ExxonMobil Environmental Services Company

4096 Piedmont Avenue #194 Oakland, California 94611 510 547 8196 Telephone 510 547 8706 Facsimile

Jennifer C. Sedlachek

Project Manager

RECEIVED

9:50 am, Jun 06, 2012

Alameda County
Environmental Health

May 25, 2012

Ms. Barbara Jakub, P.G. Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Room 250 Alameda, California 94502-6577

RE: Former Exxon RAS #79374/990 San Pablo Avenue, Albany, California.

Dear Ms. Jakub:

Attached for your review and comment is a copy of the letter report entitled *Groundwater Monitoring Report, Second Quarter 2012*, dated May 25, 2012, for the above-referenced site. The report was prepared by Cardno ERI of Petaluma, California, and details activities pertaining to the subject site.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions or comments, please contact me at 510.547.8196.

Sincerely,

Jennifer C. Sedlachek Project Manager

Attachment:

Cardno ERI's Groundwater Monitoring Report, Second Quarter 2012, dated May 25, 2012

cc:

w/ attachment

Ms. Muriel T. Blank, Trustee, The Blank Family Trusts Reverend Deborah Blank, Trustee, The Blank Family Trusts Ms. Marcia Blank Kelly, The Blank Family Trusts

w/o attachment

Ms. Paula Sime, Cardno ERI

Cardno ERI License A/C10-611383

601 N McDowell Boulevard Petaluma, CA 94954 USA

Phone 707 766 2000 Toll-free 800 382 9105 Fax 707 789 0414 www.cardno.com

www.cardnoeri.com

May 25, 2012 Cardno ERI 2735C.Q122

Ms. Jennifer C. Sedlachek ExxonMobil Environmental Services 4096 Piedmont Avenue #194 Oakland, California 94611

SUBJECT Groundwater Monitoring Report, Second Quarter 2012

Former Exxon Service Station 79374 990 San Pablo Avenue, Albany, California

Alameda County RO#2974

INTRODUCTION

At the request of ExxonMobil Environmental Services (EMES), on behalf of Exxon Mobil Corporation, Cardno ERI performed second quarter 2012 groundwater monitoring and sampling activities at the subject site. Relevant plates, tables, and appendices are included at the end of this report. Currently, the site is occupied by a retail outlet for paints and painting products.

GROUNDWATER MONITORING AND SAMPLING SUMMARY

Gauging and sampling date: 04/06/12

Wells gauged and sampled: MW1 through MW6, MW3A

Presence of NAPL: Not observed

Laboratory: Calscience Environmental Laboratories, Inc.

Garden Grove, California

Analyses performed: EPA Method 8015B TPHd, TPHg, TPHmo

EPA Method 8260B BTEX, MTBE, ETBE, TAME, TBA, DIPE, EDB,

1,2-DCA

Waste disposal: 79 gallons purge and decon water delivered to

InStrat, Inc., of Rio Vista, California, on 04/19/12

CONCLUSIONS

On January 18, 2012, groundwater monitoring well MW3A was installed at the subject site

May 25, 2012 Cardno ERI 2735C.Q122 Former Exxon Service Station 79374, Albany, California

Concentrations of TPHd and TPHg were reported in wells MW1 through MW6 and MW3A. BTEX constituents were reported in wells MW1, MW3, MW3A, and MW4 through MW6. Concentrations of TPHmo, MTBE, TBA, ETBE, DIPE, TAME, EDB, and 1,2-DCA were not reported in samples collected from wells MW1 through MW6 and MW3A. The analytical results of this sampling event are consistent with historical data. Maximum hydrocarbon concentrations were reported from west of the former USTs.

The groundwater flow direction during the second quarter was away from a broad mound across the central portion of the site with a hydraulic gradient of approximately 0.04. Groundwater flow has been variable during the monitoring and sampling program. The distribution of hydrocarbon concentrations beneath the site suggests that the groundwater flow direction is dominantly towards the west or southwest.

RECOMMENDATIONS

Cardno ERI recommends semi-annual monitoring and sampling of wells MW1 through MW6 and MW3A during second and fourth quarters.

Cardno ERI recommends performing additional off-site assessment at the site and initiating active remediation as recommended in the April 12, 2012, *Air Sparge and Dual-Phase Extraction Feasibility Testing* report.

LIMITATIONS

For any documents cited that were not generated by Cardno ERI, the data taken from those documents is used "as is" and is assumed to be accurate. Cardno ERI does not guarantee the accuracy of this data and makes no warranties for the referenced work performed nor the inferences or conclusions stated in these documents.

This document was prepared in accordance with generally accepted standards of environmental, geological, and engineering practices in California at the time of investigation. No soil engineering or geotechnical references are implied or should be inferred. The evaluation of the geologic conditions at the site for this investigation is made from a limited number of data points. Subsurface conditions may vary away from these data points.

Please contact Ms. Rebekah A. Westrup, Cardno ERI's project manager for this site, at rebekah.westrup@cardno.com or at (707) 766-2000 with any questions regarding this report.

Sincerely,

Jennifer L. Lacy Senior Staff Scientist for Cardno ERI 707 766 2000

Email: jennifer.lacy@cardno.com

David R. Daniels P.G. 8737 for Cardno ERI

707 766 2000

Email: david.daniels@cardno.com

May 25, 2012

Cardno ERI 2735C.Q122 Former Exxon Service Station 79374, Albany, California

Enclosures:

Acronym List

Plate 1 Site Vicinity Map
Plate 2 Select Analytical Results
Plate 3 Groundwater Elevation Map

Plate 4 Local Area Map

Table 1A Cumulative Groundwater Monitoring and Sampling Data

Table 1B Additional Cumulative Groundwater Monitoring and Sampling Data

Table 2 Well Construction Details

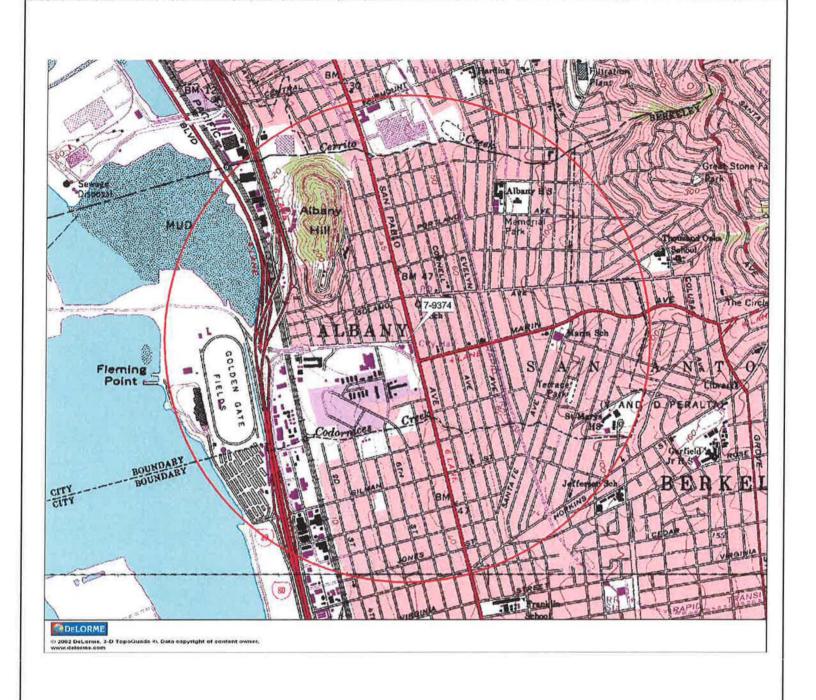
Appendix A Groundwater Sampling Protocol

Appendix B Field Notes

Appendix C Laboratory Analytical Report and Chain-of-Custody Record

Appendix D Waste Disposal Documentation

cc: Ms. Barbara Jakub, Alameda County Health Care Services Agency, Environmental Health Services, 1131 Harbor Bay Parkway, Suite 250, Alameda, California, 94502-6577

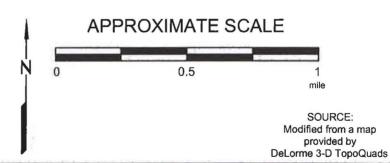

Ms. Muriel T. Blank, Trustee, The Blank Family Trusts, 1164 Solano Avenue, #406, Albany, California, 94706

Reverend Deborah Blank, Trustee, The Blank Family Trust, 1563 Solano Avenue, #344, Berkeley, California, 94707

Ms. Marcia Blank, Trustee, The Blank Family Trust, 641 SW Morningside Road, Topeka, Kansas, 66606

ACRONYM LIST

μg/L	Micrograms per liter	NEPA	National Environmental Policy Act
	Microsiemens	NGVD	National Geodetic Vertical Datum
μs 1,2-DCA	1,2-dichloroethane	NPDES	National Pollutant Discharge Elimination System
acfm	Actual cubic feet per minute	O&M	Operations and Maintenance
AS	•	ORP	
	Air sparge		Oxidation-reduction potential
bgs	Below ground surface	OSHA	Occupational Safety and Health Administration
BTEX	Benzene, toluene, ethylbenzene, and total xylenes	OVA	Organic vapor analyzer
CEQA	California Environmental Quality Act	P&ID	Process & Instrumentation Diagram
cfm	Cubic feet per minute	PAH	Polycyclic aromatic hydrocarbon
COC	Chain of Custody	PCB	Polychlorinated biphenyl
CPT	Cone Penetration (Penetrometer) Test	PCE	Tetrachloroethene or perchloroethylene
DIPE	Di-isopropyl ether	PID	Photo-ionization detector
DO	Dissolved oxygen	PLC	Programmable logic control
DOT	Department of Transportation	POTW	Publicly owned treatment works
DPE	Dual-phase extraction	ppmv	Parts per million by volume
DTW	Depth to water	PQL	Practical quantitation limit
EDB	1,2-dibromoethane	psi	Pounds per square inch
EPA	Environmental Protection Agency	PVC	Polyvinyl chloride
ESL	Environmental screening level	QA/QC	Quality assurance/quality control
ETBE	Ethyl tertiary butyl ether	RBSL	Risk-based screening levels
FID	Flame-ionization detector	RCRA	Resource Conservation and Recovery Act
fpm	Feet per minute	RL	Reporting limit
GAC	Granular activated carbon	scfm	Standard cubic feet per minute
gpd	Gallons per day	SSTL	Site-specific target level
gpm	Gallons per minute	STLC	Soluble threshold limit concentration
GWPTS	Groundwater pump and treat system	SVE	Soil vapor extraction
HVOC	Halogenated volatile organic compound	SVOC	Semivolatile organic compound
J	Estimated value between MDL and PQL (RL)	TAME	Tertiary amyl methyl ether
LEL	Lower explosive limit	TBA	Tertiary butyl alcohol
LPC	Liquid-phase carbon	TCE	Trichloroethene
LRP	Liquid-ring pump	TOC	Top of well casing elevation; datum is msl
LUFT	Leaking underground fuel tank	TOG	Total oil and grease
LUST	Leaking underground storage tank	TPHd	Total petroleum hydrocarbons as diesel
MCL	Maximum contaminant level	TPHg	Total petroleum hydrocarbons as gasoline
MDL	Method detection limit	TPHmo	Total petroleum hydrocarbons as motor oil
mg/kg	Milligrams per kilogram	TPHs	Total petroleum hydrocarbons as stoddard solvent
mg/L	Milligrams per liter	TRPH	Total recoverable petroleum hydrocarbons
mg/m³	Milligrams per cubic meter	UCL	Upper confidence level
MPE	Multi-phase extraction	USCS	Unified Soil Classification System
MRL	Method reporting limit	USGS	United States Geologic Survey
msl	Mean sea level	UST	Underground storage tank
MTBE	Methyl tertiary butyl ether	VCP	Voluntary Cleanup Program
MTCA	Model Toxics Control Act	VOC	Volatile organic compound
NAI	Natural attenuation indicators	VPC	Vapor-phase carbon
NAPL	Non-aqueous phase liquid		



FN 2735 TOPO

EXPLANATION

1/2-mile radius circle

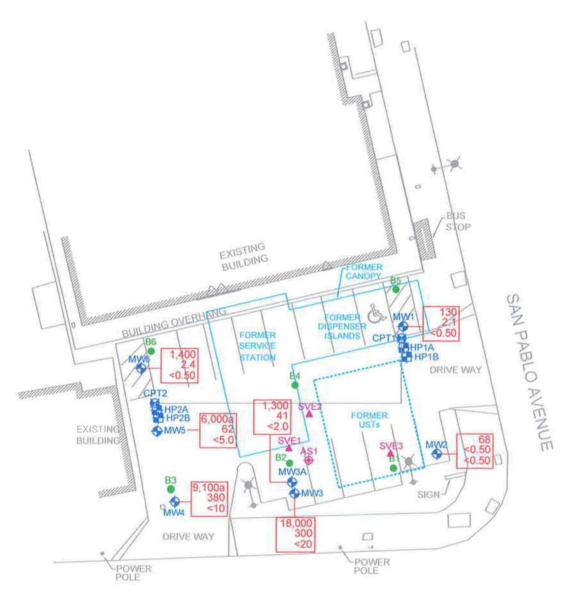
SITE VICINITY MAP

FORMER EXXON SERVICE STATION 79374 990 San Pablo Avenue Albany, California PROJECT NO. 2735

PLATE

1

Analyte Concentrations in ug/L Sampled April 6, 2012


Total Petroleum Hydrocarbons as gasoline Benzene

Methyl Tertiary Butyl Ether

Less Than the Stated Laboratory Reporting Limit

ug/L Micrograms per Liter

Sample chromatographic pattern does not match that of the specified standard.

BUCHANAN STREET

APPROXIMATE SCALE Feet

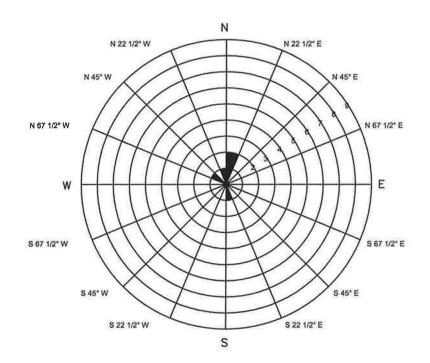
FN 2735 12 2QTR QM

SELECT ANALYTICAL RESULTS April 6, 2012

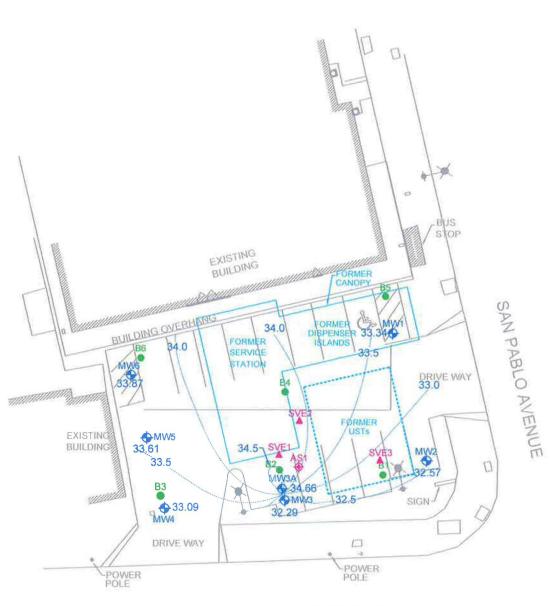
FORMER EXXON SERVICE STATION 79374 990 San Pablo Avenue Albany, California

EXPLANATION Groundwater Monitoring Well

B6
Soil Boring



PROJECT NO. 2735


PLATE 2

Rose diagram developed by evaluating the groundwater gradient direction from the quarterly monitoring data. Each circle on the rose diagram represents the number of monitoring events that the gradient plotted in that 22 1/2 degree sector.

5 Data Point Shown Shown for 04/06/12

GROUNDWATER FLOW DIRECTION ROSE DIAGRAM

BUCHANAN STREET

FN 2735 12 2QTR QM

Cardno* ERI **Shaping the Future**

GROUNDWATER ELEVATION MAP April 6, 2012

FORMER EXXON SERVICE STATION 79374 990 San Pablo Avenue Albany, California

EXPLANATION

33.87 Groundwater elevation in feet;

B6 Soil Boring

PROJECT NO. 2735

SVE3 Soil Vapor Extraction Well

34.5----- Line of Equal Groundwater Elevation; datum is mean sea level

PLATE 3

FN 2735 12 2QTR SRS AERIAL_QM

METERS

LEGEND

C/I Commericial / Industrial

Vacant Lot

Parking Lot

Additional Residential

WELLS

Private wells are not located within a 300-meter radius. See the Regional Area Map.

WELLS (SPECIAL USE OR MUNICIPAL)

Public wells are not located within a 300-meter radius.

RESIDENCES

1041/1043 Buchanan Street (Duplex)

2 973/975 Adams Street (Duplex)

3 971 Adams Street

4 970 Adams Street (Apartments)

960/962 Adams Street (Duplex)

PUBLIC USE AREAS

City of Albany Police/Fire/City Offices

2 Physical Therapy

SURFACE WATER

Surface water is not located within a 300-meter

LOCAL AREA MAP

FORMER EXXON SERVICE STATION 79374 990 San Pablo Avenue Albany, California

Shaping the Future

4

PLATE

PROJECT NO. 2735

100-Meter and 300-Meter Radius

TABLE 1A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

Well ID	Sampling		TOC Elev		GW Elev.	NAPL	O&G	TPHmo	TPHd	TPHg	MTBE	В	Τ	E	X
	Date	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Monitoring \	Well Samples														
MW1	11/04/10		Well inst	alled.											
MW1	12/01/10		41.45	Well su	ırveyed.										
MW1	12/16/10		41.45	9.18	32.27	No		<250	71a	54	< 0.50	1.4	0.65	0.58	1.6
MW1	01/31/11		41.45	8.78	32.67	No		<250	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW1	04/07/11		41.45	8.45	33.00	No		<250	65a	160a	< 0.50	2.9	0.92	<0.50	1.7
MW1	07/18/11		41.45	9.49	31.96	No		<250	<50	63a	< 0.50	< 0.50	< 0.50	<0.50	< 0.50
MW1	10/13/11		41.45	9.86	31.59	No		<250	54	<50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50
VIW1	04/06/12		41.45	8.11	33.34	No		<250	130	130	<0.50	2.1	<0.50	<0.50	<0.50
MW2	11/04/10		Well inst	alled.											
MW2	12/01/10		41.25	Well su	ırveyed.										
MW2	12/16/10		41.25	8.11	33.14	No		<250	110a	<50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50
MW2	01/31/11		41.25	9.29	31.96	No		<250	<50	<50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50
MW2	04/07/11		41.25	8.21	33.04	No		<250	<50	<50	0.51	< 0.50	< 0.50	<0.50	< 0.50
MW2	07/18/11		41.25	9.52	31.73	No		<250	<50	54a	< 0.50	< 0.50	< 0.50	<0.50	< 0.50
MW2	10/13/11		41.25	9.56	31.69	No		<250	98	75a	< 0.50	< 0.50	<0.50	< 0.50	< 0.50
MW2	04/06/12		41.25	8.68	32.57	No		<250	60	68	<0.50	<0.50	<0.50	<0.50	<0.50
MW3	11/08/10		Well inst	alled.											
MW3	12/01/10		40.42	Well su	ırveyed.										
MW3	12/16/10		40.42	8.18	32.24	No		<250	2,900a	19,000	<12	350	130	940	290
MW3	01/31/11		40.42	7.64	32.78	No		390	2,800a	17,000a	<12	540	140	700	270
MW3	04/07/11		40.42	5.88	34.54	No		<250	2,700a	14,000	<10	600	150	780	230
MW3	07/18/11		40.42	8.31	32.11	No		<250	1,700a	19,000	<10	650	140	660	220
MW3	10/13/11		40.42	8.76	31.66	No		<250	1,900a	16,000	<10	520	150	900	270
MW3	04/06/12		40.42	8.13	32.29	No		<250	3,200a	18,000	<20	300	120	1,100	180
MW3A	01/18/12		Well inst	alled.											
MW3A	02/06/12		40.68	Well su	ırveyed.										
MW3A	04/06/12		40.68	6.02	34.66	No		<250	170a	1,300	<2.0	41	7.5	140	38
MW4	11/05/10		Well inst	alled.											
MW4	12/01/10		39.30	Wellsu	ırveyed.										
MW4	12/16/10		39.30	6.10	33.20	No		<250	2,000a	9,900	<5.0	440	40	170	380
MW4	01/31/11		39.30	6.84	32.46	No		260	3,900a	13,000	<10	500	59	320	740
MW4	04/07/11		39.30	5.29	34.01	No		<250	1,900a	9,600	<10	530	59	250	340
MW4	07/18/11		39.30	7.36	31.94	No		<250	2,800a	14,000	<10	570	66	320	510
MW4	10/13/11		39.30	7.83	31.47	No		320	7,200a	14,000	<10	350	43	340	690
MW4	04/06/12		39.30	6.21	33.09	No		<250	1,800a	9,100a	<10	380	40	220	410

TABLE 1A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

Well ID	Sampling Date	Depth (feet)	TOC Elev. (feet)	DTW (feet)	GW Elev. (feet)	NAPL (feet)	O&G (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	TPHg (µg/L)	MTBE (μg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)
MW5	11/11/10		Well insta	alled.											
MW5	12/01/10		40.38	Well su	rveyed.										
MW5	12/16/10		40.38	7.69	32.69	No		<250	1,100a	6,200	<2.5	150	96	270	980
MW5	01/31/11		40.38	8.00	32.38	No		270	4,600a	15,000	<10	520	310	1,100	2,500
MW5	04/07/11		40.38	6.73	33.65	No		<250	610a	2,500	<2.5	61	32	180	390
MW5	07/18/11		40.38	7.63	32.75	No		<250	2,000a	11,000	<2.5	340	160	990	1,800
MW5	10/13/11		40.38	9.31	31.07	No		660	7,600a	23,000	<20	390	160	1,200	3,100
VIW5	04/06/12		40.38	6.77	33.61	No		<250	880a	6,000a	<5.0	62	17	360	680
/IW6	11/03/10		Well insta	alled.											
MW6	12/01/10		41.06	Wellsu	rveyed.										
MW6	12/16/10		41.06	8.55	32.51	No		<250	110a	1,700	< 0.50	2.8	1.2	61	46
MW6	01/31/11		41.06	8.52	32.54	No		<250	800a	2,000a	<1.0	6.0	<1.0	30	24
MW6	04/07/11		41.06	7.78	33.28	No		<250	660a	2,000	< 0.50	10	1.0	20	19
MW6	07/18/11		41.06	9.27	31.79	No		<250	350a	1,000a	< 0.50	2.5	< 0.50	3.8	3.5
MW6	10/13/11		41.06	10.21	30.85	No		<250	370a	890a	< 0.50	2.8	< 0.50	7.9	5.5
/IW6	04/06/12		41.06	7.19	33.87	No		<250	440a	1,400a	<0.50	2.4	<0.50	13	15
Grab Groundy	vater Samples														
3-1W	01/06/08						26r,s	<5,000	99,000o,n,r	76,000m,p,r	<50	<50	93	3,100	9,600
3-2W	01/06/08							310s	23,000o,r,s	77,000 l,r,s	<50	1,500	300	2,000	6,800
3-3W	01/06/08							<250s	2,000o,s	6,200 l,s	<10	170	32	740	250
3-4W	01/06/08							<250s	3,100o,s	7,700 l,s	<10	360	<10	240	20
3-5W	01/06/08							<250s	120o,s	120q,s	<0.5	<0.5	<0.5	<0.5	<0.5
3-6W	01/06/08							<250s	830o,s	1,700 l,s	<2.5	5.2	<2.5	100	8.6
DR-W	01/06/08							<250	960	730m,p	<0.5	<0.5	<0.5	6.9	14
W-27.5-HP1A	10/28/10	27.5						260	330a	63a	<0.50	<0.50	<0.50	<0.50	<0.50
W-36-HP1A	10/28/10	36						<250	220a	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
V-46.5-HP1A	10/28/10	46.5						<420	<83	<50	<0.50	<0.50	<0.50	<0.50	<0.50
V-59-HP1B	10/27/10	59						<250	130	<50	<0.50	<0.50	<0.50	<0.50	<0.50
V-27.5-HP2A	10/29/10	27.5						<250	100a	340	<0.50	1.7	2.1	20	46
V-52-HP2A	10/29/10	52						<250	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
V-32-1 1F ZA															

TABLE 1A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

Well ID Sampling Date	Depth	TOC Elev.	DTW	GW Elev.	NAPL	O&G	TPHmo	TPHd	TPHg	MTBE	B	T	E	X
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
W-10-SVE1-1 01/31/12 W-10-SVE1-2 01/31/12	10						990a 890a	1,900a 1,500a	2,000 1,400	<2.0 <1.0	87 46	2.1 2.0	13 24	23 23

TABLE 1A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

Notes:		
TOC	=	Top of well casing elevation; datum is mean sea level.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is mean sea level. If liquid-phase hydrocarbons present, elevation adjusted using TOC - [DTW - (PT x 0.76)].
NAPL	=	Non-aqueous phase liquid.
O&G	=	Oil and grease with silica gel clean-up analyzed using Standard Method 5520B/F.
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015 (modified).
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015 (modified).
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015 (modified).
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
Add'I VOCs	=	Additional volatile organic carbons analyzed using EPA Method 8260B.
Add'l SVOCs	=	Additional semi-volatile organic carbons analyzed using EPA Method 8270C.
μg/L	=	Micrograms per liter.
ND	=	Not detected at or above laboratory reporting limits.
	=	Not measured/Not sampled/Not analyzed.
<	=	Less than the stated laboratory reporting limit.
а	=	Sample chromatographic pattern does not match that of the specified standard.
b	=	n-butylbenzene.
С	=	sec-butylbenzene.
d	=	Isopropylbenzene.
е	=	n-propylbenzene.
f	=	1,2,4-trimethylbenzene.
g	=	1,3,5-trimethylbenzene.
h	=	Naphthalene.
i	=	1-butanone.
j	=	1,2-dibromo-3-chloropropane.
k	=	2-methylnapthalene.
1	=	Unmodified or weakly modified gasoline is significant.
m	=	Heavier gasoline range compounds are significant.
n	=	Diesel range compounds are significant; no recognizable pattern.
0	=	Gasoline range compounds are significant.
р	=	No recognizable pattern.
q	=	Strongly aged gasoline or diesel compounds are significant.
r	=	Lighter than water immiscible sheen/product is present.
S	=	Liquid sample that contains greater than approximately 1 volume % sediment.

TABLE 1B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (µg/L)	TAME (µg/L)	TBA (µg/L)	ETBE (µg/L)	DIPE (μg/L)	Add'I VOCs (µg/L)	Add'I SVOCs (µg/L)
	Date	(1661)	(μу/∟)	(µg/L)	(µg/∟)	(μg/L)	(µg/L)	(μg/L)	(μy/∟)	(µg/L)
/lonitoring	g Well Samples									
MW1	12/16/10		< 0.50	<0.50	< 0.50	<5.0	< 0.50	<0.50		
MW1	01/31/11		< 0.50	<0.50	< 0.50	<5.0	< 0.50	<0.50		
MW1	04/07/11		< 0.50	< 0.50	< 0.50	10	< 0.50	<0.50		
MW1	07/18/11		< 0.50	< 0.50	< 0.50	<5.0	< 0.50	<0.50		
MW1	10/13/11		< 0.50	< 0.50	< 0.50	<5.0	< 0.50	< 0.50		
MW1	04/06/12		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
MW2	12/16/10		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
MW2	01/31/11		<0.50	< 0.50	< 0.50	<5.0	< 0.50	<0.50		
MW2	04/07/11		< 0.50	< 0.50	< 0.50	<5.0	< 0.50	<0.50		
MW2	07/18/11		< 0.50	< 0.50	< 0.50	<5.0	< 0.50	< 0.50		
MW2	10/13/11		< 0.50	< 0.50	< 0.50	<5.0	< 0.50	<0.50		
MW2	04/06/12		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
MW3	12/16/10		<12	<12	<12	<120	<12	<12		
MW3	01/31/11		<12	<12	<12	<120	<12	<12		
MW3	04/07/11		<10	<10	<10	<100	<10	<10		
MW3	07/18/11		<10	<10	<10	<100	<10	<10		
WW3	10/13/11		<10	<10	<10	<100	<10	<10		
MW3	04/06/12		<20	<20	<20	<200	<20	<20		
MW3A	04/06/12		<2.0	<2.0	<2.0	<20	<2.0	<2.0		
MW4	12/16/10		<5.0	<5.0	<5.0	<50	<5.0	<5.0		
ЛW4	01/31/11		<10	<10	<10	<100	<10	<10		
MW4	04/07/11		<10	<10	<10	<100	<10	<10		
MW4	07/18/11		<10	<10	<10	<100	<10	<10		
MW4	10/13/11		<10	<10	<10	<100	<10	<10		
MW4	04/06/12		<10	<10	<10	<100	<10	<10		
ИW5	12/16/10		<2.5	<2.5	<2.5	<25	<2.5	<2.5		
MW5	01/31/11		<10	<10	<10	<100	<10	<10		
MW5	04/07/11		<2.5	<2.5	<2.5	<25	<2.5	<2.5		
MW5	07/18/11		<2.5	<2.5	<2.5	<25	<2.5	<2.5		
MW5	10/13/11		<20	<20	<20	<200	<20	<20		
MW5	04/06/12		<0.50	<5.0	<5.0	<50	<5.0	<5.0		
MW6	12/16/10		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
MW6	01/31/11		<1.0	<1.0	<1.0	<10	<1.0	<1.0		
MW6	04/07/11		< 0.50	<0.50	< 0.50	<5.0	< 0.50	<0.50		
MW6	07/18/11		< 0.50	<0.50	< 0.50	<5.0	< 0.50	<0.50		
MW6	10/13/11		< 0.50	< 0.50	< 0.50	<5.0	< 0.50	<0.50		

TABLE 1B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (μg/L)	TAME (µg/L)	TBA (µg/L)	ETBE (µg/L)	DIPE (µg/L)	Add'l VOCs (µg/L)	Add'l SVOCs (µg/L)
MW6	04/06/12		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
Grab Groun	dwater Sample	s								
B-1W	01/06/08		<50	<50	<50	<200	<50	<50	210b, 68c, 370d, 1,100e, 3,800f, 1,300g, 1,500h	4,000h, 3,900k
B-2W	01/06/08		<50	<50	<50	<200	<50	<50	110b, 140e, 440f, 2,400g, 730h, 610i, 32j	
B-3W	01/06/08		<10	<10	<10	<40	<10	<10	25b, 11c, 74d, 190e, 290f, 49g, 55i	
B-4W	01/06/08		<10	<10	<10	<40	<10	<10	46b, 19c, 48d, 160e, 16f, 100h	
B-5W	01/06/08		ND	<0.5	<0.5	<2.0	<0.5	<0.5	2.6b, 0.83e, 4.8f, 1.2g, 6.5h	
B-6W	01/06/08		<2.5	<2.5	<2.5	<10	<2.5	<2.5	14b, 5.6c, 17d, 60e, 32f, 5.8g, 38h, 10i	
DR-W	01/06/08		<0.5	<0.5	<0.5	<2.0	<0.5	<0.5	6.9b, 2.4c, 2.5d, 11e, 17f, 5.5g, 7.0h	
W-27.5-HP1	A 10/28/10	27.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
W-36-HP1A	10/28/10	36	< 0.50	< 0.50	< 0.50	<5.0	< 0.50	< 0.50		
W-46.5-HP1	A 10/28/10	46.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
W-59-HP1B	10/27/10	59	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
W-27.5-HP2	A 10/29/10	27.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
W-52-HP2A	10/29/10	52	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
W-60.5-HP2	B 10/27/10	60.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		
W-10-SVE1-	-1 01/31/12	10	<2.0	<2.0	<2.0	62	<2.0	<2.0		
W-10-SVE1-	-2 01/31/12	10	<1.0	<1.0	<1.0	57	<1.0	<1.0		

TABLE 1B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

		Albary, Gallottia
Notes:		
TOC	=	Top of well casing elevation; datum is mean sea level.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is mean sea level. If liquid-phase hydrocarbons present, elevation adjusted using TOC - [DTW - (PT x 0.76)].
NAPL	=	Non-aqueous phase liquid.
O&G	=	Oil and grease with silica gel clean-up analyzed using Standard Method 5520B/F.
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015 (modified).
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015 (modified).
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015 (modified).
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
Add'I VOCs	=	Additional volatile organic carbons analyzed using EPA Method 8260B.
Add'l SVOCs	=	Additional semi-volatile organic carbons analyzed using EPA Method 8270C.
μg/L	=	Micrograms per liter.
ND	=	Not detected at or above laboratory reporting limits.
	=	Not measured/Not sampled/Not analyzed.
<	=	Less than the stated laboratory reporting limit.
а	=	Sample chromatographic pattern does not match that of the specified standard.
b	=	n-butylbenzene.
С	=	sec-butylbenzene.
d	=	Isopropylbenzene.
е	=	n-propylbenzene.
f	=	1,2,4-trimethylbenzene.
g	=	1,3,5-trimethylbenzene.
h	=	Naphthalene.
i	=	1-butanone.
j	=	1,2-dibromo-3-chloropropane.
k	=	2-methylnapthalene.
I	=	Unmodified or weakly modified gasoline is significant.
m	=	Heavier gasoline range compounds are significant.
n	=	Diesel range compounds are significant; no recognizable pattern.
0	=	Gasoline range compounds are significant.
р	=	No recognizable pattern.
q	=	Strongly aged gasoline or diesel compounds are significant.
r	=	Lighter than water immiscible sheen/product is present.

= Liquid sample that contains greater than approximately 1 volume % sediment.

s

TABLE 2 WELL CONSTRUCTION DETAILS

Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

Well ID	Well Installation Date	TOC Elevation (feet)	Borehole Diameter (inches)	Total Depth of Boring (feet bgs)	Well Depth (feet bgs)	Casing Diameter (inches)	Well Casing Material	Screened Interval (feet bgs)	Slot Size (inches)	Filter Pack Interval (feet bgs)	Filter Pack Material
MW1	11/04/10	41.45	8	17	17	2	Schedule 40 PVC	12-17	0.020	10-17	#3 Sand
MW2	11/04/10	41.25	8	17	17	4	Schedule 40 PVC	12-17	0.020	10-17	#3 Sand
MW3	11/08/10	40.42	8	17	17	4	Schedule 40 PVC	11-16	0.020	9-16	#3 Sand
MW3A	01/18/12	40.68	10	15.5	15.5	4	Schedule 40 PVC	5-15	0.020	4.5-15.5	#2/12 Sand
MW4	11/05/10	39.30	8	17	13	2	Schedule 40 PVC	8-13	0.020	6-13	#3 Sand
MW5	11/05/10	40.38	8	17	14	2	Schedule 40 PVC	9-14	0.020	7-14	#3 Sand
MW6	11/03/10	41.06	10	20	20	2	Schedule 40 PVC	15-20	0.020	13-20	#3 Sand
AS1	01/18/12		8	15.5	15.5	1	Schedule 80 PVC	10.25-13.5	#60 mesh	10.5-15.5	#2/12 Sand
SVE1	01/17/12	40.58	10	15.5	15.5	4	Schedule 40 PVC	5-15	0.020	4.5-15.5	#2/12 Sand
SVE2	01/17/12	40.94	10	15	15	4	Schedule 40 PVC	5-15	0.020	4.5-15	#2/12 Sand
SVE3	01/17/12	40.93	10	15	15	4	Schedule 40 PVC	5-15	0.020	4.5-15.5	#2/12 Sand

Notes:

TOC = Top of well casing elevation; datum is mean sea level.

PVC = Polyvinyl chloride.

feet bgs = Feet below ground surface.

APPENDIX A GROUNDWATER SAMPLING PROTOCOL

GROUNDWATER SAMPLING PROTOCOL

The static water level and separate-phase product level, if present, in each well that contained water and/or separate-phase product are measured with a ORS Interface Probe, which is accurate to the nearest 0.01 foot. To calculate groundwater elevations and evaluate groundwater gradient, depth to water (DTW) levels are subtracted from top of casing elevations.

Groundwater samples collected for subjective evaluation are collected by gently lowering approximately half the length of a clean Teflon® or polypropylene bailer past the air-water interface (if possible) and collecting a sample from near the surface of the water in the well. The samples are checked for measurable free-phase hydrocarbons or sheen. If appropriate, free-phase hydrocarbons are removed from the well.

Before water samples are collected from the groundwater monitoring wells, the wells are purged until a minimum of three well casing volumes is purged and stabilization of the temperature, pH, and conductivity is obtained. Water samples from the wells that do not obtain stability of the temperature, pH, and conductivity are considered to be "grab samples." The quantity of water purged from each well is calculated as follows:

1 well casing volume = $\pi r^2 h(7.48)$ where:

r = radius of the well casing in feet h = column of water in the well in feet (depth to bottom - depth to water)

7.48 = conversion constant from cubic feet to gallons π = ratio of the circumference of a circle to its diameter

Gallons of water purged/gallons in 1 well casing volume = well casing volumes removed.

The wells are purged using a submersible pump. Prior to use at the site and between wells the pump is cleaned.

Five gallons of water are placed in three 15-gallon tubs. Liquinox detergent is added to the first tub of water. The pump and tubing are submerged in the first tub and the water is pumped through the pump. The process is repeated in the second and third tub.

After purging, each well is allowed to recharge to at least 80% of the initial water level. Water samples from wells that do not recover at least 80% (due to slow recharging of the well) between purging and sampling are considered to be "grab samples." Water samples are collected with a new, disposable Teflon® or polypropylene bailer. The groundwater is carefully poured into selected sample containers (40-milliliter [ml] glass vials, 1,000-ml glass amber bottles, etc.), which are filled so as to produce a positive meniscus.

Depending on the required analysis, each sample container is preserved with hydrochloric acid, nitric acid, etc., or it is preservative free. The type of preservative used for each sample is specified on the Chain-of-Custody record.

Each vial and glass amber bottle is sealed with a cap containing a Teflon® septum, and subsequently examined for air bubbles to avoid headspace, which would allow volatilization to occur. The samples are promptly transported in iced storage in a thermally-insulated ice chest, accompanied by a Chain-of-Custody record, to a California state-certified laboratory.

Water generated during purging and cleaning is contained and transported off site for treatment and disposal.

APPENDIX B FIELD NOTES

DAILY FIELD REPORT

	-7/7	
PROJECT: 79374	JOB # + ACTIVITY: 2	735
SUBJECT: A M	DATE: <u>4-6-12</u>	
EQUIPMENT USED:	SHEET: OF	_
NAME: <u>Steve</u>	PROJECT MNGR:	_
Onsite 430 +18	5 430-445	
OPEN 445 - 500	Purge 54	
DTW 500-515	Decon Dec 25	
Purge 515 - 725 Samp 810 - 930	Total 79	
Samp 810-930		
•		
1.6	1 0	
Vanparkeon mw 6 so purged on	totorder	
or 1 1000		
Offsite 1000		
11		
4		

		1			GR	OUNDW	ATER S	AMPLING	FIELD	LOG						
Client Name:			bile_		ERI Job #	#: 27	35			_	Date: 4	-6-12	Page /	of		
ocation:	7937	4			Field Clea	aning Per	formed: _				Case Vo	ase Volume = (TD - DTW) x F where F =				
Field Crew:	Steve			Analysis:							0.163 for 2" inside-diameter well casing 0.652 for 4" inside-diamter well casing 1.457 for 6" inside-diamter well casing					
Well ID	Time	Case Volume	Purge Volume	Temp	Cond	pН	Post-Purge DTW	80% Recharge	BB	40mil	Amber	DO	ORP	Comments Well Box Condition		
mwi	721	1,38	12				8,37			6	2			Oil - Water in well		
	522 524 526		2 4	16,3	740	7,48	9		8	3/0				Dryw Tgal		
mw3	540	4,60	7				7,51			6	2			OK		
	T42		10	16.7	644	7,06	18		2	820				Dry@89c1		
mwz	154	4,2+	1				9.16			6	12		T	OK		
	557		10	16.8	686	7,13	10	-	8	30		Section 1		Dryie 9 gel		
mwy	620	21112	版 2				7.50	H		6	2			OK		
	624	1,23	\$ 2 6 4 8 6	17.8	694	7,02	6		8	140				Dryp 4		
nws	638	1.08	2				8,07	7		16	12			OK		
640	641		4	16,7	398	7,34	9			700		•		Dryp 4gal		
mwb	652	1,96	12				9.05		T	16	12	T		0/1		
	6,50		4	17.9			10	5.1%		91.	5					
mw3		5,84	6	11.11.1	11.0		7,79	3		6	12		T	lok		
	720	2	12	17,2	651	7.75	7 8		9	30						

ERI Groundwater M+S Depth To Water

Case Volume= H(r²x0.163)

H=Height of Water Column in Feet r=Radius of well casing in inches

Common conversion factors: 2"=0.163, 4"=0.652, 6"=1.457

Project

Location

Date

Name

2735

79374

4-6-12

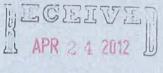
Steve

11/1/1		-11/1		- 1 0 1	VICE	
WELL ID MW 1 MW 3 MW 2 MW 6 MW 4 MW 5 MW 3A	WELL DIAMETER 2 4 4 2 2 1 4	ODOR? SHEEN?	TOTAL DEPTH 16,61 15,20 16,89 15,20 19,26 13,10 13,40 14,98	Pre-Purge DTW 8,11 8,13 8.68 7.19 6,21 6,77 6,02	PRODUCT THICKNESS	COMMENTS

WAT	ER S	AMP	LING	SIT	TE S	ΓATU	S									Date: 4/-6-12
																Inspected by: Steve
Cardno	ERI Jo	ob No.:	273	35	Sta	tion No.:	793	74	-	Site	Addre	ss: <u>9</u>	90 S	an l	Pabi	Inspected by: Steve
Wellio		/	/			Crele Sed	/	/								
	N/R/ok	N/R/ok	N/R/ok	N/R/o	k N/R/ol	N/R/ok	Y/N	N/R/ok	N/R/ok	N/R/ok		s/w/e	g/v/o	N/I	R/ok	
MWI	OK		OK	Ok	OK	OK			OK	1,3,7,14,14,14			9	-	K	
mw3						11	N							1		
mw2																
mw4																
mw2 mw4 mw5																
mw6																
mw3A	IV		W	V	IV		W	V	W					I	/	
														_		
						-					-					
														_		
N = Not	repairab	le in time	availabl	e-see c	comment	s.	Y =	Yes.			s = 5	Soil.			g = Gr	Graffitti on walls.
R = Rep	aired-se	e comme	ents				N =	No.			w =	Water.			v = Va	agrants (or evidence of).
ok = No	action n	eeded.									e =	Empty.			o = 0	Open (not secured).

APPENDIX C

LABORATORY ANALYTICAL REPORT AND CHAIN-OF-CUSTODY RECORD


alscience nvironmental aboratories, Inc.

CALSCIENCE

VORK ORDER NUMBER: 12-04-0558

The difference is service

BY:----

AIR SOIL WATER MARINE CHEMISTRY

Analytical Report For

Client: Cardno ERI

Client Project Name: ExxonMobil 79374/022735C

Attention: Paula Sime

601 North McDowell Blvd. Petaluma, CA 94954-2312

Cecile & e Soia

Approved for release on 04/20/2012 by:

Cecile deGuia **Project Manager**

ResultLink > Email your PM)

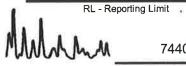
Calscience Environmental Laboratories, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: ExxonMobil 79374/022735C

Work Order Number: 12-04-0558

1	Client Sample Data	3 3 5 7
	1.4 EPA 8260B Volatile Organics (Aqueous)	9
2	Quality Control Sample Data	12 12 15
3	Glossary of Terms and Qualifiers	20
4	Chain of Custody/Sample Receipt Form	21



Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 04/10/12 12-04-0558 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 79374/022735C

Page 1 of 2

/Time lyzed QC Batch ID 2/12 120411B13S
2/12 120411B13S
2/12 120411B13S :24
2/12 120411B13S :39
1:

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 04/10/12 12-04-0558 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 79374/022735C

Page 2 of 2

	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
	12-04-0558-6-G	04/06/12 08:40	Aqueous	GC 47	04/11/12	04/12/12 21:54	120411B13S
Result	RL	<u>DF</u>	Qual	<u>Units</u>			
1800	50	1	SG,HD	ug/L			
REC (%)	Control Limits		Qual				
96	68-140						
	12-04-0558-7-G	04/06/12 09:00	Aqueous	GC 47	04/11/12	04/12/12 22:09	120411B13S
Result	RL	DF	Qual	<u>Units</u>			
880	50	1	SG,HD	ug/L			
REC (%)	Control Limits		Qual				
100	68-140						
	12-04-0558-8-G	04/06/12 09:15	Aqueous	GC 47	04/11/12	04/12/12 22:23	120411B13S
Result	RL	DF	Qual	Units			
440	50	1	SG,HD	ug/L			
REC (%)	Control Limits		Qual				
101	68-140						
	099-12-330-2,195	N/A	Aqueous	GC 47	04/11/12	04/12/12 15:41	120411B13S
Result	RL	DF	Qual	Units			
ND	50	1	U	ug/L			
REC (%)	Control Limits		Qual				
94	68-140						
	Result 880 REC (%) 100 Result 440 REC (%) 101 Result ND REC (%)	Number 12-04-0558-6-G Result RL	Number Collected 12-04-0558-6-G 04/06/12 08:40 Result RL DF 1800 50 1 REC (%) Control Limits 96 68-140 12-04-0558-7-G 04/06/12 99:00 1 Result RL DF 880 50 1 REC (%) Control Limits 100 68-140 12-04-0558-8-G 04/06/12 99:15 Result RL DF 440 50 1 REC (%) Control Limits 101 68-140 099-12-330-2,195 N/A Result RL DF ND 50 1 REC (%) Control Limits Control Li	Number Collected Matrix 12-04-0558-6-G 04/06/12 Aqueous Result RL DF Qual 1800 50 1 SG,HD REC (%) Control Limits 96 68-140 Result RL DF Qual 880 50 1 SG,HD REC (%) Control Limits Qual 100 68-140 Result RL DF Qual 100 68-140 Result RL DF Qual 100 68-140 Result RL DF Qual 440 50 1 SG,HD REC (%) Control Limits Qual 101 68-140 Result RL DF Qual 101 G8-140 Result RL DF Qual 101 Qual Result RL DF Qual 101 Qual	Number Collected Matrix Instrument	Number Collected Matrix Instrument Prepared	Number Collected Matrix Instrument Prepared Analyzed

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

Preparation: Method:

04/10/12 12-04-0558

EPA 3510C

EPA 8015B (M)

Project: ExxonMobil 79374/022735C

Page 1 of 2

Project: Exxoniviodii /	9374/0227350						Г	age 1 01 Z
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-9-MW1		12-04-0558-2-G	04/06/12 08:10	Aqueous	GC 47	04/11/12	04/12/12 20:54	120411B14S
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil	ND	250	1	SG,U	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	109	68-140						
W-10-MW2		12-04-0558-3-G	04/06/12 08:30	Aqueous	GC 47	04/11/12	04/12/12 21:09	120411B14S
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	ND	250	1	SG,U	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	99	68-140						
W-10-MW3		12-04-0558-4-G	04/06/12 08:20	Aqueous	GC 47	04/11/12	04/12/12 21:24	120411B14S
Parameter	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	ND	250	1	SG,U	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	98	68-140						
W-8-MW3A		12-04-0558-5-G	04/06/12 09:30	Aqueous	GC 47	04/11/12	04/12/12 21:39	120411B14S
	D	DI	D.F.	Ougl	Llaita			
<u>Parameter</u> TPH as Motor Oil	<u>Result</u> ND	<u>RL</u> 250	<u>DF</u> 1	<u>Qual</u> SG,U	<u>Units</u> ug/L			
		Control V Story		01	-			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	97	68-140						

Cardno ERI 601 North McDowell Blvd.

Petaluma, CA 94954-2312

Date Received:

Work Order No:

Preparation: Method:

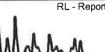
04/10/12 12-04-0558 EPA 3510C

EPA 8015B (M)

Project: ExxonMobil 79374/022735C

Page 2 of 2

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-6-MW4		12-04-0558-6-G	04/06/12 08:40	Aqueous	GC 47	04/11/12	04/12/12 21:54	120411B148
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	ND	250	1	SG,U	ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	96	68-140						
W-9-MW5		12-04-0558-7-G	04/06/12 09:00	Aqueous	GC 47	04/11/12	04/12/12 22:09	120411B14S
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Motor Oil	ND	250	1	SG,U	ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	100	68-140						
W-10-MW6		12-04-0558-8-G	04/06/12 09:15	Aqueous	GC 47	04/11/12	04/12/12 22:23	120411B14S
Parameter	Result	RL	DE	Qual	Units			
TPH as Motor Oil	ND	250	1	SG,U	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	101	68-140						
Method Blank		099-12-234-1,077	N/A	Aqueous	GC 47	04/11/12	04/12/12 15:41	120411B14S
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	ND ND	250	1	U	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	94	68-140						



Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 04/10/12 12-04-0558 EPA 5030C EPA 8015B (M)

Project: ExxonMobil 79374/022735C

Page 1 of 2

Project. Exxoniviouii 1931	4/022/330						1 0	ige i oi z
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-9-MW1		12-04-0558-2-E	04/06/12 08:10	Aqueous	GC 24	04/18/12	04/18/12 13:35	120418B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	130	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene	84	38-134						
W-10-MW2		12-04-0558-3-E	04/06/12 08:30	Aqueous	GC 24	04/18/12	04/18/12 15:16	120418B01
Parameter	Result	<u>RL</u>	<u>DE</u>	Qual	<u>Units</u>			
TPH as Gasoline	68	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	74	38-134						
W-10-MW3		12-04-0558-4-E	04/06/12 08:20	Aqueous	GC 24	04/18/12	04/18/12 18:03	120418B01
Parameter	Result	RL	DE	Qual	<u>Units</u>			
TPH as Gasoline	18000	1000	20		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	88	38-134						
W-8-MW3A		12-04-0558-5-E	04/06/12 09:30	Aqueous	GC 24	04/18/12	04/18/12 15:49	120418B01
<u>Parameter</u> TPH as Gasoline	<u>Result</u> 1300	<u>RL</u> 50	<u>DF</u> 1	Qual	<u>Units</u> ug/L			
inn as Gasoline		00	•		~3. =			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	102	38-134						

DF - Dilution Factor

Qual - Qualifiers

Cardno ERI

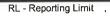
601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

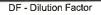
04/10/12

Work Order No:

12-04-0558 EPA 5030C

Preparation:


Method:


EPA 8015B (M)

Project: ExxonMobil 79374/022735C

Page 2 of 2

1 Tojoot. Exxoniviosii Toot	., 0221 000							3
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
W-6-MW4		12-04-0558-6-F	04/06/12 08:40	Aqueous	GC 24	04/18/12	04/18/12 17:29	120418B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	9100	100	2	HD	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	133	38-134						
W-9-MW5		12-04-0558-7-F	04/06/12 09:00	Aqueous	GC 24	04/18/12	04/18/12 16:23	120418B01
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	6000	50	1	HD	ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene	156	38-134		AZ				
W-10-MW6		12-04-0558-8-E	04/06/12 09:15	Aqueous	GC 24	04/18/12	04/18/12 16:56	120418B01
Parameter Parameter	Result	RL	<u>DE</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	1400	50	.1.	HD	ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	107	38-134						
Method Blank		099-12-436-7,336	N/A	Aqueous	GC 24	04/18/12	04/18/12 10:34	120418B01
			D.F.	01	1.1-24-			
Parameter TPH as Gasoline	<u>Result</u> ND	<u>RL</u> 50	<u>DF</u> 1	<u>Qual</u> U	<u>Units</u> ug/L			
TETT AS CASUMIC			•		-5			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	76	38-134						

Cardno ERI

601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

Preparation:

Method:

Units:

04/10/12

12-04-0558

EPA 5030C

EPA 8260B

ug/L

Project: ExxonMobil 79374/022735C

Page 1 of 3

Client Sample Number		b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID		
W-9-MW1			12-04-0	12-04-0558-2-A 04/06/12 Aqueous GC/MS L 08:10				04/10/12	04/11 04:		120410L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Benzene	2.1	0.50	1		Diisopropyl E	ther (DIPE)		ND	0.50	1	U
Toluene	ND	0.50	1	U	Ethyl-t-Butyl E	Ether (ETBE)	ND	0.50	1	U
Ethylbenzene	ND	0.50	1	U	Tert-Amyl-Me	thyl Ether (T	AME)	ND	0.50	1	U
Xylenes (total)	ND	0.50	1	U	1,2-Dibromoe	thane		ND	0.50	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	U	1,2-Dichloroe	thane		ND	0.50	1	U
Tert-Butyl Alcohol (TBA)	ND	5.0	1	U							
Surrogates:	REC (%)	Control Limits	<u>Qua</u>	<u>ll</u>	Surrogates:			<u>REC (%)</u>	Control Limits	<u>C</u>	Qual
1,4-Bromofluorobenzene	98	68-120			Dibromofluoro	omethane		100	80-127		
1,2-Dichloroethane-d4	107	80-128			Toluene-d8			95	80-120		
W-10-MW2			12-04-0)558-3-A	04/06/12 08:30	Aqueous	GC/MS L	04/10/12	04/11 04:3		120410L02
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual
Benzene	ND	0.50	1	U	Diisopropyl Et	ther (DIPE)		ND	0.50	1	U
Toluene	ND	0.50	1	Ü	Ethyl-t-Butyl E	, ,	1	ND	0.50	1	Ü
Ethylbenzene	ND	0.50	1	Ü	Tert-Amyl-Me	` '		ND	0.50	1	Ŭ
Xylenes (total)	ND	0.50	1	Ŭ	1,2-Dibromoe	, ,	, <u>-</u>)	ND	0.50	1	Ŭ
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	Ü	1,2-Dichloroet			ND	0.50	1	Ü
Tert-Butyl Alcohol (TBA)	ND	5.0	1	Ū	.,						
Surrogates:	REC (%)	Control Limits	Qua	1	Surrogates:			REC (%)	Control Limits	<u>C</u>	tual
1,4-Bromofluorobenzene	93	68-120			Dibromofluoro	methane		103	80-127		
1.2-Dichloroethane-d4	106	80-128			Toluene-d8			98	80-120		
W-10-MW3			12-04-0	558-4-A	04/06/12 08:20	Aqueous	GC/MS L	04/10/12	04/11 04:5		120410L02
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	300	20	40		Diisopropyl Et	ther (DIPE)		ND	20	40	U
Toluene	120	20	40		Ethyl-t-Butyl E	, ,	1	ND	20	40	Ū
Ethylbenzene	1100	20	40		Tert-Amyl-Me	, ,		ND	20	40	U
Xylenes (total)	180	20	40		1,2-Dibromoet	,	,	ND	20	40	U
Methyl-t-Butyl Ether (MTBE)	ND	20	40	Ų	1,2-Dichloroet	thane		ND	20	40	U
Tert-Butyl Alcohol (TBA)	ND	200	40	U							
Surrogates:	<u>REC (%)</u>	Control Limits	Qual	!	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>ual</u>
1,4-Bromofluorobenzene	102	68-120			Dibromofluoromethane			95	80-127		
1,2-Dichloroethane-d4	98	80-128			Toluene-d8			101	80-120		

Cardno ERI

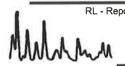
601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received:

Work Order No:

Preparation: Method:

Units:

04/10/12 12-04-0558

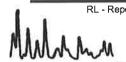

EPA 5030C

EPA 8260B ug/L

Page 2 of 3

Project: ExxonMobil 79374/022735C

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ I Analy		QC Batch ID	
W-8-MW3A			12-04-0558-5-B		04/06/12 09:30	Aqueous	GC/MS L	04/11/12	04/1 ² 20:		120411L01	
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual	
Benzene	41	2.0	4		Diisopropyl E	Ether (DIPE)		ND	2.0	4	U	
Toluene	7.5	2.0	4			Ether (ETBE))	ND	2.0	4	U	
Ethylbenzene	140	2.0	4			ethyl Ether (T		ND	2.0	4	Ū	
Xylenes (total)	38	2.0	4		1,2-Dibromo	, ,	,	ND	2.0	4	ยับ	
Methyl-t-Butyl Ether (MTBE)	ND	2.0	4	U	1.2-Dichloroe			ND	2.0	4	ū	
Tert-Butyl Alcohol (TBA)	ND	20	4	Ü	1,2 2.0	J. 10.10			2.0	7	J	
Surrogates:	REC (%)	Control Limits	Qua	_	Surrogates:			REC (%)	Control Limits	<u>C</u>	Qual	
1,4-Bromofluorobenzene	102	68-120			Dibromofluor	omethane		101	80-127			
1,2-Dichloroethane-d4	104	80-128			Toluene-d8			98	80-120			
W-6-MW4			12-04-0	558-6-A	04/06/12 08:40	Aqueous	GC/MS L	04/10/12	04/11 05:		120410L02	
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	<u>DF</u>	Qual	
Benzene	380	10	20		Diisopropyl E	ther (DIPE)		ND	10	20	U	
Toluene	40	10	20			Ether (ETBE)		ND	10	20	Ū	
Ethylbenzene	220	10	20			ethyl Ether (T		ND	10	20	ū	
Xylenes (total)	410	10	20		1,2-Dibromo	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ND	10	20	ū	
Methyl-t-Butyl Ether (MTBE)	ND	10	20	U	1,2-Dichloroe			ND	10	20	ŭ	
Tert-Butyl Alcohol (TBA)	ND	100	20	Ü	1,2 2,0,110100	Straire		110	10	20	Ü	
Surrogates:	REC (%)	Control Limits	Qua	•	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>lual</u>	
4.4.D	99	68-120			Dibromofluor	amathana		95	80-127			
1,4-Bromofluorobenzene						omeurane		97				
1,2-Dichloroethane-d4	103	80-128			Toluene-d8				80-120	_		
W-9-MW5			12-04-0	558-7-B	04/06/12 09:00	Aqueous	GC/MS L	04/11/12	04/11 21:0		120411L01	
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	<u>DF</u>	Qual	
3enzene	62	5.0	10		Diisopropyl E	ther (DIPE)		ND	5.0	10	U	
Foluene	17	5.0	10			Ether (ETBE)		ND	5.0	10	Ü	
Ethylbenzene	360	5.0	10			ethyl Ether (T/	AME)	ND	5.0	10	ŭ	
Kylenes (total)	680	5.0	10		1,2-Dibromoe	•	,	ND	5.0	10	Ü	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	10	U	1.2-Dichloroe			ND	5.0	10	Ü	
	ND	5.0	10	U	1,2-2/0110106	o and		.10	3.0	10	U	
Fert-Butyl Alcohol (TBA) Surrogates:	REC (%)	Control Limits	Qual	_	Surrogates:			<u>RĘC (%)</u>	Control Limits	Q	ual	
1.4 Bromefluorabanzana	102	68-120			Dibromofluor	omothano		96	80-127			
1,4-Bromofluorobenzene						onemane		98				
,2-Dichloroethane-d4	103	80-128			Toluene-d8			98	80-120			

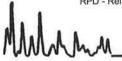


Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: Units: 04/10/12 12-04-0558 EPA 5030C EPA 8260B ug/L

Project: ExxonMobil 79374/022735C

Page 3 of 3

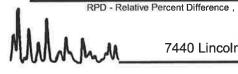
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared			QC Batch ID
W-10-MW6			12-04-0	0558-8-A	04/06/12 09:15	Aqueous	GC/MS L	04/10/12	04/11 06:		120410L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
Benzene	2.4	0.50	1		Diisopropyl E	ther (DIPE)		ND	0.50	1	U
Toluene	ND	0.50	1	U	Ethyl-t-Butyl	Ether (ETBE))	ND	0.50	1	U
Ethylbenzene	13	0.50	1		Tert-Amyl-Me	ethyl Ether (T	AME)	ND	0.50	1	U
Xylenes (total)	15	0.50	1		1,2-Dibromoe	ethane		ND	0.50	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	U	1,2-Dichloroe	ethane		ND	0.50	1	U
Tert-Butyl Alcohol (TBA)	ND	5.0	1	U							
Surrogates:	<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	Qua	<u>ll</u>	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>Qual</u>
1,4-Bromofluorobenzene	101	68-120			Dibromofluor	omethane		91	80-127		
1,2-Dichloroethane-d4	97	80-128			Toluene-d8			101	80-120		
Method Blank			099-12	-884-837	N/A	Aqueous	GC/MS L	04/10/12	04/10 23:		120410L02
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	RL	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.50	1	U	Diisopropyl E	ther (DIPE)		ND	0.50	1	U
Toluene	ND	0.50	1	U	Ethyl-t-Butyl I)	ND	0.50	1	U
Ethylbenzene	ND	0.50	1	U	Tert-Amyl-Me			ND	0.50	1	U
Xylenes (total)	ND	0.50	1	U	1,2-Dibromoe		ŕ	ND	0.50	1	U
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	U	1,2-Dichloroe	thane		ND	0.50	1	U
Tert-Butyl Alcohol (TBA)	ND	5.0	1	U							
Surrogates:	REC (%)	Control Limits	Qua	1	Surrogates:			REC (%)	Control Limits	C	<u>Qual</u>
1,4-Bromofluorobenzene	95	68-120			Dibromofluore	omethane		111	80-127		
1,2-Dichloroethane-d4	106	80-128			Toluene-d8			92	80-120		
Method Blank			099-12	-884-838	N/A	Aqueous	GC/MS L	04/11/12	04/11 11:		120411L01
Parameter	Result	RL	DE	Qual	Parameter			Result	RL	<u>DF</u>	Qual
Benzene	ND	0.50	1	U	Diisopropyl E	ther (DIPF)		ND	0.50	1	U
Toluene	ND	0.50	1	Ŭ	Ethyl-t-Butyl	, ,	1	ND	0.50	1	Ü
Ethylbenzene	ND	0.50	1	Ü	Tert-Amyl-Me	, ,		ND	0.50	1	ŭ
Xylenes (total)	ND	0.50	i	Ü	1,2-Dibromoe			ND	0.50	1	Ū
Methyl-t-Butyl Ether (MTBE)	ND	0.50	1	Ü	1,2-Dichloroe			ND	0.50	i	ŭ
Tert-Butyl Alcohol (TBA)	ND	5.0	i	Ū	,					,	
Surrogates:	REC (%)	Control Limits	Qua	1	Surrogates:			REC (%)	Control Limits	<u>C</u>	<u>tual</u>
1,4-Bromofluorobenzene	93	68-120			Dibromofluoro	omethane		102	80-127		
1.2-Dichloroethane-d4	110	80-128			Toluene-d8			94	80-120		
1,2-Dichiolocularic-o-		50 120			, Sidolio do						


Quality Control - Spike/Spike Duplicate

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 04/10/12 12-04-0558 EPA 5030C EPA 8015B (M)

Project ExxonMobil 79374/022735C

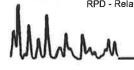
Quality Control Sample ID	Matrix	Instrumen		ate pared	Date Analyzed	MS/MSD Batch Number			
W-9-MW1	Aqueous	GC 24	04/1	8/12	04/18/12	120	418S01		
<u>Parameter</u>	SPIKE ADDED	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers		
TPH as Gasoline	2000	105	101	68-122	4	0-18			


Quality Control - Spike/Spike Duplicate

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 04/10/12 12-04-0558 EPA 5030C EPA 8260B

Project ExxonMobil 79374/022735C

Quality Control Sample ID	Matrix	Instrument		ate pared	Date Analyzed		/ISD Batch lumber
12-04-0555-1	Aqueous	GC/MS L	04/1	0/12	04/11/12	120	410S02
<u>Parameter</u>	SPIKE ADDED	DDED MS %REC MSD %REC %REC		%REC CL	RPD	RPD CL	Qualifiers
Benzene	10.00	105	97	76-124	8	0-20	
Toluene	10.00	99	101	80-120	1	0-20	
Ethylbenzene	10.00	106	105	78-126	1	0-20	
Methyl-t-Butyl Ether (MTBE)	10.00	85	92	67-121	9	0-49	
Tert-Butyl Alcohol (TBA)	50.00	187	188	36-162	1	0-30	HX
Diisopropyl Ether (DIPE)	10.00	79	109	60-138	33	0-45	
Ethyl-t-Butyl Ether (ETBE)	10.00	106	118	69-123	11	0-30	
Tert-Amyi-Methyl Ether (TAME)	10.00	101	99	65-120	2	0-20	
Ethanol	100.0	101	118	30-180	15	0-72	
1,2-Dibromoethane	10.00	105	101	80-120	4	0-20	
1,2-Dichloroethane	10.00	102	104	80-120	2	0-20	


Quality Control - Spike/Spike Duplicate

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: 04/10/12 12-04-0558 EPA 5030C EPA 8260B

Project ExxonMobil 79374/022735C

Quality Control Sample ID	Matrix	Instrumen		ate pared	Date Analyzed		/ISD Batch lumber
12-04-0624-2	Aqueous	GC/MS L	04/1	04/11/12		120	411801
<u>Parameter</u>	SPIKE ADDED	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	10.00	118	103	76-124	2	0-20	
Toluene	10.00	104	93	80-120	11	0-20	
Ethylbenzene	10.00	107	115	78-126	7	0-20	
Methyl-t-Butyl Ether (MTBE)	10.00	98	107	67-121	10	0-49	
Tert-Butyl Alcohol (TBA)	50.00	149	109	36-162	31	0-30	BA
Diisopropyl Ether (DIPE)	10.00	99	105	60-138	6	0-45	
Ethyl-t-Butyl Ether (ETBE)	10.00	97	106	69-123	8	0-30	
Tert-Amyl-Methyl Ether (TAME)	10.00	97	111	65-120	13	0-20	
Ethanol	100.0	82	81	30-180	1	0-72	
1,2-Dibromoethane	10.00	99	110	80-120	10	0-20	
1,2-Dichloroethane	10.00	138	145	80-120	5	0-20	HX

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312

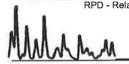
TPH as Motor Oil

Date Received: Work Order No: Preparation: Method:

91

75-117

N/A 12-04-0558 EPA 3510C EPA 8015B (M)


0-13

Project: ExxonMobil 79374/022735C

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD Batch Number	
099-12-234-1,077	Aqueous	GC 47	04/11/12	04/12/12		120411B14S	
<u>Parameter</u>	SPIKE AI	ODED LCS %REC	LCSD %REC	%REC CL	RPD	RPD CL	Qualifiers

95

2000

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: N/A 12-04-0558 EPA 3510C EPA 8015B (M)

Project: ExxonMobil 79374/022735C

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number
099-12-330-2,195	Aqueous	GC 47	04/11/12	04/12/12	120411B13S

 Parameter
 SPIKE ADDED
 LCS %REC
 LCSD %REC
 %REC CL
 RPD
 RPD CL
 Qualifiers

 TPH as Diesel
 2000
 94
 94
 75-117
 1
 0-13

RPD - Relative Percent Difference , CL - Control Limit

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312

TPH as Gasoline

Date Received: Work Order No: Preparation: Method:

110

78-120

0

N/A 12-04-0558 EPA 5030C EPA 8015B (M)

0-10

Project: ExxonMobil 79374/022735C

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD Batch Number	
099-12-436-7,336	Aqueous	GC 24	04/18/12	04/18/12		120418B01	
<u>Parameter</u>	SPIKE A	DDED_LCS %RE	C LCSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers

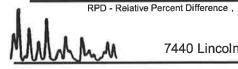
111

2000

RPD - Relative Percent Difference ,

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312 Date Received: Work Order No: Preparation: Method: N/A 12-04-0558 EPA 5030C EPA 8260B

Project: ExxonMobil 79374/022735C


Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date alyzed	LCS	LCS/LCSD Batch Number				
099-12-884-837	Aqueous	GC/MS L	04/10/1	2 04/1	0/12	1	20410L02				
Parameter	SPIKE ADDED	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers			
Benzene	10.00	118	103	80-120	73-127	13	0-20				
Toluene	10.00	108	105	80-120	73-127	2	0-20				
Ethylbenzene	10.00	109	101	80-120	73-127	8	0-20				
Methyl-t-Butyl Ether (MTBE)	10.00	96	110	69-123	60-132	14	0-20				
Tert-Butyl Alcohol (TBA)	50.00	102	98	63-123	53-133	4	0-20				
Diisopropyl Ether (DIPE)	10.00	107	90	59-137	46-150	17	0-37				
Ethyl-t-Butyl Ether (ETBE)	10.00	110	96	69-123	60-132	14	0-20				
Tert-Amyl-Methyl Ether (TAME)	10.00	103	99	70-120	62-128	3	0-20				
Ethanol	100.0	88	65	28-160	6-182	30	0-57				
1,2-Dibromoethane	10.00	106	99	79-121	72-128	7	0-20				
1,2-Dichloroethane	10.00	109	108	80-120	73-127	1	0-20				

Total number of LCS compounds: 11

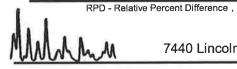
Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Cardno ERI 601 North McDowell Blvd. Petaluma, CA 94954-2312

Date Received: Work Order No: Preparation: Method:


N/A 12-04-0558 **EPA 5030C EPA 8260B**

Project: ExxonMobil 79374/022735C

Quality Control Sample ID	Matrix	Instrument	Date Prepare		Date alyzed	LCS	LCS/LCSD Batch Number					
099-12-884-838	Aqueous	GC/MS L	04/11/	12 04/1	1/12	1						
Parameter	SPIKE ADDED	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers				
Benzene	10.00	103	96	80-120	73-127	7	0-20					
Toluene	10.00	106	102	80-120	73-127	4	0-20					
Ethylbenzene	10.00	109	105	80-120	73-127	4	0-20					
Methyl-t-Butyl Ether (MTBE)	10.00	94	113	69-123	60-132	18	0-20					
Tert-Butyl Alcohol (TBA)	50.00	95	95	63-123	53-133	0	0-20					
Diisopropyl Ether (DIPE)	10.00	122	86	59-137	46-150	35	0-37					
Ethyl-t-Butyl Ether (ETBE)	10.00	112	96	69-123	60-132	16	0-20					
Tert-Amyl-Methyl Ether (TAME)	10.00	102	99	70-120	62-128	3	0-20					
Ethanol	100.0	88	88	28-160	6-182	1	0-57					
1,2-Dibromoethane	10.00	103	105	79-121	72-128	2	0-20					
1,2-Dichloroethane	10.00	106	105	80-120	73-127	0	0-20					

Total number of LCS compounds: 11 Total number of ME compounds: 0 Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 12-04-0558

TTOIR GIGGIT	tanisan 12 5 1 5 5 5 5
Qualifier	Definition
AZ	Surrogate compound recovery was out of control due to matrix interference. The
,	associated method blank surrogate spike compound was in control and, therefore, the
	sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
ВА	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD
	was in control and, therefore, the sample data was reported without further clarification.
BB	Spike recovery and RPD control limits do not apply resulting from the parameter
	concentration in the sample exceeding the spike concentration by a factor of four or
	greater.
BU	Sample analyzed after holding time expired.
DF	Reporting limits elevated due to matrix interferences.
Ε	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
GE	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control
	due to a matrix interference effect. The associated batch LCS/LCSD was in control and,
	hence, the associated sample data was reported without further clarification.
HD	Chromat. profile inconsistent with pattern(s) of ref. fuel stnds.
НО	High concentration matrix spike recovery out of limits
HT	Analytical value calculated using results from associated tests.
HX	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out
	of control due to matrix interference. The associated LCS and/or LCSD was in control
.,	and, therefore, the sample data was reported without further clarification.
IL	Relative percent difference out of control.
J	Analyte was detected at a concentration below the reporting limit and above the
LD	laboratory method detection limit. Reported value is estimated.
LD	Analyte presence was not confirmed by second column or GC/MS analysis.
LP	The LCS and/or LCSD recoveries for this analyte were above the upper control limit. The associated sample was non-detected. Therefore, the sample data was reported without
	further clarification.
LQ	LCS recovery above method control limits.
LR	LCS recovery below method control limits.
ND	Parameter not detected at the indicated reporting limit.
QO	Compound did not meet method-described identification guidelines. Identification was
QO	based on additional GC/MS characteristics.
RU	LCS/LCSD Recovery Percentage is within Marginal Exceedance (ME) Control Limit
110	range.
SG	A silica gel cleanup procedure was performed.
SN	See applicable analysis comment.
U	Undetected at detection limit.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not
	corrected for % moisture. All QC results are reported on a wet weight basis.

MPN - Most Probable Number

Calscience Environmental Laboratories, Inc.

7440 Lincoln Way

Phone: 714-895-5494

Garden Grove, CA 92841

Fax: 714-894-7501

12-04-0558

	C	l4a4 Al	0																														
		ultant Name:			- 11 - 12 -						_						_	Acc	ount	t#:	NA		_			PC	D#:	Dire	ct Bi	II Ca	ırdn	ER	1
		ant Address:															_	Invo	olce 1	To:	Dire	ct Bill (Card	no E	RI								
	Consultant C						4										_	Rep	ort 1	To:	Pau	la Sime	•		_								
		Project Mgr:			chel		_								_		Pro	jeci	Nan	ne:	02 2	2735 C											
_		Project Mgr:													_ [XXC	nM	lido	Site	#:			79	374				Major Projec	(AFE	E #):			
C	Consultant Teleph							-	x No.	: 707	7-78	9-04	4				SI	e A	ddrei	66:	990	San Pa	ablo	Ave	nue								
		Name (Print):				hy	n h								_ 8	ilte	City	, Sta	ite, Z	Ίρ:	Alba	any, Ca	liforr	nla									
	Sample	er Signature:	_	34					_						_	Ove	rsig	ht A	gene	cy:	Alar	neda C	oun	y Er	viro	nme	enta	l Health Departr	nent				
			_	_	-		_				Pre	serva	tive			Ĺ	М	atrix							A	naly	ze F	or:					
Sample ID		Field Point Name	Date Sampled	Time Sampled	No. of Containers Shipped	Grab	Composite	Field Filtered	Methanol Sodium Bisulfato	HCI	NaOH	H ₂ SO ₄ Plastic H ₂ SO ₄ Glass	HNOs	Other: Unpreserved	None	Groundwater	Wastewater	Drinking Water Studge	Soil	Air	Other (specify): Distilled Water	TPHa 8015M	TPHd 8015M	TPHmo 8015M	BTEX 8260B	7 Oxygenates 8260B				RUSH TAT (Pre-Schedule)	5-day TAT	Standard 10-day TAT	Due Date of Report
70.00	BB		4-6-1	2 940	2					2v			П				П	\top		П	x		Н	0	L	D	1			-	2	8	- 0
w- 9	-MW1	MW1		810	8				П	6v	П	Т	П	2/	A	x	П	T	T	П	\neg	х	×	1	$\overline{}$	x	T					х	
W- 10	-MW2	MW2		830	8				П	6v	П		П	2	A	x	П	T	\top	П	\neg	х	x	x	$\overline{}$	X	T		H	П		x	
W-10	-MW3	MW3		820	8	-			П	6v	П	T	П	2/	A	x	П	\top		П	\neg	×	x	x	-	1	T		Ħ		-	x	
w- 8	-MW3A	MW3A	П	930	8				П	6v	\neg		П	2/	_	x	Ħ	Ť	1	Н	\neg	×	x	x	1	-	\vdash		Н	Н		x	
W- 6	-MW4	MW4	П	840	8					6v	\mathbf{H}	\top	П	2/	_	X	Ħ	†	\vdash	H	7	X	1x	x	-	1	+		Н	Н		-	
W- 9	-MW5	MW5		900	8				Н	6v	┰	\top	H	2/	_	x	Ħ	十	T	Н	\dashv	×	x	x	_	_	+		Н	Н		X	
W- 10	-MW6	MW6	1	915	8				H	6v	⇈	+	Н	2/	-	Û	H	+	+	Н	\dashv		$\overline{}$	$\overline{}$	_	$\overline{}$	╁	-	Н	Н		х	
			-	1"	۲				H	100	Н	╁	H	+2	+	r	Н	+	+	Н	\dashv	X	×	X	X	X	┝		Н			Х	
				+	+	1			Н	╁	Н	+	Н	+	+	H	Н	+	+	Н	\dashv		╀	\vdash	-	L	⊢		Н			-	
			_	+	+	-	-		H	╁	Н	┿	H	+	╁	⊢	Н	+	+	Н	-		╀	H	L	L	-		Н			_	
			-	+	┝	┝	-		H	┾	Н	+	Н	+	╀	L	4	+	\vdash	Н	4		╀	_		_	L		Ц				
	ASE E-MAIL ALL PI US.COM; ERI-EIN		us.co	<u>l</u>			Oxyg	silica jenale BA n	es = 1	MTBE	, ET	BE, I	DIPE	, TAI	ME.	TBA	, 1,2	2-DC	A, E	DB		oratory Temper Sample	atur Cor	e Up ntain	on l	Rec	ct?			Y		N	
Relinquished by:			4/	Pate 9//2	160	ime		20	m		11		er		4,	_	1/2	1	Time	5								<u>a)</u>		Y		N	
- 41 -	ally to	550	4/2	1/12	★ 10.00	me 30	Rece	ived b	y (Lai	11	//	at	_		4	Da	1	0	Time 600	,	Leve Site : Proje	Specific	- if y	es, por al	oleas	e at	tach	pre-schedule w/	Test/	Amer	ica		

Package 1 of 1

Send Label To Printer

☑ Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

ADDITIONAL OPTIONS:

Send Label Via Email

Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.

WORK ORDER #: 12-04-0 5 5 7

SAMPLE RECEIP	PT FORM	Cooler	of _/
CLIENT: CardNOEKI	DAT	E: <u>04</u> /	10/12
TEMPERATURE: Thermometer ID: SC2 (Criteria: 0.0 °C - 6.0 °C Temperature °C - 0.3 °C (CF) = 9 Sample(s) outside temperature criteria (PM/APM contacted by: Sample(s) outside temperature criteria but received on ice/chilled Received at ambient temperature, placed on ice for trans	°C		nple
Ambient Temperature: ☐ Air ☐ Filter		Init	tial:
	oţ Present □ N/ ot Present		itial:
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples COC document(s) received complete	£	No	N/A
□ No analysis requested. □ Not relinquished. □ No date/time relinds Sampler's name indicated on COC	quished.		
Proper containers and sufficient volume for analyses requested. Analyses received within holding time	Ø		
Proper preservation noted on COC or sample container	<u>.</u>		
Volatile analysis container(s) free of headspace Tedlar bag(s) free of condensation CONTAINER TYPE:			
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () Water: □VOA □VOAna₂ □125AGB □125AGBh □ □500AGB □500AGJ □500AGJs □250AGB □250CGB □ □250PB □125PB □125PBznna □100PJ □100PJ	125AGBp □1AGB 1250CGBs □1PB	□1AGBna □1PBna	ı₂ □1AGBs
Air: DTedlar® DSumma® Other: D Trip Blank Lots Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Reseals Preservative: h: HCL n: HNO3 nas:Nas2s203 na: NaOH p: H3PO4 s: H3SO4 u: Ultra-pure	able Bag E: Envelope	Reviewed t	у: 1/0/

APPENDIX D WASTE DISPOSAL DOCUMENTATION

NON-HAZARDOUS WASTE MANIFEST

The state of the s	ed for use on elite (12 pitch) typew						
NON-HAZARI WASTE MANI		's US EPA ID No.			Manifest Document No	ER12.735	2. Page 1
3. Generator's Name and Mailin	g Address	92711					
	990 <	1017	<i>f</i>			CARDNO ED	4
4. Generator's Phone (ALBON	Y CA	i Li				
5, Transporter 1 Company Name	9	6 US	EPA ID Number		A. State Trans	sporter's ID	
CARDNO	ERI	1			B. Transporte		
7. Transporter 2 Company Name)	8. US	EPA ID Number		C. State Trans	sporter's ID	
					D. Transporte	r 2 Phone	
Designated Facility Name and	Site Address	10. US	EPA ID Number		E. State Facili	ly's ID	
PETRAL DIC							
THE C APPORT HE PRO VIETTA, CA GAST		1			F. Facility's Ph	70F) \$74-	2024
11. WASTE DESCRIPTION				12. Co	44-19		
TI. WASTE DESCRIPTION				No.	Type	13. Total Quantity	14. Unil WI./Vol
a,				-	.,,pc	deantity	VVI.7 V OI.
Non-Hus	PURCE WI	AT ER		\$ (POLT	7	Gne
G b. E N E c.							
Ë						<u></u>	
R c							
A							
d.							
G. Additional Descriptions for Mate	erials Listed Above				H. Handling Co	des for Wastes Listed Above	e
*				- 1			
BROWN, N	e Solies OD	OR					
				1			
15. Special Handling Instructions a	and Additional Information						
16. GENERATOR'S CERTIFICAT	ION: I hereby certify that the conte	ats of this shipment are fully a	and accurately described	and are in a	Legenoste		
in proper condition for transpor	t. The materials described on this r	nanifest are not subject to fed	deral hazardous waste reg	ulations.	Геаросіа		
							Date
Printed/Typed Name		Signature				Month	n Day Year
17. Transporter 1 Acknowledgemen	nt of Receipt of Materials						Date
Printed/Typed Name	/-	Signature				Month	Day Year
18. Transporter 2 Acknowledgemen						7	19/2
17. Transporter 1 Acknowledgement Printed/Typed Name SHEVER 18. Transporter 2 Acknowledgement Printed/Typed Name	it of Necelpt of Materials	Signature				A # 14	Date
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Joighalais				Month	Day Year
19. Discrepancy Indication Space							
20. Facility Owner or Operator; Cert		terials covered by this manife	est, except as noted in item	19.			
	J (1	T.				Date
Printed/Typed Name	WHITEHEAD	Signature	M. N			Month 1 i	Day Year
LALICHNER	THEREAU						19 12

