediately delete and destroy any copies of this email and any attachments. The views or opinions expressed are the author's own and may not reflect the views or opinions of Cardno.

From: Sandy Tat [mailto:SandyTat@eurofinsUS.com] Sent: Wednesday, October 14, 2015 10:36 AM To: David R. Daniels <<u>david.daniels@cardno.com</u>> Subject: FW: ExxonMobil 79374/022735C (15-10-0905) Importance: High

Hi David,

Please also verify the sampling time for sample (S-5-SVE5)(Cel# 7), because it was labeled as 08:50 on the label.

Thanks!

Sandy Tat Project Manager Assistant

From: Sandy Tat Sent: Wednesday, October 14, 2015 10:34 AM To: David Daniels (<u>david.daniels@cardno.com</u>) Subject: ExxonMobil 79374/022735C (15-10-0905) Importance: High Hi David,

Please verify the Field Point Name for the first three samples. Should the FPN be (B18) instead of (B16)? Please advise.

Thanks!

Sandy Tat Project Manager Assistant

Eurofins Calscience, Inc.

7440 Lincoln Way Garden Grove, CA 92841-1427 USA Phone: (714) 895-5494 Fax: (714) 894-7501

Email: <u>SandyTat@eurofinsus.com</u> Website: <u>www.Calscience.com</u>

Notify us <u>here</u> to report this email as spam.

	eurofins 🗉																	СН/	AIN	OF	CU	STC	DY	RE	COF	۲D
	curonnis	Calscie	nce							WQ #	/LAB L	ISE ONI	Y				ATE:			101	9/15	-				
7440 l in	coln Way, Garden Grove, CA 928	41-1427 • (714)	895-5494							1.		IN.	.	DA	5		GE:			1	1	OF	2			
For cour	er service / sample drop off inform	nation, contact us	s26_sales@eurol	insus.com or ca	III us.			-		CLIEI	NT PRO	JECT N	AME / N	UMBER	U					P.O.	NO.:					$\overline{}$
LABURA	Cardno / E	xxonMobil						J		Fo	rmer E	xxon	79374							02	2735C	x				
ADDRE	601 N. McDowell Blvd									PRO	IECT CO	ONTACT	:							SAM	PLER(S)	: (PRINT)			
CITY:	Petaluma				STATE:	CA	9495 ^{°:}	4		Sc	ott Pei	rkins														
TEL:	(707) 766-2000		E-MAIL:	ott.perkins@	cardno.co	om									RE	QUI	EST	ED /	ANAI	LYS	ES					
TURNA	ROUND TIME (Rush surcharges may ap	oply to any TAT not	"STANDARD"):					ł			1	r	Pleas	e chec	k box (or fill ir	blani	cas ne	eded.							
		48 HR L	72 HR LL 5	DAYS 🗵	STANDA		LOG	CODE:																		
	DELT EDF		T061971667	3													ŧ									
SPECIA	L INSTRUCTIONS:			DRD revised	10/14/2015							4					0B) *									
*TPH	ld - Silica Gel Cleanup									â	6	۲ ۲		×		0B)**	(826	o								
**Ox	ys by 8260B: DIPE, ETBE, 1	TAME, and TB	Α							3015	015E	36 [8	(826	gers	32700								
*** L Plea	ead Scavengers (1,2-DCA ar ise email PDF files to: norc	nd EDB) allabs@eri-us	s.com				eved	pa	tered)) (6)	(q) (8	0 80		260B	3260	ates	aven	X								
LAB		Field Point	SAMI	PLING		NO.	prese	serv	1 E P	TPH	TPH			EX 8	TBE (ygen	d Sc	ŝ								
USE	SAMPLE ID	Name	DATE	TIME		CONT.	5	Pre	Fie	×	×	<u>F</u>	٩ ۲	ВТ	V	ð	Lea	PA		 				┝───╋		
Ĵ.	5-5-800 BB	В Ib ^{В18}	10/8/15	1000	SOIL	1				×	×			x	x	x	x	x						┝───┥		
2	5-10-816 BB	₿16 ^{В18}	10/8/15	1040	SOIL	١				×	x			×	×	×	*	×		L						
3	5-15-846 BIS	- 816 B18	10/8/15	1115	Soir	1				×	x			×	×	×	×	×								
4	5-5-MW9	MW9	10/8/15	1300	SOIL	ſ				*	×			X	×	×	×	×							\square	
Ŋ	5-10.5-MW9	MW9	10/8/15	1310	SOIL	1				×	x			×	~	~	*	×								
6	5-15.5-MW9	MW9	10/8/15	1315	SOIL	1		, 		×	×			×	× .	×	×	×								
7	5 - 5 - 5VE5	SVE5	10/9/15	0850 0840	SOIL	١				×	X			×	×	*	×.	×			ļ'					
Ś	5 - 11.5 - SVE5	SVE5	10/9/15	0900	SOIL	1				×	×		ļ	×	×	×	×	×							\square	
9	5-15.5 - SVE 5	SVE 5	10/9/15	0905	Soit)				×	×			x	×	×	*	×								
- {O	5-5- SVE 4	SVEH	10/9/15	1130	SOIL	1	•			*	×			*	×	×	~	*								
Relinq	uished by: (Signature)	Mar				Re	ceived	by: (Sig			(n) (b)	E	4						Date	112	/15	-	Time	25	5	Pag
Relinq	uished by: (Signature)	2650	(0/17)	15-1	770	Re	ceived	by: (Sig	gnature	/Affiliati	or								Date	:	-		Time			e 84
Relinq	uished by: (Signature)			<u>, y /</u>		Re	eceived	by: (Sig	gnature	/Affiliati	on)			(NA	Å	aA			Date	1/13	Tis		Time	00	$\overline{\mathcal{O}}$	of 88
						I								///	/	· v V								06/02	2/14 Rev	vision

Return to Contents

00,02/1

ŗ

seurofins																	СН	AIN	OF	CU	STC	DY	RE	COF	۲D
	Calscie	nce							WO #	l (LAB L	ISE ON	LY				ATE:			10	9/15	-				
7440 Lincoln Way, Garden Grove, CA 928	41-1427 • (714)	895-5494							1	5_1	10.	-Л	٩N	5		GE:			t		OF .	2			
For courier service / sample drop off inform LABORATORY CLIENT:	nation, contact us	s26_sales@eurol	insus.com or ca	III us.					CLIEI	NT PRO	JECT N	AME / N	UMBER	- 1 - C					P.O. 1	NO.:					
Cardno / E	xxonMobil						<u></u>		Fo	rmer E	Exxon	79374							02	2735C	x				
601 N. McDowell Blvd							•		PRO.	JECT CO	ONTACT	Γ:							SAMF	LER(S):	(PRINT))			
сіту: Petaluma				STATE:	CA	^{IP:} 9495	4		Sc	ott Pei	rkins														
TEL: (707) 766-2000		E-MAIL:	ott.perkins@)cardno.co	om									RE	QU	EST	ED /	ANAI	LYS	ES					
TURNAROUND TIME (Rush surcharges may ap	oply to any TAT not	"STANDARD"):					1			1		Pleas	e chec	k box	or fill ir	i blani	c as ne	eded.							
	48 HR 🛛	72 HR 🗆 5	DAYS 🗵	J STANDAF	RD	LOG	CODE:																		
		T061971667	3													*									
SPECIAL INSTRUCTIONS:											4 2					* (80)									
TPHd - Silica Gel Cleanup									â	6	р С		×		\$0B)	: (826	v								
**Oxys by 8260B: DIPE, ETBE, I	AME, and IB	А						5	8015	8015	C36 [m	B	: (826	Jgers	8270								
Please email PDF files to: norc	allabs@eri-u	s.com				eve	ved	litere	(6)	(p)	Ce-		3260	826(nates	cavel	X								
	Field Point Name	SAMI DATE	PLING TIME	- MATRIX	NO. OF CONT.	Unpres	Preser	Field F	NTPH	NT PF	П Н П	TPH	втех	MTBE	Oxyge	Lead S	PAHs								
5-5-8= BB	B 16	10/8/15	1000	SOIL	1				x	x			x	x	x	x	x								
2 5-10-BH BB	B16	10/8/15	1040	Soil	١				×	X			×	x	×	×	×								
3 - 15 - Ball BIS	B16	10/8/15	1115	Soil	ı				×	x			×	×	×	×	×								
H 5-5-MW9	MW9	10/8/15	1300	SOIL	ſ				*	x			X	×	×	×	×							\square	
5 5-10.5 - MW9	MW9	10/8/15	1310	SOIL	1				×	×			×	~	~	*	×								
5-15.5-MW9	MW9	10/8/15	1315	SOIL	1		;		×	×			×	× .	×	×	×								
5-5-SVE5	SVE 5	10/9/15	0840	Soll	١				×	×			×	×	×	×.	×								
5 - 11.5 - SVE5	SVE5	10/9/15	0900	SOIL	1				×	×			×	×	×	×	×								
9 5-15.5 - SVE 5	SVE 5	10/9/15	0905	Solt	J				×	×			×	×	×	*	×								
0 5-5- SVE 4	SVEH	10/9/15	1130	SOIL	1				*	×			۶	×	×	~	*								
Relinquished by: (Signature)	MA				R	eceived I	by: (Sig		Affiliati	9 ⁿ⁾	15	-01						Date:	1/2	/15	-	Time:	25	5	Pac
Relinquished by: (Signature)	765	(0/12	115 1	770	R	eceived	by: (Sig	nature	Affiliati	01	<u> </u>	_1		. /	, ,	,		Date	:	<u> </u>		Time	:		je 85
Relinquished by: (Signature)			<u>, </u>	<i></i>	R	eceived	by: (Sig	nature	/Affiliati	on)			T NA	A	ast	L		Date	113	lis		Time	00	\mathcal{O}	of 88
					i								111	/				1	1				06/02	2/14 Re	vision

Detum	4.0	Contonto	
Return	tO	Contents	

00/02/14 Re

F

	eurofins																	СН	AIN	OF	CU	STO	DY	REC	:OR	۲D
•		Calscie	nce							WO #	/LAB-U	SE ONI	Y				ATE:		10	9 1	15					
7440 Lin For cour	coln Way, Garden Grove, CA 9 ier service / sample drop off info	2841-1427 • (714) 895-5494 s26 sales@eurol	insus.com or c	all us.							(70	3al	25)	GE:			2		OF _	2			
LABOR	ATORY CLIENT: Cardno /	ExxonMobil								CLIE	IT PRO	JECT N	AME7N	UMBER						P.O.1	NO.:					
ADDRE	ss: 601 N. McDowell Blvc	1								PROJECT CONTACT:									02 2735CX SAMPLER(S): (PRINT)					_		
CITY:	Petaluma				STATE:	ZIP: CA	9495	4		Sc	ott Per	kins														
TEL:	(707) 766-2000		E-MAIL: SCC	ott.perkins@	@cardno.co	<u>om</u>									RE	QU	EST	ED /	ANA	LYS	ES					
TURNA	ROUND TIME (Rush surcharges ma	y apply to any TAT not	"STANDARD"):									[Pleas	e chec	k box (or fill ir	blani	k as ne	eded.		—					
	ME DAY LI 24 HR GLOBAL ID: DELT EDF		<u>72 нк це</u> то61971667	3			LOG	CODE:																		
SPECIA								[T			4					*** (
*TPH **Ox *** L <u>Plea</u>	Id - Silica Gel Cleanup ys by 8260B: DIPE, ETBE ead Scavengers (1,2-DCA ase email PDF files to: no	, TAME, and TB and EDB) prcallabs@eri-u	• A <u>s.com</u>				served	ved	iltered	H(g) (8015B)	H(d) (8015B)	J C6-C36 □ C6-C		8260B X	5 8260B	nates (8260B)**	cavengers (8260B	X 8270C								
LAB USE ONLY	SAMPLE ID	Field Point Name	SAMI DATE	PLING TIME	MATRIX	NO. OF CONT.	Unpre	Prese	Field F	X TP	N TP	TPH C	ТРН	BTEX	MTB	Oxyge	Lead S	PAHs								
11	5-9.5-SVE4	SVE4	10/9/15	1240	SOIL	1		1		x	x			x	x	x	x	x								
12	5 - 15.5 - SVE4	SVE4	10 19/15	1140	Soir	t				x	×			×	×	×	×	×								
13	5-5-5VE7	SVET	10 9/15	1330	SOIL	1				x	x			×	*	×	~	×								
NH.	5-10-5VE7	SVET	10 9 15	1355	SOIL	1				ァ	×			×	x	×	×	x								
15	5- 12 - SVE7	SVET	10/9/15	1400	SOIL	١				×	×			×	×	×	×	×								
16	S-15.5-SVE7	SVET	10 9 15	1405	SOIL	۱				×	×			×	*	×	×	×								
17	5-5-5VE6	SVE 6	10(9/15	1455	Soil	I				×	×			*	×	*	<u>~</u>	×								
18	5-12-5VE6	SVED	10/9/15	1500	SOIL	1				×	x			×	×	*	<u>×</u>	×								
Relinq	uished by: (Signature)	Mart	-			Rec	ceived t	oy: (Sig	inature/		on) Y	EC	1						Date	/12	115	-	Time	25		Pag
Relinq	uished by: (Signature)	TO 650	10/12/1	5 17	30	Ŕe	ceived t	oy: (Sig	nature	/Affiliati	n)					-	,		Date	:			Time	:		э 86
Relinq	uished by: (Śignature)	6			Western	Re	ceived l	by: (Sig	inature/	/Affiliati	on)			Th	Hi	Zel,	B		Date	10,	lis		Time	00		of 88
L														1)	Ø					/				06/02/	14 Rev	vision

Return to Contents

🔅 eurofins			WORK ORDER	NUMBER:	Pag 15-1(ge 87 of 8)− <u>(</u>)	305
	Calscience	SAMPLE RECEIPT	CHECKLIST	C	OOLER	1_0	F
CLIENT:	and no Fr	1		DAT	re: 10 /	131	2015
TEMPERATURE: (C Thermometer ID: SC I Sample(s) outs Sample(s) outs	Criteria: 0.0°C – 6. C2 (CF:-0.4°C); Te side temperature c side temperature c	0°C, not frozen except sedim mperature (w/o CF): <u>2 - 5</u> criteria (PM/APM contacted b criteria but received on ice/ch	ent/tissue) <u> </u> °C (w/ CF): <u>2</u> y:) illed on same day o	►°C; 🔽 f sampling	Blank [⊐ Sampl	e
□ Sample(s) receive Ambient Temperatu	ed at ambient temp re: □ Air □ Filter	perature; placed on ice for tra	insport by courier		Checke	ed by:	15
CUSTODY SEAL: Cooler ☑ Pre Sample(s) □ Pre	esent and Intact esent and Intact	 Present but Not Intact Present but Not Intact 	□ Not Present ☑ Not Present	□ N/A □ N/A	Checke Checke	ed by: ed by:	5 017
SAMPLE CONDITION Chain-of-Custody (C COC document(s) re Sampling date	DN: COC) document(s) eceived complete □ Sampling time	received with samples e □ Matrix □ Number of c	ontainers		Yes Z	No □	N/A
□ No analysis re Sampler's name ind Sample container la Sample container(s) Proper containers fo Sufficient volume/m Samples received w	quested D Not re icated on COC bel(s) consistent v) intact and in good or analyses reques ass for analyses re vithin holding time	elinquished	ed date □ No relir	nquished time			
Aqueous sample □ pH □ Residu Proper preservation Unpreserved aqu	s for certain analy Ial Chlorine □ Di chemical(s) notec Jeous sample(s) re	ses received within 15-minute ssolved Sulfide □ Dissolved d on COC and/or sample con eceived for certain analyses	e holding time I Oxygen tainer				d d
Container(s) for cer	nics □ Total Meta tain analysis free c nics □ Dissolved	of headspace Gases (RSK-175) □ Dissol	ved Oxygen (SM 45	500)			ď
□ Carbon Dioxic Tedlar™ bag(s) free	le (SM 4500) □ F e of condensation	Ferrous Iron (SM 3500) LI H	ydrogen Sulfide (Ha	acn)			Ø
CONTAINER TYPE Aqueous: □ VOA □ 125PBznna □ 24 □ 500PB □ 1AGB Solid: □ 4ozCGJ □ Air: □ Tedlar™ □ Container: A = Amber Preservative: b = buff s = H ₂ S	:: □ VOAh □ VOAn 50AGB □ 250CG □ 1AGBna₂ □ 1 □ 8ozCGJ □ 16oz Canister □ Sorbe r, B = Bottle, C = Cle ered, f = filtered, h = O4, u = ultra-pure, z	a ₂ \Box 100PJ \Box 100PJna ₂ \Box B \Box 250CGBs \Box 250PB \Box AGBs \Box 1PB \Box 1PBna \Box CGJ \square Sleeve ($\frac{\rho/S}{S}$) \Box E nt Tube \Box PUF \Box ear, E = Envelope, G = Glass, J HCl, n = HNO ₃ , na = NaOH, na nna = Zn(CH ₃ CO ₂) ₂ + NaOH	(Trip Blar ☐ 125AGB □ 125A ☐ 250PBn □ 500AG 	Ak Lot Number GBh □ GBh □ GBh □ SB □ 500AG □ □ □	er: GBp □ J □ 500 (() J sealable E d/Check Review	125PB AGJ s I Bag ed by: <u></u>) 017 Z2_

Page 88 of 88 WORK ORDER NUMBER: 15-10- 0905

Calscience

🐝 eurofins

SAMPLE ANOMALY REPORT

DATE: 10 / 13 / 2015

SAMPLES, CONTAINERS, AND LABELS:	Comments
□ Sample(s) NOT RECEIVED but listed on COC	
□ Sample(s) received but NOT LISTED on COC	
□ Holding time expired (list client or ECI sample ID and analysis)	
Insufficient sample amount for requested analysis (list analysis)	
Improper container(s) used (list analysis)	
□ Improper preservative used (list analysis)	
□ No preservative noted on COC or label (list analysis and notify lab)	
□ Sample container(s) not labeled	
□ Client sample label(s) illegible (list container type and analysis)	
Client sample label(s) do not match COC (comment)	(-7) Collection time per label 15 8:50
□ Project information	
□ Client sample ID	
Sampling date and/or time	
$\frac{1}{2}$ Number of container(s)	
Requested analysis	
Sample container(s) compromised (comment)	
Broken	
Water present in sample container	
Air sample container(s) compromised (comment)	
□ Flat	
□ Very low in volume	<u> </u>
Leaking (not transferred; duplicate bag submitted)	
□ Leaking (transferred into ECI Tedlar™ bags*)	
□ Leaking (transferred into client's Tedlar™ bags*)	
* Transferred at client's request.	
MISCELLANEOUS: (Describe)	Comments

HEADSPACE:

(Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis)

ECI Sample ID	ECI Container ID	Total Number**	ECI Sample ID	ECI Container ID	Total Number**

(Containers with bubble for other analysis)							
ECI	ECI	Total					

ECI Sample ID	ECI Container ID	Total Number**	Requested Analysis
			с -

Comments:

Reported by: 1017 Reviewed by: 862

Calscience

Supplemental Report 1

The original report has been revised/corrected.

WORK ORDER NUMBER: 15-10-0906

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Cardno Client Project Name: ExxonMobil 79374/022735C Attention: Scott Perkins 601 North McDowell Blvd. Petaluma, CA 94954-2312

Center L. in Dung

Approved for release on 10/29/2015 by: Cecile deGuia Project Manager

ResultLink >

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

Client Project Name:

Calscience

ExxonMobil 79374/022735C

Contents

Work Orde	er Number: 15-10-0906	
1	Work Order Narrative.	3
2	Sample Summary	4
3	Client Sample Data. 3.1 EPA 8015B (M) TPH Diesel (Solid). 3.2 EPA 8015B (M) TPH Gasoline (Solid). 3.3 EPA 6010B ICP Metals (Solid). 3.4 EPA 8270C Semi-Volatile Organics (Solid). 3.5 EPA 8260B Volatile Organics + Oxygenates (Solid).	5 5 7 8 14
4	Quality Control Sample Data.4.1 MS/MSD.4.2 PDS/PDSD.4.3 LCS/LCSD.	16 16 21 22
5	Sample Analysis Summary	27
6	Glossary of Terms and Qualifiers	28
7	Chain-of-Custody/Sample Receipt Form	29

Work Order: 15-10-0906

Page 1 of 1

Return to Contents

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 10/13/15. They were assigned to Work Order 15-10-0906.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

On October 29, 2015, Eurofins Calscience Inc. received a request for a correction to the client project name of "ExxonMobil 99DEL" to "ExxonMobil 79374". The report has been amended to reflect the corrected ExxonMobil site.

Client:	Cardno	Work Order:	15-10-0906
	601 North McDowell Blvd.	Project Name:	ExxonMobil 79374/022735C
	Petaluma, CA 94954-2312	PO Number:	022732C
		Date/Time Received:	10/13/15 10:00
		Number of Containers:	5
Attn:	Scott Perkins		

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
S-SP1-1	15-10-0906-1	10/08/15 13:30	1	Solid
S-SP1-2	15-10-0906-2	10/08/15 13:40	1	Solid
S-SP1-3	15-10-0906-3	10/09/15 08:00	1	Solid
S-SP1-4	15-10-0906-4	10/09/15 08:05	1	Solid
SP-1	15-10-0906-5	10/08/15 00:00	1	Solid

Cardno			Date Re	ceived:			10/13/15
601 North McDowell Blvd.			Work Or	der:			15-10-0906
Petaluma, CA 94954-2312			Prepara	tion:			EPA 3550B
			Method:			EF	PA 8015B (M)
			Units:				mg/kg
Project: ExxonMobil 79374/0227350	2					Pa	ge 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-1	15-10-0906-5-A	10/08/15 00:00	Solid	GC 48	10/15/15	10/15/15 16:54	151015B03
Parameter		Result		RL	DF	Qual	ifiers
TPH as Diesel		ND		4.9	1.00	SG	
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
n-Octacosane		101		61-145			
Method Blank	099-15-422-2111	N/A	Solid	GC 48	10/15/15	10/15/15 15:49	151015B03
Parameter		Result		RL	DF	Qual	ifiers
TPH as Diesel		ND		5.0	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
n-Octacosane		92		61-145			

Return to Contents

Cardno			Date Re	ceived:			10/13/15
601 North McDowell Blvd.			Work Or	rder:			15-10-0906
Petaluma, CA 94954-2312			Prepara	tion:			EPA 5030C
			Method:			EF	PA 8015B (M)
			Units:				mg/kg
Project: ExxonMobil 79374/022735	С					Pa	ge 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-1	15-10-0906-5-A	10/08/15 00:00	Solid	GC 1	10/13/15	10/21/15 19:15	151020L058
Parameter		Result		RL	DF	Qual	ifiers
TPH as Gasoline		0.79		0.49	1.00	HD	
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		67		42-126			
Method Blank	099-14-571-2677	N/A	Solid	GC 1	10/20/15	10/21/15 07:52	151020L058
Parameter		Result		RL	DF	Qual	ifiers
TPH as Gasoline		ND		0.50	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene - FID		62		42-126			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Cardno			Date Re	ceived:			10/13/15
601 North McDowell Blvd.			Work Or	der:			15-10-0906
Petaluma, CA 94954-2312			Preparat	tion:			EPA 3050B
			Method:				EPA 6010B
			Units:				mg/kg
Project: ExxonMobil 79374/0227350)					Pa	ge 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-1	15-10-0906-5-A	10/08/15 00:00	Solid	ICP 7300	10/14/15	10/15/15 22:54	151014L03
Parameter		Result		RL	DF	Qua	lifiers
Lead		5.74		0.524	1.05		
Method Blank	097-01-002-21911	N/A	Solid	ICP 7300	10/14/15	10/15/15 15:22	151014L03
Parameter		Result		RL	DF	Qua	lifiers
Lead		ND		0.510	1.02		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0906
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 1 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-1	15-10-0906-5-A	10/08/15 00:00	Solid	GC/MS SS	10/15/15	10/16/15 14:42	151015L02
Parameter	·	Result	Ē	RL	DF	Qua	lifiers
Acenaphthene		ND	(0.50	1.00		
Acenaphthylene		ND	(0.50	1.00		
Aniline		ND	(0.50	1.00		
Anthracene		ND	(0.50	1.00		
Azobenzene		ND	(0.50	1.00		
Benzidine		ND	1	10	1.00		
Benzo (a) Anthracene		ND	(0.50	1.00		
Benzo (a) Pyrene		ND	(0.50	1.00		
Benzo (b) Fluoranthene		ND	(0.50	1.00		
Benzo (g,h,i) Perylene		ND	(0.50	1.00		
Benzo (k) Fluoranthene		ND	(0.50	1.00		
Benzoic Acid		ND	2	2.5	1.00		
Benzyl Alcohol		ND	(0.50	1.00		
Bis(2-Chloroethoxy) Methane		ND	(0.50	1.00		
Bis(2-Chloroethyl) Ether		ND	2	2.5	1.00		
Bis(2-Chloroisopropyl) Ether		ND	(0.50	1.00		
Bis(2-Ethylhexyl) Phthalate		ND	(0.50	1.00		
4-Bromophenyl-Phenyl Ether		ND	(0.50	1.00		
Butyl Benzyl Phthalate		ND	(0.50	1.00		
4-Chloro-3-Methylphenol		ND	(0.50	1.00		
4-Chloroaniline		ND	(0.50	1.00		
2-Chloronaphthalene		ND	(0.50	1.00		
2-Chlorophenol		ND	(0.50	1.00		
4-Chlorophenyl-Phenyl Ether		ND	(0.50	1.00		
Chrysene		ND	(0.50	1.00		
Di-n-Butyl Phthalate		ND	(0.50	1.00		
Di-n-Octyl Phthalate		ND	(0.50	1.00		
Dibenz (a,h) Anthracene		ND	(0.50	1.00		
Dibenzofuran		ND	(0.50	1.00		
1,2-Dichlorobenzene		ND	(0.50	1.00		
1,3-Dichlorobenzene		ND	(0.50	1.00		
1,4-Dichlorobenzene		ND	(0.50	1.00		
3,3'-Dichlorobenzidine		ND	1	10	1.00		
2,4-Dichlorophenol		ND	(0.50	1.00		
Diethyl Phthalate		ND	(0.50	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

601 North McDowell Blvd. Petaluma, CA 94954-2312

Cardno

5				
	Da	te Received:		10/13/15
	W	ork Order:		15-10-0906
	Pr	eparation:		EPA 3545
	Me	ethod:	EPA 8270C	
	Ur	nits:		ma/ka
35C	-			Page 2 of 6
	Result	<u>RL</u>	DF	Qualifiers
	ND	0.50	1.00	
	ND	0.50	1.00	
	ND	2.5	1.00	
	ND	2.5	1.00	
	ND	0.50	1.00	
	ND	0.50	1.00	
	ND	0.50	1.00	
	ND	0.50	1.00	
	ND	0.50	1.00	
	ND	0.50	1.00	
	ND	2.5	1.00	
	ND	0.50	1.00	
	ND	0.50	1.00	
	ND	0.50	1.00	
	ND	0.50	1.00	
	ND	0.50	1.00	
	ND	0.50	1.00	

Project: ExxonMobil 79374/0227

Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qualifiers</u>
Dimethyl Phthalate	ND	0.50	1.00	
2,4-Dimethylphenol	ND	0.50	1.00	
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00	
2,4-Dinitrophenol	ND	2.5	1.00	
2,4-Dinitrotoluene	ND	0.50	1.00	
2,6-Dinitrotoluene	ND	0.50	1.00	
Fluoranthene	ND	0.50	1.00	
Fluorene	ND	0.50	1.00	
Hexachloro-1,3-Butadiene	ND	0.50	1.00	
Hexachlorobenzene	ND	0.50	1.00	
Hexachlorocyclopentadiene	ND	2.5	1.00	
Hexachloroethane	ND	0.50	1.00	
Indeno (1,2,3-c,d) Pyrene	ND	0.50	1.00	
Isophorone	ND	0.50	1.00	
2-Methylnaphthalene	ND	0.50	1.00	
1-Methylnaphthalene	ND	0.50	1.00	
2-Methylphenol	ND	0.50	1.00	
3/4-Methylphenol	ND	0.50	1.00	
N-Nitroso-di-n-propylamine	ND	0.50	1.00	
N-Nitrosodimethylamine	ND	0.50	1.00	
N-Nitrosodiphenylamine	ND	0.50	1.00	
Naphthalene	ND	0.50	1.00	
4-Nitroaniline	ND	0.50	1.00	
3-Nitroaniline	ND	0.50	1.00	
2-Nitroaniline	ND	0.50	1.00	
Nitrobenzene	ND	2.5	1.00	
4-Nitrophenol	ND	0.50	1.00	
2-Nitrophenol	ND	0.50	1.00	
Pentachlorophenol	ND	2.5	1.00	
Phenanthrene	ND	0.50	1.00	
Phenol	ND	0.50	1.00	
Pyrene	ND	0.50	1.00	
Pyridine	ND	0.50	1.00	
1,2,4-Trichlorobenzene	ND	0.50	1.00	
2,4,6-Trichlorophenol	ND	0.50	1.00	
2,4,5-Trichlorophenol	ND	0.50	1.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	Qualifiers	
2-Fluorobiphenyl	85	27-120		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Cardno	Date Received:			10/13/15		
601 North McDowell Blvd.	Wo	Work Order:				
Petaluma, CA 94954-2312	Preparation: EPA 3545		Preparation:			
	Met	Method:				
	Uni		mg/kg			
Project: ExxonMobil 79374/022735C				Page 3 of 6		
<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	Qualifiers			
2-Fluorophenol	87	25-120				
Nitrobenzene-d5	81	33-123				
p-Terphenyl-d14	83	27-159				
Phenol-d6	85	26-122				

18-138

89

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Analytical Report

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0906
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 4 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-549-3429	N/A	Solid	GC/MS SS	10/15/15	10/15/15 17:32	151015L02
Parameter		Result	Ē	<u>۲L</u>	DF	Qua	lifiers
Acenaphthene		ND	().50	1.00		
Acenaphthylene		ND	().50	1.00		
Aniline		ND	().50	1.00		
Anthracene		ND	().50	1.00		
Azobenzene		ND	().50	1.00		
Benzidine		ND	1	0	1.00		
Benzo (a) Anthracene		ND	().50	1.00		
Benzo (a) Pyrene		ND	().50	1.00		
Benzo (b) Fluoranthene		ND	().50	1.00		
Benzo (g,h,i) Perylene		ND	().50	1.00		
Benzo (k) Fluoranthene		ND	().50	1.00		
Benzoic Acid		ND	2	2.5	1.00		
Benzyl Alcohol		ND	().50	1.00		
Bis(2-Chloroethoxy) Methane		ND	().50	1.00		
Bis(2-Chloroethyl) Ether		ND	2	2.5	1.00		
Bis(2-Chloroisopropyl) Ether		ND	().50	1.00		
Bis(2-Ethylhexyl) Phthalate		ND	().50	1.00		
4-Bromophenyl-Phenyl Ether		ND	().50	1.00		
Butyl Benzyl Phthalate		ND	().50	1.00		
4-Chloro-3-Methylphenol		ND	().50	1.00		
4-Chloroaniline		ND	().50	1.00		
2-Chloronaphthalene		ND	(0.50	1.00		
2-Chlorophenol		ND	().50	1.00		
4-Chlorophenyl-Phenyl Ether		ND	().50	1.00		
Chrysene		ND	().50	1.00		
Di-n-Butyl Phthalate		ND	().50	1.00		
Di-n-Octyl Phthalate		ND	().50	1.00		
Dibenz (a,h) Anthracene		ND	(0.50	1.00		
Dibenzofuran		ND	().50	1.00		
1,2-Dichlorobenzene		ND	().50	1.00		
1,3-Dichlorobenzene		ND	(0.50	1.00		
1,4-Dichlorobenzene		ND	(0.50	1.00		
3,3'-Dichlorobenzidine		ND	1	0	1.00		
2,4-Dichlorophenol		ND	(0.50	1.00		
Diethyl Phthalate		ND	(0.50	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Cardno	Date Received:			10/13/15	
601 North McDowell Blvd.	n McDowell Blvd. Work O		Order:		
Petaluma, CA 94954-2312	Pr	eparation:		EPA 3545	
	Me	ethod:		EPA 8270C	
	Ur	nits:		ma/ka	
Project: ExxonMobil 79374/022735C	-			Page 5 of 6	
Parameter	Result	<u>RL</u>	DF	<u>Qualifiers</u>	
Dimethyl Phthalate	ND	0.50	1.00		
2,4-Dimethylphenol	ND	0.50	1.00		
4,6-Dinitro-2-Methylphenol	ND	2.5	1.00		
2,4-Dinitrophenol	ND	2.5	1.00		
2,4-Dinitrotoluene	ND	0.50	1.00		
2,6-Dinitrotoluene	ND	0.50	1.00		
Fluoranthene	ND	0.50	1.00		
Fluorene	ND	0.50	1.00		
Hexachloro-1,3-Butadiene	ND	0.50	1.00		
Hexachlorobenzene	ND	0.50	1.00		
Hexachlorocyclopentadiene	ND	2.5	1.00		
Hexachloroethane	ND	0.50	1.00		
Indeno (1,2,3-c,d) Pyrene	ND	0.50	1.00		
Isophorone	ND	0.50	1.00		
2-Methylnaphthalene	ND	0.50	1.00		
1-Methylnaphthalene	ND	0.50	1.00		
2-Methylphenol	ND	0.50	1.00		
3/4-Methylphenol	ND	0.50	1.00		
N-Nitroso-di-n-propylamine	ND	0.50	1.00		
N-Nitrosodimethylamine	ND	0.50	1.00		
N-Nitrosodiphenylamine	ND	0.50	1.00		
Naphthalene	ND	0.50	1.00		
4-Nitroaniline	ND	0.50	1.00		
3-Nitroaniline	ND	0.50	1.00		
2-Nitroaniline	ND	0.50	1.00		
Nitrobenzene	ND	2.5	1.00		
4-Nitrophenol	ND	0.50	1.00		
2-Nitrophenol	ND	0.50	1.00		
Pentachlorophenol	ND	2.5	1.00		
Phenanthrene	ND	0.50	1.00		
Phenol	ND	0.50	1.00		
Pyrene	ND	0.50	1.00		
Pyridine	ND	0.50	1.00		
1,2,4-Trichlorobenzene	ND	0.50	1.00		
2,4,6-Trichlorophenol	ND	0.50	1.00		
2,4,5-1 richlorophenol	ND	0.50	1.00		
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
2-Fluorobiphenyl	89	27-120			

RL: Reporting Limit. DF: Dilution Factor. MDL: Meth

MDL: Method Detection Limit.

2,4,6-Tribromophenol

Cardno	Da	te Received:		10/13/15	
601 North McDowell Blvd.		ork Order:		15-10-0906	
Petaluma, CA 94954-2312	Pre	eparation:		EPA 3545	
	Me	Method:			
	Units:			mg/kg	
Project: ExxonMobil 79374/022735C				Page 6 of 6	
<u>Surrogate</u>	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
2-Fluorophenol	98	25-120			
Nitrobenzene-d5	89	33-123			
p-Terphenyl-d14	94	27-159			
Phenol-d6	97	26-122			

18-138

95

Return to Contents

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0906
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 1 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SP-1	15-10-0906-5-A	10/08/15 00:00	Solid	GC/MS OO	10/13/15	10/15/15 07:43	151014L053
Parameter		<u>Result</u>		RL	<u>DF</u>	Quali	fiers
Benzene		ND		0.0050	1.00		
Toluene		ND		0.0050	1.00		
Ethylbenzene		ND		0.0050	1.00		
o-Xylene		ND		0.0050	1.00		
p/m-Xylene		ND		0.0050	1.00		
Xylenes (total)		ND		0.0050	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.0050	1.00		
Tert-Butyl Alcohol (TBA)		ND		0.050	1.00		
Diisopropyl Ether (DIPE)		ND		0.010	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.010	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.010	1.00		
Ethanol		ND		0.25	1.00		
1,2-Dibromoethane		ND		0.0050	1.00		
1,2-Dichloroethane		ND		0.0050	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		100		60-132			
Dibromofluoromethane		109		63-141			
1,2-Dichloroethane-d4		113		62-146			
Toluene-d8		102		80-120			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0906
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
	Units:	mg/kg
Project: ExxonMobil 79374/022735C		Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-882-1767	N/A	Solid	GC/MS OO	10/14/15	10/15/15 03:31	151014L053
Parameter		Result		RL	DF	Quali	fiers
Benzene		ND		0.0050	1.00		
Toluene		ND		0.0050	1.00		
Ethylbenzene		ND		0.0050	1.00		
o-Xylene		ND		0.0050	1.00		
p/m-Xylene		ND		0.0050	1.00		
Xylenes (total)		ND		0.0050	1.00		
Methyl-t-Butyl Ether (MTBE)		ND		0.0050	1.00		
Tert-Butyl Alcohol (TBA)		ND		0.050	1.00		
Diisopropyl Ether (DIPE)		ND		0.010	1.00		
Ethyl-t-Butyl Ether (ETBE)		ND		0.010	1.00		
Tert-Amyl-Methyl Ether (TAME)		ND		0.010	1.00		
Ethanol		ND		0.25	1.00		
1,2-Dibromoethane		ND		0.0050	1.00		
1,2-Dichloroethane		ND		0.0050	1.00		
Surrogate		<u>Rec. (%)</u>		Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene		95		60-132			
Dibromofluoromethane		108		63-141			
1,2-Dichloroethane-d4		109		62-146			
Toluene-d8		98		80-120			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Quality Control - Spike/Spike Duplicate

Cardno		Date R	Received:					10/13/15			
601 North McDowell Blvd.					Order:				1	5-10-0906	
Petaluma, CA 94954-2312					Preparation:				EPA 3550B		
		Metho	d:			EPA 8015B (M)					
Project: ExxonMobil 79374/02	22735C							Page 1	of 5		
Quality Control Sample ID	Туре		Matrix	Insti	rument	Date Prepared	Date Analy	yzed	MS/MSD Ba	tch Number	
SP-1	Sample		Solid	GC	48	10/15/15	10/15/15 1	6:54	151015S03		
SP-1	Matrix Spike		Solid	GC	48	10/15/15	10/15/15 1	6:22	151015S03		
SP-1	Matrix Spike I	Duplicate	Solid	GC	48	10/15/15	10/15/15 1	6:38	151015S03		
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> <u>%Rec.</u>	<u>MSD</u> Conc.	MSD %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>	
TPH as Diesel	ND	400.0	454.4	114	490.6	123	64-130	8	0-15		

Quality Control - Spike/Spike Duplicate

Cardno	Cardno									10/13/15
601 North McDowell Blvd.				Work C	Order:				15	-10-0906
Petaluma, CA 94954-2312				Prepar	ation:		EPA 5030C			
				Method	d:		EPA 8015B (M)			
Project: ExxonMobil 79374/02							Page 2	of 5		
Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepared	Date Analy	yzed	MS/MSD Bate	ch Number
15-10-0905-1	Sample		Solid	GC 1	I	10/20/15	10/21/15 0	9:03	151020S030	
15-10-0905-1	Matrix Spike		Solid	GC 1	I	10/20/15	10/21/15 0	9:39	151020S030	
15-10-0905-1	Matrix Spike	Duplicate	Solid	GC 1	I	10/20/15	10/21/15 1	0:14	151020S030	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> <u>%Rec.</u>	<u>MSD</u> Conc.	<u>MSD</u> <u>%Rec.</u>	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
TPH as Gasoline	ND	10.00	8.978	90	9.849	98	48-114	9	0-23	

Return to Contents

Quality Control - Spike/Spike Duplicate

Cardno					Date Received:				10/13/15			
601 North McDowell Blvd.					Order:				1	5-10-0906		
Petaluma, CA 94954-2312					Preparation:			EPA 3050B				
					Method:				EPA 6010B			
Project: ExxonMobil 79374/0	22735C								Page 3	B of 5		
Quality Control Sample ID	Туре		Matrix	Inst	rument	Date Prepared	Date Anal	yzed	MS/MSD Ba	tch Number		
15-10-0934-1	Sample		Solid	ICP	7300	10/14/15	10/15/15 1	15:26	151014S03			
15-10-0934-1	Matrix Spike		Solid	ICP	7300	10/14/15	10/15/15 1	15:28	151014S03			
15-10-0934-1	Matrix Spike	Duplicate	Solid	ICP	7300	10/14/15	10/15/15 1	15:30	151014S03			
Parameter	Sample Conc.	<u>Spike</u> Added	MS Conc.	MS %Rec.	MSD Conc.	MSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers		
Lead	54.46	25.00	75.02	82	86.14	127	75-125	14	0-20	НХ		

Return to Contents

Calscience

Quality Control - Spike/Spike Duplicate

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0906
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C
Project: ExxonMobil 79374/022735C		Page 4 of 5

Quality Control Sample ID	Туре		Matrix	Instrument		Date Prepared	Date Ana	lyzed I	MS/MSD Bat	tch Number
15-10-1081-8	Sample		Solid	GC/N	IS SS	10/15/15	10/15/15 17:52		151015S02	
15-10-1081-8	Matrix Spike		Solid	GC/N	IS SS	10/15/15	10/15/15	18:12 ⁻	151015S02	
15-10-1081-8	Matrix Spike	Duplicate	Solid	GC/N	IS SS	10/15/15	10/15/15	18:32 ⁻	151015S02	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec.	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Acenaphthene	ND	10.00	10.28	103	10.25	103	34-148	0	0-20	
Acenaphthylene	ND	10.00	9.887	99	10.01	100	53-120	1	0-20	
Butyl Benzyl Phthalate	ND	10.00	11.88	119	11.71	117	15-189	1	0-20	
4-Chloro-3-Methylphenol	ND	10.00	11.18	112	11.20	112	32-120	0	0-20	
2-Chlorophenol	ND	10.00	9.674	97	9.694	97	53-120	0	0-20	
1,4-Dichlorobenzene	ND	10.00	6.994	70	7.585	76	43-120	8	0-26	
Dimethyl Phthalate	ND	10.00	9.971	100	9.735	97	44-122	2	0-20	
2,4-Dinitrotoluene	ND	10.00	11.01	110	10.59	106	28-120	4	0-20	
Fluorene	ND	10.00	10.62	106	10.53	105	12-186	1	0-20	
N-Nitroso-di-n-propylamine	ND	10.00	8.904	89	8.841	88	38-140	1	0-20	
Naphthalene	ND	10.00	8.815	88	9.086	91	20-140	3	0-20	
4-Nitrophenol	ND	10.00	10.31	103	9.993	100	14-128	3	0-59	
Pentachlorophenol	ND	10.00	10.83	108	10.77	108	10-124	1	0-20	
Phenol	ND	10.00	9.599	96	9.514	95	22-124	1	0-20	
Pyrene	ND	10.00	11.33	113	11.40	114	31-169	1	0-20	
1,2,4-Trichlorobenzene	ND	10.00	9.192	92	9.475	95	56-120	3	0-20	

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0906
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 79374/022735C		Page 5 of 5

Quality Control Sample ID	Туре		Matrix	Inst	trument	Date Prepared	Date Ana	lyzed	MS/MSD Batch Number	
15-10-0967-1	Sample		Solid	GC	/MS OO	10/13/15	10/15/15	04:27	151014S025	
15-10-0967-1	Matrix Spike		Solid	GC	/MS OO	10/13/15	10/15/15	04:55	151014S025	
15-10-0967-1	Matrix Spike	Duplicate	Solid	Solid GC/MS OO		10/13/15	10/15/15	10/15/15 05:23 151014S025		
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> <u>%Rec.</u>	<u>MSD</u> Conc.	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Benzene	ND	0.05000	0.03926	79	0.03770	75	61-127	4	0-20	
Toluene	ND	0.05000	0.04044	81	0.03839	77	63-123	5	0-20	
Ethylbenzene	ND	0.05000	0.04112	82	0.03927	79	57-129	5	0-22	
o-Xylene	ND	0.05000	0.04202	84	0.04019	80	70-130	4	0-30	
p/m-Xylene	ND	0.1000	0.08426	84	0.08006	80	70-130	5	0-30	
Methyl-t-Butyl Ether (MTBE)	ND	0.05000	0.03810	76	0.03896	78	57-123	2	0-21	
Tert-Butyl Alcohol (TBA)	ND	0.2500	0.1952	78	0.1989	80	30-168	2	0-34	
Diisopropyl Ether (DIPE)	ND	0.05000	0.03818	76	0.03760	75	57-129	2	0-20	
Ethyl-t-Butyl Ether (ETBE)	ND	0.05000	0.03705	74	0.03638	73	55-127	2	0-20	
Tert-Amyl-Methyl Ether (TAME)	ND	0.05000	0.03808	76	0.03791	76	58-124	0	0-20	
Ethanol	ND	0.5000	0.5147	103	0.4833	97	17-167	6	0-47	
1,2-Dibromoethane	ND	0.05000	0.03895	78	0.03939	79	64-124	1	0-20	
1,2-Dichloroethane	ND	0.05000	0.04155	83	0.04045	81	80-120	3	0-20	

🔅 eurofins

Cardno				D	ate Receive	d:				10/13/15
601 North McDowell Blvd.				V	Vork Order:				1	5-10-0906
Petaluma, CA 94954-2312				Р	reparation:				E	PA 3050B
				Ν	lethod:				E	PA 6010B
Project: ExxonMobil 79374,	/022735C								Page 1	of 1
Quality Control Sample ID	Туре		Ν	Matrix	Instrument	Date Pre	pared D	Date Analyzed	PDS/PDSD Number	Batch
15-10-0934-1	Sample		5	Solid	ICP 7300	10/14/15	00:00 1	0/15/15 15:26	151014S03	
15-10-0934-1	PDS		5	Solid	ICP 7300	10/14/15	00:00 1	0/19/15 19:26	151014S03	
15-10-0934-1	PDSD		5	Solid	ICP 7300	10/14/15	00:00 1	0/19/15 19:32	151014S03	
Parameter	<u>Sample</u> Conc.	<u>Spike</u> Added	PDS Conc.	<u>PDS</u> %Rec.	PDSD Conc.	PDSD %Rec.	<u>%Rec.</u>	<u>CL</u> <u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Lead	54.46	25.00	78.26	95	78.07	94	75-125	0	0-20	

Qualifiers

🔅 eurofins	
	Calscience

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0906
Petaluma, CA 94954-2312	Preparation:	EPA 3550B
	Method:	EPA 8015B (M)
Project: ExxonMobil 79374/022735C		Page 1 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-15-422-2111	LCS	Solid	GC 48	10/15/15	10/15/15 16:05	151015B03
Parameter		Spike Added	Conc. Recov	vered LCS %R	ec. <u>%Rec</u>	<u>. CL</u> Qualifie
TPH as Diesel		400.0	470.5	118	75-12	3

🔅 eurofins	
	Calscience

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0906
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8015B (M)
Project: ExxonMobil 79374/022735C		Page 2 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
099-14-571-2677	LCS	Solid	GC 1	10/20/15	10/21/15 07:17	151020L058
Parameter		Spike Added	Conc. Recove	red LCS %Re	<u>%Rec.</u>	. CL Qualifiers
TPH as Gasoline		10.00	10.07	101	70-124	4

🛟 eurofins	
	Calscience

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0906
Petaluma, CA 94954-2312	Preparation:	EPA 3050B
	Method:	EPA 6010B
Project: ExxonMobil 79374/022735C		Page 3 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
097-01-002-21911	LCS	Solid	ICP 7300	10/14/15	10/15/15 15:24	151014L03
Parameter		Spike Added	Conc. Recover	red LCS %Re	ec. <u>%Rec</u>	. CL Qualifiers
Lead		25.00	26.68	107	80-120)

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0906
Petaluma, CA 94954-2312	Preparation:	EPA 3545
	Method:	EPA 8270C
Project: ExxonMobil 79374/022735C		Page 4 of 5

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepa	red Date Analyz	ed LCS Batch N	umber
099-12-549-3429	LCS	Solid	GC/MS SS	5 10/15/15	10/15/15 17	13 151015L02	
Parameter		Spike Added	Conc. Recovered	LCS %Rec.	<u>%Rec. CL</u>	ME CL	Qualifiers
Acenaphthene		10.00	9.131	91	51-123	39-135	
Acenaphthylene		10.00	9.172	92	52-120	41-131	
Butyl Benzyl Phthalate		10.00	11.29	113	43-139	27-155	
4-Chloro-3-Methylphenol		10.00	11.02	110	55-121	44-132	
2-Chlorophenol		10.00	10.51	105	58-124	47-135	
1,4-Dichlorobenzene		10.00	8.246	82	42-132	27-147	
Dimethyl Phthalate		10.00	9.394	94	51-123	39-135	
2,4-Dinitrotoluene		10.00	10.61	106	51-129	38-142	
Fluorene		10.00	9.367	94	54-126	42-138	
N-Nitroso-di-n-propylamine		10.00	9.522	95	40-136	24-152	
Naphthalene		10.00	8.661	87	32-146	13-165	
4-Nitrophenol		10.00	10.16	102	24-126	7-143	
Pentachlorophenol		10.00	10.04	100	23-131	5-149	
Phenol		10.00	9.944	99	40-130	25-145	
Pyrene		10.00	9.992	100	47-143	31-159	
1,2,4-Trichlorobenzene		10.00	9.175	92	45-129	31-143	

Total number of LCS compounds: 16 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

Cardno	Date Received:	10/13/15
601 North McDowell Blvd.	Work Order:	15-10-0906
Petaluma, CA 94954-2312	Preparation:	EPA 5030C
	Method:	EPA 8260B
Project: ExxonMobil 79374/022735C		Page 5 of 5

Project: ExxonMobil 79374/022735C

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number	
099-12-882-1767	LCS	Solid	GC/MS OO	10/14/15	10/15/15 02:35	151014L053	
Parameter	<u>Spike A</u>	dded <u>Conc.</u>	Recovered LCS	<u>%Rec.</u> %R	tec. CL MI	E CL Qualifiers	
Benzene	0.05000	0.0496	6 99	78-	120 71	-127	
Toluene	0.05000	0.0506	4 101	77-	120 70)-127	
Ethylbenzene	0.05000	0.0520	8 104	76-	120 69)-127	
o-Xylene	0.05000	0.0533	4 107	75-	125 67	'-133	
p/m-Xylene	0.1000	0.1061	106	75-	125 67	'-133	
Methyl-t-Butyl Ether (MTBE)	0.05000	0.0510	2 102	77-	120 70)-127	
Tert-Butyl Alcohol (TBA)	0.2500	0.2459	98	68-	122 59	9-131	
Diisopropyl Ether (DIPE)	0.05000	0.0495	4 99	78-	120 71	-127	
Ethyl-t-Butyl Ether (ETBE)	0.05000	0.0490	6 98	78-	120 71	-127	
Tert-Amyl-Methyl Ether (TAME)	0.05000	0.0497	0 99	75-	120 68	3-128	
Ethanol	0.5000	0.5657	113	56-	140 42	2-154	
1,2-Dibromoethane	0.05000	0.0521	3 104	80-	120 73	3-127	
1,2-Dichloroethane	0.05000	0.0531	6 106	80-	120 73	3-127	

Total number of LCS compounds: 13 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

Page 1 of 1

Calscience

Work	Order:	15-10	0-0906
------	--------	-------	--------

Method	Extraction	Chemist ID	<u>Instrument</u>	Analytical Location
EPA 6010B	EPA 3050B	935	ICP 7300	1
EPA 8015B (M)	EPA 3550B	974	GC 48	1
EPA 8015B (M)	EPA 5030C	902	GC 1	2
EPA 8260B	EPA 5030C	1032	GC/MS OO	2
EPA 8270C	EPA 3545	923	GC/MS SS	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Calscience

Glossary of Terms and Qualifiers

Work Order: 15-10-0906

Page 1 of 1

<u>Qualifiers</u>	Definition
AZ	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BA	The MS/MSD RPD was out of control due to suspected matrix interference.
BB	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
DF	Reporting limits elevated due to matrix interferences.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
GE	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
HD	Chromat. profile inconsistent with pattern(s) of ref. fuel stnds.
HO	High concentration matrix spike recovery out of limits
HT	Analytical value calculated using results from associated tests.
HX	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS was in control.
IL	Relative percent difference out of control.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
LD	Analyte presence was not confirmed by second column or GC/MS analysis.
LP	The LCS and/or LCSD recoveries for this analyte were above the upper control limit. The associated sample was non-detected. Therefore, the sample data was reported without further clarification.
LQ	LCS recovery above method control limits.
LR	LCS recovery below method control limits.
ND	Parameter not detected at the indicated reporting limit.
QO	Compound did not meet method-described identification guidelines. Identification was based on additional GC/MS characteristics.
RU	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
SG	A silica gel cleanup procedure was performed.
SN	See applicable analysis comment.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Cecile L de Guia

From: Sent: To: Cc: Subject: Attachments: Greg Gurss [greg.gurss@cardno.com] Tuesday, October 13, 2015 4:47 PM Cecile L de Guia Nadya Vicente FW: ExxonMobil 99DEL; 15-10-0906 15100906.pdf

Cecile,

8260B will work. Thanks.

Greg A. Gurss SACRAMENTO BRANCH MANAGER CARDNO ENGINEERING & ENVIRONMENTAL SERVICES

Phone (+1) 916-692-3100 Fax (+1) 707-789-0414 Direct (+1) 916-692-3130 Mobile (+1) 916-842-6486 Address 701 University Avenue, Suite 200, Sacramento, CA 95825 Email <u>greg.gurss@cardno.com</u> Web <u>www.cardno.com</u> <u>www.cardnoeri.com</u>

From: Scott Perkins
Sent: Tuesday, October 13, 2015 4:34 PM
To: Greg Gurss <greg.gurss@cardno.com>
Cc: Nadya Vicente <nadya.vicente@cardno.com>
Subject: FW: ExxonMobil 99DEL; 15-10-0906

Looks like this question is for you Greg.

Scott Perkins SENIOR PROJECT MANAGER ENGINEERING & ENVIRONMENTAL SERVICES DIVISION CARDNO

Direct +1 707 766 2000 Mobile +1 925 580 2455 Fax +1 707 789 0414 Address 601 North McDowell Boulevard, Petaluma, CA 94954 Email <u>scott.perkins@cardno.com</u> Web <u>www.cardno.com</u>

This email and its attachments may contain confidential and/or privileged information for the sole use of the intended recipient(s). All electronically supplied data must be checked against an applicable hardcopy version which shall be the only document which Cardno warrants accuracy. If you are not the intended recipient, any use, distribution or copying of the information contained in this email and its attachments is strictly prohibited. If you have received this email in error, please email the sender by replying to this message and immediately delete and destroy any copies of this email and any attachments. The views or opinions expressed are the author's own and may not reflect the views or opinions of Cardno.

From: Cecile L de Guia [mailto:CecileLdeGuia@eurofinsUS.com]
Sent: Tuesday, October 13, 2015 4:31 PM
To: Scott Perkins <<u>Scott.Perkins@cardno.com</u>>
Cc: Nadya Vicente <<u>nadya.vicente@cardno.com</u>>
Subject: ExxonMobil 99DEL; 15-10-0906

Good Afternoon Scott,

Please advise on what method BTEX/MTBE should be analyze for? EPA 8021B or 8260B method? Thank you.

Best regards, Cecile de Guia Project Manager

Eurofins Calscience 7440 Lincoln Way Garden Grove, CA 92841-1427 (714) 895-5494 Email: <u>ceciledeguia@eurofinsUS.com</u> Website: www. eurofinsus.com

PRIVACY NOTICE:

This email (and/or the documents attached to it) is intended only for the use of the individual or entity to which it is addressed and may contain information that is privileged, confidential, or exempt from disclosure under applicable Federal or State law. If the reader of this message is not the intended recipient or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately and delete this e-mail and all attachments.

Notify us here to report this email as spam.

Cecile L de Guia

From:	Scott Perkins [Scott.Perkins@cardno.com]
Sent:	Thursday, October 29, 2015 8:50 AM
To:	Cecile L de Guia
Cc:	David R. Daniels
Subject:	incorrect site
Attachments:	2735 revised COC.pdf

Cecile,

The attached COC had the incorrect site identified on the COC. Please correct the reports and reissue as indicated on the attached.

The Global ID provided on the original COC is correct.

Sorry for the mix-up.

Regards,

Scott

Scott Perkins SENIOR PROJECT MANAGER ENGINEERING & ENVIRONMENTAL SERVICES DIVISION CARDNO

Direct +1 707 766 2000 Mobile +1 925 580 2455 Fax +1 707 789 0414 Address 601 North McDowell Boulevard, Petaluma, CA 94954 Email <u>scott.perkins@cardno.com</u> Web <u>www.cardno.com</u>

70 YEARS of shaping the future 1949-2318

This email and its attachments may contain confidential and/or privileged information for the sole use of the intended recipient(s). All electronically supplied data must be checked against an applicable hardcopy version which shall be the only document which Cardno warrants accuracy. If you are not the intended recipient, any use, distribution or copying of the information contained in this email and its attachments is strictly prohibited. If you have received this email in error, please email the sender by replying to this message and immediately delete and destroy any copies of this email and any attachments. The views or opinions expressed are the author's own and may not reflect the views or opinions of Cardno.

Notify us here to report this email as spam.

7440 Lincoln	Way, Garden Grove, CA 92	Calscie	NCC 895-5494 26 sales@eurofi	nsus.com or call						WGT#	/LABIL		0		6		D	ATE:	СН	AIN /0	OF - <u>9-</u> /	CU:	STC	YDY	RE		۲D
LABORATO	RY CLIENT: Cardno /	ExxonMobil								CLIEN	IT PRO	JECT NA	ME7N	MBER:	- 085	-	793	74			P.O. N	10.: 27220		022	7350	~ <u>x</u>	
ADDRESS:	601 N. McDowell Blvd									PROJ	ECT CC	NTACT:	ervice	State	n 99L						SAMF	-1.ER(S)): (PRINT	0221	000	<u> </u>	
спу: Pet	aluma			· · · · · · · · · ·	STATE:	ZIP:	94954			Sci	ott Per	kins									Na	dya Vi	icente				
TEL: (70	7) 766-2000		E-MAIL:	ott.perkins@	cardno.co	om										REC	UES	TEC) AN	ALY	'SES	;					
TURNAROU	ND TIME (Rush surcharges may	apply to any TAT not	STANDARD"):										Pie	ase cl	ieck b	ox or f	ll in bl	ank as	need	ed.							
	E DAY 24 HR LT EDF GLOBAL ID: T061971	0 48 HR 0	72 HR 🛛	5 DAYS D	STANDA	RD		ODE:													5	E 6020/747	218.6				
*TPHd - **Oxys ***Con <u>Please</u>	- Silica Gel Cleanup by 8260: MTBE, TBA, I abine all 4 sleeves in email PDF files to: no	DIPE, ETBE, TAI to single sam prcallabs@eri-u	ME, 1,2-DCA, o ple SP-1 <u>s.com</u>	ethanol and E	DB		served	ved	litered	4(g) (8015)	+(d) 8015*	1 C8-C36 🗖 C8-C4		/ MTBE 🕱	an VOCs (8260)	nates (8260)**	ead (6010)	s (8270 C)	ldes (8081)	(8082)	🗆 8270 🗆 8270 SII	etais 🗆 6010/747X	0 7196 0 7199 0				
USE	SAMPLE ID	Field Point Name	SAM DATE	PLING	MATRIX	NO. OF CONT.	Unpre	Preser	Field F	Ø TP	ITP!	TPH C	TPH_	втех	Full Sc	Oxyge	Total L	svoc	Pestic	PCBs	PAHs	T22 M	C.S.				1 .
	S-SP1-1***	SP1	10/8/15	1330	Soil	1				x	x			x		x	x	×					•				
2	S-SP1-2***	SP1	10/8/15	1340	Soil	1			Γ	x	x			×		×	x	×									
3	S-SP1-3***	SP1	10/9/15	0800	Soil	1				×	×			x		×	x	×									
3	S-SP1-4***	SP1	10/9/15	0805	Soil	1				×	x			×		×	x	×					<u> </u>				
									<u> </u>	<u> </u>						ļ		ļ			Ļ	<u> </u>	<u> </u>				
									ļ	<u> </u>					·	<u> </u>	ļ	<u> </u>		<u> </u>	_	<u> </u>	_	ļ			
			<u> </u>					1	 		ļ	<u> </u>	<u> </u>			<u> </u>	ļ		ļ	<u> </u>	–	╞	_	\vdash			┢──
					<u> </u>						ļ					_		<u> </u>	 	_	_	┢	╄─	<u> </u>	\vdash		
									<u> </u>		<u> </u>		<u> </u>		 		ļ	 	-	<u> </u>	╄	╄	+	╇	┣—	<u> </u> !	\vdash
								(6)]											Dati				Time	<u> </u>		L
Relinquish	hed by: (Signature)	Land				Ren		Ø		A	ly	Æ	Ð (<u>S</u>	?/					19	12	1/15		<u>L</u>	25	5	
Relinquist	ad by: (6ignature)	70 6.51	18/12	lis i	730	Re	ceived by	r: (Sigr	nature/	Affiliatio	on) 🕖				_			/	•	Date	э:			Time):		
Relinquist	red by: (Signature)					, Rei	ceived by	r: (Sigi	nature/	/Affiliati	on)			/		R	ax.	ţ		Dati jØ	" <u>1</u> 2	ilis	•	Time	"]01	2	
L	V													1	ŤŶ	1					11				06/	J2/14 R	evisi

Returnes Consents 🛄

Return to Contents

• • • •	In Way, Garden Grove, CA 928	Calscie	905-5494					-		. WO:#	(/LAB (ĥ	0ſ	ĥ		D	ATE:	-	10	- 9 - 1	- 15	OF	/			
	r service / sample drop off inform	op off information, contact us26_sales@eurofinsus.com or call us.																									
LABORT	Cardno / I	dno / ExxonMobil						Fo	rmer N	/lobil S	ervice	Static	n 99E	DEL				022732CX									
ADDRESS	601 N. McDowell Blvd									PRO.	JECT CO	ONTACT								SAMPLER(S): (PRINT)							
CITY: Po	etaluma				STATE:	ZIP: CA	94954	ļ		Sc	ott Pe	rkins									Na	dya V	icente				
TEL: (7	707) 766-2000	· ·	E-MAIL:	ott.perkins@	cardno.c	om										REC	UES	STE) AN	ALY	SES	;					
TURNARC	DUND TIME (Rush surcharges may a	apply to any TAT not	"STANDARD"):									1	PI	ease c	neck b	ox or f	ill in bl	ank as	s need	ed.	1					T	
		□ 48 HR □] 72 HR	5 DAYS 🗵	STANDA	RD	LOG	CODE:														020/747	9				
SPECIAL	INSTRUCTIONS:	673										4									Σ	0	1 218.				
*TPHd	l - Silica Gel Cleanup											6-C4		×	60)	*					70 SI	747	66				
**Oxy	s by 8260: MTBE, TBA, D	IPE, ETBE, TA	ME, 1,2-DCA,	ethanol and E	DB					15)	2*			_	s (82	260)*	6	ତ	<u>(</u>		D 82	8010	0 71				
***Co	mbine all 4 sleeves int	o single sam	ple SP-1				, ked	-	red	(80	801	6-C3(TBE	202	tes (8	d (601	3270	s (80	82)	8270	1 1 1	7196				
Pleas	e email PDF files to: nor	callabs@eri-u	US.COM		1	NO.	reser	erve(1 Filte	PH(g	PH(d			X / M	Scan	genal	Lead	CS (ticide	s (80	2	Meta	e E				
USE ONLY	SAMPLE ID	Name	DATE	TIME	MATRIX	OF CONT.	Unpi	Pres	Field	X	N I	НЧТ	ТРН	вте	Full	0x);	Total	svc	Pest	PCB	PAH	T22	с С				
1	S-SP1-1***	SP1	10/8/15	1330	Soil	1				x	x			x		x	x	x					8				
2	S-SP1-2***	SP1	10/8/15	1340	Soil	1				x	x			x		х	х	x									
3	S-SP1-3***	SP1	10/9/15	0800	Soil	1				x	x			x		x	x	x									
7	S-SP1-4***	SP1	10/9/15	0805	Soil	1				x	×			x		x	x	×								\square	
										 	<u> </u>									<u> </u>		<u> </u>	<u> </u>				
															•			ļ			 		<u> </u>				
								1													<u> </u>		<u> </u>		-+		
											ļ								<u> </u>		<u> </u>		<u> </u>			\rightarrow	
											<u> </u>			<u> </u>								 				\rightarrow	******
Relinquis	shed by: (Signature)					Rec	eived-h	y: (Siar	nature/.	Affiliatie	n)/							<u> </u>		Date) . /	<u> </u>	1	Time:			
· · · · · · · · · · · · · · · · · · · ·	ANT	and -				1	m	Ø	M	Al	ly	Ē	Ø (SC	?/					10	12	15	~	/:	2 <u>5</u>	5	
Relinquis	shed by: (6ignature)	TOGS	1 18/10	115 1	730	Rec	eived by	y: (Sigr	nature/.	Affiliatio	on) 🗸					-		/		Date	ə:			Time:			о С
Relinquis	shed by: (Signature)					. Rec	eived by	y: (Sigr	nature/.	Affiliatio	on)					D		1		Date	13	11		Time:	$\overline{)}$	`)	e
	<u> </u>					I									1 P	r ti	\mathcal{U}			10/	W			170	06/02	2/14 Re	- visic

4. A. -

•

.

		,			1.1.18	
eurofins		WORK ORDER	NUMBER:	_{Рас} 15–1	ge 34 of 3 0- <u>C</u>	4 <u>906</u>
	e SAMPLE RECEIPT	CHECKLIST	С	OOLEF	<u>z c</u>)F
Curdno	FNI		٦A	re· 10	/13	2015
					<u>' '</u>	
Thermometer ID: SC2 (CF:-0.4°C) Sample(s) outside temperatu Sample(s) received at ambient t Ambient Temperature: □ Air □ F	- 6.0°C, not frozen except sedin ; Temperature (w/o CF): <u>2</u> , <u>4</u> ire criteria (PM/APM contacted b ire criteria but received on ice/ch temperature; placed on ice for tr ilter	nent/tissue) 2°C (w/ CF): _2) nilled on same day o ansport by courier	•C; ₽	Blank Check	□ Sampl	e 15
Cooler Present and Intac Sample(s) Present and Intac	t □ Present but Not Intact t □ Present but Not Intact		□ N/A □ N/A	Check Check	xed by: xed by: <u>↓(</u>	<u>5</u> 217
SAMPLE CONDITION:				Yeş	No	N/A
Chain-of-Custody (COC) documer	nt(s) received with samples			ø		
COC document(s) received compl	ete			ø		
□ Sampling date □ Sampling	time I Matrix I Number of c	containers				
□ No analysis requested □ N	ot relinquished D No relinquish	ned date 🛛 No relir	nquished time			
Sampler's name indicated on COC	· · · · · · · · · · · · · · · · · · ·			đ		
Sample container label(s) consiste	ent with COC			ø		
Sample container(s) intact and in g	good condition			ø		
Proper containers for analyses rec	uested			ø		
Sufficient volume/mass for analyse	es requested			ø		
Samples received within holding ti	me			ø		
Aqueous samples for certain ar	nalyses received within 15-minut	te holding time		Ŷ		
□ pH □ Residual Chlorine □] Dissolved Sulfide 🛛 Dissolve	d Oxygen				
Proper preservation chemical(s) n	oted on COC and/or sample con	itainer				ø
Unpreserved aqueous sample(s) received for certain analyses					
□ Volatile Organics □ Total M	Netals Dissolved Metals					
Container(s) for certain analysis fr	ee of headspace					ø
□ Volatile Organics □ Dissolv	/ed Gases (RSK-175) 🛛 Dissol	lved Oxygen (SM 45	500)			1
□ Carbon Dioxide (SM 4500)	□ Ferrous Iron (SM 3500) □ F	Hydrogen Sulfide (Ha	ach)			
Tedlar™ bag(s) free of condensat	ion					ø
CONTAINER TYPE:		(Trip Blar	nk Lot Numbe	er:		,)
Aqueous: 🗆 VOA 🗆 VOAh 🗆 VO	OAna₂ □ 100PJ □ 100PJna₂	□ 125AGB □ 125A	GB h □ 125A	GBp 🗆	I 125PB	/
□ 125PB znna □ 250AGB □ 250	CGB 250CGBs 250PB [∃ 250PBn □ 500AG	B 🗆 500AG	J 🗆 500)AGJ s	
□ 500PB □ 1AGB □ 1AGBna ₂	□ 1AGBs □ 1PB □ 1PBna □	J D		C]	
Solid: □ 4ozCGJ □ 8ozCGJ □ 1	6ozCGJ 🗹 Sleeve () 🗆 E	EnCores [®] ()] TerraCores®	()		
Air: □ Tedlar™ □ Canister □ Sc	prbent Tube	Other Matrix (): []	□ _	
Container: A = Amber, B = Bottle. C =	: Clear, E = Envelope, G = Glass. J	= Jar, P = Plastic, and	Z = Ziploc/Res	sealable	Bag	
Preservative: b = buffered, f = filtered	, h = HCl, n = HNO₃, na = NaOH, n	a₂ = Na₂S₂O₃, p = H₃P	O ₄ , Labele	d/Check	ked by: _ [017
$\mathbf{s} = H_2 SO_4$, $\mathbf{u} = ultra-pur$	re, znna = Zn(CH₃CO₂)₂ + NaOH			Review	ved by:	A02
						<u> </u>

SURVEY DATA

WELLS SURVEYED ON 10-26-15			DESC. NORTHING	EASTING			EL. PVC	EL. RIM	EL. GND
MW-9 2150762.1 6042501.0 37.8879136 -122.29 SVE-4 2150763.1 6042619.4 37.8879226 -122.29 SVE-5 2150775.5 6042619.4 37.8879526 -122.29 SVE-6 2150075.5 6042619.7 37.8879566 -122.29 SVE-6 2150801.0 6042656.8 37.8880287 -122.29 SVE-7 2150805.3 6042673.8 37.8880414 -122.29	ODE EL. FVC EL. KIM 191332 39. 50 39. 80 87229 43. 10 42. 53 187228 43. 70 43. 07 85959 44. 37 43. 93 185373 44. 48 43. 94		B1 2150759.8 B2 2150761.3 B4 2150785.6 B5 2150815.3 B6 2150796.1	6042697. 0 6042664. 8 6042666. 4 6042697. 6 6042621. 6	37. 8879174 37. 8879199 37. 8879867 37. 8880700 37. 8880132	-122. 2984540 -122. 2985658 -122. 2985617 -122. 2984557 -122. 29847177		, w ,	44. 1 43. 7 44. 0 44. 7 44. 3
B-18 2150742.7 6042483.0 37.8878594 -122.29	91943	• 85	HP1A2150797.2HP1B2150794.4HP2A2150777.8HP2B2150775.5	6042700. 1 6042701. 0 6042623. 4 6042623. 9	37. 8880203 37. 8880128 37. 8879631 37. 8879566	-122. 2984458 -122. 2984424 -122. 2987101 -122. 2987083			44. 5 44. 5 43. 6 43. 5
	SVE6 ⊠	SVE7 → SVS3 SVE7 → MW1 ◆B16 • HP1A	MW1 2150803.8 MW2 2150764.3 MW3 2150752.0 MW4 2150749.3 MW5 2150771.3 MW6 2150790.9	6042699.8 6042710.4 6042666.5 6042629.2 6042623.6 6042618.6	37. 8880384 37. 8879305 37. 8878945 37. 8878851 37. 8879453 37. 8879988	-122. 2984473 -122. 2984079 -122. 2985590 -122. 2986883 -122. 2987089 -122. 2987277	44. 19 43. 99 43. 16 42. 04 43. 12 43. 80	44. 49 44. 37 43. 66 42. 46 43. 40 44. 11	
	wwe 	°нр1В	WELLS SURVEYED BY MORR	JW DN 2-6-12: (CONVERTED TO	NAVD 88 BASED	□N 4-3-14	SURVEY)	
MWO /		•B4	MW3A 2150755.4	6042665.6	37, 8879037	-122. 2985623	43, 42	43. 69	
	SVE5 HP2A SVE5 + HP2B	SVE2 ☆	SVE1 2150765.9 SVE2 2150776.5 SVE3 2150764.2	6042664.6 6042670.9 6042696.1	37. 8879326 37. 8879620 37. 8879296	-122. 2985668 -122. 2985456 -122. 2984573	43, 32 43, 68 43, 67	43.77 43.95 44.18	
ва	T MW5 SVE4 _{XX}	SVE1 SVE3 MW2	AS1 2150762. 2	6042670. 8	37. 8879226	-122. 2985448		43. 81	
емм	₩ SVS2 MW3		WELLS AND BORINGS SURV	EYED BY MORROW	□N 4-3-14:				
	-\$ ^{MW4}	₩w3	SVS1 2150782.3 SVS2 2150758.7 SVS3 2150808.8	6042614.1 6042618.9 6042680.3	37. 8879749 37. 8879104 37. 8880511	-122. 2987427 -122. 2987244 -122. 2985153		43.87 42.90 44.47	
•B18 •B10	•B13		B7 2150792.6 B8 2150720.0 B9 2150763.0 B10 2150726.2 B11 2150689.9 B12 2150724.0 B13 2150737.4 B14 2150698.0	6042494. 3 6042477. 1 6042501. 3 6042519. 6 6042533. 1 6042606. 4 6042651. 0 6042651. 7	37. 8879969 37. 8877967 37. 8879160 37. 8878158 37. 8878158 37. 8878144 37. 8878535 37. 8877432	-122. 2991584 -122. 2992132 -122. 2991323 -122. 2990665 -122. 2990172 -122. 2987654 -122. 2986119 -122. 2987489			40, 1 39, 5 39, 9 40, 1 40, 2 41, 6 42, 6 41, 6
• bo		т	B15 2150695. 4 B16 2150799. 7 B17 2150803. 2	6042708, 4 6042666, 7 6042688, 5	37, 8877413 37, 8880253 37, 8880363	-122. 2984102 -122. 2985617 -122. 2984865			43.1 44.4 44.4
	BUCHANAN		WELLS SURVEYED ON 12-2	3-14:	57. 0000000	122. 200 1000			
•B11	•B14	•B15	MW7 2150732.9 MW8 2150790.8	6042600. 0 6042494. 5	37. 8878386 37. 8879920	-122. 2987881 -122. 2991575	41. 21 39. 65	41. 63 40. 06	
			0	15 30		0	90		
				304					
	DATE: APRIL, 2014	BASIS OF COORDINATES & ELEVATIONS:		MONIT	ORING WI		IT		
1255 Starboard Drive West Sacramento ~ CA ~ 95691	DATE SURVEYED: 4-3-14 SF, 12-23-14 MS, 10-26-15 SF	COORDINATES ARE CALIFORNIA STATE PLANE ZONE 3 COORDINATES FROM GPS OBSERVATIONS USING CSDS VIRTUAL SURVEY NETWORK.			Prepared CARDNC	for: DERI			
Fride: 916-372-8538	SCALE: 1"=30" SHEET 1 OF 1	COORDINATE DATUM IS NAD 83.		FC		ON 79374			
Email: matt@morrowsurveying.com www.morrowsurveying.com	FIELD BOOK: MW-57 DRAWING NO. : 1873-155	REFERENCE GEOID IS GEOID03.		City of	990 San Pak	olo Ave.	,		
	DRAWN BY: MAM	VERTICAL DATUM IS NAVD 88 FROM GPS OBSERVATIONS	8.		Californ	ameua Courity nia	1		