January 17, 2013

RECEIVED

By Alameda County Environmental Health at 8:20 am, Jan 22, 2013

Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502-6577

RE: Ambassador Apartments

3623 Adeline Street and 1168 36th Street, Emeryville, California Environmental Assessment and Remediation Report - Addendum

Dear Alameda County Environmental Health:

The Ambassador, L.P. is in the process of constructing a new 69-unit multifamily apartment building at the corner of Peralta and 36th Streets in Emeryville, California. Resources for Community Development (RCD) is the developer of the site and The Ambassador, L.P. is the owner. The site was previously owned by the City of Emeryville and was sold to The Ambassador, L.P. in March 2012.

The attached Addendum with Clarifications to Environmental Assessment and Remediation Report was prepared by Adanta, Inc. ("Adanta"), who we believe to be experienced and qualified to advise us in a technical area that requires a high degree of professional expertise. We have relied on Adanta's assistance, knowledge and expertise in their preparation of the attached Addendum. I am unaware of any material inaccuracy in the information in the report or of any violation of government guidelines that are applicable to the Report. I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Please feel free to call me at (510) 841 – 4410 x335 should you require additional information or have any questions.

Sincerely,

Jessica Sheldon

Associate Project Manager

Adanta, Inc.

828 School Street Napa, California 94559 Tel. (707) 709-8894

January 17, 2013 Project A1085-7

Mr. Mark Detterman Alameda County Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Ms. Jessica Sheldon The Ambassador, LP c/o Resources for Community Development 2220 Oxford Street Berkeley, California 94705

ADDENDUM WITH CLARIFICATIONS TO ENVIRONMENTAL ASSESSMENT AND REMEDIATION REPORT

The Ambassador 1168 36th Street Emeryville, California

Fuel Leak Case No. RO0002973 Geotracker Global ID T0619717287

Dear Mr. Detterman:

This letter is in response to a November 16, 2012 Notice to Comply from Alameda County Health Care Services Agency Environmental Health Services, Environmental Protection (ACEH). The second requirement of the letter was a Request for Report Addendum with Clarifications. The specific action items required by ACEH are transcribed below and are in italics, which are followed by Adanta's clarification.

Current Property Conditions

The subsurface parking garage has been constructed at the Property. The portion of the Property designated by Kleinfelder as the "area of concern" in their 2007 – 2009 assessment reports is currently occupied by a parking garage with an approximate ceiling height of eight feet. Construction of the four-story residential building atop the garage is ongoing, and is scheduled to be completed in October 2013. The parking garage has an entrance on 36th Street that slopes downward toward the north, and then turns east and slopes further downward to the south. The deepest portion of the garage is about 10 feet below original surface. The floor of the garage is a six-inch thick reinforced concrete slab, with numerous reinforced footings that are concrete reinforced to a depth of 36-inches below surface. It should also be noted that the UST 4 overexcavation was filled

with about six feet of controlled density fill then topped with two feet of soil, which constituted final grade. The reinforced concrete slab was placed on top.

Property Elevations

The Demolition Plan (Building A) by Kava Massih Architects depicted numerous surveyed elevations obtained prior to start of construction activities. The elevations occur throughout the portion of the Property that was to be occupied by Building A. This area included the primary "Area of Concern" as described by Kleinfelder from which three USTs, one sump, and a production well have been removed. Surveyed surface elevations depict an uneven Property surface that ranged from 25.82 feet above mean sea level (AMSL) to 29.93 feet AMSL. The Demolition Plan is included as Figure 1 of this report. The original surface elevation in the area of concern was commonly slightly less than 29 feet AMSL at the time of the development survey. In addition, the Plan contains surveyed locations of the six groundwater monitoring wells installed by Kleinfelder in 2009.

Kava Massih Architects also provided: Grading Plan (Building A). This plan provides atgrade elevations of the planned building A. At the entrance to the subsurface parking garage on the south side of the Property, the graded pad elevation was listed as 27.6 feet AMSL, while the pad in the parking area in the northern portion of the subsurface parking, the elevation was indicated to be 22.92 feet AMSL. The pad elevation at the southern end of the parking garage (and deepest point) was listed at 18.32 feet AMSL. The at grade pad elevations in the area of the over excavation of UST 4 were between about 23.95 feet and 22.92 feet AMSL, or about five feet below original ground surface elevations.

Grading notes on the plan state "Pad elevation shown hereon is based on 6" S.O.G. [slabon-grade] over 2" sand over 4" gravel. Contractor shall verify the thickness of concrete slab and aggregate base material before any grading process occurs. Contractor shall adjust the pad elevation if the above condition changes."

Attached are maps (Figures 3 and 4) containing a significant number of sampling locations compiled from several different environmental assessment reports conducted by several different environmental consulting firms. Many of the sampling locations, UST, and well locations are not precise. Most of the reviewed reports contained sample locations on maps that were not to scale. Even the six groundwater monitoring wells installed by Kleinfelder in 2009 were depicted on Kleinfelder documents at different locations than the survey data presented by Kava Massih Architects for development of the Ambassador indicates. The attached maps use actual surveyed locations where available. For the work conducted by Adanta locations were physically measured from fixed points in the field, and are relatively accurately placed on the attached maps.

Dewatering Activities

The deepest portion of the subsurface parking, along the southern boundary of the Property was excavated to a depth that was near the groundwater interface and approximately 10 feet below original surface. In order to properly install support structures it became necessary to dewater the area. WSP Environment and Energy (WSP) designed and implemented the dewatering system. Adanta requested information concerning the dewatering that is attached as Appendix A – Dewatering. Based upon the information provided by WSP, a grab sample of the water was collected on May 4, 2012, after installation but before start-up of the dewatering wells. The sample was analyzed for a full suite of laboratory analysis as described in Appendix A. Minor concentrations of various chemicals were detected in the sample, however, none of the concentrations were above environmental screening levels (ESLs). TPHg, TPHd, and TPHmo were listed as not detected above reporting limits of 50 micrograms per liter (μ g/L), 50 μ g/L, and 250 μ g/L respectively. Water was stored onsite in two 20,000-gallon capacity tanks.

WSP obtained a permit from the East Bay Municipal Utility District (EBMUD) to release the contained water into the storm drain system. Between June 7 and June 22, 2012 a total of 24,630 gallons of water that had been accumulated from the dewatering system at the Ambassador was discharged to the local storm drain system.

FINAL GARAGE GRADE SOIL SAMPLES

The Adanta report indicates that six soil samples were collected at final excavated grade (undefined depths below original grade in tabulated data) for the underground parking garage and that soil sample C-6 yielded a concentration of 360 mg/kg TPHd. Review of the laboratory report indicates the concentration was actually 560 mg/kg TPHd. The Adanta report indicates that the area represented by this soil sample was subsequently excavated at the time of the recently discovered UST (#4) overexcavation effort was conducted. Because soil samples C-1 to C-6 were not depicted on a single unifying site figure in conjunction with the areas of overexcavation or in conjunction with the parking structure excavation, and because overexcavation confirmation soil sample (UST #2 or #4) locations were not depicted on a figure, ACEH seeks clarification as to the extent of removal of soil contamination associated with soil sample C-6 and associated UST #2. Additionally as depicted on Figure 2 (site aerial photo image) soil sample C6 is not in close proximity to UST #2 or the recently discovered UST #4 and this suggests this contamination may not be associated with either UST. Associated with this request is documentation of soil disposal with signed manifests.

Garage Grade Confirmation Samples

Following the mass removal of soil, seven soil samples were collected at near final excavated grade for the subsurface parking structure. Of the seven soil samples, only

sample C6 appeared to have concentrations of regulatory concern. C6 was reported in the text and tables of the Environmental Assessment and Remediation Report by Adanta dated August 22, 2012 as having 360 milligrams per kilogram (mg/kg) TPHd, however the actual concentrations should have been listed as 560 mg/kg as stated in the analytical laboratory report. The mistake was due to a transcription error. The location of C6 can be found on Figure 4, Soil Sample Data in Area of Concern. The location of C6 is shown in its relation to the excavation of UST 4. Adanta agrees that the contamination detected at C6 was likely not associated with releases from the USTs in the area of concern. The elevation of the sample was higher than the tops of the nearby USTs. C6 was collected in an area of the Property that was further excavated during removal of contaminated soil associated with UST 4. Approximately eight feet of soil was removed from below the surface location of C6.

Soil contamination at the Property is fairly wide spread and does not seem to have all originated from leaks associated with the sumps and USTs at the Property, but was likely also from surface spills during the long history of the Property for industrial use. However, based upon analytical data collected from groundwater monitoring wells at the Property, and the dewatering activities conducted during excavation for the subsurface parking it appears that groundwater contaminated with concentrations above regulatory concern is not leaving the Property.

The Property is located in the Emeryville Brownfields Groundwater Management Zone. The East Bay Plain Groundwater Basin Beneficial Use Evaluation report states that the remedial strategies implemented in this area should reflect the low probability that groundwater in this zone will be used as a source of drinking water. Kleinfelder installed six groundwater monitoring wells in 2009, and conducted monitoring of the wells on three occasions. Groundwater was sampled for total petroleum hydrocarbons in the gasoline range (TPHg), diesel range (TPHd) and Stoddard solvent range (TPHss), BTEX compounds and fuel oxygenates. ESLs for non-drinking water groundwater were not exceeded in the wells for the three monitoring events except for a concentration of 310 µg/L TPHg in MW-2 on April 17, 2009. The reported groundwater flow direction was south southeast for all three monitoring events, which revealed that MW-5 served as the farthest down-gradient monitoring well. Groundwater samples collected from MW-5 did not have reported concentrations above drinking water or non-drinking water ESLs in the three monitoring events. Based upon this data Kleinfelder concluded in their report of December 15, 2009 that "We believe that under current conditions the site does not pose a threat to human health or the environment." And in their recommendations to that report state "Kleinfelder recommends closure of ACEH Fuel Case No. RO00002973 to allow the City to proceed with the prosed development of the currently vacant site." Adanta agrees with that recommendation.

Soil Off-Haul to Keller Canyon, Pittsburg California

During initial soil excavation of the underground parking structure, soil was loaded into trucks for off-haul to a nearby class 3 landfill facility. Upon arrival of the first two trucks at the landfill, a photoionization detector (PID) was used by landfill operators to assess the potential for the presence of petroleum hydrocarbons in the soil. Though the drivers did not report a recognizable odor, the PID revealed minor concentrations that were not specifically relayed to the truck drivers, and the loads were diverted from that landfill. The truck drivers were then asked by the excavation company (R&B Construction) to deliver the soil to the Keller Canyon Landfill in Pittsburg, California, a Class II landfill facility. Due to the high cost of shipping the soil to two different locations, a decision was made to take all of the soil from the parking garage excavation to Keller Canyon Landfill as a precautionary measure to the soil being denied by the local class 3 facility.

EXTENT OF SOIL REMOVAL FOR UST2

Associated with the previous clarification request, this request seeks information to the extent of removal of soil contaminated with up to 21,000 mg/kg TPHd that had been allowed to remain in place at the 1995 closure of this UST due to a structural stability concern. The Adanta report indicates that the old pea gravel filled excavation had been recently discovered and overexcavated, but that confirmation soil or groundwater samples had not been collected, only that the petroleum odor had been substantially reduced. This is in direct conflict with the February 23, 2011 approval of the Soil and Groundwater Management Plan (and amendment) dated February 8, 2011. Associated with this request is documentation of soil disposal with signed manifests.

The soil removed from the former location of UST 2 was not separated from the other soil removed from the Property since all of the excavated soil was going to the Class 2 Keller Canyon Landfill in Pittsburg. It is our understanding that the pea gravel was removed as well as about 30 to 40 tons of additional soil. The excavator operator stated that he discontinued removing soil when there was no longer a noticeable odor. The contractor then requested that the excavation be filled with a controlled density fill to allow for finish grading in the area to take place. The CDF was approved by the Geotechnical Engineer. Soil samples were not collected from the bottom of this excavation.

Copies of the soil disposal manifests were included in the appendices of the December 21, 2012 letter report: Request to Document Characterization of Surface Soil Contamination and Disposal.

Kleinfelder installed a six-inch diameter extraction well in 1996 with the purpose of analyzing (and possibly extracting contaminated) groundwater in an assumed down gradient flow direction from UST 2. Soil sampling for EW-1 revealed that "no soil samples were found to contain petroleum hydrocarbons above 100 milligrams per

kilogram" (Final Groundwater Sampling Report and Request for Closure, 2623 Adeline Street, Emeryville, California by Kleinfelder, Inc., dated April 15, 1996) Groundwater concentrations were reported as 1 mg/L, 2.8 mg/L, 0.6 mg/L, and 1.0 mg/L for TPHg, TP Hd, TPHo, and TPHk respectively.

EXTENT AND LOCATION OF UST #4 EXCAVATION AND CONFIRMATION SOIL SAMPLES

Because the UST removal excavation and subsequent overexcavation confirmation soil samples were not located on a figure, ACEH seeks clarification as to their location in relation to other areas of contamination and over excavation with use of a single unifying site figure. Associated with this request is documentation of soil disposal with signed manifests.

The requested unifying site figure is attached as Figure 3 Cumulative Soil Sampling Data in Area of Concern. Copies of the soil disposal manifests were included in the appendices of the December 21, 2012 letter report: Request to Document Characterization of Surface Soil Contamination and Disposal.

CLARIFICATION OF CLASS 3 (2) DISPOSAL OF 3,000 TONS OF SOIL

Adanta reported that up to 3,000 tons of potentially petroleum impacted soil had been disposed of at a Class 3 facility in Pittsburg, California. ACEH seeks clarification on the source and location for where on the site this material was generated. It appears this total may not be associated with known areas of contamination (various USTs, sumps, auto maintenance, lead impacted areas, and etc.)

As previously discussed, only the first trucks were erroneously sent to the local Class III landfill, and were subsequently rejected and rerouted. All excavated soil from the Property went to Keller Canyon Landfill, a Class II dispoal facility in Pittsburg, California.

REQUEST FOR UNIFYING SITE FIGURE

To address these requests for clarification, ACEH requests a single unifying site figure to be generated that depicts the garage area sub-excavation, all recent soil and groundwater sample locations (with correlation to previous sample locations), and the excavation areas of former USTs and current areas of construction. As such the figure should partly use a standardized frame of reference such as current construction plans to help locate these areas.

The unifying site figure is attached as Figure 3 – Cumulative Soil Sampling Data in Area of Concern.

LOCATION OF CPT-2

This bore is not located on site maps and to understand it usefulness requires this effort.

The location of CPT-2 has been placed on the unifying site figure is attached as Figure 3 – Cumulative Soil Sampling Data in Area of Concern.

Sincerely Adanta, Inc.

Nick Patz Project Manager Randolph C. Harris, PG, CHG

Professional Geologist

ATTACHMENTS

Appendix A – Dewatering

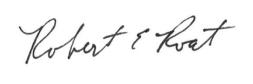
Figure 1 – Demolition Plan

Figure 2 – Grading Plan

Figure 3 – Sample Location Map

Figure 4 – Soil Sample Data in Area of Concern

APPENDIX A DEWATERING


Dewatering Discharge Log EBMUD Permit No 68314903 Ambassador Housing Segue Construction Oakland, California

			Elongod	Totalizer Reading	Volume non	Average Flow	Max Flow	
Date	Time	Operation Time	Elapsed Time (hours)	(meter x 10 gallons)	Volume per Discharge Event (Total gallons)	per Discharge (gallons per minute)	gallons per minute	Comments
6/7/2012	7:00am	9am-3pm	6	58570	7020	19.5	50	Initial Flow reading at Startup - Water clear
6/8/2012	7:00am	9am-3pm	6	65590	2860	7.9	50	pH = 7.78, Turbidity - 15 NTU (WSP)
6/15/2012	7:00am	9am-3pm	6	68450	1680	4.7	50	Water clear at discharge
6/22/2012	7:00am	9am-3pm	6	70130	4100	11.4	50	Water clear at discharge
6/22/2012	7:00am	9am-3pm	6	74230	8970	24.9	50	Water clear at discharge
7/6/2012	7:30am	9am-3pm		83200			50	Water clear at discharge
				Total Volume discharged			24630	
								www.

Flow totalizer readings were read and recorded prior to the start of each discharge.

The last discharge during June took place on June 22, 2012, and the totalizer was read on 7/6/2012 prior to the start of discharge.

Flow totalizer	serial numbe	71-04497-03	

Results to be reported to EBMUD on monthly basis by 10th of following month, signed by Site Manager

^{*} system only operated a maximum of 8 hours per day per City of Oakland Permit

EBMUD

SPECIAL DISCHARGE PERMIT

APPLICANT FORM

Special discharge permits are issued for short-term, limited volume discharge of many different types of wastewater or groundwater meeting special discharge criteria. An application must be completed when applying for a special discharge permit.

INSTRUCTIONS FOR COMPLETING APPLICATION

Please Type or Print the Requested Information

Permit Number – The permit number will be provided by EBMUD.

Applicant's Business Name – Enter the name of the business that has legal responsibility for wastewater discharge, including responsibility for any enforcement actions or penalties imposed by the District.

SIC Code – Enter the Standard Industrial Classification Code. The code may be found in the United States Office of Management and Budget, Standard Industrial Classification Manual.

Address of Site Discharging Wastewater – Enter the street address, side sewer, or manhole location of the site discharging the wastewater.

Applicant Mailing Address – Enter the applicant's business mailing address.

Contact Persons – Enter the name, title, and phone number of those persons thoroughly familiar with the information reported in this application.

Certification – Enter the name and title of the person signing the application. The person signing the application must meet the signatory criteria of 40 CFR 403.12 (l). Persons meeting these criteria include:

- 1) A responsible corporate officer, such as:
 - a. a president, vice-president, secretary, treasurer, or other person performing similar policy or decision making functions or;
 - b. a manager of one or more manufacturing, production, or operating facilities. The facility must employ more than 250 persons or have gross annual sales or expenditures exceeding \$25 million (in second-quarter 1980 dollars). The person must have authority to sign documents.
- 2) A general partner or sole proprietor.
- 3) A duly authorized representative. The duly authorized representative must be:
 - a. an individual having responsibility for the overall operation of the facility from which the wastewater discharge originates. Examples include plant manager, field superintendent, or environmental manager;
 - authorized in writing by a person described in paragraph 1) or 2). The written authorization must be submitted to the District.

Return the Signed Original Application to:

EAST BAY MUNICIPAL UTILITY DISTRICT Environmental Services Division, MS 702 P.O. Box 24055 Oakland, CA 94623-1055

Questions? Call the Environmental Services Division hotline at 510-287-1651.

SPECIAL DISCHARGE PERMIT

PHONE NUMBER

APPLICANT FORM PERMIT NUMBER SIC CODE APPLICANT BUSINESS NAME Segue Construction, Inc, APPLICANT MAILING ADDRESS ADDRESS OF SITE DISCHARGING WASTEWATER 1169 36th Street 7139 Koll Center Pkwy #200 STREET ADDRESS STREET ADDRESS Pleasanton Oakland 94608 CONTACT PERSONS APPLICANT Project Manager 925-931-1750 Rye Bogard, Segue Construction, Inc. PHONE NUMBER NAME CONSULTANT 408-453-6100 Senior Project Director Robert Roat, P.E., WSP Environment & Energy PHONE NUMBER TITLE NAME CONTRACTOR 408-693-7273 Regional Project Coordinator Tony Wilson, Clear Creek Systems, Inc.

CERTIFICATION

I understand that issuance of a Special Discharge Permit does not exempt or preclude the facility from being issued a Discharge Minimization or Pollution Prevention Permit.

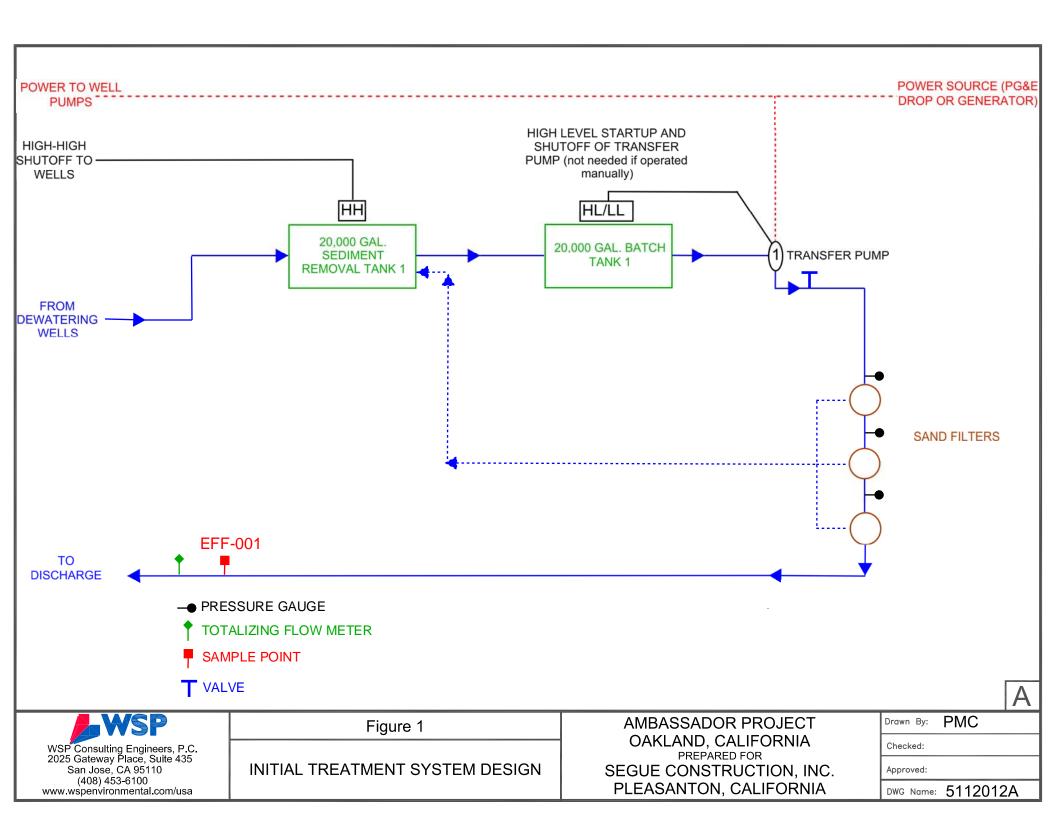
TITLE

I understand that I am legally responsible for discharge of wastewater from the facility and for complying with the Terms and Conditions of this Special Discharge Permit.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that the qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

SIGNATURE (SEE CERTIFICATION REQUIREMENTS ON INSTRUCTIONS)

5-14-2012


EXECUTIVE LIVE TRESMENT

SPECIAL DISCHARGE PERMIT

EBMUD PERMIT NUMBER _____ APPLICANT FORM

Purpose : This information demonstrates the wastewater meets established criteria for a Special Discharge Permit. Check each statement that applies and supply required information.
Reasonable and cost effective means of recycling and reuse of the wastewater are unavailable. Provide information describing what means were considered, and why they were not implemented. This water is unfit for re-use on the site due to detections of VOCs including Trichloroethene. The treatment and application for land discharge permitting is not practical for the small quantity of water which will be generated.
The wastewater is unsuitable for discharge to the storm sewer. Provide explanation. Detection of VOCs, metals and short duration make this wastewater cost prohibitive to discharge to the storm drain under a NPDES permit.
The wastewater is generated only within the SD-1 wastewater service area. Provide location. The wastewater is generated from on-site excavation dewatering activites located at 1168 36th Street in Oakland.
The wastewater meets source criteria. Describe the source and operations generating the wastewater. Include the Wastewater Source Category from Special Discharge Permit Standard Terms and Conditions, Section A, II. The wastewater has been preliminarily approved by Deirdre Mena of EBMUD. Analytical results of wastewater are provided in this permit application packet.
The wastewater is discharged during a limited period of time. Maximum Discharge Duration 30 days Start Date: 5/16/12 Hours of Discharge: 24 Wastewater volume and flow will not exceed 100 gals/minute. Total Discharge Volume: gallons 864,000
Discharge to the sanitary sewer during a rain even may be prohibited. Describe containment capacity during a 10-year rain event (3.16 inches of rainfall in a 24-hour period). The site will be excavated to 3 feet below grade. This excavation, as well as two - 20,000 gallon tanks will provide adequate storage for a 10-year rain event.
The side sewer through which the wastewater is discharged has been identified. Applicant is responsible for obtaining local permits to use manholes or cleanouts for discharge. Attach a site diagram. Show facility location, property lines, wastewater source, drainage plumbing, the side sewer, and sampling location.
Known and potential pollutants present in the wastewater are characterized. Attach a summarized list of all pollutant concentrations present in the wastewater. Also include the complete certified laboratory analytical report.
Treatment technology or best management practices have been identified that will result in the wastewater meeting discharge limits, and sediment or silt does not enter collection system. 1) Describe pretreatment or best management practices that will be used to ensure the wastewater discharge complies with Ordinance No. 311A-03 wastewater discharge limits or permit-specific limits as necessary. Sand filters and settling tanks will be used as pretreatment to remove sediment from the wastewater.
2) Attach a schematic flow diagram of the pretreatment system. The diagram must accurately depict the pretreatment system as constructed. Field deviation from the diagram is not allowed, unless pretreatment system modifications are approved and the permit revised prior to the discharge.

WSP Consulting Engineers, P.C. 2025 Gateway Place, Suite 435 San Jose, CA 95110 408-453-6100 www.wspenvironmental.com/usa

Figure 1

SITE DIAGRAM 1169 36TH STREET OAKLAND, CA AMBASSADOR PROJECT OAKLAND, CALIFORNIA PREPARED FOR SEGUE CONSTRUCTION, INC. PLEASANTON, CALIFORNIA

TABLE 1 SUMMARY OF ANALYTICAL RESULTS DEWATERING WELL 1169 36TH STREET OAKLAND, CA

E218.6 Hexachrome 0.66 0.2 μgL E300.1 Chloride 46 0.1 mg/L 8260B n-Propyl benzene ND 0.5 μg/L 8260B 1.1.1-2-Tetrachforoethane ND 0.5 μg/L 8260B 1.1.1-1-Tethenoethane ND 0.5 μg/L 8260B 1.1.1-2-Trichloroethane ND 0.5 μg/L 8260B 1.1.2-2-Tetrachforoethane ND 0.5 μg/L 8260B 1.1.2-Trichloroethane ND 0.5 μg/L 8260B 1.1-Dichloroethane ND 0.5 μg/L 8260B 1.1-Dichloroethane ND 0.5 μg/L 8260B 1.1-Dichloroethene ND 0.5 μg/L 8260B 1.1-Dichloroethene ND 0.5 μg/L 8260B 1.2-3-Trichloroptene ND 0.5 μg/L 8260B 1.2-3-Trichloroptene ND 0.5 μg/L 8260B 1.2-3-Trichloroptene ND 0.5 μg/L 8260B 1.2-4-Trinchloroptene ND 0.5 μg/L 8260B 1.2-4-Trinchloroptene ND 0.5 μg/L 8260B 1.2-4-Trinchloroptene ND 0.5 μg/L 8260B 1.2-Dibromo-3-chloroptene ND 0.5 μg/L 8260B 1.2-Dibromo-3-chloroptene ND 0.5 μg/L 8260B 1.2-Dichloroptene ND 0.5 μg/L 8260B 1.3-Dichloroptene ND 0.5 μg/L 8260B 2-Butanone (MEK) 3.8 2 μg/L 8260B 2-Butanone ND 0.5 μg/L 8260B 3-Butanone ND 0.5 μg/L 8260B 3	Date Sampled	Method	Analyte	Result	Reporting Limit Units
8260B n-Propyl benzene ND 0.5 pg/L	5/4/2012	E218.6	Hexachrome	0.66	0.2 µg/L
8260B 1,1,1,2-Tetrachloroethane ND 0.5 µg/L 8260B 1,1,1,2-Tichloroethane ND 0.5 µg/L 8260B 1,1,2-Tichloroethane ND 0.5 µg/L 8260B 1,1-Dichloroethane ND 0.5 µg/L 8260B 1,1-Dichloroethane ND 0.5 µg/L 8260B 1,1-Dichloropropene ND 0.5 µg/L 8260B 1,2,3-Trichlorobenzene ND 0.5 µg/L 8260B 1,2,3-Trichlorobenzene ND 0.5 µg/L 8260B 1,2,3-Trichlorobenzene ND 0.5 µg/L 8260B 1,2,4-Trinethylbenzene ND 0.5 µg/L 8260B 1,2-Dibromo-3-chloropropane ND 0.5 µg/L 8260B 1,2-Dichlorobenzene ND 0.5 µg/L 8260B 1,3-Dichlorobenzene ND 0.5 µg/L		E300.1	Chloride	46	0.1 mg/L
S260B		8260B	n-Propyl benzene	ND	0.5 µg/L
S260B		8260B	1,1,1,2-Tetrachloroethane	ND	0.5 µg/L
S260B		8260B	1,1,1-Trichloroethane	ND	0.5 µg/L
S260B		8260B	1,1,2,2-Tetrachloroethane	ND	0.5 µg/L
S260B		8260B	1,1,2-Trichloroethane	ND	0.5 µg/L
S260B		8260B	1,1-Dichloroethane	ND	0.5 µg/L
S260B		8260B	1,1-Dichloroethene	ND	0.5 µg/L
S260B		8260B	1,1-Dichloropropene	ND	$0.5 \mu g/L$
S260B		8260B	1,2,3-Trichlorobenzene	ND	0.5 µg/L
S260B		8260B	1,2,3-Trichloropropane	ND	0.5 µg/L
S260B		8260B	1,2,4-Trichlorobenzene	ND	0.5 µg/L
S260B		8260B	1,2,4-Trimethylbenzene	ND	$0.5 \mu g/L$
8260B 1,2-Dichlorobenzene ND 0.5 µg/L 8260B 1,2-Dichloroethane (1,2-DCA) ND 0.5 µg/L 8260B 1,2-Dichloropropane ND 0.5 µg/L 8260B 1,3-5-Tirmethylbenzene ND 0.5 µg/L 8260B 1,3-Dichlorobenzene ND 0.5 µg/L 8260B 1,3-Dichloropengane ND 0.5 µg/L 8260B 1,4-Dichlorobenzene ND 0.5 µg/L 8260B 2,2-Dichloropropane ND 0.5 µg/L 8260B 2-Butanone (MEK) 3.8 2 µg/L 8260B 2-Chlorotoluene ND 0.5 µg/L 8260B 2-Chlorotoluene ND 0.5 µg/L 8260B 4-Chlorotoluene ND 0.5 µg/L 8260B 4-Sepopyl toluene ND 0.5 µg/L 8260B Actone		8260B	1,2-Dibromo-3-chloropropane	ND	0.2 µg/L
8260B 1,2-Dichloroethane (1,2-DCA) ND 0.5 μg/L 8260B 1,2-Dichloropropane ND 0.5 μg/L 8260B 1,3,5-Trimethylbenzene ND 0.5 μg/L 8260B 1,3-Dichlorobenzene ND 0.5 μg/L 8260B 1,3-Dichloropropane ND 0.5 μg/L 8260B 1,4-Dichloropropane ND 0.5 μg/L 8260B 2,2-Dichloropropane ND 0.5 μg/L 8260B 2,2-Dichloropropane ND 0.5 μg/L 8260B 2,2-Dichloropropane ND 0.5 μg/L 8260B 2-Butanone (MEK) 3.8 2 μg/L 8260B 2-Chlorotoluene ND 0.5 μg/L 8260B 2-Hexanone ND 0.5 μg/L 8260B 4-Chlorotoluene ND 0.5 μg/L 8260B 4-Sopopyl toluene ND 0.5 μg/L 8260B 4-Sopopyl toluene ND 0.5 μg/L 8260B Acetone ND 0.5 μg/L 8260B Acetone <td< td=""><td></td><td>8260B</td><td>1,2-Dibromoethane (EDB)</td><td>ND</td><td>0.5 µg/L</td></td<>		8260B	1,2-Dibromoethane (EDB)	ND	0.5 µg/L
1,2-Dichloropropane ND 0.5 µg/L		8260B	1,2-Dichlorobenzene	ND	0.5 µg/L
8260B 1,3,5-Trimethylbenzene ND 0.5 µg/L 8260B 1,3-Dichlorobenzene ND 0.5 µg/L 8260B 1,3-Dichloropenzene ND 0.5 µg/L 8260B 1,4-Dichloropenzene ND 0.5 µg/L 8260B 2,2-Dichloropropane ND 0.5 µg/L 8260B 2,2-Dichloropropane ND 0.5 µg/L 8260B 2-Butanone (MEK) 3.8 2 µg/L 8260B 2-Chlorotoluene ND 0.5 µg/L 8260B 2-Hexanone ND 0.5 µg/L 8260B 4-Chlorotoluene ND 0.5 µg/L 8260B 4-Isopropyl toluene ND 0.5 µg/L 8260B 4-Sepropyl toluene ND 0.5 µg/L 8260B 4-Methyl-2-pentanone (MIBK) ND 0.5 µg/L 8260B Acetone ND 0.5 µg/L 8260B Acetone ND 0.5 µg/L 8260B Benzene ND 0.5 µg/L 8260B Bromochloromethane ND		8260B	1,2-Dichloroethane (1,2-DCA)	ND	0.5 µg/L
8260B 1,3-Dichlorobenzene ND 0.5 µg/L 8260B 1,3-Dichloropropane ND 0.5 µg/L 8260B 1,4-Dichlorobenzene ND 0.5 µg/L 8260B 2,2-Dichloropropane ND 0.5 µg/L 8260B 2,2-Dichloropropane ND 0.5 µg/L 8260B 2-Butanone (MEK) 3.8 2 µg/L 8260B 2-Hexanone ND 0.5 µg/L 8260B 2-Hexanone ND 0.5 µg/L 8260B 4-Chlorotoluene ND 0.5 µg/L 8260B 4-Inopropyl toluene ND 0.5 µg/L 8260B 4-Methyl-2-pentanone (MIBK) ND 0.5 µg/L 8260B Acetone ND 0.5 µg/L 8260B Benzene ND 0.5 µg/L 8260B Bromobenzene ND 0.5 µg/L 8260B Bromoform ND 0.5 µg/L 8260B Bromoform ND 0.5 µg/L 8260B Bromomethane ND 0.5 µg/L <		8260B	1,2-Dichloropropane	ND	0.5 µg/L
8260B 1,3-Dichloropropane ND 0.5 µg/L 8260B 1,4-Dichlorobenzene ND 0.5 µg/L 8260B 2,2-Dichloropropane ND 0.5 µg/L 8260B 2-Butanone (MEK) 3.8 2 µg/L 8260B 2-Chlorotoluene ND 0.5 µg/L 8260B 2-Hexanone ND 0.5 µg/L 8260B 4-Chlorotoluene ND 0.5 µg/L 8260B 4-Isopropyl toluene ND 0.5 µg/L 8260B 4-Methyl-2-pentanone (MIBK) ND 0.5 µg/L 8260B Acetone ND 10 µg/L 8260B Benzene ND 0.5 µg/L 8260B Bromobenzene ND 0.5 µg/L 8260B Bromochloromethane ND 0.5 µg/L 8260B Bromoform ND 0.5 µg/L 8260B Bromomethane ND 0.5 µg/L 8260B Carbon Tetrachloride ND 0.5 µg/L 8260B Chlorobenzene ND 0.5 µg/L <td></td> <td>8260B</td> <td>1,3,5-Trimethylbenzene</td> <td>ND</td> <td>0.5 µg/L</td>		8260B	1,3,5-Trimethylbenzene	ND	0.5 µg/L
8260B 1,4-Dichlorobenzene ND 0.5 µg/L 8260B 2,2-Dichloropropane ND 0.5 µg/L 8260B 2-Butanone (MEK) 3.8 2 µg/L 8260B 2-Chlorotoluene ND 0.5 µg/L 8260B 2-Hexanone ND 0.5 µg/L 8260B 4-Chlorotoluene ND 0.5 µg/L 8260B 4-Isopropyl toluene ND 0.5 µg/L 8260B 4-Methyl-2-pentanone (MIBK) ND 0.5 µg/L 8260B Acetone ND 0.5 µg/L 8260B Benzene ND 0.5 µg/L 8260B Bromobenzene ND 0.5 µg/L 8260B Bromochloromethane ND 0.5 µg/L 8260B Bromoform ND 0.5 µg/L 8260B Bromomethane ND 0.5 µg/L 8260B Carbon Disulfide ND 0.5 µg/L 8260B Chlorobenzene ND 0.5 µg/L 8260B Chlorobenzene ND 0.5 µg/L </td <td></td> <td>8260B</td> <td>1,3-Dichlorobenzene</td> <td>ND</td> <td>0.5 µg/L</td>		8260B	1,3-Dichlorobenzene	ND	0.5 µg/L
8260B 2,2-Dichloropropane ND 0.5 µg/L 8260B 2-Butanone (MEK) 3.8 2 µg/L 8260B 2-Chlorotoluene ND 0.5 µg/L 8260B 2-Hexanone ND 0.5 µg/L 8260B 4-Chlorotoluene ND 0.5 µg/L 8260B 4-Isopropyl toluene ND 0.5 µg/L 8260B 4-Isopropyl toluene ND 0.5 µg/L 8260B 4-Methyl-2-pentanone (MIBK) ND 0.5 µg/L 8260B Acetone ND 0.5 µg/L 8260B Benzene ND 0.5 µg/L 8260B Bromobenzene ND 0.5 µg/L 8260B Bromodichloromethane ND 0.5 µg/L 8260B Bromomethane ND 0.5 µg/L 8260B Bromomethane ND 0.5 µg/L 8260B Carbon Disulfide ND 0.5 µg/L 8260B Chlorobenzene ND 0.5 µg/L 8260B Chloroform ND 0.5 µg/L		8260B	1,3-Dichloropropane	ND	0.5 µg/L
S260B 2-Butanone (MEK) 3.8 2 µg/L		8260B	1,4-Dichlorobenzene	ND	0.5 µg/L
8260B 2-Chlorotoluene ND 0.5 µg/L 8260B 2-Hexanone ND 0.5 µg/L 8260B 4-Chlorotoluene ND 0.5 µg/L 8260B 4-Isopropyl toluene ND 0.5 µg/L 8260B 4-Methyl-2-pentanone (MIBK) ND 0.5 µg/L 8260B Acetone ND 10 µg/L 8260B Benzene ND 0.5 µg/L 8260B Bromobenzene ND 0.5 µg/L 8260B Bromochloromethane ND 0.5 µg/L 8260B Bromodichloromethane ND 0.5 µg/L 8260B Bromoform ND 0.5 µg/L 8260B Bromomethane ND 0.5 µg/L 8260B Carbon Disulfide ND 0.5 µg/L 8260B Carbon Tetrachloride ND 0.5 µg/L 8260B Chlorobenzene ND 0.5 µg/L 8260B Chloroform ND 0.5 µg/L 8260B Chloromethane ND 0.5 µg/L		8260B	2,2-Dichloropropane	ND	0.5 µg/L
8260B 2-Hexanone ND 0.5 μg/L 8260B 4-Chlorotoluene ND 0.5 μg/L 8260B 4-Isopropyl toluene ND 0.5 μg/L 8260B 4-Methyl-2-pentanone (MIBK) ND 0.5 μg/L 8260B Acetone ND 10 μg/L 8260B Benzene ND 0.5 μg/L 8260B Bromobenzene ND 0.5 μg/L 8260B Bromochloromethane ND 0.5 μg/L 8260B Bromoform ND 0.5 μg/L 8260B Bromomethane ND 0.5 μg/L 8260B Bromomethane ND 0.5 μg/L 8260B Carbon Disulfide ND 0.5 μg/L 8260B Carbon Tetrachloride ND 0.5 μg/L 8260B Chlorobenzene ND 0.5 μg/L 8260B Chloroform ND 0.5 μg/L 8260B Chloroform ND 0.5 μg/L 8260B Chloromethane ND 0.5 μg/L 8260B cis-1,2-Dichloropthene ND 0.5 μg/L <td< td=""><td></td><td>8260B</td><td>2-Butanone (MEK)</td><td>3.8</td><td>2 µg/L</td></td<>		8260B	2-Butanone (MEK)	3.8	2 µg/L
8260B 4-Chlorotoluene ND 0.5 μg/L 8260B 4-Isopropyl toluene ND 0.5 μg/L 8260B 4-Methyl-2-pentanone (MIBK) ND 0.5 μg/L 8260B Acetone ND 10 μg/L 8260B Benzene ND 0.5 μg/L 8260B Bromobenzene ND 0.5 μg/L 8260B Bromochloromethane ND 0.5 μg/L 8260B Bromoform ND 0.5 μg/L 8260B Bromomethane ND 0.5 μg/L 8260B Bromomethane ND 0.5 μg/L 8260B Carbon Disulfide ND 0.5 μg/L 8260B Carbon Tetrachloride ND 0.5 μg/L 8260B Chlorobenzene ND 0.5 μg/L 8260B Chlorothane ND 0.5 μg/L 8260B Chloroform ND 0.5 μg/L 8260B Chloromethane ND 0.5 μg/L 8260B Cis-1,2-Dichloropropene ND 0.5 μg/L 8260B Dibromochloromethane ND 0.5 μg/L <t< td=""><td></td><td>8260B</td><td>2-Chlorotoluene</td><td>ND</td><td>0.5 µg/L</td></t<>		8260B	2-Chlorotoluene	ND	0.5 µg/L
8260B 4-Isopropyl toluene ND 0.5 μg/L 8260B 4-Methyl-2-pentanone (MIBK) ND 0.5 μg/L 8260B Acetone ND 10 μg/L 8260B Benzene ND 0.5 μg/L 8260B Bromobenzene ND 0.5 μg/L 8260B Bromochloromethane ND 0.5 μg/L 8260B Bromodichloromethane ND 0.5 μg/L 8260B Bromoform ND 0.5 μg/L 8260B Bromomethane ND 0.5 μg/L 8260B Carbon Disulfide ND 0.5 μg/L 8260B Carbon Tetrachloride ND 0.5 μg/L 8260B Chlorobenzene ND 0.5 μg/L 8260B Chloroethane ND 0.5 μg/L 8260B Chloroform ND 0.5 μg/L 8260B Chloromethane ND 0.5 μg/L 8260B cis-1,2-Dichloropropene ND 0.5 μg/L 8260B Dibromochloromethane ND 0.5 μg/L 8260B Dibromochloromethane ND 0.5 μg/L		8260B	2-Hexanone	ND	0.5 µg/L
8260B 4-Methyl-2-pentanone (MIBK) ND 0.5 µg/L 8260B Acetone ND 10 µg/L 8260B Benzene ND 0.5 µg/L 8260B Bromobenzene ND 0.5 µg/L 8260B Bromochloromethane ND 0.5 µg/L 8260B Bromodichloromethane ND 0.5 µg/L 8260B Bromoform ND 0.5 µg/L 8260B Bromomethane ND 0.5 µg/L 8260B Carbon Disulfide ND 0.5 µg/L 8260B Carbon Tetrachloride ND 0.5 µg/L 8260B Chlorobenzene ND 0.5 µg/L 8260B Chloroethane ND 0.5 µg/L 8260B Chloroform ND 0.5 µg/L 8260B Chloromethane ND 0.5 µg/L 8260B cis-1,2-Dichloroethene ND 0.5 µg/L 8260B Dibromochloromethane ND 0.5 µg/L 8260B Dibromochloromethane ND 0.5 µg/L 8260B Dibromomethane ND 0.5 µg/L		8260B	4-Chlorotoluene	ND	0.5 µg/L
8260B Acetone ND 10 µg/L 8260B Benzene ND 0.5 µg/L 8260B Bromobenzene ND 0.5 µg/L 8260B Bromochloromethane ND 0.5 µg/L 8260B Bromodichloromethane ND 0.5 µg/L 8260B Bromomethane ND 0.5 µg/L 8260B Bromomethane ND 0.5 µg/L 8260B Carbon Disulfide ND 0.5 µg/L 8260B Carbon Tetrachloride ND 0.5 µg/L 8260B Chlorobenzene ND 0.5 µg/L 8260B Chloroethane ND 0.5 µg/L 8260B Chloroform ND 0.5 µg/L 8260B Chloromethane ND 0.5 µg/L 8260B cis-1,2-Dichloroethene ND 0.5 µg/L 8260B Dibromochloromethane ND 0.5 µg/L 8260B Dibromochloromethane ND 0.5 µg/L 8260B Dichlorodifluoromethane ND 0.5 µg/L </td <td></td> <td>8260B</td> <td>4-Isopropyl toluene</td> <td>ND</td> <td>0.5 µg/L</td>		8260B	4-Isopropyl toluene	ND	0.5 µg/L
8260B Benzene ND 0.5 µg/L 8260B Bromobenzene ND 0.5 µg/L 8260B Bromochloromethane ND 0.5 µg/L 8260B Bromodichloromethane ND 0.5 µg/L 8260B Bromomethane ND 0.5 µg/L 8260B Bromomethane ND 0.5 µg/L 8260B Carbon Disulfide ND 0.5 µg/L 8260B Carbon Tetrachloride ND 0.5 µg/L 8260B Chlorobenzene ND 0.5 µg/L 8260B Chloroethane ND 0.5 µg/L 8260B Chloroform ND 0.5 µg/L 8260B Chloromethane ND 0.5 µg/L 8260B cis-1,2-Dichloropropene ND 0.5 µg/L 8260B Dibromochloromethane ND 0.5 µg/L 8260B Dibromomethane ND 0.5 µg/L 8260B Dibromomethane ND 0.5 µg/L		8260B	4-Methyl-2-pentanone (MIBK)	ND	0.5 µg/L
8260B Bromobenzene ND 0.5 μg/L 8260B Bromochloromethane ND 0.5 μg/L 8260B Bromodichloromethane ND 0.5 μg/L 8260B Bromoform ND 0.5 μg/L 8260B Bromomethane ND 0.5 μg/L 8260B Carbon Disulfide ND 0.5 μg/L 8260B Carbon Tetrachloride ND 0.5 μg/L 8260B Chlorobenzene ND 0.5 μg/L 8260B Chloroethane ND 0.5 μg/L 8260B Chloroform ND 0.5 μg/L 8260B Chloromethane ND 0.5 μg/L 8260B cis-1,2-Dichloroethene ND 0.5 μg/L 8260B cis-1,3-Dichloropropene ND 0.5 μg/L 8260B Dibromochloromethane ND 0.5 μg/L 8260B Dibromomethane ND 0.5 μg/L 8260B Dichlorodifluoromethane ND 0.5 μg/L		8260B	Acetone	ND	10 µg/L
8260B Bromochloromethane ND 0.5 μg/L 8260B Bromodichloromethane ND 0.5 μg/L 8260B Bromoform ND 0.5 μg/L 8260B Bromomethane ND 0.5 μg/L 8260B Carbon Disulfide ND 0.5 μg/L 8260B Carbon Tetrachloride ND 0.5 μg/L 8260B Chlorobenzene ND 0.5 μg/L 8260B Chloroethane ND 0.5 μg/L 8260B Chloroform ND 0.5 μg/L 8260B Chloromethane ND 0.5 μg/L 8260B cis-1,2-Dichloroethene ND 0.5 μg/L 8260B cis-1,3-Dichloropropene ND 0.5 μg/L 8260B Dibromochloromethane ND 0.5 μg/L 8260B Dibromomethane ND 0.5 μg/L 8260B Dichlorodifluoromethane ND 0.5 μg/L		8260B	Benzene	ND	0.5 µg/L
8260B Bromodichloromethane ND 0.5 μg/L 8260B Bromoform ND 0.5 μg/L 8260B Bromomethane ND 0.5 μg/L 8260B Carbon Disulfide ND 0.5 μg/L 8260B Carbon Tetrachloride ND 0.5 μg/L 8260B Chlorobenzene ND 0.5 μg/L 8260B Chloroethane ND 0.5 μg/L 8260B Chloroform ND 0.5 μg/L 8260B Chloromethane ND 0.5 μg/L 8260B cis-1,2-Dichloroethene ND 0.5 μg/L 8260B cis-1,3-Dichloropropene ND 0.5 μg/L 8260B Dibromochloromethane ND 0.5 μg/L 8260B Dibromomethane ND 0.5 μg/L 8260B Dichlorodifluoromethane ND 0.5 μg/L		8260B	Bromobenzene	ND	0.5 µg/L
8260B Bromoform ND 0.5 μg/L 8260B Bromomethane ND 0.5 μg/L 8260B Carbon Disulfide ND 0.5 μg/L 8260B Carbon Tetrachloride ND 0.5 μg/L 8260B Chlorobenzene ND 0.5 μg/L 8260B Chloroethane ND 0.5 μg/L 8260B Chloroform ND 0.5 μg/L 8260B Chloromethane ND 0.5 μg/L 8260B cis-1,2-Dichloroethene ND 0.5 μg/L 8260B cis-1,3-Dichloropropene ND 0.5 μg/L 8260B Dibromochloromethane ND 0.5 μg/L 8260B Dibromomethane ND 0.5 μg/L 8260B Dichlorodifluoromethane ND 0.5 μg/L		8260B	Bromochloromethane	ND	0.5 µg/L
8260B Bromomethane ND 0.5 μg/L 8260B Carbon Disulfide ND 0.5 μg/L 8260B Carbon Tetrachloride ND 0.5 μg/L 8260B Chlorobenzene ND 0.5 μg/L 8260B Chloroethane ND 0.5 μg/L 8260B Chloromethane ND 0.5 μg/L 8260B cis-1,2-Dichloroethene ND 0.5 μg/L 8260B cis-1,3-Dichloropropene ND 0.5 μg/L 8260B Dibromochloromethane ND 0.5 μg/L 8260B Dibromomethane ND 0.5 μg/L 8260B Dichlorodifluoromethane ND 0.5 μg/L		8260B	Bromodichloromethane	ND	0.5 µg/L
8260B Carbon Disulfide ND 0.5 μg/L 8260B Carbon Tetrachloride ND 0.5 μg/L 8260B Chlorobenzene ND 0.5 μg/L 8260B Chloroethane ND 0.5 μg/L 8260B Chloroform ND 0.5 μg/L 8260B Chloromethane ND 0.5 μg/L 8260B cis-1,2-Dichloroethene ND 0.5 μg/L 8260B cis-1,3-Dichloropropene ND 0.5 μg/L 8260B Dibromochloromethane ND 0.5 μg/L 8260B Dibromomethane ND 0.5 μg/L 8260B Dichlorodifluoromethane ND 0.5 μg/L		8260B	Bromoform	ND	0.5 µg/L
8260B Carbon Tetrachloride ND 0.5 μg/L 8260B Chlorobenzene ND 0.5 μg/L 8260B Chloroethane ND 0.5 μg/L 8260B Chloroform ND 0.5 μg/L 8260B Chloromethane ND 0.5 μg/L 8260B cis-1,2-Dichloroethene ND 0.5 μg/L 8260B cis-1,3-Dichloropropene ND 0.5 μg/L 8260B Dibromochloromethane ND 0.5 μg/L 8260B Dibromomethane ND 0.5 μg/L 8260B Dichlorodifluoromethane ND 0.5 μg/L		8260B	Bromomethane	ND	0.5 µg/L
8260B Chlorobenzene ND 0.5 μg/L 8260B Chloroethane ND 0.5 μg/L 8260B Chloroform ND 0.5 μg/L 8260B Chloromethane ND 0.5 μg/L 8260B cis-1,2-Dichloroethene ND 0.5 μg/L 8260B cis-1,3-Dichloropropene ND 0.5 μg/L 8260B Dibromochloromethane ND 0.5 μg/L 8260B Dibromomethane ND 0.5 μg/L 8260B Dichlorodifluoromethane ND 0.5 μg/L		8260B	Carbon Disulfide	ND	0.5 µg/L
8260B Chloroethane ND 0.5 μg/L 8260B Chloroform ND 0.5 μg/L 8260B Chloromethane ND 0.5 μg/L 8260B cis-1,2-Dichloroethene ND 0.5 μg/L 8260B cis-1,3-Dichloropropene ND 0.5 μg/L 8260B Dibromochloromethane ND 0.5 μg/L 8260B Dibromomethane ND 0.5 μg/L 8260B Dichlorodifluoromethane ND 0.5 μg/L		8260B	Carbon Tetrachloride	ND	0.5 µg/L
8260B Chloroform ND 0.5 μg/L 8260B Chloromethane ND 0.5 μg/L 8260B cis-1,2-Dichloroethene ND 0.5 μg/L 8260B cis-1,3-Dichloropropene ND 0.5 μg/L 8260B Dibromochloromethane ND 0.5 μg/L 8260B Dibromomethane ND 0.5 μg/L 8260B Dichlorodifluoromethane ND 0.5 μg/L		8260B	Chlorobenzene	ND	0.5 µg/L
8260B Chloromethane ND 0.5 μg/L 8260B cis-1,2-Dichloroethene ND 0.5 μg/L 8260B cis-1,3-Dichloropropene ND 0.5 μg/L 8260B Dibromochloromethane ND 0.5 μg/L 8260B Dibromomethane ND 0.5 μg/L 8260B Dichlorodifluoromethane ND 0.5 μg/L		8260B	Chloroethane	ND	0.5 µg/L
8260B cis-1,2-Dichloroethene ND 0.5 μg/L 8260B cis-1,3-Dichloropropene ND 0.5 μg/L 8260B Dibromochloromethane ND 0.5 μg/L 8260B Dibromomethane ND 0.5 μg/L 8260B Dichlorodifluoromethane ND 0.5 μg/L 8260B Dichlorodifluoromethane ND 0.5 μg/L		8260B	Chloroform	ND	0.5 µg/L
8260B cis-1,3-Dichloropropene ND 0.5 μg/L 8260B Dibromochloromethane ND 0.5 μg/L 8260B Dibromomethane ND 0.5 μg/L 8260B Dichlorodifluoromethane ND 0.5 μg/L		8260B	Chloromethane	ND	0.5 µg/L
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8260B	cis-1,2-Dichloroethene	ND	0.5 µg/L
8260BDibromochloromethaneND0.5 μg/L8260BDibromomethaneND0.5 μg/L8260BDichlorodifluoromethaneND0.5 μg/L		8260B	cis-1,3-Dichloropropene	ND	
8260B Dibromomethane ND 0.5 μg/L 8260B Dichlorodifluoromethane ND 0.5 μg/L		8260B	Dibromochloromethane	ND	
8260B Dichlorodifluoromethane ND 0.5 µg/L		8260B	Dibromomethane	ND	
· ·		8260B	Dichlorodifluoromethane	ND	
		8260B	Diisopropyl ether (DIPE)	0.51	0.5 µg/L

TABLE 1 SUMMARY OF ANALYTICAL RESULTS DEWATERING WELL 1169 36TH STREET OAKLAND, CA

Date Sampled	Method	Analyte	Result	Reporting Limit Units
	8260B	Ethyl tert-butyl ether (ETBE)	ND	0.5 µg/L
	8260B	Ethylbenzene	ND	0.5 µg/L
	8260B	Freon 113	ND	10 µg/L
	8260B	Hexachlorobutadiene	ND	0.5 µg/L
	8260B	Hexachloroethane	ND	0.5 µg/L
	8260B	Isopropylbenzene	ND	0.5 µg/L
	8260B	Methylene chloride	ND	0.5 µg/L
	8260B	Methyl-t-butyl ether (MTBE)	0.8	0.5 µg/L
	8260B	Naphthalene	ND	0.5 µg/L
	8260B	n-Butyl benzene	ND	0.5 µg/L
	8260B	sec-Butyl benzene	ND	0.5 µg/L
	8260B	Styrene	ND	0.5 µg/L
	8260B	t-Butyl alcohol (TBA)	ND	0.5 µg/L
	8260B	tert-Amyl methyl ether (TAME)	ND	0.5 µg/L
	8260B	tert-Butyl benzene	ND	2 μg/L
	8260B	Tetrachloroethene	ND	0.5 µg/L
	8260B	Toluene	ND	0.5 µg/L
	8260B	trans-1,2-Dichloroethene	ND	0.5 µg/L
	8260B	trans-1,3-Dichloropropene	ND	0.5 µg/L
	8260B	Trichloroethene	2.2	0.5 µg/L
	8260B	Trichlorofluoromethane	ND	0.5 µg/L
	8260B	Vinyl Chloride	ND	0.5 µg/L
	8260B	Xylenes, Total	ND	0.5 µg/L
	SW8270C-SIM	1-Methylnaphthalene	ND	0.5 µg/L
	SW8270C-SIM	2-Methylnaphthalene	ND	0.5 µg/L
	SW8270C-SIM	Acenaphthene	ND	0.5 µg/L
	SW8270C-SIM	Acenaphthylene	ND	0.5 µg/L
	SW8270C-SIM	Anthracene	ND	0.5 µg/L
	SW8270C-SIM	Benzo (a) anthracene	ND	0.5 µg/L
	SW8270C-SIM	Benzo (a) pyrene	ND	0.5 µg/L
	SW8270C-SIM	Benzo (b) fluoranthene	ND	0.5 µg/L
	SW8270C-SIM	Benzo (g,h,i) perylene	ND	0.5 µg/L
	SW8270C-SIM	Benzo (k) fluoranthene	ND	0.5 µg/L
	SW8270C-SIM	Chrysene	ND	0.5 µg/L
	SW8270C-SIM	Dibenzo (a,h) anthracene	ND	0.5 µg/L
	SW8270C-SIM	Fluoranthene	ND	0.5 µg/L
	SW8270C-SIM	Fluorene	ND	0.5 µg/L
	SW8270C-SIM	Indeno (1,2,3-cd) pyrene	ND	0.5 µg/L
	SW8270C-SIM	Naphthalene	ND	0.5 µg/L
	SW8270C-SIM	Phenanthrene	ND	0.5 µg/L
	SW8270C-SIM	Pyrene	ND	0.5 µg/L
	SW8270C	1,1-Biphenyl	ND	2 µg/L
	SW8270C	1,2,4-Trichlorobenzene	ND	2 µg/L
	SW8270C	1,2-Dichlorobenzene	ND	2 µg/L
	SW8270C	1,2-Diphenylhydrazine	ND	2 μg/L
	SW8270C	1,3-Dichlorobenzene	ND	2 µg/L
	SW8270C	1,4-Dichlorobenzene	ND	2 μg/L
	SW8270C	2,4,5-Trichlorophenol	ND	2 µg/L
	SW8270C	2,4,6-Trichlorophenol	ND	2 µg/L

TABLE 1 SUMMARY OF ANALYTICAL RESULTS DEWATERING WELL 1169 36TH STREET

OAKLAND, CA

Date Sampled	Method	Analyte	Result	Reporting Limit Units
	SW8270C	2,4-Dichlorophenol	ND	2 µg/L
	SW8270C	2,4-Dimethylphenol	ND	2 µg/L
	SW8270C	2,4-Dinitrophenol	ND	25 µg/L
	SW8270C	2,4-Dinitrotoluene	ND	2 µg/L
	SW8270C	2,6-Dinitrotoluene	ND	2 µg/L
	SW8270C	2-Chloronaphthalene	ND	2 µg/L
	SW8270C	2-Chlorophenol	ND	2 µg/L
	SW8270C	2-Methylnaphthalene	ND	2 µg/L
	SW8270C	2-Methylphenol (o-Cresol)	ND	2 µg/L
	SW8270C	2-Nitroaniline	ND	10 µg/L
	SW8270C	2-Nitrophenol	ND	2 µg/L
	SW8270C	3 &/or 4-Methylphenol (m,p-Cresol)	ND	2 µg/L
	SW8270C	3,3-Dichlorobenzidine	ND	4.1 µg/L
	SW8270C	3-Nitroaniline	ND	10 µg/L
	SW8270C	4,6-Dinitro-2-methylphenol	ND	10 µg/L
	SW8270C	4-Bromophenyl Phenyl Ether	ND	10 µg/L
	SW8270C	4-Chloro-3-methylphenol	ND	2 µg/L
	SW8270C	4-Chloroaniline	ND	4.1 µg/L
	SW8270C	4-Chlorophenyl Phenyl Ether	ND	10 µg/L
	SW8270C	4-Nitroaniline	ND	10 µg/L
	SW8270C	4-Nitrophenol	ND	10 µg/L
	SW8270C	Acenaphthene	ND	2 µg/L
	SW8270C	Acenaphthylene	ND	2 µg/L
	SW8270C	Acetochlor	ND	2 µg/L
	SW8270C	Anthracene	ND	10 µg/L
	SW8270C	Benzidine	ND	10 µg/L
	SW8270C	Benzo (a) anthracene	ND	2 µg/L
	SW8270C	Benzo (a) pyrene	ND	2 µg/L
	SW 8270C	Benzo (b) fluoranthene	ND	2 µg/L
	SW8270C	Benzo (g,h,i) perylene	ND	2 µg/L
	SW 8270C	Benzo (k) fluoranthene	ND	2 µg/L
	SW8270C	Benzoic Acid	ND	25 µg/L
	SW8270C	Benzyl Alcohol	ND	10 µg/L
	SW8270C	Bis (2-chloroethoxy) Methane	ND	10 µg/L
	SW8270C	Bis (2-chloroethyl) Ether	ND	10 µg/L
	SW8270C	Bis (2-chloroisopropyl) Ether	ND	2 µg/L
	SW8270C	Bis (2-ethylhexyl) Adipate	ND	10 µg/L
	SW8270C	Bis (2-ethylhexyl) Phthalate	ND	4 µg/L
	SW8270C	Butylbenzyl Phthalate	ND	2 µg/L
	SW8270C	Chrysene	ND	2 µg/L
	SW8270C	Dibenzo (a,h) anthracene	ND	2 µg/L
	SW8270C	Dibenzofuran	ND	2 µg/L
	SW8270C	Diethyl Phthalate	ND	2 µg/L
	SW8270C	Dimethyl Phthalate	ND	2 µg/L
	SW8270C	Di-n-butyl Phthalate	ND	2 µg/L
	SW8270C	Di-n-octyl Phthalate	ND	2 µg/L
	SW8270C	Fluoranthene	ND	2 μg/L
	SW8270C	Fluorene	ND	2 μg/L
	SW8270C	Hexachlorobenzene	ND	2 μg/L
			٠	- 1-8/2

TABLE 1 SUMMARY OF ANALYTICAL RESULTS DEWATERING WELL 1169 36TH STREET OAKLAND, CA

Date Sampled	Method	Analyte	Result	Reporting Limit Units	
	SW8270C	Hexachlorobutadiene	ND	2 µg/L	
	SW8270C	Hexachlorocyclopentadiene	ND	10 µg/L	
	SW8270C	Hexachloroethane	ND	2 µg/L	
	SW8270C	Indeno (1,2,3-cd) pyrene	ND	2 µg/L	
	SW8270C	Isophorone	ND	2 µg/L	
	SW8270C	Naphthalene	ND	2 µg/L	
	SW8270C	Nitrobenzene	ND	2 µg/L	
	SW8270C	N-Nitrosodi-n-propylamine	ND	2 µg/L	
	SW8270C	N-Nitrosodiphenylamine	ND	2 µg/L	
	SW8270C	Pentachlorophenol	ND	10 µg/L	
	SW8270C	Phenanthrene	ND	2 μg/L	
	SW8270C	Phenol	ND	2 µg/L	
	SW8270C	Pyrene	ND	2 μg/L	
	SW8270C	Pyridine	ND	10 µg/L	
	Kelada-01	Cyanide, Total	ND	1 µg/L	
	SW8260B	TPH-gasoline	ND	50 μg/L	
	SM2340B & 200.7	Hardness Total	260	1 mg as CaCO3/	π.
	E1631	Mercury	ND	0.5 ng/L	L
	E200.8 Dissolved	Antimony	ND	0.5 µg/L 0.5 µg/L	
	E200.8 Dissolved	Arsenic	ND	0.5 μg/L 0.5 μg/L	
	E200.8 Dissolved	Beryllium	ND	0.5 μg/L	
	E200.8 Dissolved	Cadmium	ND ND	0.25 μg/L	
	E200.8 Dissolved	Chromium	ND ND	0.23 μg/L 0.5 μg/L	
	E200.8 Dissolved		ND ND	0.5 μg/L 0.5 μg/L	
		Copper			
	E200.8 Dissolved	Lead	ND	0.5 µg/L	
	E200.8 Dissolved	Mercury	ND	0.025 µg/L	
	E200.8 Dissolved	Nickel	ND	0.5 µg/L	
	E200.8 Dissolved	Selenium	ND	0.5 µg/L	
	E200.8 Dissolved	Silver	ND	0.19 µg/L	
	E200.8 Dissolved	Thallium	ND	0.5 µg/L	
	E200.8 Dissolved	Zinc	35	5 μg/L	
	E200.8 Total	Antimony	ND	0.5 µg/L	
	E200.8 Total	Arsenic	1	0.5 µg/L	
	E200.8 Total	Beryllium	ND	0.5 µg/L	
	E200.8 Total	Cadmium	ND	0.25 µg/L	
	E200.8 Total	Chromium	9.7	0.5 µg/L	
	E200.8 Total	Copper	4	0.5 µg/L	
	E200.8 Total	Lead	2.1	0.5 µg/L	
	E200.8 Total	Mercury	0.032	0.025 µg/L	
	E200.8 Total	Nickel	15	0.5 µg/L	
	E200.8 Total	Selenium	ND	0.5 µg/L	
	E200.8 Total	Silver	ND	0.19 µg/L	
	E200.8 Total	Thallium	ND	0.5 µg/L	
	E200.8 Total	Zinc	76	5 µg/L	
	SM2520B	Salinity	367	10 mg/L	
	SM2540C	Total Dissolved Solids	602	10 mg/L	
	SW8015B	TPH-Diesel	ND	50 µg/L	
	SW8015B	TPH-Motor Oil	ND	250 µg/L	
	SM2540B	Total Solids	608	10 mg/L	

Analytical Report

WSP Environment & Energy	Client Project ID: #30902; Ambassador Housing Project	Date Sampled: 0	05/04/12
2025 Gateway Place, #435	Tioject	Date Received: 0	05/04/12
2020 0440 444 7 1440, 11 100	Client Contact: Patrick Carter	Date Reported: 0	05/08/12
San Jose, CA 95110	Client P.O.:	Date Completed: 0	05/08/12

WorkOrder: 1205151

May 08, 2012

Dear Patrick:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #30902; Ambassador Housing Project,
- 2) QC data for the above sample, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

N N	AcCAMP.	1534 WI	LLOW PA	SS RO	AD	AL	, I	N(Z.	10	20	25	Js	\$	þ Ti	UR	N	AR		CH				F (CU	ST	O'	DY	B	E	EQ	RD	1 =
We Te	ebsite: <u>www.m</u> lephone: (877	ccampbel	JRG, CA 9 Il.com Er 262	4565-17 nail: n	nain@ Fax																	4	PL	F	RUS	E	kcel) '		ite		IR 5 DAY OW) □
Report To: Patri	ck Carter		1	Bill To	* 500	hel	ow	_		_	_	_	_	+	_	_		-	-	Δ	nol	_		ques		mp	le is	eff	uer	it ar	_	ther	is required Comments
Company: WSP		t & Ener		JIII 1 (, see	Del	O W							+	Т					-	liai	yous	ice	ques								thei	
	2025 Gateway Suite 435										1	B																		**Indicate here if these			
	ose, CA 9511		E-M	lail: P	atric	k.C	arte	r@	wsp	gro	up.	.cor	n		and TPHg by 8260B										5								samples are
Tele: (408)858	8-5495		I	ax: ()									lg b																		potentially
	902		I	rojec	t Nar	ne:	Amb	455	ado	rf	lou	siv	19		Ē								115B										dangerous to
Project Location:	: Emeryvi	We CA		10102000		100 may 24 2			.,			et			and		Pa						38.8										handle:
Sampler Signatur	re: Lin	n Ben	A				1	~			0				MTBE	2	ilter	otal	z	7			S dn						9				
		SAMI	PLING				MA	TR	IX	P	ME	ETH SER	OD VEI		tes, M	W827	tals) F	tals) T	500-C	& 200.			Clean-						m 218.6				
SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	Omer			HINO3		VOCs , fuel oxygenat	SVOCs (basic list) SW8270C	EPA 200.8 (PP13 Metals) Filtered	EPA 200.8 (PP13 Metals) Total	Cyanide, Total SM4500-CN	Hardness SM2340B & 200.7	Salinity SM2520B	PAHS 8270C SIM	TPH (d,mo) w/ S.G. Clean-up SW8015B	E1631 (low level Hg)		TDS	Total Solids	Chloride	Hexavalent Chromium		ċ		
GRAB 001		5.4.2012	1030			X		1	+	$^{+}$	$^{+}$		+		X	X	V	X	X	X	V	V	V	V		V		V	V				48-hour
		5.7.2016	1020				H	+	+	+	+	+	+	+	Y	-	\hookrightarrow	\rightarrow			\triangle	\triangle	\triangle	\sim			\triangle			\vdash			
			-	\vdash	-	\vdash	H	+	+	+	+	-	+	+	+		-	-			-						-	-	-	\vdash			TAT
TO A POST OF THE PARTY OF THE P			-	\vdash		H	Н	-	+	+	+	-		+	-		_	_			_					_					_		
							Ш		4	+	1	-	-	1	_	_				-											_		
														┸					*														
														1											18								2
											T			1																			The state of the
						\vdash		1	+	+	+		1	1		1																	
				\vdash	\vdash	\vdash		+	+	+	+	-	-	╫	+	+	-				-	_	-		-					H	-	-	
		-		-	-	\vdash		-	+	+	+	+	+	+	-	+	-	\dashv					-							Н			
										1						7													_				
*** MAI clients MUST disclose any dangerous chemicals known to be present in their submitted samples in concentrations that may cause immediate harm or serious future health endangerment as a result of brief, gloved, open air, sample handling by MAI staff. Non-disclosure incurs an immediate \$250 surcharge and the client is subject to full legal liability for harm suffered. Thank you for your understanding and for allowing us to work safely.																																	
Relinquished By;	> X	Date:	Time:	Rece	ived B	YA.		1	0/	7	_			Ti	ICE	to (0-1	5		25	1								CON	имв	NTS	:	
dua 5	7	5.4,21/2	1260	1. 1	12	0	1	01	00	2				(GOO	DD (CON	DIT			_												
Relinquished By: Date: Time: Received By:								1	DEC	ROI	ORI PRI	TE	CON	IN L		RS_	\	-															
Relinquished By:	Relinquished By: Date: Time: Received By:							1'	PRE	SEE	V E	D IN								-													
						1	VOAS O&G METALS OTHER PRESERVATION																										

McCampbell Analytical, Inc.

FAX:

CHAIN-OF-CUSTODY RECORD

✓ Email

HardCopy

Page 1 of 1

☐ J-flag

☐ ThirdParty

Prepared by: Melissa Valles

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

Report to:

408-453-6100

WorkOrder: 1205151 ClientCode: WSPE □ Excel

Fax Bill to: Requested TAT: 2 days

patrick.carter@wspgroup.com Patrick Carter Email: Patrick Carter

WriteOn

WSP Environment & Energy WSP Environment & Energy cc: Date Received: 05/04/2012 PO: 2025 Gateway Place, #435 2025 Gateway Place, #435 San Jose, CA 95110

✓ EDF

ProjectNo: #30902; Ambassador Housing Project San Jose, CA 95110 Date Printed: 05/04/2012

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1205151-001	Grab 002	Water	5/4/2012 10:30		J	I	С	Н	F	Α	Е	K	D	Е	D	В

Test Legend:

1	218_6_W	2	300_1_W	3	8270D_W	4	8270D-PNA_W	5	CN_TOTAL_W
6	GAS8260_W	7	HARD_W	8	HGPSA1_W	9	PP13MS_DISS	10	PP13MS_W
11	PRDISSOLVED	12	PREDF REPORT						

The following SampID: 001A contains testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

Grab 002

Water

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1205151 ClientCode: WSPE WriteOn **▼** EDF □ Excel ☐ Fax ✓ Email HardCopy ☐ ThirdParty ☐ J-flag Report to: Bill to: Requested TAT: 2 days Patrick Carter Email: patrick.carter@wspgroup.com Patrick Carter WSP Environment & Energy WSP Environment & Energy CC: Date Received: 05/04/2012 2025 Gateway Place, #435 PO: 2025 Gateway Place, #435 San Jose, CA 95110 ProjectNo: #30902; Ambassador Housing Project San Jose, CA 95110 Date Printed: 05/04/2012 408-453-6100 FAX: Requested Tests (See legend below) 17 18 20 21 Lab ID Client ID Matrix **Collection Date** Hold 13 14 15 16 19 22 23 24

5/4/2012 10:30

G

G

В

G

Test Legend:

1205151-001

13	SALINITY_W	14 TDS_W	15 TPH(DMO)WSG_W	16 TS_W	17
18		19	20	21	22
23		24			

The following SampID: 001A contains testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Melissa Valles

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	WSP Environment &	Energy			Date a	ind Time Received:	5/4/2012 1:13:24 PM
Project Name:	#30902; Ambassado	r Housing Project			LogIn l	Reviewed by:	Melissa Valles
WorkOrder N°:	1205151	Matrix: Water			Carrier	Client Drop-In	
		<u>Chair</u>	of Cu	stody (CO	C) Informat	ion	
Chain of custody	present?		Yes	✓	No 🗌		
Chain of custody	signed when relinquish	ned and received?	Yes	✓	No 🗌		
Chain of custody	agrees with sample lal	pels?	Yes	✓	No 🗌		
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗌		
Date and Time of	collection noted by Cli	ent on COC?	Yes	✓	No 🗌		
Sampler's name r	noted on COC?		Yes	✓	No \square		
		<u>s</u>	ample	Receipt In	<u>formation</u>		
Custody seals into	act on shipping contair	ner/cooler?	Yes		No 🗌		NA 🗹
Shipping containe	er/cooler in good condi	tion?	Yes	✓	No 🗌		
Samples in prope	er containers/bottles?		Yes	✓	No 🗌		
Sample container	rs intact?		Yes	✓	No 🗌		
Sufficient sample	volume for indicated to	est?	Yes	✓	No \square		
		Sample Prese	rvatio	n and Hold	Time (HT)	<u>Information</u>	
All samples recei	ved within holding time	?	Yes	✓	No \square		
Container/Temp E	Blank temperature		Coole	r Temp: 6	5°C		NA 🗌
Water - VOA vials	s have zero headspace	e / no bubbles?	Yes	✓	No 🗌	No VOA vials submi	tted
Sample labels che	ecked for correct prese	ervation?	Yes	✓	No 🗌		
Metal - pH accept	table upon receipt (pH-	<2)?	Yes	✓	No 🗌		NA 🗌
Samples Receive	ed on Ice?		Yes	✓	No 🗌		
		(Ice Type	: WE	TICE)			
* NOTE: If the "N	o" box is checked, see	comments below.					
					====		

Client Contact: Patrick Carter

Client P.O.:

Work Order: 1205151

05/08/12

May 08, 2012

Date Completed: 05/08/12

Date Reported:

Case Narrative regarding EPA8270C-SIM data for QC batch#67320:

2025 Gateway Place, #435

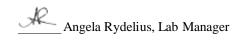
San Jose, CA 95110

The LCS recovery for Pyrene was higher than our acceptance limit. This compound was ND in the sample; therefore, the data is acceptable.

WSP Environment & Energy	Client Project ID: #30902;	Date Sampled: 05/04/12
2025 Gateway Place, #435	Ambassador Housing Project	Date Received: 05/04/12
	Client Contact: Patrick Carter	Date Extracted: 05/04/12
San Jose, CA 95110	Client P.O.:	Date Analyzed: 05/04/12

Hexachrome by IC*

Analytical Method: E218.6 Work Order: 1205151


Analytical Method: E218.	6			Work Order:	1205151
Lab ID	Client ID	Matrix	Hexachrome	DF	Comments
1205151-001J	Grab 002	W	0.66	1	

Reporting Limit for DF = 1; ND means not detected at or above the	W	0.2 μg/L
reporting limit	S	NA

N/A means surrogate not applicable to this analysis; # means surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

^{*} water samples are reported in µg/L.

WSP Environment & Energy 2025 Gateway Place, #435		Client Project II	Date Sampled: 05/04/12 Date Received: 05/04/12				
		Ambassador Ho					
2023 Gatewa	y 11acc, 11 135	Client Contact:	Patrick Carter	Date Extr	acted	05/05/12	
San Jose, CA	95110	Client P.O.:		Date Ana	lyzed	05/05/12	
Extraction method:	E300.1		Anions by IC* al methods: E300.1			Work Order:	1205151
Lab ID	Client ID	Matrix	Chloride		DF	% SS	Comments
1205151-001I	Grab 002	W	46		100	#	
					•		
					•		
	porting Limit for DF =1;	W	0.1			mg/L	,
	means not detected at or pove the reporting limit	S	NA			NA	
* water samples a	are reported in mg/L, soil/sludge/so	olid samples in mg/kg,	wipe samples in mg/wipe, produ	ct/oil/non-aqu	ieous liq	uid samples	in mg/L.

means surrogate diluted out of range or surrogate coelutes with another peak; N/A means surrogate not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

DHS ELAP Certification 1644

^{* [}Nitrate as $NO3^{-}$] = 4.4268 x [Nitrate as N]

Client Project ID: #30902; WSP Environment & Energy Date Sampled: 05/04/12 Ambassador Housing Project 05/04/12 Date Received: 2025 Gateway Place, #435 Client Contact: Patrick Carter Date Extracted: 05/04/12 San Jose, CA 95110 Client P.O.: Date Analyzed: 05/04/12

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1205151

Lab ID		1205151-001A					
Client ID		Grab 002					
Matrix		Water					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	10	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	3.8	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform	ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene	ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane	ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene	ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene	ND	1.0	0.5
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroethene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane	ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene	ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropropene	ND	1.0	0.5
Diisopropyl ether (DIPE)	0.51	1.0	0.5	Ethylbenzene	ND	1.0	0.5
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113	ND	1.0	10
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane	ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene	ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	0.80	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	2.2	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes, Total	ND	1.0	0.5
		Sur	rogate R	ecoveries (%)			
		,Jui	- Sam III	1			

%SS1: 106 %SS2: %SS3: 96

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

101

 $water \ and \ vapor \ samples \ are \ reported \ in \ \mu g/L, \ soil/sludge/solid \ samples \ in \ mg/kg, \ product/oil/non-aqueous \ liquid \ samples \ and \ all \ TCLP \ \& \ SPLP \ extracts \ are$ reported in mg/L, wipe samples in µg/wipe.

when Qua		F				
		Client Project ID: #30902; Ambassador Housing Project			05/04/12	
2025 Gateway Place, #435	Housing	g FTOJECT		Date Received:	05/04/12	
2023 Gateway 11ace, 11135	Client (Contact: Pa	ntrick Carter	Date Extracted:	05/04/12	
San Jose, CA 95110	Client I	P.O.:		Date Analyzed:	05/04/12	
•	•		(PAHs / PNAs) using	SIM Mode by G		
Extraction Method: SW3510C			d: SW8270C-SIM		Work Order: 1205	0151
Lab ID	1205151-001H					
Client ID	Grab 002				Reporting DF	
Matrix	W					
DF	1				S	W
Compound			Concentration		ug/kg	μg/L
Acenaphthene	ND				NA	0.5
Acenaphthylene	ND				NA	0.5
Anthracene	ND				NA	0.5
Benzo (a) anthracene	ND				NA	0.5
Benzo (b) fluoranthene	ND				NA	0.5
Benzo (k) fluoranthene	ND				NA	0.5
Benzo (g,h,i) perylene	ND				NA	0.5
Benzo (a) pyrene	ND				NA	0.5
Chrysene	ND				NA	0.5
Dibenzo (a,h) anthracene	ND				NA	0.5
Fluoranthene	ND				NA	0.5
Fluorene	ND				NA	0.5
Indeno (1,2,3-cd) pyrene	ND				NA	0.5

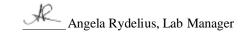
Pyrene	ND				NA	0.5					
Surrogate Recoveries (%)											
%SS1	73										
%SS2	69										
Comments	j1										
at 1 1 /T 11/1 1 / 11/1	1	1 . / .	1 ./ '1/	11 11 1	1 11 TOLD 0 CD	I D					

^{*} water samples in μ g/L, soil/sludge/solid samples in μ g/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in μ g/L.

ND

ND

ND


ND

1-Methylnaphthalene

2-Methylnaphthalene

Naphthalene

Phenanthrene

0.5

0.5

0.5

0.5

NA

NA

NA

NA

ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

^{#)} surrogate diluted out of range or surrogate coelutes with another peak.; &) low or no surrogate due to matrix interference.

j1) see attached narrative

Client Project ID: #30902; WSP Environment & Energy Date Sampled: 05/04/12 **Ambassador Housing Project** Date Received: 05/04/12 2025 Gateway Place, #435 Client Contact: Patrick Carter Date Extracted: 05/04/12 San Jose, CA 95110 Client P.O.: Date Analyzed: 05/04/12

Semi-Volatile Organics by GC/MS (Basic Target List)*

Analytical Method: SW8270C Extraction Method: SW3510C Work Order: 1205151

Lab ID	1205151-001C						
Client ID		Grab 002					
Matrix		Water					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acenaphthene	ND	1.0	2.0	Acenaphthylene	ND	1.0	2.0
Acetochlor	ND	1.0	2.0	Anthracene	ND	1.0	10
Benzidine	ND	1.0	10	Benzoic Acid	ND<26	1.0	25
Benzo (a) anthracene	ND	1.0	2.0	Benzo (b) fluoranthene	ND	1.0	2.0
Benzo (k) fluoranthene	ND	1.0	2.0	Benzo (g,h,i) perylene	ND	1.0	2.0
Benzo (a) pyrene	ND	1.0	2.0	Benzyl Alcohol	ND	1.0	10
1,1-Biphenyl	ND	1.0	2.0	Bis (2-chloroethoxy) Methane	ND	1.0	10
Bis (2-chloroethyl) Ether	ND	1.0	10	Bis (2-chloroisopropyl) Ether	ND	1.0	10
Bis (2-ethylhexyl) Adipate	ND	1.0	10	Bis (2-ethylhexyl) Phthalate	ND<4.1	1.0	4.0
4-Bromophenyl Phenyl Ether	ND	1.0	10	Butylbenzyl Phthalate	ND	1.0	2.0
4-Chloroaniline	ND<4.1	1.0	4.0	4-Chloro-3-methylphenol	ND	1.0	10
2-Chloronaphthalene	ND	1.0	2.0	2-Chlorophenol	ND	1.0	2.0
4-Chlorophenyl Phenyl Ether	ND	1.0	2.0	Chrysene	ND	1.0	2.0
Dibenzo (a,h) anthracene	ND	1.0	2.0	Dibenzofuran	ND	1.0	2.0
Di-n-butyl Phthalate	ND	1.0	2.0	1,2-Dichlorobenzene	ND	1.0	2.0
1,3-Dichlorobenzene	ND	1.0	2.0	1,4-Dichlorobenzene	ND	1.0	2.0
3,3-Dichlorobenzidine	ND<4.1	1.0	4.0	2,4-Dichlorophenol	ND	1.0	2.0
Diethyl Phthalate	ND	1.0	2.0	2,4-Dimethylphenol	ND	1.0	2.0
Dimethyl Phthalate	ND	1.0	2.0	4,6-Dinitro-2-methylphenol	ND	1.0	10
2,4-Dinitrophenol	ND<26	1.0	25	2,4-Dinitrotoluene	ND	1.0	2.0
2,6-Dinitrotoluene	ND	1.0	2.0	Di-n-octyl Phthalate	ND	1.0	2.0
1,2-Diphenylhydrazine	ND	1.0	2.0	Fluoranthene	ND	1.0	2.0
Fluorene	ND	1.0	2.0	Hexachlorobenzene	ND	1.0	2.0
Hexachlorobutadiene	ND	1.0	2.0	Hexachlorocyclopentadiene	ND	1.0	10
Hexachloroethane	ND	1.0	2.0	Indeno (1,2,3-cd) pyrene	ND	1.0	2.0
Isophorone	ND	1.0	2.0	2-Methylnaphthalene	ND	1.0	2.0
2-Methylphenol (o-Cresol)	ND	1.0	2.0	3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	2.0
Naphthalene	ND	1.0	2.0	2-Nitroaniline	ND	1.0	10
3-Nitroaniline	ND	1.0	10	4-Nitroaniline	ND	1.0	10
Nitrobenzene	ND	1.0	2.0	2-Nitrophenol	ND	1.0	10
4-Nitrophenol	ND	1.0	10	N-Nitrosodiphenylamine	ND	1.0	2.0
N-Nitrosodi-n-propylamine	ND	1.0	2.0	Pentachlorophenol	ND	1.0	10
Phenanthrene	ND	1.0	2.0	Phenol	ND	1.0	2.0
Pyrene	ND	1.0	2.0	Pyridine	ND	1.0	10
1,2,4-Trichlorobenzene	ND	1.0	2.0	2,4,5-Trichlorophenol	ND	1.0	2.0
2,4,6-Trichlorophenol	ND	1.0	2.0				

Surrogate Recoveries (%)							
%SS1:	29	%SS2:	19				
%SS3:	46	%SS4:	51				
%SS5:	61	%SS6:	48				

Comments:

ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor; #) surrogate diluted out of range or surrogate coelutes with another peak.

^{*} water samples are reported in µg/L; reporting limit may change due to variable water sample volume.

''When Quality Counts''				http://www.mccamp	obell.com / E-mail: main@m	ccampbell.co	m
WSP Environment & Energy Client Project ID: Ambassador Housi			sing Project				
2025 Gatewa	y Place, #435				Date Received: 0	5/04/12	
	,	Client Contact:	Patrick Ca	arter	Date Extracted: 0	5/04/12	
San Jose, CA	. 95110	Client P.O.:			Date Analyzed: 0	5/04/12	
Analytical Metho	od: Kelada-01	Cyan	ide, Tota	1	V	Vork Order:	1205151
Lab ID	Client ID		Matrix	Total	Cyanide	DF	Comments
1205151-001F	Grab 002		W		ND	1	
			· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·				
Reporting Lim	it for DF = 1; ND means not detecte	d at or above the	W	1.0	0 μg/L		
reporting limit			S		NA		
* water samples a	are reported in µg/L; soil/sludge/soli	d samples in mg/kg; w	ipe samples	in μg/wipe.			
	All soil & water samples are treated to remove sulfide, nitrate and nitrite interference prior to analysis.						
DF = Dilution Fa	ctor						

TDTT/ \ 1 D						
San Jose, CA 95110	Client P.O.:	Date Analyzed 05/04/12				
2023 Gateway Flace, #433	Client Contact: Patrick Carter	Date Extracted 05/04/12				
2025 Gateway Place, #435	Ambassador Housing Project	Date Received: 05/04/12				
WSP Environment & Energy	Client Project ID: #30902;	Date Sampled: 05/04/12				

TPH(g) by Purge & Trap and GC/MS*

Extraction method: SW5030B Analytical methods: SW8260B Work Order: 1205151

Lab ID	Client ID	Matrix	TPH(g)	DF	% SS	Comments
001A	Grab 002	W	ND	1	94	

Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	NA	NA

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

WSP Environment & Energy	Client Project ID: #30902;	Date Sampled: 05/	/04/12
2025 Gateway Place, #435	Ambassador Housing Project	Date Received: 05/	/04/12
	Client Contact: Patrick Carter	Date Extracted: 05/	/04/12
San Jose, CA 95110	Client P.O.:	Date Analyzed: 05/	/05/12

Hardness*

Extraction method: SM2340B & 200.7 Analytical methods: SM2340B & 200.7 Work Order: 1205151

Lab ID	Client ID	Matrix	Extraction Type	Hardness	DF	% SS	Comments
1205151-001E	Grab 002	W	TOTAL	260	10	100	

Reporting Limit for DF =1; ND means not detected at or above the reporting limit	W	TOTAL	1.0	mg CaCO ₃ /L
	S	TOTAL	NA	mg/Kg

^{*} water samples are reported in mg CaCO3/L.

means surrogate diluted out of range; ND means not detected above the reporting limit/method detection limit; N/A means not applicable to this sample or instrument; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

Analytical Methods: EPA 6010C/200.7 for all elements except: 200.9 (water- Sb, As, Pb, Se, Tl); 245.1 (Hg); 130.2 (Hardness); 7010 (sludge/soil/soild/oil/product/wipes - As, Se, Tl); 7471B (Hg).

TOTAL = Hot acid digestion of a representative sample aliquot.

TRM = Total recoverable metals is the "direct analysis" of a sample aliquot taken from its acid-preserved container.

DISS = Dissolved metals by direct analysis of $0.45 \mu m$ filtered and acidified sample.

DHS ELAP Certification 1644

WSP Environment & Energy	Client Project ID: #30902;	Date Sampled: 05/04/12
2025 Gateway Place, #435	Ambassador Housing Project	Date Received: 05/04/12
	Client Contact: Patrick Carter	Date Extracted: 05/04/12
San Jose, CA 95110	Client P.O.:	Date Analyzed: 05/04/12

Mercury by CVAF*

Extraction method: E1631 Analytical methods: E1631 Work Order: 1205151

	·						
Lab ID	Client ID	Matrix	Extraction Type	Mercury	DF	% SS	Comments
1205151-001K	Grab 002	W	TOTAL	ND	1	N/A	

Reporting Limit for DF =1; ND means not detected at or	W	TOTAL	0.5	ng/L
above the reporting limit	S	TOTAL	NA	mg/Kg

*water samples are reported in ng/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit/method detection limit; N/A means not applicable to this sample or instrument.

TOTAL = Hot acid digestion of a representative sample aliquot.

TRM = Total recoverable metals is the "direct analysis" of a sample aliquot taken from its acid-preserved container.

DISS = Dissolved metals by direct analysis of 0.45 μm filtered and acidified sample.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

DHS ELAP Certification 1644

''When Quality Counts''			http://www.mccampbell.com / E-mail: main@mccampbell.com				
WSP Environment & Energy		Housing Project		Date Sampled: 05/04/12 Date Received 05/04/12			
2025 Cataway Place #425	Housing						
2025 Gateway Place, #435	Client Co	ontact: Pa	trick Ca	arter	Date Extracted	05/04/12	
San Jose, CA 95110	Client P.0	O.:			Date Analyzed	05/04/12	
	Priority	Pollutant N	Metals b	y ICP-MS*	<u> </u>		
Lab ID	1205151-001D					Reporting Lin	nit for DF =1:
Client ID	Grab 002					ND means r	not detected
Matrix	W					S	W
Extraction Type	DISS.					mg/kg	μg/L
Analytical Method: E200.8		MS Metals,		ntration*		Work Order:	1205151
Dilution Factor	1					1	1
Antimony	ND					NA	0.5
Arsenic	ND					NA	0.5
Beryllium	ND					NA	0.5
Cadmium	ND					NA	0.25
Chromium	ND					NA	0.5
Copper	ND					NA	0.5
Lead	ND					NA	0.5
Mercury	ND					NA	0.025
Nickel	1.2					NA	0.5
Selenium	ND					NA	0.5
Silver	ND					NA	0.19
Thallium	ND					NA	0.5
Zinc	35					NA	5.0
%SS:	N/A						
Comments							

*water samples are reported in μ g/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit/method detection limit; N/A means not applicable to this sample or instrument.

TOTAL = Hot acid digestion of a representative sample aliquot.

TRM = Total recoverable metals is the "direct analysis" of a sample aliquot taken from its acid-preserved container.

DISS = Dissolved metals by direct analysis of $0.45 \,\mu m$ filtered and acidified sample.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

"When Quality Counts"		http://www.mccampbell.com / E-mail: main@mccampbell.com					
WSP Environment & Energy		Housing Project		Date Sampled: 05/04/12			
2025 Gateway Place, #435	Housing	Housing Project		Date Received 05/04/12			
2023 Galeway Flace, #453	Client Co	ontact: Pa	trick Ca	arter	Date Extracted	05/04/12	
San Jose, CA 95110	Client P.	O.:			Date Analyzed	05/05/12	
	Priority	Pollutant N	Metals b	y ICP-MS*	•		
Lab ID	1205151-001E					Reporting Lir	nit for DF=1;
Client ID	Grab 002						not detected eporting limit
Matrix	W					S	W
Extraction Type	TOTAL					mg/kg	μg/L
Analytical Method: E200.8		MS Metals,		ntration*		Work Order:	1205151
Dilution Factor	1					1	1
Antimony	ND					NA	0.5
Arsenic	1.0					NA	0.5
Beryllium	ND					NA	0.5
Cadmium	ND					NA	0.25
Chromium	9.7					NA	0.5
Copper	4.0					NA	0.5
Lead	2.1					NA	0.5
Mercury	0.032					NA	0.025
Nickel	15					NA	0.5
Selenium	ND					NA	0.5
Silver	ND					NA	0.19
Thallium	ND					NA	0.5
Zinc	76				<u> </u>	NA	5.0
%SS:	113						
Comments							·

*water samples are reported in μ g/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit/method detection limit; N/A means not applicable to this sample or instrument.

TOTAL = Hot acid digestion of a representative sample aliquot.

TRM = Total recoverable metals is the "direct analysis" of a sample aliquot taken from its acid-preserved container.

DISS = Dissolved metals by direct analysis of $0.45 \,\mu m$ filtered and acidified sample.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

	''When Quality Cou	http://www.mccampbell.com / E-mail: main@mccampbell.com							
WSP Environ	nment & Energy	Client Project ID): #30902	2;	Date Sampled: 05/04/12				
2025 Gatewa	y Place, #435	Ambassadoi 1100	Ambassador Housing Project			Date Received: 05/04/12			
2023 Gatewa	y 1 lace, 11433	Client Contact: Patrick Carter			Date Extracted: 0	5/07/12			
San Jose, CA	. 95110	Client P.O.:			Date Analyzed: 0	5/07/12			
Analytical Metho	od: SM2520B	Sa	linity*		v	Vork Order:	1205151		
Lab ID	Client ID		Matrix	Sa	alinity	DF	Comments		
1205151-001G	Grab 002		W	367	@ 25.0°C	1			
Reporting Limi	it for DF = 1; ND means not detected	d at or above the	W	10	mg/L				
	reporting limit		S		NA				
	= 0.64 * S.C.(\(\mu\mhos/cm\) @ 25°C)]	per SSSA volume 5 pa	rt 3.						
DF = Dilution Fa	ctor								

_____Angela Rydelius, Lab Manager

	''When Quality Cot	unts"		om				
WSP Enviror	nment & Energy	Client Project II			Date Sampled: 0	5/04/12		
2025 Gatawa	y Place, #435	Ambassador Ho	using Pro	ject	Date Received: 0	5/04/12		
2023 Gatewa	y 1 1αου, π 1 33	Client Contact:	Patrick C	arter	Date Extracted: 05/04/12			
San Jose, CA	. 95110	Client P.O.:	ent P.O.: Date Analyzed: 05/07/					
	1 CMOSTOC	Total Dis	solved So	olids*		v 10:	1205151	
Analytical Metho	d: SM2540C Client ID		Matrix	T-4-1 D'	solved Solids	Vork Order:	Comments	
Lab ID				Total Dis		DF	Comments	
1205151-001G	Grab 002		W		602	1		
Reporting Limi	it for DF = 1; ND means not detecte	ed at or above the	W	10) mg/L			
	reporting limit		S		NA			
* water samples r	reported in mg/L.							
DF = Dilution Fac	ctor							
1								

Angela Rydelius, Lab Manager

••	Client Project ID: #30902; Ambassador	Date Sampled:	05/04/12
2025 Gateway Place, #435	Housing Project	Date Received:	05/04/12
2023 Gateway Flace, #433	Client Contact: Patrick Carter	Date Extracted:	05/04/12
San Jose, CA 95110	Client P.O.:	Date Analyzed:	05/04/12

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up*

	Total Ext	ractable Petrolew	m Hydrocarbons witl	n Silica Gel Clean-Up*			
Extraction method:	SW3510C/3630C	Analytical m	ethods: SW8015B		V	Vork Order:	1205151
Lab ID	Client ID	Matrix	TPH-Diesel TPH-Motor Oil (C10-C23) (C18-C36)		DF	% SS	Comments
1205151-001B	Grab 002	W	ND	ND	1	91	
Re	eporting Limit for DF =1;	W	50	250		μg/l	ſ

Reporting Limit for DF =1; ND means not detected at or	W	50	250	μg/L
above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

 $\%SS = Percent\ Recovery\ of\ Surrogate\ Standard.\ DF = Dilution\ Factor$

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

^{#)} cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; &) low or no surrogate due to matrix interference.

1534 Willow Pass Road, Pittsburg, CA 94565-1701

	'When Quality Con			http://www.mccamp	obell.com / E-mail: main@	(925) 252-9269 @mccampbell.co	m	
WSP Enviro	nment & Energy	Client Project ID Ambassador Hou			Date Sampled:	05/04/12		
2025 Gatewa	y Place, #435	7 Hilloussador 1100	Date Received: 05/04					
	,	Client Contact: 1	t Contact: Patrick Carter D			05/04/12		
San Jose, CA	95110	Client P.O.:	Date Analyzed 05/07/12					
		Total	l Solids	*				
Analytical Metho	od: SM2540B		-			Work Order:	1205151	
Lab ID	Client ID	N	Matrix		Total Solids		Comments	
1205151-001G	Grab 002		W		608			
Reporting Limit	or Method Accuracy and Reporting Units	s; ND means not	W		10 mg/L			
	detected at or above the reporting limit		S		NA			

* water samples reported in mg/L.

DF = Dilution Factor

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR E218.6

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 67336 WorkOrder: 1205151

EPA Method: E218.6 Extraction:	E218.6					5	Spiked Sam	ple ID:	1205148-004A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, say, c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Hexachrome	ND	25	100	98.7	1.45	98	90 - 110	10	90 - 110

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 67336 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1205151-001J	05/04/12 10:30 AM	1 05/04/12	05/04/12 5:31 PM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR E300.1

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 67340 WorkOrder: 1205151

EPA Method: E300.1	Extraction: E300.1					;	Spiked Sam	ple ID:	1205151-0011
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, and yet	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Chloride	46	1	NR	NR	NR	104	N/A	N/A	85 - 115
%SS:	#	0.10	NR	NR	NR	93	N/A	N/A	90 - 115

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 67340 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1205151-001I	05/04/12 10:30 AM	1 05/05/12	05/05/12 7:43 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

surrogate diluted out of range or surrogate coelutes with another peak.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

QC SUMMARY REPORT FOR SW8260B

QC Matrix: Water BatchID: 67341 WorkOrder: 1205151 W.O. Sample Matrix: Water

EPA Method: SW8260B Extraction: \$	SW5030B						Spiked Sam	ple ID:	1205151-001A
Analyte	Sample	ole Spiked MS MSD MS-MSD LCS Ad				Acc	ceptance Criteria (%)		
, and yet	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	101	95	5.83	102	70 - 130	20	70 - 130
Benzene	ND	10	106	99	7.19	109	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	ND	40	95.6	102	6.74	101	70 - 130	20	70 - 130
Chlorobenzene	ND	10	98.3	95.5	2.90	106	70 - 130	20	70 - 130
1,2-Dibromoethane (EDB)	ND	10	107	98.4	8.17	110	70 - 130	20	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	117	106	9.73	113	70 - 130	20	70 - 130
1,1-Dichloroethene	ND	10	110	93.5	16.1	105	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	0.51	10	113	103	8.65	112	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	114	105	8.54	113	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	0.80	10	111	98	11.5	106	70 - 130	20	70 - 130
Toluene	ND	10	103	95	8.14	109	70 - 130	20	70 - 130
Trichloroethene	2.2	10	105	91.8	11.3	103	70 - 130	20	70 - 130
%SS1:	106	25	121	110	9.65	117	70 - 130	20	70 - 130
%SS2:	101	25	109	103	5.78	110	70 - 130	20	70 - 130
%SS3:	96	2.5	100	101	0.971	107	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 67341 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1205151-001A	05/04/12 10:30 AM	I 05/04/12	05/04/12 2:59 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 67320 WorkOrder: 1205151

EPA Method: SW8270C-SIM Extraction: SW3510C Spiked Sample ID:									N/A
Analyte	Sample	Spiked	Spiked MS MSD MS-MSD LCS Acceptance Cr					Criteria (%)	
, tidiy c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Benzo (a) pyrene	N/A	10	N/A	N/A	N/A	95.5	N/A	N/A	30 - 130
Chrysene	N/A	10	N/A	N/A	N/A	108	N/A	N/A	30 - 130
1-Methylnaphthalene	N/A	10	N/A	N/A	N/A	129	N/A	N/A	30 - 130
2-Methylnaphthalene	N/A	10	N/A	N/A	N/A	115	N/A	N/A	30 - 130
Phenanthrene	N/A	10	N/A	N/A	N/A	115	N/A	N/A	30 - 130
Pyrene	N/A	10	N/A	N/A	N/A	137, F2	N/A	N/A	30 - 130
%SS1:	N/A	100	N/A	N/A	N/A	75	N/A	N/A	30 - 130
%SS2:	N/A	100	N/A	N/A	N/A	71	N/A	N/A	30 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

F2 = LCS recovery was out of acceptance limits.

BATCH 67320 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1205151-001H	05/04/12 10:30 AM	I 05/04/12	05/04/12 5:06 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8270C

QC Matrix: Water BatchID: 67323 WorkOrder: 1205151 W.O. Sample Matrix: Water

EPA Method: SW8270C	Extraction: SW3510C					;	Spiked Sam	ple ID:	N/A
Analyte	Sample	Spiked	MS	MS MSD MS-MSD LCS Acceptance Criter					Criteria (%)
, and yet	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Acenaphthene	N/A	20	N/A	N/A	N/A	68.2	N/A	N/A	47 - 120
4-Chloro-3-methylphenol	N/A	20	N/A	N/A	N/A	66.7	N/A	N/A	47 - 120
2-Chlorophenol	N/A	20	N/A	N/A	N/A	39.3	N/A	N/A	37 - 120
1,4-Dichlorobenzene	N/A	20	N/A	N/A	N/A	37.5	N/A	N/A	32 - 120
2,4-Dinitrotoluene	N/A	20	N/A	N/A	N/A	78.6	N/A	N/A	51 - 120
4-Nitrophenol	N/A	20	N/A	N/A	N/A	34.5	N/A	N/A	20 - 120
N-Nitrosodi-n-propylamine	N/A	20	N/A	N/A	N/A	52.3	N/A	N/A	34 - 128
Pentachlorophenol	N/A	20	N/A	N/A	N/A	70	N/A	N/A	38 - 120
Phenol	N/A	20	N/A	N/A	N/A	17.7	N/A	N/A	5 - 112
Pyrene	N/A	20	N/A	N/A	N/A	70.5	N/A	N/A	49 - 128
1,2,4-Trichlorobenzene	N/A	20	N/A	N/A	N/A	45.6	N/A	N/A	37 - 120
%SS1:	N/A	20	N/A	N/A	N/A	34	N/A	N/A	1 - 134
%SS2:	N/A	20	N/A	N/A	N/A	28	N/A	N/A	1 - 112
%SS3:	N/A	20	N/A	N/A	N/A	65	N/A	N/A	1 - 180
%SS4:	N/A	20	N/A	N/A	N/A	89	N/A	N/A	1 - 130
%SS5:	N/A	20	N/A	N/A	N/A	102	N/A	N/A	1 - 144
%SS6:	N/A	20	N/A	N/A	N/A	93	N/A	N/A	1 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 67323 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1205151-001C	05/04/12 10:30 AM	05/04/12	05/04/12 5:51 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels

QC SUMMARY REPORT FOR Kelada-01

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 67314 WorkOrder: 1205151

EPA Method: Kelada-01 Extraction	n: Kelada-01					5	Spiked Sam	ple ID:	1205151-001F
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
,,	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Total Cyanide	ND	40	106	103	2.80	109	80 - 120	20	90 - 110

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 67314 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1205151-001F	05/04/12 10:30 AM	I 05/04/12	05/04/12 3:19 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR HARDNESS

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 67311 WorkOrder: 1205151

EPA Method: SM2340B & 200.7 Extraction: SM2340B & 200.7 Spiked Sample ID: 1204864-006									1204864-006A	
Analyte	Sa	Sample	Spiked	MS	MSD	MS-MSD	LCS Acceptance Criteri		Criteria (%)	
Aldiyo		mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Hardness		150	29.1	NR	NR	NR	89.3	N/A	N/A	85 - 115
%SS:		112	0.75	105	106	0.883	100	70 - 130	30	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 67311 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1205151-001E	05/04/12 10:30 AM	I 05/04/12	05/05/12 3:22 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS – MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

A/QC Officer

QC SUMMARY REPORT FOR E1631

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 67265 WorkOrder: 1205151

EPA Method: E1631 Extraction: E1631 Spiked Sample ID: 1205099-0020									1205099-002C
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, alaye	ng/L	ng/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Mercury	0.80	2.5	89	87.7	1.04	85.7	80 - 120	20	80 - 120

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 67265 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1205151-001K	05/04/12 10:30 AM	05/04/12	05/04/12 6:00 PM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

QC SUMMARY REPORT FOR E200.8

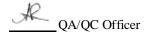
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 67203 WorkOrder: 1205151

EPA Method: E200.8 Extraction: E2	;	Spiked Sam	ple ID:	1204864-002A					
Analyte	Sample	Spiked	ed MS MSD MS-MSD LCS Acceptance				eptance	Criteria (%)	
, many c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Antimony	ND	50	100	101	1.37	101	70 - 130	20	70 - 130
Arsenic	1.9	50	98.8	101	2.52	101	70 - 130	20	70 - 130
Beryllium	ND	50	98.7	101	1.87	103	70 - 130	20	70 - 130
Cadmium	ND	50	99	99.9	0.945	102	70 - 130	20	70 - 130
Chromium	ND	50	103	104	1.72	108	70 - 130	20	70 - 130
Copper	17	50	96.7	98.8	1.65	105	70 - 130	20	70 - 130
Lead	ND	50	101	104	2.70	103	70 - 130	20	70 - 130
Mercury	ND	1.25	99.6	102	1.95	102	70 - 130	20	70 - 130
Nickel	ND	50	96	97	1.07	101	70 - 130	20	70 - 130
Selenium	ND	50	98	103	4.85	103	70 - 130	20	70 - 130
Silver	ND	50	95.5	96.3	0.855	101	70 - 130	20	70 - 130
Thallium	ND	50	92.3	95.2	3.11	95.1	70 - 130	20	70 - 130
Zinc	ND	500	97.6	99.1	1.57	104	70 - 130	20	70 - 130
%SS:	102	750	101	102	0.393	103	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 67203 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1205151-001D	05/04/12 10:30 AM	05/04/12	05/04/12 4:13 PM	1205151-001E	05/04/12 10:30 AM	05/04/12	05/05/12 8:06 AM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR WET CHEMISTRY TESTS

Test Method: SM2520B (Salinity) Matrix: W WorkOrder: 1205151

Method Name: SM25	520B		Units: mg/L	BatchID: 67219		
Lab ID	Sample	DF Dup / Ser. Dil. DF			% RPD	Acceptance Criteria (%)
1205151-001G	367 @ 25.0°C	1	367 @ 25.0°C	1	0.0349	<2

BATCH 67219 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1205151-001G	05/04/12 10:30 AM	1 05/07/12	05/07/12 4:40 PM				

Dup = Duplicate; Ser. Dil. = Serial Dilution; MS = Matrix Spike; RD = Relative Difference; RPD = Relative Percent Deviation.

Precision = Absolute Value (Sample - Duplicate)

RPD = 100 * (Sample - Duplicate) / [(Sample + Duplicate) / 2]

%RPD is calculated using results of up to 10 significant figures, however the reported results are rounded to 2 or 3 significant figures. Therefore there may be a slight discrepancy between the %RPD displayed above and %RPD calculated using the reported results. MAI considers %RPD based upon more significant figures to be more accurate.

QC SUMMARY REPORT FOR WET CHEMISTRY TESTS

Test Method: SM2540C (TDS) Matrix: W WorkOrder: 1205151

Method Name: SM2540C			Units: mg/L	BatchID: 67238		
Lab ID	Sample	DF	DF Dup / Ser. Dil. DF			Acceptance Criteria (%)
1205151-001G	602	1	607	1	0.827	<20

BATCH 67238 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1205151-001G	05/04/12 10:30 AM	1 05/04/12	05/07/12 5:45 PM				

Test Method: SM2540B (Total Solids) Matrix: W WorkOrder: 1205151

Method Name: SM25		Units: mg/L	BatchID: 67365			
Lab ID	Sample	DF	DF Dup / Ser. Dil. DF			Acceptance Criteria (%)
1205151-001G	608	1	624	1	2.6	<10

BATCH 67365 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1205151-001G	05/04/12 10:30 AM	05/04/12	05/07/12 6:00 PM				

Dup = Duplicate; Ser. Dil. = Serial Dilution; MS = Matrix Spike; RD = Relative Difference; RPD = Relative Percent Deviation.

Precision = Absolute Value (Sample - Duplicate)

RPD = 100 * (Sample - Duplicate) / [(Sample + Duplicate) / 2]

%RPD is calculated using results of up to 10 significant figures, however the reported results are rounded to 2 or 3 significant figures. Therefore there may be a slight discrepancy between the %RPD displayed above and %RPD calculated using the reported results. MAI considers %RPD based upon more significant figures to be more accurate.

QC SUMMARY REPORT FOR SW8015B

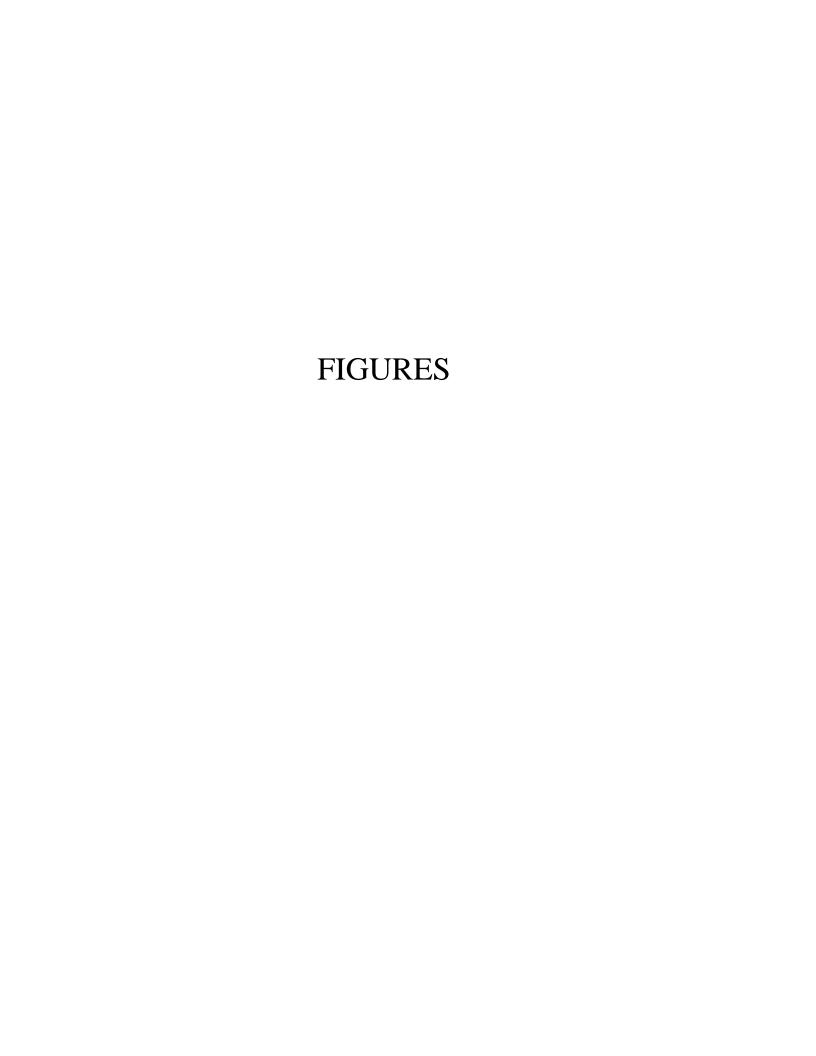
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 67237 WorkOrder: 1205151

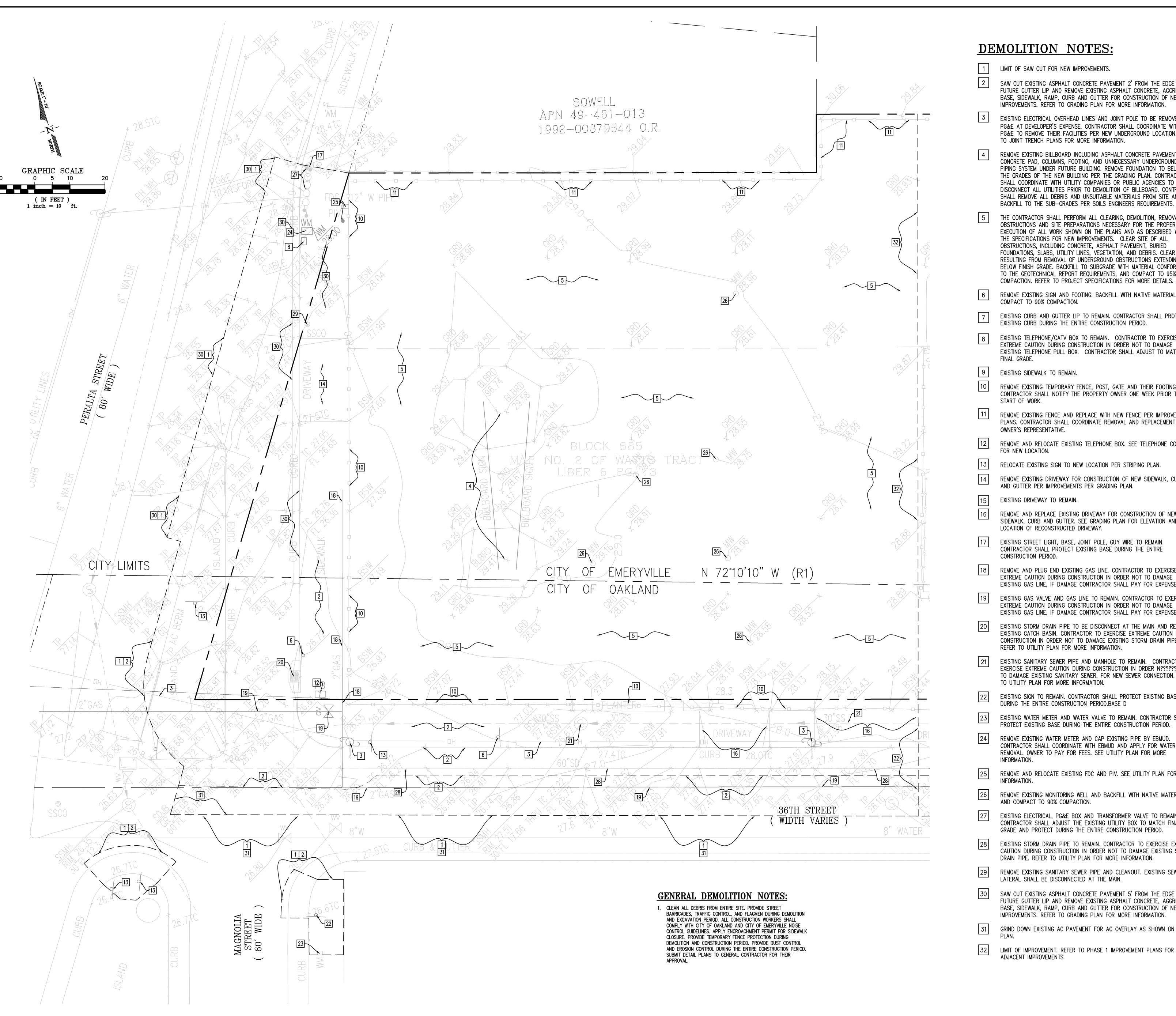
EPA Method: SW8015B Extraction: SW3510C/3630C						Spiked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance Criteria (9		Criteria (%)
, and yet	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	116	N/A	N/A	70 - 130
%SS:	N/A	625	N/A	N/A	N/A	104	N/A	N/A	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 67237 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1205151-001B	05/04/12 10:30 AM	I 05/04/12	05/04/12 3:49 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DEMOLITION NOTES:

- LIMIT OF SAW CUT FOR NEW IMPROVEMENTS.
- SAW CUT EXISTING ASPHALT CONCRETE PAVEMENT 2' FROM THE EDGE OF FUTURE GUTTER LIP AND REMOVE EXISTING ASPHALT CONCRETE, AGGREGATE BASE, SIDEWALK, RAMP, CURB AND GUTTER FOR CONSTRUCTION OF NEW IMPROVEMENTS. REFER TO GRADING PLAN FOR MORE INFORMATION.
- EXISTING ELECTRICAL OVERHEAD LINES AND JOINT POLE TO BE REMOVED BY PG&E AT DEVELOPER'S EXPENSE. CONTRACTOR SHALL COORDINATE WITH PG&E TO REMOVE THEIR FACILITIES PER NEW UNDERGROUND LOCATION. REFER TO JOINT TRENCH PLANS FOR MORE INFORMATION.
- REMOVE EXISTING BILLBOARD INCLUDING ASPHALT CONCRETE PAVEMENT, CONCRETE PAD, COLUMNS, FOOTING, AND UNNECESSARY UNDERGROUND PIPING SYSTEM UNDER FUTURE BUILDING. REMOVE FOUNDATION TO BELOW THE GRADES OF THE NEW BUILDING PER THE GRADING PLAN. CONTRACTOR SHALL COORDINATE WITH UTILITY COMPANIES OR PUBLIC AGENCIES TO DISCONNECT ALL UTILITIES PRIOR TO DEMOLITION OF BILLBOARD. CONTRACTOR SHALL REMOVE ALL DEBRIS AND UNSUITABLE MATERIALS FROM SITE AND
- THE CONTRACTOR SHALL PERFORM ALL CLEARING, DEMOLITION, REMOVAL OF OBSTRUCTIONS AND SITE PREPARATIONS NECESSARY FOR THE PROPER EXECUTION OF ALL WORK SHOWN ON THE PLANS AND AS DESCRIBED WITHIN THE SPECIFICATIONS FOR NEW IMPROVEMENTS. CLEAR SITE OF ALL OBSTRUCTIONS, INCLUDING CONCRETE, ASPHALT PAVEMENT, BURIED FOUNDATIONS, SLABS, UTILITY LINES, VEGETATION, AND DEBRIS. CLEAR HOLES RESULTING FROM REMOVAL OF UNDERGROUND OBSTRUCTIONS EXTENDING BELOW FINISH GRADE. BACKFILL TO SUBGRADE WITH MATERIAL CONFORMING TO THE GEOTECHNICAL REPORT REQUIREMENTS, AND COMPACT TO 95%
- REMOVE EXISTING SIGN AND FOOTING. BACKFILL WITH NATIVE MATERIAL AND COMPACT TO 90% COMPACTION.
- EXISTING CURB AND GUTTER LIP TO REMAIN. CONTRACTOR SHALL PROTECT EXISTING CURB DURING THE ENTIRE CONSTRUCTION PERIOD.
- EXISTING TELEPHONE/CATV BOX TO REMAIN. CONTRACTOR TO EXERCISE EXTREME CAUTION DURING CONSTRUCTION IN ORDER NOT TO DAMAGE EXISTING TELEPHONE PULL BOX. CONTRACTOR SHALL ADJUST TO MATCH
- EXISTING SIDEWALK TO REMAIN.
- REMOVE EXISTING TEMPORARY FENCE, POST, GATE AND THEIR FOOTINGS. CONTRACTOR SHALL NOTIFY THE PROPERTY OWNER ONE WEEK PRIOR TO
- REMOVE EXISTING FENCE AND REPLACE WITH NEW FENCE PER IMPROVEMENT PLANS. CONTRACTOR SHALL COORDINATE REMOVAL AND REPLACEMENT WITH OWNER'S REPRESENTATIVE.
- REMOVE AND RELOCATE EXISTING TELEPHONE BOX. SEE TELEPHONE COMPANY
- RELOCATE EXISTING SIGN TO NEW LOCATION PER STRIPING PLAN.
- REMOVE EXISTING DRIVEWAY FOR CONSTRUCTION OF NEW SIDEWALK, CURB AND GUTTER PER IMPROVEMENTS PER GRADING PLAN.
- EXISTING DRIVEWAY TO REMAIN.
- REMOVE AND REPLACE EXISTING DRIVEWAY FOR CONSTRUCTION OF NEW SIDEWALK, CURB AND GUTTER. SEE GRADING PLAN FOR ELEVATION AND LOCATION OF RECONSTRUCTED DRIVEWAY.
- EXISTING STREET LIGHT, BASE, JOINT POLE, GUY WIRE TO REMAIN. CONTRACTOR SHALL PROTECT EXISTING BASE DURING THE ENTIRE CONSTRUCTION PERIOD.
- REMOVE AND PLUG END EXISTING GAS LINE. CONTRACTOR TO EXERCISE EXTREME CAUTION DURING CONSTRUCTION IN ORDER NOT TO DAMAGE EXISTING GAS LINE, IF DAMAGE CONTRACTOR SHALL PAY FOR EXPENSES.
- EXISTING GAS VALVE AND GAS LINE TO REMAIN. CONTRACTOR TO EXERCISE EXTREME CAUTION DURING CONSTRUCTION IN ORDER NOT TO DAMAGE EXISTING GAS LINE, IF DAMAGE CONTRACTOR SHALL PAY FOR EXPENSES.
- EXISTING STORM DRAIN PIPE TO BE DISCONNECT AT THE MAIN AND REMOVE EXISTING CATCH BASIN. CONTRACTOR TO EXERCISE EXTREME CAUTION DURING CONSTRUCTION IN ORDER NOT TO DAMAGE EXISTING STORM DRAIN PIPE. REFER TO UTILITY PLAN FOR MORE INFORMATION.
- EXISTING SANITARY SEWER PIPE AND MANHOLE TO REMAIN. CONTRACTOR TO EXERCISE EXTREME CAUTION DURING CONSTRUCTION IN ORDER N????????OT TO DAMAGE EXISTING SANITARY SEWER. FOR NEW SEWER CONNECTION. REFER
- EXISTING SIGN TO REMAIN. CONTRACTOR SHALL PROTECT EXISTING BASE DURING THE ENTIRE CONSTRUCTION PERIOD.BASE D
- EXISTING WATER METER AND WATER VALVE TO REMAIN. CONTRACTOR SHALL PROTECT EXISTING BASE DURING THE ENTIRE CONSTRUCTION PERIOD.
- REMOVE EXISTING WATER METER AND CAP EXISTING PIPE BY EBMUD. CONTRACTOR SHALL COORDINATE WITH EBMUD AND APPLY FOR WATER METER REMOVAL. OWNER TO PAY FOR FEES. SEE UTILITY PLAN FOR MORE
- REMOVE AND RELOCATE EXISTING FDC AND PIV. SEE UTILITY PLAN FOR MORE
- REMOVE EXISTING MONITORING WELL AND BACKFILL WITH NATIVE MATERIAL AND COMPACT TO 90% COMPACTION.
- EXISTING ELECTRICAL, PG&E BOX AND TRANSFORMER VALVE TO REMAIN. CONTRACTOR SHALL ADJUST THE EXISTING UTILITY BOX TO MATCH FINAL
- EXISTING STORM DRAIN PIPE TO REMAIN. CONTRACTOR TO EXERCISE EXTREME CAUTION DURING CONSTRUCTION IN ORDER NOT TO DAMAGE EXISTING STORM DRAIN PIPE. REFER TO UTILITY PLAN FOR MORE INFORMATION.
- REMOVE EXISTING SANITARY SEWER PIPE AND CLEANOUT. EXISTING SEWER LATERAL SHALL BE DISCONNECTED AT THE MAIN.
- SAW CUT EXISTING ASPHALT CONCRETE PAVEMENT 5' FROM THE EDGE OF FUTURE GUTTER LIP AND REMOVE EXISTING ASPHALT CONCRETE, AGGREGATE BASE, SIDEWALK, RAMP, CURB AND GUTTER FOR CONSTRUCTION OF NEW IMPROVEMENTS. REFER TO GRADING PLAN FOR MORE INFORMATION.
- GRIND DOWN EXISTING AC PAVEMENT FOR AC OVERLAY AS SHOWN ON THE
- LIMIT OF IMPROVEMENT. REFER TO PHASE 1 IMPROVEMENT PLANS FOR ADJACENT IMPROVEMENTS.

SEAL & SIGNATURE

2830 NINTH STREET

BERKELEY, CALIFORNIA 94710 510.644.1920 WWW.KAVAMASSIHARCHITECTS.COM

CONSULTANTS

STRUCTURAL ENGINEER

1404 FRANKLIN STREET, SUITE 350 OAKLAND, CA 94613 510.433.0828 510.433.0829 FX

MECHANICAL/ELECTRICAL/PLUMBING ENGINEER 1428 SECOND STREET

LUK ASSOCIATES 738 ALFRED NOBLE DRIVE

707.307.1500 707.307.1550 FX

NAPA, CA 94559

HERCULES, CA 94547

510.724.3388 510.724.3383 FX

415.431.0394 415.431.0396 FX

LANDSCAPE CLIFF LOWE ASSOCIATES 1175 FOLSOM STREET SAN FRANCISCO, CA 94103

AGENCY APPROVAL

AMBASSADOR HOUSING

BUILDING A

1168 36TH STREET

EMERYVILLE, CA

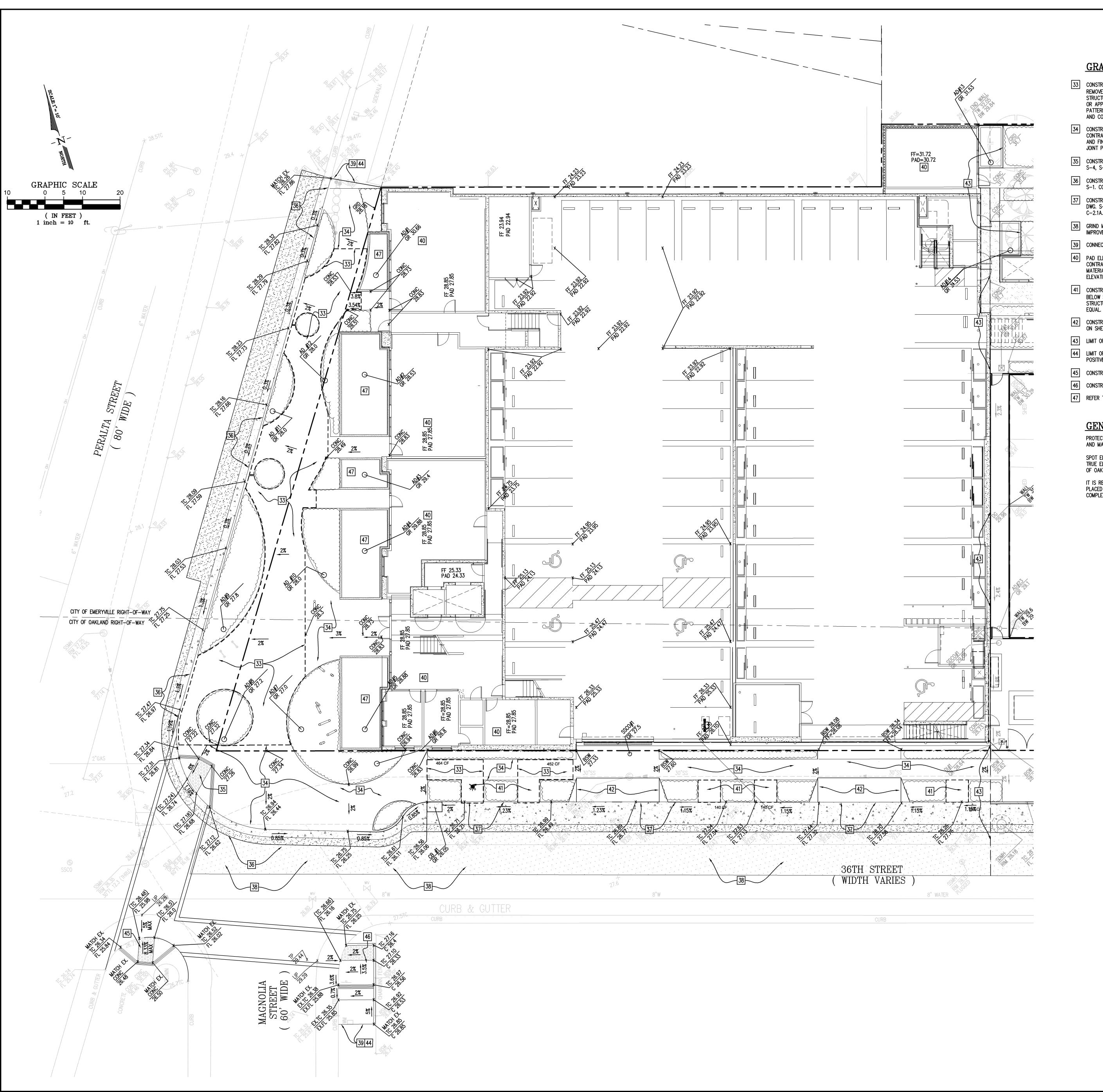
REVISIONS

PERMIT SUBMITTAL - BLDGS. B & C 15 DEC 10 75% CD PRICING - BLDGS. A, B, & C 11 APR 11

PERMIT RESUBMITTAL - BUILDING A 08 DEC 11 CONSTRUCTION SET

KEY PLAN

DRAWING TITLE


DEMOLITION PLAN (BUILDING A)

The Ambassador 🗆 1168 36th Street□

Emeryville, California

DEMOLITION PLAN

GRADING NOTES:

- CONSTRUCT CONCRETE SIDEWALK PER DETAIL NO. 1 WITH NOTE A IN TABLE ON SHEET C-2.1A. REMOVE TOP 48" SOIL BELOW SUBBASE UNDERNEATH SIDEWALK AND REPLACE WITH 48" STRUCTURAL SOIL. STRUCTURAL SOIL TO BE CORNELL STRUCTURAL SOIL BY TMT ENTERPRISES OR APPROVED EQUAL. CONTRACTOR SHALL REFER TO LANDSCAPING PLAN FOR EXACT LOCATION, PATTERN, COLOR, AND FINISH TEXTURE PRIOR TO PLACING CONCRETE. CONSTRUCT EXPANSION AND CONSTRUCTION JOINT PER DETAIL NO. 2 ON SHEET C-2.1A.
- CONSTRUCT CONCRETE SIDEWALK PER DETAIL NO. 1 WITH NOTE B IN TABLE ON SHEET C-2.1A. CONTRACTOR SHALL REFER TO LANDSCAPING PLAN FOR EXACT LOCATION, PATTERN, COLOR, AND FINISH TEXTURE PRIOR TO PLACING CONCRETE. CONSTRUCT EXPANSION AND CONSTRUCTION JOINT PER DETAIL NO. 2 ON SHEET C-2.1A.
- CONSTRUCT A DIAGONAL CASE "E" ACCESS RAMP PER CITY OF OAKLAND STANDARD DETAILS S-4, S-6, S-7, AND S-8.
- CONSTRUCT TYPE "A" 6" CURB AND GUTTER PER CITY OF OAKLAND STANDARD DETAILS DWG. S-1. CONTRACTOR SHALL PROVIDE EXPANSION JOINT PER DETAIL NO. 2 ON SHEET C-2.1A.
- CONSTRUCT TYPE "C" 6" CURB AND GUTTER PER DETAIL CITY OF OAKLAND STANDARD DETAILS DWG. S-1. CONTRACTOR SHALL PROVIDE EXPANSION JOINT PER DETAIL NO. 2 ON SHEET
- GRIND MINIMUM 5' WIDE AND 0.2' DEEP EXISTING ASPHALT CONCRETE PAVEMENT AT LIMIT OF IMPROVEMENT FOR ASPHALT CONCRETE OVERLAY PER DETAIL NO. 3 ON SHEET C-2.1A.
- 39 CONNECT TO THE EXISTING SIDEWALK PER DETAIL NO. 4 ON SHEET C-2.1A.
- PAD ELEVATION SHOWN HEREON IS BASED ON 6" S.O.G OVER 2" SAND OVER 4" GRAVEL. CONTRACTOR SHALL VERIFY THE THICKNESS OF CONCRETE SLAB AND AGGREGATE BASE MATERIAL BEFORE ANY GRADING PROCESS OCCURS. CONTRACTOR SHALL ADJUST THE PAD ELEVATION IF THE ABOVE CONDITION CHANGES.
- 41 CONSTRUCT BRICK PAVERS. SEE LANDSCAPING PLANS FOR DETAILS. REMOVE TOP 48" SOIL BELOW SUBBASE UNDERNEATH SIDEWALK AND REPLACE WITH 48" STRUCTURAL SOIL. STRUCTURAL SOIL TO BE CORNELL STRUCTURAL SOIL BY TMT ENTERPRISES OR APPROVED
- CONSTRUCT CONCRETE DRIVEWAY PER CITY OF OAKLAND STANDARD DETAIL DWG S-2 SHOWN ON SHEET C-21A
- LIMIT OF IMPROVEMENT. REFER TO PHASE 1 IMPROVEMENT PLANS FOR ADJACENT IMPROVEMENTS.
- LIMIT OF IMPROVEMENT. MATCH EXISTING GRADES AND PROVIDE SMOOTH TRANSITION AND POSITIVE DRAINAGE.
- CONSTRUCT CASE "A" ACCESS RAMP PER CALTRANS STANDARD PLAN RSP A88A.
- 46 CONSTRUCT ACCESS RAMP PER DETAIL NO. 8 ON SHEET C-2.1A.
- 47 REFER TO NOTE 83 AND TABLE ON SHET C-5 FOR INFILTRATION PLANTER WALL ELEVATIONS.

GENERAL GRADING NOTES:

PROTECT AND ADJUST EXISTING UTILITY BOXES, POLES, VALVES, CATCH BASINS, FIRE HYDRANTS AND MAN HOLES TO MATCH FINAL GRADE UNLESS OTHERWISE SPECIFIED ON THE PLAN.

SPOT ELEVATIONS IN PARENTHESIS (e.g. (TC 3.52) (FL 1.26)) ARE FOR REFERENCE ONLY, NOT TRUE ELEVATIONS. RAMPS, DRIVEWAYS, AND CATCH BASINS SHALL BE CONSTRUCTED PER CITY OF OAKLAND STANDARD DETAILS AS REFERENCE ON THIS PLAN.

IT IS RECOMMENDED THAT THE FINAL LIFT OF AC AND THE FINAL TRAFFIC STRIPING NOT BE PLACED UNTIL ALL OTHER WORK ON THE ROADWAY PROJECT AND THE BUILDING PROJECT IS COMPLETED.

2830 NINTH STREET BERKELEY, CALIFORNIA 94710 510.644.1920 WWW.KAVAMASSIHARCHITECTS.COM

SEAL & SIGNATURE

CONSULTANTS

STRUCTURAL ENGINEER

OLMM

1404 FRANKLIN STREET, SUITE 350 OAKLAND, CA 94613 510.433.0828 510.433.0829 FX

MECHANICAL/ELECTRICAL/PLUMBING ENGINEER

MK2

1428 SECOND STREET NAPA, CA 94559 707.307.1500 707.307.1550 FX

LUK ASSOCIATES
738 ALFRED NOBLE DRIVE
HERCULES, CA 94547

510.724.3388 510.724.3383 FX

LANDSCAPE

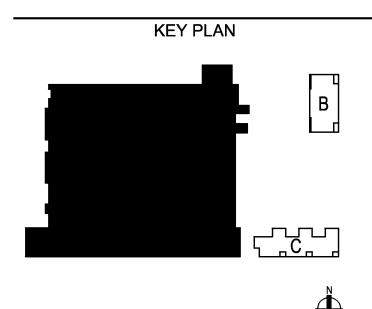
CLIFF LOWE ASSOCIATES

1175 FOLSOM STREET

SAN FRANCISCO, CA 94103

415.431.0394 415.431.0396 FX

AGENCY APPROVAL


AMBASSADOR HOUSING

BUILDING A

1168 36TH STREET EMERYVILLE, CA

> REVISIONS UBMITTAL - BLDGS. B & C

75% CD PRICING - BLDGS. A, B, & C
PERMIT SUBMITTAL - BUILDING A
PERMIT RESUBMITTAL - BUILDING A
CONSTRUCTION SET
13 DEC 10
14 APR 11
21 SEP 11
22 SEP 11
30 APR 12

DRAWING TITLE

GRADING PLAN

The Ambassador □ 1168 36th Street□ Emeryville, Califomia

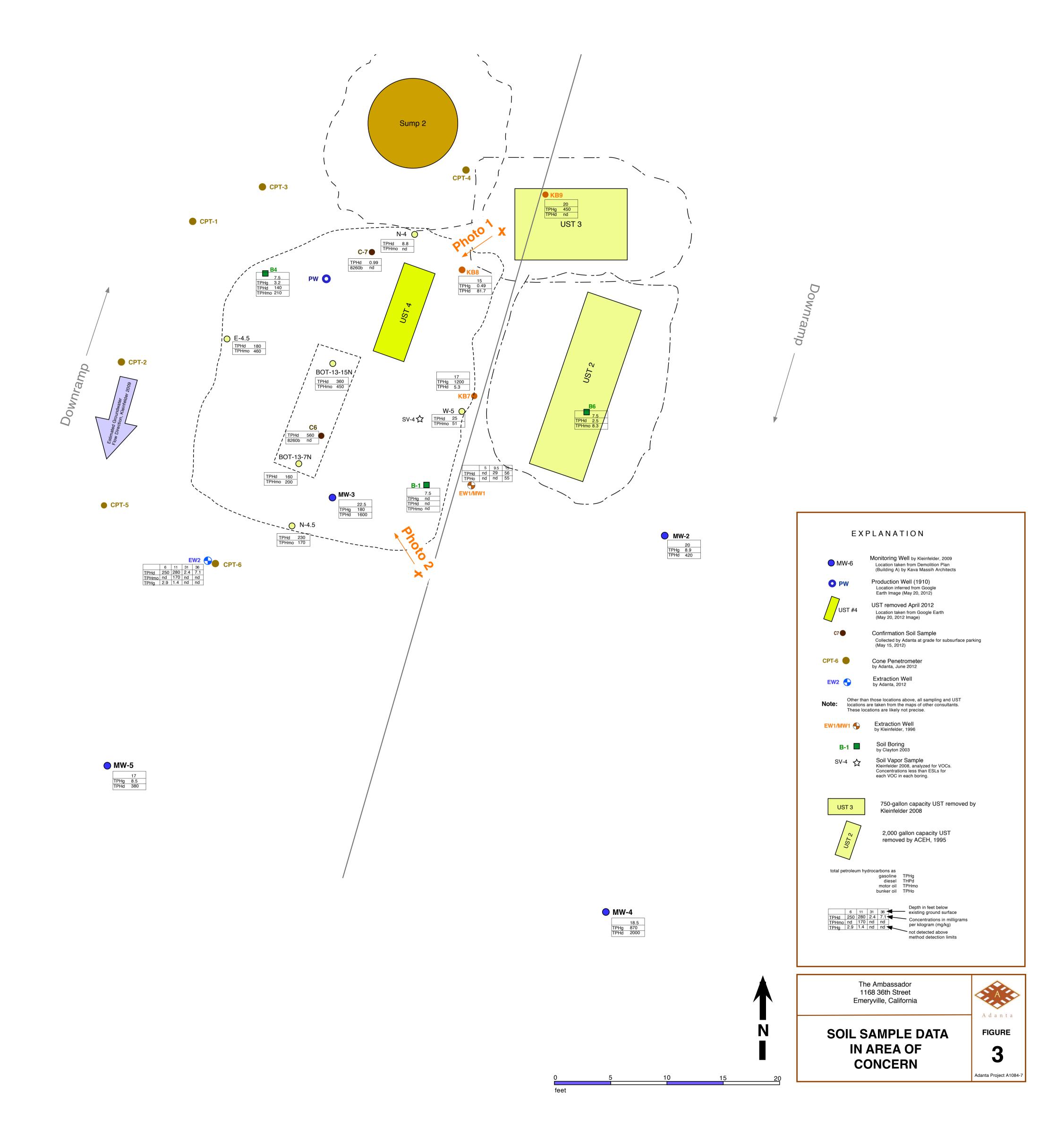
GRADING PLAN

Adanta
FIGURE

2
Adanta Project A+086-7

Photo 1

UST 4 - over excavation. Decision was made to stop excavating the width and breadth due to safety concerns. A five-foot deep trench was excavated at the bottom of the excavation, as shown below, in an attempt to remove as much contaminated soil as practical within safety constraints.


Photo 2

UST 4 -The trench at the bottom of the excavation is five feet deep and as wide as the bucket on the backhoe. The top of the trench is about eight feet below the top of the excavation, which is about five feet below original ground surface. The trench remained open for about 90 minutes while groundwater seeped in at a ver slow rate. One liter of water was collected from the bottom of the trench prior to filling the excavation with a concrete slurry due to safety concerns for onsite workers and equipment.

A STATE OF THE PARTY OF THE PAR

Google Earth image of the Property during abandonment of the 1905 production well. Image date is May 20, 2012. At grade confirmation soil samples were collected May 15, 2012, five

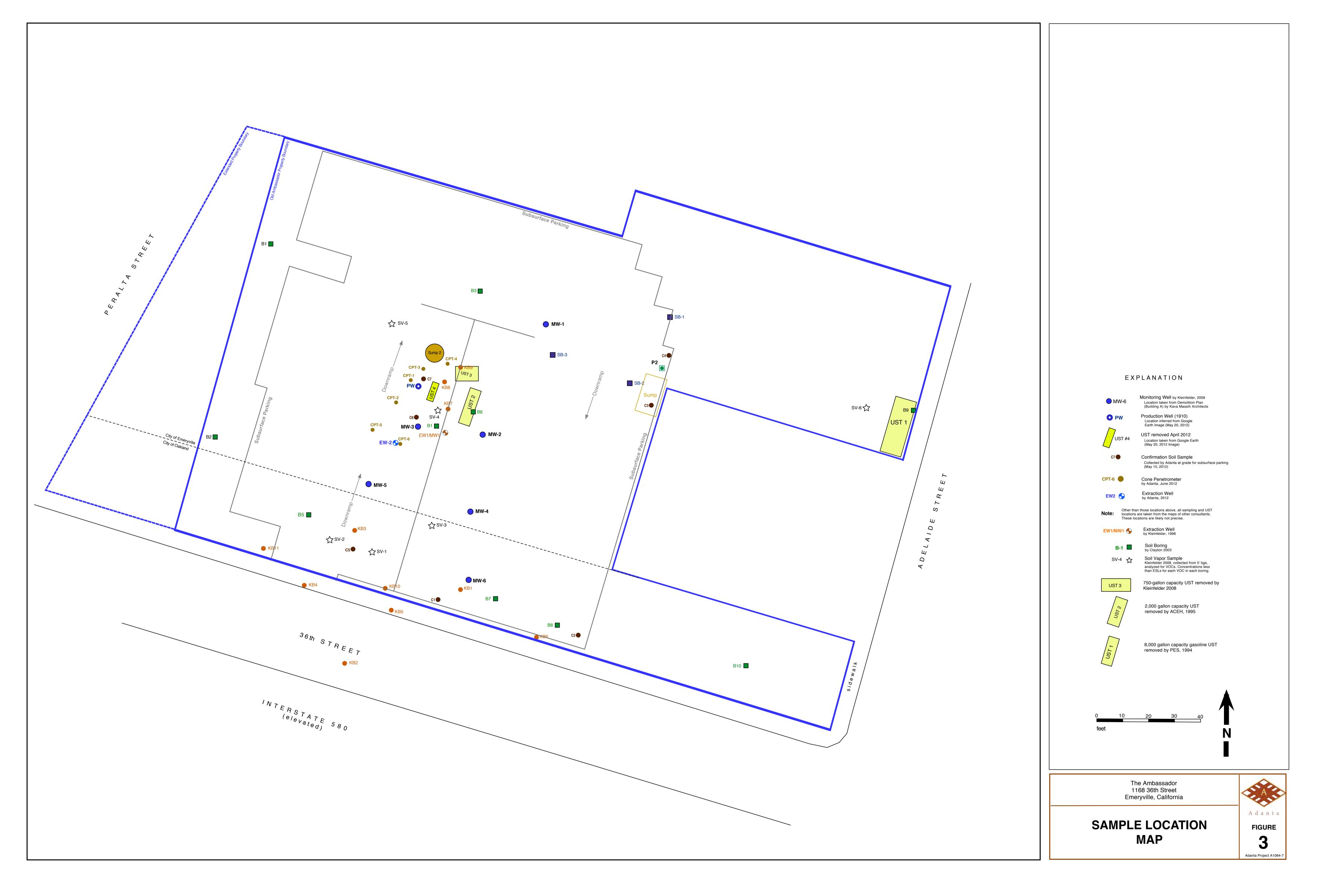
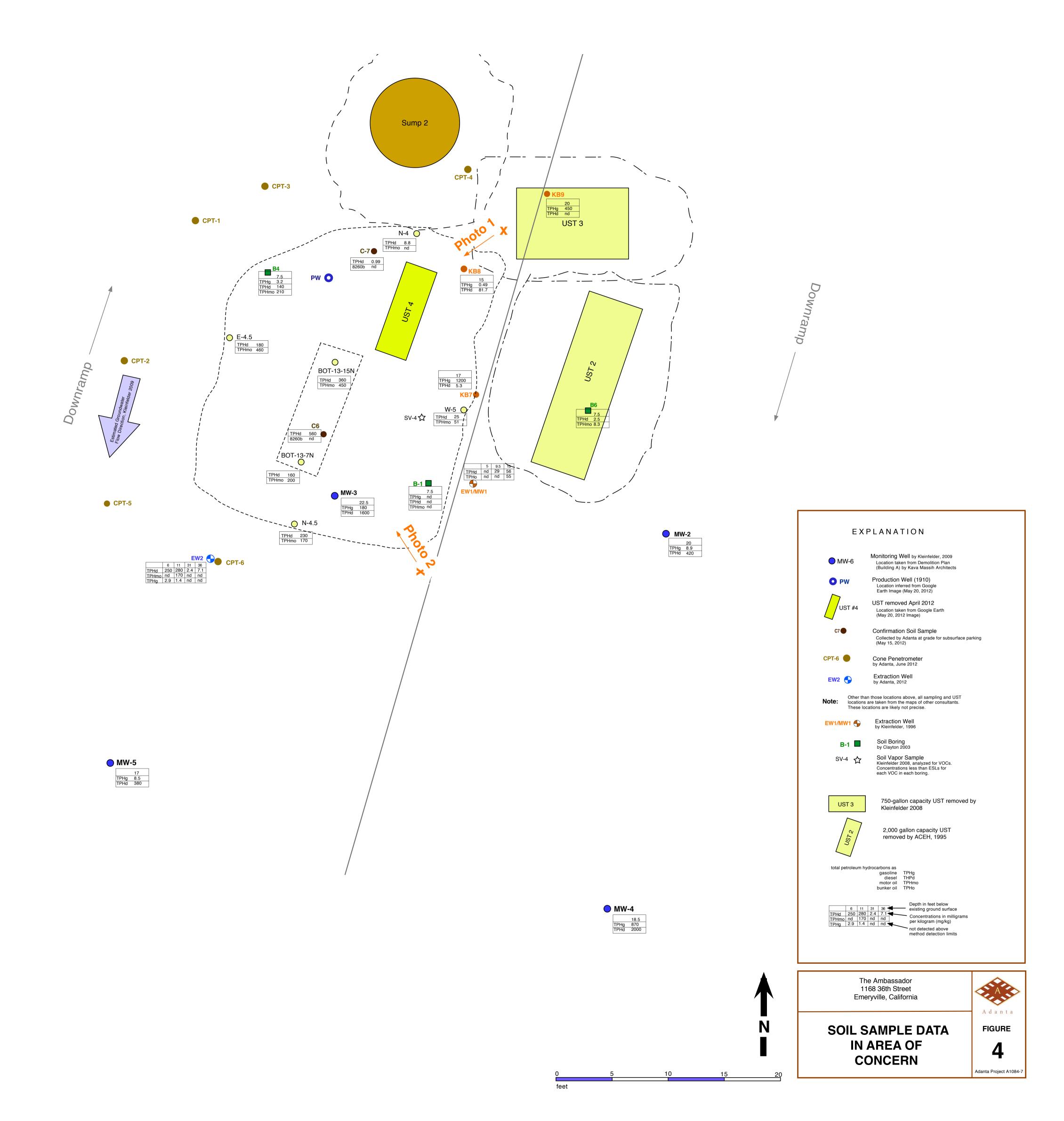


Photo 1

UST 4 - over excavation. Decision was made to stop excavating the width and breadth due to safety concerns. A five-foot deep trench was excavated at the bottom of the excavation, as shown below, in an attempt to remove as much contaminated soil as practical within safety constraints.


Photo 2

UST 4 -The trench at the bottom of the excavation is five feet deep and as wide as the bucket on the backhoe. The top of the trench is about eight feet below the top of the excavation, which is about five feet below original ground surface. The trench remained open for about 90 minutes while groundwater seeped in at a ver slow rate. One liter of water was collected from the bottom of the trench prior to filling the excavation with a concrete slurry due to safety concerns for onsite workers and equipment.

Dhata 0

Google Earth image of the Property during abandonment of the 1905 production well. Image date is May 20, 2012. At grade confirmation soil samples were collected May 15, 2012, five

