RECEIVED

1:56 pm, Mar 02, 2011 Alameda County Environmental Health

FIRST QUARTER 2011 GROUNDWATER MONITORING REPORT AND SITE CLOSURE PETITION

R & H AUTO REPAIR 5315 SAN PABLO AVENUE OAKLAND, CALIFORNIA

Prepared for:

ALAMEDA COUNTY HEALTH CARE SERVICES 1131 HARBOR BAY PARKWAY, SUITE 250 ALAMEDA, CA 94502

February 2011

FIRST QUARTER 2011 GROUNDWATER MONITORING REPORT AND SITE CLOSURE PETITION

R & H AUTO REPAIR 5315 SAN PABLO AVENUE OAKLAND, CALIFORNIA

Prepared for:

ALAMEDA COUNTY HEALTH CARE SERVICES 1131 HARBOR BAY PARKWAY, SUITE 250 ALAMEDA, CA 94502

Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

February 28, 2011

Project No. 2010-06

February 28, 2011

Ms. Barbara Jakub Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: First Quarter 2011 Groundwater Monitoring Report and Site Closure Petition

R&H Auto Repair - 5315 San Pablo Avenue, Oakland, California (Alameda County

Environmental Health Department Fuel Leak Case No RO0002965)

Dear Ms. Jakub:

Enclosed is the Stellar Environmental Solutions, Inc. report summarizing recent activities conducted at the referenced site. This report presents the findings of the First Quarter 2011 groundwater monitoring event (the fourth consecutive groundwater monitoring event since May 2010), and includes the data trend analysis supporting a site closure petition.

This report was uploaded to both the State Water Board's GeoTracker system (T0619704141) and the Alameda County Environmental Health Department's Electronic Upload ftp system.

We declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions regarding this report, please contact us at (510) 644-3123.

Sincerely,

Steve Bittman, R.E.A.

Senior Geologist

Jasbinder Grewel Responsible Party

Richard S. Makdisi, R.G., R.E.A. Principal Geochemist and President

cc: Mr. and Mr. Grewel; Mr. Kenneth J. Schmier

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
	Project Background	1 4 4
2.0	PHYSICAL SETTING	8
	Topography and DrainageShallow LithologyGroundwater Hydrology	8
3.0	FIRST QUARTER 2011 GROUNDWATER MONITORING AND SAMPLING	12
4.0	ANALYTICAL RESULTS, TREND ANALYSES AND FINDINGS	14
	Groundwater Sample Analytical Methods Groundwater Sample Results Quality Control Sample Analytical Results Soil and Groundwater hydrocarbon trend anlayses	14 14
6.0	REGULATORY CONSIDERATIONS AND SITE CLOSURE PETITION	18
	Regulatory Considerations	18
5.0	SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS	23
	Summary and Conclusions	
7.0	REFERENCES AND BIBLIOGRAPHY	25
8.0	LIMITATIONS	26
Apper	ndices	
Appen	ndix A Groundwater Monitoring Field Records	
Appen	ndix B Analytical Laboratory Reports and Chain-of-Custody Records	

TABLES AND FIGURES

Tables	Page
Table 1 Groundwater Monitoring Well Construction and Groundwater Elevation	on Data 12
Table 2 Groundwater Sample Analytical Results – February 11, Hydrocarbons MTBE	
Table 3 Groundwater Sample Analytical Results – February 11, 2011 Fuel Oxy	ygenates 15
Table 4 Cumulative Groundwater Analytical Results	17
Figures	Page
Figure 1 Site Location Map	6
Figure 2 Site Plan	7
Figure 4 Groundwater Elevation Map – February 11, 2011	11

1.0 INTRODUCTION

PROJECT BACKGROUND

On behalf of Jasbinder and Gulbinder Grewel, the responsible party (RP) for the subject site located at 5315 San Pablo Avenue in Oakland, California, Stellar Environmental Solutions, Inc. (Stellar Environmental) has prepared this First Quarter 2011 Groundwater Monitoring Report and site closure petition.

The subject site is located at the northwest corner of San Pablo Avenue and 53rd Street on the Oakland-Emeryville border (see Figure 1) and was an operating Shell service station from 1958 until the mid 1970s. Since the service station ceased operation, the site has been used only for auto repair; however, the fuel and waste oil USTs remained until 2007.

The site has undergone underground storage tank (UST)-related investigations and remediation since 2007, with the three existing monitoring wells on the site installed in May 2010. The initial groundwater monitoring event for those wells occurred during the second quarter 2010 (May). All known environmental documents for the subject property are listed in Section 9.0, References and Bibliography.

The property is currently owned by Kenneth J. Schmier of Emeryville, California.

PREVIOUS INVESTIGATIONS AND REGULATORY ACTION

Previous site investigation activities are listed below.

2007 Investigations

Two 7,500-gallon gasoline USTs and one 10,000-gallon diesel UST were removed from the southwest portion of the property in September 2007. A 550-gallon waste oil UST was removed from the northwest corner of the property at the same time.

The managing consultant overseeing the tank removals was AEI Consultants of Walnut Creek, California (AEI). No holes were noted in any of the tanks; however, strong petroleum hydrocarbon odor and soil staining was present in the fuel tank excavations. Maximum petroleum hydrocarbon concentrations detected in the initial soil samples, collected from about 11 feet below ground surface (bgs), were as follows: 230 milligrams per kilogram (mg/kg) of

total volatile hydrocarbons as gasoline (TVHg); and 73 mg/kg of total extractable hydrocarbons as diesel (TEHd). Up to 1,500 mg/kg of TVHg was detected in a soil sample collected at 2 feet bgs beneath the former dispenser area near the south central portion of the site. No detectable petroleum hydrocarbons or volatile organic compounds (VOCs) were detected in the confirmation soil sample collected from beneath the waste oil tank at 8 feet bgs. No groundwater was encountered in any of the excavations.

2008 Investigations

In January 2008, in an effort to remove hydrocarbon-impacted soil, the gasoline and diesel tank pit were enlarged and the dispenser area deepened. Impacted soil was removed to less than 100 mg/kg in all areas, except for an area containing 160 mg/kg of TVHg on the south side of the property near the 53rd Street sidewalk. Due to the close proximity of the sidewalk and other space constraints, the excavation could not be enlarged further. According to AEI reports reviewed by Stellar Environmental, the depth of the final excavation was approximately 12 feet bgs. No groundwater was encountered during AEI's work at the site. In January 2008, the fuel tank and waste oil UST excavations were backfilled with clean imported material consisting of compacted class II fill with a drain rock cover. Approximately 320 tons of contaminated material was removed to the site as non-hazardous waste and hauled to the Keller Canyon landfill.

The Oakland Fire Department officially transferred oversight responsibility to Alameda County Environmental Health (ACEH) on March 5, 2008.

An Underground Storage Tank Unauthorized Release (Leak) Report was received by ACEH on May 6, 2008 (AEI Consultants, 2008a).

On June 26, 2008, ACEH requested an investigation to determine if groundwater beneath the site had been affected by residual hydrocarbons in soil. The work plan developed in response (AEI Consultants, 2008b) called for advancing four soil borings to groundwater in areas best judged to assess the extent of known subsurface residual hydrocarbon contamination.

In a letter dated July 3, 2008, ACEH informed the Grewels that the site was required to be "claimed" to the State Water Resources Control Board GeoTracker database, and that all reports since 2005 are to be uploaded to the database, along with survey data for all permanent monitoring points.

2009 Investigations

The 2008 work plan (AEI Consultants, 2008b) was approved by ACEH in February 2009, with minor modifications.

In a letter dated July 24, 2009, ACEH informed the Grewels that the site had still not been claimed to the State GeoTracker database and warned of penalties if not in compliance by August 10, 2009.

2010 Investigations

The 2008 work plan (AEI Consultants, 2008b) was implemented by Stellar Environmental in March 2010. Based on analytical results of the four onsite soil borings, it appeared that the lack of significant residual hydrocarbon contamination in soil beneath the site in the 12- to 16-footbgs zone, in and around the former UST area, suggested no significant remaining hydrocarbon contaminant in the soil to act as a source for continued impact to groundwater.

The laboratory results did indicate groundwater beneath the site had been impacted with gasoline and diesel-range hydrocarbons exceeding ESL criteria typical of an older release. The highest concentrations of TVHg (2,300 micrograms per liter $[\mu g/L]$) and TEHd (760 $\mu g/L$) in groundwater were found in the sample collected from boring B3, located near the southwest corner of the site and downgradient of the former USTs. This suggested offsite migration of the residual dissolved hydrocarbons to the southwest which prompted the installation of monitoring wells at ACEH behest.

In May 2010, as a response to the March 2010 work, Stellar Environmental supervised the installation of three monitoring wells on site, and the drilling of two borings downgradient of the property along 53rd Street. In addition, a conduit study was conducted to determine the presence of preferential pathways and sensitive receptors. The results of the May 2010 work is summarized below:

- Site lithology is fairly consistent in the areas tested onsite and offsite along 53rd Street, with an unsaturated clay zone located from near the surface to approximately 17 feet bgs. This low-permeability zone is underlain by a higher-permeability, fine sand and silt zone that extends to at least 25 feet bgs, which is the total explored depth. Groundwater was encountered at about 17 feet bgs during drilling and equilibrated (reflecting the overlying clay confining pressure) at about 11 to 12 feet bgs in site monitoring wells.
- The relatively high hydrocarbon concentration in boring B-3 in March 2010 (compared to the non-detection in the monitoring well located about 5 feet away) is attributed to one of more of the following: the grab-groundwater sample having colloidal particles, an isolated (vertically and laterally) pocket of higher concentration, and/or the difference in depths between the grab sample and the well sample.
- The calculated groundwater flow direction beneath the site is toward the southwest at a gradient of approximately 0.01 feet per foot.

- No significant offsite impacts to soil or groundwater currently exist from the former site UST release. The 72 µg/L of TEHd reported for the offsite grab-groundwater sample point is below the ESL, likely reflecting site sourced attenuation with time.
- Based on the depth to groundwater and the maximum 8-foot depth of the located utilities, there does not appear to be any preferential pathways that could intersect the plume. In addition, there are no nearby downgradient water wells that could be impacted, and no demonstrable risk to sensitive receptors from the residual contamination.

REGULATORY STATUS

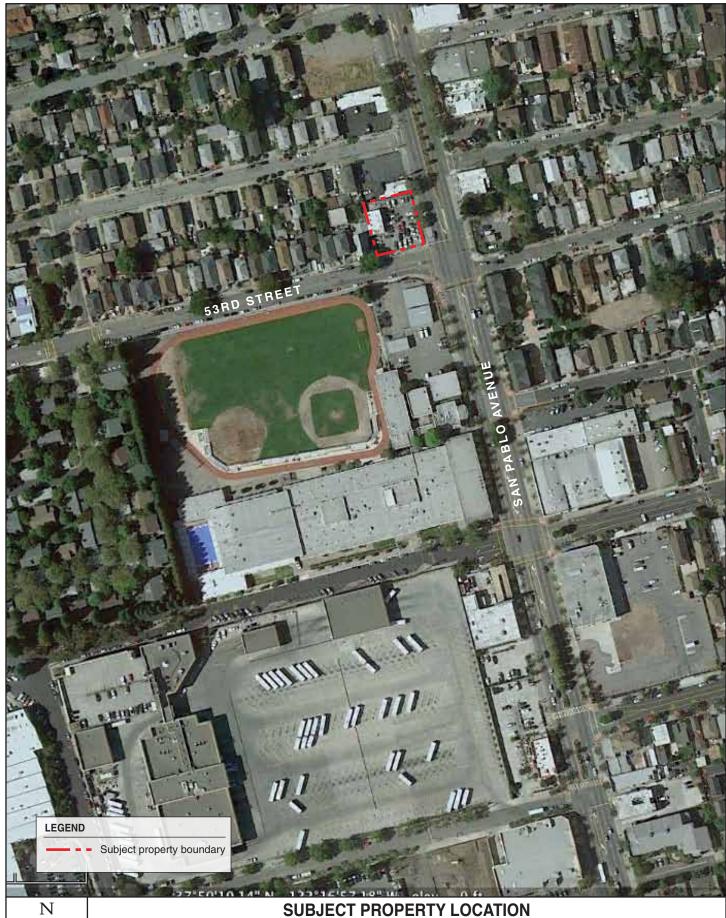
The Alameda County Environmental Department of Environmental Health (ACEH) is the lead regulatory agency for the case, acting as a Local Oversight Program (LOP) for the Regional Water Quality Control Board (Water Board). The ACEH Fuel Leak case number is RO0002965. The Water Board GeoTracker global identification number is T0619704141.

The limited Phase II site investigation conducted in March 2010 (Stellar Environmental, 2010) found sufficient evidence of groundwater contamination beneath the site to require permanent onsite groundwater monitoring points, downgradient sampling, and a preferential pathway study. Time constraints associated with site ownership prompted Stellar Environmental to move forward with that work in May 2010, with verbal consent from the ACEH.

The site is in compliance with State Water Resources Control Board's "GeoTracker" requirements for uploading of technical data and reports. Electronic data format files for the AEI work since 2007 and all Stellar Environmental work, have been successfully uploaded to the Water Board's GeoTracker database and to ACEH's file transfer protocol (ftp) system.

SCOPE OF REPORT

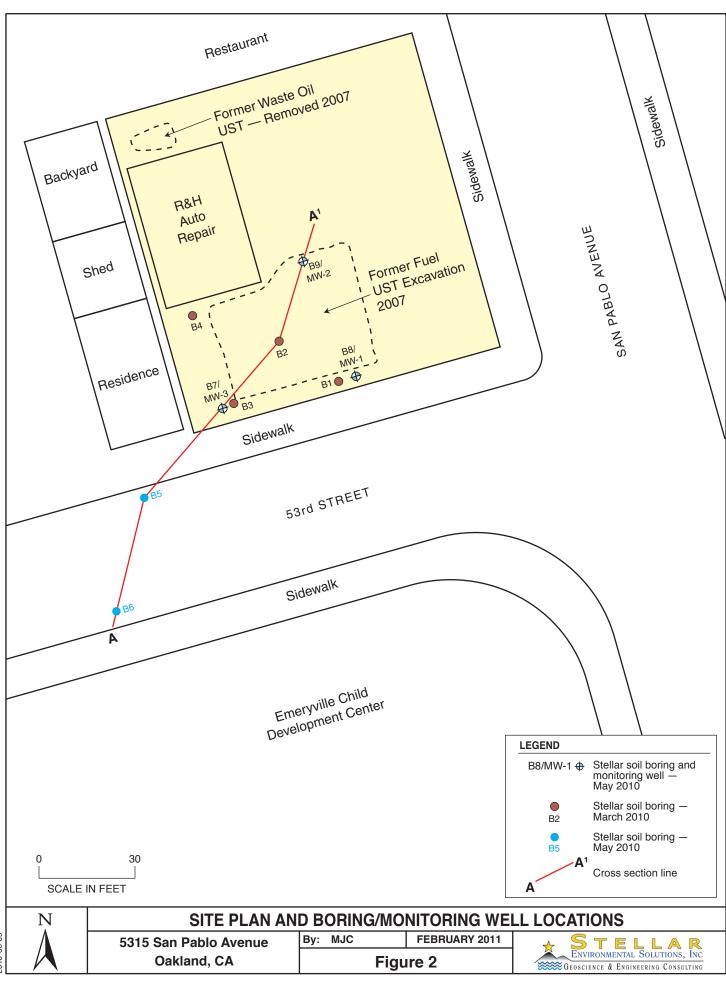
This report discusses the work conducted between November 17, 2010 and February 11, 2011 (i.e., the 4th groundwater monitoring and sampling event, conducted on February 11, 2011). In addition this report contains data trend analysis in support of a site closure petition.


SITE DESCRIPTION

The site contains a 1,425-square-foot steel-framed building configured for vehicle service in the northwest portion of the property. The remainder of the 10,650-square-foot parcel is essentially flat, partially paved, and enclosed by a locking chain-link fence. The site is currently occupied by R&H Auto Repair, which has been operated by Mr. and Mrs. Grewel since 1986.

Adjacent land use includes: 53rd Street, with the Emeryville Child Development Center and Emery High School beyond (*to the south*); private residences (*to the west*); San Pablo Avenue

and commercial and residential sites (to the east); and a restaurant, with 54th Street beyond (to the north).


Figure 1 shows the site location. Figure 2 shows the site plan and locations of current groundwater monitoring wells, previous investigative borings and former underground fuel storage tanks (UFSTs).

5315 San Pablo Ave. Oakland, CA

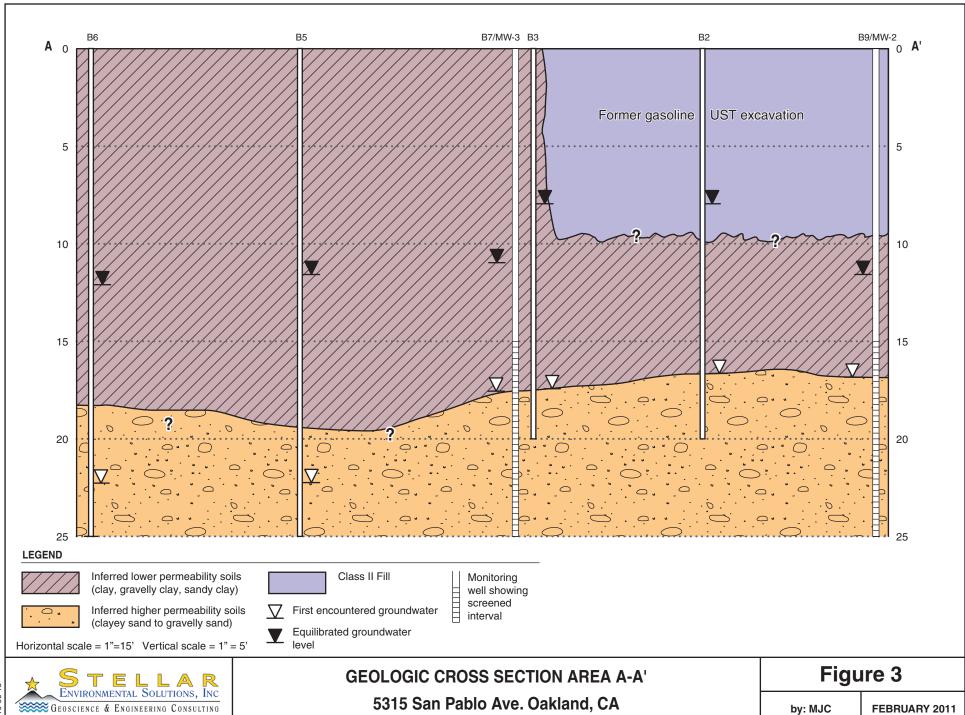
FEBRUARY 2011 By: MJC Figure 1

2010-06-09

2.0 PHYSICAL SETTING

The following evaluation of the site's physical setting—including topography, drainage, and geologic and hydrogeologic conditions—is based on a previous site investigation (AEI Consultants, 2008) and subsurface data collected by Stellar Environmental since March 2010.

TOPOGRAPHY AND DRAINAGE

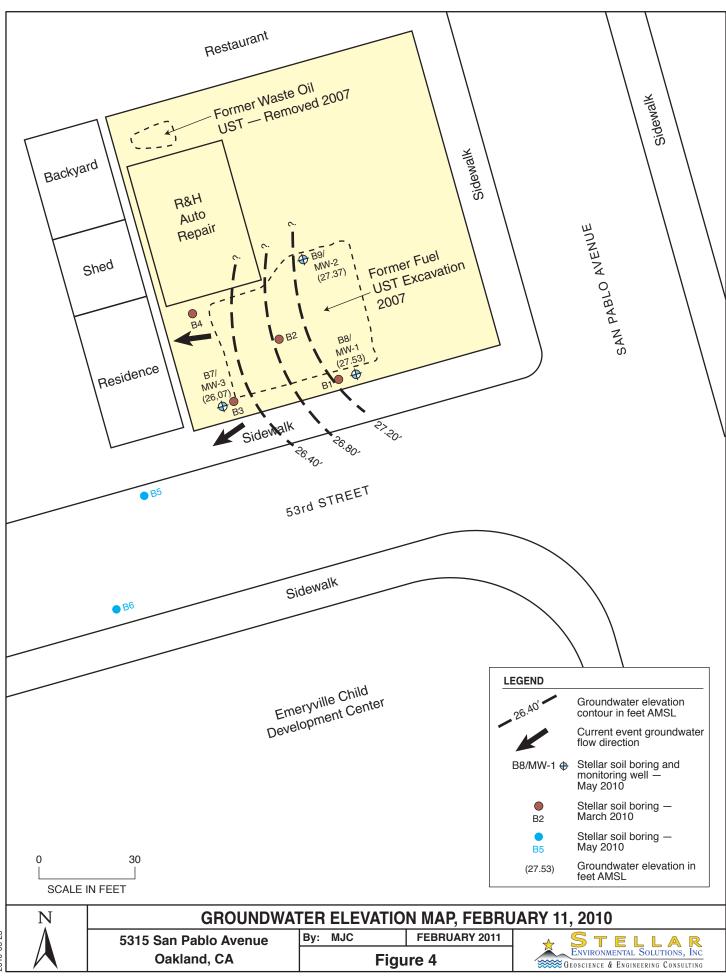

The site is on a gently sloping alluvial fan approximately 0.7 mile east of San Francisco Bay and approximately 2 miles west of the Oakland Hills. The mean elevation of the subject property is approximately 40 feet above mean seal level (amsl), with a slight general topographic gradient in the surrounding area to the west. However, locally, the target property is essentially flat, with a surface that consists of intermittent asphalt, concrete, and bare ground. The former UST excavation area is covered by ¾-inch drain rock.

The nearest surface water body is Temescal Creek, which originates in the Oakland Hills and empties into San Francisco Bay on the west side of Interstate 80 in Emeryville. The creek is nearly entirely culverted underground in the area of the property, flowing through a pair of buried 60-inch pipes, and passes within 150 feet of the property about 12 feet beneath the Emeryville Child Development Center and Emery High School across 53rd Street. The creek daylights approximately 1,400 feet southeast of the property at Temescal Park near 47th and Adeline Streets. Temescal Creek surfaces again in open culverts near Ohlone Way and Shellmound Street in Emeryville as it nears its mouth at the Bay.

SHALLOW LITHOLOGY

Shallow lithology at the site has been determined during site subsurface investigations conducted since 2007 (see Section 9.0, References and Bibliography).

Site-specific lithology has been characterized to a depth of 20 feet bgs in onsite borings B1, B2, and B3; to a depth of 22 feet bgs in boring B4; and to 25 feet bgs in onsite and offsite borings B5 through B9. Subsurface lithology can be described as silty clay to gravelly clay fill with fragments of brick to approximately 2.5 feet bgs. The upper fill is underlain by native, low permeability, stiff, expansive, silty clay to about 17 feet bgs. Between 17 feet and 25 feet bgs, interbedded layers of moist to saturated sandy silt, silty sand, and clayey gravel are present. Geologic cross-section A-A' depicting the shallow site lithology is shown on Figure 3.



GROUNDWATER HYDROLOGY

According to AEI Consultants (2008a), groundwater was not observed in excavations as deep as 12 feet bgs during either the September 2007 initial UST removals or the January 2008 over-excavation work. Initial saturated soil samples were observed at the base of the upper clay layer at about 17 feet bgs during the Stellar Environmental March 2010 soil borings (B1 through B4) and the May 2010 monitoring well installation and offsite boring tests (B5 through B9). The lithology from 17 feet bgs to the total explored depth of 25 feet bgs is typical of a low-yielding, fine-grained water-bearing zone. Equilibrated water levels in the soil borings and wells ranged between approximately 6 and 11 feet bgs.

Regional groundwater flow in the area of the property is approximately to the southwest, toward San Francisco Bay. The initial groundwater monitoring event conducted by Stellar Environmental on May 13, 2010, which used wells MW-1 through MW-3 as data points, demonstrated a southwesterly groundwater flow direction with a relatively flat hydraulic gradient of approximately 0.01 feet/foot. The groundwater flow direction and gradient for the current monitoring event is generally consistent with the initial event, although for the current event the gradient was approximately 0.03 feet/foot, steeper than previous events.

Figure 4 is a groundwater potentiometric surface map for the current groundwater monitoring event that occurred on February 11, 2011 (activities discussed in Section 3.0).

2010-06-23

3.0 FIRST QUARTER 2011 GROUNDWATER MONITORING AND SAMPLING

This section presents the groundwater sampling and analytical methods for the current event (First Quarter 2011), conducted on February 11, 2011. This is the fourth consecutive groundwater monitoring event. Table 1 summarizes monitoring well construction and groundwater monitoring data. Groundwater analytical results are presented and discussed in Section 4.0. Groundwater sampling was conducted in accordance with State of California guidelines for sampling dissolved analytes in groundwater associated with leaking USTs (State Water Resources Control Board, 1989).

Specific activities for this event included:

- Measuring static water levels before purging the wells.
- Collecting "post-purge" groundwater samples from the three onsite wells for laboratory analyses for contaminants of concern.

Groundwater monitoring well water level measurements, sampling, and field analyses were conducted by Stellar Environmental personnel. The locations of all site monitoring wells are shown on Figure 2. Well construction information and water level data are summarized in Table 1. Appendix A contains the groundwater monitoring field records for the current event.

Table 1 Groundwater Monitoring Well Construction and Groundwater Elevation Data 5315 San Pablo Avenue, Oakland, California

		Well Scree	ned Interval	Groundwater	Groundwater	
Well	Well Depth (feet bgs)	Depth (feet)	Elevation (feet)	Level Depth ^(a) February 11, 2011	Elevation ^(b) February 11, 2011	
MW-1	25	15 to 25	14 to 24	11.81	27.53	
MW-2	25	15 to 25	14 to 24	12.16	27.37	
MW-3	25	15 to 25	13 to 23	11.41	26.07	

Notes:

As the first monitoring task, static water levels were measured in the site wells using an electric water level indicator. Each well was then purged of five wetted casing volumes. After purging,

⁽a) Pre-purge measurement, feet below top of well casing.

⁽b) Pre-purge measurement, feet above mean sea level

the water level in each well was allowed to recover to at least 80% of the pre-purge measurement. The groundwater elevations and flow direction are generally consistent with previous measurements. Figure 4 shows the groundwater elevation map with the direction of flow indicated.

Groundwater samples were collected from each well using a peristaltic pump equipped with new polyethylene tubing. Samples were contained in appropriate containers (40-ml VOA vials with hydrochloric acid preservative and 1-liter amber glass jars), labeled, and placed in coolers with "blue ice." All groundwater samples were managed under chain-of-custody procedures from the time of sample collection until samples were received in the laboratory.

Approximately 7.5 gallons of wastewater (purge water and equipment decontamination rinseate) was containerized in a labeled, 55-gallon steel drum and temporarily stored onsite. This non-hazardous monitoring well purge water will continue to be accumulated onsite until it is cost-effective to coordinate its disposal, at which time it will be profiled and disposed of at a permitted wastewater treatment facility.

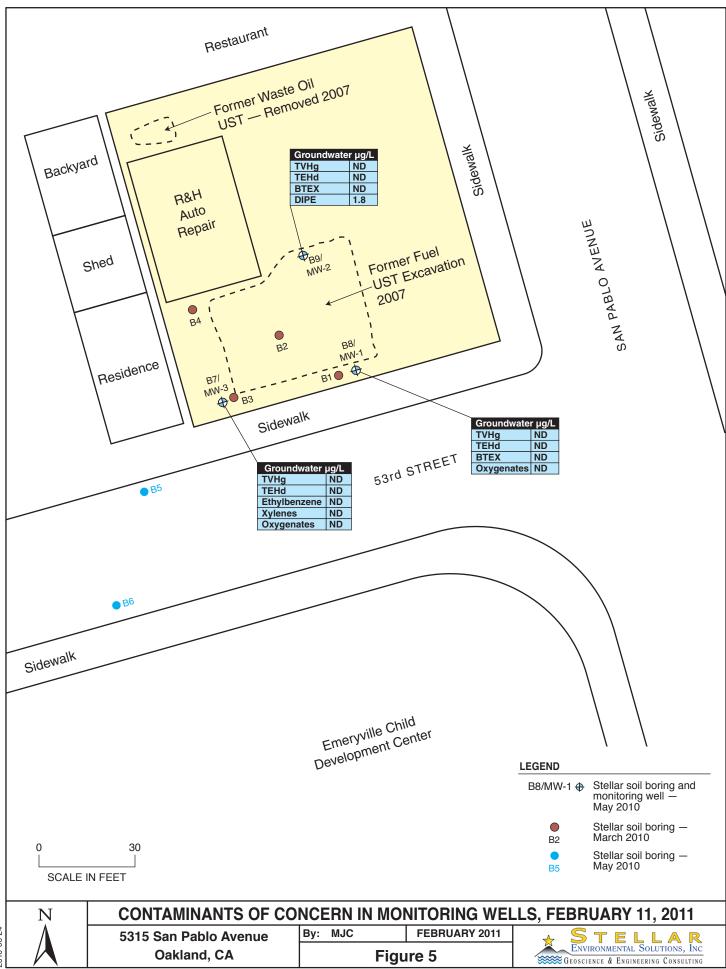
4.0 ANALYTICAL RESULTS, TREND ANALYSES AND FINDINGS

This section presents analytical results of the most recent monitoring event, and analyzes the data trends over the one year of quarterly groundwater monitoring.

GROUNDWATER SAMPLE ANALYTICAL METHODS

Groundwater samples were analyzed in accordance with the methods proposed in the Stellar Environmental technical workplan. Analytical methods included:

- Total volatile hydrocarbons gasoline range (TVHg) BTEX, MTBE, ethyl tertiary-butyl ether (ETBE), diisopropyl ether (DIPE), tertiary-amyl methyl ether (TAME), and tertiary-butyl alcohol (TBA) by EPA Method 8260.
- Total extractable hydrocarbons diesel range (TEHd), by EPA Method 8015C.


GROUNDWATER SAMPLE RESULTS

Tables 2 and 3 summarize the analytical results of the current monitoring event. Appendix B contains the certified analytical laboratory report and chain-of-custody record. Figure 5 depicts current event contaminant concentration in groundwater.

Groundwater samples collected from wells MW-1, MW-2, and MW-3 did not contain detectable concentrations of TVHg or TEHd. Wells MW-1 and MW-3 did not contain detectable concentrations of BTEX or fuel oxygenates. The groundwater sample from MW-2 contained 1.8 µg/L of DIPE, but did not contain detectable concentrations of BTEX.

QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory QC samples (e.g., method blanks, matrix spikes, surrogate spikes) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (Appendix B).

2010-06-24

Table 2
Groundwater Sample Analytical Results – February 11, 2011
Hydrocarbons, BTEX, and MTBE

Well	TVHg	TEHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE
MW-1	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-2	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-3	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
ESLs	100 / 210	100 / 210	1.0 / 46	150 / 650	40 / 130	20 / 100	5.0 / 1,800

Notes

ESLs = Water Board Environmental Screening Levels for commercial/industrial sites where groundwater *is/is not* a potential drinking water resource MTBE = methyl *tertiary*-butyl ether; TEHd = total extractable hydrocarbons - diesel range; TVHg = total volatile hydrocarbons - gasoline range All concentrations are expressed in micrograms per liter (μ g/L), equivalent to parts per billion (ppb).

Table 3
Groundwater Sample Analytical Results – February 11, 2011
Fuel Oxygenates

Well	EDBE	DIPE	TAME	TBA
MW-1	< 0.5	< 0.5	< 0.5	< 2
MW-2	< 0.5	1.8	< 0.5	<2
MW-3	< 0.5	< 0.5	< 0.5	<2
ESLs	0.5 / 690	NLP	NLP	12 / 18,000

Notes:

ESLs = Water Board Environmental Screening Levels for commercial/industrial sites where groundwater *is/is not* considered a drinking water resource. EDBE = ethyl tertiary-butyl ether; DIPE = diisopropyl ether; TAME = tertiary-amyl methyl ether; TBA = *tertiary*-butyl alcohol

NLP = no level published.

All concentrations are expressed in micrograms per liter (μ g/L), equivalent to parts per billion (ppb).

SOIL AND GROUNDWATER HYDROCARBON TREND ANLAYSES

This section discusses the distribution of the residual hydrocarbon contamination in the soil and groundwater and the hydrochemical and hydrologic trends over the February 2011 and the previous three consecutive quarters of groundwater sampling (Stellar Environmental, 2010a; 2010b; 2010c). These data are compared to regulatory limits and discussed in the context of closure criteria. Historical soil and groundwater data are included in Appendix B.

RESIDUAL SOIL CONTAMINATION

During the 2007-2008 AEI UST removal and the subsequent over-excavation and removal of contaminated soil, the highest reported concentration of hydrocarbons in site soils were 230 mg/kg of TVHg and 73 mg/kg of TEHd. Subsequently, concentrations of hydrocarbons in onsite soil samples collected by Stellar Environmental in March 2010 were 11 mg/kg of TVHg, and 73 mg/kg of TEHd. And for the May 2010 sampling event, the maximum detections were less than 1 mg/kg of TVHg (below the laboratory detection limit) and 6.6 mg/kg of TEHd.

Sample collection depths for the offsite soil samples were within the 15- to 17-foot-bgs unsaturated to capillary fringe zone and at the saturated zone between 19 and 20 feet bgs. These sampling depths are appropriate for evaluating offsite conditions downgradient from a fuel release. None of the soil samples collected from offsite soil borings B5 or B6 contained detectable concentrations of TVHg, BTEX, or MTBE, and only minor concentrations of TEHd (less than 7 mg/kg) were detected in the samples from the 15 to 17 feet bgs. The lack of TVHg, BTEX, and MTBE suggests an older spill with only minor, residual-aged fuel components still present in the capillary fringe (Stellar Environmental, 2010b).

Migration of the dissolved-phase hydrocarbon contamination in groundwater does not appear to have caused additional soil contamination by adsorption onto downgradient soils within the capillary fringe zone to the west of the former UST area.

GROUNDWATER CONTAMINATION

Although well MW-3 contained 0.58 μ g/L ethylbenzene and 0.64 μ g/L xylenes for the first event (2nd Quarter 2010), no detectable concentrations of TVHg, TEHd and BTEX were found in any of the wells for the subsequent three consecutive quarters. With the exception of DIPE ranging between 1.6 μ g/L and 2.1 μ g/L in well MW-2 for all four sampling events, no fuel oxygenates have been detected in any of the wells.

The initial dissolved hydrocarbons contamination in the groundwater grab sample collected in March 2010 from boring B3, was likely the result of the high count of colloidal particles with some hydrocarbons in them. The subsequent well sample data never showed the detected concentrations seen in the initial grab-groundwater sample. No significant offsite impacts to groundwater currently exist related to the former site UST release. The 72 μ g/L of TEHd reported for the offsite grab-groundwater sample point B6 is below the ESL, likely reflecting site sourced attenuation with time.

Based on the depth to groundwater and the maximum 8-foot depth of the located utilities, there does not appear to be any preferential pathways that could intersect site groundwater (Stellar Environmental, 2010b). In addition, there are no nearby downgradient water wells that could be impacted, and no demonstrable risk to sensitive receptors from the residual contamination. Table 4 summarizes the cumulative groundwater analytical results over four quarters- 2nd quarter 2010 through 1st quarter 2011.

Table 4
Cumulative Groundwater Analytical Results
Hydrocarbons, BTEX, Oxygenates

Well	Sample Date	TVHg	TEHd	Toluene	Ethyl- benzene	Total Xylenes	EDBE	DIPE	TAME	TBA	МТВЕ
MW-1	5/13/10	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-1	8/11/10	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-1	11/17/10	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
MW-1	2/11/10	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-2	5/13/10	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.6	< 0.5	< 0.5	< 0.5
MW-2	8/11/10	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.1	< 0.5	< 0.5	< 0.5
MW-2	11/17/10	<50	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.1	< 0.5	< 0.5	< 0.5
MW-2	2/11/10	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.8	< 0.5	< 0.5	< 0.5
MW-3	5/13/10	<50	< 0.5	< 0.5	0.58	0.64	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-3	8/11/10	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-3	11/17/10	<50	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
MW-3	2/11/10	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
ESLs	100 / 210	100 / 210	1.0 / 46	150 / 650	40 / 130	20 / 100	0.5 / 690	NLP	NLP	12 / 18,000	5.0 / 1,800

Notes:

ESLs = Water Board Environmental Screening Levels for commercial/industrial sites where groundwater is/is not considered a drinking water resource.

 $EDBE = ethyl \ tertiary-butyl \ ether; \ DIPE = diisopropyl \ ether; \ TAME = tertiary-amyl \ methyl \ ether; \ TBA = \textit{tertiary-butyl} \ alcohol$

NLP = no level published.

All concentrations are expressed in micrograms per liter (μ g/L), equivalent to parts per billion (ppb).

Diesel and Gasoline Distribution

Equilibration of site hydrochemical conditions in the new groundwater monitoring wells after the initial hydropunch samples has shown there are no dissolved hydrocarbons of regulatory concern in any of the wells.

BTEX and **MTBE** Distribution

No BTEX or MTBE contaminants were detected in any of the wells above their detection limits.

Fuel Oxygenates and Lead Scavengers

Of the fuel oxygenates, only DIPE has been detected in well MW-2, between 1.6 and 2.1 μ g/L. There are no ESL's for DIPE. All four quarters of monitoring clearly show only trace concentrations of this compound.

6.0 REGULATORY CONSIDERATIONS AND SITE CLOSURE PETITION

The preceding sections presented the site data initially collected and the four consecutive quarters of groundwater monitoring data collected to examine any potential seasonal variation in the groundwater quality. This section presents regulatory considerations and criteria for closure, citing data from the historical investigation and monitoring.

REGULATORY CONSIDERATIONS

Environmental Screening Levels

The concentrations reported in soil and groundwater samples must be compared to regulatory limits and guidance to evaluate the extent of any potential impact on the property and the environment.

The Water Board has established ESLs for evaluating the likelihood of environmental impact. ESLs are conservative screening-level criteria for soil and groundwater, designed to be generally protective of both drinking water resources and aquatic environments; they incorporate both environmental and human health risk considerations. ESLs are not cleanup criteria (i.e., health-based numerical values or disposal-based values). Rather, they are used as a preliminary guide in determining whether additional remediation and/or investigation may be warranted. Exceedance of ESLs suggests that additional investigation and/or remediation is warranted.

Different ESLs are published for commercial/industrial vs. residential land use, for sites where groundwater is a likely vs. unlikely drinking water resource, and the type of receiving water body. The Water Board's "proposed groundwater management zones and designated areas map" in the *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report* (Water Board, 1999) shows the property area in a location where groundwater is unlikely to be used for drinking water.

The appropriate ESLs for the subject site are based on the following:

■ Residential land use (a school is located downgradient of the property) and commercial/industrial use (for the subject property itself). Note that, for groundwater contaminants, all ESLs for the site contaminants are the same for both residential and commercial/industrial land use.

- Groundwater is not likely to be used as a potential drinking water resource based on both the property zoning status (commercial/industrial) and the designation of this area of Oakland as "Zone B Unlikely to be used as a Drinking Water Resource (Water Board, 1999). Thus, while the Basin Plan considers all groundwater with potential for drinking water, the appropriate ESLs for the subject site are groundwater is not a likely drinking water resource.
- The receiving body for groundwater discharge is an estuary (San Francisco Bay). The closest surface water body, Temescal Creek (150 feet to the south) is culverted at elevation above the groundwater table.

The State of California has also promulgated drinking water standards (Maximum Contaminant Levels [MCLs]) for some of the site contaminants. Drinking water standards may also be utilized by regulatory agencies to evaluate the potential risk associated with groundwater contamination. For the site contaminants, MCLs are generally the same as the ESLs (except that there is no MCL for gasoline).

Once ESLs or drinking water standards are exceeded, the need for and/or type of additional investigative and corrective actions is generally driven by the potential risk associated with the contamination. Minimum regulatory site closure criteria generally applied to fuel leak cases where groundwater is impacted include:

- The contaminant source has been removed, including reasonably accessible contaminated soils that pose a long-term impact to groundwater.
 - This criterion has been met, with all soil sample results below their respective ESL in areas near the former waste oil and fuel USTs most likely to show high residual contamination.
- The extent of residual contamination has been fully characterized to obtain sufficient lithologic and hydrogeologic understanding (generally referred to as a Site Conceptual Model).
 - This criterion has been met with respect to the onsite residual contamination.
- Groundwater wells have been installed and are monitored periodically to evaluate groundwater contaminant concentrations and hydrochemical trends.

This criterion has been met with the installation of the three monitoring wells, baseline monitoring onsite and the groundwater monitoring to date. Four consecutive quarterly monitoring events indicating consistent non-detectable concentrations of fuel hydrocarbons in groundwater (except for 0.58 µg/L ethylbenzene and 0.64 µg/L xylenes detected in well MW-3 during the first event the fuel oxygenate DIPE at 1.88 µg/L to 2.18 µg/L in well MW-2) have established the hydrochemical and hydrologic trends.

■ The stability of the contaminant plume has been evaluated to determine whether it is moving or increasing in concentration.

This criterion is currently been met to date by completing the four consecutive quarterly groundwater monitoring events to establish if there are any seasonal hydrochemical or hydrologic variations of significance. To date the hydrochemical and hydrologic regime is stable and there is no definable contaminant plume. Thus the four consecutive quarterly groundwater monitoring events show this criterion to be met.

■ A determination has been made as to whether the residual contamination poses an unacceptable risk to sensitive receptors.

This criterion has been met. No fuel hydrocarbons exist offsite in concentrations that exceed ESLs, and the sensitive receptor/offsite conduit survey conducted as part of the current phase of work do not indicate the likelihood of such receptors.

RESIDUAL GROUNDWATER CONTAMINANT PLUME

The data show there is no definable groundwater plume. Only one analyte, DIPE, was detected in one well and the concentrations detected were at trace levels of $2.1 \,\mu\text{g/L}$ for a compound that has no published ESL level.

HYDROLOGIC AND HYDROCHEMICAL CORRELATIONS

The last four consecutive monitoring events have indicated that detectable concentrations of DIPE in groundwater are stable do not correlate to groundwater level fluctuations. Site groundwater elevation fluctuations over the last four quarters ranged from 1.42 to 1.49 feet, with the highest levels recorded during the winter and spring quarters.

CONTAMINANT TRANSPORT / CONCEPTUAL MODEL

The site conceptual model suggests that the onsite soil and groundwater contamination originated from leaks and/or spills from the USTs and/or associated piping. However, the low levels of soil and groundwater impact from such leaks and spills suggest no sustained leakage. This is corroborated by the UST removal record, which reported good integrity of the removed tanks. The highest concentration of contamination was located around the pump dispenser in the

shallow soil at 2 feet bgs (1,500 mg/kg of TVHg). The maximum TEHd concentration was reported at 73 mg/kg from the excavation at 11 feet bgs.

The bulk of the petroleum product leaks and spills appear to have originated in the near surface area (as evidenced by the detection of 1,500 mg/kg of TVHg in the dispenser area soil sample) and migrated into the UST pit area, which was part of the removal action in 2007 when the tanks along with 320 tons of contaminated soil were removed (AEI, 2008a). The clay–rich soil that exists around and below the USTs minimized the hydrocarbon migration and allowed for much of the contaminant to be removed in the over-excavation stage.

Below the point where excavation occurred, at about 12 feet bgs, an additional 4 to 5 feet of clay exists before the lithology changes to a more permeable sand-rich water-bearing material. From the apparent shallow spillage/leakage points, the hydrocarbon contamination worked its way slowly downward, likely in inverted cone geometry, through the laterally uniform clay stratigraphy, eventually reaching the perennial groundwater table and silty/sandy materials found at depths of 16 to 18 feet bgs. No vertical preferential pathway based on lithology were noted by AEI in the UST excavation, or reflected in the Stellar Environmental exploratory or well bores. The gasoline-phase contamination showed only trace BTEX in well MW-3 for the first monitoring event and DIPE in well MW-2, below applicable ESLs (Stellar Environmental, 2010b).

The offsite component appears non-existent with no downgradient sensitive receptors (Stellar Environmental, 2010b).

PROJECTED FUTURE TRENDS AND POTENTIAL EXPOSURE PATHWAYS

The trace levels of DIPE and the absence of other detection of hydrocarbons in the groundwater indicated no contaminant plume exists and no pathways of exposure will occur on site or offsite. The interception of a potential plume by a preferential pathway, such as underground utilities downgradient, does not appear to be an issue at this location based on the relatively shallow depth of the utilities compared to the groundwater table depth. All of the utilities beneath 53rd Street are at or well above 12 feet, rendering these conduits unlikely to intersect groundwater and/or to act as preferential pathways.

Whatever residual hydrocarbons are still entrained in the soil that might impact groundwater the concentrations are low enough that natural attenuation can be projected to remedy any residuals. Numerous field and laboratory studies have concluded that the subsurface behavior of petroleum hydrocarbons is significantly impacted by their high capacity to undergo biodegradation (Lawrence Livermore National Laboratory, 1995). A variety of naturally occurring microorganisms utilize petroleum hydrocarbons as a carbon (food) source. Biodegradation of

hydrocarbons can occur under anaerobic conditions, but is more highly favored in aerobic conditions. Natural attenuation of petroleum in groundwater is very likely occurring at the site.

Soil Vapor Intrusion Potential

Based on the absence of detectable high vapor pressure hydrocarbon components benzene, toluene, and xylenes and ethylbenzene and the semi-confined aquifer conditions that create a lithologic (high clay content) barrier to groundwater and/or vapor, there is no credible potential for vapor intrusion via off-gassing from dissolved contaminants in groundwater.

Residual Contamination During Future Development

Contaminants are contained onsite, and are at concentrations that should not interfere with future site development in terms of associated risk or exposure. Given the data on the trace to non-detected residual petroleum hydrocarbons in soil and groundwater, hydrocarbons are not anticipated to interfere with future site development in terms of associated risk or exposure.

IMPACTS OF RESIDUAL CONTAMINATION ON BENEFICIAL USES

There are no known immediate impacts to the groundwater that affect current beneficial use. The nearest surface water body is San Francisco Bay, located approximately 4,000 feet to the west of the site. Temescal Creek (150 feet to the south) is culverted. Groundwater is not likely to be used as a potential drinking water resource, based on both the property zoning status (commercial/industrial) and the designation of this area of Oakland as "Zone B – Unlikely to be used as a Drinking Water Resource (Water Board, 1999). Thus, while the Water Board Basin Plan considers all groundwater with potential for drinking water, the appropriate designation and ESL criteria for the subject site is groundwater is not a likely drinking water resource.

Downgradient Supply Wells

The California Department of Water Resources (DWR) and Alameda County Department of Public Works databases of production and monitoring wells downgradient of the site, showed that with the exception of four deep wells included on the DWR database that were all located greater than ½ mile from the property, all the wells listed function as groundwater quality monitoring wells associated with local (not subject site) contamination. (Note that these wells may reflect their own sources of contamination, which could be higher than the subject source. (Stellar Environmental, 2010b).

SITE CLOSURE PETITION

It is Stellar Environmental's opinion that the site has met the regulatory criteria for site closure and such closure should be granted.

5.0 SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS

SUMMARY AND CONCLUSIONS

- The site has undergone site investigations and remediation since 2007 (SES has been involved since March 2010) to address soil and groundwater contamination associated with the former onsite UFSTs.
- The contaminant source has been removed, including reasonably accessible contaminated soils that pose a long-term impact to groundwater.
- A total of four groundwater monitoring/sampling events have been conducted in the three site wells between May 2010 and the current 1st quarter event.
- Regional groundwater flow in the area of the property is approximately to the southwest, toward San Francisco Bay. The initial groundwater monitoring event conducted by Stellar Environmental on May 13, 2010, which used wells MW-1 through MW-3 as data points, demonstrated a southwesterly groundwater flow direction with a relatively flat hydraulic gradient of approximately 0.01 feet/foot. The groundwater flow direction and gradient for the current monitoring event is generally consistent with the initial event, although for the current event the gradient was approximately 0.03 feet/foot, steeper than previous events.
- Lack of detectable concentrations of TVHg, TEHd, BTEX and fuel oxygenates in all wells for this fourth consecutive monitoring event (Q1-2011), compare closely to the previous (Q4-2010) sampling event in November 2010 with the only detection being DIPE in well MW-2 at 1.8μg/L for the current event which is similar to the concentration of 2.1 μg/L DIPE which was detected in MW-2 for the fourth quarter sampling.
- Based on the depth to groundwater and the maximum 8-foot depth of the located utilities determined during the March 2010 conduit survey, there does not appear to be any preferential pathways, downgradient wells or other sensitive receptors that could intersect site-sourced groundwater.
- No significant offsite impacts to soil or groundwater currently exist from the former site UST release. The 72 µg/L of TEHd reported in the May 2010 offsite grab-groundwater sample point across 53rd Street is below the ESL, likely reflecting site sourced contaminants attenuated with time.

- The property owner will be applying for reimbursements from the California Tank Fund.
- The property has completed the investigations and monitoring to collect sufficient data to make the case for site regulatory closure and thus petitions ACEH to close the site and allow for the decommissioning of the monitoring wells.

PROPOSED ACTIONS

The Responsible Party proposes to implement the following actions to address regulatory concerns:

- Provide this report to ACEH with the intent of receiving regulatory closure.
- Do no more work until ACEH determines if it concurs with the site closure petition.
- Following ACEH approval of regulatory site closure we recommend the three groundwater wells will be properly decommissioned under permit and the investigative derived waste (purge water and soil cuttings) be appropriately disposed of.
- Required Electronic Data Format uploads will be made to the GeoTracker database, and electronic copies of technical reports will be uploaded to ACEH's ftp system.
- Apply to the State Tank Fund to determine eligibility for reimbursements.

7.0 REFERENCES AND BIBLIOGRAPHY

- AEI Consultants, 2008. Underground Storage Tank Removal Final Report, 5315 San Pablo Avenue, Oakland, California. February 19.
- AEI Consultants, 2008b. Work Plan Soil and Groundwater Investigation, 5315 San Pablo Avenue, Oakland, California. October 31.
- Alameda County Health Care Services Agency, 2009. Fuel Leak Case # RO0002965 and GeoTracker Global ID T0619704141, R&H Auto Repair, 5315 San Pablo Avenue, Oakland, California, 94608. February 20.
- Lawrence Livermore National Laboratory, 1995, Rice et al.. Recommendations to Improve the Cleanup Process for California's Leaking Underground Fuel Tanks.
- Regional Water Quality Control Board (Water Board), 1999. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report Alameda and Contra Costa Counties. June.
- Regional Water Quality Control Board (Water Board), 2007. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater. November.
- State Water Resources Control Board, 1989. Leaking Underground Fuel Tank Field Manual.

 October
- Stellar Environmental Solutions, Inc., 2010a. Limited Phase II Site Investigation Report, 5315 San Pablo Avenue, Oakland, California. March 28.
- Stellar Environmental Solutions, Inc., 2010b. Well Installation Report and Preferential Pathway Study, 5315 San Pablo Avenue, Oakland, California. June 15.
- Stellar Environmental Solutions, Inc., 2010c. Fourth Quarter Groundwater Monitoring Report, 5315 San Pablo Avenue, Oakland, California. December 3.

8.0 LIMITATIONS

This report has been prepared for the use of the R&H Auto Repair property owners, members, property manager, and tenants, and all of their authorized representatives. The information presented in this report is based on a review of site-specific documents provided by the property owner and its agents (e.g., historical environmental assessments and monitoring) and communication with the regulatory agencies. This report has been prepared in accordance with generally accepted methodologies and standards of practice of the area. The personnel performing this assessment are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings included in the report.

The findings of this report are valid as of the date of this report. Subject property conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be updated as needed with monitoring reports, inspection reports, contact information, and monitoring schedules.

APPENDIX A

Groundwater Monitoring Field Records

May 2010

August 2010

November 2010

February 2011

WELL MONITORING DATA SHEET

Project #	#: 2010-C	6	Clie	client: Grewel			
Sampler:	Steve [3ittmar	Star	t Date: Ma	4 13 2010		
Well I.D.	.: MW-	(Well	Diameter: (circle one)	2 3 4 6	
Total Wel	ll Depth:		Dept	h to Water:			
Before 2	2.5 As	ter 25	Befo	ore 11 - 21	After // .	3 8	
Depth to	Free Produc	t: 0	Thic	kness of Free	Product (f	Eeet): O	
Measureme	ents referen	nced to:	evc	Grade	Other:		
,	Well Diamete	er	VCF 0.04 0.16 0.37 0.65 1.02	Well Diamete 8" 10" 12" 16"	er	VCF 1.47 2.61 4.08 5.87 10.43	
	55 gal Volume	_ x	10 -	develop 250	gallons		
Purging:	Bailer Disposable Middleburg Electric St Extraction Other Pe	ubmersible	pump	Sampli	ng: Bailer Disposal Extracti Other	ple Bailer ion Port, eristattic Pump	
TIME	TEMP.	рĦ	COND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:	
1105	ļ			Muddy	STart		
1120				Clear	3 sal	No draw down	
1140				Clear	5.5 gal	DTW = 11.35	
					V		
Did Well	Dewater?	OIf yes,	gals.	Gallons	Actually Ev	acuated: 5,5	
Sampling	Time: //	40	Samp	pling Date: /	May 13	200 2010	
Sample I	.D.: MU	v-1	Labe	oratory:	c Campb.	2/1	
Analyzed (Circle)	for: ZFH-C	PIEN (TPH-B OT	HER: OXY			
Duplicate	e I.D.: 1		Cle	aning Blank I	.D.:		
Analyzed (Circle)	for: TPH-0	G BTEX	то а-нчт	HER:			

WELL MONITORING DATA SHEET

Project #: 2010-06 Client: Grewel							
Sampler:	S. Bit	Tinan	Star	rt Date: Mo	17 13 2c	010	
Well I.D.	· Mw	-2	Well	L Diameter: (c	ircle one)	2 3 4 6	
Total Wel	=			th to Water:			
Before 2	S Af	ter 25	Befo	ore 11-39	After //	,54	
Depth to	Free Produc	t: 0		ckness of Free		feet):	
Measureme	ents referen	ced to:	€VO	Grade	Other:		
,	Well Diamete	er.	VCF 0.04 0.16 0.37 0.65 1.02	Well Diamete 6" 10" 12" 16"	r	VCF 1.47 2.61 4.08 5.87 10.43	
	54 gal Volume	_ x	10 c	develops Sav	mple 5	-4	
Purging: Bailer Disposable Bailer Middleburg Electric Submersible Extraction Pump Other peristaltic Pump							
TIME	TEMP. (F)	Нq	COND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:	
1005				Clear	Start		
1030				Cloudy	2,5 gal	dry-letrecove	
1045				Cloudy	3 gal	dry-let recove	
1105				Clearing	4 gd	dry	
1250						DTW = 11.52	
Did Well	Dewater? V	es If yes	, gals.	Gallons	Actually Ev	lacuated: 4 gal	
Sampling Time: 1250 Sampling Date: May 13 2010							
Sample I.D.: MW-L Laboratory: Mc Campbell							
Analyzed for: TPH-G ETEX TPH-D OTHER: OXY							
Duplicate	e I.D.:	D'	Cle	aning Blank I	.D.:		
Analyzed (Circle)	Analyzed for: TPH-G BTEX TPH-D OTHER: (Circle)						

WELL MONITORING DATA SHEET

Project #: 2010-06 Client: Grewel							
Sampler: S.	BiH	man	Star	t Date: Ma	7 13 d	010	
Well I.D.:	MW-3	7	Well	L Diameter: (c	ircle one)	2 3 4 6 (1)	
Total Well D	epth:	2	Dept	th to Water:	. •		
Before 25	Af	ter 25	Befo	DEB 10 185	After /2	,10	
Depth to Fre	a Produc	t: Ø		kness of Free	Product (f	Seet): Ø	
Measurements	referen	ced to:	(PVC)	Grade	Other:		
Well	"Diamete	r	VCF	Well Diamete	r	VCP.	
1 2			0.16	8 m 1 n m		2.61 4.08	
14	11		0.16 0.37 0.65 1.02	īž" 16"		5.87 10.43	
l							
0.50	6	x _	10 deve	lup + sampl	e 5	, 6	
1 Case Vol	ume		Specified V		gallons		
Purging: Bai				Samplin	g: Bailer		
	posable dleburg	Bailer			Disposal Extracti	ole Bailer	
Ele	ctric Su	bmersibl			Other_{	con Post of Dung	
Ext Oth	raction or the second	istaltic	c Puins			,	
						·	
TIME	TEMP. (F)	рн	COND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:	
1145				m wd Sawd	Start		
1400					2.5 gal	Clear DTW=d	
1215					5.5 gcl	Clear Stw=2	
1235				<u> </u>	·	DTW=12-10	
	i		•				
			· · · · · · · · · · · · · · · · · · ·				
Did Well Dew	ater?//	If yes	, gals.	Gallons A	Actually Ev	acuated: 5,5	
Sampling Tim	m: 123	5	Sam	pling Date: /	May 13.	2010	
Sample I.D.:	Mi	<u>w</u> -3	Lab	oratory:	c Campb	el	
		7/3	TPH-D OT	HER: (2XV)			
Analyzed for (Circle)	:: र मि-G	STEX	ψ.,	100			
Analyzed for (Circle) Duplicate I.	<u>-</u>	O BTEX		aning Blank I.	.D.:		

Project	#: 2010-6		Clie	ot: Grewe	D					
Sampler:		ima ia	Star		S 11 201	0				
Well I.D	·: , MIN-1	"an	Well	. Diameter: (c						
	ll Depth:		Dept	Depth to Water:						
Before 7	A1	ter 25	Befo	Before 12,69 After 17,20						
Depth to	Free Produc	t: 0	Thic	kness of Free	Product (i	feet): O				
Measurem	ents referer	ced to:	EVC	Grade	Other:					
	Well Diameter VC 1" 0. 2" 0. 3" 0. 4" 0. 5" 1.			Well Diamete 6" 8" 10" 12" 16"	VCF 1.47 2.61 4.08 5.87 10.43					
0.49 Secified Volumes = gallons										
Purging: Bailer Disposable Bailer Middleburg Electric Submersible Extraction Pump Other Peristaltic Pump										
TIME	TEMP.	рН	COND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:				
1138				Cloudy	Start					
1155				Clear	2.5					
										
			•							
Did Well	Dewater?) If yes,	gals.	Gallons 1	Actually Ev	acuated:2.5				
Sampling	Time: /)	0	Sam	pling Date: 8	111/2010					
Sample I	.D.: MW-	·	Labo	oratory: M	c Campbe	ll				
Analyzed (Circle)	for: TFH-C	FTEX	TPH-D OT	ier: OXY						
Duplicat	e I.D.:	0	Clea	aning Blank I	.D.: 0					
Analyzed (Circle)	for: TPH-0	G BTEX	TPH-D OTI	HER:						

Project !	1: 2010-6		Clie	ent: Grew	el			
Sampler:	S Bitting	24	Star	t Date: Au	11 2010			
Well I.D.	: MW-	۷	Well	Diameter: (circle one)	2 3 4 6		
Total Wel	-	· · · ·	Dept	h to Water:	11	C.7		
Before 2	S Af	ter 25	Befo	re 12,88	After /6.	85		
Depth to	Free Produc	t: 0	Thic	kness of Fre	Product (f	eet):&		
Measureme	ents referen	ced to:	(PVC)	Grade	Other:			
3	Well Diameter 1" 2" 3" 4" 5"			Well Diameto 6" 8" 10" 12" 16"	er	VCF 1.47 2.61 4.08 5.87 10.43		
0,0	18	x	8		2,4			
1 Case	Volume		Specified Vo	olumes =	gallons			
Purging: Bailer Disposable Bailer Middleburg Electric Submersible Extraction Pump Other Opportable Dunch Other Opportable Dunch Sampling: Bailer Disposable Bailer Extraction Port Other Dovidalli Dunch								
TIME	TEMP. (F)	Нq	COND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:		
1005				Clear	Start			
1030				Cleur	2.5 gal			
					3-6			
					-			
Did Well	Dewater?	I yes	, gals. 2.6	Gallons	Actually Eva	acuated: 2,5		
Sampling	Time: 112	8	Samp	oling Date: /	tue 11 de	010		
Sample I	.D.: MW-	2	Labo	oratory: M	c Campbell	<u> </u>		
Analyzed (Circle)	for: TPH-G	RTEX	TEH-D OTE	IER: OXY				
Duplicate	I.D.:	8	Clea	ning Blank I	.D.: 0			
Analyzed (Circle)	for: TPH-G	BTEX	TPH-D OTH	IER:				

Project #	: 2010-06		Clie	client: Grewel						
Sampler:	S Bittu	mn_	Star	t Date: Aug	11 201	0				
Well I.D.	: MW-3		Well	L Diameter: (circle one)	2 3 4 6				
Total Wel	.l Depth:		Dept	th to Water:	16	38				
Before)	S AE	ter 25		ore 12,27						
Depth to	Free Produc	t: Ø	Thic	kness of Free	Product (f	feet):				
Measureme	ents referen	ced to:	PVC)	Grade	Other:					
ş,	Well Diameter 1" 2" 3" 4" 5"			Well Diameto 6" 10" 12" 16"	er	VCF 1.47 2.61 4.08 5.87 10.43				
0,8	51 cal	x	6		2.	.55.				
<u> </u>	Volume	• -	pacified V	olumes =	gallons					
Purging: Bailer Disposable Bailer Middleburg Electric Submersible Extraction Pump Other Perutal TIC Dumn										
TIME	TEMP. (F)	рн	COND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:				
1048				Clear	STOrT					
1110				Clear	28					
				- CERT						
			·		***************************************					
Did Well	Dewater? NO	If yes,	gals.	Gallons	Actually Ev	acuated: 7.5				
Sampling	Time:	5	Sam	pling Date:	8/11/10					
Sample I.	.D.: Mw-	3	Lab	oratory: M	c Campbell	1				
Analyzed (Circle)	for: TVH-0	PTEX	TEH-D OT	HER: OXÝ						
Duplicate	I.D.:	2	Cle	aning Blank I	.D.:					
Analyzed (Circle)	for: TPH-0	BTEX 1	TPH-D OT	HER:						

GEOSCIENCE & ENGINEERING CONSULTING

	**		Clie	nt: fu	. 0						
	*: 2010-1			Start Date: 11-19-10							
Sampler	: S Bittm	000				- A					
Well I.	D.: MW-3	3		Well Diameter: (circle one) 2 3 4 6							
	ell Depth:		-	Depth to Water: Before 60 After 3.48							
Before		ter 25									
	o Free Produc			kness of Free		eet):					
Measure	ments referen	ced to:	gvc)	Grade	Other:						
	Well Diamete 1" 2" 3" 4" 5"	er .	VCF 0.04 0.16 0.37 0.65 1.02	Well Diameter 6" 8" 10" 12" 16"	er	VCF 1.47 2.61 4.08 5.87 10.43					
	.53	~			2.7	-					
	e Volume	_ ×	Specified Vo	olumes =	gallons						
Purging: Bailer Disposable Bailer Middleburg Electric Submersible Extraction Pump Other Pennalic Dump											
TIME	TEMP.	рĦ	COND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:					
1130				Clear	e	Start					
1145				Clear	2.79	Start No odor					
			•								
			· · · · · · · · · · · · · · · · · · ·								
Did Wel	L1 Dewater?	U If yes	, gals.	Gallons	Actually Ev	acuated:) 4					
Samplin	ng Time: 170	0	Sam	pling Date:	1-17-10						
Sample	I.D.: MW-	3	Lab	oratory: Mc	(any ball	1					
Analyze (Circle	ed for: TPH-	G BTEX	TPH-D OT	HER: OXY	•						
Duplica	ate I.D.:	0	Cle	aning Blank I	.D.:	5					
Analyze (Circle	ed for: TPH-	G BTEX	TPH-D OT	HER:							

Project i	1: 2010.	- 6	Clie	ent: Grewe]					
	5 Bittw		Star	t Date: 12-						
	·: Mw-7		Well	Diameter: (circle one)	2 3 4 6				
Total We				Depth to Water:						
Before 7	5 A	Eter 25°	Befo	Before 12.32 After 17.7						
Depth to	Free Produc	et: 1	Thic	Thickness of Free Product (feet):						
Measurem	ents refere	aced to:	PVC	Grade	Other:					
	Well Diameter 1" 2" 3" 4" 5"			Well Diamete 6" 8" 10" 12" 16"	er .	VCF 1.47 2.61 4.08 5.87 10.43				
O,SISA x 5 Z,5 1 Case Volume Specified Volumes = gallons										
Purging: Bailer Disposable Bailer Middleburg Electric Submersible Extraction Pump Other Porstallic Rump										
TIME	TEMP. (F)	рĦ	COND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:				
1020				Clear	D	STAIT				
1037				Clear	2.5g	2,4				
			· · · · · · · · · · · · · · · · · · ·		3	t				
Did Well	Dewater? \	C If yes	s, gals. 2,5	Gallons	Actually Ev	acuated: 2.5				
Sampling	Time: O	50 - 17	.2 Drisam	pling Date:)	1-17-10					
Sample I	.D.: MW-	2	Lab	oratory: M,	Campbel					
Analyzed (Circle)	for: TPH-	G STEX	TPH-D OT	HER: OXY						
Duplicate	e I.D.:	}	Cle	aning Blank I	.D.;					
Analyzed (Circle)	for: TPH-	G BTEX	TPH-D OT	HER:						

Project	#: 2010 -	<u> </u>	Cli	ent: Grewe	<u> </u>					
	: 5 Bittm		Sta	rt Date: -	17=10					
	D.: MW-1			l Diameter: (2 3 4 6				
	ell Depth:		Dep	Depth to Water:						
Before	25 A	fter25	Bef	00.Cl 910	After 15	.63				
Depth to	o Free Produ	ct: 6	Thi	ckness of Fre	a Product (feet):				
Measure	ments refere	nced to:	PVC	Grada	Other:					
	Well Diameters 3" 4" 5"	er	VCF 0.04 0.16 0.37 0.65 1.02	Well Diamet 8" 10" 12" 16"	er	VCF 1.47 2.61 4.08 5.87 10.43				
1 Case), [2]	_ x _	Specified V	olumes =	Z- gallons	6				
Purging	Bailer Disposable Middleburg Electric S Extraction Other	ubmersibl	e Pump	Sampli	ng: Bailer Disposal Extract Other	ole Bailer ion Port Cristaltic pump				
TIME	TEMP.	PH	COND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:				
1057				Clean	6	Start				
1110				(leav	2.65	No ador				
Did Well	Dewater?	O If yes	, gals.	Gallons 1	Actually Eva	acuated: 7.6				
Sampling				oling Date://		2,0				
Sample I	.D.: MW-				Composel					
Analyzed (Circle)	for: TPH-G	BTEX	TPH-D OTH	IER: OXY	C. T. B. B. C.	1				
Duplicat	e I.D.:		Clea	ning Blank I	D.: 0					
Analyzed (Circle)	for: TPH-G	BTEX	TPH-D OTH	ŒR:	· · · · · · · · · · · · · · · · · · ·					

GEOSCIENCE & ENGINEERING CONSULTING

WELL MONITORING DATA SHEET

Project	: #: 2010-0	5	Clie	Client: Grewel							
Samples	: S. Bittm	an	Sta	rt Date: 1-/	[-1]						
Well I.	D.: MW-1		Well	L Diameter: (d	circle one)	2 3 4 6					
Total V	ell Depth:		Dept	th to Water:							
Before	25 A	Eter 25	Befo	ore 11.81	After /3	82					
Depth t	o Free Produc	et: s	Thie	ckness of Free	Product (:	feet):					
Measure	ements referen	aced to:	PVC	Grade	Other:						
	Well Diamete 1" 2" 3" 4" 5"	er	VCF 0.04 0.16 0.37 0.65 1.02	Well Diamete 6" 10" 12" 16"	er	VCF 1.47 2.61 4.08 5.87 10.43					
0	.52 sal	×	5		26						
-	se Volume	- ^ -	Specified Vo	olumes =	gallons						
Purging: Bailer Disposable Bailer Middleburg Electric Submersible Extraction Pump Other Population											
TIME	TEMP.	Εq	COND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:					
1345				Clear	Start						
1405				Clear	2.6						
			•								
· · · · · · · · · · · · · · · · · · ·											
Did Wel	Dewater? N	O If yes	, gals.	Gallons i	Actually Ev	acuated:					
Samplin	ng Time: [U]	23	Samp	pling Date:	u/IJ						
Sample	I.D.: MW-	1	Labo	oratory: Mc	Campbel	L					
Analyze (Circle	ed for: 7PH-0		TEH-D OT	HER:OXY'S	,						
Duplica	te I.D.:		Clea	aning Blank I	.D.:						
Analyze (Circle	ed for: TPH-0	S BTEX	TPH-D OT	HER:							

GEOSCIENCE & ENGINEERING CONSULTING

WELL MONITORING DATA SHEET

Projec	t #: 2010		Cli	ent: (ivent	el					
Sample	=: S.B,H	man	Sta	rt Date: 2-1	1-11					
Well I	·D.: MW-2		Wel	l Diameter: (circle one)	2 3 4 6				
Total	Well Depth:			Depth to Water:						
Before	25	Eter 25	Bef	Before 2,16 After 7,6						
Depth	to Free Produc	et: 0	Thi	ckness of Free	Product (1	feet): O				
Measur	ements refere	aced to:	(FVC)	Grade	Other:					
	Well Diameter 2" 3" 4" 5"	er	VCF 0.04 0.16 0.37 0.65 1.02	Well_Diamete 6" 10" 12" 16"	er	VCF 1.47 2.61 4.08 5.87 10.43				
(151 cal	×	25	~5	25					
	se Volume	- ^ -	Specified V	olumes =	gallons					
Purging: Bailer Disposable Bailer Middleburg Electric Submersible Extraction Pump Other Paristales Other Paristales										
TIME	TEMP. (F)	Нq	COND.	TURBIDITY:	VOLUME REMOVED:	OBSERVATIONS:				
1300				Clear	Start					
1325				Clear	2250					
			•							
· · · · · · · · · · · · · · · · · · ·										
Did We	11 Dewater? Ye	J If yes	s, gals.	Gallons 2	Actually Eva	cuated: Z,5				
Sampli	ng Time: 133	0	Sam	pling Date: Z-	-11-11					
Sample	I.D.: MW-	2	Lab	oratory: Mc	Campbell	0				
Analyz (Circl	ed for: (TPH-CB)	BTEX	ZFH-D OT	HER: Oxy's 6	7 8260					
Duplic	ate I.D.:		Cle	aning Blank I	.D.:					
Analyze	ed for: TPH-(BTEX	TPH-D OT	HER:						

Project #: 2010 - 6

GEOSCIENCE & ENGINEERING CONSULTING

WELL MONITORING DATA SHEET

(-rews

Client:

Sample	Sampler: S Bittman Start Date: 4, 2-11-11											
Well I		3	Wel	l Diameter: (circle one)	2 3 4	6					
Total	Well Depth:	,		th to Water:								
Before	25 A	fter 25	Bef	ore .4	After							
Depth	to Free Produ	ct: G	Thi	Thickness of Free Product (feet):								
Measur	ements refere	nced to:	FVP	Grade	Other:							
	Well Diamet	er	VCF 0.04 0.16 0.37 0.65 1.02	Well Diamet 6" 8" 10" 12" 16"	er	VCF 1.47 2.61 4.08 5.87 10.43						
<u></u>	0,54 gol	_ x			2	71						
1 Ca	se Volume		Specified V	olumes =	gallons							
Purging: Bailer Disposable Bailer Disposable Bailer Middleburg Electric Submersible Extraction Pump Other Contactor												
TIME	TEMP. (F)	PH	COND.	TURBIDITY:	VOLUME REMOVED:	OBSERVAT	CONS:					
1430				Clear	Start							
1450				Cleav	2,7							
Did We	Dewater? /	O If yes	, gals.	Gallons 1	Actually Ev	I	7					
	ng Time: /50	-		pling Date: 2	-11-11							
Sample	I.D.: MW	-3			Campbel							
Analyze (Circle	ed for: THE	STEX	TPH-D OT	HER: OXY'S								
Duplica	ite I.D.:		Clea	aning Blank I.	.D.;							
Analyze (Circle	d for: TPH-G	BTEX	TPH-D OTI	HER:								

APPENDIX B

Analytical Laboratory Reports and Chain-of-Custody Records

May 2010

August 2010

November 2010

February 2011

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Stellar Environmental Solutions	Client Project ID: #2010-06; R & H Auto	Date Sampled:	05/11/10-05/13/1
2198 Sixth St. #201		Date Received:	05/13/10
2190 SIKM St. #201	Client Contact: Steve Bittman	Date Reported:	05/19/10
Berkeley, CA 94710	Client P.O.:	Date Completed:	05/17/10

WorkOrder: 1005336

May 19, 2010

1	Door	Steve:
ı	Dear	oueve:

Enclosed within are:

- 1) The results of the 5 analyzed samples from your project: #2010-06; R & H Auto,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

1005336 Chain of Custody Record Lab job no. _____ Laboratory McCampbell Analytical Method of Shipment Courrier Address 1534 Willow Pass Rd Shipment No. Pittsburg, CA 94565 Airbill No. _ Analysis Required 877-252-9262 coolors o Stellar Environmental S. Project Owner _ Project Manager Steve Bittman Site Address 53/5 San Pablo Ave Telephone No. 51.0. 644-3/23 Oakland CA Project Name R&H Auto Remarks Project Number 2010-06 Samplers: (Signature) Stew Sample Field Sample Number Date Time Type/Size of Container MW-1 40 ml VOA HCL MW-Z Amber Liter MW-2 W 40 mlVOA HCL MW-2 Ambor liter MW-3 40 ml VOA HCL MW-3 Amher liter B5-W 40ml HOA HCL Amber liter 3 場 40 ml VOA HCL B6-W Amber liter Relinquished by: Received by: 5/13/10 Printed Melisca Valles Printed Steve Bittman 1500 Company Relinguished by Received by: Date required Time Company . - recolta to: Sbittman @ Stellar-environmental.com

HEAD SPACE ABOUT PRESERVATION

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg C Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				Work	Order	: 1005	336	(ClientCode: SESB								
		WaterTrax	WriteOn	✓ EDF		Excel		Fax		✓ Email		Hard	Сору	Thir	rdParty	☐ J-	flag
Report to: Steve Bittman Stellar Environmental Solutions 2198 Sixth St. #201 Berkeley, CA 94710 (510) 612-8751 FAX (510) 644-3859		Email: sbittman@stellar-environmental.com,int cc: PO: ProjectNo: #2010-06; R & H Auto			Bill to: Accounts Payable Stellar Enviormental Solutions 2198 Sixth St. #201 Berkeley, CA 94710					3	Requested TAT: Date Received: Date Printed:						
									Req	uested	Tests	(See leg	end b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1005336-001	MW-1		Water	5/13/2010		Α	Α	В							T		
1005336-002	MW-2		Water	5/13/2010		Α		В									
1005336-003	MW-3		Water	5/13/2010		Α		В									
1005336-004	B5-W		Water	5/11/2010		Α		В									
1005336-005	B6-W		Water	5/11/2010		Α		В					<u> </u>				
<u>Test Legend</u> :																	
1 GAS	1 GAS8260_W 2 PREDF REPO		ORT	3	ΓPH(D)	_w		4	ī				ſ	5			
6	7			8		_		9			•			10			
11	12								•				L				
	mpIDs: 001A, 002A, 003A, 00	04A, 005A contai	n testgroup.										Prena	red by:	: Melis	sa Valle	es

Comments:

Sample Receipt Checklist

Client Name:	Stellar Envi	ronmental Solutions			Date a	and Time Received:	5/13/2010	6:27:37 PM
Project Name:	#2010-06; R	& H Auto			Check	dist completed and r	eviewed by:	Melissa Valles
WorkOrder N°:	1005336	Matrix <u>Water</u>			Carrie	r: Rob Pringle (M	IAI Courier)	
		<u>Chai</u>	n of Cu	istody (C	COC) Informa	ation		
Chain of custody	present?		Yes	V	No 🗆			
Chain of custody	signed when re	elinquished and received?	Yes	V	No 🗆			
Chain of custody	agrees with sa	mple labels?	Yes	✓	No 🗌			
Sample IDs noted	d by Client on CO	OC?	Yes	V	No 🗆			
Date and Time of	f collection noted	by Client on COC?	Yes	✓	No \square			
Sampler's name i	noted on COC?		Yes	✓	No 🗆			
		<u> </u>	Sample	Receipt	t Information	<u>l</u>		
Custody seals in	tact on shipping	container/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in goo	d condition?	Yes	V	No 🗆			
Samples in prope	er containers/bo	ottles?	Yes	~	No 🗆			
Sample containe	ers intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for ind	cated test?	Yes	✓	No 🗌			
		Sample Prese	ervatio	n and Ho	old Time (HT) Information		
All samples recei	ived within holdi	ng time?	Yes	✓	No 🗌			
Container/Temp I	Blank temperatu	re	Coole	er Temp:	2.4°C		NA \square	
Water - VOA via	ls have zero he	adspace / no bubbles?	Yes	~	No 🗆	No VOA vials subm	itted	
Sample labels ch	necked for corre	ct preservation?	Yes	~	No 🗌			
Metal - pH accep	table upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🔽	
Samples Receive	ed on Ice?		Yes	✓	No 🗆			
		(Ice Ty	oe: WE	T ICE)			
* NOTE: If the "I	No" box is chec	ked, see comments below.						
=====	=====	======	=	===	====	=====	====	======
Client contacted:		Date contact	cted:			Contacted	by:	
Comments:								

Stellar Environmental Solutions Client Project ID: #2010-06; R & H Auto Date Sampled: 05/11/10-05/13/10 Date Received: 05/13/10 2198 Sixth St. #201 Date Extracted: 05/14/10 Client Contact: Steve Bittman Date Analyzed: 05/14/10 Berkeley, CA 94710 Client P.O.: MTBE and BTEX by GC/MS* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1005336 Lab ID 1005336-001A 1005336-002A 1005336-003A 1005336-004A MW-1 MW-2 MW-3 B5-W Client ID Reporting Limit for DF =1 Matrix W W W W DF 1 1 1 1 S W Compound Concentration ug/kg μg/L tert-Amyl methyl ether (TAME) ND ND ND ND NA 0.5 Benzene ND ND ND ND NA 0.5 t-Butyl alcohol (TBA) ND ND ND ND NA 2.0 Diisopropyl ether (DIPE) ND 1.6 ND ND NA 0.5 0.5 Ethylbenzene ND ND 0.58 ND NA Ethyl tert-butyl ether (ETBE) ND ND ND ND NA 0.5 ND ND 0.5 Methyl-t-butyl ether (MTBE) ND ND NA

Surrogate Recoveries (%)

ND

ND

ND

0.64

ND

ND

NA

NA

0.5

0.5

%SS1:	95	98	96	96	
%SS2:	98	99	98	99	
Comments				b1	

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

ND

ND

b1) aqueous sample that contains greater than ~1 vol. % sediment

Toluene


Xylenes

Stellar Environmental Solutions	Client P	roject ID: #2010-0	06; R & H Auto	Date Sampled:	05/11/10-0	5/13/10
2198 Sixth St. #201				Date Received:	05/13/10	
	Client C	Contact: Steve Bit	tman	Date Extracted:	05/14/10	
Berkeley, CA 94710	Client P	.O.:		Date Analyzed:	05/14/10	
	MT	BE and BTEX by (GC/MS*			
Extraction Method: SW5030B		alytical Method: SW826	0B	T	Work Order:	1005336
Lab ID	1005336-005A					
Client ID	B6-W				Reporting DF	
Matrix	W					
DF	1				S	W
Compound		Conce	entration		ug/kg	μg/L
tert-Amyl methyl ether (TAME)	ND				NA	0.5
Benzene	ND				NA	0.5
t-Butyl alcohol (TBA)	ND				NA	2.0
Diisopropyl ether (DIPE)	ND				NA	0.5
Ethylbenzene	ND				NA	0.5
Ethyl tert-butyl ether (ETBE)	ND				NA	0.5
Methyl-t-butyl ether (MTBE)	ND				NA	0.5
Toluene	1.5				NA	0.5
Xylenes	ND				NA	0.5
	Sur	rogate Recoveries	s (%)			
%SS1:	98					
%SS2:	97					
Comments	b1					

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b1) aqueous sample that contains greater than ~1 vol. % sediment

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

Account of the Control of the Contro		
Stellar Environmental Solutions	Client Project ID: #2010-06; R & H Auto	Date Sampled: 05/11/10-05/13/10
2198 Sixth St. #201		Date Received: 05/13/10
	Client Contact: Steve Bittman	Date Extracted: 05/14/10
Berkeley, CA 94710	Client P.O.:	Date Analyzed 05/14/10

TPH(g) by Purge & Trap and GC/MS*

Analytical methods SW8260B Extraction method SW5030B 1005336 Lab ID Client ID Matrix TPH(g) DF % SS Comments 001A MW-1 W ND 002A W 99 MW-2ND 1 003A W 99 MW-3 ND 1 W 004A B5-W ND 1 100 b1 005A W **B6-W** ND 1 96 b1 Reporting Limit for DF = 1; W 50 μ g/L ND means not detected at or

NA

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

S

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

b1) aqueous sample that contains greater than ~1 vol. % sediment

above the reporting limit

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

Total Control of the		
Stellar Environmental Solutions	Client Project ID: #2010-06; R & H Auto	Date Sampled: 05/11/10-05/13/10
2198 Sixth St. #201		Date Received: 05/13/10
	Client Contact: Steve Bittman	Date Extracted: 05/13/10
Berkeley, CA 94710	Client P.O.:	Date Analyzed 05/14/10-05/17/10

Total Extractable Petroleum Hydrocarbons*

Extraction method SW3510C Analytical methods: SW8015B Work Order: 1005336

Extraction method SW3	3510C	Analytica		Work Order: 1005336				
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	DF	% SS	Comments		
1005336-001B	MW-1	W	ND	1	89			
1005336-002B	MW-2	W	ND	1	91			
1005336-003B	MW-3	W	ND	1	90			
1005336-004B	B5-W	w	ND	1	91	b1		
1005336-005B	B6-W	W	72	1	99	e2,b1		
	g Limit for DF =1;	W	50		μg	:/L		
	not detected at or ne reporting limit	S NA			NA			

^{*} water samples are reported in ug/L, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in $\mu g/L$.

- b1) aqueous sample that contains greater than ~1 vol. % sediment
- e2) diesel range compounds are significant; no recognizable pattern

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 50647 WorkOrder 1005336

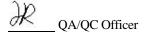
EPA Method SW8260B	5030B	Spiked Sample ID: 1005342-001A										
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Amaryto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	71.4	76.1	6.32	78.4	77.7	0.968	70 - 130	30	70 - 130	30
Benzene	ND	10	94.6	94.5	0.0846	88	90.2	2.46	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	71.3	71.5	0.240	76.1	77.4	1.59	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	97.9	100	2.52	93.6	95.3	1.72	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	82.5	88.2	6.67	83	83.5	0.687	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	89.6	97.2	8.08	91.3	92.7	1.55	70 - 130	30	70 - 130	30
Toluene	ND	10	91.9	91.7	0.237	90.9	88.1	3.08	70 - 130	30	70 - 130	30
%SS1:	87	25	95	95	0	93	94	1.67	70 - 130	30	70 - 130	30
% SS2:	97	25	99	97	1.79	98	97	1.29	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 50647 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1005336-001A	05/13/10	05/14/10	05/14/10 4:46 PM	1005336-002A	05/13/10	05/14/10	05/14/10 9:46 PM
1005336-003A	05/13/10	05/14/10	05/14/10 10:29 PM	1005336-004A	05/11/10	05/14/10	05/14/10 11:12 PM
1005336-005A	05/11/10	05/14/10	05/14/10 11:55 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

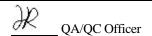
Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 50647 WorkOrder 1005336

EPA Method SW8260B	Extrac	ction SW	5030B					S	Spiked San	nple ID	: 1005342-0	001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
, and yes	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	71.4	76.1	6.32	78.4	77.7	0.968	70 - 130	30	70 - 130	30
Benzene	ND	10	94.6	94.5	0.0846	88	90.2	2.46	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	71.3	71.5	0.240	76.1	77.4	1.59	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	101	97.7	3.68	100	95.8	4.78	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	89.5	93.4	4.30	98.7	93.8	5.06	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	94.4	94.7	0.291	82	81.1	1.07	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	96	91.8	4.44	86.4	90.6	4.79	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	97.9	100	2.52	93.6	95.3	1.72	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	82.5	88.2	6.67	83	83.5	0.687	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	89.6	97.2	8.08	91.3	92.7	1.55	70 - 130	30	70 - 130	30
Toluene	ND	10	91.9	91.7	0.237	90.9	88.1	3.08	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	103	101	2.03	95.3	95.9	0.629	70 - 130	30	70 - 130	30
%SS1:	87	25	95	95	0	93	94	1.67	70 - 130	30	70 - 130	30
% SS2:	97	25	99	97	1.79	98	97	1.29	70 - 130	30	70 - 130	30
% SS3:	94	2.5	92	89	3.28	96	92	3.61	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE


BATCH 50647 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1005336-001A	05/13/10	05/14/10	05/14/10 4:46 PM	1005336-002A	05/13/10	05/14/10	05/14/10 9:46 PM
1005336-003A	05/13/10	05/14/10	05/14/10 10:29 PM	1005336-004A	05/11/10	05/14/10	05/14/10 11:12 PM
1005336-005A	05/11/10	05/14/10	05/14/10 11:55 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery. The LCS and LCSD are spikes into a clean, known, similar matrix and they and the surrogate standards reflect the overall validity of their extraction batch. Our control limits are 70-130% recovery and a 30% RPD for the LCS-LCSD and for the Surrogate Standards.

QC SUMMARY REPORT FOR SW8015B

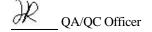
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 50648 WorkOrder 1005336

EPA Method SW8015B	Extraction SW3510C				Spiked Sample ID: N/A							
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Analyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	90.7	88.4	2.54	N/A	N/A	70 - 130	30
%SS:	N/A	625	N/A	N/A	N/A	102	100	2.39	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 50648 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1005336-001B	05/13/10	05/13/10	05/16/10 12:22 PM	1005336-002B	05/13/10	05/13/10	05/16/10 1:30 PM
1005336-003B	05/13/10	05/13/10	05/14/10 9:59 PM	1005336-004B	05/11/10	05/13/10	05/14/10 11:07 PM
1005336-005B	05/11/10	05/13/10	05/17/10 10:16 PM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Stellar Environmental Solutions	Client Project ID: #2010-06; R&H Auto	Date Sampled: 08/11/10
2198 Sixth St. #201		Date Received: 08/11/10
2190 SIKM St. #201	Client Contact: Steve Bittman	Date Reported: 08/18/10
Berkeley, CA 94710	Client P.O.:	Date Completed: 08/18/10

WorkOrder: 1008331

August 18, 2010

1	Dear	C	tρι	<i>τ</i> ρ•
ı	ijeai		LCI	/ C.

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: #2010-06; R&H Auto,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

Chain of Custody Record Lab job no. ____ Mc Compbell AnalyTical Method of Shipment Courrier 534 Willow Pass And Shipment No. Pittsburg, CA 94565 877-252-9262 Analysis Required GoolorNo. Stellar Environmental Project Owner _ Project Manager Steve Bittman 5315 San Pablo Ave Site Address _ Telephone No. 5-10. 644-3123 Oakland RaH Auto Remarks Project Name ___ 2010-06 Project Number ___ Samplers: (Signature) Field Sample Number Type/Size of Container Date Type Depth Chemical 40 ml VOA 3 40 ml VOA HCL HCL GOOD CONDITION APPROPRIATE
HEAD SPACE ABSENT CONTAINERS
DECHLORINATED IN LAB PRESERVED IN LAB O&G | METALS | OTHER PRESERVATION Relinquished by Date Relinquished by: Received by: Signature . Sbittman & stellar-environmental, com

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Prepared by: Samantha Arbuckle

WorkOrder: 1008331 ClientCode: SESB WaterTrax WriteOn ✓ EDF Excel Fax ✓ Email HardCopy ThirdParty J-flag Report to: Bill to: Requested TAT: 5 days Steve Bittman Email: sbittman@stellar-environmental.com.inter Accounts Payable Stellar Environmental Solutions Stellar Enviormental Solutions cc: Date Received: 08/11/2010 PO: 2198 Sixth St. #201 2198 Sixth St. #201 Berkeley, CA 94710 ProjectNo: #2010-06; R&H Auto Berkeley, CA 94710 Date Printed: 08/13/2010 (510) 612-8751 FAX (510) 644-3859 Requested Tests (See legend below) Lab ID **Client ID** Collection Date Hold 2 3 5 6 9 10 12 Matrix 1 11 1008331-001 MW-1 Water 8/11/2010 Α В MW-2 8/11/2010 Α В 1008331-002 Water В 1008331-003 MW-3 Water 8/11/2010

Test Legend:

1	GAS8260_W	2 PREDF REPORT	3 TPH(D)_W	4	5	
6		7	8	9	10	
11		12				

The following SampIDs: 001A, 002A, 003A contain testgroup.

Comments:

Stellar Environmental Solutions

Client Name:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

8/11/2010 6:56:58 PM

Date and Time Received:

Sample Receipt Checklist

Project Name:	#2010-06; R&H Au	uto				Check	klist comp	leted and reviewed by:	Samantha Arbuckle
WorkOrder N°:	1008331	Matrix	<u>Water</u>			Carrie	er: <u>Rob</u>	Pringle (MAI Courier)	
			<u>Chain</u>	of Cu	stody (C	OC) Informa	ation		
Chain of custody	present?			Yes	V	No 🗆			
Chain of custody	signed when relinquis	shed and	d received?	Yes	V	No 🗆			
Chain of custody	agrees with sample la	abels?		Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?			Yes	V	No 🗆			
Date and Time of	collection noted by Clie	ent on Co	OC?	Yes	✓	No \square			
Sampler's name n	noted on COC?			Yes	✓	No 🗆			
			Sa	mple	Receipt	Information	<u>n</u>		
Custody seals into	act on shipping contai	ner/coole		Yes		No 🗆	_	NA 🔽	
Shipping containe	er/cooler in good condi	tion?		Yes	V	No 🗆			
Samples in prope	er containers/bottles?			Yes	✓	No 🗆			
Sample container	rs intact?			Yes	✓	No 🗆			
Sufficient sample	volume for indicated t	est?		Yes	✓	No 🗌			
		<u>Saı</u>	mple Preser	vatior	n and Ho	old Time (HT	') Informa	ation	
All samples receiv	ved within holding time	e?		Yes	✓	No 🗌			
Container/Temp B	Blank temperature			Coole	r Temp:	2.8°C		NA \square	
Water - VOA vials	s have zero headspac	e / no bu	ubbles?	Yes	✓	No \square	No VOA	vials submitted \Box	
Sample labels ch	ecked for correct pres	ervation	?	Yes	✓	No 🗌			
Metal - pH accept	table upon receipt (pH	<2)?		Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?			Yes	✓	No 🗆			
			(Ice Type	: WE	TICE)			
* NOTE: If the "N	lo" box is checked, se	e comm	ents below.						
=====	======		====				===	======	======
Client contacted:			Date contacte	ed:				Contacted by:	
Comments:									

Stellar Environmental Solutions	Client Project ID: #2010-06; R&H Auto	Date Sampled: 08/11/10			
2198 Sixth St. #201		Date Received: 08/11/10			
	Client Contact: Steve Bittman	Date Extracted: 08/12/10			
Berkeley, CA 94710	Client P.O.:	Date Analyzed 08/12/10			

TPH(g) by Purge & Trap and GC/MS*

Extraction method SW5030B Analytical methods SW8260B Work Order: 1008331

saturation memor 5 **	3030B	7 Hitary tree	ar methods 5 W 0200B	***	ork Order.	1000331
Lab ID	Client ID	Matrix	TPH(g)	DF	% SS	Comments
001A	MW-1	W	ND	1	100	
002A	MW-2	W	ND	1	100	
003A	MW-3	W	ND	1	100	
Repor	ting Limit for DF =1:	w	50		па/І	

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

When Guanty Counts	Telephone. 677 252 7262 Tux. 725 252 7267			
Stellar Environmental Solutions	Client Project ID:	#2010-06; R&H Auto	Date Sampled:	08/11/10
2198 Sixth St. #201			Date Received:	08/11/10
	Client Contact: St	teve Bittman	Date Extracted:	08/12/10-08/13/10
Berkeley, CA 94710	Client P.O.:		Date Analyzed:	08/12/10-08/13/10

Oxygenates, MBTEX & Lead Scavengers by GC/MS*

Extraction Method: SW5030B	Anal	Work Order:	Work Order: 1008331		
Lab ID	1008331-001A	1008331-002A	1008331-003A		
Client ID	MW-1	MW-2	MW-3	Reporting	
Matrix	W	W	W		_1
DF	1	1	1	S	W
Compound		Conce	entration	ug/kg	μg/L
tert-Amyl methyl ether (TAME)	ND	ND	ND	NA	0.5
Benzene	ND	ND	ND	NA	0.5
t-Butyl alcohol (TBA)	ND	ND	ND	NA	2.0
1,2-Dibromoethane (EDB)	ND	ND	ND	NA	0.5
1,2-Dichloroethane (1,2-DCA)	ND	ND	ND	NA	0.5
Diisopropyl ether (DIPE)	ND	2.1	ND	NA	0.5
Ethylbenzene	ND	ND	ND	NA	0.5
Ethyl tert-butyl ether (ETBE)	ND	ND	ND	NA	0.5
Methyl-t-butyl ether (MTBE)	ND	ND	ND	NA	0.5
Toluene	ND	ND	ND	NA	0.5
Xylenes	ND	ND	ND	NA	0.5
	Surr	ogate Recoveries	s (%)		-
%SS1:	108	114	110		
%SS2:	94	92	95		
Comments					

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/\text{wipe}$.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

Stellar Environmental Solutions	Client Project ID: #2010-06; R&H Auto	Date Sampled: 08/11/10
2198 Sixth St. #201		Date Received: 08/11/10
	Client Contact: Steve Bittman	Date Extracted: 08/11/10
Berkeley, CA 94710	Client P.O.:	Date Analyzed 08/15/10-08/17/10

Total Extractable Petroleum Hydrocarbons*

Extraction method SW3510C Analytical methods: SW8015B Work Order: 1008331


Extraction method 5 w.	5510C	7 than	ytical filetilous. Sw6013D		Work Older. 100855	
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	DF	% SS	Comments
1008331-001B	MW-1	W	ND	1	81	
1008331-002B	MW-2	W	ND	1	101	
1008331-003B	MW-3	W	ND	1	81	
	g Limit for DF =1;	W	50		μg	/L
ND means not detected at or above the reporting limit		S	NA		N	A

* water samples are reported in ug/L	, wipe samples in µg/wipe,	, soil/solid/sludge	samples in mg/kg	, product/oil/ne	on-aqueous I1qu	id samples	ın mg/L
and all DISTLC / STLC / SPLP / TO	CLP extracts are reported	in μg/L.					

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

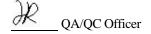
[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 52488 WorkOrder 1008331

EPA Method SW8260B	Extrac	ction SW	5030B					S	Spiked Sar	nple ID	: 1008394-0	001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			1
7 tildiy to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	82.4	87.1	5.58	89.8	90.5	0.859	70 - 130	30	70 - 130	30
Benzene	ND	10	103	104	1.27	101	102	1.21	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	72.7	79.2	8.58	74.2	77	3.76	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	99.2	100	0.714	98.3	99.8	1.54	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	83	87.8	5.62	92.8	97.3	4.67	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	95.1	99.1	4.09	94.3	98	3.80	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	97.3	98.4	1.08	125	130	3.43	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	110	114	3.23	104	108	3.43	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	96.3	99.6	3.35	100	103	2.87	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	91.3	96.3	5.30	108	111	3.23	70 - 130	30	70 - 130	30
Toluene	ND	10	99.7	99	0.646	92.4	94.4	2.17	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	103	103	0	111	112	1.17	70 - 130	30	70 - 130	30
%SS1:	116	25	104	106	2.04	106	107	1.39	70 - 130	30	70 - 130	30
% SS2:	94	25	106	106	0	93	93	0	70 - 130	30	70 - 130	30
% SS3:	82	2.5	82	80	2.07	80	83	3.79	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE


BATCH 52488 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1008331-001A	08/11/10	08/12/10	08/12/10 9:03 PM	1008331-002A	08/11/10	08/12/10	08/12/10 9:49 PM
1008331-003A	08/11/10	08/12/10	08/12/10 10:31 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery. The LCS and LCSD are spikes into a clean, known, similar matrix and they and the surrogate standards reflect the overall validity of their extraction batch. Our control limits are 70-130% recovery and a 30% RPD for the LCS-LCSD and for the Surrogate Standards.

QC SUMMARY REPORT FOR SW8015B

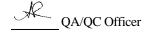
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 52437 WorkOrder 1008331

EPA Method SW8015B Extraction SW3510C								Spiked Sample ID: N/A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)			
7 mary to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	94.5	96.6	2.15	N/A	N/A	70 - 130	30		
%SS:	N/A	625	N/A	N/A	N/A	85	85	0	N/A	N/A	70 - 130	30		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 52437 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1008331-001B	08/11/10	08/11/10	08/15/10 8:26 AM	1008331-002B	08/11/10	08/11/10	08/17/10 9:05 PM
1008331-003B	08/11/10	08/11/10	08/15/10 4:00 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Stellar Environmental Solutions	Client Project ID: #2010-06; R & H Auto	Date Sampled: 11/17/10
2198 Sixth St. #201		Date Received: 11/17/10
2190 SIKM St. #201	Client Contact: Steve Bittman	Date Reported: 11/24/10
Berkeley, CA 94710	Client P.O.:	Date Completed: 11/24/10

WorkOrder: 1011518

November 24, 2010

1	Dear	Steve:	•

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: #2010-06; R & H Auto,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

MW-1 11-17-16 W 40ml von y MW-1 / W Amber L Y MW-2 / W Amber L Y	ation themical to the total to	2	Analysis R	Pa	ale of .
Project Owner Site Address 5315 San Pablo Ave Project Manager S. B. H. M. Oakland OF Project Name Project Number Project Number Field Sample Number Field Sample Number NW-1 NW-1 NW-1 NW-1 NW-2 NW-2 NW-3 Airbill No. Cooler No. Project Manager S. B. H. M. Telephone No. 510. 614-31 Fax No. Samplers: (Signature) Present Cooler NW-1 NW-1 NW-1 NW-1 NW-1 NW-1 NW-2 NW-1 NW-2 NW-2 NW-3 NW-1 NW-3 NW-1 NW-3 NW-1 NW-3 NW-1	ation themical to the total to		Analysis R	equired	Remarks
Project Owner Site Address 5315 San Pablo Ave Telephone No. 510.644-31 Project Name Project Name Project Manager S. B. H. M. Project Name Project Number Sample Samplers: (Signature) Samplers: (Signature) Samplers: (Signature) Present Type Type/Size of Container Cooker MW-1 11-17-10 W 40 M 40A Y MW-2 W 40 M 40A Y MW-2 W 40 M 40A Y MW-2 W 40 M 40A Y MW-3 W 40 M 40A Y M	ation shemical to the total to				Remarks
Site Address 5315 Saw Pable Ave Project Manager J. B.77 Mar. Project Name Project Number Project Mar. Field Sample Number Project Manager J. B.77 Mar. Fax No. Samplers: (Signature) Project Manager J. B.77 Mar. Fax No. Samplers: (Signature) Project Manager J. B.77 Mar. Project Manager J. B.77 Mar. Fax No. Samplers: (Signature) Project Manager J. B.77 Mar. Project Manager J. B.77 Mar. Fax No. Samplers: (Signature) Project Manager J. B.77 Mar. Project Manager J. B.77 Mar. Fax No. Samplers: (Signature) Project Manager J. B.77 Mar. Project Manager J. B.77 Mar. Fax No. Samplers: (Signature) Project Manager J. B.77 Mar. Project Manager J. B.77 Mar. Fax No. Samplers: (Signature) Project Manager J. B.77 Mar. Project Manager J. B.77 Mar. Fax No. Samplers: (Signature) Project Manager J. B.77 Mar. Project Manager J. B.77 Mar. Fax No. Samplers: (Signature) Project Manager J. B.77 Mar. Project Manager J. B.77 Mar. Fax No. Samplers: (Signature) Project Manager J. B.77 Mar. Project Manager J. B.77 Mar. Fax No. Samplers: (Signature) Project Manager J. B.77 Mar. Project Manager J. B.77 Mar. Fax No. Samplers: (Signature) Project Mar. Project Manager J. B.77 Mar. Project Manager J. B.77 Mar. Fax No. Samplers: (Signature) Project Mar. Project Manager J. B.77 Mar. Project Manager J. B.77 Mar. Fax No. Samplers: (Signature) Project Mar. Project Manager J. B.77 Mar. Project Manager J. B.77 Mar. Project Manager J. B.77 Mar. Fax No. Samplers: (Signature) Project Mar. Project Manager J. B.77 Mar. Projec	ation shemical to the total to				Remarks
Project Name Project Number 2010 - OG Sample Type Size of Container Cooler MW-1 11-17-16 W 40 m VOA Y MW-2 W Amber L Y MW-3 W 40 m VOA Y t	ation ation themical to the total to				Remarks
Project Number 2010-06 Samplers: (Signature) SZZ Field Sample Number Cooker NW-1 11-17-16 W 40 M 40A 34 NW-1 W 40 M 40A 4 NW-2 W 40 M 40A 4 NW-3 W 40 M 40A 4	ation ation ation themical to the total to				Remarks
Field Sample Number Date Time Sample Type Type/Size of Container Cooker AMU-1 11-17-16 W 40 M UDA Y WOM-2 W 40 M UDA Y WOM-3 W 40 M UDA Y WOM-3	themical X				
Field Sample Number Date Time Sample Type/Size of Container Cooler MW-1 MW-1 MW-2 W Amber L W Yom VOA Y W YOM VO	themical X				
MW-1 W Amber L Y MW-2 W 40 ml voa Y MW-3 W 40 ml voa Y W 40 ml voa Y	1 X +U 2 X 0 1 X				
MW-1 / W Amber L Y NW-2 / W 40 ml voa Y NW-3 / W 40 ml voa Y t	0 1 X +cl 2 X 0 1 X				
MW-2 W 40 ml voa y MW-3 W 40 ml voa y t	+U 2 X 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1				
	0 1 X				
	-cl 2x				é.
7VW 33 W AMBER L Y	('V'				
	D I X				
)			
	olinquished by:	Date	Received by:	010 16	00
D 1 1/17/10	Signature /	1/1/4	Signature. 🗾	The You	1/0/11/11
Printed SPUR BITIMON Time Printed CONTINGRET Time	Printed Sold right	Time	Printed	Melicia	Valley-
St C Did / Cantrolle 21		100		MAI	1
Company Company Company Company	Company	10	Company	14411	
Turnaround Time: 100 Was 5	Signature	Date	Received by: Signature		
Comments:	20000		N. C.		
E140560	Printed	- Time	Printed		
OOD CONDITION APPROPRIATE EAD SPACE ABSENT CONTAINERS	Сотралу		Company		
ECHLORINATED IN LAB PRESERVED IN LAB VOAS 10 & G METALS OTHER					

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Prepared by: Melissa Valles

Report to: Steve Bittman Email: sbittman@stellar-environmental.com,inter Stellar Environmental Solutions CC: Stellar Environmental Solutions CC: Stellar Environmental Solutions CC: Stellar Environmental Solutions 2198 Sixth St. #201 Date Received: 11/17/2010 Berkeley, CA 94710 Date Printed: 11/17/2010 Date Printed: 11/17/20		rg, CA 94565-1701 52-9262	☐ WaterTrax	☐ WriteOn	n EDF		Work(10115		✓ Email		Code: S		Thir	rdParty	J-1	flag
Steve Bittman	Report to:							Bill to:						Rea	uested	TAT:	5 c	davs
Lab ID Client ID Matrix Collection Date Hold 1 2 3 4 5 6 7 8 9 10 11 12 1011518-001	Steve Bittma Stellar Envi 2198 Sixth S Berkeley, C.	ronmental Solutions St. #201 A 94710	cc: PO: ProjectNo: #2			al.com		Ac Ste 21	ellar Env 98 Sixth	viorme St. #2	ntal Sol 201	lutions		Dat	e Rece	ived:	11/17/2	2010
Lab ID Client ID Matrix Collection Date Hold 1 2 3 4 5 6 7 8 9 10 11 12 1011518-001										Req	uested	Tests	(See le	gend b	elow)			
1011518-002 MW-2 Water 11/17/2010 A B 1011518-003 MW-3 Water 11/17/2010 A B I011518-003 MW-3 Water 11/17/201	Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	_						10	11	12
1011518-003 MW-3 Water 11/17/2010 A B	1011518-001	MW-1		Water	11/17/2010		Α	В										
Test Legend:	1011518-002	MW-2		Water	11/17/2010		Α	В										
	1011518-003	MW-3		Water	11/17/2010		Α	В										
1 GAS8260_W 2 TPH(D)_W 3 4 5	Test Legend:													-				
	1 GAS	3260_W 2	TPH(D)_	W	3				4						5			

The following SampIDs: 001A, 002A, 003A contain testgroup.

Comments:

Sample Receipt Checklist

Client Name:	Stellar Environmental	Solutions			Date	e and T	Γime Received:	11/17/2010	4:28:46 PM
Project Name:	#2010-06; R & H Auto				Che	ecklist o	completed and r	eviewed by:	Melissa Valles
WorkOrder N°:	1011518 Matrix	<u>Water</u>			Car	rier:	Rob Pringle (M	IAI Courier)	
		Chain	of Cu	stody (C	OC) Infor	matior	<u>1</u>		
Chain of custody	present?		Yes	V	No 🗆]			
Chain of custody	signed when relinquished a	nd received?	Yes	V	No 🗆]			
Chain of custody	agrees with sample labels?		Yes	✓	No 🗆]			
Sample IDs noted	by Client on COC?		Yes	V	No 🗆]			
Date and Time of	collection noted by Client on	COC?	Yes	~	No 🗆]			
Sampler's name r	noted on COC?		Yes	✓	No 🗆]			
		<u>Sa</u>	mple	Receipt	Informati	<u>on</u>			
Custody seals in	tact on shipping container/co	oler?	Yes		No 🗆]		NA 🗹	
Shipping containe	er/cooler in good condition?		Yes	V	No 🗆]			
Samples in prope	er containers/bottles?		Yes	V	No 🗆]			
Sample containe	rs intact?		Yes	✓	No 🗆]			
Sufficient sample	e volume for indicated test?		Yes	✓	No 🗆]			
	<u>s</u>	ample Preser	vatior	n and Ho	old Time (F	HT) Inf	ormation		
All samples recei	ved within holding time?		Yes	✓	No 🗆]			
Container/Temp B	Blank temperature		Coole	er Temp:	5.6°C			NA \square	
Water - VOA vial	ls have zero headspace / no	bubbles?	Yes		No 🗆	No	VOA vials subm	itted 🗹	
Sample labels ch	necked for correct preservation	on?	Yes	✓	No 🗌]			
Metal - pH accep	table upon receipt (pH<2)?		Yes		No 🗆]		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No]			
		(Ice Type	: WE	TICE)				
* NOTE: If the "N	lo" box is checked, see com	ments below.							
	=======			===:					======
Client contacted:		Date contacte	ed:				Contacted	by:	
Comments:									

		VII. 444 7444 1 444 744 744 744 744 744 744
Stellar Environmental Solutions	Client Project ID: #2010-06; R & H Auto	Date Sampled: 11/17/10
2198 Sixth St. #201		Date Received: 11/17/10
	Client Contact: Steve Bittman	Date Extracted: 11/19/10
Berkeley, CA 94710	Client P.O.:	Date Analyzed 11/19/10

TPH(g) by Purge & Trap and GC/MS*

Extraction method SW5030B Analytical methods SW8260B Work Order: 1011518

Extraction method 3 w 30	730B	Anarytical iliculo	ds 5 W 6200D	***	WOIR Older.		
Lab ID	Client ID	Matrix	TPH(g)	DF	% SS	Comments	
001A	MW-1	w	ND	1	105		
002A	MW-2	W	ND	1	105		
003A	MW-3	W	ND	1	103		
Domontio	as Limit for DE -1.	W.	50		/т		

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

When Quanty Counts		Telephone. 677-252-7202 Tax. 725-252-7207				
Stellar Environmental Solutions	Client Project ID:	#2010-06; R & H Auto	Date Sampled:	11/17/10		
2198 Sixth St. #201			Date Received:	11/17/10		
	Client Contact: St	teve Bittman	Date Extracted:	11/19/10		
Berkeley, CA 94710	Client P.O.:		Date Analyzed:	11/19/10		
Oxygenates, MBTEX & Lead Scavengers by GC/MS*						

	Analytical Method: SW8260B				
1011518-001A	1011518-002A	1011518-003A			
MW-1	MW-2	MW-3		Reporting Limit for DF =1	
W	W	W			
1	1	1	S	W	
	ug/kg	μg/L			
ND	ND	ND	NA	0.5	
ND	ND	ND	NA	0.5	
ND	ND	ND	NA	2.0	
ND	2.1	ND	NA	0.5	
ND	ND	ND	NA	0.5	
ND	ND	ND	NA	0.5	
ND	ND	ND	NA	0.5	
ND	ND	ND	NA	0.5	
ND	ND	ND	NA	0.5	
Surre	ogate Recoveries	s (%)			
109	107	106			
97	98	97			
	MW-1 W 1 ND ND ND ND ND ND ND ND ND	MW-1 MW-2 W W 1 1 Conce ND ND Surrogate Recoveries 109 107	MW-1 MW-2 MW-3 W W W 1 1 1 Concentration ND ND ND Surrogate Recoveries (%) 109 107 106	MW-1 MW-2 MW-3 Reporting DF W W W W 1 1 1 S Concentration ug/kg ND ND NA ND ND ND <	

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

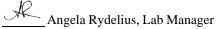
%SS = Percent Recovery of Surrogate Standard

extracts are reported in mg/L, wipe samples in µg/wipe.

DF = Dilution Factor

Stellar Environmental Solutions	Client Project ID: #2010-06; R & H Auto	Date Sampled: 11/17/10
2198 Sixth St. #201		Date Received: 11/17/10
	Client Contact: Steve Bittman	Date Extracted: 11/17/10
Berkeley, CA 94710	Client P.O.:	Date Analyzed 11/21/10-11/23/10

Total Extractable Petroleum Hydrocarbons*


Extraction method SW3510C Analytical methods: SW8015B Work Order: 1011518

Extraction method SW3	3510C	Analytica	methods: SW8015B		Work Order: 1011518			
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	DF	% SS	Comments		
1011518-001B	MW-1	W	ND	1	114			
1011518-002B	MW-2	w	ND	1	118			
1011518-003B	MW-3	W	ND	1	98			
	Limit for DF =1;	W	50		μg	/L		
ND means not detected at or above the reporting limit		S						

^{*} water samples are reported in ug/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

QC Matrix: Water BatchID: 54457 WorkOrder 1011518 W.O. Sample Matrix: Water

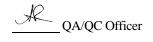
EPA Method SW8260B	Extra	ction SW	5030B		Spiked Sample ID: 1011451-001A							
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	Acceptance Criteria (%)		
.,,	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	92.5	91.5	1.13	82.3	83.3	1.22	70 - 130	30	70 - 130	30
Benzene	ND	10	104	103	0.379	109	112	2.21	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	101	103	1.82	74.5	74.9	0.516	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	103	102	0.868	90	92.5	2.82	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	11	10	99.5	101	0.559	97.8	97.4	0.354	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	2.2	10	104	105	0.570	107	109	1.91	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	102	100	1.21	98.2	99.3	1.12	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	118	117	0.851	106	107	0.776	70 - 130	30	70 - 130	30
Toluene	ND	10	109	108	0.376	106	108	1.94	70 - 130	30	70 - 130	30
%SS1:	109	25	93	94	0.332	104	105	0.461	70 - 130	30	70 - 130	30
%SS2:	95	25	100	100	0	102	103	0.795	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 54457 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1011518-001A	11/17/10	11/19/10	11/19/10 1:23 AM	1011518-002A	11/17/10	11/19/10	11/19/10 2:05 AM
1011518-003A	11/17/10	11/19/10	11/19/10 2:46 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8015B

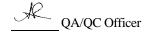
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 54525 WorkOrder 1011518

EPA Method SW8015B	3510C	Spiked Sample ID: N/A										
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	116	116	0	N/A	N/A	70 - 130	30
%SS:	N/A	625	N/A	N/A	N/A	117	117	0	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 54525 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1011518-001B	11/17/10	11/17/10	11/21/10 7:25 PM	1011518-002B	11/17/10	11/17/10	11/21/10 3:52 PM
1011518-003B	11/17/10	11/17/10	11/23/10 7:12 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

McCampbell Analytical,	Inc.
"Wil O1it Ct-"	

Stellar Environmental Solutions	Client Project ID: #2010-06; R&H Auto Repair	Date Sampled: 02/11/11
2198 Sixth St. #201		Date Received: 02/14/11
2170 SIKM St. #201	Client Contact: Steve Bittman	Date Reported: 02/17/11
Berkeley, CA 94710	Client P.O.:	Date Completed: 02/17/11

WorkOrder: 1102396

February 17, 2011

Dear.	Steve:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: #2010-06; R&H Auto Repair,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

1162396 **Chain of Custody Record** Lab job no. Address Pittsburs, CA 94565 Method of Shipment Courrier Shipment No. _ Analysis Required Airbill No. . Cooler No. _ Project Owner Bittman Project Manager _____ 53/5 San Pablo Ave Telephone No. 510 644-3112 Oakland Of RAH Auto Repair Remarks Project Name _ Fax No. __ Project Number 2010 - 06 Samplers: (Signature) St. B. Huar Type/Size of Container Field Sample Number Date Chemical HCL MW-40 ml VOA MW-Amber L 40 m/ VOA HCL Amber 1 ZX HCL 40 ml VOA Amber Received by: Signature _ 1000 Date Received by Signature Time APPROPRIATE GOOD CONDITION Company _ COMPONTAINERS. PRESERVED IN LAB DECHLORINATED IN LAB VOAS | O & G | METALS | OTHER PRESERVATION

McCampbell Analytical, Inc.

1534 Willow Pass Rd (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 WorkOrder: 1102396 ClientCode: SESB WaterTrax WriteOn EDF Excel Fax ✓ Email HardCopy ThirdParty J-flag Bill to: Report to: Requested TAT: 5 days Steve Bittman Email: sbittman@stellar-environmental.com.inter Accounts Payable Stellar Environmental Solutions Stellar Enviormental Solutions cc: Date Received: 02/14/2011 PO: 2198 Sixth St. #201 2198 Sixth St. #201 Berkeley, CA 94710 ProjectNo: #2010-06; R&H Auto Repair Berkeley, CA 94710 Date Printed: 02/14/2011 (510) 612-8751 FAX (510) 644-3859 Requested Tests (See legend below) Lab ID **Client ID** Collection Date Hold 2 3 5 6 9 10 12 Matrix 1 11 1102396-001 MW-1 Water 2/11/2011 В В 1102396-002 MW-2 2/11/2011 Α Water 1102396-003 MW-3 Water 2/11/2011 В Test Legend: 5 2 GAS8260_W TPH(D)_W 3 7 6 8 10 11 12

Comments:

The following SampIDs: 001A, 002A, 003A contain testgroup.

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Ana Venegas

Sample Receipt Checklist

Client Name:	Stellar Environmental S	Solutions			Date a	and Time Received:	2/14/2011	4:54:59 PM
Project Name:	#2010-06; R&H Auto Re	pair			Check	dist completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	1102396 Matrix	<u>Water</u>			Carrie	er: Rob Pringle (M	IAI Courier)	
		<u>Chain o</u>	f Cu	stody (C	OC) Informa	ation		
Chain of custody	y present?	•	Yes	V	No 🗆			
Chain of custody	y signed when relinquished ar	nd received?	Yes	V	No 🗆			
Chain of custody	y agrees with sample labels?	•	Yes	✓	No 🗌			
Sample IDs noted	d by Client on COC?	•	Yes	V	No 🗆			
Date and Time o	f collection noted by Client on C	COC?	Yes	~	No 🗆			
Sampler's name	noted on COC?	`	Yes	✓	No 🗆			
		San	nple	Receipt	Information	<u>l</u>		
Custody seals in	ntact on shipping container/coo	oler?	Yes		No 🗆		NA 🔽	
Shipping contain	ner/cooler in good condition?	•	Yes	V	No 🗆			
Samples in prop	er containers/bottles?	•	Yes	~	No 🗆			
Sample containe	ers intact?	•	Yes	✓	No 🗆			
Sufficient sample	e volume for indicated test?	`	Yes	✓	No 🗌			
	<u>S</u> :	ample Preserva	atior	and Ho	old Time (HT) Information		
All samples rece	vived within holding time?	•	Yes	✓	No 🗌			
Container/Temp	Blank temperature	(Coole	r Temp:	3.6°C		NA \square	
Water - VOA via	als have zero headspace / no	bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted	
Sample labels cl	hecked for correct preservation	n?	Yes	~	No 🗌			
Metal - pH accep	otable upon receipt (pH<2)?	•	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	V	No 🗆			
		(Ice Type:	WE	TICE)			
* NOTE: If the "I	No" box is checked, see com	ments below.						
	=======		==	:				
Client contacted:	:	Date contacted	d:			Contacted	by:	
Comments:								

when Quality Counts		Telephone. 8	11-232-9202 Fax. 92	3-232-9209	
Stellar Environmental Solutions		#2010-06; R&H Auto	Date Sampled:	02/11/11	
2198 Sixth St. #201	Repair		Date Received:	02/14/11	
2170 SIAII St. #201	Client Contact: St	teve Bittman	Date Extracted:	02/15/11	
Berkeley, CA 94710	Client P.O.:		Date Analyzed:	02/15/11	
Oxyge	nated Volatile Orga	nics & BTEX by GC/M	S*		
Extraction Method: SW5030B	Analytical Method	1. SW8260B		Work Order	1102396

	Oxygenated Vol	atile Organics &	BTEX by GC/MS	S*	
Extraction Method: SW5030B	Anal	lytical Method: SW826	0B	Work Order:	1102396
Lab ID	1102396-001A	1102396-002A	1102396-003A		
Client ID	MW-1	MW-2	MW-3		g Limit for
Matrix	W	W	W	Di	r =1
DF	1	1	1	S	W
Compound		entration	ug/kg	μg/L	
tert-Amyl methyl ether (TAME)	ND	ND	ND	NA	0.5
Benzene	ND	ND	ND	NA	0.5
t-Butyl alcohol (TBA)	ND	ND	ND	NA	2.0
Diisopropyl ether (DIPE)	ND	1.8	ND	NA	0.5
Ethylbenzene	ND	ND	ND	NA	0.5
Ethyl tert-butyl ether (ETBE)	ND	ND	ND	NA	0.5
Methyl-t-butyl ether (MTBE)	ND	ND	ND	NA	0.5
Toluene	ND	ND	ND	NA	0.5
Xylenes	ND	ND	ND	NA	0.5
	Surr	ogate Recoveries	s (%)		
%SS1:	91	90	88		
%SS2:	102	102	102		
Comments					

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	"When Ouality Counts"	Telephone: 877-252-9262 Fax: 925-252-9269						
Stellar Environmental Solutions			•	#2010-06; R&H Auto	Date Sample	ed: 02	/11/11	
2198 Sixth St. #201		Rep	yan .	Date Received: 02/14/11				
		Cli	ent Contact: St	eve Bittman	Date Extracted: 02/15/11			
Berkeley, CA	94710	Clie	ent P.O.:		Date Analyz	ed 02	/15/11	
		TPE	I(g) by Purge &	Trap and GC/MS*				
Extraction method	SW5030B		Analytical m	nethods SW8260B		Wo	rk Order:	1102396
Lab ID	Client ID		Matrix	TPH(g)		DF	% SS	Comment
001A	MW-1		w	ND		1	107	
002A	MW-2		W	ND		1	107	
003A	MW-3		W	ND		1	107	

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

^{*} water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

Angela Rydelius, Lab Manager

Stellar Environmental Solutions	Client Project ID: #2010-06; R&H Auto	Date Sampled: 02/11/11
2198 Sixth St. #201	Repair	Date Received: 02/14/11
	Client Contact: Steve Bittman	Date Extracted: 02/14/11
Berkeley, CA 94710	Client P.O.:	Date Analyzed 02/15/11-02/16/11

Total Extractable Petroleum Hydrocarbons*

Extraction method SW3510C Analytical methods: SW8015B Work Order: 1102396

Extraction method SW	3510C	Analytica		Work Order: 1102396			
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	DF	% SS	Comments	
1102396-001B	MW-1	W	ND	1	102		
1102396-002B	MW-2	W	ND	1	105		
1102396-003B	MW-3	W	ND	1	102		
	g Limit for DF =1;	W	50		μg	/L	
ND means not detected at or above the reporting limit		S	NA		N.		

^{*} water samples are reported in ug/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in μ g/L.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

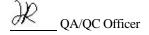
QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 56223 WorkOrder 1102396

EPA Method SW8260B Extraction SW5030B								S	Spiked Sample ID: 1102361-005B				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)		
7 mary to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND	10	86.3	87.3	1.22	88.8	90.7	2.09	70 - 130	30	70 - 130	30	
Benzene	ND	10	100	101	0.658	105	113	7.39	70 - 130	30	70 - 130	30	
t-Butyl alcohol (TBA)	ND	50	81.2	80	1.47	91.1	89.7	1.55	70 - 130	30	70 - 130	30	
Chlorobenzene	ND	10	98.6	98.8	0.221	107	115	6.65	70 - 130	30	70 - 130	30	
1,2-Dibromoethane (EDB)	ND	10	94.6	93.8	0.831	111	115	3.12	70 - 130	30	70 - 130	30	
1,2-Dichloroethane (1,2-DCA)	ND	10	102	102	0	102	105	2.45	70 - 130	30	70 - 130	30	
1,1-Dichloroethene	ND	10	119	119	0	110	119	8.13	70 - 130	30	70 - 130	30	
Diisopropyl ether (DIPE)	ND	10	109	109	0	107	112	4.32	70 - 130	30	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	10	102	102	0	101	104	3.03	70 - 130	30	70 - 130	30	
Methyl-t-butyl ether (MTBE)	ND	10	106	104	1.95	113	116	2.04	70 - 130	30	70 - 130	30	
Toluene	ND	10	98.4	98.1	0.340	102	110	7.55	70 - 130	30	70 - 130	30	
Trichloroethene	ND	10	103	102	0.734	109	117	7.06	70 - 130	30	70 - 130	30	
%SS1:	96	25	97	96	0.488	87	87	0	70 - 130	30	70 - 130	30	
%SS2:	101	25	102	101	0.933	102	102	0	70 - 130	30	70 - 130	30	
%SS3:	88	2.5	83	80	3.72	86	84	1.60	70 - 130	30	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 56223 SUMMARY


Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1102396-001A	02/11/11	02/15/11	02/15/11 8:12 PM	1102396-002A	02/11/11	02/15/11	02/15/11 8:53 PM
1102396-003A	02/11/11	02/15/11	02/15/11 9:36 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery. The LCS and LCSD are spikes into a clean, known, similar matrix and they and the surrogate standards reflect the overall validity of their extraction batch. Our control limits are 70-130% recovery and a 30% RPD for the LCS-LCSD and for the Surrogate Standards.

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 56227 WorkOrder 1102396

EPA Method SW8015B Extraction SW3510C							Spiked Sample ID: N/A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)		
, and y to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	103	103	0	N/A	N/A	70 - 130	30	
%SS:	N/A	625	N/A	N/A	N/A	102	101	0.517	N/A	N/A	70 - 130	30	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 56227 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1102396-001B	02/11/11	02/14/11	02/15/11 8:19 PM	1102396-002B	02/11/11	02/14/11	02/16/11 5:21 AM
1102396-003B	02/11/11	02/14/11	02/15/11 3:47 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A QA/QC Officer