ExxonMobil Environmental Services Company 4096 Piedmont Avenue #194 Oakland, California 94611 510 547 8196 Telephone 510 547 8706 Facsimile Jennifer C. Sedlachek Project Manager

RECEIVED By Alameda County Environmental Health 10:37 am, Mar 24, 2016

March 24, 2016

Mr. Mark Detterman Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Room 250 Alameda, California 94502-6577

RE: Former Exxon RAS #79374/990 San Pablo Avenue, Albany, California.

Dear Mr. Detterman:

Attached for your review and comment is a copy of the letter report entitled **Response to Request for Work Plan and Remedial Progress Report**, dated March 24, 2016, for the above-referenced site. The report was prepared by Cardno of Petaluma, California, and details activities at the subject site.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions or comments, please contact me at 510.547.8196.

Sincerely,

Mehnifer C. Sedlachek Project Manager

Attachment: Cardno's Response to Request for Work Plan and Remedial Progress Report, dated March 24, 2016

w/ attachment
 Ms. Muriel T. Blank, Trustee, The Blank Family Trust
 Reverend Deborah Blank, Trustee, The Blank Family Trust
 Ms. Marcia Blank Kelly, The Blank Family Trust
 Mr. Reece Halpern, Halpern Law Office

w/o attachment Mr. Scott Perkins, Cardno

March 24, 2016 Cardno 2735C.L13

Ms. Jennifer C. Sedlachek ExxonMobil Environmental Services Company 4096 Piedmont Avenue #194 Oakland, California 94611 Cardno

601 N. McDowell Boulevard Petaluma, CA 94954 USA

 Phone:
 +1 800 382 9105

 Fax:
 +1 707 789 0414

 Contractor:
 #997036

www.cardno.com

SUBJECTResponse to Request for Work Plan and Remedial Progress ReportFormer Exxon Service Station 79374990 San Pablo Avenue, Albany, California

Alameda County Department of Environmental Health RO 0002974

Ms. Sedlachek:

At the request of ExxonMobil Environmental Services (EMES), on behalf of Exxon Mobil Corporation, Cardno prepared this response for the subject site to address comments made by the Alameda County Health Care Services Agency, Environmental Health Services (ACEH), in a letter dated January 8, 2016 (Appendix A), written in response to Cardno's *Data Gap Investigation, Well Installation, and Remedial Progress Report,* dated November 12, 2015 (Cardno, 2015c) and *Groundwater Monitoring and Remediation Status Report, Fourth Quarter 2015,* dated December 17, 2015 (Cardno, 2015d). The letter states that ACEH reviewed the site under the State Water Resource Control Board's *Low-Threat Underground Storage Tank Case Closure Policy* (LTCP), adopted August 17, 2012 (SWRCB, 2012). ACEH requested the submission of a Data Gap Investigation Work Plan and a Remedial Progress Report by March 25, 2016. During the first quarter of 2016, an application was submitted to the Bay Area Air Quality Management District (BAAQMD) for an authority to construct and permit to operate a portable remediation system.

SITE DESCRIPTION

Former Exxon Service Station 79374 is located at 990 San Pablo Avenue, on the northwestern corner of the intersection of Buchanan Street and San Pablo Avenue, Albany, California (Plate 1). A Generalized Site Plan is included as Plate 2. An Extended Site Plan is included as Plate 3. Select groundwater analytical data is presented on Plate 4. Select groundwater analytical data is presented on Plate 5. A tabular site conceptual model for the site detailing additional site information is included as Appendix B.

A retail outlet for Benjamin Moore paints and painting products and associated asphalt parking area currently occupies the site. The surrounding areas consist of residential and commercial properties (Plate 2). The City of Albany Fire Department and Police Department are located south of the site on Buchanan Street. ACEH case number RO0000119, identified as Firestone #3655 in the GeoTracker[™] database, is located across San Pablo Avenue to the east (Plate 3). A Shell service station and an Atlantic Richfield Company (Arco) service station are located approximately 350 and 500 feet away, respectively, south-southeast of the site.

In 1945, a service station owned by Signal Oil Company occupied the site (EDR, 2009a). Humble Oil Company (a predecessor to Exxon Mobil Corporation) acquired the site in approximately 1967 from Standard Oil Company of California (a predecessor to Chevron), rebranding the site as an Enco station. The station was rebranded as an Exxon service station in 1975 (EDR, 2009a; EDR, 2009b). The service station was demolished in 1983. During demolition activities, one used-oil UST and four gasoline USTs were removed and the resulting tank cavity was backfilled with sand and compacted to 90% (City of Albany, 1983).

Cumulative groundwater monitoring and sampling data are summarized in Tables 1A through 1C. Well construction details are presented in Table 2. Cumulative soil analytical results are summarized in Tables 3A and 3B. Cumulative soil vapor analytical results are summarized in Table 4.

RESPONSE TO COMMENTS

Comments from the ACEH's letter dated January 8, 2016 (Appendix A) are paraphrased in boldface type followed by Cardno's response.

Present a strategy in a data gap work plan to address items related to the secondary source removal or provide justification of why the site satisfies the general criterion for secondary source removal.

Cardno agrees that the secondary source has not been removed to the extent practicable; however, Cardno does not agree that a data gap work plan is warranted to further evaluate the secondary source. To date, there have been three soil borings (B1, B2, and B4) and six wells (MW3, MW3A, SVE1 through SVE3, and AS1) installed within or directly adjacent to the UST cavity, providing adequate information about the UST cavity (Plate 2). A strategy to perform secondary source removal was previously presented in the *Feasibility Study/Corrective Action Plan*, dated February 4, 2015 (Cardno, 2015a), and the *Remedial Design Implementation Plan and Data Gap Investigation Work Plan*, dated May 15, 2015 (Cardno 2015b). An application for a site-specific air discharge permit from the BAAQMD has been submitted and is being processed. Due to the proximity of the site a public school, the permit approval process will likely be lengthened by the notification requirements required when the discharge point is located near a school. Based on the timing of similar permit submittals with the BAAQMD, it is anticipated that the permit review

March 24, 2016 Cardno 2735C.L13 Former Exxon Service Station 79374, Albany, California

and notification requirements will take approximately six months and possibly longer if significant public comments are received. Cardno anticipates initiating remediation activities following the receipt of the permit and has the remediation equipment ready to mobilize.

Present a strategy to address the media-specific criteria for groundwater as the case file indicates insufficient data to support requisite characteristics of plume stability or classification. The concern is not limited to petroleum hydrocarbons but also includes HVOCs.

The current well network at the site has existed for less than six months. Well MW9 has only been sampled twice to date (October and November 2015). Cardno believes that preparing a data gap work plan for further groundwater assessment at this time is premature and the existing groundwater wells and borings may be adequate. Borings B8 and B10 through B15 were advanced within or directly adjacent to Buchanan Street in 2014 (Cardno ERI, 2014). It should be noted that the police station across Buchanan Street would not permit blocking vehicular access to their parking spaces. The police department agreed to the installation of boring B15 using hand tools, but would not allow for the use of a drill rig due to concerns with potentially limiting vehicle access during emergencies. During the previous mobilization, the police department would not allow borings or wells to be installed between the locations of borings B14 and B15. The fire department has also expressed similar concerns about blocking vehicular access to the fire station, which is located next to the police station. Given the restrictions on drilling locations near the police station, Cardno believes that the existing well and boring network adequately delineate concentrations south of the site (Plates 4 and 5). In addition to these wells and borings, there are borings associated with the environmental investigation at the fire station located across Buchanan Street (Appendix C). The environmental investigation at the fire station was closed in December 2014 (Appendix C).

In addition to the fire station, there is another environmental investigation across San Pablo Avenue at Former Firestone #3655, located at 969 San Pablo Avenue. In the *Focused Site Conceptual Model*, dated May 15, 2015 (Weiss, 2015), the dissolved-phase concentrations of HVOCs at the Firestone site are attributed to the subject site. Cardno does not agree that the HVOC concentrations at the Firestone site originated at the subject site. Cardno believes that it is significant that the maximum residual PCE concentration (7.23 mg/kg) at the Firestone site was reported from a sample collected at 5 feet bgs from the north wall of the used-oil UST excavation (Appendix D). Although the groundwater gradient at the subject site appears variable at times, the distribution of petroleum hydrocarbon concentrations strongly suggest that the predominant groundwater flow direction is toward the south to southwest, which is consistent with the groundwater flow direction observed at the Firestone site (Appendix D) and does not support concentrations migrating from the subject site to the Firestone site. If groundwater were to flow from the subject site to the Firestone site, presumably higher concentrations of petroleum hydrocarbons would be reported in wells MW1 and MW2, where concentrations of TPHg and BTEX are generally near or below laboratory reporting limits (Table 1A). To further evaluate HVOC concentrations south of the site, Cardno has requested that

March 24, 2016 Cardno 2735C.L13 Former Exxon Service Station 79374, Albany, California

the existing laboratory data for groundwater samples collected from borings B8, B10 through B13, and B15 be reanalyzed for PCE and TCE. The existing data may contain usable PCE and TCE results that were not previously evaluated when the samples were analyzed by EPA Method 8260. The results of the reanalysis will be submitted to ACEH in the next status report.

Cardno does not believe that a data gap investigation for further groundwater assessment is warranted at this time. Present a strategy to address the risk of indoor air intrusion. Recent views of the site on Google Earth indicate that the elevation of the residential home is 1 to 2 feet lower than the subject site.

Cardno agrees that the neighboring residential property appears on Google Earth to sit at a lower elevation than the subject site due to what appears to be a retaining wall installed between the site and the residential property. In reality, what appears to be a retaining wall is actually just a curb and the neighboring property is at close to the same elevation as the site, as shown in the photo below.

Photo Showing the Western Property Boundary

Nonetheless, the reported vapor-phase concentrations at the subject site exceed applicable screening levels and could pose a vapor intrusion risk. In addition to removing secondary source, the proposed remediation at the site is intended to reduce soil vapor concentrations. The *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air* (DTSC, 2011) presents four potential paths to pursue when a preliminary screening evaluation (Step 5) indicates that the risk due to vapor intrusion is unacceptable. The four available options are:

- Conduct an evaluation of vapor intrusion with site-specific data.
- Collect indoor air samples to substantiate exposure from vapor intrusion as indicated by the preliminary evaluation.
- Remediate the subsurface to levels determined by the preliminary screening evaluation process.
- Institute engineering controls at the building to mitigate exposure.

Cardno proposes to remediate the subsurface and perform future soil vapor sampling and compare the results with the media-specific criteria included in the LTCP. Cardno anticipates initiating remediation activities following the receipt of the BAAQMD discharge permit.

Please prepare a data gap investigation work plan with a focused site conceptual model in tabular format.

Based on the above, Cardno does not believe that an additional data gap investigation work plan is warranted at this time. The tabular site conceptual model was last updated in the *Data Gap Investigation, Well Installation, and Remedial Progress Report*, dated November 12, 2015 (Cardno, 2015c), and is included in Appendix B.

Please include laboratory analysis for HVOCs in the next vapor extraction event.

Future influent SVE samples will be analyzed for full-scan VOCs using EPA method TO-15M. The pending BAAQMD permit may have specific requirements for the laboratory analysis of effluent samples. Effluent samples will be analyzed as required to demonstrate compliance with the permit conditions.

Please copy ACEH on system discharge reports to a POTW and to the BAAQMD.

Based on the amount of water produced during previous events, there are no plans to acquire a POTW permit at this time. Documentation of the off-site water disposal will be included in the applicable status reports. Cardno will copy ACEH on discharge reports submitted to the BAAQMD.

In future groundwater monitoring reports, please tabulate chlorinated solvents and other detected compounds under individual column headers.

Updated groundwater analytical tables are included as Tables 1A through 1C. Cardno believes it is reasonable to limit the amount of analyses that are tabulated at some point. Tabulating all analyses detected above the laboratory limit can be extremely time consuming. For example, when an analyte is reported for the first time, not only does that data need to be tabulated but all previous laboratory reports need to be reviewed to accurately tabulate the data. Please notify us if there are any particular analytes that ACEH would like to see tabulated. Otherwise, Cardno proposes to limit the tabulated data to the current three tables, which contain 40 analytes.

LIMITATIONS

For documents cited that were not generated by Cardno, the data taken from those documents is used "as is" and is assumed to be accurate. Cardno does not guarantee the accuracy of this data and makes no warranties for the referenced work performed nor the inferences or conclusions stated in these documents.

This document and the work performed have been undertaken in good faith, with due diligence and with the expertise, experience, capability, and specialized knowledge necessary to perform the work in a good and workmanlike manner and within all accepted standards pertaining to providers of environmental services in California at the time of investigation. No soil engineering or geotechnical references are implied or should be inferred. The evaluation of the geologic conditions at the site for this investigation is made from a limited number of data points. Subsurface conditions may vary away from these data points.

Please contact Mr. Scott Perkins, Cardno's project manager for this site, at <u>scott.perkins@cardno.com</u> or at (707) 766-2000 with questions regarding the subject site.

Sincerely,

Scott Perkins Senior Project Manager for Cardno Direct Line 707 766 2000 Email: <u>scott.perkins@cardno.com</u>

David R. Daniels P.G. 8737 for Cardno 707 766 2000 Email: david.daniels@cardno.com

March 24, 2016 Cardno 2735C.L13 Former Exxon Service Station 79374, Albany, California

Enclosure:

References

Acronym List

Plate 1	Site Vicinity Map
Plate 2	Generalized Site Plan
Plate 3	Extended Site Plan
Plate 4	Select Groundwater Analytical Results
Plate 5	Select Soil Analytical Results
Table 1A	Cumulative Groundwater Monitoring and Sampling Data
Table 1B	Additional Cumulative Groundwater Monitoring and Sampling Data - VOCs
Table 1C	Additional Cumulative Groundwater Monitoring and Sampling Data - VOCs
Table 2	Well Construction Details
Table 3A	Cumulative Soil Analytical Results
Table 3B	Additional Cumulative Soil Analytical Results – HVOCs and PAHs
Table 4	Cumulative Soil Vapor Analytical Results
Appendix A	Correspondence
Appendix B	Tabular SCM
A	Other of Allennin First Department 4004 Marin Australia Allennin Oplifamia

- Appendix C City of Albany Fire Department, 1001 Marin Avenue, Albany, California
- Appendix D Former Firestone #3655, 969 San Pablo Avenue, Albany, California

March 24, 2016 Cardno 2735C.L13 Former Exxon Service Station 79374, Albany, California

cc: Mr. Mark Detterman, Alameda County Health Care Services Agency, Environmental Health Services, 1131 Harbor Bay Parkway, Suite 250, Alameda, California, 94502-6577

Ms. Muriel T. Blank, Trustee, The Blank Family Trusts, 1164 Solano Avenue, Albany, California, 94706

Reverend Deborah Blank, Trustee, The Blank Family Trusts, 1563 Solano Avenue, Berkeley, California, 94707

Ms. Marcia Blank, Trustee, The Blank Family Trusts, 641 SW Morningside Road, Topeka, Kansas, 66606

Mr. Reece Halpern, Halpern Law Office, 1534 Solano Avenue, Albany, California, 94707

REFERENCES

Cardno. February 4, 2015a. Feasibility Study/Corrective Action Plan, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #RO00002974.

Cardno. May 15, 2015b. Remedial Design Implementation Plan and Data Gap Investigation Work Plan, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #R000002974.

Cardno. November 12, 2015c. Data Gap Investigation, Well Installation, and Remedial Progress Report, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #R000002974.

Cardno. December 17, 2015d. Groundwater Monitoring and Remedial Status Report, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #R000002974.

Cardno ERI. May 2, 2014. Soil, Soil Vapor, and Groundwater Investigation Report and Site Conceptual Model, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California, Alameda County #RO00002974. City of Albany. March 28, 1983. Building Permit 82-0708.

Department of Toxic Substances Control, California Environmental Protection Agency (DTSC). October 2011. *Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance).*

Environmental Data Resources Inc. (EDR). December 1, 2009a. *The EDR-City Directory Abstract, 990 San Pablo Avenue, Albany, CA 94706. Inquiry Number: 2648519.6.*

Environmental Data Resources Inc. (EDR). December 1, 2009b. *Certified Sanborn® Map Report, 990 San Pablo Avenue, Albany, CA 94706. Inquiry Number: 2648519.36.*

State Water Resources Control Board (SWRCB). August 17, 2012. Low-Threat Underground Storage Tank Case Closure Policy.

Weiss Associates (Weiss). May 15, 2015. Focused Site Conceptual Model Report for Former Firestone Tire Store #3655, 996 San Pablo Avenue, Albany, California, ACEH Case No.R0000119.

10

March 24, 2016 Cardno 2735C.L13 Former Exxon Service Station 79374, Albany, California

ACRONYM LIST

µg/L	Micrograms per liter
μs	Microsiemens
1,2-DCA	1,2-dichloroethane
acfm	Actual cubic feet per minute
AS	Air sparge
bgs	Below ground surface
BTEX	Benzene, toluene, ethylbenzene, and total xylenes
CEQA	California Environmental Quality Act
cfm	Cubic feet per minute
COC	Chain of Custody
CPT	Cone Penetration (Penetrometer) Test
DIPE	Di-isopropyl ether
DO	Dissolved oxygen
DOT	Department of Transportation
DPE	Dual-phase extraction
DTW	Depth to water
EDB	1,2-dibromoethane
EPA	Environmental Protection Agency
ESL	Environmental screening level
ETBE	Ethyl tertiary butyl ether
FID	Flame-ionization detector
fpm	Feet per minute
GAC	Granular activated carbon
gpd	Gallons per day
gpm	Gallons per minute
GWPIS	Groundwater pump and treat system
HVOC	Halogenated volatile organic compound
J	Estimated value between MDL and PQL (RL)
LEL	Lower explosive limit
LPC	Liquid-phase carbon
LUFT	Leaking underground fuel tank
LUSI	Leaking underground storage tank
	Maximum contaminant level
	Method detection innit
mg/kg	Milligrams per kilogram
mg/L	Milligrams per aubie meter
MDE	Multi phase extraction
	Mothed reporting limit
mel	
	Methyl tertiany butyl ether
MTCA	Model Toxics Control Act
NAL	Natural attenuation indicators
NADI	Non-aqueous phase liquid
	rion-aqueous phase ilquiu

NEPA NGVD NPDES O&M ORP OSHA OVA P&ID PAH PCB PCE	National Environmental Policy Act National Geodetic Vertical Datum National Pollutant Discharge Elimination System Operations and Maintenance Oxidation-reduction potential Occupational Safety and Health Administration Organic vapor analyzer Process & Instrumentation Diagram Polycyclic aromatic hydrocarbon Polychlorinated biphenyl Tetrachloroethene or perchloroethylene
	Photo-ionization detector Programmable logic control
	Publicly owned treatment works
nomy	Parts per million by volume
POI	Practical quantitation limit
nsi	Pounds per square inch
PVC	Polyvinyl chloride
QA/QC	Quality assurance/quality control
RBSL	Risk-based screening levels
RCRA	Resource Conservation and Recovery Act
RL	Reporting limit
scfm	Standard cubic feet per minute
SSTL	Site-specific target level
STLC	Soluble threshold limit concentration
SVE	Soil vapor extraction
SVOC	Semi-volatile organic compound
IAME	I ertiary amyl methyl ether
TBA	l ertiary butyl alcohol
TCE	I richloroethene
TOC	Top of well casing elevation; datum is msi
	Total oli allu glease
TPHa	Total petroleum hydrocarbons as diesei
TPHmo	Total petroleum hydrocarbons as motor oil
TPHs	Total petroleum hydrocarbons as stoddard solvent
TRPH	Total recoverable petroleum hydrocarbons
UCL	Upper confidence level
USCS	Unified Soil Classification System
USGS	United States Geologic Survey
UST	Underground storage tank
VCP	Voluntary Cleanup Program
VOC	Volatile organic compound
VPC	Vapor-phase carbon

	Analyte	Concentrations in ug/L	1									
	Sample	e Date e Depth										
	Total F as q	Petroleum Hydrocarbons										
	Benzei	ne										
	Methyl	Tertiary Butyl Ether										
	<	Less than the Stated La Reporting Limit	boratory									
	ug/L	Micrograms per Liter										
	NM	Not Measured										
	а	The chromatographic pa does not match that specified standard.	attern of the									
	b	b Groundwater did not enter boring; sampl not collected.										
	 Lighter than water immiscible sheen/p is present. 											
	d	ains greater then me % sediment.										
	е	Unmodified or weakly m gasoline is significan	nodified t.									
	i	Strongly aged gasoline are significant.	or diesel compounds									
_	k	No recognizable pattern	۱.									
	f	Heavier gasoline-range are significant.	compounds									
	NOTE A	ir sparge and soil vapor extraction wells not rout sampled.	inely									

	Analyte Sampl Sampl Total F as c Total F as c Benze	Concentrations in mg/kg e Date e Depth Petroleum Hydrocarbons liesel Petroleum Hydrocarbons asoline ne
	< mg/kg	Less than the Stated Laboratory Reporting Limit Milligrams per kilogram
	а	The chromatographic pattern does not match that of the specified standard.
	b	Heavier gasoline range compounds are significant.
4/10	С	Diesel range compounds are significant; no recognizable pattern.
14.5 F I. <5.0	d	Gasoline range compounds are significant.
<0.50 <0.0050	е	Strongly aged gasoline or diesel range compounds are significant.
	f	No recognizable pattern.
	j	Estimated value; analyte present at concentration above the method detection limit but below the reporting limit.
	T	The reporting limit is elevated resulting from matrix interference.
	m	Reporting limits raised due to high level of non-target analytes.

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA
Former Exxon Service Station 79374
000 Can Dable Avenue

Albany, California															
Well ID	Sampling Date	Depth (feet)	TOC Elev. (feet)	DTW (feet)	GW Elev.	NAPL (feet)	O&G (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)
Monitoring	Well Samples														
MW1	11/04/10		Well insta	lled.											
MW1	12/01/10		41.45	Well sur	veved.										
MW1	12/16/10		41.45	9.18	, 32.27	No		<250	71a	54	<0.50	1.4	0.65	0.58	1.6
MW1	01/31/11		41.45	8.78	32.67	No		<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
/W1	04/07/11		41.45	8.45	33.00	No		<250	65a	160a	<0.50	2.9	0.92	<0.50	1.7
/W1	07/18/11		41.45	9.49	31.96	No		<250	<50	63a	<0.50	<0.50	<0.50	<0.50	<0.50
/W1	10/13/11		41.45	9.86	31.59	No		<250	54	<50	<0.50	<0.50	<0.50	<0.50	<0.50
/W1	04/06/12		41.45	8.11	33.34	No		<250	130	130	<0.50	2.1	<0.50	<0.50	<0.50
MW1	10/19/12		41.45	10.42	31.03	No		<250	<50	<50	<0.50	0.51	2.2	<0.50	0.65
/W1	06/11/13		41.45	10.48	30.97	No		<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
/W1	12/19/13		41.45	10.67	30.78	No		<250	<50	<50	<0.50	<0.50	1.3	<0.50	0.53
/W1	04/03/14		44.19	Elevatio	n convert	ed to NAV	/D88.								
/W1	04/30/14		44.19	9.49	34.70	No									
/W1	05/01/14		44.19					<240	<48	<50	<0.50	<0.50	<0.50	<0.50	<0.50
/W1	10/28/14		44.19	10.85	33.34	No		<250	61a	59	<0.50	1.2	<0.50	0.64	<0.50
/W1	06/02/15		44.19	10.35	33.84	No		<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW1	11/18/15		44.19	10.72	33.47	No									
MW1	11/19/15		44.19					<240	<47	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	11/04/10		Well insta	lled.											
MW2	12/01/10		41.25	Well sur	veyed.										
MW2	12/16/10		41.25	8.11	33.14	No		<250	110a	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	01/31/11		41.25	9.29	31.96	No		<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	04/07/11		41.25	8.21	33.04	No		<250	<50	<50	0.51	<0.50	<0.50	<0.50	<0.50
MW2	07/18/11		41.25	9.52	31.73	No		<250	<50	54a	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	10/13/11		41.25	9.56	31.69	No		<250	98	75a	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	04/06/12		41.25	8.68	32.57	No		<250	60	68	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	10/19/12		41.25	11.03	30.22	No		<250	<50	59a	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	06/11/13		41.25	10.67	30.58	No		<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	12/19/13		41.25	10.77	30.48	No		<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	04/03/14		43.99	Elevatio	n convert	ed to NAV	/D88.								
MW2	04/30/14		43.99	9.63	34.36	No									
MW2	05/01/14		43.99					<240	<48	53a	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	10/28/14		43.99	11.03	32.96	No		<250	78a	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	06/02/15		43.99	10.50	33.49	No		<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW2	11/18/15		43.99	10.87	33.12	No									
MW2	11/19/15		43.99					<240	60a	<50	<0.50	<0.50	<0.50	<0.50	<0.50
WW3	11/08/10		Well insta	lled.											
WW3	12/01/10		40.42	Well sur	veyed.										
VW3	12/16/10		40.42	8.18	32.24	No		<250	2,900a	19,000	<12	350	130	940	290

TABLE 1A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

Well ID	Sampling	Depth	TOC Elev.	. DTW	GW	NAPL	O&G	TPHmo	TPHd	TPHg	MTBE	В	Т	E	Х
	Date	(feet)	(feet)	(feet)	Elev.	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW3	01/31/11		40.42	7.64	32.78	No		390	2,800a	17,000a	<12	540	140	700	270
MW3	04/07/11		40.42	5.88	34.54	No		<250	2,700a	14,000	<10	600	150	780	230
MW3	07/18/11		40.42	8.31	32.11	No		<250	1,700a	19,000	<10	650	140	660	220
MW3	10/13/11		40.42	8.76	31.66	No		<250	1,900a	16,000	<10	520	150	900	270
MW3	04/06/12		40.42	8.13	32.29	No		<250	3,200a	18,000	<20	300	120	1,100	180
MW3	10/19/12		40.42	9.37	31.05	No		<250	1,700a	11,000a	<10	380	120	740	150
MW3	06/11/13		40.42	9.48	30.94	No		<250	2,700a	17,000	<10	270	110	990	140
MW3	12/19/13		40.42	10.00	30.42	No									
MW3	12/20/13		40.42					<250	2,000a	16,000	<10	310	120	710	120
MW3	04/03/14		43.16	Elevatio	n convert	ed to NA	/D88.								
MW3	04/30/14		43.16	9.17	33.99	No									
MW3	05/01/14		43.16					<240	3,100a	18,000	<10	230	110	1,100	170
MW3	10/28/14		43.16	10.10	33.06	No		<250	4,800a	17,000	<20	330	120	1,200	150
MW3	06/02/15		43.16	9.30	33.86	No		<250	3,900a	18,000a	<20	290	110	850	140
MW3	11/18/15		43.16	10.06	33.10	No									
MW3	11/19/15		43.16					<240	3,000a	1,500a	<5.0	290	110	340	100
MW3A	01/18/12		Well insta	alled.											
MW3A	02/06/12		40.68	Well sur	veyed.										
MW3A	04/06/12		40.68	6.02	34.66	No		<250	170a	1,300	<2.0	41	7.5	140	38
МWЗA	10/19/12		40.68	10.44	30.24	No		<250	860a	4,400a	<5.0	390	59	410	82
МWЗA	06/11/13		40.68	9.75	30.93	No		<250	160a	1,100	<2.0	99	14	110	3.6
МWЗA	12/19/13		40.68	10.05	30.63	No		<250	270a	1,800	<2.0	150	18	65	4.7
МWЗA	04/03/14		43.42	Elevatio	n convert	ed to NA\	/D88.								
MW3A	04/30/14		43.42	7.55	35.87	No									
MW3A	05/01/14		43.42					<240	<48	130a	<0.50	7.0	1.2	7.4	1.3
MW3A	10/28/14		43.42	10.33	33.09	No		<250	330a	1,600	<0.50	150	17	26	4.0
MW3A	06/02/15		43.42	9.48	33.94	No		<250	89a	170a	<0.50	14	0.95	6.7	1.8
MW3A	11/18/15		43.42	10.15	33.27	No									
MW3A	11/19/15		43.42					<240	240a	660a	<2.0	86	7.2	3.8	3.6
MW4	11/05/10		Well insta	alled.											
MW4	12/01/10		39.30	Well sur	veyed.										
MW4	12/16/10		39.30	6.10	33.20	No		<250	2,000a	9,900	<5.0	440	40	170	380
MW4	01/31/11		39.30	6.84	32.46	No		260	3,900a	13,000	<10	500	59	320	740
MW4	04/07/11		39.30	5.29	34.01	No		<250	1,900a	9,600	<10	530	59	250	340
MW4	07/18/11		39.30	7.36	31.94	No		<250	2,800a	14,000	<10	570	66	320	510
MW4	10/13/11		39.30	7.83	31.47	No		320	7,200a	14,000	<10	350	43	340	690
MW4	04/06/12		39.30	6.21	33.09	No		<250	1.800a	9.100a	<10	380	40	220	410
MW4	10/19/12		39.30	10.64	28.66	No		1,400a	20,000a	270.000	<10	440	88	2,100	3,800
MW4	03/06/13		39.30	8.02	31.28	No									
MW4	06/11/13		39.30	9.05	30.25	No		<250	3,400a	16.000	<10	430	48	520	820
MW4	12/19/13		39.30	8.95	30.35	No									
MW4	12/20/13		39.30					<250	2 800a	13 000	<10	590	41	430	530
	12/20/10		00.00					2200	2,0000	10,000	210	000		-00	000

	Sampling	Denth	TOC Elev		GW	ΝΔΡΙ	086	TPHmo	ТРНА	ТРНа	MTRE	B	т	F	Y
Weirid	Date	(feet)	(feet)	(feet)	Elev.	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	, (μg/L)	(µg/L)	(µg/L)
MW4	03/05/14		39.30			No									
MW4	04/03/14		42.04	Elevatio	n conver	ted to NAV	/D88.								
MW4	04/30/14		42.04	6.25	35.79	No									
MW4	05/01/14		42.04					<240	3,000a	13,000	<10	520	46	310	340
MW4	10/28/14		42.04	10.20	31.84	No		<250	7,400a	15,000	<10	590	42	360	230
MW4	06/02/15		42.04	9.60	32.44	Sheen		<250	5,100a	22,000	<10	490	36	280	170
MW4	11/18/15		42.04	8.58	33.46	No									
MW4	11/19/15		42.04					930a	7,600a	1,800a	<5.0	290	21	180	140
MM/5	11/11/10		Wall inst	alled											
MM/5	12/01/10		10.38	Moll cur	hoved										
MM/5	12/01/10		40.30	7 60	32 60	No		~250	1 1002	6 200	~2.5	150	96	270	980
	01/21/11		40.30	7.09 8.00	22.09	No		~230	1,100a	15,200	<2.5	520	310	1 100	2 500
	01/31/11		40.30	6.70	32.30	No		270	4,000a	2,500	<10	520	310	1,100	2,500
	04/07/11		40.30	0.75	33.00	No		<250	010a	2,500	<2.5	240	32	160	390
	07/10/11		40.36	7.03	32.75	INO N.a		<250	2,000a	11,000	<2.5	340	160	990	1,600
NIVIS	10/13/11		40.38	9.31	31.07	NO No		660	7,600a	23,000	<20	390	160	1,200	3,100
IVIV5	04/06/12		40.38	0.77	33.61	INO N I a		<250	880a	6,000a	<5.0	62	17	360	680
MVV5	10/19/12		40.38	10.64	29.74	NO		280a	2,100a	15,000	<20	580	63	950	1,400
MW5	06/11/13		40.38	10.06	30.32	No		<250	2,700a	13,000	<20	540	36	930	1,200
MW5	12/19/13		40.38	9.85	30.53	No									
MW5	12/20/13		40.38					<250	2,100a	21,000	<20	370	36	1,500	1,400
MW5	04/03/14		43.12	Elevatio	n conver	ted to NAV	/D88.								
MW5	04/30/14		43.12	7.51	35.61	No									
MW5	05/01/14		43.12					<240	2,000a	10,000	<10	170	10	600	510
MW5	10/28/14		43.12	10.00	33.12	No		360a	6,200a	16,000	<10	550	17	890	360
MW5	06/02/15		43.12	9.68	33.44	Sheen		340a	4,400a	19,000	<20	340	<20	880	430
MW5	11/18/15		43.12	9.18	33.94	No									
MW5	11/19/15		43.12					1,200a	8,300a	5,000	<20	230	<20	710	320
MW6	11/03/10		Well inst	alled.											
MW6	12/01/10		41.06	Well sur	veyed.										
MW6	12/16/10		41.06	8.55	, 32.51	No		<250	110a	1,700	<0.50	2.8	1.2	61	46
MW6	01/31/11		41.06	8.52	32.54	No		<250	800a	2,000a	<1.0	6.0	<1.0	30	24
MW6	04/07/11		41.06	7.78	33.28	No		<250	660a	2,000	<0.50	10	1.0	20	19
MW6	07/18/11		41.06	9.27	31.79	No		<250	350a	1,000a	<0.50	2.5	<0.50	3.8	3.5
MW6	10/13/11		41.06	10.21	30.85	No		<250	370a	890a	<0.50	2.8	<0.50	7.9	5.5
MW6	04/06/12		41.06	7.19	33.87	No		<250	440a	1.400a	< 0.50	2.4	< 0.50	13	15
MW6	10/19/12		41.06	11.36	29.70	No		<250	99a	510a	<0.50	4.2	1.6	8.0	7.0
MW6	06/11/13		41.06	10.81	30.25	No		<250	150a	500	<0.50	<0.50	<0.50	24	1 1
MW6	12/19/13		41.06	10.78	30.28	No		<250	68a	440	<0.50	<0.50	<0.50	2.3	0.87
MW6	04/03/14		43.80	Flevatio	n conver	ted to NA\	/D88	-200	004		-0.00	-0.00		2.0	0.01
MW6	04/30/14		43.80	8 23	35 57	No									
MW6	05/01/14		43.00 43.80	0.20				<240	4502	1 500	<0.50	2.8	0.57	13	4.8
MW/6	10/29/14		42 QO	10.01	32 20	No		~240	-30a 04a	260		2.0	-0 50	0.56	-0.50
101000	10/20/14		43.00	10.91	52.09	INU		<200	54a	200	<0.00	0.00	<0.00	0.00	<0.00

TABLE 1A
CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA
Former Exxon Service Station 79374
Former Excort Service Station 79374

990 San Pablo Avenue Albany, California

Well ID	Sampling Date	Depth (feet)	TOC Elev. (feet)	DTW (feet)	GW Elev.	NAPL (feet)	O&G (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	B (µg/L)	Т (µg/L)	E (µg/L)	X (µg/L)
MW6	06/02/15		43.80	10.40	33.40	No		<250	360a	1,000	<0.50	0.81	<0.50	2.0	1.1
MW6	11/18/15		43.80	10.06	33.74	No									
MW6	11/19/15		43.80					<240	370a	530a	<0.50	1.1	<0.50	5.3	1.7
MW7	12/08/14		Well insta	alled.											
MW7	12/23/14		41.21	Well sur	veyed.										
MW7	12/30/14		41.21	5.36	35.85	No		<250	2,900a	7,300a	<5.0	52	8.9	32	15
MW7	06/02/15		41.21	8.75	32.46	No		<250	2,700a	7,800a	<5.0	110	13	39	16
MW7	11/18/15		41.21	7.41	33.80	No									
MW7	11/19/15		41.21					1,100a	3,700a	660a	<5.0	77	8.1	27	12
MW8	12/08/14		Well insta	alled.											
MW8	12/23/14		39.65	Well sur	veyed.										
MW8	12/30/14		39.65	3.20	36.45	No		<250	<49	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW8	06/02/15		39.65	6.33	33.32	No		<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW8	11/18/15		39.65	5.24	34.41	No		<240	<47	<50	<0.50	<0.50	<0.50	<0.50	<0.50
MW9	10/08/15		Well insta	alled.											
MW9	10/16/15		39.50	6.45	33.05	No		<250	270a	360a	<0.50	<0.50	<0.50	<0.50	<0.50
MW9	10/26/15		39.50	Well sur	veyed.										
MW9	11/18/15		39.50	5.50	34.00	No		<240	<47	81	<0.50	<0.50	<0.50	<0.50	<0.50
AS1	01/18/12		Well insta	alled.											
AS1	10/19/12			10.32		No									
AS1	06/11/13			9.82		No									
AS1	12/19/13			10.12		No									
AS1	04/30/14			7.95		No									
AS1	10/28/14			10.35		No									
AS1	06/02/15			9.50		No									
AS1	11/18/15			10.26		No									
SVE1	01/17/12		Well insta	alled.											
SVE1	02/06/12		40.58	Well sur	veyed.										
SVE1	10/19/12		40.58	10.21	30.37	No									
SVE1	06/11/13		40.58	9.63	30.95	No									
SVE1	12/19/13		40.58	9.89	30.69	No									
SVE1	04/03/14		43.32	Elevatio	n convert	ed to NAV	/D88.								
SVE1	04/30/14		43.32	7.70	35.62	No									
SVE1	10/28/14		43.32	10.17	33.15	No									
SVE1	06/02/15		43.32	9.35	33.97	No									
SVE1	11/18/15		43.32	9.98	33.34	No									
SVE2	01/17/12		Well insta	alled.											
SVE2	02/06/12		40.94	Well sur	veyed.										
SVE2	10/19/12		40.94	10.48	30.46	No									

Well ID	Sampling Date	Depth (feet)	TOC Elev (feet)	. DTW (feet)	GW Elev.	NAPL (feet)	O&G (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	B (µg/L)	Τ (µg/L)	E (µg/L)	X (µg/L)
SVE2	06/11/13		40.94	9.94	31.00	No									
SVE2	12/19/13		40.94	10.20	30.74	No									
SVE2	04/03/14		43.68	Elevatio	n convert	ed to NAV	/D88.								
SVE2	04/30/14		43.68	8.09	35.59	No									
SVE2	10/28/14		43.68	10.50	33.18	No									
SVE2	06/02/15		43.68	9.69	33.99	No									
SVE2	11/18/15		43.68	10.39	33.29	No									
SVE3	01/17/12		Well insta	alled.											
SVE3	02/06/12		40.93	Well sur	veyed.										
SVE3	10/19/12		40.93	10.39	30.54	No									
SVE3	06/11/13		40.93	9.65	31.28	No									
SVE3	12/19/13		40.93	10.31	30.62	No									
SVE3	04/03/14		43.67	Elevatio	n convert	ed to NAV	/D88.								
SVE3	04/30/14		43.67	7.79	35.88	No									
SVE3	10/28/14		43.67	10.48	33.19	No									
SVE3	06/02/15		43.67	9.40	34.27	No									
SVE3	11/18/15		43.67	10.56	33.11	No									
SVE4	10/09/15		Well insta	alled.											
SVE4	10/16/15		43.10	10.28	32.82	No		<250	840a	830a	<0.50	37	1.2	5.0	26
SVE4	10/26/15		43.10	Well sur	veyed.										
SVE4	11/18/15		43.10	8.87	34.23	No									
SVE5	10/09/15		Well insta	alled.											
SVE5	10/16/15		43.70	10.55	33.15	No		<250	2,000a	1,700a	<20	29	25	130	2,300
SVE5	10/26/15		43.70	Well sur	veyed.										
SVE5	11/18/15		43.70	9.07	34.63	No									
SVE6	10/09/15		Well insta	alled.											
SVE6	10/16/15		44.37	10.87	33.50	No		<240	390a	490	<0.50	31	1.8	4.2	15
SVE6	10/26/15		44.37	Well sur	veyed.										
SVE6	11/18/15		44.37	10.33	34.04	No									
SVE7	10/09/15		Well insta	alled.											
SVE7	10/16/15		44.48	11.07	33.41	No		<240	240a	440a	<0.50	<0.50	<0.50	0.70	2.3
SVE7	10/26/15		44.48	Well sur	veyed.										
SVE7	11/18/15		44.48	10.47	34.01	No									
Grab Ground	water Samples														
B-1W	01/06/08						26c,d	<5,000	99,000c,g,j	76,000c,f,k	<50	<50	93	3,100	9,600
B-2W	01/06/08							310d	23,000c,d,g	77,000 c,d,e	<50	1,500	300	2,000	6,800

TABLE 1A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 79374 990 San Pablo Avenue Albany, California

								Albany, Ca	anoma						
Well ID	Sampling Date	Depth (feet)	TOC Elev. (feet)	DTW (feet)	GW Elev.	NAPL (feet)	O&G (µg/L)	TPHmo (µg/L)	TPHd (µg/L)	TPHg (µg/L)	MTBE (µg/L)	Β (µg/L)	Τ (µg/L)	E (µg/L)	X (µg/L)
B-3W	01/06/08							<250d	2,000d,g	6,200d,e	<10	170	32	740	250
B-4W	01/06/08							<250d	3,100d,g	7,700d,e	<10	360	<10	240	20
B-5W	01/06/08							<250d	120d,g	120d,i	<0.5	<0.5	<0.5	<0.5	<0.5
B-6W	01/06/08							<250d	830d,g	1,700d,e	<2.5	5.2	<2.5	100	8.6
DR-W	01/06/08							<250	96g	730f,k	<0.5	<0.5	<0.5	6.9	14
W-27.5-HP1A	10/28/10	27.5						260	330a	63a	<0.50	<0.50	<0.50	<0.50	<0.50
W-36-HP1A	10/28/10	36						<250	220a	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-46.5-HP1A	10/28/10	46.5						<420	<83	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-59-HP1B	10/27/10	59						<250	130	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-27.5-HP2A	10/29/10	27.5						<250	100a	340	<0.50	1.7	2.1	20	46
W-52-HP2A	10/29/10	52						<250	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-60.5-HP2B	10/27/10	60.5						<250	62	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-10-SVE1-1	01/31/12	10						990a	1.900a	2.000	<2.0	87	2.1	13	23
W-10-SVE1-2	01/31/12	10						890a	1,500a	1,400	<1.0	46	2.0	24	23
W-5-B7	02/27/14	5						<310	<62	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-12-B8	02/28/14	12						<240	130a	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-5-B9	02/27/14	5						<310	370a	1,400a	<0.50	<0.50	<0.50	<0.50	<0.50
W-5.5-B10	02/27/14	5.5						<310	<62	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-14-B11	03/05/14	14						<310	<62	<50	<0.50	<0.50	<0.50	<0.50	<0.50
W-10-B12	02/26/14	10						<250	800a	5,900	<2.0	<2.0	<2.0	7.5	<2.0
W-10-B13	02/28/14	10						<250	1,500a	6,300	<5.0	12	8.8	290	22
B14	03/05/14 b														
W-14-B15	03/05/14	14						<310	<62	<50	1.3	<0.50	<0.50	<0.50	<0.50
W-14-B16	02/26/14	14						<250	180a	170a	<0.50	1.1	<0.50	5.4	<0.50
W-10-B17	02/27/14	10						<270	<54	110a	<0.50	<0.50	<0.50	<0.50	<0.50

_

TABLE 1A CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 79374 990 San Pablo Avenue

Albany, California

Notes:		
TOC	=	Top of well casing elevation; datum is NAVD88, prior to April 2014, datum was mean sea level.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is NAVD88, prior to April 2014, datum was mean sea level. If liquid-phase hydrocarbons present, elevation adjusted using TOC - [DTW - (PT x 0.76)].
NAPL	=	Non-aqueous phase liquid.
O&G	=	Oil and grease with silica gel clean-up analyzed using Standard Method 5520B/F.
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015 (modified).
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015 (modified).
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015 (modified).
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
PCE	=	Tetrachloroethene analyzed using EPA Method 8260B.
TCE	=	Trichloroethene analyzed using EPA Method 8260B.
VOCs	=	Volatile organic compounds or halogenated volatile organic compounds analyzed using EPA Method 8260B.
µg/L	=	Micrograms per liter.
ND	=	Not detected at or above laboratory reporting limits.
	=	Not measured/Not sampled/Not analyzed.
<	=	Less than the stated laboratory reporting limit.
а	=	The chromatographic pattern does not match that of the specified standard.
b	=	Groundwater did not enter boring; sample not collected.
С	=	Lighter than water immiscible sheen/product is present.
d	=	Liquid sample that contains greater than approximately 1 volume % sediment.
е	=	Unmodified or weakly modified gasoline is significant.
f	=	Heavier gasoline-range compounds are significant.
g	=	Gasoline-range compounds are significant.
h	=	Analyzed beyond the EPA-recommended hold time.
i	=	Strongly aged gasoline-range or diesel-range compounds are significant.
j	=	Diesel-range compounds are significant; no recognizable pattern.
k	=	No recognizable pattern.
I	=	Additional analyses: CAM 5 metals analyzed using EPA Method 6010B and semi-volatile organic compounds analyzed using EPA Method 8270C. Results were ND except for napthalene (4,000 µg/L) and 2-methylnaphthalene (3,900 µg/L).

m = Additional analyses: CAM 5 metals analyzed using EPA Method 6010B. Results were ND except for dissolved chromium (54 µg/L).

Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (µg/L)	TAME (µg/L)	TBA (µg/L)	ETBE (µg/L)	DIPE (µg/L)	PCE (µg/L)	TCE (µg/L)	Naph- thalene (µg/L)	Ace- tone (µg/L)	2-buta- none (µg/L)	Bromo- benzene (µg/L)	Bromodichloro- methane (µg/L)	Bromo- methane (µg/L)	n-Butyl- benzene (µg/L)	secButyl- benzene (µg/L)
Monitoring	Well Samples																	
MW1	11/04/10		Well in	stalled.														
MW1	12/16/10		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW1	01/31/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW1	04/07/11		<0.50	<0.50	<0.50	10	<0.50	<0.50										
MW1	07/18/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW1	10/13/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW1	04/06/12		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW1	10/19/12		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW1	06/11/13		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW1	12/19/13		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW1	05/01/14		<0.50	<0.50	<0.50	5.1	<0.50	<0.50										
MW1	10/28/14		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	85h	9.8	<1.0	<10	<5.0	<0.50	<0.50	<1.0	<0.50	<0.50
MW1	06/02/15		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	110	9.3	<1.0	<10	<5.0	<0.50	<0.50	<1.0	<0.50	<0.50
MW1	11/19/15		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	92h	8.8	<1.0	<10	<5.0	<0.50	<0.50	<1.0	<0.50	<0.50
MW2	11/04/10		Well in	stalled.														
MW2	12/16/10		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW2	01/31/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW2	04/07/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW2	07/18/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW2	10/13/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW2	04/06/12		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW2	10/19/12		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW2	06/11/13		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW2	12/19/13		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW2	05/01/14		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW2	10/28/14		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	73h	8.9	<1.0	<10	<5.0	<0.50	<0.50	<1.0	<0.50	<0.50
MW2	06/02/15		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	78	6.9	<1.0	<10	<5.0	<0.50	<0.50	<1.0	<0.50	<0.50
MW2	11/19/15		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	79h	7.7	<1.0	<10	<5.0	<0.50	<0.50	<1.0	<0.50	<0.50
	44/00/40																	
MW3	11/08/10		well in	stalled.	10	100	10	10										
MW3	12/16/10		<12	<12	<12	<120	<12	<12										
MW3	01/31/11		<12	<12	<12	<120	<12	<12										
MW3	04/07/11		<10	<10	<10	<100	<10	<10										
MW3	07/18/11		<10	<10	<10	<100	<10	<10										
MW3	10/13/11		<10	<10	<10	<100	<10	<10										
MW3	04/06/12		<20	<20	<20	<200	<20	<20										
MW3	10/19/12		<10	<10	<10	<100	<10	<10										
MW3	06/11/13		<10	<10	<10	<100	<10	<10										

Wall D Sampling Deph EDB L2-DCA TAME TBA ETEE UPL												Naph-	Ace-	2-buta-	Bromo-	Bromodichloro-	Bromo-	n-Butvl-	secButvl-
Date (hed) (hgl)	Well ID	Sampling	Depth	EDB	1,2-DCA	TAME	TBA	ETBE	DIPE	PCE	TCE	thalene	tone	none	benzene	methane	methane	benzene	benzene
MMX3 1220/13		Date	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MMV3 050/1/4	MW3	12/20/13		<10	<10	<10	<100	<10	<10										
MMV3 0028/14 <td>MW3</td> <td>05/01/14</td> <td></td> <td><10</td> <td><10</td> <td><10</td> <td><100</td> <td><10</td> <td><10</td> <td></td>	MW3	05/01/14		<10	<10	<10	<100	<10	<10										
MW3 0802/15	MW3	10/28/14		<20	<20	<20	<200	<20	<20	<20	<20	290	<400	<200	<20	<20	<40	30	<20
MM3 11/19/15 c.5.0 c	MW3	06/02/15		<20	<20	<20	<200	<20	<20	<20	<20	240	<400	<200	<20	<20	<40	21	<20
MW3A OV1812	MW3	11/19/15		<5.0	<5.0	<5.0	<50	<5.0	<5.0	<5.0	<5.0	120	<100	<50	<5.0	<5.0	<10	22	14
MW3A 01/19/12 Weil Installed. MW3A 01/19/12 -2.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																			
MW3A 0406/12	MW3A	01/18/12		Well in	stalled.														
MW3A 10/19/12	MW3A	04/06/12		<2.0	<2.0	<2.0	<20	<2.0	<2.0										
MW3A 06/11/3 -2.0	MW3A	10/19/12		<5.0	<5.0	<5.0	<50	<5.0	<5.0										
MW3A 12/19/13 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 <td>MW3A</td> <td>06/11/13</td> <td></td> <td><2.0</td> <td><2.0</td> <td><2.0</td> <td><20</td> <td><2.0</td> <td><2.0</td> <td></td>	MW3A	06/11/13		<2.0	<2.0	<2.0	<20	<2.0	<2.0										
MW3A 0501/14 <	MW3A	12/19/13		<2.0	<2.0	<2.0	<20	<2.0	<2.0										
MW3A 002814 e0.50 e	MW3A	05/01/14		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW3A O6002/15	MW3A	10/28/14		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	4.6	<10	<5.0	<0.50	<0.50	<1.0	5.4	6.3
MW3A 11/19/15 2.0 2	MW3A	06/02/15		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	1.4	<10	<5.0	<0.50	<0.50	<1.0	1.1	2.5
NW4 11/05/10 Well installed. MW4 12/16/10 <5.0	MW3A	11/19/15		<2.0	<2.0	<2.0	<20	<2.0	<2.0	<2.0	<2.0	6.5	<40	<20	<2.0	<2.0	<4.0	3.3	3.5
NVM4 11/05/0																			
MW4 12/16/10 -5.0 <5.0	MW4	11/05/10		Well in	stalled.														
MW4 01/31/11 <10	MW4	12/16/10		<5.0	<5.0	<5.0	<50	<5.0	<5.0										
MW4 04/07/11 <10	MW4	01/31/11		<10	<10	<10	<100	<10	<10										
MW4 07/18/11 <10	MW4	04/07/11		<10	<10	<10	<100	<10	<10										
NW4 10/13/11 <10	MW4	07/18/11		<10	<10	<10	<100	<10	<10										
MW4 04/06/12 <10	MW4	10/13/11		<10	<10	<10	<100	<10	<10										
MW4 10/19/12 <10	MW4	04/06/12		<10	<10	<10	<100	<10	<10										
MW4 06/11/13 <10	MW4	10/19/12		<10	<10	<10	<100	<10	<10										
MW4 12/20/13 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	MW4	06/11/13		<10	<10	<10	<100	<10	<10										
MW4 05/01/14 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	MW4	12/20/13		<10	<10	<10	<100	<10	<10										
MW4 10/28/14 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	MW4	05/01/14		<10	<10	<10	<100	<10	<10										
MW4 06/02/15 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	MW4	10/28/14		<10	<10	<10	<100	<10	<10	<10	<10	270	<200	<100	<10	<10	<20	72	24
MW4 11/19/15 < <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	MW4	06/02/15		<10	<10	<10	<100	<10	<10	<10	<10	170	<200	<100	<10	<10	<20	83	27
MW5 11/11/10 Well installed. MW5 12/16/10 <2.5	MW4	11/19/15		<5.0	<5.0	<5.0	<50	<5.0	<5.0	<5.0	<5.0	150	<100	<50	<5.0	<5.0	<10	98	26
MW5 11/11/0 Well installed. MW5 12/16/10 <2.5																			
MW5 12/16/10 <2.5	MW5	11/11/10		Well in	stalled.														
MW5 01/31/11 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	MW5	12/16/10		<2.5	<2.5	<2.5	<25	<2.5	<2.5										
MW5 04/07/11 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5	MW5	01/31/11		<10	<10	<10	<100	<10	<10										
MW5 07/18/11 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 <2.5 < <td>MW5</td> <td>04/07/11</td> <td></td> <td><2.5</td> <td><2.5</td> <td><2.5</td> <td><25</td> <td><2.5</td> <td><2.5</td> <td></td>	MW5	04/07/11		<2.5	<2.5	<2.5	<25	<2.5	<2.5										
MW5 10/13/11 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20	MW5	07/18/11		<2.5	<2.5	<2.5	<25	<2.5	<2.5										
MW5 04/06/12 <0.50 <5.0 <5.0 <5.0 <5.0 <	MW5	10/13/11		<20	<20	<20	<200	<20	<20										
MW5 10/19/12 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20	MW5	04/06/12		<0.50	<5.0	<5.0	<50	<5.0	<5.0										
MW5 06/11/13 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20	MW5	10/19/12		<20	<20	<20	<200	<20	<20										
MW5 12/20/13 <20 <20 <20 <20 <20 <20	MW5	06/11/13		<20	<20	<20	<200	<20	<20										
MW5 05/01/14 <10 <10 <10 <10 <10	MW5	12/20/13		<20	<20	<20	<200	<20	<20										
	MW5	05/01/14		<10	<10	<10	<100	<10	<10										

											Naph-	Ace-	2-buta-	Bromo-	Bromodichloro-	Bromo-	n-Butvl-	secButvl-
Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (µq/L)	TAME (µg/L)	TBA (µq/L)	ETBE (µq/L)	DIPE (µg/L)	PCE (µg/L)	TCE (µg/L)	thalene (µg/L)	tone (µq/L)	none (µq/L)	benzene (µg/L)	methane (µg/L)	methane (µg/L)	benzene (µg/L)	benzene (µq/L)
MW5	10/28/14		<10	<10	<10	<100	<10	<10	<10	<10	250	<200	<100	<10	<10	<20	82	33
MW5	06/02/15		<20	<20	<20	<200	<20	<20	<20	<20	210	<400	<200	<20	<20	<20	110	42
MW5	11/19/15		~20	~20	<20	<200	~20	<20	<20	<20	210	<400	~200	<20	<20	~40	79	29
	11/10/10		~20	~20	120	1200	120	120	120	120	210	100	1200	~20	20	10	10	20
MW6	11/03/10		Well in	stalled.														
MW6	12/16/10		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW6	01/31/11		<1.0	<1.0	<1.0	<10	<1.0	<1.0										
MW6	04/07/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW6	07/18/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW6	10/13/11		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW6	04/06/12		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW6	10/19/12		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW6	06/11/13		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW6	12/19/13		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW6	05/01/14		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
MW6	10/28/14		<0.50	< 0.50	< 0.50	<5.0	<0.50	< 0.50	<0.50	<0.50	1.4	<10	<5.0	<0.50	<0.50	<1.0	<0.50	0.73
MW6	06/02/15		<0.50	< 0.50	< 0.50	<5.0	<0.50	< 0.50	< 0.50	< 0.50	3.3	<10	<5.0	< 0.50	<0.50	<1.0	3.2	2.9
MW6	11/19/15		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	10	16	6.5	<0.50	<0.50	<1.0	7.0	5.0
MW7	12/08/14		Well in	stalled.														
MW7	12/30/14		<5.0	<5.0	<5.0	<50	<5.0	13										
MW7	06/02/15		<5.0	<5.0	<5.0	<50	<5.0	19	<5.0	<5.0	150	<100	<50	<5.0	<5.0	<10	45	24
MW7	11/19/15		<5.0	<5.0	<5.0	<50	<5.0	13	<5.0	<5.0	220	<100	<50	<5.0	<5.0	<10	36	18
M/\/Q	12/08/14		Woll in	stalled														
	12/00/14				<0.50	~5.0	<0.50	<0.50										
	06/02/15		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50		<0.50	-1.0	~10	-5.0	<0.50	0.95	-1.0	<0.50	<0.50
MMA	11/19/15		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<1.0	<10	<5.0	<0.50	0.85 <0.50	<1.0	<0.50	<0.50
	11/16/15		<0.50	<0.50	<0.50	<3.0	<0.50	<0.50	<0.50	<0.50	<1.0	<10	<5.0	<0.50	<0.50	<1.0	<0.50	<0.50
MW9	10/08/15		Well in	stalled.														
MW9	10/16/15		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<1.0	<10	<5.0	<0.50	<0.50	<1.0	1.4	0.93
MW9	11/18/15		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<1.0	<10	<5.0	<0.50	<0.50	<1.0	0.60	<0.50
AS1	01/18/12		Well in	stalled														
AS1	10/19/12 - F	Present No	t sampled															
	10/10/12 1		t sumples															
SVE1	01/17/12		Well in	stalled.														
SVE1	10/19/12 - F	Present No	t sampled	l.														
SVE2	01/17/12		Well in	stalled														
SVE2	10/19/12 - F	Present No	t sampled															
3122	10/10/12 1		. sumpiou	••														

											Nonh	A 00	2 huto	Promo	Promodiablara	Promo	n Butul	o o o Putul
Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (µg/L)	TAME (µg/L)	TBA (µg/L)	ETBE (µg/L)	DIPE (µg/L)	PCE (µg/L)	TCE (µg/L)	thalene (µg/L)	tone (µg/L)	none (µg/L)	benzene (µg/L)	methane (µg/L)	methane (µg/L)	benzene (µg/L)	benzene (µg/L)
SVE3	01/17/12		Well in:	stalled.														
SVE3	10/19/12 - P	resent No	t sampled	•														
SVE4	10/09/15		Well in:	stalled.														
SVE4	10/16/15		<0.50	<0.50	<0.50	5.4	<0.50	<0.50	<0.50	<0.50	15	<10	<5.0	<0.50	<0.50	<1.0	2.5	1.5
SVE4	11/18/15																	
SVE5	10/09/15		Well ins	stalled.														
SVE5	10/16/15		<20	<20	<20	<200	<20	<20	<20	<20	140	<400	<200	<20	<20	<40	24	<20
SVE5	11/18/15																	
SVE6	10/09/15		Well in	stalled.														
SVE6	10/16/15		<0.50	<0.50	<0.50	5.7	<0.50	<0.50	<0.50	<0.50	1.9	<10	<5.0	<0.50	<0.50	<1.0	3.1	1.0
SVE6	11/18/15																	
SVE7	10/09/15		Well in:	stalled.														
SVE7	10/16/15		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<1.0	<10	<5.0	<0.50	<0.50	<1.0	0.97	1.7
SVE7	11/18/15																	
Grab Ground	water Sampl	es																
B-1W	01/06/08 I		<50	<50	<50	<200	<50	<50	<50	<50	1,500	<1,000	<200	<50	<50	<50	210	68
B-2W	01/06/08		<50	<50	<50	<200	<50	<50	<50	<50	610	<1,000	<200	<50	<50	<50	110	<50
B-3W	01/06/08		<10	<10	<10	<40	<10	<10	<10	<10	55	<200	<40	<10	<10	<10	25	11
B-4W	01/06/08		<10	<10	<10	<40	<10	<10	<10	<10	100	<200	<40	<10	<10	<10	46	19
B-5W	01/06/08		<0.5	<0.5	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	6.5	<10	<2.0	<0.5	<0.5	<0.5	2.6	<0.5
B-6W	01/06/08		<2.5	<2.5	<2.5	<10	<2.5	<2.5	<2.5	<2.5	38	<50	10	<2.5	<2.5	<2.5	14	5.6
DR-W	01/06/08 m		<0.5	<0.5	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	7.0	<10	<2.0	<0.5	<0.5	<0.5	6.9	2.4
W-27.5-HP1A	10/28/10	27.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
W-36-HP1A	10/28/10	36	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
W-46.5-HP1A	10/28/10	46.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
W-59-HP1B	10/27/10	59	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										

Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (µg/L)	TAME (µg/L)	TBA (µg/L)	ETBE (µg/L)	DIPE (µg/L)	PCE (µg/L)	TCE (µg/L)	Naph- thalene (µg/L)	Ace- tone (µg/L)	2-buta- none (µg/L)	Bromo- benzene (µg/L)	Bromodichloro- methane (µg/L)	Bromo- methane (µg/L)	n-Butyl- benzene (µg/L)	secButyl- benzene (µg/L)
W-27.5-HP2A	10/29/10	27.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
W-52-HP2A	10/29/10	52	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
W-60.5-HP2E	3 10/27/10	60.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
W-10-SVE1-1	01/31/12	10	<2.0	<2.0	<2.0	62	<2.0	<2.0										
W-10-SVE1-2	2 01/31/12	10	<1.0	<1.0	<1.0	57	<1.0	<1.0										
W-5-B7	02/27/14	5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
W-12-B8	02/28/14	12	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
W-5-B9	02/27/14	5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
W-5.5-B10	02/27/14	5.5	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
W-14-B11	03/05/14	14	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
W-10-B12	02/26/14	10	<2.0	<2.0	<2.0	<20	<2.0	<2.0										
W-10-B13	02/28/14	10	<5.0	<5.0	<5.0	<50	<5.0	<5.0										
B14	03/05/14 b																	
W-14-B15	03/05/14	14	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
W-14-B16	02/26/14	14	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										
W-10-B17	02/27/14	10	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50										

Notes:		
TOC	=	Top of well casing elevation; datum is NAVD88, prior to April 2014, datum was mean sea level.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is NAVD88, prior to April 2014, datum was mean sea level. If liquid-phase hydrocarbons present, elevation adjusted using TOC - [DTW - (PT x 0.76)].
NAPL	=	Non-aqueous phase liquid.
O&G	=	Oil and grease with silica gel clean-up analyzed using Standard Method 5520B/F.
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015 (modified).
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015 (modified).
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015 (modified).
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
PCE	=	Tetrachloroethene analyzed using EPA Method 8260B.
TCE	=	Trichloroethene analyzed using EPA Method 8260B.
VOCs	=	Volatile organic compounds or halogenated volatile organic compounds analyzed using EPA Method 8260B.
µg/L	=	Micrograms per liter.
ND	=	Not detected at or above laboratory reporting limits.
	=	Not measured/Not sampled/Not analyzed.
<	=	Less than the stated laboratory reporting limit.
а	=	The chromatographic pattern does not match that of the specified standard.
b	=	Groundwater did not enter boring; sample not collected.
С	=	Lighter than water immiscible sheen/product is present.
d	=	Liquid sample that contains greater than approximately 1 volume % sediment.
е	=	Unmodified or weakly modified gasoline is significant.
f	=	Heavier gasoline-range compounds are significant.
g	=	Gasoline-range compounds are significant.
h	=	Analyzed beyond the EPA-recommended hold time.
i	=	Strongly aged gasoline-range or diesel-range compounds are significant.
j	=	Diesel-range compounds are significant; no recognizable pattern.
k	=	No recognizable pattern.
I	=	Additional analyses: CAM 5 metals analyzed using EPA Method 6010B and semi-volatile organic compounds analyzed using EPA Method 8270C. Results were ND except for napthalene (4,000 µg/L) and 2-methylnaphthalene (3,900 µg/L).
m	=	Additional analyses: CAM 5 metals analyzed using EPA Method 6010B. Results were ND except for dissolved chromium (54 µg/L).

									.,,	-								
Well ID	Sampling Date	Depth (feet)	Carbon Disulfide (µg/L)	Chloro- ethane (µg/L)	Chloro- form (µg/L)	4- Chloro- toluene (µg/L)	cis-1,2- dichloro- ethene (µg/L)	1,2-dibromo- 3-chloro- propane (µg/L)	1,2- Dichloro- benzene (μg/L)	t-1,2- Dichloro- ethene (μg/L)	lso- propyl- benzene (µg/L)	n- propyl- benzene (µg/L)	p-iso- propyl- toluene (µg/L)	Styrene (µg/L)	1,2,4- trimethyl- benzene (µg/L)	1,3,5- trimethyl- benzene (µg/L)	tert- butyl- benzene (µg/L)	Additional VOCs (µg/L)
Monitoring	g Well Samples																	
MW1	11/04/10		Well ins	stalled.														
MW1	12/16/10																	
MW1	01/31/11																	
MW1	04/07/11																	
MW1	07/18/11																	
MW1	10/13/11																	
MW1	04/06/12																	
MW1	10/19/12																	
MW1	06/11/13																	
MW1	12/19/13																	
MW1	05/01/14																	
MW1	10/28/14		<1.0	<0.50	<0.50	<0.50	18	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.67	<0.50	<0.50	ND
MW1	06/02/15		<1.0	<0.50	<0.50	<0.50	19	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	ND
MW1	11/19/15		<1.0	<0.50	<0.50	<0.50	20	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	ND
MW2	11/04/10		Well ins	stalled.														
MW2	12/16/10																	
MW2	01/31/11																	
MW2	04/07/11																	
MW2	07/18/11																	
MW2	10/13/11																	
MW2	04/06/12																	
MW2	10/19/12																	
MW2	06/11/13																	
MW2	12/19/13																	
MW2	05/01/14																	
MW2	10/28/14		<1.0	<0.50	<0.50	<0.50	8.8	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	ND
MW2	06/02/15		<1.0	<0.50	<0.50	<0.50	8.4	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	ND
MW2	11/19/15		<1.0	<0.50	<0.50	<0.50	9.7	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	ND
MW3	11/08/10		Well ins	stalled.														
MW3	12/16/10																	
MW3	01/31/11																	
MW3	04/07/11																	
MW3	07/18/11																	
MW3	10/13/11																	
MW3	04/06/12																	
MW3	10/19/12																	

Well ID	Sampling Date	Depth (feet)	Carbon Disulfide (µg/L)	Chloro- ethane (µg/L)	Chloro- form (µg/L)	4- Chloro- toluene (µg/L)	cis-1,2- dichloro- ethene (µg/L)	1,2-dibromo- 3-chloro- propane (µg/L)	1,2- Dichloro- benzene (μg/L)	t-1,2- Dichloro- ethene (μg/L)	lso- propyl- benzene (µg/L)	n- propyl- benzene (µg/L)	p-iso- propyl- toluene (µg/L)	Styrene (µg/L)	1,2,4- trimethyl- benzene (µg/L)	1,3,5- trimethyl- benzene (µg/L)	tert- butyl- benzene (µg/L)	Additional VOCs (µg/L)
MW3	06/11/13																	
MW3	12/20/13																	
MW3	05/01/14																	
MW3	10/28/14		<40	<20	<20	<20	<20	<200	<20	<20	110	210	<20	<20	<20	36	<20	ND
MW3	06/02/15		<40	<20	<20	<20	<20	<200	<20	<20	90	130	<20	<20	<20	40	<20	ND
MW3	11/19/15		<10	<5.0	<5.0	<5.0	<5.0	<50	<5.0	<5.0	95	140	16	<5.0	9.5	24	9.6	ND
МWЗA	01/18/12		Well ins	stalled.														
MW3A	04/06/12																	
MW3A	10/19/12																	
MW3A	06/11/13																	
MW3A	12/19/13																	
MW3A	05/01/14																	
MW3A	10/28/14		<1.0	<0.50	<0.50	<0.50	<0.50	<5.0	< 0.50	< 0.50	20	28	2.0	<0.50	4.6	1.6	2.9	ND
MW3A	06/02/15		<1.0	< 0.50	< 0.50	< 0.50	<0.50	<5.0	< 0.50	< 0.50	2.4	3.3	< 0.50	< 0.50	2.5	0.61	0.89	ND
MW3A	11/19/15		<4.0	<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0	11	13	<2.0	<2.0	3.2	<2.0	2.3	ND
MW4	11/05/10		Well ins	stalled														
MW4	12/16/10																	
MW4	01/31/11																	
MW4	04/07/11																	
MW4	07/18/11																	
MW4	10/13/11																	
MW4	04/06/12																	
MW4	10/19/12																	
MW4	06/11/13																	
MW4	12/20/13																	
MW4	05/01/14																	
MW4	10/28/14		<20	<10	<10	<10	<10	<100	<10	<10	75	190	<10	<10	350	160	<10	ND
MW4	06/02/15		<20	<10	<10	<10	<10	<100	<10	<10	70	170	<10	<10	320	130	10	ND
MW4	11/19/15		<10	<5.0	<5.0	<5.0	<5.0	<50	<5.0	<5.0	56	140	12	<5.0	340	140	9.9	ND
MW5	11/11/10		Well ins	stalled														
MW5	12/16/10																	
MW5	01/31/11																	
MW5	04/07/11																	
MW5	07/18/11																	
MW5	10/13/11																	
MW5	04/06/12																	
MW5	10/10/12																	
MW5	06/11/13																	
101000	00/11/13																	

Well ID	Sampling Date	Depth (feet)	Carbon Disulfide (µg/L)	Chloro- ethane (µg/L)	Chloro- form (µg/L)	4- Chloro- toluene (µg/L)	cis-1,2- dichloro- ethene (µg/L)	1,2-dibromo- 3-chloro- propane (µg/L)	- 1,2- Dichloro- benzene (μg/L)	t-1,2- Dichloro- ethene (μg/L)	lso- propyl- benzene (µg/L)	n- propyl- benzene (µg/L)	p-iso- propyl- toluene (µg/L)	Styrene (µg/L)	1,2,4- trimethyl- benzene (µg/L)	1,3,5- trimethyl- benzene (µg/L)	tert- butyl- benzene (μg/L)	Additional VOCs (µg/L)
MW5	12/20/13																	
MW5	05/01/14																	
MW5	10/28/14		<20	<10	<10	<10	<10	<100	<10	<10	120	380	14	<10	730	130	<10	ND
MW5	06/02/15		<40	<20	<20	<20	<20	<200	<20	<20	120	390	<20	<20	820	150	<20	ND
MW5	11/19/15		<40	<20	<20	<20	<20	<200	<20	<20	98	280	<20	<20	620	130	<20	ND
MW6	11/03/10		Well ins	stalled.														
MW6	12/16/10																	
MW6	01/31/11																	
MW6	04/07/11																	
MW6	07/18/11																	
MW6	10/13/11																	
MW6	04/06/12																	
MW6	10/19/12																	
MW6	06/11/13																	
MW6	12/19/13																	
MW6	05/01/14																	
MW6	10/28/14		<1.0	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	0.84	1.9	<0.50	<0.50	<0.50	<0.50	<0.50	ND
MW6	06/02/15		<1.0	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	4.6	11	<0.50	<0.50	<0.50	<0.50	<0.50	ND
MW6	11/19/15		<1.0	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	12	29	<0.50	<0.50	0.60	<0.50	<0.50	ND
MW7	12/08/14		Well ins	stalled.														
MW7	12/30/14																	
MW7	06/02/15		<10	<5.0	<5.0	<5.0	<5.0	<50	<5.0	<5.0	110	270	<5.0	<5.0	<5.0	<5.0	<5.0	ND
MW7	11/19/15		<10	<5.0	<5.0	<5.0	<5.0	<50	<5.0	<5.0	86	220	<5.0	<5.0	<5.0	<5.0	<5.0	ND
MW8	12/08/14		Well in	stalled														
MW8	12/30/14																	
MW8	06/02/15		<1.0	<0.50	23	<0.50	< 0.50	<5.0	<0.50	<0.50	< 0.50	< 0.50	<0.50	<0.50	<0.50	< 0.50	<0.50	ND
MW8	11/18/15		<1.0	<0.50	3.2	<0.50	<0.50	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	ND
M///9	10/08/15		Well in	hallets														
M\\\/Q	10/16/15		~1.0		41	~0.50	~0.50	~5.0	~0.50	<0.50	16	1 0	~0.50	<0.50	~0.50	~0.50	<0.50	ND
MWQ	11/18/15		<1.0	<0.50	3.0	<0.50	<0.50	<5.0	<0.50	<0.50	~0.50	0.53	<0.50	<0.50	<0.50	<0.50	<0.50	ND
101 0 0 5	11/10/15		<1.0	<0.50	5.0	<0.50	<0.50	۲۵.0	<0.50	<0.50	<0.50	0.55	<0.50	<0.50	<0.50	<0.50	<0.50	ND
AS1	01/18/12		Well ins	stalled.														
AS1	10/19/12 -	Present N	ot sampled															
SVE1	01/17/12		Well in	stalled.														
SVE1	10/19/12	Present N	ot sampled															

			Carbon	Chloro	Chloro	4-	cis-1,2-	1,2-dibromo-	1,2-	t-1,2-	lso-	n-	p-iso-		1,2,4-	1,3,5-	tert-	Additional
Well ID	Sampling Date	Depth (feet)	Disulfide (µg/L)	ethane (µg/L)	form (µg/L)	toluene (µg/L)	ethene (µg/L)	propane (µg/L)	benzene (µg/L)	ethene (µg/L)	benzene (µg/L)	benzene (µg/L)	toluene (µg/L)	Styrene (µg/L)	benzene (µg/L)	benzene (µg/L)	benzene (µg/L)	VOCs (µg/L)
SVE2	01/17/12		Well ins	stalled.														
SVE2	10/19/12 -	Present No	ot sampled.															
SVE3	01/17/12		Well ins	stalled.														
SVE3	10/19/12 -	Present No	ot sampled.															
SVE4	10/09/15		Well ins	stalled.														
SVE4	10/16/15		<1.0	<0.50	<0.50	<0.50	<0.50	<5.0	0.68	<0.50	4.3	2.8	0.59	<0.50	7.2	11	0.75	ND
SVE4	11/18/15																	
SVE5	10/09/15		Well ins	stalled.														
SVE5	10/16/15		<40	<20	<20	<20	<20	<200	<20	<20	28	<20	<20	<20	520	210	<20	ND
SVE5	11/18/15																	
SVE6	10/09/15		Well ins	stalled.														
SVE6	10/16/15		<1.0	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	1.3	0.80	0.99	<0.50	1.8	14	<0.50	ND
SVE6	11/18/15																	
SVE7	10/09/15		Well ins	stalled.														
SVE7	10/16/15		<1.0	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	2.2	2.4	<0.50	<0.50	<0.50	<0.50	<0.50	ND
SVE7	11/18/15																	
Grab Ground	water Samp	les																
B-1W	01/06/08 I		<50	<50	<50	<50	<50	<20	<50		370	1,100		<50	3,800	1,300		ND
B-2W	01/06/08		<50	<50	<50	<50	<50	32	<50		140	440		<50	2,400	730		ND
B-3W	01/06/08		<10	<10	<10	<10	<10	<4.0	<10		74	190		<10	290	49		ND
B-4W	01/06/08		<10	<10	<10	<10	<10	<4.0	<10		48	160		<10	16	<10		ND
B-5W	01/06/08		<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5		<0.5	0.83		<0.5	4.8	1.2		ND
B-6W	01/06/08		<2.5	<2.5	<2.5	<2.5	<2.5	<1.0	<2.5		17	60		<2.5	32	5.8		ND
	01/06/08					-0 E	 	-0.0			2.5	44		-0.5	47	E E		
DK-11	01/06/08 M		<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<0.5		2.5	TT		<0.5	17	5.5		UN
W-27.5-HP1A	10/28/10	27.5																
W-36-HP1A	10/28/10	36																
W-46.5-HP1A	10/28/10	46.5																

Well ID	Sampling Date	Depth (feet)	Carbon Disulfide (µg/L)	Chloro- ethane (µg/L)	Chloro- form (µg/L)	4- Chloro- toluene (µg/L)	cis-1,2- dichloro- ethene (µg/L)	1,2-dibromo- 3-chloro- propane (µg/L)	1,2- Dichloro- benzene (μg/L)	t-1,2- Dichloro- ethene (μg/L)	lso- propyl- benzene (µg/L)	n- propyl- benzene (µg/L)	p-iso- propyl- toluene (µg/L)	Styrene (µg/L)	1,2,4- trimethyl- benzene (µg/L)	1,3,5- trimethyl- benzene (µg/L)	tert- butyl- benzene (µg/L)	Additional VOCs (µg/L)
W-59-HP1B	10/27/10	59																
W-27.5-HP2A	10/29/10	27.5																
W-60 5-HP2F	10/23/10	60.5																
W-10-SVE1-1	01/31/12	10																
W-10-SVE1-2	2 01/31/12	10																
W-5-B7	02/27/14	5																
W-12-B8	02/28/14	12																
W-5-B9	02/27/14	5																
W-5.5-B10	02/27/14	5.5																
W-14-B11	03/05/14	14																
W-10-B12	02/26/14	10																
W-10-B13	02/28/14	10																
B14	03/05/14 b																	
W-14-B15	03/05/14	14																
W-14-B16	02/26/14	14																
W-10-B17	02/27/14	10																

Notes:		
TOC	=	Top of well casing elevation; datum is NAVD88, prior to April 2014, datum was mean sea level.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is NAVD88, prior to April 2014, datum was mean sea level. If liquid-phase hydrocarbons present, elevation adjusted using TOC - [DTW - (PT x 0.76)].
NAPL	=	Non-aqueous phase liquid.
O&G	=	Oil and grease with silica gel clean-up analyzed using Standard Method 5520B/F.
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015 (modified).
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015 (modified).
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015 (modified).
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
PCE	=	Tetrachloroethene analyzed using EPA Method 8260B.
TCE	=	Trichloroethene analyzed using EPA Method 8260B.
VOCs	=	Volatile organic compounds or halogenated volatile organic compounds analyzed using EPA Method 8260B.
µg/L	=	Micrograms per liter.
ND	=	Not detected at or above laboratory reporting limits.
	=	Not measured/Not sampled/Not analyzed.
<	=	Less than the stated laboratory reporting limit.
а	=	The chromatographic pattern does not match that of the specified standard.
b	=	Groundwater did not enter boring; sample not collected.
С	=	Lighter than water immiscible sheen/product is present.
d	=	Liquid sample that contains greater than approximately 1 volume % sediment.
е	=	Unmodified or weakly modified gasoline is significant.
f	=	Heavier gasoline-range compounds are significant.
g	=	Gasoline-range compounds are significant.
h	=	Analyzed beyond the EPA-recommended hold time.
i	=	Strongly aged gasoline-range or diesel-range compounds are significant.
j	=	Diesel-range compounds are significant; no recognizable pattern.
k	=	No recognizable pattern.
Ι	=	Additional analyses: CAM 5 metals analyzed using EPA Method 6010B and semi-volatile organic compounds analyzed using EPA Method 8270C. Results were ND except for napthalene (4,000 µg/L) and 2-methylnaphthalene (3,900 µg/L).
m	=	Additional analyses: CAM 5 metals analyzed using EPA Method 6010B. Results were ND except for dissolved chromium (54 µg/L).

TABLE 2WELL CONSTRUCTION DETAILSFormer Exxon Service Station 79374990 San Pablo AvenueAlbany, California

Well ID	Well Installation Date	TOC Elevation (feet)	Borehole Diameter (inches)	Total Depth of Boring (feet bgs)	Well Depth (feet bgs)	Casing Diameter (inches)	Well Casing Material	Screened Interval (feet bgs)	Slot Size (inches)	Filter Pack Interval (feet bgs)	Filter Pack Material
MW1	11/04/10	44.19	8	17	17	2	Schedule 40 PVC	12-17	0.020	10-17	#3 Sand
MW2	11/04/10	43.99	8	17	17	4	Schedule 40 PVC	12-17	0.020	10-17	#3 Sand
MW3	11/08/10	43.16	8	17	17	4	Schedule 40 PVC	11-16	0.020	9-16	#3 Sand
МW3A	01/18/12	43.42	10	15.5	15.5	4	Schedule 40 PVC	5-15	0.020	4.5-15.5	#2/12 Sand
MW4	11/05/10	42.04	8	17	13	2	Schedule 40 PVC	8-13	0.020	6-13	#3 Sand
MW5	11/05/10	43.12	8	17	14	2	Schedule 40 PVC	9-14	0.020	7-14	#3 Sand
MW6	11/03/10	43.80	10	20	20	2	Schedule 40 PVC	15-20	0.020	13-20	#3 Sand
MW7	12/08/14	41.21	10	15	15	2	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
MW8	12/08/14	39.65	10	15	15	2	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
MW9	10/08/15	39.50	10	16	15	2	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
AS1	01/18/12		8	15.5	15.5	1	Schedule 80 PVC	10.25-13.5	#60 mesh	10.5-15.5	#2/12 Sand
SVE1	01/17/12	43.32	10	15.5	15.5	4	Schedule 40 PVC	5-15	0.020	4.5-15.5	#2/12 Sand
SVE2	01/17/12	43.68	10	15	15	4	Schedule 40 PVC	5-15	0.020	4.5-15	#2/12 Sand
SVE3	01/17/12	43.67	10	15	15	4	Schedule 40 PVC	5-15	0.020	4.5-15.5	#2/12 Sand
SVE4	10/09/15	43.10	12	16	15	4	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
SVE5	10/09/15	43.70	12	16	15	4	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
SVE6	10/09/15	44.37	12	16	15	4	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
SVE7	10/09/15	44.48	12	16	15	4	Schedule 40 PVC	5-15	0.020	4-15	#3 Sand
SVS1	02/25/14		4	5.6	5.6	0.25	PVC	5.4-5.6	0.010	4.6-5.6	#3 Sand
SVS2	02/25/14		4	5.6	5.6	0.25	PVC	5.4-5.6	0.010	4.6-5.6	#3 Sand
SVS3	02/25/14		4	5.6	5.6	0.25	PVC	5.4-5.6	0.010	4.6-5.6	#3 Sand

Notes:

TOC = Top of well casing elevation; datum is NAVD88.

PVC = Polyvinyl chloride.

feet bgs = Feet below ground surface.
TABLE 3A CUMULATIVE SOIL ANALYTICAL RESULTS Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 1 of 5)

							_	_	_								Naph-		
Sample	Sampling	Depth	IPHmo	IPHd	TPHg	MIBE	В		E,	X	EDB	1,2-DCA	IBA	DIPE	EIBE	IAME	thalene	VOCs	Lead
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Environmental Screeni	ing Levels, Pote	ential Drinki	ng Water S	ource (Dec	cember 201	3)													
Shallow (<10 feet bgs), F	Residential (Tab	ole A-1)		100	100	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		80
Shallow (<10 feet bgs), (Commercial (Ta	ble A-2)		110	500	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		320
Deep (≥10 feet bgs), Res	sidential (Table	C-1)		110	500	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		80
Deep (≥10 feet bgs), Co	mmercial (Table	e C-2)		110	770	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		320
Soil Borings	04/00/00		- 0	0.7	4.0	0.05	0.005	0.005	0.005	0.005									
B-1	01/06/08	6.0	<5.0	3.70	<1.0	<0.05	<0.005	<0.005	<0.005	<0.005									
B-1	01/06/08	10.5	<100	1,400b,C	7,200b,f	<5.0	2	51	110	400									
B _2	01/06/08	5 5	~5.0	~1.0	-10	<0.05	<0.005	<0.005	<0.005	<0.005									
D-2 D-2	01/06/08	5.5 10 F	< 3.0	< 1.0 1 400d	<1.0	<0.05	<0.005	<0.005 25	<0.005	<0.005									
D-2	01/00/08	10.5	<100	1,4000	4,5000,1	<5.0	13	30	100	300									
B-3	01/06/08	55	~5.0	~10	~1.0	~0.50	<0.005	<0.005	<0.005	~0.005									
B-3	01/06/08	10.5	<5.0	53d	130o f	<0.50	0.000	0.000	2.6	0.44									
D-0	01/00/00	10.5	<5.0	000	1506,1	<0.50	0.57	0.23	2.0	0.44									
B-4	01/06/08	55	<5.0	62d	140e f	<0.50	<0.005	10	0.066	0 094									
B-4	01/06/08	10.5	<5.0	15d	140e,f	<0.00	0.25	1.5	1.3	0.001									
	01,00,00		1010		,.	10100	0.20			0									
B-5	01/06/08	5.5	<5.0	<1.0	<1.0	<0.05	<0.005	<0.005	<0.005	<0.005									
B-5	01/06/08	11.5	<5.0	5.4c.d	32e.f	<0.25	0.038	0.24	0.051	0.035									
					,														
B-6	01/06/08	5.5	<5.0	<1.0	<1.0	<0.05	<0.005	<0.005	<0.005	<0.005									
B-6	01/06/08	10.5	<5.0	6.0c,d	32e,f	<0.05	0.009	0.41	<0.005	0.039									
S-5-B7	02/27/14	5.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0099	<0.0099	<0.0099	<0.050		
S-11.5-B7	02/27/14	11.5	<25	<5.0	<0.49	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-5-B8	02/28/14	5.0	<25	<5.0	<0.52	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.050		
S-11.5-B8	02/28/14	11.5	<25	<5.0	<0.51	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0098	<0.0098	<0.0098			
S-15.5-B8	02/28/14	15.5	<26	<5.1	<0.48	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-5-B9	02/27/14	5.0	<25	<5.0	<0.52	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.050		
S-11.5-B9	02/27/14	11.5	<25	<5.0	<0.52	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0098	<0.0098	<0.0098			
S-5-B10	02/27/14	5.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.050		
S-11.5-B10	02/27/14	11.5	<24	<4.9	<0.49	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
0.5.044	00/00/11		~-																
S-5-B11	02/28/14	5.0	<25	<5.0	<0.50	<0.0051	<0.0051	<0.0051	< 0.0051	<0.0051	< 0.0051	<0.0051	<0.051	< 0.010	< 0.010	<0.010	<0.051		
S-11.5-B11	03/05/14	11.5	<25	<5.0	<0.50	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.052	<0.010	<0.010	<0.010			
S-15-B11	03/05/14	15.0	<24	<4.9	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S.5. B12	02/26/14	5.0	-25	~5.0	<0.50	-0.0040	-0.0040	-0.0040	<0.0040	<0.0040	~0.0040	-0.0040	-0.040	~0.0000	~0.0000	~0.0009	-0.040		
0-0-012 9-11 5-812	02/20/14	0.0 11.5	<20	< 5.0	<0.50	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0098	<0.0098		<0.049		
0-11.0-D12	02/20/14	11.5	<20	<0.0	0.504	<0.0032	0.00074J	<0.000Z	0.00020j	<0.0052	<0.0032	<0.0032	<0.052	<0.010	<0.010	<0.010			
S-5-B13	02/25/14	5.0	-21	-19	~0.48	~0.0052	~0.0052	~0.0052	<0.0052	<0.0052	~0.0052	~0.0052	~0.052	~0.010	~0.010	~0.010	<0.052		
S-11 5-B13	02/23/14	11 5	~24	1602	1 800	~0.0032	~0.0032	~0.0032	16 16	1 5	~0.0032	~0.0032	~0.032	~20	<0.010	<0.010	<0.032		
5-11.3-013	02/20/14	11.5	<20	Toud	1,000	<1.0	<1.0	<1.0	10	1.5	<1.0	<1.0	<10	<2.0	<2.0	<2.0			

TABLE 3A CUMULATIVE SOIL ANALYTICAL RESULTS Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 2 of 5)

																	N.L		
Comple	Compling	Denth	TDUmo				Р	Ŧ	-	V		1 2 004		סוסר	FTDE	ТАМЕ	Napn-	VOCa	Lood
Sample	Sampling	(feet bas)	(ma/ka)		(ma/ka)		D (mg/kg)	 (m.m.//(m)	E (ma/ka)	۸ (۳۰۳/۱۰۳)		1,2-DCA	IDA (ma/ka)	DIPE (mg/kg)				vous	Leau
Environmontal Scrooni		(leet bys)	(IIIg/Kg)		(IIIg/Kg)	(IIIg/Kg)	(IIIg/Kg)	(IIIg/Kg)	(mg/kg)	(IIIg/Kg)	(IIIg/Kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(IIIg/Kg)	(mg/kg)	(mg/kg)
Shallow (<10 foot box)	Posidontial (Tab		ng water 3	100	100	0.022	0.044	2.0	2.2	22	0 00033	0.0045	0.075				1.2		80
Shallow (<10 feet bgs), f				110	500	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		320
Deen (>10 feet bgs), C	sidential (Table (C_1)		110	500	0.023	0.044	2.5	33	2.0	0.00033	0.0045	0.075				1.2		80
Deep (≥10 feet bgs), Res	mmercial (Table	(C-2)		110	770	0.023	0.044	2.5	33	2.0	0.00033	0.0045	0.075				1.2		320
Deep (E To leet bgs), Col		0-2)		110	110	0.025	0.044	2.5	0.0	2.0	0.00033	0.0040	0.075				1.2		520
S-5-B14	03/05/14	50	<25	<5.0	<0.53	<0.0050	<0.0050	<0.0050	<0 0050	<0.0050	<0 0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.050		
S-11.5-B14	03/05/14	11.5	<25	<5.0	<0.50	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	<0.050	< 0.010	< 0.010	< 0.010			
S-15.5-B14	03/05/14	15.5	<24	<4.9	< 0.51	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.051	< 0.010	< 0.010	< 0.010			
S-19-B14	03/05/14	19.0	<25	<5.0	< 0.50	< 0.0048	< 0.0048	< 0.0048	< 0.0048	<0.0048	< 0.0048	< 0.0048	<0.048	< 0.0096	< 0.0096	< 0.0096			
S-5-B15	03/05/14	5.0	<25	<5.0	<0.49	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.051	<0.010	<0.010	<0.010	<0.051		
S-10-B15	03/05/14	10.0	<24	<4.9	<0.52	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-14.0-B15	03/05/14	14.0	<25	<5.0	<0.48	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-5-B16	02/26/14	5.0	<25	<5.0	0.62a	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.030j	<0.0099	<0.0099	<0.0099	<0.050		
S-10-B16	02/26/14	10.0	<24	43a	530	<0.49	0.026j	<0.49	0.10j	0.058j	<0.49	<0.49	<4.9	<0.97	<0.97	<0.97	0.84j		
S-15.5-B16	02/26/14	15.5	<25	<5.0	<0.51	<0.0050	<0.0050	<0.0050	0.00021j	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-5-B17	02/26/14	5.0	<25	<5.0	<0.48	<0.0050	0.00014j	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.011j	<0.010	<0.010	<0.010	0.0021j		
S-10-B17	02/26/14	10.0	<25	<5.0	8.4a	<0.0050	0.0063	<0.0050	<0.0050	0.00081j	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010	<0.050		
S-15.5-B17	02/26/14	15.5	<24	<4.9	<0.51	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.052	<0.010	<0.010	<0.010			
S-5-B18	10/08/15	5.0		<5.0	<0.51	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0099	<0.0099	<0.0099			
S-10-B18	10/08/15	10.0		<4.9	<0.49	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0098	<0.0098	<0.0098			
S-15-B18	10/08/15	15.0		<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.0099	<0.0099	<0.0099			
	- ·																		
Cone Penetration Test	Borings																		
S-5-CPT1	10/20/10	5.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
	10/20/10	5.0	-25	-5.0	-0 50	-0.0050	-0.0050	-0.0050	-0.0050	-0.0050	-0.0050	-0.0050	-0.050	-0.010	-0.010	-0.010			
3-5-CF12	10/20/10	5.0	<20	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
Monitoring Wells																			
S-5-MW1	10/20/10	50	<25	< 5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-10-MW1	11/04/10	10.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-14.5-MW1	11/04/10	14.5	<25	<5.0	<0.50	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	<0.050	< 0.010	< 0.010	< 0.010			
S-10-MW2	11/04/10	10.0	<25	<5.0	3.1a	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-15-MW2	11/04/10	15.0	<25	<5.0	< 0.50	< 0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	<0.050	<0.010	<0.010	<0.010			
S-5-MW3	10/20/10	5.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-10.5-MW3	11/08/10	10.5	<25	11a	220	<0.50	<0.50	<0.50	2.0	1.1	<0.50	<0.50	<5.0	<1.0	<1.0	<1.0			
S-15.5-MW3	11/08/10	15.5	<25	<5.0	2.2	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-8-MW3A	01/18/12	8.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-14.5-MW3A	01/18/12	14.5	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	0.015	0.0052	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-5-MW4	10/20/10	5.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-10-MW4	11/05/10	10.0	<25	<5.0	44a	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<1.0	<1.0	<1.0			

TABLE 3A CUMULATIVE SOIL ANALYTICAL RESULTS Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 3 of 5)

																	Naph-		
Sample	Sampling	Depth	TPHmo	TPHd	TPHg	MTBE	В	Т	Е	Х	EDB	1,2-DCA	TBA	DIPE	ETBE	TAME	thalene	VOCs	Lead
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Environmental Screeni	ing Levels, Pote	ential Drinki	ng Water S	ource (Dec	ember 201	3)													
Shallow (<10 feet bgs), I	Residential (Tab	le A-1)		100	100	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		80
Shallow (<10 feet bgs), 0	Commercial (Tal	ble A-2)		110	500	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		320
Deep (≥10 feet bgs), Re	sidential (Table	C-1)		110	500	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		80
Deep (≥10 feet bgs), Co	mmercial (Table	e C-2)		110	770	0.023	0.044	2.9	3.3	2.3	0.00033	0.0045	0.075				1.2		320
S-15-MW4	11/05/10	15.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-16.5-MW4	11/05/10	16.5	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-5-MW5	10/20/10	5.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-10.5-MW5	11/05/10	10.5	29	93a	450a	<0.050	<0.050	1.5	< 0.50	<0.50	<0.50	<0.50	<5.0	<1.0	<1.0	<1.0			
S-16.5-MW5	11/05/10	16.5	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-5-MW/6	10/20/10	5.0	~25	~5.0	<0.50	<0.0050	<0.0050	~0.0050	<0.0050	<0.0050	~0.0050	<0.0050	~0.050	~0.010	~0.010	~0.010			
S-10-MW6	11/02/10	10.0	<25	8 2a	8.7a	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.0050	<0.0000	<0.000	<0.010	<0.010	<0.010			
S-14 5-MW6	11/02/10	14.5	<25	<5.0	1.8a	<0.0050	<0.0050	<0.0050	<0.0093	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-20-MW6	11/02/10	20.0	<25	<5.0	< 0.50	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.050	< 0.010	< 0.010	< 0.010			
S-5-MW7	12/08/14	5.0		<5.0	<0.52	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048			<0.048	<0.0096	<0.0096	<0.0096			
S-10-MW7	12/08/14	10.0		120a	540a	<2.0	<2.0	<2.0	<2.0	<2.0			<20	<4.0	<4.0	<4.0			
S-15-MW7	12/08/14	15.0		<5.0	<0.51	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048			<0.048	<0.0096	<0.0096	<0.0096			
	10/00/11/	5.0		-E 0	-0.49	-0.0051	-0.0051	-0.0051	-0.00E1	-0.0051			-0.051	-0.010	-0.010	-0.010			
S-3-IVIVO	12/06/14	5.0		<5.0	<0.40	<0.0051	<0.0051	<0.0019	<0.0051	<0.0051			<0.051	<0.010	<0.010	<0.010			
S-10-IVIVVO	12/00/14	10.0		< 5.0	<0.52	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040			<0.040	<0.0090	<0.0090	<0.0090			
3-13-101000	12/06/14	15.0		<5.0	<0.49	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049			<0.049	<0.0097	<0.0097	<0.0097			
S-5-MW9	10/08/15	5.0		<5.1	<0.49	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-10.5-MW9	10/08/15	10.5		6.3a	36a	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0098	<0.0098	<0.0098			
S-15.5-MW9	10/08/15	15.5		<5.0	<0.49	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0099	<0.0099	<0.0099			
Domodiation Walls																			
	01/18/12	10.0	~25	8002	2 000	~25	~25	~25	47	~2.5	~25	~25	~25	~5.0	~5.0	~5.0			
3-10-431	01/10/12	10.0	<25	000a	2,900	<2.5	<2.5	<2.5	4/	<2.5	<2.5	<2.5	<23	<5.0	<3.0	<5.0			
S-8 5-SVF1	01/17/12	85	<25	87a	480a	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<10	<10	<10			
S-11.5-SVE1	01/17/12	11.5	<25	<5.0	18	<0.0050	<0.50	0.010	0.084	0.11	< 0.0050	<0.0050	< 0.50	<0.010	< 0.010	<0.010			
S-10-SVE2	01/17/12	10.0	53a	37a	390a	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	<1.0	<1.0	<1.0			
S-14-SVE2	01/17/12	14.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.50	<0.010	<0.010	<0.010			
	01/17/10	10 5	570	760-	1 0000	-0 F	-0 F	-0 F	-0 F	-0 F	-0.50	-0.50	-5.0	.1.0	.1.0	-1.0			
5-12.5-5VE3	01/17/12	12.0	57a -25	700a	1,900a	<2.5	<2.5	<2.5	<2.5	<2.5	<0.50	<0.50	< 5.0	<1.0	<1.0	<1.0			
3-13-3VE3	01/17/12	15.0	<25	<5.0	<0.50	<0.0050	<0.0050	<0.0050	0.015	0.033	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-5-SVE4	10/09/15	5.0		<5.0	<0.49	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0.049	<0.0099	<0.0099	<0.0099			
S-9.5-SVE4	10/09/15	9.5		9.2a	82a	<0.50 l	<0.50 l	<0.50 l	<0.50 l	<0.50 l	<0.50 l	<0.50 l	<5.0 l	<1.0	<1.01	<1.01			
S-15.5-SVE4	10/09/15	15.5		<4.9	<0.51	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.050	<0.010	<0.010	<0.010			
S-5-SVE5	10/00/15	5.0		~5.0	-0.49	~0.0050	~0.0050	~0.0050	~0.0050	~0.0050	~0.0050	~0.0050	~0.050	~0.0000	~0 0000	~0 0000			
S-11 5-SVE5	10/09/15	J.U 11 5		<0.0 160a	50.49 300	<0.0050	<0.0050	<0.0050	<0.0000 5 1	<0.0030 7 0	<0.0050	<0.0050	<0.050 -/ Q	<0.0099	<0.0099	<0.0099			
S-11.5-5VL5 S-15 5-S\/E5	10/09/15	15.5		~5 0	-0 E0	<0.49	<0.49	<0.49	J.I	<0.0050	<0.43	<0.49	<4.J	~0.010	~0.010	~0.010			
0-10.0-0VE0	10/09/13	10.0		<3.0	<0.50	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.0000	<0.000	<0.010	<0.010	<0.010			

TABLE 3A CUMULATIVE SOIL ANALYTICAL RESULTS Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 4 of 5)

Naph	
Sample Sampling Depth TPHmo TPHd TPHg MTBE B T E X EDB 1,2-DCA TBA DIPE ETBE TAME thalen	VOCs Lead
D Date (feet bgs) (mg/kg) (mg/	(mg/kg) (mg/k
Environmental Screening Levels, Potential Drinking Water Source (December 2013)	
Shallow (<10 feet bgs), Residential (Table A-1) 100 100 0.023 0.044 2.9 3.3 2.3 0.00033 0.0045 0.075 1.2	80
Shallow (<10 feet bgs), Commercial (Table A-2) 110 500 0.023 0.044 2.9 3.3 2.3 0.00033 0.0045 0.075 1.2	320
Deep (≥10 feet bgs), Residential (Table C-1) 110 500 0.023 0.044 2.9 3.3 2.3 0.00033 0.0045 0.075 1.2	80
Deep (≥10 feet bgs), Commercial (Table C-2) 110 770 0.023 0.044 2.9 3.3 2.3 0.00033 0.0045 0.075 1.2	320
S-5-SVE6 10/09/15 5.0 <4.9 <0.51 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <	
S-12-SVE6 10/09/15 12.0 76a 520 <1.0 <1.0 <1.0 17 11 <1.0 <1.0 <1.0 <2.0 <2.0 <2.0	
S-5-SVE7 10/09/15 5.0 <4.9 <0.50 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <	
S-10-SVE7 10/09/15 10.0 <5.0 2.0a <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0090 <0.0099 <0.0099	
S-12-SVE7 10/09/15 12.0 <5.0 11 <0.49m <0.98m <0.98m <0.98m	
S-15.5-SVE7 10/09/15 15.5 <5.0 <0.50 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0099 <0.0099 <	
Soil Vapor Sampling Wolls	
S-5-SVS1 02/25/14 5.0 <25 <5.0 <0.50 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <0.0049 <	
S-5-SVS2 02/25/14 5.0 <25 <5.0 <0.49 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <0.0048 <	
S-5-SVS3 02/25/14 5.0 <25 <5.0 5.08 <0.0050 0.00036j <0.0050 0.00030j 0.00088j <0.0050 0.0050 0.0050 0.016j <0.010 <0.010 <0.010 0.003	
Drum Samples	
DR-1 01/06/08 <5.0 2.5c,d 4.9e,f <0.050 <0.005 0.027 0.035 0.035	9.7
Soil Stockpile Samples	
COMP(S-Profile-1-4) 11/08/10 <25 7.1a 14a <0.0050 <0.0050 <0.0050 0.069 0.049 <0.0050 <0.0050 <0.050 <0.010 <0.010	6.93
S-SP1 (1-4) 01/18/12 190a 39a 230 <0.0050 0.20 0.66 4.3 14 <0.0050 <0.0050 <0.050 <0.010 <0.010 <	37.6
SP1 03/05/14 <24 <4.9 <0.49 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.005	ND 5.34
SP-1 10/08/15 < <4.9 0.79a <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.010 <0.010	<0.25k 5.74

TABLE 3A CUMULATIVE SOIL ANALYTICAL RESULTS Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 5 of 5)

Notes:		
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015B.
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015B.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015B.
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B; analyzed using EPA Method 8020 in 2008.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
EDB	=	1,2-Dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-Dicholorethane analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
Lead	=	Total lead analyzed using EPA Method 6010B.
VOCs	=	Volatile organic compounds analyzed using EPA Method 8260B.
SVOCs		Semi-volatile organic compounds analyzed using EPA Method 8270C.
HVOCs	=	Halogenated volatile organic compounds analyzed using EPA Method 8260B.
PAHs	=	Polyaromatic hydrocarbons analyzed using EPA Method 8310.
feet bgs	=	Feet below ground surface.
ND	=	Not detected.
	=	Not analyzed/Not applicable
<	=	Less than the laboratory reporting limit.
а	=	The chromatographic pattern does not match that of the specified standard.
b	=	Heavier gasoline range compounds are significant.
С	=	Diesel range compounds are significant; no recognizable pattern.
d	=	Gasoline range compounds are significant.
е	=	Strongly aged gasoline or diesel range compounds are significant.
f	=	No recognizable pattern.
g	=	1-Methylnaphthalene.
h	=	2-Methylnaphthalene.
i	=	Phenanthrene.
j	=	Estimated value; analyte present at concentration above the method detection limit but below the reporting limit.
k	=	Ethanol.
I	=	The reporting limit is elevated resulting from matrix interference.
m	=	Reporting limits raised due to high level of non-target analytes.

TABLE 3B ADDITIONAL CUMULATIVE SOIL ANALYTICAL RESULTS - HVOCs AND PAHs Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 1 of 4)

						HV	'OCs							PA	Hs
			1,2,4-trimethyl-	1,3,5-trimethyl-	Isopropyl-	Naph-	n-Butyl-	p-Isopropyl-	sec-Butyl-	t-Butyl-			Naph-		
Sample	Sampling	Depth	benzene	benzene	benzene	thalene	benzene	toluene	benzene	benzene	HVOCs	SVOCs	thalene	Pyrene	PAHs
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Environmental Screenin	g Levels, Poten	tial Drinking	Water Source (De	ecember 2013)											
Shallow (<10 feet bgs), Re	esidential (Table	A-1)				1.2							1.2	85	
Shallow (<10 feet bgs), Co	ommercial (Table	e A-2)				1.2							1.2	85	
Deep (≥10 feet bgs), Resi	dential (Table C-	1)				1.2							1.2	85	
Deep (≥10 feet bgs), Com	mercial (Table C	-2)				1.2							1.2	85	
0 11 D ·															
Soli Borings	alutaa ariar ta 20	4.4													
Not analyzed for these and	alytes prior to 20	14.													
S-5-B7	02/27/14	5.0													
S-11.5-B7	02/27/14	11.5													
S-5-B8	02/28/14	5.0													
S-11.5-B8	02/28/14	11.5													
S-15.5-B8	02/28/14	15.5													
S-5-B9	02/27/14	5.0													
S-11.5-B9	02/27/14	11.5													
0.000															
S-5-B10	02/27/14	5.0													
S-11.5-B10	02/27/14	11.5													
S-5-B11	02/28/14	5.0													
S-11 5-B11	03/05/14	11.5													
S-15-B11	03/05/14	15.0													
0 10 2 11		1010													
S-5-B12	02/26/14	5.0											<15	<10	ND
S-11.5-B12	02/26/14	11.5													
S-5-B13	02/25/14	5.0											16	<10	ND
S-11.5-B13	02/28/14	11.5													
S-5-B14	03/05/14	5.0													
S-11.5-B14	03/05/14	11.5													
S-15.5-B14	03/05/14	15.5													
S-19-B14	03/05/14	19.0													
S 5 B15	02/05/14	5.0													
5-0-010 S-10-B15	03/05/14	5.U 10.0													
S-14 0-B15	03/05/14	14.0													
0.100010	00/00/14	1 7.0													

TABLE 3B ADDITIONAL CUMULATIVE SOIL ANALYTICAL RESULTS - HVOCs AND PAHs Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 2 of 4)

						HV	OCs							F	PAHs
			1,2,4-trimethyl-	1,3,5-trimethyl-	Isopropyl-	Naph-	n-Butyl-	p-Isopropyl-	sec-Butyl-	t-Butyl-			Naph-		
Sample	Sampling	Depth	benzene	benzene	benzene	thalene	benzene	toluene	benzene	benzene	HVOCs	SVOCs	thalene	Pyrene	PAHs
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Environmental Screenir	ng Levels, Potent	ial Drinking	Water Source (De	cember 2013)											
Shallow (<10 feet bgs), R	esidential (Table	A-1)				1.2							1.2	85	
Shallow (<10 feet bgs), C	commercial (Table	A-2)				1.2							1.2	85	
Deep (≥10 feet bgs), Res	idential (Table C-	1)				1.2							1.2	85	
Deep (≥10 feet bgs), Con	nmercial (Table C-	-2)				1.2							1.2	85	
S-5-B16	02/26/14	5.0											<15	<10	ND
S-10-B16	02/26/14	10.0											<15	<10	ND
S-15.5-B16	02/26/14	15.5													
S-5-B17	02/26/14	5.0											<15	<10	ND
S-10-B17	02/26/14	10.0											<15	<10	ND
S-15.5-B17	02/26/14	15.5													
S-5-B18	10/08/15	5.0											<0.020	<0.020	ND
S-10-B18	10/08/15	10.0											<0.020	<0.020	ND
S-15-B18	10/08/15	15.0											<0.020	<0.020	ND
Cone Penetration Test I	Borings														
	larytoo.														
Monitoring Wells	valutes prior to 201	15													
Not analyzed for these ar		10.													
S-5-MW9	10/08/15	5.0											<0.020	<0.020	ND
S-10.5-MW9	10/08/15	10.5											<0.020	<0.020	ND
S-15.5-MW9	10/08/15	15.5											<0.020	<0.020	ND
Remediation Wells															
Not analyzed for these ar	nalytes prior to 201	15.													
S-5-SVE4	10/09/15	5.0											<0.020	<0.020	ND
S-9.5-SVE4	10/09/15	9.5											<0.020	<0.020	0.060g, 0.14h
S-15.5-SVE4	10/09/15	15.5											<0.020	<0.020	ND
S-5-SVE5	10/09/15	5.0											<0.020	<0.020	ND
S-11.5-SVE5	10/09/15	11.5											1.2	<0.099	1.0g, 2.1h
S-15.5-SVE5	10/09/15	15.5											<0.020	<0.020	ND
S-5-SVE6	10/09/15	5.0											<0.020	<0.020	ND
S-12-SVE6	10/09/15	12.0											0.39	<0.020	0.38g, 0.81h, 0.024i

TABLE 3B ADDITIONAL CUMULATIVE SOIL ANALYTICAL RESULTS - HVOCs AND PAHs Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 3 of 4)

										Hs					
			1,2,4-trimethyl-	1,3,5-trimethyl-	Isopropyl-	Naph-	n-Butyl-	p-Isopropyl-	sec-Butyl-	t-Butyl-			Naph-		
Sample	Sampling	Depth	benzene	benzene	benzene	thalene	benzene	toluene	benzene	benzene	HVOCs	SVOCs	thalene	Pyrene	PAHs
ID	Date	(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Environmental Screening	Levels, Poten	tial Drinking	Water Source (De	cember 2013)											
Shallow (<10 feet bgs), Res	idential (Table	A-1)				1.2							1.2	85	
Shallow (<10 feet bgs), Con	nmercial (Table	e A-2)				1.2							1.2	85	
Deep (≥10 feet bgs), Reside	ential (Table C-	1)				1.2							1.2	85	
Deep (≥10 feet bgs), Comm	ercial (Table C	;-2)				1.2							1.2	85	
S-5-SVE7	10/09/15	5.0											<0.020	<0.020	ND
S-10-SVE7	10/09/15	10.0											<0.020	<0.020	ND
S-12-SVE7	10/09/15	12.0											<0.020	<0.020	ND
S-15.5-SVE7	10/09/15	15.5											<0.020	<0.020	ND
Soil Vapor Sampling Wells	5														
S-5-SVS1	02/25/14	5.0											<15	11	ND
S-5-SVS2	02/25/14	5.0											<15	<10	ND
S-5-SVS3	02/25/14	5.0											<15	<10	ND
Drum Samples															
Not analyzed for these anal	ytes.														
Soil Stockpile Samples															
COMP(S-Profile-1-4)	11/08/10		0.0053	0.062	0.061	0.098	0.14	0.012	0.053	0.018	ND				
S-SP1 (1-4)	01/18/12		8.3	2.2	0.12	<5.0	0.20	0.018	0.051	<0.0050	2.5j				
SP1	03/05/14														
SP-1	10/08/15											ND			

TABLE 3B ADDITIONAL CUMULATIVE SOIL ANALYTICAL RESULTS - HVOCs AND PAHs Former Exxon Service Station 79374 990 San Pablo Boulevard Albany, California (Page 4 of 4)

Notes:		
TPHmo	=	Total petroleum hydrocarbons as motor oil analyzed using EPA Method 8015B.
TPHd	=	Total petroleum hydrocarbons as diesel analyzed using EPA Method 8015B.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015B.
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260B; analyzed using EPA Method 8020 in 2008.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B.
EDB	=	1,2-Dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-Dicholorethane analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ether analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
Lead	=	Total lead analyzed using EPA Method 6010B.
VOCs	=	Volatile organic compounds analyzed using EPA Method 8260B.
SVOCs		Semi-volatile organic compounds analyzed using EPA Method 8270C.
HVOCs	=	Halogenated volatile organic compounds analyzed using EPA Method 8260B.
PAHs	=	Polyaromatic hydrocarbons analyzed using EPA Method 8310.
feet bgs	=	Feet below ground surface.
ND	=	Not detected.
	=	Not analyzed/Not applicable
<	=	Less than the laboratory reporting limit.
а	=	The chromatographic pattern does not match that of the specified standard.
b	=	Heavier gasoline range compounds are significant.
С	=	Diesel range compounds are significant; no recognizable pattern.
d	=	Gasoline range compounds are significant.
е	=	Strongly aged gasoline or diesel range compounds are significant.
f	=	No recognizable pattern.
g	=	1-Methylnaphthalene.
h	=	2-Methylnaphthalene.
i	=	Phenanthrene.
j	=	Estimated value; analyte present at concentration above the method detection limit but below the reporting limit.
k	=	Ethanol.
I	=	The reporting limit is elevated resulting from matrix interference.
k	=	Reporting limits raised due to high level of non-target analytes.

= Reporting limits raised due to high level of non-target analytes.

NI 4

TABLE 4 CUMULATIVE SOIL VAPOR ANALYTICAL RESULTS Former Exxon Service Station 79374 990 San Pablo Avenue

Albany, California

Sample ID	Sampling Date	Depth (feet)	TPHg (µg/m³)	MTBE (µg/m³)	B (µg/m³)	T (µg/m³)	E (µg/m³)	X (µg/m³)	EDB (µg/m³)	1,2-DCA (µg/m³)	TBA (µg/m³)	TAME (µg/m³)	ETBE (µg/m³)	DIPE (µg/m³)	Naph- thalene (µg/m³)	Add'l VOCs (µg/m³)	Methan (%V)	e Helium (%V)	CO ₂ (%V)	O ₂ + Argon (%V)	Vacuum (in Hg)
Environme	ental Screen	ing Le	vels, Shallow	Soil Gas,	Table E-2	(Decembe	r 2013)														
Residential			300,000	4,700	42	160,000	490	52,000	17	58					36						
Commercia	l/Industrial		2,500,000	47,000	420	1,300,000	4,900	440,00	170	580					360						
Media-Spe	cific Criteria	a for Va	apor Intrusion	to Indoo	r Air, No E	Bioattenuat	ion Zone	(SWRCB	, 2012)												
Residential					85		1,100								93						
Commercia	al				280		3,600								310						
Media-Spe	cific Criteria	a for Va	apor Intrusion	to Indoo	r Air, With	Bioattenu	ation Zon	e (SWRC	B, 2012)												
Residential					85,000		1,100,000)							93,000						
Commercia	ıl				280,000		3,600,000)							310,000						
SVS1	03/06/14	55	180 000 000	~12 000	<2 600	<3 000	<3 500	<3 500	∠6 100	<3 200	<9 700	<13 000	<13 000	<13 000	<0.020		15.5	<0.0100	10.0	2.58	-5.00
SVS1	08/28/14	55		<36 000	~8,000	12 000	~11 000	~11 000	~10 000	~10 000	<30,000	<42 000	<42 000	~42 000	~20	ND	15.3	<0.0100	13.2	2 49	-5.00
0001	00/20/14	0.0	30,000,000	<30,000	<0,000	12,000	<11,000	<11,000	<13,000	<10,000	<00,000	\ 42,000	\+2 ,000	\+2 ,000	~20	ND	10.0	<0.0100	10.2	2.40	-0.00
SVS2	03/06/14	5.5	190,000,000	<1,800	1,700	740	650	3,100	<960	<510	<1,500	<2,100	<2,100	<2,100	<0.020		11.4	<0.0100	8.31	3.62	-5.00
SVS2	08/28/14	5.5	80,000,000	<36,000	<8,000	13,000	<11,000	<11,000	<19,000	<10,000	<30,000	<42,000	<42,000	<42,000	<20	ND	11.5	<0.0100	9.67	5.54	-5.00
SVS2 Dup	08/28/14	5.5	89,000,000	<36,000	<8,000	13,000	<11,000	<11,000	<19,000	<10,000	<30,000	<42,000	<42,000	<42,000		ND	13.5	<0.0100	11.3	2.82	-5.00
SVS3	03/07/14	5.5	150,000,000	<5,800	15,000	<1,500	15,000	<1,700	<3,100	<1,600	<4,900	<6,700	<6,700	<6,700	1.1		6.29	<0.0100	13.3	4.41	-5.00
SVS3 Dup	03/07/14	5.5	150,000,000	<5,800	22,000	<1,500	23,000	<1,700	<3,100	<1,600	<4,900	<6,700	<6,700	<6,700			6.73	<0.0100	14.4	3.10	-5.00
SVS3	08/28/14	5.5	87,000,000	<36,000	21,000	13,000	31,000	<11,000	<19,000	<10,000	<30,000	<42,000	<42,000	<42,000	820a	ND	5.11	<0.0100	14.7	5.49	-5.00

TABLE 4 CUMULATIVE SOIL VAPOR ANALYTICAL RESULTS Former Exxon Service Station 79374 990 San Pablo Avenue

Albany, California

Notes:		
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method TO-17; analyzed using EPA Method TO-3M in March 2014.
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method TO-15.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method TO-15.
EDB	=	1,2-dibromoethane analyzed using EPA Method TO-15.
1,2-DCA	=	1,2-dichloroethane analyzed using EPA Method TO-15.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method TO-15.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method TO-15.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method TO-15.
DIPE	=	Di-isopropyl ether analyzed using EPA Method TO-15.
Naphthalene	=	Naphthalene analyzed using EPA Method TO-17(M).
Add'I VOCs	=	Additional volatile organic compounds analyzed using EPA Method TO-15.
Methane	=	Methane analyzed using ASTM Method D-1946.
Helium	=	Helium analyzed using ASTM Method D-1946 (M).
CO_2	=	Carbon dioxide analyzed using ASTM Method D-1946.
O ₂ + Argon	=	Oxygen plus argon analyzed using ASTM Method D-1946.
Vacuum	=	Vacuum measured using a vacuum gauge.
µg/m³	=	Micrograms per cubic meter.
%V	=	Percent by volume.
in Hg	=	Inches of mercury.
ND	=	Not detected.
Bold	=	Greater than or equal to the most stringent, applicable screening level.
<	=	Less than the stated method detection limit.
	=	Not applicable.
а	=	Possibly biased high due to results of associated standard.

APPENDIX A

CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES

ALEX BRISCOE, Agency Director

AGENCY

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

January 8, 2016

Ms. Jennifer Sedlachek ExxonMobil 4096 Piedmont Ave., #194 Oakland, CA 94611 (Sent via E-mail to: jennifer.c.sedlachek@exxonmobil.com) Ms. Muriel Blank Blank Family Trust 1164 Solano Ave., #406 Albany, CA 94706

Subject: Request for Work Plan; Fuel Leak Case No. RO0002974 and GeoTracker Global ID T0619716673, Exxon, 990 San Pablo Ave., Albany, CA 94706

Dear Ms. Sedlachek and Ms. Blank:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the above referenced site including the *Data Gap Investigation, Well Installation, and Remedial Progress Report*, dated November 12, 2015, and *the Groundwater Monitoring and Remediation Status Report, Fourth Quarter 2015*, dated December 17, 2015. There reports were prepared and submitted on your behalf by Cardno. Thank you for submitting the reports.

Thank you also for initiating corrective actions at the site. As you are likely aware, the initial groundwater monitoring report subsequent to the initial High Intensity Targeted (HIT) event documents marked decreases in Total Petroleum Hydrocarbons as gasoline (TPHg) concentrations in groundwater.

ACEH has evaluated the data and recommendations presented in the above-mentioned reports, in conjunction with the case files, to determine if the site is eligible for closure as a low risk site under the State Water Resources Control Board's (SWRCBs) Low Threat Underground Storage Tank Case Closure Policy (LTCP). Based on the data generated during recent investigation and ACEH staff review, we have revised the checklist. ACEH has determined that the site continues to fail to meet the Media-Specific Criteria for Groundwater and the Media-Specific Criteria for Vapor Intrusion to Indoor Air (see Geotracker for an updated copy), but the site may also fail General Criteria f (Secondary Source Removal). Technical comments relative to each of criteria are discussed below.

Therefore, based on the review of the case file ACEH requests that you address the following technical comments and send us the documents requested below.

TECHNICAL COMMENTS

1. General Criteria f – Secondary Source Has Been Removed to the Extent Practicable – "Secondary source" is defined as petroleum-impacted soil or groundwater located at or immediately beneath the point of release from the primary source. Unless site attributes prevent secondary source removal (e.g. physical or infrastructural constraints exist whose removal or relocation would be technically or economically infeasible), petroleum-release sites are required to undergo secondary source removal to the extent practicable as described in the policy. "To the extent practicable" means implementing a cost-effective corrective action which removes or destroys-in-place the most readily recoverable fraction of source-area mass. It is expected that most secondary mass removal efforts will be completed in one year or less. Following removal or destruction of the secondary source, additional removal or active remedial actions shall not be required by regulatory agencies unless (1) necessary to abate a demonstrated threat to human health or (2) the groundwater plume does not meet the definition of low threat as described in this policy.

Removal of the former fuel underground storage tanks (USTs) and the waste oil UST are reported to have occurred at in 1983. Based on available records it is not certain that over excavation beneath the USTs occurred at that time. Soil and groundwater characterization in the vicinity around, and beneath, the former UST locations have been conducted; however, the former tank holds have not been characterized and may contain residual contamination at concentrations of concern. The installation of bores to characterize shallower tank-hold materials can provide baseline tank-hold concentrations near the initiation of corrective actions.

Please present a strategy in a Data Gap Work Plan (described in Technical Comment 4 below) to address the items discussed above. Alternatively, please provide justification of why the site satisfies this general criterion in the focused SCM described in Technical Comment 4 below.

 LTCP Media Specific Criteria for Groundwater – To satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of sites listed in the policy.

Our review of the case files indicates that insufficient data collection and analysis has been presented to support the requisite characteristics of plume stability or plume classification as follows:

a. Plume Areal Extent and Groundwater Gradient – Over a period of time, and depending on the number of wells installed and the time of year, it appears that the groundwater gradient at the site is highly variable. At present the groundwater gradient is to the south-southeast, and the extent of the groundwater plume to the south of wells MW-2 and MW-7, especially towards the police station across Buchannan Street, has not been adequately defined. This concern is not limited to petroleum hydrocarbon concentrations, but also to undefined halogenated volatile organic compounds (HVOCs) south of MW-2. Tetrachlorethene (PCE) and Trichlorethene (TCE) were documented in well MW-1 and MW-2 at concentrations up to 92 micrograms per liter (μg/l) and 79 μg/l respectively, in the recent groundwater monitoring event. The concentration of PCE in both wells was analyzed after the holding period, thus the concentrations are likely to have been higher. Both concentrations are over the drinking water and the non-drinking water Environmental Screening Levels (ESLs) promulgated by the San Francisco Bay Regional Water Quality Control Board (RWQCB).

Please present a strategy in a Data Gap Work Plan (described in Technical Comment 4 below) to address the items discussed above. Alternatively, please provide justification of why the site satisfies the Media-Specific Criteria for Groundwater in the focused SCM described in Technical Comment 4 below.

3. Risk of Indoor Air Vapor Intrusion – Recent review of the site on Google Earth indicates that the elevation of the immediately adjacent periodically downgradient residential home to the west is approximately 1 to 2 feet lower than the onsite elevation. Google Earth also indicates that an enclosed garage is located within feet of the downgradient property line. It appears appropriate to determine the risk of vapor intrusion at the home, including the garage. Indoor air sampling of the garage may be biased high due to potential use of the garage as an actual garage; however, the use of the space has not been determined. Alternative methods to evaluate the garage and home are available, including sub-slab vapor sampling. The lower site elevation at the home effectively reduces a portion of the bioattenuation zone that may be available at the site.

Please present a strategy in a Data Gap Work Plan (described in Technical Comment 4 below) to address the items discussed above. Alternatively, please provide justification of why the site satisfies the Media-Specific Criteria for Vapor Intrusion in the focused SCM described in Technical Comment 4 below.

4. Data Gap Investigation Work Plan and Focused Site Conceptual Model – Please prepare a Data Gap Investigation Work Plan to address the technical comments listed above. Please support the scope of work in the Data Gap Investigation Work Plan with a focused SCM and Data Quality Objectives (DQOs) that relate the data collection to each LTCP criteria. For example please clarify which scenario within each Criterion a sampling strategy is intended to apply to.

In order to expedite review, ACEH requests the focused SCM be presented in a tabular format that highlights the major SCM elements and associated data gaps, which need to be addressed to progress the site to case closure under the LTCP.

- 5. HVOC Analysis for Soil Vapor Extraction (SVE) Events Due to the presence of HVOCs in the eastern portion of the site, it is appropriate to include laboratory analysis for HVOCs in vapor extraction discharge monitoring and reporting. Please incorporate this sampling and reporting in the next regularly scheduled event.
- 6. HIT System Reporting and BAAQMD Site Specific Permit Due to the intermittent nature of the planned HIT events, Cardno has recommended quarterly Remedial Progress Reports (RPR). At this time, the recommendation appears appropriate. Please submit reports by the dates identified below.

Cardno additionally recommended that a site specific permit for remediation discharges to the atmosphere from the Bay Area Air Quality Management District (BAAQMD). This also appears appropriate. Please copy ACEH on system discharge reports to a POTW and to the BAAQMD.

7. Groundwater Monitoring and Analytical Data – In future groundwater monitoring reports please tabulate chlorinated solvents and other detected compounds under individual column headers. The intent is to quickly discern contaminant trends and not determine which footnote applies to which compound. Please continue to analyze for chlorinated solvents at the site in wells MW-1 and MW-2.

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACEH ftp site (Attention: Mark Detterman), and to the State Water Resources Control Board's Geotracker website, in accordance with the specified file naming convention below, according to the following schedule:

- March 25, 2016 Data Gap Investigation Work Plan File to be named: RO2974_WP_R_yyyy-mm-dd
- March 25, 2016 Remedial Progress Report File to be named: RO2974_REM_R_yyyy-mm-dd
- July 15, 2016 Second Quarter 2016 Semi-Annual Groundwater Monitoring and Remedial Progress Report; File to be named: RO2974_GWM_REM_R_yyyy-mm-dd
- September 23, 2016 Remedial Progress Report File to be named: RO2974_REM_R_yyyy-mm-dd
- 60 Days After Work Plan Approval Site Investigation Report File to be named: RO2974_SWI_R_yyyy-mm-dd

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ACEH appreciates work progress at the site and your cooperation. Should you have any questions, please contact me at (510) 567--6876 or send me an electronic mail message at mark.detterman@acgov.org.

Sincerely,

Digitally signed by Mark Detterman DN: cn=Mark Detterman, o=ACEH, ou=ACEH, email=mark.detterman@acgov.org, c=US Date: 2016.01.08 14:23:43 -08'00'

Mark E. Detterman, PG, CEG Senior Hazardous Materials Specialist

Ms. Sedlachek and Mrs. Blank RO0002974 January 8, 2016, Page 4

- Enclosures: Attachment 1 Responsible Party (ies) Legal Requirements / Obligations and Electronic Report Upload (ftp) Instructions
- cc: Christine Capwell, Cardno, 601 North McDowell Blvd., Petaluma, CA 94954 (Sent via E-mail to: christine.capwell@cardno.com)

David Daniels, Cardno, 601 North McDowell Blvd., Petaluma, CA 94954 (Sent via E-mail to: david.daniels@cardno.com)

Mrs. Marcia B. Kelly, 641 SW Morningside Rd., Topeka, KS 66615 (Sent via E-mail to: marciabkelly@earthlink.net)

Rev. Deborah Blank, 1563 Solano Ave. #344, Berkeley, CA 94707 (Sent via E-mail to: miracoli@earthlink.net)

Dilan Roe (sent via electronic mail to <u>dilan.roe@acgov.org</u>) Mark Detterman (sent via electronic mail to <u>mark.detterman@acgov.org</u>) Electronic File, GeoTracker **APPENDIX B**

SITE CONCEPTUAL MODEL

Element	Description	Data Gaps
Geology and Hy	/drogeology	
Regional Geology and Hydrogeology	The site lies at an approximate elevation of 40 feet above msl, and the local topography slopes toward the southwest. The site is located along the eastern margin of the San Francisco Bay within the East Bay Plain (Hickenbottom and Muir, 1988). The surficial deposits in the site vicinity are mapped as Holocene alluvial fan and fluvial deposits (Graymer, 2000). The active northwest trending Hayward fault is located approximately 1.5 miles northeast of the site. The East Bay Plain is regionally divided into two major groundwater basins: the San Pablo and the San Francisco Basin. These basins are tectonic depressions that are filled primarily with a sequence of coalescing alluvial fans. The San Francisco Basin is further divided into seven sub-areas. The site is located in the Berkeley Sub-Area, which is filled primarily by alluvial deposits that range from 10 to 300 feet thick with poorly defined aquitards (CRWQCB, 1999). Under natural conditions, the direction of groundwater flow in the East Bay Plain is east to west.	None
Site Geology, Hydrogeology, Hydraulic Flow, and Groundwater Gradient	Soil boring logs indicate that the soil beneath the site consists predominantly of silt and clay with an apparently continuous coarse-grained unit 2 to 8 feet thick encountered between approximately 8 and 20 feet bgs. Fill material was encountered in the boring for well SVE3 (located in the former UST pit) to approximately 7 feet bgs. CPT borings indicate the presence of predominantly silt and clay between approximately 20 and 60 feet bgs, the maximum depth explored. Coarse-grained layers up to 3 feet thick are interbedded with the silt and clay (EC&A, 2008; Cardno ERI, 2011; Cardno ERI, 2012). Historical groundwater elevation data indicate that DTW ranges from 5 to 11 feet bgs beneath the site with varying groundwater flow directions. The distribution of dissolved-phase hydrocarbons suggests that the dominant groundwater flow direction is west to southwest (Cardno ERI, 2014b). Due to varying well construction, Cardno ERI separated the wells into shallow and deep water-bearing zones. Wells MW3A, MW4, MW5, and SVE1 through SVE3 are screened no deeper than 15 feet bgs and are referred to as the shallow water-bearing zone; wells MW1 through MW3 and MW6 have screened intervals that extend deeper than 15 feet bgs and are referred to as the deep water-bearing zone. The groundwater elevations. Although the water-bearing zones are referred to as shallow and deep, they likely do not represent unique water-bearing zones. During second quarter 2015, the groundwater flow direction in the shallow water-bearing zone was towards the southwest with a hydraulic gradient of approximately 0.038 (Cardno, 2015). Due to varying well construction, the groundwater flow in the deep water-bearing zone is not calculated (Cardno ERI, 2014b).	None
Facility History		
Facility Structures and Site Operations	In 1945, a service station owned by Signal Oil Company occupied the site. Humble Oil company acquired the site in 1967 from Standard Oil Company of California (Chevron), rebranding the site as an Enco station. The station was rebranded as an Exxon service station in 1975 (EDR, 2009a; EDR, 2009b). The service station was demolished in 1983. During demolition activities, one used-oil UST and four gasoline USTs were removed and the resulting tank cavity was backfilled with sand and compacted to 90% (City of Albany, 1983). Cardno ERI reviewed eight aerial photographs of the site and site vicinity dated from September 6, 1949, to June 21, 1983 (EDR, 2009b). Based on these photographs, the dispenser islands appeared to be located beneath the station canopy on the northern portion of the site and the former USTs appeared to be located on the southern portion of the site, east of the station's service bays. The location of the former used-oil UST is unknown. The approximate location of the former USTs are shown on Plate 2. A retail outlet for Benjamin Moore paints and painting products and associated asphalt parking currently occupy the site.	None
		1

Element	Description	Data Gaps
Sensitive Rece	otors, Land Use, and Nearby Sites	
Surface Water Bodies	The site is located approximately 1,630 feet north-northwest of Cordornices Creek. No other surface water bodies have been located within a 300-meter radius of the site.	None
Nearby Wells	There are not public water supply, municipal, or domestic wells located within a ¼-mile radius of the site.	None
Public Use Areas	Two public use areas are present within a 100-meter radius of the site: the City of Albany Police, Fire, and City offices located across Buchanan Street at 1000 San Pablo Avenue and a physical therapy office located in the strip mall approximately 50 meters north of the site.	None
Residences	Sixteen residential buildings have been identified within a 300-meter radius of the site; five of those buildings are located within a 100-meter radius of the site.	None
Sub-Grade	Sub-grade structures have not been identified within a 100-meter radius of the site.	None
Utility Vaults	Twenty-three vaults have been identified on or immediately adjacent to the site. Vault uses include: water, telephone, gas meter, electric, sewer, traffic box, traffic signal, and anode.	None
Storm and Sanitary Sewers	Three storm drains are located on or adjacent to the site. The storm drains daylight along the curb and water flows west along Buchanan Street. The City of Albany Public Works Department confirmed that the storm drains discharge directly into the Bay. Two sanitary sewer cleanout vaults are located on site. The City of Albany Public Works Department confirmed that sewage is discharged at the East Bay Municipal Utilities District Treatment Plant, located 4.5 miles south of the site, at the entrance to the San Francisco Bay Bridge.	None
Other	Other site receptors have not been identified.	None
Nearby Sites	The surrounding areas consist of residential and commercial properties. The City of Albany Fire Department and Police Department are located south of the site on Buchanan Street. ACEH case number RO0000119, identified as Firestone #3655 in the GeoTracker™ database, is located across San Pablo Avenue to the east. A Shell Service Station and an Atlantic Richfield Company Service Station (Arco) are located approximately 350 and 500 feet away, respectively, south-southeast of the site.	None
Release Information	ation	
Release History	The primary sources of petroleum hydrocarbons at the site are the former used-oil UST and the four former gasoline USTs. The USTs were removed in 1983 (City of Albany, 1983).	None
Extent and	Non-Aqueous Phase Liquid	None
Distribution of Petroleum Hydrocarbon Concentrations	An immiscible sheen was reported in groundwater samples collected from borings B1 and B2 (EC&A, 2008). Neither NAPL nor sheen have been observed in the groundwater monitoring wells at the site; however, during fourth quarter 2012, concentrations of TPHg (270,000 µg/L) reported in well MW4 were potentially indicative of the presence of NAPL. Although the TPHg concentrations increased, BTEX concentrations were consistent with previous data. Concentrations of TPHg reported since fourth quarter 2012 are not indicative of the presence of NAPL and second quarter 2015 (22,000 µg/L) data is consistent with historical results. The fourth quarter 2012 TPHd result for well MW4 appears to have been anomalous.	

Element	Description	Data Gaps
	Hydrocarbons in Groundwater	Yes
	Current and historic maximum dissolved-phase petroleum hydrocarbon concentrations have been reported in well MW3, located in the vicinity of the former USTs, and wells MW4 and MW5, located west of the former USTs. Concentrations are delineated to the east of the site by wells MW1 and MW2 and to the south of the site by borings B11 and B15.	
	Dissolved-phase hydrocarbons are adequately vertically delineated at the site with petroleum hydrocarbon concentrations below or near the laboratory reporting limits in groundwater samples collected deeper than 27.5 feet bgs (Cardno ERI, 2011).	
	Data Gap: Dissolved-phase petroleum hydrocarbons require monitoring off site to the west and southwest near borings B9 and B12.	
	How to Address: Cardno installed off-site wells MW7 through MW9 to monitor dissolved-phase petroleum hydrocarbons west and southwest of the site. Monitoring and sampling activities in these wells are ongoing. The need for installation of additional wells will be evaluated.	
	Hydrocarbons in Soil	None
	Maximum residual petroleum hydrocarbon concentrations are present at approximately 10.5 feet bgs in the vicinity of the former USTs. With the exception of naphthalene by EPA Method 8310 in boring B13 (5 feet bgs) and TPHg in borings B4 (5 feet bgs) and SVE1 (8.5 feet bgs), residual petroleum hydrocarbon concentrations have been near or below reporting limits in the shallow soil samples collected at the site, including samples collected in the vicinity of the former UST and suspected dispenser island locations. Residual petroleum hydrocarbon concentrations are adequately delineated in both shallow (less than 10 feet bgs) and deep (greater than or equal to 10 feet bgs) soil to the northeast, the northwest, the west, the east, the southwest, and the south by borings B5 through B11, B14, B15, MW1, MW2, and CPT1. Residual TPHg (530 mg/kg) is present to the north at 10 feet bgs in boring B16, but is near or below reporting limits at 5 and 15.5 feet bgs (EC&A, 2008; Cardno ERI, 2011; Cardno ERI, 2014a).	
	Hydrocarbons in Soil Vapor	Yes
	Maximum vapor-phase concentrations are present in well SVS3, located in the vicinity of the suspected locations of the former dispenser islands. Petroleum hydrocarbons exceed ESLs by up to three orders of magnitude in wells SVS1 through SVS3.	
	How to Address: DPE high-intensity targeted (HIT) events are ongoing.	
Exposure Route	es and Potential Receptors	
Exposure	Utility trench backfill material is not acting as a preferential pathway for petroleum hydrocarbon concentrations (Cardno ERI, 2014a).	Yes
Routes and Potential Receptors	There are not public water supply, municipal, or domestic wells located within a quarter mile of the site. The nearest surface water body (Cordornices Creek) is located approximately 1,630 feet south-southeast of the site. Residual and dissolved-phase petroleum hydrocarbons are delineated south and east of the site and are not likely to migrate to Cordornices Creek.	
	A construction worker excavating soil at the site is a potential receptor; however, since the site is paved, direct exposure (via ingestion or dermal contact) to chemicals of concern released during Exxon's operations is not likely.	
	The potential exposure route of vapor inhalation may exist in the commercial/industrial setting for workers in the on-site retail outlet.	
	Users of shallow and deep groundwater are potential receptors.	
	Data Gap: See the groundwater and soil vapor data gaps in the Release Information section.	

REFERENCES

California Regional Water Quality Control Board San Francisco Bay Region Groundwater Committee (CRWQCB). June 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report, Alameda and Contra Costa Counties, CA.

Cardno. July 9, 2015. Groundwater Monitoring Report, Second Quarter 2015, Former Exxon Service Station 79375, 990 San Pablo Avenue, Albany, California.

Cardno ERI. February 28, 2011. Site Assessment Report, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California.

Cardno ERI. April 12, 2012. Well Installation Report, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California.

Cardno ERI. July 7, 2014a. Work Plan for Well Installation, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California.

Cardno ERI. September 5, 2014b. Response to Comments and Request for Extension, Former Exxon Service Station 79374, 990 San Pablo Avenue, Albany, California.

City of Albany. March 28, 1983. Building Permit 82-0708.

Edd Clark & Associates (EC&A). January 31, 2008. Report of Phase II Environmental Assessment, 990 San Pablo Avenue, Albany, California.

Environmental Data Resources Inc. (EDR). December 1, 2009a. The EDR-City Directory Abstract, 990 San Pablo Avenue, Albany, CA 94706. Inquiry Number:2648519.6.

Environmental Data Resources Inc. (EDR). December 1, 2009b. Certified Sanborn® Map Report, 990 San Pablo Avenue, Albany, CA 94706. Inquiry Number 2648519.36.

Graymer, R.W. 2000. Geological map and map database of the Oakland metropolitan area, Alameda, Contra Costa, and San Francisco Counties, California. USGS, Miscellaneous Field Studies MF-2342.

Hickenbottom, Kelvin and Muir, Kenneth S. June 1988. Geohydrogeology and Groundwater Quality Overview of the East Bay Plain Area, Alameda County, CA. Alameda County Flood Control and Water Conservation District. 83p.

APPENDIX C

ALBANY FIRE DEPARTMENT 1001 MARIN AVENUE ALBANY, CALIFORNIA

ALAMEDA COUNTY HEALTH CARE SERVICES

ALEX BRISCOE, Director

ENVIRONMENTAL HEALTH DEPARTMENT ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

December 12, 2014

City of Albany Fire Department c/o: Mr. Gale Rossi 1000 San Pablo Ave. Albany, CA 94706 (sent via e-mail to: grossi@albanyca.org) City of Albany Fire Department c/o: Ms. Nichole Almaguer 1000 San Pablo Ave. Albany, CA 94706 (sent via e-mail to: nalmaguer@albanyca.org) City of Albany Fire Department c/o: Fire Chief 1000 San Pablo Ave. Albany, CA 94706

Subject: Case Closure for Fuel Leak Case No. RO0000297 and GeoTracker Global ID T0600102152, City of Albany Fire Department, 1000 San Pablo Ave., Albany, CA 94706

Dear Responsible Parties:

This letter transmits the enclosed underground storage tank (UST) case closure letter in accordance with Chapter 6.75 (Article 4, Section 25296.10[g]). The State Water Resources Control Board adopted this letter on February 20, 1997. As of March 1, 1997, the Alameda County Environmental Health (ACEH) is required to use this case closure letter for all UST leak sites. We are also transmitting to you the enclosed case closure summary. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site. The subject fuel leak case is closed. This case closure letter and the case closure summary can also be viewed on the State Water Resources Control Board's Geotracker website (http://geotracker.waterboards.ca.gov) and the Alameda County Environmental Health website (http://www.acgov.org/aceh/index.htm).

If you have any questions, please call Mark Detterman at (510) 567-6876. Thank you.

Sincerely,

Dilan Roe, P.E. LOP and SCP Program Manager

Enclosures:

1. Remedial Action Completion Certification

2. Case Closure Summary

Cc w/enc.:

City of Albany Community Development, Planning Division, 1000 San Pablo Avenue, Albany, CA 94706

James E. Gribi, Gribi Associates, 1090 Adams Street, Suite K, Benicia, CA 94510 (sent via e-mail to joribi@gribiassociates.com)

Mark Detterman, (sent via electronic mail to <u>mark.detterman@acgov.org</u>) e-File, GeoTracker

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY ALEX BRISCOE, Agency Director DEPARTMENT OF ENVIRONMENTAL HEALTH OFFICE OF THE DIRECTOR 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502 (510) 567-6777 FAX (510) 337-9135

REMEDIAL ACTION COMPLETION CERTIFICATION

December 12, 2014

City of Albany Fire Department c/o: Mr. Gale Rossi 1000 San Pablo Ave. Albany, CA 94706 (sent via e-mail to: grossi@albanyca.org) City of Albany Fire Department c/o: Ms. Nichole Almaguer 1000 San Pablo Ave. Albany, CA 94706 (sent via e-mail to: nalmaguer@albanyca.org) City of Albany Fire Department c/o: Fire Chief 1000 San Pablo Ave. Albany, CA 94706

Subject: Case Closure for Fuel Leak Case No. RO0000297 and GeoTracker Global ID T0600102152, City of Albany Fire Department, 1000 San Pablo Ave., Albany, CA 94706

Dear Responsible Parties:

This letter confirms the completion of a site investigation and remedial action for the underground storage tanks formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tank(s) are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, this agency finds that the site investigation and corrective action carried out at your underground storage tank(s) site is in compliance with the requirements of subdivisions (a) and (b) of Section 25296.10 of the Health and Safety Code and with corrective action regulations adopted pursuant to Section 25299.3 of the Health and Safety Code and that no further action related to the petroleum release(s) at the site is required.

Please be aware that claims for reimbursement of corrective action costs submitted to the Underground Storage Tank Cleanup Fund more than 365 days after the date of this letter or issuance or activation of the Fund's Letter of Commitment, whichever occurs later, will not be reimbursed unless one of the following exceptions applies:

- Claims are submitted pursuant to Section 25299.57, subdivision (k) (reopened UST case); or
- Submission within the timeframe was beyond the claimant's reasonable control, ongoing work is
 required for closure that will result in the submission of claims beyond that time period, or that under the
 circumstances of the case, it would be unreasonable or inequitable to impose the 365-day time period.

This notice is issued pursuant to subdivision (g) of Section 25296.10 of the Health and Safety Code. Please contact our office if you have any questions regarding this matter.

Sincerely,

Ariu Levi

Director

APPENDIX D

FORMER FIRESTONE #3655 969 SAN PABLO AVENUE ALBANY, CALIFORNIA

May 24, 1990

Alameda County Health Agency 80 Swan Way, Room 200 Oakland, CA 94621 Mr. Larry Seto

Dear Larry,

RJD/gq

Enclosures

Enclosed are the sample analyses and a work plan for the Firestone Tire & Rubber Company facility at 969 San Pablo, in Albany, California.

WORK PLAN

proposes Ryan-Murphy Incorporated to remove additional soil from the walls and floor of the excavation. A Foxboro Model 128 Organic Vapor Analyzer will be used to determine the vertical and lateral extent of contamination. Once it has been determined that all of the contaminated soil has been removed, samples will be collected from the floor and four walls of the excavation. These samples will be submitted to FGL Environmental for analyses. Please advise as to which EPA methods you want used in these analyses. Ryan-Murphy Incorporated has scheduled this work for the second week in June. If you have any questions, please feel free to call me.

Sincerely,

RYAN-MURPHY INCORPORATED

Richard J. Dow Senior Project Manager

Fuel Systems Consulting

Underground Storage Tank Management Programs

Fuel Systems Construction and Service

General Contracting and Complete Build-Up

Site Remedial Action

The Good Earth Machine™

5867 Broadway Denver, Colorado 80216 (303) 293-Fuel (3835) Fax (303) 296-7911

211 Granite, Suite E Corona, California 91719 (714) 279-6210 Fax (714) 279-6215

CEIVED MAY 2 2 1990

ANALYTICAL CHEMISTS

May 16, 1990

Lab No. 30899-1 Acct No. 03-9254 Ryan Murphy Inc. 5351 Lincoln Denver, CO 80216

Sample Description: N. End of Tank Sampled by: Rick Dow Date Sampled: 05/03/90 Date Received: 05/08/90

PURGEABLE AROMATICS - EPA METHOD 8020

Parameter	Test Results ug/kg	Detection Limit <u>ug/kg</u>
Benzene	16.1	5
Toluene	ND	5
Total Xylenes	5.1	5
Chlorobenzene	ND	5
Ethylbenzene	ND	5
1,2-Dichlorobenzene	ND	5
1,3-Dichlorobenzene	ND	5
1,4-Dichlorobenzene	ND	5

ND = Not detected at or above the concentration of the detection limit.

ug/kg = ppb

Sincerely,

John F. Quinn, Ph.D. Laboratory Director

MAIN OFFICE 853 CORPORATION STREET P.O. BOX 22 & LABORATORY SANTA PAULA, CALIFORNIA 93060-0272 (805) 525-3824 (805) 659-0910 FAX (805) 525-4172	 BRANCH OFFICE – 2500 STAGECOACH ROAD & LABORATORY FAX (209) 942-0181 FAX (209) 942-0423
--	--

ANALYTICAL CHEMISTS

May 16, 1990

Lab No. 30899-2 Acct No. 03-9254 Ryan Murphy, Inc. 5351 Lincoln Denver, CO 80216

Sample Description: S. End of Tank Sampled by: Rick Dow Date Sampled: 05/03/90 Date Received: 05/08/90

PURGEABLE AROMATICS - EPA METHOD 8020

Parameter	Test Results ug/kg	Detection Limit <u>ug/kg</u>
Benzene	150	5
Toluene	770	5
Total Xylenes	8590	5
Chlorobenzene	ND	5
Ethylbenzene	820	5
1,2-Dichlorobenzene	ND	5
1,3-Dichlorobenzene	ND	5
1.4-Dichlorobenzene	ND	5

ND = Not detected at or above the concentration of the detection limit.

ug/kg = ppb

Sincerely,

nn.

John F. Quinn, Ph.D. Laboratory Director

MAIN OFFICE -	853 CORPORATION STREET P.O. BOX 272	BRANCH OFFICE	2500 STAGECOACH ROAD
& LABORATORY	SANTA PAULA, CALIFORNIA 93060-0272	& LABORATORY	STOCKTON, CALIFORNIA 95205
FAX	(805) 525-3824 (805) 659-0910 (805) 525-4172	FAX	(209) 942-0181 (209) 942-0423

RECEIVED MAY 2 2 1990

May 16, 1990

Lab No. 30899-3 Acct No. 03-9254 Ryan Murphy, Inc. 5351 Lincoln Denver, CO 80216

ANALYTICAL CHEMISTS

Sample Description: N. Wall of Exc. Sampled by: Rick Dow Date Sampled: 05/03/90 Date Received: 05/08/90

PURGEABLE AROMATICS - EPA METHOD 8020

Parameter	Test Results ug/kg	Detection Limit ug/kg
Benzene	2300	5
Toluene	4460	5
Total Xylenes	16900	5
Chlorobenzene	ND	5
Ethylbenzene	3250	5
1,2-Dichlorobenzene	ND	5
1,3-Dichlorobenzene	ND	5
1.4-Dichlorobenzene	ND	5

ND = Not detected at or above the concentration of the detection limit.

ug/kg = ppb

Sincerely,

John F. Quinn, Ph.D. Laboratory Director

MAIN OFFICE 853 CORPORATION STREET P.O. BOX 272 BRANCH OFFICE 2500 STAGECOACH & LABORATORY SANTA PAULA, CALIFORNIA 93060-0272 & LABORATORY STOCKTON, CALIFORNIA 93060-0272 (805) 525-3824 (805) 525-4172 FAX (209) 942-0181	ROAD RNIA 95205
---	--------------------

ANALYTICAL CHEMISTS

May 16, 1990

Lab #: 30899-1 Acct #: 03-9254 Ryan-Murphy, Inc. 5351 Lincoln Denver, CO 80216

Sample Description: N. End of Tank Sampled by: Rick Dow Date Sampled: 05/03/90

.

Chlorinated Hydrocarbons EPA Method 8010

Compound	ug/kg	Detection Limit mg/	i Vkg	ug/kg	Detection Limit mg/k
Benzyl chloride	ND	0.5	Dichlorodifluoromethane	ND	0.5
Bis(2-chloroisopropy1)ether	ND	0.5	1,1-Dichloroethane	15.6	0.5
Bromobenzene	ND	0.5	1,2-Dichloroethane	0.7	0.5
Bromodichloromethane	ND	0.5	1,1-Dichloroethylene	ND	0.5
Bromoform	ND	0.5	trans-1.2-Dichloroethylene	ND	0.5
Bromomethane	ND	0.5	Dichloromethane	ND	0.5
Carbon tetrachloride	ND	0.5	1,2-Dichloropropane	ND	0.5
Chlorobenzene	ND	0.5	cis-1.3-Dichloropropylene	ND	0.5
Chloroethane	ND	0.5	trans-1.3-Dichloropropylene	ND	0.5
Chloroform	ND	0.5	1,1,2,2-Tetrachloroethane	ND	0.5
1-Chlorohexane	ND	0.5	1,1,1,2-Tetrachloroethane	ND	0.5
2-Chloroethyl vinyl ether	NÐ	0.5	Tetrachloroethylene	1.2	0.5
Chloromethane	ND	0.5	1.1.1-Tricbloroethane	ND	0.5
Chlorotoluene	ND	0.5	1,1,2-Trichloroethane	ND	0.5
Dibromochloromethane	ND	0.5	Trichloroethylene	ND	0.5
Dibromomethane	ND	0.5	Trichlorofluoromethane	ND	0.5
1,2-Dichlorobenzene	ND	0.5	Trichloropropane	ND	0.5
1,3-Dichlorobenzene	ND	0.5	Vinyl chloride	ND	0.5
l,4-Dichlorobenzene	ND	0.5	· · · · · · · · · · · · · · · · · · ·		V. J

ND = Not detected at or above the concentration of the detection limit.

ug/kg = ppb

If there are questions, please call or write,

John F. Quinn, Ph.D. Laboratory Director

Tie Kang Huang Chemist

JFQ: sih

FAX

MAIN OFFICE - 853 CORPORATION STREET - P.O. BOX 272 & LABORATORY SANTA PAULA, CALIFORNIA 93060-0272 (805) 525-3824 -- (805) 659-0910 (805) 525-4172

BRANCH OFFICE ~ 2500 STAGECOACH ROAD & LABORATORY STOCKTON, CALIFORNIA 95205 (209) 942-0181 FAX (209) 942-0423

ANALYTICAL CHEMISTS

May 16, 1990

30899-2 Lab #: Acct #: 03-9254 Ryan Murphy, Inc. 5351 Lincoln Denver, CO 80216

Sample Description: S. End of Tank Sampled by: Rick Dow Date Sampled: 05/03/90

Chlorinated Hydrocarbons EPA Method 8010

		Detection			Detection
Compound	ug/kg	Limit mg/	kg	ug/kg	Limit mg/k
Benzyl chloride	ND	0.5	Dichlorodifluoromethane	ND	0.5
Bis(2-chloroisopropy1)ether	ND	0.5	1,1-Dichloroethane a	3.8	0.5
Bromobenzene	ND	0,5	1,2-Dichloroethane	ND	0.5
Bromodichloromethane	ND	0,5	l,l-Dichloroethylene	ND	0.5
Bromoform	ND	0.5	trans-1,2-Dichloroethylene	ND	0,5
Bromomethane	ND	0.5	Dichloromethane	ND	0.5
Carbon tetrachloride	ND	0.5	1,2-Dichloropropane	ND	0.5
Chlorobenzene	ND	0.5	cis-1,3-Dichloropropylene	ND	0.5
Chloroethane	ND	0.5	trans-1,3-Dichloropropylene	ND	0.5
Chloroform	ND	0.5	1,1,2,2-Tetrachloroethane	ND	0.5
1-Chlorohexane	ND	0.5	1,1,1,2-Tetrachloroethane	ND	0.5
2-Chloroethyl vinyl ether	ND	0.5	Tetrachloroethylene	1830	0.5
Chloromethane	ND	0.5	1,1,1-Trichloroethane	900	0.5
Chlorotoluene	ND	0.5	1,1,2-Trichloroethane	ND	0.5
Dibromochloromethane	ND	0.5	Trichloroethylene	ND	0.5
Dibromomethane	ND	0.5	Trichlorofluoromethane	ND	0.5
l,2-Dichlorobenzene	ND	0.5	Trichloropropane	ND	0.5
1,3-Dichlorobenzene	ND	0.5	Vinyl chloride	ND	0.5
1,4-Dichlorobenzene	ND	0.5	-		

ND = Not detected at or above the concentration of the detection limit.

ug/kg = ppb

If there are questions, please call or write.

John F. Quinn, Ph.D. Laboratory Director

JFQ: sib

MAIN OFFICE - 853 CORPORATION STREET - P.O. BOX 272 & LABORATORY SANTA PAULA, CALIFORNIA 93060-0272 (805) 525-3824 -- (805) 659-0910 FAX (805) 525-4172

Tie Kang Huang Chemist

BRANCH OFFICE - 2500 STACECOACH ROAD & LABORATORY FAX

STOCKTON, CALIFORNIA 95205 (209) 942-0181 (209) 942-0423

RECEIVED MAY 2 2 1990

RECEIVED MAY 2 2 1990

ANALYTICAL CHEMISTS

May 16, 1990

Lab #: 30899-3 Acct #: 03-9254 Ryan Murphy, Inc. 5351 Lincoln Denver, CO 80216

Sample Description: N. Wall of Exc. Sampled by: Rick Dow Date Sampled: 05/03/90

Chlorinated Hydrocarbons EPA Method 8010

Compound	ug/kg	Detection Limit mg/	kg	ug/kg	Detection Limit mg/kg
Benzvl chloride	ND	0.5	Dichlorodifluoromethane	ND	0.5
Bis(2-chloroisopropyl)ether	ND	0.5	1, I-Dichloroethane	ND	0.5
Bromobenzene	ND	0.5	1,2-Dichloroethane	ND	0,5
Bromodichloromethane	ND	0.5	1,1-Dichloroethylene	ND	0.5
Bromoform	ND	0.5	trans-1,2-Dichloroethylene	ND	0.5
Bromomethane	ND	0.5	Dichloromethane	ND	0.5
Carbon tetrachloride	ND	0.5	1,2-Dichloropropane	ND	0.5
Chlorobenzene	ND	0.5	cis-1,3-Dichloropropylene	ND	0.5
Chloroethane	ND	0,5	trans-1,3-Dichloropropylene	ND	0.5
Chloroform	ND	0.5	1,1,2,2-Tetrachloroethane	ND	0.5
1-Chlorohexane	ND	0.5	1,1,1,2-Tetrachloroethane	ND	0,5
2-Chloroethyl vinyl ether	ND	0.5	Tetrachloroethylene	7230	0.5
Chloromethane	ND	0.5	1,1,1-Trichloroethane"	4300	0.5
Chlorotoluene	ND	0.5	1,1,2-Trichloroethane	ND	0.5
Dibromochloromethane	ND	0.5	Trichloroethylene	ND	0.5
Dibromomethane	ND	0.5	Trichlorofluoromethane	ND	0.5
1,2-Dichlorobenzene	ND	0.5	Trichloropropane	ND	0.5
1,3-Dichlorobenzene	ND	0.5	Vinyl chloride	ND	0.5
1,4-Dichlorobenzene	ND	0.5	-		

ND = Not detected at or above the concentration of the detection limit.

ug/kg = ppb

If there are questions, please call or write.

John F. Quinn, Ph.D. Laboratory Director

JFQ: sib

MAIN OFFICE -- 853 CORPORATION STREET -- P.O. BOX 272 & LABORATORY SANTA PAULA, CALIFORNIA 93060-0272 (805) 525-3824 -- (805) 659-0910 FAX (805) 525-4172

Tie Kang Huang Chemist

 BRANCH OFFICE - 2500 STAGECOACH ROAD

 & LABORATORY
 STOCKTON, CALIFORNIA 95205

 (209) 942-0181
 FAX

 FAX
 (209) 942-0423

RECEIVED MAY 2 2 1990

ANALYTICAL CHEMISTS

May 16, 1990

Lab No.: 30899-1 Acct #: 03-9254 Ryan Murphy, Inc. 5351 Lincoln Denver, CO 80216

Sample Description: N. End of Tank Sampled by: Rick Dow Date Sampled: 05/03/90 Date Received: 05/08/90

RE: UNDERGROUND STORAGE TANK ANALYSIS - SOIL

		Reporting	
Tests Required	Test Results	Unit	DLR
TPH (8015M-Diesel)	ND	mg/kg	10

ND = Not detected at or above the concentration of the detection limit.

ug/kg = ppb mg/kg = ppm

If you have any questions please call.

Very truly yours, FGL ENVIRONMENTAL, INC.

0

John F. Quinn, Ph.D. Laboratory Director

Tie Kang Huang Chemist

MAIN OFFICE - & LABORATORY	853 CORPORATION STREET – P.O. BOX 272 SANTA PAULA, CALIFORNIA 93060-0272	BRANCH OFFICE -	2500 STAGECOACH ROAD STOCKTON, CALIFORNIA 95205
	(805) 525-3824 (805) 659-0910		(209) 942-0181
FAX	(805) 525-4172	FAX	(209) 942-0423

ANALYTICAL CHEMISTS

May 16, 1990

Lab No.: 30899-2 Acct #: 03-9254 Ryan Murphy, Inc. 5351 Lincoln Denver, CO 80216

Sample Description: S. End of Tank Sampled by: Rick Dow Date Sampled: 05/03/90 Date Received: 05/08/90

RE: UNDERGROUND STORAGE TANK ANALYSIS - SOIL

DAAC	Reporting			
Tests Required	Test Results	Unit	DLR	
TPH (8015M-Diesel)	86	mg/kg	10	

ND = Not detected at or above the concentration of the detection limit.

ug/kg = ppb mg/kg = ppm

If you have any questions please call.

Very truly yours, FGL ENVIRONMENTAL, INC.

John F. Quinn, Ph.D. Laboratory Director

Tie Kang Huang

Chemist

MAIN OFFICE	853 CORPORATION STREET – F.O. BOX 272	BRANCI I OFFICE -	2500 STAGECOACH ROAD
& LABORATORY	SANTA PAULA, CALIFORNIA 93060-0272	& LABORATORY	STOCKTON, CALIFORNIA 95205
FAX	(805) 525-3824 (805) 659-0910 (805) 525-4172	FAX	(209) 942-0181 (209) 942-0423
ECEIVED MAY 2 2 1990

ANALYTICAL CHEMISTS

May 16, 1990

Lab No.: 30899-3 Acct #: 03-9254 Ryan Murphy, Inc. 5351 Lincoln Denver, CO 80216

Sample Description: N. Wall of Exc. Sampled by: Rick Dow Date Sampled: 05/03/90 Date Received: 05/08/90

RE: UNDERGROUND STORAGE TANK ANALYSIS - SOIL

		Reporting	
Tests Required	Test Results	Unit	DLR
TPH (8015M-Diesel)	1070	mg/kg	10

ND = Not detected at or above the concentration of the detection limit.

ug/kg = ppb mg/kg = ppm

If you have any questions please call.

Very truly yours, FGL ENVIRONMENTAL, INC.

John F. Quinn, Ph.D. Laboratory Director

Tie Kang Huang Chemist

MAIN OFFICE - & LABORATORY	853 CORFORATION STREET - P.O. BOX 272 SANTA PAULA, CALIFORNIA 93060-0272 (805) 525-3824 (805) 659-0910	BRANCH OFFICE & LABORATORY	2500 STAGECOACH ROAD STOCKTON, CALIFORNIA 95205 (209) 942-0181
FAX	(805) 525-4172	FAX	(209) 942-0423

ANALYTICAL CHEMISTS

Lab. No. 30899 '

May 16, 1990

03-9254 Ryan Murphy, Inc. 5351 Lincoln Denver, CO 80216

Sampled By: Rick Dow

RE: WATER ANALYSIS

Presenting results of analysis performed on your sample received May 05, 1990. The sample has been described, as received, along with the data.

DATA	Constituent	Result	s
30899-1 N. End of Tank	0il & Grease (503E)	40.0	mg/kg
30899-2 S. End of Tank	011 & Grease (503E)	2436	mg/kg
30899-3 N. Wall of Exc	0i1 & Grease (503E)	6548	mg/kg

* = Less Than

If there are questions, please call or write.

Very truly yours,

oth

John Quinn, Ph.D. Laboratory Director

MAIN OFFICE 853 CORPORATION STREET - P.O. BOX 272 BRA & LABORATORY SANTA PAULA, CALIFORNIA 93060-0272 & L/ (805) 525-3824 (805) 659-0910 FAX (805) 525-4172	ANCH OFFICE LABORATORY FAX	2500 STAGECOACH ROAD STOCKTON, CALIFORNIA 95205 (209) 942-0181 (209) 942-0423
--	----------------------------------	--

ANALYTICAL CHEMISTS

May 16, 1990

Lab No. 30899-1 Acct No. 03-9254 Ryan Murphy, Inc. 5351 Lincoln Denver, CO 80216

Sample Description: N. End of Tank Sampled by: Rick Dow Date Sampled: 05/03/90 Date Received: 05/08/90

> HAZARDOUS WASTE CHARACTERIZATION (TTLC)

Okay

			Detection				Detection
Parameter	Test Results _mg/kg	TTLC mg/kg	Limit mg/kg	Parameter	Test Results mg/kg	TTLC mg/kg	Limit mg/kg
Cadmium	ND	100	0.5	Zinc	ND	5,000	100
Chromium (Total)	ND	2,500	50	Lead	11	1,000	4
Molybdenum	ND	3,500	100	Nickel	42	2,000	10

ND = Not detected at or above the concentration of the detection limit.

mg/kg = ppm

Sincerely,

2

1. uni

John F. Quinn, Ph.D. Laboratory Director

		the second se	the second se
FAX	(805) 525-4172	FAX	(209) 942-0423
	(805) 525-3824 (805) 659-0910		(209) 942-0181
& LABORATORY	SANTA PAULA, CALIFORNIA 93060-0272	& LABORATORY	STOCKTON, CALIFORNIA 95205
MAIN OFFICE -	853 CORPORATION STREET - P.O. BOX 272	BRANCH OFFICE	2500 STAGECOACH ROAD
- and in the foreign of the			

RECEIVED MAY 2 2 1990

ANALYTICAL CHEMISTS

May 16, 1990

Lab No. 30899-2 Acct No. 03-9254 Ryan Murphy, Inc. 5351 Lincoln Denver, CO 80216

Sample Description: S. End of Tank Sampled by: Rick Dow Date Sampled: 05/03/90 Date Received: 05/08/90

HAZARDOUS WASTE CHARACTERIZATION (TTLC)

Parameter	Test Results mg/kg	TTLC mg/kg	Detection Limit <u>mg/kg</u>	Parameter	Test Results mg/kg	TTLC mg/kg	Detection Limit mg/kg
Cadmium	ND	100	0.5	Zinc	ND	5,000	100
Chromium (Total)	52	2,500	50	Lead	266 *	1,000	4
Molybdenum	ND	3,500	100	Nickel	40	2,000	10

ND = Not detected at or above the concentration of the detection limit.

mg/kg = ppm

Exceed STCC-5.0 PPM Sincerely, John J. Zini

John F. Quinn, Ph.D. Laboratory Director

MAIN OFFICE	853 CORPORATION STREET P.O. BOX 272	BRANCH OFFICE -	2500 STAGECOACH ROAD
& LABORATORY	SANTA PAULA, CALIFORNIA 93060-0272	& LABORATORY	STOCKTON, CALIFORNIA 95205
FAX	(805) 525-3824 (805) 639-0910 (805) 525-4172	глх	(209) 942-0181 (209) 942-0423

ECEIVED MAY 2 2 1990

ANALYTICAL CHEMISTS

May 16, 1990

Lab No. 30899 - 3Acct No. 03-9254 Ryan Murphy, Inc. 5351 Lincoln Denver, CO 80216

Sample Description: N. Wall of Exc Sampled by: Rick Dow Date Sampled: 05/03/90 Date Received: 05/08/90

HAZARDOUS WASTE CHARACTERIZATION (TTLC)

Parameter	Test Results mg/kg	TTLC mg/kg	Detection Limit mg/kg	Parameter	Test Results mg/kg	TTLC mg/kg	Detection Limit <u>mg/kg</u>
Cadmium	ND	100	0.5	Zinc	ND	5,000	100
Chromium (Total)	60	2,500	50	Lead '	135 *	1,000	4
Molybdenum	ND	3,500	100	Nickel	52	2,000	10

ND = Not detected at or above the concentration of the detection limit.

mg/kg = ppm

Exceed STCC of S.O. BPM

Sincerely,

Wohn F. Quinn, Ph.D. Laboratory Director

deserves a sector of the survey of	And the second
RANCH OFFICE	2500 STAGECOACH ROAD
LABORATORY	STOCKTON, CALIFORNIA 95205
	(209) 942-0181
FAX	(209) 942-0423
F	XANCH OFFICE – LABORATORY FAX

Suite 260 • 1777 Botelho Drive • Walnut Creek, California 94596-5042 • (415) 946-0455 • Telefax (415) 946-9968

90 AUG 17 AM 12: 53

August 13, 1990

Mr. Larry Seto Alameda County Health Agency 80 Swan Way, Room 200 Oakland, CA. 94621

SUBJECT: Firestone Tire and Rubber Company Albany, CA. - Workplan

Dear Mr. Seto:

On behalf of Firestone Tire and Rubber Company and Ryan Murphy, Inc., we are enclosing a workplan for the above subject project. After your review and approval, we will schedule and mobilize the drilling subcontractor to begin the site assessment tasks.

Please call if you have any questions or require further information.

Sincerely,

ERM-WEST

Dennis Miller

Dennis Miller Principal Engineer

Enclosure

DGM/1099

cc: Pat Ryan, Ryan Murphy, Inc.

An affiliate of The Environmental Resources Management Group with offices worldwide

FIRESTONE TIRE AND RUBBER COMPANY ALBANY, CALIFORNIA

SITE ASSESSMENT AND REMEDIATION WORKPLAN

On May 1, 1990 a 280 gallon waste oil tank was removed from the Firestone facility located at 969 San Pablo Blvd, Albany, California. A tank closure permit was issued by the Alameda County Department of Environmental Health, Hazardous Materials Division, to Ryan Murphy, Inc. prior to the tank removal.

Laboratory analysis of soils taken from the bottom of the tank excavation (from 5 to 7 feet below grade) at the time of removal are summarized in Table 1.

No water was reported in the excavation during the tank removal. However, conversations with an Alamedy County inspector noted that groundwater is reported to be about 10 feet below grade. This information was confirmed by Alameda County Flood Control. Monitoring wells at a Shell gas station (Marin and San Pablo Ave) just south and across San Pablo Blvd. from the site are reported with groundwater ranging from 7.5-8.0 and 6.0-6.5 feet below grade in February and April, 1990, respectively.

ASSESSMENT

The purpose of the site assessment work will be to determine the vertical and horizontal extent of contaminants, if any, in soil and groundwater. It is proposed to drill four borings to a minimum of 15 feet and convert the borings to groundwater monitoring wells. During the drilling work, soil samples will be retrieved at the following depths: 3, 7, 10, and 15 feet. The 10 foot depth sample is assumed to be at the soil/water interface.

Normal site assessment protocol will be used at the site. Health and safety considerations will follow Ryan Murphy's plan used during the tank removal work. The augers and equipment used for each boring will be decontaminated between borings. Each boring will be logged and soil cuttings will be retained for disposal with future excavated soils. Soil and groundwater samples will be preserved and transported to a California certified laboratory under chain-of-custody protocol. Monitoring wells will be appropriately screened and packed, and completed at the surface with a bentonite concrete surface seal and a well cover.

After installation of the monitoring wells, the wells will be developed and groundwater samples retrieved for analysis. After groundwater sampling, the wells will be allowed to stabilize and then levels in each well will be surveyed to establish, if possible, a site specific groundwater gradient.

Page 2

Firestone Tire and Rubber Company Albany, CA., Work Plan

REMEDIATION

Because of the clayey fill in the area, it is assumed that the constituents detected in the soils have not spread laterally nor vertically to any great extent. **Therefore**, the proposed remediation alternative for this site is excavation of soils, once the site assessment work confirms the above assumptions.

Additionally, the monitoring wells will remain until Alameda County determines that the site is clean and the monitoring wells are no longer necessary.

For the excavation work, Firestone is proposing to perform the work as follows:

- EPA Generator Number: CAD 982005928
- Contractor: Ryan Murphy Inc., Corona, CA Contractors License: 516337(A, B, C61, D40, Hazardous)
- Site Sampling/Environmental overview: ERM-West, Walnut Creek, CA 94596
- Hazardous Waste Hauler: Dillard Trucking, Byron, CA 94514
- Disposal Site:

Hazardous: GSX, 7004 Gas Company Rd., Taft, CA 93268 Non-Haz: Gibson Oil, 3121 Standard St., Bakersfield, CA

- Non-maz. Gioson On, 5121 Standard St., Dakersheid, OA
- Certified Laboratory: Curtis and Thompkins, Berkeley, CA

After excavation of the softs, the side walls will be sampled and analyzed for the above noted constituents. Groundwater in the excavation, if present, will be pumped into a Baker tank for temporary storage and analysis. If hazardous, the water will be transferred and hauled off-site under a California hazardous waste manifest. If non-hazardous, consideration will be given to discharging the water into a local EBMUD sanitary sewer; but, only after permission is granted by the regulatory agencies.

SCHEDULE

The following schedule is based on time after approval of the workplan by Alameda County.

Task 1: Site Assessment: 7 weeks

3 week mobilization (depends on availability of driller)

1 week on-site

2 week sample analysis

1 week reporting

Firestone Tire and Rubber Company Albany, CA., Work Plan

Task 2: Soil Excavation: 3 weeks

1 week mobilization

1 week excavation - assume 24-48 turnaround on soil/water analysis

1 week site finish

CLEAN-UP GOALS

Alameda County's clean-up goals are to have all laboratory analysis reported with non-detectable constituents. However, each site is handled on a case-by-case basis. It is expected that once the water and soil analysis have been reported, that future discussions will determine the site specific clean-up goals for this site.

TABLE 1 SOIL SAMPLING RESULTS

FIRESTONE TIRE AND RUBBER COMPANY ALBANY, CA

	CONCENTRATION, mg/kg					
CONSTITUENT (1)		Sample Location		_		
	N. End of Tank, 7' deep	S. End of Tank, 7' deep	N. Wall 5' deep			
Hydrocarbons						
TPH (Diesel)	< 10	86	1070			
Benzene	0.0161	0.150	2.3			
Toluene	<0.005	0.770	4.46			
Xylene	0.0051	8.59	16.9			
Ethylbenzene	<0.005	0.820	3.25			
Oil & Grease	40	2436	6548			
Chorinated Compounds						
1,1 Dichlorethane	0.0156	0.0038	< 0.0005			
1,2 Dichloroethane	0.0007	<0.0005	< 0.0005	1		
Tetrachloreethylene	0.0012	1.83	7.23			
1,1,1, Trichleroethane	<0.0005	0.9	4.3			
Metals	ŧ					
Cadium	<0.5	<0.5	<0.5			
Chromium (Total)	<50	52	60			
Molybdenum	<100	<100	<100			
Zinc	<100	<100	<100	STIL		
Lead	11	266	135	5.0		
Nickel	42	40	5 2	2.07		

TTLC 1,000 2,000

(1) Summarized on this Table are only the detected constituents. See laboratory data sheets for complete listing of analysis.

