RECEIVED

8:51 am, Feb 16, 2010

Alameda County Environmental Health

76 Broadway Sacramento, California 95818

February 11, 2010

Barbara Jakub Alameda County Health Agency 1131 Harbor Bay parkway, Suite250 Alameda, California 94502-577

Re: <u>Addendum to Work Plan for Delineation of Two Potential Water Bearing Zones</u> 76 Service Station # 3072 RO # 02968 2445 Castro Valley Road Castro Valley, CA

Dear Ms. Jakub:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7666.

Sincerely,

Terry L. Grayson Site Manager Risk Management & Remediation

February 8, 2010

Ms. Barbara Jakub Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502-6577

Subject:

Addendum to Work Plan for Delineation of Two Potential Water Bearing Zones 76 Service Station No. 3072 2445 Castro Valley Blvd. Castro Valley, California ACEH Case No: RO# 2968

Dear Ms. Jakub:

Delta Consultants (Delta) has prepared this *Addendum to Work Plan for Delineation of Two Potential Water Bearing Zones,* in order to assess the vertical extent of dissolved phase petroleum hydrocarbons in groundwater at ConocoPhillips 76 Service Station Number 3072, located at 2445 Castro Valley Boulevard in Castro Valley, California (the Site). This work plan addendum has been submitted to revise the scope of work proposed in the work plan submitted on January 5, 2009 (**Attachment A**). The previously submitted work plan proposed to install three sets of nested wells with two-foot screens. The purpose of these nested wells was to investigate two potential water bearing zones identified by TRC in a 2007 CPT investigation (**Attachment B**); a shallow zone between 14-40 feet below grade (fbg) and a deep zone between 45-55 fbg.

Upon reviewing available project data, Delta believes that well clusters, rather than the proposed nested wells, are appropriate for the Site conditions and will aid in the prevention of cross contamination of the shallow and deep zones, should separate water-bearing zones exist beneath the Site. In the absence of narrow, well-defined water bearing zones, or confining layers, the previously proposed two-foot long screen intervals may not be practical for monitoring groundwater conditions beneath the Site.

Available lithologic data from previous borings shows that clay, silt and gravel lies beneath approximately 2 feet of base rock. Historic CPT and well logs do not clearly indicate the presence of confined water-bearing zones; however, shale bedrock has been encountered in borings beginning at depths ranging from 5 fbg to of approximately 20 fbg, which may act to hinder mixing of shallow and deep groundwater. The logs from TRC's 2005 investigation show mainly sand beginning at 5 fbg and extending depths of up to 25 fbg.

Hard drilling conditions are noted in most historic logs between approximately 15 feet and 50 feet, with intervals where samples were not recovered, which may indicate the presence of a bedrock aquitard. Historic boring logs are included in **Attachment C**.

Addendum to Work Plan for Delineation of Two Potential Water-Bearing Zones ConocoPhillips Site No. 3072 Castro Valley, CA February 8, 2010 Page 2 of 5

The following work plan addendum proposes to modify the scope of work in the original work plan (**Attachment A**), which proposed the installation of three nested wells (each with a two-foot screen interval).

In this addendum, Delta proposes to install four sets of cluster wells. Each well cluster will consist of two wells (one shallow and one deep) placed within approximately 5 feet of one another, with screens approximately ten feet in length and screen depth intervals of approximately 10 to 20 fbg (shallow) and at 45 to 55 fbg (deep).

Delta proposes to install a total of four well clusters to address locations where contamination was reported in 2005 and 2007, and to assess current shallow and deep groundwater conditions at the Site. A Site location map is included as **Figure 1**.

SITE DESCRIPTION

The general Site location is at the intersection of Castro Valley Boulevard and Stoneridge Avenue in Castro Valley, California, as shown on the Vicinity Map (**Figure 1**). The Site Map (**Figure 2**) illustrates the location of the current underground storage tank (UST) system which consists of two 12,000 gallon and one 10,000 gallon gasoline USTs with six fuel dispensers located on three dispenser islands. There is also a waste oil UST located directly south of the station building. The USTs are located to the north of the site, and are oriented approximately northwest-southeast. Two of the dispenser islands are located immediately to the west of the USTs, and oriented perpendicularly. The other island is southeast of, and parallel to the USTs.

SITE BACKGROUND

<u>November 1989 through February 1990</u>: Three 10,000 gallon underground storage tanks (USTs), one 550 gallon waste oil UST, and product piping were removed and replaced. The UST pits were over excavated to remove impacted soil, Kaprealian Engineering (KEI), 1990).

<u>January 18 and 19, 1990</u>: Three 2-inch diameter monitoring wells (MW1, MW2, and MW3) were installed onsite (KEI), 1990).

<u>April 24 and 25, 1990</u>: Eight exploratory soil borings (EB1 through EB8) were drilled and soil sampled collected. The borings were backfilled with neat cement. Low to non-detect concentrations of TPH-G and BTEX were detected with a maximum TPH-G concentration of 5 ppm (KEI), 1991).

<u>August 13, 1990</u>: Two 2-inch monitoring wells (MW4 and MW5) were installed. Soil samples from the monitoring well pilot borings contained non-detect concentrations of TPH-G and BTEX in all samples. Benzene was detected at a maximum concentration of 3.2 ppb (KEI), 1990).

June 15, 1993: Monitoring wells MW-1, MW-2, MW-3, MW-4, and MW-5 were destroyed by KEI.

<u>June 7, 2001:</u> Gettler-Ryan Inc. (GR) observed the removal of one hydraulic hoist from the site. A soil sample from 8.5 feet below grade (fbg) was reported to contain 1,200 mg/kg TPH-Hydraulic Fluid (GR, 2001).

Addendum to Work Plan for Delineation of Two Potential Water Bearing Zones ConocoPhillips Site No. 3072 Castro Valley, CA February 8, 2010 Page 3 of 7

January 24, 25 and 31, 2005: TRC conducted a Baseline Site Assessment (TRC, 2005) which involved the advancement of six direct-push borings (SB-1 through SB-6) to assess the presence of hydrocarbon-affected soil and groundwater beneath the site. TPPH was detected in two soil samples at a maximum concentration of 480 ppm in SB-1 at a depth of 8 fbg. MTBE was detected in two soil samples at a maximum concentration of 0.11 ppm in SB-3 at a depth of 18 fbg. MTBE was detected in three of the four grab groundwater samples at a maximum concentration of 87 ppb in boring SB-1.

May 2007: TRC conducted an additional site assessment using cone penetrometer test (CPT) equipment, advancing CPT borings CPT-1, CPT-2, CPT-4, and CPT-5 onsite, to depths of up to 55 fbg. TPH-D was detected in groundwater samples collected in all four soil borings, with a maximum concentration of 800 micrograms per liter (μ g/l) in the groundwater sample collected from CPT-4. MTBE was in three of four borings with a maximum of 10 μ g/l detected in CPT-4. TBA was detected only in CPT-2 at a maximum of 54 μ g/l. No other analytes were detected during this investigation.

PROPOSED GROUNDWATER CLUSTER WELL INSTALLATIONS

The locations of the proposed monitoring wells were selected based upon the results of TRC's 2005 Baseline Site Assessment and 2007 CPT Investigation. During the 2005 Baseline Site Assessment, TRC advanced six soil borings (SB-1 through SB-6) at the Site. Soil samples from a depth of 8 fbg from borings SB-1 and SB-4 were reported to contain 480 mg/kg and 470 mg/kg TPH-G, respectively. Boring SB-3 was reported to contain 87 ug/l MTBE. During the 2007 CPT investigation, TPH-D was reported in groundwater samples from borings CPT-1, CPT-2, CPT-4 and CPT-5 at concentrations ranging from 280 ug/l in CPT-5 to 800 ug/l in CPT-4. In order to address concentrations reported in the two investigations, Delta proposes to place the new wells in the following locations:

- MW-6 will be placed in the vicinity of SB-1 near the western dispenser island.
- MW-7 will be placed northeast (downgradient) of CPT-2 and SB-3 in the northern portion of the site.
- MW-8 will be placed in the vicinity of CPT-4 on the eastern portion of the site.
- MW-9 will be placed in the southern portion of the site to monitor groundwater entering the site.

The original work plan proposed nested monitoring wells (two casings within one borehole) with two foot screens. Delta proposes to modify the previously proposed well design from nested wells to cluster wells. The well clusters will be comprised of two wells, installed within five feet of one another at each proposed location, with approximate 10 foot screen intervals. Delta proposes to modify the well design for the following reasons:

- Wells with a two-foot screen are more likely become dry due to seasonal groundwater fluctuations.
- Samples collected from wells with a two-foot screen interval may not be representative of overall groundwater conditions beneath the site as they allow water to flow into the casing from a limited thickness within the formation.
- Historic lithologic boring logs do not indicate conditions, such as narrowly confined water bearing zones, which would necessitate a short well screen.

Addendum to Work Plan for Delineation of Two Potential Water Bearing Zones ConocoPhillips Site No. 3072 Castro Valley, CA February 8, 2010 Page 4 of 7

The new wells will be installed in the following method. First, a soil boring will be advanced to a depth of approximately 55 fbg, allowing access to the deeper water bearing zone identified by TRC in their 2007 CPT investigation, utilizing truck mounted hollow stem auger drilling rig equipped with eight inch outer diameter auger flights. Although historic logs indicate difficult drilling and high blow counts, samples will be collected continuously, if feasible, to enable the identification of potential aquitards(s) and the precise depth(s) in the vicinity of 40-45 fbg, as anticipated by TRC. Lithology recorded during the installation of the deeper well will be used to set a shallow well in the vicinity of 10-25 fbg, where first groundwater is anticipated to be encountered. The shallow well will be installed approximately five feet away from the deep well. For each location, MW-6 through MW-9, one shallow and one deep well will be installed.

The wells will be constructed using 2-inch diameter PVC casings with 0.010-inch slotted casing in the screen interval due to anticipated fine grained sediment. 2/16 Monterey sand filter packing will be installed in the annular space to one foot above the top of the screened interval, overlain by a 2-foot thick bentonite seal (saturated in place). The wells will be capped with Portland cement grout and boxed at grade with a locking, water-tight cap and traffic-rated well box.

A minimum of 72 hours following completion of the well installation, each well will be properly developed to ensure the collection of a representative groundwater sample. Following a minimum of 72 hours after development, new wells will be purged of three wellcasing volumes and sampled. The newly-installed wells will be added to a quarterly monitoring program for the Site. Sampling frequency will decrease to semi-annual events following four quarters of monitoring, or less, contingent upon agency approval.

During drilling, soil samples will be collected continuously from each deep boring and screened for the presence of volatile organic compounds (VOCs) using a photoionization detector (PID). A lithologic description of each soil sample will be recorded by a Delta geologist on a boring log form. From each deep soil boring, three soil samples will be collected for laboratory analysis from the depths that exhibit the highest PID value or at depths exhibiting significant change in lithology. Should all collected samples indicate PID readings below the instrument's detection limit, then the deepest unsaturated soil sample will be submitted to the laboratory for analysis.

Soil and groundwater samples submitted for laboratory analysis will be analyzed for TPH-G and TPH-D with silica gel clean up by EPA Method 8015M, benzene, toluene, ethylbenzene, toluene, xylenes, methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), diisopropyl ether (DIPE), tertiary amyl methyl ether (TAME), tert butyl alcohol (TBA), ethylene dibromide (EDB), ethylene dichloride (EDC) and ethanol by EPA Method 8260.

Down-hole tools will be cleaned prior to and between each boring to prevent crosscontamination. Waste materials will be stored onsite in drums or bins pending proper disposal by a licensed ConocoPhillips approved waste hauling firm. All field point data, soil and water sample analytical data will be uploaded to the GeoTracker system per current standards.

Soil and groundwater samples selected for laboratory analysis will be individually labeled, registered on a chain-of-custody form, and immediately placed on ice pending transport to a certified analytical laboratory. Strict chain-of-custody protocols will be followed during the transport of the samples.

Addendum to Work Plan for Delineation of Two Potential Water Bearing Zones ConocoPhillips Site No. 3072 Castro Valley, CA February 8, 2010 Page 5 of 7

SCHEDULE

Delta will obtain all necessary permits following submittal of this work plan and will commence field activities within 30 days of receipt of work plan approval from the Alameda County Environmental Health Department.

REPORTING

Upon completion of the fieldwork, Delta will prepare a report describing field activities, methods, and analytical results. Delta will include recommendations for additional assessment work at the Site, as appropriate.

It is further estimated that the final report will be ready for submittal approximately 45 days after receipt of the sample analytical results.

REMARKS

The descriptions, conclusions, and recommendations contained in this document represent Delta's professional opinions based upon the currently available information and are arrived at in accordance with currently acceptable professional standards. For any reports cited that were not generated by Delta, the data from those reports is used "as is" and is assumed to be accurate. Delta does not guarantee the accuracy of this data for the referenced work performed nor the inferences or conclusions stated in these reports. This document is based upon a specific scope of work requested by the client. The Contract between Delta and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this document were conducted. This document is intended only for the use of Delta's Client and anyone else specifically listed on this document. Delta will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Delta makes no express or implied warranty as to the contents of this document.

If you have any questions regarding this work plan or need and additional information about this Site, please do not hesitate to contact the undersigned (408) 826-1863.

Sincerely,

DELTA CONSULTANTS

M Pice

Nadine Periat Senior Staff Geologist

Lia Holden, PG #8584 Geologist - Project Manager

Addendum to Work Plan for Delineation of Two Potential Water Bearing Zones ConocoPhillips Site No. 3072 Castro Valley, CA February 8, 2010 Page 6 of 7

Figures:

Figure 1 – Site Location Map Figure 2 – Site Plan

Attachments:

Attachment A – Work Plan for Delineation of Two Potential Water Bearing Zones Attachment B – TRC's Hydropunch Groundwater Investigation Report Attachment C - Historic Boring Logs

cc: Mr. Terry Grayson - ConocoPhillips

Addendum to Work Plan for Delineation of Two Potential Water Bearing Zones ConocoPhillips Site No. 3072 Castro Valley, CA February 8, 2010 Page 7 of 7

REFERENCES

Kaprealian Engineering Inc., Stockpiled Soil Sampling for Unocal Service Station #3072, 2445 Castro Valley, California, December 5, 1989.

Kaprealian Engineering Inc., Stockpiled Soil Sampling for Unocal Service Station #3072, 2445 Castro Valley, California, January 12, 1990.

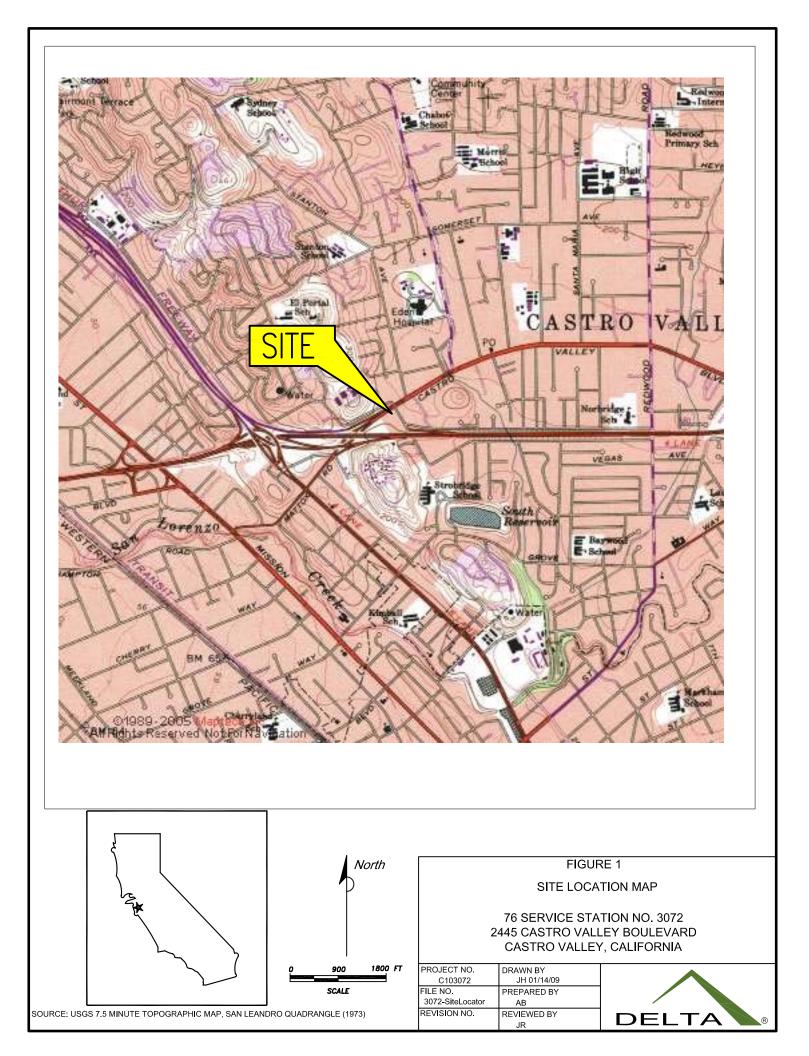
Kaprealian Engineering Inc., Waste Oil Stockpiled Soil Sampling for Unocal Service Station #3072, 2445 Castro Valley, California, January 12, 1990.

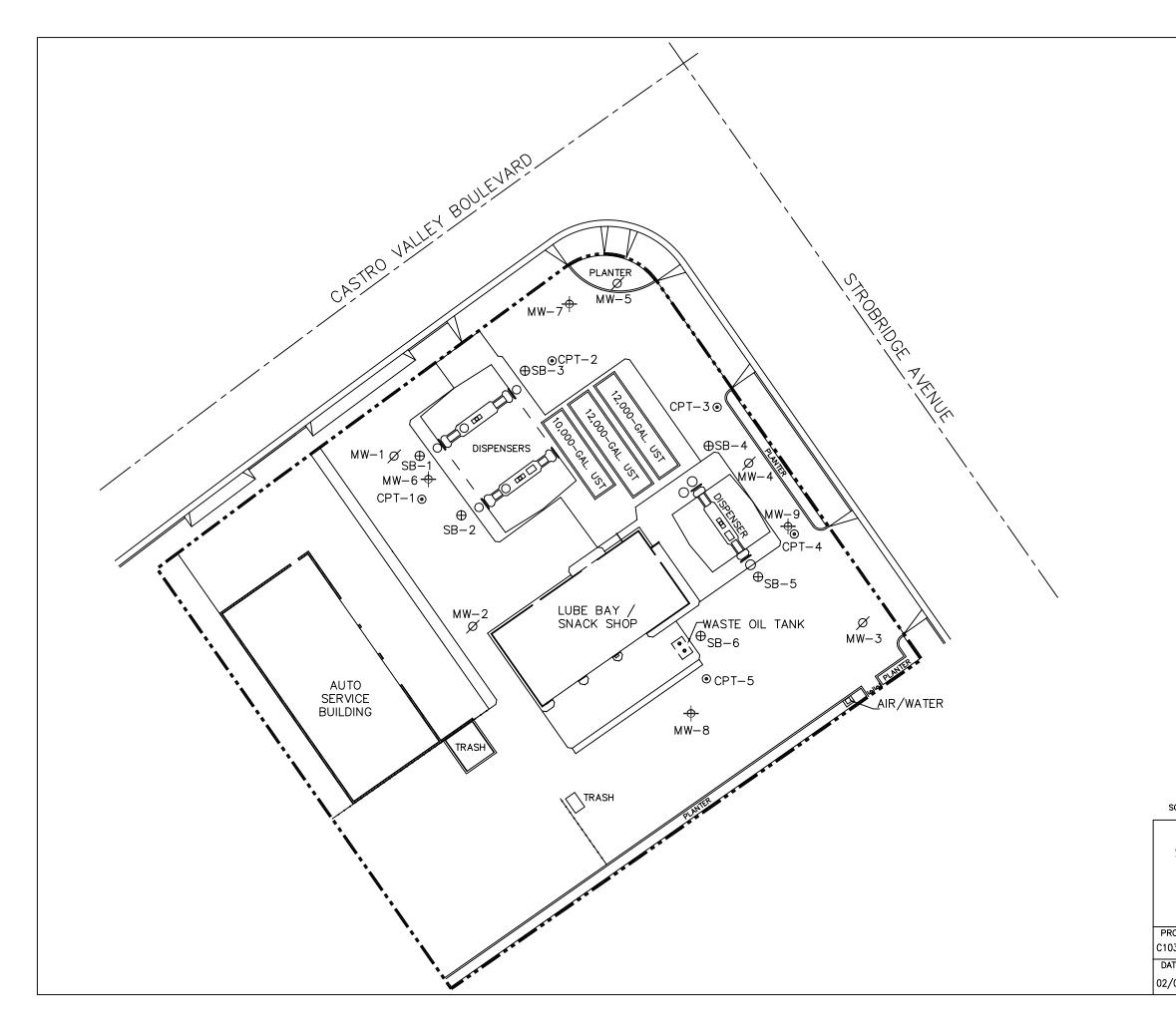
Kaprealian Engineering Inc., Preliminary Ground Water Investigation at Unocal Service Station #3072, 2445 Castro Valley, California, April 12 1990.

Kaprealian Engineering Inc., Follow Up Soil Sampling Report, Unocal Service Station #3072, 2445 Castro Valley, California, April 13, 1990.

Kaprealian Engineering Inc., Continuing Subsurface Investigation at Unocal Service Station #3072, 2445 Castro Valley, California, June 11, 1990.

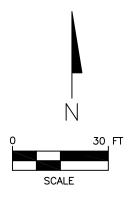
Kaprealian Engineering Inc., Continuing Ground Water Investigation at Unocal Service Station #3072, 2445 Castro Valley, California, September 28, 1990.


Kaprealian Engineering Inc., Report on Destruction of Monitoring Wells at Unocal Service Station #3072, 2445 Castro Valley, California, July 15, 1993.


Kaprealian Engineering Inc., Subsurface Soil Investigation at Unocal Service Station #3072, 2445 Castro Valley, California, February 27, 1996.

Gettler-Ryan Inc., Soil Sampling During Hydraulic Hoist Removal at Tosco Service Station #3072, 2445 Castro Valley Blvd, Castro Valley, California, September 6, 2001.

- TRC, Baseline Site Assessment Report, 76 Service Station No. 3072, 2445 Castro Valley Blvd, Castro Valley, California, March 8, 2005.
- TRC, Hydropunch Groundwater Investigation Report, 76 Service Station No. 3072, 2445 Castro Valley Boulevard, Castro Valley, California, October 11, 2007.
- Delta Consultants, Work Plan for Delineation of Two Potential Water-Bearing Zones, 76 Service Station No. 3072, 2445 Castro Valley Boulevard, Castro Valley, California, January 5, 2009.


FIGURES

<u>LEGEND</u>

ф мw-7	PROPOSED MONITORING WELL CLUSTER LOCATION
Ø MW-1 ⊚ CPT-1	DESTROYED MONITORING WELL (KEI, 1993) CPT BORING (TRC, 2007)
⊕ SB-4	SOIL BORING
	PROPERTY BOUNDARY

SOURCE: Client-provided site plan prepared by A&S Engineering, October 1997 and TRC.

FIGURE 2 SITE PLAN WITH PROPOSED MONITORING WELLS 76 SERVICE STATION NO. 3072

76 SERVICE STATION NO. 3072 2445 CASTRO VALLEY BOULEVARD CASTRO VALLEY, CALIFORNIA

ROJECT NO.	PREPARED BY	DRAWN BY	
03072	NP	JH	
ATE	REVIEWED BY	FILE NAME	
/03/10	LH	76–3072	

Attachment A

Work Plan for Delineation of Two Potential Water-Bearing Zones

76 Broadway Sacramento, California 95818

January 14, 2009

Barbara Jakub Alameda County Health Agency 1131 Harbor Bay parkway, Suite250 Alameda, California 94502-577

Re: Delineation of Two potential Water-Bearing Zones --Work Plan 76 Service Station # 3072 RO 02968 2445 Castro Valley Blvd Castro Valley, CA

Dear Ms. Jakub,

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7666.

Sincerely,

Terry L. Grayson Site Manager Risk Management & Remediation

MS. BARBARA JAKUB Alameda County Health Agency Department of Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502-6577

cc: Mr. Terry Grayson, ConocoPhillips (electronic copy)

WORK PLAN FOR DELINEATION OF TWO POTENTIAL WATER-BEARING ZONES

76 SERVICE STATION NO. 3072 2445 Castro Valley Blvd Castro Valley, CA AOC# 01154 RO# 02968

DELTA PROJECT C103072 JANUARY 5, 2009

Prepared for:

ConocoPhilips Company 76 Broadway Sacramento, CA 95818

Prepared by:

Delta Consultants

 11050 White Rock Road
 Suite 110
 Rancho Cordova, California 95670 USA

 PHONE +1 916.638.2085
 / USA Toll Free 800.477.7411

 Fax +1 916.638.8385
 www.deltaenv.com

TABLE OF CONTENTS

1.0	CERTIFICATION	3
2.0	DECLARATION	4
3.0	SITE BACKGROUND AND DESCRIPTION	4
3.1 3.2 3.3 3.4	SITE BACKGROUND PREVIOUS ASSESSMENT SENSITIVE RECEPTOR SURVEY HYDROGEOLOGIC SITE CONDITIONS	4 5
4.0	PRE-FIELD ACTIVITIES AND UTILITY LOCATION	5
4.1 4.2	PERMITTING/HASP PREPARATION	
5.0	PROPOSED MONITORING WELL INSTALLATIONS	6
5.1 5.2 5.3 5.4 5.5	MONITORING WELL CONSTRUCTION SOIL SAMPLING AND LABORATORY ANALYSIS GROUNDWATER SAMPLING AND LABORATORY ANALYSIS SAMPLE POINT SURVEY DISPOSAL OF DRILL CUTTINGS AND WASTEWATER	6 6 6
6.0	REPORTING	7
7.0	REMARKS	7

FIGURES

Figure 1 – Site Location Map
Figure 2 - Site Plan w/ Historic Destroyed Monitoring Well Locations
Figure 3 – Site Plan with w/ Proposed Monitoring Well Locations
Figure 4 – Monitoring well construction details (typ)

ATTACHMENTS

Attachment A – Hydropunch Groundwater Investigation Report (TRC, October 10, 2007)

1.0 CERTIFICATION

This report was prepared under the supervision and direction of the undersigned California Professional Geologist.

Delta Consultants

G JOHN R. REA NO. 4716 John R. Reay, P.G. Project Manager California Registered Professional Ge đ

2.0 DECLARATION

On behalf of ConocoPhillips Company (COP), Delta Consultants (Delta) has prepared this *Work Plan for Delineation of Two Potential Water-Bearing Zones* proposing the installation of 3 sets of 2 nested monitoring wells for a total of 6 monitoring wells (MW-1A/B, MW-2A/B, MW-3A/B).

In their 2007 *Hydropunch Groundwater Investigation Report*, TRC states that there appear to be two potential water-bearing zones. The intent of this work is to identify these zones, and implement nested monitoring wells to attain depth specific data from each zone independently.

3.0 SITE BACKGROUND AND DESCRIPTION

3.1 SITE BACKGROUND

The general site location is at the intersection of Castro Valley Boulevard and Stoneridge Avenue in Castro Valley, California, as shown on the Vicinity Map (Figure 1). The Site Map (Figure 2) illustrates the location of the current underground storage tank (UST) system which consists of two 12,000 gallon and one 10,000 gallon gasoline USTs with six fuel dispensers located on three dispenser islands. There is also a waste oil UST located directly south of the station building. The USTs are located to the north of the site, and are oriented approximately northwest-southeast. Two of the dispenser islands are located immediately to the west of the USTs, and oriented perpendicularly. The other island is southeast of, and parallel to the USTs.

3.2 PREVIOUS ASSESSMENT

<u>November 1989 through February 1990</u>: Three 10,000 gallon underground storage tanks (USTs), one 550 gallon waste oil UST, and product piping were removed and replaced. The UST pits were over excavated to remove impacted soil, Kaprealian Engineering (KEI), 1991).

November 14, 1989: Six soil samples (A1, A2, B1, B2, C1, and C2) were collected from below the fuel USTs and one soil sample (WO1) was collected from below the waste oil UST. Samples from beneath the gasoline USTs contained concentrations of total petroleum hydrocarbons as gasoline (TPH-g) from non-detect to 11 parts per million (ppm) and non-detect concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX). Concentrations of total petroleum hydrocarbons as diesel (TPH-d) were non-detect in the sample collected from below the diesel UST. The soil samples collected from beneath the waste oil tank contained reportable concentrations of TPH-g, metals, and 1,1-dichloroethene (1,1-DCE) and were non-detect for all other constituents analyzed (KEI), 1991).

<u>November 16, 1989</u>: Six sidewall soil samples (SW1 through SW6) and a grab water sample were collected from the fuel UST. Samples SW1 and SW4 contained TPH-g concentrations of 140 ppm and 160 ppm, respectively. TPH-d was detected at a concentration of 24 ppm in sample SW4 (KEI), 1991).

<u>December 22, 1989</u>: Eight soil sidewall samples (SW1 (17), SW2 (17), SW7 through SW11, and SW3 (17)) were collected after additional excavation of the UST pits. Maximum reported TPH-g concentrations were 1,500 ppm and 1,900 ppm (KEI), 1991).

January 18 and 19, 1990: Three 2-inch diameter monitoring wells (MW1, MW2, and MW3) were installed onsite (KEI), 1991).

<u>February 14, 1990</u>: Three soil samples (P1, P2, and P3) were collected from the product pipeline trenches. Low to non-detect concentrations of TPH-g and BTEX were detected with a maximum TPH-g concentration of 87 ppm (KEI), 1991).

<u>March 9, 1990</u>: Three sidewall soil samples (SWB, SWC, and SWD) were collected from the sidewalls of the waste oil UST pit. Low to non-detect concentrations of TPH-g and BTEX were detected with a maximum TPH-g concentration of 37 ppm (KEI), 1991).

<u>April 24 and 25, 1990</u>: Eight exploratory soil borings (EB1 through EB8) were drilled and soil sampled collected. The borings were backfilled with neat cement. Low to non-detect concentrations of TPH-g and BTEX were detected with a maximum TPH-g concentration of 5 ppm (KEI), 1991).

June 15, 1993: Monitoring wells MW-1, MW-2, MW-3, MW-4, and MW-5 were destroyed by KEI.

<u>August 13, 1990</u>: Two 2-inch monitoring wells (MW4 and MW5) were installed. Soil samples from the monitoring well pilot borings contained non-detect concentrations of TPH-g and BTEX in all samples. Benzene was detected at a maximum concentration of 3.2 ppb (KEI), 1991).

October 2003: Site environmental consulting responsibilities were transferred to TRC.

January 24, 25 and 31, 2005: TRC conducted a Baseline Site Assessment (TRC, 2005) which involved the advancement of six direct-push borings (SB-1 through SB-6) to assess the presence of hydrocarbon-affected soil and groundwater beneath the site. TPPH was detected in two soil samples at a maximum concentration of 480 ppm in SB-1 at a depth of 8 fbg. MTBE was detected in two soil samples at a maximum concentration of 0.11 ppm in SB-3 at a depth of 18 fbg. MTBE was detected in three of the four grab groundwater samples at a maximum concentration of 87 ppb in boring SB-1.

3.3 SENSITIVE RECEPTOR SURVEY

<u>January 31, 2006</u>: TRC completed a sensitive receptor survey for the site. No wells or water bodies identified during the survey are believed to be near enough to the site or in the direct path of groundwater flow from the site to be considered sensitive receptors.

3.4 HYDROGEOLOGIC SITE CONDITIONS

From previous soil and groundwater investigations conducted at the site, the soil beneath the site consists of silt, clay, and fine sand. Shale has also been observed underlying the clay and fine sand from 10 to 50 feet below grade (fbg). Groundwater has been encountered at the site historically between 6 and 9 fbg. During the recent baseline investigation, groundwater was encountered at depths between 15 and 25 fbg on the northern portion of the site and 47 to 50 fbg on the southern portion of the site (TRC, 2005). Historically, the groundwater flow direction has been to the northeast (KEI), 1991).

TRC's October 2007 Hydropunch Groundwater Investigation Report (Attachment A) discusses the identification of two potential water bearing zones at depth intervals of between 14 and 40 feet bgs and 45 to 55 feet bgs.

4.0 PRE-FIELD ACTIVITIES AND UTILITY LOCATION

4.1 PERMITTING/HASP PREPARATION

Drilling permits will be obtained for the boring and the monitoring wells as necessary from the appropriate parties prior to commencing field work. Delta will prepare a Health and Safety Plan (HASP) specific to the site and work being performed in accordance with Title 8, Section 5192 of the California Code of Regulations. This will contain a list of emergency contacts, as well as hospital route maps to the nearest emergency facility and Occupational Heath Center, and will be reviewed daily by field personnel as part of tailgate safety SOP.

4.2 SITE MARKING/UTILITIY CLEARANCE

The proposed boring locations will be marked in the field prior to drilling, and Underground Services Alert (USA) will be contacted at least 48 hours prior to initiating drilling to minimize the risk of damaging underground utilities. A private utility locator will also be retained to survey the locations and further minimize the risk of damaging underground utilities. Additionally, an air-knife vacuum truck will be used to clear the proposed boring and monitoring well locations to a depth of at least 5 feet bgs prior to drilling.

5.0 PROPOSED MONITORING WELL INSTALLATIONS

Drilling of the Monitoring wells will be done with hollow stem auger technology. In order to identify stratigraphy as well as to delineate potential water-bearing sand zones borings will be advanced utilizing continuous core with acetate sleeve to 60 feet bgs or refusal for the first boring of each set of nested wells. Three sets of nested monitoring wells, each well located within a 5 foot radius, will be installed, with depths to be determined based on in-field lithologic observations.

5.1 MONITORING WELL CONSTRUCTION

Wells will be constructed (Figures 3 and 4) in and 8 inch boring of 2 inch ID PVC with 0.010 inch slotted screen with end cap and Loanstar #2/12 gravel pack (or equivalent) extending approximately 1 foot above the top of the screen. The gravel pack will be emplaced via treme pipe or equivalent. Approximately one foot granular bentonite seal will be placed on top of the gravel pack. The bentonite seal will be hydrated with a minimum of one gallon of clean potable water prior to installation of the neat cement seal if it extends above groundwater. The well will be completed by installation of a neat cement seal to ground surface, a concrete sanitary seal, locking cap, and traffic rated water-resistant well-head vault.

5.2 SOIL SAMPLING AND LABORATORY ANALYSIS

Soil samples will be collected for laboratory analysis from continuous core samples. A precalibrated photo-ionization detector (PID) will be used to field screen soil samples for the presence of organic vapors. Discrete soil samples retained for analysis will be cut to size from the continuous core sleeve, capped with Teflon sheeting and tight-fitting plastic end caps, properly labeled with a unique identification number, placed in an ice-chilled cooler, and transported to a California-certified analytical laboratory with chain of custody documentation. Soil samples will be analyzed for TPHg, TPHd by EPA Method 8015M, benzene, toluene, ethylbenzene, toluene, xylenes, methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), di-isopropyl ether (DIPE), tertiary amyl methyl ether (TAME), tert butyl alcohol (TBA), ethylene dibromide (EDB), ethylene dichloride (EDC) and ethanol by EPA Method 8260.

5.3 GROUNDWATER SAMPLING AND LABORATORY ANALYSIS

Groundwater grab samples will be collected from all borings from field selected depth discrete intervals based on the continuous core samples. The groundwater samples will be placed into laboratory supplied sample bottles labeled with a unique identification number. The samples will then be placed into an ice-chilled cooler and transported to a California-certified analytical laboratory with chain of custody documentation. Groundwater samples will be analyzed for TPHg, TPHd by EPA Method 8015M, benzene, toluene, ethylbenzene, toluene, xylenes, methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), di-isopropyl ether (DIPE), tertiary amyl methyl ether (TAME), tert butyl alcohol (TBA), ethylene dibromide (EDB), ethylene dichloride (EDC) and ethanol by EPA Method 8260.

5.4 SAMPLE POINT SURVEY

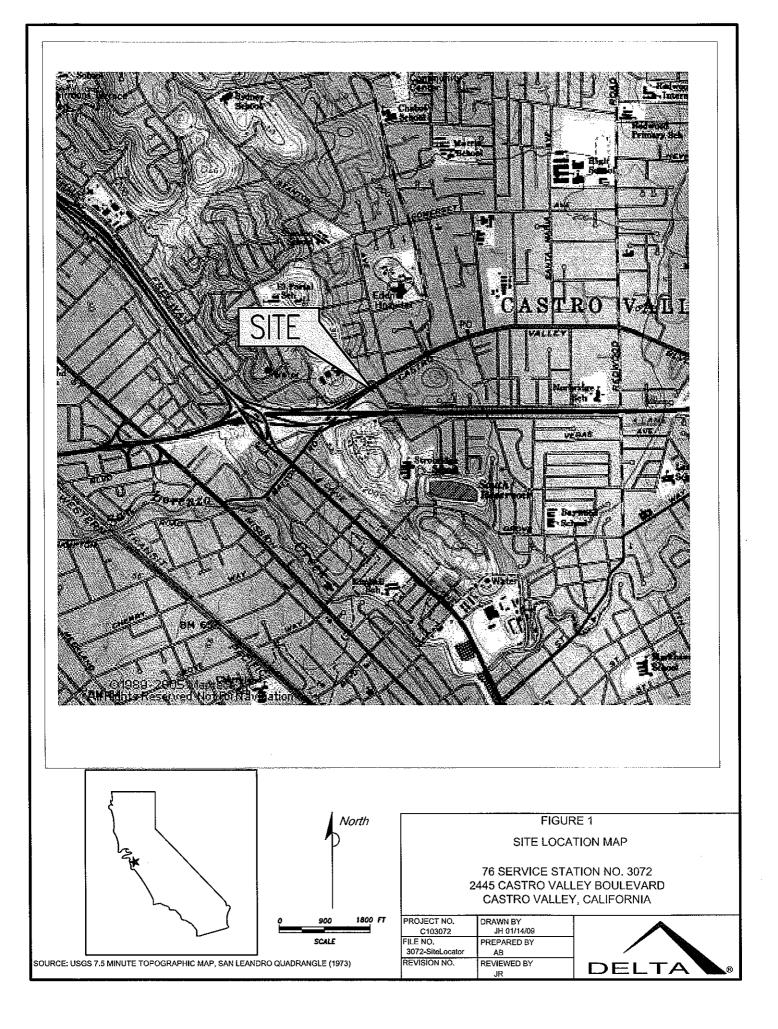
Following the completion of the sampling event, a California licensed surveyor will survey the northing and easting of the monitoring well locations using Datum NGVD29 or NAD 88. A global positioning system (GPS) will also be used to survey in the latitude and longitude of the wells to be uploaded into California's GeoTracker database system. The survey of the well locations will be to sub-meter accuracy.

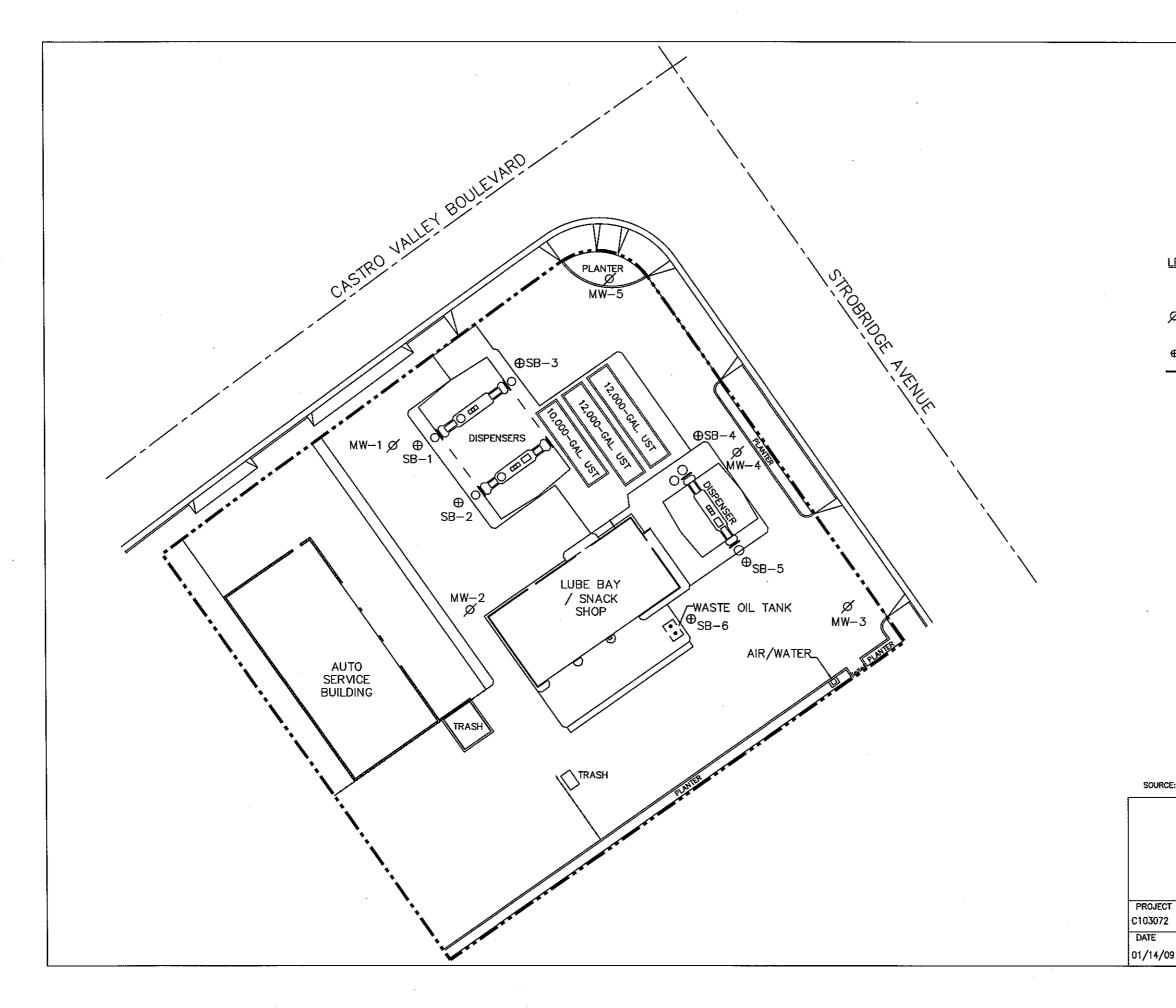
5.5 DISPOSAL OF DRILL CUTTINGS AND WASTEWATER

Drill cutting, purge and decontamination water generated during the sampling event will be placed into properly labeled 55-gallon Department of Transportation (DOT) approved steel drums and temporarily stored on the property. Samples of the drill cuttings and wastewater will be collected, properly labeled and placed on ice for submittal to a California-certified laboratory and analyzed for TPHg, TPHd by EPA Method 8015M, benzene, toluene, ethylbenzene, toluene, xylenes, methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), di-isopropyl ether (DIPE), tertiary amyl methyl ether (TAME), tert butyl alcohol (TBA), ethylene dibromide (EDB), ethylene dichloride (EDC) and ethanol by EPA Method 8260. A chain-of-custody will accompany the samples during transportation to the laboratory. Subsequent to receiving the laboratory analytical results, the drummed drill cuttings and wastewater will be profiled, transported, and disposed of at a ConocoPhillips (COP) approved facility.

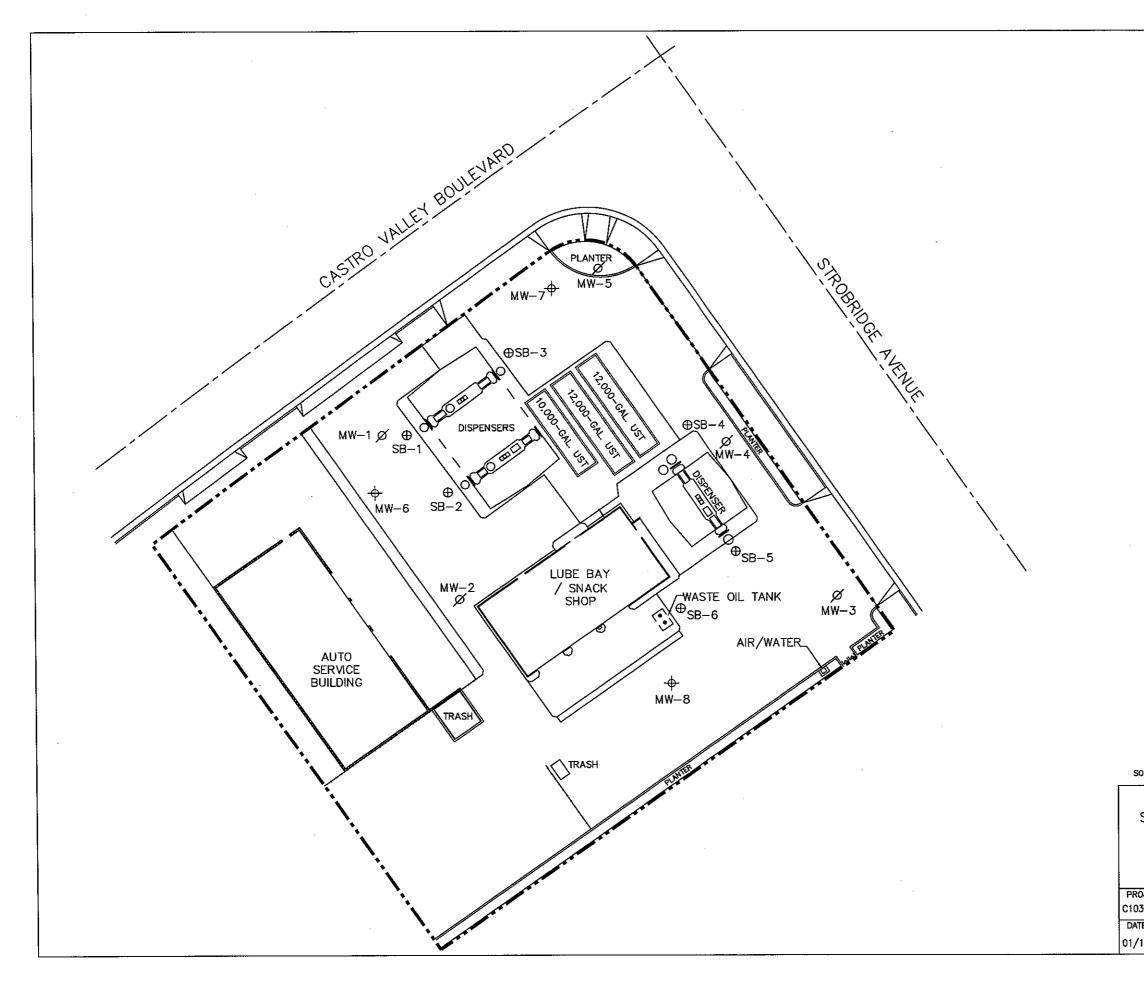
6.0 REPORTING

Anticipated schedule of work includes:


- 1st Q 09: Workplan submitted to ACEH
- 2nd Q 09: Comments to workplan received from ACEH
- Proceed with field work within 90 days of receipt of ACEH comments


Following completion of the field work and receipt of analytical results, a site investigation report will be prepared and submitted within 60 days. The report will present the details of the boring activities, including copies of boring permits, and details of disposal activities and copies of disposal documents. Required electronic submittals will be uploaded to the State Geotracker and Alameda County databases.

7.0 REMARKS

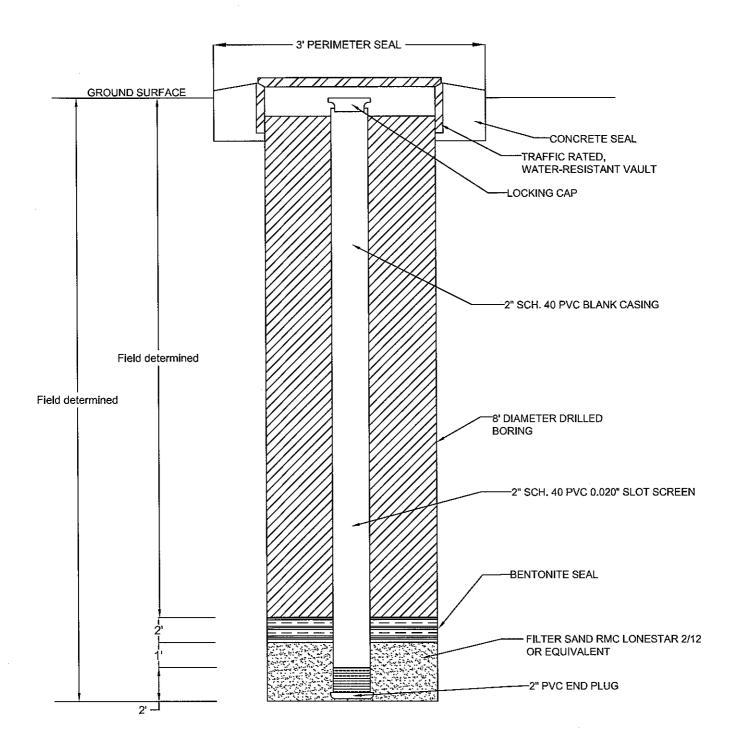

The recommendations contained in this report represent Delta's professional opinions based upon the currently available information and are arrived at in accordance with currently acceptable professional standards. This report is based upon a specific scope of work requested by the client. The Contract between Delta and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report will be performed. This report is intended only for the use of Delta's Client and anyone else specifically listed on this report. Delta will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Delta makes no express or implied warranty as to the contents of this report. If you have questions regarding this report, please contact John Reay at (916) 503-1260 or Terry Grayson at 916-558-7666.

FIGURES

⊕ SB-4	L SOIL E	ORING	
<u> </u>	- PROPE	RTY BOUNDARY	
			IN
		0 I	30 FT
		SCAL	E
	-provided site st	n prepared by AAG	S Engineering, October 1997 and TRC.
	provided and pit		· · · · · · · · · · · · · · · · · · ·
	A. K. I. M. 1977 1. 1	FIGURE	
SILE PD	AN WITH I	PROPUSED	MONITORING WELLS
		/ICE STATION	
		STRO VALLEY	
ROJECT NO.	PREPARED BY	D VALLEY, CA	
03072	AB	JH	
ATE	REVIEWED BY	FILE NAME	
/14/09	JR	76-3072	

PROPOSED MONITORING WELL LOCATION

CPT BORING (TRC, 2007)


DESTROYED MONITORING WELL (KEI, 1993)

LEGEND

ф м₩-7

Ø M₩-1

CPT-1

FIGURE 4 PROPOSED GROUNDWATER MONITORING WELL CONSTRUCTION DETAIL 76 STATION NO. 3072 2445 Castro Valley Boulevard Castro Valley, California DRAWN BY JH 12/11/08 PROJECT NO. C103072 FILE NO. 1156-WELLDETAIL PREPARED BY DD REVIEWED BY DELTA

REVISION NO.

ATTACHMENT A

October 11, 2007

Ms. Donna Drogos Supervising Hazardous Materials Specialist Alameda County Health Agency 1131 Harbor Bay Parkway Alameda, California 94502

> Re: Hydropunch Groundwater Investigation Report 76 Service Station No. 3072 2445 Castro Valley Blvd. Castro Valley, CA

Dear Ms. Drogos:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please contact me at (916) 558-7612.

Sincerely,

Bill Bough

Bill Borgh Site Manager – Risk Management and Remediation

Attachment

1590 Solano Way #A Concord, CA 94520

925.688.1200 PHONE 925.688.0388 FAX

www.TRCsolutions.com

October 10, 2007

TRC Project No. 125874

Ms. Donna Drogos Supervising Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

SITE: 76 SERVICE STATION NO. 3072 2445 CASTRO VALLEY BLVD CASTRO VALLEY, CALIFORNIA

RE: HYDROPUNCH GROUNDWATER INVESTIGATION REPORT

Dear Ms. Drogos:

On behalf of ConocoPhillips, TRC submits this *Hydropunch Groundwater Investigation Report* documenting additional groundwater investigation activities at the 76 Service Station No. 3072, located at 2445 Castro Valley Blvd in Castro Valley, California. This work was performed in accordance to a work plan submitted to the Alameda County Environmental Health (ACEH) as a response to a results obtained during a baseline completed for ConocoPhillips.

Please call Keith Woodburne at (925) 688-2488 if you have any questions regarding this report.

Sincerely,

Rachelle Dunn Senior Staff Geologist

Keith Woodburne, P.G. Senior Project Manager

Enclosure

cc: Bill Borgh, ConocoPhillips (electronic upload only)

HYDROPUNCH GROUNDWATER INVESTIGATION REPORT

October 10, 2007

76 Service Station No. 3072 2445 Castro Valley Blvd. Castro Valley, California

TRC Project No. 125874

Prepared For:

ConocoPhillips Company 76 Broadway Sacramento, California 94818

By:

Rachelle Dunn Senior Staff Geologist

Keith Woodburne P.G. Senior Project Manager

TRC 1590 Solano Way Concord, California (925) 688-1200

TABLE OF CONTENTS

Section	<u>n</u> <u>P</u>	age
1.0	INTRODUCTION	1
2.0 2.1	SITE DESCRIPTION	
3.0 SI	ITE BACKGROUND	2
4.0	SITE INVESTIGATION ACTIVITIES	
4.1 4.2 4.3	PRE-FIELD ACTIVITIES CPT Hydropunch Groundwater Investigation Analytical Results	3
5.0	CONCLUSIONS AND RECOMMENDATIONS	4

Figures

1 Vicinity Map

2 Site Plan Showing CPT Hydropunch and Proposed Monitoring Well Locations

Tables

1 Grab Groundwater Analytical Results

Appendices

A Drilling Permits

B CPT Site Investigation Report (Gregg Drilling)

CLaboratory Analytical Reports and Chains of Custody Records

1.0 INTRODUCTION

On behalf of ConocoPhillips, TRC submits this report of additional site assessment performed at 76 Service Station No. 3072, located at 2445 Castro Valley Blvd. in Castro Valley, California (the Site, Figure 1). This work was performed in accordance with the Additional Soil and Groundwater Investigation Work Plan submitted to the Alameda County Health Care Services Agency (ACHCS) on February 14, 2006.

The objective of this assessment was to further characterize the extent of the dissolved-phase hydrocarbons in the shallow water-bearing zone onsite.

The scope of work for this assessment involved the following:

- Advancement of Cone Penetrometer Test (CPT) borings at five onsite locations.
- Collection of depth-discreet grab groundwater samples using a hydropunch sampler for analysis at a state certified laboratory.
- Evaluate groundwater data to determine the lateral and vertical extent of groundwater impacts and determine if monitoring wells are required to better define the dissolved-phase hydrocarbon plume.

This report documents the CPT hydropunch groundwater investigation completed between May 3 and May 4, 2007.

2.0 SITE DESCRIPTION

The site is currently an active 76 service station located on the corner of Castro Valley Boulevard and Strobridge Avenue in Castro Valley, California (Figure 1). Current site facilities include a station building, lube bay, an auto service building, three underground fuel storage tanks, one underground waste oil storage tank, and three dispenser islands. Locations of the pertinent site features are shown on Figure 2.

2.1 Geology and Hydrogeology

Based on data collected during the recent baseline assessment and previous soil and groundwater investigations conducted at the site, lithologies observed beneath the site consist of silts, clays, and fine sands. Shale has also been observed underlying the clay and fine sands from 10 to 50 feet below grade (fbg).

Groundwater has been encountered at the site historically between 6 and 9 fbg. During the recent baseline investigation, groundwater was encountered at depths of between 15 and 25 fbg on the northern portion of the site and 47 to 50 fbg on the southern portion of the site (TRC, 2005). Historically, the groundwater flow direction has been to the northeast (Kaprealian Engineering (KEI), 1991).

Hydropunch Groundwater Investigation Report 76 Service Station 3072 October 10, 2007 Page 2

3.0 SITE BACKGROUND

November 1989 through February 1990: Three 10,000-gallon underground storage tanks (USTs), one 550-gallon waste oil UST, and the associated product piping were removed and replaced. The UST pits were over excavated to remove impacted soil (KEI, 1991).

November 14, 1989: Six soil samples (A1, A2, B1, B2, C1, and C2) were collected from below the fuel USTs and one soil sample (WO1) was collected from below the waste oil UST. Samples collected from beneath the gasoline USTs contained concentrations of total petroleum hydrocarbons as gasoline (TPH-g) ranging from below laboratory reporting limits to 11 parts per million (ppm). Benzene, toluene, ethylbenzene, and xylenes (BTEX) were below laboratory reporting limits. Total petroleum hydrocarbons as diesel (TPH-d) were below reported laboratory limits in the sample collected from beneath the diesel UST. The soil samples collected from beneath the waste oil tank contained reportable concentrations of TPH-g, metals, and 1,1-dichloroethene (1,1-DCE). Analytical results for all other analytes were below laboratory reporting limits (KEI, 1991).

November 16, 1989: Six sidewall soil samples (SW1 through SW6) and a grab water sample were collected from the fuel UST excavation. Samples SW1 and SW4 contained TPH-g concentrations of 140 ppm and 160 ppm, respectively. TPH-d was detected at a concentration of 24 ppm in sample SW4 (KEI, 1991).

December 22, 1989: Eight soil sidewall samples (SW1 (17), SW2 (17), SW7 through SW11, and SW3 (17)) were collected after additional excavation of the UST pits. The maximum reported TPH-g concentrations were 1,500 ppm and 1,900 ppm (KE, 1991).

January 18 and 19, 1990: Three 2-inch diameter monitoring wells (MW1, MW2, and MW3) were installed onsite (KEI, 1991).

February 14, 1990: Three soil samples (P1, P2, and P3) were collected from the product pipeline trenches. Low to non-detect concentrations of TPH-g and BTEX were detected with a maximum TPH-g concentration of 87 ppm (KEI, 1991).

March 9, 1990: Three sidewall soil samples (SWB, SWC, and SWD) were collected from the sidewalls of the waste oil UST pit. Low to non-detect concentrations of TPH-g and BTEX were detected with a maximum TPH-g concentration of 37 ppm (KEI, 1991).

April 24 and 25, 1990: Eight exploratory soil borings (EB1 through EB8) were drilled and soil sampled collected. The borings were backfilled with neat cement. Low to non-detect concentrations of TPH-g and BTEX were detected with a maximum TPH-g concentration of 5 ppm (KEI, 1991).

August 13, 1990: Two 2-inch monitoring wells (MW4 and MW5) were installed. Soil samples from the monitoring well pilot borings contained non-detect concentrations of TPH-g and BTEX in all samples. Benzene was detected at a maximum concentration of 3.2 ppb (KEI, 1991).

Hydropunch Groundwater Investigation Report 76 Service Station 3072 October 10, 2007 Page 3

January 24, 25 and 31, 2005: TRC conducted a Baseline Site Assessment (TRC, 2005) which involved the advancement of six direct-push borings (SB-1 through SB-6) to assess the presence of hydrocarbon-affected soil and groundwater beneath the site. TPPH was detected in two soil samples at a maximum concentration of 480 milligrams per kilogram (mg/kg) in SB-1 at a depth of 8 fbg. Methyl tertiary butyl ether (MTBE) was detected in two soil samples at a maximum concentration of 0.11 mg/kg in SB-3 at a depth of 18 fbg. MTBE was detected in three of the four grab groundwater samples at a maximum concentration of 87 micrograms per liter (μ g/L) in boring SB-1.

4.0 SITE INVESTIGATION ACTIVITIES

Under the supervision of a TRC field geologist, Gregg In Situ, Inc. of Martinez, California (Gregg) advanced exploratory borings at five onsite locations using a CPT rig for the purpose of characterizing site lithology, identifying potential deeper water-bearing zones, and assessing groundwater quality within those zones. Boring locations are shown in Figure 2.

4.1 Pre-Field Activities

Underground Services Alert (USA) was notified at least two days prior to field activities to mark underground utilities near proposed boring locations. In addition, a private utility locating service was contracted to check and clear proposed boring locations prior to drilling. Drilling permits were obtained from Alameda County Public Works and are included in Appendix A.

A site and job specific health and safety plan was prepared for the site that promotes personnel safety and preparedness during the planned field activities. Prior to beginning field activities each day, a "tailgate" safety meeting was conducted with all exclusion zone workers to discuss the health and safety issues and concerns related to the specific scope of work. A copy of the health and safety plan was maintained onsite throughout the field investigation.

4.2 CPT Hydropunch Groundwater Investigation

At each of the boring locations, up to three separate co-located borings were advanced. The first boring at each location was advanced to a total depth of 60 fbg or refusal to assess soil behavior types using the integrated electronic cone system of the CPT rig. Data obtained from the initial logging run was then used to identify potential water-bearing zones for subsequent hydropunch groundwater sampling. The second and third co-located borings were advanced to the desired depths based on an assessment of the stratigraphic soil behavior logs (Appendix B). The use of separate co-located borings for each depth-discrete groundwater sample minimizes the potential for cross-contamination during boring advancement.

Where feasible, grab groundwater sampling was attempted in two potential water-bearing zones identified at depth intervals of between 14 and 40 fbg (shallow) and 45 to 55 fbg (deep). At proposed location CPT-3, it was not feasible to advance the boring due to the presence of an underground utility. A total of four grab groundwater samples were collected during the investigation, two from the shallow water-bearing zone and two from the apparent deeper water-bearing zone.

Hydropunch Groundwater Investigation Report 76 Service Station 3072 October 10, 2007 Page 4

At boring locations CPT-2 and CPT-5, only the shallow grab groundwater samples were collected due to refusal at depths of 36.4 fbg and 22.3 fbg, respectively. Therefore, hydropunch grab groundwater samples were collected from borings CPT-2 and CPT-5 at depths of 36 fbg and 22 fbg, respectively.

At boring locations CPT-1 and CPT-4, the apparent shallow water-bearing zone did not produce enough water to collect a sample. However, grab groundwater samples were collected from the deeper water-bearing zone at these two locations encountered at depths of 55 fbg and 51 fbg, respectively. A total of four onsite grab groundwater samples were collected during this investigation.

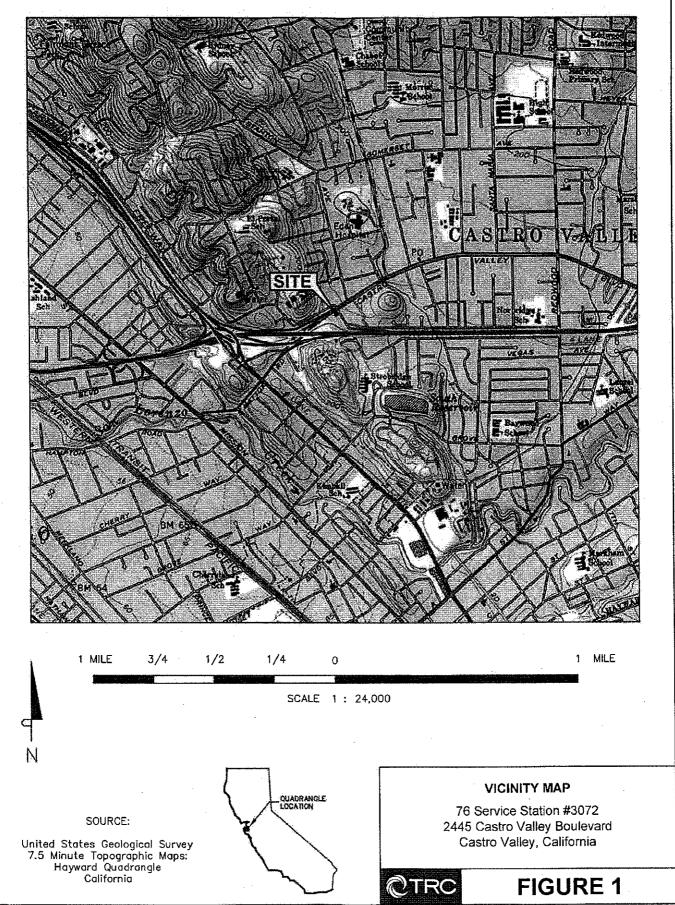
The four grab groundwater samples were submitted to a State-certified laboratory for analysis, and analyzed for TPH-d by EPA Method 8015 and for total purgeable petroleum hydrocarbons (TPPH), BTEX, MTBE, and other fuel oxygenates including tertiary butyl alcohol (TBA), diisopropyl ether (DIPE), tertiary amyl methyl ether (TAME), ethyl tertiary butyl ether (ETBE) 1,2-dichloroethane (1,2-DCA), 1,2-dibromoethane (EDB), and ethanol by EPA Method 8260B.

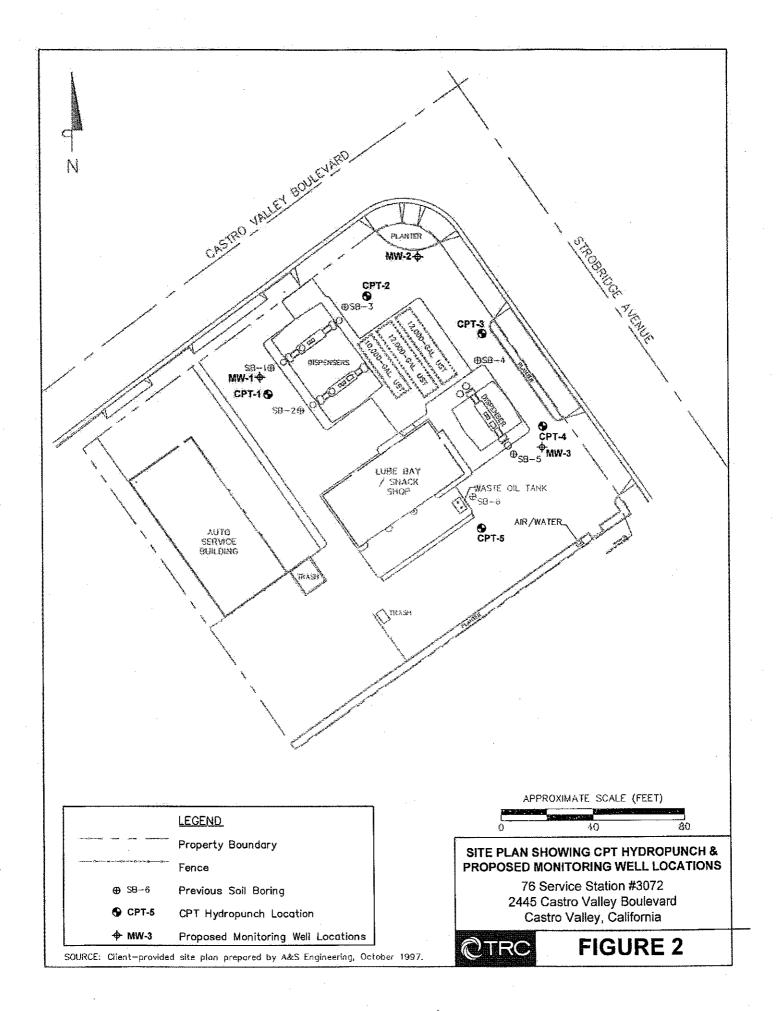
4.3 Analytical Results

TPH-d, MTBE and TBA were detected in the grab groundwater samples collected during the investigation. TPH-d was detected in all four of the samples analyzed, and at a maximum concentration of 800 μ g/L in the deeper water-bearing zone sample from boring CPT-4. MTBE was detected in three of the four samples analyzed, and at a maximum concentration of 10 μ g/L in the deeper water-bearing CPT-4. TBA was detected in one of the samples at a concentration of 54 μ g/L in the shallow water-bearing zone sample from boring CPT-2.

Analytical results of the grab groundwater samples are presented in Table 1. Copies of the laboratory analytical reports and chain of custody records are provided in Appendix C.

5.0 CONCLUSIONS AND RECOMMENDATIONS


TPH-d was detected in all four samples analyzed and is present at elevated concentrations in the both the shallow and apparent deeper water-bearing zones onsite. MTBE was also identified at relatively low concentrations in samples form both depth zones and TBA was detected only within the shallow water-bearing zone. Data obtained during this investigation indicates groundwater impacts have occurred onsite and those impacts may have migrated down into the apparent deeper water-bearing zone.


At the end of October 2007, environmental consulting responsibilities for this site will be transferred to Delta Environmental Consultants, Inc. (Delta). As such, Delta will evaluate the existing site data and provide all future recommendations regarding additional work at the site.

FIGURES

©TRC

TABLE

©TRC

Table 1 GRAB GROUNDWATER ANALYTICAL RESULTS 76 Service Station #3072 2445 Castro Valley Boulevard, Castro Valley, CA

Sample ID	Date Sampled	Sample Depth (fbg)	TPH-d EPA 8015	ТРРН	Benzene	Toluene		Total Xylenes centration		TAME Method 8: grams per 1		DIPE	EDB	ETBE	1,2-DCA	Ethanol
Shallow Wat	er-Bearing.	Zone														
CPT-2	5/3/2007	36	500	<50	<0.50	<0.50	<0.50	<0.50	6.3	<0,50	54	<0.50	<0.50	<0.50	<0.50	<250
CPT-5	5/3/2007	22	280	<50	<0.50	<0.50	<0.50	<0.50	5.2	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<250
Deeper Wate	er-Bearing Z	lone														
CPT-1	5/2/2007	55	490	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<250
CPT-4	5/2/2007	51	800	<50	<0.50	<0.50	<0.50	<0.50	10	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<250
	= total purgal = methyl teria	ble petroleur ary butyl eth yl methyl eth yl alcohol						EDB ETBE 1,2-DCA fbg N/A	= ethyl t = 1,2-dic = feet be = not ar	oromoethane ertiary butyl hloroethane low grade alysed oplicable	ether	in the second	lan kata da kat	-,		

APPENDIX A

Drilling Permits

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 04/19/2007 By jamesy

	P	ermits Valid from 05/02/2007 to 05/04/2007
Application Id: Site Location:	1176398684583 76 Service Station #3072	City of Project Site:Castro Valley
Project Start Date:	2445 Castro Valley Boulevard 05/02/2007	Completion Date:05/04/2007
Applicant:	TRC - Monika Krupa	Phone: 925-688-2482
Property Owner:	1590 Solano Way, Suite A, Concord, CA 94520 Jagdish and Janki Moorjani 2445 Castro Valley Boulevard, Castro Valley, CA 94	Phone:
Client:	Eric Hetrick ConocoPhillips, 76 Broadway, Sacramento, CA 958	Phone:

 Total Due:
 \$200.00

 Receipt Number: WR2007-0173
 Total Amount Paid:
 \$200.00

 Payer Name : TRC Companis, Inc.
 Paid By: CHECK
 PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Geotechnical Study/CPT's - 5 Boreholes Driller: Gregg Drilling and Testing, Inc. - Lic #: 485165 - Method: CPT

Work Total: \$200.00

Permit Numbers: W2007-0531

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2007-	04/19/2007	07/31/2007	5	4.00 in.	60.00 ft
0531					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

6. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this

Alameda County Public Works Agency - Water Resources Well Permit

permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

4

APPENDIX B

CPT Site Investigation Report (Gregg Drilling)

GREGG IN SITU, INC.

GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

May 7, 2007

TRC Solutions Attn: Keith Woodburne 1590 Solano Way, Suite A Concord, California 94520

Subject: CPT Site Investigation Conoco Phillips #3072 Castro Valley, California GREGG Project Number: 07-137MA

Dear Mr. Woodburne:

The following report presents the results of GREGG Drilling & Testing's Cone Penetration Test investigation for the above referenced site. The following testing services were performed:

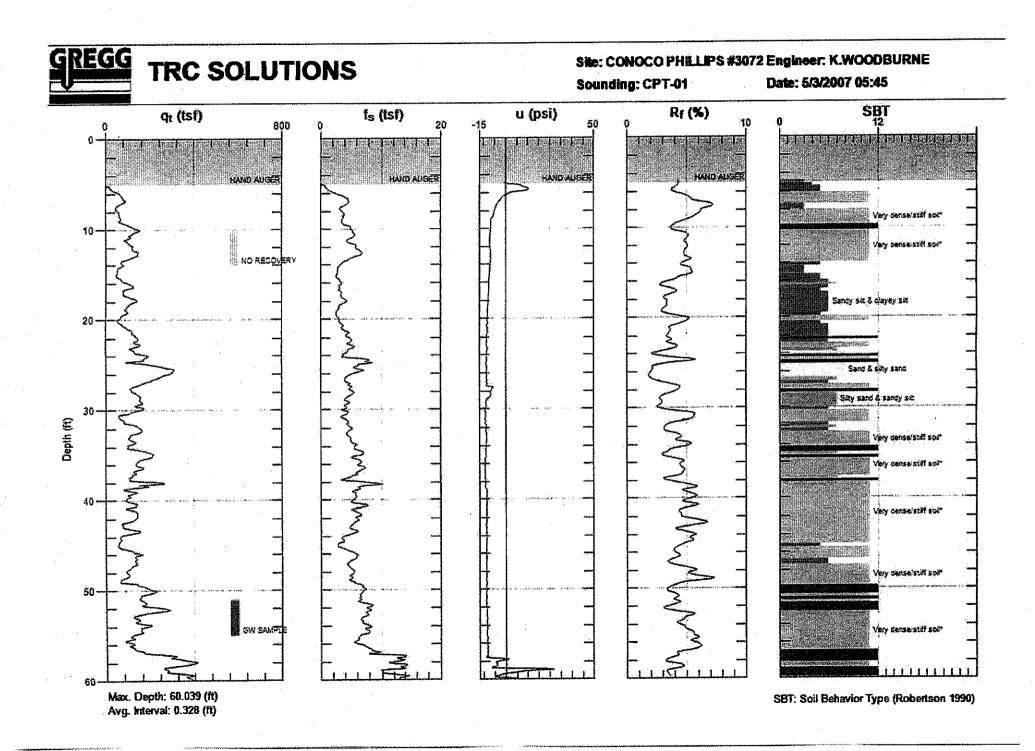
1	Cone Penetration Tests	(CPTU)	\boxtimes
2	Pore Pressure Dissipation Tests	(PPD)	\boxtimes
3	Seismic Cone Penetration Tests	(SCPTU)	
4	Resistivity Cone Penetration Tests	(RCPTU)	
5	UVIF Cone Penetration Tests	(UVIFCPTU)	. 🗔
6	Groundwater Sampling	(GWS)	\boxtimes
7	Soil Sampling	(SS)	
8	Vapor Sampling	(VS)	
9	Vane Shear Testing	(VST)	
10	SPT Energy Calibration	(SPTE)	

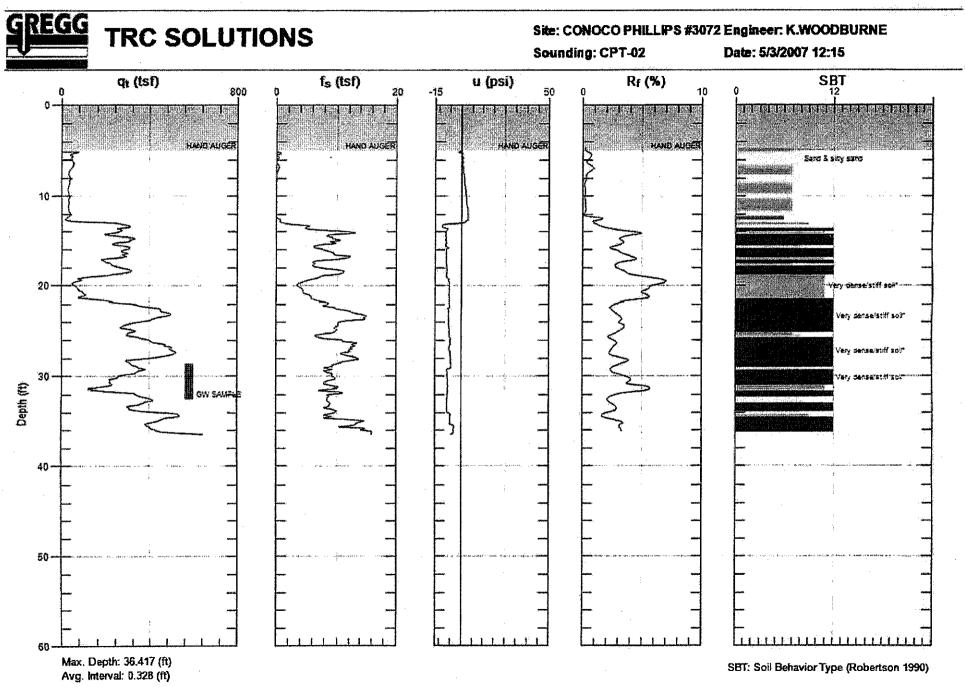
A list of reference papers providing additional background on the specific tests conducted is provided in the bibliography following the text of the report. If you would like a copy of any of these publications or should you have any questions or comments regarding the contents of this report, please do not hesitate to contact our office at (925) 313-5800.

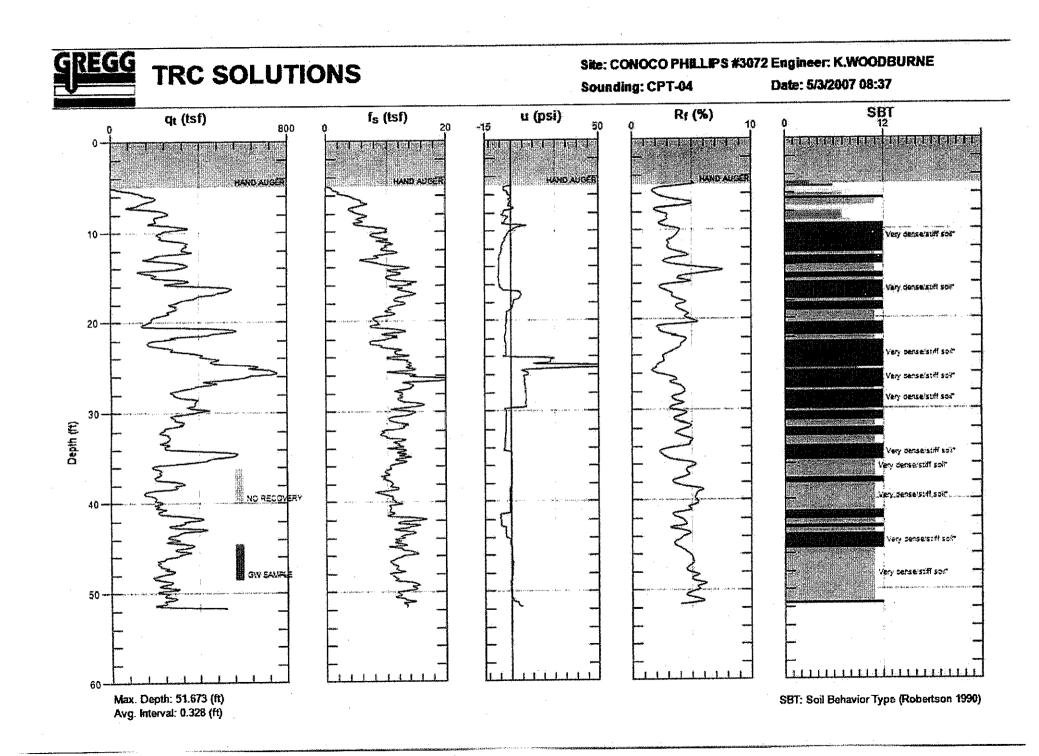
Sincerely, GREGG Drilling & Testing, Inc.

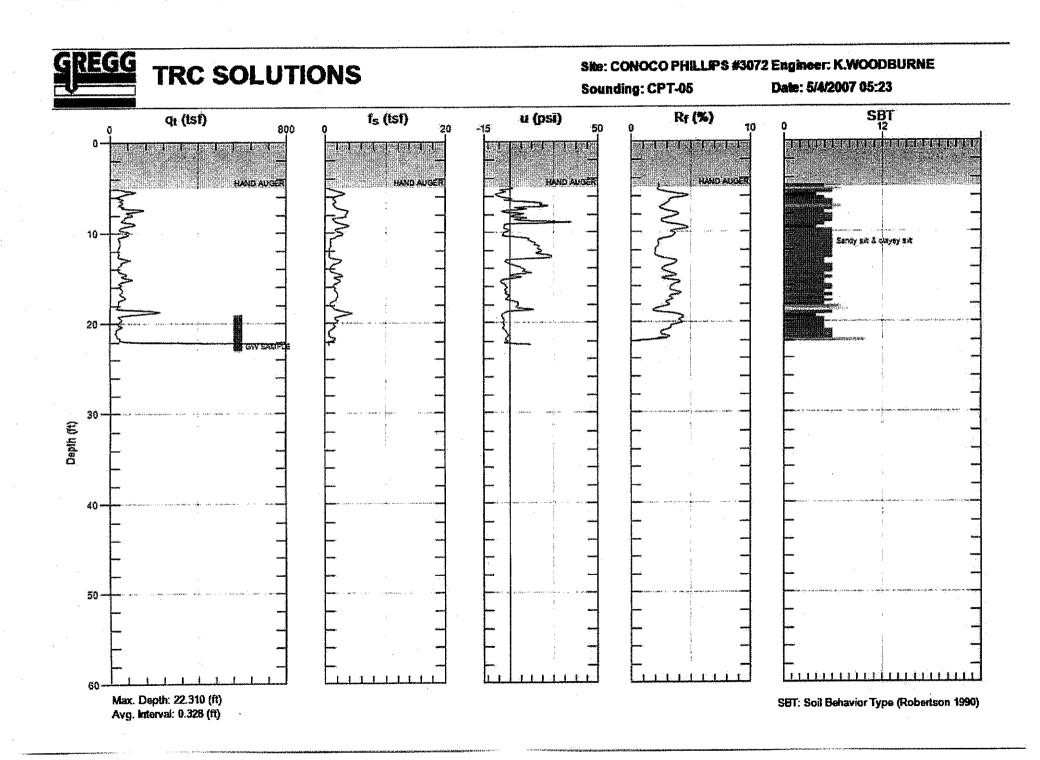
Mary Walden Operations Manager

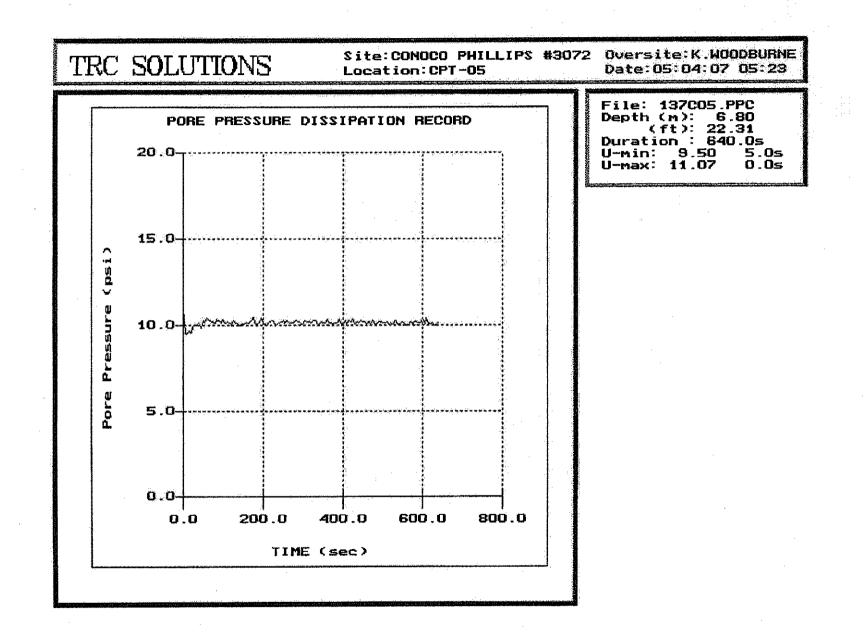
GREGG IN SITU, INC.


GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

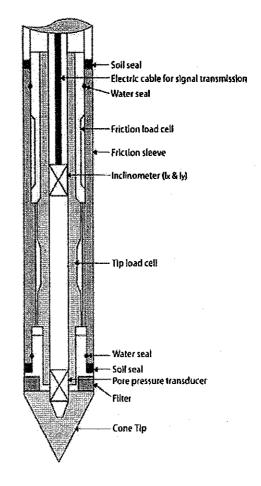

Cone Penetration Test Sounding Summary


-Table 1-


CPT Sounding Identification	Date	Termination Depth (Feet)	Depth of Groundwater Samples (Feet)	Depth of Soil Samples (Feet)	Depth of Pore Pressure Dissipation Tests (Feet)
CPT-01	5/03/07	60	14NR, 55	· •	
CPT-02	5/03/07	36	32.5	· · · ·	-
CPT-04	5/03/07	51	40NR, 48.5	-	-
CPT-05	5/04/07	22	23	_	22.3
		· · · · · · · · · · · · · · · · · · ·			**************************************
······································					
		, 	·		
	-	·····			· · · · · · · · · · · · · · · · · · ·
					· · · · · · · · · · · · · · · · · · ·
			<u> чициндицинд от </u>		
			·		······································


950 Howe Rd • Martinez, California 94553 • (925) 313-5800 • FAX (925) 313-0302 OTHER OFFICES: LOS ANGELES • HOUSTON • SOUTH CAROLINA www.greggdrilling.com

APPENDIX CPT



Cone Penetration Testing Procedure (CPT)

Gregg Drilling & Testing, Inc. carries out all Cone Penetration Tests (CPT) using an integrated electronic cone system, *Figure CPT*. The soundings were conducted using a 20 ton capacity cone with a tip area of 15 cm² and a friction sleeve area of 225 cm². The cone is designed with an equal end area friction sleeve and a tip end area ratio of 0.85.

The cone takes measurements of cone bearing (q_c), sleeve friction (f_s) and penetration pore water pressure (u_2) at 5cm intervals during penetration to provide a nearly continuous hydrogeologic log. CPT data reduction and interpretation is performed in real time facilitating on-site decision making. The above mentioned parameters are stored on disk for further analysis and reference. All CPT soundings are performed in accordance with revised (2002) ASTM standards (D 5778-95).

The cone also contains a porous filter element located directly behind the cone tip (u_2) , Figure CPT. It consists of porous plastic and is 5.0mm thick. The filter element is used to obtain penetration pore pressure as the cone is advanced as well as Pore Pressure Dissipation Tests (PPDT's) during appropriate pauses in penetration. It should be noted that prior to penetration, the element is fully saturated with silicon oil under vacuum pressure to ensure accurate and fast dissipation.

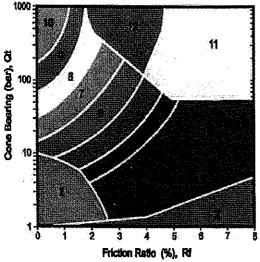
Figure CPT

When the soundings are complete, the test holes are grouted using a Gregg In Situ support rig. The grouting procedures generally consist of pushing a hollow CPT rod with a "knock out" plug to the termination depth of the test hole. Grout is then pumped under pressure as the tremie pipe is pulled from the hole. Disruption or further contamination to the site is therefore minimized.

Cone Penetration Test Data & Interpretation

Soil behavior type and stratigraphic interpretation is based on relationships between cone bearing (q_c) , sleeve friction (f_s) , and pore water pressure (u_2) . The friction ratio (R_f) is a calculated parameter defined by $100f_s/q_c$ and is used to infer soil behavior type. Generally: Cohesive soils (clays)

- High friction ratio (R_f) due to small cone bearing (q_c)
- Generate large excess pore water pressures (*u*₂)


Cohesionless soils (sands)

- Low friction ratio (R_f) due to large cone bearing (q_c)
- Generate very little excess pore water pressures (*u*₂)

A complete set of baseline readings are taken prior to and at the completion of each sounding to determine temperature shifts and any zero load offsets. Corrections for temperature shifts and zero load offsets can be extremely important, especially when the recorded loads are relatively small. In sandy soils, however, these corrections are generally negligible.

The cone penetration test data collected from your site is presented in graphical form in Appendix CPT. The data includes CPT logs of measured soil parameters, computer calculations of interpreted soil behavior types (SBT), and additional geotechnical parameters. A summary of locations and depths is available in Table 1. Note that all penetration depths referenced in the data are with respect to the existing ground surface.

Soil interpretation for this project was conducted using recent correlations developed by Robertson et al, 1990, *Figure SBT*. Note that it is not always possible to clearly identify a soil type based solely on q_c , f_s , and u_2 . In these situations, experience, judgment, and an assessment of the pore pressure dissipation data should be used to infer the soil behavior type.

ZONE	Qt/N		SBT
1	2		Sensitive, fine grained
2	1		Organic materials
3	1		Clay
4	1.5		Silty clay to clay
5	2		Clayey silt to silty clay
6	2.5		Sandy silt to clayey silt
7	3		Silty sand to sandy silt
8	4		Sand to silty sand
9	5	$\cdot \cdot $	Sand
10	6		Gravely sand to sand
11	1		Very stiff fine grained*
12	2		Sand to clayey sand*

ver consolidated or cemented

Figure SBT

APPENDIX PPD

Pore Pressure Dissipation Tests (PPDT)

Pore Pressure Dissipation Tests (PPDT's) conducted at various intervals measured hydrostatic water pressures and determined the approximate depth of the ground water table. A PPDT is conducted when the cone is halted at specific intervals determined by the field representative. The variation of the penetration pore pressure (u) with time is measured behind the tip of the cone and recorded by a computer system. Pore pressure dissipation data can be interpreted to provide estimates of:

- Equilibrium piezometric pressure
- Phreatic Surface
- In situ horizontal coefficient of consolidation (c_h)
- In situ horizontal coefficient of permeability (k_h)

In order to correctly interpret the equilibrium piezometric pressure and/or the phreatic surface, the pore pressure must be monitored until such time as there is no variation in pore pressure with time, *Figure PPDT*. This time is commonly referred to as t_{100} , the point at which 100% of the excess pore pressure has dissipated.

A complete reference on pore pressure dissipation tests is presented by Robertson et al. 1992.

A summary of the pore pressure dissipation tests is summarized in Table 1. Pore pressure dissipation data is presented in graphical form in Appendix PPDT.

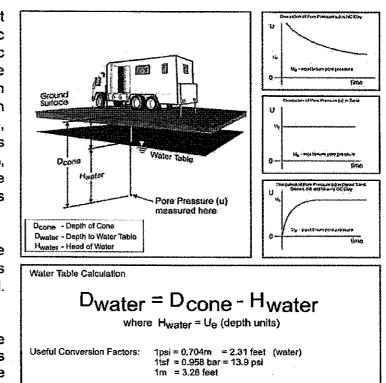


Figure PPDT

APPENDIX GWS

Groundwater Sampling (GWS)

Gregg In Situ, Inc. conducts groundwater sampling using a Hydropunch[®] type groundwater sampler, *Figure GWS*. The groundwater sampler has a retrievable stainless steel or disposable PVC screen with steel drop off tip. This allows for samples to be taken at multiple depth intervals within the same sounding location. In areas of slower water recharge, provisions may be made to set temporary PVC well screens during sampling to allow the drill rig to advance to the next sample location while the groundwater is allowed to infiltrate.

The groundwater sampler operates by advancing 1 34 inch hollow push rods with the filter tip in a closed configuration to the base of the desired sampling interval. Once at the desired sample depth, the push rods are retracted; exposing the encased filter screen and allowing groundwater to infiltrate hydrostatically from the formation into the inlet screen. A small diameter bailer (approximately 1/2 or 3/4 inch) is lowered through the push rods into the screen section for sample collection. The number of downhole trips with the bailer and time necessary to complete the sample collection at each depth interval is a function of sampling protocols, volume requirements, and the yield characteristics and storage capacity of the formation. Upon completion of sample collection, the push rods and sampler, with the exception of the PVC screen and steel drop off tip are retrieved to the ground surface, decontaminated and prepared for the next sampling event.

A summary of the groundwater samples collected, including the sampling date, depth and location identification, is presented in Table 1 and the corresponding CPT plot.

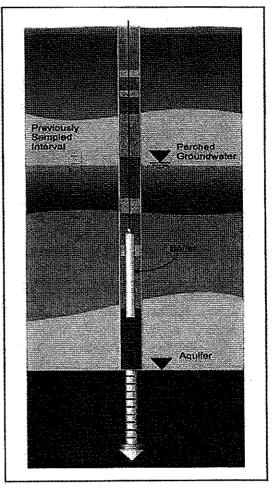


Figure GWS

For a detailed reference on direct push groundwater sampling, refer to Zemo et. al., 1992.

GREGG IN SITU, INC.

GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

Bibliography

Lunne, T., Robertson, P.K. and Powell, J.J.M., "Cone Penetration Testing in Geotechnical Practice" E & FN Spon. ISBN 0 419 23750, 1997

Roberston, P.K., "Soit Classification using the Cone Penetration Test", Canadian Geotechnical Journal, Vol. 27, 1990 pp. 151-158.

Mayne, P.W., "NHI (2002) Manual on Subsurface Investigations: Geotechnical Site Characterization", available through <u>www.ce.gatech.edu/~geosys/Facuity/Mayne/papers/index.html</u>, Section 5.3, pp. 107-112.

Robertson, P.K., R.G. Campanella, D. Gillespie and A. Rice, "Seismic CPT to Measure In-Situ Shear Wave Velocity", Journal of Geotechnical Engineering ASCE, Vol. 112, No. 8, 1986 pp. 791-803.

Robertson, P.K., Sully, J., Woeller, D.J., Lunne, T., Powell, J.J.M., and Gillespie, D.J., "Guidelines for Estimating Consolidation Parameters in Soils from Piezocone Tests", Canadian Geotechnical Journal, Vol. 29, No. 4, August 1992, pp. 539-550.

Robertson, P.K., T. Lunne and J.J.M. Powell, "Geo-Environmental Application of Penetration Testing", Geotechnical Site Characterization, Robertson & Mayne (editors), 1998 Balkema, Rotterdam, ISBN 90 5410 939 4 pp 35-47.

Campanella, R.G. and I. Weemees, "Development and Use of An Electrical Resistivity Cone for Groundwater Contamination Studies", Canadian Geotechnical Journal, Vol. 27 No. 5, 1990 pp. 557-567.

DeGroot, D.J. and A.J. Lutenegger, "Reliability of Soil Gas Sampling and Characterization Techniques", International Site Characterization Conference - Atlanta, 1998.

Woeller, D.J., P.K. Robertson, T.J. Boyd and Dave Thomas, "Detection of Polyaromatic Hydrocarbon Contaminants Using the UVIF-CPT", 53rd Canadian Geotechnical Conference Montreal, QC October pp. 733-739, 2000.

Zemo, D.A., T.A. Delfino, J.D. Gallinatti, V.A. Baker and L.R. Hilpert, "Field Comparison of Analytical Results from Discrete-Depth Groundwater Samplers" BAT EnviroProbe and QED HydroPunch, Sixth national Outdoor Action Conference, Las Vegas, Nevada Proceedings, 1992, pp 299-312.

Copies of ASTM Standards are available through www.astm.org

APPENDIX C

Laboratory Analytical Reports and Chain of Custody Records

Date of Report: 05/18/2007

Keith Woodburne

TRC 1590 Solano Way, Suite A Concord, CA 94520

RE: 3072 BC Work Order: 0705306

Enclosed are the results of analyses for samples received by the laboratory on 05/07/2007 22:35. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Vanessa Hooker Client Service Rep Authorized Signature

TRC 1590 Solano Way, Suite A Concord, CA 94520			Project: 3072 Project Number: [none] Project Manager: Keith Woodburne		Reported: 05/18/2007 10:30					
		Laborat	tory / Client Sample Cross Refe	erence						
Laboratory	Client Sample Informati	òn'								
0705306-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	3072 CPT-1 CPT-1 J. Keams of TRCC	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	05/07/2007 22:35 05/02/2007 09:08 	Delivery Work Order: Giobal ID: Matrix: W Samle QC Type (SACode): CS Cooler ID:					
0705306-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	3072 CPT-4 CPT-4 J. Kearns of TRCC	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	05/07/2007 22:35 05/02/2007 13:27 Water	Delivery Work Order: Global ID: Matrix: W Samle QC Type (SACode): CS Cooler ID:					
0705306-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3072 CPT-2 CPT-2 J. Kearns of TRCC	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	05/07/2007 22:35 05/03/2007 07:25 Water	Delivery Work Order: Global ID: Matrix: W Samle QC Type (SACode): CS Cooler ID:					
0705306-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	3072 CPT-5 CPT-5 J. Keams of TRCC	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	05/07/2007 22:35 05/03/2007 09:05 Water	Delivery Work Order: Global ID: Matrix: W Samle QC Type (SACode): CS Cooler ID:					
0705306-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	3072 COMB COMB J. Keams of TRCC	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	05/07/2007 22:35 05/03/2007 09:30 Solids	Delivery Work Order: Global ID: Matrix: W Samle QC Type (SACode): CS Cooler ID:					

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 1 of 23

			· ·									an an taon An an taon						
TRC 1590 Solano Way, Suite A Concord, CA 94520				Projec Project Numbe Project Manage	r: [none]	odburne				Repo	Reported: 05/18/2007 10:3							
	V	olati	le Organic	: Analys	sis (E	PA Meth	od 8	260)			· · · ·							
BCL Sample ID: 0705306-01	Client Sampl	e Name:	3072, CPT-1, CP	T-1, 5/2/2007	9:08:00AM,	J. Kearns					· · · ·							
Constituent	Result	Units	PQL MD	L Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Blas	Lab Quals						
Benzene	ND	ug/L	0.50	EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443	ND	Hill Conterna e						
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	4	BQE0443	ND							
1,2-Dichloroethane	ND	ug/L	0,50	EPA-8260	05/08/07	05/08/07 23:40	SOU	MS-V10	1	BQE0443	ND							
Ethylbenzene	ND	ug/L	0.50	EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	-1	BQE0443	ND							
Methyl t-butyl ether	ND	ug/L	0.50	EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	: 1 :	BQE0443	ND							
Toluene	ND	ug/L	0,50	EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443	ND							
Total Xylenes	ND	ug/L	Q,50	EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443	ND							
t-Amyl Methyl ether	ND	ug/Ľ	0.50	EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	.1	BQE0443	ND							
t-Butyl alcohol	ND	ug/Ľ	10	EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1.	BQE0443	ND							
Diisopropyl ether	ND	ug/L	0,50	EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443	ND							
Ethanol	ND	ug/L	250	EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443	ND							
Ethyl t-butyl ether	ND	ug/L.	0,50	EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443	ND							
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	: .	BQE0443	ND	· · · · · · · · · · · · · · · · · · ·						
1.2-Dichloroethane-d4 (Surrogate)	94.7	%	76 - 114 (LCL - UCL)	EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443								
Toluene-d8 (Surrogate)	95.6	%	88 - 110 (LCL - UCL)	EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443								
4-Bromofluorobenzene (Surrogate)	103	%	86 - 115 (LCL - UCL)	EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443		· · · ·						

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 2 of 23

TRC					Projeci	t: 3072					Repo	rted: 05/	18/2007 10:3
1590 Solano Way, Suite A					oject Number				,				
Concord, CA 94520					oject Managei							· · · · · · · · · · · · · · · · · · ·	ىكى رى رى ئى يەك
			Total	Petr	oleum	Hydr	ocarbon	S					
BCL Sample ID: 0705306-0	01 Client Samp	le Name:	3072, CP	T-1, CPT-1	I, 5/2/2007 S):08:00AM,	J. Kearns						
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	POL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	490	ug/L	50		Luft/TPHd	05/10/07	05/17/07 07:05	MRW	GC-5	1	BQE1132	ND	
Tetracosane (Surrogate)	55,4	%	42 - 125 (LC		Luft/TPHd	05/10/07	05/17/07 07:05	MRW	GC-5.	ť.	BQE1132		100,000,000,000

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 3 of 23

TRC 1590 Solano Way, Suite A Concord, CA 94520						Project oject Number ject Manager	• •	odburne)	Repo	rted: 05/18	/2007 10:3
<u></u>		V	olatil	e Orga	nic /	Analys	is (E	PA Meth	od 82	260)				:
BCL Sample ID: 07	05306-02	Client Sampl	e Name:	3072, CPT-	4, CPT-4	, 5/2/2007 1	:27:00PM,). Kearns						
Constituent		Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quais
Benzene		ND	ug/L	0.50		EPÁ-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	, 1 -	BQE0443	ND	
1,2-Dichlorcethane		ND	ug/L	0,50		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	¥	BQE0443	ND	
Ethyibenzene		ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	- T:	BQE0443	ND	
Methyl t-butyl ether		10	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
Toluene		ND	ug/Ľ	0.50		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
Total Xylenes		ND	ug/L	0,50	,	EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
t-Amyl Methyl ether		ND	ug/L	0,50	64164_14_242_121_200000-00	EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
t-Butyl alcohol		ND	ug/L	10		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
Diisopropyl ether		ND	ug/L.	0.50		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
Ethanol		ND	ug/L	250		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10		BQE0443	ND	
1,2-Dichloroethane-d4 (Surrog	gate)	95,3	%	76 - 114 (LCL	- UCL)	EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443		
Toluene-d8 (Surrogate)	9-9	96.4	%	88 - 110 (LCL	- UCL)	EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	·	
4-Bromofluorobenzene (Surro	gate)	103	%	86 - 115 (LCL	- UCL)	EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

Page 4 of 23

									1. and 1. and 1.			Et en en de la composition de
				Projec	t: 3072				. (Repo	rted:	05/18/2007 10:30
			Pr	oject Numbe	r: [none]							:
			Pro	oject Manage	r: Keith Wo	odburne						
		Total	Petr	oleum	Hydr	ocarbon	S					
Client Sample	e Name:	3072, CPT	-4, CPT-4	4, 5/2/2007	1:27:00PM,	J. Kearns						
	****	<u></u>			Ргер	Run		instru-		QC	MB	Lab
Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Blas	Quals
800	ug/L	50		LuivTPHd	05/10/07	05/17/07 07:19	MRW	GC-5	1	BQE1132	ND	
68,5	%	42 - 125 (LCL		Luft/TPHd	05/10/07	05/17/07 07:19	MRW	GC-5	4.	BQE1132		
	Result 800	Client Sample Name: Result Units 800 ug/L	Client Sample Name: 3072, CPT Result Units PQL 800 ug/L 50	Pro Total Petr Client Sample Name: 3072, CPT-4, CPT-4 Result Units PQL MDL 800 ug/L 50	Project Numbe Project Manage Total Petroleum Client Sample Name: 3072, CPT-4, CPT-4, 5/2/2007 <u>Result Units PQL MDL Method</u> 800 ug/L 50 Luft/TPHd	Total Petroleum Hydr client Sample Name: 3072, CPT-4, CPT-4, 5/2/2007 1:27:00PM, Result Units PQL MDL Prep 800 ug/L 50 Luit/TPHd 05/10/07	Project Number: [none] Project Manager: Keith Woodburne Total Petroleum Hydrocarbon Client Sample Name: 3072, CPT-4, CPT-4, 5/2/2007 1:27:00PM, J. Keams Result Units PQL MDL Method Date Date/Time 800 ug/L 50 Luft/TPHd 05/10/07 05/17/07 07:19	Project Number: [none] Project Manager: Keith Woodburne Total Petroleum Hydrocarbons Client Sample Name: 3072, CPT-4, CPT-4, 5/2/2007 1:27:00PM, J. Kearns Prep Run Result Units PQL MDL Method Date Date/Time Analyst 800 ug/L 50 Luft/TPHd 05/10/07 05/17/07 07:19 MRW	Project Number: [none] Project Manager: Keith Woodburne Total Petroleum Hydrocarbons Client Sample Name: 3072, CPT-4, CPT-4, 5/2/2007 1:27:00PM, J. Kearns Result Units PQL MDL. Method Date Date/Time Analyst ment 1D 800 ug/L 50 Luit/TPHd 05/10/07 05/17/07 07:19 MRW GC-5	Project: 3072 Project Number: [none] Project Manager: Keith Woodburne Total Petroleum Hydrocarbons Client Sample Name: 3072, CPT-4, CPT-4, 5/2/2007 1:27:00PM, J. Kearns <u>Result Units PQL MDL Method Date Date/Time Analyst ment ID Dilution</u> 800 ug/L 50 Luft/TPHd 05/10/07 05/17/07 07:19 MRW GC-5 1	Project Number: [none] Project Manager: Keith Woodburne Total Petroleum Hydrocarbons Client Sample Name: 3072, CPT-4, CPT-4, 5/2/2007 1:27:00PM, J. Kearns Result Units PQL MDL Method Date Date/Time Analyst ment 1D Dillution Batch ID 800 ug/L 50 Luit/TPHd 05/10/07 05/17/07 07:19 MRW GC-5 1 BQE1132:	Project: 3072 Reported: Project Number: [none] Project Number: [none] Project Manager: Keith Woodburne Project Manager: Keith Woodburne Collent Sample Name: 3072, CPT-4, CPT-4, 5/2/2007 1:27:00PM, J. Kearns Prep Run Instru- QC MB Result Units PQL MDL Method Date/Time Analyst ment ID Dilution Batch ID Blas 800 ug/4 S071/07 OS/10/07 OS/17/07 07:19 MRW GC-5 1 Blas S00 ug/4 S01/10/07 OS/11/07 OS/11/07

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 5 of 23

										·		<u> </u>	1
TRC 1590 Solano Way, Suite A Concord, CA 94520		1979 - 1979 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		Pro	roject Numbe oject Manage	r: Keith Wo				······································	Repo	rted: 05/1	18/2007 10:30
		Volati	le Orga	nic /	Analys	sis (E	PA Meth	od 8	260)				
BCL Sample ID: 0705300	5-03 Client Sam	ple Name:	3072, CPT-	2, CPT-2	2, 5/3/2007	7:25:00AM,	J. Kearns						
Constituent	Result ND	Units ug/L	PQL 0.50	MDL.	Method EPA-8260	Prep Date 05/08/07	Run Date/Time 05/09/07 00:16	Analyst	Instru- ment ID MS-V10	Dilution	QC Batch ID BQE0443	MB Blas	Lab Quais
Benzene 1.2-Dibromoethane	ND	ug/L	0.50	<u></u>	EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	ND	
1,2-Dichloroethane	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	Ϋ́.	BQE0443	ND	
Ethylbenzene	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	ND	
Methyl t-butyl ether	6,3	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	ND	
Toluene	ND	ug/L	0,50		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	ND	
Total Xylenes	ND	ug/L	0,50		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	4	BQE0443	ND	
t-Amyl Methyl ether	ND	ug/L	0,50		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	ND	
t-Butyl alcohol	54	ug/L	10		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1.	BQE0443	ND	
Diisopropyl ether	ND	ug/L	0,50		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	ND	
Ethanol	ND	ug/L	250		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	NĎ.	
Ethyl t-butyl ether	ND	ug/L	0,50	and the second	EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50		EPA-6260	05/08/07	05/09/07 00:16	SDU	MS-V10	۰ İ	BQE0443	ND	
1,2-Dichloroethane-d4 (Surrogate)	94.7	%	76-114 (LCL	UCL)	EPA-8260	05/08/07	05/09/07 00:16	SOU	MS-V10	1:	BQE0443		•••
Toluene-d8 (Surrogate)	93.3	%	88-110 (LCL	UCL)	EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443		
4-Bromofluorobenzene (Surrogate)	101	%	86 - 115 (LCL -	UCL)	EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443		
						1.							

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC					Project	t: 3072				٤	Repo	rted:	05/18/2007	10:3
1590 Solano Way, Suite A				Pr	oject Number	[none]								
Concord, CA 94520	· .			Pro	ject Managei	: Keith Wo	odburne							
			Total	Petr	oleum	Hydr	ocarbon	S			·			
											usuu i	<u> </u>		
BCL Sample ID: 0705306-03	Client Sampl	e Name:	3072, CP	T-2, CPT-2	2, 5/3/2007 7	7:25:00AM,	J. Keams							
BCL Sample ID: 0705306-03	Client Sampl	e Name:	3072, CP	T-2, CPT-2	2, 5/3/2007 7	7:25:00AM, Prep	J. Kearns Run		Instru-		QC	ME	B L	.ab
BCL Sample ID: 0705306-03	Client Sampl	e Name: Units	3072, CP PQL	T-2, CPT-2 MDL	2, 5/3/2007 7 Method			Analyst	Instru- ment ID	Dilution	QC Batch ID	ME Bia		.ab Jais
						Prep	Run	Analyst MRW		Dilution			ıs Qı	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 7 of 23

TRC 1590 Solano Way, Suite A Concord, CA 94520					Project ject Number ect Manager		odburne			3	Repo	rted: 05/18	/2007 10:30	
unan menyeran sa ata kana menyeran sa kana dan dan dan sa kana dan dan dan sa kana dan dan dan dan dan dan dan	V	olati	le Orgar	nic A	nalys	is (E	PA Meth	od 82	260)			· · · · · · · · · · · · · · · · · · ·		
BCL Sample ID: 0705306-04	Client Sampl	Client Sample Name:		, CPT-5,	5/3/2007 9	:05:00AM, J. Kearns								
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Blas	Lab Quals	
Benzene	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	4	BQE0443	ND		
1,2-Dibromoethane	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND		
1,2-Dichloroethane	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	Me -	BQE0443	ND		
Ethylbenzene	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND		
Vethyl t-butyl ether	5.2	ug/L	0,50	·····	EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	Ť	BQE0443	ND		
Foluene	ND	ug/L	0.50	· · · ·	EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND	-	
Total Xylenes	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND		
-Amyl Methyl ether	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND		
-Butyl alcohol	ND	ug/L	10		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND	···· ;	
Diisopropyl ether	ND	ug/L	0,50		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND		
Ethanol	ND	ug/L	250	y firstele de deservição de la companya	EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND		
Ethyl t-butyl ether	ND	ug/L	0.50	· · · · ·	EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND		
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1 1	BQE0443	ND		
1,2-Dichloroethane-d4 (Surrogate)	97,3	%	76 - 114 (LCL -	UCL)	EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	1	· · · · · · · · · · · · · · · · · · ·	
Foluene-d8 (Surrogate)	94.4	%	88 - 110 (LCL -	UCL)	EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	·····	· : · · ·	
4-Bromofluorobenzene (Surrogate)	103	%	86 - 115 (LCL -		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	*1	BQE0443			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety,

Page 8 of 23

						<u> </u>							· ·	
TRC						Projec	t: 3072					Repo	orted:	05/18/2007 10:
1590 Solano Way, S	uite A				Pr	oject Number	r [none]							
Concord, CA 94520					Pro	oject Manage	r: Keith Wo	odburne						
				Tota	l Petr	oleum	Hydr	ocarbon	S					
BCL Sample ID:	0705306-04	Client Sample	e Name:	3072, CP	T-5, CPT-	5, 5/3/2007	9:05:00AM,	J. Kearns			·			<u></u>
							Ргер	Run		instru-		QC.	MB	Lab
Constituent		Result	Units	POL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics	(C12 - C24)	280	ug/L	50		LUNTPHO	05/10/07	05/17/07 07:46	MRW	GC-5	1	BQE1192	ND	
Tetracosane (Surrogate	.)	80,1	%	42 - 125 (LC	L-UCL)	Luit/TPHd	05/10/07	05/17/07 07:46	MRW	GC-5	1	BQE1132		·

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 9 of 23

1590 Solano Way, Suite A				Projec	t: 3072		1.1.1			🤅 Repo	rted: 05/1	8/2007 10:30		
		Project Number: [none]												
Concord, CA 94520	Project Manager: Keith Woodburne													
<u>ner de la la la la la construction de la const</u>	۷	olatil	e Organio	c Analys	is (E	PA Meth	od 82	260)						
BCL Sample ID: 0705306-05	Client Sample Name:		3072, COMB, C	OMB, 5/3/2007	9:30:00AM, J. Keams		<u>alimenan de la composition de</u>							
	-				Prep	Run		Instru-		QC	MB	Lab		
Sonstituent	Result	Units	PQL MI		Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Blas	Quais		
Senzene	ND	mg/kg	0.025	EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ŅD	A01,Z1		
1,2-Dibromoethane	ND	mg/kg	0.025	EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1		
1,2-Dichloroethane	ND	mg/kg	0.025	EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1		
Ethylbenzene	ND	mg/kg	0.025	EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1		
Methyl t-butyl ether	ND	mg/kg	0.025	EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1		
foluene	ND	mg/kg	0.025	EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1		
Fotal Xylenes	ND	mg/kg	0.050	EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1		
-Amyl Methyl ether	ND	mg/kg	0.0050	EPA-8260	05/08/07	05/11/07 22:56	GAW	MS-V3	5	BQE0486	ND	A01,21		
-Butyl alcohol	ND	mg/kg	0,25	EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1		
Dilsopropyl ether	ND	mg/kg	0.025	EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1		
Ethanol	ND	mg/kg	5.0	EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1		
Ethyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1		
Fotal Purgeable Petroleum Hydrocarbons	ND	mg/kg	1.0	EPA-8260	05/08/07	05/11/07 22:56	CAŴ	MS-V3	5	BQE0486	ND	A01, Z1		
I,2-Dichloroethane-d4 (Surrogate)	99,6	%	70 - 121 (LCL - UCL	.) EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	· · · · · · · · · · · · · · · · · · ·			
Foluene-d6 (Surrogate)	97.7	%	81 - 117 (LCL - UCL	.) EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486				
I-Bromofluorobenzene (Surrogate)	B4.6	%	74 - 121 (LCL - UCL	.) EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486				

Page 10 of 23

		· .				· · · · · · · · · · · · · · · · · · ·				<u></u>	2	:	
		-		Project	: 3072					, R	eported:	05/18/2007	10:30
			Pr	oject Number	[none]					÷ .			
			Pro	ject Manager	Keith Wo	odburne						:	
		Tota	l Petr	oleum	Hydr	ocarbon	S			· ::		-	
Client Sampl	e Name:	3072, CC	MB, COME	3, 5/3/2007	9:30:00AM,	J. Kearns	and the second						
					Ргер	Run		Instru-		QC	ME	3 L	ab
Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch II	D Bia	s Qu	lals
ND	mg/kg	1400		Luft/TPHd	05/11/07	05/17/07 09:50	MRW	GC-5	136.36	BQE103	IS NC)	
.102	%	58 - 120 (LC	L - UCL)	Luft/TPHd	05/11/07	05/17/07 09:50	MRW	GC-5	136.36	BQE103	9		
	Result	ND mg/kg	Client Sample Name: 3072, CC <u>Result Units PQL</u> ND mg/kg 1400	Pro Total Petr Client Sample Name: 3072, COMB, COMI Result Units PQL MDL ND mg/kg 1400	Project Number Project Manager Total Petroleum Client Sample Name: 3072, COMB, COMB, 5/3/2007 Result Units PQL MDL Method ND mg/kg 1400 Luft/TPHd	Total Petroleum Hydr Client Sample Name: 3072, COMB, COMB, 5/3/2007 9:30:00AM, Result Units PQL MDL Method Date ND mg/kg 1400 Luft/TPHd 05/11/07	Project Number: [none] Project Manager: Keith Woodburne Total Petroleum Hydrocarbon Client Sample Name: 3072, COMB, COMB, 5/3/2007 9:30:00AM, J. Kearns Result Units PQL MDL Method Date Date/Time ND mg/kg 1400 Luft/TPHd 05/11/07 05/17/07 09:50	Project Number: [none] Project Manager: Keith Woodburne Total Petroleum Hydrocarbons Client Sample Name: 3072, COMB, COMB, 5/3/2007 9:30:00AM, J. Kearns Result Units PQL MDL Method Date Date/Time Analyst ND mg/kg 1400 Luf/TPHd 05/11/07 05/17/07 09:50 MRW	Project Number: [none] Project Manager: Keith Woodburne Total Petroleum Hydrocarbons Client Sample Name: 3072, COMB, COMB, 5/3/2007 9:30:00AM, J. Kearns Result Units PQL MDL, Method Date Date/Time Analyst ment ID ND mg/kg 1400 Luft/TPHd 05/11/07 05/17/07 09:50 MRW 6C-5	Project: 3072 Project Number: [none] Project Manager: Keith Woodburne Total Petroleum Hydrocarbons Client Sample Name: 3072, COMB, COMB, 5/3/2007 9:30:00AM, J. Kearns Prep Run Instru- Result Units PQL MDL Method Date Date/Time Analyst ment ID DIlution ND mg/kg 1400 Luft/TPHd 05/11/07 05/17/07 09:50 MRW GC-5 136.36	Project: 3072 Project: 3072 Project Number: [none] [none] Project Manager: Keith Woodburne Project Manager: Keith Woodburne Total Petroleum Hydrocarbons Client Sample Name: 3072, COMB, COMB, 5/3/2007 9:30:00AM, J. Kearns Prep Prep Result Units PQL MDL Method Date Date/Time Analyst ment ID Dilution Batch II ND mg/kg 1400 Luft/TPHd 05/11/07 05/17/07 09:50 MRW GC-5 136.36 BQE103	Project: 3072 Reported: Project Number: [none] Project Number: [none] Reported: Reported: Project Manager: Keith Woodburne Total Petroleum Hydrocarbons Market Reported: Reported: Client Sample Name: 3072, COMB, COMB, 5/3/2007 9:30:00AM, J. Kearns Instru- QC ME Result Units PQL MDL Method Date Date/Time Analyst ment ID Dilution Batch ID Bia ND mg/kg 1400 Luft/TPHd 05/11/07 05/17/07 09:50 MRW GC=5 136.36 BOE 1039 ND	Project: 3072 Reported: 05/18/2007 Project Number: [none] Project Manager: Keith Woodburne Colspan="4">Reported: 05/18/2007 Total Petroleum Hydrocarbons Client Sample Name: 3072, COMB, COMB, 5/3/2007 9:30:00AM, J. Kearns Prep Run Instru- QC MB L Result Units PQL MDL Method Date Date/Time Analyst ment ID Dilution Batch ID Bias Qu ND mg/kg 1400 Luft/TPHd 05/11/07 05/17/07 09:50 MRW GC=5 136.36 BOE1039 ND

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 11 of 23

TRC 1590 Solano Way, Concord, CA 94520						Project oject Number ject Manager	[none]	odburne				Repo	orted: C	5/18/2007	10:30
				Tota	al Co	ncentr	ation	s (TTLC)	: ;	·					· · ·
BCL Sample ID: 0705306-05	0705306-05	Client Sampl	e Name:	3072, CO	ИВ, СОМЕ	3,5/3/2007 9	1:30:00AM,	J. Kearns							
							Prep	Run		instru-		QC	MB	La	
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID BQE0461	Bias ND	Qu	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 12 of 23

TRC 1590 Solano Way, Suite A Concord, CA 94520				Project: Project Number: Project Manager:	[none]	me	· · · · · ·			Repo	rted: 05/18/2007 10:30
			-	Analysi	·			50)			
Constituent	Batch (D	QC Sample Type	Source Sample ID	Source Result	Result	Spike Added	Units	RPD	Percent Recovery	<u>Contr</u> RPD	<u>ol Limits</u> Percent Recovery Lab Quals
Benzene	BQE0443	Matrix Spike Matrix Spike Duplicate	0705275-01 0705275-01	0,74000 0,74000	28.380 27.430	25.000 25.000	ug/L ug/L	3.7	111 107	20	70 - 130 70 - 130
Toluene	BQE0443	Matrix Splke Matrix Spike Duplicate	0705275-01 0705275-01	1.9500 1,9500	29.320 29.020	25,000 25,000	ug/L ug/L	0,9	109 108	20	70 - 130 70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BQE0443	Matrix Spike Matrix Spike Duplicate	0705275-01 0705275-01	ND ND	9,3100 9.0800	10,000 10,000	ug/L ug/L		93,1 90,8		76 - 114 76 - 114
Toluene-d8 (Surrogate)	BQE0443	Matrix Spike Matrix Spike Duplicate	0705275-01 0705275-01	ND ND	9.8100 9.8400	10.000 10.000	ug/L ug/L		98.1 98.4		88 - 110 88 - 110
4-Bromofluorobenzene (Surrogate)	BQE0443	Matrix Spike Matrix Spike Duplicate	0705275-01 0705275-01	ND ND	10.200 10.100	10,000 10.000	ug/L ug/L		102 101		86 - 115 86 - 115
Benzene	BQE0486	Matrix Spike Matrix Spike Duplicate	0703711-64 0703711-64	0	0.12296 0.12825	0.12500 0.12500	mg/kg mg/kg	4.6	98.4 103	20	70 - 130 70 - 130
Toluene	BQE0486	Matrix Spike Matrix Spike Duplicate	0703711-64 0703711-64	0 0	0.12182 0.12139	0.12500 0.12500	mg/kg mg/kg	0.4	97.5 97.1	20	70 - 130 70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BQE0486	Matrix Spike Matrix Spike Duplicate	0703711-64 0703711-64	ND ND	0.049610 0.049700	0.050000 0.050000	mg/kg mg/kg		99,2 99,4		70 - 121 70 - 121
Toluene-d8 (Surrogate)	BQE0486	Matrix Spike Matrix Spike Duplicate	0703711-64 0703711-64	ND ND	0.051450 0.049860	0.050000 0.050000	mg/kg mg/kg		103 99.7		81 - 117 81 - 117
4-Bromofluorobenzene (Surrogate)	BQE0486	Matrix Spike Matrix Spike Duplicate	0703711-64 0703711-64	ND ND	0.049840 0,048920	0.050000	mg/kg mg/kg		99.7 . 97.8		74 - 121 74 - 121

05/19/2007 10:20 The second se

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 13 of 23

		in the second		and a second second	
TRC	Project: 3072		Reported:	05/18/2007 10:	:30
1590 Solano Way, Suite A	Project Number: [none]		:		
Concord, CA 94520	Project Manager: Keith Woodburne			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	

Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

					-		. :			Contr	ol Limits	
			Source	Source		Spike			Percent		Percent	
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Lab Quals
Diesel Range Organics (C12 - C24)	BQE1039	Matrix Spike	0701337-15		ND	16.722	mg/kg				54 - 119	Q03
		Matrix Spike Duplicate	0701337-15		11.982	16.779	mg/kg			30	54 - 119	Q02
Tetracosane (Surrogate)	BQE1039	Matrix Spike	0701337-15	ND	0.47806	0.66890	mg/kg		71.5		58 - 120	•
		Matrix Spike Duplicate	0701337-15	ND	0.73339	0.67114	mg/kg		109	:	58 - 120	
Diesel Range Organics (C12 - C24)	BQE1132	Matrix Spike	0701337-99	19.000	344.84	500,00	ug/L		65.2		41 - 139	·
		Matrix Spike Duplicate	0701337-99	19.000	481.35	500.00	ug/L	34.6	92.5	30	41 - 139	M02
Tetracosane (Surrogate)	BQE1132	Matrix Spike	0701337-99	ND	31.229	40.000	ug/L		78.1		42 - 125	
		Matrix Spike Duplicate	0701337-99	ND	49.344	40,000	ug/L		123		42 - 125	

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 14 of 23

TRC	Project: 3072	Reported: 05/18/2007 10:30
1590 Solano Way, Suite A	Project Number: [none]	:
Concord, CA 94520	Project Manager: Keith Woodburne	

Total Concentrations (TTLC)

Quality Control Report - Precision & Accuracy

[Contr	ol Limits		
			Source	Source		Spike			Percent		Percent		
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recover	/ Lab Qu	and the second second
Lead	BQE0461	Duplicate	0705308-04	5,9902	5,9314		mg/kg	1.0		20		A01	
		Matrix Spike	0705308-04	5.9902	100.98	98,039	rng/kg		96.9		75 - 125	A01	
		Matrix Spike Duplicate	0705308-04	5.9902	103.24	98,039	mg/kg	2,3	99.2	20	75 - 125	A01	

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 15 of 23

	•			
		:	and the second	and the state of the state of the
 p ¹				 A second sec second second sec
TRC	Project: 3072	· .	Reported:	05/18/2007 10:30
 1590 Solano Way, Suite A	Project Number: [none]			
Concord, CA 94520	Project Manager: Keith Woodburne			
	· · ·			

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

								· .		Control	Limits		
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	:
Велzепе	BQE0443	BQE0443-BS1	LCS	26.050	25.000	1.0	ug/L	104		70 - 130			
Toluene	BQE0443	BQE0443-BS1	LCS	26.310	25,000	1.0	ug/L	105		70 - 130			· ·
1,2-Dichloroethane-d4 (Surrogate)	BQE0443	BQE0443-BS1	LCS	9.2500	10.000	· · · · · · · · · · · · · · · · · · ·	ug/L	92.5		76 - 114			
Toluene-d8 (Surrogate)	BQE0443	BQE0443-BS1	LCS	9,8000	10.000		ug/L	98.0		88 - 110			·
4-Bromofluorobenzene (Surrogate)	BQE0443	BQE0443-851	LCS	10,320	10.000		ug/L	103		86 - 115			
Benzene	BQE0486	BQE0486-BS1	LCS	0.12501	0.12500	0.0050	mg/kg	100		70 - 130			
Toluene	BQE0486	BQE0486-BS1	LCS	0.11827	0.12500	0.0050	mg/kg	94.6		70 - 130		•	
1,2-Dichloroethane-d4 (Surrogate)	BQE0486	BQE0486-8S1	LCS	0,050090	0.050000		mg/kg	100		70 - 121			
Toluene-d8 (Surrogate)	BQE0486	BQE0486-BS1	LCS	0.049080	0.050000		mg/kg	98.2		81 - 117	,		
4-Bromofluorobenzene (Surrogate)	BQE0486	BQE0486-BS1	LCS	0,047590	0.050000		mg/kg	95,2	•	74 - 121			

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 16 of 23

		and the second			<u></u>		<u>.</u>
							1.
TRC	Project:	3072	*	Reported:	05/18/2007	10:30	1
1590 Solano Way, Suite A	Project Number:	[none]				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	L
Concord, CA 94520	Project Manager:	Keith Woodburne		1			

Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

										Control	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Diesel Range Organics (C12 - C24)	BQE1039	BQE1039-BS1	LCS	13.866	16.393	10	mg/kg	84.6		58 - 131		· · ·
Tetracosane (Surrogate)	BQE1039	BQE1039-BS1	LCS	0,83436	0.65574	-	mg/kg	127		58 - 120		SOS
Diesel Range Organics (C12 - C24)	BQE1132	BQE1132-BS1	LCS	313.81	500.0D	50	ug/L	62.8		62 - 101		
Tetracosane (Surrogate)	BQE1132	BQE1132-B\$1	LCS	28.441	40.000		ug/L	71.1		42 - 125		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 17 of 23

						.
TRC	Project: 3072	1	Reported:	05/18/2007	10:30	l
1590 Solano Way, Suite A	Project Number: [none]					
Concord, CA 94520	Project Manager: Keith Woodburne				:	
						_

Total Concentrations (TTLC)

Quality Control Report - Laboratory Control Sample

		·									<u>Control</u>	Limits		
Constituent		Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	
Lead	?		BQE0461-BS1	LCS	10.045	10.441	2.5	mg/kg	96.2		75 - 125			<u></u> ,

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 18 of 23

TRC 1590 Solano Way, Suite A Concord, CA 94520		Project: 3072 roject Number: [none] oject Manager: Keith Wood	burne		Re	ported: 05	/18/2007 10:30
	Volatile Organic	Analysis (EP	A Method	8260)			
	Quality Control	Report - Method	Blank Analys	is			
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BQE0443	BQE0443-BLK1	ND	ug/L	1.0		
,2-Dibromoethane	BQE0443	BQE0443-BLK1	ND	ug/L	0.50		
,2-Dichloroethane	BQE0443	BQE0443-BLK1	ND	ug/L	0,50		
thylbenzene	BQE0443	BQE0443-BLK1	ND	ug/L	1.0		
/lethyl t-butyl ether	BQE0443	BQE0443-BLK1	ND	ug/L	2.0		
oluene	BQE0443	BQE0443-BLK1	ND	ug/L	1,0		
otal Xylenes	BQE0443	BQE0443-BLK1	ND	ug/L	1,0	· · · · · · · · · · · · · · · · · · ·	
Amyl Methyl ether	BQE0443	BQE0443-BLK1	ND	ug/L	2.0	· · ·	······································
Butyl alcohol	BQE0443	BQE0443-BLK1	ND	ug/L	10		
iisopropyl ether	BQE0443	BQE0443-BLK1	ND	ug/Ľ	2.0		
Ihanol	BQE0443	BQE0443-BLK1	ND	ug/L	1000		
thyl t-butyl ether	BQE0443	BQE0443-BLK1	ND	ug/L	2.0		
otal Purgeable Petroleum Hydrocarbons	BQE0443	BQE0443-BLK1	ND	ug/L	50		
2-Dichloroethane-d4 (Surrogate)	BQE0443	BQE0443-BLK1	96.2	%	76 - 114 <i>(</i> I	.CL - UCL)	
oluene-d8 (Surrogate)	BQE0443	BQE0443-BLK1	97.0	%.	88 - 110 (I	CL - UCL)	
Bromofluorobenzene (Surrogate)	BQE0443	BQE0443-BLK1	102	%	86 - 115 (l	CL - UCL)	
enzene	BQE0486	BQE0486-BLK1	ND	mg/kg	0.0050		
2-Dibromoethane	BQE0486	BQE0486-BLK1	ND	mg/kg	0,0050		
2-Dichloroethane	BQE0486	BQE0486-BLK1	ND	mg/kg	0.0050		
thylbenzana	BQE0486	BQE0486-BLK1	ND	mg/kg	0,0050		
ethyl t-butyl ether	BQE0486	BQE0486-BLK1	ND	mg/kg	0.0050		
oluena	BQE0486	BQE0486-BLK1	ND	mg/kg	0.0059		· · · · · · · · · · · · · · · · · · ·
otal Xylenes	BQE0486	BQE0486-BLK1	ND	mg/kg	0.010		
Amyi Methyl ether	8QE0486	BQE0486-BLK1	ND	mg/kg	0,0010		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document, This analytical report must be reproduced in its entirety.

Page 19 of 23

2.

TRC 1590 Solano Way, Suite A	Dr	Project: 3072 roject Number: [none]	n in an /del>		F		/18/2007 10:30
Concord, CA 94520		oject Manager: Keith Wood	burne				
	Volatile Organic	Analysis (EF	PA Method	8260)	· · · · ·		·
	Quality Control	Report - Method	Blank Analys	is			
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
t-Butyl alcohol	BQE0486	BQE0486-BLK1	ND	mg/kg	0.20		
Diisopropyl ether	BQE0486	BQE0486-BLK1	ND	mg/kg	0.0050		···· · · · · · ·
Ethanol	BQE0486	BQE0486-BLK1	ND	mg/kg	1,0		
Ethyl t-butyl ether	BQE0486	BQE0486-BLK1	ND	mg/kg	0.0010		
Total Purgeable Petroleum Hydrocarbons	BQE0486	BQE0486-BLK1	ND	mg/kg	0.20		
1,2-Dichloroethane-d4 (Surrogate)	BQE0486	BQE0486-BLK1	99,3	%	70 - 121	(LCL - UCL)	
Toluene-d8 (Surrogate)	BQE0486	BQE0486-BLK1	96.6	%	81 - 117	(LCL - UCL)	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
4-Bromofluorobenzene (Surrogate)	BQE0486	BQE0486-BLK1	84.1	%	74 - 121	(LCL - UCL)	· · · · · · · · · · · · · · · · · · ·

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 20 of 23

		 and the states		
TRC	Project: 3072	 Reported:	05/18/2007	10:30
1590 Solano Way, Suite A	Project Number: [none]			
Concord, CA 94520	Project Manager: Keith Woodburne			

Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	POL	MDL	Lab Quais
Diesel Range Organics (C12 - C24)	BQE1039	BQE1039-BLK1	ND	mg/Kg	10		in a state of the
Tetracosane (Surrogate)	BQE1039	BQE1039-BLK1	94.1	%	58 - 120 (LCL - UCL)	
Diesel Range Organics (C12 - C24)	BQE1132	BQE1132-BLK1	ND	∶ug/L	50		
Tetracosane (Surrogate)	BQE1132	BQE1132-BLK1	81.7	%		LCL - UCL)	·

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 21 of 23

TRC	Project: 3072	Reported: 05/18/2007 10:30
1590 Solano Way, Suite A	Project Number: [none]	
Concord, CA 94520	Project Manager: Keith Woodburne	·
	Total Concentrations (TTLC)	,

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL Lab Quals	
Lead	BQE0461	BQE0461-BLK1	ND	mg/kg	2,5		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 22 of 23

TRC Project 3072 Reported. C 1590 Solar Way, Suite A Project Number: [none] Concord, <a 94520<="" td=""> Project Number: [seith Woodburne] Notes Automation Limit MDL Method Detection Limit Keith Woodburne PQL Analyte Not Detected at or above the reporting limit F PQL Protectal Quantitation Limit F RPD Relative Percent Difference F A01 PQL's and MDL's are raised due to sample dilution. F M02 Analyte detected in the Method Blank at a level between the PQL and 1/2 the PQL. F Q03 Matrix spike precision is not within the control limits. F S09 The surrogate recovery on the sample for this compound was not within the control limits. F	<u></u>								
Concord, CA 94520 Project Manager: Keith Woodburne Notes And Definitions Method Detection Limit Method Detection Limit ND Analyte Not Detected at or above the reporting limit Project Manager: Keith Woodburne PQL Analyte Not Detected at or above the reporting limit Project Manager: Feature PQL Prectical Quantitation Limit Project Manager: Feature RPD Relative Percent Difference Feature Feature A01 PQL's and MDL's are raised due to sample dilution. Feature Feature M02 Analyte detected in the Method Blank at a level between the PQL and 1/2 the PQL. Feature Feature Q03 Matrix spike precision Is not within the control limits. Feature Feature Feature	05/18/2007 10:30	Reported:	ti santa interneti in Reference		Project: 307	,			TRC
Notes And Definitions MDL Method Detection Limit ND Analyte Not Detected at or above the reporting limit PQL Practical Quantitation Limit RPD Relative Percent Difference A01 PQL's and MDL's are raised due to sample dilution. M02 Analyte detected in the Method Blank at a level between the PQL and 1/2 the PQL. Q03 Matrix spike precision is not within the control limits.			· *		-	•		• •	
MDLMethod Detection LimitNDAnalyte Not Detected at or above the reporting limitPQLPractical Quantitation LimitPQLRelative Percent DifferenceA01PQL's and MDL's are raised due to sample dilution.M02Analyte detected in the Method Blank at a level between the PQL and 1/2 the PQL.Q03Matrix spike precision Is not within the control limits.				oodburne	anager. Kei	Proje		CA 94520	Concord, C
NDAnalyte Not Detected at or above the reporting limitPQLPractical Quantitation LimitRPDRelative Percent DifferenceA01PQL's and MDL's are raised due to sample dilution.M02Analyte detected in the Method Blank at a level between the PQL and 1/2 the PQL.Q02Matrix spike precision is not within the control limits.Q03Matrix spike recovery(s) is(are) not within the control limits.								nd Definitions	Notes An
PQL Practical Quantitation Limit RPD Relative Percent Difference A01 PQL's and MDL's are raised due to sample dilution. M02 Analyte detected in the Method Blank at a level between the PQL and 1/2 the PQL. Q02 Matrix spike precision is not within the control limits. Q03 Matrix spike recovery(s) is(are) not within the control limits.								Method Detection Limit	MÐL
RPDRelative Percent DifferenceA01PQL's and MDL's are raised due to sample dilution.M02Analyte detected in the Method Blank at a level between the PQL and 1/2 the PQL.Q02Matrix spike precision is not within the control limits.Q03Matrix spike recovery(s) is(are) not within the control limits.							or above the reporting limit	Analyte Not Detected at	ND
A01 PQL's and MDL's are raised due to sample dilution. M02 Analyte detected in the Method Blank at a level between the PQL and 1/2 the PQL. Q02 Matrix spike precision is not within the control limits. Q03 Matrix spike recovery(s) is(are) not within the control limits.							mit	Practical Quantitation Lin	PQL.
M02 Analyte detected in the Method Blank at a level between the PQL and 1/2 the PQL. Q02 Matrix spike precision is not within the control limits. Q03 Matrix spike recovery(s) is(are) not within the control limits.							nce	Relative Percent Differen	RPD
Q02 Matrix spike precision is not within the control limits. Q03 Matrix spike recovery(s) is(are) not within the control limits.							sed due to sample dilution.	PQL's and MDL's are rais	A01
Q03 Matrix spike recovery(s) is(are) not within the control limits.						QL and 1/2 the PQL.	viethod Blank at a level between th	Analyte detected in the N	M02
				· · ·			not within the control limits.	Matrix spike precision is	002
S09 The surrogate recovery on the sample for this compound was not within the control limits,							is(are) not within the control limits	Matrix spike recovery(s) i	Q03
						not within the control limits,	on the sample for this compound v	The surrogate recovery o	509
This sample clogged the needle, which caused the surrogate's recovery to be out of range. Second analysis was ran to verify the surrogate's %				an to verify the surrogate's %	cond analysis	recovery to be out of range	needle, which caused the surroga	This sample clogged the	Ž1

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. Page 23 of 23

Page 1 of 1

#-07-05306 BC LABORATORIES, INC.

4100 Atlas Court □ Bakersfield, CA 93308 (661) 327-4911 □ FAX (661) 327-1918

CHAIN OF CUSTODY

							Anal	ysis	Re	que	ste	Ċ			
Bill to: Co	onoco Phillips/ TRC	Consultant Firm: TF	?C		MATRIX (GW)	8015									
Address:	2445 CASTRO VALLEY BLVD.	-frvine, -CA-92616-23	24 Techology Drive. 1590 Socand WY Suite A Attn: Anju Farfan Attn: Keitht Woodscone 4-digit site#: 3072					oxygenates	Y 8260B			an a	1,2-DCA, ED8		Time Requested
City: CAS	TRO VALLEY	4-digit site#: 307					5M 015	рхуg	a B	90B	ŝ		U.		с К
		Workorder #	Workorder #				by 8015M EL by 8015	o jw	K	826	GC/MS		EDE		ŭ.
State: CA	Zip:	Project #: 420139	03	· · · · · · · · · · · · · · · · · · ·	(SL)	ណ	GAS by DIESEL	list	BU	L D	by G	22606	THUE	Aray	put
Conoco F	Sampler Name: J.	CEARNS		Sludge	CINIT	GAS		VIM'	ANO	9	می کل		ے ا ا	āro	
Lat#	Sample Description	Field Point Name		& Time ipled		BTEX/MTBE by 8021B,	Har	8260 full list w/	BTEX/MTBE/ CXTS	ETHANOL by 8260B	HdT	TPOH by \$2400	TANE, DIPE, TAME, EDBE	tothe	Tumaround
לאלינים לא האיז איז איז איז איז איז איז איז איז איז	CPT-1 -1		5/2-107	0908	G. W.		\geq		$ \times$	×		×	\mathbf{X}		م بعد بسبنه
	CPT-4 -2		5/2/07	1327											ە، ئەلغانبە، مۇلىمىغ غۇرىمەرلىر
	CPT-2 -3	n gan talan aya ana ana ana ana ana ana ana ana a	\$ 5 07	0725	la particular de la construction de la construcción de la construcción de la construcción de la construcción de					ļ 	Marina ang		, And the second second	نوبيمو آيريمور	عدد ما يدر المعربين
	CPT-5 -4	L 13 (Jacon and a state of the	5/3107	OPS	J.			فيصفعناه	Landing Section of	مند است	فستسبب مسجده	نادید بر ایس شا	د. معکدهم مید	د و له ما يتور بود.	ية. 144 يقية 144
	COMB5	and the second secon	5/3/07	0930	5					1		4	J.	×	بند سمي ونشير
		ر است. ۱۹۹۸ - ۲۰۰۰ میرون و اور این ۱۹۹۰ - ۲۰۰۰ میروند. ۱۹۹۸ - میرون و وارو ایران میروند بر این این این این میروند.								lin meterina d	و مسوره وجود		ويوا تدوما بتوسط	-strik, er det	بور ، يونيبونه ، .
		M-JKBSIMNET									میں جونی میں جونی			بالمحتمد	- ******
							Regnive	tinn.		ļ	- Paces		sense: javansja retiša	ţ.	ې پېښه ونه وه وه ۱
	PLEASE COMBINE SAN	PLES Relinquished by 18					· · · · · · · · · · · · · · · · · · ·	11	la		5	(¥/8	7	LSD	
GLOBAL ID:			Sector 5/7/07				Received by: Received by:			7	Date & Time 5-7.07 1900				
OLUDAL IL		Signaturel 5-7-07 2235				Received by:				Date & Time 5/7/9 2235					
A) = ANALY	SIS (C) = CONTAINE	R (P) = PR-SER	VATIVE	- (<u>`</u> 0./	<u>455</u>	¥:******	ap	20		isto state transp		14-	úsin in is lef	45-	ە بىنىزلې، مىھيەرىپ

Attachment B

TRC's Hydropunch Groundwater Investigation Report

October 11, 2007

Ms. Donna Drogos Supervising Hazardous Materials Specialist Alameda County Health Agency 1131 Harbor Bay Parkway Alameda, California 94502

> Re: Hydropunch Groundwater Investigation Report 76 Service Station No. 3072 2445 Castro Valley Blvd. Castro Valley, CA

Dear Ms. Drogos:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please contact me at (916) 558-7612.

Sincerely,

Rill Bungh

Bill Borgh Site Manager – Risk Management and Remediation

Attachment

1590 Solano Way #A Concord, CA 94520

925.688.1200 PHONE 925.688.0388 FAX

www.TRCsolutions.com

October 10, 2007

TRC Project No. 125874

Ms. Donna Drogos Supervising Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

SITE: 76 SERVICE STATION NO. 3072 2445 CASTRO VALLEY BLVD CASTRO VALLEY, CALIFORNIA

RE: HYDROPUNCH GROUNDWATER INVESTIGATION REPORT

Dear Ms. Drogos:

On behalf of ConocoPhillips, TRC submits this *Hydropunch Groundwater Investigation Report* documenting additional groundwater investigation activities at the 76 Service Station No. 3072, located at 2445 Castro Valley Blvd in Castro Valley, California. This work was performed in accordance to a work plan submitted to the Alameda County Environmental Health (ACEH) as a response to a results obtained during a baseline completed for ConocoPhillips.

Please call Keith Woodburne at (925) 688-2488 if you have any questions regarding this report.

Sincerely,

Rachelle Dunn Senior Staff Geologist

Keith Woodburne, P.G. Senior Project Manager

Enclosure

cc: Bill Borgh, ConocoPhillips (electronic upload only)

HYDROPUNCH GROUNDWATER INVESTIGATION REPORT

October 10, 2007

76 Service Station No. 3072 2445 Castro Valley Blvd. Castro Valley, California

TRC Project No. 125874

Prepared For:

ConocoPhillips Company 76 Broadway Sacramento, California 94818

By:

Rachelle Dunn Senior Staff Geologist

Keith Woodburne P.G. Senior Project Manager

TRC 1590 Solano Way Concord, California (925) 688-1200

TABLE OF CONTENTS

<u>Sectio</u>	<u>Page</u>
1.0	INTRODUCTION1
2.0	SITE DESCRIPTION
2.1	GEOLOGY AND HYDROGEOLOGY
3.0 SI	TE BACKGROUND2
4.0	SITE INVESTIGATION ACTIVITIES
4.1 4.2 4.3	PRE-FIELD ACTIVITIES
5.0	CONCLUSIONS AND RECOMMENDATIONS

Figures

- 1 Vicinity Map
- 2 Site Plan Showing CPT Hydropunch and Proposed Monitoring Well Locations

Tables

1 Grab Groundwater Analytical Results

Appendices

- A Drilling Permits

B CPT Site Investigation Report (Gregg Drilling) CLaboratory Analytical Reports and Chains of Custody Records

1.0 INTRODUCTION

On behalf of ConocoPhillips, TRC submits this report of additional site assessment performed at 76 Service Station No. 3072, located at 2445 Castro Valley Blvd. in Castro Valley, California (the Site, Figure 1). This work was performed in accordance with the Additional Soil and Groundwater Investigation Work Plan submitted to the Alameda County Health Care Services Agency (ACHCS) on February 14, 2006.

The objective of this assessment was to further characterize the extent of the dissolved-phase hydrocarbons in the shallow water-bearing zone onsite.

The scope of work for this assessment involved the following:

- Advancement of Cone Penetrometer Test (CPT) borings at five onsite locations.
- Collection of depth-discreet grab groundwater samples using a hydropunch sampler for analysis at a state certified laboratory.
- Evaluate groundwater data to determine the lateral and vertical extent of groundwater impacts and determine if monitoring wells are required to better define the dissolved-phase hydrocarbon plume.

This report documents the CPT hydropunch groundwater investigation completed between May 3 and May 4, 2007.

2.0 SITE DESCRIPTION

The site is currently an active 76 service station located on the corner of Castro Valley Boulevard and Strobridge Avenue in Castro Valley, California (Figure 1). Current site facilities include a station building, lube bay, an auto service building, three underground fuel storage tanks, one underground waste oil storage tank, and three dispenser islands. Locations of the pertinent site features are shown on Figure 2.

2.1 Geology and Hydrogeology

Based on data collected during the recent baseline assessment and previous soil and groundwater investigations conducted at the site, lithologies observed beneath the site consist of silts, clays, and fine sands. Shale has also been observed underlying the clay and fine sands from 10 to 50 feet below grade (fbg).

Groundwater has been encountered at the site historically between 6 and 9 fbg. During the recent baseline investigation, groundwater was encountered at depths of between 15 and 25 fbg on the northern portion of the site and 47 to 50 fbg on the southern portion of the site (TRC, 2005). Historically, the groundwater flow direction has been to the northeast (Kaprealian Engineering (KEI), 1991).

3.0 SITE BACKGROUND

November 1989 through February 1990: Three 10,000-gallon underground storage tanks (USTs), one 550-gallon waste oil UST, and the associated product piping were removed and replaced. The UST pits were over excavated to remove impacted soil (KEI, 1991).

November 14, 1989: Six soil samples (A1, A2, B1, B2, C1, and C2) were collected from below the fuel USTs and one soil sample (WO1) was collected from below the waste oil UST. Samples collected from beneath the gasoline USTs contained concentrations of total petroleum hydrocarbons as gasoline (TPH-g) ranging from below laboratory reporting limits to 11 parts per million (ppm). Benzene, toluene, ethylbenzene, and xylenes (BTEX) were below laboratory reporting limits. Total petroleum hydrocarbons as diesel (TPH-d) were below reported laboratory limits in the sample collected from beneath the diesel UST. The soil samples collected from beneath the waste oil tank contained reportable concentrations of TPH-g, metals, and 1,1-dichloroethene (1,1-DCE). Analytical results for all other analytes were below laboratory reporting limits (KEI, 1991).

November 16, 1989: Six sidewall soil samples (SW1 through SW6) and a grab water sample were collected from the fuel UST excavation. Samples SW1 and SW4 contained TPH-g concentrations of 140 ppm and 160 ppm, respectively. TPH-d was detected at a concentration of 24 ppm in sample SW4 (KEI, 1991).

December 22, 1989: Eight soil sidewall samples (SW1 (17), SW2 (17), SW7 through SW11, and SW3 (17)) were collected after additional excavation of the UST pits. The maximum reported TPH-g concentrations were 1,500 ppm and 1,900 ppm (KE, 1991).

January 18 and 19, 1990: Three 2-inch diameter monitoring wells (MW1, MW2, and MW3) were installed onsite (KEI, 1991).

February 14, 1990: Three soil samples (P1, P2, and P3) were collected from the product pipeline trenches. Low to non-detect concentrations of TPH-g and BTEX were detected with a maximum TPH-g concentration of 87 ppm (KEI, 1991).

March 9, 1990: Three sidewall soil samples (SWB, SWC, and SWD) were collected from the sidewalls of the waste oil UST pit. Low to non-detect concentrations of TPH-g and BTEX were detected with a maximum TPH-g concentration of 37 ppm (KEI, 1991).

April 24 and 25, 1990: Eight exploratory soil borings (EB1 through EB8) were drilled and soil sampled collected. The borings were backfilled with neat cement. Low to non-detect concentrations of TPH-g and BTEX were detected with a maximum TPH-g concentration of 5 ppm (KEI, 1991).

August 13, 1990: Two 2-inch monitoring wells (MW4 and MW5) were installed. Soil samples from the monitoring well pilot borings contained non-detect concentrations of TPH-g and BTEX in all samples. Benzene was detected at a maximum concentration of 3.2 ppb (KEI, 1991).

January 24, 25 and 31, 2005: TRC conducted a Baseline Site Assessment (TRC, 2005) which involved the advancement of six direct-push borings (SB-1 through SB-6) to assess the presence of hydrocarbon-affected soil and groundwater beneath the site. TPPH was detected in two soil samples at a maximum concentration of 480 milligrams per kilogram (mg/kg) in SB-1 at a depth of 8 fbg. Methyl tertiary butyl ether (MTBE) was detected in two soil samples at a maximum concentration of 0.11 mg/kg in SB-3 at a depth of 18 fbg. MTBE was detected in three of the four grab groundwater samples at a maximum concentration of 87 micrograms per liter (μ g/L) in boring SB-1.

4.0 SITE INVESTIGATION ACTIVITIES

Under the supervision of a TRC field geologist, Gregg In Situ, Inc. of Martinez, California (Gregg) advanced exploratory borings at five onsite locations using a CPT rig for the purpose of characterizing site lithology, identifying potential deeper water-bearing zones, and assessing groundwater quality within those zones. Boring locations are shown in Figure 2.

4.1 Pre-Field Activities

Underground Services Alert (USA) was notified at least two days prior to field activities to mark underground utilities near proposed boring locations. In addition, a private utility locating service was contracted to check and clear proposed boring locations prior to drilling. Drilling permits were obtained from Alameda County Public Works and are included in Appendix A.

A site and job specific health and safety plan was prepared for the site that promotes personnel safety and preparedness during the planned field activities. Prior to beginning field activities each day, a "tailgate" safety meeting was conducted with all exclusion zone workers to discuss the health and safety issues and concerns related to the specific scope of work. A copy of the health and safety plan was maintained onsite throughout the field investigation.

4.2 CPT Hydropunch Groundwater Investigation

At each of the boring locations, up to three separate co-located borings were advanced. The first boring at each location was advanced to a total depth of 60 fbg or refusal to assess soil behavior types using the integrated electronic cone system of the CPT rig. Data obtained from the initial logging run was then used to identify potential water-bearing zones for subsequent hydropunch groundwater sampling. The second and third co-located borings were advanced to the desired depths based on an assessment of the stratigraphic soil behavior logs (Appendix B). The use of separate co-located borings for each depth-discrete groundwater sample minimizes the potential for cross-contamination during boring advancement.

Where feasible, grab groundwater sampling was attempted in two potential water-bearing zones identified at depth intervals of between 14 and 40 fbg (shallow) and 45 to 55 fbg (deep). At proposed location CPT-3, it was not feasible to advance the boring due to the presence of an underground utility. A total of four grab groundwater samples were collected during the investigation, two from the shallow water-bearing zone and two from the apparent deeper water-bearing zone.

At boring locations CPT-2 and CPT-5, only the shallow grab groundwater samples were collected due to refusal at depths of 36.4 fbg and 22.3 fbg, respectively. Therefore, hydropunch grab groundwater samples were collected from borings CPT-2 and CPT-5 at depths of 36 fbg and 22 fbg, respectively.

At boring locations CPT-1 and CPT-4, the apparent shallow water-bearing zone did not produce enough water to collect a sample. However, grab groundwater samples were collected from the deeper water-bearing zone at these two locations encountered at depths of 55 fbg and 51 fbg, respectively. A total of four onsite grab groundwater samples were collected during this investigation.

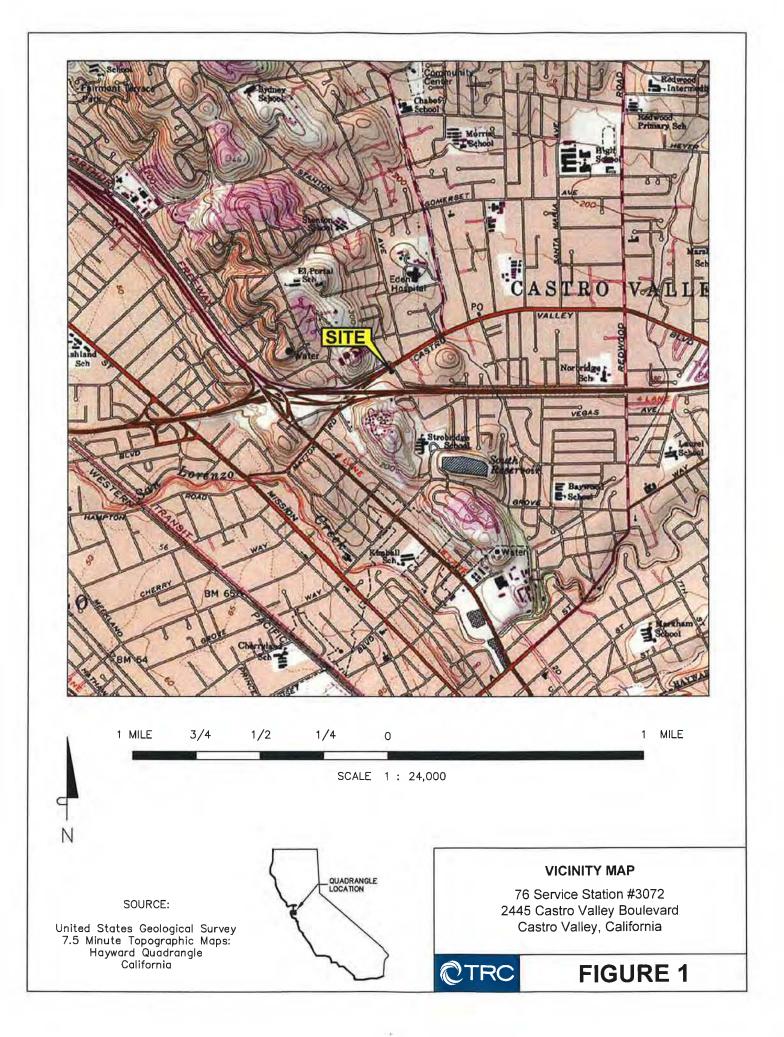
The four grab groundwater samples were submitted to a State-certified laboratory for analysis, and analyzed for TPH-d by EPA Method 8015 and for total purgeable petroleum hydrocarbons (TPPH), BTEX, MTBE, and other fuel oxygenates including tertiary butyl alcohol (TBA), diisopropyl ether (DIPE), tertiary amyl methyl ether (TAME), ethyl tertiary butyl ether (ETBE) 1,2-dichloroethane (1,2-DCA), 1,2-dibromoethane (EDB), and ethanol by EPA Method 8260B.

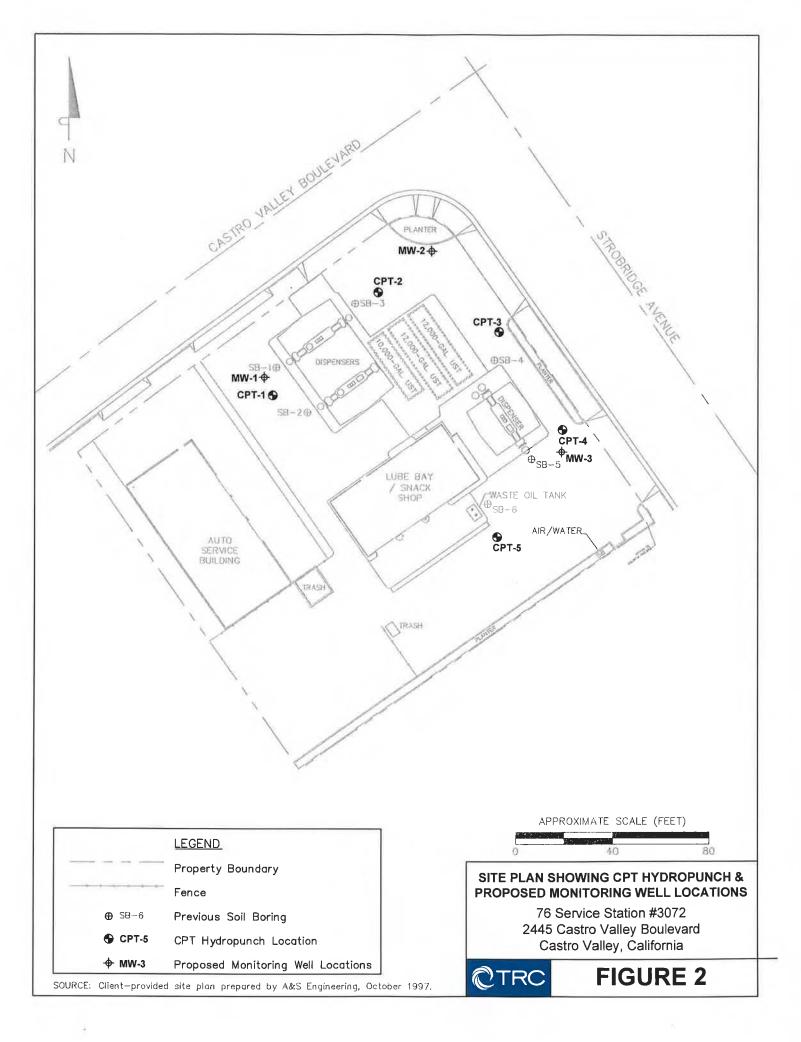
4.3 Analytical Results

TPH-d, MTBE and TBA were detected in the grab groundwater samples collected during the investigation. TPH-d was detected in all four of the samples analyzed, and at a maximum concentration of 800 μ g/L in the deeper water-bearing zone sample from boring CPT-4. MTBE was detected in three of the four samples analyzed, and at a maximum concentration of 10 μ g/L in the deeper water-bearing CPT-4. TBA was detected in one of the samples at a concentration of 54 μ g/L in the shallow water-bearing zone sample from boring CPT-2.

Analytical results of the grab groundwater samples are presented in Table 1. Copies of the laboratory analytical reports and chain of custody records are provided in Appendix C.

5.0 CONCLUSIONS AND RECOMMENDATIONS


TPH-d was detected in all four samples analyzed and is present at elevated concentrations in the both the shallow and apparent deeper water-bearing zones onsite. MTBE was also identified at relatively low concentrations in samples form both depth zones and TBA was detected only within the shallow water-bearing zone. Data obtained during this investigation indicates groundwater impacts have occurred onsite and those impacts may have migrated down into the apparent deeper water-bearing zone.


At the end of October 2007, environmental consulting responsibilities for this site will be transferred to Delta Environmental Consultants, Inc. (Delta). As such, Delta will evaluate the existing site data and provide all future recommendations regarding additional work at the site.

FIGURES

TABLE

Table 1GRAB GROUNDWATER ANALYTICAL RESULTS76 Service Station #30722445 Castro Valley Boulevard, Castro Valley, CA

Sample ID	Date Sampled	Sample Depth (fbg)	TPH-d EPA 8015	TPPH	Benzene	Toluene		Total Xylenes centrations		TAME Method 82 grams per 1		DIPE	EDB	ETBE	1,2-DCA	Ethanol
Shallow Wa	ter-Bearing	Zone								prante por 1	1101 (µ8/1	"				
CPT-2	5/3/2007	36	500	<50	<0.50	<0.50	<0.50	<0.50	6.3	<0.50	54	<0.50	<0.50	<0.50	<0.50	<250
CPT-5	5/3/2007	22	280	<50	<0.50	<0.50	<0.50	<0.50	5.2	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<250
Deeper Wa	ter-Bearing	Zone														
CPT-1	5/2/2007	55	490	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<250
CPT-4	5/2/2007	51	800	<50	<0.50	<0.50	<0.50	<0.50	10	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<250
Notes: TPH-d TPPH MTBE TAME TBA DIPE	 total purga methyl teri tertiary am tertiary but 	ble petroleum ary butyl eth lyl methyl eth tyl alcohol						1,2-DCA fbg	 ethyl te 1,2-dic feet bel not an 	romoethane ertiary butyl hloroethane ow grade alysed plicable	ether					

APPENDIX A

Drilling Permits

Alameda County Public Works Agency - Water Resources Well Permit

2

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approve	ed on: 04/19/2007 By jamesy	Permit Numbers: W2007-0531 Permits Valid from 05/02/2007 to 05/04/2007
Application Id: Site Location:	1176398684583 76 Service Station #3072	City of Project Site:Castro Valley
Project Start Date:	2445 Castro Valley Boulevard 05/02/2007	Completion Date:05/04/2007
Applicant:	TRC - Monika Krupa	Phone: 925-688-2482
Property Owner:	1590 Solano Way, Suite A, Concord, CA 94520 Jagdish and Janki Moorjani 2445 Captro Vallay Boulayard, Captro Vallay, OA 0	Phone:
Client:	2445 Castro Valley Boulevard, Castro Valley, CA 9 Eric Hetrick ConocoPhillips, 76 Broadway, Sacramento, CA 958	Phone:
	То	tal Due: \$200.00

Receipt Number: WR2007-0173 Payer Name : TRC Companis, Inc.	Total Amount Paid: Paid By: CHECK	\$200.00 \$200.00 PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Geotechnical Study/CPT's - 5 Boreholes Driller: Gregg Drilling and Testing, Inc. - Lic #: 485165 - Method: CPT

Work Total: \$200.00

Specifications

Permit Number	Issued Dt	Expire Dt	# Boreholes	Hole Diam	Max Depth
W2007- 0531	04/19/2007	07/31/2007	5	4.00 in.	60.00 ft

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

6. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this

Alameda County Public Works Agency - Water Resources Well Permit

permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

2

APPENDIX B

CPT Site Investigation Report (Gregg Drilling)

÷

GREGG IN SITU, INC.

GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

May 7, 2007

TRC Solutions Attn: Keith Woodburne 1590 Solano Way, Suite A Concord, California 94520

Subject: CPT Site Investigation Conoco Phillips #3072 Castro Valley, California GREGG Project Number: 07-137MA

Dear Mr. Woodburne:

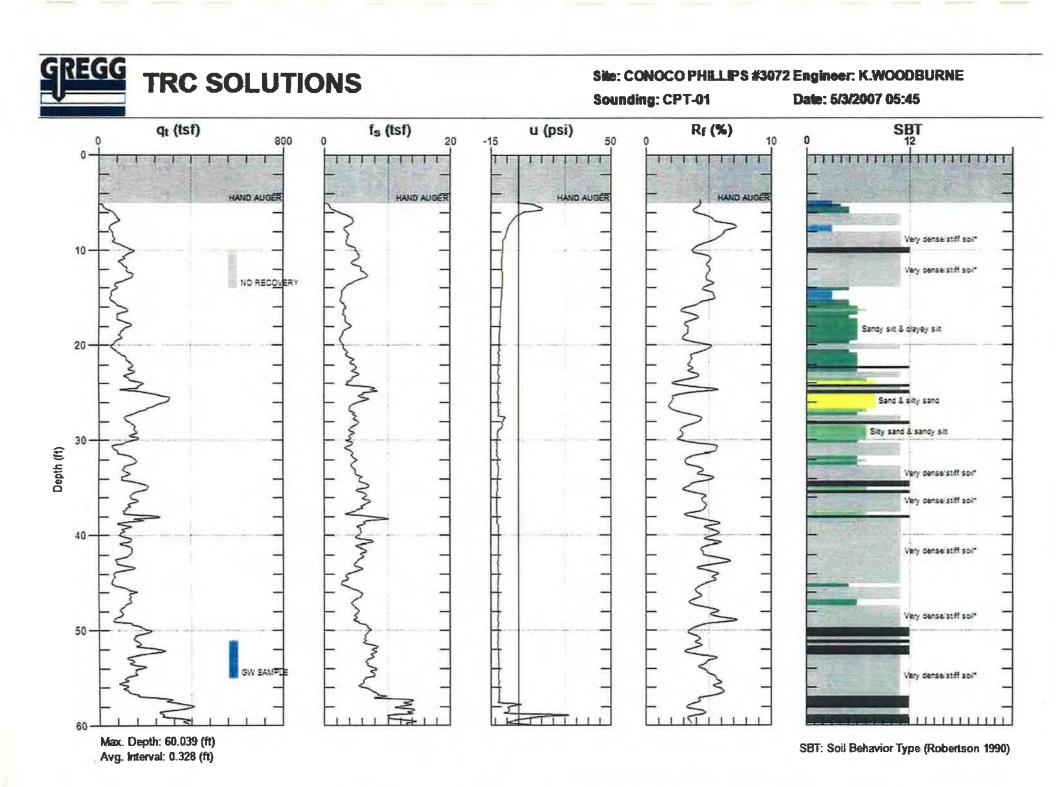
The following report presents the results of GREGG Drilling & Testing's Cone Penetration Test investigation for the above referenced site. The following testing services were performed:

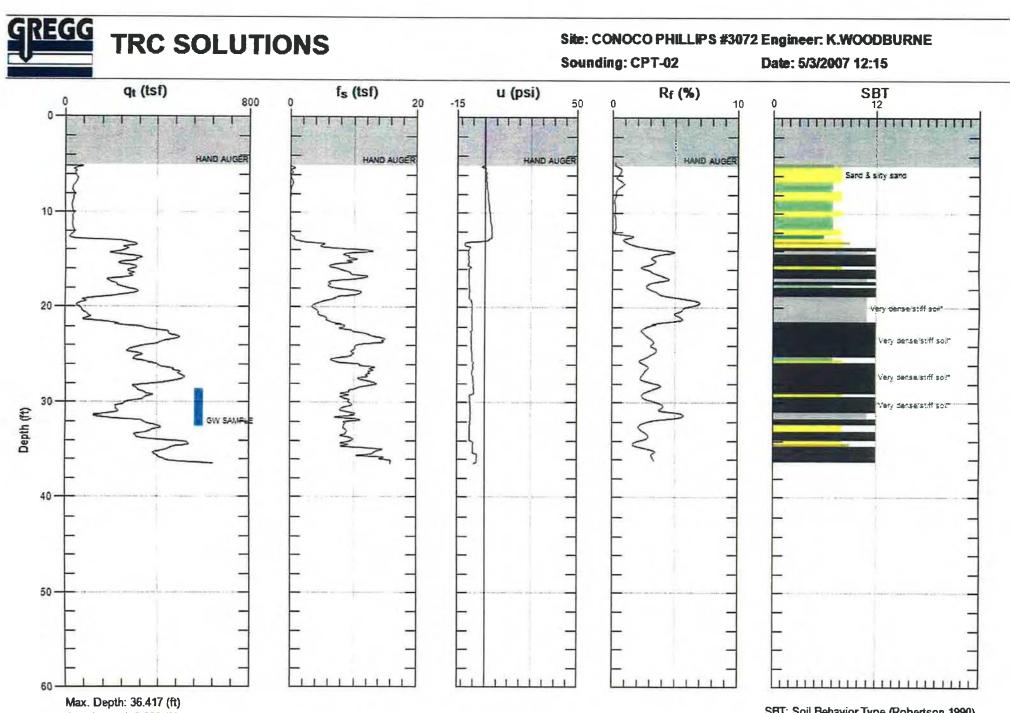
1	Cone Penetration Tests	(CPTU)	\boxtimes
2	Pore Pressure Dissipation Tests	(PPD)	\boxtimes
3	Seismic Cone Penetration Tests	(SCPTU)	
4	Resistivity Cone Penetration Tests	(RCPTU)	
5	UVIF Cone Penetration Tests	(UVIFCPTU)	
6	Groundwater Sampling	(GWS)	\boxtimes
7	Soil Sampling	(SS)	
8	Vapor Sampling	(VS)	
9	Vane Shear Testing	(VST)	
10	SPT Energy Calibration	(SPTE)	

A list of reference papers providing additional background on the specific tests conducted is provided in the bibliography following the text of the report. If you would like a copy of any of these publications or should you have any questions or comments regarding the contents of this report, please do not hesitate to contact our office at (925) 313-5800.

Sincerely, GREGG Drilling & Testing, Inc.

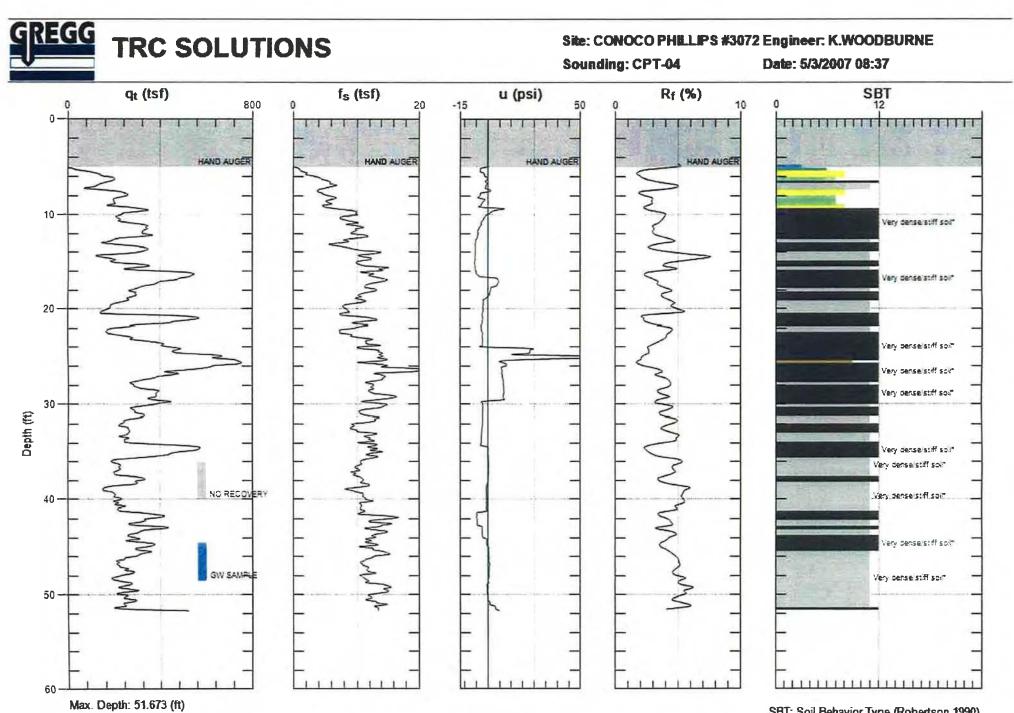
Mary Walden Operations Manager

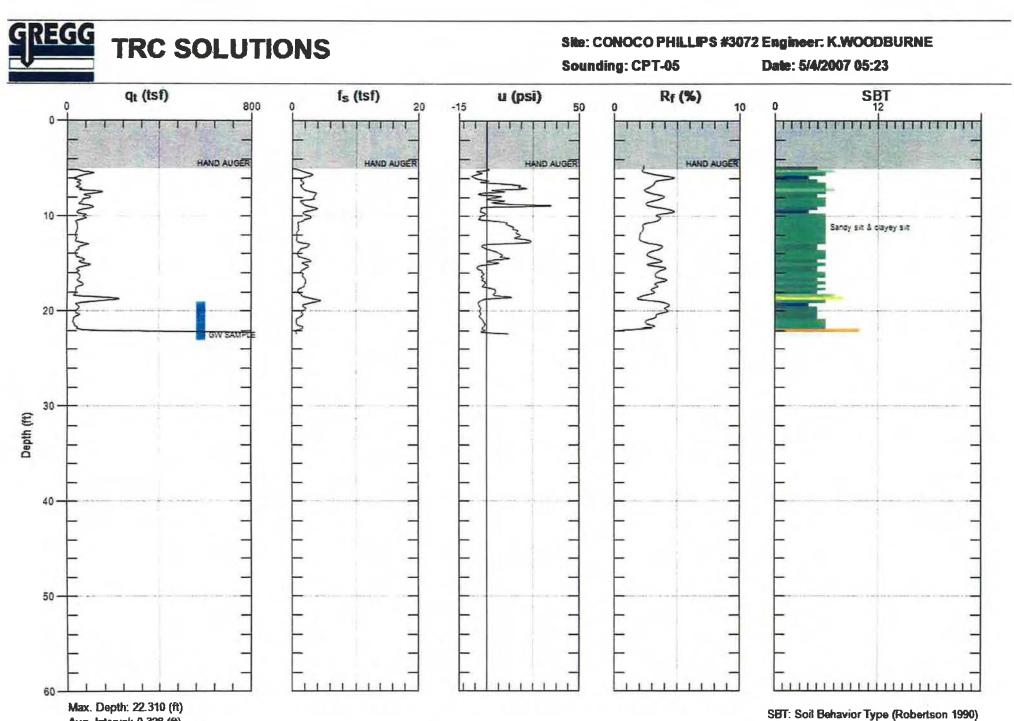

GREGG IN SITU, INC.


GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

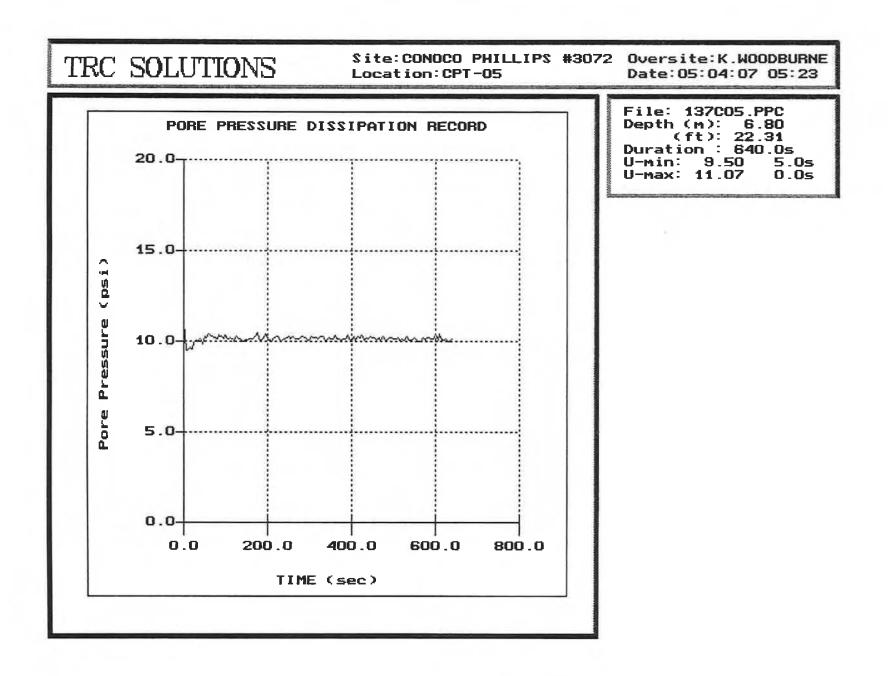
Cone Penetration Test Sounding Summary

-Table 1-


CPT Sounding Identification	Date	Termination Depth (Feet)	Depth of Groundwater Samples (Feet)	Depth of Soil Samples (Feet)	Depth of Pore Pressure Dissipation Tests (Feet)
CPT-01	5/03/07	60	14NR, 55	-	
CPT-02	5/03/07	36	32.5	-	-
CPT-04	5/03/07	51	40NR, 48.5	-	-
CPT-05	5/04/07	22	23	-	22.3


Avg. Interval: 0.328 (ft)

SBT: Soil Behavior Type (Robertson 1990)



Avg. Interval: 0.328 (ft)

SBT: Soil Behavior Type (Robertson 1990)

Avg. Interval: 0.328 (ft)

APPENDIX CPT

Cone Penetration Testing Procedure (CPT)

Gregg Drilling & Testing, Inc. carries out all Cone Penetration Tests (CPT) using an integrated electronic cone system, *Figure CPT*. The soundings were conducted using a 20 ton capacity cone with a tip area of 15 cm² and a friction sleeve area of 225 cm². The cone is designed with an equal end area friction sleeve and a tip end area ratio of 0.85.

The cone takes measurements of cone bearing (q_c) , sleeve friction (f_s) and penetration pore water pressure (u_2) at 5cm intervals during penetration to provide a nearly continuous hydrogeologic log. CPT data reduction and interpretation is performed in real time facilitating on-site decision making. The above mentioned parameters are stored on disk for further analysis and reference. All CPT soundings are performed in accordance with revised (2002) ASTM standards (D 5778-95).

The cone also contains a porous filter element located directly behind the cone tip (u_2) , *Figure CPT*. It consists of porous plastic and is 5.0mm thick. The filter element is used to obtain penetration pore pressure as the cone is advanced as well as Pore Pressure Dissipation Tests (PPDT's) during appropriate pauses in penetration. It should be noted that prior to penetration, the element is fully saturated with silicon oil under vacuum pressure to ensure accurate and fast dissipation.

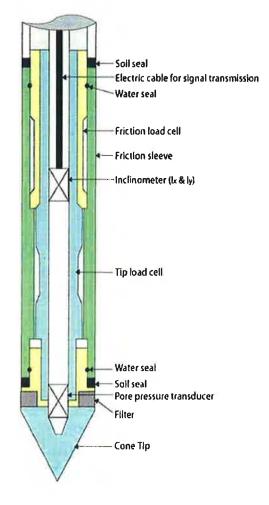


Figure CPT

When the soundings are complete, the test holes are grouted using a Gregg In Situ support rig. The grouting procedures generally consist of pushing a hollow CPT rod with a "knock out" plug to the termination depth of the test hole. Grout is then pumped under pressure as the tremie pipe is pulled from the hole. Disruption or further contamination to the site is therefore minimized.

Cone Penetration Test Data & Interpretation

Soil behavior type and stratigraphic interpretation is based on relationships between cone bearing (q_c) , sleeve friction (f_s) , and pore water pressure (u_2) . The friction ratio (R_f) is a calculated parameter defined by $100f_s/q_c$ and is used to infer soil behavior type. Generally: Cohesive soils (clays)

- High friction ratio (R_f) due to small cone bearing (q_c)
- Generate large excess pore water pressures (*u*₂)

Cohesionless soils (sands)

- Low friction ratio (R_f) due to large cone bearing (q_c)
- Generate very little excess pore water pressures (*u*₂)

A complete set of baseline readings are taken prior to and at the completion of each sounding to determine temperature shifts and any zero load offsets. Corrections for temperature shifts and zero load offsets can be extremely important, especially when the recorded loads are relatively small. In sandy soils, however, these corrections are generally negligible.

The cone penetration test data collected from your site is presented in graphical form in Appendix CPT. The data includes CPT logs of measured soil parameters, computer calculations of interpreted soil behavior types (SBT), and additional geotechnical parameters. A summary of locations and depths is available in Table 1. Note that all penetration depths referenced in the data are with respect to the existing ground surface.

Soil interpretation for this project was conducted using recent correlations developed by Robertson et al, 1990, *Figure SBT*. Note that it is not always possible to clearly identify a soil type based solely on q_c , f_s , and u_2 . In these situations, experience, judgment, and an assessment of the pore pressure dissipation data should be used to infer the soil behavior type.

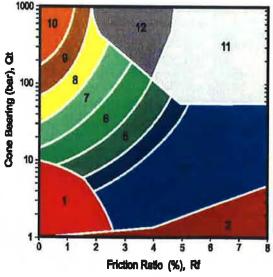


Figure SBT

APPENDIX PPD

Pore Pressure Dissipation Tests (PPDT)

Pore Pressure Dissipation Tests (PPDT's) conducted at various intervals measured hydrostatic water pressures and determined the approximate depth of the ground water table. A PPDT is conducted when the cone is halted at specific intervals determined by the field representative. The variation of the penetration pore pressure (u) with time is measured behind the tip of the cone and recorded by a computer system.

Pore pressure dissipation data can be interpreted to provide estimates of:

- Equilibrium piezometric pressure
- Phreatic Surface
- In situ horizontal coefficient of consolidation (c_h)
- In situ horizontal coefficient of permeability (k_h)

In order to correctly interpret the equilibrium piezometric pressure and/or the phreatic surface, the pore pressure must be monitored until such time as there is no variation in pore pressure with time, *Figure PPDT*. This time is commonly referred to as t_{100} , the point at which 100% of the excess pore pressure has dissipated.

A complete reference on pore pressure dissipation tests is presented by Robertson et al. 1992.

A summary of the pore pressure dissipation tests is summarized in Table 1. Pore pressure dissipation data is presented in graphical form in Appendix PPDT.

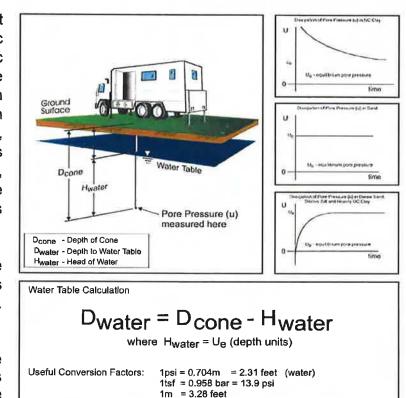


Figure PPDT

APPENDIX GWS

Groundwater Sampling (GWS)

Gregg In Situ, Inc. conducts groundwater sampling using a Hydropunch[®] type groundwater sampler, *Figure GWS*. The groundwater sampler has a retrievable stainless steel or disposable PVC screen with steel drop off tip. This allows for samples to be taken at multiple depth intervals within the same sounding location. In areas of slower water recharge, provisions may be made to set temporary PVC well screens during sampling to allow the drill rig to advance to the next sample location while the groundwater is allowed to infiltrate.

The groundwater sampler operates by advancing 1 3/4 inch hollow push rods with the filter tip in a closed configuration to the base of the desired sampling interval. Once at the desired sample depth, the push rods are retracted; exposing the encased filter screen allowing groundwater to and infiltrate hydrostatically from the formation into the inlet screen. A small diameter bailer (approximately 1/2 or 3/4 inch) is lowered through the push rods into the screen section for sample collection. The number of downhole trips with the bailer and time necessary to complete the sample collection at each depth interval is a function of sampling protocols, volume requirements, and the yield characteristics and storage capacity of the formation. Upon completion of sample collection, the push rods and sampler, with the exception of the PVC screen and steel drop off tip are retrieved to the ground surface, decontaminated and prepared for the next sampling event.

A summary of the groundwater samples collected, including the sampling date, depth and location identification, is presented in Table 1 and the corresponding CPT plot.

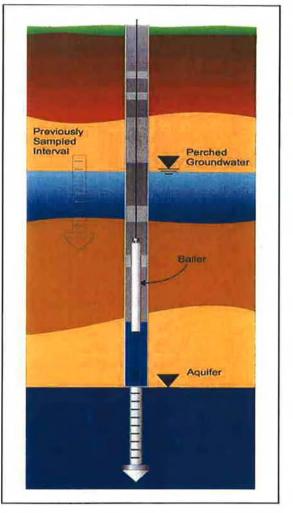


Figure GWS

For a detailed reference on direct push groundwater sampling, refer to Zemo et. al., 1992.

GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

Bibliography

Lunne, T., Robertson, P.K. and Powell, J.J.M., "Cone Penetration Testing in Geotechnical Practice" E & FN Spon. ISBN 0 419 23750, 1997

Roberston, P.K., "Soil Classification using the Cone Penetration Test", Canadian Geotechnical Journal, Vol. 27, 1990 pp. 151-158.

Mayne, P.W., "NHI (2002) Manual on Subsurface Investigations: Geotechnical Site Characterization", available through <u>www.ce.gatech.edu/~geosys/Faculty/Mayne/papers/index.html</u>, Section 5.3, pp. 107-112.

Robertson, P.K., R.G. Campanella, D. Gillespie and A. Rice, "Seismic CPT to Measure In-Situ Shear Wave Velocity", Journal of Geotechnical Engineering ASCE, Vol. 112, No. 8, 1986 pp. 791-803.

Robertson, P.K., Sully, J., Woeller, D.J., Lunne, T., Powell, J.J.M., and Gillespie, D.J., "Guidelines for Estimating Consolidation Parameters in Soils from Piezocone Tests", Canadian Geotechnical Journal, Vol. 29, No. 4, August 1992, pp. 539-550.

Robertson, P.K., T. Lunne and J.J.M. Powell, "Geo-Environmental Application of Penetration Testing", Geotechnical Site Characterization, Robertson & Mayne (editors), 1998 Balkema, Rotterdam, ISBN 90 5410 939 4 pp 35-47.

Campanella, R.G. and I. Weemees, "Development and Use of An Electrical Resistivity Cone for Groundwater Contamination Studies", Canadian Geotechnical Journal, Vol. 27 No. 5, 1990 pp. 557-567.

DeGroot, D.J. and A.J. Lutenegger, "Reliability of Soil Gas Sampling and Characterization Techniques", International Site Characterization Conference - Atlanta, 1998.

Woeller, D.J., P.K. Robertson, T.J. Boyd and Dave Thomas, "Detection of Polyaromatic Hydrocarbon Contaminants Using the UVIF-CPT", 53rd Canadian Geotechnical Conference Montreal, QC October pp. 733-739, 2000.

Zemo, D.A., T.A. Delfino, J.D. Gallinatti, V.A. Baker and L.R. Hilpert, "Field Comparison of Analytical Results from Discrete-Depth Groundwater Samplers" BAT EnviroProbe and QED HydroPunch, Sixth national Outdoor Action Conference, Las Vegas, Nevada Proceedings, 1992, pp 299-312.

Copies of ASTM Standards are available through www.astm.org

APPENDIX C

Laboratory Analytical Reports and Chain of Custody Records

Date of Report: 05/18/2007

Keith Woodburne

TRC

1590 Solano Way, Suite A Concord, CA 94520

RE: 3072 BC Work Order: 0705306

Enclosed are the results of analyses for samples received by the laboratory on 05/07/2007 22:35. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Vanessa Hooker Client Service Rep

Authorized Signature

RC 590 Solano Wa Concord, CA 94			Project: 3072 Project Number: [none] Project Manager: Keith Woodburne		Reported: 05/18/2007 10:30
		Laborate	ry / Client Sample Cross Refe	erence	
Laboratory	Client Sample Informati	on			
0705306-01	COC Number:		Receive Date:	05/07/2007 22:35	Delivery Work Order:
	Project Number:	3072	Sampling Date:	05/02/2007 09:08	Global ID:
	Sampling Location:	CPT-1	Sample Depth:		Matrix: W
	Sampling Point:	CPT-1	Sample Matrix:	Water	Samle QC Type (SACode): CS
	Sampled By:	J. Kearns of TRCC			Cooler ID:
0705306-02	COC Number:		Receive Date:	05/07/2007 22:35	Delivery Work Order:
	Project Number:	3072	Sampling Date:	05/02/2007 13:27	Global ID:
	Sampling Location:	CPT-4	Sample Depth:		Matrix: W
	Sampling Point:	CPT-4	Sample Matrix:	Water	Samle QC Type (SACode): CS
	Sampled By:	J. Kearns of TRCC			Cooler ID:
0705306-03	COC Number:		Receive Date:	05/07/2007 22:35	Delivery Work Order:
	Project Number:	3072	Sampling Date:	05/03/2007 07:25	Global ID:
	Sampling Location:	CPT-2	Sample Depth:		Matrix: W
	Sampling Point:	CPT-2	Sample Matrix:	Water	Samle QC Type (SACode): CS
	Sampled By:	J. Kearns of TRCC			Cooler ID:
0705306-04	COC Number:	<u>81</u> 0	Receive Date:	05/07/2007 22:35	Delivery Work Order:
	Project Number:	3072	Sampling Date:	05/03/2007 09:05	Global ID:
	Sampling Location:	CPT-5	Sample Depth:		Matrix: W
	Sampling Point:	CPT-5	Sample Matrix:	Water	Samle QC Type (SACode): CS
	Sampled By:	J. Kearns of TRCC			Cooler ID:
0705306-05	COC Number:	Non State	Receive Date:	05/07/2007 22:35	Delivery Work Order:
	Project Number:	3072	Sampling Date:	05/03/2007 09:30	Global ID:
	Sampling Location:	COMB	Sample Depth:		Matrix: W
	Sampling Point:	COMB	Sample Matrix:	Solids	Samle QC Type (SACode): CS
	Sampled By:	J. Keams of TRCC			Cooler ID:

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC 1590 Solano Way, Suite A Concord, CA 94520					Projec oject Numbe ject Manage		odburne				Repo	rted: 05	/18/2007 10:30
	V	olati	le Organ	ic /	Analys	sis (E	PA Meth	od 82	260)				
BCL Sample ID: 0705306-01	Client Sampl	e Name:	3072, CPT-1,	CPT-1	, 5/2/2007	9:08:00AM,	J. Kearns						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443	ND	
1,2-Dibromoethane	ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443	ND	
1,2-Dichloroethane	ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443	ND	
Ethylbenzene	ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443	ND	
Methyl t-butyl ether	ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443	ND	
Toluene	ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443	ND	
Total Xylenes	ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443	ND	
t-Amyl Methyl ether	ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443	ND	
t-Butyl alcohol	ND	ug/L	10		EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443	ND	
Diisopropyl ether	ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443	ND	
Ethanol	ND	ug/L	250		EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443	ND	
Ethyl t-butyl ether	ND	ug/L.	0,50		EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50		EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443	ND	
1,2-Dichloroethane-d4 (Surrogate)	94.7	%	76 - 114 (LCL - U	ICL)	EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443		
Toluene-d8 (Surrogate)	95.6	%	88 - 110 (LCL - U	ICL)	EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443		
4-Bromofluorobenzene (Surrogate)	103	%	86 - 115 (LCL - U	ICL)	EPA-8260	05/08/07	05/08/07 23:40	SDU	MS-V10	1	BQE0443		

TRC 1590 Solano Way, Suite A Concord, CA 94520					Projec oject Numbe oject Manage		odburne			1.	Repo	orted: (05/18/2007 10:30
	1				-5, H-5002-4-04		ocarbon	S					
BCL Sample ID: 0705306-0	1 Client Samp	le Name:	3072, CP	T-1, CPT-1	1, 5/2/2007	9:08:00AM,	J. Kearns						
						Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Diesel Range Organics (C12 - C24)	490	ug/L	50		Luft/TPHd	05/10/07	05/17/07 07:05	MRW	GC-5	1	BQE1132	ND	

05/10/07

05/17/07 07:05

MRW

GC-5

Luft/TPHd

Tetracosane (Surrogate)

55.4

%

42 - 125 (LCL - UCL)

1

BQE1132

TRC 1590 Solano Way, Suite A Concord, CA 94520					Projec oject Number ject Manager		odburne			0	Repo	rted: 05/1	8/2007 10:30
	V	'olati	le Organ	ic /	Analys	is (E	PA Meth	od 82	260)				
BCL Sample ID: 0705306-02	Client Sampl	le Name:	3072, CPT-4,	CPT-4	, 5/2/2007	I:27:00PM,	J. Kearns						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quais
Benzene	ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
1,2-Dibromoethane	ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
1,2-Dichloroethane	ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
Ethylbenzene	ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
Methyl t-butyl ether	10	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
Toluene	ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
Total Xylenes	ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
t-Amyl Methyl ether	ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
t-Butyl alcohol	ND	ug/L	10		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
Diisopropyl ether	ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
Ethanol	ND	ug/L	250		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
Ethyl t-butyl ether	ND	ug/L	0.50		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50		EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443	ND	
1,2-Dichloroethane-d4 (Surrogate)	95.3	%	76 - 114 (LCL - U	CL)	EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443		
Toluene-d8 (Surrogate)	96.4	%	88 - 110 (LCL - U	CL)	EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443		
4-Bromofluorobenzene (Surrogate)	103	%	86 - 115 (LCL - U	CL)	EPA-8260	05/08/07	05/08/07 23:58	SDU	MS-V10	1	BQE0443		

TRC 1590 Solano Way, Suite A Concord, CA 94520					Projec oject Number ject Manager		odburne			1	Repo	rted:	05/18/2007 10:30
			Total	Petr	oleum	Hydr	ocarbon	S					
BCL Sample ID: 0705306-02	Client Sampl	e Name:	3072, CPT	-4, CPT-4	, 5/2/2007 1	I:27:00PM,	J. Keams						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bia:	
Diesel Range Organics (C12 - C24)	800	ug/L	50		Luft/TPHd	05/10/07	05/17/07 07:19	MRW	GC-5	1	BQE1132	ND	
Tetracosane (Surrogate)	68.5	%	42 - 125 (LCL	UCL)	Luft/TPHd	05/10/07	05/17/07 07:19	MRW	GC-5	1 -	BQE1132		

TRC 1590 Solano Way, Suite A Concord, CA 94520					Projec oject Number oject Manager		odburne			_1	Repo	rted: 05/1	8/2007 10:30
	V	olati	le Orga	nic /	Analys	is (E	PA Meth	od 82	260)				
BCL Sample ID: 0705306-03	Client Sampl	e Name:	3072, CPT-	-2, CPT-2	2, 5/3/2007	2:25:00AM,	J. Kearns						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	ND	dudio
1,2-Dibromoethane	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	ND	
1,2-Dichloroethane	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	ND	
Ethylbenzene	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	ND	
Methyl t-butyl ether	6.3	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	ND	
Toluene	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	ND	
Total Xylenes	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	ND	
t-Amyl Methyl ether	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	ND	
t-Butyl alcohol	54	ug/L	10		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	ND	
Diisopropyl ether	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	Ť	BQE0443	ND	
Ethanol	ND	ug/L	250		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	ND	
Ethyl t-butyl ether	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50		EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443	ND	
1,2-Dichloroethane-d4 (Surrogate)	94.7	%	76 - 114 (LCL	- UCL)	EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443		
Toluene-d8 (Surrogate)	93.3	%	88-110 (LCL	- UCL)	EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443		
4-Bromofluorobenzene (Surrogate)	101	%	86 - 115 (LCL	- UCL)	EPA-8260	05/08/07	05/09/07 00:16	SDU	MS-V10	1	BQE0443		

TRC 1590 Solano Way, Suite A Concord, CA 94520					Projec oject Number oject Manager		odburne				Repo	orted:	05/18/2007 10:3
BCL Sample ID: 0705306-03	Client Sampl	Nomo			oleum		ocarbon	S					
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Diesel Range Organics (C12 - C24)	500	ug/L	50		Luft/TPHd	05/10/07	05/17/07 07:32	MRW	GC-5	1	BQE1132	ND	

TRC 1590 Solano Way, Suite A Concord, CA 94520					Project oject Number iject Manager	[none]	odburne				Repo	rted: 05/1	8/2007 10:30
	v	olati	le Orga	nic /	Analys	is (E	PA Meth	od 82	260)				
BCL Sample ID: 0705306-04	Client Sampl	e Name:	3072, CPT-	5, CPT-8	5, 5/3/2007):05:00AM,	J. Kearns						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND	quite
1,2-Dibromoethane	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND	
1,2-Dichloroethane	ND	ug/L,	0.50		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND	
Ethylbenzene	ND	ug/L,	0.50		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND	
Methyl t-butyl ether	5.2	ug/L	0,50		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND	
Toluene	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND	
Total Xylenes	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND	
t-Amyl Methyl ether	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND	
t-Butyl alcohol	ND	ug/L	10		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND	
Diisopropyl ether	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	3	BQE0443	ND	
Ethanol	ND	ug/L	250		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND	
Ethyl t-butyl ether	ND	ug/L	0.50		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443	ND	
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50		EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-∨10	1	BQE0443	ND	
1,2-Dichloroethane-d4 (Surrogate)	97.3	%	76 - 114 (LCL -	UCL)	EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443		
Toluene-d8 (Surrogate)	94.4	%	88 - 110 (LCL -	UCL)	EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443		
4-Bromofluorobenzene (Surrogate)	103	%	86 - 115 (LCL -	UCL)	EPA-8260	05/08/07	05/09/07 00:34	SDU	MS-V10	1	BQE0443		

TRC 1590 Solano Way, Suite A Concord, CA 94520						Projec oject Numbe oject Manage		odburne			1	Repo	orted:	05/18/2007 10:30
		- 16-1		Total	Petr	oleum	Hydr	ocarbon	S					
BCL Sample ID: 070	05306-04	Client Sample	e Name:	3072, CP	T-5, CPT-5	5, 5/3/2007	9:05:00AM,	J. Kearns						
							Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	G Quals
Diesel Range Organics (C12 -	C24)	280	ug/L	50		Luft/TPHd	05/10/07	05/17/07 07:46	MRW	GC-5	1	BQE1132	ND	
Tetracosane (Surrogate)		80.1	%	42 - 125 (LC		Luft/TPHd	05/10/07	05/17/07 07:46	MRW	GC-5		BQE1132		

TRC 1590 Solano Way, Suite A Concord, CA 94520					Projec oject Numbe oject Manage		odburne				Repo	rted: 05/*	18/2007 10:30
	V	olati	le Orga	nic /	Analys	is (E	PA Meth	od 82	260)				
BCL Sample ID: 0705306-05	Client Sampl	le Name:	3072, COM	B, COM	B, 5/3/2007	9:30:00AM,	J. Kearns						
Constituent	Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	Instru- ment ID	Dilution	QC Batch ID	MB Bias	Lab Quals
Benzene	ND	mg/kg	0.025		EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1
1,2-Dibromoethane	ND	mg/kg	0.025		EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1
1,2-Dichloroethane	ND	mg/kg	0.025		EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1
Ethylbenzene	ND	mg/kg	0.025		EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1
Methyl t-butyl ether	ND	mg/kg	0.025		EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1
Toluene	ND	mg/kg	0.025		EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1
Total Xylenes	ND	mg/kg	0.050		EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1
t-Amyl Methyl ether	ND	mg/kg	0.0050		EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1
t-Butyl alcohol	ND	mg/kg	0.25		EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1
Diisopropyl ether	ND	mg/kg	0.025		EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1
Ethanol	ND	mg/kg	5.0		EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1
Ethyl t-butyl ether	ND	mg/kg	0.0050		EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1
Total Purgeable Petroleum Hydrocarbons	ND	mg/kg	1.0		EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486	ND	A01,Z1
1,2-Dichloroethane-d4 (Surrogate)	99,6	%	70 - 121 (LCL -	UCL)	EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486		
Toluene-d8 (Surrogate)	97.7	%	81 - 117 (LCL -	UCL)	EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486		
4-Bromofluorobenzene (Surrogate)	84.6	%	74 - 121 (LCL -	UCL)	EPA-8260	05/08/07	05/11/07 22:56	CAW	MS-V3	5	BQE0486		

				oject Number	[none]	odburne				Repo	rted:	05/18/2007 10:3
1		Total	Petr	oleum	Hydr	ocarbon	S					
Client Sampl	e Name:	3072, CON	B, COME	3, 5/3/2007 9	9:30:00AM,	J. Kearns						
					Prep	Run		Instru-		QC	MB	Lab
Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	s Quals
ND	mg/kg	1400		Luft/TPHd	05/11/07	05/17/07 09:50	MRW	GC-5	136.36	BQE1039	ND	8
				Luft/TPHd								
	Result		Client Sample Name: 3072, COM Result Units PQL	Client Sample Name: 3072, COMB, COMB Result Units PQL MDL	Project Number Project Manager Total Petroleum Client Sample Name: 3072, COMB, COMB, 5/3/2007 Result Units PQL MDL Method	Total Petroleum Hydr Client Sample Name: 3072, COMB, COMB, 5/3/2007 9:30:00AM, Prep Petrol Petrol Date	Project Number: [none] Project Manager: Keith Woodburne Total Petroleum Hydrocarbon Client Sample Name: 3072, COMB, COMB, 5/3/2007 9:30:00AM, J. Kearns Prep Run Result Units PQL MDL Method Date Date/Time	Project Number: [none] Project Number: [none] Project Manager: Keith Woodburne Total Petroleum Hydrocarbons Client Sample Name: 3072, COMB, COMB, 5/3/2007 9:30:00AM, J. Kearns Prep Run Result Units PQL MDL Method Date/Time Analyst	Project Number: [none] Project Manager: Keith Woodburne Total Petroleum Hydrocarbons Client Sample Name: 3072, COMB, COMB, 5/3/2007 9:30:00AM, J. Kearns Prep Run Instru- ment ID Result Units PQL MDL Method Date/Time Analyst ment ID	Project Number: [none] Project Manager: Keith Woodburne Total Petroleum Hydrocarbonss Client Sample Name: 3072, COMB, COMB, 5/3/2007 9:30:00AM, J. Kearns Prep Run Instru- Result Units PQL MDL Method Date /Time Analyst ment ID Dilution	Project Number: [none] Project Manager: Keith Woodburne Total Petroleum Hydrocarbons Client Sample Name: 3072, COMB, COMB, 5/3/2007 9:30:00AM, J. Kearns Prep Run Instru- QC Result Units PQL MDL Method Date/Time Analyst ment ID Dilution Batch ID	Project Number: [none] Project Manager: Keith Woodburne Total Petroleum Hydrocarbons Client Sample Name: 3072, COMB, COMB, 5/3/2007 9:30:00AM, J. Kearns Prep Run Instru- QC MB Result Units PQL MDL Method Date/Time Analyst ment ID Dilution Batch ID Bias

TRC 1590 Solano Way, S Concord, CA 94520						Project oject Number ject Manager		odburne				Repo	orted:	05/18/2007 10:3
				Tota	al Co	ncentr	ation	s (TTLC)						
BCL Sample ID:	0705306-05	Client Sampl	e Name:	3072, CO	МВ, СОМЕ	3, 5/3/2007 9	9:30:00AM,	J. Kearns						
Constituent		Result	Units	PQL	MDL	Method	Prep Date	Run Date/Time	Analyst	instru- ment ID	Dilution	QC Batch ID	MB Bia:	
Lead		8.3	mg/kg	5.0		EPA-6010B	05/08/07	05/08/07 21:17	JCC	TJA61E	1.923	BQE0461	ND	A01

BC Laboratories

TRC	Project: 3072	Reported: 05/18/2007 10:30
1590 Solano Way, Suite A	Project Number: [none]	
Concord, CA 94520	Project Manager: Keith Woodburne	

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

										Contr	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BQE0443	Matrix Spike	0705275-01	0.74000	28.380	25.000	ug/L		111		70 - 130
		Matrix Spike Duplicate	0705275-01	0.74000	27.430	25.000	ug/L	3.7	107	20	70 - 130
Toluene	BQE0443	Matrix Spike	0705275-01	1.9500	29.320	25.000	ug/L		109		70 - 130
		Matrix Spike Duplicate	0705275-01	1,9500	29.020	25.000	ug/L	0,9	108	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BQE0443	Matrix Spike	0705275-01	ND	9.3100	10.000	ug/L		93,1		76 - 114
		Matrix Spike Duplicate	0705275-01	ND	9,0800	10.000	ug/L		90.8		76 - 114
Toluene-d8 (Surrogate)	BQE0443	Matrix Spike	0705275-01	ND	9.8100	10.000	ug/L		98,1		88 - 110
		Matrix Spike Duplicate	0705275-01	ND	9.8400	10.000	ug/L		98,4		88 - 110
4-Bromofluorobenzene (Surrogate)	BQE0443	Matrix Spike	0705275-01	ND	10.200	10.000	ug/L		102		86 - 115
		Matrix Spike Duplicate	0705275-01	ND	10.100	10.000	ug/L		101		86 - 115
Benzene	BQE0486	Matrix Spike	0703711-64	0	0,12296	0.12500	mg/kg		98.4		70 - 130
		Matrix Spike Duplicate	0703711-64	0	0.12825	0,12500	mg/kg	4,6	103	20	70 - 130
Toluene	BQE0486	Matrix Spike	0703711-64	0	0.12182	0.12500	mg/kg		97.5		70 - 130
		Matrix Spike Duplicate	0703711-64	0	0.12139	0.12500	mg/kg	0,4	97,1	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BQE0486	Matrix Spike	0703711-64	ND	0.049610	0.050000	mg/kg		99,2		70 - 121
		Matrix Spike Duplicate	0703711-64	ND	0.049700	0.050000	mg/kg		99,4		70 - 121
Toluene-d8 (Surrogate)	BQE0486	Matrix Spike	0703711-64	ND	0.051450	0.050000	mg/kg		103		81 - 117
		Matrix Spike Duplicate	0703711-64	ND	0.049860	0.050000	mg/kg		99.7		81 - 117
4-Bromofluorobenzene (Surrogate)	BQE0486	Matrix Spike	0703711-64	ND	0.049840	0.050000	mg/kg		99,7		74 - 121
		Matrix Spike Duplicate	0703711-64	ND	0.048920	0.050000	mg/kg		97.8		74 - 121

TRC	Project: 3072	Reported: 05/18/2007 10:30
1590 Solano Way, Suite A	Project Number: [none]	
Concord, CA 94520	Project Manager: Keith Woodburne	

Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

										Contr	ol Limits	
			Source	Source		Spike			Percent		Percent	
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Lab Quals
Diesel Range Organics (C12 - C24)	BQE1039	Matrix Spike	0701337-15		ND	16.722	mg/kg				54 - 119	Q03
		Matrix Spike Duplicate	0701337-15		11.982	16.779	mg/kg			30	54 - 119	Q02
Tetracosane (Surrogate)	BQE1039	Matrix Spike	0701337-15	ND	0.47806	0.66890	mg/kg		71.5		58 - 120	
		Matrix Spike Duplicate	0701337-15	ND	0.73339	0.67114	mg/kg		109		58 - 120	
Diesel Range Organics (C12 - C24)	BQE1132	Matrix Spike	0701337-99	19.000	344.84	500.00	ug/L		65.2		41 - 139	
		Matrix Spike Duplicate	0701337-99	19.000	481.35	500.00	ug/L	34.6	92.5	30	41 - 139	M02
Tetracosane (Surrogate)	BQE1132	Matrix Spike	0701337-99	ND	31.229	40.000	ug/L	_	78.1		42 - 125	
		Matrix Spike Duplicate	0701337-99	ND	49.344	40.000	ug/L		123		42 - 125	

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC	Project: 3072	Reported: 05/18/2007 10:30
1590 Solano Way, Suite A	Project Number: [none]	Reported. 05/16/2007 10:50
Concord, CA 94520	Project Manager: Keith Woodburne	
	Total Concentrations (TTLC)	

Quality Control Report - Precision & Accuracy

			Source	Source		Spike			Percent		Percent	
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Lab Quals
Lead	BQE0461	Duplicate	0705308-04	5.9902	5.9314		mg/kg	1.0		20		A01
		Matrix Spike	0705308-04	5.9902	100.98	98,039	mg/kg		96,9		75 - 125	A01
		Matrix Spike Duplicate	0705308-04	5.9902	103.24	98.039	mg/kg	2.3	99.2	20	75 - 125	A01

ſ		
TRC	Project: 3072	Reported: 05/18/2007 10:30
1590 Solano Way, Suite A	Project Number: [none]	
Concord, CA 94520	Project Manager: Keith Woodburne	

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

									Control	Limits		
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Benzene	BQE0443	BQE0443-BS1	LCS	26.050	25.000	1.0	ug/L	104		70 - 130		
Toluene	BQE0443	BQE0443-BS1	LCS	26.310	25.000	1.0	ug/L	105		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BQE0443	BQE0443-BS1	LCS	9.2500	10.000		ug/L	92,5		76 - 114		
Toluene-d8 (Surrogate)	BQE0443	BQE0443-BS1	LCS	9.8000	10.000		ug/L	98.0		88 - 110		
4-Bromofluorobenzene (Surrogate)	BQE0443	BQE0443-B\$1	LCS	10.320	10.000		ug/L	103		86 - 115		
Benzene	BQE0486	BQE0486-BS1	LCS	0.12501	0.12500	0.0050	mg/kg	100		70 - 130		
Toluene	BQE0486	BQE0486-BS1	LCS	0.11827	0.12500	0.0050	mg/kg	94.6		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BQE0486	BQE0486-BS1	LCS	0.050090	0.050000		mg/kg	100		70 - 121		
Toluene-d8 (Surrogate)	BQE0486	BQE0486-BS1	LCS	0.049080	0.050000		mg/kg	98.2		81 - 117		
4-Bromofluorobenzene (Surrogate)	BQE0486	BQE0486-BS1	LCS	0.047590	0.050000		mg/kg	95.2		74 - 121		

TRC	Project: 3072	Reported: 05/18/2007 10:30
1590 Solano Way, Suite A	Project Number: [none]	
Concord, CA 94520	Project Manager: Keith Woodburne	

Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

									<u>Control</u>	Limits	10
Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	PQL Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quais
BQE1039	BQE1039-BS1	LCS	13.866	16.393	10	mg/kg	84.6		58 - 131		
BQE1039	BQE1039-BS1	LCS	0.83436	0.65574		mg/kg	127		58 - 120		S09
BQE1132	BQE1132-BS1	LCS	313.81	500.00	50	ug/L	62.8		62 - 101		
BQE1132	BQE1132-BS1	LCS	28.441	40.000		ug/L	71.1		42 - 125		
	BQE1039 BQE1039 BQE1132		BQE1039 BQE1039-BS1 LCS BQE1039 BQE1039-BS1 LCS BQE1132 BQE1132-BS1 LCS	BQE1039 BQE1039-BS1 LCS 13.866 BQE1039 BQE1039-BS1 LCS 0.83436 BQE1132 BQE1132-BS1 LCS 313.81	Batch ID QC Sample ID QC Type Result Level BQE1039 BQE1039-BS1 LCS 13.866 16.393 BQE1039 BQE1039-BS1 LCS 0.83436 0.65574 BQE1132 BQE1132-BS1 LCS 313.81 500.00	Batch ID QC Sample ID QC Type Result Level PQL BQE1039 BQE1039-BS1 LCS 13.866 16.393 10 BQE1039 BQE1039-BS1 LCS 0.83436 0.65574 BQE1132 BQE1132-BS1 LCS 313.81 500.00 50	Batch ID QC Sample ID QC Type Result Level PQL Units BQE1039 BQE1039-BS1 LCS 13.866 16.393 10 mg/kg BQE1039 BQE1039-BS1 LCS 0.83436 0.65574 mg/kg BQE1132 BQE1132-BS1 LCS 313.81 500.00 50 ug/L	Batch ID QC Sample ID QC Type Result Level PQL Units Recovery BQE1039 BQE1039-BS1 LCS 13.866 16.393 10 mg/kg 84.6 BQE1039 BQE1039-BS1 LCS 0.83436 0.65574 mg/kg 127 BQE1132 BQE1132-BS1 LCS 313.81 500.00 50 ug/L 62.8	Batch ID QC Sample ID QC Type Result Level PQL Units Recovery RPD BQE1039 BQE1039-BS1 LCS 13.866 16.393 10 mg/kg 84.6 BQE1039 BQE1039-BS1 LCS 0.83436 0.65574 mg/kg 127 BQE1132 BQE1132-BS1 LCS 313.81 500.00 50 ug/L 62.8	Batch ID QC Sample ID QC Type Result Spike Level PQL Units Percent Recovery Percent Recovery BQE1039 BQE1039-BS1 LCS 13.866 16.393 10 mg/kg 84.6 58 - 131 BQE1039 BQE1039-BS1 LCS 0.83436 0.65574 mg/kg 127 58 - 120 BQE1132 BQE1132-BS1 LCS 313.81 500.00 50 ug/L 62.8 62 - 101	Batch ID QC Sample ID QC Type Result Level PQL Units Recovery RPD Recovery RPD BQE1039 BQE1039-BS1 LCS 13.866 16.393 10 mg/kg 84.6 58 - 131 BQE1039 BQE1039-BS1 LCS 0.83436 0.65574 mg/kg 127 58 - 120 BQE1132 BQE1132-BS1 LCS 313.81 500.00 50 ug/L 62.8 62 - 101

	Project Manager: Keith Woodburne	
Concord, CA 94520		
1590 Solano Way, Suite A	Project Number: [none]	
TRC	Project: 3072	Reported: 05/18/2007 10:30

Total Concentrations (TTLC)

Quality Control Report - Laboratory Control Sample

											Control	Limits	
Constituent		Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Lead	¥	BQE0461	BQE0461-BS1	LCS	10.045	10.441	2.5	mg/kg	96.2		75 - 125		

TRC 1590 Solano Way, Suite A Concord, CA 94520		Project: 3072 roject Number: [none] oject Manager: Keith Wood	burne		1	Reported: 05	5/18/2007 10:30
	Volatile Organic	Analysis (EF	PA Method	8260)			
	Quality Control	Report - Method	Blank Analys	is			
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BQE0443	BQE0443-BLK1	ND	ug/L	1.0		
1,2-Dibromoethane	BQE0443	BQE0443-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BQE0443	BQE0443-BLK1	ND	ug/L	0.50		
Ethylbenzene	BQE0443	BQE0443-BLK1	ND	ug/L	1.0		
Methyl t-butyl ether	BQE0443	BQE0443-BLK1	ND	ug/L	2.0		
Toluene	BQE0443	BQE0443-BLK1	ND	ug/L	1.0		
Total Xylenes	BQE0443	BQE0443-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BQE0443	BQE0443-BLK1	ND	ug/L	2.0		
t-Butyl alcohol	BQE0443	BQE0443-BLK1	ND	ug/L	10		
Diisopropyl ether	BQE0443	BQE0443-BLK1	ND	ug/L	2.0		
Ethanol	BQE0443	BQE0443-BLK1	ND	ug/L	1000		
Ethyl t-butyl ether	BQE0443	BQE0443-BLK1	ND	ug/L	2.0		
Total Purgeable Petroleum Hydrocarbons	BQE0443	BQE0443-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BQE0443	BQE0443-BLK1	96.2	%	76 - 114	(LCL - UCL)	
Toluene-d8 (Surrogate)	BQE0443	BQE0443-BLK1	97.0	%	88 - 110 (LCL - UCL)		
4-Bromofluorobenzene (Surrogate)	BQE0443	BQE0443-BLK1	102	%	86 - 115 (LCL - UCL)		
Benzene	BQE0486	BQE0486-BLK1	ND	mg/kg	0.0050		
1,2-Dibromoethane	BQE0486	BQE0486-BLK1	ND	mg/kg	0.0050		
1,2-Dichloroethane	BQE0486	BQE0486-BLK1	ND	mg/kg	0.0050		
Ethylbenzene	BQE0486	BQE0486-BLK1	ND	mg/kg	0.0050		
Methyl t-butyl ether	BQE0486	BQE0486-BLK1	ND	mg/kg	0.0050		
Toluene	BQE0486	BQE0486-BLK1	ND	mg/kg	0.0050		
Total Xylenes	BQE0486	BQE0486-BLK1	ND	mg/kg	0.010		
t-Amyl Methyl ether	BQE0486	BQE0486-BLK1	ND	mg/kg	0.0010		

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document, This analytical report must be reproduced in its entirety,

TRC 1590 Solano Way, Suite A Concord, CA 94520	Project: 3072 Project Number: [none] Project Manager: Keith Woodburne					Reported: 05/18/2007 1			
	Volatile Organic	Analysis (EF	PA Method	8260)					
	Quality Control	Report - Method	Blank Analys	is					
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals		
t-Butyl alcohol	BQE0486	BQE0486-BLK1	ND	mg/kg	0.20				
Diisopropyl ether	BQE0486	BQE0486-BLK1	ND	mg/kg	0.0050				
Ethanol	BQE0486	BQE0486-BLK1	ND	mg/kg	1.0				
Ethyl t-butyl ether	BQE0486	BQE0486-BLK1	ND	mg/kg	0.0010				
Total Purgeable Petroleum Hydrocarbons	BQE0486	BQE0486-BLK1	ND	mg/kg	0.20				
1,2-Dichloroethane-d4 (Surrogate)	BQE0486	BQE0486-BLK1	99.3	%	70 - 121	(LCL - UCL)			
Foluene-d8 (Surrogate)	BQE0486	BQE0486-BLK1	96.6	%	81 - 117	(LCL - UCL)			
4-Bromofluorobenzene (Surrogate)	BQE0486	BQE0486-BLK1	94.1	%	74 - 121	(LCL - UCL)			

BC Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

TRC		Project: 3072			F	Reported: 05	/18/2007 10:3
1590 Solano Way, Suite A	Pr	oject Number: [none]					
Concord, CA 94520	Pro	oject Manager: Keith Wood	burne				
	Total Pet	roleum Hydro	ocarbons				
	Quality Control	Report - Method	Blank Analysi	is			
Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Diesel Range Organics (C12 - C24)	BQE1039	BQE1039-BLK1	ND	mg/kg	10		
Tetracosane (Surrogate)	BQE1039	BQE1039-BLK1	94.1	%	58 - 120	(LCL - UCL)	
Diesel Range Organics (C12 - C24)	BQE1132	BQE1132-BLK1	ND	ug/L	50		

	Quality Control	Report - Method	Blank Analys	is			
	Total Co	oncentrations	(TTLC)				
1590 Solano Way, Suite A Concord, CA 94520		oject Number: [none] ject Manager: Keith Wood	burne				
TRC		Project: 3072			5 E	Reported:	05/18/2007 10:30

constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals	
Lead	BQE0461	BQE0461-BLK1	ND	mg/kg	2.5			

	lano Way, Suite A , CA 94520	Project: 3072 Project Number: [none] Project Manager: Keith Woodburne	Reported: 05/18/2007 10:30
Notes A	nd Definitions		
/IDL	Method Detection Limit		
ID	Analyte Not Detected at or above the reporting limit		
QL	Practical Quantitation Limit		
PD	Relative Percent Difference		
01	PQL's and MDL's are raised due to sample dilution.		
102	Analyte detected in the Method Blank at a level between the PQL	and 1/2 the PQL.	
02	Matrix spike precision is not within the control limits.		
103	Matrix spike recovery(s) is(are) not within the control limits.		
09	The surrogate recovery on the sample for this compound was not	within the control limits.	
1	This sample clogged the needle, which caused the surrogate's rec	covery to be out of range. Second analysis was ran to verify the surrogate's %	

#-07-05306

BC LABORATORIES, INC.

4100 Atlas Court ⊡ Bakersfield, CA 93308 (661) 327-4911 □ FAX (661) 327-1918

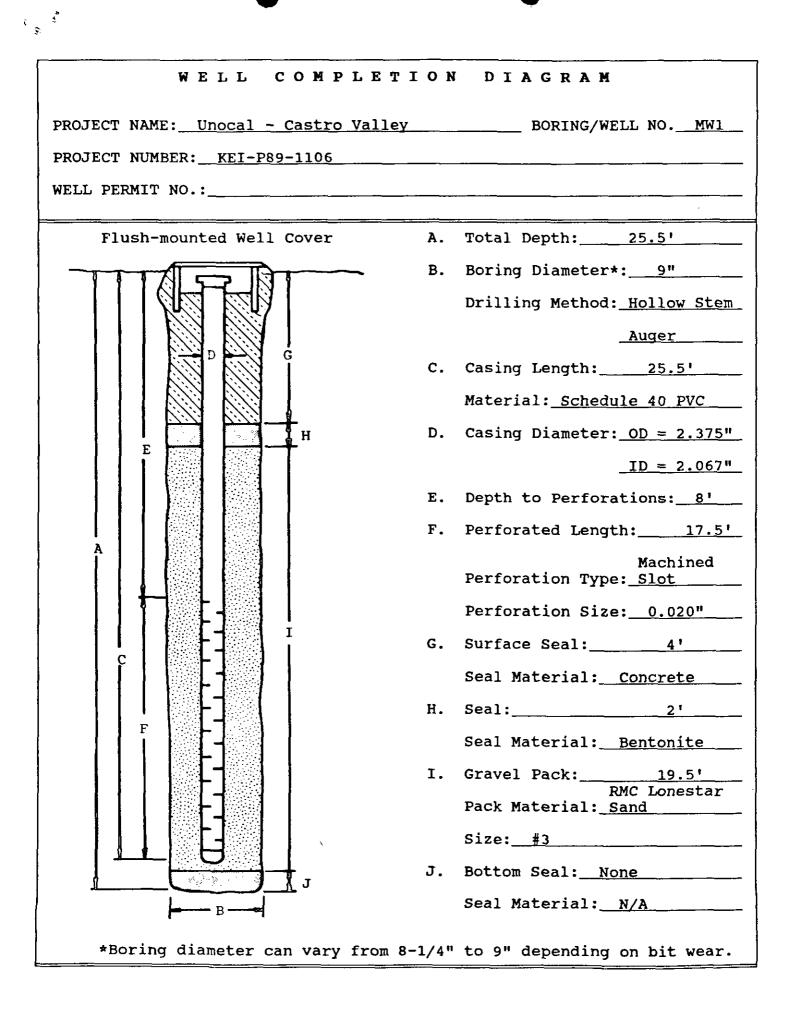
CHAIN OF CUSTODY

Analysis Requested

MATRIX **Consultant Firm: TRC** 8015 **Bill to: Conoco Phillips/ TRC** (GW) 843 24 Techology Drive 1590 SOLAND WY Address: 2445 CASTRO VALLEY Ground-Na BLVD. 8260B HVING. GA 92618-2302 CON COPD. CA water 1,2-DCA , Turnaround Time Requested 638 3260 full list w/ oxygenates 94520 Attn: Aniu Farfan 400: KEITH (S)WOODBULANE Soil ۵Ö ž 8021 by 8015 4-digit site#: (WW)8015M City: CASTRO VALLEY ETHANOL by 8260B 3072 TBR, DIPE, THUE, EDBE BTEX/MTBE/OXYS GC/MS Waste-Workorder # À water TPP4 by \$260B hà BTEX/MTBE Project #: 42013903 DESEL Oven State: CA Zip: (SL) TPH -G by GAS Sludge Sampler Name: J.KEARNS **Conoco Phillips Mgr:** TOTAL Ta Hdl Date & Time Lab# Sample Description Field Point Name Sampled X × × × × 5/2/07 0908 G.W. CPT-1 ~1 5/2/07 CPT-4 -2 1327 53107 -3 CPT-2 0725 5/3/07 0905 CPT-5 5/3/07 × -5 COMB. 0930 5 122 MYJKL SIMNEL 3O Date STATOT Repived by: Relinquished by, (Signature) Commonis: PLEME COMBINE SAMPLES 1450 FOR COMPOSIT ANALYSIS. 27 showy (menature) Received by: Date & Time 5-7.07 1900 GLOBAL ID: Date & Time Relinquished by (Signature) Receiverby P.CR -7.07 2235 5/7/1 (A) = ANALYSIS(C) = CONTAINER(P) = PRESERVATIVE

Attachment C

Historic Monitoring Well Logs


			ВС	RI	NG LOG	0 (
Project KEI-P89-			Boring 9"	j & Ca	sing Diameter 2"	Logged By Jule D.L.
Project Castro V			Well H	lead E N/A	levation	Date Drilled 1/18/90
Boring N MW1	10.		Drilli Method		Hollow-stem Auger	Drilling Company EGI
Penetra- tion blows/6"	G. W. level			rati- iphy S	Desc	cription
					A.C. Pavement Clay, sand, and	d gravel: fill
			СН		Clay, high plas black.	sticity, stiff, moist,
5/7/14		5 - 			10-15% sand.	t 5 feet to dark gray weathered, locally
16/33/43			N/A		hard, fracture	ed, slightly moist, clayey inside fractures
22/46/ 50-5"	*				Shale bedrock a wet.	at 13 feet, as above,
					Color change at gray.	t 20 feet to very dark

•

1

5 g

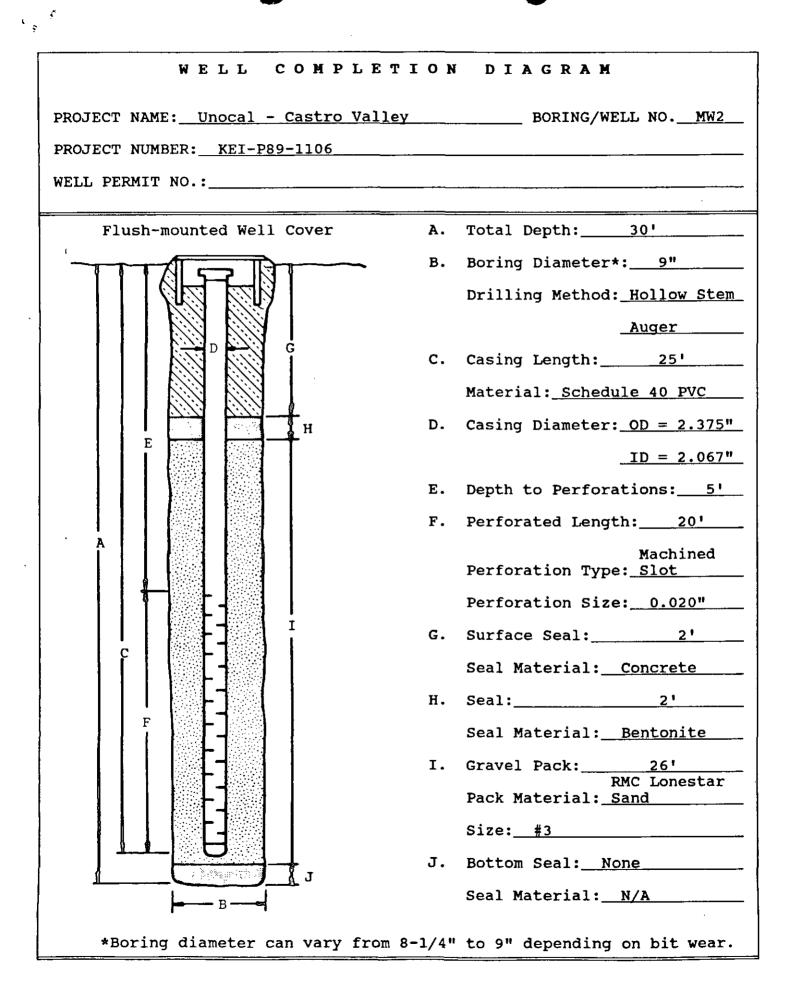
1.7

					ВО	RII	NG LOG	······································
Project No. KEI-P89-1106					oring 9"	& Cas	sing Diameter 2"	Logged By A Mou
Project Castro V		Unoc	al	We	ell H	ead E N/A	levation	Date Drilled 1/18/90
Boring N MW2			illi thod		Hollow-stem Auger	Drilling Company EGI		
Penetra- tion blows/6"	G. W. level			t)	Str gra USC		Des	cription
			0 -				A.C. Pavement	
								gh plasticity, stiff, ark gray, locally vel to 1/2".
6/8/10			5 -		СН		15% sand, sti	sticity , with silt, 1 ff, moist, dark green- ally cemented, with 6 feet.
16/25/26					GC		dark greenish	with sand, dense, mois gray, mottled with elow 7.5 feet.
4/7/13	,		10 -		СН			derate to high plasti- gravel, stiff, firable ish brown.
8/11/15								12 feet, ocasional l is olive brown shale
7/13/22	1			F				
13/20/28			15 -					
10/19/21					GC			with sand, dense, mois wn, gravel is shale, thin clay.
13/19/23 50-2"	•		20 -	E				ried gravel, some No recovery at 20.5 fe

,

٠. *

L


	·			во	RI	NG LOG	
Project KEI-P89-			Be	oring 9"	& Ca	sing Diameter 2"	Logged By A Bar
Project Castro V		Unocal	W	ell H	ead E N/A	levation	Date Drilled 1/18/90
Boring N MW2	No.			rilli ethod		Hollow-stem Auger	Drilling Company EGI
Penetra- tion blows/6"		Depth (1 Samples	Et)	Stra graj USC:		Desc	cription
36/48/ 50-5"				SW- SC N/A		gravel as abou brown. Shale bedrock,	th gravel, 15% clay, we, hard, wet, olive very hard, fractured, brown to dark brown.
22/50-5"		25 - 					well weathered to clay, very dark gray.
50-3"		30 -				No recovery, sh =near refusal.=	ale bedrock, as above,
		 40		•		TOI	AL DEPTH: 30'

.

_

Page 2 of 2

•				во	RII	NG LOG	<u> </u>
Project KEI-P89-			Bc	oring 9"	& Ca	sing Diameter 2"	Logged By A fur
Project Castro N		Jnocal	We	ell H	ead E N/A	levation	Date Drilled 1/19/90
Boring M MW3	10.			illi: thod		Hollow-stem Auger	Drilling Company EGI
Penetra- tion blows/6"		Depth (1 Samples	Et)	Stra gra USC		Desc	cription
		0 -	-			A.C. Pavement Sand and grave]	l: fill
						Silty clay, hig moist, very da sand.	gh plasticity, stiff, ark grayish brown, 5-10%
10/17/22				СН			high plasticity, 5-10% iff, moist, light olive
20/21/24	V _			GC			vith sand, very dense, olive brown, gravel is ly shale.
23/28/33						ocasionally gr	with sand, as above, ading to gravelly clay, bist, olive brown.

-

-

ء . ج

÷

. . .

		. <u> </u>	í				
đ				во	RIM	IG LOG	
Project KEI-P89-	No. -1106		Bo	oring 9"	& Cas	sing Diameter 2"	Logged By D.L.
Project Castro V		Unocal	We	ell He	ead El N/A	levation	Date Drilled 1/19/90
Boring 1 MW3	40.			rillin ethod		Hollow-stem Auger	Drilling Company EGI
Penetra- tion blows/6"	G. W. level		Et)	Stra graj USCS	ati- phy S	Des	cription
						Clayey gravel o ocasionally gr as above.	with sand, as above, rading to gravelly clay,
	:						
		30 - 					
		<u> </u>				TO	TAL DEPTH: 22'

.

s

-

Page 2 of 2

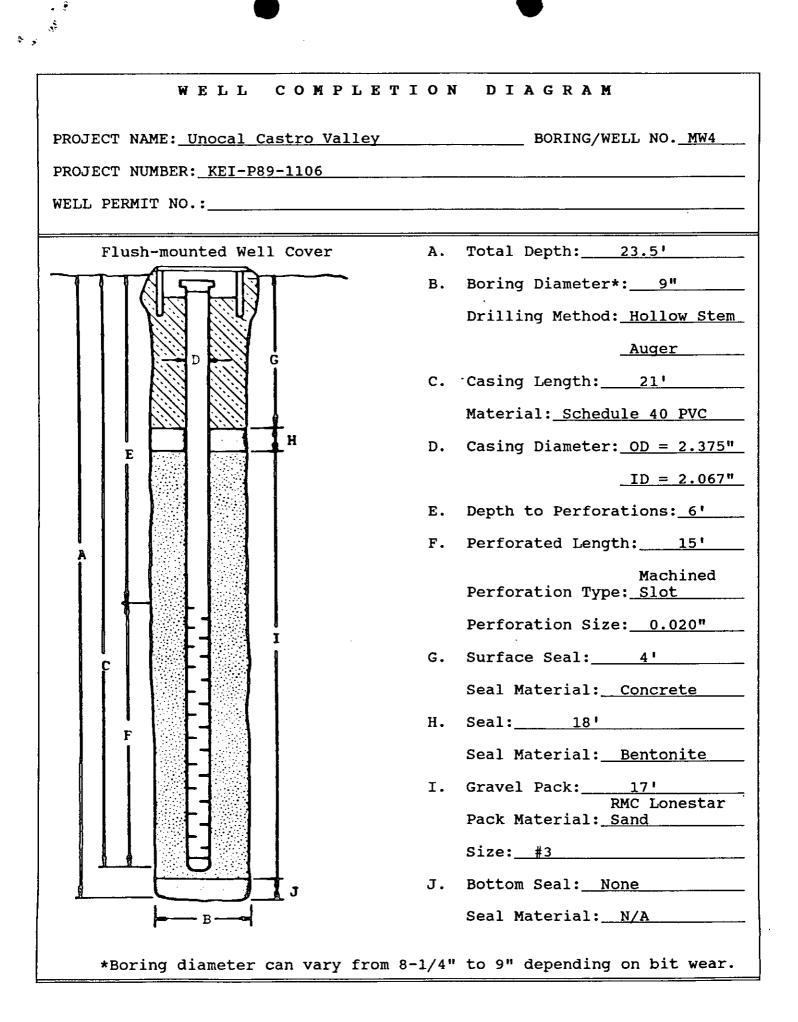
WELL COMPLETION DIAGRAM PROJECT NAME: Unocal - Castro Valley BORING/WELL NO. MW3 PROJECT NUMBER: KEI-P89-1106 WELL PERMIT NO.: Flush-mounted Well Cover Total Depth: 22' Α. Boring Diameter*: 9" в. Drilling Method: Hollow Stem Auger C. Casing Length: 22' Material: Schedule 40 PVC D. Casing Diameter: OD = 2.375" Н Ē ID = 2.067"Ε. Depth to Perforations: 5'__ F. Perforated Length: 17' Machined Perforation Type: <u>Slot</u> Perforation Size: 0.020" G. Surface Seal: 2' Seal Material: Concrete н. Seal: <u>18'</u> F Seal Material: Bentonite _ I. Gravel Pack:___ RMC Lonestar Pack Material: Sand Size: #3_____ J. Bottom Seal: None រី រ Seal Material: <u>N/A</u> – в —— *Boring diameter can vary from 8-1/4" to 9" depending on bit wear.

. ?

* .							
				во	RII	NG LOG	
	Project No. KEI-P89-1106					sing Diameter 2"	Logged By DBB W.W.
Project Nar Castro Vall		cal-	We	ell H	ead E N/A	levation	Date Drilled 8/13/90
Boring No. MW4				illi ethod		Hollow-stem Auger	Drilling Company EGI
Penetration blows/6"	Penetration G. W. Dept			graj		Desc	cription
						Asphalt concret gravel base	ce over clayey sand and
				СН		trace of grave	5% coarse-grained sand el to 1/2 inch dia. lark gray, 5% orangish
6/11/24		5		CL/ CH		Clay, trace to caliche, ligh gray, moist,	5% sand, trace to 10% It dive gray to greenis hard Bedrock
50	<u> </u>	10				very weathered	ely hard, fractured, d, decomposed and elow 10', olive brown
				N/A			
		- 15 				Shale, moist, c	clayey, moderately hard
22/50-5"		 				medium gray to	olive gray

-

- -


- Ş				во	RII	NG LOG	
Project No KEI-P89-110			Вс	oring 9"	& Ca	sing Diameter 2"	Logged By W.W.
Project Na Castro Val	ject Name Unocal- tro Valley			ell Ho	ead E N/A	levation	Date Drilled 8/13/90
Boring No. MW4				rilli ethod		Hollow-stem Auger	Drilling Company EGI
Penetration blows/6"	G. W. level		5)	Stra graj USC		Des	cription
17/28/37				N/A			edrock as above, rd, moist, gray
		25					EPTH DRILLED: 22' EPTH SAMPLED: 23.5'

- -

÷

Page 2 of 2

-

Ŷ			В	ORI	NG LOG	
Project No. KEI-P89-110			Bori 9"	ng & C	asing Diameter 2"	Logged By DQB W.W.
Project Nan Castro Vall		cal	Well	Head 1 N/2	Elevation A	Date Drilled 8/13/90
Boring No. MW5			Dril Meth		Hollow-stem Auger	Drilling Company EGI
Penetration blows/6"	G. W. level		=) g:	trati- raphy SCS	Des	cription
7/14/15				СН	and gravel ba Clay with grav 1 1/8 dia., t moist, firm, Clay, trace sa dark gray. Clay, trace fi stiff, light	el, gravel angular to race sand and caliche, greenish gray. nd, moist, firm, very ne sand, moist, very olive gray to greenish 10% caliche with
50 16/24/30		 10			Clayey shale, olive gray, o	edrock trace caliche(?), moist rangish brown, trace (clay) highly weather- d
36/40/45 35/50				A	moist, olive trace of oran	trace organic matter, gray to olive brown wit ge-brown, moderately athered than above
						slightly weathered and aturated, moderately ray
40/50-5"		 20				

KEI-P89-11069"2"W.WProject Name Unocal Castro ValleyWell Head Elevation N/ADat 8/JBoring No. MW5Drilling MethodHollow-stem AugerDri EGIPenetration blows/6"G. W. level (feet) SamplesStrati- graphy USCSDescriptPanetration blows/6"G. W. level (feet) amplesStrati- graphy USCSDescript	-÷		·			
KEI-P89-1106 9" 2" W.V Project Name Unocal Castro Valley Well Head Elevation N/A Date 8/1 Boring No. MW5 Drilling Method Hollow-stem Auger Drilling EGI Penetration blows/6" G. W. level Depth (feet) Samples Strati- graphy USCS Descript 15/28/32 - - - N/A Shale, as above, ve weathered than abor fractures, moderat 15/28/32 - - - - -	Ş	NGLOG	ORIN	ВО		\$
Castro Valley N/A 8/1 Boring No. MW5 Drilling Method Hollow-stem Auger Dri EGI Penetration blows/6" G. W. level Depth (feet) Samples Strati- graphy USCS Descript 15/28/32 - - - N/A Shale, as above, ver weathered than abore fractures, moderat 15/28/32 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -		sing Diameter Logged By 2" W.W. DDS				
MW5 Method Auger EGI Penetration blows/6" G. W. level Depth (feet) Samples Strati- graphy USCS Descript 15/28/32 - - - N/A Shale, as above, verweathered than abore fractures, moderated				Well H		
blows/6" level (feet) graphy Samples USCS Descript USCS Shale, as above, ve weathered than abo fractures, moderat 						
15/28/32 15/28/		Description	aphy	t) gra	level (feet	
	5/28/32	Shale, as above, very moist less weathered than above, clay in fract fractures, moderately hard, gray.				15/28/32
		TOTAL DEPTH: 24'			30	

- -

.

Page 2 of 2

WELL COMPLETION DIAGRAM

PROJECT NAME: Unocal-Castro Valley 2445 C.V. Blvd. BORING/WELL NO. MW5 PROJECT NUMBER: KEI-P89-1106 WELL PERMIT NO.: Flush-mounted Well Cover Total Depth: 24' A. в. Boring Diameter*: 9" Drilling Method: Hollow Stem Auger C. Casing Length: 23.5' Material: <u>Schedule 40 PVC</u> Н D. Casing Diameter: OD = 2.375" Ε $ID = 2.067"_{-}$ Ε. Depth to Perforations: 8.5! F. Perforated Length: 15' Machined Perforation Type: Slot Perforation Size: 0.020" G. Surface Seal: 6.5' Seal Material: Concrete Seal: <u>1'</u> н. Seal Material: Bentonite I. Gravel Pack: 16.5' RMC Lonestar Pack Material: Sand Size: #3 J. Bottom Seal: None J, Seal Material: N/A - B *Boring diameter can vary from 8-1/4" to 9" depending on bit wear.

(<u></u>						
	, <u></u>			ВО	RI	NG LOG	T
Project No. KEI-P89-110			Bo	ring 1 8	Diameter "	Logged By D.L.	
Project Nar Castro Vall		ocal	Wel	1 H	ead E N/A	levation	Date Drilled 4/25/90
Boring No. EB1				11i hođ		Hollow-stem Auger	Drilling Company EGI
Penetration blows/6"	etration G. W. Dept ws/6" level (fee Samp			Stra graj USC:		Desc	cription
						clay, sand, an	over fill consisting of nd gravel, moist.
14/24/37		5		L/ CH		Gravelly clay, shale fragment	gravel consisting of ts to 1-1/2" diameter, dark greenish gray and ation.
19/24/34		10	- М	 /A		Shale, moderate	BEDROCK ely hard, fractured, 1, decomposed and claye
27/45/50-4"						Shale, as above becoming harde	e, less weathered, er with depth.
27/36/50-2 1/2"	Y	15 ·				Wet at 14 feet.	
		 20 ·					PTH DRILLED: 13.5' PTH SAMPLED: 15'

.

--- -

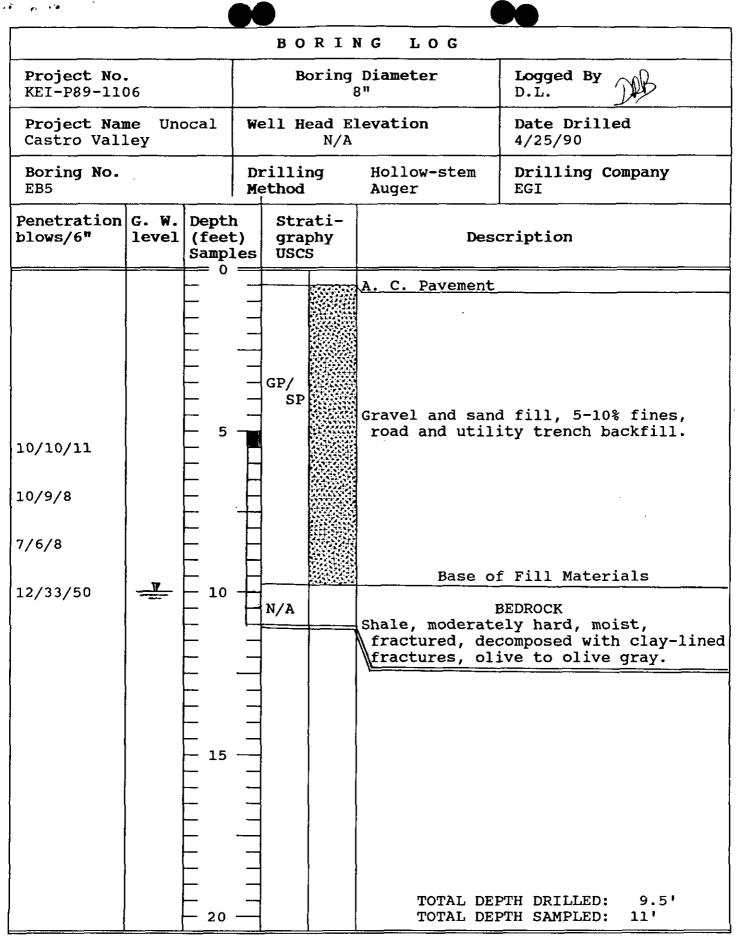
				BO	RI	NG LOG	
	Project No. KEI-P89-1106					Diameter 8"	Logged By D.L. JB
	Project Name Unocal Castro Valley				ead E N/A	levation	Date Drilled 4/25/90
Boring No. EB2				rilli ethod		Hollow-stem Auger	Drilling Company EGI
Penetration blows/6"	G. W. level		:)	gra		Desc	cription
							underlain by fill clay, sand and gravel.
21 (42 (52				CL/ CH		dark gray, gra of shale fragn	
21/42/50				N/A		Shale, hard, sl	DROCK moist, fractured lightly moist, fractured d clayey in fractures, n brown.
16/32/29 19/27/39	₹	10				Shale, as above weathered thar	e, moist to wet, less n above.
							PTH DRILLED: 12' PTH SAMPLED: 13.5'

12 - 1°

]	во	RI	NGLOG	
Project No. KEI-P89-110			B	oring 8'	Diameter	Logged By D.L.	
Project Nam Castro Vall		cal	Wel:	1 He	ead E N/A	levation	Date Drilled 4/25/90
Boring No. EB3			Dri Metl			Hollow-stem Auger	Drilling Company EGI
Penetration blows/6♥	enetration G. W. Dept lows/6" level (fee Samp				ati- phy S	Des	cription
							underlain by fill clay, sand and gravel.
5/26/30				L/ CH		Clay, 10-15% s to 1/8" diame dark gray.	ilt, 5% sand and gravel ter, stiff, moist, very
-, - ,				GC		moist, olive angular shale tine?.	with sand, very dense, brown, gravel is mostly framents, trace serper nd, very stiff, moist,
15/21/32	Ţ	10		GC		Clayey gravel very moist to	with sand, very dense, wet, yellowish brown.
			1				PTH DRILLED: 9' PTH SAMPLED: 10.5'

-

		·		ВО	RII	NG LOG					
Project No. KEI-P89-110				Bo	ring 8	Diameter "	Logged By D.L.				
Project Nam Castro Vall		ocal	We	ell H	ead E N/A	levation	Date Drilled 4/24/90				
Boring No. EB4				rilli: ethod		Hollow-stem Auger	Drilling Company EGI				
Penetration blows/6"	G. W. level	Depti (feet Samp	t)	gra		Desc	cription				
	N O T						underlain by fill clay, sand and gravel.				
	E N C			CL/ CH			nd, very stiff, moist, ayish brown to black.				
15/23/46	O U N T E R E D D	5 		GC		Clayey gravel with sand, very dense, moist, olive brown, gravel is en- tirely shale, maybe bedrock weathered to soil.					
49/50-3" 50-5 3/4"	U R I N G	10 1				Shale, hard, sl	BEDROCK				
25/41/50-5 1/2"	D R I L						: 12 feet to olive gray, easing with depth.				
50-2"	L I N G	15 15 					ing at 14 feet.				
		_ 20					PTH DRILLED: 14' PTH SAMPLED: 14.5'				


---- --

• ب ب

Page 1 of 1

·_____

. ...

				во	RII	NG LOG					
Project No. KEI-P89-110			Boring Diameter 8"				Logged By D.L.				
Project Nan Castro Vall		ocal	Well Head Elevation N/A				Date Drilled 4/24/90				
Boring No. EB6			illin ethod		Hollow-stem Auger	Drilling Company EGI					
Penetration blows/6"	Depth (feet Sampl	:)	Stra graj USC		Des	cription					
							underlain by fill sand and gravel.				
7/11/15		5		CL/ CH			nd, 5-10% gravel to 3/4 y stiff, moist, black.				
21/33/45		10		N/A			BEDROCK lightly moist to moist, athered with clay-lined ive brown.				
45/50-4"	₽						e, less weathered than ss increasing with dept				
50-3 1/4"		15 									
		 20					TH DRILLED: 14' TH SAMPLED: 14.5'				

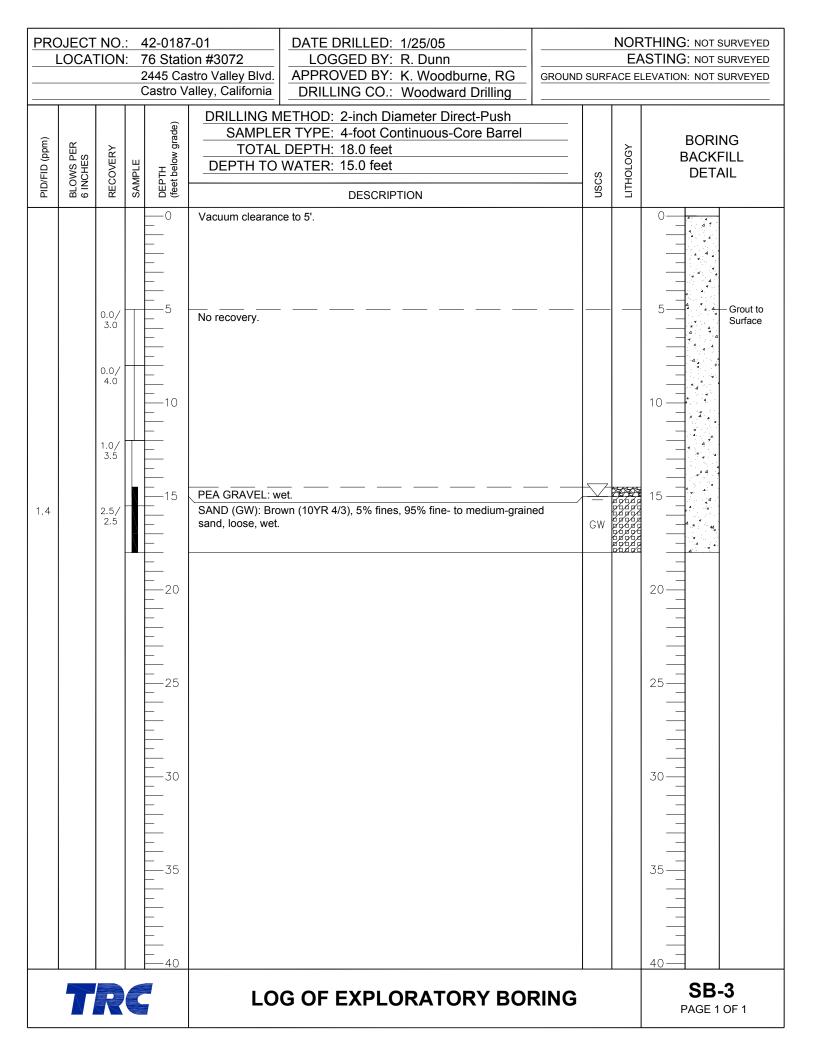
- --

-

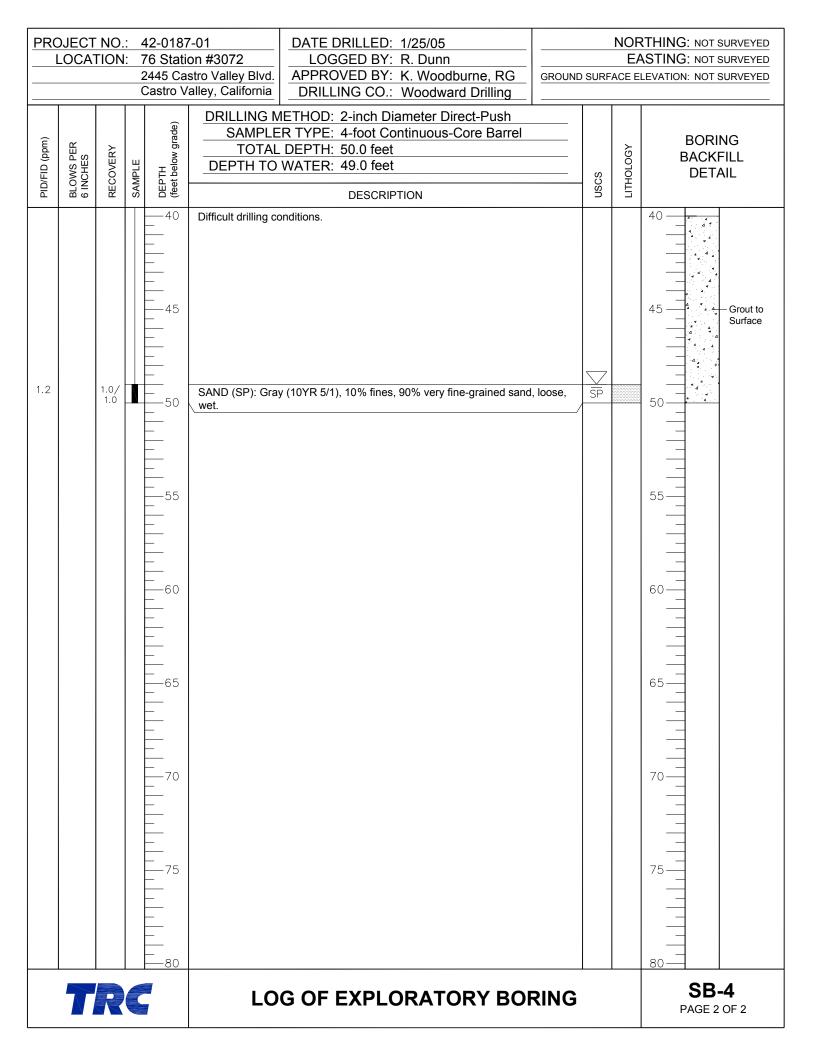
----- -

			В	ORI	NG LOG					
Project No. KEI-P89-110					Diameter 8"	Logged By D.L.				
Project Nam Castro Vall		ocal	Well	Head E N/A	levation	Date Drilled 4/24/90				
Boring No. EB7			Dril) Metho		Hollow-stem Auger	Drilling Company EGI				
Penetration blows/6"	G. W. level		:) gı	crati- raphy SCS	Des	cription				
					A. C. Pavement gravel basero	underlain by sand and ck.				
6/12/21		5			diameter, ver lensed with g cemented laye ed layers hav (caliche?).	nd and gravel to 3/8" y stiff, moist, black, reenish gray partially rs below 5 feet, cemen e blocky texture				
5/50		10	N/2		Shale, hard, s	EDROCK lightly moist to moist athered with clay-line ive brown.				
30/49/50-5"										
50-5 1/2"										
50-5"	¥.	15								
		 20			,	PTH DRILLED: 13.5' PTH SAMPLED: 14'				

.

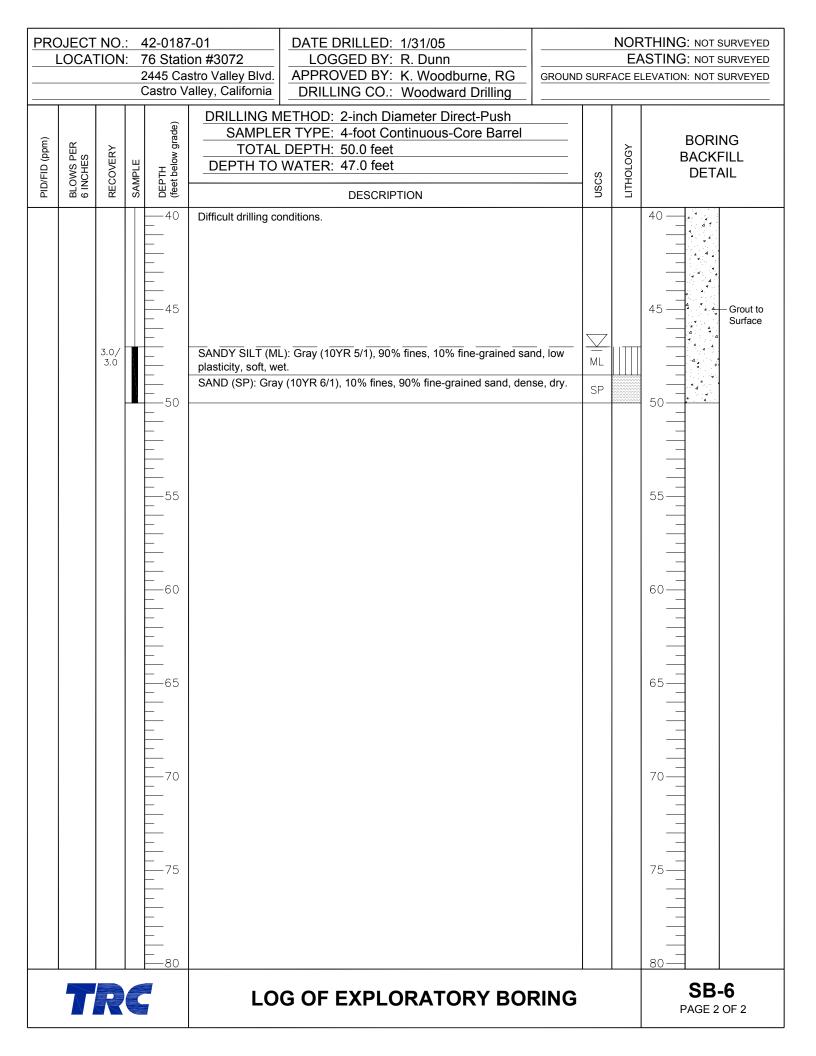

			_	ВО	RI	NG LOG					
Project No. KEI-P89-110				B		Diameter 8"	Logged By D.L. DRB				
Project Nam Castro Vall		ocal	Well Head Elevation N/A				Date Drille	d			
Boring No. EB8				llli hod		Hollow-stem Auger	Drilling Co EGI	mpany			
Penetration blows/6"	G. W. level		:) grap		phy	Desc	cription				
						A. C. Pavement gravel baserod		sand and			
11/13/20 11/25/40		5		CH		Clay, 10-20% sa diameter, very At 5 feet, blac with locally s blocky texture 6 feet. Color change at to black. Bl Shale, moderate weathered, fra	y stiff, mois ck and greeni strong cement e, greenish g t approximate EDROCK ely hard, moi	t, black. sh gray, ation, ray below ly 8.5 fe st, very			
30/41/47	<u> </u>					fractures, ol:	ive to olive	brown.			
		15 									
		20					TH DRILLED: TH SAMPLED:	12' 13.5'			

Page 1 of 1



PROJI LO			76 S 2445	tatio Ca	7-01 on #3072 stro Valley Blvd. alley, California	DATE DRILLED: 1/24/05 LOGGED BY: R. Dunn APPROVED BY: K. Woodburne, RG DRILLING CO.: Woodward Drilling		ND SURF	EA	RTHING: NOT SURVEYED ASTING: NOT SURVEYED LEVATION: NOT SURVEYED	
PID/FID (ppm)	BLOWS PER 6 INCHES	RECOVERY	SAMPLE DEPTH	(feet below grade)	SAMPLE TOTAL	ETHOD: 2-inch Diameter Direct-Push R TYPE: 4-foot Continuous-Core Barre DEPTH: 25.5 feet WATER: 23.5 feet DESCRIPTION	nscs	ПТНОГОСУ	BORING BACKFILL DETAIL		
 34.0 5.0 1.0 1.2 1.5 1.4 	3 4. 4 3. 3 2. 2 3. 3 3. 3	0/ 5.0 0/ 0.0 0/ 0.0 5/ 5.0		20 5 10 15 20 25 30 35	sand, dense, dry, - @ 8': color char - @ 12': color cha No recovery. SAND (SP): sam - @ 21.5': color c	(10YR 6/1), 10% fines, 90% fine- to medium-gra hydrocarbon odor. nge to grayish brown (10YR 5/2), slight odor. nnge to brown (10YR 4/3), no odor.	ained	SP		0 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	
						G OF EXPLORATORY BO	ORING	6		SB-1 PAGE 1 OF 1	

			: 7	2445 Cas	2-01 on #3072 stro Valley Blvd. alley, California	DATE DRILLED: 1/24/05 LOGGED BY: R. Dunn APPROVED BY: K. Woodburne, RG DRILLING CO.: Woodward Drilling		NORTHING: NOT SURVEYED EASTING: NOT SURVEYED D SURFACE ELEVATION: NOT SURVEYED			
PID/FID (ppm)	BLOWS PER 6 INCHES	RECOVERY	SAMPLE	DEPTH (feet below grade)	SAMPLE TOTAL	IETHOD: 2-inch Diameter Direct-Push R TYPE: 4-foot Continuous-Core Barrel DEPTH: 24.0 feet WATER: 23.0 feet DESCRIPTION		uscs	ПТНОГОСУ	BORING BACKFILL DETAIL	
0.6 7.1 2.8 2.1 2.0 1.9 2.1 1.6		3.0/ 3.0 4.0/ 4.0 3.0/ 3.0 1.5/ 1.5 2.0/ 2.0 1.5/ 1.5 3.0/ 3.0			dry. - @ 15': fine- to n - @ 17.5': color c	vn (10YR 4/3), 10% fines, 90% fine-grained sand, I nedium-grained sand. hange to dark grayish brown (10YR 4/2), dense.		SP		0 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	
		R			LO	G OF EXPLORATORY BO	RING			SB-2 PAGE 1 OF 1	



PROJEC LOCA		: 7	76 Statio 2445 Cas	'-01 on #3072 stro Valley Blvd. alley, California	DATE DRILLED: 1/25/05 LOGGED BY: R. Dunn APPROVED BY: K. Woodburne, RG DRILLING CO.: Woodward Drilling	GROUND	SURF	EA	THING: NOT SURVEYED STING: NOT SURVEYED EVATION: NOT SURVEYED	
PID/FID (ppm) BLOWS PER 6 INCHES	RECOVERY	SAMPLE	DEPTH (feet below grade)	SAMPLE TOTAL	ETHOD: 2-inch Diameter Direct-Push R TYPE: 4-foot Continuous-Core Barrel DEPTH: 50.0 feet WATER: 49.0 feet DESCRIPTION		NSCS	ПТНОГОСУ	BORING BACKFILL DETAIL	
44.0 1.3 1.7 2.0 0.9 1.5 2.0	3.0/ 3.0 4.0/ 4.0 2.0/ 4.0 3.0/ 3.0 1.0/ 1.0 1.0/ 1.0			grained sand, me - @ 8.5': stiff. SAND (SP): Gray dense, no odor. - @ 13': color cha - @ 13.5': color c - @ 18': color cha	e to 5'.): Greenish gray (GLEY 1 5/10Y), 90% fines, 10% fir dium plastic, soft, moist, hydrocarbon odor. rish brown (10YR 5/2), 10% fines, 90% fine-grained ange to brown (10YR 5/3). hange to very dark gray (10YR 3/1). ange to dark grayish brown (10YR 4/2). onditions; augers used; no samples collected.		CL		0 5 Grout to Surface 10 15 20 30 35 40	
N	R			LO	G OF EXPLORATORY BOI	RING			SB-4 PAGE 1 OF 2	

			: 7	2445 Cas	2-01 on #3072 stro Valley Blvd. alley, California	DATE DRILLED: 1/31/05 LOGGED BY: R. Dunn APPROVED BY: K. Woodburne, RG DRILLING CO.: Woodward Drilling	GROUND	SURF	EA	RTHING: NOT SURVEYED ASTING: NOT SURVEYED LEVATION: NOT SURVEYED
PID/FID (ppm)	BLOWS PER 6 INCHES	RECOVERY	SAMPLE	DEPTH (feet below grade)	SAMPLE TOTAL	ETHOD: 2-inch Diameter Direct-Push R TYPE: 4-foot Continuous-Core Barrel DEPTH: 23.0 feet WATER: Not Encountered DESCRIPTION		nscs	ПТНОГОСУ	BORING BACKFILL DETAIL
0.2 0.4 1.2 1.8 2.5 2.0		3.0/ 3.0 4.0/ 4.0 4.0/ 4.0 2.0/ 2.0 2.0/ 2.0 2.0/ 2.0 1.0/ 1.0			sand, nonplastic, SAND (SP): Brow dense, dry.	yellowish brown (10YR 6/4), 90% fines, 10% fine-gr	ned sand,	ML		0 5 6 6 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7
		R			LO	G OF EXPLORATORY BO	RING			SB-5 PAGE 1 OF 1

PROJEC LOCA		: :	76 Statio 2445 Cas	2-01 on #3072 stro Valley Blvd. alley, California	DATE DRILLED: 1/31/05 LOGGED BY: R. Dunn APPROVED BY: K. Woodburne, RG DRILLING CO.: Woodward Drilling	GROUND	SURF	EA	RTHING: NOT SURVEYED ASTING: NOT SURVEYED ELEVATION: NOT SURVEYED			
PID/FID (ppm) BLOWS PER 6 INCHES	RECOVERY	SAMPLE	DEPTH (feet below grade)	SAMPLE TOTAL	ETHOD: 2-inch Diameter Direct-Push R TYPE: 4-foot Continuous-Core Barrel DEPTH: 50.0 feet WATER: 47.0 feet DESCRIPTION		nscs	ПТНОГОСУ	BORING BACKFILL DETAIL			
24.6 190.1 60.1 2.2 6.7 7.1 6.8	3.0/ 3.0 2.0/ 2.0 1.0/ 1.0 3.0/ 3.0 3.0/ 3.0 2.0/ 2.0			medium-grained : SAND (SP): Pale - @ 12.5': color c - @ 15.5': medium - @ 20': no odor.		nd, dry.	ML SP		0 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
	R		-40	LO	G OF EXPLORATORY BO	RING	<u> </u>		40			

