

RECEIVED

2:38 pm, Dec 29, 2009

Alameda County Environmental Health

December 28, 2009

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

SUBJECT: Additional Environmental Site Investigation of Diesel Release from an Above Ground Storage Tank (AST) Located at the Lake Chabot Marine Maintenance Yard, 17930 Lake Chabot Road, Castro Valley, California

Dear Mr. Detterman:

Please find enclosed the subject report prepared for the East Bay Regional Park District by Kleinfelder. I declare, under penalty of perjury, that information and/or recommendations contained in the attached report is true and correct to the best of my knowledge.

If you have any comments or questions, please contact Jim Lehrman of Kleinfelder at (925) 484-1700 or the undersigned at (510) 544-2560.

Sincerely,

uppey & feb 3

Jeffrey S. LeBow Contract / Encroachment Permit Supervisor East Bay Regional Park District

cc: Mr. Jim Lehrman, Kleinfelder

Ward 2

Secretary

Ward 3

November 24, 2009 File No. 104484

Mr. Jeff LeBow East Bay Regional Park District 2950 Peralta Oaks Court Oakland, California 94605

SUBJECT: Additional Environmental Site Investigation of Diesel Release from an Above Ground Storage Tank (AST) Located at the Lake Chabot Marine Maintenance Yard, 17930 Lake Chabot Road, Castro Valley, California

Dear Mr. LeBow:

This letter report presents the results of the Additional Phase II Environmental Site Investigation (ESI) performed at the East Bay Regional Park District (EBRPD) facility located at 17930 Lake Chabot Road, in Castro Valley, California (the Site). A Site Vicinity Map (Plate 1) and a Site Plan (Plate 2) are attached. This work was performed in general accordance with the *Work Plan for Environmental Site Investigation* prepared by Kleinfelder and dated June 15, 2009, and the *Addendum to the Work Plan for Environmental Site Investigation* prepared by Kleinfelder and dated September 21, 2009, prepared in response to technical commental Health dated August 14, 2009. Deviations from the Addendum to the Work Plan are described below.

Executive Summary

Field activities included advancement of six soil borings to collect soil samples. The borings were terminated in bedrock and groundwater was not encountered. The samples were analyzed by a California state-certified analytical laboratory and results were compared to Environmental Screening Levels (ESLs) to assess the extent of previously-detected concentrations of diesel range hydrocarbons in the soil at the site.

Total petroleum hydrocarbons (TPH) in the diesel (TPHd) and motor oil (TPHmo) ranges were detected at concentrations below their ESLs in three soil samples collected from the vicinity of the former above ground storage tank (AST). TPH concentrations were below the laboratory reporting limit in the other seven soil samples collected at the Site on November 3, 2009.

Based on the analytical results, TPH concentrations detected in the vicinity of the former AST do not appear to be significant. Groundwater was not observed in the borings, and based on the soil sample analytical results and the fact that the borings were terminated in bedrock; it is unlikely that groundwater was impacted by the former AST. Therefore, Kleinfelder recommends no further action at the Site.

Purpose and Scope of Work

The work described in this report was performed at the request of Mr. Jeff LeBow of the EBRPD, in response to a letter from Alameda County Environmental Health (ACEH) dated April 2, 2009, and in accordance with *Kleinfelder's Addendum to the Work Plan for Environmental Site Investigation of a Diesel Release From an Above Ground Storage Tank (AST) Located at the Lake Chabot Maintenance Yard*, 17930 Lake Chabot Road, Castro Valley, California, dated September 21 2009. The scope of work included advancement of six soil borings on the site, collection of ten discrete soil samples, analysis of samples by a state-certified analytical laboratory, and preparation of this report.

Deviations from the Work Plan

Due to existing Site features in the work zone (including a grade change, structures, storage containers, concrete walkways, overhead power lines, and underground utilities) a limited access, track mounted Geoprobe 6600CPT drill rig was used at the Site. Using direct push methods, refusal was encountered at less than 16 feet bgs in the borings. The drill rig was equipped with four-inch diameter solid-stem augers. The rig was not equipped with hollow-stem augers and a modified California split spoon sampler. The augers were used on borings K-1, K-2, K-4, and K-6 to advance the borings to bedrock, where possible. Bedrock was encountered at depths ranging between three and ten feet below ground surface (bgs) in the borings; however, due to variations in surface elevation, bedrock appeared to be encountered at a consistent

elevation in the work zone. Groundwater was not encountered in the boreholes and therefore, groundwater samples were not collected.

Site Description and Background

The Site is located at 17930 Lake Chabot Road in Castro Valley, California, on an access road, approximately 0.7 miles from Lake Chabot Road. The site is situated near the top of a ridge and the work area is somewhat terraced. Sandstone outcrops were observed in the vicinity of the soil boring locations.

Kleinfelder understands that in 2007, the EBRPD retained Decon Environmental Services to remove and dispose of one two-thousand gallon capacity diesel AST, and associated piping at the site. The AST was connected to the various buildings at the site through underground piping. The AST removal was permitted through the Alameda County Fire Department, Bureau of Fire Prevention. Three soil samples were collected using a hand auger from depths of two to three feet below ground surface (bgs) and the samples were analyzed for total petroleum hydrocarbons (TPH) as diesel (TPHd). Sample number 1, collected from beneath the tank valves had a concentration of 570 milligrams per kilogram (mg/kg) THPd. Samples 2 and 3, were collected along the removed underground pipe runs, had concentrations of 25 mg/kg and 67 mg/kg TPHd, respectively (See Plate 2 for Decon soil sample locations). The pipe trenches were reportedly immediately backfilled following removal. A report documenting Decon's activities dated August 2, 2007, was submitted to the ACEH, the lead regulatory agency.

Field Activities

Kleinfelder performed the field portion of this investigation on November 3, 2009. Precision Sampling (Precision) of Stockton, California, a state-licensed drilling contractor (C-57 license no. 636387), advanced six soil borings under the direction of Kleinfelder. Soil samples collected during this investigation were analyzed by McCampbell Analytical, Inc. of Pittsburg, California, a state-certified chemical testing laboratory (DHS ELAP certification no. 1644).

Soil Borings

Prior to drilling, Kleinfelder obtained a drilling permit from Alameda County Public Works Agency. A copy of the drilling permit is included in Appendix A. Kleinfelder notified Underground Service Alert more than 48 hours prior to drilling, as required by law, to notify local utilities with underground facilities in the vicinity of the investigation area (USA ticket no. 0336575). Kleinfelder retained a private utility locator to clear the boring locations using geophysical methods. The soil boring locations are shown on Plate 2.

Precision provided drilling services for six boring locations using a track-mounted Geoprobe 6625CPT (direct push) drill rig employing a macro-core sampling system and capable of advancing four-inch solid-stem augers. The direct push rig advances a steel tube at five-foot intervals using a hydraulic ram and hydraulic percussion hammer. The steel tube has an outside diameter of 2 inches and contains an interchangeable acetate liner attached to a steel rod, which allows for a continuous sample through the extent of the borehole. The auger turns at approximately 60 revolutions per minute (rpm).

The six soil borings (K-1 through K-6) were advanced to depths of between three to ten feet bgs to collect soil samples, before encountering refusal. Due to variations in surface elevation, bedrock appeared to be encountered at a consistent elevation in the work zone. Soil samples were collected in acetate liners and inspected for indications of staining and/or odors. The soil borings were logged in the field using the Unified Soil Classification System. The soil boring logs are included in Appendix B.

Soil samples were collected at depths of 4 and 8 feet bgs from borings K-1, K-2, and K-3; at depths of 4 and 6 feet bgs from boring K-4, at a depth of six feet bgs from boring K-5 and at a depth of three feet bgs from boring K-6. Groundwater was not observed in soil borings K-1 through K-6. The soil samples were screened for organic vapors using a photo-ionization gas detector (PID). Staining and odors were not observed in the soil borings at the Site. A PID reading of 4.8 parts per million (ppm) was observed in soil adjacent to sample K-3-8. Soil samples were sealed on both ends with Teflon sheets and plastic end caps and transferred in a cooler chilled with water-based ice to McCampbell Analytical, Inc. under chain-of-custody protocol for analysis. Additional samples collected were submitted to the laboratory and placed on hold. Soil sampling equipment was decontaminated between sample intervals and locations.

After drilling at the Site had been completed, the boreholes were backfilled with neat cement grout and abandoned according to drilling permit requirements.

Decontamination Procedures

Non-expendable sampling equipment was decontaminated prior to each use using a laboratory-grade detergent solution followed by a two-stage rinse. New expendable equipment was used whenever possible.

Investigation-Derived Waste Management

Waste soil cuttings and decontamination rinsates generated during this investigation were placed in a DOT 17H 55-gallon steel drum and left on site.

Chemical Analysis

Soil and groundwater samples were submitted to McCampbell Analytical, Inc., for the following analyses:

- Volatile Organic Compounds (VOCs) including fuel oxygenates, using EPA Method 8260; and
- Total Petroleum Hydrocarbons as diesel (TPHd) and motor oil (TPHmo) using EPA Method 8015.

Results

The analytical results for the soil samples collected on November 3, 2009, are summarized on Table 1. The analytical report from McCampbell Analytical, Inc. is included in Appendix C.

Analytical results were compared to ESLs established by the San Francisco Bay Regional Water Quality Control Board (Water Board). For the purposes of this investigation, results were compared to ESLs for shallow soil in residential areas where groundwater is a current or potential source of drinking water. Water Board ESLs do not represent regulatory action levels for contaminants; however they provide a guideline from which to assess risk factors associated with the presence of chemicals in soil, and groundwater.

Soil

VOCs were not detected at or above laboratory reporting limits in the soil samples collected on November 3, 2009.

TPHd was detected in soil samples K-1-4, K-3-4 and K-3-8 at concentrations of 1.4 mg/kg, 55 mg/kg and 3.2 mg/kg respectively. This is below the residential land use ESL of 83 mg/kg for TPHd. TPHmo was detected in soil sample K-3-4 at a concentration of 44 mg/kg, which is below the residential land use ESL of 370 mg/kg. TPHd, and TPHmo were not detected at or above laboratory reporting limits in the remaining soil samples collected on November 3, 2009.

Conclusions and Recommendations

Based on the analytical results, TPH concentrations detected in the vicinity of the former AST do not appear to be significant. Groundwater was not observed in the borings, and based on the soil sample analytical results and the fact that the borings terminated in bedrock, it is unlikely that groundwater was impacted by the former AST. Therefore, Kleinfelder recommends no further action at the Site.

Limitations

Kleinfelder prepared this report in accordance with generally accepted standards of care that exist in the Bay Area at this time. This report may be used only by the EBRPD (Client) and only for the purposes stated, within a reasonable time from its issuance, but in no event later than one (1) year from the date of the report. All information gathered by Kleinfelder is considered confidential and will be released only upon written authorization of the Client or as required by law. Non-compliance with any of these requirements by the Client or anyone else, unless specifically agreed to in advance by Kleinfelder in writing, will release Kleinfelder from any liability resulting from the use of this report by any unauthorized party and the Client agrees to defend, indemnify, and hold harmless Kleinfelder from any claim or liability associated with such unauthorized use or non-compliance.

Kleinfelder offers various levels of investigative and engineering services to suit the varying needs of different clients. It should be recognized that definition and evaluation of geologic and environmental conditions are a difficult and inexact science. Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present due to the limitations of data from field studies. Although risk can never be eliminated, more-detailed and extensive studies yield more information, which may help understand and manage the level of risk. Since

detailed study and analysis involves greater expense, our clients participate in determining levels of service that provide adequate information for their purposes at acceptable levels of risk. More extensive studies, including subsurface studies or field tests, should be performed to reduce uncertainties. Acceptance of this report will indicate that the Client has reviewed the document and determined that it does not need or want a greater level of service than provided.

During the course of the performance of Kleinfelder's services, hazardous materials Kleinfelder assumes no responsibility or liability may have been discovered. whatsoever for any claim, loss of property value, damage, or injury that results from preexisting hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials. Nothing contained in this report should be construed or interpreted as requiring Kleinfelder to assume the status of an owner, operator, or generator, or person who arranges for disposal, transport, storage, or treatment of hazardous materials within the meaning of any governmental statute, regulation, or order. The Client is solely responsible for directing notification of all governmental agencies, and the public at large, of the existence, release, treatment, or disposal of any hazardous materials observed at the project site, either before or during performance of Kleinfelder's services. The Client is responsible for directing all arrangements to lawfully store, treat, recycle, dispose, or otherwise handle hazardous materials, including cuttings and samples resulting from Kleinfelder's services.

Regulations and professional standards applicable to Kleinfelder's services are continually evolving. Techniques are, by necessity, often new and relatively untried. Different professionals may reasonably adopt different approaches to similar problems. As such, our services are intended to provide the Client with a source of professional advice. opinions, and recommendations. Our professional opinions and recommendations are based on our limited number of field observations and tests. collected, and performed in accordance with the generally accepted engineering practice that exists at the time and may depend on, and be qualified by, information gathered previously by others and provided to Kleinfelder by the Client. Consequently, no warranty or guarantee, expressed or implied, is intended or made.

Closing Remarks

We appreciate the opportunity to work with you on this project. If you have any questions regarding this letter report, please call Jim Lehrman at (925) 484-1700 extension 4520.

Respectfully submitted, **KLEINFELDER WEST, INC.**

Jeffrey A. Gravesen, EIT Staff Engineer

JAG/JAL/jmk

James A. Lehrman, PG, CHG Senior Professional

Cc: Mark Detterman, Alameda County Environmental Health

Attachments: Table 1 – Summary of Soil Analytical Results Plate 1 – Site Vicinity Map Plate 2 – Site Plan with Soil Boring Locations Appendix A – Drilling Permit from Alameda County Public Works Agency Appendix B – Soil Boring Logs Appendix C– Laboratory Analytical Reports

104484 / (PLE9R392.doc) / jmk Copyright 2009, Kleinfelder Page 8 of 8

November 24, 2009

TABLES

TABLE 1 SUMMARY OF SOIL ANALYTICAL RESULTS LAKE CHABOT MARINE MAINTEDANCE YARD CASTRO VALLEY CALIFORNIA NOVEMBER 24, 2009

						Sample ID - Date -	Depth					RWQC	B ESLs ¹
Analyte (mg/kg)	Method	K-1-4 11/3/2009 Depth: 4 feet	K-1-8 11/3/2008 Depth: 8 feet	K-2-4 11/3/2009 Depth: 4 feet	K-2-8 11/3/2008 Depth: 8 feet	K-3-4 11/3/2009 Depth: 4 feet	K-3-8 11/3/2008 Depth: 8 feet	K-4-4 11/3/2009 Depth: 4 feet	K-4-6 11/3/2008 Depth: 6 feet	K-5-6 11/3/2009 Depth: 6 feet	K-6-3 11/3/2008 Depth: 3 feet	Residential Land Use	Commercial / Industiral Land Use
Volatile Organic Compounds	8260B												
Benzene		ND(0.005)	0.044	0.044									
Toluene		ND(0.005)	2.9	2.9									
Ethylbenzene		ND(0.005)	3.3	3.3									
Total Xylenes		ND(0.005)	2.3	2.3									
Tetrachloroethylene(PCE)		ND(0.005)	0.34	0.70									
Trichloroethylene (TCE)		ND(0.005)	0.46	0.46									
Petroleum Hydrocarbons	8015B												
TPH-Diesel		1.4	ND(1.0)	ND(1.0)	ND(1.0)	55	3.2	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	83	83
TPH-Motor Oil		ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	44	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	370	2500

Notes:

Samples were analyzed by McCampbell Analytical, Inc of Pittsburg, California, a state-certified analytical laboratory.

Laboratory data met EPA and laboratory specifications for quality assurance and quality control.

¹ California Regional Water Quality Control Board, San Francisco Bay Region. Screening For Environmental Concerns at Sites with Contaminated Soil and Groundwater, Volume 1: Summary Tier 1

Lookup Tables, Shallow Soils, Groundwater is Current or Potential Source of Drinking Water, Interim Final, November 2007.

Acronyms/Abbreviations:

mg/kg - milligrams per kilogram

TPH - Total Petroleum Hydrocarbons

ESLs - Environmental Screening Levels

RWQCB - Regional Water Quality Control Board (San Francisco Bay Region)

ND - Not detected at or above laboratory reporting limit

PLATES

Images: SITE-VIC jpg Images: SITEPLAN jpg XRef: Eng-A 8x11 P StyleA CAD FILE: L:/2009/09Projects/104484/GRAPHICs/WP/11-2009/

LAYOUT: Images: SITE-VIC.jpg Images: SITEPLAN.jpg XRef: Eng-A 8x11 P StyleA CAD FILE: L:/2009\09Projects\104484\GRAPHICs\WP\11-2009\ ATTACHED IMAGES: ATTACHED XREFS: PLEASANTON, CA

APPENDIX A

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 10/23/2009 By jamesy Permit Numbers: W2009-0971 Permits Valid from 11/03/2009 to 11/03/2009 City of Project Site:Castro Valley Application Id: 1256250661615 Site Location: East Bay Regional Parks District Lake Chabot Marine Maintenance Yard 17930 Lake Chabot Road Castro Valley, California **Project Start Date:** 11/03/2009 Completion Date: 11/03/2009 Assigned Inspector: Contact Ron Smalley at (510) 670-5407 or ronaldws@acpwa.org Kleinfelder - James Lehrman Phone: 925-484-1700 x4520 Applicant: 4670 Willow Rd, Ste. 100, Pleasanton, CA 94588 **Property Owner:** Phone: 510-544-2560 Jeff LeBow 2950 Peralta Oaks Court, Oakland, CA 94605 Client: ** same as Property Owner * Phone: 925-484-1700 x4518 Contact: Jeff Gravesen Cell: 925-580-8302

Total Due:	\$265.00
Total Amount Paid:	\$265.00
Paid By: MC	PAID IN FULL
	Total Due: Total Amount Paid: Paid By: MC

Works Requesting Permits:

Borehole(s) for Investigation-Contamination Study - 6 Boreholes Driller: Precision Sampling, Inc. - Lic #: 636387 - Method: DP

Work Total: \$265.00

Specificatio	ns				
Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2009-	10/23/2009	02/01/2010	6	2.00 in.	16.00 ft
0971					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities

Alameda County Public Works Agency - Water Resources Well Permit

or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

5. Applicant shall contact Ron Smalley for an inspection time at 510-670-5407 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

7. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX B

		1	,	UNIFIED SO	<u>DIL Ç</u>	LASS	FICATIO	N S	YS	ΤĘ	M						
MAJO	R DIVISIONS	LTR	ID	DESCRIPTION		MAJ	OR DIVISIONS	LTR		ID	DESCRIPTIC	NC					
		GW		Well-graded gravels or gravel with sar little or no fines.	nd,			ML			Inorganic silts and very fine sands, silts with slight plasticity.	rock flour or clayey					
	GRAVEL	GP	00 <u>0</u> 0 0000	Poorly-graded gravels or gravel with s little or no fines.	sand,		SILTS AND CLAXS	CL			Inorganic lean clays of low to media clays, sandy clays, silty clays.	um plasticity, grave					
	AND GRAVELLY	GM	000	Silty gravels, silty gravel with sand mix	xture.	FINE	CLAIS	OL			Organic silts and organic silt-clays	of low plasticity.					
COARSE GRAINED		GC	9	Clayey gravels, clayey gravel with san	nd mixture.	GRAINED SOILS		мн			Inorganic elastic silts, micaceous o or silty soils.	or diatomaceous					
SOILS		sw		Well-graded sands or gravelly sands, no fines.	little or		SILTS AND	СН			Inorganic fat clays (high plasticity).						
		SP		Poorly-graded sands or gravelly sands or no fines.	s, little		CLAYS	ОН			Organic clays of medium high to h	ich plasticity					
	SANDY	SM		Silty sand.													
		SC		Clayey sand.		HIGHLY O	RGANIC SOILS	Pt $\underline{I_{L}} \times \underline{I_{L}}$ Peat and other highly organic soils.									
		Geop	orobe,	Direct Push Sample				Blar	nk c	asi	ng						
		Large 1.5 in	Bore . O.D.	Discrete Soil Sample , 1.12 in. I.D.	er,			Scre	een	ed	casing						
		Modi 2.5 ir	fied C n. O.D	alifornia Sampler, ., 2 in. I.D.				Cen	nen	t gi	out						
		Calif	ornia S	Sampler, 3.0 in. dia.				Ben	toni	ite							
		Shel	by Tub	be 3.0 inch O.D.				San	d p	acł	or gravel pack						
								S	har	рC	Contact (observed)						
OVA	Organi	c Vap	or An	alyzer				 Inferred Contact (contact not observe Gradational Contract (observed) 									
PID	Total o measu	rgani red b	c vapo v a ph	ors (parts per million) oto-ionization device	9												
			,	/ / ···· ···· ····	Ň		$\underline{\nabla}$	Water level observed in boring									
FID	notal C measu	rgan red b	ic vapo y a flai	me-ionization device)		<u> </u>	S	tabi	ilize	ed water level						
NA	Not Ap	plical	ole				NFWE No free water encountered										
Notes:	Blow count the last 12	s repre	esent the of an 1	e number of blows a 140- ₁ 8 inch penetration.	pound l	hammer fa	alling 30 inche	es requ	iired	to d	drive a sampler through						
	The lines so No warrant the boring l	eparat y is pro locatio	ing strat ovided a n on the	a on the logs represent a to the continuity of soil s date of drilling only.	pproxin strata b	nate boun between b	daries only. ⁻ orings. Logs	The act repres	tual t ent t	tran he s	sition may be gradual. soil section observed at						
	References laboratory geotechnic	s to pla tests. al chai	asticity o Qualitat racteriza	f cohesive soils are based ive soil plasticity is noted ation of soils.	d on qu solely t	alitative fi to aid in st	eld observatio ratigraphic co	ons and rrelatio	d not on ar	: on nd is	quantative field or s not intended for						
					BO	RING		GEN	D			PLATE					
	KLE	EIN Bright	FEL People. Rig	DER ht Solutions.	CAS EAS	TRO VAL T BAY RE	LEY, CALIFC	RNIA RK DIS	TRI	СТ		B-(

PROJECT NO.

104484

LAKE CHABOT MARINE MAINTENANCE YARD 17930 LAKE CHABOT ROAD

-:\2009\09PROJECTS\104484\104484.GPJ

11/16/2009 11:51:58 AM

_:\2009\09PROJECTS\104484\104484.GPJ

11/16/2009 11:51:58 AM

Date Log Tota Non Eas	e Complet ged By: al Depth: th: t:	ed:	11/3/09 J. Grave 10.0 ft 37.72037 -122.095	sen 7 06			Drilling method: Direct Push/Auger Driller: Precision Sampling; Drill Rig 6625 CPT Hammer Wt: None Notes: Drilled on soil Surface Elevation Estimated feet (MSL)
Depth (feet)	Sample Number	Sample Type	Blows/Foot	Recovery (%)	OVA (ppm) PID	USCS	Description Remarks
1 -					0.1		SAND with CLAY (SP-SC) - dark brown, moist, dense, poorly graded sand
2 -					0.3		
4 -	K-3-4	\times		3'	0.4		SAND (SP) - yellowish-brown, moist, dense, poorly graded fine sand
5 —					0.2		
7 -	K-3-7 K-3-8			3'	3.4 1.6		
9 -				2'	4.8		SANDSTONE - very pale brown (7/6 10VP) dry very
10 11 -							Boring terminated at approx. 10 feet below ground surface, because of refusal. Backfilled with neat cement grout
12 -							
13 -							
15 —							
PROJ	IECT NO.	ĸ		NF1 ht Peop	ELDE le. Right Solu	ER tions.	CASTRO VALLEY, CALIFORNIA EAST BAY REGIONAL PARK DISTRICT LAKE CHABOT MARINE MAINTENANCE YARD 17930 LAKE CHABOT ROAD

L:\2009\09PROJECTS\104484\104484.GPJ

11/16/2009 11:51:58 AM

Date Logg Tota Nortl East	Complete ged By: I Depth: h:	ed:_1	1/3/09 J. Grave 3.0 ft 37.72041 122.095	esen 1 05			Drilling method: Direct Push/Auger Driller: Precision Sampling; Drill Rig 6625 CPT Hammer Wt: None Notes: Drilled on soil Surface Elevation Estimated feet (MSL)
Depth (feet)	Sample Number	Sample Type	Blows/Foot	Recovery (%)	OVA (ppm) PID	USCS	Description Remarks
					0.1		SANDY CLAY (CL) - very dark brown, moist, hard, non plastic
1 -					0.4		SAND with CLAY (SP-SC) - dark yellowish-brown, moist, firm, poorly graded fine sand
3 -					0.3		
4 -	K-4-4	X		3'	0.4 0.5 0.3		CLAY (CL) - yellowish-brown, dry, firm, non plastic
5 -	K-4-6	X		3'	0.3		
7 -				6"	0.1		Spin augers to 8 feet & direct
8 -				6"	0.4		SANDSTONE - very pale brown (7/3 10YR), dry, very dense Boring terminated at approx. 8 feet below ground surface, because of refusal.
9 -							Backfilled with neat cement grout
10							
12 -							
13 -							
14 -							
15						<u> </u>	
		ĸ		NF1 ht Peop	ELDE le. Right Solu	ER ations.	LOG OF BORING NO. K-4 Appendix CASTRO VALLEY, CALIFORNIA EAST BAY REGIONAL PARK DISTRICT B-4 LAKE CHABOT MARINE MAINTENANCE YARD 17020 LAKE CHABOT BOAD

11/16/2009 11:51:59 AM

Date Log Tota Non Eas	e Complete ged By: al Depth: th: t:	ed:	11/3/09 J. Grave 5.5 ft 37.72031 122.095	sen 10			Drilling method: Direct Push/Auger Driller: Precision Sampling; Drill Rig 6625 CPT Hammer Wt: None Notes: Drilled on soil Surface Elevation Estimated feet (MSL)
Depth (feet)	Sample Number	Sample Type	Blows/Foot	Recovery (%)	OVA (ppm) PID	USCS	Description Remarks
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	к-5-4 К-5-6			2'	0.0 0.0 0.1 0.0 0.0 0.0		Description Remarks SANDY CLAY (CL) - dark yellowish-brown, moist, firm, fine grained sand, non plastic SAND with CLAY (SP-SC) - dark yellowish-brown, moist, dense SANDSTONE - very pale brown (7/6 10YR), dry, very dense Boring terminated at approx. 6.5 feet below ground surface, because of refusal. Backfilled with neat cement grout Backfilled with neat cement grout
15 —	(-	LOG OF BORING NO. K-5 Appendix
PRO	IECT NO.		Brig.	ht Peop	ELDE le. Right Solu	tions.	CASTRO VALLEY, CALIFORNIA EAST BAY REGIONAL PARK DISTRICT LAKE CHABOT MARINE MAINTENANCE YARD 17930 LAKE CHABOT ROAD

11/16/2009 11:51:59 AM

Dat Log Tota Nor Eas	e Completi ged By: al Depth: th: tt:	ed:_1	11/3/09 J. Grave 3.5 ft 37.72050 122.095	sen) 14			Drilling method: Direct Push/Auger Driller: Precision Sampling; Drill Rig 6625 CPT Hammer Wt: None Notes: Drilled on soil Surface Elevation: Estimated feet (MSL)
Depth (feet)	Sample Number	Sample Type	Blows/Foot	Recovery (%)	OVA (ppm) PID	USCS	Description Remarks
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	K-6-3						SANDY CLAY (CL) - dark yellowish-brown, moist, firm, fine grained sand, non plastic Advance augers to approximately a feet in 30 minutes. Remove augers & sample with direct push SANDSTONE - very pale brown (7/3 10YR), dry, very dense Advance augers to approximately a feet in 30 minutes. Remove augers & sample with direct push Boring terminated at approx. 3 feet below ground surface, because of refusal. Backfilled with neat cement grout
PRO	JECT NO.	ĸ	LEII Brig	VF1 ht Peop	ELDE	ER tions.	LOG OF BORING NO. K-6 Appendix CASTRO VALLEY, CALIFORNIA EAST BAY REGIONAL PARK DISTRICT LAKE CHABOT MARINE MAINTENANCE YARD 17930 LAKE CHABOT ROAD

11/16/2009 11:51:59 AM

APPENDIX C

McCampbell An "When Ouality	nalytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
Kleinfelder, Inc.	Client Project ID: #104484	4; EBP	Date Sampled:	11/03/09					
4670 Willow Road, #100			Date Received:	11/04/09					
Pleasanton, CA 94566	Client Contact: Jim Lehrn	nan	Date Reported:	11/10/09					
	Client P.O.:		Date Completed:	11/06/09					

WorkOrder: 0911090

November 10, 2009

Dear Jim:

Enclosed within are:

- 1) The results of the **10** analyzed samples from your project: **#104484; EBP,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

KLEINF	PLDER	09110	90	8				5	N.						
PROJECT NO.	ul.	PROJECT NAME						100/	Level .	/	//	7	/	/	RECEIVING LAB:
L.P. NO.	SAMPLERS: (S	ignature/Number)		NO.	TYPE	ľ.,	/	20	<u>%</u> /	/	/	/ /	/ /	/ /	// McCampbell
(PO. NO.)	JGn	Wesen		OF.	OF	AL VBIO	13	2/0		/ ,	/ /	/	/	/	INSTRUCTIONS/REMARKS
DATE MM/DD/YY	SAMPLE I.D. TIME HH-MM-SS	SAMPLE I.D.	MATRIX	OON- TAINERS	CON- TAINERS	X	\$ 3				//	//	/	/	Std TAT
11/3/09	9:45	K-1-4	Soul	1	Tube	×	×								
1	10:00	K-1-8		1	1	X	x								
	11:15	K-2-4				x	×								
	11:35	K-2-8				×	×								
	1300	K-3-4				X	x								
	1315	K-3-7								_					Hold
	1330	K-3-8				×	×								
	1340	K-4-4				×	X								
	1400	K-4-6				X	×			_	_				
	1440	K-5-4								_					HOLD
	1455	K-5-6				×	X	_		_					
1	1515	K-6-3	V	1	1	×	X			_	_	_			
						2	_	_		_	_	_			
							_	_		_	_	-	-		
		40					_	_		_	_	-	-		
			ICE / t	8.6	-/	-	_	_		_	_	-	-	-	
	/		GOOD	ONDITION	INT_	_CO	TAINE			_	_	+-	-	-	
			DRESE	IVATION	CAS O&	GI MET	ALSI OT				-	-	-	-	
								—		-+	_	-	-	-	
Belinguisbeet ov:	(Signiture)	Date/Time Rec	eived by: (Signatur			Instruc	tions/Re	marks							Sand Besults In'
+ frey	face	11/4/09 12:37	2c 1	K		Er	nail	res	ulte	> '	10				Kleinfelder
velinquished by:	(Signiture)	Date/Time Rec	eived by 19 gnatur	e)	7/	JL	ehr	nan	OKI	ein	feld	er.	cor	n	4000 Willow Rd Suite #10
bull the	K_	11409 1330	nun	a c		Je	anu	leser	Ø		u		-		Pleasanton Ca 94588
Relinquished by	(Signature)	Date/Time Reco	sived for Laborator	y by: (Signatu	re)										Attn:
		White	- Sampler		Capa	ry - Reh	im Corv	To Shippe	r			Pink	- Lab C	Copy	Jim cent man

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252	-9262					Work	Order:	: 0911	090	(ClientC	ode: K	FP				
		WaterTrax	WriteOn	EDF	Γ	Excel	l	Fax	[🗸 Email		Hard	Сору	🗌 Thir	dParty	🗌 J-	flag
Report to:							Bill to:						Req	uested	TAT:	5 (days
Jim Lehrman Kleinfelder, In 4670 Willow F Pleasanton, C (925) 484-1700	c. Road, #100 CA 94566 FAX (925) 484-5838	Email: jl cc: PO: ProjectNo: #	ehrman@kle 104484; EBF	infelder.com			Ac Kle 46 Ple SE	counts einfelde 70 Wille easantc END HA	Payabler Inc. ow Roa on, CA 9 RDCOI	e id, #100 94566 ⊇Y)		Dat Dat	e Rece e Prin	ived: ted:	11/04/ 11/04/	2009 2009
									Req	uested	Tests	(See leg	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0911090-001	K-1-4		Soil	11/3/2009 9:45		Α	А										
0911090-002	K-1-8		Soil	11/3/2009 10:00		Α	А										
0911090-003	K-2-4		Soil	11/3/2009 11:15		Α	А										
0911090-004	K-2-8		Soil	11/3/2009 11:35		А	А										
0911090-005	K-3-4		Soil	11/3/2009 13:00		А	А										
0911090-007	K-3-8		Soil	11/3/2009 13:30		А	А										
0911090-008	K-4-4		Soil	11/3/2009 13:40		Α	А										
0911090-009	K-4-6		Soil	11/3/2009 14:00		Α	А							1		1	
0911090-011	K-5-6		Soil	11/3/2009 14:55		Α	А							1			

Test Legend:

0911090-012

1	8260B_S
6	
11	

2	TPH(DMO)_S
7	
12	

Soil

11/3/2009 15:15

K-6-3

А

А

4	
9	

ĺ	5					-
I	10					

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name: Kleinfelder, Inc.			Date a	and Time Received:	11/4/2009 1:29:22 PM					
Project Name: #104484; EBP			Check	klist completed and re-	viewed by: Maria Venegas					
WorkOrder N°: 0911090 Matrix Soil			Carrie	er: Benjamin Yslas	(MAI Courier)					
<u>Chain</u>	of Cu	stody (COC	:) Informa	ation						
Chain of custody present?	Yes	\checkmark	No 🗆							
Chain of custody signed when relinquished and received?	Yes	\checkmark	No 🗆							
Chain of custody agrees with sample labels?	Yes	\checkmark	No 🗌							
Sample IDs noted by Client on COC?	Yes	\checkmark	No 🗆							
Date and Time of collection noted by Client on COC?	Yes	✓	No 🗆							
Sampler's name noted on COC?	Yes	✓	No 🗆							
Sample Receipt Information										
Custody seals intact on shipping container/cooler?	Yes		No 🗆	1	NA 🗹					
Shipping container/cooler in good condition?	Yes	\checkmark	No 🗆							
Samples in proper containers/bottles?	Yes	✓	No 🗆							
Sample containers intact?	Yes	\checkmark	No 🗆							
Sufficient sample volume for indicated test?	Yes		No 🗌							
Sample Preser	vatior	and Hold	Time (HT	<u>) Information</u>						
All samples received within holding time?	Yes	\checkmark	No 🗌							
Container/Temp Blank temperature	Coole	r Temp: 8.	6°C	I	NA 🗆					
Water - VOA vials have zero headspace / no bubbles?	Yes		No 🗆	No VOA vials submit	ted 🗹					
Sample labels checked for correct preservation?	Yes	\checkmark	No 🗌							
Metal - pH acceptable upon receipt (pH<2)?	Yes		No 🗆	1	NA 🗹					
Samples Received on Ice?	Yes	✓	No 🗆							
(Ісе Туре	: WE	TICE)								
* NOTE: If the "No" box is checked, see comments below.										

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell An "When Ouality	nalytical, In Counts"	nc.		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, C. bell.com E-mail: mai 277-252-9262 Fax: 92	A 94565-1701 in@mccampbell.com 25-252-9269			
Kleinfelder, Inc.	Client H	Project ID	: #104	484; EBP	Date Sampled:	11/03/09			
					Date Received:	11/04/09			
4670 Willow Road, #100	Client	Contact:	lim L el	Lehrman Date Extracted: 11/04/09					
Pleasanton, CA 94566	Client F		JIII Lei		Date Analyzed	· 11/04/09			
, ,	Valatila Orașa	.0 	от			. 11/04/07			
	volatile Orgal	ncs by P		u GC/MIS (Basic 1a	arget List)*				
Extraction Method: SW5030B	W 5050B Analytical Method: SW 8260B Work Order: 091109								
Lab ID	0911090-001A								
Client ID				K-1	-4				
Matrix			D d	Soi	1	1		D C	
Compound	Concentration *	DF	Limit Limit	Compour	nd	Concentration *	DF	Limit	
Acetone	ND	1.0	0.05	tert-Amyl methyl et	ther (TAME)	ND	1.0	0.005	
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005	
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB.	A)	ND	1.0	0.05	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005	
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005	
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005	
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005	
4-Chlorotoluene	ND	1.0	0.005	Dibromochlorometh	ane	ND	1.0	0.005	
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane	(EDB)	ND	1.0	0.004	
1.2 Dichlorohangene	ND	1.0	0.005	1,2-Dichlorobenzen		ND	1.0	0.005	
Dichlorodifluoromethane	ND	1.0	0.005	1,4-Dichloroethane	2	ND	1.0	0.005	
1.2 Dichloroethane (1.2 DCA)	ND	1.0	0.003	1,1-Dichloroethane		ND	1.0	0.005	
cis-1 2-Dichloroethene	ND	1.0	0.004	trans_1 2-Dichloroe	thene	ND	1.0	0.005	
1 2-Dichloropropane	ND	1.0	0.005	1 3-Dichloropropan	e	ND	1.0	0.005	
2 2-Dichloropropane	ND	1.0	0.005	1 1-Dichloropropen	e	ND	1.0	0.005	
cis-1.3-Dichloropropene	ND	1.0	0.005	trans-1.3-Dichlorop	ropene	ND	1.0	0.005	
Dijsopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005	
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1	
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005	
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005	
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether	r (MTBE)	ND	1.0	0.005	
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentano	one (MIBK)	ND	1.0	0.005	
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.005	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005	
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz	ene	ND	1.0	0.005	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha	ne	ND	1.0	0.005	
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005	
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloroprop	ane	ND	1.0	0.005	
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylben	zene	ND	1.0	0.005	
Vinvl Chloride	ND	1.0	0.005	Xvlenes		ND	1.0	0.005	
ļ		Surro	gate Re	coveries (%)					
%SS1:	10	00		%SS2:		11	10		
%\$\$\$3:	1(19							

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

McCampbell An "When Oualit"	nalytical, In v Counts"	nc.		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, C bell.com E-mail: mai 377-252-9262 Fax: 9	A 94565-1701 n@mccampbell.com 25-252-9269			
Kleinfelder, Inc.	Client I	Project ID	: #104	484; EBP	Date Sampled:	11/03/09			
		-			Date Received:	11/04/09			
4670 Willow Road, #100	Client	Contact.	lim I el	Lehrman Date Extracted: 11/04/09					
Pleasanton, CA 94566	Client I		JIII Lei		Date Analyzed	11/01/09			
, ,	Valatila Oraca	.0 	от			. 11/04/09			
	volatile Orgal	nics by P		a GC/MIS (Basic 1a	arget List)*				
Extraction Method: SW5030B	1	Analytic	cal Metho	od: SW8260B		Work Order: 0911	1090		
Lab ID	0911090-002A								
Client ID	K-1-8								
Matrix			D d	Soi	1			D	
Compound	Concentration *	DF	Limit	Compour	nd	Concentration *	DF	Limit	
Acetone	ND	1.0	0.05	tert-Amyl methyl et	ther (TAME)	ND	1.0	0.005	
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005	
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB.	A)	ND	1.0	0.05	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005	
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005	
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005	
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005	
4-Chiorototuelle	ND	1.0	0.003	1.2 Dibromoothono		ND	1.0	0.003	
Dibromomethane	ND	1.0	0.004	1,2-Dichlorobenzen	(EDB)	ND	1.0	0.004	
1 3-Dichlorobenzene	ND	1.0	0.005	1 4-Dichlorobenzen	e	ND	1.0	0.005	
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005	
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005	
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroe	thene	ND	1.0	0.005	
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropan	e	ND	1.0	0.005	
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropen	e	ND	1.0	0.005	
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichlorop	ropene	ND	1.0	0.005	
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005	
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1	
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005	
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005	
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether	r (MTBE)	ND	1.0	0.005	
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentance	one (MIBK)	ND	1.0	0.005	
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.005	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005	
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz	ene	ND	1.0	0.005	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha	ne	ND	1.0	0.005	
1,1,2-1richloroethane	ND	1.0	0.005	1 2 2 Trichloroprog		ND	1.0	0.005	
1.2.4. Trimathylborgana	ND	1.0	0.005	1,2,5-1 ricnioroprop	zane	ND	1.0	0.005	
Vinyl Chloride	ND	1.0	0.005	Xylenes	zene	ND	1.0	0.005	
		Surro	gate De	acovarias (%)			1.0	10.005	
W 661		Surro	gate Ke	(((((((((((((((((((0		
%551: %\$\$2:	10)4		%552:]](19		
	1	/+		1					

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

McCampbell An "When Oualit"	nalytical, In v Counts"	nc.		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, C. bell.com E-mail: mai 377-252-9262 Fax: 92	A 94565-1701 in@mccampbell.com 25-252-9269			
Kleinfelder, Inc.	Client H	Project ID	: #104	484; EBP	Date Sampled:	11/03/09			
		-			Date Received:	11/04/09			
4670 Willow Road, #100	Client	Contact.	lim Le	Lehrman Date Extracted: 11/01/09					
Pleasanton, CA 94566	Client F		JIII LO		Date Analyzed	· 11/04/09			
, ,	Valatila Orașa	.0 	от			. 11/04/07			
	volatile Orgal	nics by Pa		u GC/MIS (Basic 1a	arget List)*				
Extraction Method: SW5030B	1	Analytic	cal Metho	od: SW8260B		Work Order: 091	1090		
Lab ID	0911090-003A								
Client ID				K-2	-4				
Matrix			Denortino	Soi		T		Deporting	
Compound	Concentration *	DF	Limit	Compour	nd	Concentration *	DF	Limit	
Acetone	ND	1.0	0.05	tert-Amyl methyl et	ther (TAME)	ND	1.0	0.005	
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005	
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB.	A)	ND	1.0	0.05	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005	
Carban Tatasahlari da	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005	
Carbon Tetrachloride	ND	1.0	0.005	Chloroform		ND	1.0	0.005	
Chloromethane	ND	1.0	0.005	2 Chlorotoluene		ND	1.0	0.005	
4-Chlorotoluene	ND	1.0	0.005	j Dibromochloromethane		ND	1.0	0.005	
1 2-Dibromo-3-chloropropage	ND	1.0	0.003	1 2-Dibromoethane	(EDB)	ND	1.0	0.003	
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzen	e	ND	1.0	0.005	
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzen	e	ND	1.0	0.005	
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005	
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005	
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroe	thene	ND	1.0	0.005	
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropan	e	ND	1.0	0.005	
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropen	e	ND	1.0	0.005	
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichlorop	ropene	ND	1.0	0.005	
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005	
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1	
A Hexanone	ND	1.0	0.005	Isopropulbenzene		ND	1.0	0.005	
4 Isopropyl toluane	ND	1.0	0.005	Methyl t butyl ether	r (MTRE)	ND	1.0	0.005	
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentano	one (MIBK)	ND	1.0	0.005	
Naphthalene	ND	1.0	0.005	n-Propyl benzene	ine (infibit)	ND	1.0	0.005	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.005	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005	
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz	ene	ND	1.0	0.005	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha	ne	ND	1.0	0.005	
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005	
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloroprop	ane	ND	1.0	0.005	
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylben	zene	ND	1.0	0.005	
Vinvl Chloride	ND	1.0	0.005	Xvlenes		ND	1.0	0.005	
		Surro	gate Re	ecoveries (%)					
%SS1:	10	00		%SS2:		11	0		
<u> </u>	10	12							

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

McCampbell A	nalytical, In v Counts"	nc.		1534 Willow F Web: www.mccamp Telephone: 8	ass Road, Pittsburg, C. bell.com E-mail: mai 77-252-9262 Fax: 92	A 94565-1701 in@mccampbell.com 25-252-9269			
Kleinfelder, Inc.	Client I	Project ID	: #104	484; EBP	Date Sampled:	11/03/09			
					Date Received:	11/04/09			
4670 Willow Road, #100	Client	Contact.	lim Lel	Lehrman Date Extracted: 11/04/09					
Pleasanton, CA 94566	Client I				Date Analyzed	11/01/09			
,	Valatila Oraca		от			. 11/04/05			
	volatile Orga	nics by P		u GC/MIS (Basic 1a	arget List)*	W. I.O. I	000		
Extraction Method: Sw5050B		Analytic	cal Metho	a: Sw8200B		work Order: 0911	1090		
Lab ID	0911090-004A								
Client ID				K-2	-8				
Matrix			Peporting	Soi	1			Peporting	
Compound	Concentration *	DF	Limit	Compour	nd	Concentration *	DF	Limit	
Acetone	ND	1.0	0.05	tert-Amyl methyl et	her (TAME)	ND	1.0	0.005	
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005	
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB.	A)	ND	1.0	0.05	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005	
Carbon Tatrachlarida	ND	1.0	0.005	Chloroborgono		ND	1.0	0.005	
Chloroethane	ND	1.0	0.005	05 Chloroform		ND	1.0	0.005	
Chloromethane	ND	1.0	0.005	05 2-Chlorotoluene		ND	1.0	0.005	
4-Chlorotoluene	ND	1.0	0.005	Dibromochlorometh	ane	ND	1.0	0.005	
1 2-Dibromo-3-chloropropane	ND	1.0	0.004	1.2-Dibromoethane	(EDB)	ND	1.0	0.004	
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene		ND	1.0	0.005	
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzen	9	ND	1.0	0.005	
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005	
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005	
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroe	thene	ND	1.0	0.005	
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropan	e	ND	1.0	0.005	
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropen	e	ND	1.0	0.005	
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichlorop	ropene	ND	1.0	0.005	
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005	
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1	
Hexachlorobutadiene	ND	1.0	0.005	Isopropulbonzono		ND	1.0	0.005	
2-Hexalible	ND	1.0	0.005	Mothyl t hutyl otho	(MTDE)	ND	1.0	0.005	
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentano	ne (MIBK)	ND	1.0	0.005	
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005	
Styrene	ND	1.0	0.005	1.1.1.2-Tetrachloro	ethane	ND	1.0	0.005	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005	
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz	ene	ND	1.0	0.005	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha	ne	ND	1.0	0.005	
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005	
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloroprop	ane	ND	1.0	0.005	
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenz	zene	ND	1.0	0.005	
Vinvl Chloride	ND	1.0	0.005	Xvlenes		ND	1.0	0.005	
		Surro	gate Re	coveries (%)		1			
%SS1:	10	00		%SS2:		11	1		
<u>%883:</u>	1	15		I					

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

McCampbell An "When Oualit"	nalytical, In v Counts"	nc.		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, C bell.com E-mail: mai 377-252-9262 Fax: 9	A 94565-1701 n@mccampbell.com 25-252-9269		
Kleinfelder, Inc.	Client I	Project ID	: #104	484; EBP	Date Sampled:	11/03/09		
		-			Date Received:	11/04/09		
4670 Willow Road, #100	Client	Contact.	lim I el	Lehrman Date Extracted: 11/04/09				
Pleasanton, CA 94566	Client		JIII Lei		Date Analyzed	11/01/09		
, ,	Valat'la Oraca	.0 	от			. 11/04/09		
	volatile Orgal	nics by P		u GC/MIS (Basic 1a	arget List)*			
Extraction Method: SW5030B	1	Analytic	cal Metho	od: SW8260B		Work Order: 0911	.090	
Lab ID				0911090	0-005A			
Client ID				K-3	-4			
Matrix			Denortino	Soi	1	<u> </u>		Demonting
Compound	Concentration *	DF	Limit	Compour	nd	Concentration *	DF	Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl et	ther (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB.	A)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005
4-Chiorototuelle	ND	1.0	0.003	1.2 Dibromoothono		ND	1.0	0.003
Dibromomethane	ND	1.0	0.004	1,2-Dichlorobenzen	(EDB)	ND	1.0	0.004
1 3-Dichlorobenzene	ND	1.0	0.005	1 4-Dichlorobenzen	e	ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroe	thene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropan	e	ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropen	e	ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichlorop	ropene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ethe	r (MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentance	one (MIBK)	ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz	ene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha	ne	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1 2 3 Trichloroprop	2000	ND	1.0	0.005
1.2.4-Trimethylbenzene	ND	1.0	0.005	1.3.5-Trimethylbon	zene	ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes		ND	1.0	0.005
		Surra	gate Ro	$\frac{1}{2} \frac{1}{2} \frac{1}$			1.0	10.005
0/ 661.	0	o 50110	gate Ne				1.1	
%551: %\$\$2:	9	<u>ð</u>		%552:		1 1.	<u>i 1</u>	
	1	14		1				

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

McCampbell An "When Ouality	nalytical, In Counts"	nc.		1534 Willow F Web: www.mccamp Telephone: 8	ass Road, Pittsburg, C. bell.com E-mail: mai 77-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 25-252-9269		
Kleinfelder, Inc.	Client H	Project ID	: #104	484; EBP	Date Sampled:	11/03/09		
					Date Received:	11/04/09		
4670 Willow Road, #100	Client	Contact:	lim L el	Lehrman Date Extracted: 11/04/09				
Pleasanton, CA 94566	Client F		JIII Lei		Date Analyzed:	11/05/09		
, ,	Valatila Orașa	.0 	от			11/05/05		
	volatile Orgal	nes by P		u GC/MIS (Basic 1a	arget List)*			
Extraction Method: SW5030B	1	Analyti	cal Metho	od: SW8260B		Work Order: 0911	.090	
Lab ID				0911090	-007A			
Client ID	K-3-8							
Matrix			D d	Soi	1			D
Compound	Concentration *	DF	Limit	Compour	nd	Concentration *	DF	Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl et	her (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB.	A)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005
Carban Tatrachlarida	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachioride	ND	1.0	0.005	Chloroform		ND	1.0	0.005
Chloromothana	ND	1.0	0.005	2 Chlorotoluono		ND	1.0	0.005
4-Chlorotoluene	ND	1.0	0.005	2-Cillorototuelle Dibromochlorometh	ane	ND	1.0	0.005
1 2-Dibromo-3-chloropropane	ND	1.0	0.003	1 2-Dibromoethane	(EDR)	ND	1.0	0.003
Dibromomethane	ND	1.0	0.005	1.2-Dichlorobenzen	e	ND	1.0	0.005
1.3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzen	9	ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroe	thene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropan	e	ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropen	e	ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichlorop	ropene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Isopropulbonzono		ND	1.0	0.005
4 Joopropul toluono	ND	1.0	0.005	Mothyl t hutyl otho	(MTDE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentano	ne (MIBK)	ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005
Styrene	ND	1.0	0.005	1.1.1.2-Tetrachloro	ethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz	ene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha	ne	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloroprop	ane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenz	zene	ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	Xvlenes		ND	1.0	0.005
		Surro	gate Re	coveries (%)		1		
%SS1:	9	5		%SS2:		11	2	
<u>%883:</u>	1	15		1				

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

McCampbell An "When Oualit"	nalytical, In v Counts"	nc.		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, C. bell.com E-mail: mai 377-252-9262 Fax: 92	A 94565-1701 in@mccampbell.com 25-252-9269			
Kleinfelder, Inc.	Client I	Project ID	: #104	484; EBP	Date Sampled:	11/03/09			
		-			Date Received:	11/04/09			
4670 Willow Road, #100	Client	Contact.	lim I el	Lehrman Date Extracted: 11/04/09					
Pleasanton, CA 94566	Client I		JIII Lei		Date Analyzed	11/05/09			
, ,	Valat'la Oraca	.0 	от			. 11/05/07			
	volatile Orgal	nics by P		a GC/IVIS (Basic 1)	arget List)*				
Extraction Method: SW5030B	1	Analytic	cal Metho	od: SW8260B		Work Order: 091	.090		
Lab ID				0911090	0-008A				
Client ID	<u>K-4-4</u>								
Matrix			D d	So	1	1		D	
Compound	Concentration *	DF	Limit	Compour	nd	Concentration *	DF	Limit Limit	
Acetone	ND	1.0	0.05	tert-Amyl methyl e	ther (TAME)	ND	1.0	0.005	
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005	
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB	A)	ND	1.0	0.05	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005	
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005	
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005	
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005	
4-Chiorototuelle	ND	1.0	0.003	1.2 Dibromoothono		ND	1.0	0.003	
Dibromomethane	ND	1.0	0.004	1,2-Dichlorobenzen	(EDB)	ND	1.0	0.004	
1 3-Dichlorobenzene	ND	1.0	0.005	1 4-Dichlorobenzen	e	ND	1.0	0.005	
Dichlorodifluoromethane	ND	1.0	0.005	1.1-Dichloroethane		ND	1.0	0.005	
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005	
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroe	thene	ND	1.0	0.005	
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropan	e	ND	1.0	0.005	
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropen	e	ND	1.0	0.005	
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichlorop	ropene	ND	1.0	0.005	
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005	
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1	
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005	
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005	
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ethe	r (MTBE)	ND	1.0	0.005	
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentance	one (MIBK)	ND	1.0	0.005	
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.005	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005	
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz	ene	ND	1.0	0.005	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha	ne	ND	1.0	0.005	
Trichlorofluoromethane	ND	1.0	0.005	1 2 3 Trichloropror	2000	ND	1.0	0.005	
1.2.4-Trimethylbenzene	ND	1.0	0.005	1.2.5-Trimethylbon	zene	ND	1.0	0.005	
Vinyl Chloride	ND	1.0	0.005	Xylenes		ND	1.0	0.005	
		Surra	gate Ro	$\frac{1}{2} \frac{1}{2} \frac{1}$			1.0	0.005	
0/ 661.	0	5u110	gate Ne			4.	. 1		
%551: %\$\$2:	9	7		%552:		<u> </u>	. 1		
		/+		1					

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

McCampbell Analytical, Inc. "When Ouality Counts"				1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, C. bell.com E-mail: mai 277-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 25-252-9269			
Kleinfelder, Inc.	Client H	Project ID:	#104	484; EBP	Date Sampled:	11/03/09			
				Date Received: 11/04/09					
4670 Willow Road, #100				hrman	Date Extracted:	11/04/09			
Pleasanton, CA 94566	Client H	Client P.O.: Date Analyzed							
	Volatile Organ	nics by P&	&T and	d GC/MS (Basic Ta	arget List)*				
Extraction Method: SW5030B	0	Analytic	al Metho	od: SW8260B	0 /	Work Order: 091	1090		
Lab ID				0911090	-009A				
Client ID				K-4	-6				
Matrix				Soi	1				
Compound	Concentration *	DF	Reporting Limit	Compour	nd	Concentration *	DF	Reporting Limit	
Acetone	ND	1.0	0.05	tert-Amyl methyl et	ther (TAME)	ND	1.0	0.005	
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005	
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB.	ND	1.0	0.05		
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005	
Carbon Tetrachloride	ND	1.0	0.005	Chloroform		ND	1.0	0.005	
Chloroethane	ND	1.0	0.005	2 Chlorotoluono		ND	1.0	0.005	
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane		ND	1.0	0.005	
1 2-Dibromo-3-chloropropage	ND	1.0	0.003	1 2-Dibromoethane	(FDR)	ND	1.0	0.003	
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene		ND	1.0	0.005	
1.3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzen	ND	1.0	0.005		
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005	
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005	
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroe	thene	ND	1.0	0.005	
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropan	e	ND	1.0	0.005	
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropen	e	ND	1.0	0.005	
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichlorop	ropene	ND	1.0	0.005	
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005	
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1	
Hexachlorobutadiene	ND	1.0	0.005	Isopropulbonzono		ND	1.0	0.005	
4-Isopropyl toluene	ND	1.0	0.005	Methyl_t_butyl ether	r (MTBE)	ND	1.0	0.005	
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentano	one (MIBK)	ND	1.0	0.005	
Naphthalene	ND	1.0	0.005	n-Propyl benzene	ne (milbit)	ND	1.0	0.005	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.005	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005	
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz	ene	ND	1.0	0.005	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha	ne	ND	1.0	0.005	
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005	
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloroprop	ane	ND	1.0	0.005	
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylben	zene	ND	1.0	0.005	
	ND	1.0 S	0.005	Avienes		ND	1.0	10.005	
		Surrog	gate Ke	coveries (%)			20		
%SS1: 04 \$\$2:	10)4		%882:		1 10	19		
		/+		1					

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

When Ouality Counts"				1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, C bell.com E-mail: mai 377-252-9262 Fax: 9	A 94565-1701 in@mccampbell.com 25-252-9269						
Kleinfelder, Inc.	Client I	Project ID:	: #104	484; EBP	Date Sampled:	11/03/09						
					Date Received:	11/04/09						
4670 Willow Road, #100				hrman	Date Extracted:	11/04/09						
Pleasanton, CA 94566	Client I		JIII Le		Date Analyzed	11/05/09						
, ,	Valatila Orașa	0 T			. 11/05/07							
	volatile Orgal	nics by Po		u GC/MIS (Basic 1a	arget List)*							
Extraction Method: SW5030B	1	Analytic	cal Metho	od: SW8260B		Work Order: 091	1090					
Lab ID				0911090	0-011A							
Client ID				K-5	-6							
Matrix			D d	Soi	1	1	* DF Reporting Limit 11090 * DF Limit 1.0 0.005 1.0					
Compound	Concentration *	DF	Limit	Compour	nd	Concentration *	DF	Limit				
Acetone	ND	1.0	0.05	tert-Amyl methyl et	ther (TAME)	ND	1.0	0.005				
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005				
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005				
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005				
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB	A)	ND	1.0	0.05				
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005				
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005				
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005				
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005				
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005				
4-Chlorotoluene	ND	1.0	0.005	Dibromochlorometh	ane	ND	1.0	0.005				
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)		ND	1.0	0.004				
	ND	1.0	0.005	1,2-Dichlorobenzene		ND	1.0	0.005				
1,3-Dichlorodifluoromethene	ND	1.0	0.005	1,4-Dichlorobenzen	ND	1.0	0.005					
1.2 Dishlarasthara (1.2 DCA)	ND	1.0	0.003	1,1-Dichlensethene		ND	1.0	0.005				
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	trang 1.2 Dishlarge	thoma	ND	1.0	0.005				
1.2 Dichloropropage	ND	1.0	0.005	1.3 Dichloropropan	e e e e e e e e e e e e e e e e e e e	ND	1.0	0.005				
2.2 Dichloropropane	ND	1.0	0.005	1.1 Dichloropropan	e	ND	1.0	0.005				
cis-1 3-Dichloropropene	ND	1.0	0.005	trans-1 3-Dichloron	ropene	ND	1.0	0.005				
Diisopropyl ether (DIPF)	ND	1.0	0.005	Ethylbenzene	Topene	ND	1.0	0.005				
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1				
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005				
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005				
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ethe	r (MTBE)	ND	1.0	0.005				
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentance	one (MIBK)	ND	1.0	0.005				
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005				
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.005				
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005				
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz	ene	ND	1.0	0.005				
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha	ne	ND	1.0	0.005				
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005				
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloroprop	ane	ND	1.0	0.005				
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylben:	zene	ND	1.0	0.005				
Vinvl Chloride	ND	1.0	0.005	Xvlenes		ND	1.0	0.005				
		Surro	gate Re	ecoveries (%)								
%SS1:	10)1		%SS2:		11	10					
%SS3:	10)5										
Commontor												

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

McCampbell Analytical, Inc. "When Ouality Counts"				1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, C. bell.com E-mail: mai 277-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 25-252-9269		
Kleinfelder, Inc.	Client H	Project ID	: #104	484; EBP	Date Sampled:	11/03/09		
		-			Date Received:	11/04/09		
4670 Willow Road, #100				hrman	Date Extracted:	11/04/09		
Pleasanton, CA 94566	Client F		JIII Lei		Date Analyzed	11/05/09		
, ,	Valatila Orașa			. 11/05/05				
	volatile Orgal	nes by P		I GC/MS (Basic 1a	arget List)*			
Extraction Method: SW5030B	1	Analyti	cal Metho	d: SW8260B		Work Order: 0911	1090	
Lab ID				0911090	-012A			
Client ID				K-6	-3			
Matrix			Descriptions	Soi	1	<u> </u>		Description
Compound	Concentration *	DF	Limit	Compour	nd	Concentration *	DF	Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl et	ther (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB.	A)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005
Carban Tatrachlarida	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachioride	ND	1.0	0.005	Chloroform		ND	1.0	0.005
Chloromothana	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005
4-Chlorotoluene	ND	1.0	0.005	2-Cillorototuelle Dibromochlorometh	ane	ND	1.0	0.005
1 2-Dibromo-3-chloropropane	ND	1.0	0.003	1.2-Dibromoethane (EDB)		ND	1.0	0.003
Dibromomethane	ND	1.0	0.005	1.2-Dichlorobenzene		ND	1.0	0.005
1.3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzen	ND	1.0	0.005	
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroe	thene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropan	e	ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropen	e	ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichlorop	ropene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Isopropulhonzono		ND	1.0	0.005
4 Joopropul toluono	ND	1.0	0.005	Mothyl t hutyl otho	(MTDE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentano	(MIBE)	ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005
Styrene	ND	1.0	0.005	1.1.1.2-Tetrachloro	ethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz	ene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha	ne	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloroprop	ane	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenz	zene	ND	1.0	0.005
Vinvl Chloride	ND	1.0	0.005	Xvlenes		ND	1.0	0.005
		Surro	gate Re	coveries (%)		1		
%SS1:	9	9		%SS2:		11	1	
<u>%883:</u>	1	13		I				

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

	CCampbell Analyti	ical, Inc.	1534 Web: www Tel	Willow .mccamp ephone: 2	Pass Road, Pittsburg, CA obell.com E-mail: main 877-252-9262 Fax: 925	94565-170 @mccampbe -252-9269	l ll.com		
Kleinfelder, Ind	с.	Client Project 1	D: #104484; EBP		Date Sampled:	11/03/	09		
4670 Willow D	load #100				Date Received:	11/04/	09		
4070 WIIIOW K	.0au, #100	Client Contact	t: Jim Lehrman		Date Extracted:	11/04/	09		
Pleasanton, CA	A 94566	Client P.O.:			Date Analyzed:	11/05/	09-11/07	7/09	
Total Extractable Petroleum Hydrocarbons* Extraction method: SW3550C Analytical methods: SW8015B Work Orde									
Lab ID Client ID Matrix			TPH-Diesel (C10-C23)	,	ГРН-Motor Oil (C18-C36)	DF	% SS	Comments	
0911090-001A	K-1-4	s	1.4		ND	1	98	e2	
0911090-002A	K-1-8	S	ND		ND	1	91		
0911090-003A	K-2-4	S	ND		ND	1	103		
0911090-004A	K-2-8	S	ND		ND	1	104		
0911090-005A	K-3-4	S	55		44		90	e3,e7	
0911090-007A	K-3-8	S	3.2		ND		106	e2	
0911090-008A	K-4-4	S	ND	ND		1	107		
0911090-009A	K-4-6	S	ND		ND	1	107		
0911090-011A	K-5-6	S	ND		ND	1	108		
0911090-012A	K-6-3	S	ND		ND	1	108		

Reporting Limit for DF =1;	W	NA	NA	ug/L
ND means not detected at or above the reporting limit	S	1.0	5.0	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e2) diesel range compounds are significant; no recognizable pattern

e3) aged diesel is significant

e7) oil range compounds are significant

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

McCampbell Analytical, Inc.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil	QC Matrix: Soil						Batch	BatchID: 46918 WorkOrder: 0911090				90	
EPA Method SW8260B	Extraction SW5030B Spiked Sample ID: 0911090-								: 0911090-0)11A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	Acceptance Criteria (%)			
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND	0.050	77.6	75.2	3.15	76.3	76.2	0.206	60 - 130	30	60 - 130	30	
Benzene	ND	0.050	97.6	94.7	3.03	96.1	93.8	2.40	60 - 130	30	60 - 130	30	
t-Butyl alcohol (TBA)	ND	0.25	79.9	79.5	0.492	77.2	79	2.31	60 - 130	30	60 - 130	30	
Chlorobenzene	ND	0.050	93.1	91	2.36	91.8	90.3	1.62	60 - 130	30	60 - 130	30	
1,2-Dibromoethane (EDB)	ND	0.050	82.3	80.3	2.50	81.8	80.5	1.67	60 - 130	30	60 - 130	30	
1,2-Dichloroethane (1,2-DCA)	ND	0.050	90.7	87.3	3.85	89.6	88.5	1.30	60 - 130	30	60 - 130	30	
1,1-Dichloroethene	ND	0.050	115	112	2.74	112	110	1.57	60 - 130	30	60 - 130	30	
Diisopropyl ether (DIPE)	ND	0.050	91.2	88.8	2.71	89.7	88.9	0.903	60 - 130	30	60 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	0.050	88.5	85.3	3.60	86.7	86.4	0.364	60 - 130	30	60 - 130	30	
Methyl-t-butyl ether (MTBE)	ND	0.050	90.1	88	2.46	89.5	88.2	1.50	60 - 130	30	60 - 130	30	
Toluene	ND	0.050	92.9	90.9	2.16	92	90	2.23	60 - 130	30	60 - 130	30	
Trichloroethene	ND	0.050	104	101	3.80	102	99.5	3.00	60 - 130	30	60 - 130	30	
%SS1:	101	0.13	92	91	0.639	90	91	0.467	70 - 130	30	70 - 130	30	
%SS2:	110	0.13	99	99	0	100	100	0	70 - 130	30	70 - 130	30	
%SS3:	105	0.013	89	92	3.43	91	89	2.19	70 - 130	30	70 - 130	30	
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:													

BATCH 46918 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0911090-001A	11/03/09 9:45 AM	11/04/09	11/04/09 8:17 PM	0911090-002A	11/03/09 10:00 AM	11/04/09	11/04/09 9:33 PM
0911090-003A	11/03/09 11:15 AM	11/04/09	11/04/09 10:11 PM	0911090-004A	11/03/09 11:35 AM	11/04/09	11/04/09 10:49 PM
0911090-005A	11/03/09 1:00 PM	11/04/09	11/04/09 11:27 PM	0911090-007A	11/03/09 1:30 PM	11/04/09	11/05/09 2:09 PM
0911090-008A	11/03/09 1:40 PM	11/04/09	11/05/09 2:47 PM	0911090-009A	11/03/09 2:00 PM	11/04/09	11/05/09 1:21 AM
0911090-011A	11/03/09 2:55 PM	11/04/09	11/05/09 1:59 AM	0911090-012A	11/03/09 3:15 PM	11/04/09	11/05/09 3:25 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil QC Matrix: Soil						BatchID: 46873 WorkOrder 0911090						
EPA Method SW8015B Extraction SW3550C								s	Spiked San	nple ID	: 0911016-0	06A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			1
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD RPD LCS/LCSD			RPD
TPH-Diesel (C10-C23)	ND	20	94.8	94.8	0	96.9	100	3.51	70 - 130	30	70 - 130	30
%SS:	107	50	104	104	0	99	103	3.27	70 - 130	30	70 - 130	30
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

BATCH 46873 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0911090-001A	11/03/09 9:45 AM	11/04/09	11/07/09 8:59 PM	0911090-002A	11/03/09 10:00 AM	11/04/09	11/06/09 2:41 AM
0911090-003A	11/03/09 11:15 AM	11/04/09	11/05/09 4:22 PM	0911090-004A	11/03/09 11:35 AM	11/04/09	11/05/09 5:31 PM
0911090-005A	11/03/09 1:00 PM	11/04/09	11/05/09 8:00 AM	0911090-007A	11/03/09 1:30 PM	11/04/09	11/05/09 6:41 PM
0911090-008A	11/03/09 1:40 PM	11/04/09	11/05/09 7:50 PM	0911090-009A	11/03/09 2:00 PM	11/04/09	11/05/09 9:00 PM
0911090-011A	11/03/09 2:55 PM	11/04/09	11/05/09 10:09 PM	0911090-012A	11/03/09 3:15 PM	11/04/09	11/06/09 2:41 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

A QA/QC Officer