RECEIVED

By dehloptoxic at 8:49 am, Feb 09, 2007

Suite 115, 201 North Civic Drive Walnut Creek, California 94596-3864

Tel: (925) 937-9010 Fax: (925) 937-9026

August 2, 2006

BROWN AND CALDWELL

Mr. Marvin Howell Director of Land Use Planning Hanson America Post Office Box 639069 San Diego, California 92163-9069

1044-130041.002

Subject: Summary of the Limited Subsurface Investigation Activities at the

Hanson Aggregates West Radum Facility in Pleasanton, California

Dear Mr. Howell:

Brown and Caldwell (BC) has prepared this letter on behalf of Hanson Aggregates West (Hanson). This letter summarizes the soil sampling results from the limited soil investigation conducted at the Hanson American/Radum Plant located at 3000 Bush Road in Pleasanton, California (Site), Figure 1.

On May 8, 2006, BC collected soil samples from the Radum Plant to investigate possible chemical releases from sources such as leaking equipment, parts cleaning and lubrication, chemical storage, and equipment maintenance operations. The locations of these potential sources were identified in the Phase I ESA prepared by BC at the facility, June 2006.

The aggregate quarrying and processing infrastructure has been decommissioned. There are five permanent structures on the property located south of Busch Road and El Charro Road. They include a single story office building, a heavy equipment shop building, a warehouse and storage area, an oil storage shed, and a truck shop building (currently leased to Pleasanton Garbage Services). The former hot mix asphalt plant has been dismantled on the southwest corner of the Site. There are three office trailers on the premises.

INVESTIGATION AREAS

The following areas were investigated based on findings presented in BC's Phase I investigation (BC 2006) and/or Site visit on April 27, 2006:

• Subsurface soil on the perimeter of the southwestern portion of the Site asphalt.

- Subsurface soil at the location of the former truck spray rack north of the hot mix asphalt plant.
- Subsurface soil, sediment, and surface water in the storm water retention basin on the north side of Busch Road.
- Subsurface soil near the oil water separator at the equipment maintenance building.
- Subsurface soil near the drum storage area at the equipment maintenance building.

These locations are shown on Figure 2.

Note: The center of the hot mix asphalt plant was not investigated due to the obvious oil-saturated soil located in the area for which remedial work is already being planned.

FIELD INVESTIGATION ACTIVITIES

Field activities were conducted in accordance with the site-specific health and safety plan, which follows Occupational Safety and Health Administration regulations. BC contacted Underground Service Alert and subcontracted a private underground utility locating service to identify and mark underground utilities in the investigation areas before work began.

On May 8, 2006, BC personnel collected soil samples from selected depths at 6 soil boring locations at the Site (Figure 2). The soil borings were advanced using a GeoProbe rig and extended to total depths of approximately 4 to 11 feet below ground surface (bgs). Soil samples were collected from the GeoProbe rig using acetate liners. The liners were opened for visual inspection of the soil, volatile organic vapor screening using a field photoionization detector (PID), and sample collection. Soil samples were collected for chemical analysis by cutting 6-inch sections of the acetate liner. The ends were then sealed with Teflon sheets and plastic caps, labeled, and placed in zip-lock bags in an ice-chilled cooler for transport to Sequoia Analytical, a California state-certified analytical laboratory, following strict chain-of-custody protocol. A BC field geologist/engineer prepared a soil lithologic log to document lithology using the Unified Soil Classification System. PID readings, visual observations and soil sample depths were recorded on the logs, which are maintained in the BC project file.

Mr. Marvin Howell August 2, 2006 Page 3

Samples were selectively analyzed for total petroleum hydrocarbons as gasoline (TPHg), as diesel (TPHd), and as motor oil (TPHmo), and total recoverable petroleum hydrocarbons (TRPH) using EPA Method 8015, and volatile organic compounds (VOCs) using EPA Method 8260.

ANALYTICAL RESULTS

Analytical results for petroleum hydrocarbons are presented in Table 1 and on Figure 3. VOCs were not detected above laboratory analytical detection limits in the soil and water samples collected. TPH results were compared to current regulatory screening levels and results are summarized below. Laboratory analytical reports are included in Attachment A.

COMPARISON OF RESULTS TO REGULATORY SCREENING LEVELS

TPH soil results from the Site were compared to San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs) which help asses the need for further investigation and/or soil remediation. These ESLs include concentration values for both residential and commercial/industrial site use. The ESLs are presented in a technical document prepared by the staff of the RWQCB entitled, "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater" (Interim Final–February 2005). Volume 1 of that document presents lookup tables of conservative ESLs for chemicals commonly found at sites with contaminated soil and groundwater. Site analytical results were compared to shallow soil (<3 meter) values presented in Table A-1 for residential and commercial/industrial land use where potentially affected groundwater is a current or potential drinking water resource.

Analytical results from the water sample collected in the storm water retention basin were compared to ESLs for surface water in fresh water habitats. Specifically, concentrations were compared to the "Fresh Water Aquatic Habitat Goal," "Drinking Water (toxicity)," and the "Ceiling Value (Taste & Odors, etc.)" values presented in the RWQCB document mentioned above.

TOTAL PETROLEUM HYDROCARBONS IN SOIL

The range of TPHg, TPHd, TPHmo, and TRPH concentrations in soil samples and the corresponding ESL screening levels are presented in Table A below.

Table A. TPH Concentration Ranges and Screening Criteria

	TPHg (mg/kg)	TPHd (mg/kg)	TPHmo (mg/kg)	TRPH (mg/kg)
Concentration Range	<1.0 to 16	3.3 to 6,600	11 to 7,300	<50 to 1,400
Residential ESL	100	100	500	500
Industrial/Commercial ESL	100	100	1,000	1,000
Chemical parameter list on ESL Table	TPHg	TPHmd	TPHmd	TPHr

Notes:

TPHg = TPH as gasoline

TPHmd = TPH middle distillate

TPHr = TPH residual fuels

TRPH = Total recoverable petroleum hydrocarbons

As shown on Table A, detected TPHg concentrations were compared to the ESLs for TPH as a gasoline, detected TPHd concentrations were compared to the ESL for TPH as middle distillate, and detected TPHmo and TRPH concentrations were compared to the ESLs for TPH residual fuel. TPHd, TPHmo, and/or TRPH were detected above their Residential and Commercial/Industrial ESLs in three soil sample locations. TPHg was detected in two soil samples but concentrations are below the Residential and Commercial/Industrial ESLs. Petroleum hydrocarbon analytical data are summarized in Table 1 and presented on Figure 3.

Areas with TPH concentrations above ESLs include the former truck spray rack area, the drum storage area, and the storm water retention basin. These areas are presented on Figure 4. Boring-1 (B-1) was drilled in the drum storage area and Boring-3 (B-3) was drilled in the spray rack area. At location B-1 TPHd, TPHmo, and TRPH were detected at concentrations of 890 mg/kg, 680 mg/kg, and 1,400 mg/kg, respectively. At location B-3 TPHd and TPHmo were detected at concentrations of 6,600 mg/kg and 7,300 mg/kg, respectively. A sediment sample was collected from the storm water retention basin and TPHd and TPHmo were detected at a concentration of 530 mg/kg and 1,500 mg/kg, respectively.

TOTAL PETROLEUM HYDROCARBONS IN SURFACE WATER

A water sample from the storm water retention basin was analyzed for TPHg, TPHmo, TPHd, and VOCs. TPHg, TPHmo, and VOCs were not detected in the water sample. The TPHd concentration was below the "Fresh Water Aquatic Habitat

Mr. Marvin Howell August 2, 2006 Page 5

Goal" (640 μ g/l) and "Drinking Water (toxicity)" (210 μ g/l) but was above the "Ceiling Value (Taste & Odors, etc.)" (100 μ g/l).

CONCLUSIONS AND RECOMMENDATIONS

Soil samples were selectively analyzed for TPHg, TPHd, TPHmo, TRPH, and VOCs based on the reported chemical uses determined in the Phase I ESA. VOCs were not detected in the samples submitted for analysis. TPH results were compared to residential ESLs and commercial/industrial ESLs for shallow soil in areas where groundwater is a potential source of drinking water. TPHg, TPHd, TPHmo, and/or TRPH were detected above their ESLs in samples collected from the former truck spray rack area, the drum storage area, and the storm water retention basin.

A surface water sample was also collected from the storm water retention basin and was analyzed for TPHg, TPHmo, TPHd, and VOCs. TPHg, TPHmo, and VOCs were not detected in the sample although low levels of TPHd were detected. The TPHd concentration in the water sample was compared to the Surface Water ESLs for protection of Fresh Water Aquatic Habitats. The TPHd concentration was below the ESL. Therefore, further evaluation of storm water retention basin water is not recommended.

BC does recommends further evaluation of the elevated TPHd concentrations detected in the former truck spray rack area and near the drum storage area to better estimate the lateral and vertical extent of petroleum-affected soil in these areas (Figure 4). The collection of additional sediment samples is also recommended in storm water retention basin to estimate the extent of petroleum-affected sediment around the storm drain outfall.

Removal of the TPH affected soil in the former truck spray rack area, and drum storage area would likely be required by regulatory agencies prior to residential site re-development. The additional soil investigation activities recommended above could be performed at the same time that remedial work is conducted in the hot mix asphalt plant area. The further evaluations could be immediately followed by removal of affected soil, which could expedite site remedial activities in preparation for future sale of the property.

Brown and Caldwell also recommends that a Work Plan for soil remediation be prepared and presented to the RWQCB to request their approval and oversight of the work, so that a "No Further Action" letter can be issued after completion of the soil removal activities. Investigation of ground water quality in these areas may also be warranted depending on the vertical extent of TPH affected soil encountered there.

Mr. Marvin Howell August 2, 2006 Page 6

If you have any questions, please call Ms. Lisa Ehlers (925) 210-2341 or Mr. Andy Lojo (925) 210-2287.

Very truly yours,

BROWN AND CALDWELL

Lisa M. Ehlers

Senior Hydrogeologist

Andrew M. Lojo, P.G. #6034

Environmental Services Manager, Walnut Creek

LE:bfw

Attachments Tables: 2

Figures: 4

Sequoia Analytical Laboratory Results

cc: Mr. Lee Cover, Hanson Aggregates West Region

Mr. Ryan E. McKee, Nuquest Ventures, LLC

TABLES

Table 1

Summary of Soil Analytical Results Hanson Radum Plant Pleasanton, California

Sample location	Sample ID	Date sampled	Sample depth (feet bgs)	TPHg (mg/kg)	TPHd (mg/kg)	TPHmo (mg/kg)	TRPH (mg/kg)	VOCs (mg/kg)
B-1	Boring-1-2.5	5/8/2006	2.0-2.5	12	890	680	1,400	
B-2	Boring-2-6.0	5/8/2006	5.5-6.0	< 0.1	6.6	11	< 50	ND
B-3	Boring-3-2.0	5/8/2006	1.5-2.0	16	6,600	7,300		
B-4	Boring-4-6.0	5/8/2006	5.5-6.0		3.3		< 50	
B-5	Boring-5-5.0	5/8/2006	4.5-5.0		6.4 ^a		140 ^a	
B-6	Boring-6-4.0	5/8/2006	3.5-4.0		5.7 ^a		<25 a	
Sediment	Storm Drain Sediment Soil	5/8/2006	0-0.5	< 0.1	530	1,500		ND
Residential I	ESL (1)			100	100	500	500	
Commercial	/Industrial ESL (2)			100	100	1,000	1,000	

Notes:

Samples analyzed by Sequoia Analytical, Morgan Hill, California

- (1) Residential Land Use Environmental Screening Level for Shallow Soils (less than or equal to 3 meters bgs) where Groundwater IS a Currecnt or Potential Source of Drinking Water presented on Table A.
- (2) Commercial/Industrial Land Use Environmental Screening Level for Shallow Soils (less than or equal to 3 meters bgs) where Groundwater IS a Currecnt or Potential Source of Drinking Water presented on Table A.

Acronyms/Abreviations

TPHg = total petroleum hydrocarbons as gasoline

TPHd = total petroleum hydrocarbons as diesel

TPHmo = total petroleum hydrocarbons as motor oil

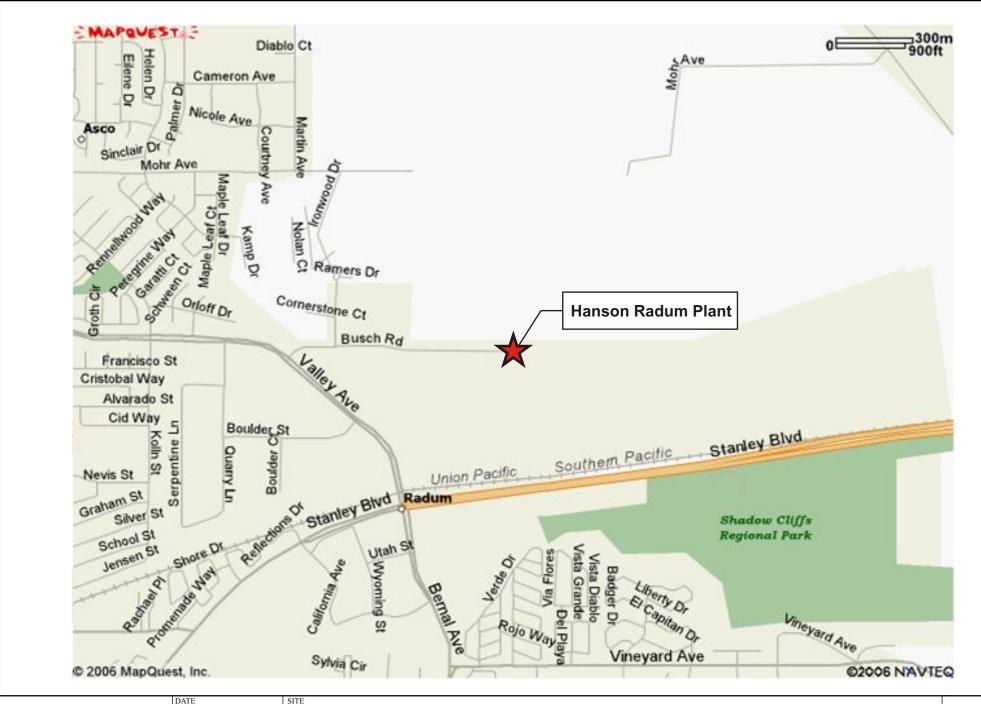
 $TRPH = total \ recoverable \ petroleum \ hydrocarbons$

VOCs = volital organic compounds

mg/kg = milligrams per kilogram

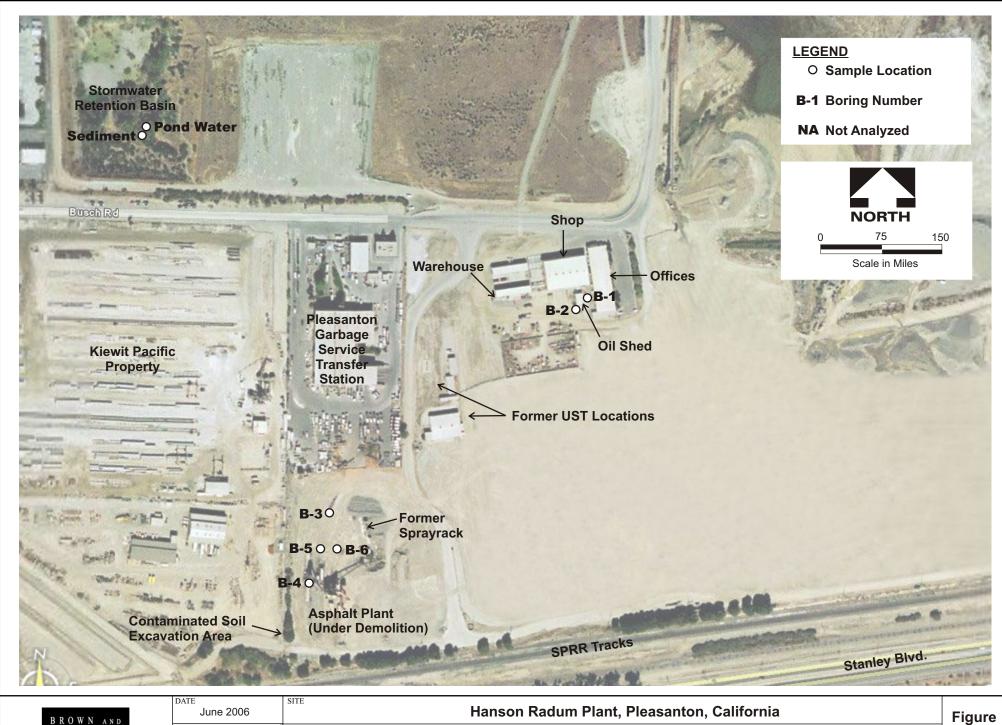
bgs = below ground surface

bold = results above Commercial/Industrial ESL

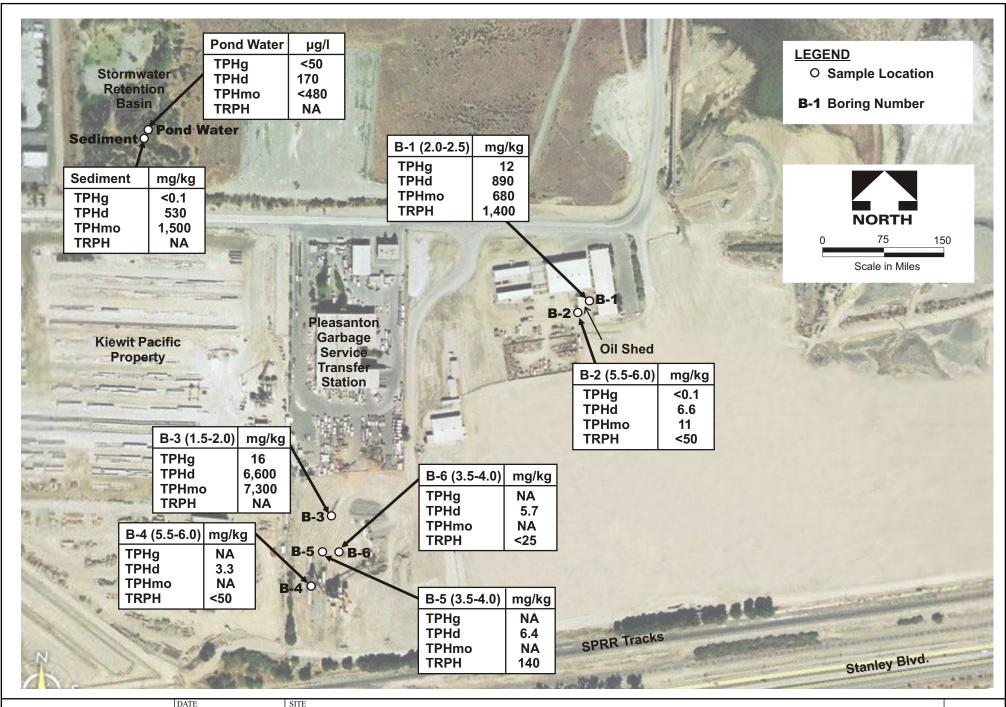

ND = Not detected above various laboratory reporting limits

-- = not analyzed or not applicable

^a = sample analyzed outside of hold time.

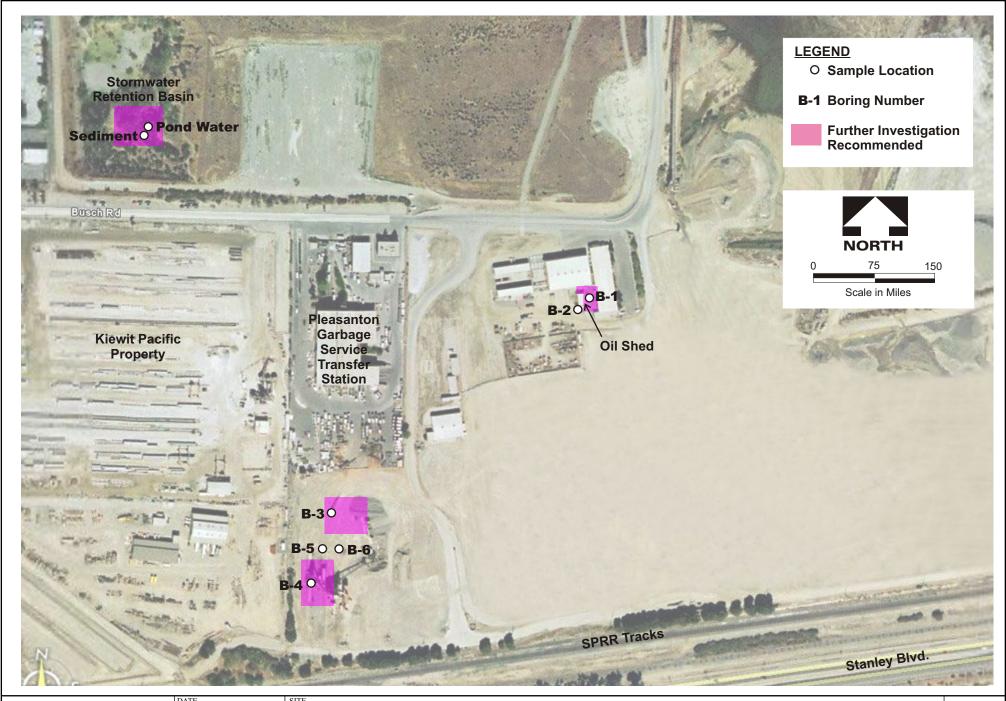


FIGURES


BROWN AND CALDWELL

March 2006	Hanson Radum Plant, Pleasanton, California	Figure
PROJECT 130041	Area Map	1

B	R	0	W	N	A	N	D
C	A	L	D	W	E	L	L


	F
PROJECT 130041 Site Layout and Sample Locations	

BROWN AND CALDWELL

June 2006	Hanson Radum Plant, Pleasanton, California	ı
PROJECT 130041	TPH Concentrations	ı

Figure

BROWN AND CALDWELL

June 2006	SITE	Hanson Radum Plant, Pleasanton, California	
PROJECT 130041	TITLE	Areas Recommended for Further Investigation	

Figure

ATTACHMENT A SEQUIOA ANALYTICAL LABORATORY RESULTS

14 June, 2006

Rachel Goldberg Brown & Caldwell - Walnut Creek 201 North Civic Drive, Suite 115 Walnut Creek, CA 94596

RE: Hanson - Martinez, CA Work Order: MPE0524

Enclosed are the results of analyses for samples received by the laboratory on 05/08/06 18:03. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ini A

Tim Costello Client Services Department Manager

CA ELAP Certificate # 1210

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Boring-1-2.5	MPE0524-01	Soil	05/08/06 09:10	05/08/06 18:03
Boring-2-6.0	MPE0524-02	Soil	05/08/06 08:50	05/08/06 18:03
Boring-3-2.0	MPE0524-03	Soil	05/08/06 09:45	05/08/06 18:03
Boring-4-6.0	MPE0524-04	Soil	05/08/06 10:00	05/08/06 18:03
Boring-5-9.5	MPE0524-05	Soil	05/08/06 10:35	05/08/06 18:03
Boring-5-5.0	MPE0524-06	Soil	05/08/06 10:35	05/08/06 18:03
Boring-6-4.0	MPE0524-07	Soil	05/08/06 10:10	05/08/06 18:03

Purgeable Hydrocarbons by EPA 8015B Sequoia Analytical - Morgan Hill

Analyte	R Result	Leporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Boring-1-2.5 (MPE0524-01) Soil	Sampled: 05/08/06 09:10				Butteri	Tropurou	7 mary zea	Method	rvotec	
Gasoline Range Organics (C4-C1)	2) 12000	1000	ug/kg	10	6E18013	05/18/06	05/18/06	EPA 8015B-VOA		
Surrogate: 4-Bromofluorobenzene		117 %	45-	135	"	"	"	"		
Boring-2-6.0 (MPE0524-02) Soil Sampled: 05/08/06 08:50 Received: 05/08/06 18:03										
Gasoline Range Organics (C4-C12)	ND	100	ug/kg	1	6E18013	05/18/06	05/18/06	EPA 8015B-VOA		
Surrogate: 4-Bromofluorobenzene		68 %	45-	135	"	"	"	"		
Boring-3-2.0 (MPE0524-03) Soil	Sampled: 05/08/06 09:45	Receiv	ed: 05/08	3/06 18:03						
Gasoline Range Organics (C4-C1)	2) 1600	100	ug/kg	1	6E18013	05/18/06	05/18/06	EPA 8015B-VOA		
Surrogate: 4-Bromofluorobenzene		61 %	45-	135	"	"	"	"		

Extractable Hydrocarbons by EPA 8015B Sequoia Analytical - Morgan Hill

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Boring-1-2.5 (MPE0524-01) Soil	Sampled: 05/08/06 09:10	Receiv	ed: 05/08	/06 18:03					
Motor Oil (C16-C36)	680	200	mg/kg	20	6E22049	05/22/06	05/27/06	EPA 8015B-SVOA	HC-12
Diesel Range Organics (C10-C28)	890	20	"	"	"	"	"	"	HC-12
Surrogate: n-Octacosane		232 %	40-	120	"	"	"	"	S04
Boring-2-6.0 (MPE0524-02) Soil	Sampled: 05/08/06 08:50	Receiv	ed: 05/08	/06 18:03					
Motor Oil (C16-C36)	11	10	mg/kg	1	6E22049	05/22/06	05/24/06	EPA 8015B-SVOA	HC-12
Diesel Range Organics (C10-C28)	6.6	1.0	"	"	"	"	"	"	HC-12
Surrogate: n-Octacosane		69 %	40-	120	"	"	"	"	
Boring-3-2.0 (MPE0524-03) Soil	Sampled: 05/08/06 09:45	Receiv	ed: 05/08	/06 18:03					
Motor Oil (C16-C36)	7300	2000	mg/kg	20	6E22049	05/22/06	05/27/06	EPA 8015B-SVOA	HC-12
Diesel Range Organics (C10-C28)	6600	200	"	"	"	"	"	"	HC-12
Surrogate: n-Octacosane		%	40-	120	"	"	"	"	S08
Boring-4-6.0 (MPE0524-04) Soil	Sampled: 05/08/06 10:00	Receiv	ed: 05/08	/06 18:03					
Diesel Range Organics (C10-C28)	3.3	1.0	mg/kg	1	6E22049	05/22/06	05/24/06	EPA 8015B-SVOA	HC-12
Surrogate: n-Octacosane		59 %	40-	120	"	"	"	"	
Boring-5-5.0 (MPE0524-06) Soil	Sampled: 05/08/06 10:35	Receiv	ed: 05/08	/06 18:03					HT-05
Diesel Range Organics (C10-C28)	6.4	1.0	mg/kg	1	6F13043	06/13/06	06/14/06	EPA 8015B-SVOA	HC-12
Surrogate: n-Octacosane		97 %	40-	120	"	"	"	"	
Boring-6-4.0 (MPE0524-07) Soil	Sampled: 05/08/06 10:10	Receiv	ed: 05/08	/06 18:03					HT-05
Diesel Range Organics (C10-C28)	5.7	1.0	mg/kg	1	6F13043	06/13/06	06/14/06	EPA 8015B-SVOA	HC-12
Surrogate: n-Octacosane		107 %	40-	120	"	"	"	"	

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Morgan Hill

	R	eporting	ij ticui	111015					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Boring-2-6.0 (MPE0524-02) Soil	Sampled: 05/08/06 08:50	Receiv	ed: 05/08	3/06 18:03					
Benzene	ND	5.0	ug/kg	1	6E15005	05/15/06	05/15/06	EPA 8260B	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND ND	5.0	"	"	,,	,,	"	"	
Naphthalene	ND ND	5.0	"	"	,,	,,	"	"	
p-Isopropyltoluene	ND ND	5.0	"	"	,,	,,	"	"	
n-Propylbenzene	ND ND	5.0	"	"	"	"	"	"	
п-гторутоениене	ND	3.0	.,				•		

Sequoia Analytical - Morgan Hill

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Morgan Hill

		eporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Boring-2-6.0 (MPE0524-02) Soil	Sampled: 05/08/06 08:50	Receiv	ed: 05/08	/06 18:03					
Styrene	ND	5.0	ug/kg	1	6E15005	05/15/06	05/15/06	EPA 8260B	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Xylenes (total)	ND	5.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		85 %	70-	120	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		91 %	55-	135	"	"	"	"	
Surrogate: Toluene-d8		87 %	75-	115	"	"	"	"	
${\it Surrogate: 4-Bromofluor obenzene}$		87 %	70-	115	"	"	"	"	

Conventional Chemistry Parameters by APHA/EPA Methods Sequoia Analytical - Sacramento

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Boring-1-2.5 (MPE0524-01) Soil	Sampled: 05/08/06 09:10	Receive	ed: 05/08/0	06 18:03					
TRPH Total Solids	1400 93		ng/kg dry by Weight	1	6050290 6050280	05/22/06 05/22/06	05/23/06 05/22/06	SM 5520E&F EPA 160.3	HT-01
Boring-2-6.0 (MPE0524-02) Soil	Sampled: 05/08/06 08:50	Receive	ed: 05/08/0	06 18:03					
TRPH Total Solids Boring-4-6.0 (MPE0524-04) Soil	ND 79 Sampled: 05/08/06 10:00	0.10%	ng/kg dry by Weight ed: 05/08/0	1 " 06 18:03	6050290 6050280	05/22/06 05/22/06	05/23/06 05/22/06	SM 5520E&F EPA 160.3	HT-01
TRPH Total Solids Boring-5-5.0 (MPE0524-06) Soil	ND 98 Sampled: 05/08/06 10:35	0.10%	ng/kg dry by Weight ed: 05/08/0	1 " 06 18:03	6050290 6050280	05/22/06 05/22/06	05/23/06 05/22/06	SM 5520E&F EPA 160.3	HT-01
TRPH Boring-6-4.0 (MPE0524-07) Soil	140 Sampled: 05/08/06 10:10	25 Receive	mg/kg ed: 05/08/0	1 06 18:03	6060182	06/14/06	06/14/06	SM 5520C/F	HT-04
TRPH	ND	25	mg/kg	1	6060182	06/14/06	06/14/06	SM 5520C/F	HT-04

RPD

Brown & Caldwell - Walnut Creek Project: Hanson - Martinez, CA MPE0524
201 North Civic Drive, Suite 115 Project Number: 130641 Reported:
Walnut Creek CA, 94596 Project Manager: Rachel Goldberg 06/14/06 12:13

Purgeable Hydrocarbons by EPA 8015B - Quality Control Sequoia Analytical - Morgan Hill

Spike

550

80.0

ND

65

75

Source

Reporting

100

356

59.8

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6E18013 - EPA 5030B [P/T] /	EPA 8015B-V	OA								
Blank (6E18013-BLK1)				Prepared	& Analyz	ed: 05/18/	06			
Gasoline Range Organics (C4-C12)	ND	100	ug/kg							
Surrogate: 4-Bromofluorobenzene	76.9		"	80.0		96	45-135			
Laboratory Control Sample (6E18013-B	SS1)			Prepared	& Analyz	ed: 05/18/	06			
Gasoline Range Organics (C4-C12)	492	100	ug/kg	550		89	65-125			
Surrogate: 4-Bromofluorobenzene	80.9		"	80.0		101	45-135			
Matrix Spike (6E18013-MS1)	Source: MP	E0524-02		Prepared:	05/18/06	Analyzed	1: 05/19/06			
Gasoline Range Organics (C4-C12)	341	100	ug/kg	550	ND	62	65-125			QM02
Surrogate: 4-Bromofluorobenzene	52.7		"	80.0		66	45-135			
Matrix Spike Dup (6E18013-MSD1)	Source: MP	E0524-02		Prepared:	05/18/06	Analyzed	1: 05/19/06			

ug/kg

Gasoline Range Organics (C4-C12)

Surrogate: 4-Bromofluorobenzene

%REC

65-125

45-135

4

40

RPD

Brown & Caldwell - Walnut Creek Project: Hanson - Martinez, CA MPE0524
201 North Civic Drive, Suite 115 Project Number: 130641 Reported:
Walnut Creek CA, 94596 Project Manager: Rachel Goldberg 06/14/06 12:13

Extractable Hydrocarbons by EPA 8015B - Quality Control Sequoia Analytical - Morgan Hill

Reporting

Spike

Source

%REC

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6E22049 - LUFT-DHS / EPA	8015B-SVOA									
Blank (6E22049-BLK1)				Prepared:	05/22/06	Analyzed	1: 05/24/06			
Diesel Range Organics (C10-C28)	ND	1.0	mg/kg							
Motor Oil (C16-C36)	ND	10	"							
Diesel Range Organics (C10-C28)	ND	1.0	"							
Surrogate: n-Octacosane	1.16		"	1.67		69	40-120			
Surrogate: n-Octacosane	1.16		"	1.67		69	40-120			
Laboratory Control Sample (6E22049-	BS1)			Prepared:	05/22/06	Analyzed	1: 05/24/06			
Diesel Range Organics (C10-C28)	10.6	1.0	mg/kg	16.7		63	60-115			
Diesel Range Organics (C10-C28)	10.6	1.0	"	16.7		63	60-115			
Surrogate: n-Octacosane	1.14		"	1.67		68	40-120			
Surrogate: n-Octacosane	1.14		"	1.67		68	40-120			
Matrix Spike (6E22049-MS1)	Source: MP	E0691-11		Prepared:	05/22/06	Analyzed	1: 05/25/06			
Diesel Range Organics (C10-C28)	54.3	3.0	mg/kg	16.7	59	0	60-115			QM0
Diesel Range Organics (C10-C28)	54.3	3.0	"	16.7	59	0	60-115			QM0
Surrogate: n-Octacosane	4.85		"	1.67		290	40-120			SO
Surrogate: n-Octacosane	4.85		"	1.67		290	40-120			SO
Matrix Spike Dup (6E22049-MSD1)	Source: MP	E0691-11		Prepared:	05/22/06	Analyzed	1: 05/25/06			
Diesel Range Organics (C10-C28)	46.6	3.0	mg/kg	16.7	59	0	60-115	15	40	QM0
Diesel Range Organics (C10-C28)	46.6	3.0	"	16.7	59	0	60-115	15	40	QM0
Surrogate: n-Octacosane	4.68		"	1.67		280	40-120			SO
Surrogate: n-Octacosane	4.68		"	1.67		280	40-120			SO
Batch 6F13043 - EPA 3550B / EPA	8015B-SVOA									
Blank (6F13043-BLK1)				Prepared	& Analyze	ed: 06/13/	06			
Diesel Range Organics (C10-C28)	ND	1.0	mg/kg	-						
Surrogate: n-Octacosane	1.33		"	1.67		80	40-120			

Batch 6F13043 - EPA 3550B / EPA 8015B-SVOA

Brown & Caldwell - Walnut Creek
201 North Civic Drive, Suite 115
Project Number: 130641
Reported:
Walnut Creek CA, 94596
Project Manager: Rachel Goldberg
06/14/06 12:13

Extractable Hydrocarbons by EPA 8015B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Laboratory Control Sample (6F13043-	·BS1)			Prepared &	& Analyz	ed: 06/13	/06
Diesel Range Organics (C10-C28)	14.7	1.0	mg/kg	16.7		88	60-115
Surrogate: n-Octacosane	1.40		"	1.67		84	40-120
Matrix Spike (6F13043-MS1)	Source: MPE	E0524-07		Prepared &	& Analyz	ed: 06/13	/06
Diesel Range Organics (C10-C28)	16.3	1.0	mg/kg	16.7	5.7	63	60-115
Surrogate: n-Octacosane	1.49		"	1.67		89	40-120

Matrix Spike Dup (6F13043-MSD1)	Source: MP	E0524-07		Prepared	& Analyze	ed: 06/13	/06			
Diesel Range Organics (C10-C28)	15.2	1.0	mg/kg	16.7	5.7	57	60-115	7	40	QM02
Surrogate: n-Octacosane	1 42		"	1.67		85	40-120			·

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 6E15005 - EPA 5035 / EPA 8260B

Blank (6E15005-BLK1)				Prepared & Analyzed: 05/15/06
Benzene	ND	5.0	ug/kg	
Bromobenzene	ND	5.0	"	
Bromochloromethane	ND	5.0	"	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	
Bromomethane	ND	5.0	"	
sec-Butylbenzene	ND	5.0	"	
tert-Butylbenzene	ND	5.0	"	
n-Butylbenzene	ND	5.0	"	
Carbon tetrachloride	ND	5.0	"	
Chlorobenzene	ND	5.0	"	
Chloroethane	ND	5.0	"	
Chloroform	ND	5.0	"	
Chloromethane	ND	5.0	"	
2-Chlorotoluene	ND	5.0	"	
4-Chlorotoluene	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
Dibromochloromethane	ND	5.0	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	
Dibromomethane	ND	5.0	"	
1,2-Dichlorobenzene	ND	5.0	"	
1,3-Dichlorobenzene	ND	5.0	"	
1,4-Dichlorobenzene	ND	5.0	"	
Dichlorodifluoromethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
1,1-Dichloroethene	ND	5.0	"	
cis-1,2-Dichloroethene	ND	5.0	"	
trans-1,2-Dichloroethene	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
1,1-Dichloropropene	ND	5.0	"	
Ethylbenzene	ND	5.0	"	
Hexachlorobutadiene	ND	5.0	"	
Isopropylbenzene	ND	5.0	"	

Sequoia Analytical - Morgan Hill

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	ĺ

Blank (6E15005-BLK1)				Prepared & An	alyzed: 05/15/	06
Methylene chloride	ND	5.0	ug/kg			
Naphthalene	ND	5.0	"			
p-Isopropyltoluene	ND	5.0	"			
n-Propylbenzene	ND	5.0	"			
Styrene	ND	5.0	"			
1,1,1,2-Tetrachloroethane	ND	5.0	"			
1,1,2,2-Tetrachloroethane	ND	5.0	"			
Tetrachloroethene	ND	5.0	"			
Toluene	ND	5.0	"			
1,2,3-Trichlorobenzene	ND	5.0	"			
1,2,4-Trichlorobenzene	ND	5.0	"			
1,1,1-Trichloroethane	ND	5.0	"			
1,1,2-Trichloroethane	ND	5.0	"			
Trichloroethene	ND	5.0	"			
Trichlorofluoromethane	ND	5.0	"			
1,2,3-Trichloropropane	ND	5.0	"			
1,2,4-Trimethylbenzene	ND	5.0	"			
1,3,5-Trimethylbenzene	ND	5.0	"			
Vinyl chloride	ND	5.0	"			
Xylenes (total)	ND	5.0	"			
Surrogate: Dibromofluoromethane	4.48		"	5.00	90	70-120
Surrogate: 1,2-Dichloroethane-d4	4.54		"	5.00	91	55-135
Surrogate: Toluene-d8	4.44		"	5.00	89	75-115
Surrogate: 4-Bromofluorobenzene	4.43		"	5.00	89	70-115
Laboratory Control Sample (6E15005-BS1)				Prepared & An	alyzed: 05/15/	06
Benzene	10.2	5.0	ug/kg	10.0	102	75-140
Bromobenzene	10.8	5.0	"	10.0	108	85-130
Bromochloromethane	11.7	5.0	"	10.0	117	65-150
Bromodichloromethane	11.0	5.0	"	10.0	110	85-150
Bromoform	10.5	5.0	"	10.0	105	85-140
Bromomethane	9.04	5.0	"	10.0	90	10-150
sec-Butylbenzene	10.4	5.0	"	10.0	104	85-145
tert-Butylbenzene	10.2	5.0	"	10.0	102	85-140
n-Butylbenzene	10.9	5.0	"	10.0	109	75-150
Carbon tetrachloride	10.8	5.0	"	10.0	108	70-150

Sequoia Analytical - Morgan Hill

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch 6E15005 - EPA 5035 / EPA 8260B

Laboratory Control Sample (6E15005-BS1)				Prepared & A	Analyzed: 05/15/06		
Chlorobenzene	10.2	5.0	ug/kg	10.0	102	85-130	
Chloroethane	7.60	5.0	"	10.0	76	10-150	
Chloroform	10.5	5.0	"	10.0	105	80-140	
Chloromethane	5.16	5.0	"	10.0	52	40-140	
2-Chlorotoluene	10.4	5.0	"	10.0	104	75-140	
4-Chlorotoluene	10.4	5.0	"	10.0	104	75-145	
1,2-Dibromo-3-chloropropane	11.8	5.0	"	10.0	118	60-150	
Dibromochloromethane	11.2	5.0	"	10.0	112	75-150	
1,2-Dibromoethane (EDB)	10.6	5.0	"	10.0	106	85-135	
Dibromomethane	11.3	5.0	"	10.0	113	85-140	
1,2-Dichlorobenzene	10.5	5.0	"	10.0	105	85-130	
1,3-Dichlorobenzene	10.6	5.0	"	10.0	106	85-130	
1,4-Dichlorobenzene	10.6	5.0	"	10.0	106	85-130	
Dichlorodifluoromethane	4.24	5.0	"	10.0	42	10-150	
1,1-Dichloroethane	10.5	5.0	"	10.0	105	75-145	
1,2-Dichloroethane	10.7	5.0	"	10.0	107	65-145	
1,1-Dichloroethene	9.70	5.0	"	10.0	97	70-150	
cis-1,2-Dichloroethene	10.6	5.0	"	10.0	106	85-145	
trans-1,2-Dichloroethene	10.4	5.0	"	10.0	104	75-150	
1,2-Dichloropropane	10.4	5.0	"	10.0	104	85-135	
1,3-Dichloropropane	10.6	5.0	"	10.0	106	85-140	
2,2-Dichloropropane	11.6	5.0	"	10.0	116	80-150	
1,1-Dichloropropene	10.8	5.0	"	10.0	108	80-145	
Ethylbenzene	10.7	5.0	"	10.0	107	85-130	
Hexachlorobutadiene	12.0	5.0	"	10.0	120	85-150	
Isopropylbenzene	9.80	5.0	"	10.0	98	80-120	
Methylene chloride	11.1	5.0	"	10.0	111	65-150	
Naphthalene	13.5	5.0	"	10.0	135	65-150	
p-Isopropyltoluene	10.5	5.0	"	10.0	105	85-140	
n-Propylbenzene	10.2	5.0	"	10.0	102	70-145	
Styrene	10.1	5.0	"	10.0	101	85-135	
1,1,1,2-Tetrachloroethane	10.8	5.0	"	10.0	108	85-140	
1,1,2,2-Tetrachloroethane	10.8	5.0	"	10.0	108	70-140	
Tetrachloroethene	10.9	5.0	"	10.0	109	70-150	
Toluene	10.6	5.0	"	10.0	106	80-135	
1,2,3-Trichlorobenzene	11.0	5.0	"	10.0	110	75-150	

Sequoia Analytical - Morgan Hill

RPD

Brown & Caldwell - Walnut Creek Project: Hanson - Martinez, CA MPE0524
201 North Civic Drive, Suite 115 Project Number: 130641 Reported:
Walnut Creek CA, 94596 Project Manager: Rachel Goldberg 06/14/06 12:13

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Spike

Source

%REC

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6E15005 - EPA 5035 / EPA	8260B									
Laboratory Control Sample (6E1500	5-BS1)			Prepared	& Analyz	ed: 05/15/	06			
1,2,4-Trichlorobenzene	11.3	5.0	ug/kg	10.0		113	75-150			
1,1,1-Trichloroethane	10.9	5.0	"	10.0		109	75-150			
1,1,2-Trichloroethane	10.8	5.0	"	10.0		108	85-135			
Trichloroethene	10.3	5.0	"	10.0		103	65-150			
Trichlorofluoromethane	8.19	5.0	"	10.0		82	45-150			
1,2,3-Trichloropropane	10.4	5.0	"	10.0		104	65-140			
1,2,4-Trimethylbenzene	10.8	5.0	"	10.0		108	70-150			
1,3,5-Trimethylbenzene	10.6	5.0	"	10.0		106	75-145			
Vinyl chloride	6.56	5.0	"	10.0		66	25-150			
Xylenes (total)	33.2	5.0	"	30.0		111	85-135			
Surrogate: Dibromofluoromethane	4.67		"	5.00		93	70-120			
Surrogate: 1,2-Dichloroethane-d4	4.53		"	5.00		91	55-135			
Surrogate: Toluene-d8	4.48		"	5.00		90	75-115			
Surrogate: 4-Bromofluorobenzene	4.53		"	5.00		91	70-115			
Matrix Spike (6E15005-MS1)	Source: MP	E0331-03		Prepared	& Analyz	ed: 05/15/	06			
Benzene	9.81	5.0	ug/kg	10.0	ND	98	75-140			
Bromobenzene	9.37	5.0	"	10.0	ND	94	85-130			
Bromochloromethane	11.2	5.0	"	10.0	ND	112	65-150			
Bromodichloromethane	10.1	5.0	"	10.0	ND	101	85-150			
Bromoform	8.80	5.0	"	10.0	ND	88	85-140			
Bromomethane	8.93	5.0	"	10.0	ND	89	10-150			
sec-Butylbenzene	7.72	5.0	"	10.0	ND	77	85-145			QM0
tert-Butylbenzene	8.14	5.0	"	10.0	ND	81	85-140			QM0
n-Butylbenzene	7.13	5.0	"	10.0	ND	71	75-150			QM0
Carbon tetrachloride	10.3	5.0	"	10.0	ND	103	70-150			
Chlorobenzene	9.48	5.0	"	10.0	ND	95	85-130			
Chloroethane	9.07	5.0	"	10.0	ND	91	10-150			
Chloroform	10.2	5.0	"	10.0	ND	102	80-140			
Chloromethane	7.97	5.0	"	10.0	ND	80	40-140			
2-Chlorotoluene	8.99	5.0	"	10.0	ND	90	75-140			
4-Chlorotoluene	9.00	5.0	"	10.0	ND	90	75-145			
1,2-Dibromo-3-chloropropane	9.55	5.0	"	10.0	ND	96	60-150			
Dibromochloromethane	10.0	5.0	"	10.0	ND	100	75-150			
1,2-Dibromoethane (EDB)	9.53	5.0	"	10.0	ND	95	85-135			
Dibromomethane	10.3	5.0	"	10.0	ND	103	85-140			

Sequoia Analytical - Morgan Hill

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch 6E15005 - EPA 5035 / EPA 8260B

Matrix Spike (6E15005-MS1)	Source: MP	E0331-03		Prepared 6	& Analyze	ed: 05/15/	/06	
1,2-Dichlorobenzene	8.24	5.0	ug/kg	10.0	ND	82	85-130	QM02
1,3-Dichlorobenzene	8.73	5.0	"	10.0	ND	87	85-130	
1,4-Dichlorobenzene	8.73	5.0	"	10.0	ND	87	85-130	
Dichlorodifluoromethane	7.50	5.0	"	10.0	ND	75	10-150	
1,1-Dichloroethane	10.2	5.0	"	10.0	ND	102	75-145	
1,2-Dichloroethane	10.0	5.0	"	10.0	ND	100	65-145	
1,1-Dichloroethene	10.6	5.0	"	10.0	ND	106	70-150	
cis-1,2-Dichloroethene	10.8	5.0	"	10.0	ND	108	85-145	
trans-1,2-Dichloroethene	10.7	5.0	"	10.0	ND	107	75-150	
1,2-Dichloropropane	9.96	5.0	"	10.0	ND	100	85-135	
1,3-Dichloropropane	9.75	5.0	"	10.0	ND	98	85-140	
2,2-Dichloropropane	11.2	5.0	"	10.0	ND	112	80-150	
1,1-Dichloropropene	10.4	5.0	"	10.0	ND	104	80-145	
Ethylbenzene	9.57	5.0	"	10.0	0.20	94	85-130	
Hexachlorobutadiene	5.41	5.0	"	10.0	ND	54	85-150	QM02
Isopropylbenzene	8.09	5.0	"	10.0	ND	81	80-120	
Methylene chloride	13.4	5.0	"	10.0	1.5	119	65-150	
Naphthalene	7.90	5.0	"	10.0	2.8	51	65-150	QM02
p-Isopropyltoluene	7.75	5.0	"	10.0	ND	78	85-140	QM02
n-Propylbenzene	8.47	5.0	"	10.0	0.11	84	70-145	
Styrene	8.73	5.0	"	10.0	ND	87	85-135	
1,1,1,2-Tetrachloroethane	10.0	5.0	"	10.0	ND	100	85-140	
1,1,2,2-Tetrachloroethane	9.59	5.0	"	10.0	ND	96	70-140	
Tetrachloroethene	9.85	5.0	"	10.0	ND	98	70-150	
Toluene	9.63	5.0	"	10.0	0.45	92	80-135	
1,2,3-Trichlorobenzene	6.17	5.0	"	10.0	ND	62	75-150	QM02
1,2,4-Trichlorobenzene	6.99	5.0	"	10.0	ND	70	70-150	
1,1,1-Trichloroethane	10.8	5.0	"	10.0	ND	108	75-150	
1,1,2-Trichloroethane	9.60	5.0	"	10.0	ND	96	85-135	
Trichloroethene	10.0	5.0	"	10.0	ND	100	65-150	
Trichlorofluoromethane	9.12	5.0	"	10.0	ND	91	45-150	
1,2,3-Trichloropropane	9.21	5.0	"	10.0	ND	92	65-140	
1,2,4-Trimethylbenzene	8.21	5.0	"	10.0	0.54	77	70-150	
1,3,5-Trimethylbenzene	8.54	5.0	"	10.0	0.13	84	75-145	
Vinyl chloride	9.39	5.0	"	10.0	ND	94	25-150	
Xylenes (total)	29.4	5.0	"	30.0	1.3	94	85-135	

Sequoia Analytical - Morgan Hill

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch 6E15005 - EPA 5035 / EPA 8260B

Matrix Spike (6E15005-MS1)	Source: MPI	E0331-03		Prepared & Analyzed: 05/15/06			'06	
Surrogate: Dibromofluoromethane	4.54		ug/kg	5.00		91	70-120	
Surrogate: 1,2-Dichloroethane-d4	4.34		"	5.00		87	55-135	
Surrogate: Toluene-d8	4.48		"	5.00		90	75-115	
Surrogate: 4-Bromofluorobenzene	4.61		"	5.00		92	70-115	
Matrix Spike (6E15005-MS2)	Source: MPI	E0331-03R	E1	Prepared &	& Analyze	ed: 05/15/	06	
Benzene	9.81	5.0	ug/kg	10.0	ND	98	75-140	
Bromobenzene	9.37	5.0	"	10.0	ND	94	85-130	
Bromochloromethane	11.2	5.0	"	10.0	ND	112	65-150	
Bromodichloromethane	10.1	5.0	"	10.0	ND	101	85-150	
Bromoform	8.80	5.0	"	10.0	ND	88	85-140	
Bromomethane	8.93	5.0	"	10.0	ND	89	10-150	
sec-Butylbenzene	7.72	5.0	"	10.0	ND	77	85-145	QM02
tert-Butylbenzene	8.14	5.0	"	10.0	ND	81	85-140	QM02
n-Butylbenzene	7.13	5.0	"	10.0	ND	71	75-150	QM02
Carbon tetrachloride	10.3	5.0	"	10.0	ND	103	70-150	
Chlorobenzene	9.48	5.0	"	10.0	ND	95	85-130	
Chloroethane	9.07	5.0	"	10.0	ND	91	10-150	
Chloroform	10.2	5.0	"	10.0	ND	102	80-140	
Chloromethane	7.97	5.0	"	10.0	ND	80	40-140	
2-Chlorotoluene	8.99	5.0	"	10.0	ND	90	75-140	
4-Chlorotoluene	9.00	5.0	"	10.0	ND	90	75-145	
1,2-Dibromo-3-chloropropane	9.55	5.0	"	10.0	ND	96	60-150	
Dibromochloromethane	10.0	5.0	"	10.0	ND	100	75-150	
1,2-Dibromoethane (EDB)	9.53	5.0	"	10.0	ND	95	85-135	
Dibromomethane	10.3	5.0	"	10.0	ND	103	85-140	
1,2-Dichlorobenzene	8.24	5.0	"	10.0	ND	82	85-130	QM02
1,3-Dichlorobenzene	8.73	5.0	"	10.0	ND	87	85-130	
1,4-Dichlorobenzene	8.73	5.0	"	10.0	ND	87	85-130	
Dichlorodifluoromethane	7.50	5.0	"	10.0	ND	75	10-150	
1,1-Dichloroethane	10.2	5.0	"	10.0	ND	102	75-145	
1,2-Dichloroethane	10.0	5.0	"	10.0	ND	100	65-145	
1,1-Dichloroethene	10.6	5.0	"	10.0	ND	106	70-150	
cis-1,2-Dichloroethene	10.8	5.0	"	10.0	ND	108	85-145	
trans-1,2-Dichloroethene	10.7	5.0	"	10.0	ND	107	75-150	
1,2-Dichloropropane	9.96	5.0	"	10.0	ND	100	85-135	

Sequoia Analytical - Morgan Hill

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 6E15005 - EPA 5035 / EPA 8260B

Matrix Spike (6E15005-MS2)	Source: MP	E0331-03R	RE1	Prepared &	& Analyze	ed: 05/15/	'06	
1,3-Dichloropropane	9.75	5.0	ug/kg	10.0	ND	98	85-140	
2,2-Dichloropropane	11.2	5.0	"	10.0	ND	112	80-150	
1,1-Dichloropropene	10.4	5.0	"	10.0	ND	104	80-145	
Ethylbenzene	9.57	5.0	"	10.0	0.20	94	85-130	
Hexachlorobutadiene	5.41	5.0	"	10.0	ND	54	85-150	QM02
Isopropylbenzene	8.09	5.0	"	10.0	ND	81	80-120	
Methylene chloride	13.4	5.0	"	10.0	1.5	119	65-150	
Naphthalene	7.90	5.0	"	10.0	2.8	51	65-150	QM02
p-Isopropyltoluene	7.75	5.0	"	10.0	ND	78	85-140	QM02
n-Propylbenzene	8.47	5.0	"	10.0	0.11	84	70-145	
Styrene	8.73	5.0	"	10.0	ND	87	85-135	
1,1,1,2-Tetrachloroethane	10.0	5.0	"	10.0	ND	100	85-140	
1,1,2,2-Tetrachloroethane	9.59	5.0	"	10.0	ND	96	70-140	
Tetrachloroethene	9.85	5.0	"	10.0	ND	98	70-150	
Toluene	9.63	5.0	"	10.0	0.45	92	80-135	
1,2,3-Trichlorobenzene	6.17	5.0	"	10.0	ND	62	75-150	QM02
1,2,4-Trichlorobenzene	6.99	5.0	"	10.0	ND	70	70-150	
1,1,1-Trichloroethane	10.8	5.0	"	10.0	ND	108	75-150	
1,1,2-Trichloroethane	9.60	5.0	"	10.0	ND	96	85-135	
Trichloroethene	10.0	5.0	"	10.0	ND	100	65-150	
Trichlorofluoromethane	9.12	5.0	"	10.0	ND	91	45-150	
1,2,3-Trichloropropane	9.21	5.0	"	10.0	ND	92	65-140	
1,2,4-Trimethylbenzene	8.21	5.0	"	10.0	0.54	77	70-150	
1,3,5-Trimethylbenzene	8.54	5.0	"	10.0	0.13	84	75-145	
Vinyl chloride	9.39	5.0	"	10.0	ND	94	25-150	
Xylenes (total)	29.4	5.0	"	30.0	1.3	94	85-135	
Surrogate: Dibromofluoromethane	4.54		"	5.00		91	70-120	
Surrogate: 1,2-Dichloroethane-d4	4.34		"	5.00		87	55-135	
Surrogate: Toluene-d8	4.48		"	5.00		90	75-115	
Surrogate: 4-Bromofluorobenzene	4.61		"	5.00		92	70-115	

Batch 6E15005 - EPA 5035 / EPA 8260B

Matrix Spike Dup (6E15005-MSD1)

Benzene

Brown & Caldwell - Walnut Creek Project: Hanson - Martinez, CA MPE0524
201 North Civic Drive, Suite 115 Project Number: 130641 Reported:
Walnut Creek CA, 94596 Project Manager: Rachel Goldberg 06/14/06 12:13

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

ug/kg

Prepared & Analyzed: 05/15/06

101

75-140

3

4

0.9

0

3

2

0

3

5

3

8

25

25

20

30

20

20

20

25

20

25

20

20

ND

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

ND

ND

ND

ND

ND

ND

ND

ND

0.20

ND

ND

104

107

108

110

103

100

112

107

99

56

88

65-145

70-150

85-145

75-150

85-135

85-140

80-150

80-145

85-130

85-150

80-120

Source: MPE0331-03

5.0

10.1

10.4

10.7

10.8

11.0

10.3

9.96

11.2

10.7

10.1

5.58

8.77

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

"

Benzene	10.1	5.0	ug/Kg	10.0	110	101	75 140	5	20	
Bromobenzene	11.0	5.0	"	10.0	ND	110	85-130	16	20	
Bromochloromethane	11.2	5.0	"	10.0	ND	112	65-150	0	20	
Bromodichloromethane	10.5	5.0	"	10.0	ND	105	85-150	4	20	
Bromoform	9.36	5.0	"	10.0	ND	94	85-140	6	15	
Bromomethane	9.30	5.0	"	10.0	ND	93	10-150	4	40	
sec-Butylbenzene	8.82	5.0	"	10.0	ND	88	85-145	13	20	
tert-Butylbenzene	9.49	5.0	"	10.0	ND	95	85-140	15	20	
n-Butylbenzene	7.33	5.0	"	10.0	ND	73	75-150	3	20	QM02
Carbon tetrachloride	10.6	5.0	"	10.0	ND	106	70-150	3	20	
Chlorobenzene	10.0	5.0	"	10.0	ND	100	85-130	5	15	
Chloroethane	9.59	5.0	"	10.0	ND	96	10-150	6	40	
Chloroform	10.5	5.0	"	10.0	ND	105	80-140	3	20	
Chloromethane	7.92	5.0	"	10.0	ND	79	40-140	0.6	40	
2-Chlorotoluene	10.6	5.0	"	10.0	ND	106	75-140	16	20	
4-Chlorotoluene	10.5	5.0	"	10.0	ND	105	75-145	15	20	
1,2-Dibromo-3-chloropropane	10.2	5.0	"	10.0	ND	102	60-150	7	20	
Dibromochloromethane	10.3	5.0	"	10.0	ND	103	75-150	3	20	
1,2-Dibromoethane (EDB)	9.52	5.0	"	10.0	ND	95	85-135	0.1	20	
Dibromomethane	10.8	5.0	"	10.0	ND	108	85-140	5	20	
1,2-Dichlorobenzene	9.31	5.0	"	10.0	ND	93	85-130	12	20	
1,3-Dichlorobenzene	10.1	5.0	"	10.0	ND	101	85-130	15	20	
1,4-Dichlorobenzene	10.1	5.0	"	10.0	ND	101	85-130	15	25	
Dichlorodifluoromethane	7.23	5.0	"	10.0	ND	72	10-150	4	35	
1,1-Dichloroethane	10.4	5.0	"	10.0	ND	104	75-145	2	20	

Sequoia Analytical - Morgan Hill

1,2-Dichloroethane

1,1-Dichloroethene cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

1,1-Dichloropropene

Hexachlorobutadiene

Isopropylbenzene

Ethylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

QM02

RPD

Brown & Caldwell - Walnut Creek
201 North Civic Drive, Suite 115
Project Number: 130641
Walnut Creek CA, 94596
Project Manager: Rachel Goldberg
MPE0524
Reported:
06/14/06 12:13

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Spike

Source

Reporting

Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
60B									
Source: MP	E0331-03		Prepared of	& Analyzo	ed: 05/15/0	06			
13.6	5.0	ug/kg	10.0	1.5	121	65-150	1	35	
7.67	5.0	"	10.0	2.8	49	65-150	3	20	QM02
7.92	5.0	"	10.0	ND	79	85-140	2	20	QM02
9.79	5.0	"	10.0	0.11	97	70-145	14	20	
9.03	5.0	"	10.0	ND	90	85-135	3	15	
10.4	5.0	"	10.0	ND	104	85-140	4	20	
10.6	5.0	"	10.0	ND	106	70-140	10	20	
10.4	5.0	"	10.0	ND	104	70-150	5	20	
9.98	5.0	"	10.0	0.45	95	80-135	4	20	
6.31	5.0	"	10.0	ND	63	75-150	2	20	QM02
7.27	5.0	"	10.0	ND	73	70-150	4	20	
11.2	5.0	"	10.0	ND	112	75-150	4	20	
9.94	5.0	"	10.0	ND	99	85-135	3	20	
10.2	5.0	"	10.0	ND	102	65-150	2	20	
9.47	5.0	"	10.0	ND	95	45-150	4	40	
10.2	5.0	"	10.0	ND	102	65-140	10	20	
8.96	5.0	"	10.0	0.54	84	70-150	9	20	
9.81	5.0	"	10.0	0.13	97	75-145	14	20	
9.23	5.0	"	10.0	ND	92	25-150	2	40	
30.8	5.0	"	30.0	1.3	98	85-135	5	20	
4.63		"	5.00		93	70-120			
4.31		"	5.00		86	55-135			
4.37		"	5.00		87	75-115			
4.45		"	5.00		89	70-115			
Source: MP	E0331-03R	E1	Prepared of	& Analyze	ed: 05/15/0	06			
10.1	5.0	ug/kg	10.0	ND	101	75-140	3	20	
11.0	5.0	"	10.0	ND	110	85-130	16	20	
11.2	5.0	"	10.0	ND	112	65-150	0	20	
10.5	5.0	"	10.0	ND	105	85-150	4	20	
9.36	5.0	"	10.0	ND	94	85-140	6	15	
9.30	5.0	"	10.0	ND	93	10-150	4	40	
8.82	5.0	"	10.0	ND	88	85-145	13	20	
9.49	5.0	"	10.0	ND	95	85-140	15	20	
7.33	5.0	"	10.0	ND	73	75-150	3	20	QM02
10.6	5.0	"	10.0	ND	106	70-150	3	20	•
	Source: MP 13.6 7.67 7.92 9.79 9.03 10.4 10.6 10.4 9.98 6.31 7.27 11.2 9.94 10.2 9.47 10.2 8.96 9.81 9.23 30.8 4.63 4.31 4.37 4.45 Source: MP 10.1 11.0 11.2 10.5 9.36 9.30 8.82 9.49 7.33	Source: MPE0331-03 13.6 7.67 5.0 7.92 5.0 9.79 5.0 10.4 5.0 10.6 5.0 10.4 5.0 9.98 5.0 6.31 5.0 7.27 5.0 11.2 5.0 9.94 5.0 10.2 5.0 9.47 5.0 10.2 5.0 9.81 5.0 9.81 5.0 9.81 5.0 9.83 5.0 4.63 4.31 4.37 4.45 Source: MPE0331-03R 10.1 5.0 11.2 5.0 9.36 5.0 9.30 5.0 9.30 5.0 9.30 5.0 9.49 5.0 9.49 5.0	Source: MPE0331-03	Source: MPE0331-03	Source: MPE0331-03	Source: MPE0331-03	Note Note	Source: MPE0331-03	

Sequoia Analytical - Morgan Hill

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

%REC

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch	OF12002 -	· EPA 5035 /	EPA 8200B

Matrix Spike Dup (6E15005-MSD2)	Source: MPE0331-03RE1			Prepared & Analyzed: 05/15/06						
Chlorobenzene	10.0	5.0	ug/kg	10.0	ND	100	85-130	5	15	
Chloroethane	9.59	5.0	"	10.0	ND	96	10-150	6	40	
Chloroform	10.5	5.0	"	10.0	ND	105	80-140	3	20	
Chloromethane	7.92	5.0	"	10.0	ND	79	40-140	0.6	40	
2-Chlorotoluene	10.6	5.0	"	10.0	ND	106	75-140	16	20	
4-Chlorotoluene	10.5	5.0	"	10.0	ND	105	75-145	15	20	
1,2-Dibromo-3-chloropropane	10.2	5.0	"	10.0	ND	102	60-150	7	20	
Dibromochloromethane	10.3	5.0	"	10.0	ND	103	75-150	3	20	
1,2-Dibromoethane (EDB)	9.52	5.0	"	10.0	ND	95	85-135	0.1	20	
Dibromomethane	10.8	5.0	"	10.0	ND	108	85-140	5	20	
1,2-Dichlorobenzene	9.31	5.0	"	10.0	ND	93	85-130	12	20	
1,3-Dichlorobenzene	10.1	5.0	"	10.0	ND	101	85-130	15	20	
1,4-Dichlorobenzene	10.1	5.0	"	10.0	ND	101	85-130	15	25	
Dichlorodifluoromethane	7.23	5.0	"	10.0	ND	72	10-150	4	35	
1,1-Dichloroethane	10.4	5.0	"	10.0	ND	104	75-145	2	20	
1,2-Dichloroethane	10.4	5.0	"	10.0	ND	104	65-145	4	25	
1,1-Dichloroethene	10.7	5.0	"	10.0	ND	107	70-150	0.9	25	
cis-1,2-Dichloroethene	10.8	5.0	"	10.0	ND	108	85-145	0	20	
trans-1,2-Dichloroethene	11.0	5.0	"	10.0	ND	110	75-150	3	30	
1,2-Dichloropropane	10.3	5.0	"	10.0	ND	103	85-135	3	20	
1,3-Dichloropropane	9.96	5.0	"	10.0	ND	100	85-140	2	20	
2,2-Dichloropropane	11.2	5.0	"	10.0	ND	112	80-150	0	20	
1,1-Dichloropropene	10.7	5.0	"	10.0	ND	107	80-145	3	25	
Ethylbenzene	10.1	5.0	"	10.0	0.20	99	85-130	5	20	
Hexachlorobutadiene	5.58	5.0	"	10.0	ND	56	85-150	3	25	QM02
Isopropylbenzene	8.77	5.0	"	10.0	ND	88	80-120	8	20	
Methylene chloride	13.6	5.0	"	10.0	1.5	121	65-150	1	35	
Naphthalene	7.67	5.0	"	10.0	2.8	49	65-150	3	20	QM02
p-Isopropyltoluene	7.92	5.0	"	10.0	ND	79	85-140	2	20	QM02
n-Propylbenzene	9.79	5.0	"	10.0	0.11	97	70-145	14	20	
Styrene	9.03	5.0	"	10.0	ND	90	85-135	3	15	
1,1,1,2-Tetrachloroethane	10.4	5.0	"	10.0	ND	104	85-140	4	20	
1,1,2,2-Tetrachloroethane	10.6	5.0	"	10.0	ND	106	70-140	10	20	
Tetrachloroethene	10.4	5.0	"	10.0	ND	104	70-150	5	20	
Toluene	9.98	5.0	"	10.0	0.45	95	80-135	4	20	
1,2,3-Trichlorobenzene	6.31	5.0	"	10.0	ND	63	75-150	2	20	QM02

Sequoia Analytical - Morgan Hill

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 6E15005 - EPA 5035 / EPA 8260B

Matrix Spike Dup (6E15005-MSD2)	Source: MPI	E0331-03R	RE1	Prepared 6	& Analyze	ed: 05/15/	/06			
1,2,4-Trichlorobenzene	7.27	5.0	ug/kg	10.0	ND	73	70-150	4	20	
1,1,1-Trichloroethane	11.2	5.0	"	10.0	ND	112	75-150	4	20	
1,1,2-Trichloroethane	9.94	5.0	"	10.0	ND	99	85-135	3	20	
Trichloroethene	10.2	5.0	"	10.0	ND	102	65-150	2	20	
Trichlorofluoromethane	9.47	5.0	"	10.0	ND	95	45-150	4	40	
1,2,3-Trichloropropane	10.2	5.0	"	10.0	ND	102	65-140	10	20	
1,2,4-Trimethylbenzene	8.96	5.0	"	10.0	0.54	84	70-150	9	20	
1,3,5-Trimethylbenzene	9.81	5.0	"	10.0	0.13	97	75-145	14	20	
Vinyl chloride	9.23	5.0	"	10.0	ND	92	25-150	2	40	
Xylenes (total)	30.8	5.0	"	30.0	1.3	98	85-135	5	20	
Surrogate: Dibromofluoromethane	4.63		"	5.00		93	70-120			
Surrogate: 1,2-Dichloroethane-d4	4.31		"	5.00		86	55-135			
Surrogate: Toluene-d8	4.37		"	5.00		87	75-115			
Surrogate: 4-Bromofluorobenzene	4.45		"	5.00		89	70-115			

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control Sequoia Analytical - Sacramento

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6050280 - General Preparatio	on / EPA 160.3									
Duplicate (6050280-DUP1)	Source: S6	05319-01		Prepared &	& Analyz	ed: 05/22/0	06			
Total Solids	55.7	0.10	% by Weigh	t	56.6			2	20	
Batch 6060182 - EPA 3550B. / SM 5	520C/F									
Blank (6060182-BLK1)				Prepared &	& Analyz	ed: 06/14/0	06			
TRPH	ND	25	mg/kg							
Laboratory Control Sample (6060182-B	S1)			Prepared &	& Analyz	ed: 06/14/0	06			
TRPH	370	25	mg/kg	400		92	70-130			
Laboratory Control Sample Dup (60601	82-BSD1)			Prepared &	& Analyz	ed: 06/14/0	06			
TRPH	375	25	mg/kg	400		94	70-130	1	30	
Batch 6050290 - EPA 3550B. / SM 5	520E&F									
Blank (6050290-BLK1)				Prepared:	05/22/06	Analyzed	: 05/23/06			
TRPH	ND	50	mg/kg wet	-		· · · · ·				
Laboratory Control Sample (6050290-B	S1)			Prepared:	05/22/06	Analyzed	: 05/23/06			
TRPH	2530	50	mg/kg wet	2500		101	70-130			
Matrix Spike (6050290-MS1)	Source: M	PE0524-04		Prepared:	05/22/06	Analyzed	: 05/23/06			
TRPH	2520	50	mg/kg dry	2540	ND	99	60-140			
Matrix Spike Dup (6050290-MSD1)	Source: M	PE0524-04		Prepared:	05/22/06	Analyzed	: 05/23/06			
TRPH	2540	50	mg/kg dry	2540	ND	100	60-140	0.8	30	

Notes and Definitions

S08	The surrogate recovery for this sample is not available due to sample dilution which was required by high analyte concentration and/or matrix interference.
S04	The surrogate recovery for this sample is above control limits due to interference from the sample matrix.
QM02	The spike recovery was below control limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
HT-05	This sample was requested to be analyzed beyond the EPA recommended holding time.

HT-04	This sample was analyzed beyond the EPA recommended holding time.

This sample was received beyond the EPA recommended holding time.

HC-12 Hydrocarbon pattern is present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified

NR Not Reported

HT-01

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Santa Clara Valley Water District

CHAIN OF CUSTODY

750 Almaden Expressway
San Jose, CA 95118-3614
Phone: (408) 265-2600
EA V+ (400) 1000 0074

FC 1019 (11-06-00)

hone: (408) 265-2600	Duals at/Oits No.																										
AX: (408) 266-0271	Project/Site Nan							4						Labo		ሃ: كات											
	Project Number:		7 6777	24eTE	12 12	7 7) 7(4	7/	57 <i>Y</i> ,	<i>??</i> ∩#	26114	(6)											************	**********			·	
	i roject (dilipe).	6077	1054												piea A-d	by (F	rint):		,		- H1	PEt	42	! ¢)		
	Site Location:	THOMP	earl CR	SEK-												d By			- (, 		Name of Street, or other Desired		/		_
		11101710		· ·											er.	4 21	(4-1)		•								
•						ē						//				<u>/</u> />/						//	//	//	//	$\overline{/}$	7
					Samples	und Tim		, e ⁵ /		WI W	h/	\vi_0	KARA	/,	CONTRACT							/ /si:	Jan.	<i>-</i> / 1	OF STATES	J. S. L. L.	
Sample ID#	. 115	Date Sampled	Time Sampled	Matrix	ठ	Turn Around Time	Ari	101 K	, \$\frac{1}{2}	Service Control	300 PM	3) (2)	WOLU				1958)	9 ⁹ /3		Pin Kr		ZEMI	ARK		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		I)
OGTPC OIA	ěl	5/18/00		5	3	10	~	v	<u>~</u>	~	<u>~</u>	<u>~</u>	[v]		<u>~</u>	ر س	v	U	J	V			·	v			_
OGTPC OIB Com	posite	5/10/6		5	3	10																				\top	_
D6 TPC OLC		5/10/00		5	3	10																					_
OGTPCOZA 7 COM	posite iv	5/10/0c		5	4	10	~	~	v	0	J	V	U	J	V	v	7	/	1	/		·	1	v/			-
OGTPC OZB -	υ	5/18/06		5	H	(0																					
06 DUPLICATE OSA -	composite of	5/18/06		5	4	10	~	~	V	~	~	U	V	S	ں	V	U	J	U	J			7	V			
OLDUPULATE 058	L	5/18/06		5	H	10															_			Ì			_
OGTPC OCCI	25/	5/18/06		5	8	10	\ \	5	V	v	U	ν	J	V	V	V	/	U	7	/	`	•					_
OBTPC ORI	05	5/18/06		5	1	10															✓	V	•				
															ļ						j						
			ſs	end FAX	(Rasu	lte fo:		-							l Di	istrict .	Anne	nuoli		 .							_
IATRIX ABBREVIATION -∙Soil	= S; Water = W	f; Product	= P				704	tn '	914	AY						ulhoriz											
			L		-								······							00	ני	109	54				_
Relinquished By			· · · · · · · · · · · · · · · · · · ·	<u> </u>	7° 70	Re	ceiv	/ed E	3v		·	<u> </u>	• • • • • • • • • • • • • • • • • • • •											$\overline{}$			
(Signatures)/Affiliation:	Plea	se Print Na	ame 		(§	Signat				ion		_		Ple	ase	Prir	nt Na	ame	<u> </u>			Dat	.e		Tir	me	
Chillmonty LAX	5 David	Gathra	lge_		<i>/</i>)_	12	P	2	<u> </u>	(Sex)	nu)) ′	Ja	ነ <u>ጎ</u>	_/-	013	<i>ያ</i> ኈς				5	18	1.6	_	19 Z	<u>-J_</u>	
The state of the s								-																+			_
RIGINAL-RETURN TO I	 DISTRICT WITH RE	SULTS, YEL	LOW-Labor	atory, P	INK-I	District											•									7	

Santa Clara Valley Water District

RIGINAL-RETURN TO DISTRICT WITH RESULTS, YELLOW-Laboratory, PINK-District

CHAIN OF CUSTODY

FC 1019 (11-06-00)

Z of **Z**

Page

5750 Almaden Expressway San Jose, CA 95118-3614	O																								FC 101	19 (11-06-0
Phone: (408) 265-2600 FAX: (408) 266-0271	Project/Site Na	ıme:												Lab	orato	ÿ:										
	2006	SEDIME	NT CHA	PACT	ENSI	24TT	ەلم	51	7-2019	DLIN	کاد				SEC	عرو	>()	7								
	Project Numbe								-					San	pled	by (F	rint):								-	
		77105	4											1	A <	15						***************************************		-		
	Site Location:	tr cr	EEK	ANI)	(O H	576	<u> </u>			•			J	ueste o <i>H</i>			,			M	PE	'bl	24	<u> </u>	
				T	f Samples	Turn Around Time		NO /	QE CILL	Self of the self o	S CAS				1 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10 m	(4) (4)				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1/	America		2 Ville (C)
Sample ID#		Date Sampled	Time Sampled	Matrix	No. of	Tum/	P.Z		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(6 ^X)	/ Q"	/8 ¹ /	/ E	\ \sigma^{\infty}	6	/ <i>i</i> Ż	10	//	7 X		/ /F	<i>Y ^</i> ₹ 5 M	ijark	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2/8	
065CLOCC1	64	5/18/06		5	8	10	V	V		~	√	~	\ <u></u>	1	V		v	7		~	<i></i>	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Π		
OGSCL ORI	67	5/18/06		5	1	10																	Ť	~		
06 DUPLICATE 07	~ 8	5/18/06		5	ı	10				,								,				<u> </u>	,	1	~	
06 SCL OCC 2	٥٩	5/18/06		5	8	(0		~		✓	1	~	J	J	1		1	J		J	1	1	1			
06 SCLORZ	10	5/18/06		5	I	10										<u>.</u> .								/	V	
066700661	11	5/18/06		5	9	10		V	<i>y</i>	V	1	1	✓	V	√	<u>/</u>	✓	✓	√	v	U	<i>V</i>	V	_	\vdash	<u> </u>
06 DUPLICATE 02	12	5/18/06		5	8	10	 	~	J	\ \	 	V	Ş	V	1	-	·	√ √			1	1	V			+-
O6 CTCORI	13	5/18/06		5	(10				Ť														1	1	
																								·		
MATRIX ABBREVIATION - Soil	= S; Water = \	V; Product	= P	Send FA	X Resu	ulls to:	٩٥٢	tm .	340	4~~							Appro zation		0	رر دا	<u>ጉ</u>	105	4			
Relinguished By (Signatures)/Affiliation:	Ple	ase Print N	ame		— (i	Re Signat		ved f s)/Af		ion				Ple	ease	Prir	nt Na	ame		*		Da	te	$\overline{}$	Ti-	me
lebrel yely LA45	D241	d Gothn	dge		7	20)(5	«a/	/ Mh)	J,	94	A	317	? L C,				S	118	10k	٤	[4	125
					/							-												_		

SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG

CLIENT NAME:	Seund			DATE REC'D AT LAB:	6-18-6		,	•	For Regulat DRINKING V	ory Purposes? NATER YES (NO
REC. BY (PRINT)	EB /JA			TIME REC'D AT LAB:	192	5			WASTE WA	
WORKORDER:	MPEBL29	<i>c</i>		DATE LOGGED IN:	5-1	9-04			HWOTH HW	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	t y					·				- P
· OPOLETUE ADDRO	OPRIATE RESPONSE	LAB	DASH	CLIENT ID	CONTAINER	PRESERV	рН	SAMPLE	DATE	REMARKS: CONDITION (ETC.)
CIRCLE THE APPRO	OF MIATE TIEONOMOE	SAMPLE#	#	CLIENT ID	DESCRIPTION	ATIVE		MATRIX	SAMPLED	CONDITION (2.09)
1. Custody Seal(s)	Present / Absent									
1. Gustody Seat(s)	intact / Broken*							<u> </u>		
2. Chain-of-Custody.	Rresept Absent*			1				-		
3. Traffic Reports or								<u> </u>		
Packing List:	Present / Absent	-				ļ	,			
4. Airbill:	Airbill / Sticker			1			·	 	-	
4.70	Present / Absent					ļ	<u></u>	1017		
5. Airbill #:								M		
6. Sample Labels:	Present) Absent		<u> </u>	<u></u>	<u> </u>	<u> </u>	1.4.		<u> </u>	
7. Sample IDs:	Listed / Not Listed				<u> </u>	╁┷╾┼	1.4./		 	
	on Chain-of-Custody		<u> </u>		 	6	\$ P.		· ·	
8. Sample Condition:	Intact/)Broken*/				<u> </u>	1-7		 	<u> </u>	
6	Leaking*	<u> </u>	ļ	·	ļ		 		<u> </u>	
9. Does information of		ļ	<u> </u>		₩ 6	/	+	-		I.
traffic reports and	sample labels	<u> </u>			J. J.	1	1			
agree?	Yes No*				12.					
10. Sample received wit			┿	<u> </u>	1/					1
hold time?	Yes /No*		- 				1			
11. Adequate sample v	olume		- 	 	<u> </u>					
received?	Yes // No*		- 	/		•				<u> </u>
12. Proper preservative	es used? Yes/No*									
13. Trip Blank / Temp E	Slank Received? Yes/No*		-	 / 	·	•			<u>. </u>	
(circle which, if yes)			-	1/				<u> </u>		· · · · · · · · · · · · · · · · · · ·
ig - r r toata r o m j	2/0			/					<u> </u>	
Corrected Temp:	. 21 C		17	· ·				·		
Is corrected temp	4 +/-2°C? Yes (No*)		1							
(Acceptance range for samp	les requiring thermal pres.)			And the second s						
	ETALS DFF ON ICE	-								
or Problem COC			N. S. SESPECIA	CONTACT PROJECT	TIANACED A	ATTAC	H RECC	ORD OF R	ESOLUTION	

SRL Revision 7 Replaces Rev 5 (07/13/04) (fective 07/19/05 Page ____ of ____

2 June, 2006

Rachel Goldberg Brown & Caldwell - Walnut Creek 201 North Civic Drive, Suite 115 Walnut Creek, CA 94596

RE: Hanson - Martinez, CA Work Order: MPE0523

Enclosed are the results of analyses for samples received by the laboratory on 05/08/06 18:03. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

In A

Tim Costello Client Services Department Manager

CA ELAP Certificate # 1210

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Pond Water	MPE0523-01	Water	05/08/06 12:00	05/08/06 18:03
Storm Drain Sediment	MPE0523-02	Soil	05/08/06 12:15	05/08/06 18:03

MPE0523

Reported:

Brown & Caldwell - Walnut Creek Project: Hanson - Martinez, CA 201 North Civic Drive, Suite 115 Project Number: 130641 Walnut Creek CA, 94596 Project Manager: Rachel Goldberg 06/02/06 13:57

Purgeable Hydrocarbons by EPA 8015B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Pond Water (MPE0523-01) Water Samp	led: 05/08/06 1	2:00 Rece	eived: 05/0	8/06 18:	03				
Gasoline Range Organics (C4-C12)	ND	50	ug/l	1	6E19014	05/19/06	05/19/06	EPA 8015B-VOA	
Surrogate: 4-Bromofluorobenzene		92 %	75-1	25	"	"	"	"	
Storm Drain Sediment (MPE0523-02) Soil	Sampled: 05	/08/06 12:1	5 Receiv	ed: 05/0	8/06 18:03				
Gasoline Range Organics (C4-C12)	ND	100	ug/kg	1	6E22027	05/22/06	05/22/06	EPA 8015B-VOA	
Surrogate: 4-Bromofluorobenzene		68 %	45-1	35	"	"	"	"	

Extractable Hydrocarbons by EPA 8015B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Pond Water (MPE0523-01) Water San	pled: 05/08/06	12:00 Rec	eived: 05/	/08/06 18:	03				
Motor Oil (C16-C36)	ND	480	ug/l	1	6E15038	05/15/06	05/18/06	EPA 8015B-SVOA	
Diesel Range Organics (C10-C28)	170	48	"	"	"	"	"	"	HC-12
Surrogate: n-Octacosane		91 %	30-	115	"	"	"	"	
Storm Drain Sediment (MPE0523-02) So	oil Sampled: 0	5/08/06 12:1	15 Recei	ived: 05/0	8/06 18:03				
Motor Oil (C16-C36)	1500	500	mg/kg	50	6E22049	05/22/06	05/30/06	EPA 8015B-SVOA	HC-12
Diesel Range Organics (C10-C28)	530	50	"	"	"	"	"	"	HC-12
Surrogate: n-Octacosane		1590 %	40-	120	"	"	"	"	S09

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						тератец	Anaryzeu	wichiou	notes
Pond Water (MPE0523-01) Water	Sampled: 05/08/06	12:00 Rece	eived: 05	/08/06 18:0	03				
Benzene	ND	0.50	ug/l	1	6E21003	05/21/06	05/21/06	EPA 8260B	
Bromobenzene	ND	0.50	"	"	"	"	"	"	
Bromochloromethane	ND	0.50	"	"	"	"	"	"	
Bromodichloromethane	ND	0.50	"	"	"	"	"	"	
Bromoform	ND	0.50	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	0.50	"	"	"	"	"	"	
tert-Butylbenzene	ND	0.50	"	"	"	"	"	"	
n-Butylbenzene	ND	0.50	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	0.50	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	0.50	"	"	"	"	"	"	
Chloromethane	ND	0.50	"	"	"	"	"	"	
2-Chlorotoluene	ND	0.50	"	"	"	"	"	"	
4-Chlorotoluene	ND	0.50	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	0.50	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.50	"	"	"	"	"	"	
Dibromomethane	ND	0.50	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.50	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.50	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.50	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.50	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.50	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.50	"	"	"	"	"	"	
1,3-Dichloropropane	ND	0.50	"	"	"	"	"	"	
2,2-Dichloropropane	ND	2.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	2.0	"	"	"	"	"	"	
Isopropylbenzene	ND	0.50	"	"	"	"	"	"	
Methylene chloride	ND ND	0.50	"	,,	"	,,	"	"	
Naphthalene	ND ND	5.0	"	,,	"	,,	"	"	
p-Isopropyltoluene	ND ND	0.50	"	,,	"	,,	"	"	
n-Propylbenzene	ND ND	0.50	"	"	"	"	"	"	
n-rropyroenzene	ND	0.50				••			

Sequoia Analytical - Morgan Hill

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Sampled: 05/08/06								
Pond Water (MPE0523-01) Water									
Styrene	ND	0.50	ug/l "	1	6E21003	05/21/06	05/21/06	EPA 8260B	
1,1,1,2-Tetrachloroethane	ND	0.50	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	0.50	"	"	,	"	"	"	
Tetrachloroethene	ND	0.50	"	"	.,	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	0.50	,,	"	.,	,,	"	"	
1,2,4-Trichlorobenzene	ND	0.50	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.50	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.50	"	"	,	"	"	"	
Trichloroethene	ND	0.50	"	"	,	"	"	"	
Trichlorofluoromethane	ND	0.50	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	0.50	"	"	,	"	"	"	
1,2,4-Trimethylbenzene	ND	0.50		"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	0.50	"	"	,	"	"	"	
Vinyl chloride	ND	0.50							
Xylenes (total)	ND	0.50	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		93 %	75-		"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		88 %	60-	145	"	"	"	"	
Surrogate: Toluene-d8		79 %	70-	130	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		70 %	60-	115	"	"	"	"	
Storm Drain Sediment (MPE0523-0	2) Soil Sampled: 0	5/08/06 12:1	15 Recei	ved: 05/08	3/06 18:03				
Benzene	ND	5.0	ug/kg	1	6E15005	05/15/06	05/15/06	EPA 8260B	
Bromobenzene	ND	5.0	"	"	"	"	"	"	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	n	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	n	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
A Chlanatalana	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0							

Sequoia Analytical - Morgan Hill

Brown & Caldwell - Walnut Creek
201 North Civic Drive, Suite 115
Project Number: 130641
Walnut Creek CA, 94596
Project Manager: Rachel Goldberg
MPE0523
Reported:
06/02/06 13:57

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Storm Drain Sediment (MPE0523-02) Soil	Sampled: 05	5/08/06 12:15	5 Receiv	ed: 05/08	3/06 18:03				
Dibromochloromethane	ND	5.0	ug/kg	1	6E15005	05/15/06	05/15/06	EPA 8260B	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"		"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	,,	"	"	
n-Propylbenzene	ND	5.0	"	"	"	,,	"	"	
Styrene	ND ND	5.0	"	"	"	,,	"	"	
1,1,1,2-Tetrachloroethane	ND ND	5.0	"	"	"	,,	"	"	
1,1,2,2-Tetrachloroethane	ND ND	5.0	"	"	"	,,	"	"	
Tetrachloroethene	ND ND	5.0	"	"	"	,,	"	"	
Toluene	ND ND	5.0	"	"	"	,,	"	"	
	ND ND	5.0 5.0	"	"	"	,,	"	"	
1,2,3-Trichlorobenzene			"	"	"	,,	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	,,	"	,,	
1,1,1-Trichloroethane	ND	5.0	,,	"	"	.,	"	,	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	,	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	,	
1,2,3-Trichloropropane	ND	5.0	"	"	"	,	"	,	
1,2,4-Trimethylbenzene	ND	5.0							
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Xylenes (total)	ND	5.0	"	"	"	"	"	"	

Sequoia Analytical - Morgan Hill

Brown & Caldwell - Walnut Creek
201 North Civic Drive, Suite 115
Project Number: 130641
Walnut Creek CA, 94596
Project Manager: Rachel Goldberg
MPE0523
Reported:
06/02/06 13:57

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Storm Drain Sediment (MPE0523-02) Soil	Sampled: 05	5/08/06 12:15	Receive	d: 05/08	3/06 18:03				
Surrogate: Dibromofluoromethane		93 %	70-12)	6E15005	05/15/06	05/15/06	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		92 %	55-13.	5	"	"	"	"	
Surrogate: Toluene-d8		83 %	75-11.	5	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		79 %	70-11.	5	"	"	"	"	

Purgeable Hydrocarbons by EPA 8015B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6E19014 - EPA 5030B [P/T] /	EPA 8015B-	VOA								
Blank (6E19014-BLK1)				Prepared	& Analyz	ed: 05/19/	06			
Gasoline Range Organics (C4-C12)	ND	50	ug/l							
Surrogate: 4-Bromofluorobenzene	76.6		"	80.0		96	75-125			
Laboratory Control Sample (6E19014-I	BS1)			Prepared	& Analyz	ed: 05/19/	06			
Gasoline Range Organics (C4-C12)	213	50	ug/l	275		77	60-115			
Surrogate: 4-Bromofluorobenzene	76.0		"	80.0		95	75-125			
Matrix Spike (6E19014-MS1)	Source: M	IPE0394-01		Prepared	& Analyz	ed: 05/19/	06			
Gasoline Range Organics (C4-C12)	198	50	ug/l	275	ND	72	60-115			
Surrogate: 4-Bromofluorobenzene	75.6		"	80.0		94	75-125			
Matrix Spike Dup (6E19014-MSD1)	Source: M	IPE0394-01		Prepared	& Analyz	ed: 05/19/	06			
Gasoline Range Organics (C4-C12)	210	50	ug/l	275	ND	76	60-115	6	20	
Surrogate: 4-Bromofluorobenzene	75.8		"	80.0		95	75-125			
Batch 6E22027 - EPA 5030B [P/T] /	EPA 8015B-	VOA								
Blank (6E22027-BLK1)				Prepared	& Analyz	ed: 05/22/	06			
Gasoline Range Organics (C4-C12)	ND	100	ug/kg							
Surrogate: 4-Bromofluorobenzene	76.4		"	80.0		96	45-135			
Laboratory Control Sample (6E22027-I	BS1)			Prepared	& Analyz	ed: 05/22/	06			
Gasoline Range Organics (C4-C12)	515	100	ug/kg	550		94	65-125			
Surrogate: 4-Bromofluorobenzene	81.6		"	80.0		102	45-135			
Matrix Spike (6E22027-MS1)	Source: M	IPE0523-02		Prepared	& Analyz	ed: 05/22/	06			
Gasoline Range Organics (C4-C12)	219	100	ug/kg	550	17	37	65-125			QM0
Surrogate: 4-Bromofluorobenzene	39.8		"	80.0		50	45-135			

Purgeable Hydrocarbons by EPA 8015B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch 6E22027 - EPA 5030B [P/T] / EPA 8015B-VOA

Matrix Spike Dup (6E22027-MSD1)	Source: MPl		Prepared of							
Gasoline Range Organics (C4-C12)	252	100	ug/kg	550	17	43	65-125	14	40	QM02
Surrogate: 4-Bromofluorobenzene	46.9		"	80.0		59	45-135			

Extractable Hydrocarbons by EPA 8015B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6E15038 - EPA 3510C / EPA 8	015B-SVOA									
Blank (6E15038-BLK1)				Prepared:	05/15/06	Analyzed	: 05/16/06			
Motor Oil (C16-C36)	ND	500	ug/l							
Diesel Range Organics (C10-C28)	ND	50	"							
Surrogate: n-Octacosane	27.6		"	50.0		55	30-115			
Laboratory Control Sample (6E15038-BS	S1)			Prepared:	05/15/06	Analyzed	: 05/16/06			
Diesel Range Organics (C10-C28)	356	50	ug/l	500		71	40-140			
Surrogate: n-Octacosane	30.1		"	50.0		60	30-115			
Laboratory Control Sample Dup (6E1503	38-BSD1)			Prepared:	05/15/06	Analyzed	: 05/16/06			
Diesel Range Organics (C10-C28)	354	50	ug/l	500		71	40-140	0.6	35	
Surrogate: n-Octacosane	32.0		"	50.0		64	30-115			
Batch 6E22049 - LUFT-DHS / EPA 8	015B-SVOA									
Blank (6E22049-BLK1)				Prepared:	05/22/06	Analyzed	: 05/24/06			
Motor Oil (C16-C36)	ND	10	mg/kg							
Diesel Range Organics (C10-C28)	ND	1.0	"							
Surrogate: n-Octacosane	1.16		"	1.67		69	40-120			
Laboratory Control Sample (6E22049-BS	S1)			Prepared:	05/22/06	Analyzed	: 05/24/06			
Diesel Range Organics (C10-C28)	10.6	1.0	mg/kg	16.7		63	60-115			
Surrogate: n-Octacosane	1.14		"	1.67		68	40-120			
Matrix Spike (6E22049-MS1)	Source: M	PE0691-11		Prepared:	05/22/06	Analyzed	: 05/25/06			
Diesel Range Organics (C10-C28)	54.3	3.0	mg/kg	16.7		325	60-115			QM
Surrogate: n-Octacosane	4.85		"	1.67		290	40-120			S

Extractable Hydrocarbons by EPA 8015B - Quality Control Sequoia Analytical - Morgan Hill

		Donorting		Spike	Course		%REC		RPD		İ
		Reporting			Source				KrD		1
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	İ

Batch 6E22049 - LUFT-DHS / EPA 8015B-SVOA

Matrix Spike Dup (6E22049-MSD1)	Source: MPI	E0691-11		Prepared: 05/2	22/06 Analyzed				
Diesel Range Organics (C10-C28)	46.6	3.0	mg/kg	16.7	279	60-115	15	40	QM02
Surrogate: n-Octacosane	4.68		"	1.67	280	40-120			S04

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 6E15005 - EPA 5035 / EPA 8260B

Blank (6E15005-BLK1)				Prepared & Analyzed: 05/15/06
Benzene	ND	5.0	ug/kg	
Bromobenzene	ND	5.0	"	
Bromochloromethane	ND	5.0	"	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	
Bromomethane	ND	5.0	"	
sec-Butylbenzene	ND	5.0	"	
tert-Butylbenzene	ND	5.0	"	
n-Butylbenzene	ND	5.0	"	
Carbon tetrachloride	ND	5.0	"	
Chlorobenzene	ND	5.0	"	
Chloroethane	ND	5.0	"	
Chloroform	ND	5.0	"	
Chloromethane	ND	5.0	"	
2-Chlorotoluene	ND	5.0	"	
4-Chlorotoluene	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
Dibromochloromethane	ND	5.0	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	
Dibromomethane	ND	5.0	"	
1,2-Dichlorobenzene	ND	5.0	"	
1,3-Dichlorobenzene	ND	5.0	"	
1,4-Dichlorobenzene	ND	5.0	"	
Dichlorodifluoromethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
1,1-Dichloroethene	ND	5.0	"	
cis-1,2-Dichloroethene	ND	5.0	"	
trans-1,2-Dichloroethene	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
1,1-Dichloropropene	ND	5.0	"	
Ethylbenzene	ND	5.0	"	
Hexachlorobutadiene	ND	5.0	"	
Isopropylbenzene	ND	5.0	"	

Sequoia Analytical - Morgan Hill

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (6E15005-BLK1)				Prepared & An	alyzed: 05/15/	06
Methylene chloride	ND	5.0	ug/kg	-		
Naphthalene	ND	5.0	"			
p-Isopropyltoluene	ND	5.0	"			
n-Propylbenzene	ND	5.0	"			
Styrene	ND	5.0	"			
1,1,1,2-Tetrachloroethane	ND	5.0	"			
1,1,2,2-Tetrachloroethane	ND	5.0	"			
Tetrachloroethene	ND	5.0	"			
Toluene	ND	5.0	"			
1,2,3-Trichlorobenzene	ND	5.0	"			
1,2,4-Trichlorobenzene	ND	5.0	"			
1,1,1-Trichloroethane	ND	5.0	"			
1,1,2-Trichloroethane	ND	5.0	"			
Trichloroethene	ND	5.0	"			
Trichlorofluoromethane	ND	5.0	"			
1,2,3-Trichloropropane	ND	5.0	"			
1,2,4-Trimethylbenzene	ND	5.0	"			
1,3,5-Trimethylbenzene	ND	5.0	"			
Vinyl chloride	ND	5.0	"			
Xylenes (total)	ND	5.0	"			
Surrogate: Dibromofluoromethane	4.48		"	5.00	90	70-120
Surrogate: 1,2-Dichloroethane-d4	4.54		"	5.00	91	55-135
Surrogate: Toluene-d8	4.44		"	5.00	89	75-115
Surrogate: 4-Bromofluorobenzene	4.43		"	5.00	89	70-115
Laboratory Control Sample (6E15005-	BS1)			Prepared & An	alyzed: 05/15/	06
Benzene	10.2	5.0	ug/kg	10.0	102	75-140
Bromobenzene	10.8	5.0	"	10.0	108	85-130
Bromochloromethane	11.7	5.0	"	10.0	117	65-150
Bromodichloromethane	11.0	5.0	"	10.0	110	85-150
Bromoform	10.5	5.0	"	10.0	105	85-140
Bromomethane	9.04	5.0	"	10.0	90	10-150
sec-Butylbenzene	10.4	5.0	"	10.0	104	85-145
tert-Butylbenzene	10.2	5.0	"	10.0	102	85-140
n-Butylbenzene	10.9	5.0	"	10.0	109	75-150
Carbon tetrachloride	10.8	5.0	"	10.0	108	70-150

Sequoia Analytical - Morgan Hill

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch 6E15005 - EPA 5035 / EPA 8260B

Laboratory Control Sample (6E15005-BS1)				Prepared & A	Analyzed: 05/15/06		
Chlorobenzene	10.2	5.0	ug/kg	10.0	102	85-130	
Chloroethane	7.60	5.0	"	10.0	76	10-150	
Chloroform	10.5	5.0	"	10.0	105	80-140	
Chloromethane	5.16	5.0	"	10.0	52	40-140	
2-Chlorotoluene	10.4	5.0	"	10.0	104	75-140	
4-Chlorotoluene	10.4	5.0	"	10.0	104	75-145	
1,2-Dibromo-3-chloropropane	11.8	5.0	"	10.0	118	60-150	
Dibromochloromethane	11.2	5.0	"	10.0	112	75-150	
1,2-Dibromoethane (EDB)	10.6	5.0	"	10.0	106	85-135	
Dibromomethane	11.3	5.0	"	10.0	113	85-140	
1,2-Dichlorobenzene	10.5	5.0	"	10.0	105	85-130	
1,3-Dichlorobenzene	10.6	5.0	"	10.0	106	85-130	
1,4-Dichlorobenzene	10.6	5.0	"	10.0	106	85-130	
Dichlorodifluoromethane	4.24	5.0	"	10.0	42	10-150	
1,1-Dichloroethane	10.5	5.0	"	10.0	105	75-145	
1,2-Dichloroethane	10.7	5.0	"	10.0	107	65-145	
1,1-Dichloroethene	9.70	5.0	"	10.0	97	70-150	
cis-1,2-Dichloroethene	10.6	5.0	"	10.0	106	85-145	
trans-1,2-Dichloroethene	10.4	5.0	"	10.0	104	75-150	
1,2-Dichloropropane	10.4	5.0	"	10.0	104	85-135	
1,3-Dichloropropane	10.6	5.0	"	10.0	106	85-140	
2,2-Dichloropropane	11.6	5.0	"	10.0	116	80-150	
1,1-Dichloropropene	10.8	5.0	"	10.0	108	80-145	
Ethylbenzene	10.7	5.0	"	10.0	107	85-130	
Hexachlorobutadiene	12.0	5.0	"	10.0	120	85-150	
Isopropylbenzene	9.80	5.0	"	10.0	98	80-120	
Methylene chloride	11.1	5.0	"	10.0	111	65-150	
Naphthalene	13.5	5.0	"	10.0	135	65-150	
p-Isopropyltoluene	10.5	5.0	"	10.0	105	85-140	
n-Propylbenzene	10.2	5.0	"	10.0	102	70-145	
Styrene	10.1	5.0	"	10.0	101	85-135	
1,1,1,2-Tetrachloroethane	10.8	5.0	"	10.0	108	85-140	
1,1,2,2-Tetrachloroethane	10.8	5.0	"	10.0	108	70-140	
Tetrachloroethene	10.9	5.0	"	10.0	109	70-150	
Toluene	10.6	5.0	"	10.0	106	80-135	
1,2,3-Trichlorobenzene	11.0	5.0	"	10.0	110	75-150	

Sequoia Analytical - Morgan Hill

RPD

Brown & Caldwell - Walnut Creek Project: Hanson - Martinez, CA MPE0523
201 North Civic Drive, Suite 115 Project Number: 130641 Reported:
Walnut Creek CA, 94596 Project Manager: Rachel Goldberg 06/02/06 13:57

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Spike

Source

%REC

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6E15005 - EPA 5035 / EPA	8260B									
Laboratory Control Sample (6E1500	5-BS1)			Prepared	& Analyz	ed: 05/15/	06			
1,2,4-Trichlorobenzene	11.3	5.0	ug/kg	10.0		113	75-150			
1,1,1-Trichloroethane	10.9	5.0	"	10.0		109	75-150			
1,1,2-Trichloroethane	10.8	5.0	"	10.0		108	85-135			
Trichloroethene	10.3	5.0	"	10.0		103	65-150			
Trichlorofluoromethane	8.19	5.0	"	10.0		82	45-150			
1,2,3-Trichloropropane	10.4	5.0	"	10.0		104	65-140			
1,2,4-Trimethylbenzene	10.8	5.0	"	10.0		108	70-150			
1,3,5-Trimethylbenzene	10.6	5.0	"	10.0		106	75-145			
Vinyl chloride	6.56	5.0	"	10.0		66	25-150			
Xylenes (total)	33.2	5.0	"	30.0		111	85-135			
Surrogate: Dibromofluoromethane	4.67		"	5.00		93	70-120			
Surrogate: 1,2-Dichloroethane-d4	4.53		"	5.00		91	55-135			
Surrogate: Toluene-d8	4.48		"	5.00		90	75-115			
Surrogate: 4-Bromofluorobenzene	4.53		"	5.00		91	70-115			
Matrix Spike (6E15005-MS1)	Source: MP	E0331-03		Prepared	& Analyzo	ed: 05/15/	06			
Benzene	9.81	5.0	ug/kg	10.0	ND	98	75-140			
Bromobenzene	9.37	5.0	"	10.0	ND	94	85-130			
Bromochloromethane	11.2	5.0	"	10.0	ND	112	65-150			
Bromodichloromethane	10.1	5.0	"	10.0	ND	101	85-150			
Bromoform	8.80	5.0	"	10.0	ND	88	85-140			
Bromomethane	8.93	5.0	"	10.0	ND	89	10-150			
sec-Butylbenzene	7.72	5.0	"	10.0	ND	77	85-145			QM0
tert-Butylbenzene	8.14	5.0	"	10.0	ND	81	85-140			QM0
n-Butylbenzene	7.13	5.0	"	10.0	ND	71	75-150			QM0
Carbon tetrachloride	10.3	5.0	"	10.0	ND	103	70-150			
Chlorobenzene	9.48	5.0	"	10.0	ND	95	85-130			
Chloroethane	9.07	5.0	"	10.0	ND	91	10-150			
Chloroform	10.2	5.0	"	10.0	ND	102	80-140			
Chloromethane	7.97	5.0	"	10.0	ND	80	40-140			
2-Chlorotoluene	8.99	5.0	"	10.0	ND	90	75-140			
4-Chlorotoluene	9.00	5.0	"	10.0	ND	90	75-145			
1,2-Dibromo-3-chloropropane	9.55	5.0	"	10.0	ND	96	60-150			
Dibromochloromethane	10.0	5.0	"	10.0	ND	100	75-150			
1,2-Dibromoethane (EDB)	9.53	5.0	"	10.0	ND	95	85-135			
Dibromomethane	10.3	5.0	"	10.0	ND	103	85-140			

Sequoia Analytical - Morgan Hill

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch 6E15005 - EPA 5035 / EPA 8260B

Matrix Spike (6E15005-MS1)	Source: MP	E0331-03		Prepared of	& Analyz	ed: 05/15	/06	
1,2-Dichlorobenzene	8.24	5.0	ug/kg	10.0	ND	82	85-130	QM02
1,3-Dichlorobenzene	8.73	5.0	"	10.0	ND	87	85-130	
1,4-Dichlorobenzene	8.73	5.0	"	10.0	ND	87	85-130	
Dichlorodifluoromethane	7.50	5.0	"	10.0	ND	75	10-150	
1,1-Dichloroethane	10.2	5.0	"	10.0	ND	102	75-145	
1,2-Dichloroethane	10.0	5.0	"	10.0	ND	100	65-145	
1,1-Dichloroethene	10.6	5.0	"	10.0	ND	106	70-150	
cis-1,2-Dichloroethene	10.8	5.0	"	10.0	ND	108	85-145	
trans-1,2-Dichloroethene	10.7	5.0	"	10.0	ND	107	75-150	
1,2-Dichloropropane	9.96	5.0	"	10.0	ND	100	85-135	
1,3-Dichloropropane	9.75	5.0	"	10.0	ND	98	85-140	
2,2-Dichloropropane	11.2	5.0	"	10.0	ND	112	80-150	
1,1-Dichloropropene	10.4	5.0	"	10.0	ND	104	80-145	
Ethylbenzene	9.57	5.0	"	10.0	0.20	94	85-130	
Hexachlorobutadiene	5.41	5.0	"	10.0	ND	54	85-150	QM02
Isopropylbenzene	8.09	5.0	"	10.0	ND	81	80-120	
Methylene chloride	13.4	5.0	"	10.0	1.5	119	65-150	
Naphthalene	7.90	5.0	"	10.0	2.8	51	65-150	QM02
p-Isopropyltoluene	7.75	5.0	"	10.0	ND	78	85-140	QM02
n-Propylbenzene	8.47	5.0	"	10.0	0.11	84	70-145	
Styrene	8.73	5.0	"	10.0	ND	87	85-135	
1,1,1,2-Tetrachloroethane	10.0	5.0	"	10.0	ND	100	85-140	
1,1,2,2-Tetrachloroethane	9.59	5.0	"	10.0	ND	96	70-140	
Tetrachloroethene	9.85	5.0	"	10.0	ND	98	70-150	
Toluene	9.63	5.0	"	10.0	0.45	92	80-135	
1,2,3-Trichlorobenzene	6.17	5.0	"	10.0	ND	62	75-150	QM02
1,2,4-Trichlorobenzene	6.99	5.0	"	10.0	ND	70	70-150	
1,1,1-Trichloroethane	10.8	5.0	"	10.0	ND	108	75-150	
1,1,2-Trichloroethane	9.60	5.0	"	10.0	ND	96	85-135	
Trichloroethene	10.0	5.0	"	10.0	ND	100	65-150	
Trichlorofluoromethane	9.12	5.0	"	10.0	ND	91	45-150	
1,2,3-Trichloropropane	9.21	5.0	"	10.0	ND	92	65-140	
1,2,4-Trimethylbenzene	8.21	5.0	"	10.0	0.54	77	70-150	
1,3,5-Trimethylbenzene	8.54	5.0	"	10.0	0.13	84	75-145	
Vinyl chloride	9.39	5.0	"	10.0	ND	94	25-150	
Xylenes (total)	29.4	5.0	"	30.0	1.3	94	85-135	

Sequoia Analytical - Morgan Hill

Brown & Caldwell - Walnut Creek
201 North Civic Drive, Suite 115
Project Number: 130641
Walnut Creek CA, 94596
Project Manager: Rachel Goldberg
MPE0523
Reported:
06/02/06 13:57

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch 6E15005 - EPA 5035 / EPA 8260B

Matrix Spike (6E15005-MS1)	Source: MPI	E0331-03								
Surrogate: Dibromofluoromethane	4.54		ug/kg	5.00		91	70-120			
Surrogate: 1,2-Dichloroethane-d4	4.34		"	5.00		87	55-135			
Surrogate: Toluene-d8	4.48		"	5.00		90	75-115			
Surrogate: 4-Bromofluorobenzene	4.61		"	5.00		92	70-115			
Matrix Spike Dup (6E15005-MSD1)	Source: MPI	E0331-03		Prepared &	& Analyze	ed: 05/15/	06			
Benzene	10.1	5.0	ug/kg	10.0	ND	101	75-140	3	20	
Bromobenzene	11.0	5.0	"	10.0	ND	110	85-130	16	20	
Bromochloromethane	11.2	5.0	"	10.0	ND	112	65-150	0	20	
Bromodichloromethane	10.5	5.0	"	10.0	ND	105	85-150	4	20	
Bromoform	9.36	5.0	"	10.0	ND	94	85-140	6	15	
Bromomethane	9.30	5.0	"	10.0	ND	93	10-150	4	40	
sec-Butylbenzene	8.82	5.0	"	10.0	ND	88	85-145	13	20	
tert-Butylbenzene	9.49	5.0	"	10.0	ND	95	85-140	15	20	
n-Butylbenzene	7.33	5.0	"	10.0	ND	73	75-150	3	20	QM02
Carbon tetrachloride	10.6	5.0	"	10.0	ND	106	70-150	3	20	
Chlorobenzene	10.0	5.0	"	10.0	ND	100	85-130	5	15	
Chloroethane	9.59	5.0	"	10.0	ND	96	10-150	6	40	
Chloroform	10.5	5.0	"	10.0	ND	105	80-140	3	20	
Chloromethane	7.92	5.0	"	10.0	ND	79	40-140	0.6	40	
2-Chlorotoluene	10.6	5.0	"	10.0	ND	106	75-140	16	20	
4-Chlorotoluene	10.5	5.0	"	10.0	ND	105	75-145	15	20	
1,2-Dibromo-3-chloropropane	10.2	5.0	"	10.0	ND	102	60-150	7	20	
Dibromochloromethane	10.3	5.0	"	10.0	ND	103	75-150	3	20	
1,2-Dibromoethane (EDB)	9.52	5.0	"	10.0	ND	95	85-135	0.1	20	
Dibromomethane	10.8	5.0	"	10.0	ND	108	85-140	5	20	
1,2-Dichlorobenzene	9.31	5.0	"	10.0	ND	93	85-130	12	20	
1,3-Dichlorobenzene	10.1	5.0	"	10.0	ND	101	85-130	15	20	
1,4-Dichlorobenzene	10.1	5.0	"	10.0	ND	101	85-130	15	25	
Dichlorodifluoromethane	7.23	5.0	"	10.0	ND	72	10-150	4	35	
1,1-Dichloroethane	10.4	5.0	"	10.0	ND	104	75-145	2	20	
1,2-Dichloroethane	10.4	5.0	"	10.0	ND	104	65-145	4	25	
1,1-Dichloroethene	10.7	5.0	"	10.0	ND	107	70-150	0.9	25	
cis-1,2-Dichloroethene	10.8	5.0	"	10.0	ND	108	85-145	0	20	
trans-1,2-Dichloroethene	11.0	5.0	"	10.0	ND	110	75-150	3	30	
1,2-Dichloropropane	10.3	5.0	"	10.0	ND	103	85-135	3	20	

Sequoia Analytical - Morgan Hill

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike Dup (6E15005-MSD1)	Source: MP	E0331-03		Prepared	& Analyze	ed: 05/15	/06			
1,3-Dichloropropane	9.96	5.0	ug/kg	10.0	ND	100	85-140	2	20	
2,2-Dichloropropane	11.2	5.0	"	10.0	ND	112	80-150	0	20	
1,1-Dichloropropene	10.7	5.0	"	10.0	ND	107	80-145	3	25	
Ethylbenzene	10.1	5.0	"	10.0	0.20	99	85-130	5	20	
Hexachlorobutadiene	5.58	5.0	"	10.0	ND	56	85-150	3	25	QM0
Isopropylbenzene	8.77	5.0	"	10.0	ND	88	80-120	8	20	
Methylene chloride	13.6	5.0	"	10.0	1.5	121	65-150	1	35	
Naphthalene	7.67	5.0	"	10.0	2.8	49	65-150	3	20	QM02
p-Isopropyltoluene	7.92	5.0	"	10.0	ND	79	85-140	2	20	QM02
n-Propylbenzene	9.79	5.0	"	10.0	0.11	97	70-145	14	20	
Styrene	9.03	5.0	"	10.0	ND	90	85-135	3	15	
1,1,1,2-Tetrachloroethane	10.4	5.0	"	10.0	ND	104	85-140	4	20	
1,1,2,2-Tetrachloroethane	10.6	5.0	"	10.0	ND	106	70-140	10	20	
Tetrachloroethene	10.4	5.0	"	10.0	ND	104	70-150	5	20	
Toluene	9.98	5.0	"	10.0	0.45	95	80-135	4	20	
1,2,3-Trichlorobenzene	6.31	5.0	"	10.0	ND	63	75-150	2	20	QM02
1,2,4-Trichlorobenzene	7.27	5.0	"	10.0	ND	73	70-150	4	20	
1,1,1-Trichloroethane	11.2	5.0	"	10.0	ND	112	75-150	4	20	
1,1,2-Trichloroethane	9.94	5.0	"	10.0	ND	99	85-135	3	20	
Trichloroethene	10.2	5.0	"	10.0	ND	102	65-150	2	20	
Trichlorofluoromethane	9.47	5.0	"	10.0	ND	95	45-150	4	40	
1,2,3-Trichloropropane	10.2	5.0	"	10.0	ND	102	65-140	10	20	
1,2,4-Trimethylbenzene	8.96	5.0	"	10.0	0.54	84	70-150	9	20	
1,3,5-Trimethylbenzene	9.81	5.0	"	10.0	0.13	97	75-145	14	20	
Vinyl chloride	9.23	5.0	"	10.0	ND	92	25-150	2	40	
Xylenes (total)	30.8	5.0	"	30.0	1.3	98	85-135	5	20	
Surrogate: Dibromofluoromethane	4.63		"	5.00		93	70-120			

5.00

5.00

5.00

4.31

4.37

4.45

Surrogate: 1,2-Dichloroethane-d4

Surrogate: 4-Bromofluorobenzene

Surrogate: Toluene-d8

55-135 75-115

70-115

86

87

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Ratch	6E21003	FDA	5030R	\mathbf{p}/\mathbf{T}	/ FDA	8260B
Daten	OFZIUUS.	- r.r.a	20200	P/ I	/ r/PA	AZOUD

Benzene ND 0.50 ug/l	Blank (6E21003-BLK1)				Prepared & Analyzed: 05/21/06
Bromochloromethane	Benzene	ND	0.50	ug/l	
Solution ND 0.50 "	Bromobenzene	ND	0.50	"	
Bromoform ND 0.50 " Bromomethane ND 1.0 " scc-Butylbenzene ND 0.50 " n-Butylbenzene ND 0.50 " Carbon tetrachloride ND 0.50 " Chlorobenzene ND 0.50 " Chlorotethane ND 0.50 " Chlorotethane ND 0.50 " Chlorotethane ND 0.50 " 2-Chlorotoluene ND 0.50 " 4-Chlorotoluene ND 0.50 " 1,2-Dibromo-3-chloropropane ND 0.50 " 1,2-Dibromo-4-ane (EDB) ND 0.50 " 1,2-Dibromoethane (EDB) ND 0.50 " 1,3-Dichlorobenzene ND 0.50 " 1,4-Dichlorobenzene ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,1-Dichloroethane ND 0.50 <t< td=""><td>Bromochloromethane</td><td>ND</td><td>0.50</td><td>"</td><td></td></t<>	Bromochloromethane	ND	0.50	"	
Brommethane ND 1.0 sec-Butylbenzene ND 0.50 " tert-Butylbenzene ND 0.50 " Carbon tetrachloride ND 0.50 " Chlorobenzene ND 0.50 " Chlorobenzene ND 0.50 " Chloroform ND 0.50 " Chloroform ND 0.50 " Chloromethane ND 0.50 " Chloromethane ND 0.50 " Chlorotoluene ND	Bromodichloromethane	ND	0.50	"	
sec-Butylbenzene ND 0.50 " n-Butylbenzene ND 0.50 " Carbon tetrachloride ND 0.50 " Chlorobenzene ND 0.50 " Chlorotethane ND 0.50 " Chloroform ND 0.50 " Chlorothane ND 0.50 " Chlorotoluene ND 0.50 " 2-Chlorotoluene ND 0.50 " 4-Chlorotoluene ND 0.50 " 4-Chlorotoluene ND 0.50 " 4-Chlorotoluene ND 0.50 " 4-Chlorotoluene ND 0.50 " 1,2-Dibromo-3-chloropropane ND 0.50 " 1,2-Dibromoethane (EDB) ND 0.50 " 1,2-Dichlorobenzene ND 0.50 " 1,4-Dichlorobenzene ND 0.50 " 1,4-Dichlorobenzene ND 0.50 " <td>Bromoform</td> <td>ND</td> <td>0.50</td> <td>"</td> <td></td>	Bromoform	ND	0.50	"	
tert-Butylbenzene ND 0.50 " Carbon tetrachloride ND 0.50 " Chlorobenzene ND 0.50 " Chlorobetane ND 0.50 " Chloroform ND 0.50 " Chloromethane ND 0.50 " Chlorotoluene ND 0.50 " 4-Chlorotoluene ND 0.50 " 4-Chlorotoluene ND 0.50 " 4-Chlorotoluene ND 0.50 " 1,2-Dibromo-3-chloropropane ND 0.50 " 1,2-Dibromoethane (EDB) ND 0.50 " Dibromoethane (EDB) ND 0.50 " 1,2-Dichlorobenzene ND 0.50 " 1,3-Dichlorobenzene ND 0.50 " 1,4-Dichlorodifluoromethane ND 0.50 " 1,1-Dichlorodifluoromethane ND 0.50 " 1,2-Dichlorothene ND <t< td=""><td>Bromomethane</td><td>ND</td><td>1.0</td><td>"</td><td></td></t<>	Bromomethane	ND	1.0	"	
n-Butylbenzene ND 0.50 " Carbon tetrachloride ND 0.50 " Chlorobenzene ND 0.50 " Chloroethane ND 0.50 " Chloroform ND 0.50 " Chlorotoluene ND 0.50 " 2-Chlorotoluene ND 0.50 " 4-Chlorotoluene ND 0.50 " 4-Chlorotoluene ND 0.50 " 4-Chlorotoluene ND 0.50 " 1,2-Dibromo-3-chloropropane ND 0.50 " 1,2-Dibromoethane (EDB) ND 0.50 " 1,2-Dibromoethane (EDB) ND 0.50 " 1,3-Dichlorobenzene ND 0.50 " 1,3-Dichlorobenzene ND 0.50 " 1,4-Dichlorothane ND 0.50 " 1,1-Dichlorothane ND 0.50 " 1,1-Dichlorothene ND 0.50	sec-Butylbenzene	ND	0.50	"	
Carbon tetrachloride ND 0.50 " Chlorobenzene ND 0.50 " Chloroethane ND 1.0 " Chloroform ND 0.50 " Chloromethane ND 0.50 " 2-Chlorotoluene ND 0.50 " 4-Chlorotoluene ND 0.50 " 1,2-Dibromo-3-chloropropane ND 0.50 " 1,2-Dibromo-3-chloropropane ND 0.50 " 1,2-Dibromoethane ND 0.50 " 1,2-Dichloromethane ND 0.50 " 1,2-Dichlorobenzene ND 0.50 " 1,3-Dichlorobenzene ND 0.50 " 1,4-Dichlorobenzene ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,1-Dichloroethene ND 0.50 " 1,1-Dichloroethene ND 0.5	tert-Butylbenzene	ND	0.50	"	
Chlorobenzene ND 0.50 " Chloroethane ND 1.0 " Chloroform ND 0.50 " Chlorodoluene ND 0.50 " 2-Chlorotoluene ND 0.50 " 4-Chlorotoluene ND 0.50 " 4-Chlorotoluene ND 0.50 " 1,2-Dibromo-3-chloropropane ND 0.50 " 1,2-Dibromo-3-chloropropane ND 0.50 " 1,2-Dibromoethane ND 0.50 " 1,2-Dibromoethane (EDB) ND 0.50 " 1,2-Dichlorobenzene ND 0.50 " 1,3-Dichlorobenzene ND 0.50 " 1,4-Dichloroethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,1-Dichloroethene ND 0.50 " 1,1-Dichloroethene ND 0.50 " 1,2-Dichloropropane ND 0.50	n-Butylbenzene	ND	0.50	"	
Chloroethane ND 1.0 " Chloroform ND 0.50 " Chloromethane ND 0.50 " 2-Chlorotoluene ND 0.50 " 4-Chlorotoluene ND 0.50 " 4-Chlorotoluene ND 0.50 " 1,2-Dibromo-3-chloropropane ND 0.50 " 1,2-Dibromoethane (EDB) ND 0.50 " 1,2-Dibromoethane (EDB) ND 0.50 " 1,2-Dichlorobenzene ND 0.50 " 1,3-Dichlorobenzene ND 0.50 " 1,4-Dichlorobenzene ND 0.50 " 1,4-Dichloroethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,1-Dichloroethene ND 0.50 " 1,2-Dichloroethene ND 0.50 " trans-1,2-Dichloroethene ND 0.50 " 1,3-Dichloropropane ND	Carbon tetrachloride	ND	0.50	"	
Chloroform ND 0.50 " Chloromethane ND 0.50 " 2-Chlorotoluene ND 0.50 " 4-Chlorotoluene ND 0.50 " 1,2-Dibromo-3-chloropropane ND 1.0 " Dibromochloromethane ND 0.50 " 1,2-Dibromoethane (EDB) ND 0.50 " 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorodifluoromethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,1-Dichloroethene ND 0.50 " 1,2-Dichloroethene ND 0.50 " 1,2-Dichloroethene ND 0.50 " 1,1-Dichloropopane ND 0.50 " 1,1-Dic	Chlorobenzene	ND	0.50	"	
Chloromethane ND 0.50 " 2-Chlorotoluene ND 0.50 " 4-Chlorotoluene ND 0.50 " 1,2-Dibromo-3-chloropropane ND 1.0 " Dibromochloromethane ND 0.50 " 1,2-Dibromoethane (EDB) ND 0.50 " 1,2-Dichlorobenzene ND 0.50 " 1,3-Dichlorobenzene ND 0.50 " 1,4-Dichlorobenzene ND 0.50 " 1,4-Dichlorothane ND 0.50 " 1,1-Dichlorothane ND 0.50 " 1,1-Dichlorothene ND 0.50 " 1,1-Dichlorothene ND 0.50 " 1,2-Dichlorothene ND 0.50 " 1,2-Dichlorothene ND 0.50 " 1,2-Dichloropropane ND 0.50 " 1,3-Dichloropropane ND 0.50 " 1,2-Dichloropropane ND	Chloroethane	ND	1.0	"	
2-Chlorotoluene ND 0.50 " 4-Chlorotoluene ND 0.50 " 1,2-Dibromo-3-chloropropane ND 1.0 " Dibromochloromethane ND 0.50 " 1,2-Dibromoethane (EDB) ND 0.50 " Dibromomethane ND 0.50 " 1,2-Dichlorobenzene ND 0.50 " 1,3-Dichlorobenzene ND 0.50 " 1,4-Dichlorobenzene ND 0.50 " 1,4-Dichloroethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,2-Dichloroethene ND 0.50 " 1,1-Dichloroethene ND 0.50 " trans-1,2-Dichloroethene ND 0.50 " 1,2-Dichloropropane ND 0.50 " 1,3-Dichloropropane ND 0.50 " 1,1-Dichloropropane ND 0.50 " 1,1-Dichloropropane <	Chloroform	ND	0.50	"	
4-Chlorotoluene ND 0.50 " 1,2-Dibromo-3-chloropropane ND 1.0 " Dibromochloromethane ND 0.50 " 1,2-Dibromoethane (EDB) ND 0.50 " Dibromomethane (EDB) ND 0.50 " 1,2-Dichlorobenzene ND 0.50 " 1,3-Dichlorobenzene ND 0.50 " 1,4-Dichlorobenzene ND 0.50 " 1,4-Dichloroethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,2-Dichloroethene ND 0.50 " 1,1-Dichloroethene ND 0.50 " trans-1,2-Dichloroethene ND 0.50 " 1,2-Dichloropropane ND 0.50 " 1,3-Dichloropropane ND 0.50 " 2,2-Dichloropropane ND 0.50 " 1,1-Dichloropropene ND 0.50 " Ethylbenzene	Chloromethane	ND	0.50	"	
1,2-Dibromo-3-chloropropane ND 1.0 " Dibromochloromethane ND 0.50 " 1,2-Dibromoethane (EDB) ND 0.50 " Dibromomethane ND 0.50 " 1,2-Dichlorobenzene ND 0.50 " 1,3-Dichlorobenzene ND 0.50 " 1,4-Dichlorobenzene ND 0.50 " Dichlorodifluoromethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,2-Dichloroethane ND 0.50 " 1,1-Dichloroethene ND 0.50 " 1,1-Dichloroethene ND 0.50 " trans-1,2-Dichloroethene ND 0.50 " 1,2-Dichloropropane ND 0.50 " 1,3-Dichloropropane ND 0.50 " 2,2-Dichloropropane ND 0.50 " 1,1-Dichloropropene ND 0.50 " Ethylbenzene	2-Chlorotoluene	ND	0.50	"	
Dibromochloromethane ND 0.50 " 1,2-Dibromoethane (EDB) ND 0.50 " 1,2-Dichlorobenzene ND 0.50 " 1,2-Dichlorobenzene ND 0.50 " 1,3-Dichlorobenzene ND 0.50 " 1,4-Dichlorobenzene ND 0.50 " 1,4-Dichlorobenzene ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,2-Dichloroethane ND 0.50 " 1,2-Dichloroethene ND 0.50 " 1,2-Dichloroethene ND 0.50 " 1,1-Dichloroethene ND 0.50 " 1,1-Dichloroethene ND 0.50 " 1,2-Dichloroethene ND 0.50 " 1,2-Dichloroptopane ND 0.50 " 1,2-Dichloroptopane ND 0.50 " 1,3-Dichloroptopane ND 0.50 " 1,1-Dichloroptopane ND 0.50 " 1,1-Dichloroptopane ND 0.50 " 1,1-Dichloroptopane ND 0.50 " Ethylbenzene ND 0.50 " Hexachlorobutadiene ND 0.50 "	4-Chlorotoluene	ND	0.50	"	
1,2-Dibromoethane (EDB) ND 0.50 " Dibromomethane ND 0.50 " 1,2-Dichlorobenzene ND 0.50 " 1,3-Dichlorobenzene ND 0.50 " 1,4-Dichloroethanzene ND 0.50 " Dichlorodifluoromethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,2-Dichloroethane ND 0.50 " 1,1-Dichloroethene ND 0.50 " trans-1,2-Dichloroethene ND 0.50 " 1,2-Dichloropropane ND 0.50 " 1,3-Dichloropropane ND 0.50 " 2,2-Dichloropropane ND 0.50 " 1,1-Dichloropropene ND 0.50 " Ethylbenzene ND 0.50 " Hexachlorobutadiene ND 0.50 "	1,2-Dibromo-3-chloropropane	ND	1.0	"	
Dibromomethane ND 0.50 " 1,2-Dichlorobenzene ND 0.50 " 1,3-Dichlorobenzene ND 0.50 " 1,4-Dichlorobenzene ND 0.50 " Dichlorodifluoromethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,2-Dichloroethane ND 0.50 " 1,1-Dichloroethene ND 0.50 " trans-1,2-Dichloroethene ND 0.50 " 1,2-Dichloropropane ND 0.50 " 1,3-Dichloropropane ND 0.50 " 2,2-Dichloropropane ND 0.50 " 1,1-Dichloropropene ND 0.50 " Ethylbenzene ND 0.50 " Hexachlorobutadiene ND 0.50 "	Dibromochloromethane	ND	0.50	"	
Dibromomethane ND 0.50 " 1,2-Dichlorobenzene ND 0.50 " 1,3-Dichlorobenzene ND 0.50 " 1,4-Dichlorobenzene ND 0.50 " Dichlorodifluoromethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,2-Dichloroethane ND 0.50 " 1,1-Dichloroethene ND 0.50 " trans-1,2-Dichloroethene ND 0.50 " 1,2-Dichloropropane ND 0.50 " 1,3-Dichloropropane ND 0.50 " 2,2-Dichloropropane ND 0.50 " 1,1-Dichloropropene ND 0.50 " Ethylbenzene ND 0.50 " Hexachlorobutadiene ND 0.50 "	1,2-Dibromoethane (EDB)	ND	0.50	"	
1,2-Dichlorobenzene ND 0.50 " 1,3-Dichlorobenzene ND 0.50 " 1,4-Dichlorobenzene ND 0.50 " Dichlorodifluoromethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,2-Dichloroethane ND 0.50 " 1,1-Dichloroethene ND 0.50 " trans-1,2-Dichloroethene ND 0.50 " 1,2-Dichloropropane ND 0.50 " 1,3-Dichloropropane ND 0.50 " 2,2-Dichloropropane ND 0.50 " 1,1-Dichloropropane ND 0.50 " 1,1-Dichloropropene ND 0.50 " Ethylbenzene ND 0.50 " Hexachlorobutadiene ND 2.0 "		ND	0.50	"	
1,3-Dichlorobenzene ND 0.50 " 1,4-Dichlorobenzene ND 0.50 " Dichlorodifluoromethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,2-Dichloroethane ND 0.50 " 1,1-Dichloroethene ND 0.50 " trans-1,2-Dichloroethene ND 0.50 " 1,2-Dichloropropane ND 0.50 " 1,3-Dichloropropane ND 0.50 " 2,2-Dichloropropane ND 0.50 " 1,1-Dichloropropane ND 0.50 " 1,1-Dichloropropene ND 0.50 " Ethylbenzene ND 0.50 " Hexachlorobutadiene ND 2.0 "	1,2-Dichlorobenzene			"	
1,4-Dichlorobenzene ND 0.50 " Dichlorodifluoromethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,2-Dichloroethane ND 0.50 " 1,1-Dichloroethene ND 0.50 " cis-1,2-Dichloroethene ND 0.50 " trans-1,2-Dichloroethene ND 0.50 " 1,2-Dichloropropane ND 0.50 " 1,3-Dichloropropane ND 0.50 " 2,2-Dichloropropane ND 0.50 " 1,1-Dichloropropene ND 0.50 " Ethylbenzene ND 0.50 " Hexachlorobutadiene ND 2.0 "		ND	0.50	"	
Dichlorodifluoromethane ND 0.50 " 1,1-Dichloroethane ND 0.50 " 1,2-Dichloroethane ND 0.50 " 1,1-Dichloroethene ND 0.50 " cis-1,2-Dichloroethene ND 0.50 " trans-1,2-Dichloroethene ND 0.50 " 1,2-Dichloropropane ND 0.50 " 1,3-Dichloropropane ND 0.50 " 2,2-Dichloropropane ND 2.0 " 1,1-Dichloropropene ND 0.50 " Ethylbenzene ND 0.50 " Hexachlorobutadiene ND 2.0 "			0.50	"	
1,2-Dichloroethane ND 0.50 " 1,1-Dichloroethene ND 0.50 " cis-1,2-Dichloroethene ND 0.50 " trans-1,2-Dichloropropane ND 0.50 " 1,2-Dichloropropane ND 0.50 " 1,3-Dichloropropane ND 0.50 " 2,2-Dichloropropane ND 2.0 " 1,1-Dichloropropene ND 0.50 " Ethylbenzene ND 0.50 " Hexachlorobutadiene ND 2.0 "		ND	0.50	"	
1,1-Dichloroethene ND 0.50 " cis-1,2-Dichloroethene ND 0.50 " trans-1,2-Dichloropthene ND 0.50 " 1,2-Dichloropropane ND 0.50 " 1,3-Dichloropropane ND 0.50 " 2,2-Dichloropropane ND 2.0 " 1,1-Dichloropropene ND 0.50 " Ethylbenzene ND 0.50 " Hexachlorobutadiene ND 2.0 "	1,1-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene ND 0.50 " cis-1,2-Dichloroethene ND 0.50 " trans-1,2-Dichloropthene ND 0.50 " 1,2-Dichloropropane ND 0.50 " 1,3-Dichloropropane ND 0.50 " 2,2-Dichloropropane ND 2.0 " 1,1-Dichloropropene ND 0.50 " Ethylbenzene ND 0.50 " Hexachlorobutadiene ND 2.0 "			0.50	"	
cis-1,2-Dichloroethene ND 0.50 " trans-1,2-Dichloroethene ND 0.50 " 1,2-Dichloropropane ND 0.50 " 1,3-Dichloropropane ND 0.50 " 2,2-Dichloropropane ND 2.0 " 1,1-Dichloropropene ND 0.50 " Ethylbenzene ND 0.50 " Hexachlorobutadiene ND 2.0 "		ND	0.50	"	
trans-1,2-Dichloroethene ND 0.50 " 1,2-Dichloropropane ND 0.50 " 1,3-Dichloropropane ND 0.50 " 2,2-Dichloropropane ND 2.0 " 1,1-Dichloropropene ND 0.50 " Ethylbenzene ND 0.50 " Hexachlorobutadiene ND 2.0 "				"	
1,2-Dichloropropane ND 0.50 " 1,3-Dichloropropane ND 0.50 " 2,2-Dichloropropane ND 2.0 " 1,1-Dichloropropene ND 0.50 " Ethylbenzene ND 0.50 " Hexachlorobutadiene ND 2.0 "				"	
1,3-Dichloropropane ND 0.50 " 2,2-Dichloropropane ND 2.0 " 1,1-Dichloropropene ND 0.50 " Ethylbenzene ND 0.50 " Hexachlorobutadiene ND 2.0 "				"	
2,2-Dichloropropane ND 2.0 " 1,1-Dichloropropene ND 0.50 " Ethylbenzene ND 0.50 " Hexachlorobutadiene ND 2.0 "				"	
1,1-DichloropropeneND0.50"EthylbenzeneND0.50"HexachlorobutadieneND2.0"				"	
Ethylbenzene ND 0.50 " Hexachlorobutadiene ND 2.0 "				"	
Hexachlorobutadiene ND 2.0 "				"	
	•			"	
				"	

Sequoia Analytical - Morgan Hill

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

							-	-			
		Reporting		Spike	Source		%REC		RPD		ĺ
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	ĺ

Blank (6E21003-BLK1)				Prepared & An	alyzed: 05/21/	06
Methylene chloride	ND	0.50	ug/l			
Naphthalene	ND	5.0	"			
p-Isopropyltoluene	ND	0.50	"			
n-Propylbenzene	ND	0.50	"			
Styrene	ND	0.50	"			
1,1,1,2-Tetrachloroethane	ND	0.50	"			
1,1,2,2-Tetrachloroethane	ND	0.50	"			
Tetrachloroethene	ND	0.50	"			
Toluene	ND	0.50	"			
1,2,3-Trichlorobenzene	ND	0.50	"			
1,2,4-Trichlorobenzene	ND	0.50	"			
1,1,1-Trichloroethane	ND	0.50	"			
1,1,2-Trichloroethane	ND	0.50	"			
Trichloroethene	ND	0.50	"			
Trichlorofluoromethane	ND	0.50	"			
1,2,3-Trichloropropane	ND	0.50	"			
1,2,4-Trimethylbenzene	ND	0.50	"			
1,3,5-Trimethylbenzene	ND	0.50	"			
Vinyl chloride	ND	0.50	"			
Xylenes (total)	ND	0.50	"			
Surrogate: Dibromofluoromethane	2.26		"	2.50	90	75-130
Surrogate: 1,2-Dichloroethane-d4	2.24		"	2.50	90	60-145
Surrogate: Toluene-d8	2.04		"	2.50	82	70-130
Surrogate: 4-Bromofluorobenzene	1.87		"	2.50	75	60-115
Laboratory Control Sample (6E21003-B	SS1)			Prepared & An	alyzed: 05/21/	06
Benzene	10.5	0.50	ug/l	10.0	105	70-125
Bromobenzene	11.8	0.50	"	10.0	118	85-120
Bromochloromethane	10.1	0.50	"	10.0	101	40-150
Bromodichloromethane	10.6	0.50	"	10.0	106	80-130
Bromoform	9.46	0.50	"	10.0	95	75-130
Bromomethane	9.14	1.0	"	10.0	91	10-150
sec-Butylbenzene	11.7	0.50	"	10.0	117	70-135
tert-Butylbenzene	12.1	0.50	"	10.0	121	75-130
n-Butylbenzene	11.7	0.50	"	10.0	117	70-135
Carbon tetrachloride	10.5	0.50	"	10.0	105	70-130

Sequoia Analytical - Morgan Hill

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Ratch	6E21003 -	FDA	5030R	\mathbf{p}/\mathbf{T}	/ FDA	8260B
рансп	OFZIUU.) -	- r, r A	.70.7015	F/	/ r/F A	\(\alpha\)

Laboratory Control Sample (6E21003-BS1)				Prepared & A	nalyzed: 05/21/0	16
Chlorobenzene	10.4	0.50	ug/l	10.0	104	80-120
Chloroethane	10.2	1.0	"	10.0	102	45-150
Chloroform	10.6	0.50	"	10.0	106	80-125
Chloromethane	8.94	0.50	"	10.0	89	15-150
2-Chlorotoluene	11.6	0.50	"	10.0	116	80-125
4-Chlorotoluene	11.2	0.50	"	10.0	112	80-125
1,2-Dibromo-3-chloropropane	10.5	1.0	"	10.0	105	70-125
Dibromochloromethane	10.8	0.50	"	10.0	108	75-130
1,2-Dibromoethane (EDB)	10.8	0.50	"	10.0	108	85-125
Dibromomethane	10.8	0.50	"	10.0	108	70-140
1,2-Dichlorobenzene	10.3	0.50	"	10.0	103	85-120
1,3-Dichlorobenzene	11.0	0.50	"	10.0	110	80-125
1,4-Dichlorobenzene	10.5	0.50	"	10.0	105	70-120
Dichlorodifluoromethane	7.96	0.50	"	10.0	80	10-150
1,1-Dichloroethane	10.8	0.50	"	10.0	108	60-150
1,2-Dichloroethane	10.6	0.50	"	10.0	106	75-125
1,1-Dichloroethene	11.5	0.50	"	10.0	115	65-130
cis-1,2-Dichloroethene	11.6	0.50	"	10.0	116	80-130
trans-1,2-Dichloroethene	10.9	0.50	"	10.0	109	70-130
1,2-Dichloropropane	10.5	0.50	"	10.0	105	80-125
1,3-Dichloropropane	10.7	0.50	"	10.0	107	80-125
2,2-Dichloropropane	12.5	2.0	"	10.0	125	30-150
1,1-Dichloropropene	11.6	0.50	"	10.0	116	80-130
Ethylbenzene	11.1	0.50	"	10.0	111	80-130
Hexachlorobutadiene	10.6	2.0	"	10.0	106	65-145
Isopropylbenzene	9.90	0.50	"	10.0	99	70-115
Methylene chloride	11.5	0.50	"	10.0	115	85-150
Naphthalene	9.56	5.0	"	10.0	96	50-140
p-Isopropyltoluene	12.1	0.50	"	10.0	121	70-135
n-Propylbenzene	11.5	0.50	"	10.0	115	80-125
Styrene	10.8	0.50	"	10.0	108	75-120
1,1,2-Tetrachloroethane	11.1	0.50	"	10.0	111	80-125
1,1,2,2-Tetrachloroethane	10.6	0.50	"	10.0	106	70-140
Tetrachloroethene	10.9	0.50	"	10.0	109	75-130
Toluene	10.0	0.50	"	10.0	100	70-120

Sequoia Analytical - Morgan Hill

Brown & Caldwell - Walnut Creek MPE0523 Project: Hanson - Martinez, CA 201 North Civic Drive, Suite 115 Project Number: 130641 Reported: Walnut Creek CA, 94596 Project Manager: Rachel Goldberg 06/02/06 13:57

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6E21003 - EPA 5030B P/T	/ EPA 8260B									
Laboratory Control Sample (6E21003	3-BS1)			Prepared of	& Analyze	ed: 05/21/0	06			
1,2,4-Trichlorobenzene	10.9	0.50	ug/l	10.0		109	70-140			
1,1,1-Trichloroethane	10.3	0.50	"	10.0		103	75-130			
1,1,2-Trichloroethane	10.5	0.50	"	10.0		105	80-130			
Trichloroethene	11.2	0.50	"	10.0		112	75-125			
Trichlorofluoromethane	9.40	0.50	"	10.0		94	65-125			
1,2,3-Trichloropropane	10.9	0.50	"	10.0		109	75-120			
1,2,4-Trimethylbenzene	11.6	0.50	"	10.0		116	75-135			
1,3,5-Trimethylbenzene	11.3	0.50	"	10.0		113	75-130			
Vinyl chloride	9.78	0.50	"	10.0		98	35-150			
Xylenes (total)	33.3	0.50	"	30.0		111	85-125			
Surrogate: Dibromofluoromethane	2.27		"	2.50		91	75-130			
Surrogate: 1,2-Dichloroethane-d4	2.19		"	2.50		88	60-145			
Surrogate: Toluene-d8	2.13		"	2.50		85	70-130			
Surrogate: 4-Bromofluorobenzene	1.99		"	2.50		80	60-115			
Matrix Spike (6E21003-MS1)	Source: M	PE0449-01		Prepared 6	06					
Benzene	75.8	2.5	ug/l	50.0	25	102	70-125			
Bromobenzene	57.5	2.5	"	50.0	ND	115	85-120			
Bromochloromethane	52.8	2.5	"	50.0	ND	106	40-150			
Bromodichloromethane	53.4	2.5	"	50.0	ND	107	80-130			
Bromoform	49.4	2.5	"	50.0	ND	99	75-130			
Bromomethane	45.2	5.0	"	50.0	ND	90	10-150			
sec-Butylbenzene	57.0	2.5	"	50.0	ND	114	70-135			
tert-Butylbenzene	60.0	2.5	"	50.0	0.40	119	75-130			
n-Butylbenzene	57.5	2.5	"	50.0	ND	115	70-135			
Carbon tetrachloride	52.6	2.5	"	50.0	ND	105	70-130			
Chlorobenzene	52.2	2.5	"	50.0	ND	104	80-120			
Chloroethane	50.8	5.0	"	50.0	ND	102	45-150			
Chloroform	53.0	2.5	"	50.0	ND	106	80-125			
Chloromethane	47.8	2.5	"	50.0	ND	96	15-150			
2-Chlorotoluene	57.3	2.5	"	50.0	ND	115	80-125			
4-Chlorotoluene	53.6	2.5	"	50.0	ND	107	80-125			
1,2-Dibromo-3-chloropropane	53.3	5.0	"	50.0	ND	107	70-125			
Dibromochloromethane	54.2	2.5	"	50.0	ND	108	75-130			
1,2-Dibromoethane (EDB)	53.6	2.5	"	50.0	ND	107	85-125			
Dibromomethane	54.1	2.5	"	50.0	ND	108	70-140			

Sequoia Analytical - Morgan Hill

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch	6E21003 -	EPA	5030B	P/T	/ EPA 8260B	3
-------	-----------	-----	-------	-----	-------------	---

Matrix Spike (6E21003-MS1)	Source: MP	E0449-01		Prepared 6	& Analyze	ed: 05/21/	/06	
1,2-Dichlorobenzene	50.4	2.5	ug/l	50.0	ND	101	85-120	
1,3-Dichlorobenzene	53.2	2.5	"	50.0	ND	106	80-125	
1,4-Dichlorobenzene	51.2	2.5	"	50.0	ND	102	70-120	
Dichlorodifluoromethane	38.8	2.5	"	50.0	ND	78	10-150	
1,1-Dichloroethane	53.5	2.5	"	50.0	ND	107	60-150	
1,2-Dichloroethane	53.8	2.5	"	50.0	ND	108	75-125	
1,1-Dichloroethene	57.8	2.5	"	50.0	ND	116	65-130	
cis-1,2-Dichloroethene	57.2	2.5	"	50.0	ND	114	80-130	
trans-1,2-Dichloroethene	54.3	2.5	"	50.0	ND	109	70-130	
1,2-Dichloropropane	51.2	2.5	"	50.0	ND	102	80-125	
1,3-Dichloropropane	53.6	2.5	"	50.0	ND	107	80-125	
2,2-Dichloropropane	63.0	10	"	50.0	ND	126	30-150	
1,1-Dichloropropene	59.2	2.5	"	50.0	ND	118	80-130	
Ethylbenzene	55.2	2.5	"	50.0	61	0	80-130	QM0
Hexachlorobutadiene	51.5	10	"	50.0	ND	103	65-145	
Isopropylbenzene	49.9	2.5	"	50.0	ND	100	70-115	
Methylene chloride	57.6	2.5	"	50.0	ND	115	85-150	
Naphthalene	60.0	25	"	50.0	12	96	50-140	
p-Isopropyltoluene	59.0	2.5	"	50.0	ND	118	70-135	
n-Propylbenzene	56.0	2.5	"	50.0	0.40	111	80-125	
Styrene	53.8	2.5	"	50.0	ND	108	75-120	
1,1,1,2-Tetrachloroethane	55.8	2.5	"	50.0	ND	112	80-125	
1,1,2,2-Tetrachloroethane	54.7	2.5	"	50.0	ND	109	70-140	
Tetrachloroethene	53.8	2.5	"	50.0	ND	108	75-130	
Toluene	54.8	2.5	"	50.0	4.2	101	70-120	
1,2,3-Trichlorobenzene	46.1	2.5	"	50.0	ND	92	65-140	
1,2,4-Trichlorobenzene	53.4	2.5	"	50.0	ND	107	70-140	
1,1,1-Trichloroethane	52.0	2.5	"	50.0	ND	104	75-130	
1,1,2-Trichloroethane	52.5	2.5	"	50.0	ND	105	80-130	
Trichloroethene	54.6	2.5	"	50.0	ND	109	75-125	
Trichlorofluoromethane	47.3	2.5	"	50.0	ND	95	65-125	
1,2,3-Trichloropropane	53.9	2.5	"	50.0	ND	108	75-120	
1,2,4-Trimethylbenzene	71.4	2.5	"	50.0	14	115	75-135	
1,3,5-Trimethylbenzene	66.5	2.5	"	50.0	9.8	113	75-130	
Vinyl chloride	50.6	2.5	"	50.0	ND	101	35-150	
Xylenes (total)	270	2.5	"	150	93	118	85-125	

Sequoia Analytical - Morgan Hill

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch 6E21003 - EPA 5030B P/T / EPA 8260B

Matrix Spike (6E21003-MS1)	Source: MPI	E0449-01		Prepared &	& Analyze	ed: 05/21/	'06			
Surrogate: Dibromofluoromethane	2.28		ug/l	2.50		91	75-130			
Surrogate: 1,2-Dichloroethane-d4	2.21		"	2.50		88	60-145			
Surrogate: Toluene-d8	2.15		"	2.50		86	70-130			
Surrogate: 4-Bromofluorobenzene	2.07		"	2.50		83	60-115			
Matrix Spike Dup (6E21003-MSD1)	Source: MPI	E0449-01		Prepared &	& Analyze	ed: 05/21/	'06			
Benzene	75.6	2.5	ug/l	50.0	25	101	70-125	0.3	15	
Bromobenzene	59.2	2.5	"	50.0	ND	118	85-120	3	15	
Bromochloromethane	51.6	2.5	"	50.0	ND	103	40-150	2	15	
Bromodichloromethane	53.2	2.5	"	50.0	ND	106	80-130	0.4	15	
Bromoform	49.7	2.5	"	50.0	ND	99	75-130	0.6	15	
Bromomethane	51.6	5.0	"	50.0	ND	103	10-150	13	35	
sec-Butylbenzene	59.9	2.5	"	50.0	ND	120	70-135	5	20	
tert-Butylbenzene	63.0	2.5	"	50.0	0.40	125	75-130	5	20	
n-Butylbenzene	60.4	2.5	"	50.0	ND	121	70-135	5	25	
Carbon tetrachloride	53.0	2.5	"	50.0	ND	106	70-130	0.8	15	
Chlorobenzene	52.6	2.5	"	50.0	ND	105	80-120	0.8	15	
Chloroethane	51.6	5.0	"	50.0	ND	103	45-150	2	35	
Chloroform	53.0	2.5	"	50.0	ND	106	80-125	0	15	
Chloromethane	49.4	2.5	"	50.0	ND	99	15-150	3	35	
2-Chlorotoluene	59.6	2.5	"	50.0	ND	119	80-125	4	20	
4-Chlorotoluene	55.6	2.5	"	50.0	ND	111	80-125	4	20	
1,2-Dibromo-3-chloropropane	58.4	5.0	"	50.0	ND	117	70-125	9	20	
Dibromochloromethane	54.2	2.5	"	50.0	ND	108	75-130	0	15	
1,2-Dibromoethane (EDB)	52.6	2.5	"	50.0	ND	105	85-125	2	15	
Dibromomethane	53.4	2.5	"	50.0	ND	107	70-140	1	15	
1,2-Dichlorobenzene	52.4	2.5	"	50.0	ND	105	85-120	4	15	
1,3-Dichlorobenzene	55.8	2.5	"	50.0	ND	112	80-125	5	15	
1,4-Dichlorobenzene	53.0	2.5	"	50.0	ND	106	70-120	3	15	
Dichlorodifluoromethane	39.7	2.5	"	50.0	ND	79	10-150	2	35	
1,1-Dichloroethane	53.2	2.5	"	50.0	ND	106	60-150	0.6	15	
1,2-Dichloroethane	53.8	2.5	"	50.0	ND	108	75-125	0	10	
1,1-Dichloroethene	59.0	2.5	"	50.0	ND	118	65-130	2	20	
cis-1,2-Dichloroethene	56.6	2.5	"	50.0	ND	113	80-130	1	15	
trans-1,2-Dichloroethene	54.5	2.5	"	50.0	ND	109	70-130	0.4	15	
1,2-Dichloropropane	51.6	2.5	"	50.0	ND	103	80-125	0.8	15	

Sequoia Analytical - Morgan Hill

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike Dup (6E21003-MSD1)	Source: MP	E0449-01		Prepared	& Analyze	ed: 05/21	/06			
1,3-Dichloropropane	53.3	2.5	ug/l	50.0	ND	107	80-125	0.6	10	
2,2-Dichloropropane	61.3	10	"	50.0	ND	123	30-150	3	35	
1,1-Dichloropropene	59.2	2.5	"	50.0	ND	118	80-130	0	20	
Ethylbenzene	56.7	2.5	"	50.0	61	0	80-130	3	15	QM0
Hexachlorobutadiene	55.8	10	"	50.0	ND	112	65-145	8	25	
Isopropylbenzene	51.1	2.5	"	50.0	ND	102	70-115	2	15	
Methylene chloride	58.0	2.5	"	50.0	ND	116	85-150	0.7	15	
Naphthalene	68.2	25	"	50.0	12	112	50-140	13	35	
p-Isopropyltoluene	62.2	2.5	"	50.0	ND	124	70-135	5	20	
n-Propylbenzene	58.0	2.5	"	50.0	0.40	115	80-125	4	20	
Styrene	54.2	2.5	"	50.0	ND	108	75-120	0.7	10	
1,1,1,2-Tetrachloroethane	55.8	2.5	"	50.0	ND	112	80-125	0	15	
1,1,2,2-Tetrachloroethane	55.0	2.5	"	50.0	ND	110	70-140	0.5	15	
Tetrachloroethene	54.6	2.5	"	50.0	ND	109	75-130	1	20	
Toluene	55.2	2.5	"	50.0	4.2	102	70-120	0.7	15	
1,2,3-Trichlorobenzene	54.0	2.5	"	50.0	ND	108	65-140	16	35	
1,2,4-Trichlorobenzene	59.2	2.5	"	50.0	ND	118	70-140	10	35	
1,1,1-Trichloroethane	52.0	2.5	"	50.0	ND	104	75-130	0	15	
1,1,2-Trichloroethane	51.5	2.5	"	50.0	ND	103	80-130	2	15	
Trichloroethene	55.6	2.5	"	50.0	ND	111	75-125	2	20	
Trichlorofluoromethane	48.4	2.5	"	50.0	ND	97	65-125	2	20	
1,2,3-Trichloropropane	54.9	2.5	"	50.0	ND	110	75-120	2	10	
1,2,4-Trimethylbenzene	74.0	2.5	"	50.0	14	120	75-135	4	20	
1,3,5-Trimethylbenzene	69.0	2.5	"	50.0	9.8	118	75-130	4	20	
Vinyl chloride	51.2	2.5	"	50.0	ND	102	35-150	1	35	
Xylenes (total)	269	2.5	"	150	93	117	85-125	0.4	15	
Surrogate: Dibromofluoromethane	2.26		"	2.50		90	75-130			
Surrogate: 1,2-Dichloroethane-d4	2.19		"	2.50		88	60-145			
Surrogate: Toluene-d8	2.12		"	2.50		85	70-130			
Surrogate: 4-Bromofluorobenzene	2.04		"	2.50		82	60-115			

Notes and Definitions

S09 The recovery of this surrogate is outside control limits due to sample dilution which was required by high analyte concentration in the sample and/or matrix interference.

The surrogate recovery for this sample is above control limits due to interference from the sample matrix.

QM02 The spike recovery was below control limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

HC-12 Hydrocarbon pattern is present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

BROWN AND CALDWELL

CHAIN OF CUSTODY RECORD

COC No. 1 1

10540 White Rock Rd, Ste. 180
 Rancho Cordova, CA 95670
 916-444-0123 / FAX 916-635-8805

☐ 9665 Chesapeake Dr. / Suite 201 San Diego, CA 92123 858-514-8822 / FAX 858-514-8833 201 N. Civic Dr. / Suite 115 Walnut Creek, CA 94596 925-937-9010 / FAX 925-937-9026 ☐ 400 Exchange / Suite 100 Irvine, CA 92602 714-730-7600 / FAX 714-734-0940

PROJECT NAME: Hanson										LABORATORY NAME & ADDRESS:											
PROJECT NUMBER: 130641									Tast America							1425052					
									Concord						MPF0523						
LINE NO.	SAMPLE - I.D.	COLLE	ECTION TIME	SAMPLER'S INITIALS	NUMBER OF CONTAINERS		PRESER- VATIVE	MATRIX				ANALYS REQUES			2	FIELD FILTERED	QC - REQ	TAT	SAMPLING METHOD	DEPTH (FT.) BEGIN END	PID READING (ppm)
01	Pond Water	5/9/66	17/00	91	7	Homewords 1-lite and	HO/ Noc	U	3710	B	\g	oism	(TPH	-g/d/	mg)—			240	6		
02	Roll Witer		15100	97	1	500-nl	HNOS	w	Co	_17	- Ne	ALLS		417)	·	X		stal	(4)		
03	Story Dain	5/8/16	เนเร	92	1	2x6 55 steene	Nre	S	3260	7 Km	Sols Nals	n (T	(\lambda J (mus)	•			Stel	6			
04	July Feel																				
05								- Indiana													
06					i L																
07																					
08											-										
09																					
10				3											•						
COLLECTED & RELINQUISHED BY DATE DATE TIME COOLER I.D.: DATE TIME TIME TOOLER I.D.: PARTICULAR PROPERTY OF THE PROPER							de				5 <i>8</i> E	€ŽŽĮ.	Ne	·—-i-		note on back):	W72,5	frej.)		
March				186 580	58 06 18 DT						-		48/e b	180°	₹1 3	اس	2	- plese	eve D	_ W/H	NO3
RECORD RETURNED BY: DATE TIME / / :																					
COURIER:						SHIPPIN	IG NUMBE	ER:													

SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG.

CLIENT NAME: REC. BY (PRINT) WORKORDER: Braund Caldle LP. MPF 0123	DATE REC'D AT LAB: 5-8-06 TIME REC'D AT LAB: 15,50 DATE LOGGED IN: 5/15/04					For Regulatory Purposes? DRINKING WATER YES / NO WASTE WATER YES / NO				
CIRCLE THE APPROPRIATE RESPONSE	LAB SAMPLE#	DASH # *	CLIENT ID	CONTAINER DESCRIPTION	PRESERV ATIVE	Нq	SAMPLE MATRIX	DATE SAMPLED	REMARKS: CONDITION (ETC.)	
Custody Seal(s) Present Absent Intact / Broken*					·			·		
2. Chain-of-Custody Present / Absent*	-									
3. Traffic Reports or									<u> </u>	
Packing List: Present Absent	·									
4. Airbill: Airbill / Sticker				· · ·	1 1					
Present Absent	 		· · · · · · · · · · · · · · · · · · ·							
5. Airbill #:		 :	· · · · · · · · · · · · · · · · · · ·							
6. Sample Labels: Present / Absent	·	ļ <u>.</u>	· · · · · · · · · · · · · · · · · · ·							
7. Sample IDs: Listed / Not Listed				· · · · · · · · · · · · · · · · · · ·						
on-Chain-of-Custody					10/					
8. Sample Condition: \(\text{Intact} / \text{Broken*} / \)							<u> </u>			
Leaking*	· · · · · · · · · · · · · · · · · · ·			J. J.					• • •	
9. Does information on chain-of-custody,		`		, S/_				-	· · · · · · · · · · · · · · · · · · ·	
traffic reports and sample labels		· ·	·	1/						
agree? Yes / No*				10/						
10. Sample received within				<i>y</i> ·						
hold time? Yes No*				-						
11. Adequate sample volume						•				
received? Yes / No*				• .			<u> </u>			
12. Proper preservatives used? Yes / No*	:									
13. Trip Blank / Temp Blank Received?	:			· · .	,					
(circle which, if yes)	· ·			,				,		
14. Read Temp: 6.0				,						
Corrected Temp: 6.0e						· . '				
Is corrected temp 4 +/-2°C? (Yeg / No**							<u> </u>			
(Acceptance range for samples requiring thermal pres.)				·		· · · · · · · · · · · · · · · · · · ·				
**Exception (if any): METALS / DFF ON ICE										
or Problem COC										

*IF CIRCLED, CONTACT PROJECT MANAGER AND ATTACH RECORD OF RESOLUTION.

SRL Revision 7 Replaces Rev 5 (07/13/04) Effective 07/19/05 Page _____ of ____