#### RECEIVED

1:25 pm, Nov 13, 2007

Alameda County Environmental Health

Site Investigation Report for the Eastern Portion of AOC #2 and AOCs #3 through #9 ACEH Case #RO0002952 and Geotracker Global ID #SL0600101555 Hanson Aggregates Radum Facility 3000 Busch Road Pleasanton, Alameda County, California

> October 26, 2007 001-09567-02

Prepared for Hanson Aggregates Northern California 3000 Busch Road Pleasanton, California 94566

> Prepared by LFR Inc. 1900 Powell Street, 12<sup>th</sup> Floor Emeryville, California 94608



October 26, 2007

Mr. Jerry Wickham Alameda County Health Care Services Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

#### Subject: Site Investigation Report for the Eastern Portion of AOC #2 and AOCs #3 through #9, ACEH Case #RO0002952 and Geotracker Global ID #SL0600101555, Hanson Aggregates Radum Facility, 3000 Busch Road Pleasanton, Alameda County, California

Dear Mr. Wickham:

The enclosed "Site Investigation Report for the Eastern Portion of AOC #2 and AOCs #3 through #9, ACEH Case #RO0002952 and Geotracker Global ID#SL0600101555, Hanson Aggregates Radum Facility, 3000 Busch Road Pleasanton, Alameda County, California" ("the SI Report") was prepared by LFR Inc. (LFR) on behalf of Hanson Aggregates Northern California ("Hanson") for the Hanson Aggregates Radum Facility, 3000 Busch Road, Pleasanton, California ("the Site"). This report presents the findings of additional subsurface investigations conducted during July 2007 by LFR to further characterize the extent of contamination in specific areas of concern (AOCs) at the Site. The scope of work for the investigations conducted was described in a work plan that was submitted to Alameda County Environmental Health (ACEH) on May 16, 2007, and was approved by ACEH on June 22, 2007.

The investigations completed during July 2007 included advancing temporary soil borings to collect depth-discrete soil samples and grab groundwater samples in AOCs #2, #3, #7, and #8, and shallow sediment samples and a composite surface-water sample from the storm-water retention pond in AOC #6. In addition, four existing groundwater monitoring wells were located, purged, and sampled. This report includes an overview of environmental conditions, a summary of previous investigations conducted by LFR and other consultants, and a description of the field investigations completed during July 2007, and presents and discusses the results of the investigations.

As required, this report will be submitted electronically via the Alameda County Environmental Cleanup Oversight Program FTP website, and via the Regional Water Quality Control Board's Geotracker electronic submittal system.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report are true and correct to the best of my knowledge. If you have any questions or comments concerning this SI Report, please call me at (925) 426-4170 or Katrin Schliewen of LFR at (510) 652-4500.

Site Investigation Report for the Eastern Portion of AOC #2 and AOCs #3 through #9, ACEH Case #RO0002952 and Geotracker Global ID#SL0600101555, Hanson Aggregates Radum Facility, 3000 Busch Road Pleasanton, Alameda County, California October 26, 2007 Page 2 of 2

Sincerely,

Lee W. an

Lee W. Cover Environmental Manager Hanson Aggregates Northern California

Attachment



## CONTENTS

| CER | TIFICATIO                                                                   | DNS V                                                                                                     |  |  |  |
|-----|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|
| EXE | CUTIVE S                                                                    | UMMARYVII                                                                                                 |  |  |  |
| 1.0 | INTRODUCTION1                                                               |                                                                                                           |  |  |  |
| 2.0 | SITE HISTORY OF POTENTIAL ENVIRONMENTAL IMPACTS AND PREVIOUS INVESTIGATIONS |                                                                                                           |  |  |  |
|     | 2.1 Site Description and History                                            |                                                                                                           |  |  |  |
|     | 2.2 Regional and Site Geology and Hydrogeology                              |                                                                                                           |  |  |  |
|     | 2.2.1                                                                       | Regional Geology and Hydrogeology                                                                         |  |  |  |
|     | 2.2.2                                                                       | Site Geology and Hydrogeology                                                                             |  |  |  |
|     | 2.3 Summary of PECs/RECs and Previous Environmental Site Investigations     |                                                                                                           |  |  |  |
|     | 2.3.1                                                                       | AOC #2: Idle Truck Maintenance Area                                                                       |  |  |  |
|     | 2.3.2                                                                       | AOC #3: Heavy Equipment Maintenance and Wash Rack Area, and PEC Identified by Temporary Soil Boring EB-35 |  |  |  |
|     | 2.3.3                                                                       | AOC #4: Former Concrete Batch Plant Area7                                                                 |  |  |  |
|     | 2.3.4                                                                       | AOC #5: Former Mining Operations Area7                                                                    |  |  |  |
|     | 2.3.5                                                                       | AOC #6: Storm-Water Retention Pond7                                                                       |  |  |  |
|     | 2.3.6                                                                       | AOC #7: PEC Identified by Temporary Soil Boring SS-318                                                    |  |  |  |
|     | 2.3.7                                                                       | AOC #8: PEC Identified by Temporary Soil Boring SS-1238                                                   |  |  |  |
|     | 2.3.8                                                                       | AOC #9: Vulcan Materials Company Storm-Water Runoff Area 10                                               |  |  |  |
|     | 2.4 Regulatory Determinations 10                                            |                                                                                                           |  |  |  |
|     | 2.4.1                                                                       | Property Transfer and New Case Number                                                                     |  |  |  |
|     | 2.4.2                                                                       | Investigation and Reporting Schedule                                                                      |  |  |  |
|     | 2.5 Investigation Objectives 12                                             |                                                                                                           |  |  |  |
| 3.0 | INVESTIGATION METHODOLOGY                                                   |                                                                                                           |  |  |  |
|     | 3.1 Pre-Field Activities                                                    |                                                                                                           |  |  |  |
|     | 3.1.1                                                                       | Permitting                                                                                                |  |  |  |
|     | 3.1.2                                                                       | Subsurface Utility Clearance                                                                              |  |  |  |

|     | 3.1.3                                                                                                       | Health and Safety Plan                                                       | . 13 |  |
|-----|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------|--|
|     | 3.2 Temporary Soil Borings                                                                                  |                                                                              |      |  |
|     | 3.2.2                                                                                                       | Soil Boring Advancement and Soil and Grab Groundwater Sampling<br>Procedures | . 14 |  |
|     | 3.2.3                                                                                                       | Temporary Soil Boring Locations and Target Depths                            | . 15 |  |
|     | 3.3 Surfa                                                                                                   | ce Sediment and Water Samples from the Storm-Water Retention Pond            | . 18 |  |
|     | 3.4 Laboratory Analyses                                                                                     |                                                                              |      |  |
|     | 3.5 Field Documentation                                                                                     |                                                                              |      |  |
|     | 3.6 Land                                                                                                    | Survey of Sample Locations                                                   | . 19 |  |
| 4.0 | RESULTS                                                                                                     | S OF ADDITIONAL SITE-WIDE CHARACTERIZATION                                   | . 19 |  |
|     | 4.1 Idle 7                                                                                                  | Truck Maintenance Area (AOC #2)                                              | . 20 |  |
|     | 4.2 Heavy Equipment Maintenance and Wash Rack Area, and PEC Identified<br>Former Soil Boring EB-35 (AOC #3) |                                                                              |      |  |
|     | 4.2.1                                                                                                       | Wash Rack and Lube Shed Area                                                 | . 21 |  |
|     | 4.2.2                                                                                                       | PEC Identified by Former Soil Boring EB-35                                   | . 22 |  |
|     | 4.3 PEC                                                                                                     | Identified by Former Soil Boring SS-31 (AOC #7)                              | . 23 |  |
|     | 4.4 PEC                                                                                                     | Identified by Former Soil Boring SS-123 (AOC #8)                             | . 24 |  |
|     | 4.4.1                                                                                                       | Temporary Soil Boring SS-123(AA)                                             | . 24 |  |
|     | 4.4.2                                                                                                       | Temporary Soil Borings SS-123(F1) through SS-123(F3)                         | . 24 |  |
|     | 4.4.3                                                                                                       | Investigation Results for the SS-123 Area                                    | . 25 |  |
|     |                                                                                                             | ce Sediment and Water Samples from the Storm-Water Retention Pond<br>C #6)   | . 26 |  |
| 5.0 | SAMPLI                                                                                                      | NG OF EXISTING GROUNDWATER MONITORING WELLS                                  | . 27 |  |
|     | 5.1 Wells                                                                                                   | Sampled and Sampling Methodology                                             | . 27 |  |
|     | 5.1.1                                                                                                       | Well TW-5                                                                    | . 27 |  |
|     | 5.1.2                                                                                                       | Additional Monitoring Wells Sampled                                          | . 27 |  |
|     | 5.2 Analy                                                                                                   | tical Results                                                                | . 29 |  |
| 6.0 | SUMMA                                                                                                       | RY AND RECOMMENDATIONS                                                       | . 29 |  |
|     | 6.1 Summ                                                                                                    | nary                                                                         | . 29 |  |
|     | 6.1 Reco                                                                                                    | mmendations                                                                  | . 30 |  |
| 7.0 | LIMITAT                                                                                                     | IONS                                                                         | . 31 |  |

| 8.0 | REFERENCES | 22 |
|-----|------------|----|
|     |            |    |

#### TABLES

- 1 Sample Matrix for Soil Borings and Monitoring Wells
- 2A Summary of Analytical Results of Petroleum Hydrocarbons and Associated Compounds Detected in Soil Samples
- 2B Summary of Analytical Results of Petroleum Hydrocarbons and Associated Compounds Detected in Soil Samples
- 3 Summary of Analytical Results of Volatile Organic Compounds Detected in Soil Samples
- 4 Summary of Analytical Results of Semivolatile Organic Compounds Detected in Soil Samples
- 5 Summary of Analytical Results of Organochlorine Pesticides Detected in Soil Samples
- 6 Summary of Analytical Results of Polychlorinated Biphenyls Detected in Soil Samples
- 7 Summary of Analytical Results of CAM17 Metals Detected in Soil Samples
- 8A Summary of Analytical Results of Petroleum Hydrocarbons and Associated Compounds Detected in Groundwater and Surface-Water Samples
- 8B Summary of Analytical Results of Petroleum Hydrocarbons and Associated Compounds Detected in Groundwater and Surface-Water Samples
- 9 Summary of Analytical Results of Volatile Organic Compounds Detected in Groundwater and Surface Water Samples
- 10 Summary of Analytical Results of CAM17 Metals Detected in Groundwater and Surface Water Samples
- 11A Summary of Analytical Results of Petroleum Hydrocarbons and Associated Compounds Detected in Samples from Groundwater Monitoring Wells
- 11B Summary of Analytical Results of Petroleum Hydrocarbons and Associated Compounds Detected in Samples from Groundwater Monitoring Wells
- 12 Summary of Analytical Results of Volatile Organic Compounds Detected in Samples from Groundwater Monitoring Wells
- 13 Summary of Analytical Results of Semivolatile Organic Compounds Detected in Samples from Groundwater Monitoring Wells
- 14 Summary of Analytical Results of CAM17 Metals in Samples from Groundwater Monitoring Wells

#### FIGURES

- 1 Site Location Map
- 2 Site Plan Showing Areas of Concern
- 3 Area of Concern #2 Idle Truck Maintenance Area
- 4 Area of Concern #3 Heavy Equipment Maintenance and Wash Rack Area, and PEC Identified by Temporary Soil Boring EB-35
- 5 Area of Concern #6 Storm-Water Retention Pond
- 6 Area of Concern #7 PEC Identified by Temporary Soil Boring SS-31
- 7 Area of Concern #8 PEC Identified by Temporary Soil Boring SS-123
- 8 Site Plan Showing Areas of Concern and Existing Groundwater Monitoring Wells Sampled

#### APPENDICES

- A Soil Boring Permit
- B Laboratory Certified Analytical Reports
- C Soil Boring Logs
- D Groundwater Monitoring Well Sampling Field Sheets

## CERTIFICATIONS

LFR Inc. has prepared this Site Investigation Report on behalf of Hanson Aggregates Northern California in a manner consistent with the level of care and skill ordinarily exercised by professional geologists and environmental scientists. This report was prepared under the technical direction of the undersigned California Professional Geologist.



Katrin M. Schliewen, P.G. Senior Hydrogeologist California Professional Geologist No. 7808

RC

October 26, 2007

Ron Goloubow Senior Associate Geologist

Date

Date

## **EXECUTIVE SUMMARY**

This Site Investigation Report presents the findings of the additional investigations conducted at the Hanson Aggregates Radum Facility ("the Site") during July 2007. The purpose of the investigations was to further characterize the extent of affected soil and groundwater in areas of concern (AOCs) #2, #4, #6, #7, and #8. The environmental investigations were conducted according to the scope of work described in the May 16, 2007 "Work Plan for Additional Site Characterization at the Hanson Aggregates Radum Facility, 3000 Busch Road, Pleasanton, California," which was submitted to Alameda County Environmental Health (ACEH) and subsequently approved by ACEH on June 22, 2007, with certain modifications. Additional investigations are currently being conducted at AOC #1 (the former hot mix asphalt plant; ACEH Case Number RO0002941) under a separate scope of work, and the results of that investigation will be submitted to ACEH under separate cover on November 30, 2007.

The July 2007 investigations consisted of advancing a total of 16 temporary soil borings to depths ranging from approximately from 10 to 70 feet below ground surface. The purposes of the soil borings were to collect soil samples for lithologic logging and to collect depth-discrete soil samples and grab groundwater samples for laboratory analyses. Shallow sediment and surface-water samples were collected from the storm water retention pond for laboratory analyses. In addition, samples were collected from four existing groundwater monitoring wells for laboratory analyses. All analytical results were compared to the Environmental Screening Levels (ESLs) for soil or water beneath commercial/industrial land use areas published by the Regional Water Quality Control Board. The investigation and analytical results are presented and discussed in this report.

The analytical results of the soil and groundwater samples collected during the recent investigations have substantiated that the primary compounds of concern in soil and groundwater at the Site are total petroleum hydrocarbons (TPH) as diesel (TPHd) and TPH as motor oil (TPHmo). With a few exceptions, no other organic compounds were detected in soil and water samples collected, including TPH as gasoline (TPHg); volatile organic compounds (VOCs); benzene, toluene, ethylbenzene, and total xylenes (BTEX); fuel oxygenates; lead scavengers; semivolatile organic compounds (SVOCs); pesticides; and polychlorinated biphenyls (PCBs).

VOCs were detected in one grab groundwater sample at concentrations below the ESLs. The metals arsenic, cobalt, and chromium were detected in several samples at concentrations that exceeded the ESLs; however, these concentrations are within ranges published for naturally occurring metals detected in soils in the San Francisco Bay Area.

Results from these investigations, evaluated in conjunction with results from previous investigations, indicate that AOCs #2, #6, and #7 have been sufficiently characterized and that no additional investigations are warranted for these areas. Additional

subsurface investigations may be required to confirm an elevated TPHmo concentration detected in a grab groundwater sample collected from one soil boring at AOC #3. However, soil and grab groundwater samples collected from nearby sample locations (at AOC #3) indicate that this area has not been significantly affected by petroleum hydrocarbons.

LFR Inc. (LFR) does recommend that additional subsurface investigations be conducted at AOC #8 (SS-123 area), to further characterize the lateral extent of petroleum-affected groundwater to the south in the SS-123 area. Previous consultants have concluded that groundwater in this area may be perched; this has not been confirmed. LFR also recommends re-sampling existing groundwater monitoring well 3S/1E 10D8, located north of Lake I, to confirm the SVOC and dissolved mercury concentrations detected in the groundwater sample collected from this well.

## 1.0 INTRODUCTION

This Site Investigation Report presents the results and findings of additional subsurface investigations conducted by LFR Inc. (LFR) on behalf of Hanson Aggregates Northern California ("Hanson") to confirm and further assess the extent of affected soil and groundwater in areas previously identified as areas of concern (AOCs) at the Hanson Aggregates Radum Facility, located at 3000 Busch Road, Pleasanton, California ("the Site"; Figure 1). To facilitate the investigation of environmental conditions at the Site, LFR has subdivided the approximately 1,000-acre Site into nine AOC, as illustrated on Figure 2. The scope of work for the investigations conducted at the Site was described in the "Work Plan for Additional Site Characterization at the Hanson Aggregates Radum Facility, 3000 Busch Road, Pleasanton, California," submitted to Alameda County Environmental Health (ACEH) on May 16, 2007 ("the Work Plan"). The Work Plan was approved by ACEH on June 22, 2007, with modifications to the scope of work including advancing additional soil borings, collecting additional samples, and conducting additional analyses. ACEH is the regulatory agency overseeing the environmental characterization of the Site under ACEH case number #RO0002952 (Geotracker Global ID #SL0600101555).

In accordance with the scope of work in the Work Plan and as approved by ACEH, LFR conducted investigations that included collecting soil, sediment, surface-water, and groundwater samples at locations in the eastern portion of AOC #2 and in AOCs #3, #6, #7, and #8 (Figure 2). As described further below, no additional investigations were necessary in the western portion of AOC #2 and at AOCs #4, #5, and #9, and the report of the investigations planned to be conducted in AOC #1 (the former hot mix asphalt plant area) will be completed under a separate scope of work. In addition, in anticipation of a property transfer from Hanson to Legacy Partners ("Legacy"), LFR collected groundwater samples from existing groundwater monitoring wells owned by Alameda County Flood Control and Water Conservation District Zone 7 ("Zone 7") and located on the Site. Results for samples collected from existing groundwater monitoring wells are also presented in this report.

This report summarizes field activities performed at the Site during July 12 through 25, 2007, and presents and discusses results from these field activities. This report is organized as follows.

- Section 2.0 presents a description of the Site, the site history and potential environmental impacts, a summary of previous environmental investigations conducted at the Site, and an overview of regulatory oversight to date.
- Section 3.0 describes the methodology of the investigations conducted.
- Section 4.0 presents the results of the environmental investigations conducted to confirm or further characterize the extent of contamination previously identified in various AOCs of the Site.

- Section 5.0 describes the methodology to sample existing deep groundwater monitoring wells and presents the results of the well sampling.
- Section 6.0 presents the conclusions and recommendations developed based on the results of the environmental investigations and well sampling.
- Section 7.0 defines LFR's professional limitations.
- Section 8.0 provides a reference list of primary documents related to environmental investigations conducted at the Site to date.

# 2.0 SITE HISTORY OF POTENTIAL ENVIRONMENTAL IMPACTS AND PREVIOUS INVESTIGATIONS

## 2.1 Site Description and History

The Site is located at 3000 Busch Road, Pleasanton, California, and consists of approximately 1,050 acres located partly within the city limits of Pleasanton and partly within an unincorporated area of Alameda County (Figures 1 and 2). Approximately two-thirds of the Site consist of large ponds or lakes, namely Lake I, Lake H, and Cope Pond, created during historical aggregate mining operations (Figure 2). The remaining approximately 320 acres of the Site (generally the southern third) consist of developable land. As described in the Phase I Environmental Site Assessment (ESA) by ENV America Inc. (ENV 2006a), several buildings remain on the Site, including Hanson offices, a minimally used heavy equipment maintenance shop and two warehouses, an idle truck maintenance shop currently occupied and used by the City of Pleasanton garbage company, and several smaller structures including temporary trailers and a lube shed associated with the heavy equipment maintenance shop. Structures previously associated with the historical mining and aggregate product manufacturing, including the former hot mix asphalt and concrete batch plants, have been removed from the Site. Partial structures, including concrete foundations and miscellaneous debris, remain within the former hot mix asphalt plant area in the southwestern corner of the Site (AOC #1; Figure 2).

As described in ENV's Phase I ESA report, mining of sand and gravel in the Livermore-Amador Valley began prior to 1900. Mining operations for aggregate resources at the Site were begun in 1938 by Kaiser Sand and Gravel. Reportedly, as sections of the property were mined out, the former mining pits were used for storage and/or as disposal ponds for water (from dewatering of new pits) and fine-grained sediments (silt and sand) washed out of the aggregate material. In addition, some mining pits were likely backfilled with debris and mine waste, as is evident from debris encountered during drilling. Hanson purchased the property in 1991 and continued mining operations until 2001. Mining was discontinued at that time due to lack of available aggregate materials.

Within the former mining operations areas (e.g., the former hot mix asphalt and concrete batch plants), several former underground storage tanks (USTs) were used to store fuel products, including gasoline, diesel, or used or new motor oil. As described below, historical mining and aggregate processing operations at the Site (in particular in the former hot mix asphalt plant area) have resulted in localized petroleum hydrocarbon-affected soil and groundwater beneath the Site.

## 2.2 Regional and Site Geology and Hydrogeology

#### 2.2.1 Regional Geology and Hydrogeology

The regional geology and hydrogeology summarized in this section are based on information provided in the most recent Zone 7 Annual Report for the Groundwater Management Program (Zone 7 2007). The Hanson Radum property is located in the Livermore-Amador Valley, an east-west trending valley surrounded by north-south trending faults and hills that are part of the Diablo Range. The Site lies within the Main Basin of the Livermore-Amador Valley Groundwater Basin and, more specifically, within the Amador Sub-Basin (Zone 7 2007).

The regional geology consists primarily of alluvial deposits (fan, stream, and lake) that range in thickness from a few feet at the margins to almost 800 feet in the west-central portions of the valley (Zone 7 2007). The alluvial deposits consist primarily of gravels and sands and are underlain by the Livermore Formation, which consists of relatively less permeable clayey gravels and sands, and silts and clays. Two major aquifer zones have been identified: the "Upper Aquifer Zone" and the "Lower Aquifer Zone." The Upper Aquifer Zone is generally unconfined and consists of unconsolidated coarse-grained alluvial sediments (primarily sandy gravel and sandy clayey gravel) encountered beneath surficial clays and between approximately 20 to 40 feet below ground surface (bgs) and 80 to 150 feet bgs. Permeable sediments encountered beneath the Upper Aquifer Zone and the underlying clay aquitard are grouped into the Lower Aquifer Zone, which is semi-confined to confined.

#### 2.2.2 Site Geology and Hydrogeology

Subsurface investigations conducted by LFR during July 2007 have encountered unconsolidated sediments consisting predominantly of clays and silts with gravel and intervals of coarser-grained gravels and sands. Because of the historical activities at the Site, some areas may consist of native sediments while others may consist of fill material. The locations of the former aggregate mining pits are not well defined. In certain areas, including the SS-123 area (AOC #8), concrete or cement material was encountered during drilling (at approximately between 10 and 30 feet bgs), indicating that historical mining pits likely were located in this area and subsequently filled by debris from the former mining operations.

With the exception of the SS-123 area (AOC #8), groundwater beneath the Site has generally been encountered approximately between 45 and 65 feet bgs. During the July 2007 subsurface investigations summarized in this report, groundwater was encountered approximately between 65 and 70 feet in temporary soil borings located in AOCs #2, #3, and #7. During a previous investigation conducted in AOC #1 in November 2006, groundwater was encountered in temporary soil borings approximately between 45 and 55 feet bgs. The difference in depth to groundwater between the July 2007 and the November 2006 investigations may accurately define differences in the depth to groundwater in the different areas of the Site, or may reflect seasonal variations. During the July 2007 investigations, depth to groundwater also was measured in four existing groundwater monitoring wells to be approximately between 53 and 57 feet below the top of the well casing (TOC), which is equivalent to approximately 50 to 54 feet bgs assuming 3-foot well risers. However, these four monitoring wells have well screens deeper than 170 feet bgs and possibly are not monitoring the same shallow groundwater encountered in the temporary soil borings that were advanced to a maximum depth of 75 feet bgs.

In the SS-123 area, groundwater was encountered between 25 and 30 feet bgs during LFR's investigations in July 2007 and ENV's investigations conducted between February and May 2007. ENV has concluded that this represents a perched groundwater zone; however, the presence of a perched groundwater zone in this area has not been confirmed.

The local groundwater flow direction and gradient beneath the Site currently is not known. New shallow groundwater monitoring wells were installed in AOC #1 in October 2007. Water-level elevations measured at these new wells will be used to assess the local groundwater flow direction and gradient in the southwestern portion of the Site.

## 2.3 Summary of PECs/RECs and Previous Environmental Site Investigations

Several subsurface investigations have been conducted at the Site to date by various consultants, including Baseline Environmental Consulting ("Baseline"), ENV, Brown & Caldwell (B&C), and LFR. The investigations conducted by Baseline were conducted on behalf of Hanson during 1991 and 1995 and predominantly were associated with the removal of former USTs. ENV completed several investigations on behalf of Legacy during 2006 and 2007, including a Phase I ESA and a Phase II ESA, and additional subsurface sampling in randomly selected locations. These investigations were conducted as part of Legacy's due diligence work prior to entering into a purchase agreement with Hanson for the Site. B&C completed three investigations on behalf of Hanson during 2006 and 2007, including a Phase I ESA, a limited Phase II ESA, and a subsurface investigation to assess soil and groundwater quality near two former USTS removed from approximately north of the idle truck maintenance shop in 2003. Based on the results of the B&C subsurface investigations, regulatory closure for these two former USTs was granted in June 2007.

LFR conducted an additional Phase II subsurface investigation in the former hot mix asphalt plant area (AOC #1) in November 2006 on behalf of Hanson to confirm previous findings by ENV and to further characterize the extent of suspected petroleum hydrocarbon contamination. Based on the results of LFR's November 2006 investigation, Hanson reported to ACEH the presence of elevated concentrations of petroleum hydrocarbons in soil and groundwater beneath the former hot mix asphalt plant area. Because of the large number of individual investigations conducted at the Site by various consultants, ACEH requested that a single document be prepared presenting a summary of all potential or recognized environmental concerns (PECs or RECs) on a site-wide basis.

On May 16, 2007, LFR submitted the Work Plan, which included a summary of the history of the Site and a detailed summary of site-wide environmental conditions based on results from investigations conducted by LFR and other consultants (LFR 2007a). To facilitate the data review and to focus future proposed investigations at the Site, LFR defined the nine AOCs that contained one or more PECs or RECs. In order to identify a PEC or REC, LFR compared all available analytical results to the Environmental Screening Levels (ESLs) for commercial/industrial land use areas developed by the Regional Water Quality Control Board (RWQCB 2005). Concentrations were considered elevated, and a PEC or REC was identified, based on whether analytical results exceeded the ESLs. The nine AOCs are shown on Figure 2 and are described below.

- AOC #1 Former Hot Mix Asphalt Plant Area (investigation being conducted during October 2007 and results will be presented under separate cover)
- AOC #2 Idle Truck Maintenance Area
- AOC #3 Heavy Equipment Maintenance and Wash Rack Area, and PEC Identified by Temporary Soil Boring EB-35
- AOC #4 Former Concrete Batch Plant Area
- AOC #5 Former Mining Operations Area
- AOC #6 Storm-Water Retention Pond
- AOC #7 PEC Identified by Temporary Soil Boring SS-31
- AOC #8 PEC Identified by Temporary Soil Boring SS-123
- AOC #9 Vulcan Materials Company Storm-Water Runoff Area

The following sections present a brief overview of known site conditions in each of the AOCs based on the more detailed information presented in the Work Plan. Site maps were prepared for each individual AOC and were presented in the Work Plan. The individual site maps have been updated for this report to include results from the subsurface investigations completed recently by ENV (ENV 2007c) and by LFR (reported herein). Figures 3 through 7 present updated detailed maps of AOCs #2, #3, #6, #7, and #8, respectively. In agreement with ACEH and as described below,

PECs/RECs within AOC #1 have been further characterized under a separate scope of work and the results of that investigation will be presented under separate cover. As such, a site plan for AOC #1 and detailed site description and history are not included in this report.

#### 2.3.1 AOC #2: Idle Truck Maintenance Area

The former idle truck maintenance area is located in the west-central portion of the Site (AOC #2; Figures 2 and 3). The eastern portion of AOC #2 contains several structures, including the idle truck maintenance shop currently used by the Pleasanton Garbage Service Inc. and several trailers. Approximately seven former USTs have been removed from this AOC; these have been investigated and closed to the satisfaction of regulatory oversight agencies. An inactive 640-foot-deep water supply well owned by Zone 7, well 3E/1S 15F3, also known as well Kaiser #6, is located southwest of the idle truck maintenance shop and was sampled by ENV in February 2007 (sample name W-1; Figure 3).

The western portion of AOC #2 contains the idle truck maintenance yard and mostly undeveloped areas. Based on previous investigations, a PEC was identified near the northeastern corner of the maintenance yard during the Phase II ESA by ENV, based on the analytical results from soil samples collected from temporary soil boring EB-31. Former boring EB-31 was advanced by ENV reportedly because a former "waste pit" or disposal pond existed in this portion of the Site (ENV 2006b). Analytical results identified that the soil sample collected from approximately 10 feet bgs slightly exceeded the ESL for total petroleum hydrocarbons (TPH) as diesel (TPHd). Other soil samples collected from above and below the 10-foot interval did not exceed the ESLs.

LFR recommended that this PEC and data gap identified by the results from former soil boring EB-31 be further characterized laterally.

## 2.3.2 AOC #3: Heavy Equipment Maintenance and Wash Rack Area, and PEC Identified by Temporary Soil Boring EB-35

The heavy equipment maintenance area and soil boring EB-35 are located in the northcentral portion of the Site (AOC #3; Figures 2 and 4). This area encompasses several existing buildings and/or structures that were identified as PECs or RECs in the Work Plan, such as a heavy equipment maintenance shop and two warehouses (no longer significantly in use), the lube shed associated with the maintenance shop, a truck wash rack, sump, and associated oil-water separator, and two aboveground waste oil tanks. In addition, one active transformer located approximately at the northwestern corner of the building housing the Hanson offices was identified. Former soil boring EB-35 was advanced in a vacant area approximately 2,000 feet northeast of the Hanson offices as part of ENV's random sampling program (ENV 2007a). Although elevated concentrations of TPH were detected in shallow soil samples collected in the vicinity of former boring EB-35, no known or suspected historical activities were reported to have taken place in this portion of the Site.

Following a review of subsurface investigations conducted by B&C and ENV, LFR identified only two PECs in AOC #3. Two soil samples collected from approximately 2 and 2.5 feet bgs near the northeastern corner of the lube shed resulted in TPHd concentrations that exceeded the ESL. Also, the soil samples collected from approximately 2 feet bgs from former soil boring EB-35 contained TPHd and TPH as motor oil (TPHmo) at concentrations above the ESLs. In the Work Plan, LFR recommended that additional subsurface investigations be conducted to further characterize the lateral extent of petroleum hydrocarbons in shallow soil in the vicinity of former soil borings B-1 and EB-35.

#### 2.3.3 AOC #4: Former Concrete Batch Plant Area

The former concrete batch plant was located in the southwestern portion of the (AOC #4; Figure 2). The concrete batch plant was operated until 2004 when the majority of the equipment was removed. No structures remain from these operations, although four broken aboveground plastic tanks remain that likely contained plasticizers. One former diesel UST was removed in 1995, and confirmation sampling resulted in the receipt of a UST case closure letter from a regulatory agency (ACEH 1998). As discussed in the Work Plan, subsurface investigations conducted by ENV confirmed the former concrete batch plant operations did not significantly affect the subsurface and LFR did not identify any data gaps. Therefore, no additional subsurface investigations were proposed in the Work Plan.

#### 2.3.4 AOC #5: Former Mining Operations Area

The former mining operations area was located in the central portion of the Site (AOC #5; Figure 2). Mining operations were conducted until 2004, when the majority of the equipment was removed. All that remains in this area are concrete slabs, large piles of broken concrete, and areas of bare earth. As discussed in the Work Plan, subsurface investigations conducted by ENV confirmed that the former mining operations area did not significantly affect the subsurface and LFR did not identify any data gaps. Therefore, no additional subsurface investigations were proposed in the Work Plan.

#### 2.3.5 AOC #6: Storm-Water Retention Pond

The storm-water retention pond is located along the western boundary of the Site on the northern side of Busch Road adjacent to the Kiewit property (AOC #6; Figures 2 and 5). According to Hanson, the source of the water to this pond is surface runoff water diverted from the Kiewit property, the Pleasanton Garbage Service Inc. operations, and the Hanson property. There are three large-diameter (approximately 12- to 20-inch-diameter) pipes visible that appear to discharge water from these properties into the

pond; one pipe is located near the southwestern corner of the pond and two pipes are located near the southeastern corner of the pond.

ENV reported that sediment and surface-water samples collected from this pond in 1992 contained detectable concentrations of petroleum hydrocarbons (ENV 2006a). Surface-water and sediment samples subsequently were collected from the storm-water retention pond by ENV and B&C in 2006. Analytical results from one of the sediment samples and from the one surface-water sample, both collected near the southeastern corner of the pond by B&C, contained TPHd and TPHmo concentrations that exceeded the ESLs. In the Work Plan, LFR recommended that additional shallow sediment and surface-water samples be collected to confirm these results.

#### 2.3.6 AOC #7: PEC Identified by Temporary Soil Boring SS-31

Temporary soil boring SS-31 was advanced by ENV approximately near the southeastern corner of Lake I (AOC #7; Figures 2 and 6), as part of its subsurface investigations conducted in randomly selected locations (ENV 2007a). LFR is not aware of any historical mining operations in this portion of the Site. The soil samples collected from approximately 2 and 40 feet bgs from former boring SS-31 contained TPHd and TPHmo concentrations that exceeded the ESLs. Based on these results, LFR recommended that four temporary soil borings be advanced in step-out locations to collect additional soil samples to characterize the lateral and vertical extent of petroleum hydrocarbon-affected soil in this area. Because the deepest soil sample collected contained elevated concentrations of TPH, in the Work Plan LFR also recommended the collection and analysis of grab groundwater samples in this area.

#### 2.3.7 AOC #8: PEC Identified by Temporary Soil Boring SS-123

As part of its subsurface investigations conducted in randomly selected locations, ENV advanced temporary soil boring SS-123 in the area located between the Vulcan Materials Company (VMC) property and the former mining operations area (AOC #8; Figures 2 and 7; ENV 2007a). LFR is not aware of any historical mining operations that may have taken place in this portion of the Site. Analytical results for soil samples collected from former soil boring SS-123 in January 2007 indicated the presence of petroleum hydrocarbon-affected soil at depths of approximately 20 to 40 feet bgs. Based on these results, ENV advanced four additional temporary soil boring SS-123 in March 2007. Analytical results from soil and grab groundwater samples contained TPHd and TPHmo at concentrations that exceeded the ESLs in soil samples collected from approximately between 2 and 30 feet bgs, and in grab groundwater samples collected from approximately 30 feet bgs in each of the four soil borings.

Based on the results of the March 2007 investigation, ENV concluded that the groundwater encountered approximately between 25 to 30 feet bgs represented a perched groundwater interval (ENV 2007b), and that additional characterization was

necessary. ENV proposed to conduct a third investigation in May 2007, consisting of additional step-out temporary soil boring locations.

When LFR submitted the Work Plan to ACEH on May 16, 2007, the results of ENV's third investigation conducted during May 2007 in this area were not available. LFR did not make any recommendations for additional investigations in the Work Plan, pending the results of ENV's investigation. Subsequently, a draft summary report presenting the results from ENV's third investigation was made available to LFR on July 3, 2007, and LFR later obtained a copy of the final report dated June 2007 from the ACEH on-line document library (ENV 2007c).

According to ENV's June 2007 report, four temporary soil borings were advanced in locations stepping out approximately 125 feet to the east, south, west, and north of the original SS-123 location (Figure 5). Former soil borings SS-123(E) through SS-123(H) were advanced to depths of approximately 30 to 35 feet bgs. Elevated TPHd and TPHmo concentrations were detected in a depth-discrete soil sample collected from approximately 5 feet bgs in former soil boring SS-123(G) located farthest west. Elevated TPHd concentrations were detected in the soil samples collected from approximately 15 feet bgs from former soil borings SS-123(H), located to the north, and SS-123(E), located to the east. No other soil samples collected from the three soil borings advanced by ENV at locations to the west, north, and east contained elevated hydrocarbon concentrations. In addition, grab groundwater samples collected from former soil borings SS-123(E), SS-123(G), and SS-123(H) did not contain TPHd concentrations above the ESL, and TPHmo was not detected above the laboratory reporting limit. Based on these results, the lateral and vertical extents of hydrocarbon contamination have been sufficiently characterized to the west, north, and east of former boring SS-123.

Of the four step-out locations advanced by ENV, only the southernmost soil boring (SS-123(F)) contained elevated petroleum hydrocarbons in soil samples and in the grab groundwater sample. Soil samples collected from approximately 5, 10, 15, and 20 feet bgs contained TPHd concentrations that exceeded the ESL and the 5-foot soil sample contained TPHmo at a concentration that exceeded the ESL. The grab groundwater sample contained TPHd and TPHmo at concentrations that exceeded the ESL (Figure 5; ENV 2007c).

Based on ENV's draft results, LFR planned to advance four additional temporary soil borings in the vicinity of former soil boring SS-123 during the July 2007 site-wide investigations, to further assess the lateral extent of petroleum-affected soil and groundwater in this area. Three soil boring locations were identified as step-out locations from former soil boring SS-123(F). One soil boring location was selected to be approximately adjacent to the original soil boring SS-123, in order to collect continuous core samples and create a more detailed soil boring log (ENV collected soil samples at approximately every 10 feet), and to collect a grab groundwater sample (ENV did not collect a grab groundwater sample from former boring SS-123). LFR

planned to collect depth-discrete soil samples and grab groundwater samples from each soil boring.

#### 2.3.8 AOC #9: Vulcan Materials Company Storm-Water Runoff Area

The VMC property is located adjacent to the Site and to the east and is an active aggregate mining and product facility. The VMC runoff area is located along the southeastern edge of the Site (AOC #9; Figure 2). According to the Phase II ESA report by ENV, previous reports indicated that surface-water runoff from the VMC property onto the Site has occurred in the past (ENV 2006b). Reportedly, a berm was installed between the VMC property and the Site to control surface-water runoff; the current condition of this berm could not be determined by LFR or Hanson.

ENV collected three shallow soil samples from the VMC storm-water runoff area during September 2006, approximately where surface-water runoff may have taken place. Analytical results showed that TPHd was slightly elevated in one of the soil samples; however, the soil samples collected approximately upgradient and downgradient from this soil sample did not contain significant TPHd or TPHmo concentrations. No data gaps were identified and LFR did not recommend any additional investigations for this area.

## 2.4 Regulatory Determinations

Based on its review of documentation and reports of environmental investigations conducted by various consultants on behalf of Hanson and Legacy, ACEH issued a letter to Hanson on March 16, 2007, requesting that a work plan be prepared to propose a scope of work for additional site-wide characterization investigations. ACEH requested that the work plan include:

- A detailed site history
- A description of current conditions and PECs or RECs
- An improved presentation of available analytical data
- Copies of relevant reports or documents not previously provided to ACEH, in particular regarding environmental investigations conducted at the neighboring Kiewit property and case closure letters from regulatory agencies for former USTs
- A scope of work for additional characterization investigations

LFR prepared and submitted the May 16, 2007 Work Plan to ACEH, addressing ACEH's requests. In the Work Plan, LFR included a summary of the various PECs and RECs on a site-wide basis, a comprehensive summary of all available analytical data, individual site maps presenting analytical data and site features and at appropriate scales, and a scope of work for additional characterization investigations (LFR 2007a). On June 20, 2007, a project planning meeting was held at the ACEH offices with

ACEH, Hanson, LFR, and Nuquest on behalf of Hanson, Legacy, and ENV, and AIG Environmental on behalf of Legacy, to discuss current site conditions, the Work Plan and proposed scope of work, and the anticipated property transfer for the majority of the Hanson property to Legacy. During this meeting, two areas were highlighted as being of primary environmental concern, namely the deep soil contamination in the northern portion of the former hot mix asphalt plant area and in the vicinity of former soil boring SS-123.

ACEH subsequently approved the Work Plan in a letter dated June 22, 2007, and provided technical comments consisting primarily of requests for advancing certain proposed soil borings deeper and conducting additional analyses on soil and/or groundwater samples collected from specific locations (ACEH 2007c). ACEH agreed with LFR that no additional investigations would be required in the western portion of AOC #2, and in AOCs #4, #5, and #9.

#### 2.4.1 Property Transfer and New Case Number

In anticipation of the property transfer between Hanson and Legacy, the Radum property has been divided into two primary parcels. Investigations and summary reports are now being conducted separately for the two primary areas of the Site.

It is LFR's understanding that Hanson has retained the portion of the property delineated by the Lot Line Adjustment, the approximately 15-acre area defined as Parcel 1, and the small, irregularly shaped area located south of the Kiewit property, and that the rest of the Site has been transferred to Legacy. In anticipation of the planned property transfer from Hanson to Legacy, Hanson requested that ACEH assign a new Spills, Leaks, Investigations, and Cleanups (SLIC) case number to the portion of the property transferred to Legacy (LFR 2007b). ACEH approved this request (ACEH 2007d), and currently there exist two SLIC case numbers for the Site, defined as follows:

ACEH SLIC case number RO0002941 and Geotracker Global ID SLT19719376 refer to the approximately 15-acre Parcel 1 and the small area south of the Kiewit property, including AOC #1 and the western portion AOC #2.

ACEH SLIC case number RO0002952 and Geotracker Global ID SL0600101555 refer to the rest of the Hanson Radum property, including the eastern portion of AOC #2 and AOCs #3 through #9.

#### 2.4.2 Investigation and Reporting Schedule

In accordance with the Work Plan and ACEH technical comments outlined in its June 22, 2007 letter, LFR conducted subsurface investigations in the eastern portion of AOC #2, and in AOCs #3, #6, #7, and #8, during July 2007. The results on these

investigations are summarized and discussed in this report, which has been transmitted to ACEH on October 26, 2007.

The subsurface investigations proposed to be conducted in the former hot mix asphalt plant area (AOC #1) and in the irregularly shaped area south of the Kiewit property were completed during October 2007. As approved by ACEH via e-mail on October 9, 2007, LFR will submit a summary report presenting results from these investigations on November 30, 2007.

## 2.5 Investigation Objectives

The primary objective of the subsurface investigations proposed in the Work Plan is to further characterize the lateral and/or vertical extent of petroleum hydrocarbons in soil and/or groundwater in AOCs #2, #3, #6, #7, and #8. Below is a summary of the investigations proposed to fill the data gaps.

- AOC #2 Idle truck maintenance area: advance three temporary soil borings near former boring EB-31 to characterize the lateral extent of TPHd in soil and to assess groundwater quality in this area of the Site.
- AOC #3 Heavy equipment maintenance and wash rack area, and former soil boring EB-35 area: advance one temporary soil boring near former boring B-1 to characterize the lateral and vertical extent of TPHd in soil and to evaluate whether groundwater has been affected in this area, and advance four temporary soil borings in the vicinity of former boring EB-35 to assess the lateral extent of TPHd and TPHmo in soil.
- AOC #6 Storm-water retention pond: collect sediment and surface-water samples from the pond to confirm previous TPHd and TPHmo results.
- AOC #7 Former soil boring SS-31 area: advance four temporary soil borings near former boring SS-31 to characterize the lateral and vertical extent of TPHd and TPHmo in soil and to assess groundwater quality in this area of the Site.
- AOC #8 Former soil boring SS-123 area: advance four temporary soil borings in the vicinity of former boring SS-123 to assess the lateral and vertical extent of TPHd and TPHmo in soil and groundwater in this area of the Site.

## 3.0 INVESTIGATION METHODOLOGY

## 3.1 **Pre-Field Activities**

#### 3.1.1 Permitting

LFR applied for and received the appropriate soil boring drilling permit from Zone 7. Based on the drilling locations, no other permits were required for the proposed activities. A copy of the approved soil boring permit is included in Appendix A.

#### 3.1.2 Subsurface Utility Clearance

LFR notified Underground Service Alert (USA) to identify any public underground utilities located in the vicinity of the proposed soil boring locations. LFR did not receive any utility alerts from USA. LFR also subcontracted a private underground utility locator to clear all proposed soil boring locations using geophysical and pipe/cable location methods. All proposed soil boring locations were cleared satisfactorily. Due to the extreme hardness of the surface soil and the presence of gravel in the upper 5 feet of soil, the temporary soil borings could not be started using hand-auger techniques as was proposed in the Work Plan as an additional precaution against encountering utilities during drilling.

#### 3.1.3 Health and Safety Plan

A Health and Safety Plan (HSP) previously prepared by LFR for the subsurface investigations conducted at the former hot mix asphalt plant area in November 2006 was revised to address health and safety concerns specific to the planned field activities.

Health and safety tailgate meetings were conducted before beginning fieldwork each day, and fieldwork was monitored according to the HSP to ensure that appropriate health and safety procedures were followed during the field investigations. In addition, in accordance with standard Hanson Radum facility operations, LFR and LFR's subcontractors attended on-site health and safety training conducted by a Hanson representative.

## 3.2 Temporary Soil Borings

A total of 16 temporary soil borings was advanced to depths ranging approximately from 10 to 70 feet bgs in AOCs #2, #3, #7, and #8, as described below.

#### 3.2.2 Soil Boring Advancement and Soil and Grab Groundwater Sampling Procedures

#### Drilling and Lithologic Logging

LFR subcontracted HEW Drilling Co., Inc., of Palo Alto, California, a state-certified drilling subcontractor, to advance the 16 temporary soil borings using hollow-stem auger (HSA) drilling technology using a CME-75 drill rig and an 8-inch-diameter HSA (although a larger drill rig and HSA were used to advance several soil borings in the SS-123 area, as explained in Section 3.2.3). The drilling and soil and grab groundwater sampling activities were completed during July 16 through 24, 2007. During drilling, continuous soil cores were collected for lithologic evaluation and field screening. LFR collected depth-discrete soil samples for laboratory analyses from intervals where field screening and field observations indicated the possible presence of petroleum hydrocarbons or other contaminants in the soil. Where no indication of contamination was observed in the soil cores, LFR collected depth-discrete soil samples at approximately 5-foot intervals, until groundwater was first encountered or to a target depth, depending on the soil boring location.

Field boring logs were prepared for each soil boring location, and lithologic and field screening results were recorded on the field boring logs. Field boring logs were prepared by an LFR field geologist based on visual lithologic soil logging procedures and the Unified Soil Classification System (ASTM D2488-00). All boring logs were reviewed, edited, and signed by a California Professional Geologist.

All downhole drilling and sampling equipment was appropriately cleaned with high-pressure hot water (steam cleaned) before use at each drilling location. After soil and groundwater samples were collected, each borehole was abandoned by sealing it with a mixture of cement and bentonite ("grout") from the bottom up to the ground surface using a tremie pipe if groundwater was present, or directly from the ground surface if no groundwater was present. Waste soil generated during drilling was placed on plastic tarps on the ground surface near each temporary soil boring and will be disposed of as necessary during future land development activities.

#### Soil Sampling

LFR attempted to collect continuous soil cores using California split-spoon-type samples driven in approximately 18-inch intervals. This was conducted variably, depending on soil conditions, in soil borings EB-35(A) through EB-35(D), B-1(A), EB-31(A), EB-31(C), and SS-31(A). The coarse-grained nature of the soils (typically gravels) made this sampling method difficult to nearly impossible in certain locations. Therefore, LFR switched to collecting 5-foot continuous cores during HSA drilling where necessary. The continuous coring resulted in somewhat poorer soil core recovery in certain soil borings. Where the California split-spoon sampler was used, soil cores were collected in brass tube liners. Where continuous coring methods were

used, soil samples selected for laboratory analyses were transferred from the core barrel to brass tube liners.

Depth-discrete soil samples were selected for laboratory analyses based on the potential presence of contaminants, in particular petroleum hydrocarbons, as apparent from field screening using a photoionization detector (PID) or from visual/olfactory evaluation of the soil cores. All soil samples selected to be submitted for laboratory analyses were properly labeled with the boring identification number and depth interval, the time and date of collection, and the initials of the sampler. Soil samples were stored in ice-chilled coolers that were submitted to the analytical laboratory under strict chain-of-custody protocols on a daily basis.

#### Grab Groundwater Sampling

Ten of the 16 temporary soil borings were advanced until groundwater was first encountered to collect grab groundwater samples. After drilling was completed, a temporary well casing consisting of a polyvinyl chloride (PVC) well screen and casing was placed through the HSA and the HSA was raised approximately 3 to 5 feet to allow groundwater to enter the borehole. Grab groundwater samples were collected using clean, disposable bailers lowered into the PVC casing and gently pouring the groundwater from the bailer into the appropriate clean, laboratory-supplied sample containers. The sample containers were properly labeled with the boring identification number, the time and date of collection, and the initials of the sampler. Groundwater samples were stored in ice-chilled coolers along with the soil samples, and were submitted to the analytical laboratory under strict chain-of-custody protocols on a daily basis.

Grab groundwater samples were successfully collected from each location where grab groundwater samples were proposed to be collected, although most soil borings needed to be advanced deeper than anticipated. Based on previous investigations conducted at the former hot mix asphalt plant, groundwater was anticipated to be encountered between approximately 50 and 55 feet bgs. During the drilling conducted site-wide in July 2007, however, borings were advanced to approximately 70 feet bgs in order to encounter sufficient groundwater for sampling, with the exception of the area near former soil boring SS-123 where groundwater previously had been encountered at approximately 30 feet bgs.

#### 3.2.3 Temporary Soil Boring Locations and Target Depths

The locations of temporary soil borings advanced by LFR in AOCs #2, #3, #7, and #8 during July 16 though 24, 2007 are shown on Figures 3, 4, 6, and 7, respectively. Sample locations and target depths are described below.

#### Idle Truck Maintenance Area (AOC #2)

LFR advanced at total of three temporary soil borings in the idle truck maintenance area (AOC #2), in the vicinity of former soil boring EB-31, which was located approximately northeast of the idle truck maintenance yard. Soil borings EB-31(A) through EB-31(C) were advanced to further characterize the lateral and vertical extent of elevated TPHd and TPHmo concentrations detected in a soil sample previously collected from approximately 10 feet bgs in former boring EB-31. The three new soil borings were located approximately 15 feet southeast, southwest, and north, respectively, of former boring EB-31 (Figure 3). Soil borings EB-31(A) and EB-31(C) were advanced to approximately 20 feet bgs, and soil boring EB-31(B) was advanced to approximately 70 feet bgs until groundwater was first encountered. In each soil boring, depth-discrete soil samples were collected for laboratory analyses from approximately every 5 feet to approximately 20 feet bgs and analyzed for TPHd and TPHmo. A grab groundwater sample was collected from boring EB-31(B) and analyzed for TPHd; TPHmo; TPH as gasoline (TPHg); volatile organic compounds (VOCs); benzene, toluene, ethylbenzene, and total xylenes (BTEX); fuel oxygenates; and lead scavengers (Table 1).

#### Heavy Equipment Maintenance and Wash Rack Area, and PEC Identified by Former Soil Boring EB-35 (AOC #3)

Five temporary soil borings were advanced in AOC #3 (Figure 4). One soil boring (B-1(A)) was located approximately 18 feet north of former soil boring B-1 near the lube shed, and was advanced to approximately 70 feet bgs to collect a grab groundwater sample.

Four soil borings (EB-35(A) though EB-35(D)) were advanced surrounding former soil boring EB-35, to further characterize the lateral and vertical extent of elevated TPHd concentrations detected in soil samples collected from approximately 2 feet bgs in these two areas (Figure 4). These four borings were located approximately 25 feet to the east, south, west, and north of former boring EB-35 and were advanced to approximately 10 or 11 feet bgs.

Continuous soil cores were collected from each temporary soil boring for lithologic logging, and depth-discrete soil samples were collected for laboratory analyses from approximately 5 and 10 feet bgs in each soil boring and were analyzed for TPHd, TPHmo, TPHg, polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and metals concentrations. An additional soil sample was collected from approximately 35 feet bgs (based on field screening results) at boring B-1(A) and analyzed for TPHd and TPHmo. A grab groundwater sample was collected from boring B-1(A) and was analyzed for TPHd, TPHmo, TPHg, VOCs, BTEX, fuel oxygenates, and lead scavengers (Table 1).

#### PEC Identified by Former Soil Boring SS-31 (AOC #7)

AOC #7 was defined by elevated petroleum hydrocarbon concentrations detected in soil samples collected from former soil boring SS-31 (Figure 6). LFR advanced four temporary soil borings approximately surrounding former soil boring SS-31 to further characterize the lateral and vertical extent of elevated TPHd and TPHmo concentrations previously detected in soil samples from approximately 2 and 40 feet bgs. Soil borings SS-31(A) through SS-31(D) were located approximately 75 feet to the west, north, east, and south, respectively (Figure 6). Each soil boring was advanced to approximately 70 feet bgs to collect grab groundwater samples. Depth-discrete samples were collected for laboratory analyses from the four soil borings from approximately every 5 feet from ground surface to approximately 30 feet bgs, and then approximately every 10 feet bgs until groundwater was encountered. An additional depth-discrete soil sample was collected from the 52- to 53-foot interval in boring SS-31(A) based on the field screening results. All soil samples were analyzed for TPHd, TPHmo, TPHg, BTEX compounds, fuel oxygenates, and lead scavengers. In addition, the 5- and 10foot samples were analyzed for pesticides, PCBs, SVOCs, and metals concentrations (Table 1).

Grab groundwater samples were collected from each of the four soil borings and analyzed for TPHd, TPHmo, TPHg, VOCs, BTEX, fuel oxygenates, and lead scavengers (Table 1).

#### PEC Identified by Former Soil Boring SS-123 (AOC #8)

AOC #8 was defined by elevated petroleum hydrocarbon concentrations detected in soil samples collected from the initial former soil boring SS-123 (Figure 7). As described in Section 2.3.7, ENV subsequently advanced a total of eight soil borings in step-out locations from former boring SS-123 to investigate the nature and extent of potential petroleum hydrocarbon contamination in this area. Based on ENV's results, LFR proposed to advance three soil borings in step-out locations from former soil boring SS-123(F) and one temporary soil boring adjacent to the original former boring SS-123.

Soil boring SS-123(AA) was advanced approximately adjacent to former boring SS-123, to approximately 20 feet bgs to collect a continuous soil core and a grab groundwater sample, neither of which was collected from the original soil boring SS-123. In addition, based on ENV's conclusion that a perched zone of groundwater exists in the SS-123 area, LFR attempted to confirm the presence of perched groundwater. Soil boring SS-123(AA) was drilled using a relatively powerful HSA drilling rig (CME-95 instead of standard CME-75) and large-diameter HSA (16-inch diameter instead of standard 8-inch). LFR intended to advance the 16-inch-diameter HSA into a relatively less permeable interval, possibly beneath the perched groundwater zone, and then continue drilling deeper using the 8-inch-diameter HSA advanced inside the 16-inch-diameter HSA, which would serve as a temporary casing sealing the perched groundwater from deeper groundwater zones. However, the

suspected perched groundwater could not be adequately sealed from entering the borehole using the 16-inch-diameter HSAs; therefore, the presence of a perched groundwater zone could not be confirmed using this drilling method.

Soil borings SS-123(F1), SS-123(F2), and SS-123(F3) were advanced as step-out locations to former soil boring SS-123(F), and were located approximately 75 feet to the east, south, and west, respectively. Soil borings SS-123(F1) through SS-123(F3) were advanced to approximately 30 feet bgs. Continuous soil cores were collected and depth-discrete soil samples were collected from approximately every 5 feet until a grab groundwater sample could be collected from the first encountered groundwater.

## 3.3 Surface Sediment and Water Samples from the Storm-Water Retention Pond

LFR collected a total of four surface-sediment samples and one composite surfacewater sample from the storm-water retention pond (AOC #6; Figure 5). LFR subcontracted NRC Environmental Services (NRC) of Alameda, California, to assist in collecting the samples from within the storm-water retention pond on July 13, 2007. NRC provided a boat that was lowered into the pond and from which two of the four sediment samples were collected from beneath the water using a potable dredge to collect the composite surface-water sample. The sediment collected using the dredge was placed in clean, laboratory-provided sample containers. The two sediment samples collected from the wet sediment above the surface water were collected by pushing clean sample containers into the sediment. The four sediment samples were collected approximately in line and approximately at 50-foot intervals between the southeastern corner of the pond and approximately the center of the pond. The southeasternmost sediment sample was collected approximately below the outflow of two large diameter pipes that appear to direct surface-water runoff from the Hanson and Kiewit properties into the pond.

The composite surface-water sample was collected by compositing surface water from approximately the southeastern and southwestern corners of the pond, approximately beneath the outflow of the two large-diameter pipes leading into the pond in the southeastern corner and one large-diameter pipe leading into the pond in the southwestern corner of the pond. The surface-water samples were collected directly into clean, laboratory-provided sample containers. All samples were placed in ice-chilled coolers, which were submitted to the analytical laboratory under strict chain-of-custody protocols on a daily basis.

The four storm-water sediment samples were analyzed for TPHd, TPHmo, and metal concentrations while the composite surface-water sample was analyzed for TPHd, TPHmo, TPHg, VOCs, BTEX, fuel oxygenates, lead scavenger compounds, and metals concentrations (Table 1).

## 3.4 Laboratory Analyses

All soil and water samples selected for laboratory analyses were submitted to Curtis & Tompkins, Ltd. (C&T), a California-certified analytical laboratory located in Berkeley, California. All samples were analyzed for TPHd and TPHmo by U.S. Environmental Protection Agency (EPA) Method 8015 (after undergoing silica gel cleanup). Selected samples were analyzed variably for the following analyses: TPHg by EPA Method 8015 (soil and sediment samples) or EPA Method 8260 (groundwater and surface-water samples); VOCs, BTEX, fuel oxygenates, and lead scavengers by EPA Method 8260; pesticides by EPA Method 8081; PCBs by EPA Method 8082; SVOCs by EPA Method 8270; and metals (CAM 17 by EPA Method 6010). Table 1 presents a sample matrix that summarizes the laboratory analyses conducted from individual soil, groundwater, sediment, and surface-water samples.

## 3.5 Field Documentation

Field activities were documented using the appropriate forms for HSP tailgate meetings, field boring logs, sample labels, and chain-of-custody forms. Forms will be kept on file at LFR and will be available upon request.

## 3.6 Land Survey of Sample Locations

After all samples were collected, LFR subcontracted a licensed land surveyor to survey the location of individual temporary soil borings and the approximate location of the sediment and surface-water samples collected from the storm-water retention pond. All sample locations from the July 2007 field investigations presented on Figures 3 through 7 are based on the land survey results.

## 4.0 **RESULTS OF ADDITIONAL SITE-WIDE CHARACTERIZATION**

Results from investigations conducted in AOCs #2, #4, #7, and #8 and in the storm water retention pond (AOC #6) during July 2007 are summarized and discussed below. All analytical results are summarized in Tables 2 through 14, based on laboratory-certified analytical reports included in Appendix B. Soil boring logs for temporary soil borings are included in Appendix C. Analytical results for TPHd, TPHmo, and TPHg are presented on Figures 3 through 7.

All analytical results were compared to RWQCB ESLs for shallow or deep soils beneath commercial/industrial land use areas (RWQCB 2005). The ESLs are included in the summary tables. Compounds detected at concentrations that exceed the ESLs are highlighted in the tables and on the figures.

In general, the primary compounds detected in soil samples are TPHd and TPHmo. No other organic compounds, including TPHg, VOCs, BTEX, fuel oxygenates, lead

scavengers, SVOCs, pesticides, PCBs, or SVOCs, were detected in any soil or sediment samples. Although several metals were detected, only arsenic, cobalt, and chromium were detected at concentrations that exceeded the ESLs. One or more of these three metals were detected in shallow samples collected from AOCs #3, #6, and #7. However, the detected concentrations of these three metals are well within the reported ranges for naturally occurring metals for the San Francisco Bay Area, based on the report entitled "Analysis of Background Distributions of Metals in the Soil at Lawrence Berkeley National Laboratory (LBNL)," prepared by LBNL in June 2002. Based on the LBNL study, natural background ranges for arsenic, cobalt, and chromium in San Francisco Bay Area soils can be defined as follows (arithmetic mean plus or minus the standard deviation):

- Arsenic: 0.1 to 10.9 milligrams per kilogram (mg/Kg)
- Cobalt: 9.2 to 18.8 mg/Kg
- Chromium: 32 to 84 mg/Kg

Similarly, the primary compounds detected in grab groundwater samples are TPHd and TPHmo. With one exception, TPHg, BTEX, fuel oxygenates, and lead scavengers were not detected above laboratory reporting limits; toluene was detected in one grab groundwater sample at a concentration below the ESL. Several VOCs were detected in a grab groundwater sample collected from AOC #8, but none of these concentrations exceeded the ESLs. Several metals were detected in the surface-water sample, but no concentrations exceeded the ESLs.

## 4.1 Idle Truck Maintenance Area (AOC #2)

Predominantly fine-grained sediments (silts and clays) were encountered in soil borings EB-31(A), EB-31(B), and EB-31(C) (Figure 3). In soil boring EB-31(B), fine-grained sediments were encountered to approximately 62 feet bgs, below which relatively coarse-grained sediments (clayey gravel with sand) were encountered to the total depth of the soil boring (approximately 70 feet bgs). No evidence of petroleum-affected soil or groundwater was identified during drilling of these three soil borings.

TPHd and TPHmo were detected in several soil samples at concentrations significantly below their respective ESLs (100 mg/Kg for TPHd and 1,000 mg/Kg for TPHmo; Table 2A and Figure 3). All concentrations of TPHd and TPHmo were qualified by the laboratory, indicating that the hydrocarbons detected in the soil samples did not resemble TPHd or TPHmo; as noted by the laboratory, hydrocarbons detected generally were heavier than TPHd and lighter than TPHmo. Heavier hydrocarbons such as TPHmo typically consist of longer carbon chain hydrocarbons (C10 to C24) while lighter hydrocarbons such as TPHd typically consist of shorter chain hydrocarbons (C24 to C36). The laboratory qualifiers indicate that the detected concentrations do not resemble standards for TPHd and TPHmo.

At soil boring EB-31(B), groundwater was first encountered between 65 and 70 feet bgs. After drilling was completed, the depth to groundwater was measured at approximately 64.8 feet bgs. Continuous soil cores were collected from soil boring EB-31(B) from the ground surface to approximately 21.5 feet bgs, after which sediments were logged from auger cuttings because recovery was poor and continuous soil sampling was not required (the primary objective for drilling deeper than approximately 20 feet bgs at this location was to collect a grab groundwater sample). Petroleum hydrocarbons, VOCs including BTEX, fuel oxygenates, and lead scavenger compounds were not detected above the laboratory reporting limits in samples collected in this area (Tables 8A, 8B, and 9).

Based on the results from soil borings EB-31(A), EB-31(B), and EB-31(C), this area has been sufficiently characterized laterally and vertically. The potential petroleum hydrocarbon contamination identified in the 10-foot samples from former soil boring EB-31 appears to be limited to a localized area and depth. Groundwater does not appear to have been affected by petroleum hydrocarbons detected in soil in this area.

## 4.2 Heavy Equipment Maintenance and Wash Rack Area, and PEC Identified by Former Soil Boring EB-35 (AOC #3)

#### 4.2.1 Wash Rack and Lube Shed Area

Soil boring B-1(A) was advanced in the vicinity of the lube shed to a total depth of 70 feet bgs (Figure 4). Predominantly fine-grained sediments (clays) were encountered from approximately 3 to 34 feet bgs. Predominantly coarser-grained sediments (sands and gravels) were encountered between 34 feet bgs and the total depth of the boring (70 feet bgs). No evidence of petroleum-affected soil was identified during drilling, with the exception of a slightly elevated PID reading at approximately 35 feet bgs. Only TPHmo was detected in the depth-discrete soil samples collected from boring B-1(A), in the sample collected from approximately 9.5 feet bgs at a low concentration just above the laboratory reporting limit. Several metals were detected above laboratory reporting limits, but none were detected at concentrations above the ESLs.

A grab groundwater sample was collected from soil boring B-1(A) at approximately 68 feet bgs. TPHmo was detected in this sample at a concentration of 1,100 micrograms per liter ( $\mu$ g/L), slightly above the ESL of 1,000  $\mu$ g/L for TPHmo (Table 8A and Figure 4). The laboratory qualified the TPHmo result, stating that "hydrocarbons heavier than TPHmo contributed to the result." TPHd was detected at a concentration of 76  $\mu$ g/L, and that result was also qualified by the laboratory; the TPHd detection was below the ESL for TPHd (100  $\mu$ g/L; Table 8A). The only VOC detected in the grab groundwater sample was acetone, which was detected at a concentration of 10  $\mu$ g/L. This concentration is well below the ESL of 1,500  $\mu$ g/L for acetone (Table 9). Because acetone is a common laboratory contaminant and has not been detected in any other samples collected, this low acetone concentration may be associated with laboratory contamination. No other compounds were detected above

laboratory reporting limits for the grab groundwater sample collected from soil boring B-1(A) (Tables 8A, 8B, and 9).

#### 4.2.2 PEC Identified by Former Soil Boring EB-35

In the four soil borings (EB35(A), EB35(B), EB35(C), and (EB35(D)) advanced in the vicinity of former boring EB-35, primarily gravels and/or sands were encountered from ground surface to approximately 3 to 5 feet bgs (Figure 4). Sediments below approximately 3 to 5 feet bgs were comprised of fine-grained material (silts and clays) to the total depth of the soil borings. In each soil boring except for EB-35(C), a black petroleum product was observed between approximately 2.5 and 4 feet bgs. The product was observed to be dry, similar to asphalt concrete, with a trace of oil (see soil boring log in Appendix C). It is assumed that this petroleum product is the same material that was sampled at soil boring EB-35 from approximately 2 feet bgs, which resulted in TPHd and TPHmo concentrations that exceeded the ESLs (Figure 4). TPHd and TPHmo were detected in the soil samples collected from approximately 5 feet bgs in borings EB-35(A), EB-35(B), and EB-35(D) (Table 2A and Figure 4). TPHd concentrations ranged from 38 to 160 mg/Kg, and TPHmo concentrations ranged from 540 to 3,600 mg/Kg. Only the 5-foot sample from boring EB-35(B) contained TPHd and TPHmo concentrations that exceeded the ESLs. All results were qualified by the laboratory as containing heavier hydrocarbons than the standards for TPHd and TPHmo.

TPHd and TPHmo were not detected above laboratory reporting limits in any of the soil samples collected from approximately 10 feet bgs, with the exception TPHmo detected at a low qualified concentration of 5.2 mg/Kg in a sample collected from boring EB-35(A) (Table 2A and Figure 4).

A grab groundwater sample was collected from former boring EB-35 by ENV in January 2007 from approximately 68 feet bgs. TPHd, TPHmo, and TPHg were not detected above laboratory reporting limits (Figure 4).

In general, analytical results for soil samples collected from soil borings EB-35(A) through EB-35(D) indicate that the lateral extent of petroleum-affected soil may extend farther south than the location of soil boring EB-35(B). However, the petroleum-affected soil appears to be limited to shallow soil (approximately less than 4 or 5 feet bgs), the petroleum product appears to be dry and not mobile, and groundwater quality has not been affected. LFR does not recommend that any additional subsurface investigations be conducted in this area. It is LFR's understanding that this property will be developed for commercial/industrial land use by Legacy. LFR recommends that, if affected soil is identified during the redevelopment of this area, the material should be removed as necessary.

## 4.3 PEC Identified by Former Soil Boring SS-31 (AOC #7)

Predominantly fine-drained sediments (clays and some silts) were encountered from ground surface to approximately 41 to 43 feet bgs in soil borings SS 31(C) and SS-31(D), to approximately 50 feet bgs in boring SS-31(B), and to approximately 65 feet bgs in boring SS-31(A) (Figure 6). Relatively coarser-grained sediments (gravels and some sands) were encountered below the fine-grained sediment to the total depth of each soil boring. Groundwater was encountered at approximately 66 feet bgs at each soil boring location. Visual observations identified the potential presence of petroleum hydrocarbons in soil samples from only soil boring SS-31(A), between approximately 52 and 53 feet bgs; however, the PID did not register a response. At soil boring SS-31(C), elevated PID readings were noted during field screening of the soil cores collected from the ground surface to approximately 35 feet bgs; however, no visual or olfactory evidence of petroleum-affected soil was noted. It is possible that the PID instrument was responding to organic matter that may have been present in the sediment or that the PID was malfunctioning.

TPHd and/or TPHmo were detected at low concentrations (approximately less than 35 mg/Kg for TPHd and less than 160 mg/Kg for TPHmo) in one soil sample collected from boring SS-31(A) (from approximately 2 feet bgs), in all soil samples collected from boring SS-31(B), and in three samples collected from borings SS-31(C) and SS-31(D) (Table 2A and Figure 6). Except for metals, no other compounds analyzed were detected above laboratory reporting limits for the soil samples collected from these soil borings (Tables 2A, 2B, 3, 4, 5, and 6). Several metals were detected above laboratory reporting limits; however, only three metals (arsenic, cobalt, and chromium) were detected at concentrations that exceeded the ESLs for these metals (Table 7). As noted in Section 4.0, the detected concentrations are well within the ranges of natural background concentrations for soils in the San Francisco Bay area.

The grab groundwater samples collected from each of the four soil borings did not contain any compounds above their laboratory reporting limits (Tables 8A, 8B, and 9).

Based on the field investigation and analytical results, the lateral and vertical extent of potential petroleum contamination previously identified in two samples collected from former soil boring SS-31 appears limited in extent to the immediate vicinity of former boring SS-31. It should be noted that the two soil samples from former boring SS-31, in which elevated TPHd and TPHmo concentrations were detected from approximately 2 and 40 feet bgs, resulted in nearly identical TPHd and TPHmo concentrations, and that the three soil samples collected from approximately 10, 20, and 30 feet bgs did not contain TPHd or TPHmo above laboratory reporting limits other than low concentrations of TPHd and TPHmo detected in the 10-foot sample. These results raise the question as to whether a field or a laboratory error could explain the presence of TPHd and TPHmo in the sample collected from 40 feet bgs. In any event, the analytical results from the 37 depth-discrete soil samples and the four grab groundwater samples collected from soil borings SS-312(A) through SS-31(D) confirm that, if there is any potential hydrocarbon contamination in this area, it is limited in extent both

vertically and laterally. LFR does not recommend any additional subsurface investigations for the vicinity of former soil boring SS-31.

## 4.4 PEC Identified by Former Soil Boring SS-123 (AOC #8)

#### 4.4.1 Temporary Soil Boring SS-123(AA)

Soil boring SS-123(AA) was located approximately adjacent to the original soil boring SS-123 (Figure 7) and was advanced to approximately 20 feet bgs. Continuous soil cores were collected although soil recovery was less than 50% from ground surface to approximately 10 feet bgs. LFR encountered predominantly fine-grained sediment (clay or silt) from just below ground surface to the total depth of the soil boring. Petroleum hydrocarbon material described as hard black asphalt concrete (asphalt bound with gravel and sand, pieces up to 2-1/2 inches in diameter, no odor) was observed at approximately 7.5, 12.5, and 15.5 feet bgs. In addition, concrete material was encountered between approximately 14.5 and 15 feet bgs. Groundwater was encountered at approximately 16 feet bgs during drilling and was measured to be at approximately 15.6 feet bgs after the total depth of 20 feet bgs was reached.

Depth-discrete soil samples were collected from soil boring SS-123(AA) for TPHd and TPHmo analyses from approximately 5.5, 7.5, 10.5, and 15.5 feet bgs, and from 18 feet bgs, which was below the apparent water table. A grab groundwater sample also was collected from this soil boring for TPHd and TPHmo analyses. TPHd and TPHmo were detected in each of the soil samples, but only the soil sample collected from approximately 18 feet bgs (below the water table) contained TPHd and TPHmo at concentrations above the ESLs (Table 2A and Figure 7). The grab groundwater sample collected from this soil boring also contained TPHd and TPHmo at concentrations that exceeded the ESLs for TPHd and TPHmo (Table 8A).

#### 4.4.2 Temporary Soil Borings SS-123(F1) through SS-123(F3)

Soil borings SS-123(F1), SS-123(F2), and SS-123(F3) were located approximately 75 feet east, south, and west, respectively, of former boring SS-123(F) (Figure 7). These three soil borings were advanced to approximately 30 feet bgs. As noted on the soil boring logs in Appendix C, significant intervals of concrete or cement materials were encountered in each of the three soil borings. Depth-discrete soil samples and a grab groundwater sample were collected from each soil boring and analyzed for TPHd and TPHmo (Table 1). The grab groundwater samples also were analyzed for TPHg, VOCs, BTEX, fuel oxygenates, and lead scavengers (Table 1).

In soil boring SS-123(F1), concrete or cement material was encountered (and mostly ground to powder during drilling) between approximately 9 and 15 feet bgs and again between approximately 18 and 25 feet bgs. Fine-grained sediments were encountered from ground surface to approximately 9 feet bgs (gravelly silt) and from approximately 25 feet bgs to the total depth of the boring (clay). No evidence of petroleum

hydrocarbon was observed during field screening. Depth to groundwater was measured to be approximately 21 feet bgs after drilling was completed. Depth-discrete soil samples for laboratory analyses were collected from approximately 5 and 15 feet bgs, and a grab groundwater sample was collected.

In soil boring SS-123(F2), silty gravel and gravelly silt were encountered from ground surface to approximately 15 feet bgs, and mostly concrete or cement material was encountered from approximately 16.5 feet bgs to the total depth of the boring, resulting in relatively poor sample recovery (less than 25%). No evidence of petroleum hydrocarbon was observed during field screening. Depth to groundwater was measured to be approximately 26 feet bgs after drilling was completed. Depth-discrete soil samples were collected from 6, 10, 17, and 21 feet bgs, and a grab groundwater sample was collected.

In soil boring SS-123(F3), predominantly fine-grained sediments were encountered (clays or silts). Concrete or cement material was identified between approximately 7 and 10 feet bgs, a significantly shorter interval than was encountered in nearby soil borings SS-123(F1) and SS-123(F2). The depth to groundwater was measured at approximately 27 feet bgs after drilling was completed. Depth-discrete soil samples were collected from approximately 5, 10, 15, 20, and 25 feet bgs, and a grab groundwater sample was collected.

With one exception, TPHd and TPHmo were detected above laboratory reporting limits in all soil and grab groundwater samples collected from soil borings SS-123(F1) through SS-123(F3) (Table 2A). These compounds were not detected in the soil sample collected from approximately 20 feet bgs from boring SS-123(F3). For soil samples, all reported TPHd and TPHmo concentrations were below the ESLs (Table 2A).

For grab groundwater samples, the reported TPHd and TPHmo concentrations exceeded the ESLs only in the grab groundwater sample collected from boring SS-123(F2) (Table 8A). Other than TPHd and TPHmo, several VOCs were detected at low concentrations ranging between the detection limit to 4.6  $\mu$ g/L in the grab groundwater sample collected from boring SS-123(F2) (Tables 8A and 9). None of these VOC concentrations exceeded the ESLs, and no other compounds were detected. The VOCs detected in the grab groundwater sample from boring SS-123(F2) are associated with the elevated TPHd and TPHmo concentrations detected in this sample.

#### 4.4.3 Investigation Results for the SS-123 Area

A review of analytical results for the SS-123 area shows that the lateral extent of petroleum-affected soil has been adequately characterized to the north, east, south, and west (Figure 7). The lateral extent of petroleum-affected groundwater has been adequately characterized to the west, north, and east, but not to the south. The analytical results for the grab groundwater sample collected from the southernmost soil boring, SS-123(F2), indicate the presence of TPHd and TPHmo concentrations that exceed the ESLs. Additional step-out grab groundwater sample locations will be

necessary to further characterize the extent of petroleum-affected groundwater to the south of former boring SS-123(F2).

The potential source of the petroleum hydrocarbon in groundwater in this area has not been characterized. ENV has concluded that the source of contamination in this area is a historical mining pit that was filled in with debris and sediment. In addition, ENV also concluded that the groundwater encountered in the SS-123 area is perched on relatively less permeable fill material or sediment. All investigations conducted in the SS-123 area have shown that groundwater is encountered at significantly shallower depths than in other areas of the Site. However, the presence of a perched groundwater interval has not been confirmed by investigations conducted to date.

## 4.5 Surface Sediment and Water Samples from the Storm-Water Retention Pond (AOC #6)

Analytical results for the four sediment samples (SED1 through SED4) collected from the storm-water retention pond are summarized in Tables 2A and 7, and sample locations are presented on Figure 5. TPHd and TPHmo were detected in each sediment sample, with the exception of the southeasternmost sediment sample (SED-1) in which TPHd was not detected above laboratory reporting limits (Figure 5). Only sample SED-3 contained a TPHd concentration that was equivalent to the ESL and therefore was highlighted in Table 2A as exceeding the ESL. Several metals were detected above the laboratory reporting limits, but, with only one exception, detected concentrations were below the ESL. Cobalt was detected in sample SED-4 at a concentration of 10 mg/Kg, which is equivalent to the ESL. As noted in Section 4.0, the concentration of cobalt detected in this sample is within the range of natural background concentrations for soil in the San Francisco Bay Area.

Analytical results for the composite surface-water sample (PW-2) are presented in Tables 8A, 8B, 9, and 10 and Figure 5. No petroleum hydrocarbons or VOCs were detected above laboratory reporting limits in the surface-water sample. Four metals were detected, but all at concentrations significantly less than the ESLs.

Based on the analytical results for the sediment and surface-water samples collected by LFR, there does not appear to be a significant impact to the storm-water retention pond from storm-water runoff from nearby properties. The elevated TPHd and TPHmo concentrations detected in the samples previously collected by B&C, labeled SEDIMENT and PONDWATER (Figure 5; B&C 2006b), were not confirmed. LFR does not recommend any additional investigations for the storm-water retention pond area.

## 5.0 SAMPLING OF EXISTING GROUNDWATER MONITORING WELLS

## 5.1 Wells Sampled and Sampling Methodology

#### 5.1.1 Well TW-5

In accordance with the scope of work described in the Work Plan, LFR searched for missing groundwater monitoring well 3S/1E 14D1 (also known as well TW-5), reportedly installed approximately near the southwestern corner of Cope Pond. The date of installation and well construction information has not been included in the records kept by Zone 7. Zone 7 records indicate that the well could not be located in 1984 and was located in 2003. Verbally, Zone 7 stated that the well could not be found. According to Zone 7 records, this well is reported to be 103 feet deep.

LFR successfully located well TW-5 on July 12, 2007, during a site reconnaissance effort. The well was found to be in good condition with a 2-inch-diameter PVC well casing inside a 4-inch-square metal above-grade protective well box. LFR measured the depth to groundwater in the well to be 53.2 feet TOC and the total depth of the well to be approximately 110.7 feet TOC. On July 12, 2007, LFR purged and sampled well TW-5 using a disposable bailer. Purge water was disposed of on the ground surface in the vicinity of the well. Water-quality parameters were monitored during well purging and were recording on a field sheet (Appendix D). Purging was completed once water-quality parameters stabilized and at least three casing volumes were removed. Approximately 28 gallons of groundwater were purged from the well, equivalent to approximately three casing volumes. Groundwater samples collected from the well using the disposable bailer were poured into clean, laboratory-provided sample containers, properly labeled, and placed into an ice-chilled cooler for transport to the laboratory under chain-of-custody protocol. The samples were analyzed by C&T for TPHd, TPHmo, TPHg, VOCs, BTEX, fuel oxygenates, and lead scavengers.

#### 5.1.2 Additional Monitoring Wells Sampled

On July 12, 2007, Hanson received a request from ENV (on behalf of Legacy) to collect samples from four existing wells (monitoring or water supply) located on or near the Hanson property. LFR, Hanson, and ENV together identified four existing groundwater monitoring wells to be sampled, namely: 3S/1E 14D1, 3S/1E 10D8, 3S/1E 10K2, and 3S/1E 10N3 (Figure 8). ENV requested that samples from each well be analyzed for TPHd, TPHmo, TPHg, VOCs, BTEX, fuel oxygenates, lead scavengers, SVOCs, and dissolved metals. One of the wells requested to be sampled was TW-5 (3S/1E 14D1), which LFR had already sampled. Fortunately, LFR had collected sufficient sample volume to request the laboratory to analyze the samples for the additional compounds requested by ENV.

At Hanson's request, LFR coordinated with Zone 7 to identify and gain access to the remaining three groundwater monitoring wells proposed to be sampled. LFR

subcontracted Blaine Tech Environmental Services ("Blaine Tech"), an environmental field services consultant from San Jose, California, to purge the three remaining groundwater monitoring wells on July 25, 2007. A summary of known or estimated well details is provided in the table below.

| Well ID              | Approximate<br>Location                | Well<br>Diameter<br>(inches) | Total Depth<br>(Zone 7<br>Records)<br>(feet bgs) | Well Screen<br>Interval<br>(Zone 7<br>Records)<br>(feet bgs) | Depth to<br>Groundwater<br>on July 12 or<br>July 25, 2007<br>(feet TOC) |
|----------------------|----------------------------------------|------------------------------|--------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|
| 3S/1E 14D1<br>(TW-5) | Southwestern<br>corner of Cope<br>Pond | 2                            | 103                                              | Unknown                                                      | 53.20                                                                   |
| 3S/1E 10D8           | North of Lake<br>I                     | 2                            | 215                                              | 190 - 210                                                    | 56.32                                                                   |
| 3S/1E 10K2           | Northwestern<br>corner of Cope<br>Pond | 4                            | 590.6                                            | Unknown                                                      | 55.50                                                                   |
| 3S/1E 10N3           | South of Lake<br>I                     | 2                            | 195                                              | 170 - 190                                                    | 56.80                                                                   |

Blaine Tech used a 2-inch-diameter Rediflo electric submersible pump in the 2-inchdiameter wells and a 2-inch-diameter Grunfos pump in the 4-inch-diameter well to purge approximately three casing volumes from each of the three wells. Water-quality parameters were monitored and recorded on field sheets (Appendix D). Purging was completed once water-quality parameters stabilized and at least three casing volumes were removed. Purge water was temporarily contained in a plastic tank (estimated to be 500 gallons) on a trailer and was them disposed of in Cope Pond, in agreement with Zone 7 and Hanson. Approximately 75 gallons of purge water were removed from well 3S/1E 10D8, 1,043 gallons from well 3S/1E 10K2, and 64.5 gallons from well 3S/1E 10N3. After purging was completed at each well, groundwater samples were collected using a single-use disposal bailer. At ENV's request, a blind duplicate groundwater sample was collected from well 3S/1E 10K2. The blind duplicate sample was labeled "MW-10." As an additional quality assurance/quality control (QA/QC) measure, a trip blank sample was collected and analyzed for selected VOCs.

Groundwater samples were poured into clean, laboratory-provided sample containers, properly labeled, and placed into an ice-chilled cooler for transport to the laboratory under chain-of-custody protocol. The samples were analyzed by C&T for TPHd, TPHmo, TPHg, VOCs, BTEX, fuel oxygenates and lead scavengers, SVOCs, and dissolved metals.

# 5.2 Analytical Results

Analytical results for groundwater samples collected from the four existing groundwater monitoring wells are summarized in Tables 11A, 11B, 12, 13, and 14. Analytical results for TPHd, TPHmo, and TPHg also are presented on Figure 8.

Petroleum hydrocarbon-related compounds were not detected above laboratory reporting limits in any of the groundwater monitoring wells sampled, including TPHd, TPHmo, TPHg, BTEX, fuel oxygenates, and lead scavengers. In addition, VOCs were not detected in any of the groundwater samples, although the VOC bromomethane was detected at an estimated concentration below the laboratory reporting limit in the trip blank sample (Table 12). Because this compound was not detected in any of the groundwater samples, no QA/QC problems were noted. The groundwater sample collected from well 3S/1E 10D8 did contain a low concentration of one SVOC; bis(2-ethylhexyl)phthalate was detected at a concentration of 25  $\mu$ g/L. This concentration exceeded the ESL for this compound (4  $\mu$ g/L). Bis(2-ethylhexyl)phthalate is a plasticizer commonly associated with PVC and other plastics. This compound also is a known laboratory contaminant. The laboratory did not identify any evidence of laboratory contamination from this compound during the period that these groundwater samples were analyzed. The well casing for well 3S/1E 10D8 is made of PVC. It is possible that the presence of this SVOC may be due to the well casing and/or to the plastic tubing or fittings used to purge the well. Because no known use of plasticizers is associated with facilities and manufacturing processes historically present at the Site, it is assumed that this detection is not associated with historical industries. LFR recommends the re-sampling of this well to confirm this SVOC detection.

A few dissolved metals were detected above laboratory report limits, although, with only one exception, none of the detections exceeded the ESLs (Table 14). Dissolved mercury was detected in the groundwater sample collected from well 3S/1E 10D8 at a concentration of 0.63  $\mu$ g/L, which is above the ESL for mercury (0.012  $\mu$ g/L). No potential source of mercury has been identified, and mercury was not detected in any of the other groundwater samples. LFR also recommends the re-sampling of this well to confirm this detection.

# 6.0 SUMMARY AND RECOMMENDATIONS

### 6.1 Summary

The investigations conducted during July 2007 consisted of advancing a total of 16 temporary soil borings in AOCs #2, #4, #7, and #8, to depths ranging from approximately 10 to 70 feet bgs. The soil borings were advanced to collect continuous cores for lithologic logging and depth discrete soil samples and grab groundwater samples for laboratory analyses. Shallow sediment and surface-water samples were collected from the storm-water retention pond in AOC #6 for laboratory analyses. In

addition, four existing groundwater monitoring wells were sampled for laboratory analyses. All investigation and analytical results were presented and discussed in this report.

The primary compounds of concern at the Site are TPHd and TPHmo. No other organic compounds were detected, including TPHg, VOCs, BTEX, fuel oxygenates, lead scavengers, SVOCs, pesticides, PCBs, and SVOCs, in any soil samples collected from soil borings or samples collected from the storm-water retention pond. With one exception, none of these compounds were detected in any grab groundwater samples collected from the soil borings. Several VOCs were detected in one grab groundwater sample collected from the SS-123 area; however, concentrations were low and well below the ESLs.

Several metals were detected in soil or water samples, although only arsenic, cobalt, and chromium were detected in soil samples at concentrations that exceeded the ESLs. However, the metals concentrations that exceeded the ESLs are well within the concentration ranges published for naturally occurring metals detected in soils in the San Francisco Bay Area (LBNL 2002).

Groundwater samples collected from the existing monitoring wells did not contain organic compounds detected at concentrations above laboratory limits, with the exception of one SVOC. The compound bis(2-thylhexyl)phthalate was detected in one groundwater well sample at a concentration that exceeded the ESL. This compound is a known laboratory contaminant and a plasticizer commonly associated with PVC and other plastics. This same sample also contained dissolved mercury at a concentration greater than the ESL.

### 6.1 **Recommendations**

Results from investigations conducted by LFR during July 2007, evaluated in conjunction with results from previous investigations, indicate that AOCs #2, #6, and #7 have been sufficiently characterized. LFR does not recommend any additional investigations be conducted in these areas.

Additional subsurface investigations may be required in AOC #3 to confirm the analytical results for the grab groundwater sample collected from soil boring B-1(A) in which TPHmo was detected at a concentrations that exceeded the ESL. However, soil samples and a grab groundwater sample collected from less than 200 feet away from soil boring B-1(A) indicate that the petroleum hydrocarbon-affected soil (or groundwater) at this AOC is not a widespread problem.

LFR recommends that additional subsurface investigations be conducted in AOC #8 (SS-123 area) to further characterize the lateral extent of petroleum-affected groundwater south of soil boring SS-123(F2). Based on the results of the soil and groundwater samples collected in the SS-123 area, soil and groundwater quality has

been sufficiently characterized laterally to the west, north, and east. Previous consultants have concluded that groundwater in this area may be perched; the presence of a perched groundwater zone has not been confirmed.

To confirm the SVOC and dissolved mercury concentrations detected in the groundwater sample collected from existing monitoring well 3S/1E 10D8 located north of Lake I, LFR recommends re-sampling the well.

### 7.0 LIMITATIONS

The opinions and recommendations presented in this report are based upon the scope of services, information obtained through the performance of the services, and the schedule as agreed upon by LFR and the party for whom this report was originally prepared. This report is an instrument of professional service and was prepared in accordance with the generally accepted standards and level of skill and care under similar conditions and circumstances established by the environmental consulting industry. No representation, warranty, or guarantee, express or implied, is intended or given. To the extent that LFR relied upon any information prepared by other parties not under contract to LFR, LFR makes no representation as to the accuracy or completeness of such information. This report is expressly for the sole and exclusive use of the party for whom this report was originally prepared for a particular purpose. Only the party for whom this report was originally prepared and/or other specifically named parties have the right to make use of and rely upon this report. Reuse of this report or any portion thereof for other than its intended purpose, or if modified, or if used by third parties, shall be at the user's sole risk.

Results of any investigations or testing and any findings presented in this report apply solely to conditions existing at the time when LFR's investigative work was performed. It must be recognized that any such investigative or testing activities are inherently limited and do not represent a conclusive or complete characterization. Conditions in other parts of the Site may vary from those at the locations where data were collected. LFR's ability to interpret investigation results is related to the availability of the data and the extent of the investigation activities. As such, 100% confidence in environmental investigation conclusions cannot reasonably be achieved.

LFR, therefore, does not provide any guarantees, certifications, or warranties regarding any conclusions regarding environmental contamination of any such property. Furthermore, nothing contained in this document shall relieve any other party of its responsibility to abide by contract documents and applicable laws, codes, regulations, or standards.

#### 8.0 **REFERENCES**

- Alameda County Environmental Health (ACEH). 1998. Letter from Scott Seery to Lawrence Appleton of Kaiser Sand & Gravel Company, re: Kaiser Sand & Gravel, 3000 Busch Road, Pleasanton. March 9.
- 2007b. Letter from Donna Drogos to Lee Cover of Hanson Aggregates, re: Fuel Leak Case No. RO0002858 and Geotracker Global ID T06019765846, Hanson Aggregates, 3000 Busch Road, Pleasanton, CA 94566. June 12.
- ———. 2007c. Letter from Jerry Wickham to Lee Cover of Hanson Aggregates West Region, re: SLIC Case RO0002941 and Geotracker Global ID STL19719376, Hanson Aggregates Radum Plant, 3000 Busch Road, Pleasanton, CA 94566. June 22.
- ————. 2007d. Letter from Jerry Wickham to Lee Cover of Hanson Aggregates West Region, re: SLIC Case RO0002941 and Geotracker Global ID STL19719376, Hanson Aggregates Radum Plant, 3000 Busch Road, Pleasanton, CA 94566. July 24.
- Baseline Environmental Consulting (Baseline). 1991a. Report on Tank Removal Activities and Work Plan for Additional Investigation, 3000 Busch Road, Pleasanton, California. January.
- ———. 1991b. Report on Preliminary Soil and Groundwater Investigation, 3000 Busch Road, Pleasanton, California. May.
- ------. 1995. Report on Tank Removal Activities, 3000 Busch Road, Pleasanton, California. April.
- Brown and Caldwell (B&C). 2006a. Final Phase I Environmental Site Assessment, Hanson Aggregates West / Radum Plant, 3000 Busch Road, Pleasanton, California. June.
- ———. 2006b. Letter from Lisa Ehlers and Andrew Lojo to Marvin Howell of Hanson America, re: Summary of the Limited Subsurface Investigation Activities at the Hanson Aggregates West Radum Facility in Pleasanton, California. August 2.

- ——. 2007. Letter from Andrew Lojo and Jason Grant to Jerry Wickham of ACEH, re: Results of Soil and Groundwater Investigation, ACEH Fuel Leak Case No. RO0002858, Hanson Aggregates, 3000 Busch Road, Pleasanton, California. February 15.
- ENV America Inc. (ENV). 2006a. Draft Phase I Environmental Site Assessment, Hanson Radum Site, Pleasanton, California. October.
- ———. 2006b. Draft Phase II Environmental Site Assessment, 3000 Busch Road, Pleasanton, California. November.
- ———. 2007a. Additional Soil and Groundwater Investigation Report, 3000 Busch Road, Pleasanton, California. February.
- ———. 2007b. Second Additional Soil and Groundwater Investigation Report, Hanson Radum Site, 3000 Busch Road, Pleasanton, California. April.
- ———. 2007c. Revised Final Third Additional Soil and Groundwater Investigation Report, Hanson Radum Site, 3000 Busch Road, Pleasanton, California. June.
- Kiewit Construction Company. 2004. Letter from Mike Schrad to Betty Graham of the RWQCB, re: 01S0566 Self Directed Cleanup, 3300 Busch Road, Pleasanton, California 94566. February 3.
- Lawrence Berkeley National Laboratory (LBNL). 2002. Analysis of Background Distributions of Metals in the Soil at Lawrence Berkeley National Laboratory (LBNL). June.
- LFR Inc. (LFR). 2006. Summary Report of Additional Phase II ESA Investigation at the Former Asphalt Plant Area, Hanson Radum Facility, 3000 Busch Road, Pleasanton, Alameda County, California. December 5.
- ———. 2007a. Work Plan for Additional Site Characterization at the Hanson Aggregates Radum Facility, 3000 Busch Road, Pleasanton, California. May 16.
- ———. 2007b. Submittal of Supporting Information to Request a Separate Case Number for a Portion of the Hanson Radum Property at 3000 Busch Road, Pleasanton, California. July 6.
- Regional Water Quality Control Board, San Francisco Bay Region (RWQCB). 2004. Letter from Bruce Wolfe to Mike Schrad or Kiewit Construction Company and Bill Berger of Hanson Aggregates Mid Pacific Inc., re: No Further Action, 3300 Busch Road, Pleasanton, Alameda County. March 31.

- ———. 2005. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater (Interim Final); Environmental Screening Levels ("ESLs"). Technical Document. February.
- U.S. Environmental Protection Agency. 1989. Risk. *Risk Assessment Guidance for Superfund, Human Health Evaluation Manual, Part A.* Interim Final. December 29.
- TRC. 2003. Workplan, Self-Directed Soil Remediation, Pleasanton Site; Kiewit Construction / Hanson Aggregates Mid-Pacific, 3200/3000 Busch Road, Pleasanton, California. September 15.
- ———. 2004. Self-Directed Remediation of Diesel Contaminated Soil; Kiewit Construction / Hanson Aggregates Mid-Pacific Inc., 3200/3000 Busch Road, Pleasanton, California. January.
- Zone 7 Water Agency, Alameda County Flood Control and Water Conservation District (Zone 7). 1998. Groundwater Protection Ordinance Permit Application; Permit No. 98024 for location number 3A/1E 15F4. February 24.
- ———. 2007. Annual Report for the Groundwater Management Program, 2006 Water Year, June 14.

| Sample         | Sample ID            | Date           | Sample            | Interval             | Matrix | TPHd / | TPHg | VOCs | BTEX |    |      | Pest | PCBs | <b>SVOCs</b> | Metals |
|----------------|----------------------|----------------|-------------------|----------------------|--------|--------|------|------|------|----|------|------|------|--------------|--------|
| Location       |                      | Sampled        | top<br>(feet bgs) | bottom<br>(feet bgs) |        | TPHmo  |      |      |      | Ox | Scav |      |      |              |        |
| Depth Discrete | Soil Samples from Te | mporary Soil B | orings            |                      |        |        |      |      |      |    |      |      |      |              |        |
| AOC 3          | B-1(A)-4.5           | 7/17/2007      | 4                 | 4.5                  | soil   | Х      | х    | -    | -    | -  | -    | -    | х    | Х            | х      |
| AOC 3          | B-1(A)-9.5           | 7/17/2007      | 9                 | 9.5                  | soil   | Х      | х    | -    | -    | -  | -    | -    | х    | Х            | х      |
| AOC 3          | B-1(A)-35            | 7/17/2007      | 34.5              | 35                   | soil   | Х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 3          | B-1(A)-36.5          | 7/17/2007      | 36                | 36.5                 | soil   | -      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 2          | EB-31(A)-5.5         | 7/17/2007      | 5                 | 5.5                  | soil   | х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 2          | EB-31(A)-10.5        | 7/17/2007      | 10                | 10.5                 | soil   | Х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 2          | EB-31(A)-15.5        | 7/17/2007      | 15                | 15.5                 | soil   | Х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 2          | EB-31(A)-20.5        | 7/17/2007      | 20                | 20.5                 | soil   | Х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 2          | EB-31(B)-5.5         | 7/16/2007      | 5                 | 5.5                  | soil   | Х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 2          | EB-31(B)-10.5        | 7/16/2007      | 10                | 10.5                 | soil   | Х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 2          | EB-31(B)-15.5        | 7/16/2007      | 15                | 15.5                 | soil   | Х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 2          | EB-31(B)-20.5        | 7/16/2007      | 20                | 20.5                 | soil   | х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 2          | EB-31(C)-5           | 7/16/2007      | 4.5               | 5                    | soil   | х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 2          | EB-31(C)-10.5        | 7/16/2007      | 10                | 10.5                 | soil   | х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 2          | EB-31(C)-15.5        | 7/16/2007      | 15                | 15.5                 | soil   | Х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 2          | EB-31(C)-20          | 7/16/2007      | 20                | 20.5                 | soil   | х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 3          | EB-35(A)-3           | 7/17/2007      | 2.5               | 3                    | soil   | -      | -    | -    | -    | _  | _    | -    | -    | -            | -      |
| AOC 3          | EB-35(A)-4           | 7/17/2007      | 3.5               | 4                    | soil   | х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 3          | EB-35(A)-9.5         | 7/17/2007      | 9                 | 9.5                  | soil   | х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 3          | EB-35(B)-2.5         | 7/17/2007      | 2                 | 2.5                  | soil   | -      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 3          | EB-35(B)-5           | 7/17/2007      | 4.5               | 5                    | soil   | х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 3          | EB-35(B)-9           | 7/17/2007      | 8.5               | 9                    | soil   | Х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 3          | EB-35(C)-2.5         | 7/18/2007      | 2                 | 2.5                  | soil   | -      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 3          | EB-35(C)-5.5         | 7/18/2007      | 5                 | 5.5                  | soil   | Х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 3          | EB-35(C)-10.5        | 7/18/2007      | 10                | 10.5                 | soil   | Х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 3          | EB-35(D)-2.5         | 7/18/2007      | 2                 | 2.5                  | soil   | -      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 3          | EB-35(D)-5.5         | 7/18/2007      | 5                 | 5.5                  | soil   | х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 3          | EB-35(D)-9.5         | 7/18/2007      | 9                 | 9.5                  | soil   | х      | -    | -    | -    | -  | -    | -    | -    | -            | -      |
| AOC 7          | SS-31(A)-5.5         | 7/18/2007      | 5                 | 5.5                  | soil   | х      | х    | -    | х    | х  | х    | х    | х    | х            | Х      |
| AOC 7          | SS-31(A)-10.5        | 7/18/2007      | 10                | 10.5                 | soil   | х      | х    | -    | х    | х  | х    | х    | х    | х            | х      |
| AOC 7          | SS-31(A)-15.5        | 7/18/2007      | 15                | 15.5                 | soil   | х      | х    | -    | х    | х  | х    | -    | -    | -            | -      |

# Table 1 - Sample MatrixSamples from Temporary Soil Borings, Storm-Water Pond, and Existing Groundwater Monitoring WellsHanson Radum Facility, 3000 Busch Road, Pleasanton, California

rpt-HansonRadum-SiteWideInvest-tbls-Oct07-09567.xls

| Sample<br>Location | Sample ID     | Date<br>Sampled | Sample<br>top<br>(feet bgs) | Interval<br>bottom<br>(feet bgs) | Matrix | TPHd /<br>TPHmo | TPHg   | VOCs | BTEX   | Fuel<br>Ox | Lead<br>Scav | Pest | PCBs | SVOCs | Metals |
|--------------------|---------------|-----------------|-----------------------------|----------------------------------|--------|-----------------|--------|------|--------|------------|--------------|------|------|-------|--------|
| AOC 7              | SS-31(A)-20.5 | 7/18/2007       | 20                          | 20.5                             | soil   | X               | x      | _    | х      | х          | х            |      |      |       |        |
| AOC 7              | SS-31(A)-25.5 | 7/18/2007       | 20<br>25                    | 20.5<br>25.5                     | soil   | X               | X      | _    | л<br>Х | л<br>Х     | л<br>Х       | -    | _    | _     | -      |
| AOC 7              | SS-31(A)-30.5 | 7/18/2007       | 30                          | 30.5                             | soil   | X               | X      | _    | X      | X          | X            | _    |      |       | _      |
| AOC 7              | SS-31(A)-40.5 | 7/19/2007       | 30<br>40                    | 40.5                             | soil   | X               | х      | -    | л<br>Х | х          | л<br>Х       | -    | _    | _     | -      |
| AOC 7              | SS-31(A)-50.5 | 7/19/2007       | 50                          | 50.5                             | soil   | X               | х      | _    | Х      | х          | х            | _    |      |       | _      |
| AOC 7              | SS-31(A)-52.5 | 7/19/2007       | 50<br>52                    | 50.5<br>52.5                     | soil   | X               | х      | _    | х      | х          | х            | _    |      |       | _      |
| AOC 7              | SS-31(A)-60.5 | 7/19/2007       | 60                          | 60.5                             | soil   | X               | X      | _    | Х      | X          | X            | _    |      |       | _      |
| AOC 7              | SS-31(A)-65.5 | 7/19/2007       | 65                          | 65.5                             | soil   | -<br>-          | л<br>- | _    | -      | -          | л<br>-       | _    |      |       | _      |
| AOC 7              | SS-31(B)-5.5  | 7/19/2007       | 5                           | 5.5                              | soil   | x               | x      | _    | X      | x          | x            | x    | x    | x     | x      |
| AOC 7              | SS-31(B)-10.5 | 7/19/2007       | 10                          | 10.5                             | soil   | X               | X      | _    | X      | X          | X            | X    | X    | X     | X      |
| AOC 7              | SS-31(B)-15.5 | 7/19/2007       | 15                          | 15.5                             | soil   | X               | X      | _    | X      | X          | X            | -    | -    | -     | -      |
| AOC 7              | SS-31(B)-20.5 | 7/19/2007       | 20                          | 20.5                             | soil   | X               | X      | _    | Х      | X          | X            | _    | _    |       | _      |
| AOC 7              | SS-31(B)-25.5 | 7/19/2007       | 25                          | 25.5                             | soil   | X               | X      | _    | X      | X          | X            | _    | _    | _     | _      |
| AOC 7              | SS-31(B)-30.5 | 7/19/2007       | 30                          | 30.5                             | soil   | x               | X      | _    | X      | X          | X            | _    | _    | _     | _      |
| AOC 7              | SS-31(B)-40   | 7/19/2007       | 39.5                        | 40                               | soil   | X               | X      | _    | X      | X          | X            | _    | _    | _     | _      |
| AOC 7              | SS-31(B)-50   | 7/19/2007       | 49.5                        | 50                               | soil   | X               | X      | _    | X      | X          | X            | -    | _    | -     | -      |
| AOC 7              | SS-31(B)-60.5 | 7/19/2007       | 60                          | 60.5                             | soil   | x               | X      | _    | X      | X          | X            | _    | _    | _     | _      |
| AOC 7              | SS-31(C)-5.5  | 7/20/2007       | 5                           | 5.5                              | soil   | X               | X      | _    | X      | X          | X            | х    | х    | х     | х      |
| AOC 7              | SS-31(C)-10.5 | 7/20/2007       | 10                          | 10.5                             | soil   | x               | X      | _    | X      | X          | X            | X    | X    | X     | x      |
| AOC 7              | SS-31(C)-15.5 | 7/20/2007       | 15                          | 15.5                             | soil   | X               | X      | _    | X      | X          | X            | -    | -    | -     | -      |
| AOC 7              | SS-31(C)-19.5 | 7/20/2007       | 19                          | 19.5                             | soil   | X               | X      | _    | X      | X          | X            | _    | _    | _     | _      |
| AOC 7              | SS-31(C)-25.5 | 7/20/2007       | 25                          | 25.5                             | soil   | x               | x      | _    | X      | x          | X            | _    | _    | _     | _      |
| AOC 7              | SS-31(C)-30   | 7/20/2007       | 29.5                        | 30                               | soil   | X               | X      | _    | X      | X          | X            | -    | _    | -     | -      |
| AOC 7              | SS-31(C)-40   | 7/20/2007       | 39.5                        | 40                               | soil   | x               | x      | _    | X      | x          | X            | _    | -    | -     | -      |
| AOC 7              | SS-31(C)-51   | 7/20/2007       | 50.5                        | 51                               | soil   | x               | x      | _    | X      | x          | X            | -    | -    | -     | -      |
| AOC 7              | SS-31(C)-60.5 | 7/20/2007       | 60                          | 60.5                             | soil   | x               | x      | _    | x      | x          | X            | _    | -    | -     | -      |
| AOC 7              | SS-31(C)-67.5 | 7/20/2007       | 67                          | 67.5                             | soil   | -               | -      | -    | -      | -          | -            | _    | -    | _     | -      |
| AOC 7              | SS-31(D)-5.5  | 7/20/2007       | 5                           | 5.5                              | soil   | х               | х      | _    | х      | х          | х            | х    | х    | х     | х      |
| AOC 7              | SS-31(D)-10.5 | 7/20/2007       | 10                          | 10.5                             | soil   | x               | x      | _    | X      | x          | X            | x    | x    | X     | x      |
| AOC 7              | SS-31(D)-15   | 7/20/2007       | 14.5                        | 15                               | soil   | x               | x      | _    | x      | x          | X            | -    | -    | -     | -      |
| AOC 7              | SS-31(D)-19.5 | 7/20/2007       | 19                          | 19.5                             | soil   | x               | x      | -    | X      | x          | X            | -    | -    | _     | _      |
| AOC 7              | SS-31(D)-25   | 7/23/2007       | 24.5                        | 25                               | soil   | x               | x      | -    | x      | x          | X            | -    | -    | _     | _      |
| AOC 7              | SS-31(D)-30   | 7/23/2007       | 29.5                        | 30                               | soil   | x               | x      | -    | X      | x          | X            | -    | -    | _     | _      |
| AOC 7              | SS-31(D)-40   | 7/23/2007       | 39.5                        | 40                               | soil   | x               | x      |      | x      | x          | X            |      |      |       |        |

# Table 1 - Sample MatrixSamples from Temporary Soil Borings, Storm-Water Pond, and Existing Groundwater Monitoring WellsHanson Radum Facility, 3000 Busch Road, Pleasanton, California

| Sample         | Sample ID             | Date           | Sample            | Interval             | Matrix | TPHd / | TPHg | VOCs | BTEX | Fuel |      | Pest | PCBs | SVOCs | Metals |
|----------------|-----------------------|----------------|-------------------|----------------------|--------|--------|------|------|------|------|------|------|------|-------|--------|
| Location       |                       | Sampled        | top<br>(feet bgs) | bottom<br>(feet bgs) |        | TPHmo  |      |      |      | Ox   | Scav |      |      |       |        |
| AOC 7          | SS-31(D)-50.5         | 7/23/2007      | 50                | 50.5                 | soil   | X      | х    | -    | Х    | Х    | Х    | -    | -    | -     | -      |
| AOC 7          | SS-31(D)-60.5         | 7/23/2007      | 60                | 60.5                 | soil   | х      | Х    | -    | Х    | Х    | Х    | -    | -    | -     | -      |
| AOC 8          | SS-123(AA)-5.5        | 7/24/2007      | 5                 | 5.5                  | soil   | х      | -    | -    | -    | -    | -    | -    | -    | -     | -      |
| AOC 8          | SS-123(AA)-7.5        | 7/24/2007      | 7                 | 7.5                  | soil   | Х      | -    | -    | -    | -    | -    | -    | -    | -     | -      |
| AOC 8          | SS-123(AA)-10.5       | 7/24/2007      | 10                | 10.5                 | soil   | Х      | -    | -    | -    | -    | -    | -    | -    | -     | -      |
| AOC 8          | SS-123(AA)-15.5       | 7/24/2007      | 15                | 15.5                 | soil   | Х      | -    | -    | -    | -    | -    | -    | -    | -     | -      |
| AOC 8          | SS-123(AA)-18         | 7/24/2007      | 17.5              | 18                   | soil   | Х      | -    | -    | -    | -    | -    | -    | -    | -     | -      |
| AOC 8          | SS-123(F1)-5.5        | 7/23/2007      | 5                 | 5.5                  | soil   | Х      | -    | -    | -    | -    | -    | -    | -    | -     | -      |
| AOC 8          | SS-123(F1)-15.5       | 7/23/2007      | 15                | 15.5                 | soil   | Х      | -    | -    | -    | -    | -    | -    | -    | -     | -      |
| AOC 8          | SS-123(F2)-6          | 7/23/2007      | 5.5               | 6                    | soil   | Х      | -    | -    | -    | -    | -    | -    | -    | -     | -      |
| AOC 8          | SS-123(F2)-11.5       | 7/23/2007      | 11                | 11.5                 | soil   | Х      | -    | -    | -    | -    | -    | -    | -    | -     | -      |
| AOC 8          | SS-123(F2)-16.5       | 7/23/2007      | 16                | 16.5                 | soil   | Х      | -    | -    | -    | -    | -    | -    | -    | -     | -      |
| AOC 8          | SS-123(F2)-21         | 7/24/2007      | 20.5              | 21                   | soil   | Х      | -    | -    | -    | -    | -    | -    | -    | -     | -      |
| AOC 8          | SS-123(F3)-5.5        | 7/24/2007      | 5                 | 5.5                  | soil   | Х      | -    | -    | -    | -    | -    | -    | -    | -     | -      |
| AOC 8          | SS-123(F3)-10.5       | 7/24/2007      | 10                | 10.5                 | soil   | Х      | -    | -    | -    | -    | -    | -    | -    | -     | -      |
| AOC 8          | SS-123(F3)-15.5       | 7/24/2007      | 15                | 15.5                 | soil   | Х      | -    | -    | -    | -    | -    | -    | -    | -     | -      |
| AOC 8          | SS-123(F3)-20.5       | 7/24/2007      | 20                | 20.5                 | soil   | Х      | -    | -    | -    | -    | -    | -    | -    | -     | -      |
| AOC 8          | SS-123(F3)-25.5       | 7/24/2007      | 25                | 25.5                 | soil   | Х      | -    | -    | -    | -    | -    | -    | -    | -     | -      |
| Sediment Sampl | es from Storm-Water F | Retention Pond |                   |                      |        |        |      |      |      |      |      |      |      |       |        |
| AOC 6          | SED-1                 | 7/13/2007      | 0                 | 0.5                  | soil   | Х      | -    | -    | -    | -    | -    | -    | -    | -     | х      |
| AOC 6          | SED-2                 | 7/13/2007      | 0                 | 0.5                  | soil   | Х      | -    | -    | -    | -    | -    | -    | -    | -     | х      |
| AOC 6          | SED-3                 | 7/13/2007      | 0                 | 0.5                  | soil   | Х      | -    | -    | -    | -    | -    | -    | -    | -     | х      |
| AOC 6          | SED-4                 | 7/13/2007      | 0                 | 0.5                  | soil   | Х      | -    | -    | -    | -    | -    | -    | -    | -     | х      |

# Table 1 - Sample MatrixSamples from Temporary Soil Borings, Storm-Water Pond, and Existing Groundwater Monitoring WellsHanson Radum Facility, 3000 Busch Road, Pleasanton, California

|                    | formula ID             | Dete            | <u> </u>          | Internal                         | Matula |                 | TDUL | NOC  | DTEV | E          | Land         | Deef | DCD- | SVOC- |        |
|--------------------|------------------------|-----------------|-------------------|----------------------------------|--------|-----------------|------|------|------|------------|--------------|------|------|-------|--------|
| Sample<br>Location | Sample ID              | Date<br>Sampled | top<br>(feet bgs) | Interval<br>bottom<br>(feet bgs) | Matrix | TPHd /<br>TPHmo | TPHg | VOCs | BTEX | Fuel<br>Ox | Lead<br>Scav | Pest | PCBs | SVOCs | Metals |
| Grab Groundwa      | ter Samples from Temp  | orary Soil Bo   | orings            |                                  |        |                 |      |      |      |            |              |      |      |       |        |
| AOC 3              | B-1(A)-GGW             | 7/18/2007       | ~ 67.6            | ~ 67.6                           | water  | Х               | х    | х    | х    | х          | х            | -    | -    | -     | -      |
| AOC 2              | EB-31(B)-GGW           | 7/16/2007       | ~ 64.8            | ~ 64.8                           | water  | Х               | х    | х    | х    | х          | х            | -    | -    | -     | -      |
| AOC 7              | SS-31(A)-GGW           | 7/19/2007       | ~ 65.2            | ~ 65.2                           | water  | Х               | х    | х    | х    | х          | х            | -    | -    | -     | -      |
| AOC 7              | SS-31(B)-GGW           | 7/20/2007       | ~ 66              | ~ 66                             | water  | Х               | х    | х    | х    | х          | х            | -    | -    | -     | -      |
| AOC 7              | SS-31(C)-GGW           | 7/20/2007       | ~ 66              | ~ 66                             | water  | Х               | х    | х    | х    | х          | х            | -    | -    | -     | -      |
| AOC 7              | SS-31(D)-GGW           | 7/23/2007       | ~ 66.8            | ~ 66.8                           | water  | Х               | х    | х    | х    | х          | х            | -    | -    | -     | -      |
| AOC 8              | SS-123(AA)-GGW         | 7/24/2007       | ~15.7             | ~15.7                            | water  | Х               | х    | х    | х    | х          | х            | -    | -    | -     | -      |
| AOC 8              | SS-123(F1)-GGW         | 7/23/2007       | ~ 20.8            | ~ 20.8                           | water  | Х               | х    | х    | х    | х          | х            | -    | -    | -     | -      |
| AOC 8              | SS-123(F2)-GGW         | 7/24/2007       | ~ 25.8            | ~ 25.8                           | water  | Х               | х    | Х    | х    | х          | х            | -    | -    | -     | -      |
| AOC 8              | SS-123(F3)-GGW         | 7/24/2007       | ~ 26.9            | ~ 26.9                           | water  | Х               | х    | Х    | х    | х          | х            | -    | -    | -     | -      |
| Grab Surface We    | ater Sample from Storn | n-Water Reten   | tion Pond         |                                  |        |                 |      |      |      |            |              |      |      |       |        |
| AOC 6              | PW-2                   | 7/13/2007       | surface           | surface                          | water  | Х               | Х    | х    | Х    | х          | Х            | -    | -    | -     | Х      |
| Groundwater Sa     | mples from Monitoring  | Wells           |                   |                                  |        |                 |      |      |      |            |              |      |      |       |        |
| 3S/1E 14D1         | TW-5                   | 7/12/2007       | ~ 50              | ~ 50                             | water  | Х               | х    | Х    | х    | х          | х            | -    | -    | х     | Х      |
| 3S/1E 10D8         | 3S/1E 10D8             | 7/25/2007       | ~ 200             | ~ 200                            | water  | Х               | х    | х    | х    | х          | х            | -    | -    | х     | х      |
| 3S/1E 10K2         | 3S/1E 10K2             | 7/25/2007       | ~ 300             | ~ 300                            | water  | Х               | х    | х    | х    | х          | х            | -    | -    | х     | х      |
| 3S/1E 10K2         | MW-10 *                | 7/25/2007       | ~ 300             | ~ 300                            | water  | Х               | х    | х    | х    | х          | х            | -    | -    | х     | Х      |
| 3S/1E 10N3         | 3S/1E 10N3             | 7/25/2007       | ~ 180             | ~ 180                            | water  | Х               | х    | х    | х    | х          | х            | -    | -    | х     | х      |
| Trip Blank         | TB-072507              | 7/25/2007       | na                | na                               | water  | Х               | Х    | Х    | х    | х          | х            | -    | -    | х     | х      |

# Table 1 - Sample Matrix Samples from Temporary Soil Borings, Storm-Water Pond, and Existing Groundwater Monitoring Wells

Hanson Radum Facility, 3000 Busch Road, Pleasanton, California

Notes: TPHd = total petroleum hydrocarbons as diesel by EPA Method 8015 (after silica gel cleanup)AOC = area of concernTPHmo = total petroleum hydrocarbons as motor oil by EPA Method 8015 (after silica gel cleanup) feet bgs = feet below ground surface TPHg = total petroleum hydrocarbons as gasoline by EPA Method 8015 (soil) and 8260 (water) "  $\sim$  " = approximate sample depth VOCs = volatile organic compounds by EPA Method 8260 "1" = analyzed BTEX = benzene, toluene, ethylbenzene, and total xylenes by EPA Method 8260 "-" = not analyzed Fuel Ox = fuel oxygenates by EPA Method 8260 na = not applicableLead Scav = lead scavengers by EPA Method 8260\* MW-10 = blind duplicate of 3S/1E 10K2 Pest = organochlorine pesticides by EPA Method 8081 PCBs = polychlorinated biphenyls by EPA Method 8082 SVOCs = semivolatile organic compounds by EPA Method 8270 Metals = CAM17 metals (total concentrations in soil samples; dissolved concentrations in water samples) by EPA Method 6010

(Concentrations reported in milligrams per kilogram (mg/Kg) or micrograms per kilogram (ug/Kg), as noted)

| Sample   | Sample ID     | Date      | Sample            | Interval             | Matrix | Total Pet       | roleum Hydr      | ocarbons        |              | BT           | EX compou    | nds              |                |
|----------|---------------|-----------|-------------------|----------------------|--------|-----------------|------------------|-----------------|--------------|--------------|--------------|------------------|----------------|
| Location |               | Sampled   | top<br>(feet bgs) | bottom<br>(feet bgs) |        | TPHd<br>(mg/Kg) | TPHmo<br>(mg/Kg) | TPHg<br>(mg/Kg) | B<br>(ug/Kg) | T<br>(ug/Kg) | E<br>(ug/Kg) | m,p-X<br>(ug/Kg) | o-X<br>(ug/Kg) |
| AOC 3    | B-1(A)-4.5    | 7/17/2007 | 4                 | 4.5                  | soil   | <1              | <5               | <1              | -            | -            | -            | -                | -              |
| AOC 3    | B-1(A)-9.5    | 7/17/2007 | 9                 | 9.5                  | soil   | <1              | 7.4 H            | < 0.94          | -            | -            | -            | -                | -              |
| AOC 3    | B-1(A)-35     | 7/17/2007 | 34.5              | 35                   | soil   | <1              | <5               | -               | -            | -            | -            | -                | -              |
| AOC 3    | B-1(A)-36.5   | 7/17/2007 | 36                | 36.5                 | soil   | -               | -                | -               | -            | -            | -            | -                | -              |
| AOC 2    | EB-31(A)-5.5  | 7/17/2007 | 5                 | 5.5                  | soil   | 1.3 HY          | 16 H             | -               | -            | -            | -            | -                | -              |
| AOC 2    | EB-31(A)-10.5 | 7/17/2007 | 10                | 10.5                 | soil   | 14 HY           | 170 H            | -               | -            | -            | -            | -                | -              |
| AOC 2    | EB-31(A)-15.5 | 7/17/2007 | 15                | 15.5                 | soil   | < 0.99          | <5               | -               | -            | -            | -            | -                | -              |
| AOC 2    | EB-31(A)-20.5 | 7/17/2007 | 20                | 20.5                 | soil   | <1              | <5               | -               | -            | -            | -            | -                | -              |
| AOC 2    | EB-31(B)-5.5  | 7/16/2007 | 5                 | 5.5                  | soil   | 1 HYZ           | <5               | -               | -            | -            | -            | -                | -              |
| AOC 2    | EB-31(B)-10.5 | 7/16/2007 | 10                | 10.5                 | soil   | 1.9 HYZ         | <5               | -               | -            | -            | -            | -                | -              |
| AOC 2    | EB-31(B)-15.5 | 7/16/2007 | 15                | 15.5                 | soil   | < 0.99          | 5.4 HL           | -               | -            | -            | -            | -                | -              |
| AOC 2    | EB-31(B)-20.5 | 7/16/2007 | 20                | 20.5                 | soil   | 2.3 HYZ         | 10 HL            | -               | -            | -            | -            | -                | -              |
| AOC 2    | EB-31(C)-5    | 7/16/2007 | 4.5               | 5                    | soil   | 8.2 HYZ         | 87 HL            | -               | -            | -            | -            | -                | -              |
| AOC 2    | EB-31(C)-10.5 | 7/16/2007 | 10                | 10.5                 | soil   | 2.3 HYZ         | <5               | -               | -            | -            | -            | -                | -              |
| AOC 2    | EB-31(C)-15.5 | 7/16/2007 | 15                | 15.5                 | soil   | 1.5 HYZ         | <5               | -               | -            | -            | -            | -                | -              |
| AOC 2    | EB-31(C)-20.5 | 7/16/2007 | 20                | 20.5                 | soil   | <1              | <5               | -               | -            | -            | -            | -                | -              |
| AOC 3    | EB-35(A)-3    | 7/17/2007 | 2.5               | 3                    | soil   | -               | -                | -               | -            | -            | -            | -                | -              |
| AOC 3    | EB-35(A)-4    | 7/17/2007 | 3.5               | 4                    | soil   | 48 HY           | 540 H            | -               | -            | -            | -            | -                | -              |
| AOC 3    | EB-35(A)-9.5  | 7/17/2007 | 9                 | 9.5                  | soil   | <1              | 5.2 H            | -               | -            | -            | -            | -                | -              |
| AOC 3    | EB-35(B)-2.5  | 7/17/2007 | 2                 | 2.5                  | soil   | -               | -                | -               | -            | -            | -            | -                | -              |
| AOC 3    | EB-35(B)-5    | 7/17/2007 | 4.5               | 5                    | soil   | 160 HY          | 3,600 H          | -               | -            | -            | -            | -                | -              |
| AOC 3    | EB-35(B)-9    | 7/17/2007 | 8.5               | 9                    | soil   | < 0.99          | <5               | -               | -            | -            | -            | -                | -              |
| AOC 3    | EB-35(C)-2.5  | 7/18/2007 | 2                 | 2.5                  | soil   | -               | -                | -               | -            | -            | -            | -                | -              |
| AOC 3    | EB-35(C)-5.5  | 7/18/2007 | 5                 | 5.5                  | soil   | <1              | <5               | -               | -            | -            | -            | -                | -              |
| AOC 3    | EB-35(C)-10.5 | 7/18/2007 | 10                | 10.5                 | soil   | <1              | <5               | -               | -            | -            | -            | -                | -              |
| AOC 3    | EB-35(D)-2.5  | 7/18/2007 | 2                 | 2.5                  | soil   | -               | -                | -               | -            | -            | -            | -                | -              |
| AOC 3    | EB-35(D)-5.5  | 7/18/2007 | 5                 | 5.5                  | soil   | 38 HY           | 810 H            | -               | -            | -            | -            | -                | -              |
| AOC 3    | EB-35(D)-9.5  | 7/18/2007 | 9                 | 9.5                  | soil   | < 0.99          | <5               | -               | -            | -            | -            | -                | -              |
| AOC 7    | SS-31(A)-5.5  | 7/18/2007 | 5                 | 5.5                  | soil   | < 0.99          | 5.9 H            | <1              | <4.9         | <4.9         | <4.9         | <4.9             | <4.9           |
| AOC 7    | SS-31(A)-10.5 | 7/18/2007 | 10                | 10.5                 | soil   | <1              | <5               | < 0.94          | <4.7         | <4.7         | <4.7         | <4.7             | <4.7           |
| AOC 7    | SS-31(A)-15.5 | 7/18/2007 | 15                | 15.5                 | soil   | < 0.99          | <5               | <1.1            | <4.8         | <4.8         | <4.8         | <4.8             | <4.8           |

(Concentrations reported in milligrams per kilogram (mg/Kg) or micrograms per kilogram (ug/Kg), as noted)

|         | SS-31(A)-20.5<br>SS-31(A)-25.5 | Sampled 7/18/2007 | -    | bottom<br>(feet bgs) |      | TPHd    | TDU     |         |         |         |         |         |         |
|---------|--------------------------------|-------------------|------|----------------------|------|---------|---------|---------|---------|---------|---------|---------|---------|
|         | SS-31(A)-25.5                  | 7/18/2007         | -    | ) (feet bgs)         |      |         | TPHmo   | TPHg    | В       | T       | E       | m,p-X   | o-X     |
|         | SS-31(A)-25.5                  | 7/18/2007         |      |                      |      | (mg/Kg) | (mg/Kg) | (mg/Kg) | (ug/Kg) | (ug/Kg) | (ug/Kg) | (ug/Kg) | (ug/Kg) |
|         | • •                            |                   | 20   | 20.5                 | soil | <1      | < 5     | <1      | <4.6    | <4.6    | <4.6    | <4.6    | <4.6    |
| AUC / S |                                | 7/18/2007         | 25   | 25.5                 | soil | <1      | < 5     | <1      | <4.8    | <4.8    | <4.8    | <4.8    | <4.8    |
| AOC 7 S | SS-31(A)-30.5                  | 7/18/2007         | 30   | 30.5                 | soil | < 0.99  | <5      | < 0.98  | < 5     | <5      | <5      | < 5     | <5      |
| AOC 7 S | SS-31(A)-40.5                  | 7/19/2007         | 40   | 40.5                 | soil | <1      | < 5     | <1      | <4.8    | <4.8    | <4.8    | <4.8    | <4.8    |
| AOC 7 S | SS-31(A)-50.5                  | 7/19/2007         | 50   | 50.5                 | soil | < 0.99  | < 5     | < 0.97  | <4.6    | <4.6    | <4.6    | <4.6    | <4.6    |
| AOC 7 S | SS-31(A)-52.5                  | 7/19/2007         | 52   | 52.5                 | soil | < 0.99  | < 5     | < 0.99  | <4.7    | <4.7    | <4.7    | <4.7    | <4.7    |
| AOC 7 S | SS-31(A)-60.5                  | 7/19/2007         | 60   | 60.5                 | soil | <1      | < 5     | <1      | <4.5    | <4.5    | <4.5    | <4.5    | <4.5    |
| AOC 7 S | SS-31(A)-65.5                  | 7/19/2007         | 65   | 65.5                 | soil | -       | -       | -       | -       | -       | -       | -       | -       |
| AOC 7 S | SS-31(B)-5.5                   | 7/19/2007         | 5    | 5.5                  | soil | 2.6 HYZ | 11 H    | <1      | <4.7    | <4.7    | <4.7    | <4.7    | <4.7    |
| AOC 7 S | SS-31(B)-10.5                  | 7/19/2007         | 10   | 10.5                 | soil | 6.2 HYZ | 75 HL   | < 0.99  | <4.8    | <4.8    | <4.8    | <4.8    | <4.8    |
| AOC 7 S | SS-31(B)-15.5                  | 7/19/2007         | 15   | 15.5                 | soil | 1.2 YZ  | 6.3 H   | < 0.96  | <4.8    | <4.8    | <4.8    | <4.8    | <4.8    |
| AOC 7 S | SS-31(B)-20.5                  | 7/19/2007         | 20   | 20.5                 | soil | 6.4 YZ  | <5      | <1      | <4.6    | <4.6    | <4.6    | <4.6    | <4.6    |
| AOC 7 S | SS-31(B)-25.5                  | 7/19/2007         | 25   | 25.5                 | soil | 27 YZ   | < 5     | < 0.97  | <4.8    | <4.8    | <4.8    | <4.8    | <4.8    |
| AOC 7 S | SS-31(B)-30.5                  | 7/19/2007         | 30   | 30.5                 | soil | 32 YZ   | 5.4 HLZ | < 0.97  | <4.5    | <4.5    | <4.5    | <4.5    | <4.5    |
| AOC 7 S | SS-31(B)-40                    | 7/19/2007         | 39.5 | 40                   | soil | 21 YZ   | <5      | <1      | <4.5    | <4.5    | <4.5    | <4.5    | <4.5    |
| AOC 7 S | SS-31(B)-50                    | 7/19/2007         | 49.5 | 50                   | soil | 17 YZ   | 160 YZ  | <1      | <4.5    | <4.5    | <4.5    | <4.5    | <4.5    |
| AOC 7 S | SS-31(B)-60.5                  | 7/19/2007         | 60   | 60.5                 | soil | 9.2 YZ  | <5      | < 0.99  | <4.9    | <4.9    | <4.9    | <4.9    | <4.9    |
| AOC 7 S | SS-31(C)-5.5                   | 7/20/2007         | 5    | 5.5                  | soil | 2 HYZ   | < 5     | <1      | <5      | <5      | <5      | <5      | <5      |
| AOC 7 S | SS-31(C)-10.5                  | 7/20/2007         | 10   | 10.5                 | soil | <1      | < 5     | <1      | <4.5    | <4.5    | <4.5    | <4.5    | <4.5    |
| AOC 7 S | SS-31(C)-15.5                  | 7/20/2007         | 15   | 15.5                 | soil | < 0.99  | <5      | < 0.98  | <4.5    | <4.5    | <4.5    | <4.5    | <4.5    |
| AOC 7 S | SS-31(C)-19.5                  | 7/20/2007         | 19   | 19.5                 | soil | 2.3 YZ  | < 5     | < 0.97  | <4.9    | <4.9    | <4.9    | <4.9    | <4.9    |
| AOC 7 S | SS-31(C)-25.5                  | 7/20/2007         | 25   | 25.5                 | soil | <1      | < 5     | <1      | <4.9    | <4.9    | <4.9    | <4.9    | <4.9    |
| AOC 7 S | SS-31(C)-30                    | 7/20/2007         | 29.5 | 30                   | soil | <1      | < 5     | <1      | <4.8    | <4.8    | <4.8    | <4.8    | <4.8    |
| AOC 7 S | SS-31(C)-40                    | 7/20/2007         | 39.5 | 40                   | soil | <1      | < 5     | <1      | <4.9    | <4.9    | <4.9    | <4.9    | <4.9    |
| AOC 7 S | SS-31(C)-51                    | 7/20/2007         | 50.5 | 51                   | soil | < 0.99  | < 5     | < 0.99  | < 5     | <5      | <5      | <5      | <5      |
| AOC 7 S | SS-31(C)-60.5                  | 7/20/2007         | 60   | 60.5                 | soil | 5.7 YZ  | < 5     | <1.1    | <4.9    | <4.9    | <4.9    | <4.9    | <4.9    |
| AOC 7 S | SS-31(C)-67.5                  | 7/20/2007         | 67   | 67.5                 | soil | -       | -       | -       | -       | -       | -       | -       | -       |
| AOC 7 S | SS-31(D)-5.5                   | 7/20/2007         | 5    | 5.5                  | soil | < 0.99  | <5      | < 0.96  | <4.8    | <4.8    | <4.8    | <4.8    | <4.8    |
| AOC 7 S | SS-31(D)-10.5                  | 7/20/2007         | 10   | 10.5                 | soil | 1.7 HYZ | 9.4 HL  | < 0.96  | <4.7    | <4.7    | <4.7    | <4.7    | <4.7    |
| AOC 7 S | SS-31(D)-15                    | 7/20/2007         | 14.5 | 15                   | soil | 3.2 YZ  | <5      | < 0.98  | <4.5    | <4.5    | <4.5    | <4.5    | <4.5    |
| AOC 7 S | SS-31(D)-19.5                  | 7/20/2007         | 19   | 19.5                 | soil | < 0.99  | <5      | < 0.98  | <4.6    | <4.6    | <4.6    | <4.6    | <4.6    |
| AOC 7 S | SS-31(D)-25                    | 7/23/2007         | 24.5 | 25                   | soil | < 0.99  | <5      | <1      | <5      | <5      | <5      | <5      | <5      |

(Concentrations reported in milligrams per kilogram (mg/Kg) or micrograms per kilogram (ug/Kg), as noted)

| Sample   | Sample ID       | Date      | Sample           | e Interval              | Matrix     | Total Petr      | oleum Hydr       | ocarbons        |              | BTI          | EX compou    | nds              |                |
|----------|-----------------|-----------|------------------|-------------------------|------------|-----------------|------------------|-----------------|--------------|--------------|--------------|------------------|----------------|
| Location |                 | Sampled   | top<br>(feet bg: | bottom<br>s) (feet bgs) |            | TPHd<br>(mg/Kg) | TPHmo<br>(mg/Kg) | TPHg<br>(mg/Kg) | B<br>(ug/Kg) | T<br>(ug/Kg) | E<br>(ug/Kg) | m,p-X<br>(ug/Kg) | o-X<br>(ug/Kg) |
|          |                 |           | (leet bgs        | s) (leet bgs)           |            | (ing/Kg)        | (ing/ Kg)        | (IIIg/Kg)       | (ug/kg)      | (ug/kg)      | (ug/Kg)      | (ug/kg)          | (ug/kg)        |
| AOC 7    | SS-31(D)-30     | 7/23/2007 | 29.5             | 30                      | soil       | <1              | <5               | < 0.99          | <4.7         | <4.7         | <4.7         | <4.7             | <4.7           |
| AOC 7    | SS-31(D)-40     | 7/23/2007 | 39.5             | 40                      | soil       | <1              | < 5              | <1              | <4.9         | <4.9         | <4.9         | <4.9             | <4.9           |
| AOC 7    | SS-31(D)-50.5   | 7/23/2007 | 50               | 50.5                    | soil       | <1              | < 5              | < 0.95          | <4.5         | <4.5         | <4.5         | <4.5             | <4.5           |
| AOC 7    | SS-31(D)-60.5   | 7/23/2007 | 60               | 60.5                    | soil       | < 0.99          | <5               | <1              | <5           | <5           | <5           | <5               | <5             |
| AOC 8    | SS-123(AA)-5.5  | 7/24/2007 | 5                | 5.5                     | soil       | 1.6 HY          | 15 H             | -               | -            | -            | -            | -                | -              |
| AOC 8    | SS-123(AA)-7.5  | 7/24/2007 | 7                | 7.5                     | soil       | 89 HY           | 810 H            | -               | -            | -            | -            | -                | -              |
| AOC 8    | SS-123(AA)-10.5 | 7/24/2007 | 10               | 10.5                    | soil       | 1.9 HYZ         | 11 H             | -               | -            | -            | -            | -                | -              |
| AOC 8    | SS-123(AA)-15.5 | 7/24/2007 | 15               | 15.5                    | soil       | 39 HY           | 450 H            | -               | -            | -            | -            | -                | -              |
| AOC 8    | SS-123(AA)-18   | 7/24/2007 | 17.5             | 18                      | soil       | 170 HY          | 1,500 H          | -               | -            | -            | -            | -                | -              |
| AOC 8    | SS-123(F1)-5.5  | 7/23/2007 | 5                | 5.5                     | soil       | 14 HY           | 110 HL           | -               | -            | -            | -            | -                | -              |
| AOC 8    | SS-123(F1)-15.5 | 7/23/2007 | 15               | 15.5                    | soil       | 20 HY           | 46 HL            | -               | -            | -            | -            | -                | -              |
| AOC 8    | SS-123(F2)-6    | 7/23/2007 | 5.5              | 6                       | soil       | 54 HY           | 430 HL           | -               | -            | -            | -            | -                | -              |
| AOC 8    | SS-123(F2)-11.5 | 7/23/2007 | 11               | 11.5                    | soil       | 35 HY           | 290 HL           | -               | -            | -            | -            | -                | -              |
| AOC 8    | SS-123(F2)-16.5 | 7/23/2007 | 16               | 16.5                    | soil       | 27 HY           | 120 HL           | -               | -            | -            | -            | -                | -              |
| AOC 8    | SS-123(F2)-21   | 7/24/2007 | 20.5             | 21                      | soil       | 10 HY           | 29 HL            | -               | -            | -            | -            | -                | -              |
| AOC 8    | SS-123(F3)-5.5  | 7/24/2007 | 5                | 5.5                     | soil       | 83 HY           | 970 H            | -               | -            | -            | -            | -                | -              |
| AOC 8    | SS-123(F3)-10.5 | 7/24/2007 | 10               | 10.5                    | soil       | 3.3 HY          | 39 H             | -               | -            | -            | -            | -                | -              |
| AOC 8    | SS-123(F3)-15.5 | 7/24/2007 | 15               | 15.5                    | soil       | 19 HY           | 270 H            | -               | -            | -            | -            | -                | -              |
| AOC 8    | SS-123(F3)-20.5 | 7/24/2007 | 20               | 20.5                    | soil       | <1              | <5               | -               | -            | -            | -            | -                | -              |
| AOC 8    | SS-123(F3)-25.5 | 7/24/2007 | 25               | 25.5                    | soil       | 1.5 HYZ         | 8.2 H            | -               | -            | -            | -            | -                | -              |
| AOC 6    | SED-1           | 7/13/2007 | 0                | 0.5                     | soil       | <1              | 7.1 H            | -               | -            | -            | -            | -                | -              |
| AOC 6    | SED-2           | 7/13/2007 | 0                | 0.5                     | soil       | 13 HY           | 130 H            | -               | -            | -            | -            | -                | -              |
| AOC 6    | SED-3           | 7/13/2007 | 0                | 0.5                     | soil       | 100 HY          | 650 HL           | -               | -            | -            | -            | -                | -              |
| AOC 6    | SED-4           | 7/13/2007 | 0                | 0.5                     | soil       | 50 HY           | 300 HL           | -               | -            | -            | -            | -                | -              |
| ESLs     |                 |           |                  | shallow or              | deep soils | 100             | 1,000            | 100             | 44           | 2,900        | 3,300        | 2,300            | 2,300          |

(Concentrations reported in milligrams per kilogram (mg/Kg) or micrograms per kilogram (ug/Kg), as noted)

| Sample Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date               | Sample Interval                     | Matrix | Total Pet       | roleum Hydr      | ocarbons        |              | BT           | EX compou    | Inds             |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------|--------|-----------------|------------------|-----------------|--------------|--------------|--------------|------------------|----------------|
| Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sampled            | top bottom<br>(feet bgs) (feet bgs) |        | TPHd<br>(mg/Kg) | TPHmo<br>(mg/Kg) | TPHg<br>(mg/Kg) | B<br>(ug/Kg) | T<br>(ug/Kg) | E<br>(ug/Kg) | m,p-X<br>(ug/Kg) | o-X<br>(ug/Kg) |
| Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                                     |        |                 |                  |                 |              |              |              |                  |                |
| feet bgs = feet below ground surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                     |        |                 |                  |                 |              |              |              |                  |                |
| mg/Kg = milligrams per kilogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                     |        |                 |                  |                 |              |              |              |                  |                |
| ug/Kg = micrograms per kilogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                     |        |                 |                  |                 |              |              |              |                  |                |
| TPHd = total petroleum hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s as diesel        |                                     |        |                 |                  |                 |              |              |              |                  |                |
| TPHmo = total petroleum hydrocarbo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ons as motor oil   |                                     |        |                 |                  |                 |              |              |              |                  |                |
| TPHg = total petroleum hydrocarbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s as gasoline      |                                     |        |                 |                  |                 |              |              |              |                  |                |
| BTEX = benzene, toluene, ethylbenze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ene, and total xy  | lenes                               |        |                 |                  |                 |              |              |              |                  |                |
| B = benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                     |        |                 |                  |                 |              |              |              |                  |                |
| T = toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                     |        |                 |                  |                 |              |              |              |                  |                |
| E = ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                     |        |                 |                  |                 |              |              |              |                  |                |
| m,p-X = m,p-xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                     |        |                 |                  |                 |              |              |              |                  |                |
| o-X = o-xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                     |        |                 |                  |                 |              |              |              |                  |                |
| <b>bold</b> indicates that the compound was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                     | t.     |                 |                  |                 |              |              |              |                  |                |
| <b>1,500 H</b> boxed values exceed the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e respective ESL   |                                     |        |                 |                  |                 |              |              |              |                  |                |
| " < " = not detected above the laboration of t | tory report give   | n                                   |        |                 |                  |                 |              |              |              |                  |                |
| "-" = sample not analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                     |        |                 |                  |                 |              |              |              |                  |                |
| H = heavier hydrocarbons contributed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d to the quantitat | tion                                |        |                 |                  |                 |              |              |              |                  |                |
| L = lighter hydrocarbons contributed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | to the quantitati  | on                                  |        |                 |                  |                 |              |              |              |                  |                |
| Y = sample exhibites chromatographi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c pattern which    | does not resemble standard          |        |                 |                  |                 |              |              |              |                  |                |
| Z = sample exhibits unknown single j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | peak or peaks      |                                     |        |                 |                  |                 |              |              |              |                  |                |

| Sample   | Sample ID     | Date      | Sample            | Interval             | Matrix |                 | Fu              | iel Oxygena     | tes             |                | Lead Sca       | avengers       |
|----------|---------------|-----------|-------------------|----------------------|--------|-----------------|-----------------|-----------------|-----------------|----------------|----------------|----------------|
| Location | ·             | Sampled   | top<br>(feet bgs) | bottom<br>(feet bgs) |        | MTBE<br>(ug/Kg) | TAME<br>(ug/Kg) | DIPE<br>(ug/Kg) | ETBE<br>(ug/Kg) | TBA<br>(ug/Kg) | EDB<br>(ug/Kg) | EDC<br>(ug/Kg) |
| AOC 3    | B-1(A)-4.5    | 7/17/2007 | 4                 | 4.5                  | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 3    | B-1(A)-9.5    | 7/17/2007 | 9                 | 9.5                  | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 3    | B-1(A)-35     | 7/17/2007 | 34.5              | 35                   | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 3    | B-1(A)-36.5   | 7/17/2007 | 36                | 36.5                 | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 2    | EB-31(A)-5.5  | 7/17/2007 | 5                 | 5.5                  | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 2    | EB-31(A)-10.5 | 7/17/2007 | 10                | 10.5                 | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 2    | EB-31(A)-15.5 | 7/17/2007 | 15                | 15.5                 | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 2    | EB-31(A)-20.5 | 7/17/2007 | 20                | 20.5                 | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 2    | EB-31(B)-5.5  | 7/16/2007 | 5                 | 5.5                  | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 2    | EB-31(B)-10.5 | 7/16/2007 | 10                | 10.5                 | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 2    | EB-31(B)-15.5 | 7/16/2007 | 15                | 15.5                 | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 2    | EB-31(B)-20.5 | 7/16/2007 | 20                | 20.5                 | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 2    | EB-31(C)-5    | 7/16/2007 | 4.5               | 5                    | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 2    | EB-31(C)-10.5 | 7/16/2007 | 10                | 10.5                 | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 2    | EB-31(C)-15.5 | 7/16/2007 | 15                | 15.5                 | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 2    | EB-31(C)-20.5 | 7/16/2007 | 20                | 20.5                 | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 3    | EB-35(A)-3    | 7/17/2007 | 2.5               | 3                    | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 3    | EB-35(A)-4    | 7/17/2007 | 3.5               | 4                    | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 3    | EB-35(A)-9.5  | 7/17/2007 | 9                 | 9.5                  | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 3    | EB-35(B)-2.5  | 7/17/2007 | 2                 | 2.5                  | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 3    | EB-35(B)-5    | 7/17/2007 | 4.5               | 5                    | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 3    | EB-35(B)-9    | 7/17/2007 | 8.5               | 9                    | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 3    | EB-35(C)-2.5  | 7/18/2007 | 2                 | 2.5                  | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 3    | EB-35(C)-5.5  | 7/18/2007 | 5                 | 5.5                  | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 3    | EB-35(C)-10.5 | 7/18/2007 | 10                | 10.5                 | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 3    | EB-35(D)-2.5  | 7/18/2007 | 2                 | 2.5                  | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 3    | EB-35(D)-5.5  | 7/18/2007 | 5                 | 5.5                  | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 3    | EB-35(D)-9.5  | 7/18/2007 | 9                 | 9.5                  | soil   | -               | -               | -               | -               | -              | -              | -              |
| AOC 7    | SS-31(A)-5.5  | 7/18/2007 | 5                 | 5.5                  | soil   | <4.9            | <4.9            | <4.9            | <4.9            | < 98           | <4.9           | <4.9           |
| AOC 7    | SS-31(A)-10.5 | 7/18/2007 | 10                | 10.5                 | soil   | <4.7            | <4.7            | <4.7            | <4.7            | < 94           | <4.7           | <4.7           |

(Concentrations reported in micrograms per kilograms (ug/Kg))

\_

| Sample   | Sample ID     | Date      | Sample     | Interval   | Matrix |         |         | el Oxygenat |         |         |         | avengers |
|----------|---------------|-----------|------------|------------|--------|---------|---------|-------------|---------|---------|---------|----------|
| Location |               | Sampled   | top        | bottom     |        | MTBE    | TAME    | DIPE        | ETBE    | TBA     | EDB     | EDC      |
|          |               |           | (feet bgs) | (feet bgs) |        | (ug/Kg) | (ug/Kg) | (ug/Kg)     | (ug/Kg) | (ug/Kg) | (ug/Kg) | (ug/Kg)  |
| AOC 7    | SS-31(A)-15.5 | 7/18/2007 | 15         | 15.5       | soil   | <4.8    | <4.8    | <4.8        | <4.8    | <96     | <4.8    | <4.8     |
| AOC 7    | SS-31(A)-20.5 | 7/18/2007 | 20         | 20.5       | soil   | <4.6    | <4.6    | <4.6        | <4.6    | <93     | <4.6    | <4.6     |
| AOC 7    | SS-31(A)-25.5 | 7/18/2007 | 25         | 25.5       | soil   | <4.8    | <4.8    | <4.8        | <4.8    | <96     | <4.8    | <4.8     |
| AOC 7    | SS-31(A)-30.5 | 7/18/2007 | 30         | 30.5       | soil   | <5      | <5      | <5          | <5      | <100    | <5      | <5       |
| AOC 7    | SS-31(A)-40.5 | 7/19/2007 | 40         | 40.5       | soil   | <4.8    | <4.8    | <4.8        | <4.8    | <96     | <4.8    | <4.8     |
| AOC 7    | SS-31(A)-50.5 | 7/19/2007 | 50         | 50.5       | soil   | <4.6    | <4.6    | <4.6        | <4.6    | <93     | <4.6    | <4.6     |
| AOC 7    | SS-31(A)-52.5 | 7/19/2007 | 52         | 52.5       | soil   | <4.7    | <4.7    | <4.7        | <4.7    | < 94    | <4.7    | <4.7     |
| AOC 7    | SS-31(A)-60.5 | 7/19/2007 | 60         | 60.5       | soil   | <4.5    | <4.5    | <4.5        | <4.5    | < 89    | <4.5    | <4.5     |
| AOC 7    | SS-31(A)-65.5 | 7/19/2007 | 65         | 65.5       | soil   | -       | -       | -           | -       | -       | -       | -        |
| AOC 7    | SS-31(B)-5.5  | 7/19/2007 | 5          | 5.5        | soil   | <4.7    | <4.7    | <4.7        | <4.7    | < 94    | <4.7    | <4.7     |
| AOC 7    | SS-31(B)-10.5 | 7/19/2007 | 10         | 10.5       | soil   | <4.8    | <4.8    | <4.8        | <4.8    | <96     | <4.8    | <4.8     |
| AOC 7    | SS-31(B)-15.5 | 7/19/2007 | 15         | 15.5       | soil   | <4.8    | <4.8    | <4.8        | <4.8    | <96     | <4.8    | <4.8     |
| AOC 7    | SS-31(B)-20.5 | 7/19/2007 | 20         | 20.5       | soil   | <4.6    | <4.6    | <4.6        | <4.6    | <93     | <4.6    | <4.6     |
| AOC 7    | SS-31(B)-25.5 | 7/19/2007 | 25         | 25.5       | soil   | <4.8    | <4.8    | <4.8        | <4.8    | <96     | <4.8    | <4.8     |
| AOC 7    | SS-31(B)-30.5 | 7/19/2007 | 30         | 30.5       | soil   | <4.5    | <4.5    | <4.5        | <4.5    | < 89    | <4.5    | <4.5     |
| AOC 7    | SS-31(B)-40   | 7/19/2007 | 39.5       | 40         | soil   | <4.5    | <4.5    | <4.5        | <4.5    | < 89    | <4.5    | <4.5     |
| AOC 7    | SS-31(B)-50   | 7/19/2007 | 49.5       | 50         | soil   | <4.5    | <4.5    | <4.5        | <4.5    | < 89    | <4.5    | <4.5     |
| AOC 7    | SS-31(B)-60.5 | 7/19/2007 | 60         | 60.5       | soil   | <4.9    | <4.9    | <4.9        | <4.9    | < 98    | <4.9    | <4.9     |
| AOC 7    | SS-31(C)-5.5  | 7/20/2007 | 5          | 5.5        | soil   | <5      | <5      | <5          | <5      | < 100   | <5      | <5       |
| AOC 7    | SS-31(C)-10.5 | 7/20/2007 | 10         | 10.5       | soil   | <4.5    | <4.5    | <4.5        | <4.5    | < 91    | <4.5    | <4.5     |
| AOC 7    | SS-31(C)-15.5 | 7/20/2007 | 15         | 15.5       | soil   | <4.5    | <4.5    | <4.5        | <4.5    | < 91    | <4.5    | <4.5     |
| AOC 7    | SS-31(C)-19.5 | 7/20/2007 | 19         | 19.5       | soil   | <4.9    | <4.9    | <4.9        | <4.9    | < 98    | <4.9    | <4.9     |
| AOC 7    | SS-31(C)-25.5 | 7/20/2007 | 25         | 25.5       | soil   | <4.9    | <4.9    | <4.9        | <4.9    | < 98    | <4.9    | <4.9     |
| AOC 7    | SS-31(C)-30   | 7/20/2007 | 29.5       | 30         | soil   | <4.8    | <4.8    | <4.8        | <4.8    | <96     | <4.8    | <4.8     |
| AOC 7    | SS-31(C)-40   | 7/20/2007 | 39.5       | 40         | soil   | <4.9    | <4.9    | <4.9        | <4.9    | < 98    | <4.9    | <4.9     |
| AOC 7    | SS-31(C)-51   | 7/20/2007 | 50.5       | 51         | soil   | <5      | <5      | <5          | <5      | <100    | <5      | <5       |
| AOC 7    | SS-31(C)-60.5 | 7/20/2007 | 60         | 60.5       | soil   | <4.9    | <4.9    | <4.9        | <4.9    | < 98    | <4.9    | <4.9     |
| AOC 7    | SS-31(C)-67.5 | 7/20/2007 | 67         | 67.5       | soil   | -       | -       | -           | -       | -       | -       | -        |
| AOC 7    | SS-31(D)-5.5  | 7/20/2007 | 5          | 5.5        | soil   | <4.8    | <4.8    | <4.8        | <4.8    | <96     | <4.8    | <4.8     |
| AOC 7    | SS-31(D)-10.5 | 7/20/2007 | 10         | 10.5       | soil   | <4.7    | <4.7    | <4.7        | <4.7    | < 94    | <4.7    | <4.7     |
| AOC 7    | SS-31(D)-15   | 7/20/2007 | 14.5       | 15         | soil   | <4.5    | <4.5    | <4.5        | <4.5    | < 91    | <4.5    | <4.5     |
| AOC 7    | SS-31(D)-19.5 | 7/20/2007 | 19         | 19.5       | soil   | <4.6    | <4.6    | <4.6        | <4.6    | <93     | <4.6    | <4.6     |

(Concentrations reported in micrograms per kilograms (ug/Kg))

| Sample   | Sample ID       | Date      | Sample            | Interval             | Matrix     |                 | Fu              | el Oxygena      | tes             |                | Lead Sc        | avengers       |
|----------|-----------------|-----------|-------------------|----------------------|------------|-----------------|-----------------|-----------------|-----------------|----------------|----------------|----------------|
| Location |                 | Sampled   | top<br>(feet bgs) | bottom<br>(feet bgs) |            | MTBE<br>(ug/Kg) | TAME<br>(ug/Kg) | DIPE<br>(ug/Kg) | ETBE<br>(ug/Kg) | TBA<br>(ug/Kg) | EDB<br>(ug/Kg) | EDC<br>(ug/Kg) |
| AOC 7    | SS-31(D)-25     | 7/23/2007 | 24.5              | 25                   | soil       | <5              | <5              | <5              | <5              | < 100          | <5             | <5             |
| AOC 7    | SS-31(D)-30     | 7/23/2007 | 29.5              | 30                   | soil       | <4.7            | <4.7            | <4.7            | <4.7            | < 94           | <4.7           | <4.7           |
| AOC 7    | SS-31(D)-40     | 7/23/2007 | 39.5              | 40                   | soil       | <4.9            | <4.9            | <4.9            | <4.9            | < 98           | <4.9           | <4.9           |
| AOC 7    | SS-31(D)-50.5   | 7/23/2007 | 50                | 50.5                 | soil       | <4.5            | <4.5            | <4.5            | <4.5            | < 91           | <4.5           | <4.5           |
| AOC 7    | SS-31(D)-60.5   | 7/23/2007 | 60                | 60.5                 | soil       | <5              | <5              | <5              | <5              | < 100          | <5             | <5             |
| AOC 8    | SS-123(AA)-5.5  | 7/24/2007 | 5                 | 5.5                  | soil       | -               | -               | -               | -               | -              | -              | -              |
| AOC 8    | SS-123(AA)-7.5  | 7/24/2007 | 7                 | 7.5                  | soil       | -               | -               | -               | -               | -              | -              | -              |
| AOC 8    | SS-123(AA)-10.5 | 7/24/2007 | 10                | 10.5                 | soil       | -               | -               | -               | -               | -              | -              | -              |
| AOC 8    | SS-123(AA)-15.5 | 7/24/2007 | 15                | 15.5                 | soil       | -               | -               | -               | -               | -              | -              | -              |
| AOC 8    | SS-123(AA)-18   | 7/24/2007 | 17.5              | 18                   | soil       | -               | -               | -               | -               | -              | -              | -              |
| AOC 8    | SS-123(F1)-5.5  | 7/23/2007 | 5                 | 5.5                  | soil       | -               | -               | -               | -               | -              | -              | -              |
| AOC 8    | SS-123(F1)-15.5 | 7/23/2007 | 15                | 15.5                 | soil       | -               | -               | -               | -               | -              | -              | -              |
| AOC 8    | SS-123(F2)-6    | 7/23/2007 | 5.5               | 6                    | soil       | -               | -               | -               | -               | -              | -              | -              |
| AOC 8    | SS-123(F2)-11.5 | 7/23/2007 | 11                | 11.5                 | soil       | -               | -               | -               | -               | -              | -              | -              |
| AOC 8    | SS-123(F2)-16.5 | 7/23/2007 | 16                | 16.5                 | soil       | -               | -               | -               | -               | -              | -              | -              |
| AOC 8    | SS-123(F2)-21   | 7/24/2007 | 20.5              | 21                   | soil       | -               | -               | -               | -               | -              | -              | -              |
| AOC 8    | SS-123(F3)-5.5  | 7/24/2007 | 5                 | 5.5                  | soil       | -               | -               | -               | -               | -              | -              | -              |
| AOC 8    | SS-123(F3)-10.5 | 7/24/2007 | 10                | 10.5                 | soil       | -               | -               | -               | -               | -              | -              | -              |
| AOC 8    | SS-123(F3)-15.5 | 7/24/2007 | 15                | 15.5                 | soil       | -               | -               | -               | -               | -              | -              | -              |
| AOC 8    | SS-123(F3)-20.5 | 7/24/2007 | 20                | 20.5                 | soil       | -               | -               | -               | -               | -              | -              | -              |
| AOC 8    | SS-123(F3)-25.5 | 7/24/2007 | 25                | 25.5                 | soil       | -               | -               | -               | -               | -              | -              | -              |
| AOC 6    | SED-1           | 7/13/2007 | 0                 | 0.5                  | soil       | -               | -               | -               | -               | -              | -              | -              |
| AOC 6    | SED-2           | 7/13/2007 | 0                 | 0.5                  | soil       | -               | -               | -               | -               | -              | -              | -              |
| AOC 6    | SED-3           | 7/13/2007 | 0                 | 0.5                  | soil       | -               | -               | -               | -               | -              | -              | -              |
| AOC 6    | SED-4           | 7/13/2007 | 0                 | 0.5                  | soil       | -               | -               | -               | -               | -              | -              | -              |
| ESLs     |                 |           |                   | shallow or           | deep soils | 23              | -               | -               | -               | 73             | 0.33           | 4.5            |

(Concentrations reported in micrograms per kilograms (ug/Kg))

(Concentrations reported in micrograms per kilograms (ug/Kg))

| Sample            | Sample ID                  | Date               | Sample            | Interval             | Matrix |                 | Fu              | el Oxygena      | tes             |                | Lead Sca       | avengers       |
|-------------------|----------------------------|--------------------|-------------------|----------------------|--------|-----------------|-----------------|-----------------|-----------------|----------------|----------------|----------------|
| Location          |                            | Sampled            | top<br>(feet bgs) | bottom<br>(feet bgs) |        | MTBE<br>(ug/Kg) | TAME<br>(ug/Kg) | DIPE<br>(ug/Kg) | ETBE<br>(ug/Kg) | TBA<br>(ug/Kg) | EDB<br>(ug/Kg) | EDC<br>(ug/Kg) |
| Notes:            |                            |                    |                   |                      |        |                 |                 |                 |                 |                |                |                |
| feet bgs = feet b | elow ground surface        |                    |                   |                      |        |                 |                 |                 |                 |                |                |                |
| ug/Kg = microg    | rams per kilogram          |                    |                   |                      |        |                 |                 |                 |                 |                |                |                |
| MTBE = methyl     | l tert-butyl ether         |                    |                   |                      |        |                 |                 |                 |                 |                |                |                |
| TAME = tert-an    | nyl methyl ether (methyl   | l tert-amyl ether) |                   |                      |        |                 |                 |                 |                 |                |                |                |
| DIPE = diisopro   | opyl ether (isopropyl ethe | er)                |                   |                      |        |                 |                 |                 |                 |                |                |                |
| ETBE = ethyl te   | ert-butyl ether            |                    |                   |                      |        |                 |                 |                 |                 |                |                |                |
| TBA = tert-buty   | alcohol                    |                    |                   |                      |        |                 |                 |                 |                 |                |                |                |

EDB = 1,2-dibromoethane (ethylene dibromide)

EDC = 1,2-dichloroethane

" < " = not detected above the laboratory report given

"-" = sample not analyzed or ESL not established

|                                                                                                                   | B-1(A)-4.5<br>B-1(A)-9.5<br>B-1(A)-35<br>B-1(A)-36.5<br>EB-31(A)-5.5<br>EB-31(A)-10.5<br>EB-31(A)-10.5<br>EB-31(A)-20.5<br>EB-31(B)-5.5<br>EB-31(B)-10.5<br>EB-31(B)-15.5<br>EB-31(B)-20.5<br>EB-31(C)-5            | Sampled<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/16/2007<br>7/16/2007<br>7/16/2007 | top<br>(feet bgs)<br>4<br>9<br>34.5<br>36<br>5<br>10<br>15<br>20<br>5<br>10 | bottom<br>(feet bgs)<br>4.5<br>9.5<br>35<br>36.5<br>5.5<br>10.5<br>15.5<br>20.5 | soil<br>soil<br>soil<br>soil<br>soil<br>soil<br>soil | -<br>-<br>-<br>-<br>-<br>- |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------|----------------------------|
| AOC 3<br>AOC 3<br>AOC 2<br>AOC 2 | $\begin{array}{c} B-1(A)-9.5\\ B-1(A)-35\\ B-1(A)-36.5\\ EB-31(A)-5.5\\ EB-31(A)-10.5\\ EB-31(A)-15.5\\ EB-31(A)-20.5\\ EB-31(B)-5.5\\ EB-31(B)-10.5\\ EB-31(B)-15.5\\ EB-31(B)-15.5\\ EB-31(B)-20.5\\ \end{array}$ | 7/17/2007<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/16/2007<br>7/16/2007                                      | 4<br>9<br>34.5<br>36<br>5<br>10<br>15<br>20<br>5                            | 4.5<br>9.5<br>35<br>36.5<br>5.5<br>10.5<br>15.5<br>20.5                         | soil<br>soil<br>soil<br>soil<br>soil<br>soil         |                            |
| AOC 3<br>AOC 3<br>AOC 2<br>AOC 2 | $\begin{array}{c} B-1(A)-9.5\\ B-1(A)-35\\ B-1(A)-36.5\\ EB-31(A)-5.5\\ EB-31(A)-10.5\\ EB-31(A)-15.5\\ EB-31(A)-20.5\\ EB-31(B)-5.5\\ EB-31(B)-10.5\\ EB-31(B)-15.5\\ EB-31(B)-15.5\\ EB-31(B)-20.5\\ \end{array}$ | 7/17/2007<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/16/2007<br>7/16/2007                                      | 9<br>34.5<br>36<br>5<br>10<br>15<br>20<br>5                                 | 9.5<br>35<br>36.5<br>5.5<br>10.5<br>15.5<br>20.5                                | soil<br>soil<br>soil<br>soil<br>soil<br>soil         | -<br>-<br>-<br>-<br>-<br>- |
| AOC 3<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2                   | B-1(A)-35<br>B-1(A)-36.5<br>EB-31(A)-5.5<br>EB-31(A)-10.5<br>EB-31(A)-15.5<br>EB-31(A)-20.5<br>EB-31(B)-5.5<br>EB-31(B)-10.5<br>EB-31(B)-15.5<br>EB-31(B)-20.5                                                      | 7/17/2007<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/16/2007<br>7/16/2007                                                   | 34.5<br>36<br>5<br>10<br>15<br>20<br>5                                      | 35<br>36.5<br>5.5<br>10.5<br>15.5<br>20.5                                       | soil<br>soil<br>soil<br>soil<br>soil                 |                            |
| AOC 3<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2                            | B-1(A)-36.5<br>EB-31(A)-5.5<br>EB-31(A)-10.5<br>EB-31(A)-15.5<br>EB-31(A)-20.5<br>EB-31(B)-5.5<br>EB-31(B)-10.5<br>EB-31(B)-15.5<br>EB-31(B)-20.5                                                                   | 7/17/2007<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/16/2007<br>7/16/2007                                                                | 36<br>5<br>10<br>15<br>20<br>5                                              | 36.5<br>5.5<br>10.5<br>15.5<br>20.5                                             | soil<br>soil<br>soil<br>soil                         | -<br>-<br>-<br>-           |
| AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2                                     | EB-31(A)-5.5<br>EB-31(A)-10.5<br>EB-31(A)-15.5<br>EB-31(A)-20.5<br>EB-31(B)-5.5<br>EB-31(B)-10.5<br>EB-31(B)-15.5<br>EB-31(B)-20.5                                                                                  | 7/17/2007<br>7/17/2007<br>7/17/2007<br>7/17/2007<br>7/16/2007<br>7/16/2007                                                                             | 5<br>10<br>15<br>20<br>5                                                    | 5.5<br>10.5<br>15.5<br>20.5                                                     | soil<br>soil<br>soil                                 | -<br>-<br>-                |
| AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2                                              | EB-31(A)-10.5<br>EB-31(A)-15.5<br>EB-31(A)-20.5<br>EB-31(B)-5.5<br>EB-31(B)-10.5<br>EB-31(B)-15.5<br>EB-31(B)-20.5                                                                                                  | 7/17/2007<br>7/17/2007<br>7/17/2007<br>7/16/2007<br>7/16/2007                                                                                          | 10<br>15<br>20<br>5                                                         | 10.5<br>15.5<br>20.5                                                            | soil<br>soil                                         | -<br>-                     |
| AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2                                                                | EB-31(A)-15.5<br>EB-31(A)-20.5<br>EB-31(B)-5.5<br>EB-31(B)-10.5<br>EB-31(B)-15.5<br>EB-31(B)-20.5                                                                                                                   | 7/17/2007<br>7/17/2007<br>7/16/2007<br>7/16/2007                                                                                                       | 15<br>20<br>5                                                               | 15.5<br>20.5                                                                    | soil                                                 | -                          |
| AOC 2<br>AOC 2<br>AOC 2<br>AOC 2<br>AOC 2                                                                         | EB-31(A)-20.5<br>EB-31(B)-5.5<br>EB-31(B)-10.5<br>EB-31(B)-15.5<br>EB-31(B)-20.5                                                                                                                                    | 7/17/2007<br>7/16/2007<br>7/16/2007                                                                                                                    | 20<br>5                                                                     | 20.5                                                                            |                                                      | -                          |
| AOC 2<br>AOC 2<br>AOC 2<br>AOC 2                                                                                  | EB-31(B)-5.5<br>EB-31(B)-10.5<br>EB-31(B)-15.5<br>EB-31(B)-20.5                                                                                                                                                     | 7/16/2007<br>7/16/2007                                                                                                                                 | 5                                                                           |                                                                                 | 1                                                    |                            |
| AOC 2<br>AOC 2<br>AOC 2                                                                                           | EB-31(B)-10.5<br>EB-31(B)-15.5<br>EB-31(B)-20.5                                                                                                                                                                     | 7/16/2007                                                                                                                                              |                                                                             |                                                                                 | soil                                                 | -                          |
| AOC 2<br>AOC 2                                                                                                    | EB-31(B)-15.5<br>EB-31(B)-20.5                                                                                                                                                                                      |                                                                                                                                                        | 10                                                                          | 5.5                                                                             | soil                                                 | -                          |
| AOC 2                                                                                                             | EB-31(B)-20.5                                                                                                                                                                                                       | 7/16/2007                                                                                                                                              | 10                                                                          | 10.5                                                                            | soil                                                 | -                          |
|                                                                                                                   |                                                                                                                                                                                                                     |                                                                                                                                                        | 15                                                                          | 15.5                                                                            | soil                                                 | -                          |
| AOC 2                                                                                                             | EB-31(C)-5                                                                                                                                                                                                          | 7/16/2007                                                                                                                                              | 20                                                                          | 20.5                                                                            | soil                                                 | -                          |
|                                                                                                                   |                                                                                                                                                                                                                     | 7/16/2007                                                                                                                                              | 4.5                                                                         | 5                                                                               | soil                                                 | -                          |
| AOC 2                                                                                                             | EB-31(C)-10.5                                                                                                                                                                                                       | 7/16/2007                                                                                                                                              | 10                                                                          | 10.5                                                                            | soil                                                 | -                          |
| AOC 2                                                                                                             | EB-31(C)-15.5                                                                                                                                                                                                       | 7/16/2007                                                                                                                                              | 15                                                                          | 15.5                                                                            | soil                                                 | -                          |
| AOC 2                                                                                                             | EB-31(C)-20.5                                                                                                                                                                                                       | 7/16/2007                                                                                                                                              | 20                                                                          | 20.5                                                                            | soil                                                 | -                          |
| AOC 3                                                                                                             | EB-35(A)-3                                                                                                                                                                                                          | 7/17/2007                                                                                                                                              | 2.5                                                                         | 3                                                                               | soil                                                 | -                          |
| AOC 3                                                                                                             | EB-35(A)-4                                                                                                                                                                                                          | 7/17/2007                                                                                                                                              | 3.5                                                                         | 4                                                                               | soil                                                 | -                          |
| AOC 3                                                                                                             | EB-35(A)-9.5                                                                                                                                                                                                        | 7/17/2007                                                                                                                                              | 9                                                                           | 9.5                                                                             | soil                                                 | -                          |
| AOC 3                                                                                                             | EB-35(B)-2.5                                                                                                                                                                                                        | 7/17/2007                                                                                                                                              | 2                                                                           | 2.5                                                                             | soil                                                 | -                          |
| AOC 3                                                                                                             | EB-35(B)-5                                                                                                                                                                                                          | 7/17/2007                                                                                                                                              | 4.5                                                                         | 5                                                                               | soil                                                 | -                          |
| AOC 3                                                                                                             | EB-35(B)-9                                                                                                                                                                                                          | 7/17/2007                                                                                                                                              | 8.5                                                                         | 9                                                                               | soil                                                 | -                          |
| AOC 3                                                                                                             | EB-35(C)-2.5                                                                                                                                                                                                        | 7/18/2007                                                                                                                                              | 2                                                                           | 2.5                                                                             | soil                                                 | -                          |
| AOC 3                                                                                                             | EB-35(C)-5.5                                                                                                                                                                                                        | 7/18/2007                                                                                                                                              | 5                                                                           | 5.5                                                                             | soil                                                 | -                          |
|                                                                                                                   | EB-35(C)-10.5                                                                                                                                                                                                       | 7/18/2007                                                                                                                                              | 10                                                                          | 10.5                                                                            | soil                                                 | -                          |
| AOC 3                                                                                                             | EB-35(D)-2.5                                                                                                                                                                                                        | 7/18/2007                                                                                                                                              | 2                                                                           | 2.5                                                                             | soil                                                 | -                          |
| AOC 3                                                                                                             | EB-35(D)-5.5                                                                                                                                                                                                        | 7/18/2007                                                                                                                                              | 5                                                                           | 5.5                                                                             | soil                                                 | -                          |
| AOC 3                                                                                                             | EB-35(D)-9.5                                                                                                                                                                                                        | 7/18/2007                                                                                                                                              | 9                                                                           | 9.5                                                                             | soil                                                 | -                          |
| AOC 7                                                                                                             | SS-31(A)-5.5                                                                                                                                                                                                        | 7/18/2007                                                                                                                                              | 5                                                                           | 5.5                                                                             | soil                                                 | ND                         |
| AOC 7                                                                                                             | SS-31(A)-10.5                                                                                                                                                                                                       | 7/18/2007                                                                                                                                              | 10                                                                          | 10.5                                                                            | soil                                                 | ND                         |
| AOC 7                                                                                                             | SS-31(A)-15.5                                                                                                                                                                                                       | 7/18/2007                                                                                                                                              | 15                                                                          | 15.5                                                                            | soil                                                 | ND                         |
| AOC 7                                                                                                             | SS-31(A)-20.5                                                                                                                                                                                                       | 7/18/2007                                                                                                                                              | 20                                                                          | 20.5                                                                            | soil                                                 | ND                         |
| AOC 7                                                                                                             | SS-31(A)-25.5                                                                                                                                                                                                       | 7/18/2007                                                                                                                                              | 25                                                                          | 25.5                                                                            | soil                                                 | ND                         |
| AOC 7                                                                                                             | SS-31(A)-30.5                                                                                                                                                                                                       | 7/18/2007                                                                                                                                              | 30                                                                          | 30.5                                                                            | soil                                                 | ND                         |
| AOC 7                                                                                                             | SS-31(A)-40.5                                                                                                                                                                                                       | 7/19/2007                                                                                                                                              | 40                                                                          | 40.5                                                                            | soil                                                 | ND                         |
| AOC 7                                                                                                             | SS-31(A)-50.5                                                                                                                                                                                                       | 7/19/2007                                                                                                                                              | 50                                                                          | 50.5                                                                            | soil                                                 | ND                         |
| AOC 7                                                                                                             | SS-31(A)-52.5                                                                                                                                                                                                       | 7/19/2007                                                                                                                                              | 52                                                                          | 52.5                                                                            | soil                                                 | ND                         |
| AOC 7                                                                                                             | SS-31(A)-60.5                                                                                                                                                                                                       | 7/19/2007                                                                                                                                              | 60                                                                          | 60.5                                                                            | soil                                                 | ND                         |
| AOC 7                                                                                                             | SS-31(A)-65.5                                                                                                                                                                                                       | 7/19/2007                                                                                                                                              | 65                                                                          | 65.5                                                                            | soil                                                 | -                          |
| AOC 7                                                                                                             | SS-31(B)-5.5                                                                                                                                                                                                        | 7/19/2007                                                                                                                                              | 5                                                                           | 5.5                                                                             | soil                                                 | ND                         |
| AOC 7                                                                                                             | SS-31(B)-10.5                                                                                                                                                                                                       | 7/19/2007                                                                                                                                              | 10                                                                          | 10.5                                                                            | soil                                                 | ND                         |
| AOC 7                                                                                                             | SS-31(B)-15.5                                                                                                                                                                                                       | 7/19/2007                                                                                                                                              | 15                                                                          | 15.5                                                                            | soil                                                 | ND                         |
| AOC 7                                                                                                             | SS-31(B)-20.5                                                                                                                                                                                                       | 7/19/2007                                                                                                                                              | 20                                                                          | 20.5                                                                            | soil                                                 | ND                         |
| AOC 7                                                                                                             | SS-31(B)-25.5                                                                                                                                                                                                       | 7/19/2007                                                                                                                                              | 25                                                                          | 25.5                                                                            | soil                                                 | ND                         |
| AOC 7                                                                                                             | SS-31(B)-30.5                                                                                                                                                                                                       | 7/19/2007                                                                                                                                              | 30                                                                          | 30.5                                                                            | soil                                                 | ND                         |
| AOC 7<br>AOC 7                                                                                                    | SS-31(B)-40<br>SS-31(B)-50                                                                                                                                                                                          | 7/19/2007<br>7/19/2007                                                                                                                                 | 39.5<br>49.5                                                                | 40<br>50                                                                        | soil<br>soil                                         | ND<br>ND                   |

#### Table 3 - Summary of Analytical Results of Volatile Organic Compounds Detected in Soil Samples Hanson Radum Facility, 3000 Busch Road, Pleasanton, California

| Sample   | Sample ID       | Date      | -                 | Interval             | Matrix | VOCs * |
|----------|-----------------|-----------|-------------------|----------------------|--------|--------|
| Location |                 | Sampled   | top<br>(feet bgs) | bottom<br>(feet bgs) |        |        |
| AOC 7    | SS-31(B)-60.5   | 7/19/2007 | 60                | 60.5                 | soil   | ND     |
| AOC 7    | SS-31(C)-5.5    | 7/20/2007 | 5                 | 5.5                  | soil   | ND     |
| AOC 7    | SS-31(C)-10.5   | 7/20/2007 | 10                | 10.5                 | soil   | ND     |
| AOC 7    | SS-31(C)-15.5   | 7/20/2007 | 15                | 15.5                 | soil   | ND     |
| AOC 7    | SS-31(C)-19.5   | 7/20/2007 | 19                | 19.5                 | soil   | ND     |
| AOC 7    | SS-31(C)-25.5   | 7/20/2007 | 25                | 25.5                 | soil   | ND     |
| AOC 7    | SS-31(C)-30     | 7/20/2007 | 29.5              | 30                   | soil   | ND     |
| AOC 7    | SS-31(C)-40     | 7/20/2007 | 39.5              | 40                   | soil   | ND     |
| AOC 7    | SS-31(C)-51     | 7/20/2007 | 50.5              | 51                   | soil   | ND     |
| AOC 7    | SS-31(C)-60.5   | 7/20/2007 | 60                | 60.5                 | soil   | ND     |
| AOC 7    | SS-31(C)-67.5   | 7/20/2007 | 67                | 67.5                 | soil   | -      |
| AOC 7    | SS-31(D)-5.5    | 7/20/2007 | 5                 | 5.5                  | soil   | ND     |
| AOC 7    | SS-31(D)-10.5   | 7/20/2007 | 10                | 10.5                 | soil   | ND     |
| AOC 7    | SS-31(D)-15     | 7/20/2007 | 14.5              | 15                   | soil   | ND     |
| AOC 7    | SS-31(D)-19.5   | 7/20/2007 | 19                | 19.5                 | soil   | ND     |
| AOC 7    | SS-31(D)-25     | 7/23/2007 | 24.5              | 25                   | soil   | ND     |
| AOC 7    | SS-31(D)-30     | 7/23/2007 | 29.5              | 30                   | soil   | ND     |
| AOC 7    | SS-31(D)-40     | 7/23/2007 | 39.5              | 40                   | soil   | ND     |
| AOC 7    | SS-31(D)-50.5   | 7/23/2007 | 50                | 50.5                 | soil   | ND     |
| AOC 7    | SS-31(D)-60.5   | 7/23/2007 | 60                | 60.5                 | soil   | ND     |
| AOC 8    | SS-123(AA)-5.5  | 7/24/2007 | 5                 | 5.5                  | soil   | -      |
| AOC 8    | SS-123(AA)-7.5  | 7/24/2007 | 7                 | 7.5                  | soil   | -      |
| AOC 8    | SS-123(AA)-10.5 | 7/24/2007 | 10                | 10.5                 | soil   | -      |
| AOC 8    | SS-123(AA)-15.5 | 7/24/2007 | 15                | 15.5                 | soil   | -      |
| AOC 8    | SS-123(AA)-18   | 7/24/2007 | 17.5              | 18                   | soil   | -      |
| AOC 8    | SS-123(F1)-5.5  | 7/23/2007 | 5                 | 5.5                  | soil   | -      |
| AOC 8    | SS-123(F1)-15.5 | 7/23/2007 | 15                | 15.5                 | soil   | -      |
| AOC 8    | SS-123(F2)-6    | 7/23/2007 | 5.5               | 6                    | soil   | -      |
| AOC 8    | SS-123(F2)-11.5 | 7/23/2007 | 11                | 11.5                 | soil   | -      |
| AOC 8    | SS-123(F2)-16.5 | 7/23/2007 | 16                | 16.5                 | soil   | -      |
| AOC 8    | SS-123(F2)-21   | 7/24/2007 | 20.5              | 21                   | soil   | -      |
| AOC 8    | SS-123(F3)-5.5  | 7/24/2007 | 5                 | 5.5                  | soil   | -      |
| AOC 8    | SS-123(F3)-10.5 | 7/24/2007 | 10                | 10.5                 | soil   | -      |
| AOC 8    | SS-123(F3)-15.5 | 7/24/2007 | 15                | 15.5                 | soil   | -      |
| AOC 8    | SS-123(F3)-20.5 | 7/24/2007 | 20                | 20.5                 | soil   | -      |
| AOC 8    | SS-123(F3)-25.5 | 7/24/2007 | 25                | 25.5                 | soil   | -      |
| AOC 6    | SED-1           | 7/13/2007 | 0                 | 0.5                  | soil   | -      |
| AOC 6    | SED-2           | 7/13/2007 | 0                 | 0.5                  | soil   | -      |
| AOC 6    | SED-3           | 7/13/2007 | 0                 | 0.5                  | soil   | -      |
| AOC 6    | SED-4           | 7/13/2007 | 0                 | 0.5                  | soil   | -      |

#### Table 3 - Summary of Analytical Results of Volatile Organic Compounds Detected in Soil Samples Hanson Radum Facility, 3000 Busch Road, Pleasanton, California

#### Notes:

\* No VOCs were detected above their respective laboratory limits in any of these samples.

VOCs = volatile organic compounds

feet bgs = feet below ground surface

"-" = sample not analyzed

ND = not detected

| Sample         | Sample ID                      | Date      | Sample     | Interval     | Matrix | SVOCs * |
|----------------|--------------------------------|-----------|------------|--------------|--------|---------|
| Location       |                                | Sampled   | top        | bottom       |        |         |
|                |                                |           | (feet bgs) | (feet bgs)   |        |         |
| AOC 3          | B-1(A)-4.5                     | 7/17/2007 | 4          | 4.5          | soil   | ND      |
| AOC 3          | B-1(A)-9.5                     | 7/17/2007 | 9          | 9.5          | soil   | ND      |
| AOC 3          | B-1(A)-35                      | 7/17/2007 | 34.5       | 35           | soil   | -       |
| AOC 3          | B-1(A)-36.5                    | 7/17/2007 | 36         | 36.5         | soil   | -       |
| AOC 2          | EB-31(A)-5.5                   | 7/17/2007 | 5          | 5.5          | soil   | -       |
| AOC 2          | EB-31(A)-10.5                  | 7/17/2007 | 10         | 10.5         | soil   | -       |
| AOC 2          | EB-31(A)-15.5                  | 7/17/2007 | 15         | 15.5         | soil   | -       |
| AOC 2          | EB-31(A)-20.5                  | 7/17/2007 | 20         | 20.5         | soil   | -       |
| AOC 2          | EB-31(B)-5.5                   | 7/16/2007 | 5          | 5.5          | soil   | -       |
| AOC 2          | EB-31(B)-10.5                  | 7/16/2007 | 10         | 10.5         | soil   | -       |
| AOC 2          | EB-31(B)-15.5                  | 7/16/2007 | 15         | 15.5         | soil   | -       |
| AOC 2          | EB-31(B)-20.5                  | 7/16/2007 | 20         | 20.5         | soil   | -       |
| AOC 2          | EB-31(C)-5                     | 7/16/2007 | 4.5        | 5            | soil   | -       |
| AOC 2          | EB-31(C)-10.5                  | 7/16/2007 | 10         | 10.5         | soil   | -       |
| AOC 2          | EB-31(C)-15.5                  | 7/16/2007 | 15         | 15.5         | soil   | -       |
| AOC 2          | EB-31(C)-20.5                  | 7/16/2007 | 20         | 20.5         | soil   | -       |
| AOC 3          | EB-35(A)-3                     | 7/17/2007 | 2.5        | 3            | soil   | -       |
| AOC 3          | EB-35(A)-4                     | 7/17/2007 | 3.5        | 4            | soil   | -       |
| AOC 3          | EB-35(A)-9.5                   | 7/17/2007 | 9          | 9.5          | soil   | -       |
| AOC 3          | EB-35(B)-2.5                   | 7/17/2007 | 2          | 2.5          | soil   | -       |
| AOC 3          | EB-35(B)-5                     | 7/17/2007 | 4.5        | 5            | soil   | -       |
| AOC 3          | EB-35(B)-9                     | 7/17/2007 | 8.5        | 9            | soil   | _       |
| AOC 3          | EB-35(C)-2.5                   | 7/18/2007 | 2          | 2.5          | soil   | _       |
| AOC 3          | EB-35(C)-5.5                   | 7/18/2007 | 5          | 5.5          | soil   | _       |
| AOC 3          | EB-35(C)-10.5                  | 7/18/2007 | 10         | 10.5         | soil   | _       |
| AOC 3          | EB-35(D)-2.5                   | 7/18/2007 | 2          | 2.5          | soil   | -       |
| AOC 3          | EB-35(D)-2.5<br>EB-35(D)-5.5   | 7/18/2007 | 5          | 5.5          | soil   | -       |
| AOC 3          | EB-35(D)-9.5                   | 7/18/2007 | 9          | 9.5          | soil   | -       |
| AOC 7          | SS-31(A)-5.5                   | 7/18/2007 | 5          | 5.5          | soil   | ND      |
| AOC 7          | SS-31(A)-10.5                  | 7/18/2007 | 10         | 10.5         | soil   | ND      |
| AOC 7          | SS-31(A)-15.5                  | 7/18/2007 | 10         | 15.5         | soil   |         |
| AOC 7<br>AOC 7 | SS-31(A)-15.5<br>SS-31(A)-20.5 | 7/18/2007 | 20         | 20.5         | soil   | -       |
| AOC 7<br>AOC 7 | SS-31(A)-25.5                  | 7/18/2007 | 20<br>25   | 20.3<br>25.5 | soil   | -       |
| AOC 7<br>AOC 7 | SS-31(A)-25.5<br>SS-31(A)-30.5 | 7/18/2007 | 23<br>30   | 23.5<br>30.5 | soil   | -       |
| AOC 7<br>AOC 7 |                                | 7/19/2007 | 30<br>40   | 30.3<br>40.5 | soil   | -       |
|                | SS-31(A)-40.5                  |           | 40<br>50   |              |        | -       |
| AOC 7          | SS-31(A)-50.5                  | 7/19/2007 |            | 50.5         | soil   | -       |
| AOC 7          | SS-31(A)-52.5                  | 7/19/2007 | 52<br>60   | 52.5         | soil   | -       |
| AOC 7          | SS-31(A)-60.5                  | 7/19/2007 | 60<br>65   | 60.5         | soil   | -       |
| AOC 7          | SS-31(A)-65.5                  | 7/19/2007 | 65         | 65.5         | soil   | -       |
| AOC 7          | SS-31(B)-5.5                   | 7/19/2007 | 5          | 5.5          | soil   | ND      |
| AOC 7          | SS-31(B)-10.5                  | 7/19/2007 | 10         | 10.5         | soil   | ND      |
| AOC 7          | SS-31(B)-15.5                  | 7/19/2007 | 15         | 15.5         | soil   | -       |
| AOC 7          | SS-31(B)-20.5                  | 7/19/2007 | 20         | 20.5         | soil   | -       |
| AOC 7          | SS-31(B)-25.5                  | 7/19/2007 | 25         | 25.5         | soil   | -       |
| AOC 7          | SS-31(B)-30.5                  | 7/19/2007 | 30         | 30.5         | soil   | -       |
| AOC 7          | SS-31(B)-40                    | 7/19/2007 | 39.5       | 40           | soil   | -       |
| AOC 7          | SS-31(B)-50                    | 7/19/2007 | 49.5       | 50           | soil   | -       |

#### Table 4 - Summary of Analytical Results of Semivolatile Organic Compounds Detected in Soil Samples Hanson Radum Facility, 3000 Busch Road, Pleasanton, California

| Sample<br>Location | Sample ID       | Date<br>Sampled | Sample<br>top<br>(feet bgs) | Interval<br>bottom<br>(feet bgs) | Matrix | SVOCs * |
|--------------------|-----------------|-----------------|-----------------------------|----------------------------------|--------|---------|
| AOC 7              | SS-31(B)-60.5   | 7/19/2007       | 60                          | 60.5                             | soil   |         |
| AOC 7              | SS-31(C)-5.5    | 7/20/2007       | 5                           | 5.5                              | soil   | ND      |
| AOC 7              | SS-31(C)-10.5   | 7/20/2007       | 10                          | 10.5                             | soil   | ND      |
| AOC 7              | SS-31(C)-15.5   | 7/20/2007       | 15                          | 15.5                             | soil   | -       |
| AOC 7              | SS-31(C)-19.5   | 7/20/2007       | 19                          | 19.5                             | soil   | -       |
| AOC 7              | SS-31(C)-25.5   | 7/20/2007       | 25                          | 25.5                             | soil   | -       |
| AOC 7              | SS-31(C)-30     | 7/20/2007       | 29.5                        | 30                               | soil   | -       |
| AOC 7              | SS-31(C)-40     | 7/20/2007       | 39.5                        | 40                               | soil   | -       |
| AOC 7              | SS-31(C)-51     | 7/20/2007       | 50.5                        | 51                               | soil   | -       |
| AOC 7              | SS-31(C)-60.5   | 7/20/2007       | 60                          | 60.5                             | soil   | -       |
| AOC 7              | SS-31(C)-67.5   | 7/20/2007       | 67                          | 67.5                             | soil   | -       |
| AOC 7              | SS-31(D)-5.5    | 7/20/2007       | 5                           | 5.5                              | soil   | ND      |
| AOC 7              | SS-31(D)-10.5   | 7/20/2007       | 10                          | 10.5                             | soil   | ND      |
| AOC 7              | SS-31(D)-15     | 7/20/2007       | 14.5                        | 15                               | soil   | -       |
| AOC 7              | SS-31(D)-19.5   | 7/20/2007       | 19                          | 19.5                             | soil   | -       |
| AOC 7              | SS-31(D)-25     | 7/23/2007       | 24.5                        | 25                               | soil   | -       |
| AOC 7              | SS-31(D)-30     | 7/23/2007       | 29.5                        | 30                               | soil   | -       |
| AOC 7              | SS-31(D)-40     | 7/23/2007       | 39.5                        | 40                               | soil   | -       |
| AOC 7              | SS-31(D)-50.5   | 7/23/2007       | 50                          | 50.5                             | soil   | -       |
| AOC 7              | SS-31(D)-60.5   | 7/23/2007       | 60                          | 60.5                             | soil   | -       |
| AOC 8              | SS-123(AA)-5.5  | 7/24/2007       | 5                           | 5.5                              | soil   | -       |
| AOC 8              | SS-123(AA)-7.5  | 7/24/2007       | 7                           | 7.5                              | soil   | -       |
| AOC 8              | SS-123(AA)-10.5 | 7/24/2007       | 10                          | 10.5                             | soil   | -       |
| AOC 8              | SS-123(AA)-15.5 | 7/24/2007       | 15                          | 15.5                             | soil   | -       |
| AOC 8              | SS-123(AA)-18   | 7/24/2007       | 17.5                        | 18                               | soil   | -       |
| AOC 8              | SS-123(F1)-5.5  | 7/23/2007       | 5                           | 5.5                              | soil   | -       |
| AOC 8              | SS-123(F1)-15.5 | 7/23/2007       | 15                          | 15.5                             | soil   | -       |
| AOC 8              | SS-123(F2)-6    | 7/23/2007       | 5.5                         | 6                                | soil   | -       |
| AOC 8              | SS-123(F2)-11.5 | 7/23/2007       | 11                          | 11.5                             | soil   | -       |
| AOC 8              | SS-123(F2)-16.5 | 7/23/2007       | 16                          | 16.5                             | soil   | -       |
| AOC 8              | SS-123(F2)-21   | 7/24/2007       | 20.5                        | 21                               | soil   | -       |
| AOC 8              | SS-123(F3)-5.5  | 7/24/2007       | 5                           | 5.5                              | soil   | -       |
| AOC 8              | SS-123(F3)-10.5 | 7/24/2007       | 10                          | 10.5                             | soil   | -       |
| AOC 8              | SS-123(F3)-15.5 | 7/24/2007       | 15                          | 15.5                             | soil   | -       |
| AOC 8              | SS-123(F3)-20.5 | 7/24/2007       | 20<br>25                    | 20.5                             | soil   | -       |
| AOC 8              | SS-123(F3)-25.5 | 7/24/2007       | 25                          | 25.5                             | soil   | -       |
| AOC 6              | SED-1           | 7/13/2007       | 0                           | 0.5                              | soil   | -       |
| AOC 6              | SED-2           | 7/13/2007       | 0                           | 0.5                              | soil   | -       |
| AOC 6              | SED-3           | 7/13/2007       | 0                           | 0.5                              | soil   | -       |
| AOC 6              | SED-4           | 7/13/2007       | 0                           | 0.5                              | soil   | -       |

#### Table 4 - Summary of Analytical Results of Semivolatile Organic Compounds Detected in Soil Samples Hanson Radum Facility, 3000 Busch Road, Pleasanton, California

#### Notes:

\* No SVOCs were detected above their respective laboratory limits in any of these samples.

SVOCs = semivolatile organic compounds

feet bgs = feet below ground surface

"-" = sample not analyzed

ND = not detected

| Sample         | Sample ID                      | Date      | Sample            | Interval             | Matrix | Organochlorine |
|----------------|--------------------------------|-----------|-------------------|----------------------|--------|----------------|
| Location       |                                | Sampled   | top<br>(feet bgs) | bottom<br>(feet bgs) |        | Pesticides *   |
| AOC 3          | B-1(A)-4.5                     | 7/17/2007 | 4                 | 4.5                  | soil   | -              |
| AOC 3          | B-1(A)-9.5                     | 7/17/2007 | 9                 | 9.5                  | soil   | -              |
| AOC 3          | B-1(A)-35                      | 7/17/2007 | 34.5              | 35                   | soil   | -              |
| AOC 3          | B-1(A)-36.5                    | 7/17/2007 | 36                | 36.5                 | soil   | -              |
| AOC 2          | EB-31(A)-5.5                   | 7/17/2007 | 5                 | 5.5                  | soil   | -              |
| AOC 2          | EB-31(A)-10.5                  | 7/17/2007 | 10                | 10.5                 | soil   | -              |
| AOC 2          | EB-31(A)-15.5                  | 7/17/2007 | 15                | 15.5                 | soil   | -              |
| AOC 2          | EB-31(A)-20.5                  | 7/17/2007 | 20                | 20.5                 | soil   | -              |
| AOC 2          | EB-31(B)-5.5                   | 7/16/2007 | 5                 | 5.5                  | soil   | -              |
| AOC 2          | EB-31(B)-10.5                  | 7/16/2007 | 10                | 10.5                 | soil   | _              |
| AOC 2          | EB-31(B)-15.5                  | 7/16/2007 | 15                | 15.5                 | soil   | _              |
| AOC 2          | EB-31(B)-20.5                  | 7/16/2007 | 20                | 20.5                 | soil   | _              |
| AOC 2          | EB-31(C)-5                     | 7/16/2007 | 4.5               | 5                    | soil   | _              |
| AOC 2          | EB-31(C)-10.5                  | 7/16/2007 | 10                | 10.5                 | soil   | _              |
| AOC 2<br>AOC 2 | EB-31(C)-10.5<br>EB-31(C)-15.5 | 7/16/2007 | 10                | 15.5                 | soil   | -              |
| AOC 2<br>AOC 2 | EB-31(C)-15.5<br>EB-31(C)-20.5 | 7/16/2007 | 13<br>20          | 20.5                 | soil   | -              |
| AOC 3          | EB-35(A)-3                     | 7/17/2007 | 2.5               | 3                    | soil   |                |
| AOC 3          | EB-35(A)-4                     | 7/17/2007 | 2.3<br>3.5        | 3<br>4               | soil   | -              |
|                | • •                            | 7/17/2007 |                   |                      |        | -              |
| AOC 3          | EB-35(A)-9.5                   |           | 9                 | 9.5                  | soil   | -              |
| AOC 3          | EB-35(B)-2.5                   | 7/17/2007 | 2                 | 2.5                  | soil   | -              |
| AOC 3          | EB-35(B)-5                     | 7/17/2007 | 4.5               | 5                    | soil   | -              |
| AOC 3          | EB-35(B)-9                     | 7/17/2007 | 8.5               | 9                    | soil   | -              |
| AOC 3          | EB-35(C)-2.5                   | 7/18/2007 | 2                 | 2.5                  | soil   | -              |
| AOC 3          | EB-35(C)-5.5                   | 7/18/2007 | 5                 | 5.5                  | soil   | -              |
| AOC 3          | EB-35(C)-10.5                  | 7/18/2007 | 10                | 10.5                 | soil   | -              |
| AOC 3          | EB-35(D)-2.5                   | 7/18/2007 | 2                 | 2.5                  | soil   | -              |
| AOC 3          | EB-35(D)-5.5                   | 7/18/2007 | 5                 | 5.5                  | soil   | -              |
| AOC 3          | EB-35(D)-9.5                   | 7/18/2007 | 9                 | 9.5                  | soil   | -              |
| AOC 7          | SS-31(A)-5.5                   | 7/18/2007 | 5                 | 5.5                  | soil   | ND             |
| AOC 7          | SS-31(A)-10.5                  | 7/18/2007 | 10                | 10.5                 | soil   | ND             |
| AOC 7          | SS-31(A)-15.5                  | 7/18/2007 | 15                | 15.5                 | soil   | -              |
| AOC 7          | SS-31(A)-20.5                  | 7/18/2007 | 20                | 20.5                 | soil   | -              |
| AOC 7          | SS-31(A)-25.5                  | 7/18/2007 | 25                | 25.5                 | soil   | -              |
| AOC 7          | SS-31(A)-30.5                  | 7/18/2007 | 30                | 30.5                 | soil   | -              |
| AOC 7          | SS-31(A)-40.5                  | 7/19/2007 | 40                | 40.5                 | soil   | -              |
| AOC 7          | SS-31(A)-50.5                  | 7/19/2007 | 50                | 50.5                 | soil   | -              |
| AOC 7          | SS-31(A)-52.5                  | 7/19/2007 | 52                | 52.5                 | soil   | -              |
| AOC 7          | SS-31(A)-60.5                  | 7/19/2007 | 60                | 60.5                 | soil   | -              |
| AOC 7          | SS-31(A)-65.5                  | 7/19/2007 | 65                | 65.5                 | soil   | -              |
| AOC 7          | SS-31(B)-5.5                   | 7/19/2007 | 5                 | 5.5                  | soil   | ND             |
| AOC 7          | SS-31(B)-10.5                  | 7/19/2007 | 10                | 10.5                 | soil   | ND             |
| AOC 7          | SS-31(B)-15.5                  | 7/19/2007 | 15                | 15.5                 | soil   | -              |
| AOC 7          | SS-31(B)-20.5                  | 7/19/2007 | 20                | 20.5                 | soil   | -              |
| AOC 7          | SS-31(B)-25.5                  | 7/19/2007 | 25                | 25.5                 | soil   | -              |
| AOC 7          | SS-31(B)-30.5                  | 7/19/2007 | 30                | 30.5                 | soil   | -              |
| AOC 7          | SS-31(B)-40                    | 7/19/2007 | 39.5              | 40                   | soil   | -              |
| AOC 7          | SS-31(B)-50                    | 7/19/2007 | 49.5              | 50                   | soil   |                |

#### Table 5 - Summary of Analytical Results of Organochlorine Pesticides Detected in Soil Samples Hanson Radum Facility, 3000 Busch Road, Pleasanton, California

| Sample   | Sample ID       | Date      | Sample            | Interval             | Matrix | Organochlorine |
|----------|-----------------|-----------|-------------------|----------------------|--------|----------------|
| Location |                 | Sampled   | top<br>(feet bgs) | bottom<br>(feet bgs) |        | Pesticides *   |
| AOC 7    | SS-31(B)-60.5   | 7/19/2007 | 60                | 60.5                 | soil   | _              |
| AOC 7    | SS-31(C)-5.5    | 7/20/2007 | 5                 | 5.5                  | soil   | ND             |
| AOC 7    | SS-31(C)-10.5   | 7/20/2007 | 10                | 10.5                 | soil   | ND             |
| AOC 7    | SS-31(C)-15.5   | 7/20/2007 | 15                | 15.5                 | soil   | -              |
| AOC 7    | SS-31(C)-19.5   | 7/20/2007 | 19                | 19.5                 | soil   | -              |
| AOC 7    | SS-31(C)-25.5   | 7/20/2007 | 25                | 25.5                 | soil   | -              |
| AOC 7    | SS-31(C)-30     | 7/20/2007 | 29.5              | 30                   | soil   | -              |
| AOC 7    | SS-31(C)-40     | 7/20/2007 | 39.5              | 40                   | soil   | -              |
| AOC 7    | SS-31(C)-51     | 7/20/2007 | 50.5              | 51                   | soil   | -              |
| AOC 7    | SS-31(C)-60.5   | 7/20/2007 | 60                | 60.5                 | soil   | -              |
| AOC 7    | SS-31(C)-67.5   | 7/20/2007 | 67                | 67.5                 | soil   | -              |
| AOC 7    | SS-31(D)-5.5    | 7/20/2007 | 5                 | 5.5                  | soil   | ND             |
| AOC 7    | SS-31(D)-10.5   | 7/20/2007 | 10                | 10.5                 | soil   | ND             |
| AOC 7    | SS-31(D)-15     | 7/20/2007 | 14.5              | 15                   | soil   | -              |
| AOC 7    | SS-31(D)-19.5   | 7/20/2007 | 19                | 19.5                 | soil   | -              |
| AOC 7    | SS-31(D)-25     | 7/23/2007 | 24.5              | 25                   | soil   | -              |
| AOC 7    | SS-31(D)-30     | 7/23/2007 | 29.5              | 30                   | soil   | -              |
| AOC 7    | SS-31(D)-40     | 7/23/2007 | 39.5              | 40                   | soil   | -              |
| AOC 7    | SS-31(D)-50.5   | 7/23/2007 | 50                | 50.5                 | soil   | -              |
| AOC 7    | SS-31(D)-60.5   | 7/23/2007 | 60                | 60.5                 | soil   | -              |
| AOC 8    | SS-123(AA)-5.5  | 7/24/2007 | 5                 | 5.5                  | soil   | -              |
| AOC 8    | SS-123(AA)-7.5  | 7/24/2007 | 7                 | 7.5                  | soil   | -              |
| AOC 8    | SS-123(AA)-10.5 | 7/24/2007 | 10                | 10.5                 | soil   | -              |
| AOC 8    | SS-123(AA)-15.5 | 7/24/2007 | 15                | 15.5                 | soil   | -              |
| AOC 8    | SS-123(AA)-18   | 7/24/2007 | 17.5              | 18                   | soil   | -              |
| AOC 8    | SS-123(F1)-5.5  | 7/23/2007 | 5                 | 5.5                  | soil   | -              |
| AOC 8    | SS-123(F1)-15.5 | 7/23/2007 | 15                | 15.5                 | soil   | -              |
| AOC 8    | SS-123(F2)-6    | 7/23/2007 | 5.5               | 6                    | soil   | -              |
| AOC 8    | SS-123(F2)-11.5 | 7/23/2007 | 11                | 11.5                 | soil   | -              |
| AOC 8    | SS-123(F2)-16.5 | 7/23/2007 | 16                | 16.5                 | soil   | -              |
| AOC 8    | SS-123(F2)-21   | 7/24/2007 | 20.5              | 21                   | soil   | -              |
| AOC 8    | SS-123(F3)-5.5  | 7/24/2007 | 5                 | 5.5                  | soil   | -              |
| AOC 8    | SS-123(F3)-10.5 | 7/24/2007 | 10                | 10.5                 | soil   | -              |
| AOC 8    | SS-123(F3)-15.5 | 7/24/2007 | 15                | 15.5                 | soil   | -              |
| AOC 8    | SS-123(F3)-20.5 | 7/24/2007 | 20                | 20.5                 | soil   | -              |
| AOC 8    | SS-123(F3)-25.5 | 7/24/2007 | 25                | 25.5                 | soil   | -              |
| AOC 6    | SED-1           | 7/13/2007 | 0                 | 0.5                  | soil   | -              |
| AOC 6    | SED-2           | 7/13/2007 | 0                 | 0.5                  | soil   | -              |
| AOC 6    | SED-3           | 7/13/2007 | 0                 | 0.5                  | soil   | -              |
| AOC 6    | SED-4           | 7/13/2007 | 0                 | 0.5                  | soil   | -              |

#### Table 5 - Summary of Analytical Results of Organochlorine Pesticides Detected in Soil Samples Hanson Radum Facility, 3000 Busch Road, Pleasanton, California

#### Notes:

\* No organochlorine pesticides were detected above their respective laboratory limits in any of these samples.

feet bgs = feet below ground surface

"-" = sample not analyzed

ND = not detected

| Sample         | Sample ID                      | Date                                   | Sample     | Interval     | Matrix | PCBs *   |
|----------------|--------------------------------|----------------------------------------|------------|--------------|--------|----------|
| Location       |                                | Sampled                                | top        | bottom       |        |          |
|                |                                |                                        | (feet bgs) | (feet bgs)   |        |          |
| AOC 3          | B-1(A)-4.5                     | 7/17/2007                              | 4          | 4.5          | soil   | ND       |
| AOC 3          | B-1(A)-9.5                     | 7/17/2007                              | 9          | 9.5          | soil   | ND       |
| AOC 3          | B-1(A)-35                      | 7/17/2007                              | 34.5       | 35           | soil   | -        |
| AOC 3          | B-1(A)-36.5                    | 7/17/2007                              | 36         | 36.5         | soil   | -        |
| AOC 2          | EB-31(A)-5.5                   | 7/17/2007                              | 5          | 5.5          | soil   | -        |
| AOC 2          | EB-31(A)-10.5                  | 7/17/2007                              | 10         | 10.5         | soil   | -        |
| AOC 2          | EB-31(A)-15.5                  | 7/17/2007                              | 15         | 15.5         | soil   | -        |
| AOC 2          | EB-31(A)-20.5                  | 7/17/2007                              | 20         | 20.5         | soil   | -        |
| AOC 2          | EB-31(B)-5.5                   | 7/16/2007                              | 5          | 5.5          | soil   | -        |
| AOC 2          | EB-31(B)-10.5                  | 7/16/2007                              | 10         | 10.5         | soil   | -        |
| AOC 2          | EB-31(B)-15.5                  | 7/16/2007                              | 15         | 15.5         | soil   | -        |
| AOC 2          | EB-31(B)-20.5                  | 7/16/2007                              | 20         | 20.5         | soil   | -        |
| AOC 2          | EB-31(C)-5                     | 7/16/2007                              | 4.5        | 5            | soil   | -        |
| AOC 2          | EB-31(C)-10.5                  | 7/16/2007                              | 10         | 10.5         | soil   | -        |
| AOC 2          | EB-31(C)-15.5                  | 7/16/2007                              | 15         | 15.5         | soil   | -        |
| AOC 2          | EB-31(C)-20.5                  | 7/16/2007                              | 20         | 20.5         | soil   | -        |
| AOC 3          | EB-35(A)-3                     | 7/17/2007                              | 2.5        | 3            | soil   | -        |
| AOC 3          | EB-35(A)-4                     | 7/17/2007                              | 3.5        | 4            | soil   | -        |
| AOC 3          | EB-35(A)-9.5                   | 7/17/2007                              | 9          | 9.5          | soil   | -        |
| AOC 3          | EB-35(B)-2.5                   | 7/17/2007                              | 2          | 2.5          | soil   | -        |
| AOC 3          | EB-35(B)-5                     | 7/17/2007                              | 4.5        | 5            | soil   | -        |
| AOC 3          | EB-35(B)-9                     | 7/17/2007                              | 8.5        | 9            | soil   | -        |
| AOC 3          | EB-35(C)-2.5                   | 7/18/2007                              | 2          | 2.5          | soil   | -        |
| AOC 3          | EB-35(C)-5.5                   | 7/18/2007                              | 5          | 5.5          | soil   | -        |
| AOC 3          | EB-35(C)-10.5                  | 7/18/2007                              | 10         | 10.5         | soil   | _        |
| AOC 3          | EB-35(D)-2.5                   | 7/18/2007                              | 2          | 2.5          | soil   | _        |
| AOC 3          | EB-35(D)-5.5                   | 7/18/2007                              | 5          | 5.5          | soil   | _        |
| AOC 3          | EB-35(D)-9.5                   | 7/18/2007                              | 9          | 9.5          | soil   | -        |
| AOC 7          | SS-31(A)-5.5                   | 7/18/2007                              | 5          | 5.5          | soil   | ND       |
| AOC 7          | SS-31(A)-10.5                  | 7/18/2007                              | 10         | 10.5         | soil   | ND       |
| AOC 7          | SS-31(A)-15.5                  | 7/18/2007                              | 15         | 15.5         | soil   | -        |
| AOC 7          | SS-31(A)-20.5                  | 7/18/2007                              | 20         | 20.5         | soil   | -        |
| AOC 7          | SS-31(A)-25.5                  | 7/18/2007                              | 25         | 25.5         | soil   | -        |
| AOC 7          | SS-31(A)-30.5                  | 7/18/2007                              | 30         | 30.5         | soil   | -        |
| AOC 7          | SS-31(A)-40.5                  | 7/19/2007                              | 40         | 40.5         | soil   | -        |
| AOC 7          | SS-31(A)-50.5                  | 7/19/2007                              | 50         | 50.5         | soil   | -        |
| AOC 7          | SS-31(A)-52.5                  | 7/19/2007                              | 52         | 52.5         | soil   | -        |
| AOC 7          | SS-31(A)-60.5                  | 7/19/2007                              | 60         | 60.5         | soil   | _        |
| AOC 7          | SS-31(A)-65.5                  | 7/19/2007                              | 65         | 65.5         | soil   | -        |
| AOC 7          | SS-31(B)-5.5                   | 7/19/2007                              | 5          | 5.5          | soil   | ND       |
| AOC 7<br>AOC 7 | SS-31(B)-10.5                  | 7/19/2007                              | 10         | 10.5         | soil   | ND<br>ND |
| AOC 7<br>AOC 7 | SS-31(B)-10.5<br>SS-31(B)-15.5 | 7/19/2007                              | 10         | 15.5         | soil   | -        |
| AOC 7<br>AOC 7 | SS-31(B)-13.5<br>SS-31(B)-20.5 | 7/19/2007                              | 20         | 20.5         | soil   | -        |
| AOC 7<br>AOC 7 | SS-31(B)-20.5<br>SS-31(B)-25.5 | 7/19/2007                              | 20<br>25   | 20.3<br>25.5 | soil   | -        |
| AOC 7<br>AOC 7 | SS-31(B)-25.5<br>SS-31(B)-30.5 | 7/19/2007                              | 23<br>30   | 23.5<br>30.5 | soil   | -        |
| AUC /          | ( )                            | 7/19/2007                              | 30<br>39.5 | 30.5<br>40   | soil   | -        |
| AOC 7          | SS-31(B)-40                    | ·///////////////////////////////////// |            |              |        |          |

#### Table 6 - Summary of Analytical Results of Polychlorinated Biphenyls Detected in Soil Samples Hanson Radum Facility, 3000 Busch Road, Pleasanton, California

| Sample   | Sample ID       | Date      | Sample            | Interval             | Matrix | PCBs * |
|----------|-----------------|-----------|-------------------|----------------------|--------|--------|
| Location |                 | Sampled   | top<br>(feet bgs) | bottom<br>(feet bgs) |        |        |
| AOC 7    | SS-31(B)-60.5   | 7/19/2007 | 60                | 60.5                 | soil   | -      |
| AOC 7    | SS-31(C)-5.5    | 7/20/2007 | 5                 | 5.5                  | soil   | ND     |
| AOC 7    | SS-31(C)-10.5   | 7/20/2007 | 10                | 10.5                 | soil   | ND     |
| AOC 7    | SS-31(C)-15.5   | 7/20/2007 | 15                | 15.5                 | soil   | -      |
| AOC 7    | SS-31(C)-19.5   | 7/20/2007 | 19                | 19.5                 | soil   | -      |
| AOC 7    | SS-31(C)-25.5   | 7/20/2007 | 25                | 25.5                 | soil   | -      |
| AOC 7    | SS-31(C)-30     | 7/20/2007 | 29.5              | 30                   | soil   | -      |
| AOC 7    | SS-31(C)-40     | 7/20/2007 | 39.5              | 40                   | soil   | -      |
| AOC 7    | SS-31(C)-51     | 7/20/2007 | 50.5              | 51                   | soil   | -      |
| AOC 7    | SS-31(C)-60.5   | 7/20/2007 | 60                | 60.5                 | soil   | -      |
| AOC 7    | SS-31(C)-67.5   | 7/20/2007 | 67                | 67.5                 | soil   | -      |
| AOC 7    | SS-31(D)-5.5    | 7/20/2007 | 5                 | 5.5                  | soil   | ND     |
| AOC 7    | SS-31(D)-10.5   | 7/20/2007 | 10                | 10.5                 | soil   | ND     |
| AOC 7    | SS-31(D)-15     | 7/20/2007 | 14.5              | 15                   | soil   | -      |
| AOC 7    | SS-31(D)-19.5   | 7/20/2007 | 19                | 19.5                 | soil   | -      |
| AOC 7    | SS-31(D)-25     | 7/23/2007 | 24.5              | 25                   | soil   | -      |
| AOC 7    | SS-31(D)-30     | 7/23/2007 | 29.5              | 30                   | soil   | -      |
| AOC 7    | SS-31(D)-40     | 7/23/2007 | 39.5              | 40                   | soil   | -      |
| AOC 7    | SS-31(D)-50.5   | 7/23/2007 | 50                | 50.5                 | soil   | -      |
| AOC 7    | SS-31(D)-60.5   | 7/23/2007 | 60                | 60.5                 | soil   | -      |
| AOC 8    | SS-123(AA)-5.5  | 7/24/2007 | 5                 | 5.5                  | soil   | -      |
| AOC 8    | SS-123(AA)-7.5  | 7/24/2007 | 7                 | 7.5                  | soil   | -      |
| AOC 8    | SS-123(AA)-10.5 | 7/24/2007 | 10                | 10.5                 | soil   | -      |
| AOC 8    | SS-123(AA)-15.5 | 7/24/2007 | 15                | 15.5                 | soil   | -      |
| AOC 8    | SS-123(AA)-18   | 7/24/2007 | 17.5              | 18                   | soil   | -      |
| AOC 8    | SS-123(F1)-5.5  | 7/23/2007 | 5                 | 5.5                  | soil   | -      |
| AOC 8    | SS-123(F1)-15.5 | 7/23/2007 | 15                | 15.5                 | soil   | -      |
| AOC 8    | SS-123(F2)-6    | 7/23/2007 | 5.5               | 6                    | soil   | -      |
| AOC 8    | SS-123(F2)-11.5 | 7/23/2007 | 11                | 11.5                 | soil   | -      |
| AOC 8    | SS-123(F2)-16.5 | 7/23/2007 | 16                | 16.5                 | soil   | -      |
| AOC 8    | SS-123(F2)-21   | 7/24/2007 | 20.5              | 21                   | soil   | -      |
| AOC 8    | SS-123(F3)-5.5  | 7/24/2007 | 5                 | 5.5                  | soil   | -      |
| AOC 8    | SS-123(F3)-10.5 | 7/24/2007 | 10                | 10.5                 | soil   | -      |
| AOC 8    | SS-123(F3)-15.5 | 7/24/2007 | 15                | 15.5                 | soil   | -      |
| AOC 8    | SS-123(F3)-20.5 | 7/24/2007 | 20<br>25          | 20.5                 | soil   | -      |
| AOC 8    | SS-123(F3)-25.5 | 7/24/2007 | 25                | 25.5                 | soil   | -      |
| AOC 6    | SED-1           | 7/13/2007 | 0                 | 0.5                  | soil   | -      |
| AOC 6    | SED-2           | 7/13/2007 | 0                 | 0.5                  | soil   | -      |
| AOC 6    | SED-3           | 7/13/2007 | 0                 | 0.5                  | soil   | -      |
| AOC 6    | SED-4           | 7/13/2007 | 0                 | 0.5                  | soil   | -      |

#### Table 6 - Summary of Analytical Results of Polychlorinated Biphenyls Detected in Soil Samples Hanson Radum Facility, 3000 Busch Road, Pleasanton, California

#### Notes:

\* No organochlorine pesticides were detected above their respective laboratory limits in any of these samples.

PCBs = polychlorinated biphenyls

feet bgs = feet below ground surface

"-" = sample not analyzed

ND = not detected

#### Table 7 - Summary of Analytical Results of

#### CAM 17 Metals Detected in Soil Samples

#### Hanson Radum Facility, 3000 Busch Road, Pleasanton, California

(Concentrations reported in millgrams per kilogram (mg/Kg))

| Sample Sample ID    | Date      | Sample     | Interval   | Matrix |        |     |     |     |        |     |    | Tot | al Meta | als (mg/ | /Kg) |     |       |       |       |    |    |
|---------------------|-----------|------------|------------|--------|--------|-----|-----|-----|--------|-----|----|-----|---------|----------|------|-----|-------|-------|-------|----|----|
| Location            | Sampled   | top        | bottom     |        | Ag     | As  | Ba  | Be  | Cd     | Со  | Cr | Cu  | Hg      | Мо       | Ni   | Pb  | Sb    | Se    | ΤI    | V  | Zn |
|                     |           | (feet bgs) | (feet bgs) |        |        |     |     |     |        |     |    |     |         |          |      |     |       |       |       |    |    |
| AOC 3 B-1(A)-4.5    | 7/17/2007 | 4          | 4.5        | soil   | < 0.25 | 4.2 | 160 |     | < 0.25 |     |    | 28  | 0.026   | 0.59     | 60   | 8.8 | < 0.5 | < 0.5 | < 0.5 | 23 | 51 |
| AOC 3 B-1(A)-9.5    | 7/17/2007 | 9          | 9.5        | soil   | < 0.25 | 4.6 | 160 | 0.3 | < 0.25 | 13  | 56 | 26  | 0.023   | 0.41     | 85   | 8   | < 0.5 | < 0.5 | < 0.5 | 29 | 54 |
| AOC 3 B-1(A)-35     | 7/17/2007 | 34.5       | 35         | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 3 B-1(A)-36.5   | 7/17/2007 | 36         | 36.5       | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 2 EB-31(A)-5.5  | 7/17/2007 | 5          | 5.5        | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 2 EB-31(A)-10.5 | 7/17/2007 | 10         | 10.5       | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 2 EB-31(A)-15.5 | 7/17/2007 | 15         | 15.5       | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 2 EB-31(A)-20.5 | 7/17/2007 | 20         | 20.5       | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 2 EB-31(B)-5.5  | 7/16/2007 | 5          | 5.5        | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 2 EB-31(B)-10.5 | 7/16/2007 | 10         | 10.5       | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 2 EB-31(B)-15.5 | 7/16/2007 | 15         | 15.5       | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 2 EB-31(B)-20.5 | 7/16/2007 | 20         | 20.5       | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 2 EB-31(C)-5    | 7/16/2007 | 4.5        | 5          | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 2 EB-31(C)-10.5 | 7/16/2007 | 10         | 10.5       | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 2 EB-31(C)-15.5 | 7/16/2007 | 15         | 15.5       | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 2 EB-31(C)-20.5 | 7/16/2007 | 20         | 20.5       | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 3 EB-35(A)-3    | 7/17/2007 | 2.5        | 3          | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 3 EB-35(A)-4    | 7/17/2007 | 3.5        | 4          | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 3 EB-35(A)-9.5  | 7/17/2007 | 9          | 9.5        | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 3 EB-35(B)-2.5  | 7/17/2007 | 2          | 2.5        | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 3 EB-35(B)-5    | 7/17/2007 | 4.5        | 5          | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 3 EB-35(B)-9    | 7/17/2007 | 8.5        | 9          | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 3 EB-35(C)-2.5  | 7/18/2007 | 2          | 2.5        | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 3 EB-35(C)-5.5  | 7/18/2007 | 5          | 5.5        | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 3 EB-35(C)-10.5 | 7/18/2007 | 10         | 10.5       | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 3 EB-35(D)-2.5  | 7/18/2007 | 2          | 2.5        | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 3 EB-35(D)-5.5  | 7/18/2007 | 5          | 5.5        | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 3 EB-35(D)-9.5  | 7/18/2007 | 9          | 9.5        | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 7 SS-31(A)-5.5  | 7/18/2007 | 5          | 5.5        | soil   | < 0.25 |     | 260 | 0.4 | < 0.25 | 9.8 | 27 | 35  | 0.13    | < 0.2    | 40   | 6.9 | 0.95  | < 0.5 | < 0.5 | 39 | 46 |
| AOC 7 SS-31(A)-10.5 | 7/18/2007 | 10         | 10.5       | soil   | < 0.25 | 5.5 | 170 | 0.5 | < 0.25 | 15  | 72 | 46  | 0.055   | 0.41     | 100  | 10  | 1.6   | < 0.5 | < 0.5 | 35 | 70 |
| AOC 7 SS-31(A)-15.5 | 7/18/2007 | 15         | 15.5       | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 7 SS-31(A)-20.5 | 7/18/2007 | 20         | 20.5       | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |
| AOC 7 SS-31(A)-25.5 | 7/18/2007 | 25         | 25.5       | soil   | -      | -   | -   | -   | -      | -   | -  | -   | -       | -        | -    | -   | -     | -     | -     | -  | -  |

#### Table 7 - Summary of Analytical Results of

CAM 17 Metals Detected in Soil Samples

Hanson Radum Facility, 3000 Busch Road, Pleasanton, California

(Concentrations reported in millgrams per kilogram (mg/Kg))

|               | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Matrix                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |                                                        |                                                                                                                                                                                                                                             |                                                        |          | То                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tal Meta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | als (mg/                                              | Kg)                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | As                                                     | Ba                                                     | Be                                                                                                                                                                                                                                          | Cd                                                     | Co C     | r Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Мо                                                    | Ni                                                      | Pb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ΤI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V  | Zn                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (feet bgs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (feet bgs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |                                                        |                                                                                                                                                                                                                                             |                                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(A)-30.5 | 7/18/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(A)-40.5 | 7/19/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(A)-50.5 | 7/19/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(A)-52.5 | 7/19/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(A)-60.5 | 7/19/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(A)-65.5 | 7/19/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(B)-5.5  | 7/19/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | soil                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | 180                                                    | 0.4                                                                                                                                                                                                                                         | < 0.25                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34 | 63                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(B)-10.5 | 7/19/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | < 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.6                                                    | 150                                                    | 0.4                                                                                                                                                                                                                                         | < 0.25                                                 | 12 59    | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.2                                                 | 90                                                      | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32 | 53                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(B)-15.5 | 7/19/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(B)-20.5 | 7/19/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(B)-25.5 | 7/19/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(B)-30.5 | 7/19/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(B)-40   | 7/19/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(B)-50   | 7/19/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(B)-60.5 | 7/19/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(C)-5.5  | 7/20/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | soil                                                   | < 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.3                                                    | 260                                                    | 0.4                                                                                                                                                                                                                                         | < 0.25                                                 | 8.2 22   | 2 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.2                                                 | 28                                                      | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35 | 38                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(C)-10.5 | 7/20/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | < 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.3                                                    | 270                                                    | 0.4                                                                                                                                                                                                                                         | < 0.25                                                 | 12 44    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.2                                                 | 71                                                      | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36 | 45                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(C)-15.5 | 7/20/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(C)-19.5 | 7/20/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(C)-25.5 | 7/20/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(C)-30   | 7/20/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(C)-40   | 7/20/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(C)-51   | 7/20/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(C)-60.5 | 7/20/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(C)-67.5 | 7/20/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(D)-5.5  | 7/20/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | soil                                                   | < 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                      | 270                                                    | 0.4                                                                                                                                                                                                                                         | < 0.25                                                 | 9.7 39   | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.2                                                 | 63                                                      | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 | 38                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(D)-10.5 | 7/20/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | < 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                      | 330                                                    | 0.4                                                                                                                                                                                                                                         | < 0.25                                                 | 11 38    | 3 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.2                                                 | 57                                                      | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36 | 45                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(D)-15   | 7/20/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      | <u> </u> | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SS-31(D)-19.5 | 7/20/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | 7/23/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ( )           | 7/23/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| . ,           | 7/23/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | 7/23/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| . ,           | 7/23/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | soil                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                      | -                                                      | -                                                                                                                                                                                                                                           | -                                                      |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                     | -                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -  | -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | $\begin{array}{l} & SS-31(A)-30.5 \\ & SS-31(A)-40.5 \\ & SS-31(A)-50.5 \\ & SS-31(A)-65.5 \\ & SS-31(A)-65.5 \\ & SS-31(A)-65.5 \\ & SS-31(B)-5.5 \\ & SS-31(B)-10.5 \\ & SS-31(B)-10.5 \\ & SS-31(B)-20.5 \\ & SS-31(C)-10.5 \\ & SS-31(C)-25.5 \\ & SS-31(C)-25.5 \\ & SS-31(C)-25.5 \\ & SS-31(C)-60.5 \\ & SS-31(C)-60.5 \\ & SS-31(C)-60.5 \\ & SS-31(D)-10.5 \\ & SS-31(D)-25 \\ & SS-31(D)-30 \\ & SS-31(D)-40 \\ & SS-31(D)-60.5 \\ \end{array}$ | SS-31(A)-30.5         7/18/2007           SS-31(A)-40.5         7/19/2007           SS-31(A)-52.5         7/19/2007           SS-31(A)-60.5         7/19/2007           SS-31(A)-65.5         7/19/2007           SS-31(A)-65.5         7/19/2007           SS-31(A)-65.5         7/19/2007           SS-31(B)-5.5         7/19/2007           SS-31(B)-10.5         7/19/2007           SS-31(B)-15.5         7/19/2007           SS-31(B)-20.5         7/19/2007           SS-31(B)-20.5         7/19/2007           SS-31(B)-20.5         7/19/2007           SS-31(B)-30.5         7/19/2007           SS-31(B)-40         7/19/2007           SS-31(B)-50         7/19/2007           SS-31(B)-60.5         7/20/2007           SS-31(C)-15.5         7/20/2007           SS-31(C)-15.5         7/20/2007           SS-31(C)-15.5         7/20/2007           SS-31(C)-61.5         7/20/2007           SS-31(C)-61.5         7/20/2007           SS-31(C)-65.5         7/20/2007           SS-31(C)-67.5         7/20/2007           SS-31(C)-67.5         7/20/2007           SS-31(D)-10.5         7/20/2007           SS-31(D)-15.5 | (feet bgs) $SS-31(A)-30.5 7/18/2007 30$ $SS-31(A)-40.5 7/19/2007 40$ $SS-31(A)-50.5 7/19/2007 50$ $SS-31(A)-65.5 7/19/2007 60$ $SS-31(A)-65.5 7/19/2007 65$ $SS-31(B)-65.5 7/19/2007 5$ $SS-31(B)-10.5 7/19/2007 10$ $SS-31(B)-15.5 7/19/2007 15$ $SS-31(B)-15.5 7/19/2007 20$ $SS-31(B)-25.5 7/19/2007 20$ $SS-31(B)-25.5 7/19/2007 25$ $SS-31(B)-30.5 7/19/2007 30$ $SS-31(B)-30.5 7/19/2007 30$ $SS-31(B)-40 7/19/2007 30$ $SS-31(B)-60.5 7/19/2007 49.5$ $SS-31(B)-60.5 7/19/2007 49.5$ $SS-31(B)-60.5 7/19/2007 5$ $SS-31(C)-10.5 7/20/2007 5$ $SS-31(C)-15.5 7/20/2007 15$ $SS-31(C)-15.5 7/20/2007 15$ $SS-31(C)-15.5 7/20/2007 15$ $SS-31(C)-19.5 7/20/2007 25$ $SS-31(C)-51 7/20/2007 25$ $SS-31(C)-60.5 7/20/2007 25$ $SS-31(C)-60.5 7/20/2007 5$ $SS-31(C)-60.5 7/20/2007 10$ $SS-31(C)-61.5 7/20/2007 10$ $SS-31(C)-61.5 7/20/2007 10$ $SS-31(C)-61.5 7/20/2007 10$ $SS-31(C)-61.5 7/20/2007 10$ $SS-31(C)-60.5 7/20/2007 10$ $SS-31(D)-10.5 7/20/2007 10$ $SS-31(D)-10.5 7/20/2007 10$ $SS-31(D)-10.5 7/20/2007 12$ $SS-31(D)-$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | (feet bgs) (feet bgs) $SS-31(A)-30.5 7/18/2007 30 30.5 soil$ $SS-31(A)-40.5 7/19/2007 40 40.5 soil$ $SS-31(A)-50.5 7/19/2007 50 50.5 soil$ $SS-31(A)-52.5 7/19/2007 52 52.5 soil$ $SS-31(A)-60.5 7/19/2007 65 65.5 soil$ $SS-31(B)-5.5 7/19/2007 5 5.5 soil$ $SS-31(B)-10.5 7/19/2007 10 10.5 soil$ $SS-31(B)-10.5 7/19/2007 15 15.5 soil$ $SS-31(B)-20.5 7/19/2007 20 20.5 soil$ $SS-31(B)-20.5 7/19/2007 25 25.5 soil$ $SS-31(B)-20.5 7/19/2007 30 30.5 soil$ $SS-31(B)-30.5 7/19/2007 39.5 40 soil$ $SS-31(B)-60.5 7/19/2007 49.5 50 soil$ $SS-31(B)-60.5 7/19/2007 49.5 50 soil$ $SS-31(B)-60.5 7/19/2007 5 5.5 soil$ $SS-31(C)-10.5 7/20/2007 15 15.5 soil$ $SS-31(C)-10.5 7/20/2007 15 15.5 soil$ $SS-31(C)-10.5 7/20/2007 15 15.5 soil$ $SS-31(C)-15.5 7/20/2007 15 15.5 soil$ $SS-31(C)-15.5 7/20/2007 15 15.5 soil$ $SS-31(C)-10.5 7/20/2007 19 19.5 soil$ $SS-31(C)-10.5 7/20/2007 19 19.5 soil$ $SS-31(C)-5.5 7/20/2007 5 5.5 soil$ $SS-31(C)-5.5 7/20/2007 15 15.5 soil$ $SS-31(C)-60.5 7/20/2007 15 15.5 soil$ $SS-31(C)-10.5 7/20/2007 15 15.5 soil$ $SS-31(C)-10.5 7/20/2007 19 19.5 soil$ $SS-31(C)-10.5 7/20/2007 19 19.5 soil$ $SS-31(C)-5.5 7/20/2007 5 5.5 soil$ $SS-31(C)-5.5 7/20/2007 19 19.5 soil$ $SS-31(C)-5.5 7/20/2007 5 5.5 soil$ $SS-31(C)-5.5 7/20/2007 5 5.5 soil$ $SS-31(C)-5.5 7/20/2007 15 15.5 soil$ $SS-31(C)-19.5 7/20/2007 19 19.5 soil$ $SS-31(C)-19.5 7/20/2007 19 19.5 soil$ $SS-31(C)-5.5 7/20/2007 5 5.5 soil$ $SS-31(C)-5.5 7/20/2007 10 10.5 soil$ $SS-31(C)-5.5 7/20/2007 10 10.5 soil$ $SS-31(C)-5.5 7/20/2007 10 10.5 soil$ $SS-31(C)-5.5 7/20/2007 5 5.5 soil$ $SS-31(C)-5.5 7/20/2007 10 10.5 soil$ $SS-31(D)-5.5 7/20/2007 10 10.5 soil$ $SS-31(D)-5.5 7/20/2007 10 10.5 soil$ $SS-31(D)-15 7/20/2007 19 19.5 soil$ $S$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | (feet bgs) (feet bgs)SS-31(A)-30.5 $7/18/2007$ 3030.5soilSS-31(A)-40.5 $7/19/2007$ 4040.5soilSS-31(A)-50.5 $7/19/2007$ 5050.5soilSS-31(A)-65.5 $7/19/2007$ 6060.5soilSS-31(A)-65.5 $7/19/2007$ 6565.5soilSS-31(B)-5.5 $7/19/2007$ 55.5soil< | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |          | (feet bgs) (feet bgs)           SS-31(A)-30.5         7/18/2007         30         30.5         soil         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -          - <th cols<="" td=""><td>(feet bgs) (feet bgs)SS-31(A)-30.57/18/20073030.5soil</td><td><math display="block"> \begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td><td>(recell bgs)           Solution of the set of t</td><td>(feet bgs)(feet bgs)SS-31(A)-30.57/18/20073030.5soil<td>(feet bgs)         (feet bgs)           SS-31(A)-30.5         7/18/2007         30         30.5         soil         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -</td><td>(feet bg) (feet bg)           SS-31(A)-30.5         7/18/2007         30         30.5         soil         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -</td><td></td><td>(reet bgs) (feet bgs)SS-31(A)-30.57/18/20073030.5soil</td><td>(feet hgs)         (feet hgs)           SS-31(A)-30.5         7/18/2007         30         30.5         soil         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -        &lt;</td></td></th> | <td>(feet bgs) (feet bgs)SS-31(A)-30.57/18/20073030.5soil</td> <td><math display="block"> \begin{array}{ c c c c c c c c c c c c c c c c c c c</math></td> <td>(recell bgs)           Solution of the set of t</td> <td>(feet bgs)(feet bgs)SS-31(A)-30.57/18/20073030.5soil<td>(feet bgs)         (feet bgs)           SS-31(A)-30.5         7/18/2007         30         30.5         soil         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -</td><td>(feet bg) (feet bg)           SS-31(A)-30.5         7/18/2007         30         30.5         soil         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -</td><td></td><td>(reet bgs) (feet bgs)SS-31(A)-30.57/18/20073030.5soil</td><td>(feet hgs)         (feet hgs)           SS-31(A)-30.5         7/18/2007         30         30.5         soil         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -        &lt;</td></td> | (feet bgs) (feet bgs)SS-31(A)-30.57/18/20073030.5soil | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | (recell bgs)           Solution of the set of t | (feet bgs)(feet bgs)SS-31(A)-30.57/18/20073030.5soil <td>(feet bgs)         (feet bgs)           SS-31(A)-30.5         7/18/2007         30         30.5         soil         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -</td> <td>(feet bg) (feet bg)           SS-31(A)-30.5         7/18/2007         30         30.5         soil         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -</td> <td></td> <td>(reet bgs) (feet bgs)SS-31(A)-30.57/18/20073030.5soil</td> <td>(feet hgs)         (feet hgs)           SS-31(A)-30.5         7/18/2007         30         30.5         soil         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -        &lt;</td> | (feet bgs)         (feet bgs)           SS-31(A)-30.5         7/18/2007         30         30.5         soil         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - | (feet bg) (feet bg)           SS-31(A)-30.5         7/18/2007         30         30.5         soil         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - |    | (reet bgs) (feet bgs)SS-31(A)-30.57/18/20073030.5soil | (feet hgs)         (feet hgs)           SS-31(A)-30.5         7/18/2007         30         30.5         soil         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -        < |

# Table 7 - Summary of Analytical Results of CAM 17 Metals Detected in Soil Samples

#### Hanson Radum Facility, 3000 Busch Road, Pleasanton, California

(Concentrations reported in millgrams per kilogram (mg/Kg))

| Sample Sample ID      | Date      | Sample      | Interval     | Matrix    |        |     |       |     |        |     |    | Tot   | al Meta | als (mg/ | /Kg)  |     |       |       |       |       |       |
|-----------------------|-----------|-------------|--------------|-----------|--------|-----|-------|-----|--------|-----|----|-------|---------|----------|-------|-----|-------|-------|-------|-------|-------|
| Location              | Sampled   | top         | bottom       |           | Ag     | As  | Ba    | Be  | Cd     | Со  | Cr | Cu    | Hg      | Мо       | Ni    | Pb  | Sb    | Se    | TI    | v     | Zn    |
|                       | -         | (feet bgs)  | (feet bgs)   | )         |        |     |       |     |        |     |    |       | Ū       |          |       |     |       |       |       |       |       |
| AOC 8 SS-123(AA)-5.5  | 7/24/2007 | 5           | 5.5          | soil      | -      | -   | -     | -   | -      | -   | -  | -     | -       | -        | -     | -   | -     | -     | -     | -     | -     |
| AOC 8 SS-123(AA)-7.5  | 7/24/2007 | 7           | 7.5          | soil      | -      | -   | -     | -   | -      | -   | -  | -     | -       | -        | -     | -   | -     | -     | -     | -     | -     |
| AOC 8 SS-123(AA)-10.5 | 7/24/2007 | 10          | 10.5         | soil      | -      | -   | -     | -   | -      | -   | -  | -     | -       | -        | -     | -   | -     | -     | -     | -     | -     |
| AOC 8 SS-123(AA)-15.5 | 7/24/2007 | 15          | 15.5         | soil      | -      | -   | -     | -   | -      | -   | -  | -     | -       | -        | -     | -   | -     | -     | -     | -     | -     |
| AOC 8 SS-123(AA)-18   | 7/24/2007 | 17.5        | 18           | soil      | -      | -   | -     | -   | -      | -   | -  | -     | -       | -        | -     | -   | -     | -     | -     | -     | -     |
| AOC 8 SS-123(F1)-5.5  | 7/23/2007 | 5           | 5.5          | soil      | -      | -   | -     | -   | -      | -   | -  | -     | -       | -        | -     | -   | -     | -     | -     | -     | -     |
| AOC 8 SS-123(F1)-15.5 | 7/23/2007 | 15          | 15.5         | soil      | -      | -   | -     | -   | -      | -   | -  | -     | -       | -        | -     | -   | -     | -     | -     | -     | -     |
| AOC 8 SS-123(F2)-6    | 7/23/2007 | 5.5         | 6            | soil      | -      | -   | -     | -   | -      | -   | -  | -     | -       | -        | -     | -   | -     | -     | -     | -     | -     |
| AOC 8 SS-123(F2)-11.5 | 7/23/2007 | 11          | 11.5         | soil      | -      | -   | -     | -   | -      | -   | -  | -     | -       | -        | -     | -   | -     | -     | -     | -     | -     |
| AOC 8 SS-123(F2)-16.5 | 7/23/2007 | 16          | 16.5         | soil      | -      | -   | -     | -   | -      | -   | -  | -     | -       | -        | -     | -   | -     | -     | -     | -     | -     |
| AOC 8 SS-123(F2)-21   | 7/24/2007 | 20.5        | 21           | soil      | -      | -   | -     | -   | -      | -   | -  | -     | -       | -        | -     | -   | -     | -     | -     | -     | -     |
| AOC 8 SS-123(F3)-5.5  | 7/24/2007 | 5           | 5.5          | soil      | -      | -   | -     | -   | -      | -   | -  | -     | -       | -        | -     | -   | -     | -     | -     | -     | -     |
| AOC 8 SS-123(F3)-10.5 | 7/24/2007 | 10          | 10.5         | soil      | -      | -   | -     | -   | -      | -   | -  | -     | -       | -        | -     | -   | -     | -     | -     | -     | -     |
| AOC 8 SS-123(F3)-15.5 | 7/24/2007 | 15          | 15.5         | soil      | -      | -   | -     | -   | -      | -   | -  | -     | -       | -        | -     | -   | -     | -     | -     | -     | -     |
| AOC 8 SS-123(F3)-20.5 | 7/24/2007 | 20          | 20.5         | soil      | -      | -   | -     | -   | -      | -   | -  | -     | -       | -        | -     | -   | -     | -     | -     | -     | -     |
| AOC 8 SS-123(F3)-25.5 | 7/24/2007 | 25          | 25.5         | soil      | -      | -   | -     | -   | -      | -   | -  | -     | -       | -        | -     | -   | -     | -     | -     | -     | -     |
| AOC 6 SED-1           | 7/13/2007 | 0           | 0.5          | soil      | < 0.25 | 3.6 | 120   | 0.3 | < 0.25 | 9   | 43 | 23    | 0.04    | 0.26     | 64    | 5   | < 0.5 | < 0.5 | < 0.5 | 23    | 42    |
| AOC 6 SED-2           | 7/13/2007 | 0           | 0.5          | soil      | < 0.25 | 2.9 | 96    | 0.2 | < 0.25 | 7.5 | 37 | 20    | 0.053   | 0.41     | 55    | 5.6 | < 0.5 | < 0.5 | < 0.5 | 19    | 47    |
| AOC 6 SED-3           | 7/13/2007 | 0           | 0.5          | soil      | < 0.25 | 2.9 | 120   | 0.3 | < 0.25 | 8.6 | 44 | 32    | 0.065   | 0.58     | 67    | 8.5 | < 0.5 | < 0.5 | < 0.5 | 22    | 70    |
| AOC 6 SED-4           | 7/13/2007 | 0           | 0.5          | soil      | < 0.25 | 3.4 | 140   | 0.3 | < 0.25 | 10  | 49 | 33    | 0.051   | 0.33     | 76    | 7.6 | 0.57  | < 0.5 | < 0.5 | 25    | 59    |
| ESLs                  | shallo    | w soils (le | ess than 10  | feet bgs) | 40     | 5.5 | 1,500 | 8   | 7.4    | 10  | 58 | 230   | 10      | 40       | 150   | 750 | 40    | 10    | 13    | 200   | 600   |
| ESLs                  |           |             | er than 10 f | 0 /       |        | 5.5 | 2,500 |     | 38     | 10  | 58 | 5,000 | 98      | 3,600    | 1,000 | 750 | 280   | 3,400 | 47    | 5,000 | 5,000 |

#### Table 7 - Summary of Analytical Results of CAM 17 Metals Detected in Soil Samples

### Hanson Radum Facility, 3000 Busch Road, Pleasanton, California

(Concentrations reported in millgrams per kilogram (mg/Kg))

| Sample Sample ID                                                                                                                                                                                          | Date Sam               | ple Interval Matrix      |    |    |    |    |    |       | Tota | al Met | als (mg | /Kg) |    |    |    |    |   |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------|----|----|----|----|----|-------|------|--------|---------|------|----|----|----|----|---|----|
| Location                                                                                                                                                                                                  | Sampled top<br>(feet b | bottom<br>gs) (feet bgs) | Ag | As | Ba | Be | Cd | Co Cr | Cu   | Hg     | Мо      | Ni   | Pb | Sb | Se | TI | V | Zn |
| Notes:                                                                                                                                                                                                    |                        |                          |    |    |    |    |    |       |      |        |         |      |    |    |    |    |   |    |
| Ag = silver                                                                                                                                                                                               | Cr = Chromium          | Sb = Antimony            |    |    |    |    |    |       |      |        |         |      |    |    |    |    |   |    |
| As = arsenic                                                                                                                                                                                              | Cu = Copper            | Se = Selenium            |    |    |    |    |    |       |      |        |         |      |    |    |    |    |   |    |
| Ba = barium                                                                                                                                                                                               | Hg = Mercury           | Tl = Thallium            |    |    |    |    |    |       |      |        |         |      |    |    |    |    |   |    |
| Be = beryllium                                                                                                                                                                                            | Mo = Molybdenum        | V = Vanadium             |    |    |    |    |    |       |      |        |         |      |    |    |    |    |   |    |
| Cd = cadmium                                                                                                                                                                                              | Ni = Nickel            | Zn = Zinc                |    |    |    |    |    |       |      |        |         |      |    |    |    |    |   |    |
| Co = cobalt                                                                                                                                                                                               | Pb = Lead              |                          |    |    |    |    |    |       |      |        |         |      |    |    |    |    |   |    |
| feet bgs = feet below ground s                                                                                                                                                                            | urface                 |                          |    |    |    |    |    |       |      |        |         |      |    |    |    |    |   |    |
| mg/Kg = milligrams per kilogr<br><b>bold</b> indicates that the compound                                                                                                                                  |                        | pratory reporting limi   |    |    |    |    |    |       |      |        |         |      |    |    |    |    |   |    |
| 10 boxed values excee                                                                                                                                                                                     |                        |                          |    |    |    |    |    |       |      |        |         |      |    |    |    |    |   |    |
| " $<$ " = not detected above the laboratory report given                                                                                                                                                  |                        |                          |    |    |    |    |    |       |      |        |         |      |    |    |    |    |   |    |
| "-" = sample not analyzed or H                                                                                                                                                                            |                        |                          |    |    |    |    |    |       |      |        |         |      |    |    |    |    |   |    |
| sumple not analyzed of 200 not controlson Bay Regional Water Quality Control Roard, February 2005, for Shallow or Deen Soils (as noted) beneath Industrial/Commercial Land Use Areas where Groundwater is |                        |                          |    |    |    |    |    |       |      |        |         |      |    |    |    |    |   |    |

| Sample   | Sample ID      | Date      | Approximate                | Matrix | Total Pet      | roleum Hydro    | ocarbons       |             | BTE         | Х сотро     | unds            |               |
|----------|----------------|-----------|----------------------------|--------|----------------|-----------------|----------------|-------------|-------------|-------------|-----------------|---------------|
| Location |                | Sampled   | Sample Depth<br>(feet bgs) |        | TPHd<br>(ug/L) | TPHmo<br>(ug/L) | TPHg<br>(ug/L) | B<br>(ug/L) | T<br>(ug/L) | E<br>(ug/L) | m,p-X<br>(ug/L) | o-X<br>(ug/L) |
| AOC 3    | B-1(A)-GGW     | 7/18/2007 | ~ 67.6                     | water  | 79 HY          | 1,100 H         | < 50           | < 0.5       | < 0.5       | < 0.5       | < 0.5           | < 0.5         |
| AOC 2    | EB-31(B)-GGW   | 7/16/2007 | ~ 64.8                     | water  | < 50           | < 300           | < 50           | < 0.5       | < 0.5       | < 0.5       | < 0.5           | < 0.5         |
| AOC 7    | SS-31(A)-GGW   | 7/19/2007 | ~ 65.2                     | water  | < 50           | < 300           | < 50           | < 0.5       | < 0.5       | < 0.5       | < 0.5           | < 0.5         |
| AOC 7    | SS-31(B)-GGW   | 7/20/2007 | ~ 66                       | water  | < 50           | < 300           | < 50           | < 0.5       | < 0.5       | < 0.5       | < 0.5           | < 0.5         |
| AOC 7    | SS-31(C)-GGW   | 7/20/2007 | ~ 66                       | water  | < 50           | < 300           | < 50           | < 0.5       | < 0.5       | < 0.5       | < 0.5           | < 0.5         |
| AOC 7    | SS-31(D)-GGW   | 7/23/2007 | ~ 66.8                     | water  | <50            | < 300           | < 50           | < 0.5       | < 0.5       | < 0.5       | < 0.5           | < 0.5         |
| AOC 8    | SS-123(AA)-GGW | 7/24/2007 | ~15.7                      | water  | 340 HY         | 2,400 HL        | < 50           | < 0.5       | < 0.5       | < 0.5       | < 0.5           | < 0.5         |
| AOC 8    | SS-123(F1)-GGW | 7/23/2007 | ~ 20.8                     | water  | <50            | < 300           | < 50           | < 0.5       | < 0.5       | < 0.5       | < 0.5           | < 0.5         |
| AOC 8    | SS-123(F2)-GGW | 7/24/2007 | ~ 25.8                     | water  | 990 HY         | 4,000 HL        | < 50           | < 0.5       | 2.2         | < 0.5       | < 0.5           | < 0.5         |
| AOC 8    | SS-123(F3)-GGW | 7/24/2007 | ~ 26.9                     | water  | <50            | < 300           | < 50           | < 0.5       | < 0.5       | < 0.5       | < 0.5           | < 0.5         |
| AOC 6    | PW-2           | 7/13/2007 | surface                    | water  | <50            | < 300           | < 50           | < 0.5       | < 0.5       | < 0.5       | < 0.5           | < 0.5         |
| ESLs     |                |           |                            |        | 100            | 100             | 100            | 1           | 40          | 30          | 20              | 20            |

#### (Concentrations reported in milligrams per liter (ug/L))

Notes:

#### feet bgs = feet below ground surface

ug/L = micrograms per liter

TPHd = total petroleum hydrocarbons as diesel T = toluene

TPHmo = total petroleum hydrocarbons as motor oil E = ethylbenzene

TPHg = total petroleum hydrocarbons as gasoline m,p-X = m,p-xylenes

BTEX = benzene, toluene, ethylbenzene, and total xylenes

bold indicates that the compound was detected above the laboratory reporting limit.

990 HY boxed values exceed the respective ESL.

H = heavier hydrocarbons contributed to the quantitation

Y = sample exhibits chromatographic pattern that does not resemble standard

L = lighter hydrocarbons contributed to the quantitation

" < " = not detected above the laboratory report given

ESLs = Environmental Screening Levels by San Francisco Bay Regional Water Quality Control Board, February 2005, for Shallow or Deep Soils (as noted) beneath Industrial/Commercial Land Use Areas where Groundwater is a Current or Potential Source of Drinking Water.

B = benzene

o-X = o-xylenes

| Sample   | Sample ID      | Date      | Approximate                | Matrix |                | Fu             | uel Oxygenat   | es             |               | Lead Sca      | avengers      |
|----------|----------------|-----------|----------------------------|--------|----------------|----------------|----------------|----------------|---------------|---------------|---------------|
| Location | ·              | Sampled   | Sample Depth<br>(feet bgs) |        | MTBE<br>(ug/L) | TAME<br>(ug/L) | DIPE<br>(ug/L) | ETBE<br>(ug/L) | TBA<br>(ug/L) | EDB<br>(ug/L) | EDC<br>(ug/L) |
| AOC 3    | B-1(A)-GGW     | 7/18/2007 | ~ 67.6                     | water  | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 10          | < 0.5         | < 0.5         |
| AOC 2    | EB-31(B)-GGW   | 7/16/2007 | ~ 64.8                     | water  | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 10          | < 0.5         | < 0.5         |
| AOC 7    | SS-31(A)-GGW   | 7/19/2007 | ~ 65.2                     | water  | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 10          | < 0.5         | < 0.5         |
| AOC 7    | SS-31(B)-GGW   | 7/20/2007 | ~ 66                       | water  | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 10          | < 0.5         | < 0.5         |
| AOC 7    | SS-31(C)-GGW   | 7/20/2007 | ~ 66                       | water  | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 10          | < 0.5         | < 0.5         |
| AOC 7    | SS-31(D)-GGW   | 7/23/2007 | ~ 66.8                     | water  | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 10          | < 0.5         | < 0.5         |
| AOC 8    | SS-123(AA)-GGW | 7/24/2007 | ~15.7                      | water  | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 10          | < 0.5         | < 0.5         |
| AOC 8    | SS-123(F1)-GGW | 7/23/2007 | ~ 20.8                     | water  | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 10          | < 0.5         | < 0.5         |
| AOC 8    | SS-123(F2)-GGW | 7/24/2007 | ~ 25.8                     | water  | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 10          | < 0.5         | < 0.5         |
| AOC 8    | SS-123(F3)-GGW | 7/24/2007 | ~ 26.9                     | water  | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 10          | < 0.5         | < 0.5         |
| AOC 6    | PW-2           | 7/13/2007 | surface                    | water  | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 10          | < 0.5         | < 0.5         |
| ESLs     |                |           |                            |        | 2              | -              | -              | -              | 12            | 0.05          | 0.5           |

#### (Concentrations reported in milligrams per liter (ug/L))

Notes:

feet bgs = feet below ground surface

ug/L = micrograms per liter

MTBE = methyl tert-butyl ether

TAME = tert-amyl methyl ether (methyl tert-amyl ether)

DIPE = diisopropyl ether (isopropyl ether)

ETBE = ethyl tert-butyl ether

TBA = tert-butyl alcohol

EDB = 1,2-dibromoethane (ethylene dibromide)

EDC = 1,2-dichloroethane

" < " = not detected above the laboratory report given

"-" = ESL not established

#### Table 9 - Summary of Analytical Results of Volatile Organic Compounds Detected in Groundwater and Surface-Water Samples Hanson Radum Facility, 3000 Busch Road, Pleasanton, California

| Sample Sample ID<br>Location | Date<br>Sampled | Approximate<br>Sample Depth<br>(feet bgs) |       |       | Carbon Disulfide<br>(ug/L) | Volatile Organic<br>para-Isopropyl Toluene<br>(ug/L) | -   | Toluene<br>(ug/L) | 1,2,4-Trimethylbenzene<br>(ug/L) |
|------------------------------|-----------------|-------------------------------------------|-------|-------|----------------------------|------------------------------------------------------|-----|-------------------|----------------------------------|
| AOC 3 B-1(A)-GGW             | 7/18/2007       | ~ 67.6                                    | water | 10    | < 0.5                      | < 0.5                                                | <2  | < 0.5             | < 0.5                            |
| AOC 2 EB-31(B)-GGW           | 7/16/2007       | ~ 64.8                                    | water | < 10  | < 0.5                      | < 0.5                                                | <2  | < 0.5             | < 0.5                            |
| AOC 7 SS-31(A)-GGW           | 7/19/2007       | ~ 65.2                                    | water | < 10  | < 0.5                      | < 0.5                                                | <2  | < 0.5             | < 0.5                            |
| AOC 7 SS-31(B)-GGW           | 7/20/2007       | ~ 66                                      | water | < 10  | < 0.5                      | < 0.5                                                | <2  | < 0.5             | < 0.5                            |
| AOC 7 SS-31(C)-GGW           | 7/20/2007       | ~ 66                                      | water | < 10  | < 0.5                      | < 0.5                                                | <2  | < 0.5             | < 0.5                            |
| AOC 7 SS-31(D)-GGW           | 7/23/2007       | ~ 66.8                                    | water | < 10  | < 0.5                      | < 0.5                                                | <2  | < 0.5             | < 0.5                            |
| AOC 8 SS-123(AA)-GGW         | 7/24/2007       | ~15.7                                     | water | < 10  | < 0.5                      | < 0.5                                                | <2  | < 0.5             | < 0.5                            |
| AOC 8 SS-123(F1)-GGW         | 7/23/2007       | ~ 20.8                                    | water | < 10  | < 0.5                      | < 0.5                                                | <2  | < 0.5             | < 0.5                            |
| AOC 8 SS-123(F2)-GGW         | 7/24/2007       | ~ 25.8                                    | water | < 10  | 0.5                        | 0.7                                                  | 4.6 | 2.2               | 0.7                              |
| AOC 8 SS-123(F3)-GGW         | 7/24/2007       | ~ 26.9                                    | water | < 10  | < 0.5                      | < 0.5                                                | <2  | < 0.5             | < 0.5                            |
| AOC 6 PW-2                   | 7/13/2007       | surface                                   | water | < 10  | < 0.5                      | < 0.5                                                | <2  | < 0.5             | < 0.5                            |
| ESLs                         |                 |                                           |       | 1,500 | -                          | -                                                    | 17  | 40                | -                                |

(Concentrations reported in milligrams per liter (ug/L))

Notes:

\* No other VOCs were detected above their respective laboratory limits in these samples.

feet bgs = feet below ground surface

ug/L = micrograms per liter

**bold** indicates that the compound was detected above the laboratory reporting limit.

" < " = not detected above the laboratory report given

"-" = ESL not established

#### Table 10 - Summary of Analytical Results of CAM17 Metals Detected in Groundwater and Surface-Water Sample Hanson Radum Facility, 3000 Busch Road, Pleasanton, California

#### (Concentrations reported in micrograms per liter (ug/L))

| Sample   | Sample ID      | Date      | Approximate                | Matrix   |      |     |       |     |     |    | Dis | solved | d Meta | ls (ug | /L) |     |      |     |      |    |    |
|----------|----------------|-----------|----------------------------|----------|------|-----|-------|-----|-----|----|-----|--------|--------|--------|-----|-----|------|-----|------|----|----|
| Location |                | Sampled   | Sample Depth<br>(feet bgs) |          | Ag   | As  | Ва    | Be  | Cd  | Со | Cr  | Cu     | Hg     | Мо     | Ni  | Pb  | Sb   | Se  | ΤI   | V  | Zn |
| AOC 3    | B-1(A)-GGW     | 7/18/2007 | ~ 67.6                     | water    | -    | -   | -     | -   | -   | -  | -   | -      | -      | -      | -   | -   | -    | -   | -    | -  | -  |
| AOC 2    | EB-31(B)-GGW   | 7/16/2007 | ~ 64.8                     | water    | -    | -   | -     | -   | -   | -  | -   | -      | -      | -      | -   | -   | -    | -   | -    | -  | -  |
| AOC 7    | SS-31(A)-GGW   | 7/19/2007 | ~ 65.2                     | water    | -    | -   | -     | -   | -   | -  | -   | -      | -      | -      | -   | -   | -    | -   | -    | -  | -  |
| AOC 7    | SS-31(B)-GGW   | 7/20/2007 | ~ 66                       | water    | -    | -   | -     | -   | -   | -  | -   | -      | -      | -      | -   | -   | -    | -   | -    | -  | -  |
| AOC 7    | SS-31(C)-GGW   | 7/20/2007 | ~ 66                       | water    | -    | -   | -     | -   | -   | -  | -   | -      | -      | -      | -   | -   | -    | -   | -    | -  | -  |
| AOC 7    | SS-31(D)-GGW   | 7/23/2007 | ~ 66.8                     | water    | -    | -   | -     | -   | -   | -  | -   | -      | -      | -      | -   | -   | -    | -   | -    | -  | -  |
| AOC 8    | SS-123(AA)-GGW | 7/24/2007 | ~15.7                      | water    | -    | -   | -     | -   | -   | -  | -   | -      | -      | -      | -   | -   | -    | -   | -    | -  | -  |
| AOC 8    | SS-123(F1)-GGW | 7/23/2007 | ~ 20.8                     | water    | -    | -   | -     | -   | -   | -  | -   | -      | -      | -      | -   | -   | -    | -   | -    | -  | -  |
| AOC 8    | SS-123(F2)-GGW | 7/24/2007 | ~ 25.8                     | water    | -    | -   | -     | -   | -   | -  | -   | -      | -      | -      | -   | -   | -    | -   | -    | -  | -  |
| AOC 8    | SS-123(F3)-GGW | 7/24/2007 | ~ 26.9                     | water    | -    | -   | -     | -   | -   | -  | -   | -      | -      | -      | -   | -   | -    | -   | -    | -  | -  |
| AOC 6    | PW-2           | 7/13/2007 | surface                    | filtrate | <5   | 5.5 | 170   | <2  | <5  | <5 | <5  | <5     | < 0.2  | <5     | 6   | <3  | < 10 | <10 | < 10 | <5 | 24 |
| ESLs     |                |           |                            |          | 0.19 | 36  | 1,000 | 2.7 | 1.1 | 3  | 50  | 3.1    | 0.012  | 35     | 8.2 | 2.5 | 6    | 5   | 2    | 15 | 81 |

#### Notes:

feet bgs = feet below ground surface

ug/L = micrograms per liter

"-" = sample not analyzed

" < " = not detected above the laboratory report given

bold indicates that the compound was detected above the laboratory reporting limit.

| Ag = Silver    | Cr = Chromium   | Sb = Antimony |
|----------------|-----------------|---------------|
| As = Arsenic   | Cu = Copper     | Se = Selenium |
| Ba = Barium    | Hg = Mercury    | Tl = Thallium |
| Be = Beryllium | Mo = Molybdenum | V = Vanadium  |
| Cd = Cadmium   | Ni = Nickel     | Zn = Zinc     |
| Co = Cobalt    | Pb = Lead       |               |

## Table 11A - Summary of Analytical Results of Petroleum Hydrocarbons and Associated Compounds Detected in Samples from Groundwater Monitoring Wells Hanson Radum Facility, 3000 Busch Road, Pleasanton, California

| Sample     | Sample ID  | Date      | Approximate Matrix Total Petroleum Hydrocarbons |       |                |                 | Matrix Total Petroleum Hydrocarbons |             |             | BTEX compounds |                 |               |  |  |  |
|------------|------------|-----------|-------------------------------------------------|-------|----------------|-----------------|-------------------------------------|-------------|-------------|----------------|-----------------|---------------|--|--|--|
| Location   |            | Sampled   | Sample Depth<br>(feet bgs)                      |       | TPHd<br>(ug/L) | TPHmo<br>(ug/L) | TPHg<br>(ug/L)                      | B<br>(ug/L) | T<br>(ug/L) | E<br>(ug/L)    | m,p-X<br>(ug/L) | o-X<br>(ug/L) |  |  |  |
| 3S/1E 14D1 | TW-5       | 7/12/2007 | ~ 50                                            | water | < 50           | < 300           | < 50                                | < 0.5       | < 0.5       | < 0.5          | < 0.5           | < 0.5         |  |  |  |
| 3S/1E 10D8 | 3S/1E 10D8 | 7/25/2007 | ~ 200                                           | water | < 50           | < 300           | < 50                                | < 0.5       | < 0.5       | < 0.5          | < 0.5           | < 0.5         |  |  |  |
| 3S/1E 10K2 | 3S/1E 10K2 | 7/25/2007 | ~ 300                                           | water | < 50           | < 300           | < 50                                | < 0.5       | < 0.5       | < 0.5          | < 0.5           | < 0.5         |  |  |  |
| 3S/1E 10K2 | MW-10      | 7/25/2007 | ~ 300                                           | water | < 50           | < 300           | < 50                                | < 0.5       | < 0.5       | < 0.5          | < 0.5           | < 0.5         |  |  |  |
| 3S/1E 10N3 | 3S/1E 10N3 | 7/25/2007 | ~ 180                                           | water | < 50           | < 300           | < 50                                | < 0.5       | < 0.5       | < 0.5          | < 0.5           | < 0.5         |  |  |  |
| Trip Blank | TB-072507  | 7/25/2007 | na                                              | water | -              | -               | -                                   | < 0.5       | < 0.5       | < 0.5          | < 0.5           | < 0.5         |  |  |  |
| ESLs       |            |           |                                                 |       | 100            | 100             | 100                                 | 1           | 40          | 30             | 20              | 20            |  |  |  |

### (Concentrations reported in milligrams per liter (ug/L))

Notes:

feet bgs = feet below ground surface

ug/L = micrograms per liter

MW-10 = blind duplicate of 3S/1E 10K2

TPHd = total petroleum hydrocarbons as diesel

TPHmo = total petroleum hydrocarbons as motor oil

TPHg = total petroleum hydrocarbons as gasoline

BTEX = benzene, toluene, ethylbenzene, and total xylenes

B = benzene

T = toluene

E = ethylbenzene

m,p-X = m,p-xylenes

o-X = o-xylenes

" < " = not detected above the laboratory report given

"-" = sample not analyzed or ESL not established

# Table 11B - Summary of Analytical Results of Petroleum Hydrocarbons and Associated Compounds Detected in Samples from Groundwater Monitoring Wells Hanson Radum Facility, 3000 Busch Road, Pleasanton, California

| Sample     | Sample ID    | Date      | Approximate                | Matrix |                |                | uel Oxygenate  |                | TDA           |               | avengers      |
|------------|--------------|-----------|----------------------------|--------|----------------|----------------|----------------|----------------|---------------|---------------|---------------|
| Location   |              | Sampled   | Sample Depth<br>(feet bgs) |        | MTBE<br>(ug/L) | TAME<br>(ug/L) | DIPE<br>(ug/L) | ETBE<br>(ug/L) | TBA<br>(ug/L) | EDB<br>(ug/L) | EDC<br>(ug/L) |
| 3S/1E 14D1 | TW-5         | 7/12/2007 | ~ 50                       | water  | < 0.5          | < 0.5          | < 0.5          | < 0.5          | <10           | < 0.5         | < 0.5         |
| 3S/1E 10D8 | 3S/1E 10D8   | 7/25/2007 | ~ 200                      | water  | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 10          | < 0.5         | < 0.5         |
| 3S/1E 10K2 | 3S/1E 10K2   | 7/25/2007 | ~ 300                      | water  | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 10          | < 0.5         | < 0.5         |
| 3S/1E 10K2 | <b>MW-10</b> | 7/25/2007 | ~ 300                      | water  | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 10          | < 0.5         | < 0.5         |
| 3S/1E 10N3 | 3S/1E 10N3   | 7/25/2007 | ~ 180                      | water  | < 0.5          | < 0.5          | < 0.5          | < 0.5          | < 10          | < 0.5         | < 0.5         |
| Trip Blank | TB-072507    | 7/25/2007 | na                         | water  | < 0.5          | -              | -              | -              | -             | < 0.5         | < 0.5         |
| ESLs       |              |           |                            |        | 5              | -              | _              | _              | 12            | 0.05          | 0.5           |

### (Concentrations reported in milligrams per liter (ug/L))

Notes:

feet bgs = feet below ground surface

ug/L = micrograms per liter

MW-10 = blind duplicate of 3S/1E 10K2

MTBE = methyl tert-butyl ether

TAME = tert-amyl methyl ether (methyl tert-amyl ether)

DIPE = diisopropyl ether (isopropyl ether)

ETBE = ethyl tert-butyl ether

TBA = tert-butyl alcohol

EDB = ethylene dibromide (1,2-dibromoethane)

EDC = 1,2-dichloroethane

" < " = not detected above the laboratory report given

"-" = sample not analyzed or ESL not established

# Table 12 - Summary of Analytical Results ofVolatile Organic Compounds Detected in Samples from Groundwater Monitoring WellsHanson Radum Facility, 3000 Busch Road, Pleasanton, California

| Sample<br>Location | Sample ID    | Date<br>Sampled | Approximate<br>Sample Depth<br>(feet bgs) | Matrix | Volatile Organic Compounds *<br>Bromomethane<br>(ug/L) |
|--------------------|--------------|-----------------|-------------------------------------------|--------|--------------------------------------------------------|
| 3S/1E 14D1         | TW-5         | 7/12/2007       | ~ 50                                      | water  | <1                                                     |
| 3S/1E 10D8         | 3S/1E 10D8   | 7/25/2007       | ~ 200                                     | water  | <1                                                     |
| 3S/1E 10K2         | 3S/1E 10K2   | 7/25/2007       | ~ 300                                     | water  | <1                                                     |
| 3S/1E 10K2         | <b>MW-10</b> | 7/25/2007       | ~ 300                                     | water  | <1                                                     |
| 3S/1E 10N3         | 3S/1E 10N3   | 7/25/2007       | ~ 180                                     | water  | <1                                                     |
| Trip Blank         | TB-072507    | 7/25/2007       | na                                        | water  | 0.6 J                                                  |
| ESLs               |              |                 |                                           |        | 9.8                                                    |

### (Concentrations reported in milligrams per liter (ug/L))

#### Notes:

feet bgs = feet below ground surface

ug/L = micrograms per liter

MW-10 = blind duplicate of 3S/1E 10K2

\* No other VOCs were detected above their respective laboratory limits in these samples.

VOCs = volatile organic compounds

**bold** indicates that the compound was detected above the laboratory reporting limit.

" < " = not detected above the laboratory report given

"J" = estimated value below the laboratory reporting limit

# Table 13 - Summary of Analytical Results of Semivolatile Organic Compounds Detected in Samples from Groundwater Monitoring Wells Hanson Radum Facility, 3000 Busch Road, Pleasanton, California

| Sample<br>Location | Sample ID    | Date<br>Sampled | Approximate<br>Sample Depth<br>(feet bgs) | Matrix | Semi-Volatile Organic Compounds *<br>bis(2-Ethylhexyl)phthalate<br>(ug/L) |
|--------------------|--------------|-----------------|-------------------------------------------|--------|---------------------------------------------------------------------------|
| 3S/1E 14D1         | TW-5         | 7/12/2007       | ~ 50                                      | water  | < 9.4                                                                     |
| 3S/1E 10D8         | 3S/1E 10D8   | 7/25/2007       | ~ 200                                     | water  | 25                                                                        |
| 3S/1E 10K2         | 3S/1E 10K2   | 7/25/2007       | ~ 300                                     | water  | < 9.4                                                                     |
| 3S/1E 10K2         | <b>MW-10</b> | 7/25/2007       | ~ 300                                     | water  | < 9.4                                                                     |
| 3S/1E 10N3         | 3S/1E 10N3   | 7/25/2007       | ~ 180                                     | water  | <9.4                                                                      |
| Trip Blank         | TB-072507    | 7/25/2007       | na                                        | water  | -                                                                         |
| ESLs               |              |                 |                                           |        | 4                                                                         |

(Concentrations reported in milligrams per liter (ug/L))

#### Notes:

feet bgs = feet below ground surface

ug/L = micrograms per liter

MW-10 = blind duplicate of 3S/1E 10K2

\* No other SVOCs were detected above their respective laboratory limits in these samples.

SVOCs = semivolatile organic compounds

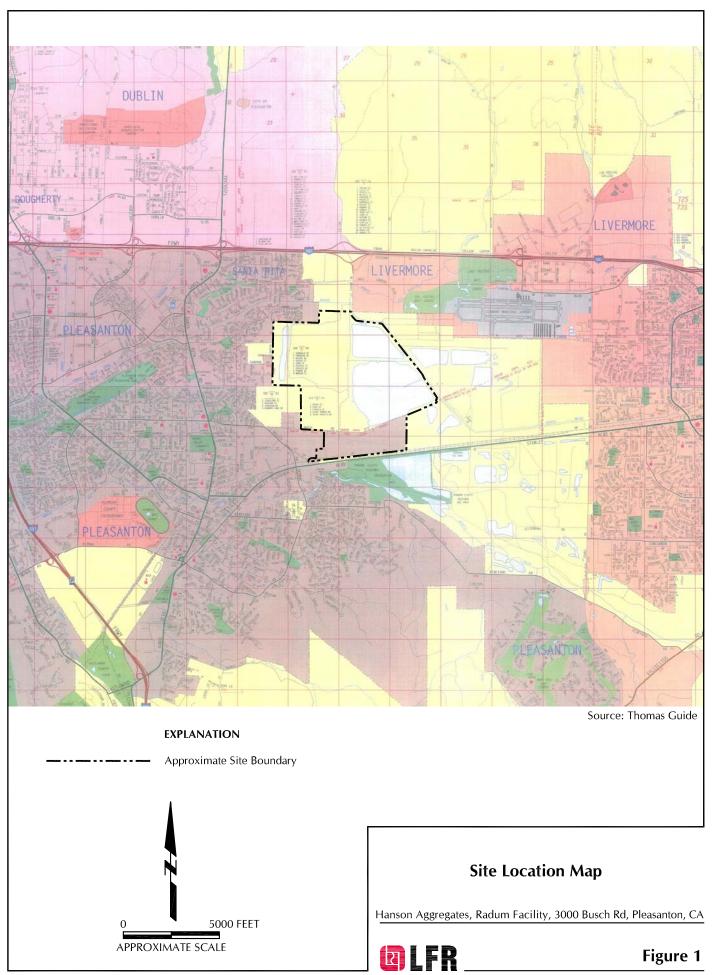
**bold** indicates that the compound was detected above the laboratory reporting limit.

boxed values exceed the respective ESL.

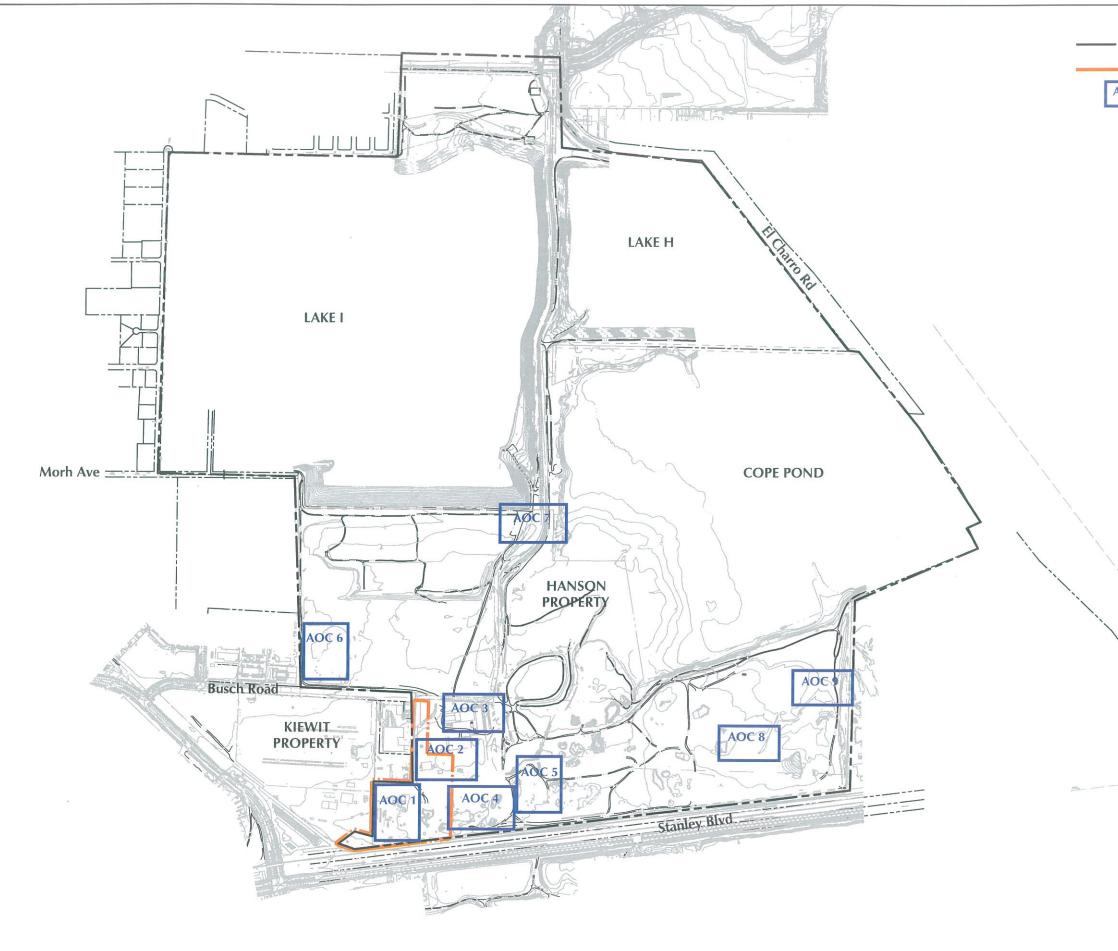
" < " = not detected above the laboratory report given

"-" = sample not analyzed

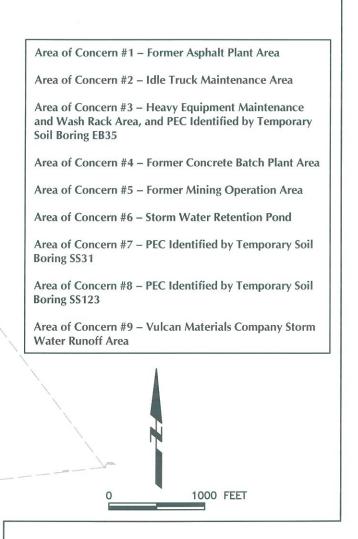
25


# Table 14 - Summary of Analytical Results of CAM 17 Metals Detected in Samples from Groundwater Monitoring Wells Hanson Radum Facility, 3000 Busch Road, Pleasanton, California

| Sample                                | Sample ID            | Date               | Approximate                | Matrix   |      |     |       |     |     |    | Diss | olved | l Meta | ls (ug | /L) |     |      |     |      |     |    |
|---------------------------------------|----------------------|--------------------|----------------------------|----------|------|-----|-------|-----|-----|----|------|-------|--------|--------|-----|-----|------|-----|------|-----|----|
| Location                              |                      | Sampled            | Sample Depth<br>(feet bgs) |          | Ag   | As  | Ва    | Be  | Cd  | Со | Cr   | Cu    | Hg     | Мо     | Ni  | Pb  | Sb   | Se  | ΤI   | v   | Zn |
| 3S/1E 14D1                            | TW-5                 | 7/12/2007          | ~ 50                       | filtrate | <5   | <5  | 280   | <2  | <5  | <5 | <5   | <5    | < 0.2  | <5     | <5  | <3  | < 10 | <10 | < 10 | <5  | 30 |
| 3S/1E 10D8                            | 3S/1E 10D8           | 7/25/2007          | ~ 200                      | filtrate | <1   | 1.2 | 370   | <1  | <1  | <1 | 6.3  | <1    | 0.63   | 1.2    | 1.3 | <1  | <1   | <1  | <1   | 3.4 | 8  |
| 3S/1E 10K2                            | 3S/1E 10K2           | 7/25/2007          | ~ 300                      | filtrate | <1   | <1  | 230   | <1  | <1  | <1 | 7.6  | <1    | < 0.2  | <1     | <1  | <1  | <1   | <1  | <1   | 1.5 | <5 |
| 3S/1E 10K2                            | <b>MW-10</b>         | 7/25/2007          | ~ 300                      | filtrate | <1   | <1  | 230   | <1  | <1  | <1 | 7.8  | <1    | < 0.2  | <1     | <1  | <1  | <1   | <1  | <1   | 1.6 | <5 |
| 3S/1E 10N3                            | 3S/1E 10N3           | 7/25/2007          | ~ 180                      | filtrate | <1   | <1  | 260   | <1  | <1  | <1 | 2.6  | <1    | < 0.2  | <1     | <1  | <1  | <1   | <1  | <1   | 1.4 | <5 |
| Trip Blank                            | TB-072507            | 7/25/2007          | na                         | water    | -    | -   | -     | -   | -   | -  | -    | -     | -      | -      | -   | -   | -    | -   | -    | -   | -  |
| ESLs                                  |                      |                    |                            |          | 0.19 | 36  | 1,000 | 2.7 | 1.1 | 3  | 50   | 3.1   | 0.012  | 35     | 8.2 | 2.5 | 6    | 5   | 2    | 15  | 81 |
| Notes:                                |                      |                    |                            |          |      |     |       |     |     |    |      |       |        |        |     |     |      |     |      |     |    |
| feet bgs = feet bel                   | ow ground surface    |                    |                            |          |      |     |       |     |     |    |      |       |        |        |     |     |      |     |      |     |    |
| ug/L = microgram                      | ns per liter         |                    |                            |          |      |     |       |     |     |    |      |       |        |        |     |     |      |     |      |     |    |
| 4W-10 = blind duplicate of 3S/1E 10K2 |                      |                    |                            |          |      |     |       |     |     |    |      |       |        |        |     |     |      |     |      |     |    |
| " < " = not detect                    | ed above the laborat | ory report given   |                            |          |      |     |       |     |     |    |      |       |        |        |     |     |      |     |      |     |    |
| "-" = sample not a                    | analyzed             |                    |                            |          |      |     |       |     |     |    |      |       |        |        |     |     |      |     |      |     |    |
| oold indicates that                   | the compound was o   | detected above the | e laboratory reporting     | limit.   |      |     |       |     |     |    |      |       |        |        |     |     |      |     |      |     |    |


(Concentrations reported in micrograms per liter (ug/L))

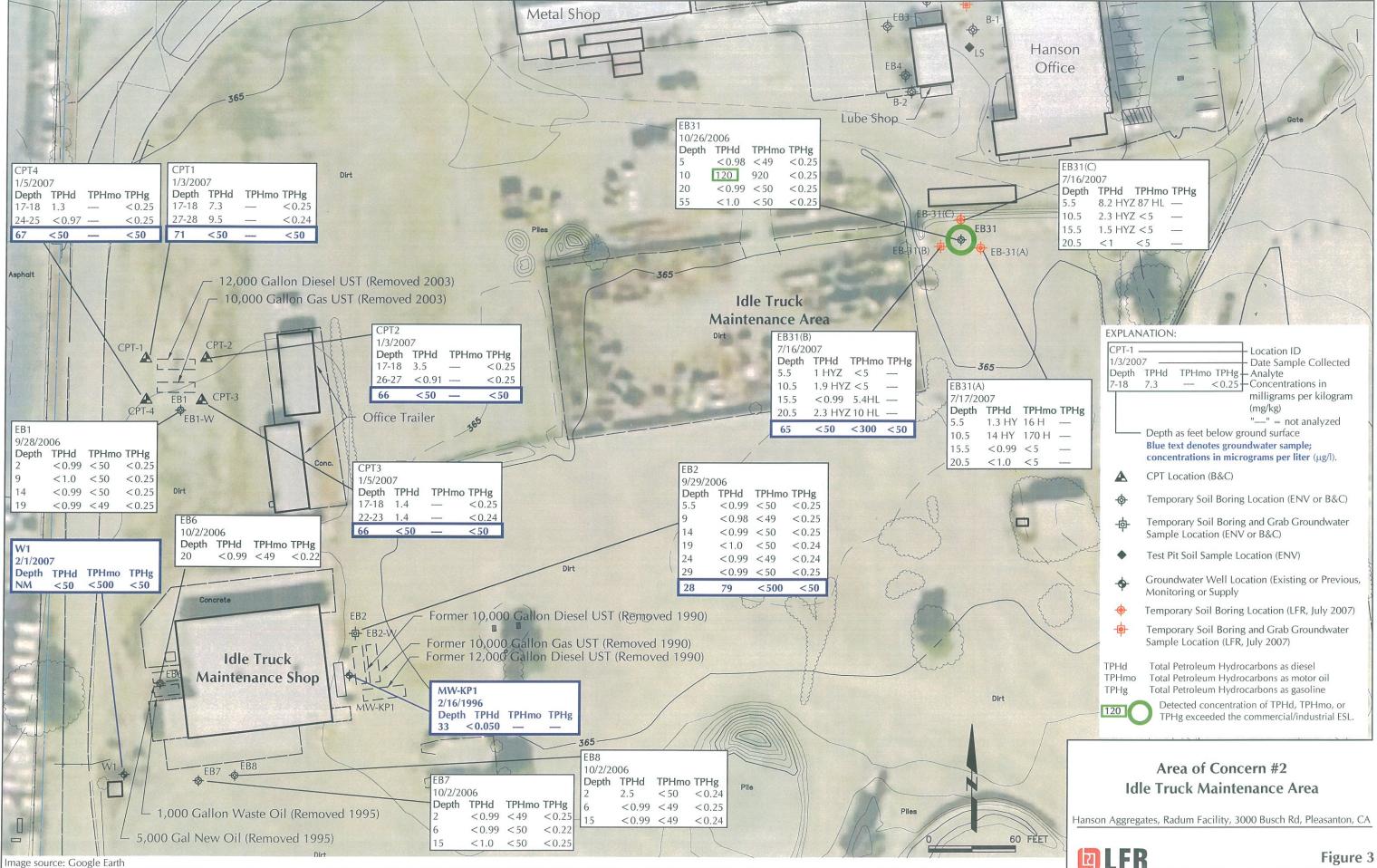
0.63 boxed values exceed the respective ESL.


| Ag = Silver    | Cr = Chromium   | Sb = Antimony |
|----------------|-----------------|---------------|
| As = Arsenic   | Cu = Copper     | Se = Selenium |
| Ba = Barium    | Hg = Mercury    | Tl = Thallium |
| Be = Beryllium | Mo = Molybdenum | V = Vanadium  |
| Cd = Cadmium   | Ni = Nickel     | Zn = Zinc     |
| Co = Cobalt    | Pb = Lead       |               |

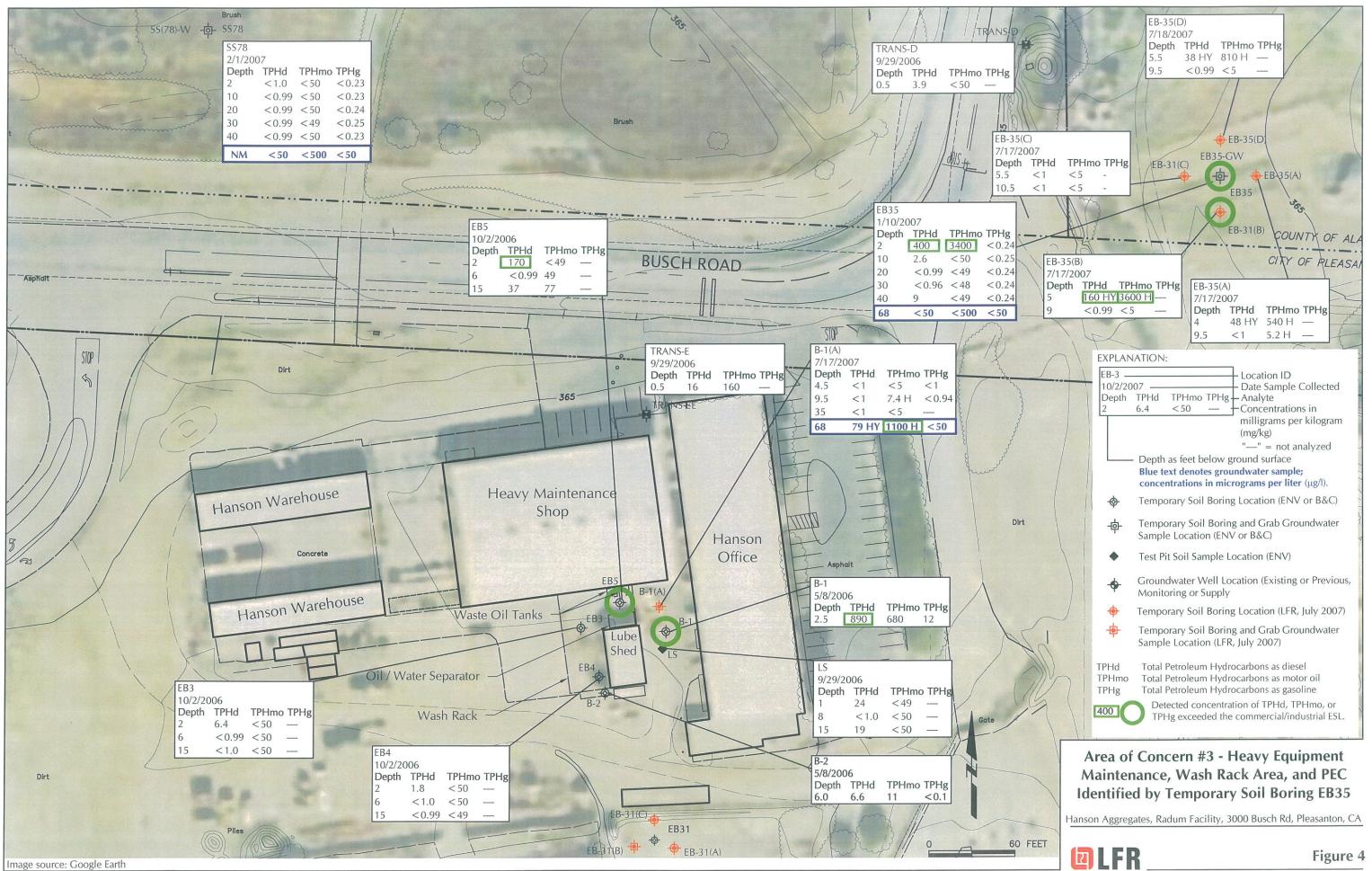


I:\Design\001\09567\00\dwg\Pleasanton Drilling Locations.dwg Oct 23,2007-2:19pm

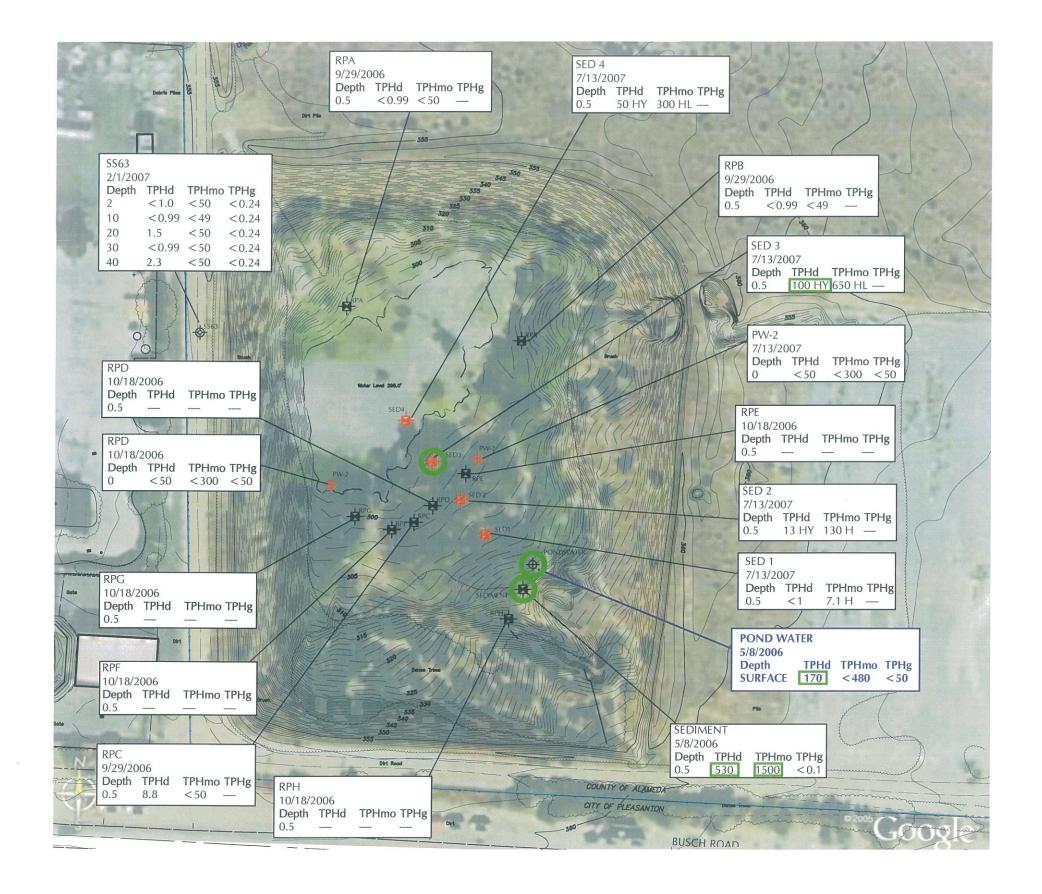



|       | EXPLANATION:                         |  |
|-------|--------------------------------------|--|
|       | Site Boundary                        |  |
|       | Area Under Separate ACEH Case Number |  |
| AOC 7 | Area of Concern                      |  |

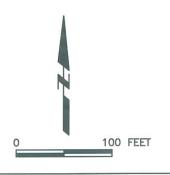



# Site Plan Showing Areas of Concern

Hanson Aggregates, Radum Facility, 3000 Busch Rd, Pleasanton, CA





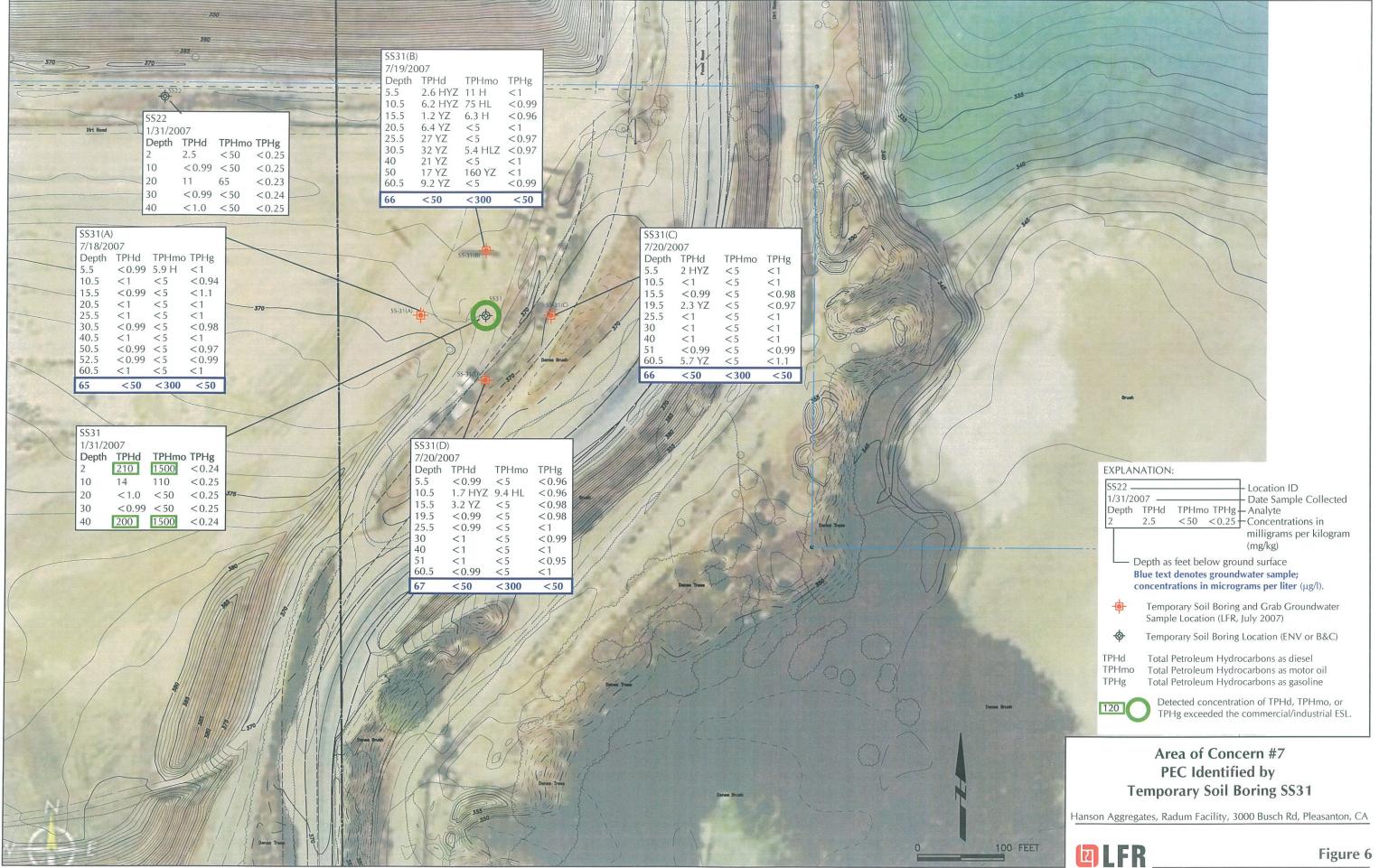


I:\Design\001\09567\02\dwg\Areas of Concern 1-11 Rev1.dwg Oct 23,2007-2:56pm



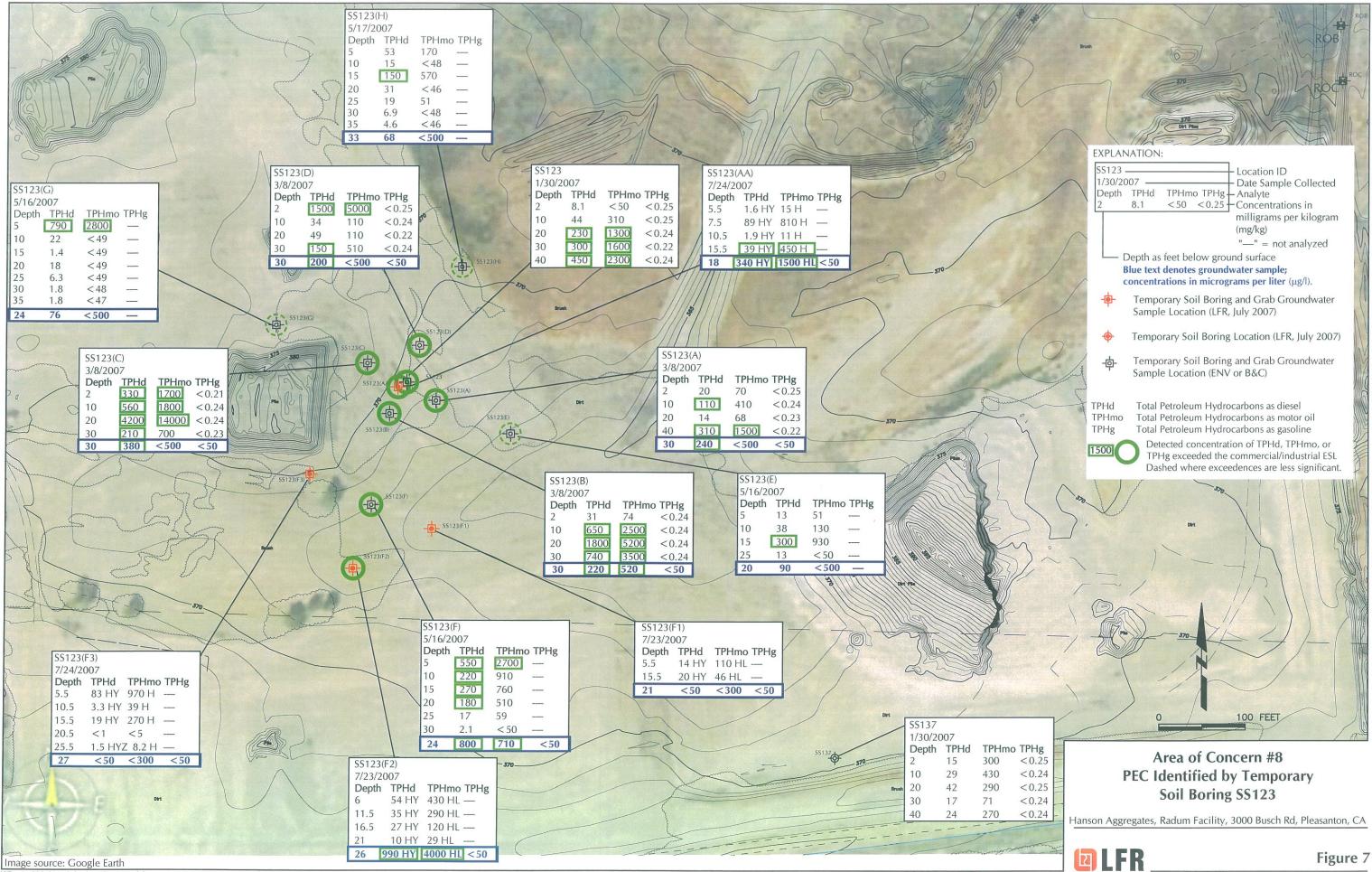
I:\Design\001\09567\02\dwg\Areas of Concern 1-11 Rev1.dwg Oct 23,2007-2:56pm



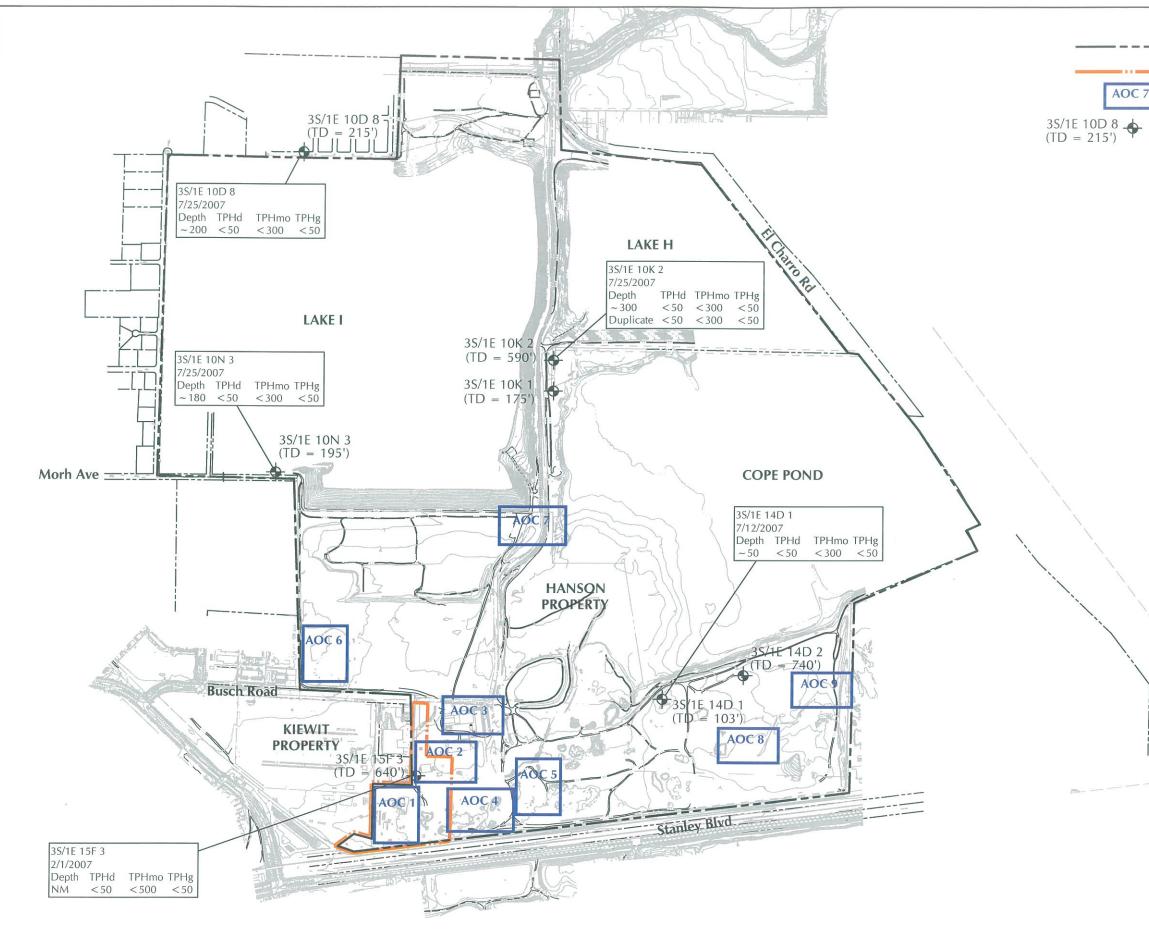
| EXPLAN                | NATION                                                                                  |          |            |                                                                     |  |  |  |
|-----------------------|-----------------------------------------------------------------------------------------|----------|------------|---------------------------------------------------------------------|--|--|--|
| RPA -                 |                                                                                         |          |            | - Location ID                                                       |  |  |  |
| 9/29/20<br>Depth      | 007                                                                                     | TDUm     | io TPHg-   | – Date Sample Collected<br>– Analyte                                |  |  |  |
| 0.5                   | 7.3                                                                                     | NA       | < 0.25     |                                                                     |  |  |  |
|                       |                                                                                         |          |            | milligrams per kilogram<br>(mg/kg); NAs not analyzed                |  |  |  |
|                       | Blue text                                                                               | denote   | s ground   | ınd surface<br>water sample;<br>rams per liter (μg/l).              |  |  |  |
| \$                    | Tempo                                                                                   | orary So | oil Boring | Location (ENV or B&C)                                               |  |  |  |
| - <del>  </del> -     | <ul> <li>Shallow/Near Surface Grab Soil Sample Location<br/>(ENV or B&amp;C)</li> </ul> |          |            |                                                                     |  |  |  |
| \$                    | Approximate Surface Water Sample Location (ENV or B&C)                                  |          |            |                                                                     |  |  |  |
| +                     | Shallow<br>(LFR, Ju                                                                     |          |            | Grab Soil Sample Location                                           |  |  |  |
| \$                    | Approxi<br>(LFR, Ju                                                                     |          |            | /ater Sample Location                                               |  |  |  |
| TPHd<br>TPHmo<br>TPHg | Total I                                                                                 | Petrole  | um Hydro   | ocarbons as diesel<br>ocarbons as motor oil<br>ocarbons as gasoline |  |  |  |
| 120                   |                                                                                         |          |            | ion of TPHd, TPHmo, or<br>commercial/industrial ESL.                |  |  |  |
|                       |                                                                                         |          |            |                                                                     |  |  |  |
|                       |                                                                                         |          |            |                                                                     |  |  |  |
|                       |                                                                                         |          |            |                                                                     |  |  |  |




# Area of Concern #6 Storm-Water Retention Pond


Hanson Aggregates, Radum Facility, 3000 Busch Rd, Pleasanton, CA




Figure 5



I:\Design\001\09567\02\dwg\Areas of Concern 1-11 Rev1.dwg Oct 23,2007-2:54pm



I:\Design\001\09567\02\dwg\Areas of Concern 1-11 Rev1.dwg Oct 29,2007-11:28am



**EXPLANATION:** 

Site Boundary

Area Under Separate ACEH Case Number

Area of Concern

Existing Groundwater Monitoring, Supply, or Test Well (TD = Total Depth in feet below ground surface)

| 0D 8 —<br>007 — |           |        | - Location ID<br>- Date Sample Collected                             |
|-----------------|-----------|--------|----------------------------------------------------------------------|
| TPHd            | TPHmo     | TPHg-  | – Analyte<br>– Concentrations in                                     |
| Denth as        | feet held | W grou | milligrams per kilogram<br>(mg/kg)<br>Ind surface: NM = not measured |

Area of Concern #1 – Former Asphalt Plant Area Area of Concern #2 - Idle Truck Maintenance Area Area of Concern #3 – Heavy Equipment Maintenance and Wash Rack Area, and PEC Identified by Temporary Soil Boring EB35 Area of Concern #4 – Former Concrete Batch Plant Area Area of Concern #5 – Former Mining Operation Area Area of Concern #6 – Storm Water Retention Pond Area of Concern #7 – PEC Identified by Temporary Soil Boring SS31 Area of Concern #8 – PEC Identified by Temporary Soil Boring SS123 Area of Concern #9 – Vulcan Materials Company Storm Water Runoff Area

Site Plan Showing Areas of Concern and Existing Groundwater **Monitoring Wells Sampled** 

1000 FEET

Hanson Aggregates, Radum Facility, 3000 Busch Rd, Pleasanton, CA



**Figure 8** 

# APPENDIX A

Soil Boring Permit

| 1 | ER RESOURCE |
|---|-------------|
| A |             |
| 0 | 0           |
| 1 |             |
|   | ANAGEMEN    |

LOCATION OF PROJECT Former Plant, Hanson-Radur

Busch

California Coordinates Source

City Pleasanton

CCN

APN

CLIENT Name

Address

Name

APPLICANT

Address 1900

City Enerywille

**Cathodic Protection** 

TYPE OF PROJECT

Water Supply

PROPOSED WELL USE

• •

. .

DRILLING COMPANY HEW

DRILLER'S LICENSE NO. 604

Drill Hole Diameter

• • Air Rotary

Direct Push · ·

Well Construction

Monitoring

New Domestic · ·

**DRILLING METHOD** 

WELL PROJECTS

SOIL BORINGS

Municipal

Industrial

Dewatering

Mud Rotary

Cable Tool

Rd.

Bus

Powell

Schl

. .

. .

. .

# **ZONE 7 WATER AGENCY**

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 454-5728

DRILLING PERMIT APPLICATION

ft

ft.

B.

C

D

E

asphalt

FOR APPLICANT TO COMPLETE

ft CCF

iewen

Irrigation

. .

in

Remediation

Other .....

Pleasanton,

ft Accuracy.

Phone

Fax 510-65

Zip90608

Phone 510 - 5

Geotechnical Investigation

Contamination

Well Destruction

Hollow Stem Auger

10/31

General

Groundwater Monitoring

Other

Maximum

Zip\_ Q FOR OFFICE USE

27122

PERMIT NUMBER WELL NUMBER APN

PERMIT CONDITIONS

(Circled Permit Requirements Apply)

GENERAL

- A permit application should be submitted so as to arrive at the 1. Zone 7 office five days prior to proposed starting date.
- 2 Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report or equivalent for well projects or drilling logs and location sketch for geotechnical projects.
- 3 Permit is void if project not begun within 90 days of approval date.

WATER SUPPLY WELLS

- Minimum surface seal thickness is two inches of cement 1. grout placed by tremie.
- 2 Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved.
- 3 An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements.
- 4 A sample port is required on the discharge pipe near the wellhead.

#### GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS

- 1. Minimum surface seal thickness is two inches of cement grout placed by tremie.
- Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet.

GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.

CATHODIC. Fill hole above anode zone with concrete placed by tremie

SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after the completion of permitted work the well installation report including all soil and water laboratory analysis results

**Casing Diameter** Depth. in. WELL DESTRUCTION. See attached. Surface Seal Depth ft. Number soil borings soi ftwill lange from 10'-60' Number of Borings Maximum Hole Diameter Depth 60 in 7/16 ESTIMATED STARTING DATE ESTIMATED COMPLETION DATE 7/24/200 Date 7/13/07 Approved Wyman Hong I hereby agree to comply with all requirements of this permit and Alameda

County Ordinance No. 78-68

**APPLICANT'S** Date 2-9-07 SIGNATURE

Katrin Schliewen

ATTACH SITE PLAN OR SKETCH

Revised: April 27, 2005

# **APPENDIX B**

Laboratory Certified Analytical Reports



| LFR Levine Fricke    | Project : 001-09567-01  |
|----------------------|-------------------------|
| 1900 Powell Street   | Location : Hanson Radum |
| Emeryville, CA 94608 | Level : II              |

| <u>Sample ID</u> | <u>Lab ID</u> |
|------------------|---------------|
| PW-2             | 195976-001    |
| SED-1            | 195976-002    |
| SED-2            | 195976-003    |
| SED-3            | 195976-004    |
| SED-4            | 195976-005    |

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Signature: Project Manager Signature:

Operations Manager

Date: 07/25/2007

Date: 07/25/2007

NELAP # 01107CA

Page 1 of \_\_\_\_



### CASE NARRATIVE

Laboratory number:195976Client:LFR Levine FrickeProject:001-09567-01Location:Hanson RadumRequest Date:07/13/07Samples Received:07/13/07

This hardcopy data package contains sample and QC results for four soil samples and one water sample, requested for the above referenced project on 07/13/07. The samples were received cold and intact. All data were e-mailed to Larry Lapuyade on 07/23/07.

#### TPH-Extractables by GC (EPA 8015B) Water:

No analytical problems were encountered.

### TPH-Extractables by GC (EPA 8015B) Soil:

Matrix spikes were not reported for this analysis because the parent sample required a dilution that would have diluted out the spikes. No other analytical problems were encountered.

#### Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

#### Metals (EPA 6010B and EPA 7471A) Soil:

No analytical problems were encountered.

#### Metals (EPA 6010B and EPA 7470A) Filtrate:

No analytical problems were encountered.



|                  |                      | Iotal 1 | Extracta | ble Hydrocarbo  | ns           |  |
|------------------|----------------------|---------|----------|-----------------|--------------|--|
| Lab #:           | 195976               |         |          | Location:       | Hanson Radum |  |
| Client:          | LFR Levine F:        | ricke   |          | Prep:           | EPA 3520C    |  |
| Project#:        | 001-09567-01         |         |          | Analysis:       | EPA 8015B    |  |
| Field ID:        | PW-2                 |         |          | Sampled:        | 07/13/07     |  |
| Matrix:          | Water                |         |          | Received:       | 07/13/07     |  |
| Units:           | ug/L                 |         |          | Prepared:       | 07/17/07     |  |
| Diln Fac:        | 1.000                |         |          | Analyzed:       | 07/20/07     |  |
| Batch#:          | 127341               |         |          | -               |              |  |
| Type:<br>Lab ID: | SAMPLE<br>195976-001 |         |          | Cleanup Method: | EPA 3630C    |  |
|                  | alyte                |         | Result   | RL              |              |  |
| Diesel C10-C2    |                      | NI      | )        | 50              |              |  |
| Motor Oil C24    | -C36                 | NI      | )        | 300             |              |  |
| Sur              | rogate               | %REC    | Limits   |                 |              |  |
| Hexacosane       |                      | 108     | 61-134   |                 |              |  |
| Type:<br>Lab ID: | BLANK<br>QC396668    |         |          | Cleanup Method: | EPA 3630C    |  |
| An               | alyte                |         | Result   | RL              |              |  |
| Diesel C10-C2    | 4                    | NI      | )        | 50              |              |  |
|                  | 020                  | NI      | )        | 300             |              |  |
| Motor Oil C24    | -036                 | INL     | ,        | 500             |              |  |
|                  | rogate               | %REC    | Limits   |                 |              |  |



| Total Extractable Hydrocarbons |                   |           |              |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                         | 195976            | Location: | Hanson Radum |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3520C    |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |
| Type:                          | LCS               | Diln Fac: | 1.000        |  |  |
| Lab ID:                        | QC396669          | Batch#:   | 127341       |  |  |
| Matrix:                        | Water             | Prepared: | 07/17/07     |  |  |
| Units:                         | ug/L              | Analyzed: | 07/20/07     |  |  |

Cleanup Method: EPA 3630C

|      | Spiked | Result | %REC                       | Limits                        |
|------|--------|--------|----------------------------|-------------------------------|
|      | 2,500  | 2,469  | 99                         | 58-130                        |
|      |        |        |                            |                               |
| %REC | Limits |        |                            |                               |
| 107  | 61-134 |        |                            |                               |
|      | %REC   |        | 2,500 2,469<br>%REC Limits | 2,500 2,469 99<br>%REC Limits |



| Total Extractable Hydrocarbons |                   |           |              |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                         | 195976            | Location: | Hanson Radum |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3520C    |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |
| Field ID:                      | ZZZZZZZZZ         | Batch#:   | 127341       |  |  |
| MSS Lab ID:                    | 195966-005        | Sampled:  | 07/12/07     |  |  |
| Matrix:                        | Water             | Received: | 07/13/07     |  |  |
| Units:                         | ug/L              | Prepared: | 07/17/07     |  |  |
| Diln Fac:                      | 1.000             | Analyzed: | 07/19/07     |  |  |

| Туре:     | MS        |          |        | Lab ID: | QC39  | 96670   |       |           |
|-----------|-----------|----------|--------|---------|-------|---------|-------|-----------|
|           | Analyte   | MSS Resu | lt     | Spiked  | Res   | sult    | %REC  | Limits    |
| Diesel Cl | 0-C24     | 338,000  |        | 2,500   | 258,9 | 000 >LR | -3166 | NM 57-134 |
|           |           |          |        |         |       |         |       |           |
|           | Surrogate | %REC     | Limits |         |       |         |       |           |
| Hexacosan | e         | 115      | 61-134 |         |       |         |       |           |
|           |           |          |        |         |       |         |       |           |

| Type:    | MSD       |      |        | Lab ID: |          | QC396671 |    |        |     |     |
|----------|-----------|------|--------|---------|----------|----------|----|--------|-----|-----|
|          | Analyte   | S    | piked  | F       | Result   | %RE      | C  | Limits | RPD | Lim |
| Diesel C | C10-C24   | 2    | ,500   | 143     | 3,100 >L | R -7797  | NM | 57-134 | NC  | 32  |
|          |           |      |        |         |          |          |    |        |     |     |
|          | Surrogate | %REC | Limits |         |          |          |    |        |     |     |
| Hexacosa | ane       | 115  | 61-134 |         |          |          |    |        |     |     |



|                                                                                                                                                                  |                                                                                                                                                                                                                        | Total I           | Extracta                                                                                        | ble Hydrocarbo                                                                                                       | ns                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Lab #:<br>Client:<br>Project#:<br>Matrix:<br>Units:<br>Basis:<br>Batch#:                                                                                         | 195976<br>LFR Levine F:<br>001-09567-01<br>Soil<br>mg/Kg<br>as received<br>127278                                                                                                                                      | ricke             |                                                                                                 | Location:<br>Prep:<br>Analysis:<br>Sampled:<br>Received:<br>Prepared:                                                | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B<br>07/13/07<br>07/13/07<br>07/16/07 |
| Field ID:<br>Type:<br>Lab ID:                                                                                                                                    | SED-1<br>SAMPLE<br>195976-002                                                                                                                                                                                          |                   |                                                                                                 | Diln Fac:<br>Analyzed:<br>Cleanup Method:                                                                            | 1.000<br>07/20/07<br>EPA 3630C                                                |
| Diesel C10-                                                                                                                                                      | Analyte                                                                                                                                                                                                                | NI                | Result                                                                                          | <u>RL</u>                                                                                                            | 0                                                                             |
| Motor Oil C                                                                                                                                                      |                                                                                                                                                                                                                        | INI               | ларана<br>7.1 н                                                                                 |                                                                                                                      |                                                                               |
| Q                                                                                                                                                                | urrogate                                                                                                                                                                                                               | %REC              | Limits                                                                                          |                                                                                                                      |                                                                               |
| Hexacosane                                                                                                                                                       | arrogate                                                                                                                                                                                                               | 86                | 40-127                                                                                          |                                                                                                                      |                                                                               |
| Field ID:<br>Type:<br>Lab ID:                                                                                                                                    | SED-2<br>SAMPLE<br>195976-003                                                                                                                                                                                          |                   |                                                                                                 | Diln Fac:<br>Analyzed:<br>Cleanup Method:                                                                            | 1.000<br>07/20/07<br>EPA 3630C                                                |
|                                                                                                                                                                  | Analyte                                                                                                                                                                                                                |                   | Result                                                                                          | RL                                                                                                                   |                                                                               |
| Diesel C10-                                                                                                                                                      |                                                                                                                                                                                                                        |                   | 13 H Y                                                                                          |                                                                                                                      |                                                                               |
| Motor Oil C                                                                                                                                                      | 24-C36                                                                                                                                                                                                                 |                   | 130 H                                                                                           | 5.                                                                                                                   | 0                                                                             |
|                                                                                                                                                                  |                                                                                                                                                                                                                        | %REC              |                                                                                                 | 5.                                                                                                                   | 0                                                                             |
|                                                                                                                                                                  | 24-C36<br>urrogate                                                                                                                                                                                                     | <b>%REC</b><br>93 |                                                                                                 | 5.                                                                                                                   | 0                                                                             |
| S                                                                                                                                                                |                                                                                                                                                                                                                        |                   | Limits                                                                                          | 5.<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:                                                                      | 3.000<br>07/21/07                                                             |
| S<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:                                                                                                                 | SED-3<br>SAMPLE<br>195976-004<br>Analyte                                                                                                                                                                               |                   | Limits<br>40-127<br>Result                                                                      | Diln Fac:<br>Analyzed:<br>Cleanup Method:<br><b>RL</b>                                                               | 3.000<br>07/21/07<br>EPA 3630C                                                |
| Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-                                                                                                                     | SED-3<br>SAMPLE<br>195976-004<br>Analyte<br>C24                                                                                                                                                                        |                   | Limits<br>40-127<br>Result<br>100 H Y                                                           | Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>3.                                                                | 3.000<br>07/21/07<br>EPA 3630C                                                |
| S<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-<br>Motor Oil C                                                                                   | SED-3<br>SAMPLE<br>195976-004<br>Analyte<br>C24<br>24-C36                                                                                                                                                              | 93                | Limits<br>40-127<br>Result<br>100 H Y<br>650 H I                                                | Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>3.                                                                | 3.000<br>07/21/07<br>EPA 3630C                                                |
| S<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-<br>Motor Oil C                                                                                   | SED-3<br>SAMPLE<br>195976-004<br>Analyte<br>C24                                                                                                                                                                        |                   | Limits<br>40-127<br>Result<br>100 H Y<br>650 H I                                                | Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>3.                                                                | 3.000<br>07/21/07<br>EPA 3630C                                                |
| S<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-<br>Motor Oil C                                                                                   | SED-3<br>SAMPLE<br>195976-004<br>Analyte<br>C24<br>24-C36                                                                                                                                                              | 93<br>%REC        | Limits<br>40-127<br>Result<br>100 H Y<br>650 H I<br>Limits                                      | Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>3.                                                                | 3.000<br>07/21/07<br>EPA 3630C                                                |
| S<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10<br>Motor Oil C<br>Motor Oil C<br>S<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:                 | SED-3<br>SAMPLE<br>195976-004<br>Analyte<br>C24<br>24-C36<br>urrogate<br>SED-4<br>SAMPLE<br>195976-005<br>Analyte                                                                                                      | 93<br>%REC        | Limits<br>40-127<br>40-127<br>100 H Y<br>650 H I<br>Limits<br>40-127                            | Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>3.<br>15<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL       | 3.000<br>07/21/07<br>EPA 3630C<br>0<br>1.000<br>07/20/07<br>EPA 3630C         |
| S<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10<br>Motor Oil C<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-                      | SED-3<br>SAMPLE<br>195976-004<br>Analyte<br>C24<br>24-C36<br>urrogate<br>SED-4<br>SAMPLE<br>195976-005<br>Analyte<br>C24                                                                                               | 93<br>%REC        | Limits<br>40-127<br>Mesult<br>100 H Y<br>650 H I<br>Limits<br>40-127<br>Result<br>50 H Y        | Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>3.<br>15<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>0. | 3.000<br>07/21/07<br>EPA 3630C<br>0<br>1.000<br>07/20/07<br>EPA 3630C<br>99   |
| S<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10<br>Motor Oil C<br>S<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10<br>Motor Oil C   | sed-3           SAMPLE           195976-004           Analyte           C24           24-C36           urrogate           SED-4           SAMPLE           195976-005           Analyte           C24           24-C36 | 93<br>%REC<br>83  | Limits<br>40-127<br>100 H Y<br>650 H I<br>Limits<br>40-127<br><b>Esult</b><br>50 H Y<br>300 H I | Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>3.<br>15<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>0. | 3.000<br>07/21/07<br>EPA 3630C<br>0<br>1.000<br>07/20/07<br>EPA 3630C<br>99   |
| S<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-<br>Motor Oil C<br>S<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-<br>Motor Oil C | SED-3<br>SAMPLE<br>195976-004<br>Analyte<br>C24<br>24-C36<br>urrogate<br>SED-4<br>SAMPLE<br>195976-005<br>Analyte<br>C24                                                                                               | 93<br>%REC        | Limits<br>40-127<br>Mesult<br>100 H Y<br>650 H I<br>Limits<br>40-127<br>Result<br>50 H Y        | Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>3.<br>15<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>0. | 3.000<br>07/21/07<br>EPA 3630C<br>0<br>1.000<br>07/20/07<br>EPA 3630C<br>99   |

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit

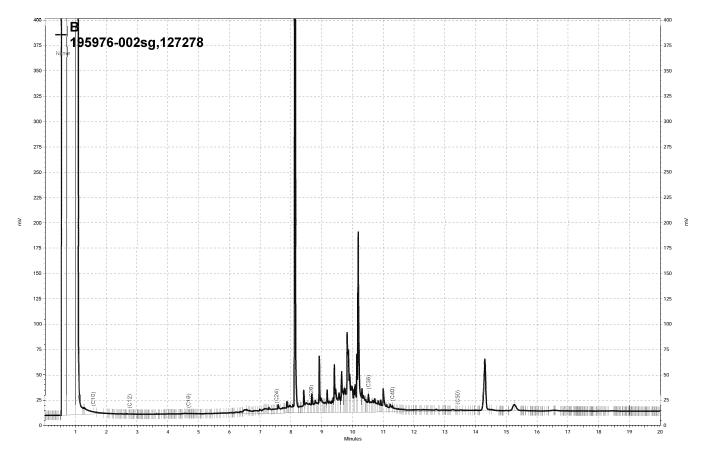
Page 1 of 2



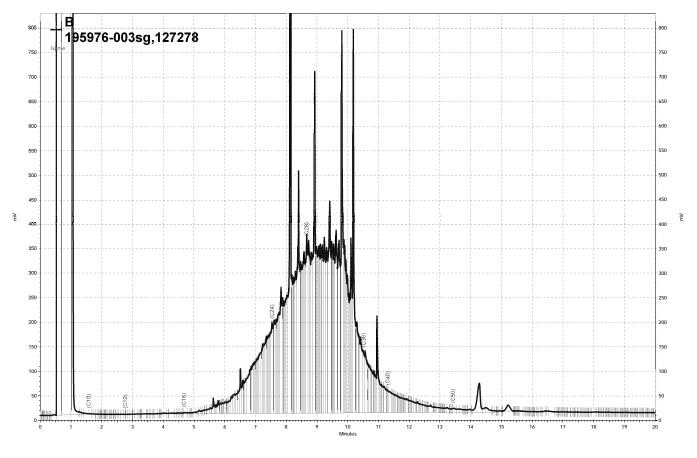
| Total Extractable Hydrocarbons |                               |                                  |                    |                           |  |
|--------------------------------|-------------------------------|----------------------------------|--------------------|---------------------------|--|
| Lab #:                         | 195976                        |                                  | Location:          | Hanson Radum              |  |
| Client:<br>Project#:           | LFR Levine Fr<br>001-09567-01 | lcke                             | Prep:<br>Analysis: | SHAKER TABLE<br>EPA 8015B |  |
| Matrix:                        | Soil                          |                                  | Sampled:           | 07/13/07                  |  |
| Units:                         | mg/Kg                         |                                  | Received:          | 07/13/07                  |  |
| Basis:<br>Batch#:              | as received<br>127278         |                                  | Prepared:          | 07/16/07                  |  |
| Type:<br>Lab ID:<br>Diln Fac:  | BLANK<br>QC396381<br>1.000    |                                  | Cleanup Method:    | 07/17/07<br>EPA 3630C     |  |
| Ana.<br>Diesel C10-C24         | lyte                          | Result<br>ND                     | RL 1               | 0                         |  |
| Motor Oil C24-                 |                               | ND<br>ND                         | 1.<br>5.           | 0                         |  |
| Surro<br>Hexacosane            | ogate                         | <b>%REC Limits</b><br>114 40-127 |                    |                           |  |



| Total Extractable Hydrocarbons |                   |           |              |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                         | 195976            | Location: | Hanson Radum |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | SHAKER TABLE |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |
| Туре:                          | LCS               | Diln Fac: | 1.000        |  |  |
| Lab ID:                        | QC396382          | Batch#:   | 127278       |  |  |
| Matrix:                        | Soil              | Prepared: | 07/16/07     |  |  |
| Units:                         | mg/Kg             | Analyzed: | 07/17/07     |  |  |
| Basis:                         | as received       |           |              |  |  |


Cleanup Method: EPA 3630C

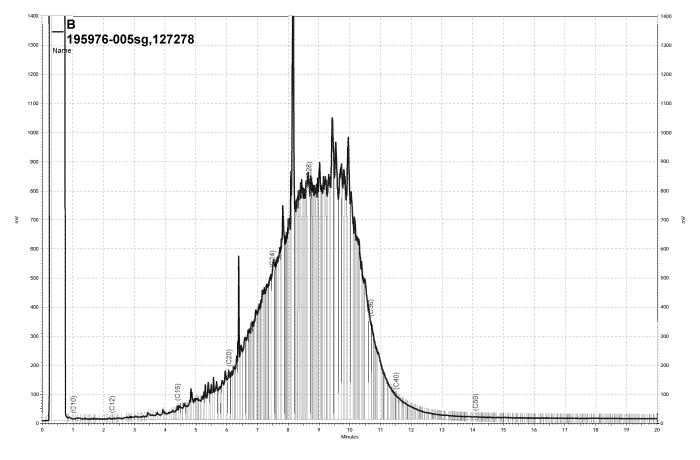
Hexacosane


| Analyte        | Spiked      | Result | %REC | Limits |
|----------------|-------------|--------|------|--------|
| Diesel C10-C24 | 49.79       | 50.26  | 101  | 58-127 |
|                |             |        |      |        |
| Surrogate      | %REC Limits |        |      |        |

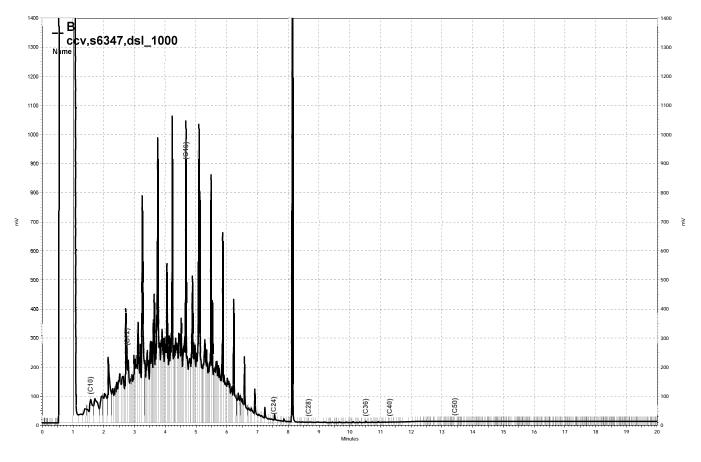
40-127


105

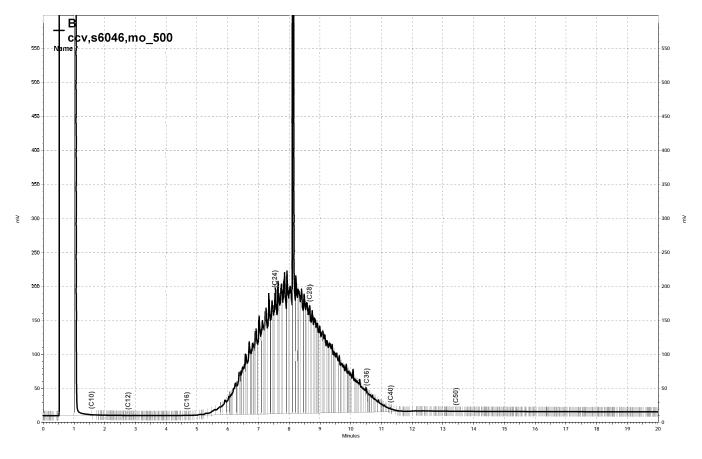



\Lims\gdrive\ezchrom\Projects\GC15B\Data\201b028, B




\Lims\gdrive\ezchrom\Projects\GC15B\Data\201b029, B




\\Lims\gdrive\ezchrom\Projects\GC14B\Data\201b034, B



\\Lims\gdrive\ezchrom\Projects\GC14B\Data\201b033, B



\\Lims\gdrive\ezchrom\Projects\GC15B\Data\201b022, B



\Lims\gdrive\ezchrom\Projects\GC15B\Data\201b021, B



|                                                        | Gas                                          | oline by GC/MS                                |                                            |  |
|--------------------------------------------------------|----------------------------------------------|-----------------------------------------------|--------------------------------------------|--|
| Lab #:<br>Client:<br>Project#:                         | 195976<br>LFR Levine Fricke<br>001-09567-01  | Prep:<br>Analysis:                            | EPA 5030B<br>EPA 8260B                     |  |
| Field ID:<br>Lab ID:<br>Matrix:<br>Units:<br>Diln Fac: | PW-2<br>195976-001<br>Water<br>ug/L<br>1,000 | Batch#:<br>Sampled:<br>Received:<br>Analyzed: | 127216<br>07/13/07<br>07/13/07<br>07/13/07 |  |

| June Junt e                                        | Derult   | RI.        |
|----------------------------------------------------|----------|------------|
| Analyte                                            | Result   |            |
| Gasoline C7-C12                                    | ND       | 50         |
| Freon 12                                           | ND       | 1.0        |
| tert-Butyl Alcohol (TBA)                           | ND       | 10         |
| Chloromethane                                      | ND       | 1.0        |
| Isopropyl Ether (DIPE)                             | ND       | 0.5        |
| Vinyl Chloride                                     | ND       | 0.5        |
| Bromomethane                                       | ND       | 1.0        |
| Ethyl tert-Butyl Ether (ETBE)                      | ND       | 0.5        |
| Chloroethane                                       | ND       | 1.0        |
| Methyl tert-Amyl Ether (TAME)                      | ND       | 0.5        |
| Trichlorofluoromethane                             | ND       | 1.0        |
| Acetone                                            | ND       | 10         |
| Freon 113                                          | ND       | 0.5        |
| 1,1-Dichloroethene                                 | ND       | 0.5        |
| Methylene Chloride                                 | ND       | 10         |
| Carbon Disulfide                                   | ND       | 0.5        |
| MTBE                                               | ND       | 0.5        |
| trans-1,2-Dichloroethene                           | ND       | 0.5        |
| Vinyl Acetate                                      | ND       | 10         |
| 1,1-Dichloroethane                                 | ND       | 0.5        |
| 2-Butanone                                         | ND       | 10         |
| cis-1,2-Dichloroethene                             | ND       | 0.5        |
| 2,2-Dichloropropane                                | ND       | 0.5        |
| Chloroform                                         | ND       | 0.5        |
| Bromochloromethane                                 | ND       | 0.5        |
| 1,1,1-Trichloroethane                              | ND       | 0.5        |
| 1,1-Dichloropropene                                | ND       | 0.5        |
| Carbon Tetrachloride                               | ND       | 0.5        |
| 1,2-Dichloroethane                                 | ND       | 0.5        |
| Benzene                                            | ND       | 0.5        |
| Trichloroethene                                    | ND       | 0.5        |
| 1,2-Dichloropropane                                | ND       | 0.5        |
| Bromodichloromethane                               | ND       | 0.5        |
| Dibromomethane                                     | ND       | 0.5        |
| 4-Methyl-2-Pentanone                               | ND       | 10         |
|                                                    | ND<br>ND | 0.5        |
| cis-1,3-Dichloropropene                            |          |            |
| Toluene                                            | ND       | 0.5<br>0.5 |
| trans-1,3-Dichloropropene<br>1,1,2-Trichloroethane | ND       | 0.5        |
|                                                    | ND       |            |
| 2-Hexanone                                         | ND       | 10         |
| 1,3-Dichloropropane                                | ND       | 0.5        |
| Tetrachloroethene                                  | ND       | 0.5        |
| Dibromochloromethane                               | ND       | 0.5        |
| 1,2-Dibromoethane                                  | ND       | 0.5        |
| Chlorobenzene                                      | ND       | 0.5        |
| 1,1,1,2-Tetrachloroethane                          | ND       | 0.5        |
| Ethylbenzene                                       | ND       | 0.5        |
| m,p-Xylenes                                        | ND       | 0.5        |
| o-Xylene                                           | ND       | 0.5        |
| Styrene                                            | ND       | 0.5        |
| Bromoform                                          | ND       | 1.0        |
| Isopropylbenzene                                   | ND       | 0.5        |
| 1,1,2,2-Tetrachloroethane                          | ND       | 0.5        |
| 1,2,3-Trichloropropane                             | ND       | 0.5        |
| · · <b>· · ·</b>                                   |          |            |

ND= Not Detected RL= Reporting Limit Page 1 of 2



|                                           | G        | asoline | e by GC/MS |            |
|-------------------------------------------|----------|---------|------------|------------|
| Lab #: 195976                             |          |         | Prep:      | EPA 5030B  |
| Client: LFR Levine                        | Fricke   |         | Analysis:  | EPA 8260B  |
| Project#: 001-09567-02                    |          |         | 1110127020 |            |
| Field ID: PW-2                            |          |         | Batch#:    | 127216     |
| Lab ID: 195976-001                        |          |         | Sampled:   | 07/13/07   |
| Matrix: Water                             |          |         | Received:  | 07/13/07   |
| Units: ug/L                               |          |         | Analyzed:  | 07/13/07   |
| Diln Fac: 1.000                           |          |         |            |            |
|                                           |          |         |            |            |
| Analyte                                   |          | Result  |            | RL         |
| Propylbenzene                             | ND       |         |            | 0.5        |
| Bromobenzene                              | ND       |         |            | 0.5<br>0.5 |
| 1,3,5-Trimethylbenzene<br>2-Chlorotoluene | ND<br>ND |         |            | 0.5        |
| 4-Chlorotoluene                           | ND       |         |            | 0.5        |
| tert-Butylbenzene                         | ND       |         |            | 0.5        |
| 1,2,4-Trimethylbenzene                    | ND       |         |            | 0.5        |
| sec-Butylbenzene                          | ND       |         |            | 0.5        |
| para-Isopropyl Toluene                    | ND       |         |            | 0.5        |
| 1,3-Dichlorobenzene                       | ND       |         |            | 0.5        |
| 1,4-Dichlorobenzene                       | ND       |         |            | 0.5        |
| n-Butylbenzene                            | ND       |         |            | 0.5        |
| 1,2-Dichlorobenzene                       | ND       |         |            | 0.5        |
| 1,2-Dibromo-3-Chloropropane               | ND       |         |            | 2.0        |
| 1,2,4-Trichlorobenzene                    | ND       |         |            | 0.5        |
| Hexachlorobutadiene                       | ND       |         |            | 0.5        |
| Naphthalene                               | ND       |         |            | 2.0        |
| 1,2,3-Trichlorobenzene                    | ND       |         |            | 0.5        |
| Surrogate                                 | %REC     | Limits  |            |            |
| Dibromofluoromethane                      | 98       | 80-123  |            |            |
| 1,2-Dichloroethane-d4                     | 96       | 79-134  |            |            |
| Toluene-d8                                | 97       | 80-120  |            |            |
| Bromofluorobenzene                        | 99       | 80-122  |            |            |



| Gasoline by GC/MS                     |                                             |                                   |                             |  |  |  |
|---------------------------------------|---------------------------------------------|-----------------------------------|-----------------------------|--|--|--|
| Lab #:<br>Client:<br>Project#:        | 195976<br>LFR Levine Fricke<br>001-09567-01 | Prep:<br>Analysis:                | EPA 5030B<br>EPA 8260B      |  |  |  |
| Type:<br>Lab ID:<br>Matrix:<br>Units: | BLANK<br>QC396077<br>Water<br>ug/L          | Diln Fac:<br>Batch#:<br>Analyzed: | 1.000<br>127216<br>07/13/07 |  |  |  |

| Analyte                                   | Result   | RL  |
|-------------------------------------------|----------|-----|
| Gasoline C7-C12                           | ND       | 50  |
| Freon 12                                  | ND       | 1.0 |
| tert-Butyl Alcohol (TBA)                  | ND       | 10  |
| Chloromethane                             | ND       | 1.0 |
|                                           | ND       | 0.5 |
| Isopropyl Ether (DIPE)<br>Vinyl Chloride  | ND<br>ND | 0.5 |
|                                           |          |     |
| Bromomethane                              | ND       | 1.0 |
| Ethyl tert-Butyl Ether (ETBE)             | ND       | 0.5 |
| Chloroethane                              | ND       | 1.0 |
| Methyl tert-Amyl Ether (TAME)             | ND       | 0.5 |
| Trichlorofluoromethane                    | ND       | 1.0 |
| Acetone                                   | ND       | 10  |
| Freon 113                                 | ND       | 0.5 |
| 1,1-Dichloroethene                        | ND       | 0.5 |
| Methylene Chloride                        | ND       | 10  |
| Carbon Disulfide                          | ND       | 0.5 |
| MTBE                                      | ND       | 0.5 |
| trans-1,2-Dichloroethene                  | ND       | 0.5 |
| Vinyl Acetate                             | ND       | 10  |
| 1,1-Dichloroethane                        | ND       | 0.5 |
| 2-Butanone                                | ND       | 10  |
| cis-1,2-Dichloroethene                    | ND       | 0.5 |
| 2,2-Dichloropropane                       | ND       | 0.5 |
| Chloroform                                | ND       | 0.5 |
| Bromochloromethane                        | ND       | 0.5 |
| 1,1,1-Trichloroethane                     | ND       | 0.5 |
| 1,1-Dichloropropene                       | ND       | 0.5 |
| Carbon Tetrachloride                      | ND       | 0.5 |
| 1,2-Dichloroethane                        | ND       | 0.5 |
| Benzene                                   | ND       | 0.5 |
| Trichloroethene                           | ND       | 0.5 |
| 1,2-Dichloropropane                       | ND       | 0.5 |
| Bromodichloromethane                      | ND       | 0.5 |
| Dibromomethane                            | ND       | 0.5 |
| 4-Methyl-2-Pentanone                      | ND       | 10  |
| cis-1,3-Dichloropropene                   | ND       | 0.5 |
| Toluene                                   | ND       | 0.5 |
| trans-1,3-Dichloropropene                 | ND       | 0.5 |
| 1,1,2-Trichloroethane                     | ND       | 0.5 |
| 2-Hexanone                                | ND       | 10  |
| 1,3-Dichloropropane                       | ND       | 0.5 |
|                                           |          | 0.5 |
| Tetrachloroethene<br>Dibromochloromethane | ND       | 0.5 |
|                                           | ND       | 0.5 |
| 1,2-Dibromoethane                         | ND       | 0.5 |
| Chlorobenzene                             | ND       |     |
| 1,1,1,2-Tetrachloroethane                 | ND       | 0.5 |
| Ethylbenzene                              | ND       | 0.5 |
| m,p-Xylenes                               | ND       | 0.5 |
| o-Xylene                                  | ND       | 0.5 |
| Styrene                                   | ND       | 0.5 |
| Bromoform                                 | ND       | 1.0 |
| Isopropylbenzene                          | ND       | 0.5 |
| 1,1,2,2-Tetrachloroethane                 | ND       | 0.5 |
| 1,2,3-Trichloropropane                    | ND       | 0.5 |

ND= Not Detected RL= Reporting Limit Page 1 of 2



|                                                | Gas      | oline by GC/MS |            |  |
|------------------------------------------------|----------|----------------|------------|--|
| Lab #: 195976                                  |          | Prep:          | EPA 5030B  |  |
| Client: LFR Levine F<br>Project#: 001-09567-01 |          | Analysis:      | EPA 8260B  |  |
| Type: BLANK                                    | -        | Diln Fac:      | 1.000      |  |
| Lab ID: QC396077                               |          | Batch#:        | 127216     |  |
| Matrix: Water                                  |          | Analyzed:      | 07/13/07   |  |
| Units: uq/L                                    |          | 111017200      | 0., 20, 0. |  |
|                                                |          |                |            |  |
| Analyte                                        |          | sult           | RL         |  |
| Propylbenzene                                  | ND       |                | 0.5        |  |
| Bromobenzene                                   | ND       |                | 0.5        |  |
| 1,3,5-Trimethylbenzene<br>2-Chlorotoluene      | ND<br>ND |                | 0.5<br>0.5 |  |
| 4-Chlorotoluene                                | ND<br>ND |                | 0.5        |  |
| tert-Butylbenzene                              | ND       |                | 0.5        |  |
| 1,2,4-Trimethylbenzene                         | ND       |                | 0.5        |  |
| sec-Butylbenzene                               | ND       |                | 0.5        |  |
| para-Isopropyl Toluene                         | ND       |                | 0.5        |  |
| 1,3-Dichlorobenzene                            | ND       |                | 0.5        |  |
| 1,4-Dichlorobenzene                            | ND       |                | 0.5        |  |
| n-Butylbenzene                                 | ND       |                | 0.5        |  |
| 1,2-Dichlorobenzene                            | ND       |                | 0.5        |  |
| 1,2-Dibromo-3-Chloropropane                    | ND       |                | 2.0        |  |
| 1,2,4-Trichlorobenzene                         | ND       |                | 0.5        |  |
| Hexachlorobutadiene                            | ND       |                | 0.5        |  |
| Naphthalene                                    | ND       |                | 2.0        |  |
| 1,2,3-Trichlorobenzene                         | ND       |                | 0.5        |  |
| Surrogate                                      | %REC Li  | mits           |            |  |
| Dibromofluoromethane                           |          | )-123          |            |  |
| 1,2-Dichloroethane-d4                          |          | 9-134          |            |  |
| Toluene-d8                                     |          | )-120          |            |  |
| Bromofluorobenzene                             |          | )-122          |            |  |



| Gasoline by GC/MS              |                                             |                      |                        |  |  |  |
|--------------------------------|---------------------------------------------|----------------------|------------------------|--|--|--|
| Lab #:<br>Client:<br>Project#: | 195976<br>LFR Levine Fricke<br>001-09567-01 | Prep:<br>Analysis:   | EPA 5030B<br>EPA 8260B |  |  |  |
| Matrix:<br>Units:<br>Diln Fac: | Water<br>ug/L<br>1.000                      | Batch#:<br>Analyzed: | 127216<br>07/13/07     |  |  |  |

| Type: BS                      |      |        | Lab ID: | QC     | 396078 |        |  |
|-------------------------------|------|--------|---------|--------|--------|--------|--|
| Analyte                       |      | Spiked |         | Result | %REC   | Limits |  |
| tert-Butyl Alcohol (TBA)      |      | 150.0  |         | 157.5  | 105    | 68-132 |  |
| Isopropyl Ether (DIPE)        |      | 30.00  |         | 25.77  | 86     | 65-120 |  |
| Ethyl tert-Butyl Ether (ETBE) |      | 30.00  |         | 29.99  | 100    | 75-124 |  |
| Methyl tert-Amyl Ether (TAME) |      | 30.00  |         | 32.54  | 108    | 77-120 |  |
| 1,1-Dichloroethene            |      | 30.00  |         | 32.29  | 108    | 80-132 |  |
| Benzene                       |      | 30.00  |         | 30.15  | 100    | 80-120 |  |
| Trichloroethene               |      | 30.00  |         | 28.88  | 96     | 80-120 |  |
| Toluene                       |      | 30.00  |         | 31.17  | 104    | 80-120 |  |
| Chlorobenzene                 |      | 30.00  |         | 30.69  | 102    | 80-120 |  |
| Surrogate                     | %REC | Limits |         |        |        |        |  |
| Dibromofluoromethane          | 07   | 80-123 |         |        |        |        |  |
| 1.2-Dichloroethane-d4         | 95   | 79-134 |         |        |        |        |  |

| Darrogace             | OTCH C |        |  |
|-----------------------|--------|--------|--|
| Dibromofluoromethane  | 97     | 80-123 |  |
| 1,2-Dichloroethane-d4 | 95     | 79–134 |  |
| Toluene-d8            | 97     | 80-120 |  |
| Bromofluorobenzene    | 97     | 80-122 |  |
|                       |        |        |  |

| Type: BSD                  |       |        | Lab ID: | QC39   | 6079 |        |     |     |
|----------------------------|-------|--------|---------|--------|------|--------|-----|-----|
| Analyte                    |       | Spiked |         | Result | %REC | Limits | RPD | Lim |
| tert-Butyl Alcohol (TBA)   |       | 150.0  |         | 167.4  | 112  | 68-132 | 6   | 20  |
| Isopropyl Ether (DIPE)     |       | 30.00  |         | 27.39  | 91   | 65-120 | 6   | 20  |
|                            | FBE ) | 30.00  |         | 30.87  | 103  | 75-124 | 3   | 20  |
| Methyl tert-Amyl Ether (TA | AME ) | 30.00  |         | 33.64  | 112  | 77-120 | 3   | 20  |
| 1,1-Dichloroethene         |       | 30.00  |         | 34.57  | 115  | 80-132 | 7   | 20  |
| Benzene                    |       | 30.00  |         | 31.40  | 105  | 80-120 | 4   | 20  |
| Trichloroethene            |       | 30.00  |         | 29.60  | 99   | 80-120 | 2   | 20  |
| Toluene                    |       | 30.00  |         | 32.85  | 110  | 80-120 | 5   | 20  |
| Chlorobenzene              |       | 30.00  |         | 31.73  | 106  | 80-120 | 3   | 20  |
|                            |       |        |         |        |      |        |     |     |
| Surrogate                  | %REC  | Limits |         |        |      |        |     |     |
| Dibromofluoromethane       | 96    | 80-123 |         |        |      |        |     |     |
| 1,2-Dichloroethane-d4      | 96    | 79-134 |         |        |      |        |     |     |
| Toluene-d8                 | 100   | 80-120 |         |        |      |        |     |     |
| Bromofluorobenzene         | 96    | 80-122 |         |        |      |        |     |     |



| Gasoline by GC/MS |                   |           |           |  |  |  |
|-------------------|-------------------|-----------|-----------|--|--|--|
| Lab #:            | 195976            | Prep:     | EPA 5030B |  |  |  |
| Client:           | LFR Levine Fricke | Analysis: | EPA 8260B |  |  |  |
| Project#:         | 001-09567-01      |           |           |  |  |  |
| Matrix:           | Water             | Batch#:   | 127216    |  |  |  |
| Units:            | ug/L              | Analyzed: | 07/13/07  |  |  |  |
| Diln Fac:         | 1.000             |           |           |  |  |  |

Type:

Bromofluorobenzene

BS

94

Lab ID:

QC396080

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 1,500  | 1,352  | 90   | 70-130 |

| Surrogate               | %REC | Limits |
|-------------------------|------|--------|
| Dibromofluoromethane 9  | 93   | 80-123 |
| 1,2-Dichloroethane-d4 9 | 95   | 79-134 |
| Toluene-d8 9            | 99   | 80-120 |
| Bromofluorobenzene 9    | 98   | 80-122 |

| Type:     | BSD          |      |        | Lab ID: |        | QC396081 |        |     |     |
|-----------|--------------|------|--------|---------|--------|----------|--------|-----|-----|
|           | Analyte      |      | Spiked |         | Result | %REC     | Limits | RPD | Lim |
| Gasoline  | C7-C12       |      | 1,500  |         | 1,320  | 88       | 70-130 | 2   | 20  |
|           |              |      |        |         |        |          |        |     |     |
|           | Surrogate    | %REC | Limits |         |        |          |        |     |     |
| Dibromofl | uoromethane  | 96   | 80-123 |         |        |          |        |     |     |
| 1,2-Dichl | oroethane-d4 | 96   | 79-134 |         |        |          |        |     |     |
| Toluene-d | 8            | 98   | 80-120 |         |        |          |        |     |     |

80-122



| California Title 26 Metals |                   |           |              |  |
|----------------------------|-------------------|-----------|--------------|--|
| Lab #:                     | 195976            | Project#: | 001-09567-01 |  |
| Client:                    | LFR Levine Fricke | Location: | Hanson Radum |  |
| Field ID:                  | SED-1             | Diln Fac: | 1.000        |  |
| Lab ID:                    | 195976-002        | Sampled:  | 07/13/07     |  |
| Matrix:                    | Soil              | Received: | 07/13/07     |  |
| Units:                     | mg/Kg             | Analyzed: | 07/17/07     |  |
| Basis:                     | as received       |           |              |  |

| Analyte    | Result | RL    | Batch# Prepared | Prep      | Analysis  |
|------------|--------|-------|-----------------|-----------|-----------|
| Antimony   | ND     | 0.50  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Arsenic    | 3.6    | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Barium     | 120    | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Beryllium  | 0.26   | 0.10  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Cadmium    | ND     | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Chromium   | 43     | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Cobalt     | 9.0    | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Copper     | 23     | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Lead       | 5.0    | 0.15  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Mercury    | 0.040  | 0.020 | 127316 07/17/07 | METHOD    | EPA 7471A |
| Molybdenum | 0.26   | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Nickel     | 64     | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Selenium   | ND     | 0.50  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Silver     | ND     | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Thallium   | ND     | 0.50  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Vanadium   | 23     | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Zinc       | 42     | 1.0   | 127301 07/16/07 | EPA 3050B | EPA 6010B |



| California Title 26 Metals |                   |                 |              |          |
|----------------------------|-------------------|-----------------|--------------|----------|
| Lab #:                     | 195976            | Project#:       | 001-09567-01 |          |
| Client:                    | LFR Levine Fricke | Location:       | Hanson Radum |          |
| Field ID:                  | SED-2             | Diln Fac:       | 1.000        |          |
| Lab ID:                    | 195976-003        | Sampled:        | 07/13/07     |          |
| Matrix:                    | Soil              | Received:       | 07/13/07     |          |
| Units:                     | mg/Kg             | Analyzed:       | 07/17/07     |          |
| Basis:                     | as received       |                 |              |          |
| Analyte                    | Result            | RL Batch# Prepa | red Prep     | Analysis |

| Analyte    | Result | RL    | Batch# Prepared | Prep      | Analysis  |
|------------|--------|-------|-----------------|-----------|-----------|
| Antimony   | ND     | 0.50  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Arsenic    | 2.9    | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Barium     | 96     | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Beryllium  | 0.21   | 0.10  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Cadmium    | ND     | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Chromium   | 37     | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Cobalt     | 7.5    | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Copper     | 20     | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Lead       | 5.6    | 0.15  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Mercury    | 0.053  | 0.020 | 127316 07/17/07 | METHOD    | EPA 7471A |
| Molybdenum | 0.41   | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Nickel     | 55     | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Selenium   | ND     | 0.50  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Silver     | ND     | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Thallium   | ND     | 0.50  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Vanadium   | 19     | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Zinc       | 47     | 1.0   | 127301 07/16/07 | EPA 3050B | EPA 6010B |



| California Title 26 Metals |                   |           |              |  |
|----------------------------|-------------------|-----------|--------------|--|
| Lab #:                     | 195976            | Project#: | 001-09567-01 |  |
| Client:                    | LFR Levine Fricke | Location: | Hanson Radum |  |
| Field ID:                  | SED-3             | Diln Fac: | 1.000        |  |
| Lab ID:                    | 195976-004        | Sampled:  | 07/13/07     |  |
| Matrix:                    | Soil              | Received: | 07/13/07     |  |
| Units:                     | mg/Kg             | Analyzed: | 07/17/07     |  |
| Basis:                     | as received       |           |              |  |

| Analyte    | Result | RL    | Batch# Prepared | Prep      | Analysis  |
|------------|--------|-------|-----------------|-----------|-----------|
| Antimony   | ND     | 0.50  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Arsenic    | 2.9    | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Barium     | 120    | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Beryllium  | 0.28   | 0.10  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Cadmium    | ND     | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Chromium   | 44     | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Cobalt     | 8.6    | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Copper     | 32     | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Lead       | 8.5    | 0.15  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Mercury    | 0.065  | 0.020 | 127316 07/17/07 | METHOD    | EPA 7471A |
| Molybdenum | 0.58   | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Nickel     | 67     | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Selenium   | ND     | 0.50  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Silver     | ND     | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Thallium   | ND     | 0.50  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Vanadium   | 22     | 0.25  | 127301 07/16/07 | EPA 3050B | EPA 6010B |
| Zinc       | 70     | 1.0   | 127301 07/16/07 | EPA 3050B | EPA 6010B |



|           | Cali              | fornia T | itle 26 Metals  |              |           |
|-----------|-------------------|----------|-----------------|--------------|-----------|
| Lab #:    | 195976            |          | Project#:       | 001-09567-01 |           |
| Client:   | LFR Levine Fricke |          | Location:       | Hanson Radum |           |
| Field ID: | SED-4             |          | Diln Fac:       | 1.000        |           |
| Lab ID:   | 195976-005        |          | Sampled:        | 07/13/07     |           |
| Matrix:   | Soil              |          | Received:       | 07/13/07     |           |
| Units:    | mg/Kg             |          | Analyzed:       | 07/17/07     |           |
| Basis:    | as received       |          |                 |              |           |
| Analyte   | Result            | RL       | Batch# Prepared | l Prep       | Analysis  |
| Antimony  | 0.57              | 0.50     | 127301 07/16/07 | 7 EPA 3050B  | EPA 6010B |
| Arsenic   | 3.4               | 0.25     | 127301 07/16/07 | 7 EPA 3050B  | EPA 6010B |
| Barium    | 140               | 0.25     | 127301 07/16/07 | 7 EPA 3050B  | EPA 6010B |
| Beryllium | 0.31              | 0.10     | 127301 07/16/07 | 7 EPA 3050B  | EPA 6010B |

| Barium     | 140   | 0.25  | 12/301 0//16/07 EPA 3050B | EPA 6010B |
|------------|-------|-------|---------------------------|-----------|
| Beryllium  | 0.31  | 0.10  | 127301 07/16/07 EPA 3050B | EPA 6010B |
| Cadmium    | ND    | 0.25  | 127301 07/16/07 EPA 3050B | EPA 6010B |
| Chromium   | 49    | 0.25  | 127301 07/16/07 EPA 3050B | EPA 6010B |
| Cobalt     | 10    | 0.25  | 127301 07/16/07 EPA 3050B | EPA 6010B |
| Copper     | 33    | 0.25  | 127301 07/16/07 EPA 3050B | EPA 6010B |
| Lead       | 7.6   | 0.15  | 127301 07/16/07 EPA 3050B | EPA 6010B |
| Mercury    | 0.051 | 0.020 | 127316 07/17/07 METHOD    | EPA 7471A |
| Molybdenum | 0.33  | 0.25  | 127301 07/16/07 EPA 3050B | EPA 6010B |
| Nickel     | 76    | 0.25  | 127301 07/16/07 EPA 3050B | EPA 6010B |
| Selenium   | ND    | 0.50  | 127301 07/16/07 EPA 3050B | EPA 6010B |
| Silver     | ND    | 0.25  | 127301 07/16/07 EPA 3050B | EPA 6010B |
| Thallium   | ND    | 0.50  | 127301 07/16/07 EPA 3050B | EPA 6010B |
| Vanadium   | 25    | 0.25  | 127301 07/16/07 EPA 3050B | EPA 6010B |
| Zinc       | 59    | 1.0   | 127301 07/16/07 EPA 3050B | EPA 6010B |



| California Title 26 Metals |                   |           |              |  |  |
|----------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                     | 195976            | Location: | Hanson Radum |  |  |
| Client:                    | LFR Levine Fricke | Prep:     | EPA 3050B    |  |  |
| Project#:                  | 001-09567-01      | Analysis: | EPA 6010B    |  |  |
| Type:                      | BLANK             | Diln Fac: | 1.000        |  |  |
| Lab ID:                    | QC396506          | Batch#:   | 127301       |  |  |
| Matrix:                    | Soil              | Prepared: | 07/16/07     |  |  |
| Units:                     | mg/Kg             | Analyzed: | 07/17/07     |  |  |
| Basis:                     | as received       |           |              |  |  |

| Analyte    | Result | RL   |  |
|------------|--------|------|--|
| Antimony   | ND     | 0.50 |  |
| Arsenic    | ND     | 0.25 |  |
| Barium     | ND     | 0.25 |  |
| Beryllium  | ND     | 0.10 |  |
| Cadmium    | ND     | 0.25 |  |
| Chromium   | ND     | 0.25 |  |
| Cobalt     | ND     | 0.25 |  |
| Copper     | ND     | 0.25 |  |
| Lead       | ND     | 0.15 |  |
| Molybdenum | ND     | 0.25 |  |
| Nickel     | ND     | 0.25 |  |
| Selenium   | ND     | 0.50 |  |
| Silver     | ND     | 0.25 |  |
| Thallium   | ND     | 0.50 |  |
| Vanadium   | ND     | 0.25 |  |
| Zinc       | ND     | 1.0  |  |

ND= Not Detected RL= Reporting Limit Page 1 of 1



| California Title 26 Metals               |                                             |                                   |                                        |  |
|------------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|--|
| Lab #:<br>Client:<br>Project#:           | 195976<br>LFR Levine Fricke<br>001-09567-01 | Location:<br>Prep:<br>Analysis:   | Hanson Radum<br>EPA 3050B<br>EPA 6010B |  |
| Matrix:<br>Units:<br>Basis:<br>Diln Fac: | Soil<br>mg/Kg<br>as received<br>1.000       | Batcĥ#:<br>Prepared:<br>Analyzed: | 127301<br>07/16/07<br>07/17/07         |  |

| Type: BS   | Lab ID: | QC3965 | 07   |        |
|------------|---------|--------|------|--------|
| Analyte    | Spiked  | Result | %REC | Limits |
| Antimony   | 100.0   | 95.47  | 95   | 80-120 |
| Arsenic    | 50.00   | 49.53  | 99   | 80-120 |
| Barium     | 100.0   | 98.42  | 98   | 80-120 |
| Beryllium  | 2.500   | 2.528  | 101  | 80-120 |
| Cadmium    | 10.00   | 9.816  | 98   | 80-120 |
| Chromium   | 100.0   | 95.87  | 96   | 80-120 |
| Cobalt     | 25.00   | 23.45  | 94   | 80-120 |
| Copper     | 12.50   | 12.33  | 99   | 80-120 |
| Lead       | 100.0   | 94.94  | 95   | 80-120 |
| Molybdenum | 20.00   | 20.25  | 101  | 80-120 |
| Nickel     | 25.00   | 23.43  | 94   | 80-120 |
| Selenium   | 50.00   | 47.77  | 96   | 80-120 |
| Silver     | 10.00   | 9.547  | 95   | 80-120 |
| Thallium   | 50.00   | 48.84  | 98   | 80-120 |
| Vanadium   | 25.00   | 24.20  | 97   | 80-120 |
| Zinc       | 25.00   | 24.38  | 98   | 80-120 |

| Type:      | BSD     | Lab ID: | QC396  | 508  |        |     |     |
|------------|---------|---------|--------|------|--------|-----|-----|
|            | Analyte | Spiked  | Result | %REC | Limits | RPD | Lim |
| Antimony   |         | 100.0   | 96.71  | 97   | 80-120 | 1   | 20  |
| Arsenic    |         | 50.00   | 50.97  | 102  | 80-120 | 3   | 20  |
| Barium     |         | 100.0   | 100.1  | 100  | 80-120 | 2   | 20  |
| Beryllium  |         | 2.500   | 2.577  | 103  | 80-120 | 2   | 20  |
| Cadmium    |         | 10.00   | 9.956  | 100  | 80-120 | 1   | 20  |
| Chromium   |         | 100.0   | 97.81  | 98   | 80-120 | 2   | 20  |
| Cobalt     |         | 25.00   | 23.84  | 95   | 80-120 | 2   | 20  |
| Copper     |         | 12.50   | 12.56  | 101  | 80-120 | 2   | 20  |
| Lead       |         | 100.0   | 96.64  | 97   | 80-120 | 2   | 20  |
| Molybdenum |         | 20.00   | 20.67  | 103  | 80-120 | 2   | 20  |
| Nicĥel     |         | 25.00   | 23.85  | 95   | 80-120 | 2   | 20  |
| Selenium   |         | 50.00   | 49.16  | 98   | 80-120 | 3   | 20  |
| Silver     |         | 10.00   | 9.798  | 98   | 80-120 | 3   | 20  |
| Thallium   |         | 50.00   | 49.31  | 99   | 80-120 | 1   | 20  |
| Vanadium   |         | 25.00   | 24.64  | 99   | 80-120 | 2   | 20  |
| Zinc       |         | 25.00   | 24.94  | 100  | 80-120 | 2   | 20  |



|             | California Title 26 Metals |           |              |  |  |  |
|-------------|----------------------------|-----------|--------------|--|--|--|
| Lab #:      | 195976                     | Location: | Hanson Radum |  |  |  |
| Client:     | LFR Levine Fricke          | Prep:     | EPA 3050B    |  |  |  |
| Project#:   | 001-09567-01               | Analysis: | EPA 6010B    |  |  |  |
| Field ID:   | ZZZZZZZZZ                  | Batch#:   | 127301       |  |  |  |
| MSS Lab ID: | 195907-001                 | Sampled:  | 07/11/07     |  |  |  |
| Matrix:     | Soil                       | Received: | 07/11/07     |  |  |  |
| Units:      | mg/Kg                      | Prepared: | 07/16/07     |  |  |  |
| Basis:      | as received                | Analyzed: | 07/17/07     |  |  |  |
| Diln Fac:   | 1.000                      | -         |              |  |  |  |

| Туре:      | MS        | Lab ID:    | QC396509 |      |        |
|------------|-----------|------------|----------|------|--------|
| Analyte    | MSS Resul | t Spiked   | Result   | %REC | Limits |
| Antimony   | 0.6       | 657 99.01  | 38.85    | 39   | 1-129  |
| Arsenic    | 14.3      | 4 49.50    | 59.38    | 91   | 72-120 |
| Barium     | 91.9      | 1 99.01    | 191.5    | 101  | 49-138 |
| Beryllium  | 0.3       | 453 2.475  | 5 2.653  | 93   | 80-120 |
| Cadmium    | 3.9       | 69 9.901   | L 12.90  | 90   | 72-120 |
| Chromium   | 15.0      | 9 99.01    | 103.1    | 89   | 63-122 |
| Cobalt     | 6.4       | 20 24.75   | 26.93    | 83   | 61-120 |
| Copper     | 17.9      | 7 12.38    | 29.61    | 94   | 59-137 |
| Lead       | 9.1       | 50 99.01   | 93.33    | 85   | 55-122 |
| Molybdenum | 0.6       | 441 19.80  | 16.78    | 81   | 66-120 |
| Nickel     | 28.0      | 5 24.75    | 45.48    | 70   | 45-139 |
| Selenium   | 0.0       | 5165 49.50 | 44.00    | 89   | 73-120 |
| Silver     | <0.0      | 5150 9.901 | L 9.120  | 92   | 53-120 |
| Thallium   | 0.2       | 400 49.50  | 43.05    | 86   | 64-120 |
| Vanadium   | 23.2      | 3 24.75    | 45.99    | 92   | 55-139 |
| Zinc       | 95.9      | 9 24.75    | 122.8    | 108  | 49-140 |

| Type:      | MSD    | Lab ID: | QC3965 | 10    |        |     |     |
|------------|--------|---------|--------|-------|--------|-----|-----|
| A          | nalyte | Spiked  | Result | %REC  | Limits | RPD | Lim |
| Antimony   |        | 94.34   | 36.30  | 38    | 1-129  | 2   | 23  |
| Arsenic    |        | 47.17   | 55.52  | 87    | 72-120 | 3   | 20  |
| Barium     |        | 94.34   | 164.6  | 77    | 49-138 | 13  | 23  |
| Beryllium  |        | 2.358   | 2.503  | 91    | 80-120 | 2   | 20  |
| Cadmium    |        | 9.434   | 12.64  | 92    | 72-120 | 1   | 20  |
| Chromium   |        | 94.34   | 97.60  | 87    | 63-122 | 1   | 20  |
| Cobalt     |        | 23.58   | 24.80  | 78    | 61-120 | 4   | 23  |
| Copper     |        | 11.79   | 27.54  | 81    | 59-137 | 5   | 20  |
| Lead       |        | 94.34   | 90.88  | 87    | 55-122 | 2   | 26  |
| Molybdenum |        | 18.87   | 16.44  | 84    | 66-120 | 3   | 20  |
| Nickel     |        | 23.58   | 39.23  | 47    | 45-139 | 13  | 26  |
| Selenium   |        | 47.17   | 43.06  | 91    | 73-120 | 3   | 20  |
| Silver     |        | 9.434   | 8.723  | 92    | 53-120 | 0   | 22  |
| Thallium   |        | 47.17   | 42.37  | 89    | 64-120 | 3   | 20  |
| Vanadium   |        | 23.58   | 42.39  | 81    | 55-139 | 6   | 20  |
| Zinc       |        | 23.58   | 114.1  | 77 NM | 49-140 | 6   | 23  |



| California Title 26 Metals |                   |           |              |  |  |
|----------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                     | 195976            | Location: | Hanson Radum |  |  |
| Client:                    | LFR Levine Fricke | Prep:     | METHOD       |  |  |
| Project#:                  | 001-09567-01      | Analysis: | EPA 7471A    |  |  |
| Analyte:                   | Mercury           | Basis:    | as received  |  |  |
| Type:                      | BLANK             | Diln Fac: | 1.000        |  |  |
| Lab ID:                    | QC396569          | Batch#:   | 127316       |  |  |
| Matrix:                    | Soil              | Prepared: | 07/17/07     |  |  |
| Units:                     | mg/Kg             | Analyzed: | 07/17/07     |  |  |
|                            |                   |           |              |  |  |
| Result                     | RL                |           |              |  |  |

| Result | RL    |  |
|--------|-------|--|
| ND     | 0.020 |  |

ND= Not Detected RL= Reporting Limit Page 1 of 1



| California Title 26 Metals |                   |           |              |  |  |
|----------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                     | 195976            | Location: | Hanson Radum |  |  |
| Client:                    | LFR Levine Fricke | Prep:     | METHOD       |  |  |
| Project#:                  | 001-09567-01      | Analysis: | EPA 7471A    |  |  |
| Analyte:                   | Mercury           | Diln Fac: | 1.000        |  |  |
| Matrix:                    | Soil              | Batch#:   | 127316       |  |  |
| Units:                     | mg/Kg             | Prepared: | 07/17/07     |  |  |
| Basis:                     | as received       | Analyzed: | 07/17/07     |  |  |
|                            |                   |           |              |  |  |

| Туре | Lab ID   | Spiked | Result | %REC | Limits | RPD | Lim |
|------|----------|--------|--------|------|--------|-----|-----|
| BS   | QC396570 | 0.5000 | 0.4840 | 97   | 80-120 |     |     |
| BSD  | QC396571 | 0.5000 | 0.4740 | 95   | 80-120 | 2   | 20  |



QC396574

MSD

|             | Califo            | ornia Title 26 Me | etals  |          |        |     |     |
|-------------|-------------------|-------------------|--------|----------|--------|-----|-----|
| Lab #:      | 195976            | Location:         | Hans   | on Radum | 1      |     |     |
| Client:     | LFR Levine Fricke | Prep:             | METH   | OD       |        |     |     |
| Project#:   | 001-09567-01      | Analysis:         | EPA    | 7471A    |        |     |     |
| Analyte:    | Mercury           | Diln Fac:         | 1.00   | 0        |        |     |     |
| Field ID:   | ZZZZZZZZZ         | Batch#:           | 1273   | 16       |        |     |     |
| MSS Lab ID: | 195902-001        | Sampled:          | 07/1   | 1/07     |        |     |     |
| Matrix:     | Soil              | Received:         | 07/1   | 1/07     |        |     |     |
| Units:      | mg/Kg             | Prepared:         | 07/1   | 7/07     |        |     |     |
| Basis:      | as received       | Analyzed:         | 07/1   | 7/07     |        |     |     |
|             |                   |                   |        |          |        |     |     |
| Type Lab ID | MSS Result        | Spiked            | Result | %REC     | Limits | RPD | Lim |
| MS QC396573 | <0.005759         | 0.5000            | 0.5070 | 101      | 67-143 |     |     |

0.4032

0.3919

97

23

67-143 4



| Dissolved California Title 26 Metals |                   |           |              |  |  |  |
|--------------------------------------|-------------------|-----------|--------------|--|--|--|
| Lab #:                               | 195976            | Project#: | 001-09567-01 |  |  |  |
| Client:                              | LFR Levine Fricke | Location: | Hanson Radum |  |  |  |
| Field ID:                            | PW-2              | Diln Fac: | 1.000        |  |  |  |
| Lab ID:                              | 195976-001        | Sampled:  | 07/13/07     |  |  |  |
| Matrix:                              | Filtrate          | Received: | 07/13/07     |  |  |  |
| Units:                               | ug/L              |           |              |  |  |  |

| Analyte    | Result | RL   | Batch# | Prepared | Analyzed |      | Prep  | A   | nalysis |
|------------|--------|------|--------|----------|----------|------|-------|-----|---------|
| Antimony   | ND     | 10   | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA | 6010B   |
| Arsenic    | 5.5    | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA | 6010B   |
| Barium     | 170    | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA | 6010B   |
| Beryllium  | ND     | 2.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA | 6010B   |
| Cadmium    | ND     | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA | 6010B   |
| Chromium   | ND     | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA | 6010B   |
| Cobalt     | ND     | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA | 6010B   |
| Copper     | ND     | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA | 6010B   |
| Lead       | ND     | 3.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA | 6010B   |
| Mercury    | ND     | 0.20 | 127273 | 07/16/07 | 07/16/07 | METH | IOD   | EPA | 7470A   |
| Molybdenum | ND     | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA | 6010B   |
| Nickel     | 6.0    | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA | 6010B   |
| Selenium   | ND     | 10   | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA | 6010B   |
| Silver     | ND     | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA | 6010B   |
| Thallium   | ND     | 10   | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA | 6010B   |
| Vanadium   | ND     | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA | 6010B   |
| Zinc       | 24     | 20   | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA | 6010B   |



| Lab #:    | 195976            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | METHOD       |  |
| Project#: | 001-09567-01      | Analysis: | EPA 7470A    |  |
| Analyte:  | Mercury           | Diln Fac: | 1.000        |  |
| Type:     | BLANK             | Batch#:   | 127273       |  |
| Lab ID:   | QC396356          | Prepared: | 07/16/07     |  |
| Matrix:   | Filtrate          | Analyzed: | 07/16/07     |  |
| Units:    | ug/L              |           |              |  |

| Result | RL   |  |
|--------|------|--|
| ND     | 0.20 |  |

ND= Not Detected RL= Reporting Limit Page 1 of 1



| Dissolved California Title 26 Metals |                   |           |              |  |  |
|--------------------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                               | 195976            | Location: | Hanson Radum |  |  |
| Client:                              | LFR Levine Fricke | Prep:     | METHOD       |  |  |
| Project#:                            | 001-09567-01      | Analysis: | EPA 7470A    |  |  |
| Analyte:                             | Mercury           | Batch#:   | 127273       |  |  |
| Matrix:                              | Filtrate          | Prepared: | 07/16/07     |  |  |
| Units:                               | ug/L              | Analyzed: | 07/16/07     |  |  |
| Diln Fac:                            | 1.000             |           |              |  |  |

| Туре | Lab ID   | Spiked | Result | %REC | Limits | RPD | Lim |
|------|----------|--------|--------|------|--------|-----|-----|
| BS   | QC396357 | 5.000  | 5.180  | 104  | 80-120 |     |     |
| BSD  | QC396358 | 5.000  | 4.980  | 100  | 80-120 | 4   | 20  |



| Lab #:      | 195976            | Location: | Hanson Radum |  |
|-------------|-------------------|-----------|--------------|--|
| Client:     | LFR Levine Fricke | Prep:     | METHOD       |  |
| Project#:   | 001-09567-01      | Analysis: | EPA 7470A    |  |
| Analyte:    | Mercury           | Batch#:   | 127273       |  |
| Field ID:   | PW-2              | Sampled:  | 07/13/07     |  |
| MSS Lab ID: | 195976-001        | Received: | 07/13/07     |  |
| Matrix:     | Filtrate          | Prepared: | 07/16/07     |  |
| Units:      | ug/L              | Analyzed: | 07/16/07     |  |
| Diln Fac:   | 1.000             |           |              |  |

| Type | Lab ID   | MSS Result | Spiked | Result | %REC | Limits | RPD | Lim |
|------|----------|------------|--------|--------|------|--------|-----|-----|
| MS   | QC396360 | <0.02083   | 5.000  | 5.510  | 110  | 80-123 |     |     |
| MSD  | QC396361 |            | 5.000  | 5.560  | 111  | 80-123 | 1   | 20  |



| Dissolved California Title 26 Metals |                   |           |              |  |  |
|--------------------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                               | 195976            | Location: | Hanson Radum |  |  |
| Client:                              | LFR Levine Fricke | Prep:     | EPA 3010A    |  |  |
| Project#:                            | 001-09567-01      | Analysis: | EPA 6010B    |  |  |
| Type:                                | BLANK             | Diln Fac: | 1.000        |  |  |
| Lab ID:                              | QC396613          | Batch#:   | 127328       |  |  |
| Matrix:                              | Water             | Prepared: | 07/17/07     |  |  |
| Units:                               | ug/L              | Analyzed: | 07/17/07     |  |  |

| Analyte    | Result | RL  |  |
|------------|--------|-----|--|
| Antimony   | ND     | 10  |  |
| Arsenic    | ND     | 5.0 |  |
| Barium     | ND     | 5.0 |  |
| Beryllium  | ND     | 2.0 |  |
| Cadmium    | ND     | 5.0 |  |
| Chromium   | ND     | 5.0 |  |
| Cobalt     | ND     | 5.0 |  |
| Copper     | ND     | 5.0 |  |
| Lead       | ND     | 3.0 |  |
| Molybdenum | ND     | 5.0 |  |
| Nickel     | ND     | 5.0 |  |
| Selenium   | ND     | 10  |  |
| Silver     | ND     | 5.0 |  |
| Thallium   | ND     | 10  |  |
| Vanadium   | ND     | 5.0 |  |
| Zinc       | ND     | 20  |  |



| Dissolved California Title 26 Metals |                   |           |              |  |  |
|--------------------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                               | 195976            | Location: | Hanson Radum |  |  |
| Client:                              | LFR Levine Fricke | Prep:     | EPA 3010A    |  |  |
| Project#:                            | 001-09567-01      | Analysis: | EPA 6010B    |  |  |
| Matrix:                              | Water             | Batch#:   | 127328       |  |  |
| Units:                               | ug/L              | Prepared: | 07/17/07     |  |  |
| Diln Fac:                            | 1.000             | Analyzed: | 07/17/07     |  |  |

| Type: BS   | Lab    | ID: QC39 | 6614 |        |
|------------|--------|----------|------|--------|
| Analyte    | Spiked | Result   | %REC | Limits |
| Antimony   | 500.0  | 490.2    | 98   | 80-120 |
| Arsenic    | 100.0  | 98.40    | 98   | 80-120 |
| Barium     | 2,000  | 1,969    | 98   | 80-120 |
| Beryllium  | 50.00  | 53.58    | 107  | 80-120 |
| Cadmium    | 50.00  | 50.37    | 101  | 80-120 |
| Chromium   | 200.0  | 192.8    | 96   | 80-120 |
| Cobalt     | 500.0  | 480.3    | 96   | 80-120 |
| Copper     | 250.0  | 231.8    | 93   | 80-120 |
| Lead       | 100.0  | 97.59    | 98   | 80-120 |
| Molybdenum | 400.0  | 385.3    | 96   | 80-120 |
| Nickel     | 500.0  | 488.5    | 98   | 80-120 |
| Selenium   | 100.0  | 100.6    | 101  | 80-120 |
| Silver     | 50.00  | 48.79    | 98   | 80-120 |
| Thallium   | 100.0  | 102.1    | 102  | 80-120 |
| Vanadium   | 500.0  | 488.3    | 98   | 80-120 |
| Zinc       | 500.0  | 505.7    | 101  | 80-120 |

| Type:      | BSD     | Lab 1  | ID: QC396 | 5615 |        |     |     |
|------------|---------|--------|-----------|------|--------|-----|-----|
|            | Analyte | Spiked | Result    | %REC | Limits | RPD | Lim |
| Antimony   |         | 500.0  | 493.8     | 99   | 80-120 | 1   | 20  |
| Arsenic    |         | 100.0  | 98.72     | 99   | 80-120 | 0   | 20  |
| Barium     |         | 2,000  | 1,993     | 100  | 80-120 | 1   | 20  |
| Beryllium  |         | 50.00  | 54.31     | 109  | 80-120 | 1   | 20  |
| Cadmium    |         | 50.00  | 50.87     | 102  | 80-120 | 1   | 20  |
| Chromium   |         | 200.0  | 195.3     | 98   | 80-120 | 1   | 20  |
| Cobalt     |         | 500.0  | 487.2     | 97   | 80-120 | 1   | 20  |
| Copper     |         | 250.0  | 234.7     | 94   | 80-120 | 1   | 20  |
| Lead       |         | 100.0  | 98.50     | 98   | 80-120 | 1   | 20  |
| Molybdenum |         | 400.0  | 389.1     | 97   | 80-120 | 1   | 20  |
| Nicĥel     |         | 500.0  | 494.7     | 99   | 80-120 | 1   | 20  |
| Selenium   |         | 100.0  | 102.1     | 102  | 80-120 | 1   | 20  |
| Silver     |         | 50.00  | 49.84     | 100  | 80-120 | 2   | 20  |
| Thallium   |         | 100.0  | 103.2     | 103  | 80-120 | 1   | 20  |
| Vanadium   |         | 500.0  | 496.4     | 99   | 80-120 | 2   | 20  |
| Zinc       |         | 500.0  | 512.3     | 102  | 80-120 | 1   | 20  |



| Dissolved California Title 26 Metals |                   |           |              |  |  |
|--------------------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                               | 195976            | Location: | Hanson Radum |  |  |
| Client:                              | LFR Levine Fricke | Prep:     | EPA 3010A    |  |  |
| Project#:                            | 001-09567-01      | Analysis: | EPA 6010B    |  |  |
| Field ID:                            | ZZZZZZZZZ         | Batch#:   | 127328       |  |  |
| MSS Lab ID:                          | 195996-001        | Sampled:  | 07/16/07     |  |  |
| Matrix:                              | Water             | Received: | 07/16/07     |  |  |
| Units:                               | ug/L              | Prepared: | 07/17/07     |  |  |
| Diln Fac:                            | 1.000             | Analyzed: | 07/17/07     |  |  |

| Type: MS   |            | Lab ID: | QC396616 |      |        |
|------------|------------|---------|----------|------|--------|
| Analyte    | MSS Result | Spiked  | Result   | %REC | Limits |
| Antimony   | 4.239      | 500.0   | 528.3    | 105  | 78-122 |
| Arsenic    | 10.22      | 100.0   | 116.2    | 106  | 79-128 |
| Barium     | 116.7      | 2,000   | 2,050    | 97   | 80-120 |
| Beryllium  | 0.4010     | 50.00   | 55.29    | 110  | 80-122 |
| Cadmium    | <0.3555    | 50.00   | 50.10    | 100  | 80-121 |
| Chromium   | 34.56      | 200.0   | 227.3    | 96   | 80-120 |
| Cobalt     | 1.742      | 500.0   | 479.6    | 96   | 80-120 |
| Copper     | 120.4      | 250.0   | 372.8    | 101  | 80-120 |
| Lead       | <1.150     | 100.0   | 89.51    | 90   | 70-120 |
| Molybdenum | 7.493      | 400.0   | 404.6    | 99   | 80-120 |
| Nickel     | 25.49      | 500.0   | 502.3    | 95   | 78-120 |
| Selenium   | 3.711      | 100.0   | 111.0    | 107  | 78-132 |
| Silver     | 1.955      | 50.00   | 53.72    | 104  | 72-123 |
| Thallium   | <1.131     | 100.0   | 92.49    | 92   | 72-120 |
| Vanadium   | 45.42      | 500.0   | 550.1    | 101  | 80-120 |
| Zinc       | 107.6      | 500.0   | 614.0    | 101  | 80-124 |

| Type: MSD  | Lab ID | QC39   | 6617 |        |     |     |
|------------|--------|--------|------|--------|-----|-----|
| Analyte    | Spiked | Result | %REC | Limits | RPD | Lim |
| Antimony   | 500.0  | 531.6  | 105  | 78-122 | 1   | 20  |
| Arsenic    | 100.0  | 116.5  | 106  | 79-128 | 0   | 20  |
| Barium     | 2,000  | 2,078  | 98   | 80-120 | 1   | 20  |
| Beryllium  | 50.00  | 55.40  | 110  | 80-122 | 0   | 20  |
| Cadmium    | 50.00  | 49.91  | 100  | 80-121 | 0   | 20  |
| Chromium   | 200.0  | 228.0  | 97   | 80-120 | 0   | 20  |
| Cobalt     | 500.0  | 481.3  | 96   | 80-120 | 0   | 20  |
| Copper     | 250.0  | 375.2  | 102  | 80-120 | 1   | 20  |
| Lead       | 100.0  | 90.49  | 90   | 70-120 | 1   | 20  |
| Molybdenum | 400.0  | 408.8  | 100  | 80-120 | 1   | 20  |
| Nickel     | 500.0  | 504.2  | 96   | 78-120 | 0   | 20  |
| Selenium   | 100.0  | 113.7  | 110  | 78-132 | 2   | 20  |
| Silver     | 50.00  | 54.61  | 105  | 72-123 | 2   | 20  |
| Thallium   | 100.0  | 92.63  | 93   | 72-120 | 0   | 20  |
| Vanadium   | 500.0  | 550.1  | 101  | 80-120 | 0   | 20  |
| Zinc       | 500.0  | 619.3  | 102  | 80-124 | 1   | 20  |



| <u>Sample ID</u> | <u>Lab ID</u> |
|------------------|---------------|
| EB-31(B)-GGW     | 196019-001    |
| EB-31(B)-5.5     | 196019-002    |
| EB-31(B)-10.5    | 196019-003    |
| EB-31(B)-15.5    | 196019-004    |
| EB-31(B)-20.5    | 196019-005    |
| EB-31(C)-5       | 196019-006    |
| EB-31(C)-10.5    | 196019-007    |
| EB-31(C)-15.5    | 196019-008    |
| EB-31(C)-20      | 196019-009    |

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Signature: Project Manager Signature:

Operations Manager

Date: <u>07/25/2007</u>

Date: 07/26/2007

NELAP # 01107CA

Page 1 of \_\_\_\_



### CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 196019 LFR Levine Fricke 001-09567-01 Hanson Radum 07/16/07 07/16/07

This hardcopy data package contains sample and QC results for eight soil samples and one water sample, requested for the above referenced project on 07/16/07. The samples were received cold and intact. All data were e-mailed to Katrin Schliewen on 07/23/07.

### TPH-Extractables by GC (EPA 8015B) Water:

No analytical problems were encountered.

### TPH-Extractables by GC (EPA 8015B) Soil:

No analytical problems were encountered.

#### Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.



|                                                 |                          | Total I | Extracta | ble Hydrocarbo  | ns           |  |
|-------------------------------------------------|--------------------------|---------|----------|-----------------|--------------|--|
| Lab #:                                          | 196019                   |         |          | Location:       | Hanson Radum |  |
| Client:                                         | LFR Levine F:            | ricke   |          | Prep:           | EPA 3520C    |  |
| Project#:                                       | 001-09567-01             |         |          | Analysis:       | EPA 8015B    |  |
| Field ID:                                       | EB-31(B)-GGW             |         |          | Sampled:        | 07/16/07     |  |
| Matrix:                                         | Water                    |         |          | Received:       | 07/16/07     |  |
| Units:                                          | ug/L                     |         |          | Prepared:       | 07/17/07     |  |
| Diln Fac:                                       | 1.000                    |         |          | Analyzed:       | 07/20/07     |  |
| Batch#:                                         | 127341                   |         |          | -               |              |  |
| Type:<br>Lab ID:                                | SAMPLE<br>196019-001     |         |          | Cleanup Method: | EPA 3630C    |  |
|                                                 | alyte                    |         | Result   | RL              |              |  |
| Diesel C10-C2                                   | 4                        | NI      | )        | 50              |              |  |
| Motor Oil C24                                   | -C36                     | NI      | )        | 300             |              |  |
| Sur                                             | rogate                   | %REC    | Limits   |                 |              |  |
| Hexacosane                                      |                          | 91      | 61-134   |                 |              |  |
|                                                 |                          |         |          |                 |              |  |
| Type:<br>Lab ID:                                | BLANK<br>QC396668        |         |          | Cleanup Method: | EPA 3630C    |  |
| Lab ID:                                         | QC396668<br><b>alyte</b> |         | Result   | RL              | EPA 3630C    |  |
| Lab ID:<br>An<br>Diesel C10-C2                  | QC396668<br>alyte<br>4   | NE      |          | -<br>RL<br>50   | EPA 3630C    |  |
| Lab ID:                                         | QC396668<br>alyte<br>4   |         | )        | RL              | EPA 3630C    |  |
| Lab ID:<br>An<br>Diesel C10-C2<br>Motor Oil C24 | QC396668<br>alyte<br>4   | NĽ      | )        | -<br>RL<br>50   | EPA 3630C    |  |



| Total Extractable Hydrocarbons |                   |           |              |  |  |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|--|--|
| Lab #:                         | 196019            | Location: | Hanson Radum |  |  |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3520C    |  |  |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |  |  |
| Туре:                          | LCS               | Diln Fac: | 1.000        |  |  |  |  |
| Lab ID:                        | QC396669          | Batch#:   | 127341       |  |  |  |  |
| Matrix:                        | Water             | Prepared: | 07/17/07     |  |  |  |  |
| Units:                         | ug/L              | Analyzed: | 07/20/07     |  |  |  |  |

Cleanup Method: EPA 3630C

| Analyte        |      | Spiked | Result | %REC | Limits |
|----------------|------|--------|--------|------|--------|
| Diesel C10-C24 |      | 2,500  | 2,469  | 99   | 58-130 |
|                |      |        |        |      |        |
| Surrogate      | %REC | Limits |        |      |        |
| Hexacosane     | 107  | 61-134 |        |      |        |



| Total Extractable Hydrocarbons |                   |           |              |  |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|--|
| Lab #:                         | 196019            | Location: | Hanson Radum |  |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3520C    |  |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |  |
| Field ID:                      | ZZZZZZZZZ         | Batch#:   | 127341       |  |  |  |
| MSS Lab ID:                    | 195966-005        | Sampled:  | 07/12/07     |  |  |  |
| Matrix:                        | Water             | Received: | 07/13/07     |  |  |  |
| Units:                         | ug/L              | Prepared: | 07/17/07     |  |  |  |
| Diln Fac:                      | 1.000             | Analyzed: | 07/19/07     |  |  |  |

| Type:     | MS        |          |        | Lab ID: | Q  | C396670   |       |           |
|-----------|-----------|----------|--------|---------|----|-----------|-------|-----------|
|           | Analyte   | MSS Resu | lt     | Spiked  | 1  | Result    | %RE(  | C Limits  |
| Diesel Cl | 0-C24     | 338,000  |        | 2,500   | 25 | 8,900 >LR | -3166 | NM 57-134 |
|           |           |          |        |         |    |           |       |           |
|           | Surrogate | %REC     | Limits |         |    |           |       |           |
| Hexacosan | e         | 115      | 61-134 |         |    |           |       |           |
|           |           |          |        |         |    |           |       |           |

| Type:    | MSD       |      |        | Lab ID: |           | QC396671 |    |        |     |     |
|----------|-----------|------|--------|---------|-----------|----------|----|--------|-----|-----|
|          | Analyte   | S    | piked  |         | Result    | %RE      | C  | Limits | RPD | Lim |
| Diesel C | C10-C24   | 2    | ,500   | 14      | 13,100 >L | R -7797  | NM | 57-134 | NC  | 32  |
|          |           | -    |        |         |           |          |    |        |     |     |
|          | Surrogate | %REC | Limits |         |           |          |    |        |     |     |
| Hexacosa | ine       | 115  | 61-134 |         |           |          |    |        |     |     |



|                                                                                                                                                        | Т                                                                                                    | otal Extracta                                                                                     | ble Hydrocarbo                                                                          | ns                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|
| Lab #:<br>Client:<br>Project#:                                                                                                                         | 196019<br>LFR Levine Fr<br>001-09567-01                                                              | icke                                                                                              | Location:<br>Prep:<br>Analysis:                                                         | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B               |
| Matrix:<br>Units:<br>Basis:                                                                                                                            | Soil<br>mg/Kg<br>as received                                                                         |                                                                                                   | Batch#:<br>Sampled:<br>Received:                                                        | 127346<br>07/16/07<br>07/16/07                          |
| Diln Fac:                                                                                                                                              | 1.000                                                                                                |                                                                                                   | Prepared:                                                                               | 07/17/07                                                |
| Field ID:<br>Type:<br>Lab ID:                                                                                                                          | EB-31(B)-5.5<br>SAMPLE<br>196019-002                                                                 |                                                                                                   | Analyzed:<br>Cleanup Method:                                                            | 07/20/07<br>EPA 3630C                                   |
| Ana                                                                                                                                                    | lyte                                                                                                 | Result                                                                                            | RL                                                                                      |                                                         |
| Diesel C10-C24<br>Motor Oil C24-0                                                                                                                      |                                                                                                      | 1.0 H<br>ND                                                                                       | НΥΖ 0.<br>5.                                                                            | 99<br>0                                                 |
|                                                                                                                                                        | ogate                                                                                                | %REC Limits                                                                                       |                                                                                         |                                                         |
| Hexacosane                                                                                                                                             |                                                                                                      | 73 40-127                                                                                         |                                                                                         |                                                         |
| Field ID:<br>Type:<br>Lab ID:                                                                                                                          | EB-31(B)-10.5<br>SAMPLE<br>196019-003                                                                |                                                                                                   | Analyzed:<br>Cleanup Method:                                                            | 07/20/07<br>EPA 3630C                                   |
| Ana<br>Diesel C10-C24                                                                                                                                  | lyte                                                                                                 | <b>Result</b><br>1.9 H                                                                            | RL                                                                                      | 99                                                      |
| Motor Oil C24-0                                                                                                                                        |                                                                                                      | ND                                                                                                | 5.                                                                                      |                                                         |
|                                                                                                                                                        | ogate                                                                                                | %REC Limits                                                                                       |                                                                                         |                                                         |
| нехасоsane                                                                                                                                             |                                                                                                      | 73 40-127                                                                                         |                                                                                         |                                                         |
| Hexacosane                                                                                                                                             |                                                                                                      | 73 40-127                                                                                         |                                                                                         |                                                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:                                                                                                            | EB-31(B)-15.5<br>SAMPLE<br>196019-004                                                                | 73 40-127                                                                                         | Analyzed:<br>Cleanup Method:                                                            | 07/20/07<br>EPA 3630C                                   |
| Field ID:<br>Type:<br>Lab ID:<br>Ana                                                                                                                   | SAMPLE<br>196019-004<br><b>lyte</b>                                                                  | Result                                                                                            | Cleanup Method:                                                                         | EPA 3630C                                               |
| Field ID:<br>Type:<br>Lab ID:                                                                                                                          | SAMPLE<br>196019-004<br>lyte                                                                         |                                                                                                   | Cleanup Method:<br>RL<br>0.                                                             | EPA 3630C<br>99                                         |
| Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0                                                                                     | SAMPLE<br>196019-004<br><b>lyte</b><br>C36                                                           | Result<br>ND<br>5.4 B                                                                             | Cleanup Method:<br>RL<br>0.                                                             | EPA 3630C<br>99                                         |
| Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0                                                                                     | SAMPLE<br>196019-004<br>lyte                                                                         | Result<br>ND                                                                                      | Cleanup Method:<br>RL<br>0.                                                             | EPA 3630C<br>99                                         |
| Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0                                                                                     | SAMPLE<br>196019-004<br><b>lyte</b><br>C36                                                           | Result<br>ND<br>5.4 F<br>%REC Limits                                                              | Cleanup Method:<br>RL<br>0.                                                             | EPA 3630C<br>99<br>0<br>07/19/07                        |
| Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Ana                               | SAMPLE<br>196019-004<br>lyte<br>C36<br>ogate<br>EB-31(B)-20.5<br>SAMPLE<br>196019-005<br>lyte        | Result           ND           5.4 F           %REC         Limits           96         40-127     | Cleanup Method:<br>RL<br>0.<br>H L 5.<br>Analyzed:<br>Cleanup Method:<br>RL             | EPA 3630C<br>99<br>0<br>0<br>07/19/07<br>EPA 3630C      |
| Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:                                      | SAMPLE<br>196019-004<br>lyte<br>C36<br>ogate<br>EB-31(B)-20.5<br>SAMPLE<br>196019-005<br>lyte        | Result           ND           5.4 F           %REC         Limits           96         40-127     | Cleanup Method:<br>RL<br>0.<br>H L 5.<br>Analyzed:<br>Cleanup Method:<br>RL<br>H Y Z 1. | EPA 3630C<br>99<br>0<br>0<br>07/19/07<br>EPA 3630C<br>0 |
| Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0 | SAMPLE<br>196019-004<br>lyte<br>C36<br>ogate<br>EB-31(B)-20.5<br>SAMPLE<br>196019-005<br>lyte<br>C36 | Result           ND           5.4 H           %REC Limits           96         40-127             | Cleanup Method:<br>RL<br>0.<br>H L 5.<br>Analyzed:<br>Cleanup Method:<br>RL<br>H Y Z 1. | EPA 3630C<br>99<br>0<br>0<br>07/19/07<br>EPA 3630C<br>0 |
| Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0 | SAMPLE<br>196019-004<br>lyte<br>C36<br>ogate<br>EB-31(B)-20.5<br>SAMPLE<br>196019-005<br>lyte        | Result           ND           5.4 H           %REC           Limits           96           40-127 | Cleanup Method:<br>RL<br>0.<br>H L 5.<br>Analyzed:<br>Cleanup Method:<br>RL<br>H Y Z 1. | EPA 3630C<br>99<br>0<br>0<br>07/19/07<br>EPA 3630C<br>0 |

Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks ND= Not Detected RL= Reporting Limit Page 1 of 3



|                                                                                                                                                                              | Т                                                                                                                                 | otal 1                              | Extracta                                                                  | ble Hydrocarbo                                                                    | ns                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------|
| Lab #:                                                                                                                                                                       | 196019                                                                                                                            |                                     |                                                                           | Location:                                                                         | Hanson Radum                                            |
| Client:                                                                                                                                                                      | LFR Levine Fr                                                                                                                     | icke                                |                                                                           | Prep:                                                                             | SHAKER TABLE                                            |
| Project#:                                                                                                                                                                    | 001-09567-01                                                                                                                      |                                     |                                                                           | Analysis:                                                                         | EPA 8015B<br>127346                                     |
| Matrix:<br>Units:                                                                                                                                                            | Soil<br>mg/Kg                                                                                                                     |                                     |                                                                           | Batch#:<br>Sampled:                                                               | 07/16/07                                                |
| Basis:                                                                                                                                                                       | as received                                                                                                                       |                                     |                                                                           | Received:                                                                         | 07/16/07                                                |
| Diln Fac:                                                                                                                                                                    | 1.000                                                                                                                             |                                     |                                                                           | Prepared:                                                                         | 07/17/07                                                |
|                                                                                                                                                                              |                                                                                                                                   |                                     |                                                                           | <u> </u>                                                                          |                                                         |
| Field ID:                                                                                                                                                                    | EB-31(C)-5                                                                                                                        |                                     |                                                                           | Analyzed:                                                                         | 07/19/07                                                |
| Type:<br>Lab ID:                                                                                                                                                             | SAMPLE<br>196019-006                                                                                                              |                                     |                                                                           | Cleanup Method:                                                                   | EPA 3630C                                               |
| Ana<br>Diesel C10-C24                                                                                                                                                        | lyte                                                                                                                              |                                     | Result<br>8.2 H                                                           | RL<br>V Z                                                                         | 99                                                      |
| Motor Oil C24-                                                                                                                                                               |                                                                                                                                   |                                     | 87 H L                                                                    | 5.                                                                                |                                                         |
|                                                                                                                                                                              | ogate                                                                                                                             | %REC                                |                                                                           |                                                                                   |                                                         |
| Hexacosane                                                                                                                                                                   |                                                                                                                                   | 100                                 | 40-127                                                                    |                                                                                   |                                                         |
| Field ID:                                                                                                                                                                    | EB-31(C)-10.5                                                                                                                     |                                     |                                                                           | Analyzed:                                                                         | 07/19/07                                                |
| Type:                                                                                                                                                                        | SAMPLE                                                                                                                            |                                     |                                                                           | Cleanup Method:                                                                   |                                                         |
| Lab ID:                                                                                                                                                                      | 196019-007                                                                                                                        |                                     |                                                                           | ereanap neenea                                                                    |                                                         |
| Ana<br>Diesel C10-C24                                                                                                                                                        | lyte                                                                                                                              |                                     | Result<br>2.3 H                                                           | <b>RL</b><br>YZ 1.                                                                | 0                                                       |
| Motor Oil C24-0                                                                                                                                                              | 236                                                                                                                               | NI                                  |                                                                           | 5.                                                                                | 0                                                       |
|                                                                                                                                                                              |                                                                                                                                   |                                     |                                                                           |                                                                                   |                                                         |
| Surro                                                                                                                                                                        | ogate                                                                                                                             | %REC                                | Limits                                                                    |                                                                                   |                                                         |
| Surro<br>Hexacosane                                                                                                                                                          | ogate                                                                                                                             | <b>%REC</b><br>113                  | <b>Limits</b><br>40-127                                                   |                                                                                   |                                                         |
|                                                                                                                                                                              | ogate                                                                                                                             |                                     | <b>Limits</b><br>40-127                                                   |                                                                                   |                                                         |
| Hexacosane                                                                                                                                                                   | -                                                                                                                                 |                                     | Limits<br>40-127                                                          | Analyzed:                                                                         | 07/19/07                                                |
| Hexacosane<br>Field ID:<br>Type:                                                                                                                                             | EB-31(C)-15.5<br>SAMPLE                                                                                                           |                                     | Limits<br>40-127                                                          |                                                                                   | 07/19/07<br>EPA 3630C                                   |
| Hexacosane<br>Field ID:                                                                                                                                                      | EB-31(C)-15.5                                                                                                                     |                                     | Limits<br>40-127                                                          | Analyzed:<br>Cleanup Method:                                                      |                                                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:                                                                                                                                  | EB-31(C)-15.5<br>SAMPLE<br>196019-008                                                                                             |                                     | 40-127                                                                    | Cleanup Method:                                                                   |                                                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Ana:                                                                                                                          | EB-31(C)-15.5<br>SAMPLE<br>196019-008<br><b>lyte</b>                                                                              |                                     | 40-127<br>Result                                                          | Cleanup Method:                                                                   | EPA 3630C                                               |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:                                                                                                                                  | EB-31(C)-15.5<br>SAMPLE<br>196019-008<br>lyte                                                                                     |                                     | 40-127<br>Result<br>1.5 H                                                 | Cleanup Method:                                                                   | EPA 3630C<br>99                                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0                                                                                             | EB-31(C)-15.5<br>SAMPLE<br>196019-008<br>lyte                                                                                     | 113<br>NI<br>%REC                   | 40-127<br>Result<br>1.5 H                                                 | Cleanup Method:<br>RL<br>Y Z 0.                                                   | EPA 3630C<br>99                                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0                                                                                             | EB-31(C)-15.5<br>SAMPLE<br>196019-008<br><b>Lyte</b><br>C36                                                                       | 113<br>                             | 40-127<br>Result<br>1.5 H                                                 | Cleanup Method:<br>RL<br>Y Z 0.                                                   | EPA 3630C<br>99                                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0                                                                                             | EB-31(C)-15.5<br>SAMPLE<br>196019-008<br><b>Lyte</b><br>C36                                                                       | 113<br>NI<br>%REC                   | 40-127<br>Result<br>1.5 H                                                 | Cleanup Method:<br>RL<br>Y Z 0.                                                   | EPA 3630C<br>99                                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0<br>Hexacosane<br>Field ID:                                                                  | EB-31(C)-15.5<br>SAMPLE<br>196019-008<br><b>Lyte</b><br>C36                                                                       | 113<br>NI<br>%REC                   | 40-127<br>Result<br>1.5 H                                                 | Cleanup Method:<br>RL<br>Y Z 0.<br>5.<br>Analyzed:                                | EPA 3630C<br>99<br>0<br>07/19/07                        |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24-0<br>Motor Oil C24-0<br>Hexacosane<br>Field ID:<br>Type:                                                        | EB-31(C)-15.5<br>SAMPLE<br>196019-008<br>Lyte<br>C36<br>Dgate<br>EB-31(C)-20<br>SAMPLE                                            | 113<br>NI<br>%REC                   | 40-127<br>Result<br>1.5 H                                                 | Cleanup Method:<br><u>RL</u><br>Y Z 0.<br>5.                                      | EPA 3630C<br>99<br>0<br>07/19/07                        |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0<br>Hexacosane<br>Field ID:                                                                  | EB-31(C)-15.5<br>SAMPLE<br>196019-008<br>Lyte<br>C36<br>Dgate<br>EB-31(C)-20                                                      | 113<br>NI<br>%REC                   | 40-127<br>Result<br>1.5 H                                                 | Cleanup Method:<br>RL<br>Y Z 0.<br>5.<br>Analyzed:                                | EPA 3630C<br>99<br>0<br>07/19/07                        |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0<br>Field ID:<br>Type:<br>Lab ID:<br>Ana:<br>Ana:<br>Ana:<br>Surre                           | EB-31(C)-15.5<br>SAMPLE<br>196019-008<br><b>lyte</b><br>C36<br>Dgate<br>EB-31(C)-20<br>SAMPLE<br>196019-009<br><b>lyte</b>        | 113<br>NI<br><b>%REC</b><br>83      | <b>Result</b><br><b>Limits</b><br>40-127<br><b>Result</b>                 | Cleanup Method:<br>RL<br>Y Z 0.<br>5.<br>Analyzed:<br>Cleanup Method:<br>RL       | EPA 3630C<br>99<br>0<br>0<br>07/19/07<br>EPA 3630C      |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Ana:<br>Diesel C10-C24<br>Motor Oil C24-C<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:                                      | EB-31(C)-15.5<br>SAMPLE<br>196019-008<br><b>lyte</b><br>C36<br>Dgate<br>EB-31(C)-20<br>SAMPLE<br>196019-009<br><b>lyte</b>        | 113<br>NI<br>%REC                   | A0-127<br>Result<br>Limits<br>40-127<br>Result                            | Cleanup Method:<br><u>RL</u><br>Y Z 0.<br>5.<br>Analyzed:<br>Cleanup Method:      | EPA 3630C<br>99<br>0<br>0<br>07/19/07<br>EPA 3630C<br>0 |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-C<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-C         | EB-31(C)-15.5<br>SAMPLE<br>196019-008<br><b>lyte</b><br>C36<br>Dgate<br>EB-31(C)-20<br>SAMPLE<br>196019-009<br><b>lyte</b>        | 113<br>NI<br>%REC<br>83             | <b>Result</b><br><b>1.5</b> H<br><b>Limits</b><br>40-127<br><b>Result</b> | Cleanup Method:<br>RL<br>Y Z 0.<br>5.<br>Analyzed:<br>Cleanup Method:<br>RL<br>1. | EPA 3630C<br>99<br>0<br>07/19/07<br>EPA 3630C<br>0      |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-C<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Ana.<br>Diesel C10-C24<br>Motor Oil C24-C | EB-31(C)-15.5<br>SAMPLE<br>196019-008<br><b>lyte</b><br>C36<br>Dgate<br>EB-31(C)-20<br>SAMPLE<br>196019-009<br><b>lyte</b><br>C36 | 113<br>NI<br>%REC<br>83<br>NI<br>NI | <b>Result</b><br><b>1.5</b> H<br><b>Limits</b><br>40-127<br><b>Result</b> | Cleanup Method:<br>RL<br>Y Z 0.<br>5.<br>Analyzed:<br>Cleanup Method:<br>RL<br>1. | EPA 3630C<br>99<br>0<br>0<br>07/19/07<br>EPA 3630C<br>0 |

L= Lignter nydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks ND= Not Detected RL= Reporting Limit Page 2 of 3



|                  | г                 | otal Extracta | ble Hydrocarbo               | ns           |
|------------------|-------------------|---------------|------------------------------|--------------|
| Lab #:           | 196019            |               | Location:                    | Hanson Radum |
| Client:          | LFR Levine Fr     | icke          | Prep:                        | SHAKER TABLE |
| Project#:        | 001-09567-01      |               | Analysis:                    | EPA 8015B    |
| Matrix:          | Soil              |               | Batch#:                      | 127346       |
| Units:           | mg/Kg             |               | Sampled:                     | 07/16/07     |
| Basis:           | as received       |               | Received:                    | 07/16/07     |
| Diln Fac:        | 1.000             |               | Prepared:                    | 07/17/07     |
| Type:<br>Lab ID: | BLANK<br>QC396685 |               | Analyzed:<br>Cleanup Method: |              |
|                  | alyte             | Result        | RL                           | 0.0          |
| Diesel C10-C24   |                   | ND            |                              | 99           |
| Motor Oil C24-   | -036              | ND            | 5.                           | U            |
| Surr             | rogate            | %REC Limits   |                              |              |
| Hexacosane       |                   | 97 40-127     |                              |              |



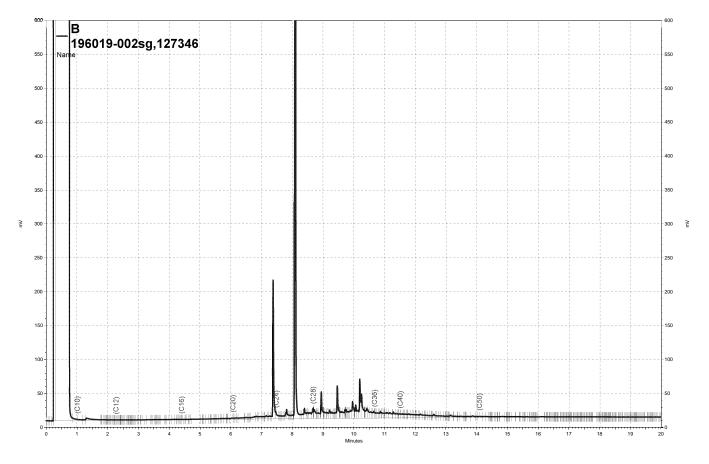
|           | Total Extractable Hydrocarbons |           |              |  |  |
|-----------|--------------------------------|-----------|--------------|--|--|
| Lab #:    | 196019                         | Location: | Hanson Radum |  |  |
| Client:   | LFR Levine Fricke              | Prep:     | SHAKER TABLE |  |  |
| Project#: | 001-09567-01                   | Analysis: | EPA 8015B    |  |  |
| Туре:     | LCS                            | Diln Fac: | 1.000        |  |  |
| Lab ID:   | QC396686                       | Batch#:   | 127346       |  |  |
| Matrix:   | Soil                           | Prepared: | 07/17/07     |  |  |
| Units:    | mg/Kg                          | Analyzed: | 07/18/07     |  |  |
| Basis:    | as received                    |           |              |  |  |

Cleanup Method: EPA 3630C

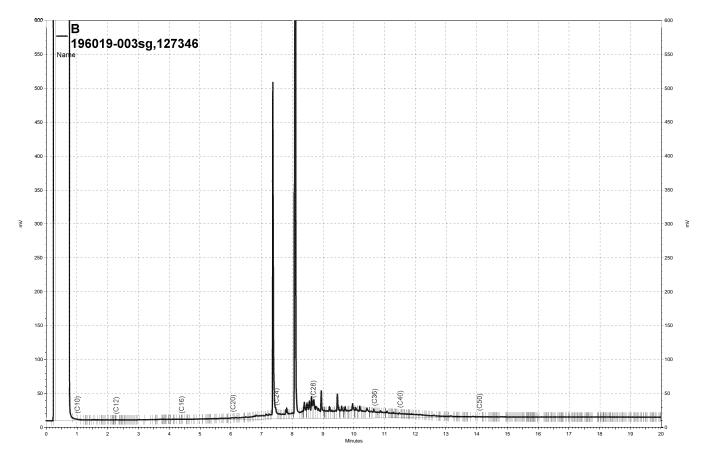
Hexacosane

| Analyte        | Spiked      | Result | %REC | Limits |
|----------------|-------------|--------|------|--------|
| Diesel C10-C24 | 49.87       | 47.98  | 96   | 58-127 |
|                |             |        |      |        |
| Surrogate      | %REC Limits |        |      |        |

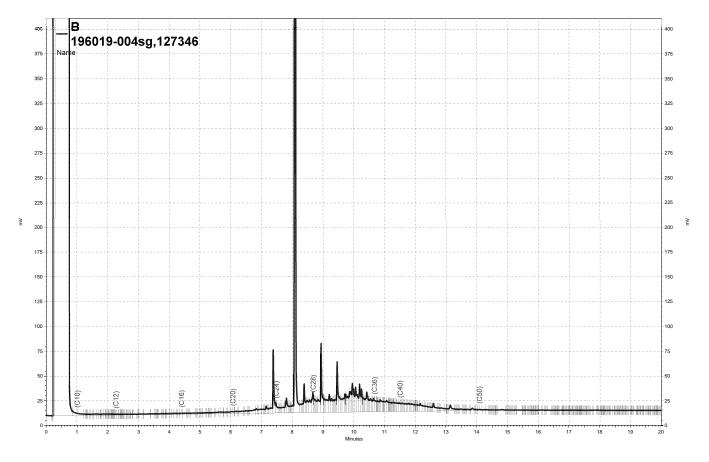
40-127


100

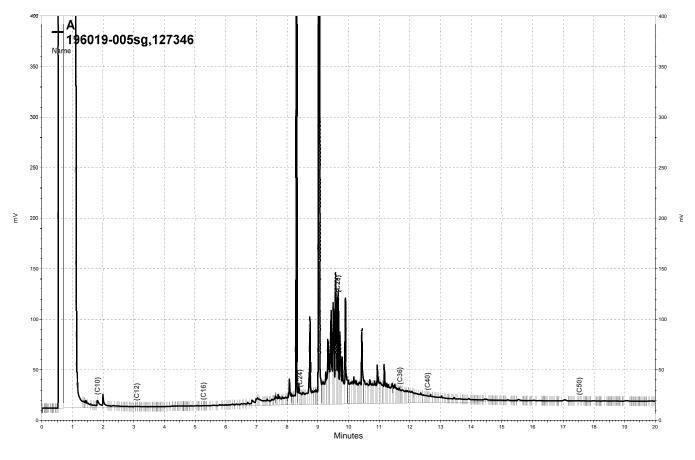



| Lab #:                                 | 196019       |                        |             | Location:       | Hanson Radum        |             |                         |
|----------------------------------------|--------------|------------------------|-------------|-----------------|---------------------|-------------|-------------------------|
| Client:                                | LFR Levine F | ricke                  |             | Prep:           | SHAKER TABLE        |             |                         |
| Project#:                              | 001-09567-01 | L                      |             | Analysis:       | EPA 8015B           |             |                         |
| Field ID:                              | ZZZZZZZZZZ   |                        |             | Batch#:         | 127346              |             |                         |
| MSS Lab ID:                            | 195992-005   |                        |             | Sampled:        | 07/13/07            |             |                         |
| Matrix:                                | Soil         |                        |             | Received:       | 07/16/07            |             |                         |
| Units:                                 | mg/Kg        |                        |             | Prepared:       | 07/17/07            |             |                         |
| Basis:                                 | as received  |                        |             | Analyzed:       | 07/18/07            |             |                         |
| Diln Fac:                              | 5.000        |                        |             |                 |                     |             |                         |
| Type:                                  | MS           |                        |             | Cleanup Method: | EPA 3630C           |             |                         |
| ab ID:                                 | QC396687     | MSS Res                | 11]+        |                 |                     | *BE(        | Limita                  |
| ab ID:<br>Anal                         | QC396687     | MSS Res                |             | Spiked          | Result              | <b>%REC</b> | <b>Limits</b><br>29-147 |
| ab ID:<br>Anal                         | QC396687     | <b>MSS Res</b><br>1,38 |             |                 |                     |             | <b>Limits</b><br>29-147 |
| ab ID:<br>Anal<br>Diesel C10-C2        | QC396687     |                        |             | Spiked          | Result              |             |                         |
| ab ID:<br>Anal<br>Diesel C10-C2<br>Sur | QC396687     | 1,38                   | 9           | Spiked          | Result              |             |                         |
| ab ID:<br>Anal<br>Diesel C10-C2        | QC396687     | 1,38<br>%REC           | 9<br>Limits | Spiked          | Result              |             |                         |
| ab ID:<br>Anal<br>Diesel C10-C2<br>Sur | QC396687     | 1,38<br>%REC           | 9<br>Limits | Spiked          | <b>Result</b> 1,631 |             |                         |

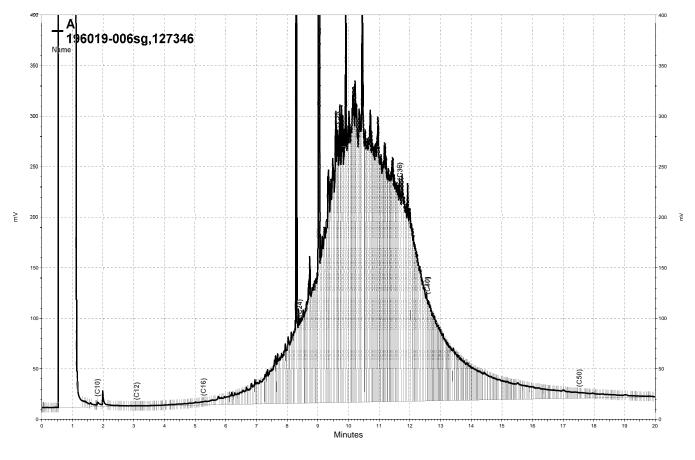
| Analyte        | Spiked | Result | %REC Limits   | RPD Lim |
|----------------|--------|--------|---------------|---------|
| Diesel C10-C24 | 49.90  | 1,650  | 524 NM 29-147 | 1 46    |


| Surrogate  | %REC | Limits |
|------------|------|--------|
| Hexacosane | 115  | 40-127 |

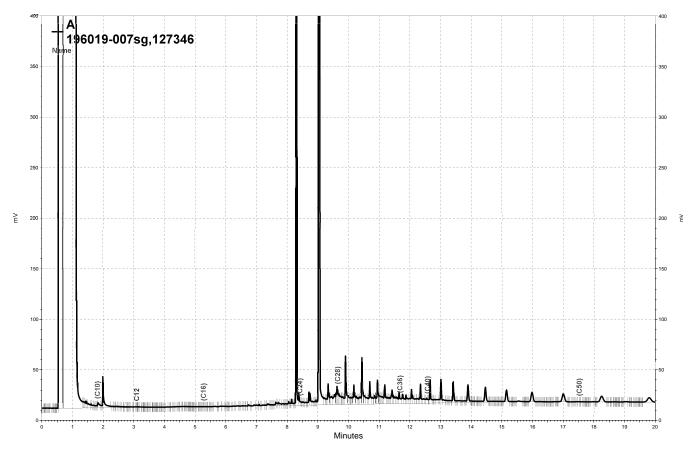



\\Lims\gdrive\ezchrom\Projects\GC14B\Data\201b029, B




\\Lims\gdrive\ezchrom\Projects\GC14B\Data\201b030, B

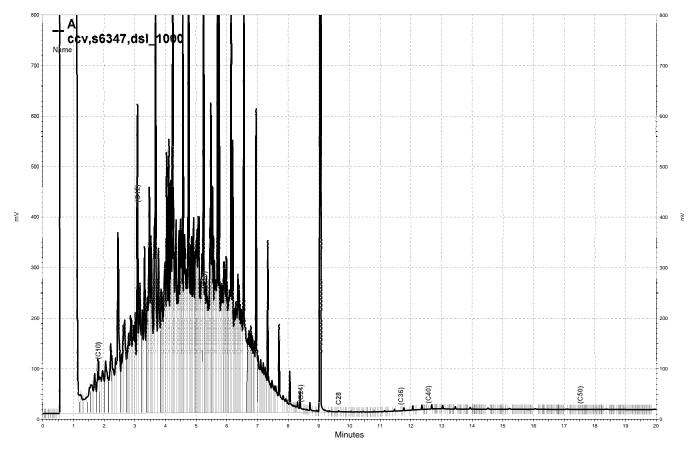



\Lims\gdrive\ezchrom\Projects\GC14B\Data\201b031, B

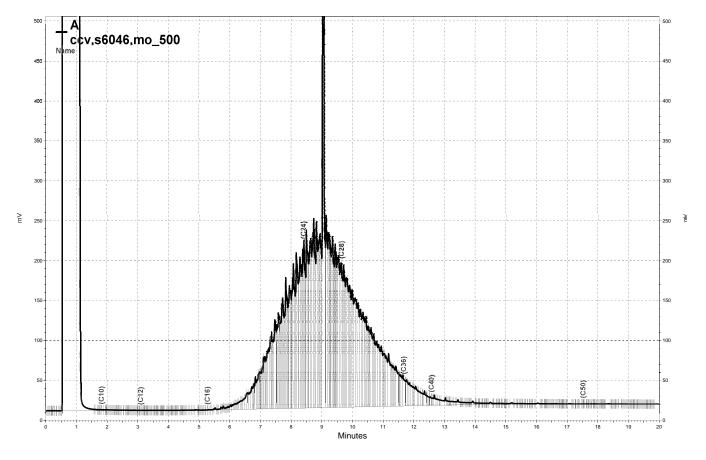


\Lims\gdrive\ezchrom\Projects\GC17A\Data\198a097, A




\\Lims\gdrive\ezchrom\Projects\GC17A\Data\198a101, A




\Lims\gdrive\ezchrom\Projects\GC17A\Data\198a098, A



\Lims\gdrive\ezchrom\Projects\GC17A\Data\198a099, A



\\Lims\gdrive\ezchrom\Projects\GC17A\Data\198a034, A



\\Lims\gdrive\ezchrom\Projects\GC17A\Data\198a049, A



|                                                        | Gaso                                                 | oline by GC/MS                                |                                            |  |
|--------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|--------------------------------------------|--|
| Lab #:<br>Client:<br>Project#:                         | 196019<br>LFR Levine Fricke<br>001-09567-01          | Location:<br>Prep:<br>Analysis:               | Hanson Radum<br>EPA 5030B<br>EPA 8260B     |  |
| Field ID:<br>Lab ID:<br>Matrix:<br>Units:<br>Diln Fac: | EB-31(B)-GGW<br>196019-001<br>Water<br>ug/L<br>1.000 | Batcĥ#:<br>Sampled:<br>Received:<br>Analyzed: | 127360<br>07/16/07<br>07/16/07<br>07/18/07 |  |

| Analyte                            | Result | RI. |
|------------------------------------|--------|-----|
| Gasoline C7-C12                    | ND     | 50  |
| Freon 12                           | ND     | 1.0 |
| tert-Butyl Alcohol (TBA)           | ND     | 10  |
|                                    | ND     | 1.0 |
| Chloromethane                      |        |     |
| Isopropyl Ether (DIPE)             | ND     | 0.5 |
| Vinyl Chloride                     | ND     | 0.5 |
| Bromomethane                       | ND     | 1.0 |
| Ethyl tert-Butyl Ether (ETBE)      | ND     | 0.5 |
| Chloroethane                       | ND     | 1.0 |
| Methyl tert-Amyl Ether (TAME)      | ND     | 0.5 |
| Trichlorofluoromethane             | ND     | 1.0 |
| Acetone                            | ND     | 10  |
| Freon 113                          | ND     | 0.5 |
| 1,1-Dichloroethene                 | ND     | 0.5 |
| Methylene Chloride                 | ND     | 10  |
| Carbon Disulfide                   | ND     | 0.5 |
| MTBE                               | ND     | 0.5 |
| trans-1,2-Dichloroethene           | ND     | 0.5 |
| Vinyl Acetate                      | ND     | 10  |
| 1,1-Dichloroethane                 | ND     | 0.5 |
| 2-Butanone                         | ND     | 10  |
| cis-1,2-Dichloroethene             | ND     | 0.5 |
| 2,2-Dichloropropane                | ND     | 0.5 |
| Chloroform                         | ND     | 0.5 |
| Bromochloromethane                 | ND     | 0.5 |
| 1,1,1-Trichloroethane              | ND     | 0.5 |
| 1,1-Dichloropropene                | ND     | 0.5 |
| Carbon Tetrachloride               | ND     | 0.5 |
| 1,2-Dichloroethane                 | ND     | 0.5 |
| Benzene                            | ND     | 0.5 |
| Trichloroethene                    | ND     | 0.5 |
| 1,2-Dichloropropane                | ND     | 0.5 |
| Bromodichloromethane               | ND     | 0.5 |
| Dibromomethane                     | ND     | 0.5 |
| 4-Methyl-2-Pentanone               | ND     | 10  |
|                                    | ND     | 0.5 |
| cis-1,3-Dichloropropene<br>Toluene | ND     | 0.5 |
|                                    |        | 0.5 |
| trans-1,3-Dichloropropene          | ND     |     |
| 1,1,2-Trichloroethane              | ND     | 0.5 |
| 2-Hexanone                         | ND     | 10  |
| 1,3-Dichloropropane                | ND     | 0.5 |
| Tetrachloroethene                  | ND     | 0.5 |
| Dibromochloromethane               | ND     | 0.5 |
| 1,2-Dibromoethane                  | ND     | 0.5 |
| Chlorobenzene                      | ND     | 0.5 |
| 1,1,1,2-Tetrachloroethane          | ND     | 0.5 |
| Ethylbenzene                       | ND     | 0.5 |
| m,p-Xylenes                        | ND     | 0.5 |
| o-Xylene                           | ND     | 0.5 |
| Styrene                            | ND     | 0.5 |
| Bromoform                          | ND     | 1.0 |
| Isopropylbenzene                   | ND     | 0.5 |
| 1,1,2,2-Tetrachloroethane          | ND     | 0.5 |
| 1,2,3-Trichloropropane             | ND     | 0.5 |

ND= Not Detected RL= Reporting Limit Page 1 of 2



|                                                       | Gasolin     | e by GC/MS |              |   |
|-------------------------------------------------------|-------------|------------|--------------|---|
| Lab #: 196019                                         |             | Location:  | Hanson Radum |   |
| Client: LFR Levine F                                  | ricke       | Prep:      | EPA 5030B    |   |
| Project#: 001-09567-01                                |             | Analysis:  | EPA 8260B    |   |
| Field ID: EB-31(B)-GGW                                |             | Batch#:    | 127360       |   |
| Lab ID: 196019-001                                    |             | Sampled:   | 07/16/07     |   |
| Matrix: Water                                         |             | Received:  | 07/16/07     |   |
| Units: ug/L                                           |             | Analyzed:  | 07/18/07     |   |
| Diln Fac: 1.000                                       |             |            |              |   |
|                                                       |             |            |              |   |
| Analyte                                               | Result      |            | RL           | _ |
| Propylbenzene                                         | ND          |            | 0.5          |   |
| Bromobenzene                                          | ND          |            | 0.5          |   |
| 1,3,5-Trimethylbenzene                                | ND          |            | 0.5          |   |
| 2-Chlorotoluene                                       | ND          |            | 0.5          |   |
| 4-Chlorotoluene                                       | ND          |            | 0.5          |   |
| tert-Butylbenzene                                     | ND          |            | 0.5          |   |
| 1,2,4-Trimethylbenzene                                | ND          |            | 0.5<br>0.5   |   |
| sec-Butylbenzene                                      | ND          |            | 0.5          |   |
| para-Isopropyl Toluene                                | ND          |            | 0.5          |   |
| 1,3-Dichlorobenzene                                   | ND          |            | 0.5          |   |
| 1,4-Dichlorobenzene                                   | ND          |            | 0.5          |   |
| n-Butylbenzene<br>1,2-Dichlorobenzene                 | ND<br>ND    |            | 0.5          |   |
| 1,2-Dichiorobelizelle                                 | ND<br>ND    |            | 2.0          |   |
| 1,2-Dibromo-3-Chloropropane<br>1,2,4-Trichlorobenzene | ND<br>ND    |            | 0.5          |   |
| Hexachlorobutadiene                                   | ND<br>ND    |            | 0.5          |   |
| Naphthalene                                           | ND          |            | 2.0          |   |
| 1,2,3-Trichlorobenzene                                | ND          |            | 0.5          |   |
|                                                       |             |            | 0.5          |   |
| Surrogate                                             | %REC Limits |            |              |   |
| Dibromofluoromethane                                  | 97 80-123   |            |              |   |
| 1,2-Dichloroethane-d4                                 | 97 79-134   |            |              |   |
| Toluene-d8                                            | 99 80-120   |            |              |   |
| Bromofluorobenzene                                    | 100 80-122  |            |              |   |



|                                       | Gasoline by GC/MS                           |                                   |                                        |  |  |
|---------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|--|--|
| Lab #:<br>Client:<br>Project#:        | 196019<br>LFR Levine Fricke<br>001-09567-01 | Location:<br>Prep:<br>Analysis:   | Hanson Radum<br>EPA 5030B<br>EPA 8260B |  |  |
| Type:<br>Lab ID:<br>Matrix:<br>Units: | BLANK<br>QC396744<br>Water<br>ug/L          | Diln Fac:<br>Batch#:<br>Analyzed: | 1.000<br>127360<br>07/18/07            |  |  |

| Analyte                       | Result | RL    |
|-------------------------------|--------|-------|
| Gasoline C7-C12               | ND     | 50    |
| Freon 12                      | ND     | 1.0   |
| tert-Butyl Alcohol (TBA)      | ND     | 10    |
| Chloromethane                 | ND     | 1.0   |
| Isopropyl Ether (DIPE)        | ND     | 0.5   |
| Vinyl Chloride                | ND     | 0.5   |
| Bromomethane                  | ND     | 1.0   |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 0.5   |
| Chloroethane                  | ND     | 1.0   |
| Methyl tert-Amyl Ether (TAME) | ND     | 0.5   |
| Trichlorofluoromethane        | ND     | 1.0   |
| Acetone                       | ND     | 10    |
| Freon 113                     | ND     | 0.5   |
| 1,1-Dichloroethene            | ND     | 0.5   |
| Methylene Chloride            | ND     | 10    |
| Carbon Disulfide              | ND     | 0.5   |
| MTBE                          | ND     | 0.5   |
| trans-1,2-Dichloroethene      | ND     | 0.5   |
| Vinyl Acetate                 | ND     | 10    |
| 1,1-Dichloroethane            | ND     | 0.5   |
| 2-Butanone                    | ND     | 10    |
| cis-1,2-Dichloroethene        | ND     | 0.5   |
| 2,2-Dichloropropane           | ND     | 0.5   |
| Chloroform                    | ND     | 0.5   |
| Bromochloromethane            | ND     | 0.5   |
| 1,1,1-Trichloroethane         | ND     | 0.5   |
| 1,1-Dichloropropene           | ND     | 0.5   |
| Carbon Tetrachloride          | ND     | 0.5   |
| 1,2-Dichloroethane            | ND     | 0.5   |
| Benzene                       | ND     | 0.5   |
| Trichloroethene               | ND     | 0.5   |
| 1,2-Dichloropropane           | ND     | 0.5   |
| Bromodichloromethane          | ND     | 0.5   |
| Dibromomethane                | ND     | 0.5   |
| 4-Methyl-2-Pentanone          | ND     | 10    |
| cis-1,3-Dichloropropene       | ND     | 0.5   |
| Toluene                       | ND     | 0.5   |
| trans-1,3-Dichloropropene     | ND     | 0.5   |
| 1,1,2-Trichloroethane         | ND     | 0.5   |
| 2-Hexanone                    | ND     | 10    |
| 1,3-Dichloropropane           | ND     | 0.5   |
| Tetrachloroethene             | ND     | 0.5   |
| Dibromochloromethane          | ND     | 0.5   |
| 1,2-Dibromoethane             | ND     | 0.5   |
| Chlorobenzene                 | ND     | 0.5   |
| 1,1,1,2-Tetrachloroethane     | ND     | 0.5   |
| Ethylbenzene                  | ND     | 0.5   |
| m,p-Xylenes                   | ND     | 0.5   |
| o-Xylene                      | ND     | 0.5   |
| Styrene                       | ND     | 0.5   |
| Bromoform                     | ND     | 1.0   |
| Isopropylbenzene              | ND     | 0.5   |
| 1,1,2,2-Tetrachloroethane     | ND     | 0.5   |
| 1,2,3-Trichloropropane        | ND     | 0.5   |
| -,-, -, - IIIOIIIOIOPIOPUIC   | 1,2    | · · · |

ND= Not Detected RL= Reporting Limit Page 1 of 2



|                                       | Gas                                         | oline by GC/MS                    |                                        |  |
|---------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|--|
| Lab #:<br>Client:<br>Project#:        | 196019<br>LFR Levine Fricke<br>001-09567-01 | Location:<br>Prep:<br>Analysis:   | Hanson Radum<br>EPA 5030B<br>EPA 8260B |  |
| Type:<br>Lab ID:<br>Matrix:<br>Units: | BLANK<br>QC396744<br>Water<br>ug/L          | Diln Fac:<br>Batch#:<br>Analyzed: | 1.000<br>127360<br>07/18/07            |  |
|                                       |                                             | ult R                             | L                                      |  |

| Analyte                     |         | Result | RL  |
|-----------------------------|---------|--------|-----|
| Propylbenzene               | ND      |        | 0.5 |
| Bromobenzene                | ND      |        | 0.5 |
| 1,3,5-Trimethylbenzene      | ND      |        | 0.5 |
| 2-Chlorotoluene             | ND      |        | 0.5 |
| 4-Chlorotoluene             | ND      |        | 0.5 |
| tert-Butylbenzene           | ND      |        | 0.5 |
| 1,2,4-Trimethylbenzene      | ND      |        | 0.5 |
| sec-Butylbenzene            | ND      |        | 0.5 |
| para-Isopropyl Toluene      | ND      |        | 0.5 |
| 1,3-Dichlorobenzene         | ND      |        | 0.5 |
| 1,4-Dichlorobenzene         | ND      |        | 0.5 |
| n-Butylbenzene              | ND      |        | 0.5 |
| 1,2-Dichlorobenzene         | ND      |        | 0.5 |
| 1,2-Dibromo-3-Chloropropane | ND      |        | 2.0 |
| 1,2,4-Trichlorobenzene      | ND      |        | 0.5 |
| Hexachlorobutadiene         | ND      |        | 0.5 |
| Naphthalene                 | ND      |        | 2.0 |
| 1,2,3-Trichlorobenzene      | ND      |        | 0.5 |
|                             | 0.5.7.4 | -      |     |
| Surrogate                   | %REC    | Limits |     |
| Dibromofluoromethane        | 96      | 80-123 |     |
| 1,2-Dichloroethane-d4       | 96      | 79-134 |     |
| Toluene-d8                  | 100     | 80-120 |     |
| Bromofluorobenzene          | 98      | 80-122 |     |



|                                | Gasoline                                    | by GC/MS                        |                                        |
|--------------------------------|---------------------------------------------|---------------------------------|----------------------------------------|
| Lab #:<br>Client:<br>Project#: | 196019<br>LFR Levine Fricke<br>001-09567-01 | Location:<br>Prep:<br>Analysis: | Hanson Radum<br>EPA 5030B<br>EPA 8260B |
| Matrix:<br>Units:<br>Diln Fac: | Water<br>ug/L<br>1.000                      | Batch#:<br>Analyzed:            | 127360<br>07/18/07                     |

| Type: BS                      |      |        | Lab ID: | QC3    | 96745 |        |  |
|-------------------------------|------|--------|---------|--------|-------|--------|--|
| Analyte                       |      | Spiked |         | Result | %REC  | Limits |  |
| tert-Butyl Alcohol (TBA)      |      | 125.0  |         | 137.5  | 110   | 68-132 |  |
| Isopropyl Ether (DIPE)        |      | 25.00  |         | 25.20  | 101   | 65-120 |  |
| Ethyl tert-Butyl Ether (ETBE) |      | 25.00  |         | 28.31  | 113   | 75-124 |  |
| Methyl tert-Amyl Ether (TAME) |      | 25.00  |         | 29.88  | 120   | 77-120 |  |
| 1,1-Dichloroethene            |      | 25.00  |         | 29.27  | 117   | 80-132 |  |
| Benzene                       |      | 25.00  |         | 27.35  | 109   | 80-120 |  |
| Trichloroethene               |      | 25.00  |         | 25.55  | 102   | 80-120 |  |
| Toluene                       |      | 25.00  |         | 28.26  | 113   | 80-120 |  |
| Chlorobenzene                 |      | 25.00  |         | 26.81  | 107   | 80-120 |  |
| Surrogate                     | %REC | Limits |         |        |       |        |  |
| Dibromofluoromethane          | 98   | 80-123 |         |        |       |        |  |
| 1,2-Dichloroethane-d4         | 96   | 79-134 |         |        |       |        |  |

| Dibromofluoromethane  | 98 | 80-123 |
|-----------------------|----|--------|
| 1,2-Dichloroethane-d4 | 96 | 79-134 |
| Toluene-d8            | 99 | 80-120 |
| Bromofluorobenzene    | 98 | 80-122 |
|                       |    |        |

| Type: BSD                     |      |        | Lab ID: | QC39   | 6746 |        |     |     |
|-------------------------------|------|--------|---------|--------|------|--------|-----|-----|
| Analyte                       |      | Spiked |         | Result | %REC | Limits | RPD | Lim |
| tert-Butyl Alcohol (TBA)      |      | 125.0  |         | 125.1  | 100  | 68-132 | 9   | 20  |
| Isopropyl Ether (DIPE)        |      | 25.00  |         | 23.70  | 95   | 65-120 | 6   | 20  |
| Ethyl tert-Butyl Ether (ETBE) |      | 25.00  |         | 26.28  | 105  | 75-124 | 7   | 20  |
| Methyl tert-Amyl Ether (TAME) |      | 25.00  |         | 27.41  | 110  | 77-120 | 9   | 20  |
| 1,1-Dichloroethene            |      | 25.00  |         | 27.31  | 109  | 80-132 | 7   | 20  |
| Benzene                       |      | 25.00  |         | 25.83  | 103  | 80-120 | 6   | 20  |
| Trichloroethene               |      | 25.00  |         | 23.96  | 96   | 80-120 | 6   | 20  |
| Toluene                       |      | 25.00  |         | 26.39  | 106  | 80-120 | 7   | 20  |
| Chlorobenzene                 |      | 25.00  |         | 25.47  | 102  | 80-120 | 5   | 20  |
|                               |      |        |         |        |      |        |     |     |
| Surrogate                     | %REC | Limits |         |        |      |        |     |     |
| Dibromofluoromethane          | 97   | 80-123 |         |        |      |        |     |     |
| 1,2-Dichloroethane-d4         | 97   | 79-134 |         |        |      |        |     |     |
| Toluene-d8                    | 100  | 80-120 |         |        |      |        |     |     |
| Bromofluorobenzene            | 96   | 80-122 |         |        |      |        |     |     |



| Gasoline by GC/MS |                   |           |              |  |
|-------------------|-------------------|-----------|--------------|--|
| Lab #:            | 196019            | Location: | Hanson Radum |  |
| Client:           | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#:         | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Matrix:           | Water             | Batch#:   | 127360       |  |
| Units:            | ug/L              | Analyzed: | 07/18/07     |  |
| Diln Fac:         | 1.000             |           |              |  |

Type:

BS

Lab ID: QC396827

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 1,500  | 1,427  | 95   | 70-130 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 96   | 80-123 |
| 1,2-Dichloroethane-d4 | 95   | 79-134 |
| Toluene-d8            | 99   | 80-120 |
| Bromofluorobenzene    | 97   | 80-122 |

| Type:      | BSD         |      |        | Lab ID: |        | QC396828 |        |     |     |
|------------|-------------|------|--------|---------|--------|----------|--------|-----|-----|
|            | Analyte     |      | Spiked |         | Result | %REC     | Limits | RPD | Lim |
| Gasoline C | 27-C12      |      | 1,500  |         | 1,399  | 93       | 70-130 | 2   | 20  |
|            |             |      |        |         |        |          |        |     |     |
|            | Surrogate   | %REC | Limits |         |        |          |        |     |     |
| Dibromoflu | oromethane  | 97   | 80-123 |         |        |          |        |     |     |
| 1,2-Dichlo | roethane-d4 | 97   | 79-134 |         |        |          |        |     |     |
| Toluene-d8 | }           | 98   | 80-120 |         |        |          |        |     |     |
| Bromofluor | obenzene    | 96   | 80-122 |         |        |          |        |     |     |



|             | Gasoline          | by GC/MS  |              |
|-------------|-------------------|-----------|--------------|
| Lab #:      | 196019            | Location: | Hanson Radum |
| Client:     | LFR Levine Fricke | Prep:     | EPA 5030B    |
| Project#:   | 001-09567-01      | Analysis: | EPA 8260B    |
| Field ID:   | ZZZZZZZZZ         | Batch#:   | 127360       |
| MSS Lab ID: | 196040-002        | Sampled:  | 07/17/07     |
| Matrix:     | Water             | Received: | 07/17/07     |
| Units:      | ug/L              | Analyzed: | 07/19/07     |
| Diln Fac:   | 1.000             | -         |              |

| Type:       | MS                 |      |          | Lab ID: | QC396910 |      |        |
|-------------|--------------------|------|----------|---------|----------|------|--------|
|             | Analyte            | MSS  | Result   | Spiked  | Result   | %REC | Limits |
| tert-Butyl  | Alcohol (TBA)      |      | <1.579   | 125.0   | 124.4    | 99   | 69-137 |
| Isopropyl E | Cther (DIPE)       |      | <0.04032 | 25.00   | 25.43    | 102  | 69-120 |
|             | Butyl Ether (ETBE) |      | <0.07412 | 25.00   | 27.36    | 109  | 78-127 |
| Methyl tert | -Amyl Ether (TAME) |      | <0.04870 | 25.00   | 28.79    | 115  | 79-120 |
| 1,1-Dichlor | roethene           |      | <0.09386 | 25.00   | 27.83    | 111  | 80-139 |
| Benzene     |                    |      | <0.2500  | 25.00   | 26.96    | 108  | 80-123 |
| Trichloroet | hene               |      | <0.1151  | 25.00   | 25.03    | 100  | 75-129 |
| Toluene     |                    |      | <0.1338  | 25.00   | 27.15    | 109  | 80-122 |
| Chlorobenze | ene                |      | <0.1569  | 25.00   | 26.43    | 106  | 80-120 |
|             |                    |      |          |         |          |      |        |
|             | Surrogate          | %REC | Limits   |         |          |      |        |
| Dibromofluc | promethane         | 99   | 80-123   |         |          |      |        |
| 1,2-Dichlor | roethane-d4        | 100  | 79-134   |         |          |      |        |
| Toluene-d8  |                    | 100  | 80-120   |         |          |      |        |
| Bromofluorc | obenzene           | 97   | 80-122   |         |          |      |        |

| Type: MSD                     |      |        | Lab ID: | QC39   | 6911 |        |     |     |
|-------------------------------|------|--------|---------|--------|------|--------|-----|-----|
| Analyte                       |      | Spiked |         | Result | %REC | Limits | RPD | Lim |
| tert-Butyl Alcohol (TBA)      |      | 125.0  |         | 123.8  | 99   | 69-137 | 0   | 20  |
| Isopropyl Ether (DIPE)        |      | 25.00  |         | 24.50  | 98   | 69-120 | 4   | 20  |
| Ethyl tert-Butyl Ether (ETBE) |      | 25.00  |         | 26.41  | 106  | 78-127 | 4   | 20  |
| Methyl tert-Amyl Ether (TAME) |      | 25.00  |         | 27.83  | 111  | 79-120 | 3   | 20  |
| 1,1-Dichloroethene            |      | 25.00  |         | 26.78  | 107  | 80-139 | 4   | 20  |
| Benzene                       |      | 25.00  |         | 26.47  | 106  | 80-123 | 2   | 20  |
| Trichloroethene               |      | 25.00  |         | 24.48  | 98   | 75-129 | 2   | 20  |
| Toluene                       |      | 25.00  |         | 26.57  | 106  | 80-122 | 2   | 20  |
| Chlorobenzene                 |      | 25.00  |         | 26.07  | 104  | 80-120 | 1   | 20  |
| Surrogate                     | %REC | Limits |         |        |      |        |     |     |
| Dibromofluoromethane          | 99   | 80-123 |         |        |      |        |     |     |
| 1,2-Dichloroethane-d4         | 97   | 79-134 |         |        |      |        |     |     |
| Toluene-d8                    | 98   | 80-120 |         |        |      |        |     |     |
| Bromofluorobenzene            | 98   | 80-122 |         |        |      |        |     |     |



| LFR Levine Fricke<br>1900 Powell Street<br>Emergrille CA 94608 | Project : 001-09567-01<br>Location : Hanson Radum |
|----------------------------------------------------------------|---------------------------------------------------|
| Emeryville, CA 94608                                           | Level : II                                        |

| Sample ID     | Lab ID     |
|---------------|------------|
| EB-31(A)-5.5  | 196042-001 |
| EB-31(A)-10.5 | 196042-002 |
| EB-31(A)-15.5 | 196042-003 |
| EB-31(A)-20.5 | 196042-004 |
| B-1(A)-4.5    | 196042-005 |
| B-1(A)-9.5    | 196042-006 |
| B-1(A)-35     | 196042-007 |
| B-1(A)-36.5   | 196042-008 |
| EB-35(A)-3    | 196042-009 |
| EB-35(A)-4    | 196042-010 |
| EB-35(A)-9.5  | 196042-011 |
| EB-35(B)-2.5  | 196042-012 |
| EB-35(B)-5    | 196042-013 |
| EB-35(B)-9    | 196042-014 |

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Signature: Project Manager Signature: Operations Manager

Date: <u>07/30/2007</u>

Date: 07/30/2007

NELAP # 01107CA

Page 1 of \_\_\_\_



#### CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 196042 LFR Levine Fricke 001-09567-01 Hanson Radum 07/17/07 07/17/07

This hardcopy data package contains sample and QC results for eleven soil samples, requested for the above referenced project on 07/17/07. The samples were received cold and intact. All data were e-mailed to Katrin Schliewen on 07/24/07.

#### TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

#### TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

#### Semivolatile Organics by GC/MS (EPA 8270C):

No analytical problems were encountered.

#### Polychlorinated Biphenyls (PCBs) (EPA 8082):

Low surrogate recovery was observed for TCMX in the method blank for batch 127391; the corresponding decachlorobiphenyl surrogate recovery was within limits. No other analytical problems were encountered.

#### Metals (EPA 6010B and EPA 7471A):

No analytical problems were encountered.



|                                                                                                                   |                                                                                                                                 | Total                                 | Volatil                              | .e Hydrocarb         | oons                                      |  |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------|----------------------|-------------------------------------------|--|
| - 1 - 1                                                                                                           | 101010                                                                                                                          |                                       |                                      |                      |                                           |  |
| Lab #:                                                                                                            | 196042                                                                                                                          |                                       |                                      | Location:            | Hanson Radum                              |  |
| Client:                                                                                                           | LFR Levine Fr                                                                                                                   | ricke                                 |                                      | Prep:                | EPA 5030B                                 |  |
| Project#:                                                                                                         | 001-09567-01                                                                                                                    |                                       |                                      | Analysis:            | EPA 8015B                                 |  |
| Matrix:                                                                                                           | Soil                                                                                                                            |                                       |                                      | Batch#:              | 127379                                    |  |
| Units:                                                                                                            | mg/Kg                                                                                                                           |                                       |                                      | Sampled:             | 07/17/07                                  |  |
| Basis:                                                                                                            | as received                                                                                                                     |                                       |                                      | Received:            | 07/17/07                                  |  |
| Diln Fac:                                                                                                         | 1.000                                                                                                                           |                                       |                                      |                      |                                           |  |
| Field ID:                                                                                                         | B-1(A)-4.5                                                                                                                      |                                       |                                      | Lab ID:              | 196042-005                                |  |
| Type:                                                                                                             | SAMPLE                                                                                                                          |                                       |                                      | Analyzed:            | 07/19/07                                  |  |
| 1/20                                                                                                              |                                                                                                                                 |                                       |                                      | Initial y Dear       | 0,, 10, 0,                                |  |
| Ar                                                                                                                | nalyte                                                                                                                          |                                       | Result                               |                      | RL                                        |  |
| Gasoline C7-0                                                                                                     |                                                                                                                                 | NI                                    |                                      |                      | 1.0                                       |  |
|                                                                                                                   | -                                                                                                                               |                                       |                                      |                      |                                           |  |
| Sui                                                                                                               | rrogate                                                                                                                         | %REC                                  | Limits                               |                      |                                           |  |
| Trifluorotolu                                                                                                     |                                                                                                                                 | 118                                   | 70-132                               |                      |                                           |  |
| Bromofluorobe                                                                                                     |                                                                                                                                 | 128                                   | 66-138                               |                      |                                           |  |
|                                                                                                                   |                                                                                                                                 |                                       |                                      |                      |                                           |  |
|                                                                                                                   |                                                                                                                                 |                                       |                                      |                      |                                           |  |
| Field ID:                                                                                                         | B-1(A)-9.5                                                                                                                      |                                       |                                      |                      | 100010 000                                |  |
|                                                                                                                   | $D \perp (\Pi) \rightarrow 0$                                                                                                   |                                       |                                      | Lab ID:              | 196042-006                                |  |
| Type:                                                                                                             | SAMPLE                                                                                                                          |                                       |                                      | Lab ID:<br>Analyzed: | 196042-006<br>07/19/07                    |  |
| Туре:                                                                                                             | SAMPLE                                                                                                                          |                                       | Regul+                               |                      | 07/19/07                                  |  |
| Type:                                                                                                             | SAMPLE<br>nalyte                                                                                                                | NI                                    | Result                               |                      | 07/19/07<br>RL                            |  |
| Туре:                                                                                                             | SAMPLE<br>nalyte                                                                                                                | NI                                    |                                      |                      | 07/19/07                                  |  |
| Type:<br>Ar<br>Gasoline C7-C                                                                                      | SAMPLE<br>nalyte<br>C12                                                                                                         |                                       | )                                    |                      | 07/19/07<br>RL                            |  |
| Type:<br>Gasoline C7-C                                                                                            | SAMPLE<br>malyte<br>C12<br>rrogate                                                                                              | %REC                                  | )<br>Limits                          |                      | 07/19/07<br>RL                            |  |
| Type:<br>Gasoline C7-C                                                                                            | SAMPLE<br>nalyte<br>C12<br>rrogate<br>uene (FID)                                                                                | % <b>REC</b>                          | <b>Limits</b><br>70-132              |                      | 07/19/07<br>RL                            |  |
| Type:<br>Gasoline C7-C                                                                                            | SAMPLE<br>nalyte<br>C12<br>rrogate<br>uene (FID)                                                                                | %REC                                  | )<br>Limits                          |                      | 07/19/07<br>RL                            |  |
| Type:<br>Gasoline C7-C                                                                                            | SAMPLE<br>nalyte<br>C12<br>rrogate<br>uene (FID)                                                                                | % <b>REC</b>                          | <b>Limits</b><br>70-132              |                      | 07/19/07<br>RL                            |  |
| Type:<br>Gasoline C7-C                                                                                            | SAMPLE<br>nalyte<br>C12<br>rrogate<br>uene (FID)                                                                                | % <b>REC</b>                          | <b>Limits</b><br>70-132              |                      | 07/19/07<br>RL                            |  |
| Type:<br>Gasoline C7-C<br>Sur<br>Trifluorotolu<br>Bromofluorobe                                                   | SAMPLE<br>malyte<br>C12<br>rrogate<br>uene (FID)<br>enzene (FID)                                                                | % <b>REC</b>                          | <b>Limits</b><br>70-132              | Analyzed:            | 07/19/07<br>RL<br>0.94                    |  |
| Type:<br>Gasoline C7-C<br>Sur<br>Trifluorotolu<br>Bromofluorobe<br>Type:                                          | SAMPLE<br>malyte<br>C12<br>rrogate<br>uene (FID)<br>enzene (FID)<br>BLANK                                                       | % <b>REC</b>                          | <b>Limits</b><br>70-132              |                      | 07/19/07<br>RL                            |  |
| Type:<br>Gasoline C7-C<br>Sur<br>Trifluorotolu<br>Bromofluorobe                                                   | SAMPLE<br>malyte<br>C12<br>rrogate<br>uene (FID)<br>enzene (FID)                                                                | % <b>REC</b>                          | <b>Limits</b><br>70-132              | Analyzed:            | 07/19/07<br>RL<br>0.94                    |  |
| Type:<br>Gasoline C7-C<br>Sun<br>Trifluorotolu<br>Bromofluorobe<br>Type:<br>Lab ID:                               | SAMPLE<br>nalyte<br>Cl2<br>rrogate<br>uene (FID)<br>enzene (FID)<br>BLANK<br>QC396807                                           | % <b>REC</b>                          | <b>Limits</b><br>70-132<br>66-138    | Analyzed:            | 07/19/07<br><b>RL</b><br>0.94<br>07/18/07 |  |
| Type:<br>Gasoline C7-C<br>Sun<br>Trifluorotolu<br>Bromofluorobe<br>Type:<br>Lab ID:<br>An                         | SAMPLE<br>nalyte<br>C12<br>rrogate<br>uene (FID)<br>enzene (FID)<br>BLANK<br>QC396807<br>nalyte                                 | <b>%REC</b><br>118<br>124             | Limits<br>70-132<br>66-138<br>Result | Analyzed:            | 07/19/07<br>RL<br>0.94<br>07/18/07<br>RL  |  |
| Type:<br>Gasoline C7-C<br>Sun<br>Trifluorotolu<br>Bromofluorobe<br>Type:<br>Lab ID:                               | SAMPLE<br>nalyte<br>C12<br>rrogate<br>uene (FID)<br>enzene (FID)<br>BLANK<br>QC396807<br>nalyte                                 | % <b>REC</b>                          | Limits<br>70-132<br>66-138<br>Result | Analyzed:            | 07/19/07<br><b>RL</b><br>0.94<br>07/18/07 |  |
| Type:<br>Gasoline C7-C<br>Trifluorotolu<br>Bromofluorobe<br>Type:<br>Lab ID:<br>Ar<br>Gasoline C7-C               | SAMPLE<br>nalyte<br>C12<br>rrogate<br>uene (FID)<br>enzene (FID)<br>BLANK<br>QC396807<br>nalyte<br>C12                          | <b>%REC</b><br>118<br>124<br>NI       | Limits<br>70-132<br>66-138<br>Result | Analyzed:            | 07/19/07<br>RL<br>0.94<br>07/18/07<br>RL  |  |
| Type:<br>Gasoline C7-C<br>Sun<br>Trifluorotolu<br>Bromofluorobe<br>Type:<br>Lab ID:<br>An<br>Gasoline C7-C<br>Sun | SAMPLE<br>nalyte<br>C12<br>rrogate<br>uene (FID)<br>enzene (FID)<br>BLANK<br>QC396807<br>nalyte<br>C12<br>rrogate               | <b>%REC</b><br>118<br>124<br>NI<br>NI | Limits<br>70-132<br>66-138<br>Result | Analyzed:            | 07/19/07<br>RL<br>0.94<br>07/18/07<br>RL  |  |
| Type:<br>Gasoline C7-C<br>Trifluorotolu<br>Bromofluorobe<br>Type:<br>Lab ID:<br>Ar<br>Gasoline C7-C               | SAMPLE<br>malyte<br>C12<br>rrogate<br>uene (FID)<br>enzene (FID)<br>BLANK<br>QC396807<br>malyte<br>C12<br>rrogate<br>uene (FID) | <b>%REC</b><br>118<br>124<br>NI       | Limits<br>70-132<br>66-138<br>Result | Analyzed:            | 07/19/07<br>RL<br>0.94<br>07/18/07<br>RL  |  |



|           | Total Volatil     | e Hydrocarbons |              |
|-----------|-------------------|----------------|--------------|
| Lab #:    | 196042            | Location:      | Hanson Radum |
| Client:   | LFR Levine Fricke | Prep:          | EPA 5030B    |
| Project#: | 001-09567-01      | Analysis:      | EPA 8015B    |
| Туре:     | LCS               | Basis:         | as received  |
| Lab ID:   | QC396809          | Diln Fac:      | 1.000        |
| Matrix:   | Soil              | Batch#:        | 127379       |
| Units:    | mg/Kg             | Analyzed:      | 07/18/07     |

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 10.00  | 9.002  | 90   | 80-120 |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 128  | 70-132 |
| Bromofluorobenzene (FID) | 121  | 66-138 |



| Total Volatile Hydrocarbons |                   |           |              |  |  |
|-----------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                      | 196042            | Location: | Hanson Radum |  |  |
| Client:                     | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |
| Project#:                   | 001-09567-01      | Analysis: | EPA 8015B    |  |  |
| Field ID:                   | B-1(A)-4.5        | Diln Fac: | 1.000        |  |  |
| MSS Lab ID:                 | 196042-005        | Batch#:   | 127379       |  |  |
| Matrix:                     | Soil              | Sampled:  | 07/17/07     |  |  |
| Units:                      | mg/Kg             | Received: | 07/17/07     |  |  |
| Basis:                      | as received       | Analyzed: | 07/18/07     |  |  |

| Type:     | MS               |        |         | Lab ID: | QC     | 2396810 |        |     |      |
|-----------|------------------|--------|---------|---------|--------|---------|--------|-----|------|
|           | Analyte          | MSS Re | sult    | Spik    | ed     | Result  | %REC   | Lin | nits |
| Gasoline  | C7-C12           |        | 0.2479  | 9       | .804   | 6.949   | 68     | 36- | 120  |
|           | Surrogate        | %REC   | Limits  |         |        |         |        |     |      |
| Trifluorc | toluene (FID)    | 119    | 70-132  |         |        |         |        |     |      |
| Bromofluc | probenzene (FID) | 114    | 66-138  |         |        |         |        |     |      |
|           |                  |        |         |         |        |         |        |     |      |
| Туре:     | MSD              |        |         | Lab ID: | QC     | 2396811 |        |     |      |
|           | Analyte          |        | Spiked  |         | Result | %REC    | Limits | RPD | Lim  |
| Gasoline  | C7-C12           |        | 10.42   |         | 7.440  | ) 69    | 36-120 | 1   | 29   |
|           | Surrogate        | %REC   | T.imits |         |        |         |        |     |      |

| Surrogate                | %REC | Limits |  |
|--------------------------|------|--------|--|
| Trifluorotoluene (FID)   | 122  | 70-132 |  |
| Bromofluorobenzene (FID) | 120  | 66-138 |  |



|                                                | Total                                       | Extracta                         | ble Hydrocarbo                                       | ns                                          |
|------------------------------------------------|---------------------------------------------|----------------------------------|------------------------------------------------------|---------------------------------------------|
| Client:<br>Project#:                           | 196042<br>LFR Levine Fricke<br>001-09567-01 |                                  | Location:<br>Prep:<br>Analysis:                      | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B   |
| Units: 1                                       | Soil<br>mg/Kg<br>as received                |                                  | Sampled:<br>Received:                                | 07/17/07<br>07/17/07                        |
| Type: Si<br>Lab ID: 11<br>Diln Fac: 1          | B-31(A)-5.5<br>AMPLE<br>96042-001<br>.000   |                                  | Batch#:<br>Prepared:<br>Analyzed:<br>Cleanup Method: | 127373<br>07/18/07<br>07/20/07<br>EPA 3630C |
| Analyto<br>Diesel C10-C24<br>Motor Oil C24-C36 | 9                                           | <u>Result</u><br>1.3 н<br>16 н   | RL<br>1.<br>5.                                       |                                             |
| Surroga<br>Hexacosane                          | te %RE<br>83                                | C Limits<br>40-127               |                                                      |                                             |
| Type: Si<br>Lab ID: 1                          | B-31(A)-10.5<br>AMPLE<br>96042-002<br>.000  |                                  | Batch#:<br>Prepared:<br>Analyzed:<br>Cleanup Method: | 127373<br>07/18/07<br>07/20/07<br>EPA 3630C |
| Analyte<br>Diesel C10-C24<br>Motor Oil C24-C36 | e                                           | <b>Result</b><br>14 H Y<br>170 H | RL<br>2.<br>9.                                       |                                             |
| Surroga<br>Hexacosane                          | te %RE<br>91                                | -                                |                                                      |                                             |
| Type: Si<br>Lab ID: 1                          | B-31(A)-15.5<br>AMPLE<br>96042-003<br>.000  |                                  | Batch#:<br>Prepared:<br>Analyzed:<br>Cleanup Method: | 127373<br>07/18/07<br>07/21/07<br>EPA 3630C |
| Analyto                                        | 9                                           | Result<br>ND                     | <b>RL</b><br>0.                                      | 99                                          |
| Motor Oil C24-C36                              |                                             | ND                               | 5.                                                   |                                             |
| Surroga<br>Hexacosane                          | t <b>e %RE</b><br>98                        | C Limits<br>40-127               |                                                      |                                             |

H= Heavier hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected RL= Reporting Limit

Page 1 of 5



|                                            | T                                              | otal E             | Extracta                | ble Hydrocarbo                                       | ns                                          |
|--------------------------------------------|------------------------------------------------|--------------------|-------------------------|------------------------------------------------------|---------------------------------------------|
| Lab #:<br>Client:<br>Project#:             | 196042<br>LFR Levine Fr:<br>001-09567-01       | icke               |                         | Location:<br>Prep:<br>Analysis:                      | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B   |
| Matrix:<br>Units:<br>Basis:                | Soil<br>mg/Kg<br>as received                   |                    |                         | Sampled:<br>Received:                                | 07/17/07<br>07/17/07                        |
| Field ID:<br>Type:<br>Lab ID:<br>Diln Fac: | EB-31(A)-20.5<br>SAMPLE<br>196042-004<br>1.000 |                    |                         | Batch#:<br>Prepared:<br>Analyzed:<br>Cleanup Method: | 127373<br>07/18/07<br>07/21/07<br>EPA 3630C |
|                                            | lyte                                           |                    | Result                  | RL                                                   |                                             |
| Diesel C10-C24<br>Motor Oil C24-           |                                                | ND<br>ND           |                         | 1.<br>5.                                             |                                             |
|                                            |                                                | 0.DEC              | T                       |                                                      |                                             |
| Hexacosane                                 | ogate                                          | <b>%REC</b><br>89  | Limits<br>40-127        |                                                      |                                             |
| Field ID:<br>Type:<br>Lab ID:<br>Diln Fac: | B-1(A)-4.5<br>SAMPLE<br>196042-005<br>1.000    |                    |                         | Batch#:<br>Prepared:<br>Analyzed:<br>Cleanup Method: | 127373<br>07/18/07<br>07/21/07<br>EPA 3630C |
| Ana<br>Diesel C10-C24                      | lyte                                           | ND                 | Result                  | <u>RL</u>                                            | 0                                           |
| Motor Oil C24-                             |                                                | ND                 |                         | 5.                                                   |                                             |
| Surr<br>Hexacosane                         | ogate                                          | % <b>REC</b><br>74 | <b>Limits</b><br>40-127 |                                                      |                                             |
| Field ID:                                  | B-1(A)-9.5                                     | , 1                | 10 12,                  | Batch#:                                              | 127373                                      |
| Type:<br>Lab ID:<br>Diln Fac:              | SAMPLE<br>196042-006<br>1.000                  |                    |                         | Prepared:<br>Analyzed:<br>Cleanup Method:            | 07/18/07<br>07/21/07<br>EPA 3630C           |
|                                            | lyte                                           |                    | Result                  | RL                                                   |                                             |
| Diesel C10-C24<br>Motor Oil C24-           |                                                | ND                 | 7.4 H                   | 1.<br>I 5.                                           |                                             |
| Surr                                       | ogate                                          | %REC               | Limits                  | v.                                                   | ·                                           |
| Hexacosane                                 |                                                | 88                 | 40-127                  |                                                      |                                             |

H= Heavier hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 2 of 5



|                                            | ſ                                           | otal E   | Extracta        | ble Hydrocarbo                                       | ns                                          |
|--------------------------------------------|---------------------------------------------|----------|-----------------|------------------------------------------------------|---------------------------------------------|
| Lab #:<br>Client:<br>Project#:             | 196042<br>LFR Levine Fr<br>001-09567-01     | icke     |                 | Location:<br>Prep:<br>Analysis:                      | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B   |
| Matrix:<br>Units:<br>Basis:                | Soil<br>mg/Kg<br>as received                |          |                 | Sampled:<br>Received:                                | 07/17/07<br>07/17/07                        |
| Field ID:<br>Type:<br>Lab ID:<br>Diln Fac: | B-1(A)-35<br>SAMPLE<br>196042-007<br>1.000  |          |                 | Batch#:<br>Prepared:<br>Analyzed:<br>Cleanup Method: | 127373<br>07/18/07<br>07/20/07<br>EPA 3630C |
| 7.5                                        | lyte                                        |          | Result          | RL                                                   |                                             |
| Diesel C10-C24<br>Motor Oil C24-           |                                             | ND<br>ND | )               | 1.<br>5.                                             |                                             |
| Surr                                       | rogate                                      | %REC     | Limits          |                                                      |                                             |
| Hexacosane                                 | Jogace                                      | 92       | 40-127          |                                                      |                                             |
| Field ID:<br>Type:<br>Lab ID:<br>Diln Fac: | EB-35(A)-4<br>SAMPLE<br>196042-010<br>3.000 |          |                 | Batch#:<br>Prepared:<br>Analyzed:<br>Cleanup Method: | 127373<br>07/18/07<br>07/20/07<br>EPA 3630C |
|                                            | lyte                                        |          | Result          | RL                                                   | 0                                           |
| Diesel C10-C24<br>Motor Oil C24-           |                                             |          | 48 Н Ү<br>540 Н | 3.<br>15                                             | 0                                           |
| Surr                                       | rogate                                      | %REC     | Limits          |                                                      |                                             |
| Hexacosane                                 |                                             | 86       | 40-127          |                                                      |                                             |
| Field ID:                                  | EB-35(A)-9.5                                |          |                 | Batch#:                                              | 127535                                      |
| Type:<br>Lab ID:<br>Diln Fac:              | SAMPLE<br>196042-011<br>1.000               |          |                 | Prepared:<br>Analyzed:<br>Cleanup Method:            | 07/23/07<br>07/24/07<br>EPA 3630C           |
| Ana                                        | lyte                                        |          | Result          | RL                                                   |                                             |
| Diesel C10-C24<br>Motor Oil C24-           | -C36                                        | ND       | )<br>5.2 H      | 1.<br>I 5.                                           |                                             |
| Surr                                       | rogate                                      | %REC     | Limits          |                                                      |                                             |
| Hexacosane                                 | -                                           | 85       | 40-127          |                                                      |                                             |

H= Heavier hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 3 of 5



|                                            | נ                                           | otal I             | Extracta                | ble Hydrocarbo                                       |                                             |
|--------------------------------------------|---------------------------------------------|--------------------|-------------------------|------------------------------------------------------|---------------------------------------------|
| Lab #:<br>Client:<br>Project#:             | 196042<br>LFR Levine Fr<br>001-09567-01     | ricke              |                         | Location:<br>Prep:<br>Analysis:                      | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B   |
| Matrix:<br>Units:<br>Basis:                | Soil<br>mg/Kg<br>as received                |                    |                         | Sampled:<br>Received:                                | 07/17/07<br>07/17/07                        |
| Babib                                      |                                             |                    |                         |                                                      |                                             |
| Field ID:<br>Type:                         | EB-35(B)-5<br>SAMPLE                        |                    |                         | Batch#:<br>Prepared:                                 | 127373<br>07/18/07                          |
| Lab ID:<br>Diln Fac:                       | 196042-013<br>20.00                         |                    |                         | Analyzed:<br>Cleanup Method:                         | 07/20/07<br>EPA 3630C                       |
|                                            | lyte                                        |                    | Result                  | RL                                                   |                                             |
| Diesel C10-C24<br>Motor Oil C24-           |                                             |                    | 160 Н Ү<br>3,600 Н      | 40<br>200                                            |                                             |
| Surr                                       | ogate                                       | %REC               | Limits                  |                                                      |                                             |
| Hexacosane                                 |                                             | DO                 | 40-127                  |                                                      |                                             |
| Field ID:<br>Type:<br>Lab ID:<br>Diln Fac: | EB-35(B)-9<br>SAMPLE<br>196042-014<br>1.000 |                    |                         | Batch#:<br>Prepared:<br>Analyzed:<br>Cleanup Method: | 127373<br>07/18/07<br>07/20/07<br>EPA 3630C |
| Ana<br>Diesel C10-C24                      | lyte                                        | NE                 | Result                  | RL                                                   | 99                                          |
| Motor Oil C24-                             |                                             | NL                 |                         | 5.                                                   |                                             |
|                                            | ogate                                       | % <b>REC</b><br>81 | <b>Limits</b><br>40-127 |                                                      |                                             |
| Hexacosane                                 |                                             | 01                 | 40-127                  |                                                      |                                             |
| Type:<br>Lab ID:                           | BLANK<br>QC396784                           |                    |                         | Prepared:<br>Analyzed:                               | 07/18/07<br>07/20/07                        |
| Diln Fac:<br>Batch#:                       | 1.000<br>127373                             |                    |                         | Cleanup Method:                                      | EPA 3630C                                   |
|                                            | lyte                                        |                    | Result                  | RL                                                   |                                             |
| Diesel C10-C24<br>Motor Oil C24-           |                                             | NE<br>NE           |                         | 1.<br>5.                                             |                                             |
| Surr                                       | ogate                                       | %REC               | Limits                  |                                                      |                                             |
| Hexacosane                                 |                                             | 88                 | 40-127                  |                                                      |                                             |

H= Heavier hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 4 of 5



|                                          |                                        | Total Extracta                                  | ble Hydrocarbo                            | ns                                        |
|------------------------------------------|----------------------------------------|-------------------------------------------------|-------------------------------------------|-------------------------------------------|
| Lab #:<br>Client:<br>Project#:           | 196042<br>LFR Levine F<br>001-09567-01 | ricke                                           | Location:<br>Prep:<br>Analysis:           | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B |
| Matrix:<br>Units:<br>Basis:              | Soil<br>mg/Kg<br>as received           |                                                 | Sampled:<br>Received:                     | 07/17/07<br>07/17/07                      |
| Type:<br>Lab ID:<br>Diln Fac:<br>Batch#: | BLANK<br>QC397580<br>1.000<br>127535   |                                                 | Prepared:<br>Analyzed:<br>Cleanup Method: | 07/23/07<br>07/24/07<br>EPA 3630C         |
| An<br>Diesel C10-C2<br>Motor Oil C24     |                                        | Result<br>ND<br>ND                              | <u>RL</u><br>1.<br>5.                     |                                           |
| Sur<br>Hexacosane                        | rrogate                                | %REC         Limits           72         40-127 |                                           |                                           |



|           | Total Extracta    | ble Hydrocarbo | ns           |
|-----------|-------------------|----------------|--------------|
| Lab #:    | 196042            | Location:      | Hanson Radum |
| Client:   | LFR Levine Fricke | Prep:          | SHAKER TABLE |
| Project#: | 001-09567-01      | Analysis:      | EPA 8015B    |
| Туре:     | LCS               | Diln Fac:      | 1.000        |
| Lab ID:   | QC396785          | Batch#:        | 127373       |
| Matrix:   | Soil              | Prepared:      | 07/18/07     |
| Units:    | mg/Kg             | Analyzed:      | 07/21/07     |
| Basis:    | as received       |                |              |

Cleanup Method: EPA 3630C

Hexacosane

| Analyte        | Spiked      | Result | %REC | Limits |
|----------------|-------------|--------|------|--------|
| Diesel C10-C24 | 49.88       | 42.07  | 84   | 58-127 |
|                |             |        |      |        |
| Surrogate      | %REC Limits |        |      |        |

40-127

95



| Lab #:      | 196042            | Location:       | Hanson Radum |
|-------------|-------------------|-----------------|--------------|
| Client:     | LFR Levine Fricke | Prep:           | SHAKER TABLE |
| Project#:   | 001-09567-01      | Analysis:       | EPA 8015B    |
| Field ID:   | ZZZZZZZZZ         | Diln Fac:       | 1.000        |
| MSS Lab ID: | 196005-001        | Batch#:         | 127373       |
| Matrix:     | Soil              | Sampled:        | 07/13/07     |
| Units:      | mg/Kg             | Received:       | 07/16/07     |
| Basis:      | as received       | Prepared:       | 07/18/07     |
|             |                   |                 |              |
| Гуре:       | MS                | Analyzed:       | 07/20/07     |
| Lab ID:     | QC396786          | Cleanup Method: | EPA 3630C    |

| Analyte        | MSS Result  | Spiked | Result | %REC | Limits |
|----------------|-------------|--------|--------|------|--------|
| Diesel C10-C24 | 45.11       | 49.90  | 83.96  | 78   | 29-147 |
|                |             |        |        |      |        |
|                |             |        |        |      |        |
| Surrogate      | %REC Limits |        |        |      |        |

| Type:<br>Lab ID: | MSD<br>QC396787 |        | Analyzed:<br>Cleanup Method: | 07/24/07<br>EPA 3630C |        |       |    |
|------------------|-----------------|--------|------------------------------|-----------------------|--------|-------|----|
|                  | Analyte         | Spiked | Result                       | %REC                  | Limits | RPD L | im |
| Diesel C10       | -C24            | 49.94  | 63.                          | 87 38                 | 29-147 | 27 4  | 6  |
|                  |                 |        |                              |                       |        |       |    |



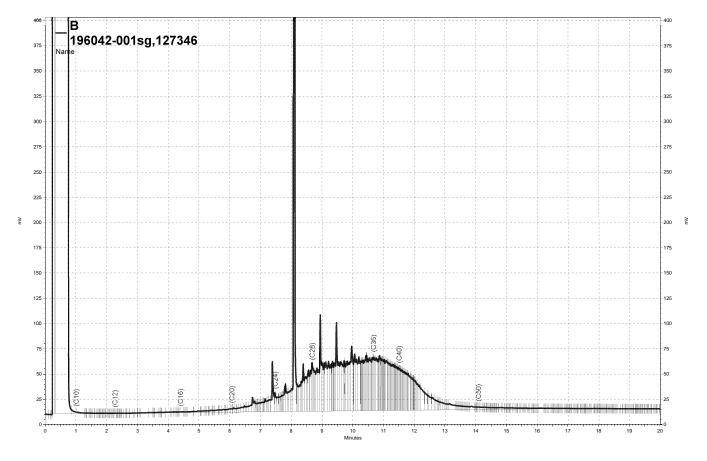
| Total Extractable Hydrocarbons |                   |           |              |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                         | 196042            | Location: | Hanson Radum |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | SHAKER TABLE |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |
| Туре:                          | LCS               | Diln Fac: | 1.000        |  |  |
| Lab ID:                        | QC397581          | Batch#:   | 127535       |  |  |
| Matrix:                        | Soil              | Prepared: | 07/23/07     |  |  |
| Units:                         | mg/Kg             | Analyzed: | 07/24/07     |  |  |
| Basis:                         | as received       |           |              |  |  |

Cleanup Method: EPA 3630C

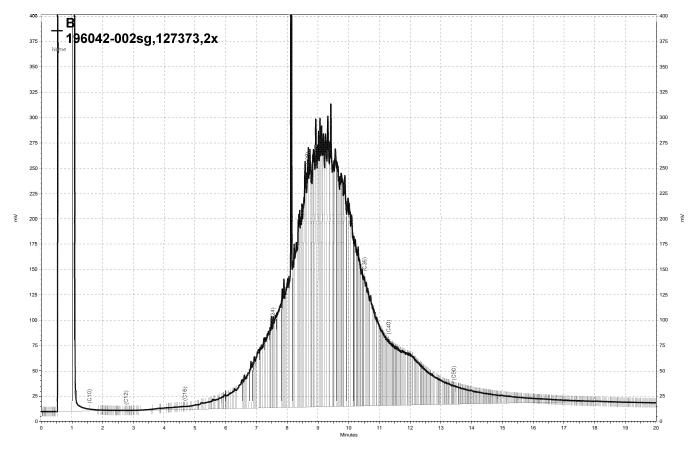
Hexacosane

| Analyte        | Spiked      | Result | %REC | Limits |
|----------------|-------------|--------|------|--------|
| Diesel C10-C24 | 49.84       | 36.64  | 74   | 58-127 |
|                |             |        |      |        |
| Surrogate      | %REC Limits |        |      |        |

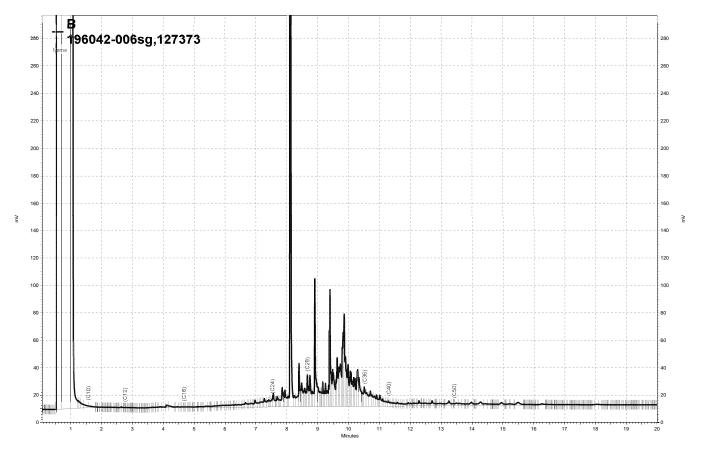
40-127


78

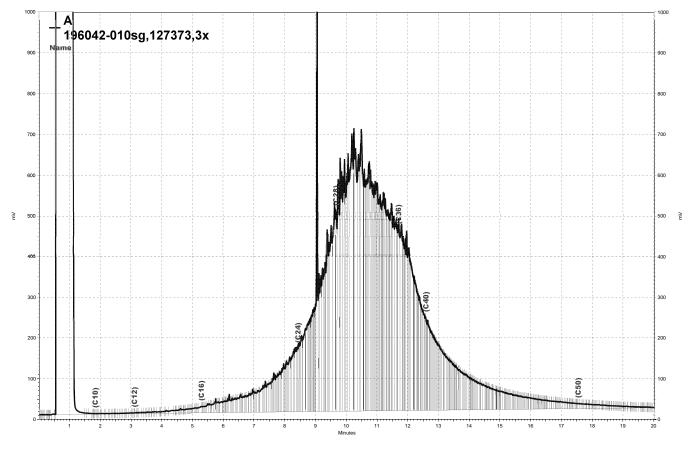



| Total Extractable Hydrocarbons |                      |                   |                         |                           |              |      |        |
|--------------------------------|----------------------|-------------------|-------------------------|---------------------------|--------------|------|--------|
| Lab #:                         | 196042               |                   |                         | Location:                 | Hanson Radum |      |        |
| Client:                        | LFR Levine F         | ricke             |                         | Prep:                     | SHAKER TABLE |      |        |
| Project#:                      | 001-09567-01         |                   |                         | Analysis:                 | EPA 8015B    |      |        |
| Field ID:                      | ZZZZZZZZZZ           |                   |                         | Batch#:                   | 127535       |      |        |
| MSS Lab ID:                    | 196124-006           |                   |                         | Sampled:                  | 07/20/07     |      |        |
| Matrix:                        | Soil                 |                   |                         | Received:                 | 07/20/07     |      |        |
| Units:                         | mg/Kg                |                   |                         | Prepared:                 | 07/23/07     |      |        |
| Basis:                         | as received          |                   |                         | Analyzed:                 | 07/24/07     |      |        |
| Diln Fac:                      | 1.000                |                   |                         |                           |              |      |        |
| Type:<br>Lab ID:<br>Analy      | MS<br>QC397582<br>te | MSS Res           | sult                    | Cleanup Method:<br>Spiked | EPA 3630C    | %REC | Limits |
| Diesel C10-C24                 |                      |                   | 2.332                   | 49.92                     | 30.59        | 57   | 29-147 |
|                                | ogate                | <b>%REC</b><br>57 | <b>Limits</b><br>40-127 |                           |              |      | -      |
| nexacosane                     |                      | 10                | 10-121                  |                           |              |      |        |
| Type:<br>Lab ID:               | MSD<br>QC397583      |                   |                         | Cleanup Method:           | EPA 3630C    |      |        |

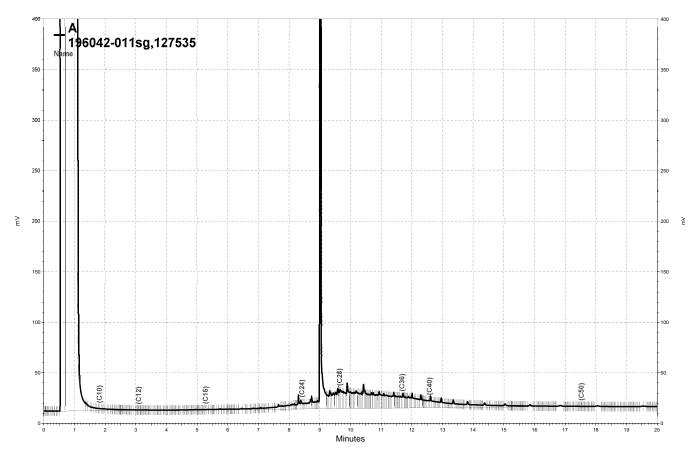
| Analyte        | Spiked | Result | %REC | Limits | RPD | Lim |
|----------------|--------|--------|------|--------|-----|-----|
| Diesel C10-C24 | 49.88  | 40.57  | 77   | 29-147 | 28  | 46  |
|                |        |        |      |        |     |     |


| Surrogate %REC Limits |
|-----------------------|
| acosane 79 40-127     |

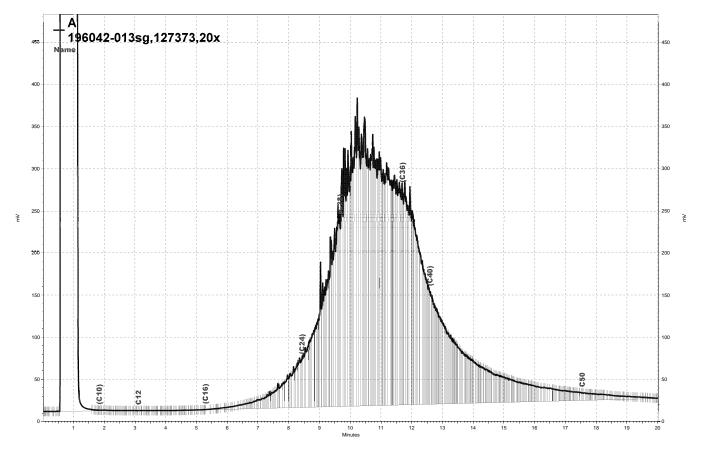



\Lims\gdrive\ezchrom\Projects\GC14B\Data\201b032, B

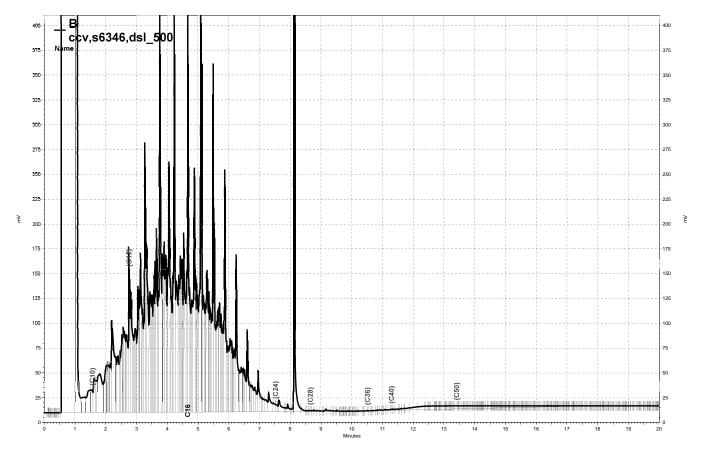


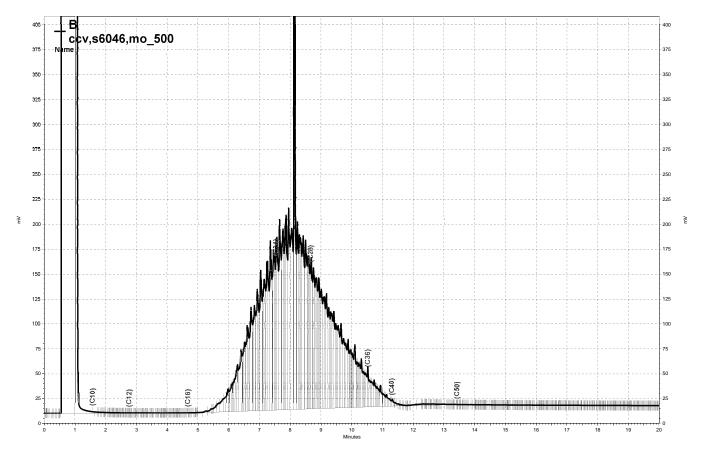

\Lims\gdrive\ezchrom\Projects\GC15B\Data\201b019, B




\Lims\gdrive\ezchrom\Projects\GC15B\Data\201b045, B




\\Lims\gdrive\ezchrom\Projects\GC17A\Data\201a027, A




\Lims\gdrive\ezchrom\Projects\GC17A\Data\205a008, A



\Lims\gdrive\ezchrom\Projects\GC17A\Data\201a028, A





\\Lims\gdrive\ezchrom\Projects\GC15B\Data\201b005, B



| Semivolatile Organics by GC/MS                                   |                                                                   |                                                            |                                                        |  |  |
|------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------|--|--|
| Lab #:<br>Client:<br>Project#:                                   | 196042<br>LFR Levine Fricke<br>001-09567-01                       | Location:<br>Prep:<br>Analysis:                            | Hanson Radum<br>EPA 3550B<br>EPA 8270C                 |  |  |
| Field ID:<br>Lab ID:<br>Matrix:<br>Units:<br>Basis:<br>Diln Fac: | B-1(A)-4.5<br>196042-005<br>Soil<br>ug/Kg<br>as received<br>1.000 | Batcĥ#:<br>Sampled:<br>Received:<br>Prepared:<br>Analyzed: | 127357<br>07/17/07<br>07/17/07<br>07/18/07<br>07/19/07 |  |  |

| Analyte                      | Result | RI.   |
|------------------------------|--------|-------|
| N-Nitrosodimethylamine       | ND     | 330   |
| Phenol                       | ND     | 330   |
| bis(2-Chloroethyl)ether      | ND     | 330   |
| 2-Chlorophenol               | ND     | 330   |
| 1,3-Dichlorobenzene          | ND     | 330   |
| 1,4-Dichlorobenzene          | ND     | 330   |
|                              |        |       |
| Benzyl alcohol               | ND     | 330   |
| 1,2-Dichlorobenzene          | ND     | 330   |
| 2-Methylphenol               | ND     | 330   |
| bis(2-Chloroisopropyl) ether | ND     | 330   |
| 4-Methylphenol               | ND     | 330   |
| N-Nitroso-di-n-propylamine   | ND     | 330   |
| Hexachloroethane             | ND     | 330   |
| Nitrobenzene                 | ND     | 330   |
| Isophorone                   | ND     | 330   |
| 2-Nitrophenol                | ND     | 660   |
| 2,4-Dimethylphenol           | ND     | 330   |
| Benzoic acid                 | ND     | 1,600 |
| bis(2-Chloroethoxy)methane   | ND     | 330   |
| 2,4-Dichlorophenol           | ND     | 330   |
| 1,2,4-Trichlorobenzene       | ND     | 330   |
| Naphthalene                  | ND     | 66    |
| 4-Chloroaniline              | ND     | 330   |
| Hexachlorobutadiene          | ND     | 330   |
| 4-Chloro-3-methylphenol      | ND     | 330   |
| 2-Methylnaphthalene          | ND     | 66    |
| Hexachlorocyclopentadiene    | ND     | 660   |
| 2,4,6-Trichlorophenol        | ND     | 330   |
| 2,4,5-Trichlorophenol        | ND     | 330   |
|                              | ND     | 330   |
| 2-Chloronaphthalene          |        |       |
| 2-Nitroaniline               | ND     | 660   |
| Dimethylphthalate            | ND     | 330   |
| Acenaphthylene               | ND     | 66    |
| 2,6-Dinitrotoluene           | ND     | 330   |
| 3-Nitroaniline               | ND     | 660   |
| Acenaphthene                 | ND     | 66    |
| 2,4-Dinitrophenol            | ND     | 660   |
| 4-Nitrophenol                | ND     | 660   |
| Dibenzofuran                 | ND     | 330   |
| 2,4-Dinitrotoluene           | ND     | 330   |
| Diethylphthalate             | ND     | 330   |
| Fluorene                     | ND     | 66    |
| 4-Chlorophenyl-phenylether   | ND     | 330   |
| 4-Nitroaniline               | ND     | 660   |
| 4,6-Dinitro-2-methylphenol   | ND     | 660   |
| N-Nitrosodiphenylamine       | ND     | 330   |
| Azobenzene                   | ND     | 330   |
| 4-Bromophenyl-phenylether    | ND     | 330   |
| Hexachlorobenzene            | ND     | 330   |
| Pentachlorophenol            | ND     | 660   |
| Phenanthrene                 | ND     | 66    |
| Anthracene                   | ND     | 66    |
| Di-n-butylphthalate          | ND     | 330   |
|                              |        | 2.24  |

ND= Not Detected RL= Reporting Limit Page 1 of 2



| Semivolatile Organics by GC/MS |                             |                    |                           |  |  |
|--------------------------------|-----------------------------|--------------------|---------------------------|--|--|
| Lab #:<br>Client:              | 196042<br>LFR Levine Fricke | Location:          | Hanson Radum<br>EPA 3550B |  |  |
| Project#:                      | 001-09567-01                | Prep:<br>Analysis: | EPA 8270C                 |  |  |
| Field ID:                      | B-1(A)-4.5                  | Batch#:            | 127357                    |  |  |
| Lab ID:                        | 196042-005                  | Sampled:           | 07/17/07                  |  |  |
| Matrix:                        | Soil                        | Received:          | 07/17/07                  |  |  |
| Units:                         | ug/Kg                       | Prepared:          | 07/18/07                  |  |  |
| Basis:<br>Diln Fac:            | as received<br>1.000        | Analyzed:          | 07/19/07                  |  |  |

| Analyte                    | Result     | RL  |
|----------------------------|------------|-----|
| Fluoranthene               | ND         | 66  |
| Pyrene                     | ND         | 66  |
| Butylbenzylphthalate       | ND         | 330 |
| 3,3'-Dichlorobenzidine     | ND         | 660 |
| Benzo(a)anthracene         | ND         | 66  |
| Chrysene                   | ND         | 66  |
| bis(2-Ethylhexyl)phthalate | ND         | 330 |
| Di-n-octylphthalate        | ND         | 330 |
| Benzo(b)fluoranthene       | ND         | 66  |
| Benzo(k)fluoranthene       | ND         | 66  |
| Benzo(a)pyrene             | ND         | 66  |
| Indeno(1,2,3-cd)pyrene     | ND         | 66  |
| Dibenz(a,h)anthracene      | ND         | 66  |
| Benzo(g,h,i)perylene       | ND         | 66  |
|                            |            |     |
| Surrogate                  | %REC Limit |     |
| 2-Fluorophenol             | 81 28-12   |     |
| Phenol-d5                  | 81 30-12   |     |
| 2,4,6-Tribromophenol       | 102 20-12  |     |
| Nitrobenzene-d5            | 80 39-12   |     |
| 2-Fluorobiphenyl           | 81 44-12   |     |
| Terphenyl-d14              | 82 39-12   | 0   |



| Semivolatile Organics by GC/MS |                      |           |              |  |  |  |
|--------------------------------|----------------------|-----------|--------------|--|--|--|
| Lab #:                         | 196042               | Location: | Hanson Radum |  |  |  |
| Client:                        | LFR Levine Fricke    | Prep:     | EPA 3550B    |  |  |  |
| Project#:                      | 001-09567-01         | Analysis: | EPA 8270C    |  |  |  |
| Field ID:                      | B-1(A)-9.5           | Batch#:   | 127357       |  |  |  |
| Lab ID:                        | 196042-006           | Sampled:  | 07/17/07     |  |  |  |
| Matrix:                        | Soil                 | Received: | 07/17/07     |  |  |  |
| Units:                         | ug/Kg                | Prepared: | 07/18/07     |  |  |  |
| Basis:<br>Diln Fac:            | as received<br>1.000 | Analyzed: | 07/19/07     |  |  |  |

| NH:trosodimethylamine         ND         330           Phenol         ND         330           bis[2-Chloroethyl]ether         ND         330           2-Chlorophenol         ND         330           1,4-Dichlorobenzene         ND         330           1,4-Dichlorobenzene         ND         330           1,2-Dichlorobenzene         ND         330           4-Methylphenol         ND         330           N-Nitroso-di-n-propylamine         ND         330           Nitrobenzene         ND         330           2,4-Dimethylphenol         ND         330           2,4-Dirich                    | Analyte             | Result | RL  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------|-----|
| Phenol         ND         330           2-Chlorophenol         ND         330           2-Chlorophenol         ND         330           1.3-Dichlorobenzene         ND         330           1.4-Dichlorobenzene         ND         330           1.4-Dichlorobenzene         ND         330           1.4-Dichlorobenzene         ND         330           2-Metrylphenol         ND         330           1.2-Dichlorobenzene         ND         330           2-Metrylphenol         ND         330           Heixachloroetham         ND         330           Heixachloroetham         ND         330           Heixachloroethoxylmeine         ND         330           Isophorone         ND         330           2-Alitophenol         ND         330           2.4-Dichlorophenol         ND <th></th> <th></th> <th></th>   |                     |        |     |
| bis(2-chloroethyl)ether         ND         330           2-Chlorophenol         ND         330           1,4-Dichlorobenzene         ND         330           1,4-Dichlorobenzene         ND         330           1,2-Dichlorobenzene         ND         330           Hexachlorobethane         ND         330           Hexachlorobethane         ND         330           2-Altrophenol         ND         330           2-Altrophenol         ND         330           2.4-Dintertylphenol         ND         330           2.4-Dichlorophenol         ND         330           2.4-Tirtchlorophenol         ND         330           2.4.6-T                    |                     |        |     |
| 2-Chlorophenol         ND         330           1.3-Dichlorobenzene         ND         330           1.4-Dichlorobenzene         ND         330           2.4-Dichlorobenzene         ND         330           1.2-Dichlorobenzene         ND         330           2Methylphenol         ND         330           1.4-Dichlorobenzene         ND         330           2-Methylphenol         ND         330           Hextroso-di-n-propylamine         ND         330           Hitrobenzene         ND         330           Sophorone         ND         330           Isophorone         ND         330           2-Altrophenol         ND         330           2.4-Dichlorophenol         ND         1.700           Benzoic acid         ND         1.700           bis(2-Chloropethoxylmethane         ND         330           2.4-Dichlorophenol         ND         330           2.4-Dichlorophenol         ND         330           2.4-Dichlorophenol         ND         330           2.4-Dichlorophenol         ND         330           2.4-Strichlorophenol         ND         330           2.4-Strichlorophenol                           |                     |        |     |
| 1,4-Dichlorobenzene       ND       330         J.4-Dichlorobenzene       ND       330         J.2-Dichlorobenzene       ND       330         1,2-Dichlorobenzene       ND       330         2-Methylphenol       ND       330         Methylphenol       ND       330         4-Methylphenol       ND       330         Hexachloroethane       ND       330         Isophorone       ND       330         Z-Nitrobenzene       ND       330         Isophorone       ND       330         Z-Nitrobend       ND       330         J.2-Lohnorobenzene       ND       330         J.3.4       ND       330         J.3.5       ND       330         J.3.6       ND       330         J.3.7       ND       330         J.3.4       ND       330         J.4.5       Tichlorophenol </td <td></td> <td></td> <td></td>                                                                                                                                        |                     |        |     |
| 1.4-Dichlorobenzene       ND       330         Benzyl alcohol       ND       330         1.4-Dichlorobenzene       ND       330         J-Methylphenol       ND       330         Hexachlorobenzene       ND       330         J-Methylphenol       ND       330         Nitroso-di-n-propylamine       ND       330         Nitrobenzene       ND       330         Sophorone       ND       330         Jsophorone       ND       330         2.4-Dichlorobenzene       ND       330         J.4-Dichlorobenzene       ND       330         J.2.4-Trichlorobenzene       ND       330         J.2.4-Trichlorobenzene       ND       330         J.2.4-Trichlorobenzene       ND       330         A-Chloro-almethylphenol       ND       330         L2.4-Trichlorophenol       ND       330         Z-4-Dichlorophenol       ND       330         Z-4-Dichlorophenol       ND       330         Z-4-Choro-alcotylphenol       ND       330         Z-4-Choro-alcotylphenol       ND       330         Z-4-Choro-alcotylphenol       ND       330         Z-4-Soliricholorophenol </td <td></td> <td></td> <td></td>                                         |                     |        |     |
| Benzyl alcohol         ND         330           1,2-Dichlorobspropyl) ether         ND         330           2-Methylphenol         ND         330           4-Methylphenol         ND         330           4-Methylphenol         ND         330           4-Methylphenol         ND         330           Hexachloroethane         ND         330           Isophorone         ND         330           Z-Nitrophenol         ND         330           Janutrophenol         ND         330           Janutrophenol         ND         330           Z-Nitrophenol         ND         330           Janutrophenol         ND         330           A-Chorosphenol         ND         330           Janutrophenol         ND         330           Z-Methylphenol         ND         330           Janutrophenol         ND         330           Z-Methylphenol         ND         330 <td< td=""><td></td><td></td><td></td></td<>                             |                     |        |     |
| 1,2-Dichlorobenzene       ND       330         -Methylphenol       ND       330         his(2-Chloroisopropyl) ether       ND       330         Hexachloroethame       ND       330         Nitrobenzene       ND       330         Nitrobenzene       ND       330         Z-Mitrophenol       ND       330         Z-Authylphenol       ND       330         Z-Authrophenol       ND       330         Z-Authylphenol                                                                                                                            |                     |        |     |
| 2-Methylphenol         ND         330           hethylphenol         ND         330           4-Methylphenol         ND         330           Hexachloroethane         ND         330           Hexachloroethane         ND         330           Hexachloroethane         ND         330           Hexachloroethane         ND         330           Isophorone         ND         330           2-Nitrophenol         ND         330           2.4 -Dichlorophenol         ND         330           2.4 -Dichlorophenol         ND         330           1,2,4 -Trichlorophenol         ND         330           1,2,4 -Trichlorophenol         ND         330           1,2,4 -Trichlorophenol         ND         330           2.4 -Dichlorophenol         ND         330           2.4 -Mithylphenol         ND         330           2.4 -Trichlorophenol         ND         330           2.4 -Trichlorophenol         ND         330           2.4 -Strichlorophenol         ND         330           2.4 -Strichlorophenol         ND         330           2.4 -Strichlorophenol         ND         330           2.4 -Strichloro                    |                     |        |     |
| bis(2-Chloroisopropyl) ether         ND         330           4-Methylphenol         ND         330           Nitroso-di-n-propylamine         ND         330           Nitrobenzene         ND         330           Nitrobenzene         ND         330           Zohoroethane         ND         330           Patrobenzene         ND         330           Z-Mitrophenol         ND         330           Patrobenzene         ND         330           Z-4-Dichlorophenol         ND         330           Patrobenzene         ND         330           Z-4-Dichlorophenol         ND         330           A-trichlorophenol         ND         330           Naphthalene         ND         330           4-Chloroaniline         ND         330           A-Chloroaniline         ND         330           4-Chloroaniline         ND         330           2-Methylnaphthalene         ND         66           4-Chloroaphthalene         ND         330           2-Actoroaphthalene         ND         330           2-Actoroaphthalene         ND         66           2-A.f.frichlorophenol         ND                                          |                     |        |     |
| 4-Methylphenol         ND         330           H-NitroSordin-propylamine         ND         330           Hexachloroethane         ND         330           Hexachloroethane         ND         330           Isophorone         ND         330           Janktrophenol         ND         330           Janktrophenol         ND         330           Janktrophenol         ND         330           Janktrophenol         ND         330           J.4-Dichlorophenol         ND         330           J.4.7         Janktrophenol         ND           Maphthalene         ND         330           J.4.7         Janktrophenol         ND           Janktrophenol         ND         330           J.4.7         Jankthalene         ND         330           J.4.7         Jankthalene         ND         330           J.4.5         Trichlorophenol         ND         330           J.4.6         Trichlorophenol         ND         330           J.4.7         Strichlorophenol         ND         330           J.4.6         Trichlorophenol         ND         330           J.4.7         Strichlorophen                                       |                     |        |     |
| N-Nitroso-di-n-propylamine         ND         330           Hexachloroethane         ND         330           Nitrobenzene         ND         330           Isophorone         ND         330           2-Nitrophenol         ND         330           2-Nitrophenol         ND         330           2-A-Dienthylphenol         ND         1,700           Dis(2-Chloroethoxy)methane         ND         330           1,2,4-Trichlorophenol         ND         330           Naphthalene         ND         330           Naphthalene         ND         330           -A-chloroethoxy)methalene         ND         330           -Achlorobutadiene         ND         330           -Achlorobutadiene         ND         330           -Mathylanghthalene         ND         66           2-Mathylanghthalene         ND         660           2-Achlorocylopentadiene         ND         330           2-Aftorophenol         ND         330           2-Actorophenol         ND         330           2-Actorophenol         ND         330           2-Actorophenol         ND         330           2-Abthylanghthalene                                 |                     |        |     |
| Hexachloroethane         ND         330           Nitrobenzene         ND         330           Isophorone         ND         330           2-Nitrophenol         ND         660           2.4-Dimethylphenol         ND         330           Benzoic acid         ND         330           2.4-Dichloroptenol         ND         330           2.4-Dichloroptenol         ND         330           1.2, 4-Trichlorobenzene         ND         330           Naphthalene         ND         330           4-Chloroptenol         ND         330           Y-4-Trichloroptenol         ND         330           4-Chloroptenol         ND         330           2-Methylnaphthalene         ND         66           4-Chloroptenol         ND         330           2-Methylnaphthalene         ND         660           2.4, 6-Trichlorophenol         ND         330           2-Nitroaniline         ND         330           2-Nitroaniline         ND         660           Jamithylphthalate         ND         660           A-Sonitrophenol         ND         660           A-Poinitrotoluene         ND <td< td=""><td></td><td></td><td></td></td<> |                     |        |     |
| NitrobenzeneND330IsophoroneND3302.4-DimethylphenolND6602.4-DimethylphenolND1,700bis(2-Chloropethoxy)methaneND3302.4-DicthorophenolND3301,2,4-TrichlorobenzeneND3304-ChlorophenolND3304-ChlorophenolND3304-ChlorophenolND3302.4-DicthorophenolND3304-Chloro-3-methylphenolND3304-Chloro-3-methylphenolND3302-MethylnaphthaleneND66HexachlorocyclopentadieneND3302.4, 5-TrichlorophenolND3302.4, 5-TrichlorophenolND3302.4, 5-TrichlorophenolND3302.4, 5-TrichlorophenolND3302.4, 5-TrichlorophenolND3302.4, 5-TrichlorophenolND3302.4, 5-TrichlorophenolND660JointroanilineND660JointrotolueneND6602.4, 5-TrichlorophenolND6602.4, 5-TrichlorophenolND6602.4, 5-TrichlorophenolND3302.4, 5-TrichlorophenolND6603.4, 5-TrichlorophenolND6603.4, 5-TrichlorophenolND6604.4, 5-TrichlorophenolND6604.4, 5-TrichlorophenolND6604.4, 5-TrichlorophenolND6604.4, 5-Trichloropheno                                                                                                                                                                                                                                                                                     |                     |        |     |
| IsophoroneND3302-NirophenolND6602.4-DimethylphenolND330Benzoic acidND1,700bis(2-ChlorophenolND3302.4-DichlorophenolND3301,2,4-TrichlorobenzeneND330NaphthaleneND3304-ChloroanllineND330HexachlorobutadieneND3304-ChlorophenolND3302-MethylnaphthaleneND664-ChlorophenolND3302-MethylnaphthaleneND6602,4,5-TrichlorophenolND3302-NitronaphthaleneND3302-NitronaphthaleneND3302-NitronaphthaleneND3302-NitronaphthaleneND660DimethylphthalateND3302-NitronaphthaleneND6602,4-DinitrotolueneND3303-NitronaphthaleneND6602,4-DinitrotolueneND6602,4-DinitrotolueneND660A-PhinitrophenolND6604-NitrophenolND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND330                                                                                                                                                                                                                                                                                                                                                             |                     |        |     |
| 2-NitrophenolND6602.4-DimethylphenolND330Benzoic acidND1,700bis(2-Chloroethoxy)methaneND3302.4-DichlorophenolND3301,2.4-TrichlorobenzeneND3304-ChloroanilineND3304-Chloro-3-methylphenolND3302-MethylnaphthaleneND66HexachlorocyclopentadieneND662-ChloronaphthaleneND3302-MethylnaphthaleneND66HexachlorocyclopentadieneND3302.4, 5-TrichlorophenolND3302-ChloronaphthaleneND660DimethylphenalND3302-ChloronaphthaleneND660DimethylpheneND6602.4-StrichlorophenolND3302-ChloronaphthaleneND6602.4-DinitrocolueneND6602.4-DinitroclueneND6602.4-DinitroclueneND6602.4-DinitroclueneND6604-NitrophenolND6604-NitrophenolND3302.4-DinitroclueneND3302.4-DinitroclueneND3302.4-DinitroclueneND3302.4-DinitroclueneND6604-NitroanilineND6604-NitroanilineND6604-Chlorophenyl-phenyletherND6604-Stronophenyl-phenyletherND6604-Stronophenyl                                                                                                                                                                                                                                                                                                                         |                     |        |     |
| 2,4-Dimethylphenol       ND       330         Benzoic acid       ND       1,700         bis(2-Chloroethoxy)methane       ND       330         2,4-Dichlorophenol       ND       330         1,2,4-Trichlorophenol       ND       330         Naphthalene       ND       66         4-Chloroaniline       ND       330         Hexachlorobutadiene       ND       330         2-Methylnaphthalene       ND       66         2.4,6-Trichlorophenol       ND       330         2-K,6-Trichlorophenol       ND       330         2.4,6-Trichlorophenol       ND       330         2-Chloronaphthalene       ND       330         2-Nitroaniline       ND       330         2-Nitroaniline       ND       330         2-A-Dinitrotoluene       ND       660         2,6-Dinitrotoluene       ND       660         2,4-Dinitrophenol       ND       660         2,4-Dinitrotoluene       ND<                                                                                 |                     |        |     |
| Benzoic acidND1,700bis(2-Chloroethoxy)methaneND3302,4-DichlorophenolND3301,2,4-TrichlorobenzeneND330MaphthaleneND664-ChloroanilineND330HexachlorobutadieneND3302-MethylnaphthaleneND66HexachlorocyclopentadieneND6602,4,5-TrichlorophenolND3302-MethylnaphthaleneND6602,4,6-TrichlorophenolND3302-NitroanilineND3302-NitroanilineND660DimethylphthalateND660DimethylphthalateND6602,6-DinitrotolueneND6602,4-DinitrophenolND6602,4-DinitrophenolND6602,4-DinitrotolueneND6602,4-DinitrotolueneND6602,4-DinitrotolueneND6602,4-DinitrophenolND6602,4-DinitrotolueneND660DibenzofuranND660DibenzofuranND660DibenzofuranND660ND330600PletareneND660ND330JethylphthalateND330PletareneND660ND330PletareneND660ND330PletareneND660ND330PletareneND <td< td=""><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                     |                     |        |     |
| bis(2-Chloropethoxy)methaneND3302.4-DichlorophenolND3301,2,4-TrichlorobenzeneND330NaphthaleneND664-ChloropailineND330HexachlorobutadieneND3302-MethylnaphthaleneND662.4,6-TrichlorophenolND3302-ChloronaphthaleneND6602.4,6-TrichlorophenolND3302-ChloronaphthaleneND6602.4,6-TrichlorophenolND3302-ChloronaphthaleneND6602.6-DinitrotolueneND3302-NitroanilineND6602.6-DinitrotolueneND6602.4-DinitrophenolND6602.6-DinitrotolueneND6602.4-DinitrotolueneND6602.4-DinitrotolueneND6602.6-DinitrotolueneND6602.4-DinitrotolueneND6602.4-DinitrotolueneND6602.4-DinitrotolueneND3302.4-DinitrotolueneND6602.4-DinitrotolueneND3302.4-DinitrotolueneND3302.4-DinitrotolueneND3302.4-DinitrotolueneND3302.4-DinitrotolueneND3302.4-DinitrotolueneND3302.4-DinitrotolueneND3302.4-DinitrotolueneND3303.53.53.54-NitroanilineND <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                       |                     |        |     |
| 2.4-Dichlorophend       ND       330         1,2,4-Trichlorobenzene       ND       330         Maphthalene       ND       66         4-Chloroaniline       ND       330         Hexachlorobutadiene       ND       330         4-Chloro-3-methylphenol       ND       330         2-Methylnaphthalene       ND       66         Hexachlorocyclopentadiene       ND       66         2.4, 6-Trichlorophenol       ND       330         2.4, 6-Trichlorophenol       ND       660         Dimethylphthalate       ND       660         Acenaphthylene       ND       660         Acenaphthene       ND       660         2.4-Dinitrophenol       ND       660         2.4-Dinitrophenol       ND       660         2.4-Dinitrophenol       ND       330         Fluorene                                                                             |                     |        |     |
| 1/2,4-TrichlorobenzeneND330NaphthaleneND664-ChloroanilineND330HexachlorobutadieneND3302-MethylnaphthaleneND662,4,6-TrichlorophenolND3302-MethylnaphthaleneND6602,4,6-TrichlorophenolND3302-ChloronaphthaleneND3302-ChloronaphthaleneND3302-ChloronaphthaleneND3302-ChloronaphthaleneND3302-ChloronaphthaleneND3302-ChloronaphthaleneND6602,6-DinitrotolueneND6602,6-DinitrotolueneND6602,6-DinitrotolueneND6602,4-DinitrophenolND6604-NitrophenolND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-Dinitrosoliphenyl-phenyletherND6604-Chlorophenyl-phenyletherND660N-NitrosodiphenylamineND3304-Bromophenyl-phenyletherND3304-Bromophenyl-phenyletherND3304-BromophenolND3304-BromophenolND330AcbenzeneND330A                                                                                                                                                                                                                                                                                                                         |                     |        |     |
| NapithaleneND664-ChloroanilineND330HexachlorobutadieneND3304-Chloro-3-methylphenolND3302-MethylnaphthaleneND66HexachlorocyclopentadieneND6602.4, 6-TrichlorophenolND3302-ChloronaphthaleneND3302-NitroanilineND3302-NitroanilineND660DimethylphthalateND660DimethylphthalateND660DimethylphthalateND660AcenaphtheneND6602.6-DinitrotolueneND6602.4-DinitrophenolND6604-NitrophenolND6604-NitrophenolND6604-DinitrotolueneND3309.4-DinitrotolueneND3309.4-DinitrotolueneND3309.4-DinitrotolueneND6604-Chlorophenyl-phenyletherND6604-NitroanilineND6604-Chlorophenyl-phenyletherND6604-Nitrosodiphenyl-phenyletherND330PiloenzeneND330AcenaphthoroeND3304-Bromophenyl-phenyletherND3304-Bromophenyl-phenyletherND330AcbenzeneND330AcbenzeneND330AcbenzeneND330AcbenzeneND330AcbenzeneND330Acbenzene                                                                                                                                                                                                                                                                                                                                                             |                     |        |     |
| 4-ChloroanilineND330HexachlorobutadieneND3304-Chloro-3-methylphenolND3302-MethylnaphthaleneND66(4-Chloro-3-methylphenolND3302-MethylnaphthaleneND662.4, 6-TrichlorophenolND3302.4, 5-TrichlorophenolND3302-ChloronaphthaleneND3302-ChloronaphthaleneND3302-NitroanilineND3302-NitroanilineND662, 6-DinitrotolueneND662, 6-DinitrotolueneND662, 4-DinitrophenolND662, 4-DinitrophenolND662, 4-DinitrophenolND662, 4-DinitrophenolND662, 4-DinitrophenolND330DieentylphthalateND330DiethylphthalateND330FluoreneND3302, 4-DinitrotolueneND330DiethylphthalateND664-Chlorophenyl-phenyletherND6604, 6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AcabenzeneND3304-Bromophenyl-phenyletherND330PentachlorobneneND330PentachlorophenolND660N-Nitrosodiphenyl-phenyletherND330AcbenzeneND330PentachlorophenolND660Phenanthrene <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                              |                     |        |     |
| HexachlorobutadieneND3304-Chloro-3-methylphenolND3302-MethylnapithaleneND66HexachlorocyclopentadieneND3302,4,6-TrichlorophenolND3302,4,5-TrichlorophenolND3302-ChloronaphthaleneND3302-NitroanilineND660DimethylphthalateND660DimethylphthalateND6602,6-DinitrotolueneND3303-NitroanilineND6602,4-DinitrotolueneND6602,4-DinitrotolueneND6602,4-DinitrotolueneND6602,4-DinitrotolueneND6602,4-DinitrotolueneND6602,4-DinitrotolueneND6602,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3304-Nitrophenyl-phenyletherND330FluoreneND3304-Nitrosodiphenyl-phenyletherND330A-NitrosodiphenylamineND330A-AbitorobenzeneND330PentachlorobenzeneND330PentachlorophenolND660PhenanthreneND660Anthracene<                                                                                                                                                                                                                                                                                                                         | ÷                   |        |     |
| 4-Chloro-3-methylphenolND3302-MethylnaphthaleneND662.4.6-TrichlorocyclopentadieneND3302.4.6-TrichlorophenolND3302.4.5-TrichlorophenolND3302-ChloronaphthaleneND3302-NitroanilineND3302-NitroanilineND660DimethylphthalateND662.6-DinitrotolueneND662.6-DinitrotolueneND660AcenaphtheneND660AcenaphteneND660AcenaphteneND6602.4-DinitrophenolND6602.4-DinitrophenolND6602.4-DinitrophenolND6602.4-DinitrophenolND6602.4-DinitrophenolND6602.4-DinitrophenolND6602.4-DinitrophenolND660DiethylphthalateND3302.4-DinitroclueneND3302.4-DinitroclueneND3302.4-Dinitro-2-methylphenolND6604.6-Dinitro-2-methylphenolND6604.6-Dinitro-2-methylphenolND330AzobenzeneND3304-Bromophenyl-phenyletherND330AzobenzeneND330PentachlorophenolND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660<                                                                                                                                                                                                                                                                                                                                                     |                     |        |     |
| 2-MethylnaphthaleneND66HexachlorocyclopentadieneND6602,4,6-TrichlorophenolND3302,4,5-TrichlorophenolND3302-ChloronaphthaleneND3302-NitroanilineND660DimethylphthalateND662,6-DinitrotolueneND6602,6-DinitrotolueneND6602,6-DinitrophenolND6602,4-DinitrophenolND6602,4-DinitrophenolND6602,4-DinitrophenolND6602,4-DinitrophenolND6602,4-DinitrotolueneND6602,4-DinitrotolueneND660DibenzofuranND660DiethylphthalateND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3304-Nitrophenyl-phenyletherND3304-Nitrosodiphenyl-phenyletherND330AzobenzeneND3304-Bromophenyl-phenyletherND330PentachlorophenolND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660Ph                                                                                                                                                                                                                                                                                                                                                             |                     |        |     |
| HexachlorocyclopentadieneND6602,4,6-TrichlorophenolND3302,4,5-TrichlorophenolND3302-ChloronaphthaleneND3302-NitroanilineND660DimethylphthalateND662,6-DinitrotolueneND3303-NitroanilineND6602,4-DinitrotolueneND660AcenaphtheneND6602,4-DinitrotolueneND6604-NitrophenolND6602,4-DinitrotolueneND6602,4-DinitrotolueneND6602,4-DinitrotolueneND66010ibenzofuranND660DiethylphthalateND330FluoreneND6604,-Chlorophenyl-phenyletherND6604,-Sintro-2-methylphenolND6604,-SobenzeneND330AzobenzeneND330AzobenzeneND330Pentachlorophenyl-phenyletherND330AzobenzeneND330PentachlorophenolND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660 <tr< td=""><td></td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                               |                     |        |     |
| 2,4,6-TrichlorophenolND3302,4,6-TrichlorophenolND3302-ChloronaphthaleneND3302-NitroanilineND660DimethylphthalateND330AcenaphthyleneND662,6-DinitrotolueneND660AcenaphtheneND660AcenaphtheneND6602,4-DinitrophenolND6604-NitrophenolND6602,4-DinitrotolueneND6602,4-DinitrotolueneND6602,4-DinitrophenolND6604-NitrophenolND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3304-NitroanilineND6604-Chlorophenyl-phenyletherND330AzobenzeneND330AzobenzeneND330AzobenzeneND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660Phenanthr                                                                                                                                                                                                                                                                                                                                                                                                 |                     |        |     |
| 2,4,5-TrichlorophenolND3302-ChloronaphthaleneND3302-NitroanilineND660DimethylphthalateND662,6-DinitrotolueneND660AcenaphthyleneND660AcenaphtheneND660AcenaphtheneND660AcenaphtheneND6602,4-DinitrophenolND6604-NitrophenolND660DiethylphthalateND330JohrsteineND6604-NitrophenolND330DiethylphthalateND330FluoreneND330FluoreneND6604,6-Dinitro-2-methylphenolND660N-Nitrosodiphenyl-phenyletherND330AzobenzeneND330AzobenzeneND330Pentachlorophenyl-phenyletherND330AzobenzeneND330ArburgeneND330ArburgeneND330AzobenzeneND330PentachlorophenolND660PhenanthreneND330PentachlorophenolND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660 <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                             |                     |        |     |
| 2-ChloronaphthaleneND3302-NitroanilineND660DimethylphthalateND330AcenaphthyleneND662,6-DinitrotolueneND3303-NitroanilineND660AcenaphtheneND660AcenaphtheneND6604-NitrophenolND66010ibenzofuranND6602,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND33010iethylphthalateND6604-Chlorophenyl-phenyletherND660N-Nitrosodiphenyl-phenyletherND660N-NitrosodiphenylamineND330AzobenzeneND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660Phenanthrene<                                                                                                                                                                                                                                                                                                                                                                                                 |                     |        |     |
| 2-NitroanilineND660DimethylphthalateND330AcenaphthyleneND662,6-DinitrotolueneND3303-NitroanilineND660AcenaphtheneND6602,4-DinitrophenolND6604-NitrophenolND660DibenzofuranND3302,4-DinitrotolueneND3302,4-DinitrotolueneND330JiethylphthalateND330FluoreneND664-Chlorophenyl-phenyletherND6604,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND330AzobenzeneND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND660PhenanthreneND660PhenanthreneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneN                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |        |     |
| DimethylphthalateND330AcenaphthyleneND662,6-DinitrotolueneND3303-NitroanilineND660AcenaphtheneND6602,4-DinitrophenolND6604-NitrophenolND660DibenzofuranND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3304-NitroanilineND6604-Chlorophenyl-phenyletherND660N-NitrosodiphenylamineND660N-NitrosodiphenylamineND330AzobenzeneND330HexachlorophenolND330PentachlorophenolND660PhenanthreneND660PhenanthreneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660Anthra                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |        |     |
| AcenaphthyleneND662,6-DinitrotolueneND3303-NitroanilineND660AcenaphtheneND662,4-DinitrophenolND6604-NitrophenolND660DibenzofuranND3302,4-DinitrotolueneND330DiethylphthalateND330FluoreneND6604-NitroanilineND6604-DinitrotolueneND330DiethylphthalateND6604-Chlorophenyl-phenyletherND6604,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND330HexachlorophenolND330HexachlorophenolND660PhenathreneND660PhenathreneND660AnthraceneND660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |        |     |
| 2,6-DinitrotolueneND3303-NitroanilineND660AcenaphtheneND6602,4-DinitrophenolND6604-NitrophenolND660DibenzofuranND3302,4-DinitrotolueneND330DiethylphthalateND330FluoreneND6604-Chlorophenyl-phenyletherND6604-NitroanilineND6604-NitrosodiphenylamineND660N-NitrosodiphenylamineND3304-Bromophenyl-phenyletherND3304-Bromophenyl-phenyletherND3304-Bromophenyl-phenyletherND3304-Bromophenyl-phenyletherND330PentachlorophenolND660PhenanthreneND660PhenanthreneND660PhenanthreneND66AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |        |     |
| 3-NitroanilineND660AcenaphtheneND6602,4-DinitrophenolND6604-NitrophenolND3302,4-DinitrotolueneND330DiethylphthalateND330FluoreneND6604-Chlorophenyl-phenyletherND6604-NitroanilineND6604-NitrosodiphenylamineND660AzobenzeneND3304-Bromophenyl-phenyletherND3304-Bromophenyl-phenyletherND3304-Bromophenyl-phenyletherND3304-Bromophenyl-phenyletherND3304-Bromophenyl-phenyletherND330PentachlorobenzeneND660HexachlorobenzeneND660PhenanthreneND660AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |        |     |
| AcenaphtheneND662,4-DinitrophenolND6604-NitrophenolND660DibenzofuranND3302,4-DinitrotolueneND330DiethylphthalateND330FluoreneND664-Chlorophenyl-phenyletherND6604,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND3304-Bromophenyl-phenyletherND3304-Bromophenyl-phenyletherND330PentachlorophenolND660PhenanthreneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND66AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |        |     |
| 2,4-DinitrophenolND6604-NitrophenolND660DibenzofuranND3302,4-DinitrotolueneND330DiethylphthalateND330FluoreneND664-Chlorophenyl-phenyletherND6604,6-Dinitro-2-methylphenolND660N-Nitrosodiphenyl-phenyletherND330AzobenzeneND3304-Bromophenyl-phenyletherND330PentachlorophenolND330ArbringND660A-hitrosodiphenyl-phenyletherND330AzobenzeneND330HexachlorophenolND660PhenanthreneND660AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |        |     |
| 4-NitrophenolND660DibenzofuranND3302,4-DinitrotolueneND330DiethylphthalateND330FluoreneND664-Chlorophenyl-phenyletherND6604.6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND660AnthraceneND660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |        |     |
| DibenzofuranND3302,4-DinitrotolueneND330DiethylphthalateND330FluoreneND664-Chlorophenyl-phenyletherND6604-NitroanilineND6604,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND660AnthraceneND660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |        |     |
| 2,4-DinitrotolueneND330DiethylphthalateND330FluoreneND664-Chlorophenyl-phenyletherND3304-NitroanilineND6604,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND660AnthraceneND660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |        |     |
| DiethylphthalateND330FluoreneND664-Chlorophenyl-phenyletherND3304-NitroanilineND6604,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND660AnthraceneND660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |        |     |
| FluoreneND664-Chlorophenyl-phenyletherND3304-NitroanilineND6604,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND660AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |        |     |
| 4-Chlorophenyl-phenyletherND3304-NitroanilineND6604,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND660AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |        |     |
| 4-NitroanilineND6604,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND66AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |        |     |
| 4,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND66AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |        |     |
| N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND66AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |        |     |
| AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND66AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |        |     |
| 4-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND66AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |        |     |
| HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND66AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |        |     |
| PentachlorophenolND660PhenanthreneND66AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |        |     |
| PhenanthreneND66AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |        |     |
| Anthracene ND 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Di-n-butylphthalate |        | 330 |

ND= Not Detected RL= Reporting Limit Page 1 of 2



|                     | Semivolatile Organics by GC/MS |                    |                           |  |
|---------------------|--------------------------------|--------------------|---------------------------|--|
| Lab #:<br>Client:   | 196042<br>LFR Levine Fricke    | Location:          | Hanson Radum<br>EPA 3550B |  |
| Project#:           | 001-09567-01                   | Prep:<br>Analysis: | EPA 3350B<br>EPA 8270C    |  |
| Field ID:           | B-1(A)-9.5                     | Batch#:            | 127357                    |  |
| Lab ID:             | 196042-006                     | Sampled:           | 07/17/07                  |  |
| Matrix:             | Soil                           | Received:          | 07/17/07                  |  |
| Units:              | ug/Kg                          | Prepared:          | 07/18/07                  |  |
| Basis:<br>Diln Fac: | as received<br>1.000           | Analyzed:          | 07/19/07                  |  |

| Analyte                             | Result       | RL  |  |
|-------------------------------------|--------------|-----|--|
| Fluoranthene                        | ND           | 66  |  |
| Pyrene                              | ND           | 66  |  |
| Butylbenzylphthalate                | ND           | 330 |  |
| 3,3 <sup>°</sup> -Dichlorobenzidine | ND           | 660 |  |
| Benzo(a)anthracene                  | ND           | 66  |  |
| Chrysene                            | ND           | 66  |  |
| bis(2-Ethylhexyl)phthalate          | ND           | 330 |  |
| Di-n-octylphthalate                 | ND           | 330 |  |
| Benzo(b)fluoranthene                | ND           | 66  |  |
| Benzo(k)fluoranthene                | ND           | 66  |  |
| Benzo(a)pyrene                      | ND           | 66  |  |
| Indeno(1,2,3-cd)pyrene              | ND           | 66  |  |
| Dibenz(a,h)anthracene               | ND           | 66  |  |
| Benzo(g,h,i)perylene                | ND           | 66  |  |
| Gummagaha                           | %REC Limits  |     |  |
| Surrogate<br>2-Fluorophenol         | 78 28-120    |     |  |
| Phenol-d5                           | 76 28-120    |     |  |
| 2,4,6-Tribromophenol                | 104 $20-120$ |     |  |
| Nitrobenzene-d5                     | 74 $39-120$  |     |  |
| 2-Fluorobiphenyl                    | 80 44-120    |     |  |
| Terphenyl-d14                       | 82 39-120    |     |  |
| Terbuenta-ara                       | 02 39-120    |     |  |

ND= Not Detected RL= Reporting Limit Page 2 of 2



|                  | Semivolat         | ile Organics by G | C/MS         |  |
|------------------|-------------------|-------------------|--------------|--|
| Lab #:           | 196042            | Location:         | Hanson Radum |  |
| Client:          | LFR Levine Fricke | Prep:             | EPA 3550B    |  |
| Project#:        | 001-09567-01      | Analysis:         | EPA 8270C    |  |
| Type:            | BLANK             | Diln Fac:         | 1.000        |  |
| Type:<br>Lab ID: | QC396734          | Batch#:           | 127357       |  |
| Matrix:          | Miscell.          | Prepared:         | 07/18/07     |  |
| Units:           | ug/Kg             | Analyzed:         | 07/19/07     |  |
| Basis:           | as received       | -                 |              |  |

| Analyte                      | Result   | RL    |
|------------------------------|----------|-------|
| N-Nitrosodimethylamine       | ND       | 330   |
| Phenol                       | ND       | 330   |
| bis(2-Chloroethyl)ether      | ND       | 330   |
| 2-Chlorophenol               | ND       | 330   |
| 1,3-Dichlorobenzene          | ND       | 330   |
| 1,4-Dichlorobenzene          | ND       | 330   |
| Benzyl alcohol               | ND       | 330   |
| 1,2-Dichlorobenzene          | ND       | 330   |
| 2-Methylphenol               | ND       | 330   |
| bis(2-Chloroisopropyl) ether | ND       | 330   |
| 4-Methylphenol               | ND       | 330   |
| N-Nitroso-di-n-propylamine   | ND<br>ND | 330   |
| Hexachloroethane             | ND<br>ND | 330   |
| Nitrobenzene                 | ND<br>ND | 330   |
|                              |          | 330   |
| Isophorone                   | ND       |       |
| 2-Nitrophenol                | ND       | 660   |
| 2,4-Dimethylphenol           | ND       | 330   |
| Benzoic acid                 | ND       | 1,600 |
| bis(2-Chloroethoxy)methane   | ND       | 330   |
| 2,4-Dichlorophenol           | ND       | 330   |
| 1,2,4-Trichlorobenzene       | ND       | 330   |
| Naphthalene                  | ND       | 66    |
| 4-Chloroaniline              | ND       | 330   |
| Hexachlorobutadiene          | ND       | 330   |
| 4-Chloro-3-methylphenol      | ND       | 330   |
| 2-Methylnaphthalene          | ND       | 66    |
| Hexachlorocyclopentadiene    | ND       | 660   |
| 2,4,6-Trichlorophenol        | ND       | 330   |
| 2,4,5-Trichlorophenol        | ND       | 330   |
| 2-Chloronaphthalene          | ND       | 330   |
| 2-Nitroaniline               | ND       | 660   |
| Dimethylphthalate            | ND       | 330   |
| Acenaphthylene               | ND       | 66    |
| 2,6-Dinitrotoluene           | ND       | 330   |
| 3-Nitroaniline               | ND       | 660   |
| Acenaphthene                 | ND       | 66    |
| 2,4-Dinitrophenol            | ND       | 660   |
| 4-Nitrophenol                | ND       | 660   |
| Dibenzofuran                 | ND       | 330   |
| 2,4-Dinitrotoluene           | ND       | 330   |
| Diethylphthalate             | ND       | 330   |
| Fluorene                     | ND       | 66    |
| 4-Chlorophenyl-phenylether   | ND       | 330   |
| 4-Nitroaniline               | ND       | 660   |
| 4,6-Dinitro-2-methylphenol   | ND       | 660   |
| N-Nitrosodiphenylamine       | ND       | 330   |
| Azobenzene                   | ND       | 330   |
| 4-Bromophenyl-phenylether    | ND       | 330   |
| Hexachlorobenzene            | ND       | 330   |
| Pentachlorophenol            | ND       | 660   |
| Phenanthrene                 | ND       | 66    |
| Anthracene                   | ND       | 66    |
| Di-n-butylphthalate          | ND       | 330   |
|                              |          |       |

ND= Not Detected RL= Reporting Limit



|                  | Semivolat         | ile Organics by G | C/MS         |  |
|------------------|-------------------|-------------------|--------------|--|
| Lab #:           | 196042            | Location:         | Hanson Radum |  |
| Client:          | LFR Levine Fricke | Prep:             | EPA 3550B    |  |
| Project#:        | 001-09567-01      | Analysis:         | EPA 8270C    |  |
| Type:<br>Lab ID: | BLANK             | Diln Fac:         | 1.000        |  |
| Lab ID:          | QC396734          | Batch#:           | 127357       |  |
| Matrix:          | Miscell.          | Prepared:         | 07/18/07     |  |
| Units:           | ug/Kg             | Analyzed:         | 07/19/07     |  |
| Basis:           | as received       | _                 |              |  |

| Analyte                                 | ]        | Result           | RL  |  |
|-----------------------------------------|----------|------------------|-----|--|
| Fluoranthene                            | ND       |                  | 66  |  |
| Pyrene                                  | ND       |                  | 66  |  |
| Butylbenzylphthalate                    | ND       |                  | 330 |  |
| 3,3'-Dichlorobenzidine                  | ND       |                  | 660 |  |
| Benzo(a)anthracene                      | ND       |                  | 66  |  |
| Chrysene                                | ND       |                  | 66  |  |
| bis(2-Ethylhexyl)phthalate              | ND       |                  | 330 |  |
| Di-n-octylphthalate                     | ND       |                  | 330 |  |
| Benzo(b)fluoranthene                    | ND       |                  | 66  |  |
| Benzo(k)fluoranthene                    | ND       |                  | 66  |  |
| Benzo(a)pyrene                          | ND       |                  | 66  |  |
| Indeno(1,2,3-cd)pyrene                  | ND       |                  | 66  |  |
| Dibenz(a,h)anthracene                   | ND       |                  | 66  |  |
| Benzo(g,h,i)perylene                    | ND       |                  | 66  |  |
| Currogata                               | %REC     | Limits           |     |  |
| Surrogate<br>2-Fluorophenol             | 83       | 28-120           |     |  |
| Phenol-d5                               | 81       | 30-120           |     |  |
|                                         | o⊥<br>92 |                  |     |  |
| 2,4,6-Tribromophenol<br>Nitrobenzene-d5 |          | 20-120<br>39-120 |     |  |
|                                         | 82       |                  |     |  |
| 2-Fluorobiphenyl                        | 86       | 44-120           |     |  |
| Terphenyl-d14                           | 87       | 39-120           |     |  |

ND= Not Detected RL= Reporting Limit Page 2 of 2



|           | Semivolatile Organics by GC/MS |           |              |  |  |
|-----------|--------------------------------|-----------|--------------|--|--|
| Lab #:    | 196042                         | Location: | Hanson Radum |  |  |
| Client:   | LFR Levine Fricke              | Prep:     | EPA 3550B    |  |  |
| Project#: | 001-09567-01                   | Analysis: | EPA 8270C    |  |  |
| Type:     | LCS                            | Diln Fac: | 1.000        |  |  |
| Lab ID:   | QC396735                       | Batch#:   | 127357       |  |  |
| Matrix:   | Miscell.                       | Prepared: | 07/18/07     |  |  |
| Units:    | ug/Kg                          | Analyzed: | 07/19/07     |  |  |
| Basis:    | as received                    |           |              |  |  |

| Analyte                    | Spiked | Result | %REC | Limits |
|----------------------------|--------|--------|------|--------|
| Phenol                     | 2,644  | 2,101  | 79   | 40-120 |
| 2-Chlorophenol             | 2,644  | 2,129  | 81   | 40-120 |
| 1,4-Dichlorobenzene        | 1,322  | 1,246  | 94   | 45-120 |
| N-Nitroso-di-n-propylamine | 1,322  | 981.1  | 74   | 34-120 |
| 1,2,4-Trichlorobenzene     | 1,322  | 1,239  | 94   | 45-120 |
| 4-Chloro-3-methylphenol    | 2,644  | 2,347  | 89   | 45-120 |
| Acenaphthene               | 1,322  | 1,094  | 83   | 42-120 |
| 4-Nitrophenol              | 2,644  | 2,012  | 76   | 31-120 |
| 2,4-Dinitrotoluene         | 1,322  | 1,265  | 96   | 41-120 |
| Pentachlorophenol          | 2,644  | 2,140  | 81   | 21-120 |
| Pyrene                     | 1,322  | 1,153  | 87   | 41-120 |

| Surrogate            | %REC | Limits |  |
|----------------------|------|--------|--|
| 2-Fluorophenol       | 80   | 28-120 |  |
| Phenol-d5            | 79   | 30-120 |  |
| 2,4,6-Tribromophenol | 110  | 20-120 |  |
| Nitrobenzene-d5      | 81   | 39-120 |  |
| 2-Fluorobiphenyl     | 82   | 44-120 |  |
| Terphenyl-d14        | 88   | 39-120 |  |



| Semivolatile Organics by GC/MS |                   |           |              |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                         | 196042            | Location: | Hanson Radum |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3550B    |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8270C    |  |  |
| Field ID:                      | ZZZZZZZZZ         | Batch#:   | 127357       |  |  |
| MSS Lab ID:                    | 195937-001        | Sampled:  | 07/10/07     |  |  |
| Matrix:                        | Miscell.          | Received: | 07/12/07     |  |  |
| Units:                         | ug/Kg             | Prepared: | 07/18/07     |  |  |
| Basis:                         | as received       | Analyzed: | 07/26/07     |  |  |
| Diln Fac:                      | 1.000             | -         |              |  |  |

| Type: MS                   |             | Lab ID: | QC396736 |      |        |
|----------------------------|-------------|---------|----------|------|--------|
| Analyte                    | MSS Result  | Spiked  | Result   | %REC | Limits |
| Phenol                     | <68.44      | 2,652   | 2,117    | 80   | 38-120 |
| 2-Chlorophenol             | <71.23      | 2,652   | 2,095    | 79   | 38-120 |
| 1,4-Dichlorobenzene        | <17.01      | 1,326   | 1,158    | 87   | 49-120 |
| N-Nitroso-di-n-propylamine | <14.07      | 1,326   | 1,022    | 77   | 43-120 |
| 1,2,4-Trichlorobenzene     | <15.20      | 1,326   | 1,176    | 89   | 47-120 |
| 4-Chloro-3-methylphenol    | <70.50      | 2,652   | 2,312    | 87   | 44-120 |
| Acenaphthene               | <15.00      | 1,326   | 1,085    | 82   | 48-120 |
| 4-Nitrophenol              | <84.53      | 2,652   | 2,089    | 79   | 30-120 |
| 2,4-Dinitrotoluene         | <15.33      | 1,326   | 1,192    | 90   | 41-120 |
| Pentachlorophenol          | <67.07      | 2,652   | 1,866    | 70   | 13-120 |
| Pyrene                     | <14.99      | 1,326   | 1,126    | 85   | 42-120 |
|                            |             |         |          |      |        |
| Surrogate                  | %REC Limits |         |          |      |        |
| 2-Fluorophenol             | 77 28-120   |         |          |      |        |
| Phenol-d5                  | 81 30-120   |         |          |      |        |
| 2,4,6-Tribromophenol       | 109 20-120  |         |          |      |        |
| Nitrobenzene-d5            | 77 39-120   |         |          |      |        |
| 2-Fluorobiphenyl           | 80 44-120   |         |          |      |        |
| Terphenyl-d14              | 84 39-120   |         |          |      |        |

| Type: MSD                                                                                                                                                                                                                | Lal                                                                                                                                                                                          | o ID: QC39                                                                                      | 6737                                                     |                                                      |                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------|
| Analyte                                                                                                                                                                                                                  | Spiked                                                                                                                                                                                       | Result                                                                                          | %REC                                                     |                                                      | Lim                                                                        |
| Phenol<br>2-Chlorophenol<br>1,4-Dichlorobenzene<br>N-Nitroso-di-n-propylamine<br>1,2,4-Trichlorobenzene<br>4-Chloro-3-methylphenol<br>Acenaphthene<br>4-Nitrophenol<br>2,4-Dinitrotoluene<br>Pentachlorophenol<br>Pyrene | 2,650<br>2,650<br>1,325<br>1,325<br>1,325<br>2,650<br>1,325<br>2,650<br>1,325<br>2,650<br>1,325                                                                                              | 2,089<br>2,068<br>1,158<br>992.3<br>1,206<br>2,338<br>1,077<br>2,080<br>1,190<br>1,976<br>1,143 | 79<br>78<br>87<br>91<br>88<br>81<br>78<br>90<br>75<br>86 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 26<br>28<br>27<br>28<br>26<br>28<br>29<br>38<br>29<br>38<br>25<br>55<br>30 |
| Surrogate<br>2-Fluorophenol<br>Phenol-d5<br>2,4,6-Tribromophenol<br>Nitrobenzene-d5<br>2-Fluorobiphenyl<br>Terphenyl-d14                                                                                                 | %REC         Limits           75         28-120           80         30-120           110         20-120           79         39-120           80         44-120           84         39-120 |                                                                                                 |                                                          |                                                      |                                                                            |



|                                                                                                                                                                                                                                                                            | :                                                      | Polychlo                                                                                                                                                          | rinated                                                  | Biphenyls (PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bs)                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Lab #:                                                                                                                                                                                                                                                                     | 196042                                                 |                                                                                                                                                                   |                                                          | Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hanson Radum                                                                                |
| Client:                                                                                                                                                                                                                                                                    | LFR Levine                                             |                                                                                                                                                                   |                                                          | Prep:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA 3550B                                                                                   |
| Project#:                                                                                                                                                                                                                                                                  | 001-09567-0                                            | 1                                                                                                                                                                 |                                                          | Analysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 8082                                                                                    |
| Matrix:                                                                                                                                                                                                                                                                    | Soil                                                   |                                                                                                                                                                   |                                                          | Sampled:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 07/17/07                                                                                    |
| Units:                                                                                                                                                                                                                                                                     | ug/Kg                                                  |                                                                                                                                                                   |                                                          | Received:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 07/17/07                                                                                    |
| Basis:                                                                                                                                                                                                                                                                     | as received                                            |                                                                                                                                                                   |                                                          | Prepared:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 07/18/07                                                                                    |
| Diln Fac:                                                                                                                                                                                                                                                                  | 1.000                                                  |                                                                                                                                                                   |                                                          | Analyzed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 07/20/07                                                                                    |
| Batch#:                                                                                                                                                                                                                                                                    | 127391                                                 |                                                                                                                                                                   |                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |
|                                                                                                                                                                                                                                                                            |                                                        |                                                                                                                                                                   |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |
|                                                                                                                                                                                                                                                                            |                                                        |                                                                                                                                                                   |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |
| Field ID:                                                                                                                                                                                                                                                                  | B-1(A)-4.5                                             |                                                                                                                                                                   |                                                          | Lab ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 196042-005                                                                                  |
| Type:                                                                                                                                                                                                                                                                      | SAMPLE                                                 |                                                                                                                                                                   |                                                          | Cleanup Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EPA 3665A                                                                                   |
|                                                                                                                                                                                                                                                                            |                                                        |                                                                                                                                                                   |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |
|                                                                                                                                                                                                                                                                            | alyte                                                  |                                                                                                                                                                   | Result                                                   | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A                                                                                           |
| Aroclor-1016                                                                                                                                                                                                                                                               |                                                        | ND                                                                                                                                                                |                                                          | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                           |
| Aroclor-1221                                                                                                                                                                                                                                                               |                                                        | ND                                                                                                                                                                |                                                          | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |
| Aroclor-1232                                                                                                                                                                                                                                                               |                                                        | ND                                                                                                                                                                |                                                          | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |
| Aroclor-1242                                                                                                                                                                                                                                                               |                                                        | ND                                                                                                                                                                |                                                          | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |
| Aroclor-1248                                                                                                                                                                                                                                                               |                                                        | ND                                                                                                                                                                |                                                          | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |
| Aroclor-1254                                                                                                                                                                                                                                                               |                                                        | ND                                                                                                                                                                |                                                          | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |
| Aroclor-1260                                                                                                                                                                                                                                                               |                                                        | ND                                                                                                                                                                |                                                          | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                           |
|                                                                                                                                                                                                                                                                            |                                                        | <b>.</b>                                                                                                                                                          |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |
|                                                                                                                                                                                                                                                                            | rogate                                                 | %REC                                                                                                                                                              | Limits                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |
| TCMX                                                                                                                                                                                                                                                                       | -                                                      | 110                                                                                                                                                               | 63-141                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |
| Decachlorobiph                                                                                                                                                                                                                                                             | lenyl                                                  | 104                                                                                                                                                               | 50-158                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |
| Field ID:                                                                                                                                                                                                                                                                  | B-1(A)-9.5                                             |                                                                                                                                                                   |                                                          | Lab ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 196042-006                                                                                  |
| Type:                                                                                                                                                                                                                                                                      | SAMPLE                                                 |                                                                                                                                                                   |                                                          | Cleanup Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EPA 3665A                                                                                   |
|                                                                                                                                                                                                                                                                            | -                                                      |                                                                                                                                                                   | Result                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EPA 3665A                                                                                   |
| Ana                                                                                                                                                                                                                                                                        | alyte                                                  |                                                                                                                                                                   | Result                                                   | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |
| Ana<br>Aroclor-1016                                                                                                                                                                                                                                                        | -                                                      | ND                                                                                                                                                                | Result                                                   | -<br>RL<br>9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |
| Aroclor-1016<br>Aroclor-1221                                                                                                                                                                                                                                               | -                                                      | ND<br>ND                                                                                                                                                          | Result                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                           |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232                                                                                                                                                                                                                               | -                                                      | ND<br>ND<br>ND                                                                                                                                                    | Result                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                           |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242                                                                                                                                                                                                               | -                                                      | ND<br>ND<br>ND<br>ND                                                                                                                                              | Result                                                   | <b>RL</b><br>9.<br>19<br>9.<br>9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5<br>5<br>5<br>5                                                                            |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248                                                                                                                                                                                               | -                                                      | ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                        | Result                                                   | <b>RL</b><br>9.<br>19<br>9.<br>9.<br>9.<br>9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5<br>5<br>5<br>5<br>5                                                                       |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254                                                                                                                                                                               | -                                                      | ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                        | Result                                                   | <b>RL</b><br>9.<br>19<br>9.<br>9.<br>9.<br>9.<br>9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>5<br>5<br>5<br>5<br>5<br>5                                                             |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248                                                                                                                                                                                               | -                                                      | ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                        | Result                                                   | <b>RL</b><br>9.<br>19<br>9.<br>9.<br>9.<br>9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5<br>5<br>5<br>5<br>5<br>5<br>5                                                             |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260                                                                                                                                                               | -                                                      | ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                        | Result<br>Limits                                         | <b>RL</b><br>9.<br>19<br>9.<br>9.<br>9.<br>9.<br>9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>5<br>5<br>5<br>5<br>5<br>5                                                             |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260                                                                                                                                                               | alyte                                                  | ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                  | Limits<br>63-141                                         | <b>RL</b><br>9.<br>19<br>9.<br>9.<br>9.<br>9.<br>9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>5<br>5<br>5<br>5<br>5<br>5                                                             |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260                                                                                                                                                               | alyte                                                  | ND<br>ND<br>ND<br>ND<br>ND<br>ND                                                                                                                                  | Limits                                                   | <b>RL</b><br>9.<br>19<br>9.<br>9.<br>9.<br>9.<br>9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>5<br>5<br>5<br>5<br>5<br>5                                                             |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260                                                                                                                                                               | alyte                                                  | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>28REC<br>104                                                                                                            | Limits<br>63-141                                         | <b>RL</b><br>9.<br>19<br>9.<br>9.<br>9.<br>9.<br>9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>5<br>5<br>5<br>5<br>5<br>5                                                             |
| Anoclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260<br>Surr<br>TCMX<br>Decachlorobiph                                                                                                                             | alyte<br>cogate<br>nenyl                               | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>28REC<br>104                                                                                                            | Limits<br>63-141                                         | RL<br>9.<br>19<br>9.<br>9.<br>9.<br>9.<br>9.<br>9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5<br>5<br>5<br>5<br>5<br>5                                                                  |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260<br>Surr<br>TCMX<br>Decachlorobiph                                                                                                                             | alyte<br>cogate<br>nenyl<br>BLANK                      | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>28REC<br>104                                                                                                            | Limits<br>63-141                                         | <b>RL</b><br>9.<br>19<br>9.<br>9.<br>9.<br>9.<br>9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>5<br>5<br>5<br>5<br>5                                                                  |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1254<br>Aroclor-1260                                                                                                                                               | alyte<br>cogate<br>nenyl                               | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>28REC<br>104                                                                                                            | Limits<br>63-141                                         | RL<br>9.<br>19<br>9.<br>9.<br>9.<br>9.<br>9.<br>9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5<br>5<br>5<br>5<br>5<br>5<br>5                                                             |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260<br>Surr<br>TCMX<br>Decachlorobiph<br>Type:<br>Lab ID:                                                                                                         | eogate<br>nenyl<br>BLANK<br>QC396893                   | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br><b>%REC</b><br>104<br>96                                                                                                      | <b>Limits</b><br>63-141<br>50-158                        | RL<br>9.<br>19<br>9.<br>9.<br>9.<br>9.<br>9.<br>9.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>5<br>5<br>5<br>5<br>5                                                                  |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260<br>Surr<br>TCMX<br>Decachlorobiph<br>Type:<br>Lab ID:                                                                                                         | alyte<br>cogate<br>nenyl<br>BLANK                      | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br><b>%REC</b><br>104<br>96                                                                                                      | Limits<br>63-141                                         | RL         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9. | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1254<br>Aroclor-1254<br>Aroclor-1260<br>Surr<br>TCMX<br>Decachlorobiph<br>Type:<br>Lab ID:<br>Ana<br>Aroclor-1016                                                                  | eogate<br>nenyl<br>BLANK<br>QC396893                   | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br><b>%REC</b><br>104<br>96                                                                                                      | <b>Limits</b><br>63-141<br>50-158                        | RL         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.                                                                                                                                                                                                                                                                                    | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260<br>TCMX<br>Decachlorobiph<br>Type:<br>Lab ID:<br>Aroclor-1016<br>Aroclor-1221                                                                                 | eogate<br>nenyl<br>BLANK<br>QC396893                   | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>104<br>96                                                                                                               | <b>Limits</b><br>63-141<br>50-158                        | RL         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         19.         19.                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>5<br>5<br>5<br>EPA 3665A<br>5                                                          |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260<br>TCMX<br>Decachlorobiph<br>Type:<br>Lab ID:<br>Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232                                                                 | eogate<br>nenyl<br>BLANK<br>QC396893                   | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>96                                                                                                                | <b>Limits</b><br>63-141<br>50-158                        | RL         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         19.         9.         9.         19.         9.         9.         19.         9.         19.         9.                                                                                                                                                                                                                                                                                | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                        |
| Anacher Anacher Anacher Anoclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260<br>Surr<br>TCMX<br>Decachlorobiph<br>Type:<br>Lab ID:<br>Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242                 | eogate<br>nenyl<br>BLANK<br>QC396893                   | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>104<br>96                                                                                                               | <b>Limits</b><br>63-141<br>50-158                        | RL         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         19         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.          9.          9.          9.          9.          9.          9.          9.          9.          9.                                    | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                         |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260<br>TCMX<br>Decachlorobiph<br>Type:<br>Lab ID:<br>Aroclor-1016<br>Aroclor-1211<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248                                 | eogate<br>nenyl<br>BLANK<br>QC396893                   | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>104<br>96                                                                                                               | <b>Limits</b><br>63-141<br>50-158                        | RL         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         19         9.         19         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9. | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260<br>TCMX<br>Decachlorobiph<br>Type:<br>Lab ID:<br>Aroclor-1016<br>Aroclor-1232<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254                 | eogate<br>nenyl<br>BLANK<br>QC396893                   | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br><b>%REC</b><br>104<br>96                                                                                          | <b>Limits</b><br>63-141<br>50-158                        | RL         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         19         9.         19         9.         19         9.         19         9.         19         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9. | 5<br>5<br>5<br>EPA 3665A<br>5<br>5<br>5<br>5                                                |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260<br>TCMX<br>Decachlorobiph<br>Type:<br>Lab ID:<br>Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248                                 | eogate<br>nenyl<br>BLANK<br>QC396893                   | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>104<br>96                                                                                                               | <b>Limits</b><br>63-141<br>50-158                        | RL         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         19         9.         19         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9. | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260<br>Type:<br>Lab ID:<br>Aroclor-1016<br>Aroclor-1231<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260                           | alyte<br>cogate<br>henyl<br>BLANK<br>QC396893<br>alyte | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br><b>%REC</b><br>104<br>96                                                                                          | Limits<br>63-141<br>50-158<br>Result                     | RL         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         19         9.         19         9.         19         9.         19         9.         19         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9. | 5<br>5<br>5<br>EPA 3665A<br>5<br>5<br>5<br>5                                                |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260<br>Type:<br>Lab ID:<br>Aroclor-1016<br>Aroclor-1231<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260                           | eogate<br>nenyl<br>BLANK<br>QC396893                   | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>\$REC<br>104<br>96                                                                                                      | <b>Limits</b><br>63-141<br>50-158                        | RL         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         19         9.         19         9.         19         9.         19         9.         19         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9. | 5<br>5<br>5<br>EPA 3665A<br>5<br>5<br>5<br>5                                                |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260<br>TCMX<br>Decachlorobiph<br>Type:<br>Lab ID:<br>Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1254 | nenyl<br>BLANK<br>QC396893                             | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>\$REC<br>104<br>96                                                                                                      | Limits<br>63-141<br>50-158<br>Result                     | RL         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         19         9.         19         9.         19         9.         19         9.         19         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9. | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260<br>TCMX<br>Decachlorobiph<br>Type:<br>Lab ID:<br>Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260 | nenyl<br>BLANK<br>QC396893                             | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>96<br>104<br>96<br>104<br>96<br>104<br>96<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | Limits<br>63-141<br>50-158<br>Result<br>Limits<br>63-141 | RL         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         19         9.         19         9.         19         9.         19         9.         19         9.         19         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9.         9. | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |

\*= Value outside of QC limits; see narrative ND= Not Detected RL= Reporting Limit Page 1 of 1



|           | Polychlorinated   | Biphenyls (PC | Bs)          |
|-----------|-------------------|---------------|--------------|
| Lab #:    | 196042            | Location:     | Hanson Radum |
| Client:   | LFR Levine Fricke | Prep:         | EPA 3550B    |
| Project#: | 001-09567-01      | Analysis:     | EPA 8082     |
| Туре:     | LCS               | Diln Fac:     | 1.000        |
| Lab ID:   | QC396928          | Batch#:       | 127391       |
| Matrix:   | Soil              | Prepared:     | 07/18/07     |
| Units:    | ug/Kg             | Analyzed:     | 07/19/07     |
| Basis:    | as received       |               |              |

Cleanup Method: EPA 3665A

| Analyte      | Spiked | Result | %REC | Limits |
|--------------|--------|--------|------|--------|
| Aroclor-1232 | 165.0  | 155.6  | 94   | 68-138 |
|              |        |        |      |        |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 87   | 63-141 |
| Decachlorobiphenyl | 78   | 50-158 |



|             | Polychlorinated   | Biphenyls (PC | Bs)          |
|-------------|-------------------|---------------|--------------|
| Lab #:      | 196042            | Location:     | Hanson Radum |
| Client:     | LFR Levine Fricke | Prep:         | EPA 3550B    |
| Project#:   | 001-09567-01      | Analysis:     | EPA 8082     |
| Field ID:   | ZZZZZZZZZ         | Batch#:       | 127391       |
| MSS Lab ID: | 196032-001        | Sampled:      | 07/16/07     |
| Matrix:     | Soil              | Received:     | 07/17/07     |
| Units:      | ug/Kg             | Prepared:     | 07/18/07     |
| Basis:      | as received       | Analyzed:     | 07/19/07     |
| Diln Fac:   | 1.000             |               |              |

Type: MS Lab ID:

QC396929

Cleanup Method: EPA 3665A

| Analyte      | MSS Result | Spiked | Result | %REC | Limits |
|--------------|------------|--------|--------|------|--------|
| Aroclor-1232 | <1.324     | 165.0  | 169.1  | 103  | 72-140 |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 129  | 63-141 |
| Decachlorobiphenyl | 105  | 50-158 |

| Type:<br>Lab ID: | MSD<br>QC396930 |      |        | Cleanup Method: EPA 3 | 665A |        |     |     |
|------------------|-----------------|------|--------|-----------------------|------|--------|-----|-----|
|                  | Analyte         |      | Spiked | Result                | %REC | Limits | RPD | Lim |
| Aroclor-123      | 32              |      | 165.9  | 173.4                 | 104  | 72-140 | 2   | 27  |
| S                | Surrogate       | %REC | Limits |                       |      |        |     |     |
| TCMX             |                 | 109  | 63-141 |                       |      |        |     |     |
| Decachlorob      | oiphenyl        | 83   | 50-158 |                       |      |        |     |     |



|           | Califor           | rnia Title 26 Metals | 5            |          |
|-----------|-------------------|----------------------|--------------|----------|
| Lab #:    | 196042            | Project#:            | 001-09567-01 |          |
| Client:   | LFR Levine Fricke | Location:            | Hanson Radum |          |
| Field ID: | B-1(A)-4.5        | Diln Fac:            | 1.000        |          |
| Lab ID:   | 196042-005        | Sampled:             | 07/17/07     |          |
| Matrix:   | Soil              | Received:            | 07/17/07     |          |
| Units:    | mg/Kg             | Analyzed:            | 07/19/07     |          |
| Basis:    | as received       |                      |              |          |
| Analyte   | Result            | RL Batch# Prepare    | d Prep       | Analysis |

| Analyte    | Result | RL    | Batch# Prepared Prep Analysis       |
|------------|--------|-------|-------------------------------------|
| Antimony   | ND     | 0.50  | 127397 07/18/07 EPA 3050B EPA 6010B |
| Arsenic    | 4.2    | 0.25  | 127397 07/18/07 EPA 3050B EPA 6010B |
| Barium     | 160    | 0.25  | 127397 07/18/07 EPA 3050B EPA 6010B |
| Beryllium  | 0.24   | 0.10  | 127397 07/18/07 EPA 3050B EPA 6010B |
| Cadmium    | ND     | 0.25  | 127397 07/18/07 EPA 3050B EPA 6010B |
| Chromium   | 40     | 0.25  | 127397 07/18/07 EPA 3050B EPA 6010B |
| Cobalt     | 10     | 0.25  | 127397 07/18/07 EPA 3050B EPA 6010B |
| Copper     | 28     | 0.25  | 127397 07/18/07 EPA 3050B EPA 6010B |
| Lead       | 8.8    | 0.15  | 127397 07/18/07 EPA 3050B EPA 6010B |
| Mercury    | 0.026  | 0.020 | 127412 07/19/07 METHOD EPA 7471A    |
| Molybdenum | 0.59   | 0.25  | 127397 07/18/07 EPA 3050B EPA 6010B |
| Nickel     | 60     | 0.25  | 127397 07/18/07 EPA 3050B EPA 6010B |
| Selenium   | ND     | 0.50  | 127397 07/18/07 EPA 3050B EPA 6010B |
| Silver     | ND     | 0.25  | 127397 07/18/07 EPA 3050B EPA 6010B |
| Thallium   | ND     | 0.50  | 127397 07/18/07 EPA 3050B EPA 6010B |
| Vanadium   | 23     | 0.25  | 127397 07/18/07 EPA 3050B EPA 6010B |
| Zinc       | 51     | 1.0   | 127397 07/18/07 EPA 3050B EPA 6010B |



| California Title 26 Metals |                   |    |                |              |          |
|----------------------------|-------------------|----|----------------|--------------|----------|
| Lab #:                     | 196042            |    | Project#:      | 001-09567-01 |          |
| Client:                    | LFR Levine Fricke |    | Location:      | Hanson Radum |          |
| Field ID:                  | B-1(A)-9.5        |    | Diln Fac:      | 1.000        |          |
| Lab ID:                    | 196042-006        |    | Sampled:       | 07/17/07     |          |
| Matrix:                    | Soil              |    | Received:      | 07/17/07     |          |
| Units:                     | mg/Kg             |    | Analyzed:      | 07/19/07     |          |
| Basis:                     | as received       |    |                |              |          |
|                            |                   |    |                |              |          |
| Analyte                    | Result            | RL | Batch# Prepare | ed Prep      | Analysis |
|                            | ND                |    | 100200 00/10/0 |              |          |

| Analyte    | Result | RL    | Batch# Prepared Pre      | ep Analysis  |
|------------|--------|-------|--------------------------|--------------|
| Antimony   | ND     | 0.50  | 127397 07/18/07 EPA 3050 | )B EPA 6010B |
| Arsenic    | 4.6    | 0.25  | 127397 07/18/07 EPA 3050 | )B EPA 6010B |
| Barium     | 160    | 0.25  | 127397 07/18/07 EPA 3050 | )B EPA 6010B |
| Beryllium  | 0.32   | 0.10  | 127397 07/18/07 EPA 3050 | )B EPA 6010B |
| Cadmium    | ND     | 0.25  | 127397 07/18/07 EPA 3050 | )B EPA 6010B |
| Chromium   | 56     | 0.25  | 127397 07/18/07 EPA 3050 | )B EPA 6010B |
| Cobalt     | 13     | 0.25  | 127397 07/18/07 EPA 3050 | )B EPA 6010B |
| Copper     | 26     | 0.25  | 127397 07/18/07 EPA 3050 | )B EPA 6010B |
| Lead       | 8.0    | 0.15  | 127397 07/18/07 EPA 3050 | )B EPA 6010B |
| Mercury    | 0.023  | 0.020 | 127412 07/19/07 METHOD   | EPA 7471A    |
| Molybdenum | 0.41   | 0.25  | 127397 07/18/07 EPA 3050 | )B EPA 6010B |
| Nickel     | 85     | 0.25  | 127397 07/18/07 EPA 3050 | )B EPA 6010B |
| Selenium   | ND     | 0.50  | 127397 07/18/07 EPA 3050 | )B EPA 6010B |
| Silver     | ND     | 0.25  | 127397 07/18/07 EPA 3050 | )B EPA 6010B |
| Thallium   | ND     | 0.50  | 127397 07/18/07 EPA 3050 | )B EPA 6010B |
| Vanadium   | 29     | 0.25  | 127397 07/18/07 EPA 3050 | DB EPA 6010B |
| Zinc       | 54     | 1.0   | 127397 07/18/07 EPA 3050 | DB EPA 6010B |



|           | Californ          | nia Title 26 Meta | als          |  |
|-----------|-------------------|-------------------|--------------|--|
| Lab #:    | 196042            | Location:         | Hanson Radum |  |
| Client:   | LFR Levine Fricke | Prep:             | EPA 3050B    |  |
| Project#: | 001-09567-01      | Analysis:         | EPA 6010B    |  |
| Type:     | BLANK             | Diln Fac:         | 1.000        |  |
| Lab ID:   | QC396917          | Batch#:           | 127397       |  |
| Matrix:   | Soil              | Prepared:         | 07/18/07     |  |
| Units:    | mg/Kg             | Analyzed:         | 07/19/07     |  |
| Basis:    | as received       |                   |              |  |

| Analyte    | Result | RL   |  |
|------------|--------|------|--|
| Antimony   | ND     | 0.50 |  |
| Arsenic    | ND     | 0.25 |  |
| Barium     | ND     | 0.25 |  |
| Beryllium  | ND     | 0.10 |  |
| Cadmium    | ND     | 0.25 |  |
| Chromium   | ND     | 0.25 |  |
| Cobalt     | ND     | 0.25 |  |
| Copper     | ND     | 0.25 |  |
| Lead       | ND     | 0.15 |  |
| Molybdenum | ND     | 0.25 |  |
| Nickel     | ND     | 0.25 |  |
| Selenium   | ND     | 0.50 |  |
| Silver     | ND     | 0.25 |  |
| Thallium   | ND     | 0.50 |  |
| Vanadium   | ND     | 0.25 |  |
| Zinc       | ND     | 1.0  |  |

ND= Not Detected RL= Reporting Limit Page 1 of 1



|                                          | Californ                                    | ia Title 26 Meta                  | ls                                     |  |
|------------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|--|
| Lab #:<br>Client:<br>Project#:           | 196042<br>LFR Levine Fricke<br>001-09567-01 | Location:<br>Prep:<br>Analysis:   | Hanson Radum<br>EPA 3050B<br>EPA 6010B |  |
| Matrix:<br>Units:<br>Basis:<br>Diln Fac: | Soil<br>mg/Kg<br>as received<br>1.000       | Batch#:<br>Prepared:<br>Analyzed: | 127397<br>07/18/07<br>07/19/07         |  |

| Type: BS   | Lab ID: | QC3969 | 18   |        |
|------------|---------|--------|------|--------|
| Analyte    | Spiked  | Result | %REC | Limits |
| Antimony   | 100.0   | 98.24  | 98   | 80-120 |
| Arsenic    | 50.00   | 49.44  | 99   | 80-120 |
| Barium     | 100.0   | 99.57  | 100  | 80-120 |
| Beryllium  | 2.500   | 2.589  | 104  | 80-120 |
| Cadmium    | 10.00   | 10.02  | 100  | 80-120 |
| Chromium   | 100.0   | 96.33  | 96   | 80-120 |
| Cobalt     | 25.00   | 23.60  | 94   | 80-120 |
| Copper     | 12.50   | 11.92  | 95   | 80-120 |
| Lead       | 100.0   | 95.61  | 96   | 80-120 |
| Molybdenum | 20.00   | 20.26  | 101  | 80-120 |
| Nickel     | 25.00   | 23.73  | 95   | 80-120 |
| Selenium   | 50.00   | 49.54  | 99   | 80-120 |
| Silver     | 10.00   | 9.388  | 94   | 80-120 |
| Thallium   | 50.00   | 49.69  | 99   | 80-120 |
| Vanadium   | 25.00   | 24.33  | 97   | 80-120 |
| Zinc       | 25.00   | 24.51  | 98   | 80-120 |

| Type:      | BSD     | Lab ID: | QC396  | 919  |        |     |     |
|------------|---------|---------|--------|------|--------|-----|-----|
|            | Analyte | Spiked  | Result | %REC | Limits | RPD | Lim |
| Antimony   |         | 100.0   | 100.1  | 100  | 80-120 | 2   | 20  |
| Arsenic    |         | 50.00   | 50.29  | 101  | 80-120 | 2   | 20  |
| Barium     |         | 100.0   | 100.8  | 101  | 80-120 | 1   | 20  |
| Beryllium  |         | 2.500   | 2.647  | 106  | 80-120 | 2   | 20  |
| Cadmium    |         | 10.00   | 10.32  | 103  | 80-120 | 3   | 20  |
| Chromium   |         | 100.0   | 99.28  | 99   | 80-120 | 3   | 20  |
| Cobalt     |         | 25.00   | 24.33  | 97   | 80-120 | 3   | 20  |
| Copper     |         | 12.50   | 12.26  | 98   | 80-120 | 3   | 20  |
| Lead       |         | 100.0   | 98.65  | 99   | 80-120 | 3   | 20  |
| Molybdenum |         | 20.00   | 20.54  | 103  | 80-120 | 1   | 20  |
| Nickel     |         | 25.00   | 24.51  | 98   | 80-120 | 3   | 20  |
| Selenium   |         | 50.00   | 50.46  | 101  | 80-120 | 2   | 20  |
| Silver     |         | 10.00   | 9.690  | 97   | 80-120 | 3   | 20  |
| Thallium   |         | 50.00   | 50.80  | 102  | 80-120 | 2   | 20  |
| Vanadium   |         | 25.00   | 25.06  | 100  | 80-120 | 3   | 20  |
| Zinc       |         | 25.00   | 25.27  | 101  | 80-120 | 3   | 20  |



|             | Californ          | nia Title 26 Metal | ls           |  |
|-------------|-------------------|--------------------|--------------|--|
| Lab #:      | 196042            | Location:          | Hanson Radum |  |
| Client:     | LFR Levine Fricke | Prep:              | EPA 3050B    |  |
| Project#:   | 001-09567-01      | Analysis:          | EPA 6010B    |  |
| Field ID:   | ZZZZZZZZZ         | Batch#:            | 127397       |  |
| MSS Lab ID: | 196050-001        | Sampled:           | 07/18/07     |  |
| Matrix:     | Soil              | Received:          | 07/18/07     |  |
| Units:      | mg/Kg             | Prepared:          | 07/18/07     |  |
| Basis:      | as received       | Analyzed:          | 07/19/07     |  |
| Diln Fac:   | 1.000             | -                  |              |  |

| Туре: М    | S          | Lab ID: | QC396920 |      |        |
|------------|------------|---------|----------|------|--------|
| Analyte    | MSS Result | Spiked  | Result   | %REC | Limits |
| Antimony   | 0.7560     | 93.46   | 60.48    | 64   | 1-129  |
| Arsenic    | 3.191      | 46.73   | 48.89    | 98   | 72-120 |
| Barium     | 47.75      | 93.46   | 135.5    | 94   | 49-138 |
| Beryllium  | 0.1303     | 2.336   | 2.534    | 103  | 80-120 |
| Cadmium    | 0.02568    | 9.346   | 9.094    | 97   | 72-120 |
| Chromium   | 20.29      | 93.46   | 107.2    | 93   | 63-122 |
| Cobalt     | 5.280      | 23.36   | 26.88    | 92   | 61-120 |
| Copper     | 5.751      | 11.68   | 18.23    | 107  | 59-137 |
| Lead       | 2.153      | 93.46   | 86.53    | 90   | 55-122 |
| Molybdenum | 0.7592     | 18.69   | 19.19    | 99   | 66-120 |
| Nickel     | 26.09      | 23.36   | 48.75    | 97   | 45-139 |
| Selenium   | <0.07143   | 46.73   | 45.82    | 98   | 73-120 |
| Silver     | <0.01668   | 9.346   | 8.968    | 96   | 53-120 |
| Thallium   | <0.03151   | 46.73   | 43.46    | 93   | 64-120 |
| Vanadium   | 25.51      | 23.36   | 49.28    | 102  | 55-139 |
| Zinc       | 19.22      | 23.36   | 42.33    | 99   | 49-140 |

| Type: MSD  | Lab ID: | QC396  | 921  |        |     |     |
|------------|---------|--------|------|--------|-----|-----|
| Analyte    | Spiked  | Result | %REC | Limits | RPD | Lim |
| Antimony   | 99.01   | 61.81  | 62   | 1-129  | 4   | 23  |
| Arsenic    | 49.50   | 50.13  | 95   | 72-120 | 3   | 20  |
| Barium     | 99.01   | 151.1  | 104  | 49-138 | 7   | 23  |
| Beryllium  | 2.475   | 2.632  | 101  | 80-120 | 2   | 20  |
| Cadmium    | 9.901   | 9.524  | 96   | 72-120 | 1   | 20  |
| Chromium   | 99.01   | 110.5  | 91   | 63-122 | 2   | 20  |
| Cobalt     | 24.75   | 27.88  | 91   | 61-120 | 1   | 23  |
| Copper     | 12.38   | 17.81  | 97   | 59-137 | б   | 20  |
| Lead       | 99.01   | 89.18  | 88   | 55-122 | 3   | 26  |
| Molybdenum | 19.80   | 19.38  | 94   | 66-120 | 5   | 20  |
| Nickel     | 24.75   | 49.77  | 96   | 45-139 | 1   | 26  |
| Selenium   | 49.50   | 46.95  | 95   | 73-120 | 3   | 20  |
| Silver     | 9.901   | 9.437  | 95   | 53-120 | 1   | 22  |
| Thallium   | 49.50   | 44.72  | 90   | 64-120 | 3   | 20  |
| Vanadium   | 24.75   | 51.42  | 105  | 55-139 | 1   | 20  |
| Zinc       | 24.75   | 43.22  | 97   | 49-140 | 1   | 23  |



|           | Californ          | nia Title 26 Meta | ls           |  |
|-----------|-------------------|-------------------|--------------|--|
| Lab #:    | 196042            | Location:         | Hanson Radum |  |
| Client:   | LFR Levine Fricke | Prep:             | METHOD       |  |
| Project#: | 001-09567-01      | Analysis:         | EPA 7471A    |  |
| Analyte:  | Mercury           | Basis:            | as received  |  |
| Type:     | BLANK             | Diln Fac:         | 1.000        |  |
| Lab ID:   | QC396975          | Batch#:           | 127412       |  |
| Matrix:   | Soil              | Prepared:         | 07/19/07     |  |
| Units:    | mg/Kg             | Analyzed:         | 07/19/07     |  |

| Result | RL    |  |
|--------|-------|--|
| ND     | 0.020 |  |

ND= Not Detected RL= Reporting Limit Page 1 of 1



|           | Californ          | nia Title 26 Meta | ls           |  |
|-----------|-------------------|-------------------|--------------|--|
| Lab #:    | 196042            | Location:         | Hanson Radum |  |
| Client:   | LFR Levine Fricke | Prep:             | METHOD       |  |
| Project#: | 001-09567-01      | Analysis:         | EPA 7471A    |  |
| Analyte:  | Mercury           | Diln Fac:         | 1.000        |  |
| Matrix:   | Soil              | Batch#:           | 127412       |  |
| Units:    | mg/Kg             | Prepared:         | 07/19/07     |  |
| Basis:    | as received       | Analyzed:         | 07/19/07     |  |
|           |                   |                   |              |  |

| Туре | Lab ID   | Spiked | Result | %REC | Limits | RPD | Lim |
|------|----------|--------|--------|------|--------|-----|-----|
| BS   | QC396976 | 0.5000 | 0.4310 | 86   | 80-120 |     |     |
| BSD  | QC396977 | 0.5000 | 0.4600 | 92   | 80-120 | 7   | 20  |



QC396980

MSD

|             | Califor           | nia Title 26 Me | tals   |         |        |     |     |
|-------------|-------------------|-----------------|--------|---------|--------|-----|-----|
| Lab #:      | 196042            | Location:       | Hanso  | n Radum |        |     |     |
| Client:     | LFR Levine Fricke | Prep:           | METHO  | D       |        |     |     |
| Project#:   | 001-09567-01      | Analysis:       | EPA 7  | 471A    |        |     |     |
| Analyte:    | Mercury           | Diln Fac:       | 1.000  |         |        |     |     |
| Field ID:   | ZZZZZZZZZ         | Batch#:         | 12741  | 2       |        |     |     |
| MSS Lab ID: | 195907-001        | Sampled:        | 07/11  | /07     |        |     |     |
| Matrix:     | Soil              | Received:       | 07/11  | /07     |        |     |     |
| Units:      | mg/Kg             | Prepared:       | 07/19  | /07     |        |     |     |
| Basis:      | as received       | Analyzed:       | 07/19  | /07     |        |     |     |
|             |                   |                 |        |         |        |     |     |
| Type Lab ID | MSS Result        | Spiked          | Result | %REC    | Limits | RPD | Lim |
| MS QC396979 | 0.04151           | 0.4310          | 0.4431 | 93      | 67-143 |     |     |

0.4902

0.5441

103

23

67-143 9



|--|

| <u>Sample ID</u><br>B-1(A)-GGW | <u>Lab ID</u><br>196066-001 |
|--------------------------------|-----------------------------|
| EB-35(C)-2.5                   | 196066-002                  |
| EB-35(C)-5.5                   | 196066-003                  |
| EB-35(C)-10.5                  | 196066-004                  |
| EB-35(D)-5.5                   | 196066-005                  |
| EB-35(D)-9.5                   | 196066-006                  |
| SS-31(A)-5.5                   | 196066-007                  |
| SS-31(A)-10.5                  | 196066-008                  |
| SS-31(A)-15.5                  | 196066-009                  |
| SS-31(A)-20.5                  | 196066-010                  |
| SS-31(A)-25.5                  | 196066-011                  |
| SS-31(A)-30.5                  | 196066-012                  |

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Signature: Project Manager

Signature:

Operations Manager

Date: 07/31/2007

Date: 07/31/2007

NELAP # 01107CA

Page 1 of \_\_\_\_



#### CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received:

196066 LFR Levine Fricke 001-09567-01 Hanson Radum 07/19/07 07/19/07

This hardcopy data package contains sample and QC results for ten soil samples and one water sample, requested for the above referenced project on 07/19/07. The samples were received cold and intact. All data were e-mailed to Katrin Schliewen on 07/26/07.

#### TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

#### TPH-Extractables by GC (EPA 8015B) Water:

No analytical problems were encountered.

#### TPH-Extractables by GC (EPA 8015B) Soil:

High surrogate recovery was observed for hexacosane in EB-35(D)-9.5 (lab # 196066-006); no target analytes were detected in the sample. No other analytical problems were encountered.

#### Volatile Organics by GC/MS (EPA 8260B) Water:

No analytical problems were encountered.

#### Volatile Organics by GC/MS (EPA 8260B) Soil:

No analytical problems were encountered.

#### Semivolatile Organics by GC/MS (EPA 8270C):

No analytical problems were encountered.

#### Pesticides (EPA 8081A):

Responses exceeding the instrument's linear range were observed for decachlorobiphenyl in the MS/MSD for batch 127426; affected data was qualified with "b". High surrogate recoveries were observed for decachlorobiphenyl in the MS/MSD for batch 127426; the corresponding TCMX surrogate recoveries were within limits, and the parent sample was not a project sample. No other analytical problems were encountered.

#### Polychlorinated Biphenyls (PCBs) (EPA 8082):

No analytical problems were encountered.

#### Metals (EPA 6010B and EPA 7471A):

No analytical problems were encountered.



|                                                                                                                |                                                                                                                                                                                                | Total                                                | Volatil                                                                                                    | .e Hydrocar           | bons                                                |   |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------|---|
| Lab #:                                                                                                         | 196066                                                                                                                                                                                         |                                                      |                                                                                                            | Location:             | Hanson Radum                                        | 1 |
| Client:                                                                                                        | LFR Levine Fr                                                                                                                                                                                  | icke                                                 |                                                                                                            | Prep:                 | EPA 5030B                                           |   |
| Project#:                                                                                                      | 001-09567-01                                                                                                                                                                                   |                                                      |                                                                                                            | Analysis:             | EPA 8015B                                           |   |
| Matrix:                                                                                                        | Soil                                                                                                                                                                                           |                                                      |                                                                                                            | Batch#:               | 127425                                              |   |
| Units:<br>Basis:                                                                                               | mg/Kg<br>as received                                                                                                                                                                           |                                                      |                                                                                                            | Sampled:<br>Received: | 07/18/07                                            |   |
| Diln Fac:                                                                                                      | 1.000                                                                                                                                                                                          |                                                      |                                                                                                            | Analyzed:             | 07/19/07<br>07/19/07                                |   |
|                                                                                                                | 1.000                                                                                                                                                                                          |                                                      |                                                                                                            | mary 2ca              | 0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,             |   |
| Field ID:<br>Type:                                                                                             | SS-31(A)-5.5<br>SAMPLE                                                                                                                                                                         |                                                      |                                                                                                            | Lab ID:               | 196066-007                                          |   |
|                                                                                                                | Analyte                                                                                                                                                                                        |                                                      | Result                                                                                                     |                       | RL                                                  |   |
| Gasoline (                                                                                                     | C7-C12                                                                                                                                                                                         | NE                                                   |                                                                                                            |                       | 1.0                                                 |   |
|                                                                                                                |                                                                                                                                                                                                |                                                      |                                                                                                            |                       |                                                     |   |
|                                                                                                                | Surrogate                                                                                                                                                                                      |                                                      | Limits                                                                                                     |                       |                                                     |   |
|                                                                                                                | toluene (FID)                                                                                                                                                                                  | 93                                                   | 70-132                                                                                                     |                       |                                                     |   |
| Bromotluoi                                                                                                     | robenzene (FID)                                                                                                                                                                                | 102                                                  | 66-138                                                                                                     |                       |                                                     |   |
| Field ID:                                                                                                      | SS-31(A)-10.5                                                                                                                                                                                  |                                                      |                                                                                                            | Lab ID:               | 196066-008                                          |   |
| Type:                                                                                                          | SAMPLE                                                                                                                                                                                         |                                                      |                                                                                                            |                       |                                                     |   |
|                                                                                                                | Amo lasto                                                                                                                                                                                      |                                                      | D1+                                                                                                        |                       |                                                     |   |
|                                                                                                                |                                                                                                                                                                                                |                                                      |                                                                                                            |                       | DT                                                  |   |
| Gasoline (                                                                                                     | Analyte                                                                                                                                                                                        |                                                      | Result                                                                                                     |                       | <b>RL</b><br>0 94                                   |   |
| Gasoline (                                                                                                     | C7-C12                                                                                                                                                                                         | NE                                                   |                                                                                                            |                       | RL<br>0.94                                          |   |
|                                                                                                                | C7-C12<br>Surrogate                                                                                                                                                                            | ND                                                   |                                                                                                            |                       |                                                     |   |
| Trifluorot                                                                                                     | 27-C12<br>Surrogate<br>coluene (FID)                                                                                                                                                           | ND                                                   | )                                                                                                          |                       |                                                     |   |
| Trifluorot                                                                                                     | C7-C12<br>Surrogate                                                                                                                                                                            | ND<br>%REC                                           | Limits                                                                                                     |                       |                                                     |   |
| Trifluorot<br>Bromofluor                                                                                       | <b>Surrogate</b><br>coluene (FID)<br>robenzene (FID)                                                                                                                                           | ND<br>%REC<br>95                                     | <b>Limits</b><br>70-132                                                                                    | Lab ID:               | 0.94                                                |   |
| Trifluorot                                                                                                     | <b>Surrogate</b><br>coluene (FID)<br>robenzene (FID)                                                                                                                                           | ND<br>%REC<br>95                                     | <b>Limits</b><br>70-132                                                                                    | Lab ID:               |                                                     |   |
| Trifluorot<br>Bromofluor<br>Field ID:                                                                          | SS-31(A)-15.5<br>SAMPLE                                                                                                                                                                        | ND<br><b>%REC</b><br>95<br>104                       | <b>Limits</b><br>70-132<br>66-138                                                                          | Lab ID:               | 0.94<br>196066-009                                  |   |
| Trifluorot<br>Bromofluor<br>Field ID:<br>Type:                                                                 | Surrogate<br>toluene (FID)<br>robenzene (FID)<br>SS-31(A)-15.5<br>SAMPLE<br>Analyte                                                                                                            | ND<br><b>%REC</b><br>95<br>104                       | Limits<br>70-132<br>66-138<br>Result                                                                       | Lab ID:               | 0.94<br>196066-009<br><b>RL</b>                     |   |
| Trifluorot<br>Bromofluor<br>Field ID:                                                                          | Surrogate<br>toluene (FID)<br>robenzene (FID)<br>SS-31(A)-15.5<br>SAMPLE<br>Analyte                                                                                                            | ND<br><b>%REC</b><br>95<br>104                       | Limits<br>70-132<br>66-138<br>Result                                                                       | Lab ID:               | 0.94<br>196066-009                                  |   |
| Trifluorot<br>Bromofluor<br>Field ID:<br>Type:                                                                 | Surrogate<br>toluene (FID)<br>robenzene (FID)<br>SS-31(A)-15.5<br>SAMPLE<br>Analyte<br>C7-C12                                                                                                  | NE<br>8 <b>REC</b><br>95<br>104<br>NE                | <b>Limits</b> 70-132 66-138 <b>Result</b>                                                                  | Lab ID:               | 0.94<br>196066-009<br><b>RL</b>                     |   |
| Trifluorot<br>Bromofluor<br>Field ID:<br>Type:<br>Gasoline (                                                   | SS-31(A)-15.5<br>SAMPLE<br>Analyte<br>Surrogate                                                                                                                                                | NE<br>8 <b>REC</b><br>95<br>104<br>NE<br><b>8REC</b> | Limits           70-132           66-138           Result           Description           Limits           | Lab ID:               | 0.94<br>196066-009<br><b>RL</b>                     |   |
| Trifluorot<br>Bromofluon<br>Field ID:<br>Type:<br>Gasoline (<br>Trifluorot                                     | 27-C12<br>Surrogate<br>coluene (FID)<br>robenzene (FID)<br>SS-31(A)-15.5<br>SAMPLE<br>Analyte<br>C7-C12<br>Surrogate<br>coluene (FID)                                                          | NE<br>95<br>104<br>NE<br>%REC<br>99                  | Limits           70-132           66-138           Result           D           Limits           70-132    | Lab ID:               | 0.94<br>196066-009<br><b>RL</b>                     |   |
| Trifluorot<br>Bromofluor<br>Field ID:<br>Type:<br>Gasoline (<br>Trifluorot<br>Bromofluor<br>Field ID:          | SS-31(A)-15.5<br>SAMPLE<br>Analyte<br>Surrogate                                                                                                                                                | NE<br>8 <b>REC</b><br>95<br>104<br>NE<br><b>8REC</b> | Limits           70-132           66-138           Result           Description           Limits           | Lab ID:               | 0.94<br>196066-009<br><b>RL</b><br>1.1              |   |
| Trifluorot<br>Bromofluor<br>Field ID:<br>Type:<br>Gasoline (<br>Trifluorot<br>Bromofluor                       | SS-31(A)-15.5<br>SAMPLE<br>Analyte<br>Coluene (FID)<br>SS-31(A)-15.5<br>SAMPLE<br>Analyte<br>C7-C12<br>Surrogate<br>toluene (FID)<br>robenzene (FID)<br>SS-31(A)-20.5                          | NE<br>95<br>104<br>NE<br>%REC<br>99                  | Limits           70-132           66-138           Result           D           Limits           70-132    |                       | 0.94<br>196066-009<br><b>RL</b><br>1.1              |   |
| Trifluorot<br>Bromofluor<br>Field ID:<br>Type:<br>Gasoline (<br>Trifluorot<br>Bromofluor<br>Field ID:<br>Type: | 27-C12<br>Surrogate<br>coluene (FID)<br>robenzene (FID)<br>SS-31(A)-15.5<br>SAMPLE<br>Analyte<br>C7-C12<br>Surrogate<br>coluene (FID)<br>robenzene (FID)<br>SS-31(A)-20.5<br>SAMPLE<br>Analyte | NE<br>95<br>104<br>NE<br><b>%REC</b><br>99<br>107    | Limits           70-132           66-138           Result           D           Limits           70-132    |                       | 0.94<br>196066-009<br><b>RL</b><br>1.1              |   |
| Trifluorot<br>Bromofluor<br>Field ID:<br>Type:<br>Gasoline (<br>Trifluorot<br>Bromofluor<br>Field ID:          | 27-C12<br>Surrogate<br>coluene (FID)<br>robenzene (FID)<br>SS-31(A)-15.5<br>SAMPLE<br>Analyte<br>C7-C12<br>Surrogate<br>coluene (FID)<br>robenzene (FID)<br>SS-31(A)-20.5<br>SAMPLE<br>Analyte | NE<br>95<br>104<br>NE<br><b>%REC</b><br>99<br>107    | Limits         70-132         66-138         Result         D         Limits         70-132         66-138 |                       | 0.94<br>196066-009<br>RL<br>1.1<br>196066-010       |   |
| Trifluorot<br>Bromofluor<br>Field ID:<br>Type:<br>Gasoline (<br>Trifluorot<br>Bromofluor<br>Field ID:<br>Type: | 27-C12<br>Surrogate<br>coluene (FID)<br>robenzene (FID)<br>SS-31(A)-15.5<br>SAMPLE<br>Analyte<br>C7-C12<br>Surrogate<br>coluene (FID)<br>robenzene (FID)<br>SS-31(A)-20.5<br>SAMPLE<br>Analyte | NE<br>95<br>104<br>NE<br>8REC<br>99<br>107           | Limits         70-132         66-138         Result         D         Limits         70-132         66-138 |                       | 0.94<br>196066-009<br>RL<br>1.1<br>196066-010<br>RL |   |



|                                                                                                  | Total V   | Volatil                           | e Hydrocar                                             | bons      |                                                              |
|--------------------------------------------------------------------------------------------------|-----------|-----------------------------------|--------------------------------------------------------|-----------|--------------------------------------------------------------|
| Lab #: 196066<br>Client: LFR Levine Fr<br>Project#: 001-09567-01<br>Matrix: Soil<br>Units: mg/Kg | icke      |                                   | Location:<br>Prep:<br>Analysis:<br>Batch#:<br>Sampled: |           | Hanson Radum<br>EPA 5030B<br>EPA 8015B<br>127425<br>07/18/07 |
| Basis: as received<br>Diln Fac: 1.000                                                            |           |                                   | Received:<br>Analyzed:                                 |           | 07/19/07<br>07/19/07                                         |
| Field ID: SS-31(A)-25.5<br>Type: SAMPLE                                                          |           |                                   | Lab ID:                                                |           | 196066-011                                                   |
| Analyte<br>Gasoline C7-C12                                                                       | R<br>ND   | lesult                            |                                                        | <u>RL</u> | n                                                            |
|                                                                                                  |           |                                   |                                                        | ±••       |                                                              |
| Surrogate<br>Trifluorotoluene (FID)<br>Bromofluorobenzene (FID)                                  |           | <b>Limits</b><br>70-132<br>66-138 |                                                        |           |                                                              |
| Field ID: SS-31(A)-30.5<br>Type: SAMPLE                                                          |           |                                   | Lab ID:                                                |           | 196066-012                                                   |
| Analyte                                                                                          |           | lesult                            |                                                        | RL        |                                                              |
| Gasoline C7-C12                                                                                  | ND        |                                   |                                                        | 0.9       | 98                                                           |
| Surrogate                                                                                        |           | Limits                            |                                                        |           |                                                              |
| Trifluorotoluene (FID)<br>Bromofluorobenzene (FID)                                               | 95<br>106 | 70-132<br>66-138                  |                                                        |           |                                                              |
| Bromorruorobenzene (FID)                                                                         | 100       | 00-138                            |                                                        |           |                                                              |
| Type: BLANK                                                                                      |           |                                   | Lab ID:                                                |           | QC397055                                                     |
| Analyte                                                                                          | R         | lesult                            |                                                        | RL        |                                                              |
| Gasoline C7-C12                                                                                  | ND        |                                   |                                                        | 0.2       | 20                                                           |
| Surrogate                                                                                        | %REC      | Limits                            |                                                        | _         |                                                              |
| Trifluorotoluene (FID)<br>Bromofluorobenzene (FID)                                               | 93<br>96  | 70-132<br>66-138                  |                                                        |           |                                                              |



|           | Total Volatil     | e Hydrocarbons |              |
|-----------|-------------------|----------------|--------------|
| Lab #:    | 196066            | Location:      | Hanson Radum |
| Client:   | LFR Levine Fricke | Prep:          | EPA 5030B    |
| Project#: | 001-09567-01      | Analysis:      | EPA 8015B    |
| Туре:     | LCS               | Basis:         | as received  |
| Lab ID:   | QC397056          | Diln Fac:      | 1.000        |
| Matrix:   | Soil              | Batch#:        | 127425       |
| Units:    | mg/Kg             | Analyzed:      | 07/19/07     |

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 10.00  | 9.942  | 99   | 80-120 |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 104  | 70-132 |
| Bromofluorobenzene (FID) | 97   | 66-138 |



| Total Volatile Hydrocarbons |                   |           |              |  |  |  |  |  |
|-----------------------------|-------------------|-----------|--------------|--|--|--|--|--|
| Lab #:                      | 196066            | Location: | Hanson Radum |  |  |  |  |  |
| Client:                     | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |  |  |  |
| Project#:                   | 001-09567-01      | Analysis: | EPA 8015B    |  |  |  |  |  |
| Field ID:                   | SS-31(A)-5.5      | Diln Fac: | 1.000        |  |  |  |  |  |
| MSS Lab ID:                 | 196066-007        | Batch#:   | 127425       |  |  |  |  |  |
| Matrix:                     | Soil              | Sampled:  | 07/18/07     |  |  |  |  |  |
| Units:                      | mg/Kg             | Received: | 07/19/07     |  |  |  |  |  |
| Basis:                      | as received       | Analyzed: | 07/19/07     |  |  |  |  |  |

| Type:     | MS               |        |        | Lab ID: | QC3    | 97057  |        |         |
|-----------|------------------|--------|--------|---------|--------|--------|--------|---------|
|           | Analyte          | MSS Re | sult   | Spike   | ed     | Result | %REC   | Limits  |
| Gasoline  | C7-C12           |        | 0.1189 | 10.     | 10     | 10.70  | 105    | 36-120  |
|           | Surrogate        | %REC   | Limits |         |        |        |        |         |
| Trifluor  | otoluene (FID)   | 110    | 70-132 |         |        |        |        |         |
| Bromoflue | orobenzene (FID) | 108    | 66-138 |         |        |        |        |         |
| Туре:     | MSD              |        |        | Lab ID: | QC3    | 97058  |        |         |
|           | Analyte          |        | Spiked |         | Result | %REC   | Limits | RPD Lim |
| Gasoline  | C7-C12           |        | 9.90   | 1       | 9.789  | 98     | 36-120 | 7 29    |
|           | Surrogate        | %REC   | Limits |         |        |        |        |         |
| Trifluor  | otoluene (FID)   | 108    | 70-132 |         |        |        |        |         |

107

66-138

Bromofluorobenzene (FID)



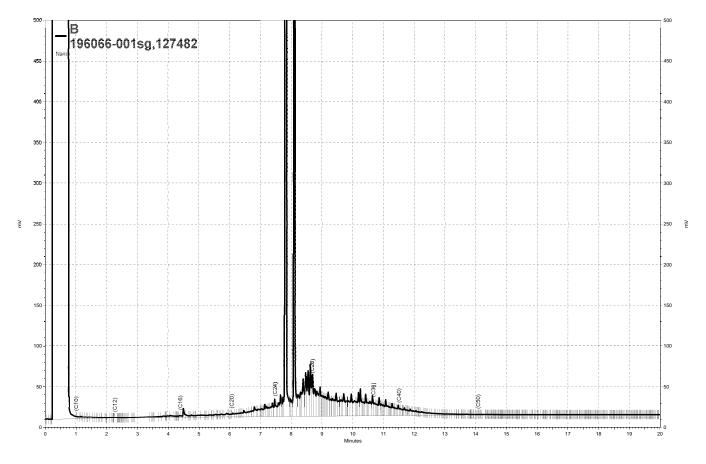
|                  | :                    | Iotal : | Extracta | ble Hydrocarbo               | ns                    |  |
|------------------|----------------------|---------|----------|------------------------------|-----------------------|--|
| Lab #:           | 196066               |         |          | Location:                    | Hanson Radum          |  |
| Client:          | LFR Levine Fi        | ricke   |          | Prep:                        | EPA 3520C             |  |
| Project#:        | 001-09567-01         |         |          | Analysis:                    | EPA 8015B             |  |
| Field ID:        | B-1(A)-GGW           |         |          | Batch#:                      | 127482                |  |
| Matrix:          | Water                |         |          | Sampled:                     | 07/18/07              |  |
| Units:           | ug/L                 |         |          | Received:                    | 07/19/07              |  |
| Diln Fac:        | 1.000                |         |          | Prepared:                    | 07/21/07              |  |
| Type:<br>Lab ID: | SAMPLE<br>196066-001 |         |          | Analyzed:<br>Cleanup Method: | 07/24/07<br>EPA 3630C |  |
| AI               | nalyte               |         | Result   | RL                           |                       |  |
| Diesel C10-C2    | 24                   |         | 79 н 1   | Y 50                         |                       |  |
| Motor Oil C24    | 1-C36                |         | 1,100 H  | 300                          |                       |  |
| Su               | rrogate              | %REC    | Limits   |                              |                       |  |
| Hexacosane       |                      | 85      | 61-134   |                              |                       |  |
| Type:<br>Lab ID: | BLANK<br>QC397291    |         |          | Analyzed:<br>Cleanup Method: |                       |  |
|                  | nalyte               |         | Result   | RL                           |                       |  |
| Diesel C10-C2    |                      | NI      | -        | 50                           |                       |  |
| Motor Oil C24    | 4-C36                | NI      | )        | 300                          |                       |  |
| Sui              | rrogate              | %REC    | Limits   |                              |                       |  |
| Hexacosane       |                      | 105     | 61-134   |                              |                       |  |

H= Heavier hydrocarbons contributed to the quantitation
Y= Sample exhibits chromatographic pattern which does not resemble standard
ND= Not Detected
RL= Reporting Limit
Page 1 of 1

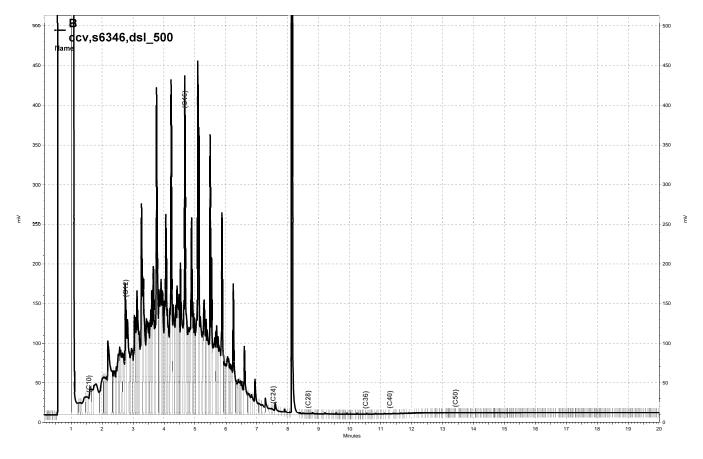


| Total Extractable Hydrocarbons |                   |           |              |  |  |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|--|--|
| Lab #:                         | 196066            | Location: | Hanson Radum |  |  |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3520C    |  |  |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |  |  |
| Туре:                          | LCS               | Diln Fac: | 1.000        |  |  |  |  |
| Lab ID:                        | QC397292          | Batch#:   | 127482       |  |  |  |  |
| Matrix:                        | Water             | Prepared: | 07/21/07     |  |  |  |  |
| Units:                         | ug/L              | Analyzed: | 07/22/07     |  |  |  |  |

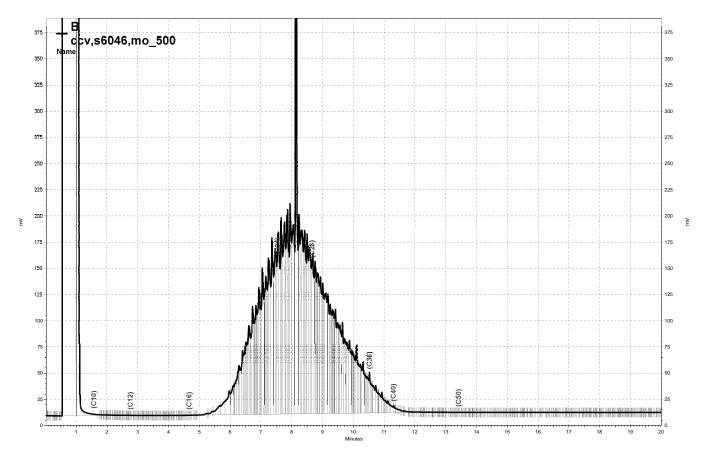
Cleanup Method: EPA 3630C


| ŝ    | Spiked | Result | %REC                       | Limits                     |
|------|--------|--------|----------------------------|----------------------------|
| 2    | 2,500  | 2,192  | 88                         | 58-130                     |
|      |        |        |                            |                            |
| %REC | Limits |        |                            |                            |
| 98   | 61-134 |        |                            |                            |
|      | %REC   |        | 2,500 2,192<br>%REC Limits | 2,500 2,192 88 %REC Limits |




| Total Extractable Hydrocarbons |                   |           |              |  |  |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|--|--|
| Lab #:                         | 196066            | Location: | Hanson Radum |  |  |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3520C    |  |  |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |  |  |
| Field ID:                      | ZZZZZZZZZ         | Batch#:   | 127482       |  |  |  |  |
| MSS Lab ID:                    | 196040-002        | Sampled:  | 07/17/07     |  |  |  |  |
| Matrix:                        | Water             | Received: | 07/17/07     |  |  |  |  |
| Units:                         | ug/L              | Prepared: | 07/21/07     |  |  |  |  |
| Diln Fac:                      | 1.000             | Analyzed: | 07/23/07     |  |  |  |  |

| [ype:    | MS        |         |        | Lab ID: | QC397293 |        |        |
|----------|-----------|---------|--------|---------|----------|--------|--------|
|          | Analyte   | MSS Res | ult    | Spiked  | Result   | : %REC | Limits |
| Diesel C | 10-C24    | <15     | .44    | 2,500   | 2,261    | 90     | 57-134 |
|          | Surrogate | %REC    | Limits |         |          |        |        |
| Hexacosa | ne        | 95      | 61-134 |         |          |        |        |


| Type:    | MSD       |      |        | Lab ID: | Ç      | C397294 |        |     |     |
|----------|-----------|------|--------|---------|--------|---------|--------|-----|-----|
|          | Analyte   |      | Spiked |         | Result | %REC    | Limits | RPD | Lim |
| Diesel C | 10-C24    |      | 2,500  |         | 2,318  | 93      | 57-134 | 3   | 32  |
|          | Surrogate | %REC | Limits |         |        |         |        |     |     |
| Hexacosa | ne        | 95   | 61-134 |         |        |         |        |     |     |



-\\Lims\gdrive\ezchrom\Projects\GC14B\Data\203b076, B



\\Lims\gdrive\ezchrom\Projects\GC15B\Data\203b004, B



\Lims\gdrive\ezchrom\Projects\GC15B\Data\203b005, B



|                                                                                                                                                                                                                                                           | Т                                                                                                          | otal I                             | Extracta                                                                                                      | ble Hydrocarbo                                                                                                                  | ns                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Lab #:<br>Client:                                                                                                                                                                                                                                         | 196066<br>LFR Levine Fr                                                                                    | icke                               |                                                                                                               | Location:<br>Prep:                                                                                                              | Hanson Radum<br>SHAKER TABLE                                                     |
| Project#:<br>Matrix:                                                                                                                                                                                                                                      | <u>001-09567-01</u><br>Soil                                                                                |                                    |                                                                                                               | Analysis:<br>Sampled:                                                                                                           | EPA 8015B<br>07/18/07                                                            |
| Units:<br>Basis:                                                                                                                                                                                                                                          | mg/Kg<br>as received                                                                                       |                                    |                                                                                                               | Received:<br>Prepared:                                                                                                          | 07/19/07<br>07/19/07                                                             |
| Batch#:                                                                                                                                                                                                                                                   | 127422                                                                                                     |                                    |                                                                                                               | ricparca                                                                                                                        | 677 197 67                                                                       |
|                                                                                                                                                                                                                                                           |                                                                                                            |                                    |                                                                                                               |                                                                                                                                 |                                                                                  |
| Field ID:                                                                                                                                                                                                                                                 | EB-35(C)-5.5                                                                                               |                                    |                                                                                                               | Diln Fac:                                                                                                                       | 1.000                                                                            |
| Type:<br>Lab ID:                                                                                                                                                                                                                                          | SAMPLE<br>196066-003                                                                                       |                                    |                                                                                                               | Analyzed:<br>Cleanup Method:                                                                                                    | 07/23/07<br>EPA 3630C                                                            |
|                                                                                                                                                                                                                                                           | lvte                                                                                                       |                                    | Result                                                                                                        | RL                                                                                                                              |                                                                                  |
| Diesel C10-C24                                                                                                                                                                                                                                            | -                                                                                                          | NE                                 | )                                                                                                             | 1.                                                                                                                              |                                                                                  |
| Motor Oil C24-C                                                                                                                                                                                                                                           |                                                                                                            | NI                                 |                                                                                                               | <u>.</u>                                                                                                                        |                                                                                  |
| Hexacosane                                                                                                                                                                                                                                                | ogate                                                                                                      | %REC<br>108                        | <u>Limits</u><br>40-127                                                                                       |                                                                                                                                 |                                                                                  |
|                                                                                                                                                                                                                                                           |                                                                                                            |                                    |                                                                                                               |                                                                                                                                 |                                                                                  |
| Field ID:                                                                                                                                                                                                                                                 | EB-35(C)-10.5                                                                                              |                                    |                                                                                                               | Diln Fac:                                                                                                                       | 1.000                                                                            |
| Type:                                                                                                                                                                                                                                                     | SAMPLE                                                                                                     |                                    |                                                                                                               | Analvzed:                                                                                                                       | 07/23/07                                                                         |
| Lab ID:                                                                                                                                                                                                                                                   | 196066-004                                                                                                 |                                    |                                                                                                               | Cleanup Method:                                                                                                                 | EPA 3630C                                                                        |
| Anal                                                                                                                                                                                                                                                      | vte                                                                                                        |                                    | Result                                                                                                        | RT.                                                                                                                             |                                                                                  |
|                                                                                                                                                                                                                                                           |                                                                                                            |                                    |                                                                                                               |                                                                                                                                 | 0                                                                                |
| Diesel C10-C24<br>Motor Oil C24-C                                                                                                                                                                                                                         |                                                                                                            | NI<br>NI                           | )                                                                                                             | 1.<br>5.                                                                                                                        |                                                                                  |
| Diesel C10-C24<br>Motor Oil C24-C                                                                                                                                                                                                                         |                                                                                                            | NI<br>NI<br>%REC                   |                                                                                                               | 1.                                                                                                                              |                                                                                  |
| Diesel C10-C24<br>Motor Oil C24-C                                                                                                                                                                                                                         | 236                                                                                                        | NI<br>NI                           | )                                                                                                             | 1.                                                                                                                              |                                                                                  |
| Diesel C10-C24<br>Motor Oil C24-C                                                                                                                                                                                                                         | 236                                                                                                        | NI<br>NI<br>%REC                   |                                                                                                               | 1.                                                                                                                              |                                                                                  |
| Diesel C10-C24<br>Motor Oil C24-C<br>Hexacosane<br>Field ID:                                                                                                                                                                                              | EB-35(D)-5.5                                                                                               | NI<br>NI<br>%REC                   |                                                                                                               | 1.<br>5.<br>Diln Fac:                                                                                                           | 10.00                                                                            |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surro<br>Hexacosane                                                                                                                                                                                                  | ogate                                                                                                      | NI<br>NI<br>%REC                   |                                                                                                               | 1.<br>5.                                                                                                                        | 0<br>10.00<br>07/23/07                                                           |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Anal                                                                                                                                                         | EB-35(D)-5.5<br>SAMPLE                                                                                     | NI<br>NT<br><b>%REC</b><br>79      | I.imits<br>40-127<br>Result                                                                                   | 1.<br>5<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br><b>RI.</b>                                                              | 0<br>10.00<br>07/23/07<br>EPA 3630C                                              |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:                                                                                                                                                                 | EB-35(D)-5.5<br>SAMPLE<br>196066-005                                                                       | NI<br>NT<br><b>%REC</b><br>79      | <b>Limits</b><br>40-127                                                                                       | 1.<br>5<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RI.<br>9.                                                               | 0<br>10.00<br>07/23/07<br>EPA 3630C<br>9                                         |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surre<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-C                                                                                                                            | EB-35(D)-5.5<br>SAMPLE<br>196066-005                                                                       | NI<br>NT<br><b>%REC</b><br>79      | <b>I.imits</b><br>40-127<br><b>Result</b><br>38 H Y<br>810 H                                                  | 1.<br>5<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RI.<br>9.                                                               | 0<br>10.00<br>07/23/07<br>EPA 3630C<br>9                                         |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surre<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-C                                                                                                                            | EB-35(D)-5.5<br>SAMPLE<br>196066-005                                                                       | NI<br>NT<br><b>%REC</b><br>79      | <b>I.imits</b><br>40-127<br><b>Result</b><br>38 H Y<br>810 H                                                  | 1.<br>5<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RI.<br>9.                                                               | 0<br>10.00<br>07/23/07<br>EPA 3630C<br>9                                         |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-C                                                                                                                            | EB-35(D)-5.5<br>SAMPLE<br>196066-005                                                                       | NI<br>NT<br>79<br>%REC             | <b>I.imits</b><br>40-127<br>40-127<br>80-127<br>80-127<br>80-127<br>810-14<br>810-14<br>810-14<br>810-14      | 1.<br>5<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RI.<br>9.                                                               | 0<br>10.00<br>07/23/07<br>EPA 3630C<br>9                                         |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-C                                                                                                                            | EB-35(D)-5.5<br>SAMPLE<br>196066-005                                                                       | NI<br>NT<br>79<br>%REC             | <b>I.imits</b><br>40-127<br>40-127<br>80-127<br>80-127<br>80-127<br>810-14<br>810-14<br>810-14<br>810-14      | 1.<br>5<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RI.<br>9.                                                               | 0<br>10.00<br>07/23/07<br>EPA 3630C<br>9                                         |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surre<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24-C<br>Motor Oil C24-C<br>Hexacosane<br>Field ID:<br>Type:<br>Field ID:<br>Type:                                                                 | EB-35(D)-5.5<br>SAMPLE<br>196066-005<br>Lyte<br>C36<br>EB-35(D)-9.5<br>SAMPLE                              | NI<br>NT<br>79<br>%REC             | <b>I.imits</b><br>40-127<br>40-127<br>80-127<br>80-127<br>80-127<br>810-14<br>810-14<br>810-14<br>810-14      | 1.<br>5.<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>9.<br>50<br>Diln Fac:<br>Analyzed:                               | 0<br>10.00<br>07/23/07<br>EPA 3630C<br>9<br>1.000<br>07/23/07                    |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24-C<br>Motor Oil C24-C<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:                                                                   | EB-35(D)-5.5<br>SAMPLE<br>196066-005<br>Lyte<br>C36<br>Dgate<br>EB-35(D)-9.5<br>SAMPLE<br>196066-006       | NI<br>NT<br>79<br>79               | <b>I.imits</b> 40-127         8         38         8         10         H         10         H         40-127 | 1.<br>5.<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br><b>RI.</b><br>9.<br>50<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:    | 0<br>10.00<br>07/23/07<br>EPA 3630C<br>9<br>1.000<br>07/23/07                    |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surre<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24-C<br>Motor Oil C24-C<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24-C<br>Surre<br>Hexacosane | EB-35(D)-5.5<br>SAMPLE<br>196066-005<br>Lyte<br>C36<br>EB-35(D)-9.5<br>SAMPLE<br>196066-006<br>Lyte        | NI<br>NT<br>79<br>79               | <b>I.imits</b> 40-127         8         38         810         H         40-127                               | 1.<br>5<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>9.<br>50<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>0. | 0<br>10.00<br>07/23/07<br>EPA 3630C<br>9<br>1.000<br>07/23/07<br>EPA 3630C<br>99 |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surre<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24-C<br>Motor Oil C24-C<br>Surre<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Anal                                                           | EB-35(D)-5.5<br>SAMPLE<br>196066-005<br>Lyte<br>C36<br>EB-35(D)-9.5<br>SAMPLE<br>196066-006<br>Lyte        | NI<br>NT<br>79<br>8REC<br>DO       | I.imits         40-127         8         38         810         H         1.imits         40-127              | 1.<br>5<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>9.<br>50<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>0. | 0<br>10.00<br>07/23/07<br>EPA 3630C<br>9<br>1.000<br>07/23/07<br>EPA 3630C       |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surre<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24-C<br>Motor Oil C24-C<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24-C<br>Surre<br>Hexacosane | EB-35(D)-5.5<br>SAMPLE<br>196066-005<br>Lyte<br>C36<br>EB-35(D)-9.5<br>SAMPLE<br>196066-006<br>Lyte<br>C36 | NI<br>NT<br>79<br>79<br>8REC<br>DO | I.imits         40-127         40-127         38 H Y         810 H         I.imits         40-127             | 1.<br>5<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>9.<br>50<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>0. | 0<br>10.00<br>07/23/07<br>EPA 3630C<br>9<br>1.000<br>07/23/07<br>EPA 3630C<br>99 |

\*= Value outside of QC limits; see narrative H= Heavier hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 1 of 3



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | т                                                                                                     | otal I                                          | Extracta                                                                     | ble Hydrocarbo                                                                                                                           | ns                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Lab #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                     |                                                 |                                                                              | Location:                                                                                                                                | Hanson Radum                                                                          |
| Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LFR Levine Fr                                                                                         | icke                                            |                                                                              | Prep:                                                                                                                                    | SHAKER TABLE                                                                          |
| Project#:<br>Matrix:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>001-09567-01</u><br>Soil                                                                           |                                                 |                                                                              | Analysis:<br>Sampled:                                                                                                                    | EPA 8015B<br>07/18/07                                                                 |
| Units:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/Kg                                                                                                 |                                                 |                                                                              | Received:                                                                                                                                | 07/19/07                                                                              |
| Basis:<br>Batch#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | as received<br>127422                                                                                 |                                                 |                                                                              | Prepared:                                                                                                                                | 07/19/07                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                       |                                                 |                                                                              |                                                                                                                                          |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                       |                                                 |                                                                              |                                                                                                                                          | 1 000                                                                                 |
| Field ID:<br>Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SS-31(A)-5.5<br>SAMPLE                                                                                |                                                 |                                                                              | Diln Fac:<br>Analyzed:                                                                                                                   | 1.000<br>07/24/07                                                                     |
| Lab ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 196066-007                                                                                            |                                                 |                                                                              | Cleanup Method:                                                                                                                          | EPA 3630C                                                                             |
| Ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lyte                                                                                                  |                                                 | Result                                                                       | RL                                                                                                                                       | <u> </u>                                                                              |
| Diesel C10-C24<br>Motor Oil C24-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 236                                                                                                   | NE                                              | )<br>5.9 H                                                                   |                                                                                                                                          | 99<br>0                                                                               |
| Surro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ogate                                                                                                 | %REC                                            | Limits                                                                       |                                                                                                                                          |                                                                                       |
| Hexacosane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                       | 77                                              | 40-127                                                                       |                                                                                                                                          |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                       |                                                 |                                                                              |                                                                                                                                          |                                                                                       |
| Field ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SS-31(A)-10.5                                                                                         |                                                 |                                                                              | Diln Fac:                                                                                                                                | 1.000                                                                                 |
| Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAMPLE                                                                                                |                                                 |                                                                              | Analyzed:                                                                                                                                | 07/24/07                                                                              |
| Lab ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 196066-008                                                                                            |                                                 |                                                                              | Cleanup Method:                                                                                                                          | EPA 3630C                                                                             |
| Ana<br>Diesel C10-C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lyte                                                                                                  |                                                 | Result                                                                       | RL                                                                                                                                       |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                       | NT                                              | )                                                                            | 1                                                                                                                                        | 0                                                                                     |
| Motor Oil C24-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 236                                                                                                   | NE<br>NE                                        |                                                                              | 1.<br>5.                                                                                                                                 |                                                                                       |
| Motor Oil C24-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C36                                                                                                   |                                                 | Limits                                                                       |                                                                                                                                          |                                                                                       |
| Motor Oil C24-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                       | NI                                              | )                                                                            |                                                                                                                                          |                                                                                       |
| Motor Oil C24-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                       | NI<br><b>%REC</b>                               | Limits                                                                       |                                                                                                                                          |                                                                                       |
| Motor Oil C24-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                       | NI<br><b>%REC</b>                               | Limits                                                                       |                                                                                                                                          | 1.000                                                                                 |
| Motor Oil C24-0<br>Surro<br>Hexacosane<br>Field ID:<br>Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SS-31(A)-15.5<br>SAMPLE                                                                               | NI<br><b>%REC</b>                               | Limits                                                                       | 5.<br>Diln Fac:<br>Analyzed:                                                                                                             | 0<br>1.000<br>07/23/07                                                                |
| Motor Oil C24-0<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SS-31(A)-15.5<br>SAMPLE<br>196066-009                                                                 | NE<br>%REC<br>100                               | <b>Limits</b><br>40-127                                                      | 5.<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:                                                                                          | 0<br>1.000<br>07/23/07                                                                |
| Motor Oil C24-0<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SS-31(A)-15.5<br>SAMPLE<br>196066-009                                                                 | NE<br>%REC<br>100                               | Limits<br>40-127<br>Result                                                   | 5.<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL                                                                                    | 0<br>1.000<br>07/23/07                                                                |
| Motor Oil C24-0<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SS-31(A)-15.5<br>SAMPLE<br>196066-009                                                                 | NE<br>%REC<br>100                               | Limits<br>40-127<br>Result                                                   | 5.<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL                                                                                    | 0<br>1.000<br>07/23/07<br>EPA 3630C<br>99                                             |
| Motor Oil C24-0<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0<br>Surro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SS-31(A)-15.5<br>SAMPLE<br>196066-009                                                                 | NI<br>%REC<br>100<br>NI<br>NI<br>%REC           | Limits<br>40-127<br>Result                                                   | 5.<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>0.                                                                              | 0<br>1.000<br>07/23/07<br>EPA 3630C<br>99                                             |
| Motor Oil C24-0<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SS-31(A)-15.5<br>SAMPLE<br>196066-009                                                                 | NE<br>%REC<br>100<br>NE<br>NE                   | Limits<br>40-127<br>Result                                                   | 5.<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>0.                                                                              | 0<br>1.000<br>07/23/07<br>EPA 3630C<br>99                                             |
| Motor Oil C24-0<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0<br>Surro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SS-31(A)-15.5<br>SAMPLE<br>196066-009                                                                 | NI<br>%REC<br>100<br>NI<br>NI<br>%REC           | Limits<br>40-127<br>Result                                                   | 5.<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>0.                                                                              | 0<br>1.000<br>07/23/07<br>EPA 3630C<br>99                                             |
| Motor Oil C24-0<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0<br>Hexacosane<br>Field ID:<br>Field ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SS-31(A)-15.5<br>SAMPLE<br>196066-009<br>Lyte<br>C36<br>SS-31(A)-20.5                                 | NI<br>%REC<br>100<br>NI<br>NI<br>%REC           | Limits<br>40-127<br>Result                                                   | 5.<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br>RL<br>0.<br>5.<br>Diln Fac:                                                           | 0<br>1.000<br>07/23/07<br>EPA 3630C<br>99<br>0<br>1.000                               |
| Motor Oil C24-0<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24-0<br>Motor Oil C24-0<br>Field ID:<br>Field ID:<br>Type:<br>Field ID:<br>Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SS-31(A)-15.5<br>SAMPLE<br>196066-009<br>Lyte<br>236<br>Dgate                                         | NI<br>%REC<br>100<br>NI<br>NI<br>%REC           | Limits<br>40-127<br>Result                                                   | 5.<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br><b>RL</b><br>0.<br>5.<br>Diln Fac:<br>Analyzed:                                       | 0<br>1.000<br>07/23/07<br>EPA 3630C<br>99<br>0<br>1.000<br>07/24/07                   |
| Motor Oil C24-0<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Ana:<br>Diesel C10-C24<br>Motor Oil C24-0<br>Evacosane<br>Field ID:<br>Type:<br>Lab ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SS-31(A)-15.5<br>SAMPLE<br>196066-009<br>Lyte<br>C36<br>SS-31(A)-20.5<br>SAMPLE<br>196066-010         | NI<br>%REC<br>100<br>NI<br>NI<br>8REC<br>94     | Limits         40-127         Result         D         Limits         40-127 | 5.<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br><b>RL</b><br>0.<br>5.<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:                    | 0<br>1.000<br>07/23/07<br>EPA 3630C<br>99<br>0<br>1.000<br>07/24/07                   |
| Motor Oil C24-0<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24-0<br>Motor Oil C24-0<br>Field ID:<br>Type:<br>Lab ID:<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SS-31(A)-15.5<br>SAMPLE<br>196066-009<br>Lyte<br>C36<br>SS-31(A)-20.5<br>SAMPLE<br>196066-010<br>Lyte | NI<br>%REC<br>100<br>NI<br>NI<br>%REC<br>94     | Limits<br>40-127<br>Result<br>D<br>Limits<br>40-127<br>Result                | 5.<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br><b>RL</b><br>0.<br>5.<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br><b>RL</b><br>1. | 0<br>1.000<br>07/23/07<br>EPA 3630C<br>99<br>0<br>1.000<br>07/24/07<br>EPA 3630C<br>0 |
| Motor Oil C24-0<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Ana:<br>Diesel C10-C24<br>Motor Oil C24-0<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>Ana:<br>An | SS-31(A)-15.5<br>SAMPLE<br>196066-009<br>Lyte<br>C36<br>SS-31(A)-20.5<br>SAMPLE<br>196066-010<br>Lyte | NI<br>%REC<br>100<br>NI<br>NI<br>8<br>REC<br>94 | Limits<br>40-127<br>Result<br>D<br>Limits<br>40-127<br>Result                | 5.<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br><b>RL</b><br>0.<br>5.<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br><b>RL</b>       | 0<br>1.000<br>07/23/07<br>EPA 3630C<br>99<br>0<br>1.000<br>07/24/07<br>EPA 3630C<br>0 |
| Motor Oil C24-0<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24-0<br>Motor Oil C24-0<br>Field ID:<br>Type:<br>Lab ID:<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SS-31(A)-15.5<br>SAMPLE<br>196066-009<br>Lyte<br>C36<br>SS-31(A)-20.5<br>SAMPLE<br>196066-010<br>Lyte | NI<br>%REC<br>100<br>NI<br>NI<br>%REC<br>94     | Limits<br>40-127<br>Result<br>Limits<br>40-127<br>Result                     | 5.<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br><b>RL</b><br>0.<br>5.<br>Diln Fac:<br>Analyzed:<br>Cleanup Method:<br><b>RL</b><br>1. | 0<br>1.000<br>07/23/07<br>EPA 3630C<br>99<br>0<br>1.000<br>07/24/07<br>EPA 3630C<br>0 |

\*= Value outside of QC limits; see narrative H= Heavier hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard DO= Diluted Out

ND= Not Detected

RL= Reporting Limit

Page 2 of 3



|                                        | Т                                       | otal E             | xtracta                 | ble Hydrocarbo                            | ns                                        |
|----------------------------------------|-----------------------------------------|--------------------|-------------------------|-------------------------------------------|-------------------------------------------|
| Lab #:<br>Client:<br>Project#:         | 196066<br>LFR Levine Fr<br>001-09567-01 | icke               |                         | Location:<br>Prep:<br>Analysis:           | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B |
| Matrix:<br>Units:<br>Basis:<br>Batch#: | Soil<br>mg/Kg<br>as received<br>127422  |                    |                         | Sampled:<br>Received:<br>Prepared:        | 07/18/07<br>07/19/07<br>07/19/07          |
| Field ID:<br>Type:<br>Lab ID:          | SS-31(A)-25.5<br>SAMPLE<br>196066-011   |                    |                         | Diln Fac:<br>Analyzed:<br>Cleanup Method: | 1.000<br>07/24/07<br>EPA 3630C            |
| Anal                                   | yte                                     |                    | Result                  | RL                                        | 0                                         |
| Diesel C10-C24<br>Motor Oil C24-C      | 36                                      | ND<br>ND           |                         | 1.<br>5.                                  |                                           |
|                                        |                                         | 0.550              | -                       |                                           | -                                         |
| Surro<br>Hexacosane                    | gate                                    | <b>%REC</b><br>87  | Limits<br>40-127        |                                           |                                           |
| Field ID:<br>Type:<br>Lab ID:          | SS-31(A)-30.5<br>SAMPLE<br>196066-012   |                    |                         | Diln Fac:<br>Analyzed:<br>Cleanup Method: | 1.000<br>07/24/07<br>EPA 3630C            |
| Anal<br>Diesel C10-C24                 | yte                                     | ND                 | Result                  | RL                                        | 99                                        |
| Motor Oil C24-C                        | 36                                      | ND<br>ND           |                         | 5.                                        |                                           |
| Surro<br>Hexacosane                    | gate                                    | <b>%REC</b><br>70  | <b>Limits</b><br>40-127 |                                           |                                           |
| Type:<br>Lab ID:<br>Diln Fac:          | BLANK<br>QC397041<br>1.000              |                    |                         | Analyzed:<br>Cleanup Method:              | 07/22/07<br>EPA 3630C                     |
| Anal                                   | yte                                     |                    | Result                  | RL                                        |                                           |
| Diesel C10-C24<br>Motor Oil C24-C      | 36                                      | ND<br>ND           |                         | 0.<br>5.                                  | 99<br>0                                   |
| Surro<br>Hexacosane                    |                                         | % <b>REC</b><br>81 | <b>Limits</b><br>40-127 |                                           |                                           |

\*= Value outside of QC limits; see narrative H= Heavier hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 3 of 3

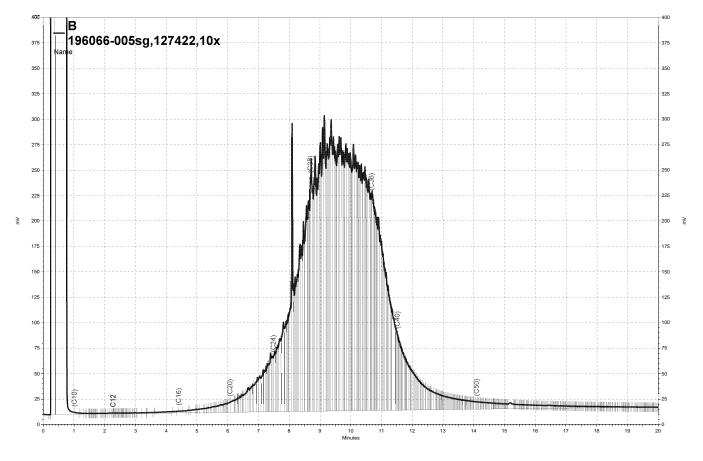


| Total Extractable Hydrocarbons |                   |           |              |  |  |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|--|--|
| Lab #:                         | 196066            | Location: | Hanson Radum |  |  |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | SHAKER TABLE |  |  |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |  |  |
| Туре:                          | LCS               | Diln Fac: | 1.000        |  |  |  |  |
| Lab ID:                        | QC397042          | Batch#:   | 127422       |  |  |  |  |
| Matrix:                        | Soil              | Prepared: | 07/19/07     |  |  |  |  |
| Units:                         | mg/Kg             | Analyzed: | 07/23/07     |  |  |  |  |
| Basis:                         | as received       |           |              |  |  |  |  |

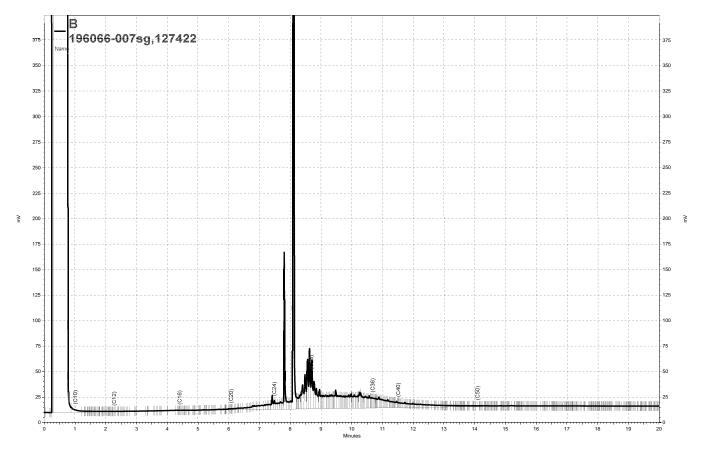
Cleanup Method: EPA 3630C

Hexacosane

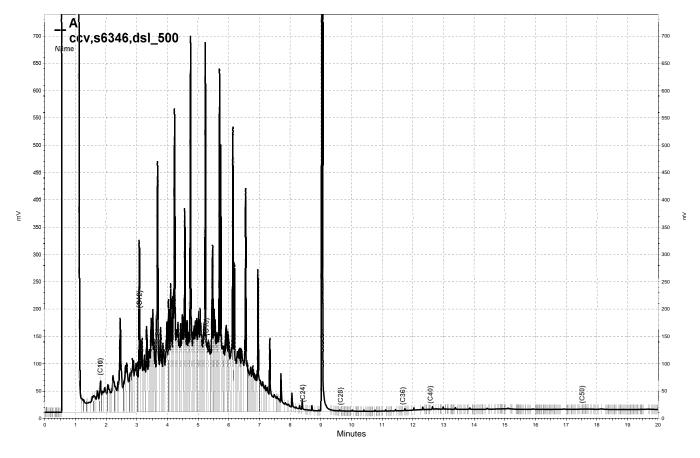
| Analyte        | Spiked      | Result | %REC | Limits |
|----------------|-------------|--------|------|--------|
| Diesel C10-C24 | 49.78       | 34.08  | 68   | 58-127 |
|                |             |        |      |        |
| Surrogate      | %REC Limits |        |      |        |


40-127

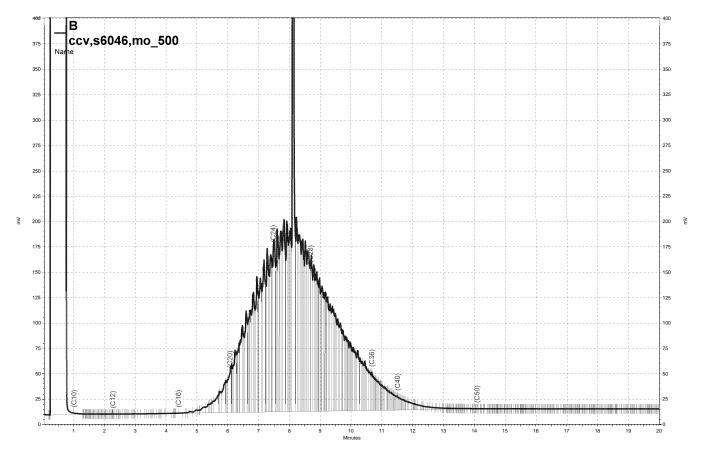
63




|                           |                 | Total 1      | Extracta                | ble Hydrocarbo                         | ns                              |      |        |
|---------------------------|-----------------|--------------|-------------------------|----------------------------------------|---------------------------------|------|--------|
| Lab #:                    | 196066          |              |                         | Location:                              | Hanson Radum                    |      |        |
| Client:                   | LFR Levine H    | ricke        |                         | Prep:                                  | SHAKER TABLE                    |      |        |
| Project#:                 | 001-09567-01    | -            |                         | Analysis:                              | EPA 8015B                       |      |        |
| Field ID:                 | ZZZZZZZZZZ      |              |                         | Diln Fac:                              | 1.000                           |      |        |
| MSS Lab ID:               | 195992-006      |              |                         | Batch#:                                | 127422                          |      |        |
| Matrix:                   | Miscell.        |              |                         | Sampled:                               | 07/13/07                        |      |        |
| Units:                    | mg/Kg           |              |                         | Received:                              | 07/16/07                        |      |        |
| Basis:                    | as received     |              |                         | Prepared:                              | 07/19/07                        |      |        |
| Type:<br>Lab ID:<br>Analy | MS<br>QC397043  | MSS Res      | 211]+                   | Analyzed:<br>Cleanup Method:<br>Spiked | 07/22/07<br>EPA 3630C<br>Result | %REC | Limits |
| Diesel C10-C24            | -               |              | 5.33                    | 49.94                                  | 124.9                           | 139  | 29-147 |
|                           | rogate          | % <b>REC</b> | <b>Limits</b><br>40-127 |                                        |                                 |      |        |
| Type:<br>Lab ID:          | MSD<br>QC397044 |              |                         | Analyzed:<br>Cleanup Method:           | 07/23/07<br>EPA 3630C           |      |        |


|      | Spiked | Result      | %REC                       | Limits                         | RPD                                   | T.im                                    |
|------|--------|-------------|----------------------------|--------------------------------|---------------------------------------|-----------------------------------------|
|      | 49.89  | 119.1       | 128                        | 29-147                         | 5                                     | 46                                      |
| %DEC | Timita |             |                            |                                |                                       |                                         |
|      |        |             |                            |                                |                                       |                                         |
|      |        | %REC Limits | 49.89 119.1<br>%REC Limits | 49.89 119.1 128<br>%REC Limits | 49.89 119.1 128 29-147<br>%REC Limits | 49.89 119.1 128 29-147 5<br>%REC Limits |




\Lims\gdrive\ezchrom\Projects\GC14B\Data\203b048, B



\Lims\gdrive\ezchrom\Projects\GC14B\Data\203b070, B



\\Lims\gdrive\ezchrom\Projects\GC17A\Data\203a004, A



\\Lims\gdrive\ezchrom\Projects\GC14B\Data\203b005, B



|                                                                                                                                 | Gasoline | by GC/MS                                      |                                            |
|---------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------|--------------------------------------------|
| Lab #: 196066<br>Client: LFR Levine Frick<br>Project#: 001-09567-01                                                             | e        | Location:<br>Prep:<br>Analysis:               | Hanson Radum<br>EPA 5030B<br>EPA 8260B     |
| Field ID:         B-1(A)-GGW           Lab ID:         196066-001           Matrix:         Water           Units:         uq/L |          | Batch#:<br>Sampled:<br>Received:<br>Analyzed: | 127360<br>07/18/07<br>07/19/07<br>07/18/07 |
| Diln Fac: 1,000                                                                                                                 |          | Allaryzeu:                                    | 07710707                                   |
| Analyte                                                                                                                         | Result   |                                               | RI,                                        |
| Gasoline C7-C12                                                                                                                 | ND       |                                               | 50                                         |
| tert-Butyl Alcohol (TBA)<br>Freon 12                                                                                            | ND<br>ND |                                               | 10<br>1.0                                  |
| Chloromethane                                                                                                                   | ND       |                                               | 1.0                                        |
| Vinyl Chloride<br>Isopropyl Ether (DIPE)                                                                                        | ND<br>ND |                                               | 0.5<br>0.5                                 |
| Bromomethane                                                                                                                    | ND       |                                               | 1.0                                        |
| Ethyl tert-Butyl Ether (ETBE)<br>Methyl tert-Amyl Ether (TAME)                                                                  | ND<br>ND |                                               | 0.5<br>0.5                                 |
| Chloroethane                                                                                                                    | ND       |                                               | 1.0                                        |
| Trichlorofluoromethane<br>Acetone                                                                                               | ND<br>10 |                                               | 1.0<br>10                                  |
| Freon 113                                                                                                                       | ND       |                                               | 0.5                                        |
| 1,1-Dichloroethene                                                                                                              | ND       |                                               | 0.5                                        |
| Methylene Chloride<br>Carbon Disulfide                                                                                          | ND<br>ND |                                               | 10<br>0.5                                  |
| MTBE                                                                                                                            | ND       |                                               | 0.5                                        |
| trans-1,2-Dichloroethene<br>Vinyl Acetate                                                                                       | ND<br>ND |                                               | 0.5<br>10                                  |
| 1,1-Dichloroethane                                                                                                              | ND       |                                               | 0.5                                        |
| 2-Butanone<br>cis-1,2-Dichloroethene                                                                                            | ND<br>ND |                                               | 10<br>0.5                                  |
| 2,2-Dichloropropane                                                                                                             | ND       |                                               | 0.5                                        |
| Chloroform<br>Bromochloromethane                                                                                                | ND<br>ND |                                               | 0.5<br>0.5                                 |
| 1,1,1-Trichloroethane                                                                                                           | ND       |                                               | 0.5                                        |
| 1,1-Dichloropropene<br>Carbon Tetrachloride                                                                                     | ND<br>ND |                                               | 0.5<br>0.5                                 |
| 1,2-Dichloroethane                                                                                                              | ND       |                                               | 0.5                                        |
| Benzene<br>Trichloroethene                                                                                                      | ND<br>ND |                                               | 0.5<br>0.5                                 |
| 1,2-Dichloropropane                                                                                                             | ND       |                                               | 0.5                                        |
| Bromodichloromethane<br>Dibromomethane                                                                                          | ND<br>ND |                                               | 0.5<br>0.5                                 |
| 4-Methyl-2-Pentanone                                                                                                            | ND       |                                               | 10                                         |
| cis-1,3-Dichloropropene<br>Toluene                                                                                              | ND<br>ND |                                               | 0.5<br>0.5                                 |
| trans-1,3-Dichloropropene                                                                                                       | ND       |                                               | 0.5                                        |
| 1,1,2-Trichloroethane<br>2-Hexanone                                                                                             | ND<br>ND |                                               | 0.5<br>10                                  |
| 1,3-Dichloropropane                                                                                                             | ND       |                                               | 0.5                                        |
| Tetrachloroethene<br>Dibromochloromethane                                                                                       | ND<br>ND |                                               | 0.5<br>0.5                                 |
| 1,2-Dibromoethane                                                                                                               | ND<br>ND |                                               | 0.5                                        |
| Chlorobenzene<br>1,1,1,2-Tetrachloroethane                                                                                      | ND<br>ND |                                               | 0.5<br>0.5                                 |
| Ethylbenzene                                                                                                                    | ND<br>ND |                                               | 0.5                                        |
| m,p-Xylenes                                                                                                                     | ND       |                                               | 0.5                                        |
| o-Xylène<br>Styrene                                                                                                             | ND<br>ND |                                               | 0.5<br>0.5                                 |
| Bromoform                                                                                                                       | ND       |                                               | 1.0                                        |
| Isopropylbenzene<br>1,1,2,2-Tetrachloroethane                                                                                   | ND<br>ND |                                               | 0.5<br>0.5                                 |
| 1,2,3-Trichloropropane                                                                                                          | ND       |                                               | 0.5                                        |

ND= Not Detected RL= Reporting Limit Page 1 of 2

Г



|                                             | Gasoline   | by GC/MS  |              |
|---------------------------------------------|------------|-----------|--------------|
| Lab #: 196066                               |            | Location: | Hanson Radum |
| Client: LFR Levine Frick                    | ce         | Prep:     | EPA 5030B    |
| Project#: 001-09567-01                      |            | Analysis: | EPA 8260B    |
| Field ID: B-1(A)-GGW                        |            | Batch#:   | 127360       |
| Lab ID: 196066-001                          |            | Sampled:  | 07/18/07     |
| Matrix: Water                               |            | Received: | 07/19/07     |
| Units: ug/L                                 |            | Analyzed: | 07/18/07     |
| Diln Fac: 1.000                             |            |           |              |
|                                             |            |           |              |
| Analyte                                     | Result     |           | RL           |
| Propylbenzene                               | ND         |           | 0.5          |
| Bromobenzene                                | ND         |           | 0.5          |
| 1,3,5-Trimethylbenzene                      | ND         |           | 0.5          |
| 2-Chlorotoluene                             | ND         |           | 0.5          |
| 4-Chlorotoluene                             | ND         |           | 0.5<br>0.5   |
| tert-Butylbenzene<br>1,2,4-Trimethylbenzene | ND<br>ND   |           | 0.5          |
|                                             | ND<br>ND   |           | 0.5          |
| sec-Butylbenzene<br>para-Isopropyl Toluene  | ND<br>ND   |           | 0.5          |
| 1,3-Dichlorobenzene                         | ND         |           | 0.5          |
| 1,4-Dichlorobenzene                         | ND         |           | 0.5          |
| n-Butylbenzene                              | ND         |           | 0.5          |
| 1,2-Dichlorobenzene                         | ND         |           | 0.5          |
| 1,2-Dibromo-3-Chloropropane                 | ND         |           | 2.0          |
| 1,2,4-Trichlorobenzene                      | ND         |           | 0.5          |
| Hexachlorobutadiene                         | ND         |           | 0.5          |
| Naphthalene                                 | ND         |           | 2.0          |
| 1,2,3-Trichlorobenzene                      | ND         |           | 0.5          |
|                                             |            |           | •••          |
|                                             | REC Limits |           |              |
| Dibromofluoromethane 96                     |            |           |              |
| 1,2-Dichloroethane-d4 94                    |            |           |              |
| Toluene-d8 99                               |            |           |              |
| Bromofluorobenzene 98                       | 8 80-122   |           |              |



|                                       | Gasoline by GC/MS                           |                                   |                                        |  |  |
|---------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|--|--|
| Lab #:<br>Client:<br>Project#:        | 196066<br>LFR Levine Fricke<br>001-09567-01 | Location:<br>Prep:<br>Analysis:   | Hanson Radum<br>EPA 5030B<br>EPA 8260B |  |  |
| Type:<br>Lab ID:<br>Matrix:<br>Units: | BLANK<br>QC396744<br>Water<br>ug/L          | Diln Fac:<br>Batch#:<br>Analyzed: | 1.000<br>127360<br>07/18/07            |  |  |

| Analyte                       | Result   | RL  |
|-------------------------------|----------|-----|
| Gasoline C7-C12               | ND       | 50  |
| Freon 12                      | ND       | 1.0 |
| tert-Butyl Alcohol (TBA)      | ND       | 10  |
| Chloromethane                 | ND       | 1.0 |
| Isopropyl Ether (DIPE)        | ND       | 0.5 |
| Vinyl Chloride                | ND       | 0.5 |
|                               | ND       | 1.0 |
| Bromomethane                  | ND       | 0.5 |
| Ethyl tert-Butyl Ether (ETBE) |          |     |
| Chloroethane                  | ND       | 1.0 |
| Methyl tert-Amyl Ether (TAME) | ND       | 0.5 |
| Trichlorofluoromethane        | ND       | 1.0 |
| Acetone                       | ND       | 10  |
| Freon 113                     | ND       | 0.5 |
| 1,1-Dichloroethene            | ND       | 0.5 |
| Methylene Chloride            | ND       | 10  |
| Carbon Disulfide              | ND       | 0.5 |
| MTBE                          | ND       | 0.5 |
| trans-1,2-Dichloroethene      | ND       | 0.5 |
| Vinyl Acetate                 | ND       | 10  |
| 1,1-Dichloroethane            | ND       | 0.5 |
| 2-Butanone                    | ND       | 10  |
| cis-1,2-Dichloroethene        | ND       | 0.5 |
| 2,2-Dichloropropane           | ND       | 0.5 |
| Chloroform                    | ND       | 0.5 |
| Bromochloromethane            | ND       | 0.5 |
| 1,1,1-Trichloroethane         | ND       | 0.5 |
| 1,1-Dichloropropene           | ND       | 0.5 |
| Carbon Tetrachloride          | ND       | 0.5 |
| 1,2-Dichloroethane            | ND       | 0.5 |
| Benzene                       | ND       | 0.5 |
| Trichloroethene               | ND       | 0.5 |
| 1,2-Dichloropropane           | ND       | 0.5 |
| Bromodichloromethane          | ND       | 0.5 |
| Dibromomethane                | ND       | 0.5 |
|                               |          | 10  |
| 4-Methyl-2-Pentanone          | ND<br>ND | 0.5 |
| cis-1,3-Dichloropropene       |          |     |
| Toluene                       | ND       | 0.5 |
| trans-1,3-Dichloropropene     | ND       | 0.5 |
| 1,1,2-Trichloroethane         | ND       | 0.5 |
| 2-Hexanone                    | ND       | 10  |
| 1,3-Dichloropropane           | ND       | 0.5 |
| Tetrachloroethene             | ND       | 0.5 |
| Dibromochloromethane          | ND       | 0.5 |
| 1,2-Dibromoethane             | ND       | 0.5 |
| Chlorobenzene                 | ND       | 0.5 |
| 1,1,1,2-Tetrachloroethane     | ND       | 0.5 |
| Ethylbenzene                  | ND       | 0.5 |
| m,p-Xylenes                   | ND       | 0.5 |
| o-Xylene                      | ND       | 0.5 |
| Styrene                       | ND       | 0.5 |
| Bromoform                     | ND       | 1.0 |
| Isopropylbenzene              | ND       | 0.5 |
| 1,1,2,2-Tetrachloroethane     | ND       | 0.5 |
| 1,2,3-Trichloropropane        | ND       | 0.5 |
| 1,2,5-111010Propane           | ЧИ       | 0.5 |

ND= Not Detected RL= Reporting Limit

Page 1 of 2



| Gasoline by GC/MS                     |                                             |                                   |                                        |  |  |  |  |
|---------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|--|--|--|--|
| Lab #:<br>Client:<br>Project#:        | 196066<br>LFR Levine Fricke<br>001-09567-01 | Location:<br>Prep:<br>Analysis:   | Hanson Radum<br>EPA 5030B<br>EPA 8260B |  |  |  |  |
| Type:<br>Lab ID:<br>Matrix:<br>Units: | BLANK<br>QC396744<br>Water<br>ug/L          | Diln Fac:<br>Batch#:<br>Analyzed: | 1.000<br>127360<br>07/18/07            |  |  |  |  |

| Analyte                     | Re   | esult  | RL  |  |
|-----------------------------|------|--------|-----|--|
| Propylbenzene               | ND   |        | 0.5 |  |
| Bromobenzene                | ND   |        | 0.5 |  |
| 1,3,5-Trimethylbenzene      | ND   |        | 0.5 |  |
| 2-Chlorotoluene             | ND   |        | 0.5 |  |
| 4-Chlorotoluene             | ND   |        | 0.5 |  |
| tert-Butylbenzene           | ND   |        | 0.5 |  |
| 1,2,4-Trimethylbenzene      | ND   |        | 0.5 |  |
| sec-Butylbenzene            | ND   |        | 0.5 |  |
| para-Isopropyl Toluene      | ND   |        | 0.5 |  |
| 1,3-Dichlorobenzene         | ND   |        | 0.5 |  |
| 1,4-Dichlorobenzene         | ND   |        | 0.5 |  |
| n-Butylbenzene              | ND   |        | 0.5 |  |
| 1,2-Dichlorobenzene         | ND   |        | 0.5 |  |
| 1,2-Dibromo-3-Chloropropane | ND   |        | 2.0 |  |
| 1,2,4-Trichlorobenzene      | ND   |        | 0.5 |  |
| Hexachlorobutadiene         | ND   |        | 0.5 |  |
| Naphthalene                 | ND   |        | 2.0 |  |
| 1,2,3-Trichlorobenzene      | ND   |        | 0.5 |  |
|                             |      |        |     |  |
| Surrogate                   |      | limits |     |  |
| Dibromofluoromethane        |      | 30-123 |     |  |
| 1,2-Dichloroethane-d4       |      | /9-134 |     |  |
| Toluene-d8                  |      | 80-120 |     |  |
| Bromofluorobenzene          | 98 8 | 80-122 |     |  |



|                                | Gaso                                        | line by GC/MS                   |                                        |  |
|--------------------------------|---------------------------------------------|---------------------------------|----------------------------------------|--|
| Lab #:<br>Client:<br>Project#: | 196066<br>LFR Levine Fricke<br>001-09567-01 | Location:<br>Prep:<br>Analysis: | Hanson Radum<br>EPA 5030B<br>EPA 8260B |  |
| Matrix:<br>Units:<br>Diln Fac: | Water<br>ug/L<br>1.000                      | Batch#:<br>Analyzed:            | 127360<br>07/18/07                     |  |

| Type: BS                     |      |        | Lab ID: | QC     | 396745 |        |  |
|------------------------------|------|--------|---------|--------|--------|--------|--|
| Analyte                      |      | Spiked |         | Result | %REC   | Limits |  |
| tert-Butyl Alcohol (TBA)     |      | 125.0  |         | 137.5  | 110    | 68-132 |  |
| Isopropyl Ether (DIPE)       |      | 25.00  |         | 25.20  | 101    | 65-120 |  |
| Ethyl tert-Butyl Ether (ETB) | Ε)   | 25.00  |         | 28.31  | 113    | 75-124 |  |
| Methyl tert-Amyl Ether (TAM) | ΞĴ   | 25.00  |         | 29.88  | 120    | 77-120 |  |
| 1,1-Dichloroethene           |      | 25.00  |         | 29.27  | 117    | 80-132 |  |
| Benzene                      |      | 25.00  |         | 27.35  | 109    | 80-120 |  |
| Trichloroethene              |      | 25.00  |         | 25.55  | 102    | 80-120 |  |
| Toluene                      |      | 25.00  |         | 28.26  | 113    | 80-120 |  |
| Chlorobenzene                |      | 25.00  |         | 26.81  | 107    | 80-120 |  |
| Surrogate                    | %REC | Limits |         |        |        |        |  |
| Dibromofluoromethane         | 98   | 80-123 |         |        |        |        |  |
| 1,2-Dichloroethane-d4        | 96   | 79-134 |         |        |        |        |  |

| Dibromofluoromethane  | 98 | 80-123 |
|-----------------------|----|--------|
| 1,2-Dichloroethane-d4 | 96 | 79-134 |
| Toluene-d8            | 99 | 80-120 |
| Bromofluorobenzene    | 98 | 80-122 |
|                       |    |        |

| Type: BSD                             |           |          | Lab ID: | QC39   | 6746 |        |     |     |
|---------------------------------------|-----------|----------|---------|--------|------|--------|-----|-----|
| Analyte                               |           | Spiked   |         | Result | %REC | Limits | RPD | Lim |
| tert-Butyl Alcohol (TBA)              |           | 125.0    |         | 125.1  | 100  | 68-132 | 9   | 20  |
| Isopropyl Ether (DIPE)                |           | 25.00    |         | 23.70  | 95   | 65-120 | 6   | 20  |
| Ethyl tert-Butyl Ether (ETBE          | :)        | 25.00    |         | 26.28  | 105  | 75-124 | 7   | 20  |
| Methyl tert-Amyl Ether (TAME          | :)        | 25.00    |         | 27.41  | 110  | 77-120 | 9   | 20  |
| 1,1-Dichloroethene                    |           | 25.00    |         | 27.31  | 109  | 80-132 | 7   | 20  |
| Benzene                               |           | 25.00    |         | 25.83  | 103  | 80-120 | 6   | 20  |
| Trichloroethene                       |           | 25.00    |         | 23.96  | 96   | 80-120 | 6   | 20  |
| Toluene                               |           | 25.00    |         | 26.39  | 106  | 80-120 | 7   | 20  |
| Chlorobenzene                         |           | 25.00    |         | 25.47  | 102  | 80-120 | 5   | 20  |
| · · · · · · · · · · · · · · · · · · · | ^ <b></b> | <u> </u> |         |        |      |        |     |     |
| Surrogate                             | %REC      | Limits   |         |        |      |        |     |     |
| Dibromofluoromethane                  | 97        | 80-123   |         |        |      |        |     |     |
| 1,2-Dichloroethane-d4                 | 97        | 79-134   |         |        |      |        |     |     |
| Toluene-d8                            | 100       | 80-120   |         |        |      |        |     |     |
| Bromofluorobenzene                    | 96        | 80-122   |         |        |      |        |     |     |



|           | Gasc              | line by GC/MS |              |  |
|-----------|-------------------|---------------|--------------|--|
| Lab #:    | 196066            | Location:     | Hanson Radum |  |
| Client:   | LFR Levine Fricke | Prep:         | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis:     | EPA 8260B    |  |
| Matrix:   | Water             | Batch#:       | 127360       |  |
| Units:    | ug/L              | Analyzed:     | 07/18/07     |  |
| Diln Fac: | 1.000             |               |              |  |

Type:

BS

Lab ID: QC396827

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 1,500  | 1,427  | 95   | 70-130 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 96   | 80-123 |
| 1,2-Dichloroethane-d4 | 95   | 79-134 |
| Toluene-d8            | 99   | 80-120 |
| Bromofluorobenzene    | 97   | 80-122 |

| Type: BSD             |      |        | Lab ID: |        | QC396828 |        |     |     |
|-----------------------|------|--------|---------|--------|----------|--------|-----|-----|
| Analyte               |      | Spiked |         | Result | %REC     | Limits | RPD | Lim |
| Gasoline C7-C12       |      | 1,500  |         | 1,399  | 93       | 70-130 | 2   | 20  |
|                       |      |        |         |        |          |        |     |     |
| Surrogate             | %REC | Limits |         |        |          |        |     |     |
| Dibromofluoromethane  | 97   | 80-123 |         |        |          |        |     |     |
| 1,2-Dichloroethane-d4 | 97   | 79-134 |         |        |          |        |     |     |
| Toluene-d8            | 98   | 80-120 |         |        |          |        |     |     |
| Bromofluorobenzene    | 96   | 80-122 |         |        |          |        |     |     |



|                      | Gasoline                          | by GC/MS           |                        |
|----------------------|-----------------------------------|--------------------|------------------------|
| Lab #:               | 196066                            | Location:          | Hanson Radum           |
| Client:<br>Project#: | LFR Levine Fricke<br>001-09567-01 | Prep:<br>Analysis: | EPA 5030B<br>EPA 8260B |
| Field ID:            | ZZZZZZZZZZ                        | Batch#:            | 127360                 |
| MSS Lab ID:          | 196040-002                        | Sampled:           | 07/17/07               |
| Matrix:              | Water                             | Received:          | 07/17/07               |
| Units:               | ug/L                              | Analyzed:          | 07/19/07               |
| Diln Fac:            | 1.000                             |                    |                        |

| Type:       | MS                 |      |          | Lab ID: | QC396910 |      |        |
|-------------|--------------------|------|----------|---------|----------|------|--------|
|             | Analyte            | MSS  | Result   | Spiked  | Result   | %REC | Limits |
| tert-Butyl  | Alcohol (TBA)      |      | <1.579   | 125.0   | 124.4    | 99   | 69-137 |
| Isopropyl E | Cther (DIPE)       |      | <0.04032 | 25.00   | 25.43    | 102  | 69-120 |
|             | Butyl Ether (ETBE) |      | <0.07412 | 25.00   | 27.36    | 109  | 78-127 |
| Methyl tert | -Amyl Ether (TAME) |      | <0.04870 | 25.00   | 28.79    | 115  | 79-120 |
| 1,1-Dichlor | roethene           |      | <0.09386 | 25.00   | 27.83    | 111  | 80-139 |
| Benzene     |                    |      | <0.2500  | 25.00   | 26.96    | 108  | 80-123 |
| Trichloroet | hene               |      | <0.1151  | 25.00   | 25.03    | 100  | 75-129 |
| Toluene     |                    |      | <0.1338  | 25.00   | 27.15    | 109  | 80-122 |
| Chlorobenze | ene                |      | <0.1569  | 25.00   | 26.43    | 106  | 80-120 |
|             |                    |      |          |         |          |      |        |
|             | Surrogate          | %REC | Limits   |         |          |      |        |
| Dibromofluc | promethane         | 99   | 80-123   |         |          |      |        |
| 1,2-Dichlor | roethane-d4        | 100  | 79-134   |         |          |      |        |
| Toluene-d8  |                    | 100  | 80-120   |         |          |      |        |
| Bromofluorc | obenzene           | 97   | 80-122   |         |          |      |        |

| Type: MSD                     |      |        | Lab ID: | QC39   | 6911 |        |     |     |
|-------------------------------|------|--------|---------|--------|------|--------|-----|-----|
| Analyte                       |      | Spiked |         | Result | %REC | Limits | RPD | Lim |
| tert-Butyl Alcohol (TBA)      |      | 125.0  |         | 123.8  | 99   | 69-137 | 0   | 20  |
| Isopropyl Ether (DIPE)        |      | 25.00  |         | 24.50  | 98   | 69-120 | 4   | 20  |
| Ethyl tert-Butyl Ether (ETBE) |      | 25.00  |         | 26.41  | 106  | 78-127 | 4   | 20  |
| Methyl tert-Amyl Ether (TAME) |      | 25.00  |         | 27.83  | 111  | 79-120 | 3   | 20  |
| 1,1-Dichloroethene            |      | 25.00  |         | 26.78  | 107  | 80-139 | 4   | 20  |
| Benzene                       |      | 25.00  |         | 26.47  | 106  | 80-123 | 2   | 20  |
| Trichloroethene               |      | 25.00  |         | 24.48  | 98   | 75-129 | 2   | 20  |
| Toluene                       |      | 25.00  |         | 26.57  | 106  | 80-122 | 2   | 20  |
| Chlorobenzene                 |      | 25.00  |         | 26.07  | 104  | 80-120 | 1   | 20  |
| Surrogate                     | %REC | Limits |         |        |      |        |     |     |
| Dibromofluoromethane          | 99   | 80-123 |         |        |      |        |     |     |
| 1,2-Dichloroethane-d4         | 97   | 79-134 |         |        |      |        |     |     |
| Toluene-d8                    | 98   | 80-120 |         |        |      |        |     |     |
| Bromofluorobenzene            | 98   | 80-122 |         |        |      |        |     |     |



#### BTXE & Oxygenates Hanson Radum Lab #: 196066 Location: Client: LFR Levine Fricke Prep: EPA 5030B Project#: 001-09567-01 Analysis: EPA 8260B SS-31(A)-5.5 Field ID: Diln Fac: 0.9804 Lab ID: 196066-007 Batch#: 127415 07/18/07 Matrix: Soil Sampled: Units: ug/Kg Received: 07/19/07 Analyzed: Basis: as received 07/19/07

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 98  |  |
| MTBE                          | ND     | 4.9 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.9 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.9 |  |
| 1,2-Dichloroethane            | ND     | 4.9 |  |
| Benzene                       | ND     | 4.9 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.9 |  |
| Toluene                       | ND     | 4.9 |  |
| 1,2-Dibromoethane             | ND     | 4.9 |  |
| Ethylbenzene                  | ND     | 4.9 |  |
| m,p-Xylenes                   | ND     | 4.9 |  |
| o-Xylene                      | ND     | 4.9 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 101  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 103  | 76-135 |  |
| Toluene-d8            | 97   | 80-120 |  |
| Bromofluorobenzene    | 101  | 80-126 |  |



#### BTXE & Oxygenates Lab #: Hanson Radum 196066 Location: Client: LFR Levine Fricke Prep: EPA 5030B Project#: 001-09567-01 Analysis: EPA 8260B SS-31(A)-10.5 Field ID: Diln Fac: 0.9434 Lab ID: 196066-008 Batch#: 127415 Matrix: Soil Sampled: 07/18/07 Units: ug/Kg Received: 07/19/07 Analyzed: Basis: as received 07/19/07

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 94  |  |
| MTBE                          | ND     | 4.7 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.7 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.7 |  |
| 1,2-Dichloroethane            | ND     | 4.7 |  |
| Benzene                       | ND     | 4.7 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.7 |  |
| Toluene                       | ND     | 4.7 |  |
| 1,2-Dibromoethane             | ND     | 4.7 |  |
| Ethylbenzene                  | ND     | 4.7 |  |
| m,p-Xylenes                   | ND     | 4.7 |  |
| o-Xylene                      | ND     | 4.7 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 106  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 110  | 76-135 |  |
| Toluene-d8            | 99   | 80-120 |  |
| Bromofluorobenzene    | 100  | 80-126 |  |



#### BTXE & Oxygenates Lab #: Hanson Radum 196066 Location: Client: LFR Levine Fricke Prep: EPA 5030B Project#: 001-09567-01 Analysis: EPA 8260B SS-31(A)-15.5 Field ID: Diln Fac: 0.9615 Lab ID: 196066-009 Batch#: 127415 Matrix: Soil Sampled: 07/18/07 Units: ug/Kg Received: 07/19/07 Analyzed: Basis: as received 07/19/07

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 96  |  |
| MTBE                          | ND     | 4.8 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.8 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.8 |  |
| 1,2-Dichloroethane            | ND     | 4.8 |  |
| Benzene                       | ND     | 4.8 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.8 |  |
| Toluene                       | ND     | 4.8 |  |
| 1,2-Dibromoethane             | ND     | 4.8 |  |
| Ethylbenzene                  | ND     | 4.8 |  |
| m,p-Xylenes                   | ND     | 4.8 |  |
| o-Xylene                      | ND     | 4.8 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 104  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 107  | 76-135 |  |
| Toluene-d8            | 99   | 80-120 |  |
| Bromofluorobenzene    | 103  | 80-126 |  |



#### BTXE & Oxygenates Lab #: Hanson Radum 196066 Location: Client: LFR Levine Fricke Prep: EPA 5030B Project#: 001-09567-01 Analysis: EPA 8260B SS-31(A)-20.5 Field ID: Diln Fac: 0.9259 Lab ID: 196066-010 Batch#: 127415 Matrix: Soil Sampled: 07/18/07 Units: ug/Kg Received: 07/19/07 Analyzed: Basis: as received 07/19/07

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 93  |  |
| MTBE                          | ND     | 4.6 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.6 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.6 |  |
| 1,2-Dichloroethane            | ND     | 4.6 |  |
| Benzene                       | ND     | 4.6 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.6 |  |
| Toluene                       | ND     | 4.6 |  |
| 1,2-Dibromoethane             | ND     | 4.6 |  |
| Ethylbenzene                  | ND     | 4.6 |  |
| m,p-Xylenes                   | ND     | 4.6 |  |
| o-Xylene                      | ND     | 4.6 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 105  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 108  | 76-135 |  |
| Toluene-d8            | 99   | 80-120 |  |
| Bromofluorobenzene    | 102  | 80-126 |  |

ND= Not Detected RL= Reporting Limit Page 1 of 1



## BTXE & Oxygenates

| Lab #:    | 196066            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(A)-25.5     | Diln Fac: | 0.9615       |  |
| Lab ID:   | 196066-011        | Batch#:   | 127415       |  |
| Matrix:   | Soil              | Sampled:  | 07/18/07     |  |
| Units:    | ug/Kg             | Received: | 07/19/07     |  |
| Basis:    | as received       | Analyzed: | 07/19/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 96  |  |
| MTBE                          | ND     | 4.8 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.8 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.8 |  |
| 1,2-Dichloroethane            | ND     | 4.8 |  |
| Benzene                       | ND     | 4.8 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.8 |  |
| Toluene                       | ND     | 4.8 |  |
| 1,2-Dibromoethane             | ND     | 4.8 |  |
| Ethylbenzene                  | ND     | 4.8 |  |
| m,p-Xylenes                   | ND     | 4.8 |  |
| o-Xylene                      | ND     | 4.8 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 105  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 110  | 76-135 |  |
| Toluene-d8            | 99   | 80-120 |  |
| Bromofluorobenzene    | 100  | 80-126 |  |



### BTXE & Oxygenates

| Lab #:    | 196066            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(A)-30.5     | Diln Fac: | 1.000        |  |
| Lab ID:   | 196066-012        | Batch#:   | 127415       |  |
| Matrix:   | Soil              | Sampled:  | 07/18/07     |  |
| Units:    | ug/Kg             | Received: | 07/19/07     |  |
| Basis:    | as received       | Analyzed: | 07/19/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 100 |  |
| MTBE                          | ND     | 5.0 |  |
| Isopropyl Ether (DIPE)        | ND     | 5.0 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 5.0 |  |
| 1,2-Dichloroethane            | ND     | 5.0 |  |
| Benzene                       | ND     | 5.0 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 5.0 |  |
| Toluene                       | ND     | 5.0 |  |
| 1,2-Dibromoethane             | ND     | 5.0 |  |
| Ethylbenzene                  | ND     | 5.0 |  |
| m,p-Xylenes                   | ND     | 5.0 |  |
| o-Xylene                      | ND     | 5.0 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 105  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 107  | 76-135 |  |
| Toluene-d8            | 97   | 80-120 |  |
| Bromofluorobenzene    | 102  | 80-126 |  |



| BTXE & Oxygenates |                   |           |              |  |  |  |
|-------------------|-------------------|-----------|--------------|--|--|--|
| Lab #:            | 196066            | Location: | Hanson Radum |  |  |  |
| Client:           | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |  |
| Project#:         | 001-09567-01      | Analysis: | EPA 8260B    |  |  |  |
| Type:             | BLANK             | Basis:    | as received  |  |  |  |
| Lab ID:           | QC396987          | Diln Fac: | 1.000        |  |  |  |
| Matrix:           | Soil              | Batch#:   | 127415       |  |  |  |
| Units:            | ug/Kg             | Analyzed: | 07/19/07     |  |  |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 100 |  |
| MTBE                          | ND     | 5.0 |  |
| Isopropyl Ether (DIPE)        | ND     | 5.0 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 5.0 |  |
| 1,2-Dichloroethane            | ND     | 5.0 |  |
| Benzene                       | ND     | 5.0 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 5.0 |  |
| Toluene                       | ND     | 5.0 |  |
| 1,2-Dibromoethane             | ND     | 5.0 |  |
| Ethylbenzene                  | ND     | 5.0 |  |
| m,p-Xylenes                   | ND     | 5.0 |  |
| o-Xylene                      | ND     | 5.0 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 101  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 102  | 76-135 |  |
| Toluene-d8            | 98   | 80-120 |  |
| Bromofluorobenzene    | 102  | 80-126 |  |



| BTXE & Oxygenates |                   |           |              |  |  |  |
|-------------------|-------------------|-----------|--------------|--|--|--|
| Lab #:            | 196066            | Location: | Hanson Radum |  |  |  |
| Client:           | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |  |
| Project#:         | 001-09567-01      | Analysis: | EPA 8260B    |  |  |  |
| Type:             | LCS               | Basis:    | as received  |  |  |  |
| Lab ID:           | QC396988          | Diln Fac: | 1.000        |  |  |  |
| Matrix:           | Soil              | Batch#:   | 127415       |  |  |  |
| Units:            | ug/Kg             | Analyzed: | 07/19/07     |  |  |  |

| Analyte                       | Spiked | Result | %REC | Limits |
|-------------------------------|--------|--------|------|--------|
| tert-Butyl Alcohol (TBA)      | 250.0  | 242.5  | 97   | 56-130 |
| MTBE                          | 50.00  | 44.92  | 90   | 66-120 |
| Isopropyl Ether (DIPE)        | 50.00  | 41.80  | 84   | 57-120 |
| Ethyl tert-Butyl Ether (ETBE) | 50.00  | 41.66  | 83   | 68-120 |
| 1,2-Dichloroethane            | 50.00  | 51.35  | 103  | 73-120 |
| Benzene                       | 50.00  | 50.06  | 100  | 80-120 |
| Methyl tert-Amyl Ether (TAME) | 50.00  | 49.17  | 98   | 73-120 |
| Toluene                       | 50.00  | 50.57  | 101  | 80-120 |
| 1,2-Dibromoethane             | 50.00  | 51.94  | 104  | 80-120 |
| Ethylbenzene                  | 50.00  | 51.79  | 104  | 80-125 |
| m,p-Xylenes                   | 100.0  | 104.8  | 105  | 80-123 |
| o-Xylene                      | 50.00  | 52.00  | 104  | 80-122 |

| Surrogate             | %REC | Limits |  |  |
|-----------------------|------|--------|--|--|
| Dibromofluoromethane  | 100  | 78-126 |  |  |
| 1,2-Dichloroethane-d4 | 107  | 76-135 |  |  |
| Toluene-d8            | 101  | 80-120 |  |  |
| Bromofluorobenzene    | 96   | 80-126 |  |  |



|                   | B                           | IXE & Oxygenates   |                           |  |
|-------------------|-----------------------------|--------------------|---------------------------|--|
| Lab #:<br>Client: | 196066<br>LFR Levine Fricke | Location:<br>Prep: | Hanson Radum<br>EPA 5030B |  |
| Project#:         | 001-09567-01                | Analysis:          | EPA 8260B                 |  |
| Field ID:         | SS-31(A)-5.5                | Diln Fac:          | 0.9804                    |  |
| MSS Lab ID:       | 196066-007                  | Batch#:            | 127415                    |  |
| Matrix:           | Soil                        | Sampled:           | 07/18/07                  |  |
| Units:            | ug/Kg                       | Received:          | 07/19/07                  |  |
| Basis:            | as received                 | Analyzed:          | 07/19/07                  |  |

| Type: MS                      |       |          | Lab ID: | QC397059 |      |        |
|-------------------------------|-------|----------|---------|----------|------|--------|
| Analyte                       | MSS   | Result   | Spiked  | Result   | %REC | Limits |
| tert-Butyl Alcohol (TBA)      |       | <1.403   | 245.1   | 169.4    | 69   | 45-123 |
| MTBE                          |       | <0.1161  | 49.02   | 35.11    | 72   | 55-120 |
| Isopropyl Ether (DIPE)        |       | <0.1337  | 49.02   | 32.47    | 66   | 50-120 |
| Ethyl tert-Butyl Ether (ETBE) |       | <0.1074  | 49.02   | 33.07    | 67   | 58-120 |
| 1,2-Dichloroethane            |       | <0.1975  | 49.02   | 43.39    | 89   | 56-120 |
| Benzene                       |       | <0.1925  | 49.02   | 40.59    | 83   | 61-122 |
| Methyl tert-Amyl Ether (TAME) |       | <0.09438 | 49.02   | 38.33    | 78   | 60-120 |
| Toluene                       |       | <0.2524  | 49.02   | 40.54    | 83   | 57-124 |
| 1,2-Dibromoethane             |       | <0.2877  | 49.02   | 42.76    | 87   | 57-120 |
| Ethylbenzene                  |       | <0.3561  | 49.02   | 41.18    | 84   | 55-129 |
| m,p-Xylenes                   |       | <0.5854  | 98.04   | 83.47    | 85   | 53-127 |
| o-Xylene                      |       | <0.1744  | 49.02   | 41.82    | 85   | 54-127 |
| a server and a                | 0.580 | <b>T</b> |         |          |      |        |
| Surrogate                     | %REC  | Limits   |         |          |      |        |
| Dibromofluoromethane          | 105   | 78-126   |         |          |      |        |
| 1,2-Dichloroethane-d4         | 109   | 76-135   |         |          |      |        |
| Toluene-d8                    | 102   | 80-120   |         |          |      |        |
| Bromofluorobenzene            | 96    | 80-126   |         |          |      |        |

| Type: MSD                     |      |        | Lab ID: | QC     | 397060 |        |     |     |
|-------------------------------|------|--------|---------|--------|--------|--------|-----|-----|
| Analyte                       |      | Spiked |         | Result | %REC   | Limits | RPD | Lim |
| tert-Butyl Alcohol (TBA)      |      | 245.1  |         | 170.2  | 69     | 45-123 | 0   | 32  |
| MTBE                          |      | 49.02  |         | 38.42  | 78     | 55-120 | 9   | 20  |
| Isopropyl Ether (DIPE)        |      | 49.02  |         | 36.99  | 75     | 50-120 | 13  | 20  |
| Ethyl tert-Butyl Ether (ETBE) |      | 49.02  |         | 36.89  | 75     | 58-120 | 11  | 20  |
| 1,2-Dichloroethane            |      | 49.02  |         | 38.61  | 79     | 56-120 | 12  | 20  |
| Benzene                       |      | 49.02  |         | 37.31  | 76     | 61-122 | 8   | 20  |
| Methyl tert-Amyl Ether (TAME) |      | 49.02  |         | 41.85  | 85     | 60-120 | 9   | 20  |
| Toluene                       |      | 49.02  |         | 37.40  | 76     | 57-124 | 8   | 21  |
| 1,2-Dibromoethane             |      | 49.02  |         | 38.44  | 78     | 57-120 | 11  | 20  |
| Ethylbenzene                  |      | 49.02  |         | 38.12  | 78     | 55-129 | 8   | 23  |
| m,p-Xylenes                   |      | 98.04  |         | 77.48  | 79     | 53-127 | 7   | 23  |
| o-Xylene                      |      | 49.02  |         | 39.15  | 80     | 54-127 | 7   | 22  |
| Surrogate                     | %REC | Limits |         |        |        |        |     |     |
| Dibromofluoromethane          | 102  | 78-126 |         |        |        |        |     |     |
| 1,2-Dichloroethane-d4         | 102  | 76-135 |         |        |        |        |     |     |
| Toluene-d8                    | 104  | 80-120 |         |        |        |        |     |     |
| Bromofluorobenzene            | 97   | 80-120 |         |        |        |        |     |     |
| Promorrancemzene              | זו   | 00-120 |         |        |        |        |     |     |



| Semivolatile Organics by GC/MS |                      |           |              |  |  |
|--------------------------------|----------------------|-----------|--------------|--|--|
| Lab #:                         | 196066               | Location: | Hanson Radum |  |  |
| Client:                        | LFR Levine Fricke    | Prep:     | EPA 3550B    |  |  |
| Project#:                      | 001-09567-01         | Analysis: | EPA 8270C    |  |  |
| Field ID:                      | SS-31(A)-5.5         | Batch#:   | 127409       |  |  |
| Lab ID:                        | 196066-007           | Sampled:  | 07/18/07     |  |  |
| Matrix:                        | Soil                 | Received: | 07/19/07     |  |  |
| Units:                         | ug/Kg                | Prepared: | 07/19/07     |  |  |
| Basis:<br>Diln Fac:            | as received<br>1.000 | Analyzed: | 07/24/07     |  |  |

| Analyte                      | Result   | RL    |
|------------------------------|----------|-------|
| N-Nitrosodimethylamine       | ND       | 330   |
| Phenol                       | ND       | 330   |
| bis(2-Chloroethyl)ether      | ND       | 330   |
| 2-Chlorophenol               | ND       | 330   |
| 1,3-Dichlorobenzene          | ND<br>ND | 330   |
|                              |          | 330   |
| 1,4-Dichlorobenzene          | ND       |       |
| Benzyl alcohol               | ND       | 330   |
| 1,2-Dichlorobenzene          | ND       | 330   |
| 2-Methylphenol               | ND       | 330   |
| bis(2-Chloroisopropyl) ether | ND       | 330   |
| 4-Methylphenol               | ND       | 330   |
| N-Nitroso-di-n-propylamine   | ND       | 330   |
| Hexachloroethane             | ND       | 330   |
| Nitrobenzene                 | ND       | 330   |
| Isophorone                   | ND       | 330   |
| 2-Nitrophenol                | ND       | 660   |
| 2,4-Dimethylphenol           | ND       | 330   |
| Benzoic acid                 | ND       | 1,600 |
| bis(2-Chloroethoxy)methane   | ND       | 330   |
| 2,4-Dichlorophenol           | ND       | 330   |
| 1,2,4-Trichlorobenzene       | ND       | 330   |
| Naphthalene                  | ND       | 66    |
| 4-Chloroaniline              | ND       | 330   |
| Hexachlorobutadiene          | ND       | 330   |
| 4-Chloro-3-methylphenol      | ND       | 330   |
| 2-Methylnaphthalene          | ND       | 66    |
| Hexachlorocyclopentadiene    | ND       | 660   |
| 2,4,6-Trichlorophenol        | ND       | 330   |
| 2,4,5-Trichlorophenol        | ND       | 330   |
| 2-Chloronaphthalene          | ND       | 330   |
| 2-Nitroaniline               | ND       | 660   |
| Dimethylphthalate            | ND       | 330   |
| Acenaphthylene               | ND       | 66    |
| 2,6-Dinitrotoluene           | ND       | 330   |
| 3-Nitroaniline               | ND       | 660   |
| Acenaphthene                 | ND       | 66    |
| 2,4-Dinitrophenol            | ND       | 660   |
| 4-Nitrophenol                | ND<br>ND | 660   |
| Dibenzofuran                 | ND<br>ND | 330   |
| 2,4-Dinitrotoluene           | ND<br>ND | 330   |
| Diethylphthalate             | ND<br>ND | 330   |
|                              | ND<br>ND | 66    |
| Fluorene                     |          | 330   |
| 4-Chlorophenyl-phenylether   | ND       |       |
| 4-Nitroaniline               | ND       | 660   |
| 4,6-Dinitro-2-methylphenol   | ND       | 660   |
| N-Nitrosodiphenylamine       | ND       | 330   |
| Azobenzene                   | ND       | 330   |
| 4-Bromophenyl-phenylether    | ND       | 330   |
| Hexachlorobenzene            | ND       | 330   |
| Pentachlorophenol            | ND       | 660   |
| Phenanthrene                 | ND       | 66    |
| Anthracene                   | ND       | 66    |
| Di-n-butylphthalate          | ND       | 330   |

ND= Not Detected RL= Reporting Limit Page 1 of 2



|                     | Semivolatile Organics by GC/MS |                    |                           |  |  |  |
|---------------------|--------------------------------|--------------------|---------------------------|--|--|--|
| Lab #:<br>Client:   | 196066<br>LFR Levine Fricke    | Location:<br>Prep: | Hanson Radum<br>EPA 3550B |  |  |  |
| Project#:           | 001-09567-01                   | Analysis:          | EPA 8270C                 |  |  |  |
| Field ID:           | SS-31(A)-5.5                   | Batch#:            | 127409                    |  |  |  |
| Lab ID:             | 196066-007                     | Sampled:           | 07/18/07                  |  |  |  |
| Matrix:             | Soil                           | Received:          | 07/19/07                  |  |  |  |
| Units:              | ug/Kg                          | Prepared:          | 07/19/07                  |  |  |  |
| Basis:<br>Diln Fac: | as received<br>1.000           | Analyzed:          | 07/24/07                  |  |  |  |

| Analyte                             | Result                        | RL  |  |
|-------------------------------------|-------------------------------|-----|--|
| Fluoranthene                        | ND                            | 66  |  |
| Pyrene                              | ND                            | 66  |  |
| Butylbenzylphthalate                | ND                            | 330 |  |
| 3,3 <sup>°</sup> -Dichlorobenzidine | ND                            | 660 |  |
| Benzo(a)anthracene                  | ND                            | 66  |  |
| Chrysene                            | ND                            | 66  |  |
| bis(2-Ethylhexyl)phthalate          | ND                            | 330 |  |
| Di-n-octylphthalate                 | ND                            | 330 |  |
| Benzo(b)fluoranthene                | ND                            | 66  |  |
| Benzo(k)fluoranthene                | ND                            | 66  |  |
| Benzo(a)pyrene                      | ND                            | 66  |  |
| Indeno(1,2,3-cd)pyrene              | ND                            | 66  |  |
| Dibenz(a,h)anthracene               | ND                            | 66  |  |
| Benzo(g,h,i)perylene                | ND                            | 66  |  |
| Gummagaha                           | %REC Limits                   |     |  |
| Surrogate<br>2-Fluorophenol         | 52 28-120                     |     |  |
| Phenol-d5                           | 54 30-120                     |     |  |
| 2,4,6-Tribromophenol                | 49 20-120                     |     |  |
| Nitrobenzene-d5                     | 56 39-120                     |     |  |
| 2-Fluorobiphenyl                    | 54 44-120                     |     |  |
| Terphenyl-d14                       | 54 	 44 	 120 	 51 	 39 	 120 |     |  |
| TEThuenAt-at-                       | 51 59-120                     |     |  |

ND= Not Detected RL= Reporting Limit Page 2 of 2



| Semivolatile Organics by GC/MS |                   |           |              |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                         | 196066            | Location: | Hanson Radum |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3550B    |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8270C    |  |  |
| Field ID:                      | SS-31(A)-10.5     | Batch#:   | 127409       |  |  |
| Lab ID:                        | 196066-008        | Sampled:  | 07/18/07     |  |  |
| Matrix:                        | Soil              | Received: | 07/19/07     |  |  |
| Units:                         | ug/Kg             | Prepared: | 07/19/07     |  |  |
| Basis:                         | as received       | Analyzed: | 07/24/07     |  |  |
| Diln Fac:                      | 1.000             |           |              |  |  |

| Analyte                      | Result   | RL    |
|------------------------------|----------|-------|
| N-Nitrosodimethylamine       | ND       | 330   |
| Phenol                       | ND       | 330   |
| bis(2-Chloroethyl)ether      | ND       | 330   |
| 2-Chlorophenol               | ND       | 330   |
| 1,3-Dichlorobenzene          | ND       | 330   |
| 1,4-Dichlorobenzene          | ND<br>ND | 330   |
|                              |          | 330   |
| Benzyl alcohol               | ND       |       |
| 1,2-Dichlorobenzene          | ND       | 330   |
| 2-Methylphenol               | ND       | 330   |
| bis(2-Chloroisopropyl) ether | ND       | 330   |
| 4-Methylphenol               | ND       | 330   |
| N-Nitroso-di-n-propylamine   | ND       | 330   |
| Hexachloroethane             | ND       | 330   |
| Nitrobenzene                 | ND       | 330   |
| Isophorone                   | ND       | 330   |
| 2-Nitrophenol                | ND       | 660   |
| 2,4-Dimethylphenol           | ND       | 330   |
| Benzoic acid                 | ND       | 1,600 |
| bis(2-Chloroethoxy)methane   | ND       | 330   |
| 2,4-Dichlorophenol           | ND       | 330   |
| 1,2,4-Trichlorobenzene       | ND       | 330   |
| Naphthalene                  | ND       | 66    |
| 4-Chloroaniline              | ND       | 330   |
| Hexachlorobutadiene          | ND       | 330   |
| 4-Chloro-3-methylphenol      | ND       | 330   |
|                              | ND       | 66    |
| 2-Methylnaphthalene          | ND<br>ND | 660   |
| Hexachlorocyclopentadiene    |          | 330   |
| 2,4,6-Trichlorophenol        | ND       |       |
| 2,4,5-Trichlorophenol        | ND       | 330   |
| 2-Chloronaphthalene          | ND       | 330   |
| 2-Nitroaniline               | ND       | 660   |
| Dimethylphthalate            | ND       | 330   |
| Acenaphthylene               | ND       | 66    |
| 2,6-Dinitrotoluene           | ND       | 330   |
| 3-Nitroaniline               | ND       | 660   |
| Acenaphthene                 | ND       | 66    |
| 2,4-Dinitrophenol            | ND       | 660   |
| 4-Nitrophenol                | ND       | 660   |
| Dibenzofuran                 | ND       | 330   |
| 2,4-Dinitrotoluene           | ND       | 330   |
| Diethylphthalate             | ND       | 330   |
| Fluorene                     | ND       | 66    |
| 4-Chlorophenyl-phenylether   | ND       | 330   |
| 4-Nitroaniline               | ND       | 660   |
| 4,6-Dinitro-2-methylphenol   | ND       | 660   |
| N-Nitrosodiphenylamine       | ND       | 330   |
| Azobenzene                   | ND       | 330   |
| 4-Bromophenyl-phenylether    | ND       | 330   |
| Hexachlorobenzene            | ND       | 330   |
|                              |          | 660   |
| Pentachlorophenol            | ND       |       |
| Phenanthrene                 | ND       | 66    |
| Anthracene                   | ND       | 66    |
| Di-n-butylphthalate          | ND       | 330   |

ND= Not Detected RL= Reporting Limit Page 1 of 2



| Semivolatile Organics by GC/MS |                   |           |              |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                         | 196066            | Location: | Hanson Radum |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3550B    |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8270C    |  |  |
| Field ID:                      | SS-31(A)-10.5     | Batch#:   | 127409       |  |  |
| Lab ID:                        | 196066-008        | Sampled:  | 07/18/07     |  |  |
| Matrix:                        | Soil              | Received: | 07/19/07     |  |  |
| Units:                         | ug/Kg             | Prepared: | 07/19/07     |  |  |
| Basis:                         | as received       | Analyzed: | 07/24/07     |  |  |
| Diln Fac:                      | 1.000             | -         |              |  |  |

|      | Result                                                   | RL                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------|----------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND   |                                                          | 66                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND   |                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND   |                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND   |                                                          | 660                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND   |                                                          | 66                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND   |                                                          | 66                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND   |                                                          | 330                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND   |                                                          | 330                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND   |                                                          | 66                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| %DFC | Timita                                                   |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N | ND       66         ND       330         ND       660         ND       66         ND       66         ND       330         ND       330         ND       66         ND       62         120       64         65       44-120 |



|                  | Semivolatile Organics by GC/MS |           |              |  |  |  |
|------------------|--------------------------------|-----------|--------------|--|--|--|
| Lab #:           | 196066                         | Location: | Hanson Radum |  |  |  |
| Client:          | LFR Levine Fricke              | Prep:     | EPA 3550B    |  |  |  |
| Project#:        | 001-09567-01                   | Analysis: | EPA 8270C    |  |  |  |
| Type:            | BLANK                          | Diln Fac: | 1.000        |  |  |  |
| Type:<br>Lab ID: | QC396965                       | Batch#:   | 127409       |  |  |  |
| Matrix:          | Soil                           | Prepared: | 07/19/07     |  |  |  |
| Units:           | ug/Kg                          | Analyzed: | 07/20/07     |  |  |  |
| Basis:           | as received                    | _         |              |  |  |  |

| Analyte                      | Result   | RL        |  |
|------------------------------|----------|-----------|--|
| N-Nitrosodimethylamine       | ND       | 330       |  |
| Phenol                       | ND       | 330       |  |
| bis(2-Chloroethyl)ether      | ND       | 330       |  |
| 2-Chlorophenol               | ND       | 330       |  |
| 1,3-Dichlorobenzene          | ND       | 330       |  |
| 1,4-Dichlorobenzene          | ND       | 330       |  |
| Benzyl alcohol               | ND       | 330       |  |
| 1,2-Dichlorobenzene          | ND       | 330       |  |
| 2-Methylphenol               | ND       | 330       |  |
| bis(2-Chloroisopropyl) ether | ND       | 330       |  |
| 4-Methylphenol               | ND       | 330       |  |
| N-Nitroso-di-n-propylamine   | ND       | 330       |  |
| Hexachloroethane             | ND       | 330       |  |
| Nitrobenzene                 | ND       | 330       |  |
| Isophorone                   | ND       | 330       |  |
| 2-Nitrophenol                | ND       | 670       |  |
| 2,4-Dimethylphenol           | ND       | 330       |  |
| Benzoic acid                 | ND       | 1,700     |  |
| bis(2-Chloroethoxy)methane   | ND       | 330       |  |
| 2,4-Dichlorophenol           | ND       | 330       |  |
| 1,2,4-Trichlorobenzene       | ND       | 330       |  |
| Naphthalene                  | ND<br>ND | 67        |  |
| 4-Chloroaniline              |          | 330       |  |
| Hexachlorobutadiene          | ND<br>ND | 330       |  |
|                              |          |           |  |
| 4-Chloro-3-methylphenol      | ND       | 330<br>67 |  |
| 2-Methylnaphthalene          | ND       |           |  |
| Hexachlorocyclopentadiene    | ND       | 670       |  |
| 2,4,6-Trichlorophenol        | ND       | 330       |  |
| 2,4,5-Trichlorophenol        | ND       | 330       |  |
| 2-Chloronaphthalene          | ND       | 330       |  |
| 2-Nitroaniline               | ND       | 670       |  |
| Dimethylphthalate            | ND       | 330       |  |
| Acenaphthylene               | ND       | 67        |  |
| 2,6-Dinitrotoluene           | ND       | 330       |  |
| 3-Nitroaniline               | ND       | 670       |  |
| Acenaphthene                 | ND       | 67        |  |
| 2,4-Dinitrophenol            | ND       | 670       |  |
| 4-Nitrophenol                | ND       | 670       |  |
| Dibenzofuran                 | ND       | 330       |  |
| 2,4-Dinitrotoluene           | ND       | 330       |  |
| Diethylphthalate             | ND       | 330       |  |
| Fluorene                     | ND       | 67        |  |
| 4-Chlorophenyl-phenylether   | ND       | 330       |  |
| 4-Nitroaniline               | ND       | 670       |  |
| 4,6-Dinitro-2-methylphenol   | ND       | 670       |  |
| N-Nitrosodiphenylamine       | ND       | 330       |  |
| Azobenzene                   | ND       | 330       |  |
| 4-Bromophenyl-phenylether    | ND       | 330       |  |
| Hexachlorobenzene            | ND       | 330       |  |
| Pentachlorophenol            | ND       | 670       |  |
| Phenanthrene                 | ND       | 67        |  |
| Anthracene                   | ND       | 67        |  |
| Di-n-butylphthalate          | ND       | 330       |  |

ND= Not Detected RL= Reporting Limit



|                  | Semivolatile Organics by GC/MS |           |              |  |  |  |
|------------------|--------------------------------|-----------|--------------|--|--|--|
| Lab #:           | 196066                         | Location: | Hanson Radum |  |  |  |
| Client:          | LFR Levine Fricke              | Prep:     | EPA 3550B    |  |  |  |
| Project#:        | 001-09567-01                   | Analysis: | EPA 8270C    |  |  |  |
| Type:<br>Lab ID: | BLANK                          | Diln Fac: | 1.000        |  |  |  |
| Lab ID:          | QC396965                       | Batch#:   | 127409       |  |  |  |
| Matrix:          | Soil                           | Prepared: | 07/19/07     |  |  |  |
| Units:           | ug/Kg                          | Analyzed: | 07/20/07     |  |  |  |
| Basis:           | as received                    | _         |              |  |  |  |

| Analyte                    | ]        | Result | RL  |  |
|----------------------------|----------|--------|-----|--|
| Fluoranthene               | ND       |        | 67  |  |
| Pyrene                     | ND       |        | 67  |  |
| Butylbenzylphthalate       | ND       |        | 330 |  |
| 3,3'-Dichlorobenzidine     | ND       |        | 670 |  |
| Benzo(a)anthracene         | ND       |        | 67  |  |
| Chrysene                   | ND       |        | 67  |  |
| bis(2-Ethylhexyl)phthalate | ND       |        | 330 |  |
| Di-n-octylphthalate        | ND       |        | 330 |  |
| Benzo(b)fluoranthene       | ND       |        | 67  |  |
| Benzo(k)fluoranthene       | ND       |        | 67  |  |
| Benzo(a)pyrene             | ND       |        | 67  |  |
| Indeno(1,2,3-cd)pyrene     | ND       |        | 67  |  |
| Dibenz(a,h)anthracene      | ND       |        | 67  |  |
| Benzo(g,h,i)perylene       | ND       |        | 67  |  |
|                            | <b>A</b> | - 1 1. |     |  |
| Surrogate                  | %REC     | Limits |     |  |
| 2-Fluorophenol             | 69       | 28-120 |     |  |
| Phenol-d5                  | 68       | 30-120 |     |  |
| 2,4,6-Tribromophenol       | 74       | 20-120 |     |  |
| Nitrobenzene-d5            | 70       | 39-120 |     |  |
| 2-Fluorobiphenyl           | 74       | 44-120 |     |  |
| Terphenyl-d14              | 72       | 39-120 |     |  |



| Semivolatile Organics by GC/MS |                   |           |              |  |
|--------------------------------|-------------------|-----------|--------------|--|
| Lab #:                         | 196066            | Location: | Hanson Radum |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3550B    |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8270C    |  |
| Type:                          | LCS               | Diln Fac: | 1.000        |  |
| Lab ID:                        | QC396966          | Batch#:   | 127409       |  |
| Matrix:                        | Soil              | Prepared: | 07/19/07     |  |
| Units:                         | ug/Kg             | Analyzed: | 07/20/07     |  |
| Basis:                         | as received       |           |              |  |

| Analyte                    | Spiked | Result | %REC | Limits |
|----------------------------|--------|--------|------|--------|
| Phenol                     | 2,665  | 1,778  | 67   | 40-120 |
| 2-Chlorophenol             | 2,665  | 1,834  | 69   | 40-120 |
| 1,4-Dichlorobenzene        | 1,332  | 1,067  | 80   | 45-120 |
| N-Nitroso-di-n-propylamine | 1,332  | 782.0  | 59   | 34-120 |
| 1,2,4-Trichlorobenzene     | 1,332  | 1,136  | 85   | 45-120 |
| 4-Chloro-3-methylphenol    | 2,665  | 1,993  | 75   | 45-120 |
| Acenaphthene               | 1,332  | 970.3  | 73   | 42-120 |
| 4-Nitrophenol              | 2,665  | 1,630  | 61   | 31-120 |
| 2,4-Dinitrotoluene         | 1,332  | 1,111  | 83   | 41-120 |
| Pentachlorophenol          | 2,665  | 1,970  | 74   | 21-120 |
| Pyrene                     | 1,332  | 991.4  | 74   | 41-120 |

| Surrogate            | %REC | Limits |
|----------------------|------|--------|
| 2-Fluorophenol       | 69   | 28-120 |
| Phenol-d5            | 68   | 30-120 |
| 2,4,6-Tribromophenol | 104  | 20-120 |
| Nitrobenzene-d5      | 68   | 39-120 |
| 2-Fluorobiphenyl     | 74   | 44-120 |
| Terphenyl-d14        | 71   | 39-120 |



| Semivolatile Organics by GC/MS |                   |           |              |  |
|--------------------------------|-------------------|-----------|--------------|--|
| Lab #:                         | 196066            | Location: | Hanson Radum |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3550B    |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8270C    |  |
| Field ID:                      | SS-31(A)-5.5      | Batch#:   | 127409       |  |
| MSS Lab ID:                    | 196066-007        | Sampled:  | 07/18/07     |  |
| Matrix:                        | Soil              | Received: | 07/19/07     |  |
| Units:                         | ug/Kg             | Prepared: | 07/19/07     |  |
| Basis:                         | as received       | Analyzed: | 07/26/07     |  |
| Diln Fac:                      | 1.000             | -         |              |  |

| Type: MS                  |             | Lab ID: | QC396967 |      |        |
|---------------------------|-------------|---------|----------|------|--------|
| Analyte                   | MSS Result  | Spiked  | Result   | %REC | Limits |
| Phenol                    | <79.34      | 2,660   | 1,877    | 71   | 38-120 |
| 2-Chlorophenol            | <77.83      | 2,660   | 1,848    | 69   | 38-120 |
| 1,4-Dichlorobenzene       | <21.83      | 1,330   | 987.9    | 74   | 49-120 |
| N-Nitroso-di-n-propylamin | e <15.02    | 1,330   | 880.9    | 66   | 43-120 |
| 1,2,4-Trichlorobenzene    | <20.21      | 1,330   | 1,021    | 77   | 47-120 |
| 4-Chloro-3-methylphenol   | <88.23      | 2,660   | 2,071    | 78   | 44-120 |
| Acenaphthene              | <14.68      | 1,330   | 970.9    | 73   | 48-120 |
| 4-Nitrophenol             | <65.81      | 2,660   | 1,692    | 64   | 30-120 |
| 2,4-Dinitrotoluene        | <12.11      | 1,330   | 1,075    | 81   | 41-120 |
| Pentachlorophenol         | <147.7      | 2,660   | 1,547    | 58   | 13-120 |
| Pyrene                    | <14.95      | 1,330   | 1,029    | 77   | 42-120 |
| Surrogate                 | %REC Limits |         |          |      |        |
| 2-Fluorophenol            | 69 28-120   |         |          |      |        |
| Phenol-d5                 | 74 30-120   |         |          |      |        |
| 2,4,6-Tribromophenol      | 100 20-120  |         |          |      |        |
| Nitriahampana d           |             |         |          |      |        |

|                                    | Analyte  |                | Spiked                     |         | Result | %REC     | Limits | RPD Lim |  |
|------------------------------------|----------|----------------|----------------------------|---------|--------|----------|--------|---------|--|
| Туре:                              | MSD      |                |                            | Lab ID: |        | QC396968 |        |         |  |
| Nitrobenz<br>2-Fluorob<br>Terpheny | oiphenyl | 70<br>74<br>72 | 39-120<br>44-120<br>39-120 |         |        |          |        |         |  |

| Analyte                    | Spiked      | Result | %REC | Limits | RPD | Lim |
|----------------------------|-------------|--------|------|--------|-----|-----|
| Phenol                     | 2,659       | 1,830  | 69   | 38-120 | 2   | 26  |
| 2-Chlorophenol             | 2,659       | 1,872  | 70   | 38-120 | 1   | 28  |
| 1,4-Dichlorobenzene        | 1,329       | 1,081  | 81   | 49-120 | 9   | 27  |
| N-Nitroso-di-n-propylamine | 1,329       | 844.8  | 64   | 43-120 | 4   | 28  |
| 1,2,4-Trichlorobenzene     | 1,329       | 1,104  | 83   | 47-120 | 8   | 26  |
| 4-Chloro-3-methylphenol    | 2,659       | 1,965  | 74   | 44-120 | 5   | 28  |
| Acenaphthene               | 1,329       | 962.8  | 72   | 48-120 | 1   | 29  |
| 4-Nitrophenol              | 2,659       | 1,566  | 59   | 30-120 | 8   | 38  |
| 2,4-Dinitrotoluene         | 1,329       | 1,024  | 77   | 41-120 | 5   | 26  |
| Pentachlorophenol          | 2,659       | 1,546  | 58   | 13-120 | 0   | 55  |
| Pyrene                     | 1,329       | 979.8  | 74   | 42-120 | 5   | 30  |
| Surrogate                  | %REC Limits |        |      |        |     |     |
| 2-Fluorophenol             | 70 28-120   |        |      |        |     |     |
| Phenol-d5                  | 72 30-120   |        |      |        |     |     |
| 2,4,6-Tribromophenol       | 102 20-120  |        |      |        |     |     |
| Nitrobenzene-d5            | 69 39-120   |        |      |        |     |     |
| 2-Fluorobiphenyl           | 75 44-120   |        |      |        |     |     |
| Terphenyl-d14              | 70 39-120   |        |      |        |     |     |



| Organochlorine Pesticides |                   |           |              |  |
|---------------------------|-------------------|-----------|--------------|--|
| Lab #:                    | 196066            | Location: | Hanson Radum |  |
| Client:                   | LFR Levine Fricke | Prep:     | EPA 3550B    |  |
| Project#:                 | 001-09567-01      | Analysis: | EPA 8081A    |  |
| Field ID:                 | SS-31(A)-5.5      | Batch#:   | 127426       |  |
| Lab ID:                   | 196066-007        | Sampled:  | 07/18/07     |  |
| Matrix:                   | Soil              | Received: | 07/19/07     |  |
| Units:                    | ug/Kg             | Prepared: | 07/19/07     |  |
| Basis:                    | as received       | Analyzed: | 07/20/07     |  |
| Diln Fac:                 | 1.000             |           |              |  |

| Analyte            | Result | RL  |  |
|--------------------|--------|-----|--|
| alpha-BHC          | ND     | 1.7 |  |
| beta-BHC           | ND     | 1.7 |  |
| gamma-BHC          | ND     | 1.7 |  |
| delta-BHC          | ND     | 1.7 |  |
| Heptachlor         | ND     | 1.7 |  |
| Aldrin             | ND     | 1.7 |  |
| Heptachlor epoxide | ND     | 1.7 |  |
| Endosulfan I       | ND     | 1.7 |  |
| Dieldrin           | ND     | 3.3 |  |
| 4,4'-DDE           | ND     | 3.3 |  |
| Endrin             | ND     | 3.3 |  |
| Endosulfan II      | ND     | 3.3 |  |
| Endosulfan sulfate | ND     | 3.3 |  |
| 4,4'-DDD           | ND     | 3.3 |  |
| Endrin aldehyde    | ND     | 3.3 |  |
| 4,4'-DDT           | ND     | 3.3 |  |
| alpha-Chlordane    | ND     | 1.7 |  |
| gamma-Chlordane    | ND     | 1.7 |  |
| Methoxychlor       | ND     | 17  |  |
| Toxaphene          | ND     | 59  |  |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 66   | 50-120 |
| Decachlorobiphenyl | 84   | 54-133 |



| Organochlorine Pesticides |                   |           |              |  |
|---------------------------|-------------------|-----------|--------------|--|
| Lab #:                    | 196066            | Location: | Hanson Radum |  |
| Client:                   | LFR Levine Fricke | Prep:     | EPA 3550B    |  |
| Project#:                 | 001-09567-01      | Analysis: | EPA 8081A    |  |
| Field ID:                 | SS-31(A)-10.5     | Batch#:   | 127426       |  |
| Lab ID:                   | 196066-008        | Sampled:  | 07/18/07     |  |
| Matrix:                   | Soil              | Received: | 07/19/07     |  |
| Units:                    | ug/Kg             | Prepared: | 07/19/07     |  |
| Basis:                    | as received       | Analyzed: | 07/20/07     |  |
| Diln Fac:                 | 1.000             |           |              |  |

| Analyte            | Result | RL  |  |
|--------------------|--------|-----|--|
| alpha-BHC          | ND     | 1.7 |  |
| beta-BHC           | ND     | 1.7 |  |
| gamma-BHC          | ND     | 1.7 |  |
| delta-BHC          | ND     | 1.7 |  |
| Heptachlor         | ND     | 1.7 |  |
| Aldrin             | ND     | 1.7 |  |
| Heptachlor epoxide | ND     | 1.7 |  |
| Endosulfan I       | ND     | 1.7 |  |
| Dieldrin           | ND     | 3.3 |  |
| 4,4'-DDE           | ND     | 3.3 |  |
| Endrin             | ND     | 3.3 |  |
| Endosulfan II      | ND     | 3.3 |  |
| Endosulfan sulfate | ND     | 3.3 |  |
| 4,4'-DDD           | ND     | 3.3 |  |
| Endrin aldehyde    | ND     | 3.3 |  |
| 4,4'-DDT           | ND     | 3.3 |  |
| alpha-Chlordane    | ND     | 1.7 |  |
| gamma-Chlordane    | ND     | 1.7 |  |
| Methoxychlor       | ND     | 17  |  |
| Toxaphene          | ND     | 59  |  |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 57   | 50-120 |
| Decachlorobiphenyl | 76   | 54-133 |



| Organochlorine Pesticides |                   |           |              |  |  |
|---------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                    | 196066            | Location: | Hanson Radum |  |  |
| Client:                   | LFR Levine Fricke | Prep:     | EPA 3550B    |  |  |
| Project#:                 | 001-09567-01      | Analysis: | EPA 8081A    |  |  |
| Туре:                     | BLANK             | Diln Fac: | 1.000        |  |  |
| Lab ID:                   | QC397061          | Batch#:   | 127426       |  |  |
| Matrix:                   | Soil              | Prepared: | 07/19/07     |  |  |
| Units:                    | ug/Kg             | Analyzed: | 07/20/07     |  |  |
| Basis:                    | as received       |           |              |  |  |

| Analyte            | Result | RL  |  |
|--------------------|--------|-----|--|
| alpha-BHC          | ND     | 1.7 |  |
| beta-BHC           | ND     | 1.7 |  |
| gamma-BHC          | ND     | 1.7 |  |
| delta-BHC          | ND     | 1.7 |  |
| Heptachlor         | ND     | 1.7 |  |
| Aldrin             | ND     | 1.7 |  |
| Heptachlor epoxide | ND     | 1.7 |  |
| Endosulfan I       | ND     | 1.7 |  |
| Dieldrin           | ND     | 3.3 |  |
| 4,4'-DDE           | ND     | 3.3 |  |
| Endrin             | ND     | 3.3 |  |
| Endosulfan II      | ND     | 3.3 |  |
| Endosulfan sulfate | ND     | 3.3 |  |
| 4,4'-DDD           | ND     | 3.3 |  |
| Endrin aldehyde    | ND     | 3.3 |  |
| 4,4'-DDT           | ND     | 3.3 |  |
| alpha-Chlordane    | ND     | 1.7 |  |
| gamma-Chlordane    | ND     | 1.7 |  |
| Methoxychlor       | ND     | 17  |  |
| Toxaphene          | ND     | 60  |  |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 64   | 50-120 |
| Decachlorobiphenyl | 100  | 54-133 |



| Organochlorine Pesticides |                   |           |              |  |  |  |
|---------------------------|-------------------|-----------|--------------|--|--|--|
| Lab #:                    | 196066            | Location: | Hanson Radum |  |  |  |
| Client:                   | LFR Levine Fricke | Prep:     | EPA 3550B    |  |  |  |
| Project#:                 | 001-09567-01      | Analysis: | EPA 8081A    |  |  |  |
| Type:                     | LCS               | Diln Fac: | 1.000        |  |  |  |
| Lab ID:                   | QC397062          | Batch#:   | 127426       |  |  |  |
| Matrix:                   | Soil              | Prepared: | 07/19/07     |  |  |  |
| Units:                    | ug/Kg             | Analyzed: | 07/20/07     |  |  |  |
| Basis:                    | as received       |           |              |  |  |  |

| Analyte    | Spiked | Result | %REC | Limits |
|------------|--------|--------|------|--------|
| gamma-BHC  | 13.32  | 9.443  | 71   | 42-120 |
| Heptachlor | 13.32  | 9.818  | 74   | 44-130 |
| Aldrin     | 13.32  | 9.564  | 72   | 47-120 |
| Dieldrin   | 26.63  | 20.72  | 78   | 50-121 |
| Endrin     | 26.63  | 19.00  | 71   | 39-130 |
| 4,4'-DDT   | 26.63  | 19.17  | 72   | 45-127 |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 65   | 50-120 |
| Decachlorobiphenyl | 90   | 54-133 |



| Organochlorine Pesticides |                             |                    |                           |  |  |  |
|---------------------------|-----------------------------|--------------------|---------------------------|--|--|--|
| Lab #:<br>Client:         | 196066<br>LFR Levine Fricke | Location:<br>Prep: | Hanson Radum<br>EPA 3550B |  |  |  |
| Project#:                 | 001-09567-01                | Analysis:          | EPA 8081A                 |  |  |  |
| Field ID:                 | ZZZZZZZZZZ                  | Batch#:            | 127426                    |  |  |  |
| MSS Lab ID:               | 196075-003                  | Sampled:           | 07/19/07                  |  |  |  |
| Matrix:                   | Soil                        | Received:          | 07/19/07                  |  |  |  |
| Units:                    | ug/Kg                       | Prepared:          | 07/19/07                  |  |  |  |
| Basis:<br>Diln Fac:       | as received<br>1.000        | Analyzed:          | 07/21/07                  |  |  |  |

Type: Lab ID:

MS QC397063

| Analyte    | MSS Result | Spiked | Result  | %REC    | Limits   |
|------------|------------|--------|---------|---------|----------|
| gamma-BHC  | <0.5534    | 13.31  | 10.30   | 77      | 45-120   |
| Heptachlor | 0.6478     | 13.31  | 9.770   | 69      | 50-124   |
| Aldrin     | 0.9546     | 13.31  | 10.29   | 70      | 47-122   |
| Dieldrin   | <1.245     | 26.62  | 21.64   | 81      | 47-122   |
| Endrin     | <1.500     | 26.62  | 18.84   | 71      | 46-127   |
| 4,4'-DDT   | 108.8      | 26.62  | 69.01 # | -149 NI | M 27-136 |

|      | Surrogate   | %REC        | Limits |
|------|-------------|-------------|--------|
| TCMX |             | 87          | 50-120 |
|      | orobiphenyl | 555 * >LR b | 54-133 |

Type: Lab ID:

MSD 7064 **~**1 

Cleanup Method: EPA 3620B

| PIDD D |
|--------|
| QC397  |

| Cleanup Method: EPA 36201 | Cleanup | Method: | EPA | 36201 |
|---------------------------|---------|---------|-----|-------|
|---------------------------|---------|---------|-----|-------|

| Analyte    | Spiked | Result  | %REC   | Limits | RPD | Lim |
|------------|--------|---------|--------|--------|-----|-----|
| gamma-BHC  | 13.25  | 11.87   | 90     | 45-120 | 15  | 39  |
| Heptachlor | 13.25  | 10.79   | 77     | 50-124 | 10  | 37  |
| Aldrin     | 13.25  | 11.38   | 79     | 47-122 | 10  | 35  |
| Dieldrin   | 26.50  | 25.22   | 95     | 47-122 | 16  | 34  |
| Endrin     | 26.50  | 23.20   | 88     | 46-127 | 21  | 37  |
| 4,4'-DDT   | 26.50  | 91.72 # | -64 NM | 27-136 | 28  | 49  |

| Surrogate          | %REC        | Limits |
|--------------------|-------------|--------|
| TCMX               | 95          | 50-120 |
| Decachlorobiphenyl | 503 * >LR b | 54-133 |

#= CCV drift outside limits; average CCV drift within limits per method requirements
\*= Value outside of QC limits; see narrative b= See narrative NM= Not Meaningful: Sample concentration > 4X spike concentration >LR= Response exceeds instrument's linear range RPD= Relative Percent Difference Page 1 of 1



|                                                                                                                         | Po                      | lychlorinated                          | Biphenyls (PC                                 | Bs)                   |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------|-----------------------------------------------|-----------------------|
| Lab #:                                                                                                                  | 196066                  |                                        | Location:                                     | Hanson Radum          |
| Client:                                                                                                                 | LFR Levine Fr           | ıcke                                   | Prep:                                         | EPA 3550B             |
| Project#:<br>Matrix:                                                                                                    | 001-09567-01<br>Soil    |                                        | Analysis:<br>Sampled:                         | EPA 8082<br>07/18/07  |
| Units:                                                                                                                  | ug/Kg                   |                                        | Received:                                     | 07/19/07              |
| Basis:                                                                                                                  | as received             |                                        | Prepared:                                     | 07/19/07              |
| Diln Fac:                                                                                                               | 1.000                   |                                        | Analyzed:                                     | 07/21/07              |
| Batch#:                                                                                                                 | 127426                  |                                        | -                                             |                       |
|                                                                                                                         |                         |                                        |                                               |                       |
|                                                                                                                         |                         |                                        |                                               |                       |
| Field ID:                                                                                                               | SS-31(A)-5.5            |                                        | Lab ID:                                       | 196066-007            |
| Type:                                                                                                                   | SAMPLE                  |                                        | Cleanup Method:                               | EPA 3665A             |
| 7001                                                                                                                    |                         | Result                                 | RL                                            |                       |
| Anal<br>Aroclor-1016                                                                                                    | yle                     | ND Result                              | <u></u> 9.                                    | 5                     |
| Aroclor-1221                                                                                                            |                         | ND                                     | 19                                            |                       |
| Aroclor-1232                                                                                                            |                         | ND                                     | 9.                                            | 5                     |
| Aroclor-1242                                                                                                            |                         | ND                                     | 9.                                            | 5                     |
| Aroclor-1248                                                                                                            |                         | ND                                     | 9.                                            | 5                     |
| Aroclor-1254                                                                                                            |                         | ND                                     | 9.                                            |                       |
| Aroclor-1260                                                                                                            |                         | ND                                     | 9.                                            | 5                     |
| Surro                                                                                                                   | gate                    | %REC Limits                            |                                               |                       |
| TCMX                                                                                                                    | _                       | 92 63-141                              |                                               |                       |
| Decachlorobiphe                                                                                                         | nyl                     | 83 50-158                              |                                               |                       |
|                                                                                                                         |                         |                                        |                                               |                       |
|                                                                                                                         |                         |                                        |                                               |                       |
| Field ID:                                                                                                               | SS-31(A)-10.5           |                                        | Lab ID:                                       | 196066-008            |
| Type:                                                                                                                   | SAMPLE                  |                                        | Cleanup Method:                               | EPA 3665A             |
|                                                                                                                         |                         |                                        |                                               |                       |
| Anal<br>Aroclor-1016                                                                                                    | yte                     | Result<br>ND                           | <u>RL</u><br>9.                               | 5                     |
| Aroclor-1221                                                                                                            |                         | ND                                     | 19.                                           | 5                     |
| Aroclor-1232                                                                                                            |                         | ND                                     | 9.                                            | 5                     |
| Aroclor-1242                                                                                                            |                         | ND                                     | 9.                                            | 5                     |
| Aroclor-1248                                                                                                            |                         | ND                                     | 9.                                            | 5                     |
| Aroclor-1254                                                                                                            |                         | ND                                     | 9.                                            |                       |
| Aroclor-1260                                                                                                            |                         | ND                                     | 9.                                            | 5                     |
| Surro                                                                                                                   | gate                    | %REC Limits                            |                                               |                       |
| TCMX                                                                                                                    |                         | 104 63-141                             |                                               |                       |
| Decachlorobiphe                                                                                                         | nyl                     | 100 50-158                             |                                               |                       |
|                                                                                                                         |                         |                                        |                                               |                       |
|                                                                                                                         |                         |                                        |                                               |                       |
|                                                                                                                         |                         |                                        |                                               |                       |
| Type:                                                                                                                   | BLANK                   |                                        | Cleanup Method:                               | EPA 3665A             |
| Type:<br>Lab ID:                                                                                                        | BLANK<br>QC397061       |                                        | Cleanup Method:                               | EPA 3665A             |
| Lab ID:                                                                                                                 | QC397061                | D1-                                    |                                               | EPA 3665A             |
| Lab ID:<br>Anal                                                                                                         | QC397061                | Result                                 | RL                                            |                       |
| Lab ID:<br>Anal<br>Aroclor-1016                                                                                         | QC397061                | ND                                     | <b>RL</b><br>9.                               |                       |
| Lab ID:<br>Anal                                                                                                         | QC397061                | ND<br>ND                               | <b>RL</b><br>9.<br>19                         | 6                     |
| Lab ID:<br>Aroclor-1016<br>Aroclor-1221                                                                                 | QC397061                | ND                                     | <b>RL</b><br>9.<br>19<br>9.                   | 6                     |
| Lab ID:<br>Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248                                 | QC397061                | ND<br>ND<br>ND                         | <b>RL</b><br>9.<br>19<br>9.<br>9.<br>9.<br>9. | 6<br>6<br>6<br>6      |
| Lab ID:<br>Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254                 | QC397061                | ND<br>ND<br>ND<br>ND<br>ND<br>ND       | RL<br>9.<br>19<br>9.<br>9.<br>9.<br>9.        | 6<br>6<br>6<br>6<br>6 |
| Lab ID:<br>Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248                                 | QC397061                | ND<br>ND<br>ND<br>ND<br>ND             | <b>RL</b><br>9.<br>19<br>9.<br>9.<br>9.<br>9. | 6<br>6<br>6<br>6<br>6 |
| Lab ID:<br>Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260 | QC397061<br><b>yte</b>  | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | RL<br>9.<br>19<br>9.<br>9.<br>9.<br>9.        | 6<br>6<br>6<br>6<br>6 |
| Lab ID:<br>Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254                 | QC397061<br>yte<br>gate | ND<br>ND<br>ND<br>ND<br>ND<br>ND       | RL<br>9.<br>19<br>9.<br>9.<br>9.<br>9.        | 6<br>6<br>6<br>6<br>6 |

ND= Not Detected RL= Reporting Limit Page 1 of 1



|           | Polychlorinated   | Biphenyls (PC | Bs)          |
|-----------|-------------------|---------------|--------------|
| Lab #:    | 196066            | Location:     | Hanson Radum |
| Client:   | LFR Levine Fricke | Prep:         | EPA 3550B    |
| Project#: | 001-09567-01      | Analysis:     | EPA 8082     |
| Туре:     | LCS               | Diln Fac:     | 1.000        |
| Lab ID:   | QC397069          | Batch#:       | 127426       |
| Matrix:   | Soil              | Prepared:     | 07/19/07     |
| Units:    | ug/Kg             | Analyzed:     | 07/21/07     |
| Basis:    | as received       |               |              |

Cleanup Method: EPA 3665A

| Analyte      | Spiked | Result | %REC | Limits |
|--------------|--------|--------|------|--------|
| Aroclor-1232 | 166.3  | 171.5  | 103  | 68-138 |
|              |        |        |      |        |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 101  | 63-141 |
| Decachlorobiphenyl | 88   | 50-158 |



|             | Polychlorinated   | Biphenyls (PC | Bs)          |
|-------------|-------------------|---------------|--------------|
| Lab #:      | 196066            | Location:     | Hanson Radum |
| Client:     | LFR Levine Fricke | Prep:         | EPA 3550B    |
| Project#:   | 001-09567-01      | Analysis:     | EPA 8082     |
| Field ID:   | SS-31(A)-5.5      | Batch#:       | 127426       |
| MSS Lab ID: | 196066-007        | Sampled:      | 07/18/07     |
| Matrix:     | Soil              | Received:     | 07/19/07     |
| Units:      | ug/Kg             | Prepared:     | 07/19/07     |
| Basis:      | as received       | Analyzed:     | 07/21/07     |
| Diln Fac:   | 1.000             |               |              |

Type: MS Lab ID: QC3

Decachlorobiphenyl

QC397070

Cleanup Method: EPA 3665A

| Analyte      | MSS Result | Spiked | Result | %REC | Limits |
|--------------|------------|--------|--------|------|--------|
| Aroclor-1232 | <1.312     | 166.2  | 194.6  | 117  | 72-140 |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 112  | 63-141 |
| Decachlorobiphenyl | 103  | 50-158 |

| Type:<br>Lab ID: | MSD<br>QC397071 |      |        | Cleanup Method: EPA 36 | 65A  |        |     |     |
|------------------|-----------------|------|--------|------------------------|------|--------|-----|-----|
|                  | Analyte         |      | Spiked | Result                 | %REC | Limits | RPD | Lim |
| Aroclor-123      | 32              |      | 166.3  | 180.3                  | 108  | 72-140 | 8   | 27  |
| S                | Surrogate       | %REC | Limits |                        |      |        |     |     |
| TCMX             |                 | 99   | 63-141 |                        |      |        |     |     |

50-158

98



|                      |                | Califor           | nia Ti | tle 26 M                 | letals   |                          |                        |
|----------------------|----------------|-------------------|--------|--------------------------|----------|--------------------------|------------------------|
| Lab #:               | 196066         |                   | ]      | Project#:                | 0.0      | 1-09567-01               |                        |
| Client:              | LFR Levine Fri | cke               | ]      | Location:                | Ha       | nson Radum               |                        |
| Field ID:            | SS-31(A)-5.5   |                   | ]      | Basis:                   | as       | received                 |                        |
| Lab ID:              | 196066-007     |                   | ]      | Diln Fac:                | 1.       | 000                      |                        |
| Matrix:              | Soil           |                   | :      | Sampled:                 | 07       | /18/07                   |                        |
| Units:               | mg/Kg          |                   | ]      | Received:                | 07       | /19/07                   |                        |
| Ame Justic           | Degult         | DT                | Dotab# | Duamanad                 | Amelanad | Dreem                    | Ame looging            |
| Analyte              | Result<br>0.95 | <b>RL</b><br>0.50 |        | <b>Prepared</b> 07/19/07 |          | <b>Prep</b><br>EPA 3050B | Analysis<br>EPA 6010B  |
| Antimony<br>Arsenic  | 8.3            | 0.25              |        | 07/19/07                 |          | EPA 3050B<br>EPA 3050B   | EPA 6010B<br>EPA 6010B |
| Barium               | 8.3<br>260     | 0.25              | _      | 07/19/07                 | - , -, - | EPA 3050B<br>EPA 3050B   | EPA 6010B<br>EPA 6010B |
|                      | 260            | 0.25              | _      | - , -, -                 | - , -, - | EPA 3050B<br>EPA 3050B   | EPA 6010B<br>EPA 6010B |
| Beryllium<br>Cadmium | 0.41<br>ND     | 0.10              |        | 07/19/07<br>07/19/07     |          | EPA 3050B<br>EPA 3050B   | EPA 6010B<br>EPA 6010B |
| Chromium             | 27             | 0.25              | _      | 07/19/07                 | - , -, - | EPA 3050B<br>EPA 3050B   | EPA 6010B              |
| Cobalt               | 9.8            | 0.25              |        | 07/19/07                 |          | EPA 3050B<br>EPA 3050B   | EPA 6010B<br>EPA 6010B |
|                      | 35             | 0.25              |        | 07/19/07                 |          | EPA 3050B<br>EPA 3050B   | EPA 6010B<br>EPA 6010B |
| Copper<br>Lead       | 6.9            | 0.25              | _      | 07/19/07                 | - , -, - | EPA 3050B<br>EPA 3050B   | EPA 6010B              |
| Mercury              | 0.13           | 0.15              | _      | 07/23/07                 | - , -, - | METHOD                   | EPA 7471A              |
| Molybdenum           | ND U.13        | 0.020             |        | 07/19/07                 | - , -, - | EPA 3050B                | EPA 6010B              |
| Nickel               | 40             | 0.25              |        | 07/19/07                 |          | EPA 3050B                | EPA 6010B              |
| Selenium             | 40<br>ND       | 0.25              | _      | 07/19/07                 |          | EPA 3050B<br>EPA 3050B   | EPA 6010B              |
| Silver               | ND<br>ND       | 0.50              | _      | 07/19/07                 | - , -, - | EPA 3050B<br>EPA 3050B   | EPA 6010B<br>EPA 6010B |
| Thallium             | ND             | 0.25              |        | 07/19/07                 |          | EPA 3050B<br>EPA 3050B   | EPA 6010B              |
|                      |                |                   | _      | - , -, -                 |          |                          |                        |
| Vanadium<br>Zinc     | 39<br>46       | 0.25<br>1.0       | -      | 07/19/07<br>07/19/07     | - , -, - | EPA 3050B<br>EPA 3050B   | EPA 6010B<br>EPA 6010B |



|            |                 | Califor | nia Title 26 M  | fetals             |           |
|------------|-----------------|---------|-----------------|--------------------|-----------|
| Lab #:     | 196066          |         | Project#:       | 001-09567-01       |           |
| Client:    | LFR Levine Fric | cke     | Location:       | Hanson Radum       |           |
| Field ID:  | SS-31(A)-10.5   |         | Basis:          | as received        |           |
| Lab ID:    | 196066-008      |         | Diln Fac:       | 1.000              |           |
| Matrix:    | Soil            |         | Sampled:        | 07/18/07           |           |
| Units:     | mg/Kg           |         | Received:       | 07/19/07           |           |
|            |                 |         |                 |                    |           |
| Analyte    | Result          | RL      | Batch# Prepared |                    | Analysis  |
| Antimony   | 1.6             | 0.50    | 127437 07/19/07 | 07/23/07 EPA 3050B | EPA 6010B |
| Arsenic    | 5.5             | 0.25    | 127437 07/19/07 | 07/20/07 EPA 3050B | EPA 6010B |
| Barium     | 170             | 0.25    | 127437 07/19/07 | 07/20/07 EPA 3050B | EPA 6010B |
| Beryllium  | 0.48            | 0.10    | 127437 07/19/07 | 07/20/07 EPA 3050B | EPA 6010B |
| Cadmium    | ND              | 0.25    | 127437 07/19/07 | 07/20/07 EPA 3050B | EPA 6010B |
| Chromium   | 72              | 0.25    | 127437 07/19/07 | 07/20/07 EPA 3050B | EPA 6010B |
| Cobalt     | 15              | 0.25    | 127437 07/19/07 | 07/20/07 EPA 3050B | EPA 6010B |
| Copper     | 46              | 0.25    | 127437 07/19/07 | 07/20/07 EPA 3050B | EPA 6010B |
| Lead       | 10              | 0.15    | 127437 07/19/07 | 07/20/07 EPA 3050B | EPA 6010B |
| Mercury    | 0.055           | 0.020   | 127507 07/23/07 | 07/23/07 METHOD    | EPA 7471A |
| Molybdenum | 0.41            | 0.25    | 127437 07/19/07 | 07/23/07 EPA 3050B | EPA 6010B |
| Nickel     | 100             | 0.25    | 127437 07/19/07 | 07/20/07 EPA 3050B | EPA 6010B |
| Selenium   | ND              | 0.50    | 127437 07/19/07 | 07/20/07 EPA 3050B | EPA 6010B |
| Silver     | ND              | 0.25    | 127437 07/19/07 | 07/20/07 EPA 3050B | EPA 6010B |
| Thallium   | ND              | 0.50    | 127437 07/19/07 | 07/20/07 EPA 3050B | EPA 6010B |
| Vanadium   | 35              | 0.25    | 127437 07/19/07 | 07/20/07 EPA 3050B | EPA 6010B |
| Zinc       | 70              | 1.0     | 127437 07/19/07 | 07/20/07 EPA 3050B | EPA 6010B |



|           | California Title 26 Metals |           |              |  |  |  |
|-----------|----------------------------|-----------|--------------|--|--|--|
| Lab #:    | 196066                     | Location: | Hanson Radum |  |  |  |
| Client:   | LFR Levine Fricke          | Prep:     | EPA 3050B    |  |  |  |
| Project#: | 001-09567-01               | Analysis: | EPA 6010B    |  |  |  |
| Type:     | BLANK                      | Diln Fac: | 1.000        |  |  |  |
| Lab ID:   | QC397087                   | Batch#:   | 127437       |  |  |  |
| Matrix:   | Soil                       | Prepared: | 07/19/07     |  |  |  |
| Units:    | mg/Kg                      | Analyzed: | 07/20/07     |  |  |  |
| Basis:    | as received                |           |              |  |  |  |

| Analyte    | Result | RL   |  |
|------------|--------|------|--|
| Antimony   | ND     | 0.50 |  |
| Arsenic    | ND     | 0.25 |  |
| Barium     | ND     | 0.25 |  |
| Beryllium  | ND     | 0.10 |  |
| Cadmium    | ND     | 0.25 |  |
| Chromium   | ND     | 0.25 |  |
| Cobalt     | ND     | 0.25 |  |
| Copper     | ND     | 0.25 |  |
| Lead       | ND     | 0.15 |  |
| Molybdenum | ND     | 0.25 |  |
| Nickel     | ND     | 0.25 |  |
| Selenium   | ND     | 0.50 |  |
| Silver     | ND     | 0.25 |  |
| Thallium   | ND     | 0.50 |  |
| Vanadium   | ND     | 0.25 |  |
| Zinc       | ND     | 1.0  |  |



| California Title 26 Metals               |                                             |                                   |                                        |  |  |
|------------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|--|--|
| Lab #:<br>Client:<br>Project#:           | 196066<br>LFR Levine Fricke<br>001-09567-01 | Location:<br>Prep:<br>Analysis:   | Hanson Radum<br>EPA 3050B<br>EPA 6010B |  |  |
| Matrix:<br>Units:<br>Basis:<br>Diln Fac: | Soil<br>mg/Kg<br>as received<br>1.000       | Batch#:<br>Prepared:<br>Analyzed: | 127437<br>07/19/07<br>07/20/07         |  |  |

| Type: BS   | Lab ID: | QC3970 | 88   |        |
|------------|---------|--------|------|--------|
| Analyte    | Spiked  | Result | %REC | Limits |
| Antimony   | 100.0   | 98.52  | 99   | 80-120 |
| Arsenic    | 50.00   | 48.81  | 98   | 80-120 |
| Barium     | 100.0   | 97.46  | 97   | 80-120 |
| Beryllium  | 2.500   | 2.537  | 101  | 80-120 |
| Cadmium    | 10.00   | 9.926  | 99   | 80-120 |
| Chromium   | 100.0   | 94.68  | 95   | 80-120 |
| Cobalt     | 25.00   | 23.33  | 93   | 80-120 |
| Copper     | 12.50   | 11.71  | 94   | 80-120 |
| Lead       | 100.0   | 95.09  | 95   | 80-120 |
| Molybdenum | 20.00   | 20.14  | 101  | 80-120 |
| Nickel     | 25.00   | 23.60  | 94   | 80-120 |
| Selenium   | 50.00   | 49.81  | 100  | 80-120 |
| Silver     | 10.00   | 9.384  | 94   | 80-120 |
| Thallium   | 50.00   | 48.48  | 97   | 80-120 |
| Vanadium   | 25.00   | 23.82  | 95   | 80-120 |
| Zinc       | 25.00   | 24.25  | 97   | 80-120 |

| Type:      | BSD     | Lab ID: | QC397  | 089  |        |     |     |
|------------|---------|---------|--------|------|--------|-----|-----|
|            | Analyte | Spiked  | Result | %REC | Limits | RPD | Lim |
| Antimony   |         | 100.0   | 98.48  | 98   | 80-120 | 0   | 20  |
| Arsenic    |         | 50.00   | 48.73  | 97   | 80-120 | 0   | 20  |
| Barium     |         | 100.0   | 97.53  | 98   | 80-120 | 0   | 20  |
| Beryllium  |         | 2.500   | 2.549  | 102  | 80-120 | 0   | 20  |
| Cadmium    |         | 10.00   | 9.973  | 100  | 80-120 | 0   | 20  |
| Chromium   |         | 100.0   | 95.13  | 95   | 80-120 | 0   | 20  |
| Cobalt     |         | 25.00   | 23.35  | 93   | 80-120 | 0   | 20  |
| Copper     |         | 12.50   | 11.77  | 94   | 80-120 | 0   | 20  |
| Lead       |         | 100.0   | 95.52  | 96   | 80-120 | 0   | 20  |
| Molybdenum |         | 20.00   | 20.31  | 102  | 80-120 | 1   | 20  |
| Nickel     |         | 25.00   | 23.61  | 94   | 80-120 | 0   | 20  |
| Selenium   |         | 50.00   | 49.69  | 99   | 80-120 | 0   | 20  |
| Silver     |         | 10.00   | 9.388  | 94   | 80-120 | 0   | 20  |
| Thallium   |         | 50.00   | 48.21  | 96   | 80-120 | 1   | 20  |
| Vanadium   |         | 25.00   | 23.93  | 96   | 80-120 | 0   | 20  |
| Zinc       |         | 25.00   | 24.46  | 98   | 80-120 | 1   | 20  |



| California Title 26 Metals |                   |           |              |  |  |
|----------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                     | 196066            | Location: | Hanson Radum |  |  |
| Client:                    | LFR Levine Fricke | Prep:     | EPA 3050B    |  |  |
| Project#:                  | 001-09567-01      | Analysis: | EPA 6010B    |  |  |
| Field ID:                  | ZZZZZZZZZZ        | Batch#:   | 127437       |  |  |
| MSS Lab ID:                | 196071-001        | Sampled:  | 07/17/07     |  |  |
| Matrix:                    | Soil              | Received: | 07/19/07     |  |  |
| Units:                     | mg/Kg             | Prepared: | 07/19/07     |  |  |
| Basis:                     | as received       | Analyzed: | 07/20/07     |  |  |
| Diln Fac:                  | 1.000             | -         |              |  |  |

| Туре:      | MS          | Lab ID:   | QC397090  |            |      |
|------------|-------------|-----------|-----------|------------|------|
| Analyte    | e MSS Resul | t Spiked  | Result    |            | mits |
| Antimony   | <0.02       | 455 99.01 | 96.84     | 98 1-      | 129  |
| Arsenic    | 0.12        | 49 49.50  | 48.42     | 98 72      | -120 |
| Barium     | 2.48        | 4 99.01   | 98.97     | 97 49      | -138 |
| Beryllium  | 4.81        | 8 2.475   | 7.589     | 112 80     | -120 |
| Cadmium    | 1,062       | 9.901     | 1,039 >LR | -233 NM 72 | -120 |
| Chromium   | 1,630       | 99.01     | 1,733 >LR | 104 NM 63  | -122 |
| Cobalt     | 1.63        | 3 24.75   | 25.77     | 98 61      | -120 |
| Copper     | 3,152       | 12.38     | 3,154 >LR | 16 NM 59   | -137 |
| Lead       | 86.85       | 99.01     | 186.3     | 100 55     | -122 |
| Molybdenum | 4.90        | 8 19.80   | 24.63     |            | -120 |
| Nicĥel     | 1,192       | 24.75     | 1,214 >LR | 88 NM 45   | -139 |
| Selenium   | 0.20        | 42 49.50  | 49.17     | 99 73      | -120 |
| Silver     | 0.47        | 76 9.901  | 10.04     | 97 53      | -120 |
| Thallium   | 0.21        | 31 49.50  | 46.45     | 93 64      | -120 |
| Vanadium   | <0.01       | 889 24.75 | 20.30     | 82 55      | -139 |
| Zinc       | 1,941       | 24.75     | 1,917 >LR | -98 NM 49  | -140 |

| Туре:      | MSD    | La     | ab ID:  | QC397091   |        |     |     |
|------------|--------|--------|---------|------------|--------|-----|-----|
| A          | nalyte | Spiked | Result  | %REC       | Limits | RPD | Lim |
| Antimony   |        | 98.04  | 95.4    |            | 1-129  | 0   | 23  |
| Arsenic    |        | 49.02  | 47.7    | 4 97       | 72-120 | 0   | 20  |
| Barium     |        | 98.04  | 96.0    | 95         | 49-138 | 2   | 23  |
| Beryllium  |        | 2.451  | 7.3     | 104        | 80-120 | 3   | 20  |
| Cadmium    |        | 9.804  | 1,019 > | LR -445 NM | 72-120 | NC  | 20  |
| Chromium   |        | 98.04  | 1,679 > | LR 50 NM   | 63-122 | NC  | 20  |
| Cobalt     |        | 24.51  | 25.2    | 23 96      | 61-120 | 1   | 23  |
| Copper     |        | 12.25  | 3,086 > | LR -543 NM | 59-137 | NC  | 20  |
| Lead       |        | 98.04  | 182.0   | 97         | 55-122 | 2   | 26  |
| Molybdenum |        | 19.61  | 24.2    | 20 98      | 66-120 | 1   | 20  |
| Nickel     |        | 24.51  | 1,176 > | LR -63 NM  | 45-139 | NC  | 26  |
| Selenium   |        | 49.02  | 48.4    | 8 98       | 73-120 | 0   | 20  |
| Silver     |        | 9.804  | 9.8     | 95         | 53-120 | 1   | 22  |
| Thallium   |        | 49.02  | 45.7    | 6 93       | 64-120 | 1   | 20  |
| Vanadium   |        | 24.51  | 19.8    | 84 81      | 55-139 | 1   | 20  |
| Zinc       |        | 24.51  |         | -321 NM    | 49-140 | NC  | 23  |

NC= Not Calculated NM= Not Meaningful: Sample concentration > 4X spike concentration >LR= Response exceeds instrument's linear range RPD= Relative Percent Difference Page 1 of 1



| California Title 26 Metals |                   |           |              |  |  |
|----------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                     | 196066            | Location: | Hanson Radum |  |  |
| Client:                    | LFR Levine Fricke | Prep:     | METHOD       |  |  |
| Project#:                  | 001-09567-01      | Analysis: | EPA 7471A    |  |  |
| Analyte:                   | Mercury           | Basis:    | as received  |  |  |
| Type:                      | BLANK             | Diln Fac: | 1.000        |  |  |
| Lab ID:                    | QC397433          | Batch#:   | 127507       |  |  |
| Matrix:                    | Soil              | Prepared: | 07/23/07     |  |  |
| Units:                     | mg/Kg             | Analyzed: | 07/23/07     |  |  |
|                            |                   |           |              |  |  |
| Result                     | RL                |           |              |  |  |

| Result | RL    |  |
|--------|-------|--|
| ND     | 0.020 |  |

ND= Not Detected RL= Reporting Limit Page 1 of 1



| California Title 26 Metals |                   |           |              |  |  |
|----------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                     | 196066            | Location: | Hanson Radum |  |  |
| Client:                    | LFR Levine Fricke | Prep:     | METHOD       |  |  |
| Project#:                  | 001-09567-01      | Analysis: | EPA 7471A    |  |  |
| Analyte:                   | Mercury           | Diln Fac: | 1.000        |  |  |
| Matrix:                    | Soil              | Batch#:   | 127507       |  |  |
| Units:                     | mg/Kg             | Prepared: | 07/23/07     |  |  |
| Basis:                     | as received       | Analyzed: | 07/23/07     |  |  |
|                            |                   |           |              |  |  |

| Туре | Lab ID   | Spiked | Result | %REC | Limits | RPD | Lim |
|------|----------|--------|--------|------|--------|-----|-----|
| BS   | QC397434 | 0.5000 | 0.5220 | 104  | 80-120 |     |     |
| BSD  | QC397435 | 0.5000 | 0.5080 | 102  | 80-120 | 3   | 20  |



QC397438

MSD

| Lab #:      | 196066            | ornia Title 26 M |        | on Radum |        |     |     |
|-------------|-------------------|------------------|--------|----------|--------|-----|-----|
| Client:     |                   |                  |        |          | 1      |     |     |
|             | LFR Levine Fricke | Prep:            | METH   | OD       |        |     |     |
| Project#:   | 001-09567-01      | Analysis:        | EPA    | 7471A    |        |     |     |
| Analyte:    | Mercury           | Diln Fac:        | 1.00   | 0        |        |     |     |
| Field ID:   | ZZZZZZZZZ         | Batch#:          | 1275   | 07       |        |     |     |
| MSS Lab ID: | 196050-001        | Sampled:         | 07/1   | 8/07     |        |     |     |
| Matrix:     | Soil              | Received:        | 07/1   | 8/07     |        |     |     |
| Units:      | mg/Kg             | Prepared:        | 07/2   | 3/07     |        |     |     |
| Basis:      | as received       | Analyzed:        | 07/2   | 3/07     |        |     |     |
|             |                   |                  |        |          |        |     |     |
| Type Lab ID | MSS Result        | Spiked           | Result | %REC     | Limits | RPD | Lim |
| MS 0C397437 | <0.005263         | 0.4098           | 0.4295 | 105      | 67-143 |     |     |

0.4032

0.4419

110

23

67-143 4



| LFR Levine Fricke    | Project : 001-09567-01  |
|----------------------|-------------------------|
| 1900 Powell Street   | Location : Hanson Radum |
| Emeryville, CA 94608 | Level : II              |

| <u>Sample ID</u> | <u>Lab ID</u> |
|------------------|---------------|
| SS-31(A)-40.5    | 196103-001    |
| SS-31(A)-50.5    | 196103-002    |
| SS-31(A)-52.5    | 196103-003    |
| SS-31(A)-60.5    | 196103-004    |
| SS-31(A)-65.5    | 196103-005    |
| SS-31(A)-GGW     | 196103-006    |
| SS-31(B)-5.5     | 196103-007    |
| SS-31(B)-10.5    | 196103-008    |
| SS-31(B)-15.5    | 196103-009    |
| SS-31(B)-20.5    | 196103-010    |
| SS-31(B)-25.5    | 196103-011    |
| SS-31(B)-30.5    | 196103-012    |
| SS-31(B)-40      | 196103-013    |
| SS-31(B)-50      | 196103-014    |
| SS-31(B)-60.5    | 196103-015    |

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Signature: Project Manager

Signature:

Operations Manager

Date: <u>07/30/200</u>7

Date: 07/30/2007

NELAP # 01107CA

Page 1 of \_\_\_\_



#### CASE NARRATIVE

Laboratory number:196103Client:LFR Levine FrickeProject:001-09567-01Location:Hanson RadumRequest Date:07/20/07Samples Received:07/20/07

This hardcopy data package contains sample and QC results for thirteen soil samples and one water sample, requested for the above referenced project on 07/20/07. The samples were received cold and intact. All data were e-mailed to Katrin Schliewen on 07/27/07.

#### TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

#### TPH-Extractables by GC (EPA 8015B) Water:

No analytical problems were encountered.

#### TPH-Extractables by GC (EPA 8015B) Soil:

No analytical problems were encountered.

#### Volatile Organics by GC/MS (EPA 8260B) Water:

No analytical problems were encountered.

#### Volatile Organics by GC/MS (EPA 8260B) Soil:

No analytical problems were encountered.



|                                                                                                                                                                                           |                                                                                                                                                                                            | Total                                                    | Volatil                                                                                      | e Hydrocarbo                           | ons                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------|
| Lab #:<br>Client:                                                                                                                                                                         | 196103<br>LFR Levine Fr                                                                                                                                                                    | icke                                                     |                                                                                              | Location:<br>Prep:                     | Hanson Radum<br>EPA 5030B                                |
| Project#:                                                                                                                                                                                 | 001-09567-01                                                                                                                                                                               | ICKE                                                     |                                                                                              | Analysis:                              | EPA 8015B                                                |
| Matrix:                                                                                                                                                                                   | Soil                                                                                                                                                                                       |                                                          |                                                                                              | Diln Fac:                              | 1.000                                                    |
| Units:                                                                                                                                                                                    | mg/Kg                                                                                                                                                                                      |                                                          |                                                                                              | Sampled                                | 07/19/07                                                 |
| Basis:                                                                                                                                                                                    | as received                                                                                                                                                                                |                                                          |                                                                                              | Received:                              | 07/20/07                                                 |
|                                                                                                                                                                                           |                                                                                                                                                                                            |                                                          |                                                                                              |                                        |                                                          |
|                                                                                                                                                                                           |                                                                                                                                                                                            |                                                          |                                                                                              | Deteb#1                                | 1 2 7 4 5 1                                              |
| Field ID:<br>Type:                                                                                                                                                                        | SS-31(A)-40.5<br>SAMPLE                                                                                                                                                                    |                                                          |                                                                                              | Batch#:<br>Analyzed:                   | 127451<br>07/20/07                                       |
| Lab ID:                                                                                                                                                                                   | 196103-001                                                                                                                                                                                 |                                                          |                                                                                              | maryzea                                | 07720707                                                 |
| 370                                                                                                                                                                                       |                                                                                                                                                                                            |                                                          | Degult                                                                                       | T                                      | ат.                                                      |
| Ana<br>Gasoline C7-C12                                                                                                                                                                    |                                                                                                                                                                                            | ND                                                       | Result                                                                                       | r                                      | 2L<br>1.0                                                |
|                                                                                                                                                                                           |                                                                                                                                                                                            | 0.DEC                                                    | T                                                                                            |                                        |                                                          |
| Trifluorotoluer                                                                                                                                                                           | ogate<br>ne (FID)                                                                                                                                                                          | %REC<br>101                                              | Limits<br>70-132                                                                             |                                        |                                                          |
| Bromofluorobenz                                                                                                                                                                           |                                                                                                                                                                                            | 101                                                      | 66-138                                                                                       |                                        |                                                          |
|                                                                                                                                                                                           |                                                                                                                                                                                            |                                                          |                                                                                              |                                        |                                                          |
|                                                                                                                                                                                           |                                                                                                                                                                                            |                                                          |                                                                                              |                                        |                                                          |
| Field ID:                                                                                                                                                                                 | SS-31(A)-50.5                                                                                                                                                                              |                                                          |                                                                                              | Batch#:                                | 127451                                                   |
| Type:                                                                                                                                                                                     | SAMPLE                                                                                                                                                                                     |                                                          |                                                                                              | Analyzed:                              | 07/20/07                                                 |
| Lab ID:                                                                                                                                                                                   | 196103-002                                                                                                                                                                                 |                                                          |                                                                                              |                                        |                                                          |
| Ana                                                                                                                                                                                       | lyte                                                                                                                                                                                       |                                                          | Result                                                                                       | F                                      | RL                                                       |
| Gasoline C7-C12                                                                                                                                                                           | 2                                                                                                                                                                                          | ND                                                       | )                                                                                            |                                        | 0.97                                                     |
|                                                                                                                                                                                           |                                                                                                                                                                                            |                                                          |                                                                                              |                                        |                                                          |
|                                                                                                                                                                                           | ogate                                                                                                                                                                                      | %REC                                                     |                                                                                              |                                        |                                                          |
| Trifluorotoluer                                                                                                                                                                           | ne (FID)                                                                                                                                                                                   | 99                                                       | 70-132                                                                                       |                                        |                                                          |
|                                                                                                                                                                                           | ne (FID)                                                                                                                                                                                   |                                                          |                                                                                              |                                        |                                                          |
| Trifluorotoluer                                                                                                                                                                           | ne (FID)                                                                                                                                                                                   | 99                                                       | 70-132                                                                                       |                                        |                                                          |
| Trifluorotoluer<br>Bromofluorobenz                                                                                                                                                        | ne (FID)<br>zene (FID)                                                                                                                                                                     | 99                                                       | 70-132                                                                                       | Dot ob# :                              | 107451                                                   |
| Trifluorotoluer<br>Bromofluorobenz<br>Field ID:                                                                                                                                           | ne (FID)<br>zene (FID)<br>SS-31(A)-52.5                                                                                                                                                    | 99                                                       | 70-132                                                                                       | Batch#:<br>Analyzed:                   | 127451<br>07/20/07                                       |
| Trifluorotoluer<br>Bromofluorobenz                                                                                                                                                        | ne (FID)<br>zene (FID)                                                                                                                                                                     | 99                                                       | 70-132                                                                                       | Batch#:<br>Analyzed:                   | 127451<br>07/20/07                                       |
| Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Lab ID:                                                                                                                       | ne (FID)<br>zene (FID)<br>SS-31(A)-52.5<br>SAMPLE<br>196103-003                                                                                                                            | 99<br>104                                                | 70-132<br>66-138                                                                             | Analyzed:                              | 07/20/07                                                 |
| Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:                                                                                                                                  | ne (FID)<br>zene (FID)<br>SS-31(A)-52.5<br>SAMPLE<br>196103-003<br>Lyte                                                                                                                    | 99<br>104                                                | 70-132<br>66-138<br>Result                                                                   | Analyzed:                              |                                                          |
| Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Lab ID:<br>Ana<br>Gasoline C7-C12                                                                                             | ne (FID)<br>zene (FID)<br>SS-31(A)-52.5<br>SAMPLE<br>196103-003<br>Lyte<br>2                                                                                                               | 99<br>104<br>ND                                          | 70-132<br>66-138<br>Result                                                                   | Analyzed:                              | 07/20/07<br>RL                                           |
| Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Lab ID:<br>Ana                                                                                                                | ne (FID)<br>zene (FID)<br>SS-31(A)-52.5<br>SAMPLE<br>196103-003<br>Lyte<br>2<br>Sgate                                                                                                      | 99<br>104                                                | 70-132<br>66-138<br>Result                                                                   | Analyzed:                              | 07/20/07<br>RL                                           |
| Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Lab ID:<br>Gasoline C7-C12                                                                                                    | ne (FID)<br>zene (FID)<br>SS-31(A)-52.5<br>SAMPLE<br>196103-003<br>Lyte<br>2<br>Dgate<br>ne (FID)                                                                                          | 99<br>104<br>ND<br>%REC                                  | 70-132<br>66-138<br>Result                                                                   | Analyzed:                              | 07/20/07<br>RL                                           |
| Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Lab ID:<br>Gasoline C7-C12<br>Surro<br>Trifluorotoluer                                                                        | ne (FID)<br>zene (FID)<br>SS-31(A)-52.5<br>SAMPLE<br>196103-003<br>Lyte<br>2<br>Dgate<br>ne (FID)                                                                                          | 99<br>104<br>NE<br><b>%REC</b><br>87                     | 70-132<br>66-138<br>Result                                                                   | Analyzed:                              | 07/20/07<br>RL                                           |
| Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Lab ID:<br>Gasoline C7-C12<br>Trifluorotoluer<br>Bromofluorobenz                                                              | ne (FID)<br>zene (FID)<br>SS-31(A)-52.5<br>SAMPLE<br>196103-003<br>Lyte<br>2<br>Dgate<br>ne (FID)                                                                                          | 99<br>104<br>NE<br><b>%REC</b><br>87                     | 70-132<br>66-138<br>Result                                                                   | Analyzed:                              | 07/20/07<br>RL<br>0.99                                   |
| Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Lab ID:<br>Casoline C7-C12<br>Trifluorotoluer<br>Bromofluorobenz<br>Field ID:                                                 | ne (FID)<br>zene (FID)<br>SS-31(A)-52.5<br>SAMPLE<br>196103-003<br>Lyte<br>2<br>Dgate<br>ne (FID)<br>zene (FID)<br>SS-31(A)-60.5                                                           | 99<br>104<br>NE<br><b>%REC</b><br>87                     | 70-132<br>66-138<br>Result                                                                   | Analyzed:<br>F<br>Batch#:              | 07/20/07<br><b>RL</b><br>0.99<br>127451                  |
| Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Lab ID:<br>Gasoline C7-C12<br>Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:                                        | ne (FID)<br>zene (FID)<br>SS-31(A)-52.5<br>SAMPLE<br>196103-003<br>Lyte<br>2<br>Dgate<br>ne (FID)<br>zene (FID)<br>SS-31(A)-60.5<br>SAMPLE                                                 | 99<br>104<br>NE<br><b>%REC</b><br>87                     | 70-132<br>66-138<br>Result                                                                   | Analyzed:                              | 07/20/07<br>RL<br>0.99                                   |
| Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Lab ID:<br>Casoline C7-C12<br>Trifluorotoluer<br>Bromofluorobenz<br>Field ID:                                                 | ne (FID)<br>zene (FID)<br>SS-31(A)-52.5<br>SAMPLE<br>196103-003<br>Lyte<br>2<br>Dgate<br>ne (FID)<br>zene (FID)<br>SS-31(A)-60.5                                                           | 99<br>104<br>NE<br><b>%REC</b><br>87                     | 70-132<br>66-138<br>Result                                                                   | Analyzed:<br>F<br>Batch#:              | 07/20/07<br><b>RL</b><br>0.99<br>127451                  |
| Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Lab ID:<br>Gasoline C7-C12<br>Surro<br>Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Lab ID:<br>Ana             | ne (FID)<br>zene (FID)<br>SS-31(A)-52.5<br>SAMPLE<br>196103-003<br>Lyte<br>2<br>Dgate<br>ne (FID)<br>zene (FID)<br>SS-31(A)-60.5<br>SAMPLE<br>196103-004<br>Lyte                           | 99<br>104<br>ND<br><b>%REC</b><br>87<br>95               | 70-132<br>66-138<br><b>Result</b><br>0<br><b>Limits</b><br>70-132<br>66-138<br><b>Result</b> | Analyzed:<br>F<br>Batch#:<br>Analyzed: | 07/20/07<br><b>EL</b><br>127451<br>07/20/07<br><b>EL</b> |
| Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Lab ID:<br>Gasoline C7-C12<br>Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Lab ID:                             | ne (FID)<br>zene (FID)<br>SS-31(A)-52.5<br>SAMPLE<br>196103-003<br>Lyte<br>2<br>Dgate<br>ne (FID)<br>zene (FID)<br>SS-31(A)-60.5<br>SAMPLE<br>196103-004<br>Lyte                           | 99<br>104<br>ND<br><b>%REC</b><br>87<br>95               | 70-132<br>66-138<br><b>Result</b><br>0<br><b>Limits</b><br>70-132<br>66-138<br><b>Result</b> | Analyzed:<br>F<br>Batch#:<br>Analyzed: | 07/20/07<br><b>EL</b><br>0.99<br>127451<br>07/20/07      |
| Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Lab ID:<br>Casoline C7-C12<br>Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Lab ID:<br>Casoline C7-C12<br>Surro | ne (FID)<br>zene (FID)<br>SS-31(A)-52.5<br>SAMPLE<br>196103-003<br>Lyte<br>2<br>Dgate<br>ne (FID)<br>zene (FID)<br>SS-31(A)-60.5<br>SAMPLE<br>196103-004<br>Lyte<br>2<br>Dgate             | 99<br>104<br>ND<br><b>%REC</b><br>87<br>95<br>ND<br>%REC | 70-132<br>66-138<br><b>Result</b><br>70-132<br>66-138<br><b>Result</b><br><b>Limits</b>      | Analyzed:<br>F<br>Batch#:<br>Analyzed: | 07/20/07<br><b>EL</b><br>127451<br>07/20/07<br><b>EL</b> |
| Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Lab ID:<br>Gasoline C7-C12<br>Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Lab ID:<br>Maa<br>Gasoline C7-C12   | ne (FID)<br>zene (FID)<br>SS-31(A)-52.5<br>SAMPLE<br>196103-003<br>Lyte<br>2<br>Dgate<br>ne (FID)<br>zene (FID)<br>SS-31(A)-60.5<br>SAMPLE<br>196103-004<br>Lyte<br>2<br>Dgate<br>ne (FID) | 99<br>104<br>ND<br><b>%REC</b><br>87<br>95               | 70-132<br>66-138<br><b>Result</b><br>70-132<br>66-138<br><b>Result</b>                       | Analyzed:<br>F<br>Batch#:<br>Analyzed: | 07/20/07<br><b>EL</b><br>127451<br>07/20/07<br><b>EL</b> |



|                                                                                                                                                                                                                                                                  | Total                                                                       | Volatil                                                                           | e Hydrocarbo                           | ons                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| Lab #: 196103<br>Client: LFR Levine F                                                                                                                                                                                                                            | riako                                                                       |                                                                                   | Location:<br>Prep:                     | Hanson Radum<br>EPA 5030B                                    |
| Project#: 001-09567-01                                                                                                                                                                                                                                           | LICKE                                                                       |                                                                                   | Analysis:                              | EPA 8015B                                                    |
| Matrix: Soil                                                                                                                                                                                                                                                     |                                                                             |                                                                                   | Diln Fac:                              | 1.000                                                        |
| Units: mg/Kg                                                                                                                                                                                                                                                     |                                                                             |                                                                                   | Sampled:                               | 07/19/07                                                     |
| Basis: as received                                                                                                                                                                                                                                               |                                                                             |                                                                                   | Received:                              | 07/20/07                                                     |
| Field ID: SS-31(B)-5.5<br>Type: SAMPLE                                                                                                                                                                                                                           |                                                                             |                                                                                   | Batch#:<br>Analyzed:                   | 127451<br>07/21/07                                           |
| Lab ID: 196103-007                                                                                                                                                                                                                                               |                                                                             |                                                                                   |                                        |                                                              |
| Analyte                                                                                                                                                                                                                                                          |                                                                             | Result                                                                            | R                                      | T.                                                           |
| Gasoline C7-C12                                                                                                                                                                                                                                                  | NE                                                                          |                                                                                   | K                                      | 1.0                                                          |
|                                                                                                                                                                                                                                                                  | <b>A</b>                                                                    |                                                                                   |                                        |                                                              |
| Surrogate                                                                                                                                                                                                                                                        | %REC<br>92                                                                  | Limits<br>70-132                                                                  |                                        |                                                              |
| Trifluorotoluene (FID)<br>Bromofluorobenzene (FID)                                                                                                                                                                                                               | 92<br>101                                                                   | 70-132<br>66-138                                                                  |                                        |                                                              |
| Field ID: SS-31(B)-10.5<br>Type: SAMPLE<br>Lab ID: 196103-008                                                                                                                                                                                                    |                                                                             |                                                                                   | Batch#:<br>Analyzed:                   | 127451<br>07/21/07                                           |
| Analyte                                                                                                                                                                                                                                                          |                                                                             | Result                                                                            | R                                      | L                                                            |
|                                                                                                                                                                                                                                                                  |                                                                             |                                                                                   |                                        |                                                              |
| Gasoline C7-C12                                                                                                                                                                                                                                                  | NE                                                                          | )                                                                                 |                                        | 0.99                                                         |
|                                                                                                                                                                                                                                                                  |                                                                             |                                                                                   |                                        | 0.99                                                         |
| Surrogate                                                                                                                                                                                                                                                        | NL<br>%REC<br>100                                                           |                                                                                   |                                        | 0.99                                                         |
|                                                                                                                                                                                                                                                                  | %REC                                                                        | Limits                                                                            |                                        | 0.99                                                         |
| Surrogate<br>Trifluorotoluene (FID)                                                                                                                                                                                                                              | <b>%REC</b><br>100                                                          | <b>Limits</b><br>70-132                                                           | Batch#:<br>Analyzed:                   | 0.99<br>127451<br>07/21/07                                   |
| SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-15.5Type:Lab ID:196103-009Analyte                                                                                                                                                       | %REC<br>100<br>106                                                          | Limits<br>70-132<br>66-138<br>Result                                              | Analyzed:                              | 127451<br>07/21/07<br>L                                      |
| SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-15.5Type:SAMPLELab ID:196103-009                                                                                                                                                        | %REC<br>100<br>106                                                          | Limits<br>70-132<br>66-138<br>Result                                              | Analyzed:                              | 127451<br>07/21/07                                           |
| Surrogate         Trifluorotoluene (FID)         Bromofluorobenzene (FID)         Field ID:       SS-31(B)-15.5         Type:       SAMPLE         Lab ID:       196103-009         Analyte         Gasoline C7-C12         Surrogate                            | %REC<br>100<br>106                                                          | Limits<br>70-132<br>66-138<br>Result                                              | Analyzed:                              | 127451<br>07/21/07<br>L                                      |
| SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-15.5Type:SAMPLELab ID:196103-009AnalyteGasoline C7-C12SurrogateTrifluorotoluene (FID)                                                                                                   | %REC<br>100<br>106<br>NI<br>NI<br>%REC<br>98                                | Limits<br>70-132<br>66-138<br>Result                                              | Analyzed:                              | 127451<br>07/21/07<br>L                                      |
| Surrogate         Trifluorotoluene (FID)         Bromofluorobenzene (FID)         Field ID:       SS-31(B)-15.5         Type:       SAMPLE         Lab ID:       196103-009         Analyte         Gasoline C7-C12         Surrogate                            | %REC<br>100<br>106<br>NI<br>%REC                                            | Limits<br>70-132<br>66-138<br>Result                                              | Analyzed:                              | 127451<br>07/21/07<br>L                                      |
| SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-15.5Type:SAMPLELab ID:196103-009AnalyteGasoline C7-C12SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-20.5Type:SAMPLELab ID:196103-010 | %REC           100           106                                            | Limits<br>70-132<br>66-138<br><b>Result</b><br>70-132<br>66-138                   | Analyzed:<br>R<br>Batch#:<br>Analyzed: | 127451<br>07/21/07<br><b>L</b><br>0.96<br>127451<br>07/21/07 |
| SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-15.5Type:SAMPLELab ID:196103-009AnalyteGasoline C7-C12SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-20.5Type:SAMPLELab ID:196103-010 | %REC         100         106         NI         %REC         98         106 | Limits<br>70-132<br>66-138<br>Result<br>D<br>Limits<br>70-132<br>66-138<br>Result | Analyzed:<br>R<br>Batch#:<br>Analyzed: | 127451<br>07/21/07<br>L<br>0.96<br>127451<br>07/21/07<br>L   |
| SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-15.5Type:SAMPLELab ID:196103-009AnalyteGasoline C7-C12SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-20.5Type:SAMPLELab ID:196103-010 | %REC           100           106                                            | Limits<br>70-132<br>66-138<br>Result<br>D<br>Limits<br>70-132<br>66-138<br>Result | Analyzed:<br>R<br>Batch#:<br>Analyzed: | 127451<br>07/21/07<br><b>L</b><br>0.96<br>127451<br>07/21/07 |
| SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-15.5Type:SAMPLELab ID:196103-009AnalyteGasoline C7-C12SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-20.5Type:SAMPLELab ID:196103-010 | %REC         100         106         NI         %REC         98         106 | Limits<br>70-132<br>66-138<br>Result<br>D<br>Limits<br>70-132<br>66-138<br>Result | Analyzed:<br>R<br>Batch#:<br>Analyzed: | 127451<br>07/21/07<br>L<br>0.96<br>127451<br>07/21/07<br>L   |



|                                                                                                                                                                                                                                                                     | Total                                         | Volatil                                                                | e Hydrocarbo                           | ons                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------|
| Lab #: 196103<br>Client: LFR Levine Fr                                                                                                                                                                                                                              | i ako                                         |                                                                        | Location:<br>Prep:                     | Hanson Radum<br>EPA 5030B                                 |
| Project#: 001-09567-01                                                                                                                                                                                                                                              | ICKe                                          |                                                                        | Analysis:                              | EPA 8015B                                                 |
| Matrix: Soil                                                                                                                                                                                                                                                        |                                               |                                                                        | Diln Fac:                              | 1.000                                                     |
| Units: mg/Kg                                                                                                                                                                                                                                                        |                                               |                                                                        | Sampled:                               | 07/19/07                                                  |
| Basis: as received                                                                                                                                                                                                                                                  |                                               |                                                                        | Received:                              | 07/20/07                                                  |
| Field ID: SS-31(B)-25.5<br>Type: SAMPLE<br>Lab ID: 196103-011                                                                                                                                                                                                       |                                               |                                                                        | Batch#:<br>Analyzed:                   | 127451<br>07/21/07                                        |
| Analyte                                                                                                                                                                                                                                                             | NID                                           | Result                                                                 | R                                      |                                                           |
| Gasoline C7-C12                                                                                                                                                                                                                                                     | ND                                            | )                                                                      |                                        | 0.97                                                      |
| Surrogate                                                                                                                                                                                                                                                           | %REC                                          | Limits                                                                 |                                        |                                                           |
| Trifluorotoluene (FID)                                                                                                                                                                                                                                              | 97                                            | 70-132                                                                 |                                        |                                                           |
| Bromofluorobenzene (FID)                                                                                                                                                                                                                                            | 105                                           | 66-138                                                                 |                                        |                                                           |
| Field ID: SS-31(B)-30.5<br>Type: SAMPLE<br>Lab ID: 196103-012                                                                                                                                                                                                       |                                               |                                                                        | Batch#:<br>Analyzed:                   | 127518<br>07/23/07                                        |
| Analyte                                                                                                                                                                                                                                                             |                                               | Result                                                                 | R                                      |                                                           |
| Gasoline C7-C12                                                                                                                                                                                                                                                     | ND                                            | )                                                                      |                                        | 0.97                                                      |
|                                                                                                                                                                                                                                                                     |                                               |                                                                        |                                        |                                                           |
|                                                                                                                                                                                                                                                                     | %REC                                          | Limits                                                                 |                                        | · · · ·                                                   |
| Surrogate<br>Trifluorotoluene (FID)                                                                                                                                                                                                                                 | <b>%REC</b><br>102                            | 70-132                                                                 |                                        |                                                           |
| Surrogate                                                                                                                                                                                                                                                           |                                               |                                                                        |                                        |                                                           |
| Surrogate<br>Trifluorotoluene (FID)                                                                                                                                                                                                                                 | 102                                           | 70-132                                                                 | Batch#:<br>Analyzed:                   | 127518<br>07/23/07                                        |
| SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-40Type:SAMPLELab ID:196103-013Analyte                                                                                                                                                      | 102<br>107                                    | 70-132<br>66-138<br>Result                                             |                                        | 127518<br>07/23/07<br>L                                   |
| SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-40Type:SAMPLELab ID:196103-013                                                                                                                                                             | 102<br>107                                    | 70-132<br>66-138<br>Result                                             | Analyzed:                              | 127518<br>07/23/07                                        |
| SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-40Type:SAMPLELab ID:196103-013AnalyteGasoline C7-C12Surrogate                                                                                                                              | 102<br>107                                    | 70-132<br>66-138<br>Result                                             | Analyzed:                              | 127518<br>07/23/07<br>L                                   |
| SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-40Type:SAMPLELab ID:196103-013AnalyteGasoline C7-C12SurrogateTrifluorotoluene (FID)                                                                                                        | 102<br>107<br>ND<br>%REC<br>114               | 70-132<br>66-138<br>Result                                             | Analyzed:                              | 127518<br>07/23/07<br>L                                   |
| Surrogate         Trifluorotoluene (FID)         Bromofluorobenzene (FID)         Field ID:       SS-31(B)-40         Type:       SAMPLE         Lab ID:       196103-013         Analyte         Gasoline C7-C12         Surrogate                                 | 102<br>107<br>NE<br>%REC                      | 70-132<br>66-138<br>Result                                             | Analyzed:                              | 127518<br>07/23/07<br>L                                   |
| SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-40Type:SAMPLELab ID:196103-013AnalyteGasoline C7-C12SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-50Type:SAMPLELab ID:196103-014                                | 102<br>107<br>NE<br><b>%REC</b><br>114<br>118 | 70-132<br>66-138<br><b>Result</b><br>70-132<br>66-138                  | Analyzed:<br>R<br>Batch#:<br>Analyzed: | 127518<br>07/23/07<br>L<br>1.0<br>127518<br>07/23/07      |
| SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-40Type:SAMPLELab ID:196103-013AnalyteGasoline C7-C12SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-50Type:SAMPLELab ID:196103-014Analyte | 102<br>107<br>NE<br><b>%REC</b><br>114<br>118 | 70-132<br>66-138<br><b>Result</b><br>70-132<br>66-138<br><b>Result</b> | Analyzed:<br>R<br>Batch#:              | 127518<br>07/23/07<br>L<br>1.0<br>127518<br>07/23/07<br>L |
| SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-40Type:SAMPLELab ID:196103-013AnalyteGasoline C7-C12SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-50Type:SAMPLELab ID:196103-014                                | 102<br>107<br>NE<br><b>%REC</b><br>114<br>118 | 70-132<br>66-138<br><b>Result</b><br>70-132<br>66-138<br><b>Result</b> | Analyzed:<br>R<br>Batch#:<br>Analyzed: | 127518<br>07/23/07<br>L<br>1.0<br>127518<br>07/23/07      |
| SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-40Type:SAMPLELab ID:196103-013AnalyteGasoline C7-C12SurrogateTrifluorotoluene (FID)Bromofluorobenzene (FID)Bromofluorobenzene (FID)Field ID:SS-31(B)-50Type:SAMPLELab ID:196103-014Analyte | 102<br>107<br>NE<br><b>%REC</b><br>114<br>118 | 70-132<br>66-138<br><b>Result</b><br>70-132<br>66-138<br><b>Result</b> | Analyzed:<br>R<br>Batch#:<br>Analyzed: | 127518<br>07/23/07<br>L<br>1.0<br>127518<br>07/23/07<br>L |



|                                    |                                       | Total             | Volatil          | .e Hydrocar            | bons      |                           |
|------------------------------------|---------------------------------------|-------------------|------------------|------------------------|-----------|---------------------------|
| Lab #:<br>Client:                  | 196103<br>LFR Levine Fr               | icke              |                  | Location:<br>Prep:     |           | Hanson Radum<br>EPA 5030B |
| Project#:<br>Matrix:               | <u>001-09567-01</u><br>Soil           |                   |                  | Analysis:<br>Diln Fac: |           | EPA 8015B<br>1.000        |
| Units:<br>Basis:                   | mg/Kg<br>as received                  |                   |                  | Sampled:<br>Received:  |           | 07/19/07<br>07/20/07      |
| DASIS.                             | as received                           |                   |                  | Received.              |           | 07/20/07                  |
| Field ID:<br>Type:<br>Lab ID:      | SS-31(B)-60.5<br>SAMPLE<br>196103-015 |                   |                  | Batch#:<br>Analyzed:   |           | 127518<br>07/23/07        |
| Ana                                | lyte                                  |                   | Result           |                        | RL        |                           |
| Gasoline C7-C12                    | 2                                     | ND                |                  |                        | 0.        | 99                        |
| Surro                              | ogate                                 | %REC              | Limits           |                        |           |                           |
| Trifluorotoluer<br>Bromofluoroben: | ne (FID)                              | 100<br>100        | 70-132<br>66-138 |                        |           |                           |
| Type:<br>Lab ID:                   | BLANK<br>QC397138                     |                   |                  | Batch#:<br>Analyzed:   |           | 127451<br>07/20/07        |
| Ana<br>Gasoline C7-C12             | lyte                                  | ND                | Result           |                        | <b>RL</b> | 0                         |
|                                    |                                       |                   |                  |                        | 1.        |                           |
| Trifluorotolue                     | <b>ogate</b><br>ne (FID)              | <b>%REC</b><br>95 | Limits<br>70-132 |                        |           |                           |
| Bromofluoroben:                    | zene (FID)                            | 103               | 66-138           |                        |           |                           |
| Type:<br>Lab ID:                   | BLANK<br>QC397460                     |                   |                  | Batch#:<br>Analyzed:   |           | 127518<br>07/23/07        |
| Ana                                | lyte                                  |                   | Result           |                        | RL        |                           |
| Gasoline C7-C12                    |                                       | ND                |                  |                        |           | 20                        |
| Trifluorotolue                     |                                       | <b>%REC</b><br>92 | Limits<br>70-132 |                        |           |                           |
| Bromofluorobenz                    | zene (FID)                            | 93                | 66-138           |                        |           |                           |



| Total Volatile Hydrocarbons |                   |           |              |  |  |  |
|-----------------------------|-------------------|-----------|--------------|--|--|--|
| Lab #:                      | 196103            | Location: | Hanson Radum |  |  |  |
| Client:                     | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |  |
| Project#:                   | 001-09567-01      | Analysis: | EPA 8015B    |  |  |  |
| Туре:                       | LCS               | Basis:    | as received  |  |  |  |
| Lab ID:                     | QC397139          | Diln Fac: | 1.000        |  |  |  |
| Matrix:                     | Soil              | Batch#:   | 127451       |  |  |  |
| Units:                      | mg/Kg             | Analyzed: | 07/20/07     |  |  |  |

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 10.00  | 10.59  | 106  | 80-120 |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 117  | 70-132 |
| Bromofluorobenzene (FID) | 109  | 66-138 |



| Total Volatile Hydrocarbons |                   |           |              |  |  |  |
|-----------------------------|-------------------|-----------|--------------|--|--|--|
| Lab #:                      | 196103            | Location: | Hanson Radum |  |  |  |
| Client:                     | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |  |
| Project#:                   | 001-09567-01      | Analysis: | EPA 8015B    |  |  |  |
| Field ID:                   | ZZZZZZZZZ         | Diln Fac: | 1.000        |  |  |  |
| MSS Lab ID:                 | 196079-001        | Batch#:   | 127451       |  |  |  |
| Matrix:                     | Soil              | Sampled:  | 07/19/07     |  |  |  |
| Units:                      | mg/Kg             | Received: | 07/19/07     |  |  |  |
| Basis:                      | as received       | Analyzed: | 07/20/07     |  |  |  |

| Type:       | MS            |        |        | Lab ID: | Q      | C397140 |        |         |
|-------------|---------------|--------|--------|---------|--------|---------|--------|---------|
| A           | nalyte        | MSS Re | sult   | Spike   | ed     | Result  | %REC   | Limits  |
| Gasoline C7 | '-C12         | <0     | .07274 | 9       | .709   | 10.33   | 106    | 36-120  |
| S           | Surrogate     | %REC   | Limits |         |        |         |        |         |
| Trifluoroto | oluene (FID)  | 113    | 70-132 |         |        |         |        |         |
| Bromofluoro | benzene (FID) | 107    | 66-138 |         |        |         |        |         |
|             |               |        |        |         |        |         |        |         |
| Type:       | MSD           |        |        | Lab ID: | Q      | C397141 |        |         |
|             | Analyte       |        | Spiked |         | Result | %REC    | Limits | RPD Lim |
| Gasoline C7 | '-C12         |        | 9.90   | 1       | 9.62   | 6 97    | 36-120 | 9 29    |
|             |               |        |        |         |        |         |        |         |

| Surrogate                | %REC | Limits |  |
|--------------------------|------|--------|--|
| Trifluorotoluene (FID)   | 110  | 70-132 |  |
| Bromofluorobenzene (FID) | 105  | 66-138 |  |



| Total Volatile Hydrocarbons |                   |           |              |  |  |  |
|-----------------------------|-------------------|-----------|--------------|--|--|--|
| Lab #:                      | 196103            | Location: | Hanson Radum |  |  |  |
| Client:                     | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |  |
| Project#:                   | 001-09567-01      | Analysis: | EPA 8015B    |  |  |  |
| Туре:                       | LCS               | Basis:    | as received  |  |  |  |
| Lab ID:                     | QC397462          | Diln Fac: | 1.000        |  |  |  |
| Matrix:                     | Soil              | Batch#:   | 127518       |  |  |  |
| Units:                      | mg/Kg             | Analyzed: | 07/23/07     |  |  |  |

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 10.00  | 9.582  | 96   | 80-120 |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 128  | 70-132 |
| Bromofluorobenzene (FID) | 130  | 66-138 |



| Total Volatile Hydrocarbons |                   |           |              |  |  |  |
|-----------------------------|-------------------|-----------|--------------|--|--|--|
| Lab #:                      | 196103            | Location: | Hanson Radum |  |  |  |
| Client:                     | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |  |
| Project#:                   | 001-09567-01      | Analysis: | EPA 8015B    |  |  |  |
| Field ID:                   | ZZZZZZZZZ         | Diln Fac: | 1.000        |  |  |  |
| MSS Lab ID:                 | 196124-006        | Batch#:   | 127518       |  |  |  |
| Matrix:                     | Soil              | Sampled:  | 07/20/07     |  |  |  |
| Units:                      | mg/Kg             | Received: | 07/20/07     |  |  |  |
| Basis:                      | as received       | Analyzed: | 07/23/07     |  |  |  |

| Type:     | MS               |        |        | Lab ID: | QC     | 2397463 |        |         |
|-----------|------------------|--------|--------|---------|--------|---------|--------|---------|
|           | Analyte          | MSS Re | sult   | Spike   | ed     | Result  | %REC   | Limits  |
| Gasoline  | C7-C12           | C      | .02811 | 2.      | 000    | 1.469   | 72     | 36-120  |
|           | Surrogate        | %REC   | Limits |         |        |         |        |         |
| Trifluoro | otoluene (FID)   | 96     | 70-132 |         |        |         |        |         |
| Bromofluc | probenzene (FID) | 98     | 66-138 |         |        |         |        |         |
| Туре:     | MSD              |        |        | Lab ID: | QC     | 2397464 |        |         |
|           | Analyte          |        | Spiked |         | Result | %REC    | Limits | RPD Lim |
| Gasoline  | C7-C12           |        | 2.07   | ō       | 1.488  | 3 70    | 36-120 | 2 29    |
|           | Surrogate        | %REC   | Limits |         |        |         |        |         |
| Trifluoro | otoluene (FID)   | 102    | 70-132 |         |        |         |        |         |

100

66-138

Bromofluorobenzene (FID)



|                  | 1                    | otal 1 | Extracta | ble Hydrocarbo               | ns                    |  |
|------------------|----------------------|--------|----------|------------------------------|-----------------------|--|
| Lab #:           | 196103               |        |          | Location:                    | Hanson Radum          |  |
| Client:          | LFR Levine Fr        | icke   |          | Prep:                        | EPA 3520C             |  |
| Project#:        | 001-09567-01         |        |          | Analysis:                    | EPA 8015B             |  |
| Field ID:        | SS-31(A)-GGW         |        |          | Batch#:                      | 127482                |  |
| Matrix:          | Water                |        |          | Sampled:                     | 07/19/07              |  |
| Units:           | ug/L                 |        |          | Received:                    | 07/20/07              |  |
| Diln Fac:        | 1.000                |        |          | Prepared:                    | 07/21/07              |  |
| Type:<br>Lab ID: | SAMPLE<br>196103-006 |        |          | Analyzed:<br>Cleanup Method: | 07/23/07<br>EPA 3630C |  |
| Ana              | lyte                 |        | Result   | RL                           |                       |  |
| Diesel C10-C24   | Ŀ                    | NI     | )        | 50                           |                       |  |
| Motor Oil C24-   | -C36                 | NI     | )        | 300                          |                       |  |
| Surr             | rogate               | %REC   | Limits   |                              |                       |  |
| Hexacosane       |                      | 114    | 61-134   |                              |                       |  |
| Type:<br>Lab ID: | BLANK<br>QC397291    |        |          | Analyzed:<br>Cleanup Method: | 07/22/07<br>EPA 3630C |  |
|                  | alyte                |        | Result   | RL                           |                       |  |
| Diesel C10-C24   | <u> </u>             | NI     | D        | 50                           |                       |  |
| Motor Oil C24-   | -C36                 | NI     | )        | 300                          |                       |  |
| Surr             | rogate               | %REC   | Limits   |                              |                       |  |
| Hexacosane       |                      | 105    | 61-134   |                              |                       |  |



| Total Extractable Hydrocarbons |                   |           |              |  |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|--|
| Lab #:                         | 196103            | Location: | Hanson Radum |  |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3520C    |  |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |  |
| Type:                          | LCS               | Diln Fac: | 1.000        |  |  |  |
| Lab ID:                        | QC397292          | Batch#:   | 127482       |  |  |  |
| Matrix:                        | Water             | Prepared: | 07/21/07     |  |  |  |
| Units:                         | ug/L              | Analyzed: | 07/22/07     |  |  |  |

Cleanup Method: EPA 3630C

| Analyte        |       | Spiked | Result | %REC | Limits |
|----------------|-------|--------|--------|------|--------|
| Diesel C10-C24 | 2,500 |        | 2,192  | 88   | 58-130 |
|                |       |        |        |      |        |
| Surrogate      | %REC  | Limits |        |      |        |
| Hexacosane     | 98    | 61-134 |        |      |        |



| Total Extractable Hydrocarbons |                   |           |              |  |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|--|
| Lab #:                         | 196103            | Location: | Hanson Radum |  |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3520C    |  |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |  |
| Field ID:                      | ZZZZZZZZZ         | Batch#:   | 127482       |  |  |  |
| MSS Lab ID:                    | 196040-002        | Sampled:  | 07/17/07     |  |  |  |
| Matrix:                        | Water             | Received: | 07/17/07     |  |  |  |
| Units:                         | ug/L              | Prepared: | 07/21/07     |  |  |  |
| Diln Fac:                      | 1.000             | Analyzed: | 07/23/07     |  |  |  |

| Type:    | MS        |         |        | Lab ID: | QC397293 |      |        |
|----------|-----------|---------|--------|---------|----------|------|--------|
|          | Analyte   | MSS Res | ult    | Spiked  | Result   | %REC | Limits |
| Diesel C | 10-C24    | <15     | .44    | 2,500   | 2,261    | 90   | 57-134 |
|          | Surrogate | %REC    | Limits |         |          |      |        |
| Hexacosa | ne        | 95      | 61-134 |         |          |      |        |

| Type:    | MSD       |      |        | Lab ID: | Ç      | QC397294 |        |     |     |
|----------|-----------|------|--------|---------|--------|----------|--------|-----|-----|
|          | Analyte   |      | Spiked |         | Result | %REC     | Limits | RPD | Lim |
| Diesel C | 10-C24    |      | 2,500  |         | 2,318  | 93       | 57-134 | 3   | 32  |
|          | Surrogate | %REC | Limits |         |        |          |        |     |     |
| Hexacosa | ne        | 95   | 61-134 |         |        |          |        |     |     |



|                                          | Т                                               | otal E            | Extracta                | ble Hydrocarbo                            |                                           |
|------------------------------------------|-------------------------------------------------|-------------------|-------------------------|-------------------------------------------|-------------------------------------------|
| Lab #:<br>Client:<br>Project#:           | 196103<br>LFR Levine Fr:<br>001-09567-01        | icke              |                         | Location:<br>Prep:<br>Analysis:           | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B |
| Matrix:<br>Units:<br>Basis:              | Soil<br>mg/Kg<br>as received                    |                   |                         | Diln Fac:<br>Sampled:<br>Received:        | 1.000<br>07/19/07<br>07/20/07             |
| Field ID:<br>Type:<br>Lab ID:<br>Batch#: | SS-31(A)-40.5<br>SAMPLE<br>196103-001<br>127476 |                   |                         | Prepared:<br>Analyzed:<br>Cleanup Method: | 07/20/07<br>07/23/07<br>EPA 3630C         |
| Anal                                     | yte                                             |                   | Result                  | RL                                        | 0                                         |
| Diesel C10-C24<br>Motor Oil C24-C        | 236                                             | ND<br>ND          |                         | 1.<br>5.                                  |                                           |
| Surro                                    | gate                                            | %REC              | Limits                  |                                           |                                           |
| Hexacosane                               | - <u>j</u> ucc                                  | 63                | 40-127                  |                                           |                                           |
| Field ID:<br>Type:<br>Lab ID:<br>Batch#: | SS-31(A)-50.5<br>SAMPLE<br>196103-002<br>127476 |                   |                         | Prepared:<br>Analyzed:<br>Cleanup Method: | 07/20/07<br>07/23/07<br>EPA 3630C         |
| Anal<br>Diesel C10-C24                   | .yte                                            | ND                | Result                  | <b>RL</b>                                 | 99                                        |
| Motor Oil C24-C                          | 136                                             | ND                |                         | 5.                                        |                                           |
| Surro<br>Hexacosane                      | ogate                                           | <b>%REC</b><br>46 | <b>Limits</b><br>40-127 |                                           |                                           |
| Field ID:<br>Type:<br>Lab ID:<br>Batch#: | SS-31(A)-52.5<br>SAMPLE<br>196103-003<br>127476 |                   |                         | Prepared:<br>Analyzed:<br>Cleanup Method: | 07/20/07<br>07/23/07<br>EPA 3630C         |
| Anal                                     | yte                                             |                   | Result                  | RL                                        |                                           |
| Diesel C10-C24<br>Motor Oil C24-C        | 136                                             | ND<br>ND          |                         | U.<br>5.                                  | 99<br>0                                   |
| Surro<br>Hexacosane                      |                                                 | <b>%REC</b><br>55 | <b>Limits</b><br>40-127 |                                           |                                           |

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks ND= Not Detected RL= Reporting Limit Page 1 of 5



|                                                                                                                                                                                                           | Total E                                                                                                       | xtractabl                                                                         | e Hydrocarbor                                                                                 | 15                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Client: LFH                                                                                                                                                                                               | 6103<br>R Levine Fricke<br>1-09567-01                                                                         | P                                                                                 | ocation:<br>rep:<br>nalysis:                                                                  | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B                             |
|                                                                                                                                                                                                           | il<br>/Kg<br>received                                                                                         | S                                                                                 | iln Fac:<br>ampled:<br>.eceived:                                                              | 1.000<br>07/19/07<br>07/20/07                                         |
| Type: SAMI                                                                                                                                                                                                | 103-004<br>476                                                                                                | A<br>C                                                                            | repared:<br>nalyzed:<br>leanup Method:                                                        | 07/20/07<br>07/23/07<br>EPA 3630C                                     |
| Analyte<br>Diesel C10-C24                                                                                                                                                                                 | I<br>ND                                                                                                       | Result                                                                            | RL                                                                                            |                                                                       |
| Motor Oil C24-C36                                                                                                                                                                                         | ND<br>ND                                                                                                      |                                                                                   | 1.(<br>5.(                                                                                    |                                                                       |
| Surrogate                                                                                                                                                                                                 | %REC                                                                                                          | Limits                                                                            |                                                                                               |                                                                       |
| Hexacosane                                                                                                                                                                                                | 64                                                                                                            | 40-127                                                                            |                                                                                               |                                                                       |
|                                                                                                                                                                                                           | 31(B)-5.5                                                                                                     | P                                                                                 | repared:                                                                                      | 07/20/07                                                              |
| Batch#: 1274                                                                                                                                                                                              | 103-007<br>476                                                                                                | A<br>C                                                                            | nalyzed:<br>leanup Method:                                                                    | 07/23/07                                                              |
| Lab ID: 1963<br>Batch#: 1274<br>Analyte                                                                                                                                                                   | 103-007<br>476                                                                                                | A<br>C<br>Result                                                                  | nalyzed:<br>leanup Method:<br><b>RL</b>                                                       | 07/23/07<br>EPA 3630C                                                 |
| Lab ID: 1963<br>Batch#: 1274                                                                                                                                                                              | 103-007<br>476                                                                                                | A<br>C                                                                            | nalyzed:<br>leanup Method:<br><b>RL</b>                                                       | 07/23/07<br>EPA 3630C                                                 |
| Lab ID: 1963<br>Batch#: 1274<br>Malyte<br>Diesel C10-C24<br>Motor Oil C24-C36                                                                                                                             | 103-007<br>476                                                                                                | А<br>С<br><u>Result</u><br>2.6 н ү                                                | nalyzed:<br>leanup Method:<br><u>RL</u><br>Z 0.9                                              | 07/23/07<br>EPA 3630C                                                 |
| Lab ID: 1963<br>Batch#: 1274<br>Analyte<br>Diesel C10-C24                                                                                                                                                 | 103-007<br>476                                                                                                | А<br>С<br><b>Result</b><br>2.6 н Ү<br>11 н                                        | nalyzed:<br>leanup Method:<br><u>RL</u><br>Z 0.9                                              | 07/23/07<br>EPA 3630C                                                 |
| Lab ID: 1963<br>Batch#: 1274<br>Diesel C10-C24<br>Motor Oil C24-C36<br>Surrogate<br>Hexacosane<br>Field ID: SS-3<br>Type: SAM<br>Lab ID: 1963<br>Batch#: 1274                                             | 103-007<br>476<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>: | A<br>C<br>2.6 H Y<br>11 H<br>Limits<br>40-127<br>P<br>A                           | nalyzed:<br>leanup Method:<br><u>RL</u><br>Z 0.9                                              | 07/23/07<br>EPA 3630C                                                 |
| Lab ID: 1963<br>Batch#: 1274<br>Diesel C10-C24<br>Motor Oil C24-C36<br>Surrogate<br>Hexacosane<br>Field ID: SS-3<br>Type: SAME<br>Lab ID: 1963<br>Batch#: 1274<br>Analyte                                 | 103-007<br>476<br>                                                                                            | A<br>C<br>2.6 H Y<br>11 H<br>Limits<br>40-127<br>P<br>A<br>C<br>Result            | nalyzed:<br>leanup Method:<br>Z 0.9<br>5.0<br>repared:<br>nalyzed:<br>leanup Method:<br>RL    | 07/23/07<br>EPA 3630C<br>99<br>0<br>07/20/07<br>07/23/07<br>EPA 3630C |
| Lab ID: 1963<br>Batch#: 1274<br>Match#: 1274<br>Diesel C10-C24<br>Motor Oil C24-C36<br>Surrogate<br>Hexacosane<br>Field ID: SS-3<br>Type: SAM<br>Lab ID: 1963<br>Batch#: 1274<br>Malyte<br>Diesel C10-C24 | 103-007<br>476<br>                                                                                            | A<br>C<br>2.6 H Y<br>11 H<br>Limits<br>40-127<br>P<br>A<br>C<br>Result<br>6.2 H Y | nalyzed:<br>leanup Method:<br>Z 0.9<br>5.0<br>repared:<br>nalyzed:<br>leanup Method:<br>RL    | 07/23/07<br>EPA 3630C<br>99<br>0<br>07/20/07<br>07/23/07<br>EPA 3630C |
| Lab ID: 1963<br>Batch#: 1274<br>Diesel C10-C24<br>Motor Oil C24-C36<br>Surrogate<br>Hexacosane<br>Field ID: SS-3<br>Type: SAME<br>Lab ID: 1963<br>Batch#: 1274<br>Analyte                                 | 103-007<br>476<br>                                                                                            | A<br>C<br>2.6 H Y<br>11 H<br>Limits<br>40-127<br>P<br>A<br>C<br>Result            | nalyzed:<br>leanup Method:<br>Z 0.9<br>5.0<br>repared:<br>nalyzed:<br>leanup Method:<br>Z 1.0 | 07/23/07<br>EPA 3630C<br>99<br>0<br>07/20/07<br>07/23/07<br>EPA 3630C |

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks ND= Not Detected RL= Reporting Limit Page 2 of 5



|                                           | T                                               | otal B            | Extracta                 | ble Hydrocarbo                            | ns                                        |
|-------------------------------------------|-------------------------------------------------|-------------------|--------------------------|-------------------------------------------|-------------------------------------------|
| Lab #:<br>Client:<br>Project#:            | 196103<br>LFR Levine Fr:<br>001-09567-01        | icke              |                          | Location:<br>Prep:<br>Analysis:           | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B |
| Matrix:<br>Units:<br>Basis:               | Soil<br>mg/Kg<br>as received                    |                   |                          | Diln Fac:<br>Sampled:<br>Received:        | 1.000<br>07/19/07<br>07/20/07             |
| Field ID:<br>Type:<br>Lab ID:<br>Batch#:  | SS-31(B)-15.5<br>SAMPLE<br>196103-009<br>127476 |                   |                          | Prepared:<br>Analyzed:<br>Cleanup Method: | 07/20/07<br>07/23/07<br>EPA 3630C         |
| Anal<br>Diesel C10-C24<br>Motor Oil C24-C | -                                               |                   | Result<br>1.2 Y<br>6.3 H | <b>RL</b><br>Z 0.<br>5.                   | 99<br>0                                   |
| Surro<br>Hexacosane                       | ogate                                           | <b>%REC</b><br>46 | <b>Limits</b><br>40-127  |                                           |                                           |
| Field ID:<br>Type:<br>Lab ID:<br>Batch#:  | SS-31(B)-20.5<br>SAMPLE<br>196103-010<br>127476 |                   |                          | Prepared:<br>Analyzed:<br>Cleanup Method: | 07/20/07<br>07/23/07<br>EPA 3630C         |
| Anal<br>Diesel C10-C24<br>Motor Oil C24-C | -                                               | NE                | <b>Result</b><br>6.4 Y   | RL           Z         1.           5.    |                                           |
| Surro<br>Hexacosane                       | gate                                            | <b>%REC</b><br>61 | <b>Limits</b><br>40-127  |                                           |                                           |
| Field ID:<br>Type:<br>Lab ID:<br>Batch#:  | SS-31(B)-25.5<br>SAMPLE<br>196103-011<br>127476 |                   |                          | Prepared:<br>Analyzed:<br>Cleanup Method: | 07/20/07<br>07/24/07<br>EPA 3630C         |
| Anal<br>Diesel C10-C24                    | -                                               |                   | Result<br>27 Y Z         | <b>RL</b>                                 |                                           |
| Motor Oil C24-C                           |                                                 | ND<br>%REC        | Limits                   | 5.                                        | U                                         |
| Hexacosane                                |                                                 | 57                | 40-127                   |                                           |                                           |

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks ND= Not Detected RL= Reporting Limit Page 3 of 5



|                                          | Тс                                              | otal E                  | Extracta                         | ble Hydrocarbo                            | ns                                        |
|------------------------------------------|-------------------------------------------------|-------------------------|----------------------------------|-------------------------------------------|-------------------------------------------|
| Lab #:<br>Client:<br>Project#:           | 196103<br>LFR Levine Fri<br>001-09567-01        | cke                     |                                  | Location:<br>Prep:<br>Analysis:           | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B |
| Matrix:<br>Units:<br>Basis:              | Soil<br>mg/Kg<br>as received                    |                         |                                  | Diln Fac:<br>Sampled:<br>Received:        | 1.000<br>07/19/07<br>07/20/07             |
| Field ID:<br>Type:<br>Lab ID:<br>Batch#: | SS-31(B)-30.5<br>SAMPLE<br>196103-012<br>127476 |                         |                                  | Prepared:<br>Analyzed:<br>Cleanup Method: | 07/20/07<br>07/24/07<br>EPA 3630C         |
| Ana<br>Diesel C10-C24<br>Motor Oil C24-0 |                                                 |                         | <b>Result</b><br>32 Y Z<br>5.4 H |                                           |                                           |
| Surre<br>Hexacosane                      | ogate                                           | <b>%REC</b><br>51       | <b>Limits</b><br>40-127          |                                           |                                           |
| Field ID:<br>Type:<br>Lab ID:<br>Batch#: | SS-31(B)-40<br>SAMPLE<br>196103-013<br>127476   |                         |                                  | Prepared:<br>Analyzed:<br>Cleanup Method: | 07/20/07<br>07/23/07<br>EPA 3630C         |
| Diesel C10-C24                           | lyte                                            |                         | Result<br>21 Y Z                 |                                           | 99                                        |
| Motor Oil C24-0<br>Surro<br>Hexacosane   | C36<br>Ogate                                    | ND<br><b>%REC</b><br>55 |                                  | 5.                                        | 0                                         |
| Field ID:<br>Type:<br>Lab ID:<br>Batch#: | SS-31(B)-50<br>SAMPLE<br>196103-014<br>127480   |                         |                                  | Prepared:<br>Analyzed:<br>Cleanup Method: | 07/21/07<br>07/23/07<br>EPA 3630C         |
| Diesel C10-C24                           | lyte                                            |                         | Result<br>17 Y Z                 |                                           |                                           |
| Motor Oil C24-0<br>Surre<br>Hexacosane   | ogate                                           | <b>%REC</b><br>70       | 160 Y Z<br>Limits<br>40-127      | 5.                                        | U                                         |

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks ND= Not Detected RL= Reporting Limit Page 4 of 5



|                                                                                                 | Т                                               | otal E                        | xtracta                 | ble Hydrocarbo                                                    | ns                                        |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------|-------------------------|-------------------------------------------------------------------|-------------------------------------------|
| Lab #:<br>Client:<br>Project#:                                                                  | 196103<br>LFR Levine Fr<br>001-09567-01         | icke                          |                         | Location:<br>Prep:<br>Analysis:<br>Diln Fac:                      | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B |
| Matrix:<br>Units:<br>Basis:                                                                     | Soil<br>mg/Kg<br>as received                    |                               |                         | Sampled:<br>Received:                                             | 1.000<br>07/19/07<br>07/20/07             |
| Field ID:<br>Type:<br>Lab ID:<br>Batch#:                                                        | SS-31(B)-60.5<br>SAMPLE<br>196103-015<br>127480 |                               |                         | Prepared:<br>Analyzed:<br>Cleanup Method:                         | 07/21/07<br>07/23/07<br>EPA 3630C         |
| Anal<br>Diesel C10-C24                                                                          | yte                                             | 1                             | Result<br>9.2 Y         | <b>RL</b><br>Z 1.                                                 | 0                                         |
| Motor Oil C24-C                                                                                 | 36                                              | ND                            | 9.2 1                   | 5.                                                                |                                           |
| Surro                                                                                           | aste                                            | %REC                          | Limits                  |                                                                   |                                           |
| Hexacosane                                                                                      | gale                                            | 83                            | 40-127                  |                                                                   |                                           |
| Type:<br>Lab ID:<br>Batch#:                                                                     | BLANK<br>QC397235<br>127476                     |                               |                         | Prepared:<br>Analyzed:<br>Cleanup Method:                         | 07/20/07<br>07/23/07<br>EPA 3630C         |
| Anal                                                                                            | vte                                             | 1                             | Result                  | RL                                                                |                                           |
|                                                                                                 | 1.55                                            |                               |                         |                                                                   | 0.0                                       |
| Diesel C10-C24<br>Motor Oil C24-C                                                               | -                                               | ND<br>ND                      |                         | 0.<br>5.                                                          |                                           |
| Diesel Cl0-C24<br>Motor Oil C24-C<br>Surro<br>Hexacosane                                        | 36                                              | ND                            | <b>Limits</b><br>40-127 | 0.                                                                |                                           |
| Motor Oil C24-C                                                                                 | 36                                              | ND<br>ND<br><b>%REC</b>       | Limits                  | 0.                                                                | 0                                         |
| Motor Oil C24-C<br>Surro<br>Hexacosane<br>Type:<br>Lab ID:<br>Batch#:<br>Anal                   | BLANK<br>QC397284<br>127480                     | ND<br>ND<br><b>%REC</b><br>71 | Limits                  | 0.<br>5.<br>Prepared:<br>Analyzed:<br>Cleanup Method:<br>RL       | 0<br>07/21/07<br>07/23/07<br>EPA 3630C    |
| Motor Oil C24-C<br>Surro<br>Hexacosane<br>Type:<br>Lab ID:<br>Batch#:                           | BLANK<br>QC397284<br>127480                     | ND<br>ND<br><b>%REC</b><br>71 | <b>Limits</b><br>40-127 | 0.<br>5.<br>Prepared:<br>Analyzed:<br>Cleanup Method:<br>RL       | 0<br>07/21/07<br>07/23/07<br>EPA 3630C    |
| Motor Oil C24-C<br>Surro<br>Hexacosane<br>Type:<br>Lab ID:<br>Batch#:<br>Anal<br>Diesel C10-C24 | BLANK<br>QC397284<br>127480<br><b>yte</b>       | ND<br>ND<br><b>%REC</b><br>71 | <b>Limits</b><br>40-127 | 0.<br>5.<br>Prepared:<br>Analyzed:<br>Cleanup Method:<br>RL<br>0. | 0<br>07/21/07<br>07/23/07<br>EPA 3630C    |

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks ND= Not Detected RL= Reporting Limit Page 5 of 5



| Total Extractable Hydrocarbons |                   |           |              |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                         | 196103            | Location: | Hanson Radum |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | SHAKER TABLE |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |
| Туре:                          | LCS               | Diln Fac: | 1.000        |  |  |
| Lab ID:                        | QC397236          | Batch#:   | 127476       |  |  |
| Matrix:                        | Soil              | Prepared: | 07/20/07     |  |  |
| Units:                         | mg/Kg             | Analyzed: | 07/22/07     |  |  |
| Basis:                         | as received       |           |              |  |  |

Cleanup Method: EPA 3630C

Hexacosane

| Analyte        | Spiked      | Result | %REC | Limits |
|----------------|-------------|--------|------|--------|
| Diesel C10-C24 | 49.78       | 34.47  | 69   | 58-127 |
|                |             |        |      |        |
| Surrogate      | %REC Limits |        |      |        |

40-127

65



| Total Extractable Hydrocarbons |                   |           |              |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|
|                                |                   | •         |              |  |  |
| Lab #:                         | 196103            | Location: | Hanson Radum |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | SHAKER TABLE |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |
| Field ID:                      | ZZZZZZZZZ         | Batch#:   | 127476       |  |  |
| MSS Lab ID:                    | 196114-001        | Sampled:  | 07/20/07     |  |  |
| Matrix:                        | Soil              | Received: | 07/20/07     |  |  |
| Units:                         | mg/Kg             | Prepared: | 07/20/07     |  |  |
| Basis:                         | as received       | Analyzed: | 07/22/07     |  |  |
| Diln Fac:                      | 1.000             |           |              |  |  |

| Type:     | MS        |         |        | Lab ID: | QC3    | 97237  |        |       |     |
|-----------|-----------|---------|--------|---------|--------|--------|--------|-------|-----|
|           | Analyte   | MSS Res | ult    | Spiked  | 1      | Result | %REC   | Limit | s   |
| Diesel Cl | 0-C24     | 1       | .793   | 50.0    | )6     | 48.41  | 93     | 29-14 | 17  |
|           | Surrogate | %REC    | Limits |         |        |        |        |       |     |
| Hexacosan | e         | 64      | 40-127 |         |        |        |        |       |     |
|           |           |         |        |         |        |        |        |       |     |
| Type:     | MSD       |         |        | Lab ID: | QC3    | 97238  |        |       |     |
|           | Analyte   |         | Spiked |         | Result | %REC   | Limits | RPD I | Lim |
| Diesel Cl | 0-C24     |         | 50.09  |         | 36.79  | 70     | 29-147 | 27 4  | 16  |
|           | Surrogate | %REC    | Limits |         |        |        |        |       |     |
| Hexacosan | е         | 69      | 40-127 |         |        |        |        |       |     |

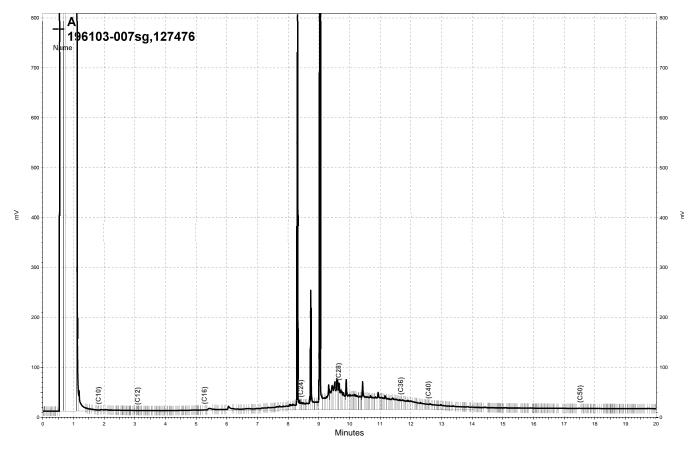


| Total Extractable Hydrocarbons |                   |           |              |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                         | 196103            | Location: | Hanson Radum |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | SHAKER TABLE |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |
| Type:                          | LCS               | Diln Fac: | 1.000        |  |  |
| Lab ID:                        | QC397285          | Batch#:   | 127480       |  |  |
| Matrix:                        | Soil              | Prepared: | 07/21/07     |  |  |
| Units:                         | mg/Kg             | Analyzed: | 07/23/07     |  |  |
| Basis:                         | as received       |           |              |  |  |

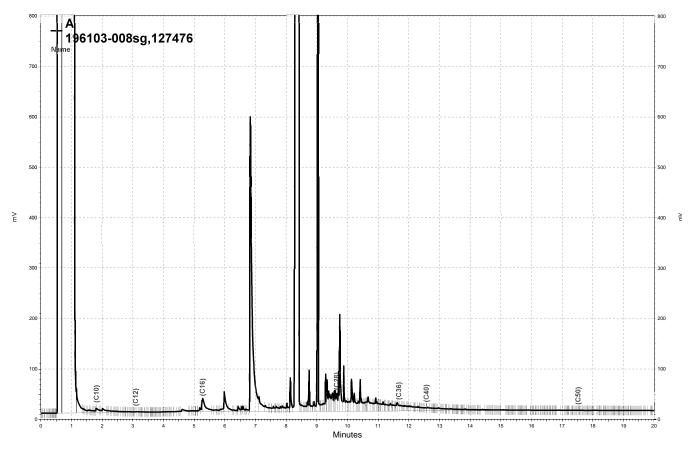
Cleanup Method: EPA 3630C

Hexacosane

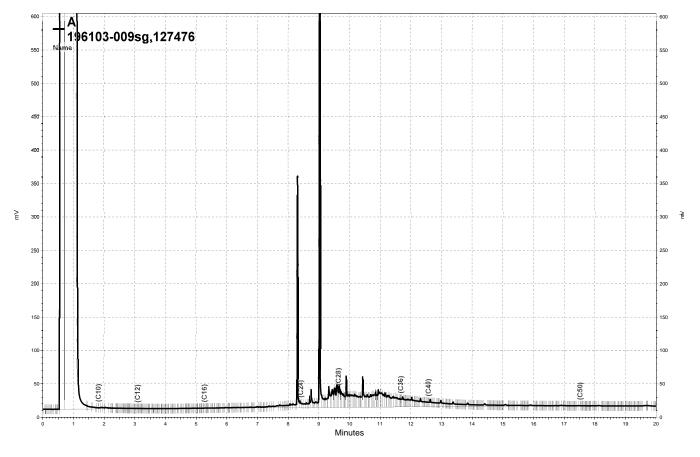
| Analyte        | Spiked      | Result | %REC | Limits |
|----------------|-------------|--------|------|--------|
| Diesel C10-C24 | 49.86       | 55.39  | 111  | 58-127 |
|                |             |        |      |        |
| Surrogate      | %REC Limits |        |      |        |


40-127

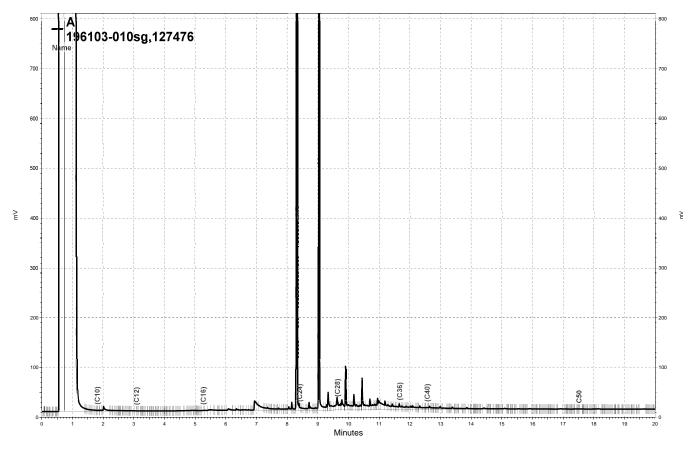
110



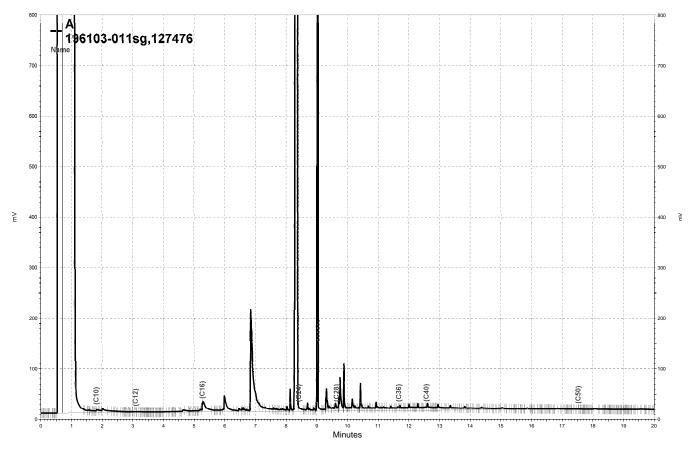

| Total Extractable Hydrocarbons |                   |           |              |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                         | 196103            | Location: | Hanson Radum |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | SHAKER TABLE |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |
| Field ID:                      | ZZZZZZZZZ         | Batch#:   | 127480       |  |  |
| MSS Lab ID:                    | 196130-001        | Sampled:  | 07/19/07     |  |  |
| Matrix:                        | Soil              | Received: | 07/20/07     |  |  |
| Units:                         | mg/Kg             | Prepared: | 07/21/07     |  |  |
| Basis:                         | as received       | Analyzed: | 07/23/07     |  |  |
| Diln Fac:                      | 1.000             |           |              |  |  |


| Type:          | MS        |         |            | Lab ID: | QC39   | 7286   |        |       |     |
|----------------|-----------|---------|------------|---------|--------|--------|--------|-------|-----|
| Analyte        |           | MSS Res | MSS Result |         | . R    | Result |        | Limi  | ts  |
| Diesel C10-C24 |           | 6       | 6.329      |         | 1      | 54.94  | 97     | 29-1  | 47  |
|                | Surrogate | %REC    | Limits     |         |        |        |        |       |     |
| Hexacosan      | e         | 101     | 40-127     |         |        |        |        |       |     |
|                |           |         |            |         |        |        |        |       |     |
|                |           |         |            | _       |        |        |        |       |     |
| Туре:          | MSD       |         |            | Lab ID: | QC39   | 7287   |        |       |     |
|                | Analyte   |         | Spiked     |         | Result | %REC   | Limits | RPD 1 | Lim |
| Diesel C10-C24 |           |         | 49.54      |         | 61.27  | 111    | 29-147 | 12    | 46  |
|                | Surrogate | %REC    | Limits     |         |        |        |        |       |     |
| Hexacosane     |           | 112     | 40-127     |         |        |        |        |       |     |

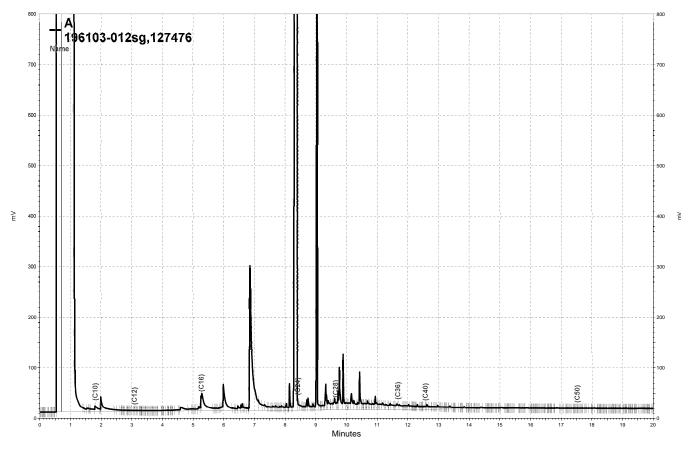



\\Lims\gdrive\ezchrom\Projects\GC17A\Data\203a027, A

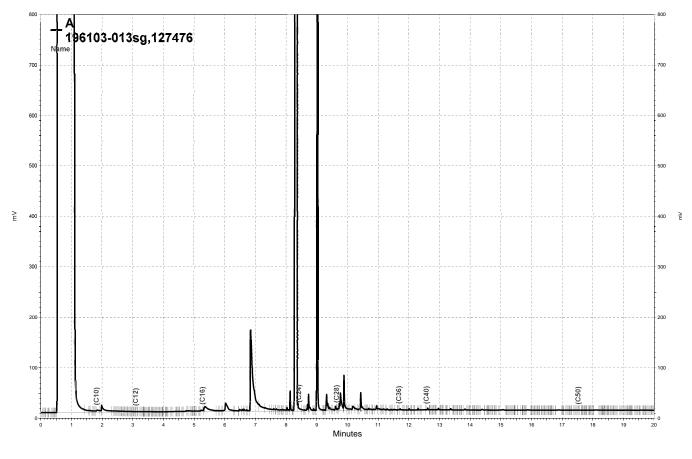



\\Lims\gdrive\ezchrom\Projects\GC17A\Data\203a026, A

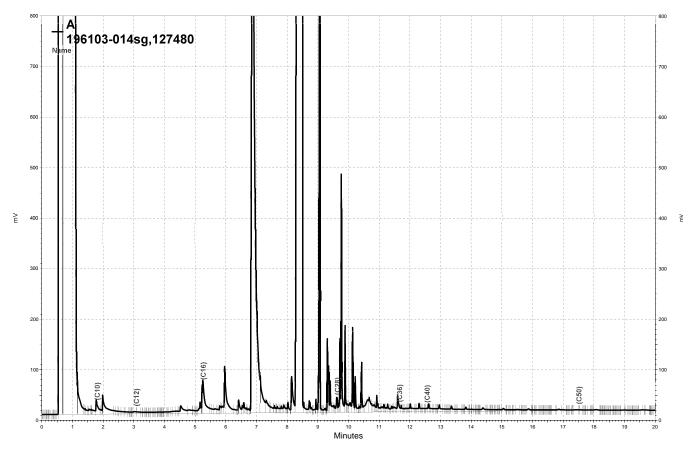



\\Lims\gdrive\ezchrom\Projects\GC17A\Data\203a025, A

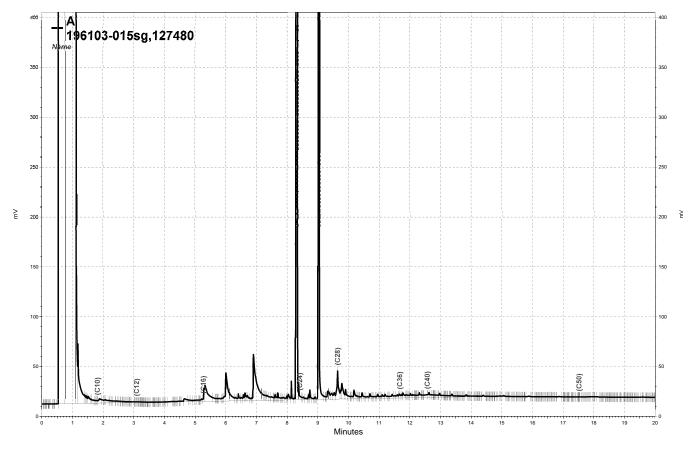



\\Lims\gdrive\ezchrom\Projects\GC17A\Data\203a023, A

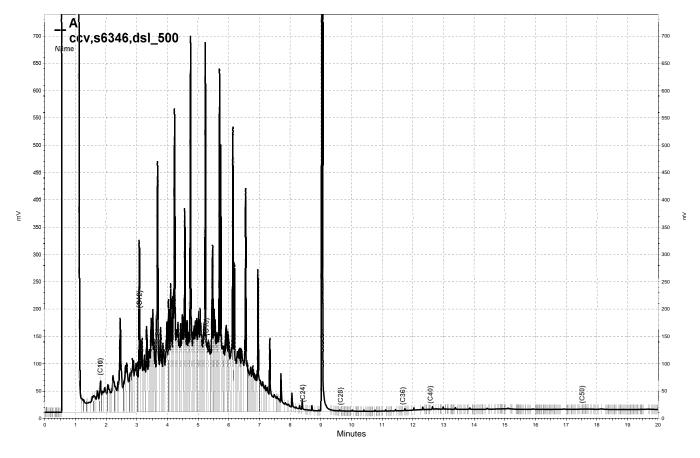



\\Lims\gdrive\ezchrom\Projects\GC17A\Data\205a015, A

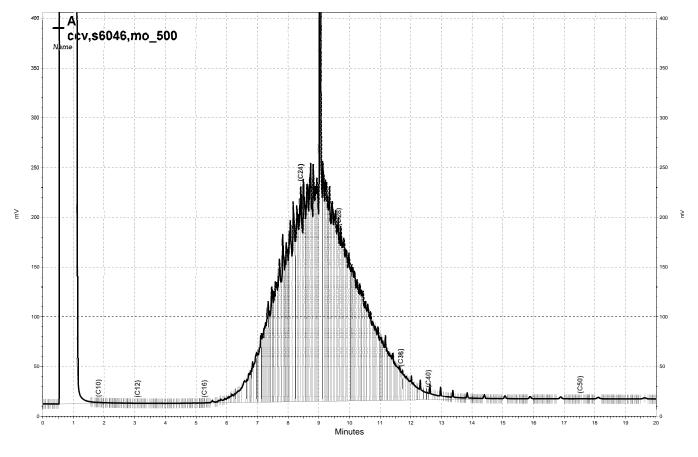



\\Lims\gdrive\ezchrom\Projects\GC17A\Data\205a016, A




\\Lims\gdrive\ezchrom\Projects\GC17A\Data\203a033, A




\\Lims\gdrive\ezchrom\Projects\GC17A\Data\203a058, A



\\Lims\gdrive\ezchrom\Projects\GC17A\Data\203a059, A



\\Lims\gdrive\ezchrom\Projects\GC17A\Data\203a004, A



\\Lims\gdrive\ezchrom\Projects\GC17A\Data\203a020, A



|                                        | Gasoline | by GC/MS  |              |
|----------------------------------------|----------|-----------|--------------|
| Lab #: 196103                          |          | Location: | Hanson Radum |
| Client: LFR Levine Frick               | Э        | Prep:     | EPA 5030B    |
| Project#: 001-09567-01                 |          | Analysis: | EPA 8260B    |
| Field ID: SS-31(A)-GGW                 |          | Batch#:   | 127450       |
| Lab ID: 196103-006                     |          | Sampled:  | 07/19/07     |
| Matrix: Water                          |          | Received: | 07/20/07     |
| Units: ug/L                            |          | Analyzed: | 07/20/07     |
| Diln Fac: 1 000                        |          |           |              |
| Analyte                                | Result   |           | RI.          |
| Gasoline C7-C12                        | ND       |           | 50           |
| tert-Butyl Alcohol (TBA)               | ND       |           | 10           |
| Freon 12                               | ND       |           | 1.0          |
| Chloromethane                          | ND       |           | 1.0          |
| Vinyl Chloride                         | ND       |           | 0.5          |
| Isopropyl Ether (DIPE)                 | ND       |           | 0.5          |
| Bromomethane                           | ND       |           | 1.0          |
| Ethyl tert-Butyl Ether (ETBE)          | ND       |           | 0.5          |
| Methyl tert-Amyl Ether (TAME)          | ND       |           | 0.5          |
| Chloroethane                           | ND       |           | 1.0          |
| Trichlorofluoromethane                 | ND       |           | 1.0          |
| Acetone                                | ND       |           |              |
| Freon 113<br>1,1-Dichloroethene        | ND       |           | 0.5          |
| Methylene Chloride                     | ND<br>ND |           | 0.5<br>10    |
| Carbon Disulfide                       | ND<br>ND |           | 0.5          |
| MTBE                                   | ND       |           | 0.5          |
| trans-1,2-Dichloroethene               | ND       |           | 0.5          |
| Vinyl Acetate                          | ND       |           | 10           |
| 1,1-Dichloroethane                     | ND       |           | 0.5          |
| 2-Butanone                             | ND       |           | 10           |
| cis-1,2-Dichloroethene                 | ND       |           | 0.5          |
| 2,2-Dichloropropane                    | ND       |           | 0.5          |
| Chloroform                             | ND       |           | 0.5          |
| Bromochloromethane                     | ND       |           | 0.5          |
| 1,1,1-Trichloroethane                  | ND       |           | 0.5          |
| 1,1-Dichloropropene                    | ND       |           | 0.5          |
| Carbon Tetrachloride                   | ND       |           | 0.5          |
| 1,2-Dichloroethane                     | ND       |           | 0.5          |
| Benzene                                | ND       |           | 0.5          |
| Trichloroethene                        | ND       |           | 0.5          |
| 1,2-Dichloropropane                    | ND<br>ND |           | 0.5          |
| Bromodichloromethane<br>Dibromomethane | ND<br>ND |           | 0.5<br>0.5   |
| 4-Methyl-2-Pentanone                   | ND<br>ND |           | 10           |
| cis-1,3-Dichloropropene                | ND       |           | 0.5          |
| Toluene                                | ND       |           | 0.5          |
| trans-1,3-Dichloropropene              | ND       |           | 0.5          |
| 1,1,2-Trichloroethane                  | ND       |           | 0.5          |
| 2-Hexanone                             | ND       |           | 10           |
| 1,3-Dichloropropane                    | ND       |           | 0.5          |
| Tetrachloroethene                      | ND       |           | 0.5          |
| Dibromochloromethane                   | ND       |           | 0.5          |
| 1,2-Dibromoethane                      | ND       |           | 0.5          |
| Chlorobenzene                          | ND       |           | 0.5          |
| 1,1,1,2-Tetrachloroethane              | ND       |           | 0.5          |
| Ethylbenzene                           | ND       |           | 0.5          |
| m,p-Xylenes                            | ND       |           | 0.5          |
| o-Xylene                               | ND<br>ND |           | 0.5<br>0.5   |
| Styrene<br>Bromoform                   | ND<br>ND |           | 0.5<br>1.0   |
| Isopropylbenzene                       | ND<br>ND |           | 0.5          |
| 1,1,2,2-Tetrachloroethane              | ND       |           | 0.5          |
| 1,2,3-Trichloropropane                 | ND       |           | 0.5          |
| ······································ |          |           |              |

ND= Not Detected RL= Reporting Limit Page 1 of 2



|                                    | Gasolin      | e by GC/MS             |
|------------------------------------|--------------|------------------------|
| Lab #: 196103                      |              | Location: Hanson Radum |
| Client: LFR Levine Fr              | icke         | Prep: EPA 5030B        |
| Project#: 001-09567-01             |              | Analysis: EPA 8260B    |
| Field ID: SS-31(A)-GGW             |              | Batch#: 127450         |
| Lab ID: 196103-006                 |              | Sampled: 07/19/07      |
| Matrix: Water                      |              | Received: 07/20/07     |
| Units: ug/L                        |              | Analyzed: 07/20/07     |
| Diln Fac: 1.000                    |              |                        |
|                                    |              |                        |
| Analyte                            | Result<br>ND | RL                     |
| Propylbenzene                      |              | 0.5<br>0.5             |
| Bromobenzene                       | ND           | 0.5                    |
| 1,3,5-Trimethylbenzene             | ND           | 0.5                    |
| 2-Chlorotoluene<br>4-Chlorotoluene | ND<br>ND     | 0.5                    |
| tert-Butylbenzene                  | ND<br>ND     | 0.5                    |
| 1,2,4-Trimethylbenzene             | ND<br>ND     | 0.5                    |
| sec-Butylbenzene                   | ND<br>ND     | 0.5                    |
| para-Isopropyl Toluene             | ND           | 0.5                    |
| 1,3-Dichlorobenzene                | ND           | 0.5                    |
| 1,4-Dichlorobenzene                | ND           | 0.5                    |
| n-Butylbenzene                     | ND           | 0.5                    |
| 1,2-Dichlorobenzene                | ND           | 0.5                    |
| 1,2-Dibromo-3-Chloropropane        | ND           | 2.0                    |
| 1,2,4-Trichlorobenzene             | ND           | 0.5                    |
| Hexachlorobutadiene                | ND           | 0.5                    |
| Naphthalene                        | ND           | 2.0                    |
| 1,2,3-Trichlorobenzene             | ND           | 0.5                    |
|                                    |              |                        |
| Surrogate                          | %REC Limits  |                        |
| Dibromofluoromethane               | 93 80-123    |                        |
| 1,2-Dichloroethane-d4              | 100 79-134   |                        |
| Toluene-d8                         | 98 80-120    |                        |
| Bromofluorobenzene                 | 101 80-122   |                        |



|                                | Gasoline                                    | e by GC/MS                      |                                        |
|--------------------------------|---------------------------------------------|---------------------------------|----------------------------------------|
| Lab #:<br>Client:<br>Project#: | 196103<br>LFR Levine Fricke<br>001-09567-01 | Location:<br>Prep:<br>Analysis: | Hanson Radum<br>EPA 5030B<br>EPA 8260B |
| Matrix:<br>Units:<br>Diln Fac: | Water<br>ug/L<br>1.000                      | Batch#:<br>Analyzed:            | 127450<br>07/20/07                     |

| Туре:         | BS               |      |        | Lab ID: | QC     | 397133 |        |  |
|---------------|------------------|------|--------|---------|--------|--------|--------|--|
| An            | alyte            |      | Spiked |         | Result | %REC   | Limits |  |
| tert-Butyl Al | cohol (TBA)      |      | 125.0  |         | 111.5  | 89     | 68-132 |  |
| Isopropyl Eth | er (DIPE)        |      | 25.00  |         | 20.79  | 83     | 65-120 |  |
| Ethyl tert-Bu | tyl Ether (ETBE) |      | 25.00  |         | 21.63  | 87     | 75-124 |  |
| Metĥyl tert-A | myl Ether (TAME) |      | 25.00  |         | 26.67  | 107    | 77-120 |  |
| 1,1-Dichloroe |                  |      | 25.00  |         | 26.82  | 107    | 80-132 |  |
| Benzene       |                  |      | 25.00  |         | 26.46  | 106    | 80-120 |  |
| Trichloroethe | ne               |      | 25.00  |         | 27.39  | 110    | 80-120 |  |
| Toluene       |                  |      | 25.00  |         | 26.80  | 107    | 80-120 |  |
| Chlorobenzene |                  |      | 25.00  |         | 27.51  | 110    | 80-120 |  |
| Sur           | rogate           | %REC | Limits |         |        |        |        |  |
| Dibromofluoro | methane          | 92   | 80-123 |         |        |        |        |  |
| 1,2-Dichloroe | thane-d4         | 98   | 79-134 |         |        |        |        |  |

| Dibromofluoromethane  | 92 | 80-123 |  |  |  |
|-----------------------|----|--------|--|--|--|
| 1,2-Dichloroethane-d4 | 98 | 79-134 |  |  |  |
| Toluene-d8            | 99 | 80-120 |  |  |  |
| Bromofluorobenzene    | 98 | 80-122 |  |  |  |

| Type: BSD                     |      |        | Lab ID: | QC3    | 97134 |        |     |     |
|-------------------------------|------|--------|---------|--------|-------|--------|-----|-----|
| Analyte                       |      | Spiked |         | Result | %REC  | Limits | RPD | Lim |
| tert-Butyl Alcohol (TBA)      |      | 125.0  |         | 105.8  | 85    | 68-132 | 5   | 20  |
| Isopropyl Ether (DIPE)        |      | 25.00  |         | 18.51  | 74    | 65-120 | 12  | 20  |
| Ethyl tert-Butyl Ether (ETBE) |      | 25.00  |         | 19.88  | 80    | 75-124 | 8   | 20  |
| Methyl tert-Amyl Ether (TAME) |      | 25.00  |         | 23.79  | 95    | 77-120 | 11  | 20  |
| 1,1-Dichloroethene            |      | 25.00  |         | 23.61  | 94    | 80-132 | 13  | 20  |
| Benzene                       |      | 25.00  |         | 23.45  | 94    | 80-120 | 12  | 20  |
| Trichloroethene               |      | 25.00  |         | 24.81  | 99    | 80-120 | 10  | 20  |
| Toluene                       |      | 25.00  |         | 24.80  | 99    | 80-120 | 8   | 20  |
| Chlorobenzene                 |      | 25.00  |         | 24.32  | 97    | 80-120 | 12  | 20  |
|                               |      |        |         |        |       |        |     |     |
| Surrogate                     | %REC | Limits |         |        |       |        |     |     |
| Dibromofluoromethane          | 91   | 80-123 |         |        |       |        |     |     |
| 1,2-Dichloroethane-d4         | 97   | 79-134 |         |        |       |        |     |     |
| Toluene-d8                    | 98   | 80-120 |         |        |       |        |     |     |
| Bromofluorobenzene            | 94   | 80-122 |         |        |       |        |     |     |



|                                       | Gasoline by GC/MS                           |                                   |                                        |  |  |  |  |
|---------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|--|--|--|--|
| Lab #:<br>Client:<br>Project#:        | 196103<br>LFR Levine Fricke<br>001-09567-01 | Location:<br>Prep:<br>Analysis:   | Hanson Radum<br>EPA 5030B<br>EPA 8260B |  |  |  |  |
| Type:<br>Lab ID:<br>Matrix:<br>Units: | BLANK<br>QC397135<br>Water<br>ug/L          | Diln Fac:<br>Batch#:<br>Analyzed: | 1.000<br>127450<br>07/20/07            |  |  |  |  |

| Analyte                       | Result | RL  |
|-------------------------------|--------|-----|
| Gasoline C7-C12               | ND     | 50  |
| tert-Butyl Alcohol (TBA)      | ND     | 10  |
| Freon 12                      | ND     | 1.0 |
| Chloromethane                 | ND     | 1.0 |
| Vinyl Chloride                | ND     | 0.5 |
|                               | ND     | 0.5 |
| Isopropyl Ether (DIPE)        |        | 1.0 |
| Bromomethane                  | ND     |     |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 0.5 |
| Methyl tert-Amyl Ether (TAME) | ND     | 0.5 |
| Chloroethane                  | ND     | 1.0 |
| Trichlorofluoromethane        | ND     | 1.0 |
| Acetone                       | ND     | 10  |
| Freon 113                     | ND     | 0.5 |
| 1,1-Dichloroethene            | ND     | 0.5 |
| Methylene Chloride            | ND     | 10  |
| Carbon Disulfide              | ND     | 0.5 |
| MTBE                          | ND     | 0.5 |
| trans-1,2-Dichloroethene      | ND     | 0.5 |
| Vinyl Acetate                 | ND     | 10  |
| 1,1-Dichloroethane            | ND     | 0.5 |
| 2-Butanone                    | ND     | 10  |
| cis-1,2-Dichloroethene        | ND     | 0.5 |
| 2,2-Dichloropropane           | ND     | 0.5 |
| Chloroform                    | ND     | 0.5 |
| Bromochloromethane            | ND     | 0.5 |
| 1,1,1-Trichloroethane         | ND     | 0.5 |
| 1,1-Dichloropropene           | ND     | 0.5 |
| Carbon Tetrachloride          | ND     | 0.5 |
| 1,2-Dichloroethane            | ND     | 0.5 |
| Benzene                       | ND     | 0.5 |
| Trichloroethene               | ND     | 0.5 |
| 1,2-Dichloropropane           | ND     | 0.5 |
| Bromodichloromethane          | ND     | 0.5 |
| Dibromomethane                | ND     | 0.5 |
| 4-Methyl-2-Pentanone          | ND     | 10  |
| cis-1,3-Dichloropropene       | ND     | 0.5 |
| Toluene                       | ND     | 0.5 |
| trans-1,3-Dichloropropene     | ND     | 0.5 |
| 1,1,2-Trichloroethane         | ND     | 0.5 |
| 2-Hexanone                    | ND     | 10  |
|                               |        |     |
| 1,3-Dichloropropane           | ND     | 0.5 |
| Tetrachloroethene             | ND     | 0.5 |
| Dibromochloromethane          | ND     | 0.5 |
| 1,2-Dibromoethane             | ND     | 0.5 |
| Chlorobenzene                 | ND     | 0.5 |
| 1,1,1,2-Tetrachloroethane     | ND     | 0.5 |
| Ethylbenzene                  | ND     | 0.5 |
| m,p-Xylenes                   | ND     | 0.5 |
| o-Xylene                      | ND     | 0.5 |
| Styrene                       | ND     | 0.5 |
| Bromoform                     | ND     | 1.0 |
| Isopropylbenzene              | ND     | 0.5 |
| 1,1,2,2-Tetrachloroethane     | ND     | 0.5 |
| 1,2,3-Trichloropropane        | ND     | 0.5 |

ND= Not Detected RL= Reporting Limit Page 1 of 2



|                  |                   | Gasoline | by GC/MS  |              |
|------------------|-------------------|----------|-----------|--------------|
| Lab #:           | 196103            |          | Location: | Hanson Radum |
| Client:          | LFR Levine Fricke |          | Prep:     | EPA 5030B    |
| Project#:        | 001-09567-01      |          | Analysis: | EPA 8260B    |
| Type:<br>Lab ID: | BLANK             |          | Diln Fac: | 1.000        |
| Lab ID:          | QC397135          |          | Batch#:   | 127450       |
| Matrix:          | Water             |          | Analyzed: | 07/20/07     |
| Units:           | ug/L              |          | -         |              |
|                  |                   |          |           |              |
| Ana              | lyte              | Result   |           | RL           |
| Propylbenzene    |                   | ND       |           | 0.5          |

| ND  |                                                                                 | 0.5                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND  |                                                                                 | 0.5                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND  |                                                                                 | 2.0                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND  |                                                                                 | 0.5                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND  |                                                                                 | 0.5                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND  |                                                                                 | 2.0                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND  |                                                                                 | 0.5                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                                                                 |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                                                                 |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                                                                 |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                                                                 |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |                                                                                 |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 106 | 80-122                                                                          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N | ND       0.5         94       80-123 |



|           | Gasoline by GC/MS |           |              |  |  |  |  |
|-----------|-------------------|-----------|--------------|--|--|--|--|
| Lab #:    | 196103            | Location: | Hanson Radum |  |  |  |  |
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |  |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |  |  |  |
| Matrix:   | Water             | Batch#:   | 127450       |  |  |  |  |
| Units:    | ug/L              | Analyzed: | 07/20/07     |  |  |  |  |
| Diln Fac: | 1.000             |           |              |  |  |  |  |

Type:

Bromofluorobenzene

BS

Lab ID:

QC397190

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 1,000  | 982.8  | 98   | 70-130 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 91   | 80-123 |
| 1,2-Dichloroethane-d4 | 100  | 79-134 |
| Toluene-d8            | 103  | 80-120 |
| Bromofluorobenzene    | 97   | 80-122 |

| Type: BSD             |      |        | Lab ID: | QC3    | 97191 |        |     |     |
|-----------------------|------|--------|---------|--------|-------|--------|-----|-----|
| Analyte               |      | Spiked |         | Result | %REC  | Limits | RPD | Lim |
| Gasoline C7-C12       |      | 1,000  |         | 957.8  | 96    | 70-130 | 3   | 20  |
| Surrogate             | %REC | Limits |         |        |       |        |     |     |
| Dibromofluoromethane  | 92   | 80-123 |         |        |       |        |     |     |
| 1,2-Dichloroethane-d4 | 98   | 79-134 |         |        |       |        |     |     |
| Toluene-d8            | 100  | 80-120 |         |        |       |        |     |     |

80-122

99



#### BTXE & Oxygenates Lab #: Hanson Radum 196103 Location: Client: LFR Levine Fricke Prep: EPA 5030B Project#: 001-09567-01 Analysis: EPA 8260B SS-31(A)-40.5 Field ID: Diln Fac: 0.9615 Lab ID: 196103-001 Batch#: 127494 Matrix: Soil Sampled: 07/19/07 07/20/07 Units: ug/Kg Received: Basis: Analyzed: as received 07/23/07

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 96  |  |
| MTBE                          | ND     | 4.8 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.8 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.8 |  |
| 1,2-Dichloroethane            | ND     | 4.8 |  |
| Benzene                       | ND     | 4.8 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.8 |  |
| Toluene                       | ND     | 4.8 |  |
| 1,2-Dibromoethane             | ND     | 4.8 |  |
| Ethylbenzene                  | ND     | 4.8 |  |
| m,p-Xylenes                   | ND     | 4.8 |  |
| o-Xylene                      | ND     | 4.8 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 99   | 78-126 |  |
| 1,2-Dichloroethane-d4 | 103  | 76-135 |  |
| Toluene-d8            | 99   | 80-120 |  |
| Bromofluorobenzene    | 98   | 80-126 |  |



#### BTXE & Oxygenates Lab #: Hanson Radum 196103 Location: Client: LFR Levine Fricke Prep: EPA 5030B Project#: 001-09567-01 Analysis: EPA 8260B Field ID: SS-31(A)-50.5 Diln Fac: 0.9259 Lab ID: 196103-002 Batch#: 127494 Matrix: Soil Sampled: 07/19/07 07/20/07 Units: ug/Kg Received: Basis: Analyzed: as received 07/23/07

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 93  |  |
| MTBE                          | ND     | 4.6 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.6 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.6 |  |
| 1,2-Dichloroethane            | ND     | 4.6 |  |
| Benzene                       | ND     | 4.6 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.6 |  |
| Toluene                       | ND     | 4.6 |  |
| 1,2-Dibromoethane             | ND     | 4.6 |  |
| Ethylbenzene                  | ND     | 4.6 |  |
| m,p-Xylenes                   | ND     | 4.6 |  |
| o-Xylene                      | ND     | 4.6 |  |

| Surrogate             | %REC | Limits |  |  |
|-----------------------|------|--------|--|--|
| Dibromofluoromethane  | 99   | 78-126 |  |  |
| 1,2-Dichloroethane-d4 | 106  | 76-135 |  |  |
| Toluene-d8            | 99   | 80-120 |  |  |
| Bromofluorobenzene    | 99   | 80-126 |  |  |



#### BTXE & Oxygenates Lab #: Hanson Radum 196103 Location: Client: LFR Levine Fricke Prep: EPA 5030B Project#: 001-09567-01 Analysis: EPA 8260B SS-31(A)-52.5 Field ID: Diln Fac: 0.9434 Lab ID: 196103-003 Batch#: 127494 Matrix: Soil Sampled: 07/19/07 07/20/07 Units: ug/Kg Received: Basis: Analyzed: as received 07/23/07

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 94  |  |
| MTBE                          | ND     | 4.7 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.7 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.7 |  |
| 1,2-Dichloroethane            | ND     | 4.7 |  |
| Benzene                       | ND     | 4.7 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.7 |  |
| Toluene                       | ND     | 4.7 |  |
| 1,2-Dibromoethane             | ND     | 4.7 |  |
| Ethylbenzene                  | ND     | 4.7 |  |
| m,p-Xylenes                   | ND     | 4.7 |  |
| o-Xylene                      | ND     | 4.7 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 101  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 105  | 76-135 |  |
| Toluene-d8            | 99   | 80-120 |  |
| Bromofluorobenzene    | 99   | 80-126 |  |



#### BTXE & Oxygenates Lab #: Hanson Radum 196103 Location: Client: LFR Levine Fricke Prep: EPA 5030B Project#: 001-09567-01 Analysis: EPA 8260B SS-31(A)-60.5 Field ID: Diln Fac: 0.8929 Lab ID: 196103-004 Batch#: 127505 Matrix: Soil Sampled: 07/19/07 07/20/07 Units: ug/Kg Received: Basis: Analyzed: as received 07/23/07

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 89  |  |
| MTBE                          | ND     | 4.5 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.5 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.5 |  |
| 1,2-Dichloroethane            | ND     | 4.5 |  |
| Benzene                       | ND     | 4.5 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.5 |  |
| Toluene                       | ND     | 4.5 |  |
| 1,2-Dibromoethane             | ND     | 4.5 |  |
| Ethylbenzene                  | ND     | 4.5 |  |
| m,p-Xylenes                   | ND     | 4.5 |  |
| o-Xylene                      | ND     | 4.5 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 92   | 78-126 |  |
| 1,2-Dichloroethane-d4 | 112  | 76-135 |  |
| Toluene-d8            | 106  | 80-120 |  |
| Bromofluorobenzene    | 100  | 80-126 |  |



### BTXE & Oxygenates

| Lab #:    | 196103            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(B)-5.5      | Diln Fac: | 0.9434       |  |
| Lab ID:   | 196103-007        | Batch#:   | 127505       |  |
| Matrix:   | Soil              | Sampled:  | 07/19/07     |  |
| Units:    | ug/Kg             | Received: | 07/20/07     |  |
| Basis:    | as received       | Analyzed: | 07/23/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 94  |  |
| MTBE                          | ND     | 4.7 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.7 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.7 |  |
| 1,2-Dichloroethane            | ND     | 4.7 |  |
| Benzene                       | ND     | 4.7 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.7 |  |
| Toluene                       | ND     | 4.7 |  |
| 1,2-Dibromoethane             | ND     | 4.7 |  |
| Ethylbenzene                  | ND     | 4.7 |  |
| m,p-Xylenes                   | ND     | 4.7 |  |
| o-Xylene                      | ND     | 4.7 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 98   | 78-126 |  |
| 1,2-Dichloroethane-d4 | 114  | 76-135 |  |
| Toluene-d8            | 102  | 80-120 |  |
| Bromofluorobenzene    | 98   | 80-126 |  |



#### BTXE & Oxygenates Lab #: Hanson Radum 196103 Location: Client: LFR Levine Fricke Prep: EPA 5030B Project#: 001-09567-01 Analysis: EPA 8260B SS-31(B)-10.5 Field ID: Diln Fac: 0.9615 Lab ID: 196103-008 Batch#: 127505 Matrix: Soil Sampled: 07/19/07 07/20/07 Units: ug/Kg Received: Basis: Analyzed: as received 07/23/07

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 96  |  |
| MTBE                          | ND     | 4.8 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.8 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.8 |  |
| 1,2-Dichloroethane            | ND     | 4.8 |  |
| Benzene                       | ND     | 4.8 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.8 |  |
| Toluene                       | ND     | 4.8 |  |
| 1,2-Dibromoethane             | ND     | 4.8 |  |
| Ethylbenzene                  | ND     | 4.8 |  |
| m,p-Xylenes                   | ND     | 4.8 |  |
| o-Xylene                      | ND     | 4.8 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 100  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 113  | 76-135 |  |
| Toluene-d8            | 103  | 80-120 |  |
| Bromofluorobenzene    | 99   | 80-126 |  |

ND= Not Detected RL= Reporting Limit Page 1 of 1



### BTXE & Oxygenates

| Lab #:    | 196103            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(B)-15.5     | Diln Fac: | 0.9615       |  |
| Lab ID:   | 196103-009        | Batch#:   | 127505       |  |
| Matrix:   | Soil              | Sampled:  | 07/19/07     |  |
| Units:    | ug/Kg             | Received: | 07/20/07     |  |
| Basis:    | as received       | Analyzed: | 07/23/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 96  |  |
| MTBE                          | ND     | 4.8 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.8 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.8 |  |
| 1,2-Dichloroethane            | ND     | 4.8 |  |
| Benzene                       | ND     | 4.8 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.8 |  |
| Toluene                       | ND     | 4.8 |  |
| 1,2-Dibromoethane             | ND     | 4.8 |  |
| Ethylbenzene                  | ND     | 4.8 |  |
| m,p-Xylenes                   | ND     | 4.8 |  |
| o-Xylene                      | ND     | 4.8 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 99   | 78-126 |  |
| 1,2-Dichloroethane-d4 | 112  | 76-135 |  |
| Toluene-d8            | 104  | 80-120 |  |
| Bromofluorobenzene    | 101  | 80-126 |  |



#### BTXE & Oxygenates Lab #: Hanson Radum 196103 Location: Client: LFR Levine Fricke Prep: EPA 5030B Project#: 001-09567-01 Analysis: EPA 8260B SS-31(B)-20.5 Field ID: Diln Fac: 0.9259 Lab ID: 196103-010 Batch#: 127505 Matrix: Soil Sampled: 07/19/07 07/20/07 Units: ug/Kg Received: Analyzed: Basis: as received 07/23/07

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 93  |  |
| MTBE                          | ND     | 4.6 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.6 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.6 |  |
| 1,2-Dichloroethane            | ND     | 4.6 |  |
| Benzene                       | ND     | 4.6 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.6 |  |
| Toluene                       | ND     | 4.6 |  |
| 1,2-Dibromoethane             | ND     | 4.6 |  |
| Ethylbenzene                  | ND     | 4.6 |  |
| m,p-Xylenes                   | ND     | 4.6 |  |
| o-Xylene                      | ND     | 4.6 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 102  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 116  | 76-135 |  |
| Toluene-d8            | 102  | 80-120 |  |
| Bromofluorobenzene    | 101  | 80-126 |  |

ND= Not Detected RL= Reporting Limit Page 1 of 1



#### BTXE & Oxygenates Lab #: Hanson Radum 196103 Location: Client: LFR Levine Fricke Prep: EPA 5030B Project#: 001-09567-01 Analysis: EPA 8260B SS-31(B)-25.5 Field ID: Diln Fac: 0.9615 Lab ID: 196103-011 Batch#: 127505 Matrix: Soil Sampled: 07/19/07 07/20/07 Units: ug/Kg Received: Analyzed: Basis: as received 07/23/07

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 96  |  |
| MTBE                          | ND     | 4.8 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.8 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.8 |  |
| 1,2-Dichloroethane            | ND     | 4.8 |  |
| Benzene                       | ND     | 4.8 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.8 |  |
| Toluene                       | ND     | 4.8 |  |
| 1,2-Dibromoethane             | ND     | 4.8 |  |
| Ethylbenzene                  | ND     | 4.8 |  |
| m,p-Xylenes                   | ND     | 4.8 |  |
| o-Xylene                      | ND     | 4.8 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 101  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 116  | 76-135 |  |
| Toluene-d8            | 102  | 80-120 |  |
| Bromofluorobenzene    | 101  | 80-126 |  |



#### BTXE & Oxygenates Lab #: Hanson Radum 196103 Location: Client: LFR Levine Fricke Prep: EPA 5030B Project#: 001-09567-01 Analysis: EPA 8260B SS-31(B)-30.5 Field ID: Diln Fac: 0.8929 Lab ID: 196103-012 Batch#: 127505 Matrix: Soil Sampled: 07/19/07 07/20/07 Units: ug/Kg Received: Analyzed: Basis: as received 07/23/07

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 89  |  |
| MTBE                          | ND     | 4.5 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.5 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.5 |  |
| 1,2-Dichloroethane            | ND     | 4.5 |  |
| Benzene                       | ND     | 4.5 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.5 |  |
| Toluene                       | ND     | 4.5 |  |
| 1,2-Dibromoethane             | ND     | 4.5 |  |
| Ethylbenzene                  | ND     | 4.5 |  |
| m,p-Xylenes                   | ND     | 4.5 |  |
| o-Xylene                      | ND     | 4.5 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 101  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 117  | 76-135 |  |
| Toluene-d8            | 103  | 30-120 |  |
| Bromofluorobenzene    | 101  | 30-126 |  |



### BTXE & Oxygenates

| Lab #:    | 196103            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(B)-40       | Diln Fac: | 0.8929       |  |
| Lab ID:   | 196103-013        | Batch#:   | 127505       |  |
| Matrix:   | Soil              | Sampled:  | 07/19/07     |  |
| Units:    | ug/Kg             | Received: | 07/20/07     |  |
| Basis:    | as received       | Analyzed: | 07/23/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 89  |  |
| MTBE                          | ND     | 4.5 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.5 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.5 |  |
| 1,2-Dichloroethane            | ND     | 4.5 |  |
| Benzene                       | ND     | 4.5 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.5 |  |
| Toluene                       | ND     | 4.5 |  |
| 1,2-Dibromoethane             | ND     | 4.5 |  |
| Ethylbenzene                  | ND     | 4.5 |  |
| m,p-Xylenes                   | ND     | 4.5 |  |
| o-Xylene                      | ND     | 4.5 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 104  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 116  | 76-135 |  |
| Toluene-d8            | 102  | 80-120 |  |
| Bromofluorobenzene    | 100  | 80-126 |  |



### BTXE & Oxygenates

| Lab #:    | 196103            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(B)-50       | Diln Fac: | 0.8929       |  |
| Lab ID:   | 196103-014        | Batch#:   | 127505       |  |
| Matrix:   | Soil              | Sampled:  | 07/19/07     |  |
| Units:    | ug/Kg             | Received: | 07/20/07     |  |
| Basis:    | as received       | Analyzed: | 07/23/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 89  |  |
| MTBE                          | ND     | 4.5 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.5 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.5 |  |
| 1,2-Dichloroethane            | ND     | 4.5 |  |
| Benzene                       | ND     | 4.5 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.5 |  |
| Toluene                       | ND     | 4.5 |  |
| 1,2-Dibromoethane             | ND     | 4.5 |  |
| Ethylbenzene                  | ND     | 4.5 |  |
| m,p-Xylenes                   | ND     | 4.5 |  |
| o-Xylene                      | ND     | 4.5 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 101  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 118  | 76-135 |  |
| Toluene-d8            | 103  | 80-120 |  |
| Bromofluorobenzene    | 101  | 80-126 |  |



#### BTXE & Oxygenates Lab #: Hanson Radum 196103 Location: Client: LFR Levine Fricke Prep: EPA 5030B Project#: 001-09567-01 Analysis: EPA 8260B SS-31(B)-60.5 Field ID: Diln Fac: 0.9804 Lab ID: 196103-015 Batch#: 127505 Matrix: Soil Sampled: 07/19/07 07/20/07 Units: ug/Kg Received: Analyzed: Basis: as received 07/23/07

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 98  |  |
| MTBE                          | ND     | 4.9 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.9 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.9 |  |
| 1,2-Dichloroethane            | ND     | 4.9 |  |
| Benzene                       | ND     | 4.9 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.9 |  |
| Toluene                       | ND     | 4.9 |  |
| 1,2-Dibromoethane             | ND     | 4.9 |  |
| Ethylbenzene                  | ND     | 4.9 |  |
| m,p-Xylenes                   | ND     | 4.9 |  |
| o-Xylene                      | ND     | 4.9 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 103  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 115  | 76-135 |  |
| Toluene-d8            | 101  | 80-120 |  |
| Bromofluorobenzene    | 99   | 80-126 |  |



|           | BTXE & Oxygenates |           |              |  |  |
|-----------|-------------------|-----------|--------------|--|--|
| Lab #:    | 196103            | Location: | Hanson Radum |  |  |
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |  |
| Type:     | LCS               | Basis:    | as received  |  |  |
| Lab ID:   | QC397378          | Diln Fac: | 1.000        |  |  |
| Matrix:   | Soil              | Batch#:   | 127494       |  |  |
| Units:    | ug/Kg             | Analyzed: | 07/23/07     |  |  |

| Analyte                       | Spiked | Result | %REC | Limits |
|-------------------------------|--------|--------|------|--------|
| tert-Butyl Alcohol (TBA)      | 125.0  | 125.2  | 100  | 56-130 |
| MTBE                          | 25.00  | 23.94  | 96   | 66-120 |
| Isopropyl Ether (DIPE)        | 25.00  | 22.73  | 91   | 57-120 |
| Ethyl tert-Butyl Ether (ETBE) | 25.00  | 21.67  | 87   | 68-120 |
| 1,2-Dichloroethane            | 25.00  | 25.72  | 103  | 73-120 |
| Benzene                       | 25.00  | 25.43  | 102  | 80-120 |
| Methyl tert-Amyl Ether (TAME) | 25.00  | 25.40  | 102  | 73-120 |
| Toluene                       | 25.00  | 25.49  | 102  | 80-120 |
| 1,2-Dibromoethane             | 25.00  | 25.09  | 100  | 80-120 |
| Ethylbenzene                  | 25.00  | 26.99  | 108  | 80-125 |
| m,p-Xylenes                   | 50.00  | 52.22  | 104  | 80-123 |
| o-Xylene                      | 25.00  | 26.38  | 106  | 80-122 |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 101  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 106  | 76-135 |  |
| Toluene-d8            | 100  | 80-120 |  |
| Bromofluorobenzene    | 98   | 80-126 |  |



|           | BTXI              | 2 & Oxygenates |              |  |
|-----------|-------------------|----------------|--------------|--|
| Lab #:    | 196103            | Location:      | Hanson Radum |  |
| Client:   | LFR Levine Fricke | Prep:          | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis:      | EPA 8260B    |  |
| Type:     | BLANK             | Basis:         | as received  |  |
| Lab ID:   | QC397379          | Diln Fac:      | 1.000        |  |
| Matrix:   | Soil              | Batch#:        | 127494       |  |
| Units:    | ug/Kg             | Analyzed:      | 07/23/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 100 |  |
| MTBE                          | ND     | 5.0 |  |
| Isopropyl Ether (DIPE)        | ND     | 5.0 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 5.0 |  |
| 1,2-Dichloroethane            | ND     | 5.0 |  |
| Benzene                       | ND     | 5.0 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 5.0 |  |
| Toluene                       | ND     | 5.0 |  |
| 1,2-Dibromoethane             | ND     | 5.0 |  |
| Ethylbenzene                  | ND     | 5.0 |  |
| m,p-Xylenes                   | ND     | 5.0 |  |
| o-Xylene                      | ND     | 5.0 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 104  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 107  | 76-135 |  |
| Toluene-d8            | 98   | 80-120 |  |
| Bromofluorobenzene    | 100  | 80-126 |  |



|           | BTXE & Oxygenates |           |              |  |
|-----------|-------------------|-----------|--------------|--|
| Lab #:    | 196103            | Location: | Hanson Radum |  |
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Type:     | BLANK             | Basis:    | as received  |  |
| Lab ID:   | QC397380          | Diln Fac: | 1.000        |  |
| Matrix:   | Soil              | Batch#:   | 127494       |  |
| Units:    | ug/Kg             | Analyzed: | 07/23/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 100 |  |
| MTBE                          | ND     | 5.0 |  |
| Isopropyl Ether (DIPE)        | ND     | 5.0 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 5.0 |  |
| 1,2-Dichloroethane            | ND     | 5.0 |  |
| Benzene                       | ND     | 5.0 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 5.0 |  |
| Toluene                       | ND     | 5.0 |  |
| 1,2-Dibromoethane             | ND     | 5.0 |  |
| Ethylbenzene                  | ND     | 5.0 |  |
| m,p-Xylenes                   | ND     | 5.0 |  |
| o-Xylene                      | ND     | 5.0 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 93   | 78-126 |  |
| 1,2-Dichloroethane-d4 | 93   | 76-135 |  |
| Toluene-d8            | 97   | 80-120 |  |
| Bromofluorobenzene    | 93   | 80-126 |  |



|                   | BTXE & Oxygenates           |                    |                           |  |  |
|-------------------|-----------------------------|--------------------|---------------------------|--|--|
| Lab #:<br>Client: | 196103<br>LFR Levine Fricke | Location:<br>Prep: | Hanson Radum<br>EPA 5030B |  |  |
| Project#:         | 001-09567-01                | Analysis:          | EPA 8260B                 |  |  |
| Field ID:         | ZZZZZZZZZZ                  | Diln Fac:          | 0.9804                    |  |  |
| MSS Lab ID:       | 196096-011                  | Batch#:            | 127494                    |  |  |
| Matrix:           | Soil                        | Sampled:           | 07/17/07                  |  |  |
| Units:            | ug/Kg                       | Received:          | 07/19/07                  |  |  |
| Basis:            | as received                 | Analyzed:          | 07/23/07                  |  |  |

| Type: MS                      |          |          | Lab ID: | QC397381 |      |        |
|-------------------------------|----------|----------|---------|----------|------|--------|
| Analyte                       | MSS      | Result   | Spiked  | Result   | %REC | Limits |
| tert-Butyl Alcohol (TBA)      |          | <3.013   | 245.1   | 162.3    | 66   | 45-123 |
| MTBE                          |          | 1.011    | 49.02   | 41.34    | 82   | 55-120 |
| Isopropyl Ether (DIPE)        |          | <0.1696  | 49.02   | 41.09    | 84   | 50-120 |
| Ethyl tert-Butyl Ether (ETBE) |          | <0.08887 | 49.02   | 39.85    | 81   | 58-120 |
| 1,2-Dichloroethane            |          | <0.1943  | 49.02   | 42.15    | 86   | 56-120 |
| Benzene                       |          | 0.2064   | 49.02   | 47.19    | 96   | 61-122 |
| Methyl tert-Amyl Ether (TAME) |          | <0.1769  | 49.02   | 43.93    | 90   | 60-120 |
| Toluene                       |          | <0.5418  | 49.02   | 44.85    | 92   | 57-124 |
| 1,2-Dibromoethane             |          | <0.2179  | 49.02   | 39.30    | 80   | 57-120 |
| Ethylbenzene                  |          | <0.5715  | 49.02   | 42.87    | 87   | 55-129 |
| m,p-Xylenes                   |          | <1.282   | 98.04   | 81.15    | 83   | 53-127 |
| o-Xylene                      |          | <0.5054  | 49.02   | 41.21    | 84   | 54-127 |
| Surrogate                     | %REC     | Limits   |         |          |      |        |
| Dibromofluoromethane          | 100      | 78-126   |         |          |      |        |
| 1,2-Dichloroethane-d4         | 92       | 76-135   |         |          |      |        |
| Toluene-d8                    | 92<br>99 | 80-120   |         |          |      |        |
| Bromofluorobenzene            | 106      | 80-120   |         |          |      |        |

| Type: MSD                     |      |        | Lab ID: | QC3    | 97382 |        |     |     |
|-------------------------------|------|--------|---------|--------|-------|--------|-----|-----|
| Analyte                       |      | Spiked |         | Result | %REC  | Limits | RPD | Lim |
| tert-Butyl Alcohol (TBA)      |      | 245.1  |         | 140.9  | 57    | 45-123 | 14  | 32  |
| MTBE                          |      | 49.02  |         | 38.58  | 77    | 55-120 | 7   | 20  |
| Isopropyl Ether (DIPE)        |      | 49.02  |         | 40.43  | 82    | 50-120 | 2   | 20  |
| Ethyl tert-Butyl Ether (ETBE) |      | 49.02  |         | 39.10  | 80    | 58-120 | 2   | 20  |
| 1,2-Dichloroethane            |      | 49.02  |         | 37.01  | 76    | 56-120 | 13  | 20  |
| Benzene                       |      | 49.02  |         | 46.77  | 95    | 61-122 | 1   | 20  |
| Methyl tert-Amyl Ether (TAME) |      | 49.02  |         | 44.24  | 90    | 60-120 | 1   | 20  |
| Toluene                       |      | 49.02  |         | 46.95  | 96    | 57-124 | 5   | 21  |
| 1,2-Dibromoethane             |      | 49.02  |         | 36.61  | 75    | 57-120 | 7   | 20  |
| Ethylbenzene                  |      | 49.02  |         | 47.19  | 96    | 55-129 | 10  | 23  |
| m,p-Xylenes                   |      | 98.04  |         | 92.06  | 94    | 53-127 | 13  | 23  |
| o-Xylene                      |      | 49.02  |         | 45.41  | 93    | 54-127 | 10  | 22  |
| Surrogate                     | %REC | Limits |         |        |       |        |     |     |
| Dibromofluoromethane          | 92   | 78-126 |         |        |       |        |     |     |
| 1,2-Dichloroethane-d4         | 81   | 76-135 |         |        |       |        |     |     |
| Toluene-d8                    | 97   | 80-120 |         |        |       |        |     |     |
| Bromofluorobenzene            | 99   | 80-126 |         |        |       |        |     |     |



|           | BTXE & Oxygenates |           |              |  |
|-----------|-------------------|-----------|--------------|--|
| Lab #:    | 196103            | Location: | Hanson Radum |  |
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Type:     | LCS               | Basis:    | as received  |  |
| Lab ID:   | QC397429          | Diln Fac: | 1.000        |  |
| Matrix:   | Soil              | Batch#:   | 127505       |  |
| Units:    | ug/Kg             | Analyzed: | 07/23/07     |  |

| Analyte                       | Spiked | Result | %REC | Limits |
|-------------------------------|--------|--------|------|--------|
| tert-Butyl Alcohol (TBA)      | 125.0  | 154.9  | 124  | 56-130 |
| MTBE                          | 25.00  | 23.13  | 93   | 66-120 |
| Isopropyl Ether (DIPE)        | 25.00  | 23.44  | 94   | 57-120 |
| Ethyl tert-Butyl Ether (ETBE) | 25.00  | 22.98  | 92   | 68-120 |
| 1,2-Dichloroethane            | 25.00  | 24.45  | 98   | 73-120 |
| Benzene                       | 25.00  | 26.28  | 105  | 80-120 |
| Methyl tert-Amyl Ether (TAME) | 25.00  | 26.60  | 106  | 73-120 |
| Toluene                       | 25.00  | 27.19  | 109  | 80-120 |
| 1,2-Dibromoethane             | 25.00  | 27.23  | 109  | 80-120 |
| Ethylbenzene                  | 25.00  | 26.85  | 107  | 80-125 |
| m,p-Xylenes                   | 50.00  | 51.96  | 104  | 80-123 |
| o-Xylene                      | 25.00  | 26.54  | 106  | 80-122 |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 95   | 78-126 |  |
| 1,2-Dichloroethane-d4 | 100  | 76-135 |  |
| Toluene-d8            | 101  | 80-120 |  |
| Bromofluorobenzene    | 98   | 80-126 |  |



|           | BTXE & Oxygenates |           |              |  |  |
|-----------|-------------------|-----------|--------------|--|--|
| Lab #:    | 196103            | Location: | Hanson Radum |  |  |
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |  |
| Type:     | BLANK             | Basis:    | as received  |  |  |
| Lab ID:   | QC397430          | Diln Fac: | 1.000        |  |  |
| Matrix:   | Soil              | Batch#:   | 127505       |  |  |
| Units:    | ug/Kg             | Analyzed: | 07/23/07     |  |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 100 |  |
| MTBE                          | ND     | 5.0 |  |
| Isopropyl Ether (DIPE)        | ND     | 5.0 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 5.0 |  |
| 1,2-Dichloroethane            | ND     | 5.0 |  |
| Benzene                       | ND     | 5.0 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 5.0 |  |
| Toluene                       | ND     | 5.0 |  |
| 1,2-Dibromoethane             | ND     | 5.0 |  |
| Ethylbenzene                  | ND     | 5.0 |  |
| m,p-Xylenes                   | ND     | 5.0 |  |
| o-Xylene                      | ND     | 5.0 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 93   | 78-126 |  |
| 1,2-Dichloroethane-d4 | 103  | 76-135 |  |
| Toluene-d8            | 103  | 80-120 |  |
| Bromofluorobenzene    | 101  | 80-126 |  |



|                   | 1                           | BTXE & Oxygenates  |                           |  |
|-------------------|-----------------------------|--------------------|---------------------------|--|
| Lab #:<br>Client: | 196103<br>LFR Levine Fricke | Location:          | Hanson Radum<br>EPA 5030B |  |
| Project#:         | 001-09567-01                | Prep:<br>Analysis: | EPA 5030B<br>EPA 8260B    |  |
| Field ID:         | SS-31(B)-60.5               | Diln Fac:          | 0.9804                    |  |
| MSS Lab ID:       | 196103-015                  | Batch#:            | 127505                    |  |
| Matrix:           | Soil                        | Sampled:           | 07/19/07                  |  |
| Units:            | ug/Kg                       | Received:          | 07/20/07                  |  |
| Basis:            | as received                 | Analyzed:          | 07/23/07                  |  |

| Type: MS                      |      |         | Lab ID: | QC397495 |      |        |
|-------------------------------|------|---------|---------|----------|------|--------|
| Analyte                       | MSS  | Result  | Spiked  | Result   | %REC | Limits |
| tert-Butyl Alcohol (TBA)      |      | <7.258  | 245.1   | 255.2    | 104  | 45-123 |
| MTBE                          |      | <0.5953 | 49.02   | 42.00    | 86   | 55-120 |
| Isopropyl Ether (DIPE)        |      | <0.5554 | 49.02   | 45.63    | 93   | 50-120 |
| Ethyl tert-Butyl Ether (ETBE) |      | <0.6013 | 49.02   | 42.38    | 86   | 58-120 |
| 1,2-Dichloroethane            |      | <0.8152 | 49.02   | 45.75    | 93   | 56-120 |
| Benzene                       |      | <0.6947 | 49.02   | 46.34    | 95   | 61-122 |
| Methyl tert-Amyl Ether (TAME) |      | <0.6889 | 49.02   | 48.02    | 98   | 60-120 |
| Toluene                       |      | <0.5124 | 49.02   | 47.14    | 96   | 57-124 |
| 1,2-Dibromoethane             |      | <0.6878 | 49.02   | 46.43    | 95   | 57-120 |
| Ethylbenzene                  |      | <0.6598 | 49.02   | 43.25    | 88   | 55-129 |
| m,p-Xylenes                   |      | <1.205  | 98.04   | 82.61    | 84   | 53-127 |
| o-Xylene                      |      | <0.5031 | 49.02   | 43.24    | 88   | 54-127 |
|                               |      |         |         |          |      |        |
| Surrogate                     | %REC | Limits  |         |          |      |        |
| Dibromofluoromethane          | 107  | 78-126  |         |          |      |        |
| 1,2-Dichloroethane-d4         | 112  | 76-135  |         |          |      |        |
| Toluene-d8                    | 104  | 80-120  |         |          |      |        |
| Bromofluorobenzene            | 99   | 80-126  |         |          |      |        |

| Type: MSD                     |        |        | Lab ID: | QC     | 397496 |        |     |     |
|-------------------------------|--------|--------|---------|--------|--------|--------|-----|-----|
| Analyte                       | Sr     | piked  |         | Result | %REC   | Limits | RPD | Lim |
| tert-Butyl Alcohol (TBA)      |        | 245.1  |         | 225.6  | 92     | 45-123 | 12  | 32  |
| MTBE                          |        | 49.02  |         | 39.01  | 80     | 55-120 | 7   | 20  |
| Isopropyl Ether (DIPE)        |        | 49.02  |         | 42.29  | 86     | 50-120 | 8   | 20  |
| Ethyl tert-Butyl Ether (ETBE) |        | 49.02  |         | 39.72  | 81     | 58-120 | 6   | 20  |
| 1,2-Dichloroethane            |        | 49.02  |         | 41.13  | 84     | 56-120 | 11  | 20  |
| Benzene                       |        | 49.02  |         | 43.39  | 89     | 61-122 | 7   | 20  |
| Methyl tert-Amyl Ether (TAME) |        | 49.02  |         | 44.84  | 91     | 60-120 | 7   | 20  |
| Toluene                       |        | 49.02  |         | 44.18  | 90     | 57-124 | 6   | 21  |
| 1,2-Dibromoethane             |        | 49.02  |         | 42.57  | 87     | 57-120 | 9   | 20  |
| Ethylbenzene                  |        | 49.02  |         | 41.55  | 85     | 55-129 | 4   | 23  |
| m,p-Xylenes                   |        | 98.04  |         | 79.66  | 81     | 53-127 | 4   | 23  |
| o-Xylene                      |        | 49.02  |         | 41.95  | 86     | 54-127 | 3   | 22  |
| Surrogate                     | %REC I | Limits |         |        |        |        |     |     |
| Dibromofluoromethane          |        | 78-126 |         |        |        |        |     |     |
| 1,2-Dichloroethane-d4         |        | 76-135 |         |        |        |        |     |     |
| Toluene-d8                    |        | 30-120 |         |        |        |        |     |     |
| Bromofluorobenzene            |        | 30-126 |         |        |        |        |     |     |



| LFR Levine Fricke    | Project : 001-09567-01  |
|----------------------|-------------------------|
| 1900 Powell Street   | Location : Hanson Radum |
| Emeryville, CA 94608 | Level : II              |

| <u>Sample ID</u> | <u>Lab ID</u> |
|------------------|---------------|
| SS-31(B)-5.5     | 196141-001    |
| SS-31(B)-10.5    | 196141-002    |

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Signature: Project Manager Signature:

Operations Manager

Date: 07/31/2007

Date: 07/31/2007

NELAP # 01107CA

Page 1 of \_\_\_\_



### CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 196141 LFR Levine Fricke 001-09567-01 Hanson Radum 07/23/07 07/20/07

This hardcopy data package contains sample and QC results for two soil samples, requested for the above referenced project on 07/23/07. The samples were received cold and intact. All data were e-mailed to Katrin Schliewen on 07/26/07.

#### Semivolatile Organics by GC/MS (EPA 8270C):

Matrix spikes were not reported for this analysis because the parent sample needed to be re-extracted. SS-31(B)-10.5 (lab # 196141-002) was diluted due to the viscous nature of the sample extract. No other analytical problems were encountered.

#### Pesticides (EPA 8081A):

No analytical problems were encountered.

#### Polychlorinated Biphenyls (PCBs) (EPA 8082):

No analytical problems were encountered.

#### Metals (EPA 6010B and EPA 7471A):

No analytical problems were encountered.



|                     | Semivolatile C       | organics by GC/ | MS           |
|---------------------|----------------------|-----------------|--------------|
| Lab #:              | 196141               | Location:       | Hanson Radum |
| Client:             | LFR Levine Fricke    | Prep:           | EPA 3550B    |
| Project#:           | 001-09567-01         | Analysis:       | EPA 8270C    |
| Field ID:           | SS-31(B)-5.5         | Batch#:         | 127543       |
| Lab ID:             | 196141-001           | Sampled:        | 07/19/07     |
| Matrix:             | Soil                 | Received:       | 07/20/07     |
| Units:              | ug/Kg                | Prepared:       | 07/24/07     |
| Basis:<br>Diln Fac: | as received<br>1.000 | Analyzed:       | 07/25/07     |

| NH:trosodimethylamine         ND         330           Phenol         ND         330           bis(2-Chloroethyl)ether         ND         330           2-Chlorophenol         ND         330           1,4-Dichlorobenzene         ND         330           1,4-Dichlorobenzene         ND         330           1,2-Dichlorobenzene         ND         330           4-Methylphenol         ND         330           N+Nitroso-di-n-propylamine         ND         330           Nitrobenzene         ND         330           2.4-Dimethylphenol         ND         330           2.4-Dirtri                           | Analyte                    | Result | RL  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------|-----|
| Phenol         330           2-Chlorophenol         ND         330           2-Chlorophenol         ND         330           1,3-Dichlorobenzene         ND         330           1,4-Dichlorobenzene         ND         330           1,2-Dichlorobenzene         ND         330           1,2-Dichlorobenzene         ND         330           1,2-Dichlorobenzene         ND         330           2-Methylphenol         ND         330           1,2-Dichlorobenzene         ND         330           2-Methylphenol         ND         330           Hwiktroso-di-n-propylamine         ND         330           Hitrobenzene         ND         330           Isophorone         ND         330           2-Mitrophenol         ND         660           2,4-Dichlorophenol         ND         330           1,2,4-Trichlorophenol         ND <th></th> <th></th> <th></th> |                            |        |     |
| bis(2-chloroethyl)ether         ND         330           2-Chlorophenol         ND         330           1,4-Dichlorobenzene         ND         330           1,4-Dichlorobenzene         ND         330           Lablehlorobenzene         ND         330           Hexachlorobenzene         ND         330           Hexachlorobenzene         ND         330           Hexachlorobenzene         ND         330           Z-4-Dichlorobenzene         ND         330           Paltrophenol         ND         330           Z-4-Dichlorobenzene         ND         330           Z-4-Dichlorophenol         ND         330           L,2,4-Tichlorobenzene         ND         330           L,2,4-Tichlorobenzene         ND         330           L,2,4-Tichlorophenol         ND         300           J-4-Staptanpthalene         ND         300           J-4-Staptanpthtalene         ND         300           J-4-C                           |                            |        |     |
| 2-chlorophenol         ND         330           1.3-Dichlorobenzene         ND         330           1.4-Dichlorobenzene         ND         330           1.4-Dichlorobenzene         ND         330           2-Methylphenol         ND         330           1.4-Dichlorobenzene         ND         330           2-Methylphenol         ND         330           Neisi2-Chloroisopropyl) ether         ND         330           Neistrogeta         ND         330           Nitrobenzene         ND         330           2-Altirophenol         ND         660           2,4-Dichlorophenol         ND         330           1,2,4-Trichlorophenol         ND         330           1,2,4-Trichlorophenol         ND         330           1,2,4-Trichlorophenol         ND         330           1,2,4-Trichlorophenol         ND         330           1,2,4-Frichlorophenol         ND         330           2,4,6-Trichlorophenol                                        |                            |        |     |
| 1,4-Dichlorobenzene       ND       330         H,4-Dichlorobenzene       ND       330         J.2-Dichlorobenzene       ND       330         1,2-Dichlorobenzene       ND       330         2-Methylphenol       ND       330         2-Methylphenol       ND       330         4-Methylphenol       ND       330         Monoration       ND       330         4-Methylphenol       ND       330         Monoration       ND       330         Hexachloroethane       ND       330         Isophorone       ND       330         Sendorone       ND       330         2-Mitrophenol       ND       300         J.2-Chloroethoxylmethane       ND       300         2-Mitrophenol       ND       300         1.2-Chloroethoxylmethane       ND       300         1.2-Chloroethoxylmethane       ND       300         1.2-Chloroethoxylmethane       ND       300         1.2-Chlorophenol       ND       300         1.2-Chlorophenol       ND       300         2-Actorosontine       ND       300         2-Actorosontine       ND       660 <tr< td=""><td></td><td></td><td></td></tr<>                                                                           |                            |        |     |
| 1.4-Dichlorobenzene       ND       330         Benzyl alcohol       ND       330         1.2-Dichlorobenzene       ND       330         J-Methylphenol       ND       330         Hexachlorobenzene       ND       330         Hexachloroethame       ND       330         Nitroso-di-n-propylamine       ND       330         Nitrobenzene       ND       330         Sophorone       ND       330         Sophorone       ND       330         2-Nitrophenol       ND       330         Sophorone       ND       330         2-Altophenol       ND       330         Sophorone       ND       330         2-Altophenol       ND       330                                                                                                                                                   |                            |        |     |
| lenzyl         alcohol         ND         330           1.2-Dichlorobsorem         ND         330           2-Methylphenol         ND         330           2-Methylphenol         ND         330           4-Methylphenol         ND         330           4-Methylphenol         ND         330           4-Methylphenol         ND         330           Hexachloroethane         ND         330           Isophorone         ND         330           Z-Nitrophenol         ND         330           Jenzoica acid         ND         330           2.4-Dichloropethoxylmethane         ND         330           1.4, 4-Trichlorophenol         ND         330           2.4-Dichloropethalene         ND         330           2.4-Dichloropethalene         ND         330           2.4-Strichlorophenol         ND         330           2.4-Strichlorophenol         ND         330                                          |                            |        |     |
| 1,2-Dichlorobenzene       ND       330         2-Methylphenol       ND       330         his(2-Chloroisopropyl) ether       ND       330         A-Methylphenol       ND       330         Nitroso-di-n-propylamine       ND       330         Nitrobenzene       ND       330         Sophorone       ND       330         2-Nitrophenol       ND       660         2,4-Dintehylphenol       ND       1,600         bis(2-Chloroethoxy)methane       ND       330         2,4-Dichlorophenol       ND       330         2,4-Dichlorophenol       ND       330         2,4-Dichlorophenol       ND       330         1,2,4-Trichlorobenzene       ND       330         A-Chloroalline       ND       330         2-Methylphenol       ND       330         2-Methylphenol       ND       330         2-Methylphenol       ND       330         2,4-Dichlorophenol       ND       330         2,4-Frichlorophenol       ND       330         2,4-Strichlorophenol       ND       330         2,4-Strichlorophenol       ND       330         2,4-Strichlorophenol       ND                                                                                             |                            |        |     |
| 2-Methylphenol         ND         330           Hexachlorocopyllether         ND         330           Hexachlorocthane         ND         330           Janatophenol                                                                       |                            |        |     |
| bis(2-Chloroisoproyl) ether         ND         330           4-Methylphenol         ND         330           Nitrobenzene         ND         330           Nitrobenzene         ND         330           Nitrobenzene         ND         330           Zohrone         ND         330           2-Nitrophenol         ND         330           2-Nitrophenol         ND         330           2-A-ichloroethoxymethane         ND         330           2-A-irichlorophenol         ND         330           2.4 -Diendrobenon         ND         330           2.4 -Chloro-Nemethalene         ND         330           2.4 -Chloro-Nemethalene         ND         330           2.4 -Strichlorophenol         ND         330           2.4 -Strichlorophenol                                   |                            |        |     |
| 4-Methylphenol         ND         330           Hexachloroethane         ND         330           Hexachloroethane         ND         330           Nitrobenzene         ND         330           Isophorone         ND         330           Z-Nitrophenol         ND         660           2.4 -Dinethylphenol         ND         330           Benzoic acid         ND         330           J.4 -Dichlorophenol         ND         330           J.4.7 Lichlorophenol         ND         330           J.4.6 Trichlorophenol         ND         330           J.4.7 S-Trichlorophenol         ND         330           J.4.7 S-Trichlorophenol         ND         330           J.4.7 S-Trichlorophenol         ND         330           J.4.7 S-Trichlorophenol         ND         660           J.6 -Dinitrotoluene         ND         660           J.                           |                            |        |     |
| N-Nitroso-di-n-propylamineND330HexachloroethaneND330NitrobenzeneND330IsophoroneND3302-NitrophenolND6602.4-DienthylphenolND1,600bis(2-Chloroethoxy)methaneND3302-ArbichlorophenolND3302.4-Dienthoxy)methaneND330NaphthaleneND3304-Chloroethoxy)methaneND330NaphthaleneND330-AchlorobutadieneND3304-ChlorophenolND330-AchlorobutadieneND330-AchlorophenolND330-AchlorophenolND330-AchlorophenolND330-AchlorophenolND330-AchlorophenolND330-AchlorophenolND330-AchlorophenolND330-AchlorophenolND330-AchlorophenolND330-AchlorophenolND330-AchlorophenolND330-AchlorophenolND330-AchlorophenolND330-AchlorophenolND330-AchlorophenolND330-AchlorophenolND360-AchlorophenolND660-AchlorophenolND660-AchlorophenolND660-AchlorophenolND660-AchlorophenolND660-Achlo                                                                                                                                                                                                                                                                                                                                                                                                        |                            |        |     |
| HexachlorothaneND330NitrobenzeneND330IsophoroneND3302-NitrophenolND6602.4-DimethylphenolND1,600bis(2-Chlorothoxy)methaneND3302.4-DichlorophenolND3301,2,4-TrichlorobenzeneND330A-ChloronillineND330HexachlorophenolND330HexachlorophenolND330HexachlorophenolND330-A-ChloronillineND3302-MethylnaphtaleneND664-ChlorophenolND3302-MethylnaphtaleneND6602,4,6-TrichlorophenolND3302-MitronillineND3302-MitronillineND3302-NitronillineND3302-NitronillineND660JanitronillineND660JanitrophenolND660JanitrophenolND660JanitrophenolND660JanitrophenolND660JanitrophenolND660JanitrophenolND660JanitrophenolND330JanitrophenolND330JanitrophenolND660JanitrophenolND660JanitrophenolND660JanitrophenolND660JanitrophenolND660JanitrophenolND660Janitrophenol                                                                                                                                                                                                                                                                                                                                                                                                             |                            |        |     |
| NitrobenzeneND330LapphoroneND3302.4-DimethylphenolND6602.4-DimethylphenolND1,600bis(2-Chloroethoxy)methaneND330(2.4-DichlorophenolND3301.2.4-TrichlorobenzeneND330HexachlorobutadieneND3304-Chloro-3-methylphenolND3302-MethylnaphthaleneND66HexachloropylopentadieneND3302-MethylnaphthaleneND66HexachloropylopentadieneND3302-MethylnaphthaleneND3302-MethylnaphthaleneND3302-MitrophenolND3302-MitrophenolND3302-MitrophenolND3302-MitrophenolND3302-MitrophenolND3302-MitrophenolND3302-NitroanilineND6602-NitroanilineND6602.4-DinitrotolueneND6602.4-DinitrophenolND6602.4-DinitrophenolND6602.4-DinitrophenolND3302.4-DinitrophenolND3302.4-DinitrophenolND3302.4-DinitroclueneND3302.4-DinitroclueneND3302.4-DinitroclueneND3302.4-DinitroclueneND3302.4-DinitroclueneND3302.4-DinitroclueneND330<                                                                                                                                                                                                                                                                                                                                                            |                            |        |     |
| Teophorone         ND         330           2-Nirophenol         ND         660           2.4-Dimethylphenol         ND         330           Benzoic acid         ND         1,600           bis(2-Chloroethoxy)methane         ND         330           1,2,4-Trichlorophenol         ND         330           1,2,4-Trichlorobenzene         ND         330           Naphthalene         ND         330           4-Chloroanlline         ND         330           Hexachlorobutadiene         ND         330           2-Methylnaphthalene         ND         66           4-Chlorophenol         ND         330           2-Methylnaphthalene         ND         660           2,4,5-Trichlorophenol         ND         330           2-Nitronaphthalene         ND         330           2-Nitronaphthalene         ND         330           2-Nitronaphthalene         ND         660           2.4,5-Trichlorophenol         ND         330           2-Nitronaphthalene         ND         660           2.4,6-Trichlorophenol         ND         660           2.4-Dinitrotoluene         ND         660           2.4-Dinitroph                           |                            |        |     |
| 2-NitrophenolND6602.4-DitethylphenolND330Benzoic acidND1,600bis(2-Chloroethoxy)methaneND3302.4-DichlorophenolND3301,2,4-TrichlorobenzeneND3304-ChloroanlineND3304-Chloro-3-methylphenolND3302-MethylnaphthaleneND66HexachlorocyclopentadieneND66HexachlorocyclopentadieneND3302-AftrichlorophenolND3302-AftrichlorophenolND3302-AftrichlorophenolND3302-AftrichlorophenolND3302-AftrichlorophenolND3302-AftrichlorophenolND3302-AftrichlorophenolND3302-AftrichlorophenolND3302-ChloronaphthaleneND660DimethylphthalateND6602,4-DinitroclueneND6602,4-DinitrophenolND6602,4-DinitrophenolND6602,4-DinitrophenolND6602,4-DinitrophenolND3302,4-DinitrophenolND3302,4-DinitroclueneND3302,4-DinitroclueneND3302,4-DinitroclueneND3302,4-DinitroclueneND3302,4-DinitroclueneND6604-Chlorophenyl-phenyletherND6604-Chlorophenyl-phenyletherND660 <t< td=""><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                               |                            |        |     |
| 2,4-Dimethylphenol       ND       330         Benzoic acid       ND       1,600         bis (2-Chloroethoxy)methane       ND       330         2,4-Dichlorophenol       ND       330         1,2,4-Trichlorobenzene       ND       330         Naphthalene       ND       66         4-Chlorooniline       ND       330         Naphthalene       ND       330         4-Chlorooniline       ND       330         Hexachlorobutadiene       ND       330         2-Methylnaphthalene       ND       660         2,4,6-Trichlorophenol       ND       330         2-A,6-Trichlorophenol       ND       330         2-Chloronaphthalene       ND       330         2-Nitroaniline       ND       330         2-Nitroaniline       ND       660         2,6-Dinitrotoluene       ND       660         2,6-Dinitrotoluene       ND       660         2,4-Dinitrophenol       ND       660         2,4-Dinitrophenol       ND       660         2,4-Dinitrophenol       ND       660         2,4-Dinitrophenol       ND       660         2,4-Dinitrotoluene       ND <t< td=""><td></td><td></td><td></td></t<>                                                           |                            |        |     |
| Benzoic acidND1,600bis(2-Chloroethoxy)methaneND3302,4-DichlorophenolND3301,2,4-TrichlorobenzeneND330MaphthaleneND664-ChloroanilineND330HexachlorobutadieneND3302-MethylaphthaleneND66HexachlorocylopentadieneND662,4,5-TrichlorophenolND3302-MethylaphthaleneND6602,4,5-TrichlorophenolND3302-ChloronaphthaleneND660DimethylphthalateND660DimethylphthalateND660AcenaphtheneND6602,4-5-TrichlorophenolND3302-NitroanilineND660DimethylphthalateND660AcenaphtheneND6602,4-DinitrotolueneND6602,4-DinitrotolueneND6602,4-DinitrotolueneND6602,4-DinitrotolueneND6602,4-DinitrotolueneND660DibenzofuranND660DibenzofuranND6601,4-5-TrichlorophenolND3302,4-5-TrichlorophenolND6601,4-5-TrichlorophenolND6602,4-DinitrotolueneND6601,4-5-TrichlorophenolND6601,4-5-TrichlorophenolND6601,4-5-TrichlorophenolND6601,4-5-Trichlorophenol <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                      |                            |        |     |
| bis(2-Chlorophenol         ND         330           1,2,4-Trichlorobenzene         ND         330           Naphthalene         ND         66           4-Chlorophenol         ND         330           Hexachlorobutadiene         ND         330           4-Chloroailine         ND         330           Hexachlorobutadiene         ND         330           2-Methylnaphthalene         ND         66           2.4,6-Trichlorophenol         ND         330           2.4,6-Trichlorophenol         ND         330           2-Chloronaphthalene         ND         330           2-Nitroaniline         ND         330           2-Nitroaniline         ND         660           2,6-Dinitrotoluene         ND         330           2-K-1onaphthalene         ND         660           2,6-Dinitrotoluene         ND         660           2,6-Dinitrotoluene         ND         660           2,4-Dinitrophenol         ND         660           2,4-Dinitrophenol         ND         660           2,4-Dinitrophenol         ND         660           2,4-Dinitrophenol         ND         660           2,4-Dinitrotoluene                                |                            |        |     |
| 2.4-Dichlorophenol       ND       330         1.2,4-Trichlorobenzene       ND       330         Naphthalene       ND       66         4-Chloroaniline       ND       330         Hexachlorobutadiene       ND       330         4-Chloro-3-methylphenol       ND       330         2-Methylnaphthalene       ND       66         Hexachlorocyclopentadiene       ND       66         2.4, 6-Trichlorophenol       ND       330         2.4, 6-Trichlorophenol       ND       660         Dimethylphthalate       ND       660         Acenaphthylene       ND       660         Acenaphthene       ND       660         2.4-Dinitrotoluene       ND       660         2.4-Dinitrophenol       ND       660         2.4-Dinitrophenol       ND       660         2.4-Dinitrotoluene       ND       330         Pluorene                                                                                      |                            |        |     |
| 1/2,4-TrichlorobenzeneND330NaphthaleneND664-ChloroanilineND330HexachlorobutadieneND3302-MethylnaphthaleneND66HexachlorocyclopentadieneND66HexachlorocyclopentadieneND6602,4,6-TrichlorophenolND3302-MethylphthaleneND3302-ChloronaphthaleneND3302-ChloronaphthaleneND3302-ChloronaphthaleneND3302-ChloronaphthaleneND3302-ChloronaphthaleneND660DimethylphthalateND662,6-DinitrotolueneND660AcenaphtheneND6602,4-DinitrophenolND6604-NitrophenolND6601-NitrophenolND6602,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND33010 ethylphthalateND33011 ethylphthalateND33012 chlorophenyl-phenyletherND33012 chlorophenyl-phenyletherND33013 chitrosodiphenylamineND33014 chlorobenzeneND33014 chitrosodiphenyl-phenyletherND33014 chlorobenzeneND33014 chlorobenzeneND33014 chlorobenzeneND33014 chlorobenzeneND33014 e                                                                                                                                                                                                                                                                                                                                |                            |        |     |
| NaphthaleneND664-ChloroanilineND330HexachlorobutadieneND3304-Chloro-3-methylphenolND3302-MethylnaphthaleneND66HexachlorocyclopentadieneND3302.4, 5-TrichlorophenolND3302.4, 5-TrichlorophenolND3302-NitroanilineND3302-NitroanilineND66DimethylphthalateND662.NitroanilineND662.AcenaphthyleneND662.AcenaphthyleneND662.AcenaphthyleneND662.AutroanilineND662.AutroanilineND662.4-DinitroblueneND662.4-DinitrophenolND662.4-DinitrophenolND662.4-DinitrophenolND662.4-DinitrophenolND662.4-DinitrophenolND662.4-DinitrophenolND662.4-DinitrophenolND664-NitroanilineND330DiethylphthalateND664-Chlorophenyl-phenyletherND3304-StoroantineND660N-NitrosodiphenylamineND3304-Bromophenyl-phenyletherND3304-Bromophenyl-phenyletherND3304-Bromophenyl-phenyletherND3304-Bromophenyl-phenyletherND3304-Bromophenyl-phenyletherND<                                                                                                                                                                                                                                                                                                                                         |                            |        |     |
| 4-ChloroanilineND330HexachlorobutadieneND3304-Chloro-3-methylphenolND3302-MethylnaphthaleneND662.4.6-TrichlorophenolND3302.4.6-TrichlorophenolND3302.4.5-TrichlorophenolND3302.ChloronaphthaleneND3302.ChloronaphthaleneND3302.ChloronaphthaleneND3302.ChloronaphthaleneND6602.chloronaphthaleneND6602.chloronaphthaleneND6602.chloronaphthaleneND6602.6-DinitrotolueneND6602.6-DinitrotolueneND6602.4-DinitrophenolND6602.4-DinitrophenolND660DibenzofuranND330DiethylphthalateND330PluoreneND330J.4-DinitrocluueneND330J.4-DinitrocluueneND330J.4-DinitrocluueneND660J.4-Dinitro-2-methylphenolND6604-Chlorophenyl-phenyletherND3304-Bromophenyl-phenyletherND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330HexachlorobenzeneND330HexachlorobenzeneND660PentachlorophenolND660PentachlorophenolND660Hexachlo                                                                                                                                                                                                                                                                                                                                |                            |        |     |
| HexachlorobutadieneND3304-Chloro-3-methylphenolND3302-MethylnaphthaleneND66HexachlorocyclopentadieneND3302.4, 6-TrichlorophenolND3302.4, 5-TrichlorophenolND3302-ChloronaphthaleneND3302-NitroanilineND660DimethylphthalateND662.6-DinitrotolueneND3303-NitroanilineND6602.4-DinitrotolueneND6602.4-DinitrotolueneND6602.4-DinitrotolueneND6602.4-DinitrotolueneND6602.4-DinitrotolueneND6602.4-DinitrotolueneND6604-NitrophenolND6604-DinitrotolueneND3302.4-DinitrotolueneND3302.4-DinitrotolueneND3302.4-DinitrotolueneND3302.4-DinitrotolueneND3302.4-DinitrotolueneND3302.4-DinitrotolueneND3302.4-DinitrotolueneND3302.4-DinitrotolueneND3302.4-Dinitro-2-methylphenolND6604-Chlorophenyl-phenyletherND330AzobenzeneND3304-Bromophenyl-phenyletherND3304-AstorobenzeneND330PentachlorophenolND660PhenanthreneND660Phenanthrene </td <td>±</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                              | ±                          |        |     |
| 4-Chloro-3-methylphenolND3302-MethylnaphthaleneND662.4,6-TrichlorophenolND3302.4,5-TrichlorophenolND3302.4,5-TrichlorophenolND3302-ChloronaphthaleneND3302-NitroanilineND3302-NitroanilineND660DimethylphthalateND662,6-DinitrotolueneND6603-NitroanilineND660AcenaphtheneND6602,4-DinitrophenolND660AcenaphtheneND6602,4-DinitrophenolND660JohnstrophenolND660JohnstrophenolND660DibenzofuranND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND660DibenzofuranND660DiethylphthalateND330FluoreneND3304-NitroanilineND6604-Chlorophenyl-phenyletherND330AzobenzeneND330AzobenzeneND3304-Bromophenyl-phenyletherND330PentachlorophenolND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660<                                                                                                                                                                                                                                                                                                                                                                                                |                            |        |     |
| 2-MethylaphthaleneND66HexachlorocyclopentadieneND6002,4,6-TrichlorophenolND3302,4,5-TrichlorophenolND3302-ChloronaphthaleneND360DimethylphthalateND660DimethylphthalateND662,6-DinitrotolueneND6602,6-DinitrotolueneND6602,4-DinitrophenolND6602,4-DinitrophenolND6602,4-DinitrotolueneND6602,4-DinitrophenolND6602,4-DinitrotolueneND6604-NitrophenolND6604-NitrophenolND6604-Chlorophenyl-phenyletherND330FluoreneND6604-Chlorophenyl-phenyletherND660N-Nitrosodiphenyl-phenolND660N-Nitrosodiphenyl-phenyletherND3304-Bromophenyl-phenyletherND330PentachlorophenolND330PentachlorophenolND660N-Nitrosodiphenyl-phenolND330AzobenzeneND330PentachlorophenolND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660 <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                             |                            |        |     |
| HexachlorocyclopentadieneND6602,4,6-TrichlorophenolND3302,4,5-TrichlorophenolND3302-ChloronaphthaleneND3302-NitroanilineND660DimethylphthalateND662,6-DinitrotolueneND6602,4-DinitrophenolND660AcenaphthyleneND6602,6-DinitrotolueneND660AcenaphteneND660AcenaphteneND660AcenaphteneND6602,4-DinitrophenolND660J.A-DinitrotolueneND660J.A-DinitrotolueneND330DiethylphthalateND330J.A-DinitrotolueneND330J.A-DinitrotolueneND330J.A-DinitrotolueneND330J.A-DinitrotolueneND660J.A-Dinitro-2-methylphenolND660A-NitroanilineND660A-Nitrosodiphenyl-phenyletherND330AzobenzeneND330AzobenzeneND330AzobenzeneND330PentachlorophenolND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660 <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                           |                            |        |     |
| 2,4,6-TrichlorophenolND3302,4,5-TrichlorophenolND3302-ChloronaphthaleneND3302-NitroanilineND660DimethylphthalateND330AcenaphthyleneND662,6-DinitrotolueneND660AcenaphtheneND6602,4-DinitrophenolND6602,4-DinitrophenolND6602,4-DinitrotolueneND6602,4-DinitrotolueneND6602,4-DinitrophenolND6602,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3304-RitroanilineND6604,6-Dinitro-2-methylphenolND6604,6-Dinitro-2-methylphenolND330AzobenzeneND330AzobenzeneND330AzobenzeneND330Pentachlorophenyl-phenyletherND330PentachlorophenolND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND6                                                                                                                                                                                                                                                                                                                                                                                      |                            |        |     |
| 2,4,5-TrichlorophenolND3302-ChloronaphthaleneND3302-NitroanilineND660DimethylphthalateND330AcenaphthyleneND662,6-DinitrotolueneND660AcenaphtheneND660AcenaphtheneND660AcenaphtheneND6602,4-DinitrophenolND6604-NitrophenolND660DibenzofuranND3302,4-DinitrotolueneND330DiethylphthalateND664-Chlorophenyl-phenyletherND6604-Chorophenyl-phenyletherND6604,6-Dinitro-2-methylphenolND6604,6-Dinitro-2-methylphenolND6604-Romophenyl-phenyletherND3304-Bromophenyl-phenyletherND330AzobenzeneND3304-Bromophenyl-phenyletherND330PentachlorophenolND660PhenanthreneND660PhenathreneND660PhenathreneND660PhenathreneND660PhenathreneND660PhenathreneND660PhenathreneND660PhenathreneND660PhenathreneND660PhenathreneND660PhenathreneND660PhenathreneND660PhenathreneND660<                                                                                                                                                                                                                                                                                                                                                                                                |                            |        |     |
| 2-ChloronaphthaleneND3302-NitroanilineND660DimethylphthalateND330AcenaphthyleneND662,6-DinitrotolueneND662,6-DinitrotolueneND660AcenaphtheneND660AcenaphtheneND6604-NitrophenolND6604-NitrophenolND6602,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND33010iethylphthalateND330FluoreneND664-Chlorophenyl-phenyletherND660N-NitrosodiphenylamineND660N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660Phenanthrene <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                             |                            |        |     |
| 2-NitroanilineND660DimethylphthalateND330AcenaphthyleneND662,6-DinitrotolueneND3303-NitroanilineND660AcenaphtheneND6602,4-DinitrophenolND6604-NitrophenolND660DibenzofuranND3302,4-DinitrotolueneND3302,4-DinitrotolueneND330JiethylphthalateND330FluoreneND6604-Chlorophenyl-phenyletherND660N-NitrosodiphenylamineND660N-NitrosodiphenylamineND330AzobenzeneND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND660MMD660ND330AzobenzeneND330HexachlorobenzeneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneN                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |        |     |
| DimethylphthalateND330AcenaphthyleneND662,6-DinitrotolueneND3303-NitroanilineND660AcenaphtheneND660AcenaphtheneND6604-NitrophenolND660DibenzofuranND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3302,4-DinitrotolueneND3304-NitroanilineND6604-Chlorophenyl-phenyletherND660N-NitrosodiphenylamineND660N-NitrosodiphenylamineND330AzobenzeneND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND660PhenanthreneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |        |     |
| AcenaphthyleneND662,6-DinitrotolueneND3303-NitroanilineND660AcenaphtheneND662,4-DinitrophenolND6604-NitrophenolND6600ibenzofuranND3302,4-DinitrotolueneND330DiethylphthalateND330FluoreneND6604-Chlorophenyl-phenyletherND6604,6-Dinitro-2-methylphenolND6604,6-Dinitro-2-methylphenolND6604-Ritrosodiphenyl-phenyletherND330AzobenzeneND3304-Bromophenyl-phenyletherND330AzobenzeneND330PentachlorophenolND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND<                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |        |     |
| 2,6-DinitrotolueneND3303-NitroanilineND660AcenaphtheneND6602,4-DinitrophenolND660d-NitrophenolND660DibenzofuranND3302,4-DinitrotolueneND330DiethylphthalateND330FluoreneND6604-Chlorophenyl-phenyletherND6604-Nitrosodiphenyl-phenyletherND6604-Strosodiphenyl-phenyletherND6604-Strosodiphenyl-phenyletherND6604-Strosodiphenyl-phenyletherND3304-Bromophenyl-phenyletherND3304-Bromophenyl-phenyletherND3304-Bromophenyl-phenyletherND330PentachlorophenolND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND660PhenanthreneND                                                                                                                                                                                                                                                                                                                                                                                      |                            |        |     |
| 3-NitroanilineND660AcenaphtheneND6602,4-DinitrophenolND6604-NitrophenolND660DibenzofuranND3302,4-DinitrotolueneND330DiethylphthalateND330FluoreneND6604-Chlorophenyl-phenyletherND6604-NitroanilineND6604,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND330HexachlorobenzeneND330PentachlorophenolND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |        |     |
| AcenaphtheneND662,4-DinitrophenolND6604-NitrophenolND660DibenzofuranND3302,4-DinitrotolueneND330DiethylphthalateND330FluoreneND664-Chlorophenyl-phenyletherND6604,6-Dinitro-2-methylphenolND6604,6-Dinitro-2-methylphenolND660AzobenzeneND330AzobenzeneND3304-Bromophenyl-phenyletherND330PentachlorobenzeneND330PentachlorophenolND660PhenanthreneND660AnthraceneND660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |        |     |
| 2,4-DinitrophenolND6604-NitrophenolND660DibenzofuranND3302,4-DinitrotolueneND330DiethylphthalateND330FluoreneND664-Chlorophenyl-phenyletherND6604,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330A-Bromophenyl-phenyletherND330HexachlorobenzeneND330HexachlorobenzeneND660PhenanthreneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660AnthraceneND660 <t< td=""><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |        |     |
| 4-NitrophenolND660DibenzofuranND3302,4-DinitrotolueneND330DiethylphthalateND330FluoreneND664-Chlorophenyl-phenyletherND6604-NitroanilineND6604,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND660AnthraceneND660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |        |     |
| DibenzofuranND3302,4-DinitrotolueneND330DiethylphthalateND330FluoreneND664-Chlorophenyl-phenyletherND6604-NitroanilineND6604,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND660AnthraceneND660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,4-Dinitrophenol          |        |     |
| 2,4-DinitrotolueneND330DiethylphthalateND330FluoreneND664-Chlorophenyl-phenyletherND3304-NitroanilineND6604,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND660AnthraceneND660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |        |     |
| DiethylphthalateND330FluoreneND664-Chlorophenyl-phenyletherND3304-NitroanilineND6604,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND660AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | ND     |     |
| FluoreneND664-Chlorophenyl-phenyletherND3304-NitroanilineND6604,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND660AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,4-Dinitrotoluene         | ND     |     |
| 4-Chlorophenyl-phenyletherND3304-NitroanilineND6604,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND660AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Diethylphthalate           | ND     |     |
| 4-NitroanilineND6604,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND660AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | ND     |     |
| 4,6-Dinitro-2-methylphenolND660N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND66AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-Chlorophenyl-phenylether | ND     |     |
| N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND66AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4-Nitroaniline             | ND     |     |
| N-NitrosodiphenylamineND330AzobenzeneND3304-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND66AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4,6-Dinitro-2-methylphenol | ND     | 660 |
| 4-Bromophenyl-phenyletherND330HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND66AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N-Nitrosodiphenylamine     | ND     |     |
| HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND66AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Azobenzene                 | ND     | 330 |
| HexachlorobenzeneND330PentachlorophenolND660PhenanthreneND66AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4-Bromophenyl-phenylether  | ND     | 330 |
| PhenanthreneND66AnthraceneND66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | ND     | 330 |
| Anthracene ND 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pentachlorophenol          | ND     | 660 |
| Anthracene ND 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Phenanthrene               | ND     | 66  |
| Di-n-butylphthalate ND 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Di-n-butylphthalate        | ND     | 330 |

ND= Not Detected RL= Reporting Limit Page 1 of 2



|           | Semivolatile Organics by GC/MS |           |              |  |  |  |  |  |
|-----------|--------------------------------|-----------|--------------|--|--|--|--|--|
| Lab #:    | 196141                         | Location: | Hanson Radum |  |  |  |  |  |
| Client:   | LFR Levine Fricke              | Prep:     | EPA 3550B    |  |  |  |  |  |
| Project#: | 001-09567-01                   | Analysis: | EPA 8270C    |  |  |  |  |  |
| Field ID: | SS-31(B)-5.5                   | Batch#:   | 127543       |  |  |  |  |  |
| Lab ID:   | 196141-001                     | Sampled:  | 07/19/07     |  |  |  |  |  |
| Matrix:   | Soil                           | Received: | 07/20/07     |  |  |  |  |  |
| Units:    | ug/Kg                          | Prepared: | 07/24/07     |  |  |  |  |  |
| Basis:    | as received                    | Analyzed: | 07/25/07     |  |  |  |  |  |
| Diln Fac: | 1.000                          |           |              |  |  |  |  |  |

| Analyte                                 | Result                          | RL  |  |
|-----------------------------------------|---------------------------------|-----|--|
| Fluoranthene                            | ND                              | 66  |  |
| Pyrene                                  | ND                              | 66  |  |
| Butylbenzylphthalate                    | ND                              | 330 |  |
| 3,3 <sup>°</sup> -Dichlorobenzidine     | ND                              | 660 |  |
| Benzo(a)anthracene                      | ND                              | 66  |  |
| Chrysene                                | ND                              | 66  |  |
| bis(2-Ethylhexyl)phthalate              | ND                              | 330 |  |
| Di-n-octylphthalate                     | ND                              | 330 |  |
| Benzo(b)fluoranthene                    | ND                              | 66  |  |
| Benzo(k)fluoranthene                    | ND                              | 66  |  |
| Benzo(a)pyrene                          | ND                              | 66  |  |
| Indeno(1,2,3-cd)pyrene                  | ND                              | 66  |  |
| Dibenz(a,h)anthracene                   | ND                              | 66  |  |
| Benzo(g,h,i)perylene                    | ND                              | 66  |  |
| Current and ha                          | PDEC Limiter                    |     |  |
| Surrogate                               | <u>%REC Limits</u><br>76 28-120 |     |  |
| 2-Fluorophenol<br>Phenol-d5             |                                 |     |  |
|                                         |                                 |     |  |
| 2,4,6-Tribromophenol<br>Nitrobenzene-d5 | 96 20-120<br>72 39-120          |     |  |
|                                         |                                 |     |  |
| 2-Fluorobiphenyl                        | 76 44-120                       |     |  |
| Terphenyl-d14                           | 80 39-120                       |     |  |



|           | Semivolatile Organics by GC/MS |           |              |  |  |  |  |  |
|-----------|--------------------------------|-----------|--------------|--|--|--|--|--|
| Lab #:    | 196141                         | Location: | Hanson Radum |  |  |  |  |  |
| Client:   | LFR Levine Fricke              | Prep:     | EPA 3550B    |  |  |  |  |  |
| Project#: | 001-09567-01                   | Analysis: | EPA 8270C    |  |  |  |  |  |
| Field ID: | SS-31(B)-10.5                  | Batch#:   | 127543       |  |  |  |  |  |
| Lab ID:   | 196141-002                     | Sampled:  | 07/19/07     |  |  |  |  |  |
| Matrix:   | Soil                           | Received: | 07/20/07     |  |  |  |  |  |
| Units:    | ug/Kg                          | Prepared: | 07/24/07     |  |  |  |  |  |
| Basis:    | as received                    | Analyzed: | 07/25/07     |  |  |  |  |  |
| Diln Fac: | 50.00                          | _         |              |  |  |  |  |  |

| N-Nitrosodimethylamine         ND         16,000           Dhenol         ND         16,000           Dis(2-Chloroethyl)ether         ND         16,000           2-Chlorophenol         ND         16,000           1,4-Dichlorobenzene         ND         16,000           1,2-Dichlorobenzene         ND         16,000           1/a-Dichlorobenzene         ND         16,000           N-Nitroso-di-n-propylamine         ND         16,000           Nitrobenzene         ND         16,000           2-ADimethylphenol         ND         16,000           2-ADimethylphenol         ND         16,000           2,4-Dimethylphenol         ND         16,000           2,4-Dimethylphenol         ND         16,000           2,4-Dimethylphenol         ND         16,000           2,4-Diroethaxylmethalene         ND         16,000           2,4-Diroethaxylmethalene                                              | Analyte                      | Result | RL     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------|--------|
| Phenol         ND         16.000           2-Chlorophenol         ND         16.000           2-Chlorophenol         ND         16.000           1,3-Dichlorobenzene         ND         16.000           1,4-Dichlorobenzene         ND         16.000           -Mitrobacit,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |        |        |
| bis(2-chloroethyl)ether         ND         16,000           2-Chlorophenol         ND         16,000           1,4-Dichlorobenzene         ND         16,000           1,2-Dichlorobenzene         ND         16,000           2-Mathorobenzene         ND         16,000           1,2-Dichlorobenzene         ND         16,000           2-Methylphenol         ND         16,000           1.2-Dichlorobenzene         ND         16,000           4-Methylphenol         ND         16,000           4-Methylphenol         ND         16,000           Haitroso-dit-n-propylamine         ND         16,000           Bisghorone         ND         16,000           2-Altrophenol         ND         32,000           2-Altrophenol         ND         16,000           2,4-Diahlorophenol         ND         16,000           2,4-Diahlorophenol         ND         16,000           1,2,4-Trichlorobenzene         ND         16,000           1,2,4-Trichlorophenol         ND         16,000           2-Altrophenol         ND         16,000           2-Altrophenol         ND         16,000           2,4-Strichlorophenol         ND         16,000<                                                    |                              |        |        |
| 2-Chlorophenol         ND         16.000           1.3-Dichlorobenzene         ND         16.000           1.4-Dichlorobenzene         ND         16.000           1.4-Dichlorobenzene         ND         16.000           1.4-Dichlorobenzene         ND         16.000           1.4-Dichlorobenzene         ND         16.000           2-Methylphenol         ND         16.000           N-Nitroso-di-n-propylamine         ND         16.000           Nitrobenzene         ND         16.000           Nitrobenzene         ND         16.000           2-Witrophenol         ND         36.000           2-Vitrophenol         ND         36.000           2-Vitrophenol         ND         16.000           2-4-Dichlorobenzene         ND         1                                                    |                              |        |        |
| 1.4-Dichlorobenzene       ND       16,000         Benzyl alcohol       ND       16,000         1.2-Dichlorobenzene       ND       16,000         2-Methylphenol       ND       16,000         4-Methylphenol       ND       16,000         4-Methylphenol       ND       16,000         4-Methylphenol       ND       16,000         Hexachloroethane       ND       16,000         Isophorone       ND       16,000         2-Nitrophenol       ND       16,000         Senzoic acid       ND       16,000         2,4-Dintehylphenol       ND       16,000         2,4-Dintehylphenol       ND       16,000         1,2,4-trichlorophenol       ND       16,000         2,4-Dichlorophenol       ND       16,000         1,2,4-trichlorophenol       ND       16,000         1,2,4-trichlorophenol       ND       16,000         1,2,4-trichlorophenol       ND       16,000         2,4-brichlorophenol       ND       16,000         2,4-brichlorophenol       ND       16,000         2,4-6-trichlorophenol       ND       16,000         2,4,6-Trichlorophenol       ND       16,000 <tr< td=""><td></td><td></td><td></td></tr<>                                                                                  |                              |        |        |
| 1,4-Dichlorobenzene         ND         16,000           2-Methylphenol         ND         16,000           J-Methylphenol         ND         16,000           J-Methylphenol         ND         16,000           J-Methylphenol         ND         16,000           N-Nitroso-di-n-propylamine         ND         16,000           N-Nitroso-di-n-propylamine         ND         16,000           Nitrobenzene         ND         16,000           2-Nitrophenol         ND         16,000           2-Nitrophenol         ND         16,000           2-Nitrophenol         ND         16,000           2-A-Dichlorobenzene         ND         16,000           2-A-Dichlorophenol         ND         16,000           2-A-Methylnaphthalene         ND         16,000           2-A-Strichlorophenol         ND         1                                                    |                              |        | 16,000 |
| Benzyl alcohol         ND         16,000           1.2-Dichlorobspropyl) ether         ND         16,000           2-Methylphenol         ND         16,000           4-Methylphenol         ND         16,000           4-Methylphenol         ND         16,000           4-Methylphenol         ND         16,000           Hexachloroethane         ND         16,000           Isophorone         ND         16,000           2-Nitrophenol         ND         16,000           2-Altirophenol         ND         16,000           2.4-Dinethylphenol         ND         16,000           2.4-Dichlorophenol         ND         16,000           1.2,4-Trichlorophenol         ND         16,000           1.2,4-Trichlorophenol         ND         16,000           1.2,4-Trichlorophenol         ND         16,000           4-Chloro-a-methylphenol         ND         16,000           2.4-Sichlapthalene         ND         3,300           4.4-Frichlorophenol         ND         16,000           2.4,6-Trichlorophenol         ND         16,000           2.4,6-Trichlorophenol         ND         16,000           2.4,6-Trichlorophenol         ND                                                       |                              |        |        |
| 1,2-Dichlorobenzene       ND       16,000         2-Methylphenol       ND       16,000         H-Methylphenol       ND       16,000         N-Nitroso-di-n-propylamine       ND       16,000         Nitrobenzene       ND       16,000         Nitrobenzene       ND       16,000         Z-Mitrophenol       ND       16,000         Z-Abitrophenol       ND       16,000         Z-Abitrophenol       ND       16,000         Z-Abitrophenol       ND       16,000         Z-A-Dichlorophenol       ND       16,000         Z-Abithorophenol       ND       16,000         Z-Abithorophenol <td></td> <td></td> <td></td>                                                                                                       |                              |        |        |
| 2-Methylphenol         ND         16,000           4-Methylphenol         ND         16,000           4-Methylphenol         ND         16,000           Hexachloroethane         ND         16,000           Hexachloroethane         ND         16,000           Isophorone         ND         16,000           J-Nitrobenzene         ND         16,000           2-AVitrophenol         ND         16,000           2.4-Dimethylphenol         ND         16,000           Sig 2-Chloroethoxylmethane         ND         16,000           2.4-Pichlorophenol         ND         16,000           1.2, 4-Trichlorobenzene         ND         16,000           1.2, 4-Trichlorobenzene         ND         16,000           1.2, 4-Trichlorophenol         ND         16,000           1.2, 4-Trichlorophenol         ND         16,000           2-Methylnaphthalene         ND         16,000           2.4, 6-Trichlorophenol         ND         16,000           2.4, 5-Trichlorophenol         ND         16,000           2.4, 5-Trichlorophenol         ND         16,000           2.4, 5-Trichlorophenol         ND         3,300           2.4, 5-Trichlorophenol                                             |                              |        | 16,000 |
| bis         12-Chloroisopropyl) ether         ND         16,000           NMItroso-di-n-propylamine         ND         16,000           NMItroso-di-n-propylamine         ND         16,000           Nitrobenzene         ND         16,000           Nitrobenzene         ND         16,000           Jsophorone         ND         16,000           2-Nitrophenol         ND         16,000           2-Attrophenol         ND         16,000           2-Attrophenol         ND         16,000           2-Attrophenol         ND         16,000           2-Attrophenol         ND         16,000           1,2,4-Trichlorophenol         ND         16,000           A-Chloroathidne         ND         16,000           4-Chloroathidne         ND         16,000           4-Chlorocyclopentadiene         ND         16,000           2-4, 5-Trichlorophenol         ND         16,000           2,4, 5-Trichlorophenol         ND         16,000           2,4, 5-Trichlorophenol         ND         16,000           2,4, 5-Trichlorophenol         ND         16,000           2,4, 5-Trichlorophenol         ND         3,300           2,4, 5-Trichlorophenol <td></td> <td></td> <td></td>                |                              |        |        |
| 4-Methylphenol         ND         16,000           Hexachloroethane         ND         16,000           Hexachloroethane         ND         16,000           Isophorone         ND         16,000           Janktrophenol         ND         16,000           Janktrophenol         ND         16,000           2.4-Dimethylphenol         ND         16,000           bis/2-Chloroethoxy/methane         ND         16,000           1.4-Trichlorobenzene         ND         16,000           1.4-Atrichlorobenzene         ND         16,000           2.4-Dirtorohtadiene         ND         16,000           2.4-Dirtorophenol         ND         16,000           2.4-Strichlorophenol         ND         16,000           2.4,6-Trichlorophenol         ND         16,000           2.4,6-Trichlorophenol         ND         16,000           2.4,6-Trichlorophenol         ND         3,000           2.4,6-Trichlorophenol <td< td=""><td></td><td></td><td></td></td<>      |                              |        |        |
| N-Nitroso-di-n-propylamine         ND         16,000           Hexachloroethane         ND         16,000           Nitrobenzene         ND         16,000           2-Nitrophenol         ND         33,000           2.4-Dimethylphenol         ND         16,000           2.4-Dimethylphenol         ND         16,000           2.4-Dimethylphenol         ND         16,000           2.4-Dictoroethoxy/methane         ND         16,000           2.4-Dictoroethoxy/methane         ND         16,000           1.2,4-Trichlorobenzene         ND         16,000           1.2,4-Trichlorobenzene         ND         16,000           4-Chloroaniline         ND         16,000           4-Chloroaniline         ND         16,000           2-Methylnaphthalene         ND         3,300           4-Kachlorocyclopentadiene         ND         16,000           2.4, 6-Trichlorophenol         ND         16,000           2.4, 5-Trichlorophenol         ND         16,000           2.4, 6-Trichlorophenol         ND         3,300           2.4, 6-Trichlorophenol         ND         3,300           2.4, 6-Trichlorophenol         ND         3,000           2.4, 6-T                                  | bis(2-Chloroisopropyl) ether | ND     | 16,000 |
| Hexachlorothane         ND         16,000           Nitrobenzene         ND         16,000           Jeophorone         ND         16,000           2-Nitrophenol         ND         3,000           2.4-Dimethylphenol         ND         82,000           Benzoic acid         ND         16,000           2.4-Dichlorophenol         ND         16,000           1.2.4-Trichlorophenol         ND         16,000           Naphthalene         ND         3,300           4-Chloroaniline         ND         16,000           -A-Chloroaniline         ND         16,000           4-Chlorophenol         ND         16,000           4-Chlorophenol         ND         16,000           2-Methylnaphthalene         ND         3,300           2.4.5-Trichlorophenol         ND         16,000           2.4.5-Trichlorophenol         ND         16,000           2.4.5-Trichlorophenol         ND         3,300           2.4.5-Trichlorophenol         ND         3,300           2.4.5-Trichlorophenol         ND         3,300           2.4.5-Trichlorophenol         ND         3,300           2.4.5-Trichlorophenol         ND         3,300 </td <td></td> <td>ND</td> <td>16,000</td>                     |                              | ND     | 16,000 |
| Hexachlorothane         ND         16,000           Nitrobenzene         ND         16,000           Jeophorone         ND         16,000           2-Nitrophenol         ND         3,000           2.4-Dimethylphenol         ND         82,000           Benzoic acid         ND         16,000           2.4-Dichorophenol         ND         16,000           1.2.4-Trichlorophenol         ND         16,000           Naphthalene         ND         3,300           4-Chloroaniline         ND         16,000           -A-Chloroaniline         ND         16,000           4-Chlorophenol         ND         16,000           4-Chlorophenol         ND         16,000           2-Methylnaphthalene         ND         3,300           2.4.5-Trichlorophenol         ND         16,000           2.4.5-Trichlorophenol         ND         16,000           2.4.5-Trichlorophenol         ND         3,300           2.4.5-Trichlorophenol         ND         3,300           2.4.5-Trichlorophenol         ND         3,300           2.4.5-Trichlorophenol         ND         3,300           2.4.5-Trichlorophenol         ND         3,300 <td>N-Nitroso-di-n-propylamine</td> <td>ND</td> <td>16,000</td> | N-Nitroso-di-n-propylamine   | ND     | 16,000 |
| Isophorone         ND         16,000           2-Nitrophenol         ND         33,000           2,4-Dimethylphenol         ND         16,000           Benzoic acid         ND         16,000           2,4-Dichlorophenol         ND         16,000           1,2,4-Trichlorobenzene         ND         16,000           Naphthalene         ND         3,300           4-Chloroaniline         ND         16,000           Hexachlorobutadiene         ND         16,000           2-Methylnaphthalene         ND         3,300           4-Chlorophenol         ND         3,300           2-Methylnaphthalene         ND         3,300           2-Actorophenol         ND         16,000           2-Mitroaniline         ND         16,000           2,4,5-Trichlorophenol         ND         16,000           2-Mitroaniline         ND         3,000           2-Mitroaniline         ND         3,300           2-Abitrophenol         ND         3,300           2-Abitroaniline         ND         3,300           2-Abitrophenol         ND         3,300           2,4-Dinitrotoluene         ND         3,300           2,4-                                                                              | Hexachloroethane             | ND     |        |
| Isophorone         ND         16,000           2-Nitrophenol         ND         33,000           2,4-Dimethylphenol         ND         16,000           Benzoic acid         ND         16,000           2,4-Dichlorophenol         ND         16,000           1,2,4-Trichlorobenzene         ND         16,000           Naphthalene         ND         3,300           4-Chloroaniline         ND         16,000           Hexachlorobutadiene         ND         16,000           2-Methylnaphthalene         ND         3,300           4-Chlorophenol         ND         3,300           2-Methylnaphthalene         ND         3,300           2-Actorophenol         ND         16,000           2-Mitroaniline         ND         16,000           2,4,5-Trichlorophenol         ND         16,000           2-Mitroaniline         ND         3,000           2-Mitroaniline         ND         3,300           2-Abitrophenol         ND         3,300           2-Abitroaniline         ND         3,300           2-Abitrophenol         ND         3,300           2,4-Dinitrotoluene         ND         3,300           2,4-                                                                              | Nitrobenzene                 | ND     | 16,000 |
| 2-Nitrophenol         ND         33,000           2.4-Dimethylphenol         ND         16,000           Benzoic acid         ND         82,000           bis (2-Chlorothoxy)methane         ND         16,000           2.4-Dichlorophenol         ND         16,000           1.2,4-Trichlorobenzene         ND         16,000           Maphthalene         ND         33,00           4-Chloroaniline         ND         16,000           Hexachlorobutadiene         ND         16,000           2-Methylphenol         ND         16,000           2-Methylphenol         ND         16,000           2-Methylphenol         ND         16,000           2-Methylnaphthalene         ND         16,000           2.4, 6-Trichlorophenol         ND         3,000           2.4, 6-Trichlorophenol         ND         3,000           2.4, 6-Trichlorophenol         ND         3,000           2.4, 6, 700         3,300 <td>Isophorone</td> <td></td> <td></td>       | Isophorone                   |        |        |
| 2,4-Dimethylphenol       ND       16,000         Benzoic acid       ND       82,000         bis(2-Chloroethoxy)methane       ND       16,000         2,4-Dichlorophenol       ND       16,000         1,2,4-Trichlorobenzene       ND       16,000         Naphthalene       ND       3,300         4-Chloroaniline       ND       16,000         Hexachlorobutadiene       ND       16,000         2-Methylnaphthalene       ND       3,300         4-Chlorophenol       ND       16,000         2,4,6-Trichlorophenol       ND       16,000         2,4,5-Trichlorophenol       ND       16,000         2,4,5-Trichlorophenol       ND       16,000         2-Chloronaphthalene       ND       16,000         2-Chloronaphthalene       ND       16,000         2-Chloronaphthalene       ND       3,000         2-Chloronaphthalene       ND       3,000         2,6-Dinitrotoluene       ND       3,300         2,4-Dinitrophenol       ND       3,300         2,4-Dinitrophenol       ND       3,300         2,4-Dinitrotoluene       ND       16,000         2,4-Dinitrotoluene       ND       16,000                                                                                                              |                              |        |        |
| Benzoic acid         ND         82,000           bis(2-Chloroethoxy)methame         ND         16,000           2.4-Dichlorophenol         ND         16,000           1,2,4-Trichlorobenzene         ND         16,000           Naphthalene         ND         3,300           4-Chloroaniline         ND         16,000           Hexachlorobutadiene         ND         16,000           4-Chloro-3-methylphenol         ND         16,000           2-Methylnaphthalene         ND         3,000           2-Methylnaphthalene         ND         3,000           2-Methylnaphthalene         ND         16,000           2.4, 6-Trichlorophenol         ND         16,000           2.4, 5-Trichlorophenol         ND         16,000           2-Nitroaniline         ND         16,000           2-Nitroaniline         ND         16,000           2-Nitroaniline         ND         3,000           2.4-Diritrotoluene         ND         3,000           2.4-Diritrotoluene         ND         3,000           2.4-Diritrotoluene         ND         16,000           2.4-Diritrotoluene         ND         16,000           2.4-Diritrooluene         ND                                                      |                              |        |        |
| bis(2-Chloroethoxy)methane         ND         16,000           2,4-Dichlorophenol         ND         16,000           Naphthalene         ND         3,300           A-Chlorooniline         ND         16,000           Naphthalene         ND         16,000           Hexachlorobutadiene         ND         16,000           Hexachlorobutadiene         ND         16,000           2-Methylnaphthalene         ND         3,300           Hexachlorocyclopentadiene         ND         3,000           2,4,6-Trichlorophenol         ND         16,000           2,4,5-Trichlorophenol         ND         16,000           2,4,5-Trichlorophenol         ND         16,000           2-Chloronaphthalene         ND         16,000           2-Nitroaniline         ND         3,000           Dimethylphthalate         ND         3,000           2,6-Dinitrotoluene         ND         3,000           3-Nitroaniline         ND         3,000           2,4-Dinitrotoluene         ND         3,000           2,4-Dinitrotoluene         ND         3,000           2,4-Dinitrotoluene         ND         16,000           2,4-Dinitrotoluene         ND                                                       |                              |        |        |
| 2.4-Dichlorophenol         ND         16,000           Naphthalene         ND         16,000           Naphthalene         ND         3,300           4-Chloroaniline         ND         16,000           4-Chloroaniline         ND         16,000           4-Chloro-3-methylphenol         ND         16,000           4-Chloro-3-methylphenol         ND         16,000           2-Methylnaphthalene         ND         3,300           Hexachlorocyclopentadiene         ND         33,000           2.4, 6-Trichlorophenol         ND         16,000           2.4, 5-Trichlorophenol         ND         16,000           2.4, 5-Trichlorophenol         ND         16,000           2.4, 5-Trichlorophenol         ND         16,000           2.4, 5-Trichlorophenol         ND         3,000           Dimethylphthalate         ND         3,000           Acenaphthylene         ND         3,300           2.6-Dinitrotoluene         ND         3,000           3-Nitroaniline         ND         33,000           4-Alitrophenol         ND         33,000           2.4-Dinitrotoluene         ND         16,000           2.4-Dinitrotoluene         ND                                                 |                              |        |        |
| 1,2,4-Trichlorobenzene       ND       16,000         Naphthalene       ND       3,300         4-Chloroaniline       ND       16,000         Hexachlorobutadiene       ND       16,000         2-Methylnaphthalene       ND       3,300         Hexachlorocyclopentadiene       ND       3,300         Hexachlorocyclopentadiene       ND       16,000         2,4,6-Trichlorophenol       ND       16,000         2,4,5-Trichlorophenol       ND       16,000         2-Chloronaphthalene       ND       16,000         2-Nitroaniline       ND       33,000         Dimethylphthalate       ND       3,300         Acenaphthylene       ND       3,300         2-Nitroaniline       ND       3,300         2-A-Dinitrotoluene       ND       3,300         2,4-Dinitrophenol       ND       3,300         2,4-Dinitrophenyl-phenylether       ND       16,000                                                                                                                |                              |        |        |
| Naphthalene         ND         3.300           4-Chloroaniline         ND         16,000           Hexachlorobutadiene         ND         16,000           4-Chloro-3-methylphenol         ND         16,000           2-Methylnaphthalene         ND         3,300           Hexachlorocyclopentadiene         ND         3,300           Lexachlorophenol         ND         16,000           2,4,6-Trichlorophenol         ND         16,000           2,4,5-Trichlorophenol         ND         16,000           2.4,5-Trichlorophenol         ND         16,000           2-Nitroaniline         ND         33,000           Dimethylphthalate         ND         3,300           2,6-Dinitrotoluene         ND         3,300           2,4-Dinitrophenol         ND         3,300           2,4-Dinitrophenol         ND         3,300           2,4-Dinitrotoluene         ND         3,300           2,4-Dinitrotoluene         ND         3,300           2,4-Dinitrotoluene         ND         16,000           2,4-Dinitrotoluene         ND         16,000           2,4-Dinitrotoluene         ND         3,300           2,4-Dinitroc-2-methylphenol         ND </td <td></td> <td></td> <td></td>          |                              |        |        |
| 4-Chloroaniline       ND       16,000         Hexachlorobutadiene       ND       16,000         2-Methylnaphthalene       ND       3,300         2-Methylnaphthalene       ND       3,300         2-Methylnaphthalene       ND       3,000         2.4,6-Trichlorophenol       ND       16,000         2-4,5-Trichlorophenol       ND       16,000         2-Chloronaphthalene       ND       16,000         2-Chloronaphthalene       ND       16,000         2-Chloronaphthalene       ND       16,000         2-Nitroaniline       ND       3,000         Dimethylphthalate       ND       3,000         Acenaphthylene       ND       3,000         2-A-Dinitrotoluene       ND       3,000         A-Nitroaniline       ND       3,000         2.4-Dinitrotoluene       ND       3,000         2.4-Dinitrotoluene       ND       3,000         Dibenzofuran       ND       16,000         2.4-Dinitrotoluene       ND       16,000         Jethylphthalate       ND       16,000         Fluorene       ND       3,000         4-Chlorophenyl-phenylether       ND       3,000                                                                                                                                      |                              |        |        |
| HexachlorobutadieneND16,0004-Chloro-3-methylphenolND16,0002-MethylnaphthaleneND3,3002.4,6-TrichlorophenolND16,0002,4,5-TrichlorophenolND16,0002,4,5-TrichlorophenolND16,0002-ChloronaphthaleneND33,0002-NitroanilineND33,000DimethylphthalateND3,300AcenaphthyleneND3,3002,6-DinitrotolueneND3,0003-NitroanilineND3,0002,4-DinitrotolueneND3,0002,4-DinitrotolueneND3,000AcenaphtheneND3,0002,4-DinitrotolueneND3,000DibenzofuranND16,000DitorolueneND3,000016,0003,300016,0003,000016,0003,000016,0003,3001016,00011ND16,00012,4-DinitrotolueneND3,30014-Chlorophenyl-phenyletherND16,00014-Chlorophenyl-phenyletherND33,00014-Chlorophenyl-phenyletherND33,00014-StrosodiphenylamineND16,00014-StrosodiphenylamineND16,00014-StrosodiphenylamineND16,00014-Strosodiphenyl-phenyletherND16,00014-StrosodiphenylamineND16,00014-StrosodiphenylamineND16,000<                                                                                                                                                                                                                                                                                                                                                             |                              |        |        |
| 4-Chloro-3-methylphenolND16,0002-MethylnaphthaleneND3,3002-AethylnaphthaleneND33,0002,4,6-TrichlorophenolND16,0002.4,5-TrichlorophenolND16,0002-ChloronaphthaleneND16,0002-NitroanilineND33,000DimethylphthalateND33,000AcenaphtyleneND16,0003-NitroanilineND33,0002,6-DinitrotolueneND3,3002,4-DinitrophenolND33,000AcenaphtheneND3,3002,4-DinitrophenolND33,000AcenaphthaleneND33,000AcenaphtheneND33,0002,4-DinitrotolueneND33,000DimethylphthalateND33,0004-NitrophenolND33,000DihenzofuranND16,000DiethylphthalateND3,300FluoreneND3,000V-NitroanilineND3,000ND3,0003,000ND3,000N-Nitrosodiphenyl-phenyletherND3,000N-NitrosodiphenylamineND16,000A-SbenzeneND16,000A-SbenzeneND16,000A-Bromophenyl-phenyletherND16,000HexachlorobenzeneND16,000HexachlorobenzeneND3,300PhenanthreneND3,300                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |        |        |
| 2-MethylnaphthaleneND3,300HexachlorocyclopentadieneND33,0002,4,6-TrichlorophenolND16,0002,4,5-TrichlorophenolND16,0002-ChloronaphthaleneND16,0002-NitroanilineND33,000DimethylphthalateND16,000AcenaphtyleneND33,0002,6-DinitrotolueneND16,0003-NitroanilineND33,000AcenaphtheneND33,0002,4-DinitrotolueneND33,0002,4-DinitrophenolND33,0002,4-DinitrophenolND33,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND33,0004-Chlorophenyl-phenyletherND16,0004-Chlorophenyl-phenyletherND33,0004-Chlorophenyl-phenyletherND16,000N-NitrosodiphenylamineND16,000A-Bromophenyl-phenyletherND16,000A-Bromophenyl-phenyletherND16,000HexachlorobenzeneND16,000HexachlorobenzeneND33,000PentachlorophenolND33,000PhenathreneND3,300                                                                                                                                                                                                                                                                                                                                                            |                              |        |        |
| HexachlorocyclopentadieneND33,0002,4,6-TrichlorophenolND16,0002-ChloronaphthaleneND16,0002-ChloronaphthaleneND33,000DimethylphthalateND33,000JomethylphthalateND16,000AcenaphthyleneND3,3002,6-DinitrotolueneND16,0003-NitroanilineND3,3002,6-DinitrotolueneND3,3002,4-DinitrophenolND3,3002,4-DinitrophenolND33,000AcenaphtheneND33,0002,4-DinitrophenolND33,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,000JibenzofuranND16,000PiethylphthalateND33,0004-Chlorophenyl-phenyletherND33,0004-Chlorophenyl-phenyletherND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,0004-Bromophenyl-phenyletherND16,000HexachlorobenzeneND16,000HexachlorobenzeneND33,000PhenanthreneND33,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4-Chloro-3-methylphenol      |        |        |
| 2,4,6-TrichlorophenolND16,0002,4,5-TrichlorophenolND16,0002-ChloronaphthaleneND33,000DimethylphthalateND33,000DimethylphthalateND3,3002,6-DinitrotolueneND33,0003-NitroanilineND33,000AcenaphthyleneND33,0003-NitroanilineND33,000AcenaphtheneND33,0004-NitrophenolND33,0004-NitrophenolND33,0002,4-DinitrotolueneND33,0004-NitrophenolND33,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND33,0004-Chlorophenyl-phenyletherND33,0004-Chlorophenyl-phenyletherND33,0004,6-Dinitro-2-methylphenolND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,0004-Bromophenyl-phenyletherND16,000HexachlorobenzeneND16,000HexachlorobenzeneND33,000PentachlorophenolND33,000PhenanthreneND33,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | ND     | 3,300  |
| 2,4,6-TrichlorophenolND16,0002,4,5-TrichlorophenolND16,0002-ChloronaphthaleneND33,000DimethylphthalateND33,000DimethylphthalateND3,3002,6-DinitrotolueneND33,0003-NitroanilineND33,000AcenaphthyleneND33,0003-NitroanilineND33,000AcenaphtheneND33,0004-NitrophenolND33,0004-NitrophenolND33,0002,4-DinitrotolueneND33,0004-NitrophenolND33,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND33,0004-Chlorophenyl-phenyletherND33,0004-Chlorophenyl-phenyletherND33,0004,6-Dinitro-2-methylphenolND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,0004-Bromophenyl-phenyletherND16,000HexachlorobenzeneND16,000HexachlorobenzeneND33,000PentachlorophenolND33,000PhenanthreneND33,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hexachlorocyclopentadiene    | ND     | 33,000 |
| 2,4,5-TrichlorophenolND16,0002-ChloronaphthaleneND16,0002-NitroanilineND33,000DimethylphthalateND16,000AcenaphthyleneND3,3002,6-DinitrotolueneND16,0003-NitroanilineND33,000AcenaphtheneND33,000AcenaphteneND33,000AcenaphteneND33,000AcenaphteneND33,0004-NitrophenolND33,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND33,0004-Chlorophenyl-phenyletherND33,0004-Chlorophenyl-phenyletherND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,0004-Bromophenyl-phenyletherND16,0004-Bromophenyl-phenyletherND16,000HexachlorophenolND33,000PentachlorophenolND33,000PentachlorophenolND33,000PhenathreneND33,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              | ND     | 16,000 |
| 2-ChloronaphthaleneND16,0002-NitroanilineND33,000DimethylphthalateND16,000AcenaphthyleneND3,3002,6-DinitrotolueneND16,0003-NitroanilineND33,000AcenaphtheneND33,0002,4-DinitrophenolND33,0004-NitrophenolND33,000DiebenzofuranND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0004,6-Dinitro-z-methylphenolND3,3004-Chlorophenyl-phenyletherND33,0004-SourceND16,0004-StroanilineND16,000N-NitrosodiphenylamineND16,000AzobenzeneND16,0004-Bromophenyl-phenyletherND16,000HexachlorobenzeneND16,000PentachlorophenolND33,000PhenanthreneND33,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | ND     |        |
| 2-NitroanilineND33,000DimethylphthalateND16,000AcenaphthyleneND3,3002,6-DinitrotolueneND16,0003-NitroanilineND33,000AcenaphtheneND3,3002,4-DinitrophenolND33,0004-NitrophenolND33,000016,00033,000016,00016,0002,4-DinitrotolueneND16,000016,00016,00014-NitrophenolND16,00015-LoreneND16,00016-Chlorophenyl-phenyletherND33,0004-Chlorophenyl-phenyletherND33,0004,6-Dinitro-2-methylphenolND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,0004-Bromophenyl-phenyletherND16,0004-Bromophenyl-phenyletherND33,000HexachlorobenzeneND16,000PentachlorophenolND33,000PhenanthreneND33,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | ND     |        |
| DimethylphthalateND16,000AcenaphthyleneND3,3002,6-DinitrotolueneND16,0003-NitroanilineND33,000AcenaphtheneND3,3002,4-DinitrophenolND33,0004-NitrophenolND33,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,000FluoreneND33,0004-Chlorophenyl-phenyletherND33,0004-Chlorophenyl-phenyletherND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,0004-Bromophenyl-phenyletherND16,000HexachlorobenzeneND16,000PentachlorophenolND33,000PhenanthreneND33,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |        |        |
| AcenaphthyleneND3,3002,6-DinitrotolueneND16,0003-NitroanilineND33,000AcenaphtheneND3,3002,4-DinitrophenolND33,0004-NitrophenolND33,000DibenzofuranND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,000JethylphthalateND16,000FluoreneND33,0004-NitroanilineND33,0004,6-Dinitro-2-methylphenolND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,000HexachlorobenzeneND16,000HexachlorobenzeneND33,000PhenanthreneND33,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |        |        |
| 2,6-DinitrotolueneND16,0003-NitroanilineND33,000AcenaphtheneND3,3002,4-DinitrophenolND33,0004-NitrophenolND33,000DibenzofuranND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0002,4-DinitrotolueneND16,0004-Chlorophenyl-phenyletherND33,0004-Chlorophenyl-phenyletherND33,0004,6-Dinitro-2-methylphenolND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,000Hexachlorophenyl-phenyletherND16,000HexachlorophenolND33,000PhenanthreneND33,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |        | 3 300  |
| 3-NitroanilineND33,000AcenaphtheneND3,3002,4-DinitrophenolND33,0004-NitrophenolND33,000DibenzofuranND16,0002,4-DinitrotolueneND16,000DiethylphthalateND16,000FluoreneND3,3004-Chlorophenyl-phenyletherND33,0004,6-Dinitro-2-methylphenolND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,000AzobenzeneND16,000Hexachlorophenyl-phenyletherND16,000PentachlorophenolND33,000HexachlorophenolND33,000PhenanthreneND33,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |        |        |
| AcenaphtheneND3,3002,4-DinitrophenolND33,0004-NitrophenolND33,000DibenzofuranND16,0002,4-DinitrotolueneND16,000DiethylphthalateND16,000FluoreneND3,3004-Chlorophenyl-phenyletherND33,0004,6-Dinitro-2-methylphenolND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,000HexachlorobenzeneND16,000PentachlorophenolND33,000HexachlorophenolND33,000HexachlorophenolND33,000PhenanthreneND33,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |        |        |
| 2,4-DinitrophenolND33,0004-NitrophenolND33,000DibenzofuranND16,0002,4-DinitrotolueneND16,000DiethylphthalateND16,000FluoreneND3,3004-Chlorophenyl-phenyletherND33,0004,6-Dinitro-2-methylphenolND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,0004-Bromophenyl-phenyletherND16,000PentachlorophenolND16,0004-Bromophenyl-phenyletherND16,000HexachlorobenzeneND16,000HenanthreneND33,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |        |        |
| 4-NitrophenolND33,000DibenzofuranND16,0002,4-DinitrotolueneND16,000DiethylphthalateND16,000FluoreneND3,3004-Chlorophenyl-phenyletherND33,0004-NitroanilineND33,0004,6-Dinitro-2-methylphenolND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,000HexachlorobenzeneND16,000PentachlorophenolND33,000PhenanthreneND33,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |        |        |
| DibenzofuranND16,0002,4-DinitrotolueneND16,000DiethylphthalateND16,000FluoreneND3,3004-Chlorophenyl-phenyletherND16,0004-NitroanilineND33,0004,6-Dinitro-2-methylphenolND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,000HexachlorobenzeneND16,000PentachlorophenolND33,000PhenanthreneND33,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |        |        |
| 2,4-DinitrotolueneND16,000DiethylphthalateND16,000FluoreneND3,3004-Chlorophenyl-phenyletherND16,0004-NitroanilineND33,0004,6-Dinitro-2-methylphenolND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,0004-Bromophenyl-phenyletherND16,000HexachlorobenzeneND16,000PentachlorophenolND33,000PhenanthreneND33,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |        |        |
| DiethylphthalateND16,000FluoreneND3,3004-Chlorophenyl-phenyletherND16,0004-NitroanilineND33,0004,6-Dinitro-2-methylphenolND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,0004-Bromophenyl-phenyletherND16,000HexachlorobenzeneND16,000PentachlorophenolND33,000PhenanthreneND33,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |        |        |
| FluoreneND3,3004-Chlorophenyl-phenyletherND16,0004-NitroanilineND33,0004,6-Dinitro-2-methylphenolND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,0004-Bromophenyl-phenyletherND16,000HexachlorobenzeneND16,000PentachlorophenolND33,000PhenanthreneND33,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |        |        |
| 4-Chlorophenyl-phenyletherND16,0004-NitroanilineND33,0004,6-Dinitro-2-methylphenolND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,0004-Bromophenyl-phenyletherND16,000HexachlorobenzeneND16,000PentachlorophenolND33,000PhenanthreneND33,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Diethylphthalate             | ND     | 16,000 |
| 4-NitroanilineND33,0004,6-Dinitro-2-methylphenolND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,0004-Bromophenyl-phenyletherND16,000HexachlorobenzeneND16,000PentachlorophenolND33,000PhenanthreneND3,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | ND     | 3,300  |
| 4-NitroanilineND33,0004,6-Dinitro-2-methylphenolND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,0004-Bromophenyl-phenyletherND16,000HexachlorobenzeneND16,000PentachlorophenolND33,000PhenanthreneND3,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4-Chlorophenyl-phenylether   | ND     | 16,000 |
| 4,6-Dinitro-2-methylphenolND33,000N-NitrosodiphenylamineND16,000AzobenzeneND16,0004-Bromophenyl-phenyletherND16,000HexachlorobenzeneND16,000PentachlorophenolND33,000PhenanthreneND3,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | ND     | 33,000 |
| N-NitrosodiphenylamineND16,000AzobenzeneND16,0004-Bromophenyl-phenyletherND16,000HexachlorobenzeneND16,000PentachlorophenolND33,000PhenanthreneND3,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |        |        |
| AzobenzeneND16,0004-Bromophenyl-phenyletherND16,000HexachlorobenzeneND16,000PentachlorophenolND33,000PhenanthreneND3,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |        |        |
| 4-Bromophenyl-phenyletherND16,000HexachlorobenzeneND16,000PentachlorophenolND33,000PhenanthreneND3,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |        |        |
| HexachlorobenzeneND16,000PentachlorophenolND33,000PhenanthreneND3,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |        |        |
| PentachlorophenolND33,000PhenanthreneND3,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |        |        |
| Phenanthrene ND 3,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |        |        |
| Antirracene ND 3,300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Anthradene                   | ND     | 3,300  |

DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 1 of 2



| Semivolatile Organics by GC/MS |                             |                    |                           |  |  |  |
|--------------------------------|-----------------------------|--------------------|---------------------------|--|--|--|
| Lab #:<br>Client:              | 196141<br>LFR Levine Fricke | Location:          | Hanson Radum<br>EPA 3550B |  |  |  |
| Project#:                      | 001-09567-01                | Prep:<br>Analysis: | EPA 8270C                 |  |  |  |
| Field ID:                      | SS-31(B)-10.5               | Batch#:            | 127543                    |  |  |  |
| Lab ID:                        | 196141-002                  | Sampled:           | 07/19/07                  |  |  |  |
| Matrix:                        | Soil                        | Received:          | 07/20/07                  |  |  |  |
| Units:                         | ug/Kg                       | Prepared:          | 07/24/07                  |  |  |  |
| Basis:<br>Diln Fac:            | as received<br>50.00        | Analyzed:          | 07/25/07                  |  |  |  |

| Analyte                    | Result      | RL     |  |
|----------------------------|-------------|--------|--|
| Di-n-butylphthalate        | ND          | 16,000 |  |
| Fluoranthene               | ND          | 3,300  |  |
| Pyrene                     | ND          | 3,300  |  |
| Butylbenzylphthalate       | ND          | 16,000 |  |
| 3,3'-Dichlorobenzidine     | ND          | 33,000 |  |
| Benzo(a)anthracene         | ND          | 3,300  |  |
| Chrysene                   | ND          | 3,300  |  |
| bis(2-Ethylhexyl)phthalate | ND          | 16,000 |  |
| Di-n-octylphthalate        | ND          | 16,000 |  |
| Benzo(b)fluoranthene       | ND          | 3,300  |  |
| Benzo(k)fluoranthene       | ND          | 3,300  |  |
| Benzo(a)pyrene             | ND          | 3,300  |  |
| Indeno(1,2,3-cd)pyrene     | ND          | 3,300  |  |
| Dibenz(a,h)anthracene      | ND          | 3,300  |  |
| Benzo(g,h,i)perylene       | ND          | 3,300  |  |
|                            |             |        |  |
| Surrogate                  | %REC Limits |        |  |

| Surrogate            | %REC | Limits |
|----------------------|------|--------|
| 2-Fluorophenol       | DO   | 28-120 |
| Phenol-d5            | DO   | 30-120 |
| 2,4,6-Tribromophenol | DO   | 20-120 |
| Nitrobenzene-d5      | DO   | 39–120 |
| 2-Fluorobiphenyl     | DO   | 44-120 |
| Terphenyl-d14        | DO   | 39-120 |



|           | Semivolatile Organics by GC/MS |           |              |  |  |
|-----------|--------------------------------|-----------|--------------|--|--|
| Lab #:    | 196141                         | Location: | Hanson Radum |  |  |
| Client:   | LFR Levine Fricke              | Prep:     | EPA 3550B    |  |  |
| Project#: | 001-09567-01                   | Analysis: | EPA 8270C    |  |  |
| Type:     | BLANK                          | Diln Fac: | 1.000        |  |  |
| Lab ID:   | QC397616                       | Batch#:   | 127543       |  |  |
| Matrix:   | Soil                           | Prepared: | 07/24/07     |  |  |
| Units:    | uq/Kq                          | Analyzed: | 07/24/07     |  |  |
| Basis:    | as received                    | -         |              |  |  |

| Analyte                      | Result   | RL         |  |
|------------------------------|----------|------------|--|
| N-Nitrosodimethylamine       | ND       | 330        |  |
| Phenol                       | ND       | 330        |  |
| bis(2-Chloroethyl)ether      | ND       | 330        |  |
| 2-Chlorophenol               | ND       | 330        |  |
| 1,3-Dichlorobenzene          | ND       | 330        |  |
| 1,4-Dichlorobenzene          | ND       | 330        |  |
| Benzyl alcohol               | ND       | 330        |  |
| 1,2-Dichlorobenzene          | ND       | 330        |  |
| 2-Methylphenol               | ND       | 330        |  |
| bis(2-Chloroisopropyl) ether | ND       | 330        |  |
| 4-Methylphenol               | ND       | 330        |  |
| N-Nitroso-di-n-propylamine   | ND       | 330        |  |
| Hexachloroethane             | ND       | 330        |  |
| Nitrobenzene                 | ND<br>ND | 330        |  |
|                              |          |            |  |
| Isophorone                   | ND       | 330<br>660 |  |
| 2-Nitrophenol                | ND       |            |  |
| 2,4-Dimethylphenol           | ND       | 330        |  |
| Benzoic acid                 | ND       | 1,700      |  |
| bis(2-Chloroethoxy)methane   | ND       | 330        |  |
| 2,4-Dichlorophenol           | ND       | 330        |  |
| 1,2,4-Trichlorobenzene       | ND       | 330        |  |
| Naphthalene                  | ND       | 66         |  |
| 4-Chloroaniline              | ND       | 330        |  |
| Hexachlorobutadiene          | ND       | 330        |  |
| 4-Chloro-3-methylphenol      | ND       | 330        |  |
| 2-Methylnaphthalene          | ND       | 66         |  |
| Hexachlorocyclopentadiene    | ND       | 660        |  |
| 2,4,6-Trichlorophenol        | ND       | 330        |  |
| 2,4,5-Trichlorophenol        | ND       | 330        |  |
| 2-Chloronaphthalene          | ND       | 330        |  |
| 2-Nitroaniline               | ND       | 660        |  |
| Dimethylphthalate            | ND       | 330        |  |
| Acenaphthylene               | ND       | 66         |  |
| 2,6-Dinitrotoluene           | ND       | 330        |  |
| 3-Nitroaniline               | ND       | 660        |  |
| Acenaphthene                 | ND       | 66         |  |
| 2,4-Dinitrophenol            | ND       | 660        |  |
| 4-Nitrophenol                | ND       | 660        |  |
| Dibenzofuran                 | ND       | 330        |  |
| 2,4-Dinitrotoluene           | ND       | 330        |  |
| Diethylphthalate             | ND       | 330        |  |
| Fluorene                     | ND       | 66         |  |
| 4-Chlorophenyl-phenylether   | ND       | 330        |  |
| 4-Nitroaniline               | ND       | 660        |  |
| 4,6-Dinitro-2-methylphenol   | ND       | 660        |  |
| N-Nitrosodiphenylamine       | ND       | 330        |  |
| Azobenzene                   | ND       | 330        |  |
| 4-Bromophenyl-phenylether    | ND       | 330        |  |
| Hexachlorobenzene            | ND       | 330        |  |
| Pentachlorophenol            | ND       | 660        |  |
| Phenanthrene                 | ND       | 66         |  |
| Anthracene                   | ND       | 66         |  |
| Di-n-butylphthalate          | ND       | 330        |  |
| Dr in Dacy Pricilarace       |          | 550        |  |

ND= Not Detected RL= Reporting Limit



|                  | Semivolatile Organics by GC/MS |           |              |  |  |
|------------------|--------------------------------|-----------|--------------|--|--|
| Lab #:           | 196141                         | Location: | Hanson Radum |  |  |
| Client:          | LFR Levine Fricke              | Prep:     | EPA 3550B    |  |  |
| Project#:        | 001-09567-01                   | Analysis: | EPA 8270C    |  |  |
| Type:<br>Lab ID: | BLANK                          | Diln Fac: | 1.000        |  |  |
| Lab ID:          | QC397616                       | Batch#:   | 127543       |  |  |
| Matrix:          | Soil                           | Prepared: | 07/24/07     |  |  |
| Units:           | ug/Kg                          | Analyzed: | 07/24/07     |  |  |
| Basis:           | as received                    | _         |              |  |  |

| Analyte                     | Result                 | RL  |  |
|-----------------------------|------------------------|-----|--|
| Fluoranthene                | ND                     | 66  |  |
| Pyrene                      | ND                     | 66  |  |
| Butylbenzylphthalate        | ND                     | 330 |  |
| 3,3'-Dichlorobenzidine      | ND                     | 660 |  |
| Benzo(a)anthracene          | ND                     | 66  |  |
| Chrysene                    | ND                     | 66  |  |
| bis(2-Ethylhexyl)phthalate  | ND                     | 330 |  |
| Di-n-octylphthalate         | ND                     | 330 |  |
| Benzo(b)fluoranthene        | ND                     | 66  |  |
| Benzo(k)fluoranthene        | ND                     | 66  |  |
| Benzo(a)pyrene              | ND                     | 66  |  |
| Indeno(1,2,3-cd)pyrene      | ND                     | 66  |  |
| Dibenz(a,h)anthracene       | ND                     | 66  |  |
| Benzo(g,h,i)perylene        | ND                     | 66  |  |
| Currence mode o             | %REC Limits            |     |  |
| Surrogate                   |                        |     |  |
| 2-Fluorophenol<br>Phenol-d5 |                        |     |  |
|                             |                        |     |  |
| 2,4,6-Tribromophenol        |                        |     |  |
| Nitrobenzene-d5             | 69 39-120<br>78 44 120 |     |  |
| 2-Fluorobiphenyl            | 78 44-120<br>73 39-120 |     |  |
| Terphenyl-d14               | 73 39-120              |     |  |



|           | Semivolatile Organics by GC/MS |           |              |  |  |
|-----------|--------------------------------|-----------|--------------|--|--|
| Lab #:    | 196141                         | Location: | Hanson Radum |  |  |
| Client:   | LFR Levine Fricke              | Prep:     | EPA 3550B    |  |  |
| Project#: | 001-09567-01                   | Analysis: | EPA 8270C    |  |  |
| Type:     | LCS                            | Diln Fac: | 1.000        |  |  |
| Lab ID:   | QC397617                       | Batch#:   | 127543       |  |  |
| Matrix:   | Soil                           | Prepared: | 07/24/07     |  |  |
| Units:    | ug/Kg                          | Analyzed: | 07/24/07     |  |  |
| Basis:    | as received                    |           |              |  |  |

| Analyte                    | Spiked | Result | %REC | Limits |
|----------------------------|--------|--------|------|--------|
| Phenol                     | 2,655  | 1,849  | 70   | 40-120 |
| 2-Chlorophenol             | 2,655  | 1,833  | 69   | 40-120 |
| 1,4-Dichlorobenzene        | 1,328  | 1,047  | 79   | 45-120 |
| N-Nitroso-di-n-propylamine | 1,328  | 824.0  | 62   | 34-120 |
| 1,2,4-Trichlorobenzene     | 1,328  | 1,094  | 82   | 45-120 |
| 4-Chloro-3-methylphenol    | 2,655  | 2,184  | 82   | 45-120 |
| Acenaphthene               | 1,328  | 1,020  | 77   | 42-120 |
| 4-Nitrophenol              | 2,655  | 1,856  | 70   | 31-120 |
| 2,4-Dinitrotoluene         | 1,328  | 1,196  | 90   | 41-120 |
| Pentachlorophenol          | 2,655  | 2,245  | 85   | 21-120 |
| Pyrene                     | 1,328  | 1,094  | 82   | 41-120 |

| Surrogate            | %REC | Limits |
|----------------------|------|--------|
| 2-Fluorophenol       | 66   | 28-120 |
| Phenol-d5            | 68   | 30-120 |
| 2,4,6-Tribromophenol | 102  | 20-120 |
| Nitrobenzene-d5      | 68   | 39-120 |
| 2-Fluorobiphenyl     | 75   | 44-120 |
| Terphenyl-d14        | 76   | 39-120 |



| Organochlorine Pesticides |                   |           |              |  |
|---------------------------|-------------------|-----------|--------------|--|
| Lab #:                    | 196141            | Location: | Hanson Radum |  |
| Client:                   | LFR Levine Fricke | Prep:     | EPA 3550B    |  |
| Project#:                 | 001-09567-01      | Analysis: | EPA 8081A    |  |
| Field ID:                 | SS-31(B)-5.5      | Batch#:   | 127544       |  |
| Lab ID:                   | 196141-001        | Sampled:  | 07/19/07     |  |
| Matrix:                   | Soil              | Received: | 07/20/07     |  |
| Units:                    | ug/Kg             | Prepared: | 07/24/07     |  |
| Basis:                    | as received       | Analyzed: | 07/25/07     |  |
| Diln Fac:                 | 1.000             |           |              |  |

Cleanup Method: EPA 3620B

| Analyte            | Result | RL  |  |
|--------------------|--------|-----|--|
| alpha-BHC          | ND     | 1.7 |  |
| beta-BHC           | ND     | 1.7 |  |
| gamma-BHC          | ND     | 1.7 |  |
| delta-BHC          | ND     | 1.7 |  |
| Heptachlor         | ND     | 1.7 |  |
| Aldrin             | ND     | 1.7 |  |
| Heptachlor epoxide | ND     | 1.7 |  |
| Endosulfan I       | ND     | 1.7 |  |
| Dieldrin           | ND     | 3.3 |  |
| 4,4'-DDE           | ND     | 3.3 |  |
| Endrin             | ND     | 3.3 |  |
| Endosulfan II      | ND     | 3.3 |  |
| Endosulfan sulfate | ND     | 3.3 |  |
| 4,4'-DDD           | ND     | 3.3 |  |
| Endrin aldehyde    | ND     | 3.3 |  |
| 4,4'-DDT           | ND     | 3.3 |  |
| alpha-Chlordane    | ND     | 1.7 |  |
| gamma-Chlordane    | ND     | 1.7 |  |
| Methoxychlor       | ND     | 17  |  |
| Toxaphene          | ND     | 60  |  |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 97   | 50-120 |
| Decachlorobiphenyl | 93   | 54-133 |



| Organochlorine Pesticides |                   |           |              |
|---------------------------|-------------------|-----------|--------------|
| Lab #:                    | 196141            | Location: | Hanson Radum |
| Client:                   | LFR Levine Fricke | Prep:     | EPA 3550B    |
| Project#:                 | 001-09567-01      | Analysis: | EPA 8081A    |
| Field ID:                 | SS-31(B)-10.5     | Batch#:   | 127544       |
| Lab ID:                   | 196141-002        | Sampled:  | 07/19/07     |
| Matrix:                   | Soil              | Received: | 07/20/07     |
| Units:                    | ug/Kg             | Prepared: | 07/24/07     |
| Basis:                    | as received       | Analyzed: | 07/25/07     |
| Diln Fac:                 | 1.000             |           |              |

Cleanup Method: EPA 3620B

| Analyte            | Result | RL  |  |
|--------------------|--------|-----|--|
| alpha-BHC          | ND     | 1.7 |  |
| beta-BHC           | ND     | 1.7 |  |
| gamma-BHC          | ND     | 1.7 |  |
| delta-BHC          | ND     | 1.7 |  |
| Heptachlor         | ND     | 1.7 |  |
| Aldrin             | ND     | 1.7 |  |
| Heptachlor epoxide | ND     | 1.7 |  |
| Endosulfan I       | ND     | 1.7 |  |
| Dieldrin           | ND     | 3.3 |  |
| 4,4'-DDE           | ND     | 3.3 |  |
| Endrin             | ND     | 3.3 |  |
| Endosulfan II      | ND     | 3.3 |  |
| Endosulfan sulfate | ND     | 3.3 |  |
| 4,4'-DDD           | ND     | 3.3 |  |
| Endrin aldehyde    | ND     | 3.3 |  |
| 4,4'-DDT           | ND     | 3.3 |  |
| alpha-Chlordane    | ND     | 1.7 |  |
| gamma-Chlordane    | ND     | 1.7 |  |
| Methoxychlor       | ND     | 17  |  |
| Toxaphene          | ND     | 60  |  |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 97   | 50-120 |
| Decachlorobiphenyl | 104  | 54-133 |



| Organochlorine Pesticides |                   |           |              |  |
|---------------------------|-------------------|-----------|--------------|--|
| Lab #:                    | 196141            | Location: | Hanson Radum |  |
| Client:                   | LFR Levine Fricke | Prep:     | EPA 3550B    |  |
| Project#:                 | 001-09567-01      | Analysis: | EPA 8081A    |  |
| Type:                     | BLANK             | Diln Fac: | 1.000        |  |
| Lab ID:                   | QC397620          | Batch#:   | 127544       |  |
| Matrix:                   | Soil              | Prepared: | 07/24/07     |  |
| Units:                    | ug/Kg             | Analyzed: | 07/25/07     |  |
| Basis:                    | as received       |           |              |  |

Cleanup Method: EPA 3620B

| Analyte            | Result | RL  |  |
|--------------------|--------|-----|--|
| alpha-BHC          | ND     | 1.7 |  |
| beta-BHC           | ND     | 1.7 |  |
| gamma-BHC          | ND     | 1.7 |  |
| delta-BHC          | ND     | 1.7 |  |
| Heptachlor         | ND     | 1.7 |  |
| Aldrin             | ND     | 1.7 |  |
| Heptachlor epoxide | ND     | 1.7 |  |
| Endosulfan I       | ND     | 1.7 |  |
| Dieldrin           | ND     | 3.3 |  |
| 4,4'-DDE           | ND     | 3.3 |  |
| Endrin             | ND     | 3.3 |  |
| Endosulfan II      | ND     | 3.3 |  |
| Endosulfan sulfate | ND     | 3.3 |  |
| 4,4'-DDD           | ND     | 3.3 |  |
| Endrin aldehyde    | ND     | 3.3 |  |
| 4,4'-DDT           | ND     | 3.3 |  |
| alpha-Chlordane    | ND     | 1.7 |  |
| gamma-Chlordane    | ND     | 1.7 |  |
| Methoxychlor       | ND     | 17  |  |
| Toxaphene          | ND     | 59  |  |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 106  | 50-120 |
| Decachlorobiphenyl | 88   | 54-133 |



|             | Organochlorine Pesticides |           |              |  |  |  |  |  |
|-------------|---------------------------|-----------|--------------|--|--|--|--|--|
| Lab #:      | 196141                    | Location: | Hanson Radum |  |  |  |  |  |
| Client:     | LFR Levine Fricke         | Prep:     | EPA 3550B    |  |  |  |  |  |
| Project#:   | 001-09567-01              | Analysis: | EPA 8081A    |  |  |  |  |  |
| Field ID:   | ZZZZZZZZZ                 | Batch#:   | 127544       |  |  |  |  |  |
| MSS Lab ID: | 196123-001                | Sampled:  | 07/20/07     |  |  |  |  |  |
| Matrix:     | Soil                      | Received: | 07/20/07     |  |  |  |  |  |
| Units:      | ug/Kg                     | Prepared: | 07/24/07     |  |  |  |  |  |
| Basis:      | as received               | Analyzed: | 07/31/07     |  |  |  |  |  |
| Diln Fac:   | 1.000                     |           |              |  |  |  |  |  |

Type: Lab ID: MS QC397624 Cleanup Method: EPA 3620B

| Analyte    | MSS Result | Spiked | Result  | %REC | Limits |
|------------|------------|--------|---------|------|--------|
| gamma-BHC  | <0.3348    | 13.35  | 13.03   | 98   | 45-120 |
| Heptachlor | <0.4037    | 13.35  | 13.76   | 103  | 50-124 |
| Aldrin     | <0.2824    | 13.35  | 12.72 # | 95   | 47-122 |
| Dieldrin   | <0.7589    | 26.70  | 26.48   | 99   | 47-122 |
| Endrin     | <1.077     | 26.70  | 27.03 # | 101  | 46-127 |
| 4,4'-DDT   | <0.7880    | 26.70  | 24.63   | 92   | 27-136 |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 110  | 50-120 |
| Decachlorobiphenyl | 116  | 54-133 |

Type: Lab ID: MSD QC397625 Cleanup Method: EPA 3620B

Analyte Spiked Result %REC Limits RPD Lim 13.29 13.27 100 45-120 2 gamma-BHC 39 Heptachlor 13.29 14.11 50-124 106 3 37 Aldrin 13.29 12.40 # 47-122 2 93 35 Dieldrin 26.59 26.61 100 47-122 1 34 Endrin 26.59 27.36 # 103 46-127 2 37 4,4'-DDT 49 26.59 25.73 97 27-136 5

| Surrogate          | %REC | Limits |  |
|--------------------|------|--------|--|
| TCMX               | 115  | 50-120 |  |
| Decachlorobiphenyl | 120  | 54-133 |  |

#= CCV drift outside limits; average CCV drift within limits per method requirements RPD= Relative Percent Difference Page 1 of 1



|           | Organochlorine Pesticides |           |              |  |  |  |  |  |  |
|-----------|---------------------------|-----------|--------------|--|--|--|--|--|--|
| Lab #:    | 196141                    | Location: | Hanson Radum |  |  |  |  |  |  |
| Client:   | LFR Levine Fricke         | Prep:     | EPA 3550B    |  |  |  |  |  |  |
| Project#: | 001-09567-01              | Analysis: | EPA 8081A    |  |  |  |  |  |  |
| Type:     | LCS                       | Diln Fac: | 1.000        |  |  |  |  |  |  |
| Lab ID:   | QC397626                  | Batch#:   | 127544       |  |  |  |  |  |  |
| Matrix:   | Soil                      | Prepared: | 07/24/07     |  |  |  |  |  |  |
| Units:    | ug/Kg                     | Analyzed: | 07/25/07     |  |  |  |  |  |  |
| Basis:    | as received               |           |              |  |  |  |  |  |  |

Cleanup Method: EPA 3620B

| Analyte    | Spiked | Result | %REC | Limits |
|------------|--------|--------|------|--------|
| gamma-BHC  | 13.24  | 12.71  | 96   | 42-120 |
| Heptachlor | 13.24  | 14.08  | 106  | 44-130 |
| Aldrin     | 13.24  | 12.26  | 93   | 47-120 |
| Dieldrin   | 26.47  | 27.44  | 104  | 50-121 |
| Endrin     | 26.47  | 27.39  | 103  | 39-130 |
| 4,4'-DDT   | 26.47  | 29.05  | 110  | 45-127 |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 100  | 50-120 |
| Decachlorobiphenyl | 85   | 54-133 |



|           | Polychlorinated   | Biphenyls (I | PCBs)        |
|-----------|-------------------|--------------|--------------|
| Lab #:    | 196141            | Location:    | Hanson Radum |
| Client:   | LFR Levine Fricke | Prep:        | EPA 3550B    |
| Project#: | 001-09567-01      | Analysis:    | EPA 8082     |
| Matrix:   | Soil              | Batch#:      | 127544       |
| Units:    | ug/Kg             | Sampled:     | 07/19/07     |
| Basis:    | as received       | Received:    | 07/20/07     |
| Diln Fac: | 1.000             | Prepared:    | 07/24/07     |

| Field ID:<br>Type: | SS-31(B)-5.5<br>SAMPLE |        | Lab ID:<br>Analyzed: | 196141-001<br>07/25/07 |
|--------------------|------------------------|--------|----------------------|------------------------|
| An                 | alyte                  | Result | RL                   |                        |
| Aroclor-1016       |                        | ND     | 12                   |                        |
| Aroclor-1221       |                        | ND     | 24                   |                        |
| Aroclor-1232       |                        | ND     | 12                   |                        |
| Aroclor-1242       |                        | ND     | 12                   |                        |
| Aroclor-1248       |                        | ND     | 12                   |                        |
| Aroclor-1254       |                        | ND     | 12                   |                        |
| Aroclor-1260       |                        | ND     | 12                   |                        |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 107  | 63-141 |
| Decachlorobiphenyl | 89   | 50-158 |

| Field ID:<br>Type:                                                                                                   | SS-31(B)-10.5<br>SAMPLE |                                                                               | Lab ID:<br>Analyzed: | 196141-002<br>07/25/07                                   |
|----------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------|----------------------|----------------------------------------------------------|
| Anal<br>Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260 | •                       | Result<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                              |                      | L<br>12<br>24<br>12<br>12<br>12<br>12<br>12              |
| TCMX<br>Decachlorobiphe                                                                                              |                         | %REC         Limits           124         63-141           117         50-158 |                      |                                                          |
| Type:<br>Lab ID:                                                                                                     | BLANK<br>QC397620       |                                                                               | Analyzed:            | 07/24/07                                                 |
| Anal<br>Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260 | Lyte                    | Result<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND                        |                      | <b>L</b><br>12<br>24<br>12<br>12<br>12<br>12<br>12<br>12 |
| Surro<br>TCMX<br>Decachlorobiphe                                                                                     | <b>ogate</b><br>enyl    | %RECLimits12063-14111650-158                                                  |                      |                                                          |



|           | Polychlorinated   | Biphenyls (PC | Bs)          |
|-----------|-------------------|---------------|--------------|
| Lab #:    | 196141            | Location:     | Hanson Radum |
| Client:   | LFR Levine Fricke | Prep:         | EPA 3550B    |
| Project#: | 001-09567-01      | Analysis:     | EPA 8082     |
| Туре:     | LCS               | Diln Fac:     | 1.000        |
| Lab ID:   | QC397621          | Batch#:       | 127544       |
| Matrix:   | Soil              | Prepared:     | 07/24/07     |
| Units:    | ug/Kg             | Analyzed:     | 07/24/07     |
| Basis:    | as received       |               |              |

| Analyte      | Spiked | Result | %REC | Limits |
|--------------|--------|--------|------|--------|
| Aroclor-1232 | 166.2  | 185.4  | 112  | 68-138 |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 105  | 63-141 |
| Decachlorobiphenyl | 98   | 50-158 |



|             | Polychlorinated   | Biphenyls (PC | CBs)         |
|-------------|-------------------|---------------|--------------|
| Lab #:      | 196141            | Location:     | Hanson Radum |
| Client:     | LFR Levine Fricke | Prep:         | EPA 3550B    |
| Project#:   | 001-09567-01      | Analysis:     | EPA 8082     |
| Field ID:   | ZZZZZZZZZ         | Batch#:       | 127544       |
| MSS Lab ID: | 196123-001        | Sampled:      | 07/20/07     |
| Matrix:     | Soil              | Received:     | 07/20/07     |
| Units:      | ug/Kg             | Prepared:     | 07/24/07     |
| Basis:      | as received       | Analyzed:     | 07/24/07     |
| Diln Fac:   | 1.000             |               |              |

| Type:    | MS          |         |        | Lab ID: | QC39'  | 7622  |        |      |     |
|----------|-------------|---------|--------|---------|--------|-------|--------|------|-----|
|          | Analyte     | MSS Res |        | Spiked  |        | esult | %REC   | Limi |     |
| Aroclor  | -1232       | <1      | .312   | 167.7   | -      | 178.5 | 106    | 72-1 | 40  |
|          | Surrogate   | %REC    | Limits |         |        |       |        |      |     |
| TCMX     |             | 106     | 63-141 |         |        |       |        |      |     |
| Decachlo | orobiphenyl | 84      | 50-158 |         |        |       |        |      |     |
|          |             |         |        |         |        |       |        |      |     |
| Туре:    | MSD         |         |        | Lab ID: | QC39'  | 7623  |        |      |     |
|          |             |         |        |         |        |       |        |      |     |
|          | Analyte     |         | Spiked |         | Result | %REC  | Limits | RPD  | Lim |
| Aroclor  | -1232       |         | 168.2  |         | 175.6  | 104   | 72-140 | 2    | 27  |
|          |             |         |        |         |        |       |        |      |     |
|          | Surrogate   | %REC    | Limits |         |        |       |        |      |     |
| TCMX     |             | 101     | 63-141 |         |        |       |        |      |     |
| Decachlo | orobiphenyl | 78      | 50-158 |         |        |       |        |      |     |



| California Title 26 Metals |                 |       |                 |                                                                    |                        |  |
|----------------------------|-----------------|-------|-----------------|--------------------------------------------------------------------|------------------------|--|
| Lab #:                     | 196141          |       | Project#:       | 001-09567-01                                                       |                        |  |
| Client:                    | LFR Levine Fric | cke   | Location:       | Hanson Radum                                                       |                        |  |
| Field ID:                  | SS-31(B)-5.5    |       | Basis:          | as received                                                        |                        |  |
| Lab ID:                    | 196141-001      |       | Diln Fac:       | 1.000                                                              |                        |  |
| Matrix:                    | Soil            |       | Sampled:        | 07/19/07                                                           |                        |  |
| Units:                     | mg/Kg           |       | Received:       | 07/20/07                                                           |                        |  |
| Analyte                    | Result          | RL    | Batch# Prepared | Analyzed Prep                                                      | Apolygia               |  |
|                            | 1.6             | 0.50  | 127538 07/23/07 | Analyzed         Prep           07/24/07         EPA         3050B | Analysis<br>EPA 6010B  |  |
| Antimony<br>Arsenic        | 1.0<br>6.6      | 0.50  | 127538 07/23/07 | 07/24/07 EPA 3050B                                                 | EPA 6010B<br>EPA 6010B |  |
| Barium                     | 6.6<br>180      | 0.25  | 127538 07/23/07 | 07/24/07 EPA 3050B                                                 | EPA 6010B<br>EPA 6010B |  |
|                            |                 |       |                 |                                                                    |                        |  |
| Beryllium                  | 0.40            | 0.10  | 127538 07/23/07 | 07/24/07 EPA 3050B                                                 | EPA 6010B              |  |
| Cadmium                    | ND              | 0.25  | 127538 07/23/07 | 07/24/07 EPA 3050B                                                 | EPA 6010B              |  |
| Chromium                   | 65              | 0.25  | 127538 07/23/07 | 07/24/07 EPA 3050B                                                 | EPA 6010B              |  |
| Cobalt                     | 16              | 0.25  | 127538 07/23/07 | 07/24/07 EPA 3050B                                                 | EPA 6010B              |  |
| Copper                     | 34              | 0.25  | 127538 07/23/07 | 07/24/07 EPA 3050B                                                 | EPA 6010B              |  |
| Lead                       | 11              | 0.15  | 127538 07/23/07 | 07/24/07 EPA 3050B                                                 | EPA 6010B              |  |
| Mercury                    | 0.072           | 0.020 | 127600 07/25/07 | 07/25/07 METHOD                                                    | EPA 7471A              |  |
| Molybdenum                 | 0.31            | 0.25  | 127538 07/23/07 | 07/24/07 EPA 3050B                                                 | EPA 6010B              |  |
| Nickel                     | 100             | 0.25  | 127538 07/23/07 | 07/24/07 EPA 3050B                                                 | EPA 6010B              |  |
| Selenium                   | ND              | 0.50  | 127538 07/23/07 | 07/24/07 EPA 3050B                                                 | EPA 6010B              |  |
| Silver                     | ND              | 0.25  | 127538 07/23/07 | 07/24/07 EPA 3050B                                                 | EPA 6010B              |  |
| Thallium                   | ND              | 0.50  | 127538 07/23/07 | 07/24/07 EPA 3050B                                                 | EPA 6010B              |  |
| Vanadium                   | 34              | 0.25  | 127538 07/23/07 | 07/24/07 EPA 3050B                                                 | EPA 6010B              |  |
| Zinc                       | 63              | 1.0   | 127538 07/23/07 | 07/24/07 EPA 3050B                                                 | EPA 6010B              |  |



| California Title 26 Metals |                 |       |                 |                    |           |  |
|----------------------------|-----------------|-------|-----------------|--------------------|-----------|--|
| Lab #:                     | 196141          |       | Project#:       | 001-09567-01       |           |  |
| Client:                    | LFR Levine Fric | cke   | Location:       | Hanson Radum       |           |  |
| Field ID:                  | SS-31(B)-10.5   |       | Basis:          | as received        |           |  |
| Lab ID:                    | 196141-002      |       | Diln Fac:       | 1.000              |           |  |
| Matrix:                    | Soil            |       | Sampled:        | 07/19/07           |           |  |
| Units:                     | mg/Kg           |       | Received:       | 07/20/07           |           |  |
| Analyte                    | Result          | RL    | Batch# Prepared | Analyzed Prep      | Analysis  |  |
| Antimony                   | 1.8             | 0.50  | 127538 07/23/07 | 07/24/07 EPA 3050B | EPA 6010B |  |
| Arsenic                    | 5.6             | 0.25  | 127538 07/23/07 | 07/24/07 EPA 3050B | EPA 6010B |  |
| Barium                     | 150             | 0.25  | 127538 07/23/07 | 07/24/07 EPA 3050B | EPA 6010B |  |
| Beryllium                  | 0.37            | 0.10  | 127538 07/23/07 | 07/24/07 EPA 3050B | EPA 6010B |  |
| Cadmium                    | ND              | 0.25  | 127538 07/23/07 | 07/24/07 EPA 3050B | EPA 6010B |  |
| Chromium                   | 59              | 0.25  | 127538 07/23/07 | 07/24/07 EPA 3050B | EPA 6010B |  |
| Cobalt                     | 12              | 0.25  | 127538 07/23/07 | 07/24/07 EPA 3050B | EPA 6010B |  |
| Copper                     | 28              | 0.25  | 127538 07/23/07 | 07/24/07 EPA 3050B | EPA 6010B |  |
| Lead                       | 8.2             | 0.15  | 127538 07/23/07 | 07/24/07 EPA 3050B | EPA 6010B |  |
| Mercury                    | 0.052           | 0.020 | 127600 07/25/07 | 07/25/07 METHOD    | EPA 7471A |  |
| Molybdenum                 | ND              | 0.25  | 127538 07/23/07 | 07/24/07 EPA 3050B | EPA 6010B |  |
| Nickel                     | 90              | 0.25  | 127538 07/23/07 | 07/24/07 EPA 3050B | EPA 6010B |  |
| Selenium                   | ND              | 0.50  | 127538 07/23/07 | 07/24/07 EPA 3050B | EPA 6010B |  |
| Silver                     | ND              | 0.25  | 127538 07/23/07 | 07/24/07 EPA 3050B | EPA 6010B |  |
| Thallium                   | ND              | 0.50  | 127538 07/23/07 | 07/24/07 EPA 3050B | EPA 6010B |  |
| Vanadium                   | 32              | 0.25  | 127538 07/23/07 | 07/24/07 EPA 3050B | EPA 6010B |  |
| Zinc                       | 53              | 1.0   | 127538 07/23/07 | 07/24/07 EPA 3050B | EPA 6010B |  |



|           | Californ          | nia Title 26 Meta | ls           |  |
|-----------|-------------------|-------------------|--------------|--|
| Lab #:    | 196141            | Location:         | Hanson Radum |  |
| Client:   | LFR Levine Fricke | Prep:             | EPA 3050B    |  |
| Project#: | 001-09567-01      | Analysis:         | EPA 6010B    |  |
| Type:     | BLANK             | Diln Fac:         | 1.000        |  |
| Lab ID:   | QC397594          | Batch#:           | 127538       |  |
| Matrix:   | Soil              | Prepared:         | 07/23/07     |  |
| Units:    | mg/Kg             | Analyzed:         | 07/24/07     |  |
| Basis:    | as received       |                   |              |  |

| Analyte    | Result | RL   |  |
|------------|--------|------|--|
| Antimony   | ND     | 0.50 |  |
| Arsenic    | ND     | 0.25 |  |
| Barium     | ND     | 0.25 |  |
| Beryllium  | ND     | 0.10 |  |
| Cadmium    | ND     | 0.25 |  |
| Chromium   | ND     | 0.25 |  |
| Cobalt     | ND     | 0.25 |  |
| Copper     | ND     | 0.25 |  |
| Lead       | ND     | 0.15 |  |
| Molybdenum | ND     | 0.25 |  |
| Nickel     | ND     | 0.25 |  |
| Selenium   | ND     | 0.50 |  |
| Silver     | ND     | 0.25 |  |
| Thallium   | ND     | 0.50 |  |
| Vanadium   | ND     | 0.25 |  |
| Zinc       | ND     | 1.0  |  |

ND= Not Detected RL= Reporting Limit Page 1 of 1



|                                          | Californ                                    | nia Title 26 Meta                 | ls                                     |  |
|------------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|--|
| Lab #:<br>Client:<br>Project#:           | 196141<br>LFR Levine Fricke<br>001-09567-01 | Location:<br>Prep:<br>Analysis:   | Hanson Radum<br>EPA 3050B<br>EPA 6010B |  |
| Matrix:<br>Units:<br>Basis:<br>Diln Fac: | Soil<br>mg/Kg<br>as received<br>1.000       | Batch#:<br>Prepared:<br>Analyzed: | 127538<br>07/23/07<br>07/24/07         |  |

| Type: BS   | Lab ID: | QC3975 | 95   |        |
|------------|---------|--------|------|--------|
| Analyte    | Spiked  | Result | %REC | Limits |
| Antimony   | 100.0   | 96.62  | 97   | 80-120 |
| Arsenic    | 50.00   | 48.33  | 97   | 80-120 |
| Barium     | 100.0   | 96.91  | 97   | 80-120 |
| Beryllium  | 2.500   | 2.475  | 99   | 80-120 |
| Cadmium    | 10.00   | 9.911  | 99   | 80-120 |
| Chromium   | 100.0   | 96.08  | 96   | 80-120 |
| Cobalt     | 25.00   | 23.42  | 94   | 80-120 |
| Copper     | 12.50   | 12.02  | 96   | 80-120 |
| Lead       | 100.0   | 95.52  | 96   | 80-120 |
| Molybdenum | 20.00   | 20.59  | 103  | 80-120 |
| Nickel     | 25.00   | 23.60  | 94   | 80-120 |
| Selenium   | 50.00   | 48.48  | 97   | 80-120 |
| Silver     | 10.00   | 9.566  | 96   | 80-120 |
| Thallium   | 50.00   | 48.08  | 96   | 80-120 |
| Vanadium   | 25.00   | 24.11  | 96   | 80-120 |
| Zinc       | 25.00   | 24.39  | 98   | 80-120 |

| Туре:      | BSD    | Lab ID: | QC397  | 596  |        |     |    |
|------------|--------|---------|--------|------|--------|-----|----|
| A          | nalyte | Spiked  | Result | %REC | Limits | RPD |    |
| Antimony   |        | 100.0   | 97.28  | 97   | 80-120 | 1   | 20 |
| Arsenic    |        | 50.00   | 48.64  | 97   | 80-120 | 1   | 20 |
| Barium     |        | 100.0   | 97.30  | 97   | 80-120 | 0   | 20 |
| Beryllium  |        | 2.500   | 2.490  | 100  | 80-120 | 1   | 20 |
| Cadmium    |        | 10.00   | 9.879  | 99   | 80-120 | 0   | 20 |
| Chromium   |        | 100.0   | 96.36  | 96   | 80-120 | 0   | 20 |
| Cobalt     |        | 25.00   | 23.60  | 94   | 80-120 | 1   | 20 |
| Copper     |        | 12.50   | 12.42  | 99   | 80-120 | 3   | 20 |
| Lead       |        | 100.0   | 96.12  | 96   | 80-120 | 1   | 20 |
| Molybdenum |        | 20.00   | 20.50  | 102  | 80-120 | 0   | 20 |
| Nickel     |        | 25.00   | 23.68  | 95   | 80-120 | 0   | 20 |
| Selenium   |        | 50.00   | 49.11  | 98   | 80-120 | 1   | 20 |
| Silver     |        | 10.00   | 9.464  | 95   | 80-120 | 1   | 20 |
| Thallium   |        | 50.00   | 48.76  | 98   | 80-120 | 1   | 20 |
| Vanadium   |        | 25.00   | 24.19  | 97   | 80-120 | 0   | 20 |
| Zinc       |        | 25.00   | 24.45  | 98   | 80-120 | 0   | 20 |



|             | Califor           | nia Title 26 Metal | ls           |  |
|-------------|-------------------|--------------------|--------------|--|
| Lab #:      | 196141            | Location:          | Hanson Radum |  |
| Client:     | LFR Levine Fricke | Prep:              | EPA 3050B    |  |
| Project#:   | 001-09567-01      | Analysis:          | EPA 6010B    |  |
| Field ID:   | ZZZZZZZZZZ        | Batch#:            | 127538       |  |
| MSS Lab ID: | 196071-003        | Sampled:           | 07/17/07     |  |
| Matrix:     | Soil              | Received:          | 07/19/07     |  |
| Units:      | mg/Kg             | Prepared:          | 07/23/07     |  |
| Basis:      | as received       | Analyzed:          | 07/24/07     |  |
| Diln Fac:   | 1.000             | -                  |              |  |

| Туре:      | MS      | Lab I          | D: QC397   | 597          |        |
|------------|---------|----------------|------------|--------------|--------|
| Analyt     | e MSS F | Result Spik    |            |              | Limits |
| Antimony   |         | 0.9685 90      | .09 26     | .49 28       | 1-129  |
| Arsenic    |         | 2.564 45       | .05 45     | .21 95       | 72-120 |
| Barium     | 13      | 31.7 90        | .09 221    | .9 100       | 49-138 |
| Beryllium  |         | 0.3335 2       | .252 2     | .450 94      | 80-120 |
| Cadmium    | 2,33    | 33 9           | .009 1,526 | >LR -8959 NM | 72-120 |
| Chromium   | 1,60    | 90             | .09 1,687  | >LR 92 NM    | 63-122 |
| Cobalt     |         | 8.121 22       | .52 26     | .35 81       | 61-120 |
| Copper     | 1,42    | 23 11          | .26 1,257  | >LR -1472 NM | 59-137 |
| Lead       | 2       | 20.15 90       | .09 94     | .42 82       | 55-122 |
| Molybdenum |         | 1.377 18       | .02 18     | .08 93       | 66-120 |
| Nickel     |         | 30.05 22       | .52 46     | .93 75       | 45-139 |
| Selenium   | <       | 0.07345 45     | .05 42     | .21 94       | 73-120 |
| Silver     |         | 0.1510 9       | .009 9     | .039 99      | 53-120 |
| Thallium   |         | 0.04788 45     | .05 37     | .27 83       | 64-120 |
| Vanadium   | 4       | 1.10 22        | .52 64     | .28 103      | 55-139 |
| Zinc       | 36      | 59.5 <u>22</u> | .52 347    | .9 -96 NM    | 49-140 |

| Type:      | MSD     | Lab ID: | QC397     | 7598     |        |     |     |
|------------|---------|---------|-----------|----------|--------|-----|-----|
| Z          | Analyte | Spiked  | Result    | %REC     | Limits | RPD | Lim |
| Antimony   |         | 96.15   | 27.27     | 27       | 1-129  | 4   | 23  |
| Arsenic    |         | 48.08   | 46.11     | 91       | 72-120 | 4   | 20  |
| Barium     |         | 96.15   | 224.4     | 96       | 49-138 | 2   | 23  |
| Beryllium  |         | 2.404   | 2.529     | 91       | 80-120 | 3   | 20  |
| Cadmium    |         | 9.615   | 1,664 >LR | -6957 NM | 72-120 | NC  | 20  |
| Chromium   |         | 96.15   | 1,650 >LR | 48 NM    | 63-122 | NC  | 20  |
| Cobalt     |         | 24.04   | 27.10     | 79       | 61-120 | 2   | 23  |
| Copper     |         | 12.02   | 1,351 >LR | -599 NM  | 59-137 | NC  | 20  |
| Lead       |         | 96.15   | 98.95     | 82       | 55-122 | 1   | 26  |
| Molybdenum |         | 19.23   | 18.74     | 90       | 66-120 | 2   | 20  |
| Nickel     |         | 24.04   | 48.88     | 78       | 45-139 | 1   | 26  |
| Selenium   |         | 48.08   | 43.73     | 91       | 73-120 | 3   | 20  |
| Silver     |         | 9.615   | 9.354     | 96       | 53-120 | 3   | 22  |
| Thallium   |         | 48.08   | 39.07     | 81       | 64-120 | 2   | 20  |
| Vanadium   |         | 24.04   | 65.96     | 103      | 55-139 | 0   | 20  |
| Zinc       |         | 24.04   | 394.1     | 102 NM   | 49-140 | 12  | 23  |

NC= Not Calculated NM= Not Meaningful: Sample concentration > 4X spike concentration >LR= Response exceeds instrument's linear range RPD= Relative Percent Difference Page 1 of 1



| Tab H.    | 100141            | Location: | Hanson Radum   |  |
|-----------|-------------------|-----------|----------------|--|
| Lab #:    | 196141            | Location. | Hanson Radulli |  |
| Client:   | LFR Levine Fricke | Prep:     | METHOD         |  |
| Project#: | 001-09567-01      | Analysis: | EPA 7471A      |  |
| Analyte:  | Mercury           | Basis:    | as received    |  |
| Type:     | BLANK             | Diln Fac: | 1.000          |  |
| Lab ID:   | QC397831          | Batch#:   | 127600         |  |
| Matrix:   | Soil              | Prepared: | 07/25/07       |  |
| Units:    | mg/Kg             | Analyzed: | 07/25/07       |  |

| Result | RL    |  |
|--------|-------|--|
| ND     | 0.020 |  |

ND= Not Detected RL= Reporting Limit Page 1 of 1



|           | Californ          | nia Title 26 Meta | ls           |  |
|-----------|-------------------|-------------------|--------------|--|
| Lab #:    | 196141            | Location:         | Hanson Radum |  |
| Client:   | LFR Levine Fricke | Prep:             | METHOD       |  |
| Project#: | 001-09567-01      | Analysis:         | EPA 7471A    |  |
| Analyte:  | Mercury           | Diln Fac:         | 1.000        |  |
| Matrix:   | Soil              | Batch#:           | 127600       |  |
| Units:    | mg/Kg             | Prepared:         | 07/25/07     |  |
| Basis:    | as received       | Analyzed:         | 07/25/07     |  |
|           |                   |                   |              |  |

| Type | Lab ID   | Spiked | Result | %REC | Limits | RPD | Lim |
|------|----------|--------|--------|------|--------|-----|-----|
| BS   | QC397832 | 0.5000 | 0.4540 | 91   | 80-120 |     |     |
| BSD  | QC397833 | 0.5000 | 0.4240 | 85   | 80-120 | 7   | 20  |



QC397836

MSD

|             | Califo            | ornia Title 26 Me | tals   |          |        |     |     |
|-------------|-------------------|-------------------|--------|----------|--------|-----|-----|
| Lab #:      | 196141            | Location:         | Hans   | on Radum | 1      |     |     |
| Client:     | LFR Levine Fricke | Prep:             | METH   | DD       |        |     |     |
| Project#:   | 001-09567-01      | Analysis:         | EPA '  | 7471A    |        |     |     |
| Analyte:    | Mercury           | Diln Fac:         | 1.00   | 0        |        |     |     |
| Field ID:   | ZZZZZZZZZZ        | Batch#:           | 1276   | 00       |        |     |     |
| MSS Lab ID: | 196123-001        | Sampled:          | 07/20  | 0/07     |        |     |     |
| Matrix:     | Soil              | Received:         | 07/20  | 0/07     |        |     |     |
| Units:      | mg/Kg             | Prepared:         | 07/2   | 5/07     |        |     |     |
| Basis:      | as received       | Analyzed:         | 07/2   | 5/07     |        |     |     |
|             |                   |                   |        |          |        |     |     |
| Type Lab ID | MSS Result        | Spiked            | Result | %REC     | Limits | RPD | Lim |
| MS QC397835 | 0.08440           | 0.4808            | 0.5990 | 107      | 67-143 |     |     |

0.4717

0.4774

83

23

67-143 21



| LFR Levine Fricke    | Project : 001-09567-01  |
|----------------------|-------------------------|
| 1900 Powell Street   | Location : Hanson Radum |
| Emeryville, CA 94608 | Level : II              |

| Sample ID     | <u>Lab ID</u> |
|---------------|---------------|
| SS-31(B)-GGW  | 196134-001    |
| SS-31(C)-GGW  | 196134-002    |
| SS-31(C)-5.5  | 196134-003    |
| SS-31(C)-10.5 | 196134-004    |
| SS-31(C)-15.5 | 196134-005    |
| SS-31(C)-19.5 | 196134-006    |
| SS-31(C)-25.5 | 196134-007    |
| SS-31(C)-30   | 196134-008    |
| SS-31(C)-40   | 196134-009    |
| SS-31(C)-51   | 196134-010    |
| SS-31(C)-60.5 | 196134-011    |
| SS-31(C)-67.5 | 196134-012    |
| SS-31(D)-5.5  | 196134-013    |
| SS-31(D)-10.5 | 196134-014    |
| SS-31(D)-15   | 196134-015    |
| SS-31(D)-19.5 | 196134-016    |

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Signature: Project Manager

Signature:

Operations Manager

Date: 07/31/2007

Date: 07/31/2007

NELAP # 01107CA

Page 1 of \_\_\_\_



#### CASE NARRATIVE

Laboratory number:196134Client:LFR Levine FrickeProject:001-09567-01Location:Hanson RadumRequest Date:07/23/07Samples Received:07/23/07

This hardcopy data package contains sample and QC results for thirteen soil samples and two water samples, requested for the above referenced project on 07/23/07. The samples were received cold and intact. All data were e-mailed to Katrin Schliewen on 07/27/07.

#### TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

#### TPH-Extractables by GC (EPA 8015B) Water:

No analytical problems were encountered.

#### TPH-Extractables by GC (EPA 8015B) Soil:

No analytical problems were encountered.

#### Volatile Organics by GC/MS (EPA 8260B) Water:

No analytical problems were encountered.

#### Volatile Organics by GC/MS (EPA 8260B) Soil:

No analytical problems were encountered.

#### Semivolatile Organics by GC/MS (EPA 8270C):

No analytical problems were encountered.

#### Pesticides (EPA 8081A):

No analytical problems were encountered.

#### Polychlorinated Biphenyls (PCBs) (EPA 8082):

No analytical problems were encountered.

#### Metals (EPA 6010B and EPA 7471A):

No analytical problems were encountered.



|                                                                                                                                                                                            |                                                                                                                                                             | Total                                                | Volatil                                                                           | e Hydrocarbo                           | ons                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------|
| Lab #:<br>Client:<br>Project#:                                                                                                                                                             | 196134<br>LFR Levine Fr<br>001-09567-01                                                                                                                     | icke                                                 |                                                                                   | Location:<br>Prep:<br>Analysis:        | Hanson Radum<br>EPA 5030B<br>EPA 8015B                             |
| Matrix:<br>Units:<br>Basis:<br>Diln Fac:                                                                                                                                                   | Soil<br>mg/Kg<br>as received<br>1.000                                                                                                                       |                                                      |                                                                                   | Batch#:<br>Sampled:<br>Received:       | 127519<br>07/20/07<br>07/23/07                                     |
| Field ID:<br>Type:                                                                                                                                                                         | SS-31(C)-5.5<br>SAMPLE                                                                                                                                      |                                                      |                                                                                   | Lab ID:<br>Analyzed:                   | 196134-003<br>07/23/07                                             |
|                                                                                                                                                                                            | lyte                                                                                                                                                        |                                                      | Result                                                                            | R                                      | L                                                                  |
| Gasoline C7-C12                                                                                                                                                                            | 2                                                                                                                                                           | ND                                                   | )                                                                                 |                                        | 1.0                                                                |
| Surro                                                                                                                                                                                      | ogate                                                                                                                                                       | %REC                                                 |                                                                                   |                                        |                                                                    |
| Trifluorotoluer<br>Bromofluorobenz                                                                                                                                                         | ne (FID)<br>zene (FID)                                                                                                                                      | 99<br>107                                            | 70-132<br>66-138                                                                  |                                        |                                                                    |
| Field ID:                                                                                                                                                                                  | SS-31(C)-10.5                                                                                                                                               | /                                                    |                                                                                   | Lab ID:                                | 196134-004                                                         |
| Type:                                                                                                                                                                                      | SAMPLE                                                                                                                                                      |                                                      |                                                                                   | Analyzed:                              | 07/23/07                                                           |
|                                                                                                                                                                                            | lyte                                                                                                                                                        |                                                      | Result                                                                            | R                                      | L                                                                  |
| Gasoline C7-C12                                                                                                                                                                            | )                                                                                                                                                           | NTD                                                  | <u>`</u>                                                                          |                                        | 1 0                                                                |
| Gasorrie C/-CI2                                                                                                                                                                            | 2                                                                                                                                                           | ND                                                   | )                                                                                 |                                        | 1.0                                                                |
|                                                                                                                                                                                            | ogate                                                                                                                                                       |                                                      | Limits                                                                            |                                        | 1.0                                                                |
| Surro<br>Trifluorotoluer                                                                                                                                                                   | <b>ogate</b><br>ne (FID)                                                                                                                                    | % <b>REC</b><br>101                                  | <b>Limits</b><br>70-132                                                           |                                        | 1.0                                                                |
| Surro                                                                                                                                                                                      | <b>ogate</b><br>ne (FID)                                                                                                                                    | %REC                                                 | Limits                                                                            |                                        | 1.0                                                                |
| Surro<br>Trifluorotoluer                                                                                                                                                                   | <b>ogate</b><br>ne (FID)                                                                                                                                    | % <b>REC</b><br>101                                  | <b>Limits</b><br>70-132                                                           | Lab ID:<br>Analyzed:                   | 1.0<br>196134-005<br>07/23/07                                      |
| Surro<br>Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Ana                                                                                                                   | pgate<br>ne (FID)<br>zene (FID)<br>SS-31(C)-15.5<br>SAMPLE<br>lyte                                                                                          | %REC<br>101<br>108                                   | Limits<br>70-132<br>66-138<br>Result                                              | Analyzed:                              | 196134-005<br>07/23/07<br>L                                        |
| Surro<br>Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:                                                                                                                          | pgate<br>ne (FID)<br>zene (FID)<br>SS-31(C)-15.5<br>SAMPLE<br>lyte                                                                                          | %REC<br>101<br>108                                   | Limits<br>70-132<br>66-138<br>Result                                              | Analyzed:                              | 196134-005<br>07/23/07                                             |
| Surro<br>Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Ana<br>Gasoline C7-C12                                                                                                | pgate<br>he (FID)<br>zene (FID)<br>SS-31(C)-15.5<br>SAMPLE<br>lyte<br>2<br>pgate<br>he (FID)                                                                | <b>%REC</b><br>101<br>108<br>ND                      | Limits<br>70-132<br>66-138<br>Result                                              | Analyzed:                              | 196134-005<br>07/23/07<br>L                                        |
| Surro<br>Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Casoline C7-C12<br>Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:                                           | pgate<br>he (FID)<br>zene (FID)<br>SS-31(C)-15.5<br>SAMPLE<br>lyte<br>2<br>pgate<br>he (FID)<br>zene (FID)<br>SS-31(C)-19.5<br>SAMPLE                       | %REC           101           108                     | Limits<br>70-132<br>66-138<br><b>Result</b><br>70-132<br>66-138                   | Analyzed:<br>R<br>Lab ID:<br>Analyzed: | 196134-005<br>07/23/07<br>L<br>0.98<br>196134-006<br>07/23/07      |
| Surro<br>Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Ana:<br>Gasoline C7-C12<br>Surro<br>Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Ana:                  | pgate<br>he (FID)<br>zene (FID)<br>SS-31(C)-15.5<br>SAMPLE<br>lyte<br>2<br>pgate<br>he (FID)<br>zene (FID)<br>SS-31(C)-19.5<br>SAMPLE<br>lyte               | %REC           101           108                     | Limits<br>70-132<br>66-138<br>Result<br>Timits<br>70-132<br>66-138<br>Result      | Analyzed:<br>R<br>Lab ID:<br>Analyzed: | 196134-005<br>07/23/07<br>L<br>0.98<br>196134-006<br>07/23/07<br>L |
| Surro<br>Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Ana<br>Gasoline C7-C12<br>Surro<br>Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Ana<br>Gasoline C7-C12 | pgate<br>he (FID)<br>zene (FID)<br>SS-31(C)-15.5<br>SAMPLE<br>lyte<br>2<br>pgate<br>he (FID)<br>zene (FID)<br>SS-31(C)-19.5<br>SAMPLE<br>lyte<br>2          | *REC<br>101<br>108<br>ND<br>*REC<br>105<br>110<br>ND | Limits<br>70-132<br>66-138<br>Result<br>D<br>Limits<br>70-132<br>66-138<br>Result | Analyzed:<br>R<br>Lab ID:<br>Analyzed: | 196134-005<br>07/23/07<br>L<br>0.98<br>196134-006<br>07/23/07      |
| Surro<br>Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Ana<br>Gasoline C7-C12<br>Surro<br>Trifluorotoluer<br>Bromofluorobenz<br>Field ID:<br>Type:<br>Ana<br>Gasoline C7-C12 | pgate<br>he (FID)<br>zene (FID)<br>SS-31(C)-15.5<br>SAMPLE<br>lyte<br>2<br>pgate<br>he (FID)<br>zene (FID)<br>SS-31(C)-19.5<br>SAMPLE<br>lyte<br>2<br>pgate | %REC           101           108                     | Limits<br>70-132<br>66-138<br>Result<br>Timits<br>70-132<br>66-138<br>Result      | Analyzed:<br>R<br>Lab ID:<br>Analyzed: | 196134-005<br>07/23/07<br>L<br>0.98<br>196134-006<br>07/23/07<br>L |



|                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total                                                      | Volatil                                                                           | e Hydrocarb                                | ons                                                           |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|--|
| Lab #:<br>Client:<br>Project#:<br>Matrix:                                                                                                                                   | 196134<br>LFR Levine F<br>001-09567-01<br>Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ricke                                                      |                                                                                   | Location:<br>Prep:<br>Analysis:<br>Batch#: | Hanson Radum<br>EPA 5030B<br>EPA 8015B<br>127519              |  |
| Matrix:<br>Units:<br>Basis:<br>Diln Fac:                                                                                                                                    | mg/Kg<br>as received<br>1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                            |                                                                                   | Sampled:<br>Received:                      | 07/20/07<br>07/23/07                                          |  |
| Field ID:<br>Type:                                                                                                                                                          | SS-31(C)-25.5<br>SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |                                                                                   | Lab ID:<br>Analyzed:                       | 196134-007<br>07/23/07                                        |  |
| Ana                                                                                                                                                                         | alyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            | Result                                                                            |                                            | RL                                                            |  |
| Gasoline C7-C1                                                                                                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                                                         | )                                                                                 |                                            | 1.0                                                           |  |
| Surr                                                                                                                                                                        | rogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %REC                                                       | Limits                                                                            |                                            |                                                               |  |
| Trifluorotolue<br>Bromofluorober                                                                                                                                            | ene (FID)<br>Dzene (FID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 96<br>107                                                  | 70-132<br>66-138                                                                  |                                            |                                                               |  |
| BIOMOTIUOIODEI                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107                                                        | 00 150                                                                            |                                            |                                                               |  |
| Field ID:<br>Type:                                                                                                                                                          | SS-31(C)-30<br>SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |                                                                                   | Lab ID:<br>Analyzed:                       | 196134-008<br>07/23/07                                        |  |
|                                                                                                                                                                             | alyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            | Result                                                                            | ]                                          | RL                                                            |  |
|                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |                                                                                   |                                            |                                                               |  |
| Gasoline C7-C1                                                                                                                                                              | LZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                                                         | )                                                                                 |                                            | 1.0                                                           |  |
| Surr                                                                                                                                                                        | rogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %REC                                                       | Limits                                                                            |                                            | 1.0                                                           |  |
| Surr<br>Trifluorotolue                                                                                                                                                      | rogate<br>ene (FID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>%REC</b><br>96                                          | <b>Limits</b><br>70-132                                                           |                                            | 1.0                                                           |  |
| Surr                                                                                                                                                                        | rogate<br>ene (FID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %REC                                                       | Limits                                                                            |                                            | 1.0                                                           |  |
| Surr<br>Trifluorotolue                                                                                                                                                      | rogate<br>ene (FID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>%REC</b><br>96                                          | <b>Limits</b><br>70-132                                                           | Lab ID:<br>Analyzed:                       | 1.0<br>196134-009<br>07/23/07                                 |  |
| Surr<br>Trifluorotolue<br>Bromofluorober<br>Field ID:<br>Type:<br>Ana                                                                                                       | ss-31(C)-40<br>SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>%REC</b><br>96<br>107                                   | Limits<br>70-132<br>66-138<br>Result                                              | Analyzed:                                  | 196134-009<br>07/23/07<br>RL                                  |  |
| Surr<br>Trifluorotolue<br>Bromofluorober<br>Field ID:<br>Type:                                                                                                              | ss-31(C)-40<br>SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>%REC</b><br>96<br>107                                   | Limits<br>70-132<br>66-138<br>Result                                              | Analyzed:                                  | 196134-009<br>07/23/07                                        |  |
| Surr<br>Trifluorotolue<br>Bromofluorober<br>Field ID:<br>Type:<br>Ana<br>Gasoline C7-C1                                                                                     | cogate<br>ene (FID)<br>nzene (FID)<br>SS-31(C)-40<br>SAMPLE<br>alyte<br>12<br>cogate<br>ene (FID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>%REC</b><br>96<br>107                                   | Limits<br>70-132<br>66-138<br>Result                                              | Analyzed:                                  | 196134-009<br>07/23/07<br>RL                                  |  |
| Surr<br>Trifluorotolue<br>Bromofluorober<br>Field ID:<br>Type:<br>Casoline C7-C1<br>Surr<br>Trifluorotolue                                                                  | cogate<br>ene (FID)<br>nzene (FID)<br>SS-31(C)-40<br>SAMPLE<br>alyte<br>12<br>cogate<br>ene (FID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %REC<br>96<br>107<br>ND<br>%REC<br>98                      | Limits<br>70-132<br>66-138<br>Result<br>D<br>Limits<br>70-132                     | Analyzed:                                  | 196134-009<br>07/23/07<br>RL                                  |  |
| Surr<br>Trifluorotolue<br>Bromofluorober<br>Field ID:<br>Type:<br>Casoline C7-C1<br>Surr<br>Trifluorotolue<br>Bromofluorober<br>Field ID:<br>Type:                          | ss-31(C)-40<br>sAMPLE<br>alyte<br>12<br>ss-31(C)-40<br>sAMPLE<br>cogate<br>ene (FID)<br>nzene (FID)<br>ss-31(C)-51<br>sAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | %REC<br>96<br>107<br>ND<br>ND<br>%REC<br>98<br>106         | Limits<br>70-132<br>66-138<br><b>Result</b><br>D<br>Limits<br>70-132<br>66-138    | Analyzed:                                  | 196134-009<br>07/23/07<br>RL<br>1.0<br>196134-010<br>07/23/07 |  |
| Surr<br>Trifluorotolue<br>Bromofluorober<br>Field ID:<br>Type:<br>Casoline C7-C1<br>Surr<br>Trifluorotolue<br>Bromofluorober<br>Field ID:<br>Type:                          | <pre>cogate<br/>ene (FID)<br/>izene (FID)<br/>SS-31(C)-40<br/>SAMPLE<br/>alyte<br/>12<br/>cogate<br/>ene (FID)<br/>izene (FID)<br/>izene (FID)<br/>SS-31(C)-51<br/>SAMPLE<br/>alyte</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %REC<br>96<br>107<br>ND<br>ND<br>%REC<br>98<br>106         | Limits<br>70-132<br>66-138<br>Result<br>D<br>Limits<br>70-132<br>66-138<br>Result | Analyzed:                                  | 196134-009<br>07/23/07<br>RL<br>1.0<br>196134-010             |  |
| Surr<br>Trifluorotolue<br>Bromofluorober<br>Field ID:<br>Type:<br>Casoline C7-C1<br>Surr<br>Trifluorotolue<br>Bromofluorober<br>Field ID:<br>Type:<br>Ana<br>Gasoline C7-C1 | <pre>cogate<br/>ene (FID)<br/>izene (FID)<br/>SS-31(C)-40<br/>SAMPLE<br/>alyte<br/>l2<br/>cogate<br/>ene (FID)<br/>izene (FI</pre> | <b>%REC</b><br>96<br>107<br>ND<br><b>%REC</b><br>98<br>106 | Limits<br>70-132<br>66-138<br>Result<br>70-132<br>66-138<br>Result                | Analyzed:                                  | 196134-009<br>07/23/07<br>RL<br>1.0<br>196134-010<br>07/23/07 |  |
| Surr<br>Trifluorotolue<br>Bromofluorober<br>Field ID:<br>Type:<br>Casoline C7-C1<br>Surr<br>Trifluorotolue<br>Bromofluorober<br>Field ID:<br>Type:<br>Ana<br>Gasoline C7-C1 | <pre>cogate<br/>ene (FID)<br/>nzene (FID)<br/>SS-31(C)-40<br/>SAMPLE<br/>alyte<br/>12<br/>cogate<br/>ene (FID)<br/>nzene (FID)<br/>SS-31(C)-51<br/>SAMPLE<br/>alyte<br/>12<br/>cogate<br/>ene (FID)<br/>cogate<br/>ene (FID)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %REC<br>96<br>107<br>ND<br><b>%REC</b><br>98<br>106        | Limits<br>70-132<br>66-138<br>Result<br>D<br>Limits<br>70-132<br>66-138<br>Result | Analyzed:                                  | 196134-009<br>07/23/07<br>RL<br>1.0<br>196134-010<br>07/23/07 |  |



|                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       | Total                                          | Volatil                                                                           | e Hydrocarbo                           | ons                                                            |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------|--|
| Lab #:                                                                                                                                                                                                                                                                                             | 196134                                                                                                                                                                |                                                |                                                                                   | Location:                              | Hanson Radum                                                   |  |
| Client:                                                                                                                                                                                                                                                                                            | LFR Levine Fr                                                                                                                                                         | icke                                           |                                                                                   | Prep:                                  | EPA 5030B                                                      |  |
| Project#:                                                                                                                                                                                                                                                                                          | 001-09567-01                                                                                                                                                          |                                                |                                                                                   | Analysis:                              | EPA 8015B                                                      |  |
| Matrix:                                                                                                                                                                                                                                                                                            | Soil                                                                                                                                                                  |                                                |                                                                                   | Batch#:                                | 127519                                                         |  |
| Units:                                                                                                                                                                                                                                                                                             | mg/Kg                                                                                                                                                                 |                                                |                                                                                   | Sampled                                | 07/20/07                                                       |  |
| Basis:<br>Diln Fac:                                                                                                                                                                                                                                                                                | as received<br>1.000                                                                                                                                                  |                                                |                                                                                   | Received:                              | 07/23/07                                                       |  |
| DIIII Fac.                                                                                                                                                                                                                                                                                         | 1.000                                                                                                                                                                 |                                                |                                                                                   |                                        |                                                                |  |
|                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       |                                                |                                                                                   | - 1                                    |                                                                |  |
| Field ID:<br>Type:                                                                                                                                                                                                                                                                                 | SS-31(C)-60.5<br>SAMPLE                                                                                                                                               |                                                |                                                                                   | Lab ID:<br>Analyzed:                   | 196134-011<br>07/24/07                                         |  |
| туре:                                                                                                                                                                                                                                                                                              | SAMPLE                                                                                                                                                                |                                                |                                                                                   | Analyzeu.                              | 07724707                                                       |  |
| Ana<br>Gasoline C7-C1                                                                                                                                                                                                                                                                              | lyte                                                                                                                                                                  | NE                                             | Result                                                                            | F                                      | 2L<br>1.1                                                      |  |
| Gasoline C/-CI                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                     | INL                                            | )                                                                                 |                                        | 1.1                                                            |  |
|                                                                                                                                                                                                                                                                                                    | ogate                                                                                                                                                                 | %REC                                           |                                                                                   |                                        |                                                                |  |
| Trifluorotolue                                                                                                                                                                                                                                                                                     |                                                                                                                                                                       | 102                                            | 70-132                                                                            |                                        |                                                                |  |
| Bromofluoroben                                                                                                                                                                                                                                                                                     | zene (FID)                                                                                                                                                            | 106                                            | 66-138                                                                            |                                        |                                                                |  |
|                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       |                                                |                                                                                   |                                        |                                                                |  |
|                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       |                                                |                                                                                   |                                        |                                                                |  |
| Field ID:                                                                                                                                                                                                                                                                                          | SS-31(D)-5.5                                                                                                                                                          |                                                |                                                                                   | Lab ID:                                | 196134-013                                                     |  |
| Type:                                                                                                                                                                                                                                                                                              | SAMPLE                                                                                                                                                                |                                                |                                                                                   | Analyzed:                              | 07/24/07                                                       |  |
| Ana                                                                                                                                                                                                                                                                                                | lyte                                                                                                                                                                  |                                                | Result                                                                            | F                                      | 2L                                                             |  |
| Codoline dr di                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                     | 175                                            |                                                                                   |                                        |                                                                |  |
| Gasoline C7-C1                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                     | ND                                             | )                                                                                 |                                        | 0.96                                                           |  |
|                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                       |                                                |                                                                                   |                                        | 0.96                                                           |  |
| Surr                                                                                                                                                                                                                                                                                               | ogate                                                                                                                                                                 | 8REC                                           |                                                                                   |                                        | 0.96                                                           |  |
|                                                                                                                                                                                                                                                                                                    | <b>ogate</b><br>ne (FID)                                                                                                                                              | %REC                                           | Limits                                                                            |                                        | 0.96                                                           |  |
| Surr<br>Trifluorotolue                                                                                                                                                                                                                                                                             | <b>ogate</b><br>ne (FID)                                                                                                                                              | <b>%REC</b><br>105                             | <b>Limits</b><br>70-132                                                           |                                        | 0.96                                                           |  |
| Surr<br>Trifluorotolue                                                                                                                                                                                                                                                                             | <b>ogate</b><br>ne (FID)                                                                                                                                              | <b>%REC</b><br>105                             | <b>Limits</b><br>70-132                                                           |                                        | 0.96                                                           |  |
| Surr<br>Trifluorotolue                                                                                                                                                                                                                                                                             | <b>ogate</b><br>ne (FID)                                                                                                                                              | <b>%REC</b><br>105                             | <b>Limits</b><br>70-132                                                           | Lab ID:                                | 0.96                                                           |  |
| Surr<br>Trifluorotolue<br>Bromofluoroben                                                                                                                                                                                                                                                           | <b>ogate</b><br>ne (FID)<br>zene (FID)                                                                                                                                | <b>%REC</b><br>105                             | <b>Limits</b><br>70-132                                                           | Lab ID:<br>Analyzed:                   |                                                                |  |
| Surr<br>Trifluorotolue<br>Bromofluoroben<br>Field ID:<br>Type:                                                                                                                                                                                                                                     | ogate<br>ne (FID)<br>zene (FID)<br>SS-31(D)-10.5<br>SAMPLE                                                                                                            | %REC<br>105<br>109                             | Limits<br>70-132<br>66-138                                                        | Analyzed:                              | 196134-014<br>07/24/07                                         |  |
| Surr<br>Trifluorotolue<br>Bromofluoroben<br>Field ID:<br>Type:                                                                                                                                                                                                                                     | ogate<br>ne (FID)<br>zene (FID)<br>SS-31(D)-10.5<br>SAMPLE<br>lyte                                                                                                    | %REC<br>105<br>109                             | Limits<br>70-132<br>66-138<br>Result                                              | Analyzed:                              | 196134-014                                                     |  |
| Surr<br>Trifluorotolue<br>Bromofluoroben<br>Field ID:<br>Type:<br>Ana<br>Gasoline C7-C1                                                                                                                                                                                                            | ogate<br>ne (FID)<br>zene (FID)<br>SS-31(D)-10.5<br>SAMPLE<br>lyte<br>2                                                                                               | <b>%REC</b><br>105<br>109<br>ND                | Limits<br>70-132<br>66-138<br>Result                                              | Analyzed:                              | 196134-014<br>07/24/07                                         |  |
| Surr<br>Trifluorotolue<br>Bromofluoroben<br>Field ID:<br>Type:<br>Ana<br>Gasoline C7-C1<br>Surr                                                                                                                                                                                                    | ogate<br>ne (FID)<br>zene (FID)<br>SS-31(D)-10.5<br>SAMPLE<br>lyte<br>2<br>ogate                                                                                      | %REC<br>105<br>109<br>ND<br>%REC               | Limits<br>70-132<br>66-138<br>Result                                              | Analyzed:                              | 196134-014<br>07/24/07                                         |  |
| Surr<br>Trifluorotolue<br>Bromofluoroben<br>Field ID:<br>Type:<br>Ana<br>Gasoline C7-C1<br>Surr<br>Trifluorotolue                                                                                                                                                                                  | ogate<br>ne (FID)<br>zene (FID)<br>SS-31(D)-10.5<br>SAMPLE<br>lyte<br>2<br>ogate<br>ne (FID)                                                                          | *REC<br>105<br>109<br>ND<br>*REC<br>103        | Limits<br>70-132<br>66-138<br>Result<br>D<br>Limits<br>70-132                     | Analyzed:                              | 196134-014<br>07/24/07                                         |  |
| Surr<br>Trifluorotolue<br>Bromofluoroben<br>Field ID:<br>Type:<br>Ana<br>Gasoline C7-C1<br>Surr                                                                                                                                                                                                    | ogate<br>ne (FID)<br>zene (FID)<br>SS-31(D)-10.5<br>SAMPLE<br>lyte<br>2<br>ogate<br>ne (FID)                                                                          | %REC<br>105<br>109<br>ND<br>%REC               | Limits<br>70-132<br>66-138<br>Result                                              | Analyzed:                              | 196134-014<br>07/24/07                                         |  |
| Surr<br>Trifluorotolue<br>Bromofluoroben<br>Field ID:<br>Type:<br>Ana<br>Gasoline C7-C1<br>Surr<br>Trifluorotolue                                                                                                                                                                                  | ogate<br>ne (FID)<br>zene (FID)<br>SS-31(D)-10.5<br>SAMPLE<br>lyte<br>2<br>ogate<br>ne (FID)                                                                          | *REC<br>105<br>109<br>ND<br>*REC<br>103        | Limits<br>70-132<br>66-138<br>Result<br>D<br>Limits<br>70-132                     | Analyzed:                              | 196134-014<br>07/24/07                                         |  |
| Surr<br>Trifluorotolue<br>Bromofluoroben<br>Field ID:<br>Type:<br>Ana<br>Gasoline C7-C1<br>Surr<br>Trifluorotolue<br>Bromofluoroben                                                                                                                                                                | ogate<br>ne (FID)<br>zene (FID)<br>SS-31(D)-10.5<br>SAMPLE<br>1yte<br>2<br>ogate<br>ne (FID)<br>zene (FID)                                                            | *REC<br>105<br>109<br>ND<br>*REC<br>103        | Limits<br>70-132<br>66-138<br>Result<br>D<br>Limits<br>70-132                     | Analyzed:                              | 196134-014<br>07/24/07<br>2L<br>0.96                           |  |
| Surr<br>Trifluorotolue<br>Bromofluoroben<br>Field ID:<br>Type:<br>Ana<br>Gasoline C7-C1<br>Surr<br>Trifluorotolue<br>Bromofluoroben<br>Field ID:                                                                                                                                                   | ogate<br>ne (FID)<br>zene (FID)<br>SS-31(D)-10.5<br>SAMPLE<br>1yte<br>2<br>ogate<br>ne (FID)<br>zene (FID)<br>SS-31(D)-15                                             | *REC<br>105<br>109<br>ND<br>*REC<br>103        | Limits<br>70-132<br>66-138<br>Result<br>D<br>Limits<br>70-132                     | Analyzed:                              | 196134-014<br>07/24/07<br>2L<br>0.96<br>196134-015             |  |
| Surr<br>Trifluorotolue<br>Bromofluoroben<br>Field ID:<br>Type:<br>Ana<br>Gasoline C7-C1<br>Surr<br>Trifluorotolue<br>Bromofluoroben<br>Field ID:<br>Type:                                                                                                                                          | ogate<br>ne (FID)<br>zene (FID)<br>SS-31(D)-10.5<br>SAMPLE<br>1yte<br>2<br>ogate<br>ne (FID)<br>zene (FID)<br>SS-31(D)-15<br>SAMPLE                                   | %REC           105           109               | Limits<br>70-132<br>66-138<br><b>Result</b><br>70-132<br>66-138                   | Analyzed:<br>F<br>Lab ID:<br>Analyzed: | 196134-014<br>07/24/07<br>RL<br>0.96<br>196134-015<br>07/24/07 |  |
| Surr<br>Trifluorotolue<br>Bromofluoroben<br>Field ID:<br>Type:<br>Casoline C7-C1<br>Surr<br>Trifluorotolue<br>Bromofluoroben<br>Field ID:<br>Type:<br>Ana                                                                                                                                          | ogate<br>ne (FID)<br>zene (FID)<br>SS-31(D)-10.5<br>SAMPLE<br>1yte<br>2<br>ogate<br>ne (FID)<br>zene (FID)<br>zene (FID)<br>SS-31(D)-15<br>SAMPLE<br>1yte             | %REC<br>105<br>109<br>ND<br>%REC<br>103<br>108 | Limits<br>70-132<br>66-138<br>Result<br>D<br>Limits<br>70-132<br>66-138<br>Result | Analyzed:<br>F<br>Lab ID:<br>Analyzed: | 196134-014<br>07/24/07<br>EL<br>0.96<br>196134-015<br>07/24/07 |  |
| Surr<br>Trifluorotolue<br>Bromofluoroben<br>Field ID:<br>Type:<br>Ana<br>Gasoline C7-C1<br>Surr<br>Trifluorotolue<br>Bromofluoroben<br>Field ID:<br>Type:                                                                                                                                          | ogate<br>ne (FID)<br>zene (FID)<br>SS-31(D)-10.5<br>SAMPLE<br>1yte<br>2<br>ogate<br>ne (FID)<br>zene (FID)<br>zene (FID)<br>SS-31(D)-15<br>SAMPLE<br>1yte             | %REC           105           109               | Limits<br>70-132<br>66-138<br>Result<br>D<br>Limits<br>70-132<br>66-138<br>Result | Analyzed:<br>F<br>Lab ID:<br>Analyzed: | 196134-014<br>07/24/07<br>RL<br>0.96<br>196134-015<br>07/24/07 |  |
| Surr         Trifluorotolue         Bromofluoroben         Field ID:         Type:         Ana         Gasoline C7-C1         Surr         Trifluorotolue         Bromofluoroben         Field ID:         Type:         Gasoline C7-C1         Gasoline C7-C1         Surr         Gasoline C7-C1 | ogate<br>ne (FID)<br>zene (FID)<br>SS-31(D)-10.5<br>SAMPLE<br>1yte<br>2<br>ogate<br>ne (FID)<br>zene (FID)<br>SS-31(D)-15<br>SAMPLE<br>1yte<br>2<br>ogate             | *REC<br>105<br>109<br>ND<br>*REC<br>ND<br>*REC | Limits<br>70-132<br>66-138<br>Result<br>70-132<br>66-138<br>Result                | Analyzed:<br>F<br>Lab ID:<br>Analyzed: | 196134-014<br>07/24/07<br>EL<br>0.96<br>196134-015<br>07/24/07 |  |
| Surr<br>Trifluorotolue<br>Bromofluoroben<br>Field ID:<br>Type:<br>Ana<br>Gasoline C7-C1<br>Field ID:<br>Type:<br>Ana<br>Gasoline C7-C1                                                                                                                                                             | ogate<br>ne (FID)<br>zene (FID)<br>SS-31(D)-10.5<br>SAMPLE<br>lyte<br>2<br>ogate<br>ne (FID)<br>zene (FID)<br>SS-31(D)-15<br>SAMPLE<br>lyte<br>2<br>ogate<br>ne (FID) | *REC<br>105<br>109<br>ND<br>*REC<br>103<br>108 | Limits<br>70-132<br>66-138<br>Result<br>70-132<br>66-138<br>Result                | Analyzed:<br>F<br>Lab ID:<br>Analyzed: | 196134-014<br>07/24/07<br>EL<br>0.96<br>196134-015<br>07/24/07 |  |



|                                             |                                         | Total                     | Volatil                           | e Hydrocar                       | bons                                   |
|---------------------------------------------|-----------------------------------------|---------------------------|-----------------------------------|----------------------------------|----------------------------------------|
| Lab #:<br>Client:<br>Project#:              | 196134<br>LFR Levine Fr<br>001-09567-01 | icke                      |                                   | Location:<br>Prep:<br>Analysis:  | Hanson Radum<br>EPA 5030B<br>EPA 8015B |
| Matrix:<br>Units:<br>Basis:<br>Diln Fac:    | Soil<br>mg/Kg<br>as received<br>1.000   |                           |                                   | Batch#:<br>Sampled:<br>Received: | 127519<br>07/20/07<br>07/23/07         |
| Field ID:<br>Type:                          | SS-31(D)-19.5<br>SAMPLE                 |                           |                                   | Lab ID:<br>Analyzed:             | 196134-016<br>07/24/07                 |
| Anal<br>Gasoline C7-C12                     |                                         | NE                        | Result                            |                                  | RL<br>0.98                             |
| Surro<br>Trifluorotoluen<br>Bromofluorobenz | <b>ogate</b><br>ne (FID)                | <b>%REC</b><br>105<br>111 | <b>Limits</b><br>70-132<br>66-138 |                                  |                                        |
| Type:<br>Lab ID:                            | BLANK<br>QC397465                       |                           |                                   | Analyzed:                        | 07/23/07                               |
| Anal<br>Gasoline C7-C12                     |                                         | NI                        | Result                            |                                  | RL<br>0.20                             |
| Surro<br>Trifluorotoluen<br>Bromofluorobenz | <b>ogate</b><br>ne (FID)                | <b>%REC</b><br>99<br>105  | <b>Limits</b><br>70-132<br>66-138 |                                  | 0.20                                   |



| Total Volatile Hydrocarbons |                   |           |              |  |  |  |
|-----------------------------|-------------------|-----------|--------------|--|--|--|
| Lab #:                      | 196134            | Location: | Hanson Radum |  |  |  |
| Client:                     | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |  |
| Project#:                   | 001-09567-01      | Analysis: | EPA 8015B    |  |  |  |
| Туре:                       | LCS               | Basis:    | as received  |  |  |  |
| Lab ID:                     | QC397466          | Diln Fac: | 1.000        |  |  |  |
| Matrix:                     | Soil              | Batch#:   | 127519       |  |  |  |
| Units:                      | mg/Kg             | Analyzed: | 07/23/07     |  |  |  |

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 10.00  | 9.041  | 90   | 80-120 |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 115  | 70-132 |
| Bromofluorobenzene (FID) | 106  | 66-138 |



| Total Volatile Hydrocarbons |                   |           |              |  |  |  |  |
|-----------------------------|-------------------|-----------|--------------|--|--|--|--|
| Lab #:                      | 196134            | Location: | Hanson Radum |  |  |  |  |
| Client:                     | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |  |  |
| Project#:                   | 001-09567-01      | Analysis: | EPA 8015B    |  |  |  |  |
| Field ID:                   | ZZZZZZZZZ         | Diln Fac: | 1.000        |  |  |  |  |
| MSS Lab ID:                 | 196123-001        | Batch#:   | 127519       |  |  |  |  |
| Matrix:                     | Soil              | Sampled:  | 07/20/07     |  |  |  |  |
| Units:                      | mg/Kg             | Received: | 07/20/07     |  |  |  |  |
| Basis:                      | as received       | Analyzed: | 07/23/07     |  |  |  |  |

| Туре:     | MS               |        |        | Lab ID: | QC     | 397467 |        |         |
|-----------|------------------|--------|--------|---------|--------|--------|--------|---------|
|           | Analyte          | MSS Re | sult   | Spike   | ed     | Result | %REC   | Limits  |
| Gasoline  | C7-C12           | C      | .02104 | 1.      | .859   | 1.816  | 97     | 36-120  |
|           | Surrogate        | %REC   | Limits |         |        |        |        |         |
| Trifluoro | otoluene (FID)   | 107    | 70-132 |         |        |        |        |         |
| Bromofluc | probenzene (FID) | 113    | 66-138 |         |        |        |        |         |
| Туре:     | MSD              |        |        | Lab ID: | QC     | 397468 |        |         |
|           | Analyte          |        | Spiked |         | Result | %REC   | Limits | RPD Lim |
| Gasoline  | C7-C12           |        | 1.984  | 4       | 1.602  | 80     | 36-120 | 19 29   |
|           | Surrogate        | %REC   | Limits |         |        |        |        |         |
| Trifluoro | otoluene (FID)   | 97     | 70-132 |         |        |        |        |         |

105

66-138

Bromofluorobenzene (FID)



|                               | c                                    | Cotal E     | Extracta             | ble Hydrocarbo               | ns                    |
|-------------------------------|--------------------------------------|-------------|----------------------|------------------------------|-----------------------|
| Lab #:                        | 196134                               |             |                      | Location:                    | Hanson Radum          |
| Client:                       | LFR Levine Fr                        | ricke       |                      | Prep:                        | EPA 3520C             |
| Project#:                     | 001-09567-01                         |             |                      | Analysis:                    | EPA 8015B             |
| Matrix:                       | Water                                |             |                      | Sampled:                     | 07/20/07              |
| Units:                        | ug/L                                 |             |                      | Received:                    | 07/23/07              |
| Diln Fac:                     | 1.000                                |             |                      | Prepared:                    | 07/21/07              |
| Batch#:                       | 127485                               |             |                      | _                            |                       |
|                               |                                      |             |                      |                              |                       |
| Field ID:                     | SS-31(B)-GGW                         |             |                      | Analyzed:                    | 07/23/07              |
| Type:                         | SAMPLE                               |             |                      | Cleanup Method:              | EPA 3630C             |
| Lab ID:                       | 196134-001                           |             |                      |                              |                       |
| Ana                           | lyte                                 |             | Result               | RL                           |                       |
| Diesel C10-C24                |                                      | ND          |                      | 50                           |                       |
| Motor Oil C24-                | 236                                  | ND          |                      | 300                          |                       |
| Guaran                        |                                      | %REC        | Limits               |                              |                       |
| Hexacosane                    | ogate                                | 101         | 61-134               |                              |                       |
| Field ID:<br>Type:<br>Lab ID: | SS-31(C)-GGW<br>SAMPLE<br>196134-002 |             |                      | Analyzed:<br>Cleanup Method: | 07/23/07<br>EPA 3630C |
| Ana                           | lyte                                 |             | Result               | RL                           |                       |
| Diesel C10-C24                | -                                    | ND          |                      | 50                           |                       |
| Motor Oil C24-                | 236                                  | ND          |                      | 300                          |                       |
| d                             |                                      | 0.550       | • · · · · · · · · ·  |                              |                       |
|                               | ogate                                | %REC<br>113 | <b>Limits</b> 61-134 |                              |                       |
| Hexacosane                    |                                      | 112         | 01-134               |                              |                       |
| Туре:                         | BLANK                                |             |                      | Analyzed:                    | 07/24/07              |
| Lab ID:                       | QC397298                             |             |                      | Cleanup Method:              |                       |
|                               |                                      |             |                      | -                            |                       |
|                               | lyte                                 |             | Result               | RL                           |                       |
| Diesel C10-C24                |                                      | ND          |                      | 50                           |                       |
| Motor Oil C24-                | 236                                  | ND          |                      | 300                          |                       |
| Surr                          | ogate                                | %REC        | Limits               |                              |                       |
| Hexacosane                    |                                      | 86          | 61-134               |                              |                       |
|                               |                                      |             |                      |                              |                       |

ND= Not Detected RL= Reporting Limit Page 1 of 1



| Total Extractable Hydrocarbons |                   |           |              |  |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|--|
| Lab #:                         | 196134            | Location: | Hanson Radum |  |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3520C    |  |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |  |
| Type:                          | LCS               | Diln Fac: | 1.000        |  |  |  |
| Lab ID:                        | QC397299          | Batch#:   | 127485       |  |  |  |
| Matrix:                        | Water             | Prepared: | 07/21/07     |  |  |  |
| Units:                         | ug/L              | Analyzed: | 07/22/07     |  |  |  |

Cleanup Method: EPA 3630C

| Analyte        |      | Spiked | Result | %REC | Limits |
|----------------|------|--------|--------|------|--------|
| Diesel C10-C24 |      | 2,500  | 1,989  | 80   | 58-130 |
|                |      |        |        |      |        |
| Surrogate      | %REC | Limits |        |      |        |
| Hexacosane     | 94   | 61-134 |        |      |        |



| Total Extractable Hydrocarbons |                   |           |              |  |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|--|
| Lab #:                         | 196134            | Location: | Hanson Radum |  |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3520C    |  |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |  |
| Field ID:                      | ZZZZZZZZZ         | Batch#:   | 127485       |  |  |  |
| MSS Lab ID:                    | 196070-002        | Sampled:  | 07/17/07     |  |  |  |
| Matrix:                        | Water             | Received: | 07/19/07     |  |  |  |
| Units:                         | ug/L              | Prepared: | 07/21/07     |  |  |  |
| Diln Fac:                      | 1.000             | Analyzed: | 07/23/07     |  |  |  |

| Type:      | MS        |         | L      |        | QC397300 | QC397300 |        |  |
|------------|-----------|---------|--------|--------|----------|----------|--------|--|
| A          | nalyte    | MSS Res | ult    | Spiked | Result   | %REC     | Limits |  |
| Diesel ClC | )-C24     | 97      | 97.25  |        | 2,808    | 108      | 57-134 |  |
|            | Surrogate | %REC    | Limits |        |          |          |        |  |
| Hexacosane | 2         | 122     | 61-134 |        |          |          |        |  |

| Type:    | MSD       |      |        | Lab ID: | QC     | 2397301 |        |     |     |
|----------|-----------|------|--------|---------|--------|---------|--------|-----|-----|
|          | Analyte   |      | Spiked |         | Result | %REC    | Limits | RPD | Lim |
| Diesel C | C10-C24   |      | 2,500  |         | 2,587  | 100     | 57-134 | 8   | 32  |
|          |           | -    |        |         |        |         |        |     |     |
|          | Surrogate | %REC | Limits |         |        |         |        |     |     |
| Hexacosa | ine       | 112  | 61-134 |         |        |         |        |     |     |



|                           |                 | Total H | Extracta | ble Hydrocarbo            | ns           |        |      |     |
|---------------------------|-----------------|---------|----------|---------------------------|--------------|--------|------|-----|
| Lab #:                    | 196134          |         |          | Location:                 | Hanson Radum |        |      |     |
| Client:                   | LFR Levine F    | ricke   |          | Prep:                     | EPA 3520C    |        |      |     |
| Project#:                 | 001-09567-01    | -       |          | Analysis:                 | EPA 8015B    |        |      |     |
| Field ID:                 | ZZZZZZZZZZ      |         |          | Batch#:                   | 127485       |        |      |     |
| MSS Lab ID:               | 196093-002      |         |          | Sampled:                  | 07/18/07     |        |      |     |
| Matrix:                   | Water           |         |          | Received:                 | 07/19/07     |        |      |     |
| Units:                    | ug/L            |         |          | Prepared:                 | 07/21/07     |        |      |     |
| Diln Fac:                 | 1.000           |         |          | Analyzed:                 | 07/23/07     |        |      |     |
| Type:<br>Lab ID:<br>Analy | MS<br>QC397302  | MSS Res |          | Cleanup Method:<br>Spiked | EPA 3630C    | *REC   | Limi | + 9 |
| Diesel C10-C24            |                 |         | .01      | 2,500                     | 2,118        | 85     | 57-1 |     |
| Diesei Ciu-C24            |                 | <17     | .01      | 2,500                     | 2,110        | 65     | 57-1 | .54 |
| Surr                      | ogate           | %REC    | Limits   |                           |              |        |      |     |
| Hexacosane                |                 | 101     | 61-134   |                           |              |        |      |     |
| Type:<br>Lab ID:          | MSD<br>QC397303 |         |          | Cleanup Method:           | EPA 3630C    |        |      |     |
| Ana                       | lyte            |         | Spiked   | Result                    | : %REC       | Limits | RPD  | Lim |
| Diesel C10-C24            |                 |         | 2,500    | 1,825                     | 73           | 57-134 | 15   | 32  |



|                                                    | Т                                       | 'otal B            | Extracta                | ble Hydrocarbo                          | ns                                        |
|----------------------------------------------------|-----------------------------------------|--------------------|-------------------------|-----------------------------------------|-------------------------------------------|
| Lab #:<br>Client:<br>Project#:                     | 196134<br>LFR Levine Fr<br>001-09567-01 | icke               |                         | Location:<br>Prep:<br>Analysis:         | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B |
| Matrix:<br>Units:<br>Basis:<br>Diln Fac:           | Soil<br>mg/Kg<br>as received<br>1.000   |                    |                         | Sampled:<br>Received:<br>Prepared:      | 07/20/07<br>07/23/07<br>07/23/07          |
| Field ID:<br>Type:<br>Lab ID:                      | SS-31(C)-5.5<br>SAMPLE<br>196134-003    |                    |                         | Batch#:<br>Analyzed:<br>Cleanup Method: | 127535<br>07/25/07<br>EPA 3630C           |
|                                                    | lyte                                    | ND                 | <b>Result</b><br>2.0 H  | RL                                      | 0                                         |
| Surr<br>Hexacosane                                 | ogate                                   | <b>%REC</b><br>77  | <b>Limits</b><br>40-127 |                                         |                                           |
| Field ID:<br>Type:<br>Lab ID:                      | SS-31(C)-10.5<br>SAMPLE<br>196134-004   |                    |                         | Batch#:<br>Analyzed:<br>Cleanup Method: | 127535<br>07/25/07<br>EPA 3630C           |
| Ana<br>Diesel C10-C24<br>Motor Oil C24-            | <b>lyte</b><br>C36                      | ND<br>ND           |                         | <b>RL</b><br>1.<br>5.                   |                                           |
| Surr<br>Hexacosane                                 | ogate                                   | <b>%REC</b><br>93  | <b>Limits</b><br>40-127 |                                         |                                           |
| Field ID:<br>Type:<br>Lab ID:                      | SS-31(C)-15.5<br>SAMPLE<br>196134-005   |                    |                         | Batch#:<br>Analyzed:<br>Cleanup Method: | 127535<br>07/25/07<br>EPA 3630C           |
| Ana<br>Diesel C10-C24                              | lyte                                    | ND                 | Result                  | <b>RL</b><br>0.                         | 99                                        |
| Motor Oil C24-                                     |                                         | ND                 |                         | 5.                                      | 0                                         |
| Surr<br>Hexacosane                                 | ogate                                   | % <b>REC</b><br>59 | <b>Limits</b><br>40-127 |                                         |                                           |
| Field ID:<br>Type:<br>Lab ID:                      | SS-31(C)-19.5<br>SAMPLE<br>196134-006   |                    |                         | Batch#:<br>Analyzed:<br>Cleanup Method: | 127535<br>07/24/07<br>EPA 3630C           |
| Ana<br>Diesel C10-C24<br>Motor Oil C24-            | <b>lyte</b><br>C36                      | ND                 | <b>Result</b><br>2.3 Y  | <b>RL</b><br>Z 1.<br>5.                 |                                           |
| Surr<br>Hexacosane                                 | ogate                                   | <b>%REC</b><br>76  | <b>Limits</b><br>40-127 |                                         |                                           |
| H= Heavier hyd<br>L= Lighter hyd<br>Y= Sample exhi | bits unknown sin<br>d                   | buted t<br>phic pa | o the qua<br>ttern whi  | ntitation<br>.ch does not resem         | uble standard<br>46.1                     |



|                                                                                                                                         | г                                                                  | otal I                               | Extracta                   | ble Hydrocarbo                                                  | າຮ                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------|----------------------------|-----------------------------------------------------------------|--------------------------------------------|
| Lab #:                                                                                                                                  | 196134                                                             |                                      |                            | Location:                                                       | Hanson Radum                               |
| Client:                                                                                                                                 | LFR Levine Fr                                                      | icke                                 |                            | Prep:                                                           | SHAKER TABLE                               |
| Project#:<br>Matrix:                                                                                                                    | <u>001-09567-01</u><br>Soil                                        |                                      |                            | Analysis:<br>Sampled:                                           | EPA 8015B<br>07/20/07                      |
| Units:                                                                                                                                  | mg/Kg                                                              |                                      |                            | Received:                                                       | 07/23/07                                   |
| Basis:                                                                                                                                  | as received                                                        |                                      |                            | Prepared:                                                       | 07/23/07                                   |
| Diln Fac:                                                                                                                               | 1.000                                                              |                                      |                            |                                                                 |                                            |
|                                                                                                                                         |                                                                    |                                      |                            |                                                                 |                                            |
| Field ID:                                                                                                                               | SS-31(C)-25.5                                                      |                                      |                            | Batch#:                                                         | 127535                                     |
| Type:                                                                                                                                   | SAMPLE                                                             |                                      |                            | Analyzed:                                                       | 07/24/07                                   |
| Lab ID:                                                                                                                                 | 196134-007                                                         |                                      |                            | Cleanup Method:                                                 | EPA 3630C                                  |
| Anal<br>Diesel C10-C24                                                                                                                  | lyte                                                               | NE                                   | Result                     | <b>RL</b><br>1.                                                 | ٥                                          |
| Motor Oil C24-0                                                                                                                         |                                                                    | NE                                   |                            | 5.                                                              |                                            |
|                                                                                                                                         | ogate                                                              | %REC                                 | Limits                     |                                                                 |                                            |
| Hexacosane                                                                                                                              |                                                                    | 70                                   | 40-127                     |                                                                 |                                            |
|                                                                                                                                         |                                                                    |                                      |                            |                                                                 |                                            |
| Field ID:                                                                                                                               | SS-31(C)-30                                                        |                                      |                            | Batch#:                                                         | 127534                                     |
| Type:                                                                                                                                   | SAMPLE                                                             |                                      |                            | Analyzed:                                                       | 07/25/07                                   |
| Lab ID:                                                                                                                                 | 196134-008                                                         |                                      |                            | Cleanup Method:                                                 | EPA 3630C                                  |
| Anal                                                                                                                                    | lyte                                                               |                                      | Result                     | RL                                                              | 0                                          |
| Diesel C10-C24<br>Motor Oil C24-C                                                                                                       |                                                                    | NE<br>NE                             |                            | 1.<br>5.                                                        |                                            |
| Surro                                                                                                                                   | ogate                                                              | %REC                                 | Limits                     |                                                                 |                                            |
| Hexacosane                                                                                                                              |                                                                    | 104                                  | 40-127                     |                                                                 |                                            |
|                                                                                                                                         |                                                                    |                                      |                            |                                                                 |                                            |
| Field ID:                                                                                                                               | SS-31(C)-40                                                        |                                      |                            | Batch#:                                                         | 127534                                     |
| Type:                                                                                                                                   | SAMPLE                                                             |                                      |                            | Analyzed:                                                       | 07/25/07                                   |
| Lab ID:                                                                                                                                 | 196134-009                                                         |                                      |                            | Cleanup Method:                                                 |                                            |
| 3===                                                                                                                                    |                                                                    |                                      |                            |                                                                 |                                            |
|                                                                                                                                         | lyte                                                               |                                      | Result                     | RL                                                              |                                            |
| Diesel C10-C24                                                                                                                          |                                                                    | NE                                   | )                          | 1.                                                              |                                            |
| Diesel C10-C24<br>Motor Oil C24-C                                                                                                       | 236                                                                | NI<br>NI                             | )                          |                                                                 |                                            |
| Diesel C10-C24<br>Motor Oil C24-C                                                                                                       |                                                                    | NE                                   | )                          | 1.                                                              |                                            |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surro                                                                                              | 236                                                                | NE<br>NE<br><b>%REC</b>              | Limits                     | 1.                                                              |                                            |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surro<br>Hexacosane                                                                                | C36<br>Ogate                                                       | NE<br>NE<br><b>%REC</b>              | Limits                     | 1.<br>5.                                                        | 0                                          |
| Diesel C10-C24<br>Motor Oil C24-C<br>Hexacosane<br>Field ID:                                                                            | C36<br>ogate<br>SS-31(C)-51                                        | NE<br>NE<br><b>%REC</b>              | Limits                     | 1.<br>5.<br>Batch#:                                             | 0                                          |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surro<br>Hexacosane                                                                                | C36<br>Ogate                                                       | NE<br>NE<br><b>%REC</b>              | Limits                     | 1.<br>5.                                                        | 0<br>127534<br>07/25/07                    |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Anal                                       | C36<br>pgate<br>SS-31(C)-51<br>SAMPLE<br>196134-010<br>lyte        | NI<br>NI<br><b>%REC</b><br>103       | Limits                     | 1.<br>5.<br>Batch#:<br>Analyzed:                                | 0<br>127534<br>07/25/07                    |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Ana<br>Diesel C10-C24                      | C36<br>pgate<br>SS-31(C)-51<br>SAMPLE<br>196134-010<br>lyte        | NI<br>NI<br><b>%REC</b><br>103<br>NI | Limits<br>40-127<br>Result | 1.<br>5.<br>Batch#:<br>Analyzed:<br>Cleanup Method:<br>RL<br>0. | 0<br>127534<br>07/25/07<br>EPA 3630C<br>99 |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Anal                                       | C36<br>pgate<br>SS-31(C)-51<br>SAMPLE<br>196134-010<br>lyte        | NI<br>NI<br><b>%REC</b><br>103       | Limits<br>40-127<br>Result | 1.<br>5.<br>Batch#:<br>Analyzed:<br>Cleanup Method:<br>RL       | 0<br>127534<br>07/25/07<br>EPA 3630C<br>99 |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-C<br>Surro | C36<br>pgate<br>SS-31(C)-51<br>SAMPLE<br>196134-010<br>lyte        | NI<br>NI<br>103<br>NI<br>NI<br>%REC  | Limits<br>40-127<br>Result | 1.<br>5.<br>Batch#:<br>Analyzed:<br>Cleanup Method:<br>RL<br>0. | 0<br>127534<br>07/25/07<br>EPA 3630C       |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-C          | C36<br>ogate<br>SS-31(C)-51<br>SAMPLE<br>196134-010<br>Lyte<br>C36 | NI<br>NI<br><b>%REC</b><br>103       | Limits<br>40-127<br>Result | 1.<br>5.<br>Batch#:<br>Analyzed:<br>Cleanup Method:<br>RL<br>0. | 0<br>127534<br>07/25/07<br>EPA 3630C       |

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks ND= Not Detected RL= Reporting Limit Page 2 of 4

46.1



|                                                                                                                                                                                                               | т                                                                                                            | otal F                         | Extracta                                                                                                 | ble Hydrocarbo                                                                                    | ns                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| <b>7 1 1</b>                                                                                                                                                                                                  |                                                                                                              | ocar i                         |                                                                                                          |                                                                                                   |                                                                           |
| Lab #:<br>Client:                                                                                                                                                                                             | 196134<br>LFR Levine Fr                                                                                      | icke                           |                                                                                                          | Location:<br>Prep:                                                                                | Hanson Radum<br>SHAKER TABLE                                              |
| Project#:                                                                                                                                                                                                     | 001-09567-01                                                                                                 | rone                           |                                                                                                          | Analysis:                                                                                         | EPA 8015B                                                                 |
| Matrix:                                                                                                                                                                                                       | Soil                                                                                                         |                                |                                                                                                          | Sampled:                                                                                          | 07/20/07                                                                  |
| Units:<br>Basis:                                                                                                                                                                                              | mg/Kg<br>as received                                                                                         |                                |                                                                                                          | Received:<br>Prepared:                                                                            | 07/23/07<br>07/23/07                                                      |
| Diln Fac:                                                                                                                                                                                                     | 1.000                                                                                                        |                                |                                                                                                          | FIEpareu.                                                                                         | 01/23/01                                                                  |
|                                                                                                                                                                                                               |                                                                                                              |                                |                                                                                                          |                                                                                                   |                                                                           |
|                                                                                                                                                                                                               |                                                                                                              |                                |                                                                                                          |                                                                                                   |                                                                           |
| Field ID:                                                                                                                                                                                                     | SS-31(C)-60.5                                                                                                |                                |                                                                                                          | Batch#:                                                                                           | 127534                                                                    |
| Type:                                                                                                                                                                                                         | SAMPLE                                                                                                       |                                |                                                                                                          | Analyzed:                                                                                         | 07/25/07                                                                  |
| Lab ID:                                                                                                                                                                                                       | 196134-011                                                                                                   |                                |                                                                                                          | Cleanup Method:                                                                                   | EPA 3630C                                                                 |
| Ana                                                                                                                                                                                                           | lyte                                                                                                         |                                | Result                                                                                                   | RL                                                                                                |                                                                           |
| Diesel C10-C24                                                                                                                                                                                                | -                                                                                                            |                                | 5.7 Y                                                                                                    |                                                                                                   |                                                                           |
| Motor Oil C24-0                                                                                                                                                                                               |                                                                                                              | ND                             | )                                                                                                        | 5.                                                                                                | U                                                                         |
| Surro                                                                                                                                                                                                         | ogate                                                                                                        | %REC                           | Limits                                                                                                   |                                                                                                   |                                                                           |
| Hexacosane                                                                                                                                                                                                    |                                                                                                              | 97                             | 40-127                                                                                                   |                                                                                                   |                                                                           |
|                                                                                                                                                                                                               |                                                                                                              |                                |                                                                                                          |                                                                                                   |                                                                           |
|                                                                                                                                                                                                               |                                                                                                              |                                |                                                                                                          |                                                                                                   |                                                                           |
| Field ID:                                                                                                                                                                                                     | SS-31(D)-5.5                                                                                                 |                                |                                                                                                          | Batch#:                                                                                           | 127534                                                                    |
| Type:<br>Lab ID:                                                                                                                                                                                              | SAMPLE<br>196134-013                                                                                         |                                |                                                                                                          | Analyzed:<br>Cleanup Method:                                                                      | 07/25/07<br>FDA 3630C                                                     |
|                                                                                                                                                                                                               | 190134-013                                                                                                   |                                |                                                                                                          | creanup Mechou.                                                                                   | EFA 3030C                                                                 |
| Ana.                                                                                                                                                                                                          |                                                                                                              |                                | Result                                                                                                   | RL                                                                                                |                                                                           |
| Diesel C10-C24<br>Motor Oil C24-0                                                                                                                                                                             |                                                                                                              | ND<br>ND                       |                                                                                                          | 0.<br>5.                                                                                          | 99                                                                        |
| MOLOI OII CZI (                                                                                                                                                                                               |                                                                                                              |                                | ,                                                                                                        | 5.                                                                                                | 0                                                                         |
|                                                                                                                                                                                                               |                                                                                                              |                                |                                                                                                          |                                                                                                   |                                                                           |
|                                                                                                                                                                                                               | ogate                                                                                                        | %REC                           |                                                                                                          |                                                                                                   |                                                                           |
| Surro<br>Hexacosane                                                                                                                                                                                           | ogate                                                                                                        | % <b>REC</b><br>77             | <b>Limits</b><br>40-127                                                                                  |                                                                                                   |                                                                           |
|                                                                                                                                                                                                               | ogate                                                                                                        |                                |                                                                                                          |                                                                                                   |                                                                           |
| Hexacosane                                                                                                                                                                                                    | -                                                                                                            |                                |                                                                                                          | Dot ob#:                                                                                          | 107504                                                                    |
| Hexacosane<br>Field ID:                                                                                                                                                                                       | SS-31(D)-10.5                                                                                                |                                |                                                                                                          | Batch#:<br>Analyzed:                                                                              | 127534<br>07/25/07                                                        |
| Hexacosane                                                                                                                                                                                                    | -                                                                                                            |                                |                                                                                                          | Batch#:<br>Analyzed:<br>Cleanup Method:                                                           | 07/25/07                                                                  |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:                                                                                                                                                                   | SS-31(D)-10.5<br>SAMPLE<br>196134-014                                                                        | 77                             | 40-127                                                                                                   | Analyzed:<br>Cleanup Method:                                                                      | 07/25/07                                                                  |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Ana                                                                                                                                                            | SS-31(D)-10.5<br>SAMPLE                                                                                      | 77                             | 40-127<br>Result                                                                                         | Analyzed:<br>Cleanup Method:<br>RL                                                                | 07/25/07<br>EPA 3630C                                                     |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:                                                                                                                                                                   | SS-31(D)-10.5<br>SAMPLE<br>196134-014<br>lyte                                                                | 77                             | 40-127                                                                                                   | Analyzed:<br>Cleanup Method:<br><u>RL</u><br>Y Z 0.                                               | 07/25/07<br>EPA 3630C<br>99                                               |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0                                                                                                                              | SS-31(D)-10.5<br>SAMPLE<br>196134-014<br>Lyte                                                                | 77                             | 40-127<br>Result<br>1.7 H<br>9.4 H                                                                       | Analyzed:<br>Cleanup Method:<br><u>RL</u><br>Y Z 0.                                               | 07/25/07<br>EPA 3630C<br>99                                               |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0                                                                                                                              | SS-31(D)-10.5<br>SAMPLE<br>196134-014<br>lyte                                                                | 77                             | 40-127<br>Result<br>1.7 H                                                                                | Analyzed:<br>Cleanup Method:<br><u>RL</u><br>Y Z 0.                                               | 07/25/07<br>EPA 3630C<br>99                                               |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Ana:<br>Diesel C10-C24<br>Motor Oil C24-0<br>Surro                                                                                                             | SS-31(D)-10.5<br>SAMPLE<br>196134-014<br>Lyte                                                                | 77<br>%REC                     | 40-127<br>Result<br>1.7 H<br>9.4 H<br>Limits                                                             | Analyzed:<br>Cleanup Method:<br><u>RL</u><br>Y Z 0.                                               | 07/25/07<br>EPA 3630C<br>99                                               |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Ana:<br>Diesel C10-C24<br>Motor Oil C24-0<br>Surro                                                                                                             | SS-31(D)-10.5<br>SAMPLE<br>196134-014<br>Lyte                                                                | 77<br>%REC                     | 40-127<br>Result<br>1.7 H<br>9.4 H<br>Limits                                                             | Analyzed:<br>Cleanup Method:<br><u>RL</u><br>Y Z 0.                                               | 07/25/07<br>EPA 3630C<br>99                                               |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0<br>Surro                                                                                                                     | SS-31(D)-10.5<br>SAMPLE<br>196134-014<br>Lyte                                                                | 77<br>%REC                     | 40-127<br>Result<br>1.7 H<br>9.4 H<br>Limits                                                             | Analyzed:<br>Cleanup Method:<br><u>RL</u><br>Y Z 0.                                               | 07/25/07<br>EPA 3630C<br>99                                               |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24-0<br>Motor Oil C24-0<br>Hexacosane<br>Field ID:<br>Type:                                                                                         | SS-31(D)-10.5<br>SAMPLE<br>196134-014<br>Lyte<br>C36<br>Sgate<br>SS-31(D)-15<br>SAMPLE                       | 77<br>%REC                     | 40-127<br>Result<br>1.7 H<br>9.4 H<br>Limits                                                             | Analyzed:<br>Cleanup Method:<br><u>RL</u><br>Y Z 0.<br>L 5.<br>Batch#:<br>Analyzed:               | 07/25/07<br>EPA 3630C<br>99<br>0<br>127534<br>07/25/07                    |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0<br>Hexacosane<br>Field ID:                                                                                                   | SS-31(D)-10.5<br>SAMPLE<br>196134-014<br>Lyte<br>C36<br>SS-31(D)-15                                          | 77<br>%REC                     | 40-127<br>Result<br>1.7 H<br>9.4 H<br>Limits                                                             | Analyzed:<br>Cleanup Method:<br><u>RL</u><br>Y Z 0.<br>L 5.<br>Batch#:                            | 07/25/07<br>EPA 3630C<br>99<br>0<br>127534<br>07/25/07                    |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Ana:<br>Diesel C10-C24<br>Motor Oil C24-C<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:                                                                       | SS-31(D)-10.5<br>SAMPLE<br>196134-014<br>Lyte<br>C36<br>Sgate<br>SS-31(D)-15<br>SAMPLE                       | 77<br>%REC<br>79               | 40-127<br>Result<br>1.7 H<br>9.4 H<br>Limits                                                             | Analyzed:<br>Cleanup Method:<br><u>RL</u><br>Y Z 0.<br>L 5.<br>Batch#:<br>Analyzed:               | 07/25/07<br>EPA 3630C<br>99<br>0<br>127534<br>07/25/07                    |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-C<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Ana:<br>Diesel C10-C24                                                     | SS-31(D)-10.5<br>SAMPLE<br>196134-014<br>Lyte<br>236<br>Dgate<br>SS-31(D)-15<br>SAMPLE<br>196134-015<br>Lyte | 77<br>%REC<br>79               | <b>Result</b><br>1.7 H<br>9.4 H<br><b>Limits</b><br>40-127<br><b>Result</b><br>3.2 Y                     | Analyzed:<br>Cleanup Method:<br>Y Z 0.<br>L 5.<br>Batch#:<br>Analyzed:<br>Cleanup Method:<br>Z 0. | 07/25/07<br>EPA 3630C<br>99<br>0<br>127534<br>07/25/07<br>EPA 3630C<br>99 |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-0<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Ana                                                                        | SS-31(D)-10.5<br>SAMPLE<br>196134-014<br>Lyte<br>236<br>Dgate<br>SS-31(D)-15<br>SAMPLE<br>196134-015<br>Lyte | 77<br>%REC<br>79               | <b>Result</b><br>1.7 H<br>9.4 H<br><b>Limits</b><br>40-127<br><b>Result</b><br>3.2 Y                     | Analyzed:<br>Cleanup Method:<br>Y Z 0.<br>L 5.<br>Batch#:<br>Analyzed:<br>Cleanup Method:<br>RL   | 07/25/07<br>EPA 3630C<br>99<br>0<br>127534<br>07/25/07<br>EPA 3630C<br>99 |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-C<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-C                                          | SS-31(D)-10.5<br>SAMPLE<br>196134-014<br>Lyte<br>C36<br>SS-31(D)-15<br>SAMPLE<br>196134-015<br>Lyte<br>C36   | 77<br>%REC<br>79               | 40-127<br><b>Result</b><br>1.7 H<br>9.4 H<br><b>Limits</b><br>40-127<br><b>Result</b><br>3.2 Y           | Analyzed:<br>Cleanup Method:<br>Y Z 0.<br>L 5.<br>Batch#:<br>Analyzed:<br>Cleanup Method:<br>Z 0. | 07/25/07<br>EPA 3630C<br>99<br>0<br>127534<br>07/25/07<br>EPA 3630C<br>99 |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-C<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-C                                          | SS-31(D)-10.5<br>SAMPLE<br>196134-014<br>Lyte<br>236<br>Dgate<br>SS-31(D)-15<br>SAMPLE<br>196134-015<br>Lyte | 77<br><b>%REC</b><br>79<br>ND  | <b>Result</b><br>1.7 H<br>9.4 H<br><b>Limits</b><br>40-127<br><b>Result</b><br>3.2 Y                     | Analyzed:<br>Cleanup Method:<br>Y Z 0.<br>L 5.<br>Batch#:<br>Analyzed:<br>Cleanup Method:<br>Z 0. | 07/25/07<br>EPA 3630C<br>99<br>0<br>127534<br>07/25/07<br>EPA 3630C<br>99 |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Mathematical Disest C10-C24<br>Motor Oil C24-(<br>Motor Oil C24-(<br>Field ID:<br>Type:<br>Lab ID:<br>Mathematical Disest C10-C24<br>Motor Oil C24-(<br>Surrow | SS-31(D)-10.5<br>SAMPLE<br>196134-014<br>Lyte<br>C36<br>SS-31(D)-15<br>SAMPLE<br>196134-015<br>Lyte<br>C36   | 77<br>%REC<br>79<br>ND<br>%REC | 40-127<br><b>Result</b><br>1.7 H<br>9.4 H<br><b>Limits</b><br>40-127<br><b>Result</b><br>3.2 Y<br>Limits | Analyzed:<br>Cleanup Method:<br>Y Z 0.<br>L 5.<br>Batch#:<br>Analyzed:<br>Cleanup Method:<br>Z 0. | 07/25/07<br>EPA 3630C<br>99<br>0<br>127534<br>07/25/07<br>EPA 3630C<br>99 |

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks

ND= Not Detected

RL= Reporting Limit

Page 3 of 4



|                                           | Т                                               | otal E             | Extracta                | ble Hydrocarbo                              | ns                                                    |
|-------------------------------------------|-------------------------------------------------|--------------------|-------------------------|---------------------------------------------|-------------------------------------------------------|
| Lab #:<br>Client:<br>Project#:<br>Matrix: | 196134<br>LFR Levine Fr<br>001-09567-01<br>Soil | icke               |                         | Location:<br>Prep:<br>Analysis:<br>Sampled: | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B<br>07/20/07 |
| Units:<br>Basis:<br>Diln Fac:             | mg/Kg<br>as received<br>1.000                   |                    |                         | Received:<br>Prepared:                      | 07/23/07<br>07/23/07<br>07/23/07                      |
| Field ID:<br>Type:<br>Lab ID:             | SS-31(D)-19.5<br>SAMPLE<br>196134-016           |                    |                         | Batch#:<br>Analyzed:<br>Cleanup Method:     | 127534<br>07/25/07<br>EPA 3630C                       |
| Anal<br>Diesel C10-C24                    | yte                                             | ND                 | Result                  | RL                                          | 99                                                    |
| Motor Oil C24-C                           | 36                                              | ND<br>ND           |                         | 5.                                          |                                                       |
| Surro<br>Hexacosane                       | gate                                            | % <b>REC</b><br>98 | <b>Limits</b><br>40-127 |                                             |                                                       |
| Type:<br>Lab ID:<br>Batch#:               | BLANK<br>QC397574<br>127534                     |                    |                         | Analyzed:<br>Cleanup Method:                | 07/24/07<br>EPA 3630C                                 |
| Anal                                      | yte                                             |                    | Result                  | RL                                          | 0                                                     |
| Diesel C10-C24<br>Motor Oil C24-C         | 36                                              | ND<br>ND           |                         | 1.<br>5.                                    |                                                       |
| Surro<br>Hexacosane                       | gate                                            | <b>%REC</b><br>66  | <b>Limits</b><br>40-127 |                                             |                                                       |
| Type:<br>Lab ID:<br>Batch#:               | BLANK<br>QC397580<br>127535                     |                    |                         | Analyzed:<br>Cleanup Method:                | 07/24/07<br>EPA 3630C                                 |
| Anal                                      | yte                                             |                    | Result                  | RL                                          | -                                                     |
| Diesel C10-C24<br>Motor Oil C24-C         | 36                                              | ND<br>ND           |                         | 1.<br>5.                                    |                                                       |
| Surro<br>Hexacosane                       |                                                 | % <b>REC</b><br>72 | <b>Limits</b><br>40-127 |                                             |                                                       |

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks ND= Not Detected RL= Reporting Limit Page 4 of 4



| Total Extractable Hydrocarbons |                   |           |              |  |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|--|
| Lab #:                         | 196134            | Location: | Hanson Radum |  |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | SHAKER TABLE |  |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |  |
| Туре:                          | LCS               | Diln Fac: | 1.000        |  |  |  |
| Lab ID:                        | QC397575          | Batch#:   | 127534       |  |  |  |
| Matrix:                        | Soil              | Prepared: | 07/23/07     |  |  |  |
| Units:                         | mg/Kg             | Analyzed: | 07/24/07     |  |  |  |
| Basis:                         | as received       |           |              |  |  |  |

Cleanup Method: EPA 3630C

Hexacosane

| Analyte        | Spiked      | Result | %REC | Limits |
|----------------|-------------|--------|------|--------|
| Diesel C10-C24 | 49.90       | 40.08  | 80   | 58-127 |
|                |             |        |      |        |
| Surrogate      | %REC Limits |        |      |        |

40-127

85



|                           |                              | Total E           | xtracta                 | ble Hydrocarbo            | ns                  |        |      |     |
|---------------------------|------------------------------|-------------------|-------------------------|---------------------------|---------------------|--------|------|-----|
| Lab #:                    | 196134                       |                   |                         | Location:                 | Hanson Radum        |        |      |     |
| Client:                   | LFR Levine F                 | 'ricke            |                         | Prep:                     | SHAKER TABLE        |        |      |     |
| Project#:                 | 001-09567-01                 |                   |                         | Analysis:                 | EPA 8015B           |        |      |     |
| Field ID:                 | ZZZZZZZZZ                    |                   |                         | Batch#:                   | 127534              |        |      |     |
| MSS Lab ID:               | 196123-001                   |                   |                         | Sampled:                  | 07/20/07            |        |      |     |
| Matrix:                   | Soil                         |                   |                         | Received:                 | 07/20/07            |        |      |     |
| Units:                    | mg/Kg                        |                   |                         | Prepared:                 | 07/23/07            |        |      |     |
| Basis:                    | as received                  |                   |                         | Analyzed:                 | 07/24/07            |        |      |     |
| Diln Fac:                 | 1.000                        |                   |                         |                           |                     |        |      |     |
| Type:<br>Lab ID:<br>Analy | MS<br>QC397576<br><b>yte</b> | MSS Res           | ult                     | Cleanup Method:<br>Spiked | EPA 3630C<br>Result | %REC   | Limi | ts  |
| Diesel C10-C24            |                              |                   | .24                     | 49.93                     | 99.61               | 111    | 29-1 | .47 |
| Sur:<br>Hexacosane        | rogate                       | <b>%REC</b><br>83 | <b>Limits</b><br>40-127 |                           |                     |        |      |     |
| Type:<br>Lab ID:          | MSD<br>QC397577              |                   |                         | Cleanup Method:           | EPA 3630C           |        |      |     |
| Ana                       | alyte                        |                   | Spiked                  | Result                    | : %REC              | Limits | RPD  | Lim |
| Diesel C10-C24            | 4                            |                   | 49.95                   | 110.                      | 8 133               | 29-147 | 11   | 46  |
| Suri                      | rogate                       | %REC              | Limits                  |                           |                     |        |      |     |

Hexacosane 90 40-127



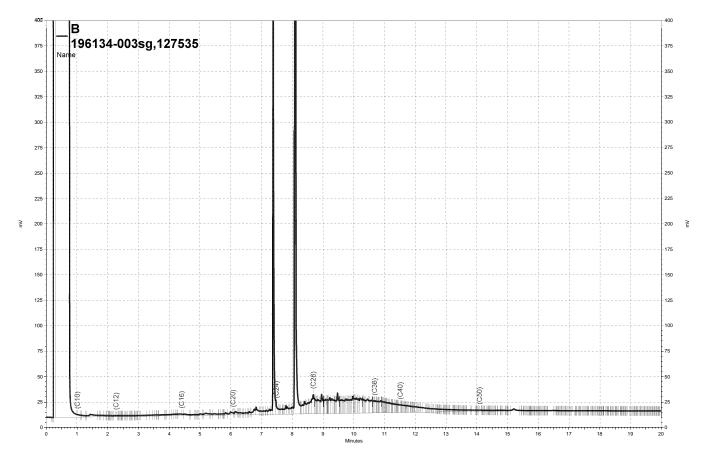
| Total Extractable Hydrocarbons |                   |           |              |  |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|--|
| Lab #:                         | 196134            | Location: | Hanson Radum |  |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | SHAKER TABLE |  |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |  |
| Туре:                          | LCS               | Diln Fac: | 1.000        |  |  |  |
| Lab ID:                        | QC397581          | Batch#:   | 127535       |  |  |  |
| Matrix:                        | Soil              | Prepared: | 07/23/07     |  |  |  |
| Units:                         | mg/Kg             | Analyzed: | 07/24/07     |  |  |  |
| Basis:                         | as received       |           |              |  |  |  |

Cleanup Method: EPA 3630C

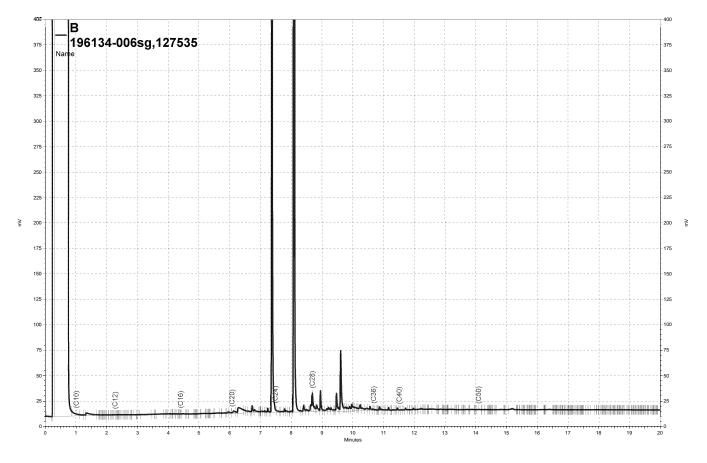
Hexacosane

| Analyte        | Spiked      | Result | %REC | Limits |
|----------------|-------------|--------|------|--------|
| Diesel C10-C24 | 49.84       | 36.64  | 74   | 58-127 |
|                |             |        |      |        |
| Surrogate      | %REC Limits |        |      |        |

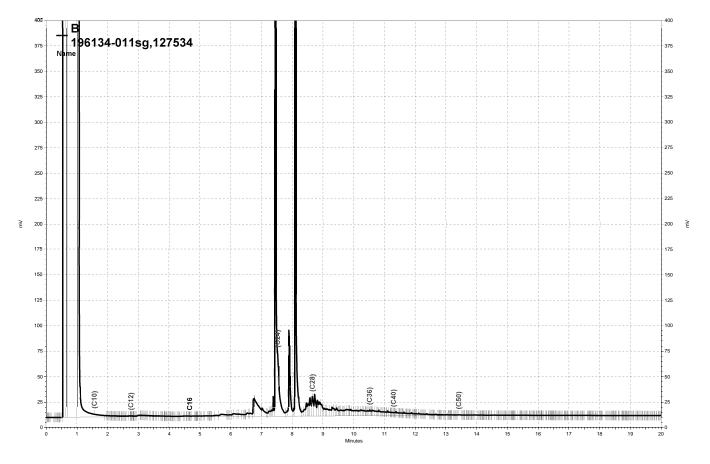
40-127


78

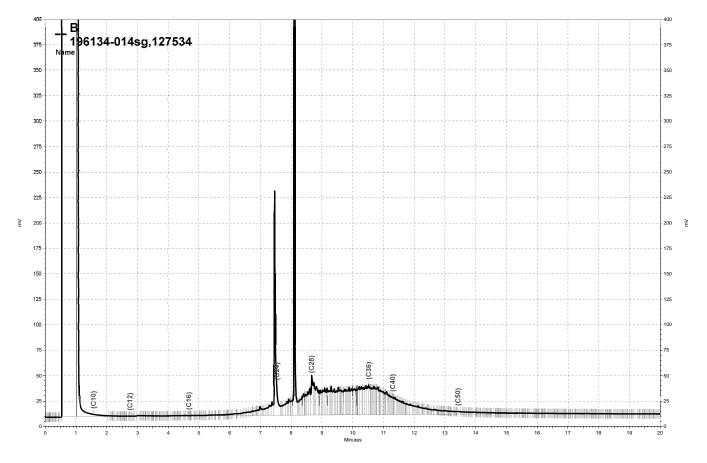


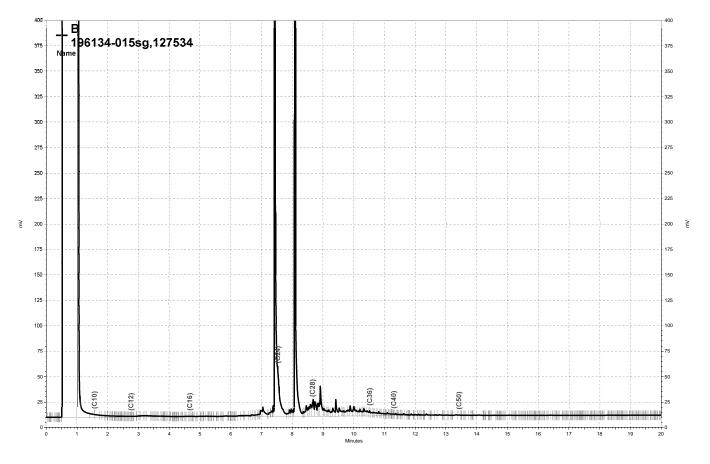

|                  |                 | Total  | Extracta | able Hydrocarbo | ns           |      |        |
|------------------|-----------------|--------|----------|-----------------|--------------|------|--------|
| Lab #:           | 196134          |        |          | Location:       | Hanson Radum |      |        |
| Client:          | LFR Levine F    | ricke  |          | Prep:           | SHAKER TABLE |      |        |
| Project#:        | 001-09567-01    |        |          | Analysis:       | EPA 8015B    |      |        |
| Field ID:        | ZZZZZZZZZZ      |        |          | Batch#:         | 127535       |      |        |
| MSS Lab ID:      | 196124-006      |        |          | Sampled:        | 07/20/07     |      |        |
| Matrix:          | Soil            |        |          | Received:       | 07/20/07     |      |        |
| Units:           | mg/Kg           |        |          | Prepared:       | 07/23/07     |      |        |
| Basis:           | as received     |        |          | Analyzed:       | 07/24/07     |      |        |
| Diln Fac:        | 1.000           |        |          |                 |              |      |        |
| Type:<br>Lab ID: | MS<br>QC397582  |        |          | Cleanup Method: |              |      |        |
| Analyt           | e               | MSS Re |          | Spiked          | Result       | %REC | Limits |
| Diesel C10-C24   |                 |        | 2.332    | 49.92           | 30.59        | 57   | 29-147 |
| Surro            | gate            | %REC   | Limits   |                 |              |      |        |
| Hexacosane       |                 | 57     | 40-127   |                 |              |      |        |
| Type:<br>Lab ID: | MSD<br>QC397583 |        |          | Cleanup Method: | EPA 3630C    |      |        |

| Analyte        | Spiked | Result | %REC | Limits | RPD | Lim |
|----------------|--------|--------|------|--------|-----|-----|
| Diesel C10-C24 | 49.88  | 40.57  | 77   | 29-147 | 28  | 46  |
|                |        |        |      |        |     |     |

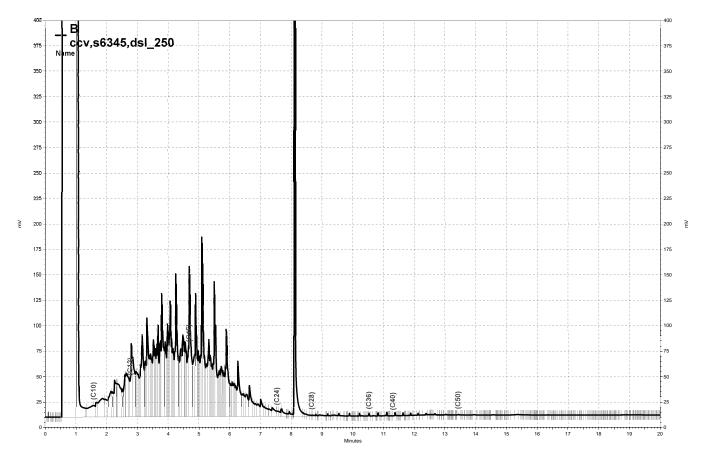

| Surrogate  | %REC | Limits |
|------------|------|--------|
| Hexacosane | 79   | 40-127 |



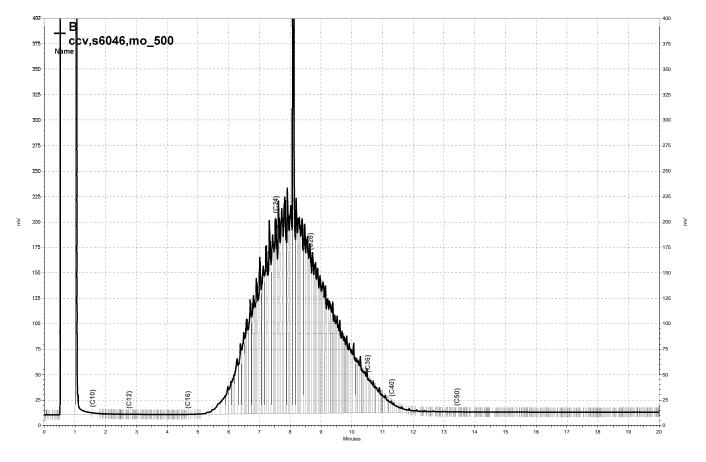

\\Lims\gdrive\ezchrom\Projects\GC14B\Data\203b125, B




\Lims\gdrive\ezchrom\Projects\GC14B\Data\203b107, B




\Lims\gdrive\ezchrom\Projects\GC15B\Data\205b039, B






\\Lims\gdrive\ezchrom\Projects\GC15B\Data\205b037, B



\\Lims\gdrive\ezchrom\Projects\GC15B\Data\205b029, B



\Lims\gdrive\ezchrom\Projects\GC15B\Data\205b030, B



|                                  |                  | Gasoline | by GC/MS  |              |
|----------------------------------|------------------|----------|-----------|--------------|
| Lab #:                           | 196134           |          | Location: | Hanson Radum |
| Client:                          | LFR Levine Frick | e        | Prep:     | EPA 5030B    |
| Project#:                        | 001-09567-01     |          | Analysis: | EPA 8260B    |
| Field ID:                        | SS-31(B)-GGW     |          | Batch#:   | 127501       |
| Lab ID:                          | 196134-001       |          | Sampled:  | 07/20/07     |
| Matrix:                          | Water            |          | Received: | 07/23/07     |
| Units:                           | ug/L             |          | Analyzed: | 07/23/07     |
| Diln Fac:                        | 1 000            |          |           |              |
| Analy                            | rte              | Result   |           | RT.          |
| Gasoline C7-C12                  |                  | ND       |           | 50           |
| tert-Butyl Alcoh                 | nol (TBA)        | ND       |           | 10           |
| Freon 12                         |                  | ND       |           | 1.0          |
| Chloromethane                    |                  | ND       |           | 1.0          |
| Vinyl Chloride                   |                  | ND       |           | 0.5          |
| Isopropyl Ether                  | (DIPE)           | ND       |           | 0.5          |
| Bromomethane                     |                  | ND       |           | 1.0          |
| Ethyl tert-Butyl                 |                  | ND       |           | 0.5          |
| Methyl tert-Amyl<br>Chloroethane | Ether (TAME)     | ND<br>ND |           | 0.5<br>1.0   |
| Trichlorofluorom                 | othana           | ND<br>ND |           | 1.0          |
| Acetone                          | lechalle         | ND<br>ND |           | 10           |
| Freon 113                        |                  | ND       |           | 0.5          |
| 1,1-Dichloroethe                 | ne               | ND       |           | 0.5          |
| Methylene Chlori                 |                  | ND       |           | 10           |
| Carbon Disulfide                 |                  | ND       |           | 0.5          |
| MTBE                             | -                | ND       |           | 0.5          |
| trans-1,2-Dichlo                 | proethene        | ND       |           | 0.5          |
| Vinyl Acetate                    |                  | ND       |           | 10           |
| 1,1-Dichloroetha                 | ine              | ND       |           | 0.5          |
| 2-Butanone                       |                  | ND       |           | 10           |
| cis-1,2-Dichloro                 |                  | ND       |           | 0.5          |
| 2,2-Dichloroprop                 | pane             | ND       |           | 0.5          |
| Chloroform                       |                  | ND       |           | 0.5          |
| Bromochlorometha                 |                  | ND       |           | 0.5          |
| 1,1,1-Trichloroe                 |                  | ND       |           | 0.5          |
| 1,1-Dichloroprop                 | ene              | ND       |           | 0.5          |

| Carbon Disulfide          | ND | 0.5 |  |
|---------------------------|----|-----|--|
| MTBE                      | ND | 0.5 |  |
| trans-1,2-Dichloroethene  | ND | 0.5 |  |
| Vinyl Acetate             | ND | 10  |  |
| 1,1-Dichloroethane        | ND | 0.5 |  |
| 2-Butanone                | ND | 10  |  |
| cis-1,2-Dichloroethene    | ND | 0.5 |  |
| 2,2-Dichloropropane       | ND | 0.5 |  |
| Chloroform                | ND | 0.5 |  |
| Bromochloromethane        | ND | 0.5 |  |
| 1,1,1-Trichloroethane     | ND | 0.5 |  |
| 1,1-Dichloropropene       | ND | 0.5 |  |
| Carbon Tetrachloride      | ND | 0.5 |  |
| 1,2-Dichloroethane        | ND | 0.5 |  |
| Benzene                   | ND | 0.5 |  |
| Trichloroethene           | ND | 0.5 |  |
| 1,2-Dichloropropane       | ND | 0.5 |  |
| Bromodichloromethane      | ND | 0.5 |  |
| Dibromomethane            | ND | 0.5 |  |
| 4-Methyl-2-Pentanone      | ND | 10  |  |
| cis-1,3-Dichloropropene   | ND | 0.5 |  |
| Toluene                   | ND | 0.5 |  |
| trans-1,3-Dichloropropene | ND | 0.5 |  |
| 1,1,2-Trichloroethane     | ND | 0.5 |  |
| 2-Hexanone                | ND | 10  |  |
| 1,3-Dichloropropane       | ND | 0.5 |  |
| Tetrachloroethene         | ND | 0.5 |  |
| Dibromochloromethane      | ND | 0.5 |  |
| 1,2-Dibromoethane         | ND | 0.5 |  |
| Chlorobenzene             | ND | 0.5 |  |
| 1,1,1,2-Tetrachloroethane | ND | 0.5 |  |
| Ethylbenzene              | ND | 0.5 |  |
| m,p-Xylenes               | ND | 0.5 |  |
| o-Xylene                  | ND | 0.5 |  |
| Styrene                   | ND | 0.5 |  |
| Bromoform                 | ND | 1.0 |  |
| Isopropylbenzene          | ND | 0.5 |  |
| 1,1,2,2-Tetrachloroethane | ND | 0.5 |  |
| 1,2,3-Trichloropropane    | ND | 0.5 |  |

ND= Not Detected RL= Reporting Limit Page 1 of 2



|                                   | Gasolin      | e by GC/MS |                  |
|-----------------------------------|--------------|------------|------------------|
| Lab #: 196134                     |              | Location:  | Hanson Radum     |
| Client: LFR Levine F              |              | Prep:      | EPA 5030B        |
| Project#: 001-09567-01            |              | Analysis:  | EPA 8260B        |
| Field ID: SS-31(B)-GGW            |              | Batch#:    | 127501           |
| Lab ID: 196134-001                |              | Sampled:   | 07/20/07         |
| Matrix: Water                     |              | Received:  | 07/23/07         |
| Units: ug/L                       |              | Analyzed:  | 07/23/07         |
| Diln Fac: 1.000                   |              |            |                  |
| Amo Just o                        | Degult       |            |                  |
| Analyte<br>Propylbenzene          | Result<br>ND |            | <b>RL</b><br>0.5 |
| Bromobenzene                      | ND<br>ND     |            | 0.5              |
| 1,3,5-Trimethylbenzene            | ND           |            | 0.5              |
| 2-Chlorotoluene                   | ND           |            | 0.5              |
| 4-Chlorotoluene                   | ND           |            | 0.5              |
| tert-Butylbenzene                 | ND           |            | 0.5              |
| 1,2,4-Trimethylbenzene            | ND           |            | 0.5              |
| sec-Butylbenzene                  | ND           |            | 0.5              |
| para-Isopropyl Toluene            | ND           |            | 0.5              |
| 1,3-Dichlorobenzene               | ND           |            | 0.5              |
| 1,4-Dichlorobenzene               | ND           |            | 0.5              |
| n-Butylbenzene                    | ND           |            | 0.5              |
| 1,2-Dichlorobenzene               | ND           |            | 0.5              |
| 1,2-Dibromo-3-Chloropropane       | ND           |            | 2.0              |
| 1,2,4-Trichlorobenzene            | ND           |            | 0.5              |
| Hexachlorobutadiene               | ND           |            | 0.5              |
| Naphthalene                       | ND           |            | 2.0              |
| 1,2,3-Trichlorobenzene            | ND           |            | 0.5              |
| Gummagaha                         | %REC Limits  |            |                  |
| Surrogate<br>Dibromofluoromethane | 96 80-123    |            |                  |
| 1,2-Dichloroethane-d4             | 104 79-134   |            |                  |
| Toluene-d8                        | 97 80-120    |            |                  |
| Bromofluorobenzene                | 104 80-122   |            |                  |



| Gasoline by GC/MS                                      |                                                      |                                               |                                            |  |  |
|--------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|--------------------------------------------|--|--|
| Lab #:<br>Client:<br>Project#:                         | 196134<br>LFR Levine Fricke<br>001-09567-01          | Location:<br>Prep:<br>Analysis:               | Hanson Radum<br>EPA 5030B<br>EPA 8260B     |  |  |
| Field ID:<br>Lab ID:<br>Matrix:<br>Units:<br>Diln Fac: | SS-31(C)-GGW<br>196134-002<br>Water<br>ug/L<br>1.000 | Batch#:<br>Sampled:<br>Received:<br>Analyzed: | 127501<br>07/20/07<br>07/23/07<br>07/23/07 |  |  |

| Analyte                                       | Result   | RL    |
|-----------------------------------------------|----------|-------|
| Gasoline C7-C12                               | ND       | 50    |
| tert-Butyl Alcohol (TBA)                      | ND       | 10    |
| Freon 12                                      | ND       | 1.0   |
| Chloromethane                                 | ND       | 1.0   |
| Vinyl Chloride                                | ND       | 0.5   |
| Isopropyl Ether (DIPE)                        | ND       | 0.5   |
| Bromomethane                                  | ND       | 1.0   |
|                                               | ND       | 0.5   |
| Ethyl tert-Butyl Ether (ETBE)                 | ND       | 0.5   |
| Methyl tert-Amyl Ether (TAME)<br>Chloroethane | ND<br>ND | 1.0   |
|                                               |          | - • • |
| Trichlorofluoromethane                        | ND       | 1.0   |
| Acetone                                       | ND       | 10    |
| Freon 113                                     | ND       | 0.5   |
| 1,1-Dichloroethene                            | ND       | 0.5   |
| Methylene Chloride                            | ND       | 10    |
| Carbon Disulfide                              | ND       | 0.5   |
| MTBE                                          | ND       | 0.5   |
| trans-1,2-Dichloroethene                      | ND       | 0.5   |
| Vinyl Acetate                                 | ND       | 10    |
| 1,1-Dichloroethane                            | ND       | 0.5   |
| 2-Butanone                                    | ND       | 10    |
| cis-1,2-Dichloroethene                        | ND       | 0.5   |
| 2,2-Dichloropropane                           | ND       | 0.5   |
| Chloroform                                    | ND       | 0.5   |
| Bromochloromethane                            | ND       | 0.5   |
| 1,1,1-Trichloroethane                         | ND       | 0.5   |
| 1,1-Dichloropropene                           | ND       | 0.5   |
| Carbon Tetrachloride                          | ND       | 0.5   |
| 1,2-Dichloroethane                            | ND       | 0.5   |
| Benzene                                       | ND       | 0.5   |
| Trichloroethene                               | ND       | 0.5   |
| 1,2-Dichloropropane                           | ND       | 0.5   |
| Bromodichloromethane                          | ND       | 0.5   |
| Dibromomethane                                | ND       | 0.5   |
| 4-Methyl-2-Pentanone                          | ND       | 10    |
| cis-1,3-Dichloropropene                       | ND       | 0.5   |
| Toluene                                       | ND       | 0.5   |
| trans-1,3-Dichloropropene                     | ND       | 0.5   |
| 1,1,2-Trichloroethane                         | ND       | 0.5   |
| 2-Hexanone                                    | ND       | 10    |
| 1,3-Dichloropropane                           | ND       | 0.5   |
| Tetrachloroethene                             | ND       | 0.5   |
| Dibromochloromethane                          | ND<br>ND | 0.5   |
|                                               | ND<br>ND | 0.5   |
| 1,2-Dibromoethane                             |          |       |
| Chlorobenzene                                 | ND       | 0.5   |
| 1,1,1,2-Tetrachloroethane                     | ND       | 0.5   |
| Ethylbenzene                                  | ND       | 0.5   |
| m,p-Xylenes                                   | ND       | 0.5   |
| o-Xylene                                      | ND       | 0.5   |
| Styrene                                       | ND       | 0.5   |
| Bromoform                                     | ND       | 1.0   |
| Isopropylbenzene                              | ND       | 0.5   |
| 1,1,2,2-Tetrachloroethane                     | ND       | 0.5   |
| 1,2,3-Trichloropropane                        | ND       | 0.5   |

ND= Not Detected RL= Reporting Limit Page 1 of 2



|                             | Gasolin     | e by GC/MS |              |
|-----------------------------|-------------|------------|--------------|
| Lab #: 196134               |             | Location:  | Hanson Radum |
| Client: LFR Levine F        | ricke       | Prep:      | EPA 5030B    |
| Project#: 001-09567-01      |             | Analysis:  | EPA 8260B    |
| Field ID: SS-31(C)-GGW      |             | Batch#:    | 127501       |
| Lab ID: 196134-002          |             | Sampled:   | 07/20/07     |
| Matrix: Water               |             | Received:  | 07/23/07     |
| Units: ug/L                 |             | Analyzed:  | 07/23/07     |
| Diln Fac: 1.000             |             |            |              |
| Analyte                     | Result      |            | RL           |
| Propylbenzene               | ND          |            | 0.5          |
| Bromobenzene                | ND          |            | 0.5          |
| 1,3,5-Trimethylbenzene      | ND          |            | 0.5          |
| 2-Chlorotoluene             | ND          |            | 0.5          |
| 4-Chlorotoluene             | ND          |            | 0.5          |
| tert-Butylbenzene           | ND          |            | 0.5          |
| 1,2,4-Trimethylbenzene      | ND          |            | 0.5          |
| sec-Butylbenzene            | ND          |            | 0.5          |
| para-Isopropyl Toluene      | ND          |            | 0.5          |
| 1,3-Dichlorobenzene         | ND          |            | 0.5          |
| 1,4-Dichlorobenzene         | ND          |            | 0.5          |
| n-Butylbenzene              | ND          |            | 0.5          |
| 1,2-Dichlorobenzene         | ND          |            | 0.5          |
| 1,2-Dibromo-3-Chloropropane | ND          |            | 2.0          |
| 1,2,4-Trichlorobenzene      | ND          |            | 0.5          |
| Hexachlorobutadiene         | ND          |            | 0.5          |
| Naphthalene                 | ND          |            | 2.0          |
| 1,2,3-Trichlorobenzene      | ND          |            | 0.5          |
| Surrogate                   | %REC Limits |            |              |
| Dibromofluoromethane        | 98 80-123   |            |              |
| 1,2-Dichloroethane-d4       | 104 79-134  |            |              |
| Toluene-d8                  | 98 80-120   |            |              |
| Bromofluorobenzene          | 105 80-122  |            |              |



|                                | Gasoline by GC/MS                           |                                 |                                        |  |  |  |
|--------------------------------|---------------------------------------------|---------------------------------|----------------------------------------|--|--|--|
| Lab #:<br>Client:<br>Project#: | 196134<br>LFR Levine Fricke<br>001-09567-01 | Location:<br>Prep:<br>Analysis: | Hanson Radum<br>EPA 5030B<br>EPA 8260B |  |  |  |
| Matrix:<br>Units:<br>Diln Fac: | Water<br>ug/L<br>1.000                      | Batch#:<br>Analyzed:            | 127501<br>07/23/07                     |  |  |  |

| Type: BS                     |             | Lab ID: QC | 2397407 |        |
|------------------------------|-------------|------------|---------|--------|
| Analyte                      | Spiked      | Result     | %REC    | Limits |
| tert-Butyl Alcohol (TBA)     | 125.0       | 108.0      | 86      | 68-132 |
| Isopropyl Ether (DIPE)       | 25.00       | 20.34      | 81      | 65-120 |
| Ethyl tert-Butyl Ether (ETBE |             | 20.65      | 83      | 75-124 |
| Methyl tert-Amyl Ether (TAME | ) 25.00     | 24.78      | 99      | 77-120 |
| 1,1-Dichloroethene           | 25.00       | 23.47      | 94      | 80-132 |
| Benzene                      | 25.00       | 24.91      | 100     | 80-120 |
| Trichloroethene              | 25.00       | 25.58      | 102     | 80-120 |
| Toluene                      | 25.00       | 26.08      | 104     | 80-120 |
| Chlorobenzene                | 25.00       | 25.85      | 103     | 80-120 |
| Surrogate                    | %REC Limits |            |         |        |
| Dibromofluoromethane         | 93 80-123   |            |         |        |
| 1,2-Dichloroethane-d4        | 98 79-134   |            |         |        |

| Dibromofluoromethane  | 93 | 80-123 |  |  |
|-----------------------|----|--------|--|--|
| 1,2-Dichloroethane-d4 | 98 | 79-134 |  |  |
| Toluene-d8            | 98 | 80-120 |  |  |
| Bromofluorobenzene    | 96 | 80-122 |  |  |
|                       |    |        |  |  |

| Type: BSD                     |      |        | Lab ID: | QC39   | 7408 |        |     |     |
|-------------------------------|------|--------|---------|--------|------|--------|-----|-----|
| Analyte                       |      | Spiked |         | Result | %REC | Limits | RPD | Lim |
| tert-Butyl Alcohol (TBA)      |      | 125.0  |         | 110.6  | 88   | 68-132 | 2   | 20  |
| Isopropyl Ether (DIPE)        |      | 25.00  |         | 19.69  | 79   | 65-120 | 3   | 20  |
| Ethyl tert-Butyl Ether (ETBE) |      | 25.00  |         | 20.60  | 82   | 75-124 | 0   | 20  |
| Methyl tert-Amyl Ether (TAME) |      | 25.00  |         | 24.17  | 97   | 77-120 | 2   | 20  |
| 1,1-Dichloroethene            |      | 25.00  |         | 22.86  | 91   | 80-132 | 3   | 20  |
| Benzene                       |      | 25.00  |         | 23.60  | 94   | 80-120 | 5   | 20  |
| Trichloroethene               |      | 25.00  |         | 24.33  | 97   | 80-120 | 5   | 20  |
| Toluene                       |      | 25.00  |         | 24.22  | 97   | 80-120 | 7   | 20  |
| Chlorobenzene                 |      | 25.00  |         | 24.80  | 99   | 80-120 | 4   | 20  |
|                               |      |        |         |        |      |        |     |     |
| Surrogate                     | %REC | Limits |         |        |      |        |     |     |
| Dibromofluoromethane          | 95   | 80-123 |         |        |      |        |     |     |
| 1,2-Dichloroethane-d4         | 97   | 79-134 |         |        |      |        |     |     |
| Toluene-d8                    | 97   | 80-120 |         |        |      |        |     |     |
| Bromofluorobenzene            | 97   | 80-122 |         |        |      |        |     |     |



| Gasoline by GC/MS |                   |           |              |  |  |
|-------------------|-------------------|-----------|--------------|--|--|
| Lab #:            | 196134            | Location: | Hanson Radum |  |  |
| Client:           | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |
| Project#:         | 001-09567-01      | Analysis: | EPA 8260B    |  |  |
| Matrix:           | Water             | Batch#:   | 127501       |  |  |
| Units:            | ug/L              | Analyzed: | 07/23/07     |  |  |
| Diln Fac:         | 1.000             |           |              |  |  |

Type:

BS

Lab ID: QC397409

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 1,000  | 934.9  | 93   | 70-130 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 93   | 80-123 |
| 1,2-Dichloroethane-d4 | 99   | 79-134 |
| Toluene-d8            | 101  | 80-120 |
| Bromofluorobenzene    | 97   | 80-122 |

| Type:      | BSD         |      |        | Lab ID: | QC3    | 97410 |        |     |     |
|------------|-------------|------|--------|---------|--------|-------|--------|-----|-----|
|            | Analyte     |      | Spiked |         | Result | %REC  | Limits | RPD | Lim |
| Gasoline C | 7-C12       |      | 1,000  |         | 902.7  | 90    | 70-130 | 4   | 20  |
|            |             |      |        |         |        |       |        |     |     |
|            | Surrogate   | %REC | Limits |         |        |       |        |     |     |
| Dibromoflu | oromethane  | 92   | 80-123 |         |        |       |        |     |     |
| 1,2-Dichlo | roethane-d4 | 97   | 79-134 |         |        |       |        |     |     |
| Toluene-d8 |             | 97   | 80-120 |         |        |       |        |     |     |
| Bromofluor | obenzene    | 98   | 80-122 |         |        |       |        |     |     |



|                                       | Gasoline by GC/MS           |                        |                           |  |  |
|---------------------------------------|-----------------------------|------------------------|---------------------------|--|--|
| Lab #:<br>Client:                     | 196134<br>LFR Levine Fricke | Location:<br>Prep:     | Hanson Radum<br>EPA 5030B |  |  |
| Project#:                             | 001-09567-01<br>BLANK       | Analysis:<br>Diln Fac: | EPA 8260B<br>1.000        |  |  |
| Type:<br>Lab ID:<br>Matrix:<br>Units: | QC397411<br>Water           | Batch#:<br>Analyzed:   | 127501<br>07/23/07        |  |  |
| UNILS.                                | ug/L                        |                        |                           |  |  |

| Analyte                       | Result | RL  |
|-------------------------------|--------|-----|
| Gasoline C7-C12               | ND     | 50  |
| tert-Butyl Alcohol (TBA)      | ND     | 10  |
| Freon 12                      | ND     | 1.0 |
| Chloromethane                 | ND     | 1.0 |
| Vinyl Chloride                | ND     | 0.5 |
|                               | ND     | 0.5 |
| Isopropyl Ether (DIPE)        |        | 1.0 |
| Bromomethane                  | ND     |     |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 0.5 |
| Methyl tert-Amyl Ether (TAME) | ND     | 0.5 |
| Chloroethane                  | ND     | 1.0 |
| Trichlorofluoromethane        | ND     | 1.0 |
| Acetone                       | ND     | 10  |
| Freon 113                     | ND     | 0.5 |
| 1,1-Dichloroethene            | ND     | 0.5 |
| Methylene Chloride            | ND     | 10  |
| Carbon Disulfide              | ND     | 0.5 |
| MTBE                          | ND     | 0.5 |
| trans-1,2-Dichloroethene      | ND     | 0.5 |
| Vinyl Acetate                 | ND     | 10  |
| 1,1-Dichloroethane            | ND     | 0.5 |
| 2-Butanone                    | ND     | 10  |
| cis-1,2-Dichloroethene        | ND     | 0.5 |
| 2,2-Dichloropropane           | ND     | 0.5 |
| Chloroform                    | ND     | 0.5 |
| Bromochloromethane            | ND     | 0.5 |
| 1,1,1-Trichloroethane         | ND     | 0.5 |
| 1,1-Dichloropropene           | ND     | 0.5 |
| Carbon Tetrachloride          | ND     | 0.5 |
| 1,2-Dichloroethane            | ND     | 0.5 |
| Benzene                       | ND     | 0.5 |
| Trichloroethene               | ND     | 0.5 |
| 1,2-Dichloropropane           | ND     | 0.5 |
| Bromodichloromethane          | ND     | 0.5 |
| Dibromomethane                | ND     | 0.5 |
| 4-Methyl-2-Pentanone          | ND     | 10  |
| cis-1,3-Dichloropropene       | ND     | 0.5 |
| Toluene                       | ND     | 0.5 |
| trans-1,3-Dichloropropene     | ND     | 0.5 |
| 1,1,2-Trichloroethane         | ND     | 0.5 |
| 2-Hexanone                    | ND     | 10  |
|                               |        |     |
| 1,3-Dichloropropane           | ND     | 0.5 |
| Tetrachloroethene             | ND     | 0.5 |
| Dibromochloromethane          | ND     | 0.5 |
| 1,2-Dibromoethane             | ND     | 0.5 |
| Chlorobenzene                 | ND     | 0.5 |
| 1,1,1,2-Tetrachloroethane     | ND     | 0.5 |
| Ethylbenzene                  | ND     | 0.5 |
| m,p-Xylenes                   | ND     | 0.5 |
| o-Xylene                      | ND     | 0.5 |
| Styrene                       | ND     | 0.5 |
| Bromoform                     | ND     | 1.0 |
| Isopropylbenzene              | ND     | 0.5 |
| 1,1,2,2-Tetrachloroethane     | ND     | 0.5 |
| 1,2,3-Trichloropropane        | ND     | 0.5 |

ND= Not Detected RL= Reporting Limit

Page 1 of 2



|                                |                                             | Gasoline | by GC/MS                        |                                        |
|--------------------------------|---------------------------------------------|----------|---------------------------------|----------------------------------------|
| Lab #:<br>Client:<br>Project#: | 196134<br>LFR Levine Fricke<br>001-09567-01 |          | Location:<br>Prep:<br>Analysis: | Hanson Radum<br>EPA 5030B<br>EPA 8260B |
| Type:<br>Lab ID:               | BLANK<br>QC397411                           |          | Diln Fac:<br>Batch#:            | 1.000<br>127501                        |
| Matrix:<br>Units:              | Water<br>ug/L                               |          | Analyzed:                       | 07/23/07                               |
| An                             | alyte                                       | Result   |                                 | RL                                     |
| Propylbenzene                  | :                                           | ND       |                                 | 0.5                                    |

| Propylbenzene               | ND   |        | 0.5 |
|-----------------------------|------|--------|-----|
| Bromobenzene                | ND   |        | 0.5 |
| 1,3,5-Trimethylbenzene      | ND   |        | 0.5 |
| 2-Chlorotoluene             | ND   |        | 0.5 |
| 4-Chlorotoluene             | ND   |        | 0.5 |
| tert-Butylbenzene           | ND   |        | 0.5 |
| 1,2,4-Trimethylbenzene      | ND   |        | 0.5 |
| sec-Butylbenzene            | ND   |        | 0.5 |
| para-Isopropyl Toluene      | ND   |        | 0.5 |
| 1,3-Dichlorobenzene         | ND   |        | 0.5 |
| 1,4-Dichlorobenzene         | ND   |        | 0.5 |
| n-Butylbenzene              | ND   |        | 0.5 |
| 1,2-Dichlorobenzene         | ND   |        | 0.5 |
| 1,2-Dibromo-3-Chloropropane | ND   |        | 2.0 |
| 1,2,4-Trichlorobenzene      | ND   |        | 0.5 |
| Hexachlorobutadiene         | ND   |        | 0.5 |
| Naphthalene                 | ND   |        | 2.0 |
| 1,2,3-Trichlorobenzene      | ND   |        | 0.5 |
|                             |      |        |     |
| Surrogate                   | %REC | Limits |     |
| Dibromofluoromethane        | 91   | 80-123 |     |
| 1,2-Dichloroethane-d4       | 103  | 79-134 |     |
| Toluene-d8                  | 98   | 80-120 |     |
| Bromofluorobenzene          | 103  | 80-122 |     |

ND= Not Detected RL= Reporting Limit Page 2 of 2



| Lab #:    | 196134            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(C)-5.5      | Diln Fac: | 1.000        |  |
| Lab ID:   | 196134-003        | Batch#:   | 127494       |  |
| Matrix:   | Soil              | Sampled:  | 07/20/07     |  |
| Units:    | ug/Kg             | Received: | 07/23/07     |  |
| Basis:    | as received       | Analyzed: | 07/23/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 100 |  |
| MTBE                          | ND     | 5.0 |  |
| Isopropyl Ether (DIPE)        | ND     | 5.0 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 5.0 |  |
| 1,2-Dichloroethane            | ND     | 5.0 |  |
| Benzene                       | ND     | 5.0 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 5.0 |  |
| Toluene                       | ND     | 5.0 |  |
| 1,2-Dibromoethane             | ND     | 5.0 |  |
| Ethylbenzene                  | ND     | 5.0 |  |
| m,p-Xylenes                   | ND     | 5.0 |  |
| o-Xylene                      | ND     | 5.0 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 101  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 109  | 76-135 |  |
| Toluene-d8            | 100  | 80-120 |  |
| Bromofluorobenzene    | 102  | 80-126 |  |



| Lab #:    | 196134            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(C)-10.5     | Diln Fac: | 0.9091       |  |
| Lab ID:   | 196134-004        | Batch#:   | 127494       |  |
| Matrix:   | Soil              | Sampled:  | 07/20/07     |  |
| Units:    | ug/Kg             | Received: | 07/23/07     |  |
| Basis:    | as received       | Analyzed: | 07/23/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 91  |  |
| MTBE                          | ND     | 4.5 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.5 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.5 |  |
| 1,2-Dichloroethane            | ND     | 4.5 |  |
| Benzene                       | ND     | 4.5 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.5 |  |
| Toluene                       | ND     | 4.5 |  |
| 1,2-Dibromoethane             | ND     | 4.5 |  |
| Ethylbenzene                  | ND     | 4.5 |  |
| m,p-Xylenes                   | ND     | 4.5 |  |
| o-Xylene                      | ND     | 4.5 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 102  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 110  | 76-135 |  |
| Toluene-d8            | 100  | 80-120 |  |
| Bromofluorobenzene    | 102  | 80-126 |  |



| Lab #:    | 196134            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(C)-15.5     | Diln Fac: | 0.9091       |  |
| Lab ID:   | 196134-005        | Batch#:   | 127494       |  |
| Matrix:   | Soil              | Sampled:  | 07/20/07     |  |
| Units:    | ug/Kg             | Received: | 07/23/07     |  |
| Basis:    | as received       | Analyzed: | 07/23/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 91  |  |
| MTBE                          | ND     | 4.5 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.5 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.5 |  |
| 1,2-Dichloroethane            | ND     | 4.5 |  |
| Benzene                       | ND     | 4.5 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.5 |  |
| Toluene                       | ND     | 4.5 |  |
| 1,2-Dibromoethane             | ND     | 4.5 |  |
| Ethylbenzene                  | ND     | 4.5 |  |
| m,p-Xylenes                   | ND     | 4.5 |  |
| o-Xylene                      | ND     | 4.5 |  |

| Surrogate             | %REC | limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 102  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 113  | /6-135 |  |
| Toluene-d8            | 100  | 30-120 |  |
| Bromofluorobenzene    | 101  | 30-126 |  |



| Lab #:    | 196134            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(C)-19.5     | Diln Fac: | 0.9804       |  |
| Lab ID:   | 196134-006        | Batch#:   | 127494       |  |
| Matrix:   | Soil              | Sampled:  | 07/20/07     |  |
| Units:    | ug/Kg             | Received: | 07/23/07     |  |
| Basis:    | as received       | Analyzed: | 07/23/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 98  |  |
| MTBE                          | ND     | 4.9 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.9 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.9 |  |
| 1,2-Dichloroethane            | ND     | 4.9 |  |
| Benzene                       | ND     | 4.9 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.9 |  |
| Toluene                       | ND     | 4.9 |  |
| 1,2-Dibromoethane             | ND     | 4.9 |  |
| Ethylbenzene                  | ND     | 4.9 |  |
| m,p-Xylenes                   | ND     | 4.9 |  |
| o-Xylene                      | ND     | 4.9 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 106  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 116  | 76-135 |  |
| Toluene-d8            | 100  | 80-120 |  |
| Bromofluorobenzene    | 103  | 80-126 |  |



| Lab #:    | 196134            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(C)-25.5     | Diln Fac: | 0.9804       |  |
| Lab ID:   | 196134-007        | Batch#:   | 127494       |  |
| Matrix:   | Soil              | Sampled:  | 07/20/07     |  |
| Units:    | ug/Kg             | Received: | 07/23/07     |  |
| Basis:    | as received       | Analyzed: | 07/23/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 98  |  |
| MTBE                          | ND     | 4.9 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.9 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.9 |  |
| 1,2-Dichloroethane            | ND     | 4.9 |  |
| Benzene                       | ND     | 4.9 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.9 |  |
| Toluene                       | ND     | 4.9 |  |
| 1,2-Dibromoethane             | ND     | 4.9 |  |
| Ethylbenzene                  | ND     | 4.9 |  |
| m,p-Xylenes                   | ND     | 4.9 |  |
| o-Xylene                      | ND     | 4.9 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 103  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 116  | 76-135 |  |
| Toluene-d8            | 101  | 30-120 |  |
| Bromofluorobenzene    | 103  | 30-126 |  |



| Lab #:    | 196134            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(C)-30       | Diln Fac: | 0.9615       |  |
| Lab ID:   | 196134-008        | Batch#:   | 127494       |  |
| Matrix:   | Soil              | Sampled:  | 07/20/07     |  |
| Units:    | ug/Kg             | Received: | 07/23/07     |  |
| Basis:    | as received       | Analyzed: | 07/23/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 96  |  |
| MTBE                          | ND     | 4.8 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.8 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.8 |  |
| 1,2-Dichloroethane            | ND     | 4.8 |  |
| Benzene                       | ND     | 4.8 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.8 |  |
| Toluene                       | ND     | 4.8 |  |
| 1,2-Dibromoethane             | ND     | 4.8 |  |
| Ethylbenzene                  | ND     | 4.8 |  |
| m,p-Xylenes                   | ND     | 4.8 |  |
| o-Xylene                      | ND     | 4.8 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 105  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 119  | 76-135 |  |
| Toluene-d8            | 101  | 80-120 |  |
| Bromofluorobenzene    | 102  | 80-126 |  |



| Lab #:    | 196134            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(C)-40       | Diln Fac: | 0.9804       |  |
| Lab ID:   | 196134-009        | Batch#:   | 127494       |  |
| Matrix:   | Soil              | Sampled:  | 07/20/07     |  |
| Units:    | ug/Kg             | Received: | 07/23/07     |  |
| Basis:    | as received       | Analyzed: | 07/23/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 98  |  |
| MTBE                          | ND     | 4.9 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.9 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.9 |  |
| 1,2-Dichloroethane            | ND     | 4.9 |  |
| Benzene                       | ND     | 4.9 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.9 |  |
| Toluene                       | ND     | 4.9 |  |
| 1,2-Dibromoethane             | ND     | 4.9 |  |
| Ethylbenzene                  | ND     | 4.9 |  |
| m,p-Xylenes                   | ND     | 4.9 |  |
| o-Xylene                      | ND     | 4.9 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 106  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 120  | 76-135 |  |
| Toluene-d8            | 100  | 80-120 |  |
| Bromofluorobenzene    | 101  | 80-126 |  |



| Lab #:    | 196134            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(C)-51       | Diln Fac: | 1.000        |  |
| Lab ID:   | 196134-010        | Batch#:   | 127494       |  |
| Matrix:   | Soil              | Sampled:  | 07/20/07     |  |
| Units:    | ug/Kg             | Received: | 07/23/07     |  |
| Basis:    | as received       | Analyzed: | 07/23/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 100 |  |
| MTBE                          | ND     | 5.0 |  |
| Isopropyl Ether (DIPE)        | ND     | 5.0 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 5.0 |  |
| 1,2-Dichloroethane            | ND     | 5.0 |  |
| Benzene                       | ND     | 5.0 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 5.0 |  |
| Toluene                       | ND     | 5.0 |  |
| 1,2-Dibromoethane             | ND     | 5.0 |  |
| Ethylbenzene                  | ND     | 5.0 |  |
| m,p-Xylenes                   | ND     | 5.0 |  |
| o-Xylene                      | ND     | 5.0 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 107  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 119  | 76-135 |  |
| Toluene-d8            | 101  | 80-120 |  |
| Bromofluorobenzene    | 103  | 80-126 |  |



| Lab #:    | 196134            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(C)-60.5     | Diln Fac: | 0.9804       |  |
| Lab ID:   | 196134-011        | Batch#:   | 127494       |  |
| Matrix:   | Soil              | Sampled:  | 07/20/07     |  |
| Units:    | ug/Kg             | Received: | 07/23/07     |  |
| Basis:    | as received       | Analyzed: | 07/23/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 98  |  |
| MTBE                          | ND     | 4.9 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.9 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.9 |  |
| 1,2-Dichloroethane            | ND     | 4.9 |  |
| Benzene                       | ND     | 4.9 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.9 |  |
| Toluene                       | ND     | 4.9 |  |
| 1,2-Dibromoethane             | ND     | 4.9 |  |
| Ethylbenzene                  | ND     | 4.9 |  |
| m,p-Xylenes                   | ND     | 4.9 |  |
| o-Xylene                      | ND     | 4.9 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 107  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 121  | 76-135 |  |
| Toluene-d8            | 100  | 80-120 |  |
| Bromofluorobenzene    | 102  | 80-126 |  |



| Lab #:    | 196134            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(D)-5.5      | Diln Fac: | 0.9615       |  |
| Lab ID:   | 196134-013        | Batch#:   | 127494       |  |
| Matrix:   | Soil              | Sampled:  | 07/20/07     |  |
| Units:    | ug/Kg             | Received: | 07/23/07     |  |
| Basis:    | as received       | Analyzed: | 07/23/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 96  |  |
| MTBE                          | ND     | 4.8 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.8 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.8 |  |
| 1,2-Dichloroethane            | ND     | 4.8 |  |
| Benzene                       | ND     | 4.8 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.8 |  |
| Toluene                       | ND     | 4.8 |  |
| 1,2-Dibromoethane             | ND     | 4.8 |  |
| Ethylbenzene                  | ND     | 4.8 |  |
| m,p-Xylenes                   | ND     | 4.8 |  |
| o-Xylene                      | ND     | 4.8 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 108  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 123  | 76-135 |  |
| Toluene-d8            | 102  | 80-120 |  |
| Bromofluorobenzene    | 105  | 80-126 |  |



| Lab #:    | 196134            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(D)-10.5     | Diln Fac: | 0.9434       |  |
| Lab ID:   | 196134-014        | Batch#:   | 127494       |  |
| Matrix:   | Soil              | Sampled:  | 07/20/07     |  |
| Units:    | ug/Kg             | Received: | 07/23/07     |  |
| Basis:    | as received       | Analyzed: | 07/23/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 94  |  |
| MTBE                          | ND     | 4.7 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.7 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.7 |  |
| 1,2-Dichloroethane            | ND     | 4.7 |  |
| Benzene                       | ND     | 4.7 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.7 |  |
| Toluene                       | ND     | 4.7 |  |
| 1,2-Dibromoethane             | ND     | 4.7 |  |
| Ethylbenzene                  | ND     | 4.7 |  |
| m,p-Xylenes                   | ND     | 4.7 |  |
| o-Xylene                      | ND     | 4.7 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 109  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 126  | 76-135 |  |
| Toluene-d8            | 102  | 80-120 |  |
| Bromofluorobenzene    | 102  | 80-126 |  |



| Lab #:    | 196134            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(D)-15       | Diln Fac: | 0.9091       |  |
| Lab ID:   | 196134-015        | Batch#:   | 127494       |  |
| Matrix:   | Soil              | Sampled:  | 07/20/07     |  |
| Units:    | ug/Kg             | Received: | 07/23/07     |  |
| Basis:    | as received       | Analyzed: | 07/24/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 91  |  |
| MTBE                          | ND     | 4.5 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.5 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.5 |  |
| 1,2-Dichloroethane            | ND     | 4.5 |  |
| Benzene                       | ND     | 4.5 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.5 |  |
| Toluene                       | ND     | 4.5 |  |
| 1,2-Dibromoethane             | ND     | 4.5 |  |
| Ethylbenzene                  | ND     | 4.5 |  |
| m,p-Xylenes                   | ND     | 4.5 |  |
| o-Xylene                      | ND     | 4.5 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 108  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 126  | 76-135 |  |
| Toluene-d8            | 102  | 80-120 |  |
| Bromofluorobenzene    | 104  | 80-126 |  |



07/20/07

07/23/07

#### BTXE & Oxygenates Hanson Radum 196134 Location: LFR Levine Fricke Prep: EPA 5030B Project#: 001-09567-01 Analysis: EPA 8260B SS-31(D)-19.5 Field ID: Diln Fac: 0.9259 196134-016 Batch#: 127494

Sampled:

Received:

| •                      |           |             | .,,,    |
|------------------------|-----------|-------------|---------|
| Basis: as re           | eceived   | Analyzed: 0 | 7/24/07 |
|                        |           |             |         |
| Analyte                | Result    | t RL        |         |
| tert-Butyl Alcohol (TB | BA) ND    | 93          |         |
| MTBE                   | ND        | 4.6         |         |
| Isopropyl Ether (DIPE) | ND        | 4.6         |         |
| Ethyl tert-Butyl Ether | (ETBE) ND | 4.6         |         |
| 1,2-Dichloroethane     | ND        | 4.6         |         |
| Benzene                | ND        | 4.6         |         |
| Methyl tert-Amyl Ether | (TAME) ND | 4.6         |         |
| Toluene                | ND        | 4.6         |         |
| 1,2-Dibromoethane      | ND        | 4.6         |         |
| Ethylbenzene           | ND        | 4.6         |         |
| m,p-Xylenes            | ND        | 4.6         |         |
| o-Xylene               | ND        | 4.6         |         |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 108  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 124  | 76-135 |  |
| Toluene-d8            | 102  | 80-120 |  |
| Bromofluorobenzene    | 103  | 80-126 |  |

Lab #:

Client:

Lab ID:

Matrix:

Units:

Soil

ug/Kg



|           | BTXI              | E & Oxygenates |              |  |
|-----------|-------------------|----------------|--------------|--|
| Lab #:    | 196134            | Location:      | Hanson Radum |  |
| Client:   | LFR Levine Fricke | Prep:          | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis:      | EPA 8260B    |  |
| Type:     | LCS               | Basis:         | as received  |  |
| Lab ID:   | QC397378          | Diln Fac:      | 1.000        |  |
| Matrix:   | Soil              | Batch#:        | 127494       |  |
| Units:    | ug/Kg             | Analyzed:      | 07/23/07     |  |

| Analyte                       | Spiked | Result | %REC | Limits |
|-------------------------------|--------|--------|------|--------|
| tert-Butyl Alcohol (TBA)      | 125.0  | 125.2  | 100  | 56-130 |
| MTBE                          | 25.00  | 23.94  | 96   | 66-120 |
| Isopropyl Ether (DIPE)        | 25.00  | 22.73  | 91   | 57-120 |
| Ethyl tert-Butyl Ether (ETBE) | 25.00  | 21.67  | 87   | 68-120 |
| 1,2-Dichloroethane            | 25.00  | 25.72  | 103  | 73-120 |
| Benzene                       | 25.00  | 25.43  | 102  | 80-120 |
| Methyl tert-Amyl Ether (TAME) | 25.00  | 25.40  | 102  | 73-120 |
| Toluene                       | 25.00  | 25.49  | 102  | 80-120 |
| 1,2-Dibromoethane             | 25.00  | 25.09  | 100  | 80-120 |
| Ethylbenzene                  | 25.00  | 26.99  | 108  | 80-125 |
| m,p-Xylenes                   | 50.00  | 52.22  | 104  | 80-123 |
| o-Xylene                      | 25.00  | 26.38  | 106  | 80-122 |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 101  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 106  | 76-135 |  |
| Toluene-d8            | 100  | 80-120 |  |
| Bromofluorobenzene    | 98   | 80-126 |  |



|           | BTXE              | E & Oxygenates |              |  |
|-----------|-------------------|----------------|--------------|--|
| Lab #:    | 196134            | Location:      | Hanson Radum |  |
| Client:   | LFR Levine Fricke | Prep:          | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis:      | EPA 8260B    |  |
| Type:     | BLANK             | Basis:         | as received  |  |
| Lab ID:   | QC397379          | Diln Fac:      | 1.000        |  |
| Matrix:   | Soil              | Batch#:        | 127494       |  |
| Units:    | ug/Kg             | Analyzed:      | 07/23/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 100 |  |
| MTBE                          | ND     | 5.0 |  |
| Isopropyl Ether (DIPE)        | ND     | 5.0 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 5.0 |  |
| 1,2-Dichloroethane            | ND     | 5.0 |  |
| Benzene                       | ND     | 5.0 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 5.0 |  |
| Toluene                       | ND     | 5.0 |  |
| 1,2-Dibromoethane             | ND     | 5.0 |  |
| Ethylbenzene                  | ND     | 5.0 |  |
| m,p-Xylenes                   | ND     | 5.0 |  |
| o-Xylene                      | ND     | 5.0 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 104  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 107  | 76-135 |  |
| Toluene-d8            | 98   | 80-120 |  |
| Bromofluorobenzene    | 100  | 80-126 |  |



|           | BTXE & Oxygenates |           |              |  |  |
|-----------|-------------------|-----------|--------------|--|--|
| Lab #:    | 196134            | Location: | Hanson Radum |  |  |
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |  |
| Type:     | BLANK             | Basis:    | as received  |  |  |
| Lab ID:   | QC397380          | Diln Fac: | 1.000        |  |  |
| Matrix:   | Soil              | Batch#:   | 127494       |  |  |
| Units:    | ug/Kg             | Analyzed: | 07/23/07     |  |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 100 |  |
| MTBE                          | ND     | 5.0 |  |
| Isopropyl Ether (DIPE)        | ND     | 5.0 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 5.0 |  |
| 1,2-Dichloroethane            | ND     | 5.0 |  |
| Benzene                       | ND     | 5.0 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 5.0 |  |
| Toluene                       | ND     | 5.0 |  |
| 1,2-Dibromoethane             | ND     | 5.0 |  |
| Ethylbenzene                  | ND     | 5.0 |  |
| m,p-Xylenes                   | ND     | 5.0 |  |
| o-Xylene                      | ND     | 5.0 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 93   | 78-126 |  |
| 1,2-Dichloroethane-d4 | 93   | 76-135 |  |
| Toluene-d8            | 97   | 80-120 |  |
| Bromofluorobenzene    | 93   | 80-126 |  |



|                   | BTXE & Oxygenates           |                    |                           |  |  |
|-------------------|-----------------------------|--------------------|---------------------------|--|--|
| Lab #:<br>Client: | 196134<br>LFR Levine Fricke | Location:          | Hanson Radum<br>EPA 5030B |  |  |
| Project#:         | 001-09567-01                | Prep:<br>Analysis: | EPA 8260B                 |  |  |
| Field ID:         | ZZZZZZZZZZ                  | Diln Fac:          | 0.9804                    |  |  |
| MSS Lab ID:       | 196096-011                  | Batch#:            | 127494                    |  |  |
| Matrix:           | Soil                        | Sampled:           | 07/17/07                  |  |  |
| Units:            | ug/Kg                       | Received:          | 07/19/07                  |  |  |
| Basis:            | as received                 | Analyzed:          | 07/23/07                  |  |  |

| Type: MS                      |      |          | Lab ID: | QC397381 |      |        |
|-------------------------------|------|----------|---------|----------|------|--------|
| Analyte                       | MSS  | Result   | Spiked  | Result   | %REC | Limits |
| tert-Butyl Alcohol (TBA)      |      | <3.013   | 245.1   | 162.3    | 66   | 45-123 |
| MTBE                          |      | 1.011    | 49.02   | 41.34    | 82   | 55-120 |
| Isopropyl Ether (DIPE)        |      | <0.1696  | 49.02   | 41.09    | 84   | 50-120 |
| Ethyl tert-Butyl Ether (ETBE) |      | <0.08887 | 49.02   | 39.85    | 81   | 58-120 |
| 1,2-Dichloroethane            |      | <0.1943  | 49.02   | 42.15    | 86   | 56-120 |
| Benzene                       |      | 0.2064   | 49.02   | 47.19    | 96   | 61-122 |
| Methyl tert-Amyl Ether (TAME) |      | <0.1769  | 49.02   | 43.93    | 90   | 60-120 |
| Toluene                       |      | <0.5418  | 49.02   | 44.85    | 92   | 57-124 |
| 1,2-Dibromoethane             |      | <0.2179  | 49.02   | 39.30    | 80   | 57-120 |
| Ethylbenzene                  |      | <0.5715  | 49.02   | 42.87    | 87   | 55-129 |
| m,p-Xylenes                   |      | <1.282   | 98.04   | 81.15    | 83   | 53-127 |
| o-Xylene                      |      | <0.5054  | 49.02   | 41.21    | 84   | 54-127 |
| Surrogate                     | %REC | Limits   |         |          |      |        |
| Dibromofluoromethane          | 100  | 78-126   |         |          |      |        |
| 1,2-Dichloroethane-d4         | 92   | 76-135   |         |          |      |        |
| Toluene-d8                    | 99   | 80-120   |         |          |      |        |
| Bromofluorobenzene            | 106  | 80-126   |         |          |      |        |

| Type: MSD                     |      |        | Lab ID: | QC3    | 97382 |        |     |     |
|-------------------------------|------|--------|---------|--------|-------|--------|-----|-----|
| Analyte                       |      | Spiked |         | Result | %REC  | Limits | RPD | Lim |
| tert-Butyl Alcohol (TBA)      |      | 245.1  |         | 140.9  | 57    | 45-123 | 14  | 32  |
| MTBE                          |      | 49.02  |         | 38.58  | 77    | 55-120 | 7   | 20  |
| Isopropyl Ether (DIPE)        |      | 49.02  |         | 40.43  | 82    | 50-120 | 2   | 20  |
| Ethyl tert-Butyl Ether (ETBE) |      | 49.02  |         | 39.10  | 80    | 58-120 | 2   | 20  |
| 1,2-Dichloroethane            |      | 49.02  |         | 37.01  | 76    | 56-120 | 13  | 20  |
| Benzene                       |      | 49.02  |         | 46.77  | 95    | 61-122 | 1   | 20  |
| Methyl tert-Amyl Ether (TAME) |      | 49.02  |         | 44.24  | 90    | 60-120 | 1   | 20  |
| Toluene                       |      | 49.02  |         | 46.95  | 96    | 57-124 | 5   | 21  |
| 1,2-Dibromoethane             |      | 49.02  |         | 36.61  | 75    | 57-120 | 7   | 20  |
| Ethylbenzene                  |      | 49.02  |         | 47.19  | 96    | 55-129 | 10  | 23  |
| m,p-Xylenes                   |      | 98.04  |         | 92.06  | 94    | 53-127 | 13  | 23  |
| o-Xylene                      |      | 49.02  |         | 45.41  | 93    | 54-127 | 10  | 22  |
| Surrogate                     | %REC | Limits |         |        |       |        |     |     |
| Dibromofluoromethane          | 92   | 78-126 |         |        |       |        |     |     |
| 1,2-Dichloroethane-d4         | 81   | 76-135 |         |        |       |        |     |     |
| Toluene-d8                    | 97   | 80-120 |         |        |       |        |     |     |
| Bromofluorobenzene            | 99   | 80-126 |         |        |       |        |     |     |



|           | Semivolatile      | Organics by GC | /MS          |
|-----------|-------------------|----------------|--------------|
| Lab #:    | 196134            | Location:      | Hanson Radum |
| Client:   | LFR Levine Fricke | Prep:          | EPA 3550B    |
| Project#: | 001-09567-01      | Analysis:      | EPA 8270C    |
| Field ID: | SS-31(C)-5.5      | Batch#:        | 127543       |
| Lab ID:   | 196134-003        | Sampled:       | 07/20/07     |
| Matrix:   | Soil              | Received:      | 07/23/07     |
| Units:    | ug/Kg             | Prepared:      | 07/24/07     |
| Basis:    | as received       | Analyzed:      | 07/25/07     |
| Diln Fac: | 1.000             | _              |              |

| Analyte                          | Result   | RL    |  |
|----------------------------------|----------|-------|--|
| N-Nitrosodimethylamine           | ND       | 330   |  |
| Phenol                           | ND       | 330   |  |
| bis(2-Chloroethyl)ether          | ND       | 330   |  |
| 2-Chlorophenol                   | ND       | 330   |  |
| 1,3-Dichlorobenzene              | ND       | 330   |  |
| 1,4-Dichlorobenzene              | ND       | 330   |  |
| Benzyl alcohol                   | ND<br>ND | 330   |  |
| 1,2-Dichlorobenzene              | ND<br>ND | 330   |  |
|                                  | ND<br>ND | 330   |  |
| 2-Methylphenol                   | ND<br>ND | 330   |  |
| bis(2-Chloroisopropyl) ether     | ND<br>ND | 330   |  |
| 4-Methylphenol                   |          | 330   |  |
| N-Nitroso-di-n-propylamine       | ND<br>ND | 330   |  |
| Hexachloroethane<br>Nitrobenzene |          | 330   |  |
|                                  | ND       | 330   |  |
| Isophorone                       | ND       |       |  |
| 2-Nitrophenol                    | ND       | 660   |  |
| 2,4-Dimethylphenol               | ND       | 330   |  |
| Benzoic acid                     | ND       | 1,700 |  |
| bis(2-Chloroethoxy)methane       | ND       | 330   |  |
| 2,4-Dichlorophenol               | ND       | 330   |  |
| 1,2,4-Trichlorobenzene           | ND       | 330   |  |
| Naphthalene                      | ND       | 66    |  |
| 4-Chloroaniline                  | ND       | 330   |  |
| Hexachlorobutadiene              | ND       | 330   |  |
| 4-Chloro-3-methylphenol          | ND       | 330   |  |
| 2-Methylnaphthalene              | ND       | 66    |  |
| Hexachlorocyclopentadiene        | ND       | 660   |  |
| 2,4,6-Trichlorophenol            | ND       | 330   |  |
| 2,4,5-Trichlorophenol            | ND       | 330   |  |
| 2-Chloronaphthalene              | ND       | 330   |  |
| 2-Nitroaniline                   | ND       | 660   |  |
| Dimethylphthalate                | ND       | 330   |  |
| Acenaphthylene                   | ND       | 66    |  |
| 2,6-Dinitrotoluene               | ND       | 330   |  |
| 3-Nitroaniline                   | ND       | 660   |  |
| Acenaphthene                     | ND       | 66    |  |
| 2,4-Dinitrophenol                | ND       | 660   |  |
| 4-Nitrophenol                    | ND       | 660   |  |
| Dibenzofuran                     | ND       | 330   |  |
| 2,4-Dinitrotoluene               | ND       | 330   |  |
| Diethylphthalate                 | ND       | 330   |  |
| Fluorene                         | ND       | 66    |  |
| 4-Chlorophenyl-phenylether       | ND       | 330   |  |
| 4-Nitroaniline                   | ND       | 660   |  |
| 4,6-Dinitro-2-methylphenol       | ND       | 660   |  |
| N-Nitrosodiphenylamine           | ND       | 330   |  |
| Azobenzene                       | ND       | 330   |  |
| 4-Bromophenyl-phenylether        | ND       | 330   |  |
| Hexachlorobenzene                | ND       | 330   |  |
| Pentachlorophenol                | ND       | 660   |  |
| Phenanthrene                     | ND       | 66    |  |
| Anthracene                       | ND       | 66    |  |
| Di-n-butylphthalate              | ND       | 330   |  |
|                                  |          |       |  |

ND= Not Detected RL= Reporting Limit Page 1 of 2



| Semivolatile Organics by GC/MS |                   |           |              |  |
|--------------------------------|-------------------|-----------|--------------|--|
| Lab #:                         | 196134            | Location: | Hanson Radum |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3550B    |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8270C    |  |
| Field ID:                      | SS-31(C)-5.5      | Batch#:   | 127543       |  |
| Lab ID:                        | 196134-003        | Sampled:  | 07/20/07     |  |
| Matrix:                        | Soil              | Received: | 07/23/07     |  |
| Units:                         | ug/Kg             | Prepared: | 07/24/07     |  |
| Basis:                         | as received       | Analyzed: | 07/25/07     |  |
| Diln Fac:                      | 1.000             |           |              |  |

| Analyte                    | Result      | RL  |  |
|----------------------------|-------------|-----|--|
| Fluoranthene               | ND          | 66  |  |
| Pyrene                     | ND          | 66  |  |
| Butylbenzylphthalate       | ND          | 330 |  |
| 3,3'-Dichlorobenzidine     | ND          | 660 |  |
| Benzo(a)anthracene         | ND          | 66  |  |
| Chrysene                   | ND          | 66  |  |
| bis(2-Ethylhexyl)phthalate | ND          | 330 |  |
| Di-n-octylphthalate        | ND          | 330 |  |
| Benzo(b)fluoranthene       | ND          | 66  |  |
| Benzo(k)fluoranthene       | ND          | 66  |  |
| Benzo(a)pyrene             | ND          | 66  |  |
| Indeno(1,2,3-cd)pyrene     | ND          | 66  |  |
| Dibenz(a,h)anthracene      | ND          | 66  |  |
| Benzo(g,h,i)perylene       | ND          | 66  |  |
|                            |             |     |  |
| Surrogate                  | %REC Limits |     |  |
| 2-Fluorophenol             | 50 28-120   |     |  |
| Phenol-d5                  | 57 30-120   |     |  |
| 2,4,6-Tribromophenol       | 73 20-120   |     |  |
| Nitrobenzene-d5            | 52 39-120   |     |  |
| 2-Fluorobiphenyl           | 61 44-120   |     |  |
| Terphenyl-d14              | 64 39-120   |     |  |



| Semivolatile Organics by GC/MS |                   |           |              |
|--------------------------------|-------------------|-----------|--------------|
| Lab #:                         | 196134            | Location: | Hanson Radum |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3550B    |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8270C    |
| Field ID:                      | SS-31(C)-10.5     | Batch#:   | 127543       |
| Lab ID:                        | 196134-004        | Sampled:  | 07/20/07     |
| Matrix:                        | Soil              | Received: | 07/23/07     |
| Units:                         | ug/Kg             | Prepared: | 07/24/07     |
| Basis:                         | as received       | Analyzed: | 07/25/07     |
| Diln Fac:                      | 1.000             | _         |              |

| Analyte                      | Result   | RL    |  |
|------------------------------|----------|-------|--|
| N-Nitrosodimethylamine       | ND       | 330   |  |
| Phenol                       | ND       | 330   |  |
| bis(2-Chloroethyl)ether      | ND       | 330   |  |
| 2-Chlorophenol               | ND       | 330   |  |
| 1,3-Dichlorobenzene          | ND<br>ND | 330   |  |
|                              |          | 330   |  |
| 1,4-Dichlorobenzene          | ND       |       |  |
| Benzyl alcohol               | ND       | 330   |  |
| 1,2-Dichlorobenzene          | ND       | 330   |  |
| 2-Methylphenol               | ND       | 330   |  |
| bis(2-Chloroisopropyl) ether | ND       | 330   |  |
| 4-Methylphenol               | ND       | 330   |  |
| N-Nitroso-di-n-propylamine   | ND       | 330   |  |
| Hexachloroethane             | ND       | 330   |  |
| Nitrobenzene                 | ND       | 330   |  |
| Isophorone                   | ND       | 330   |  |
| 2-Nitrophenol                | ND       | 660   |  |
| 2,4-Dimethylphenol           | ND       | 330   |  |
| Benzoic acid                 | ND       | 1,700 |  |
| bis(2-Chloroethoxy)methane   | ND       | 330   |  |
| 2,4-Dichlorophenol           | ND       | 330   |  |
| 1,2,4-Trichlorobenzene       | ND       | 330   |  |
| Naphthalene                  | ND       | 66    |  |
| 4-Chloroaniline              | ND       | 330   |  |
| Hexachlorobutadiene          | ND       | 330   |  |
| 4-Chloro-3-methylphenol      | ND       | 330   |  |
| 2-Methylnaphthalene          | ND       | 66    |  |
| Hexachlorocyclopentadiene    | ND       | 660   |  |
| 2,4,6-Trichlorophenol        | ND       | 330   |  |
| 2,4,5-Trichlorophenol        | ND       | 330   |  |
| 2-Chloronaphthalene          | ND       | 330   |  |
| 2-Nitroaniline               | ND       | 660   |  |
| Dimethylphthalate            | ND       | 330   |  |
| Acenaphthylene               | ND       | 66    |  |
| 2,6-Dinitrotoluene           | ND       | 330   |  |
| 3-Nitroaniline               | ND       | 660   |  |
| Acenaphthene                 | ND       | 66    |  |
| 2,4-Dinitrophenol            | ND       | 660   |  |
| 4-Nitrophenol                | ND<br>ND | 660   |  |
| Dibenzofuran                 | ND<br>ND | 330   |  |
| 2,4-Dinitrotoluene           | ND<br>ND | 330   |  |
| Diethylphthalate             | ND<br>ND | 330   |  |
|                              | ND<br>ND | 66    |  |
| Fluorene                     |          | 330   |  |
| 4-Chlorophenyl-phenylether   | ND       |       |  |
| 4-Nitroaniline               | ND       | 660   |  |
| 4,6-Dinitro-2-methylphenol   | ND       | 660   |  |
| N-Nitrosodiphenylamine       | ND       | 330   |  |
| Azobenzene                   | ND       | 330   |  |
| 4-Bromophenyl-phenylether    | ND       | 330   |  |
| Hexachlorobenzene            | ND       | 330   |  |
| Pentachlorophenol            | ND       | 660   |  |
| Phenanthrene                 | ND       | 66    |  |
| Anthracene                   | ND       | 66    |  |
| Di-n-butylphthalate          | ND       | 330   |  |

ND= Not Detected RL= Reporting Limit Page 1 of 2



| Semivolatile Organics by GC/MS |                   |           |              |
|--------------------------------|-------------------|-----------|--------------|
| Lab #:                         | 196134            | Location: | Hanson Radum |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3550B    |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8270C    |
| Field ID:                      | SS-31(C)-10.5     | Batch#:   | 127543       |
| Lab ID:                        | 196134-004        | Sampled:  | 07/20/07     |
| Matrix:                        | Soil              | Received: | 07/23/07     |
| Units:                         | ug/Kg             | Prepared: | 07/24/07     |
| Basis:                         | as received       | Analyzed: | 07/25/07     |
| Diln Fac:                      | 1.000             |           |              |

| Analyte                                 | Result                          | RL  |  |
|-----------------------------------------|---------------------------------|-----|--|
| Fluoranthene                            | ND                              | 66  |  |
| Pyrene                                  | ND                              | 66  |  |
| Butylbenzylphthalate                    | ND                              | 330 |  |
| 3,3 <sup>°</sup> -Dichlorobenzidine     | ND                              | 660 |  |
| Benzo(a)anthracene                      | ND                              | 66  |  |
| Chrysene                                | ND                              | 66  |  |
| bis(2-Ethylhexyl)phthalate              | ND                              | 330 |  |
| Di-n-octylphthalate                     | ND                              | 330 |  |
| Benzo(b)fluoranthene                    | ND                              | 66  |  |
| Benzo(k)fluoranthene                    | ND                              | 66  |  |
| Benzo(a)pyrene                          | ND                              | 66  |  |
| Indeno(1,2,3-cd)pyrene                  | ND                              | 66  |  |
| Dibenz(a,h)anthracene                   | ND                              | 66  |  |
| Benzo(g,h,i)perylene                    | ND                              | 66  |  |
| Current and ha                          | PEG Limita                      |     |  |
| Surrogate                               | <u>%REC Limits</u><br>59 28-120 |     |  |
| 2-Fluorophenol<br>Phenol-d5             |                                 |     |  |
|                                         |                                 |     |  |
| 2,4,6-Tribromophenol<br>Nitrobenzene-d5 | 79 20-120<br>59 39-120          |     |  |
|                                         |                                 |     |  |
| 2-Fluorobiphenyl                        | 60 44-120                       |     |  |
| Terphenyl-d14                           | 67 39-120                       |     |  |



| Semivolatile Organics by GC/MS |                      |           |              |
|--------------------------------|----------------------|-----------|--------------|
| Lab #:                         | 196134               | Location: | Hanson Radum |
| Client:                        | LFR Levine Fricke    | Prep:     | EPA 3550B    |
| Project#:                      | 001-09567-01         | Analysis: | EPA 8270C    |
| Field ID:                      | SS-31(D)-5.5         | Batch#:   | 127543       |
| Lab ID:                        | 196134-013           | Sampled:  | 07/20/07     |
| Matrix:                        | Soil                 | Received: | 07/23/07     |
| Units:                         | ug/Kg                | Prepared: | 07/24/07     |
| Basis:<br>Diln Fac:            | as received<br>1.000 | Analyzed: | 07/25/07     |

| Analyte                      | Result   | RL    |
|------------------------------|----------|-------|
| N-Nitrosodimethylamine       | ND       | 330   |
| Phenol                       | ND       | 330   |
| bis(2-Chloroethyl)ether      | ND       | 330   |
| 2-Chlorophenol               | ND       | 330   |
| 1,3-Dichlorobenzene          | ND<br>ND | 330   |
|                              |          | 330   |
| 1,4-Dichlorobenzene          | ND       |       |
| Benzyl alcohol               | ND       | 330   |
| 1,2-Dichlorobenzene          | ND       | 330   |
| 2-Methylphenol               | ND       | 330   |
| bis(2-Chloroisopropyl) ether | ND       | 330   |
| 4-Methylphenol               | ND       | 330   |
| N-Nitroso-di-n-propylamine   | ND       | 330   |
| Hexachloroethane             | ND       | 330   |
| Nitrobenzene                 | ND       | 330   |
| Isophorone                   | ND       | 330   |
| 2-Nitrophenol                | ND       | 660   |
| 2,4-Dimethylphenol           | ND       | 330   |
| Benzoic acid                 | ND       | 1,600 |
| bis(2-Chloroethoxy)methane   | ND       | 330   |
| 2,4-Dichlorophenol           | ND       | 330   |
| 1,2,4-Trichlorobenzene       | ND       | 330   |
| Naphthalene                  | ND       | 66    |
| 4-Chloroaniline              | ND       | 330   |
| Hexachlorobutadiene          | ND       | 330   |
| 4-Chloro-3-methylphenol      | ND       | 330   |
| 2-Methylnaphthalene          | ND       | 66    |
| Hexachlorocyclopentadiene    | ND       | 660   |
| 2,4,6-Trichlorophenol        | ND       | 330   |
| 2,4,5-Trichlorophenol        | ND       | 330   |
| 2-Chloronaphthalene          | ND       | 330   |
| 2-Nitroaniline               | ND       | 660   |
| Dimethylphthalate            | ND       | 330   |
| Acenaphthylene               | ND       | 66    |
| 2,6-Dinitrotoluene           | ND       | 330   |
| 3-Nitroaniline               | ND       | 660   |
| Acenaphthene                 | ND       | 66    |
| 2,4-Dinitrophenol            | ND       | 660   |
| 4-Nitrophenol                | ND<br>ND | 660   |
| Dibenzofuran                 | ND<br>ND | 330   |
| 2,4-Dinitrotoluene           | ND<br>ND | 330   |
| Diethylphthalate             | ND<br>ND | 330   |
|                              | ND<br>ND | 66    |
| Fluorene                     |          | 330   |
| 4-Chlorophenyl-phenylether   | ND       |       |
| 4-Nitroaniline               | ND       | 660   |
| 4,6-Dinitro-2-methylphenol   | ND       | 660   |
| N-Nitrosodiphenylamine       | ND       | 330   |
| Azobenzene                   | ND       | 330   |
| 4-Bromophenyl-phenylether    | ND       | 330   |
| Hexachlorobenzene            | ND       | 330   |
| Pentachlorophenol            | ND       | 660   |
| Phenanthrene                 | ND       | 66    |
| Anthracene                   | ND       | 66    |
| Di-n-butylphthalate          | ND       | 330   |

ND= Not Detected RL= Reporting Limit Page 1 of 2



| Semivolatile Organics by GC/MS |                   |           |              |  |
|--------------------------------|-------------------|-----------|--------------|--|
| Lab #:                         | 196134            | Location: | Hanson Radum |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3550B    |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8270C    |  |
| Field ID:                      | SS-31(D)-5.5      | Batch#:   | 127543       |  |
| Lab ID:                        | 196134-013        | Sampled:  | 07/20/07     |  |
| Matrix:                        | Soil              | Received: | 07/23/07     |  |
| Units:                         | ug/Kg             | Prepared: | 07/24/07     |  |
| Basis:                         | as received       | Analyzed: | 07/25/07     |  |
| Diln Fac:                      | 1.000             |           |              |  |

| Analyte                    | Result      | RL  |  |
|----------------------------|-------------|-----|--|
| Fluoranthene               | ND          | 66  |  |
| Pyrene                     | ND          | 66  |  |
| Butylbenzylphthalate       | ND          | 330 |  |
| 3,3'-Dichlorobenzidine     | ND          | 660 |  |
| Benzo(a)anthracene         | ND          | 66  |  |
| Chrysene                   | ND          | 66  |  |
| bis(2-Ethylhexyl)phthalate | ND          | 330 |  |
| Di-n-octylphthalate        | ND          | 330 |  |
| Benzo(b)fluoranthene       | ND          | 66  |  |
| Benzo(k)fluoranthene       | ND          | 66  |  |
| Benzo(a)pyrene             | ND          | 66  |  |
| Indeno(1,2,3-cd)pyrene     | ND          | 66  |  |
| Dibenz(a,h)anthracene      | ND          | 66  |  |
| Benzo(g,h,i)perylene       | ND          | 66  |  |
|                            |             |     |  |
| Surrogate                  | %REC Limits |     |  |
| 2-Fluorophenol             | 55 28-120   |     |  |
| Phenol-d5                  | 58 30-120   |     |  |
| 2,4,6-Tribromophenol       | 72 20-120   |     |  |
| Nitrobenzene-d5            | 54 39-120   |     |  |
| 2-Fluorobiphenyl           | 60 44-120   |     |  |
| Terphenyl-d14              | 65 39-120   |     |  |



| Semivolatile Organics by GC/MS |                      |           |              |
|--------------------------------|----------------------|-----------|--------------|
| Lab #:                         | 196134               | Location: | Hanson Radum |
| Client:                        | LFR Levine Fricke    | Prep:     | EPA 3550B    |
| Project#:                      | 001-09567-01         | Analysis: | EPA 8270C    |
| Field ID:                      | SS-31(D)-10.5        | Batch#:   | 127666       |
| Lab ID:                        | 196134-014           | Sampled:  | 07/20/07     |
| Matrix:                        | Soil                 | Received: | 07/23/07     |
| Units:                         | ug/Kg                | Prepared: | 07/26/07     |
| Basis:<br>Diln Fac:            | as received<br>1.000 | Analyzed: | 07/26/07     |

| Analyte                                | Result   | RL    |   |
|----------------------------------------|----------|-------|---|
| N-Nitrosodimethylamine                 | ND       | 330   | _ |
| Phenol                                 | ND       | 330   |   |
| bis(2-Chloroethyl)ether                | ND       | 330   |   |
| 2-Chlorophenol                         | ND       | 330   |   |
|                                        | ND<br>ND | 330   |   |
| 1,3-Dichlorobenzene                    |          | 330   |   |
| 1,4-Dichlorobenzene                    | ND       |       |   |
| Benzyl alcohol                         | ND       | 330   |   |
| 1,2-Dichlorobenzene                    | ND       | 330   |   |
| 2-Methylphenol                         | ND       | 330   |   |
| bis(2-Chloroisopropyl) ether           | ND       | 330   |   |
| 4-Methylphenol                         | ND       | 330   |   |
| N-Nitroso-di-n-propylamine             | ND       | 330   |   |
| Hexachloroethane                       | ND       | 330   |   |
| Nitrobenzene                           | ND       | 330   |   |
| Isophorone                             | ND       | 330   |   |
| 2-Nitrophenol                          | ND       | 670   |   |
| 2,4-Dimethylphenol                     | ND       | 330   |   |
| Benzoic acid                           | ND       | 1,700 |   |
| bis(2-Chloroethoxy)methane             | ND       | 330   |   |
| 2,4-Dichlorophenol                     | ND       | 330   |   |
| 1,2,4-Trichlorobenzene                 | ND       | 330   |   |
| Naphthalene                            | ND       | 67    |   |
| 4-Chloroaniline                        | ND       | 330   |   |
| Hexachlorobutadiene                    | ND       | 330   |   |
| 4-Chloro-3-methylphenol                | ND       | 330   |   |
| 2-Methylnaphthalene                    | ND       | 67    |   |
| Hexachlorocyclopentadiene              | ND       | 670   |   |
| 2,4,6-Trichlorophenol                  | ND       | 330   |   |
| 2,4,5-Trichlorophenol                  | ND       | 330   |   |
| 2-Chloronaphthalene                    | ND       | 330   |   |
| 2-Nitroaniline                         | ND       | 670   |   |
| Dimethylphthalate                      | ND       | 330   |   |
| Acenaphthylene                         | ND       | 67    |   |
| 2,6-Dinitrotoluene                     | ND       | 330   |   |
| 3-Nitroaniline                         | ND       | 670   |   |
| Acenaphthene                           | ND       | 67    |   |
| 2,4-Dinitrophenol                      | ND       | 670   |   |
| 4-Nitrophenol                          | ND       | 670   |   |
| Dibenzofuran                           | ND<br>ND | 330   |   |
| 2,4-Dinitrotoluene                     | ND<br>ND | 330   |   |
| Diethylphthalate                       | ND<br>ND | 330   |   |
|                                        | ND<br>ND | 67    |   |
| Fluorene<br>4-Chlorophenyl-phenylether | ND<br>ND | 330   |   |
|                                        |          | 670   |   |
| 4-Nitroaniline                         | ND       |       |   |
| 4,6-Dinitro-2-methylphenol             | ND       | 670   |   |
| N-Nitrosodiphenylamine                 | ND       | 330   |   |
| Azobenzene                             | ND       | 330   |   |
| 4-Bromophenyl-phenylether              | ND       | 330   |   |
| Hexachlorobenzene                      | ND       | 330   |   |
| Pentachlorophenol                      | ND       | 670   |   |
| Phenanthrene                           | ND       | 67    |   |
| Anthracene                             | ND       | 67    |   |
| Di-n-butylphthalate                    | ND       | 330   |   |

ND= Not Detected RL= Reporting Limit Page 1 of 2



| Semivolatile Organics by GC/MS |                   |           |              |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                         | 196134            | Location: | Hanson Radum |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3550B    |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8270C    |  |  |
| Field ID:                      | SS-31(D)-10.5     | Batch#:   | 127666       |  |  |
| Lab ID:                        | 196134-014        | Sampled:  | 07/20/07     |  |  |
| Matrix:                        | Soil              | Received: | 07/23/07     |  |  |
| Units:                         | ug/Kg             | Prepared: | 07/26/07     |  |  |
| Basis:                         | as received       | Analyzed: | 07/26/07     |  |  |
| Diln Fac:                      | 1.000             |           |              |  |  |

| Analyte                    | Result             | RL  |
|----------------------------|--------------------|-----|
| Fluoranthene               | ND                 | 67  |
| Pyrene                     | ND                 | 67  |
| Butylbenzylphthalate       | ND                 | 330 |
| 3,3'-Dichlorobenzidine     | ND                 | 670 |
| Benzo(a)anthracene         | ND                 | 67  |
| Chrysene                   | ND                 | 67  |
| bis(2-Ethylhexyl)phthalate | ND                 | 330 |
| Di-n-octylphthalate        | ND                 | 330 |
| Benzo(b)fluoranthene       | ND                 | 67  |
| Benzo(k)fluoranthene       | ND                 | 67  |
| Benzo(a)pyrene             | ND                 | 67  |
| Indeno(1,2,3-cd)pyrene     | ND                 | 67  |
| Dibenz(a,h)anthracene      | ND                 | 67  |
| Benzo(g,h,i)perylene       | ND                 | 67  |
|                            |                    |     |
| Surrogate                  | <u>%REC</u> Limits |     |
| 2-Fluorophenol             | 74 28-120          |     |
| Phenol-d5                  | 75 30-120          |     |
| 2,4,6-Tribromophenol       | 82 20-120          |     |
| Nitrobenzene-d5            | 73 39-120          |     |
| 2-Fluorobiphenyl           | 72 44-120          |     |
| Terphenyl-d14              | 68 39-120          |     |



|           | Semivolat:        | ile Organics by G | C/MS         |  |
|-----------|-------------------|-------------------|--------------|--|
| Lab #:    | 196134            | Location:         | Hanson Radum |  |
| Client:   | LFR Levine Fricke | Prep:             | EPA 3550B    |  |
| Project#: | 001-09567-01      | Analysis:         | EPA 8270C    |  |
| Type:     | BLANK             | Diln Fac:         | 1.000        |  |
| Lab ID:   | QC397616          | Batch#:           | 127543       |  |
| Matrix:   | Soil              | Prepared:         | 07/24/07     |  |
| Units:    | uq/Kq             | Analyzed:         | 07/24/07     |  |
| Basis:    | as received       | -                 |              |  |

| Analyte                      | Result | RL    |  |
|------------------------------|--------|-------|--|
| N-Nitrosodimethylamine       | ND     | 330   |  |
| Phenol                       | ND     | 330   |  |
| bis(2-Chloroethyl)ether      | ND     | 330   |  |
| 2-Chlorophenol               | ND     | 330   |  |
| 1,3-Dichlorobenzene          | ND     | 330   |  |
| 1,4-Dichlorobenzene          | ND     | 330   |  |
| Benzyl alcohol               | ND     | 330   |  |
|                              | ND     | 330   |  |
| 1,2-Dichlorobenzene          |        | 330   |  |
| 2-Methylphenol               | ND     |       |  |
| bis(2-Chloroisopropyl) ether | ND     | 330   |  |
| 4-Methylphenol               | ND     | 330   |  |
| N-Nitroso-di-n-propylamine   | ND     | 330   |  |
| Hexachloroethane             | ND     | 330   |  |
| Nitrobenzene                 | ND     | 330   |  |
| Isophorone                   | ND     | 330   |  |
| 2-Nitrophenol                | ND     | 660   |  |
| 2,4-Dimethylphenol           | ND     | 330   |  |
| Benzoic acid                 | ND     | 1,700 |  |
| bis(2-Chloroethoxy)methane   | ND     | 330   |  |
| 2,4-Dichlorophenol           | ND     | 330   |  |
| 1,2,4-Trichlorobenzene       | ND     | 330   |  |
| Naphthalene                  | ND     | 66    |  |
| 4-Chloroaniline              | ND     | 330   |  |
| Hexachlorobutadiene          | ND     | 330   |  |
| 4-Chloro-3-methylphenol      | ND     | 330   |  |
| 2-Methylnaphthalene          | ND     | 66    |  |
| Hexachlorocyclopentadiene    | ND     | 660   |  |
| 2,4,6-Trichlorophenol        | ND     | 330   |  |
| 2,4,5-Trichlorophenol        | ND     | 330   |  |
| 2-Chloronaphthalene          | ND     | 330   |  |
| 2-Nitroaniline               | ND     | 660   |  |
|                              | ND     | 330   |  |
| Dimethylphthalate            |        | 66    |  |
| Acenaphthylene               | ND     |       |  |
| 2,6-Dinitrotoluene           | ND     | 330   |  |
| 3-Nitroaniline               | ND     | 660   |  |
| Acenaphthene                 | ND     | 66    |  |
| 2,4-Dinitrophenol            | ND     | 660   |  |
| 4-Nitrophenol                | ND     | 660   |  |
| Dibenzofuran                 | ND     | 330   |  |
| 2,4-Dinitrotoluene           | ND     | 330   |  |
| Diethylphthalate             | ND     | 330   |  |
| Fluorene                     | ND     | 66    |  |
| 4-Chlorophenyl-phenylether   | ND     | 330   |  |
| 4-Nitroaniline               | ND     | 660   |  |
| 4,6-Dinitro-2-methylphenol   | ND     | 660   |  |
| N-Nitrosodiphenylamine       | ND     | 330   |  |
| Azobenzene                   | ND     | 330   |  |
| 4-Bromophenyl-phenylether    | ND     | 330   |  |
| Hexachlorobenzene            | ND     | 330   |  |
| Pentachlorophenol            | ND     | 660   |  |
| Phenanthrene                 | ND     | 66    |  |
| Anthracene                   | ND     | 66    |  |
| Di-n-butylphthalate          | ND     | 330   |  |
| DI II DUCYIPIICIIAIACE       |        | 550   |  |

ND= Not Detected RL= Reporting Limit



|                  | Semivolat         | ile Organics by G | C/MS         |  |
|------------------|-------------------|-------------------|--------------|--|
| Lab #:           | 196134            | Location:         | Hanson Radum |  |
| Client:          | LFR Levine Fricke | Prep:             | EPA 3550B    |  |
| Project#:        | 001-09567-01      | Analysis:         | EPA 8270C    |  |
| Type:<br>Lab ID: | BLANK             | Diln Fac:         | 1.000        |  |
| Lab ID:          | QC397616          | Batch#:           | 127543       |  |
| Matrix:          | Soil              | Prepared:         | 07/24/07     |  |
| Units:           | ug/Kg             | Analyzed:         | 07/24/07     |  |
| Basis:           | as received       | _                 |              |  |

| Analyte                    | Result           | RL  |  |
|----------------------------|------------------|-----|--|
| Fluoranthene               | ND               | 66  |  |
| Pyrene                     | ND               | 66  |  |
| Butylbenzylphthalate       | ND               | 330 |  |
| 3,3'-Dichlorobenzidine     | ND               | 660 |  |
| Benzo(a)anthracene         | ND               | 66  |  |
| Chrysene                   | ND               | 66  |  |
| bis(2-Ethylhexyl)phthalate | ND               | 330 |  |
| Di-n-octylphthalate        | ND               | 330 |  |
| Benzo(b)fluoranthene       | ND               | 66  |  |
| Benzo(k)fluoranthene       | ND               | 66  |  |
| Benzo(a)pyrene             | ND               | 66  |  |
| Indeno(1,2,3-cd)pyrene     | ND               | 66  |  |
| Dibenz(a,h)anthracene      | ND               | 66  |  |
| Benzo(g,h,i)perylene       | ND               | 66  |  |
| Surrogate                  | %REC Limits      |     |  |
| 2-Fluorophenol             | 70 28-120        |     |  |
| Phenol-d5                  | 69 30-120        |     |  |
| 2,4,6-Tribromophenol       | 88 20-120        |     |  |
| Nitrobenzene-d5            | 69 <u>39-120</u> |     |  |
| 2-Fluorobiphenyl           | 78 44-120        |     |  |
| Terphenyl-d14              | 73 39-120        |     |  |
| Terbuenta-ara              | 75 59-120        |     |  |



|           | Semivolati        | le Organics by G | C/MS         |  |
|-----------|-------------------|------------------|--------------|--|
| Lab #:    | 196134            | Location:        | Hanson Radum |  |
| Client:   | LFR Levine Fricke | Prep:            | EPA 3550B    |  |
| Project#: | 001-09567-01      | Analysis:        | EPA 8270C    |  |
| Type:     | LCS               | Diln Fac:        | 1.000        |  |
| Lab ID:   | QC397617          | Batch#:          | 127543       |  |
| Matrix:   | Soil              | Prepared:        | 07/24/07     |  |
| Units:    | ug/Kg             | Analyzed:        | 07/24/07     |  |
| Basis:    | as received       |                  |              |  |

| Analyte                    | Spiked | Result | %REC | Limits |
|----------------------------|--------|--------|------|--------|
| Phenol                     | 2,655  | 1,849  | 70   | 40-120 |
| 2-Chlorophenol             | 2,655  | 1,833  | 69   | 40-120 |
| 1,4-Dichlorobenzene        | 1,328  | 1,047  | 79   | 45-120 |
| N-Nitroso-di-n-propylamine | 1,328  | 824.0  | 62   | 34-120 |
| 1,2,4-Trichlorobenzene     | 1,328  | 1,094  | 82   | 45-120 |
| 4-Chloro-3-methylphenol    | 2,655  | 2,184  | 82   | 45-120 |
| Acenaphthene               | 1,328  | 1,020  | 77   | 42-120 |
| 4-Nitrophenol              | 2,655  | 1,856  | 70   | 31-120 |
| 2,4-Dinitrotoluene         | 1,328  | 1,196  | 90   | 41-120 |
| Pentachlorophenol          | 2,655  | 2,245  | 85   | 21-120 |
| Pyrene                     | 1,328  | 1,094  | 82   | 41-120 |

| Surrogate            | %REC | Limits |
|----------------------|------|--------|
| 2-Fluorophenol       | 66   | 28-120 |
| Phenol-d5            | 68   | 30-120 |
| 2,4,6-Tribromophenol | 102  | 20-120 |
| Nitrobenzene-d5      | 68   | 39-120 |
| 2-Fluorobiphenyl     | 75   | 44-120 |
| Terphenyl-d14        | 76   | 39-120 |



|           | Semivolat         | ile Organics by G | C/MS         |  |
|-----------|-------------------|-------------------|--------------|--|
| Lab #:    | 196134            | Location:         | Hanson Radum |  |
| Client:   | LFR Levine Fricke | Prep:             | EPA 3550B    |  |
| Project#: | 001-09567-01      | Analysis:         | EPA 8270C    |  |
| Type:     | BLANK             | Diln Fac:         | 1.000        |  |
| Lab ID:   | QC398143          | Batch#:           | 127666       |  |
| Matrix:   | Soil              | Prepared:         | 07/26/07     |  |
| Units:    | ug/Kg             | Analyzed:         | 07/26/07     |  |
| Basis:    | as received       | -                 |              |  |

| Analyte                      | Result   | RL    |  |
|------------------------------|----------|-------|--|
| N-Nitrosodimethylamine       | ND       | 330   |  |
| Phenol                       | ND       | 330   |  |
| bis(2-Chloroethyl)ether      | ND       | 330   |  |
| 2-Chlorophenol               | ND       | 330   |  |
| 1,3-Dichlorobenzene          | ND       | 330   |  |
| 1,4-Dichlorobenzene          | ND       | 330   |  |
| Benzyl alcohol               | ND       | 330   |  |
| 1,2-Dichlorobenzene          | ND       | 330   |  |
| 2-Methylphenol               | ND       | 330   |  |
| bis(2-Chloroisopropyl) ether | ND       | 330   |  |
| 4-Methylphenol               | ND       | 330   |  |
| N-Nitroso-di-n-propylamine   | ND       | 330   |  |
| Hexachloroethane             | ND<br>ND | 330   |  |
| Nitrobenzene                 | ND<br>ND | 330   |  |
|                              |          | 330   |  |
| Isophorone                   | ND       |       |  |
| 2-Nitrophenol                | ND       | 660   |  |
| 2,4-Dimethylphenol           | ND       | 330   |  |
| Benzoic acid                 | ND       | 1,600 |  |
| bis(2-Chloroethoxy)methane   | ND       | 330   |  |
| 2,4-Dichlorophenol           | ND       | 330   |  |
| 1,2,4-Trichlorobenzene       | ND       | 330   |  |
| Naphthalene                  | ND       | 66    |  |
| 4-Chloroaniline              | ND       | 330   |  |
| Hexachlorobutadiene          | ND       | 330   |  |
| 4-Chloro-3-methylphenol      | ND       | 330   |  |
| 2-Methylnaphthalene          | ND       | 66    |  |
| Hexachlorocyclopentadiene    | ND       | 660   |  |
| 2,4,6-Trichlorophenol        | ND       | 330   |  |
| 2,4,5-Trichlorophenol        | ND       | 330   |  |
| 2-Chloronaphthalene          | ND       | 330   |  |
| 2-Nitroaniline               | ND       | 660   |  |
| Dimethylphthalate            | ND       | 330   |  |
| Acenaphthylene               | ND       | 66    |  |
| 2,6-Dinitrotoluene           | ND       | 330   |  |
| 3-Nitroaniline               | ND       | 660   |  |
| Acenaphthene                 | ND       | 66    |  |
| 2,4-Dinitrophenol            | ND       | 660   |  |
| 4-Nitrophenol                | ND       | 660   |  |
| Dibenzofuran                 | ND       | 330   |  |
| 2,4-Dinitrotoluene           | ND       | 330   |  |
| Diethylphthalate             | ND       | 330   |  |
| Fluorene                     | ND       | 66    |  |
| 4-Chlorophenyl-phenylether   | ND       | 330   |  |
| 4-Nitroaniline               | ND       | 660   |  |
| 4,6-Dinitro-2-methylphenol   | ND       | 660   |  |
| N-Nitrosodiphenylamine       | ND       | 330   |  |
| Azobenzene                   | ND       | 330   |  |
| 4-Bromophenyl-phenylether    | ND       | 330   |  |
| Hexachlorobenzene            | ND       | 330   |  |
| Pentachlorophenol            | ND       | 660   |  |
| Phenanthrene                 | ND       | 66    |  |
| Anthracene                   | ND       | 66    |  |
| Di-n-butylphthalate          | ND       | 330   |  |
| 22 II Sucjiphichatace        | 112      | 550   |  |

ND= Not Detected RL= Reporting Limit



|                  | Semivolat         | ile Organics by G | C/MS         |  |
|------------------|-------------------|-------------------|--------------|--|
| Lab #:           | 196134            | Location:         | Hanson Radum |  |
| Client:          | LFR Levine Fricke | Prep:             | EPA 3550B    |  |
| Project#:        | 001-09567-01      | Analysis:         | EPA 8270C    |  |
| Type:<br>Lab ID: | BLANK             | Diln Fac:         | 1.000        |  |
| Lab ID:          | QC398143          | Batch#:           | 127666       |  |
| Matrix:          | Soil              | Prepared:         | 07/26/07     |  |
| Units:           | ug/Kg             | Analyzed:         | 07/26/07     |  |
| Basis:           | as received       | _                 |              |  |

| Analyte                    | Result      | RL  |  |
|----------------------------|-------------|-----|--|
| Fluoranthene               | ND          | 66  |  |
| Pyrene                     | ND          | 66  |  |
| Butylbenzylphthalate       | ND          | 330 |  |
| 3,3'-Dichlorobenzidine     | ND          | 660 |  |
| Benzo(a)anthracene         | ND          | 66  |  |
| Chrysene                   | ND          | 66  |  |
| bis(2-Ethylhexyl)phthalate | ND          | 330 |  |
| Di-n-octylphthalate        | ND          | 330 |  |
| Benzo(b)fluoranthene       | ND          | 66  |  |
| Benzo(k)fluoranthene       | ND          | 66  |  |
| Benzo(a)pyrene             | ND          | 66  |  |
| Indeno(1,2,3-cd)pyrene     | ND          | 66  |  |
| Dibenz(a,h)anthracene      | ND          | 66  |  |
| Benzo(g,h,i)perylene       | ND          | 66  |  |
|                            |             |     |  |
| Surrogate                  | %REC Limits |     |  |
| 2-Fluorophenol             | 75 28-120   |     |  |
| Phenol-d5                  | 79 30-120   |     |  |
| 2,4,6-Tribromophenol       | 85 20-120   |     |  |
| Nitrobenzene-d5            | 75 39-120   |     |  |
| 2-Fluorobiphenyl           | 79 44-120   |     |  |
| Terphenyl-d14              | 73 39-120   |     |  |



|           | Semivolat         | ile Organics by ( | GC/MS        |  |
|-----------|-------------------|-------------------|--------------|--|
| Lab #:    | 196134            | Location:         | Hanson Radum |  |
| Client:   | LFR Levine Fricke | Prep:             | EPA 3550B    |  |
| Project#: | 001-09567-01      | Analysis:         | EPA 8270C    |  |
| Type:     | LCS               | Diln Fac:         | 1.000        |  |
| Lab ID:   | QC398144          | Batch#:           | 127666       |  |
| Matrix:   | Soil              | Prepared:         | 07/26/07     |  |
| Units:    | ug/Kg             | Analyzed:         | 07/26/07     |  |
| Basis:    | as received       |                   |              |  |

| Analyte                    | Spiked | Result | %REC | Limits |
|----------------------------|--------|--------|------|--------|
| Phenol                     | 2,644  | 1,927  | 73   | 40-120 |
| 2-Chlorophenol             | 2,644  | 1,921  | 73   | 40-120 |
| 1,4-Dichlorobenzene        | 1,322  | 1,044  | 79   | 45-120 |
| N-Nitroso-di-n-propylamine | 1,322  | 922.2  | 70   | 34-120 |
| 1,2,4-Trichlorobenzene     | 1,322  | 1,078  | 82   | 45-120 |
| 4-Chloro-3-methylphenol    | 2,644  | 2,099  | 79   | 45-120 |
| Acenaphthene               | 1,322  | 996.4  | 75   | 42-120 |
| 4-Nitrophenol              | 2,644  | 1,885  | 71   | 31-120 |
| 2,4-Dinitrotoluene         | 1,322  | 1,111  | 84   | 41-120 |
| Pentachlorophenol          | 2,644  | 1,824  | 69   | 21-120 |
| Pyrene                     | 1,322  | 1,004  | 76   | 41-120 |

| Surrogate            | %REC | Limits |
|----------------------|------|--------|
| 2-Fluorophenol       | 69   | 28-120 |
| Phenol-d5            | 73   | 30-120 |
| 2,4,6-Tribromophenol | 99   | 20-120 |
| Nitrobenzene-d5      | 71   | 39-120 |
| 2-Fluorobiphenyl     | 74   | 44-120 |
| Terphenyl-d14        | 71   | 39-120 |



|             | Semivolatile (    | Organics by GC/ | 'MS          |
|-------------|-------------------|-----------------|--------------|
| Lab #:      | 196134            | Location:       | Hanson Radum |
| Client:     | LFR Levine Fricke | Prep:           | EPA 3550B    |
| Project#:   | 001-09567-01      | Analysis:       | EPA 8270C    |
| Field ID:   | ZZZZZZZZZ         | Batch#:         | 127666       |
| MSS Lab ID: | 196124-006        | Sampled:        | 07/20/07     |
| Matrix:     | Soil              | Received:       | 07/20/07     |
| Units:      | ug/Kg             | Prepared:       | 07/26/07     |
| Basis:      | as received       | Analyzed:       | 07/27/07     |
| Diln Fac:   | 1.000             | _               |              |

| Type: MS                   |             | Lab ID: | QC398145 |      |        |
|----------------------------|-------------|---------|----------|------|--------|
| Analyte                    | MSS Result  | Spiked  | Result   | %REC | Limits |
| Phenol                     | <68.23      | 2,659   | 1,835    | 69   | 38-120 |
| 2-Chlorophenol             | <71.02      | 2,659   | 1,856    | 70   | 38-120 |
| 1,4-Dichlorobenzene        | <16.96      | 1,329   | 1,049    | 79   | 49-120 |
| N-Nitroso-di-n-propylamine | <14.03      | 1,329   | 841.8    | 63   | 43-120 |
| 1,2,4-Trichlorobenzene     | <15.15      | 1,329   | 1,107    | 83   | 47-120 |
| 4-Chloro-3-methylphenol    | <70.29      | 2,659   | 2,005    | 75   | 44-120 |
| Acenaphthene               | <14.95      | 1,329   | 954.3    | 72   | 48-120 |
| 4-Nitrophenol              | <84.28      | 2,659   | 1,630    | 61   | 30-120 |
| 2,4-Dinitrotoluene         | <15.28      | 1,329   | 1,051    | 79   | 41-120 |
| Pentachlorophenol          | <66.87      | 2,659   | 1,193    | 45   | 13-120 |
| Pyrene                     | <14.94      | 1,329   | 948.4    | 71   | 42-120 |
| Gummogoto                  | %REC Limits |         |          |      |        |
| Surrogate                  |             |         |          |      |        |
| 2-Fluorophenol             | 69 28-120   |         |          |      |        |
| Phenol-d5                  | 70 30-120   |         |          |      |        |

| Surrogate            | %REC | LIMITS |  |
|----------------------|------|--------|--|
| 2-Fluorophenol       | 69   | 28-120 |  |
| Phenol-d5            | 70   | 30-120 |  |
| 2,4,6-Tribromophenol | 99   | 20-120 |  |
| Nitrobenzene-d5      | 69   | 39-120 |  |
| 2-Fluorobiphenyl     | 75   | 44-120 |  |
| Terphenyl-d14        | 70   | 39-120 |  |
|                      |      |        |  |

| Type: MSD                  |             | Lab ID: | QC398146 |          |         |
|----------------------------|-------------|---------|----------|----------|---------|
| Analyte                    | Spiked      | Result  | %REC     | Limits 3 | RPD Lim |
| Phenol                     | 2,659       | 1,893   | 71       | 38-120   | 3 26    |
| 2-Chlorophenol             | 2,659       | 1,879   | 71       | 38-120   | 1 28    |
| 1,4-Dichlorobenzene        | 1,329       | 1,001   | 75       | 49-120   | 5 27    |
| N-Nitroso-di-n-propylamine | 1,329       | 906.8   | 68       | 43-120   | 7 28    |
| 1,2,4-Trichlorobenzene     | 1,329       | 1,093   | 82       | 47-120   | 1 26    |
| 4-Chloro-3-methylphenol    | 2,659       | 2,159   | 81       | 44-120   | 7 28    |
| Acenaphthene               | 1,329       | 1,015   | 76       | 48-120   | 6 29    |
| 4-Nitrophenol              | 2,659       | 1,858   | 70       | 30-120   | 13 38   |
| 2,4-Dinitrotoluene         | 1,329       | 1,129   | 85       | 41-120   | 7 26    |
| Pentachlorophenol          | 2,659       | 1,279   | 48       | 13-120   | 7 55    |
| Pyrene                     | 1,329       | 1,038   | 78       | 42-120   | 9 30    |
|                            |             |         |          |          |         |
| Surrogate                  | %REC Limits |         |          |          |         |
| 2-Fluorophenol             | 69 28-120   |         |          |          |         |
| Phenol-d5                  | 73 30-120   |         |          |          |         |
| 2,4,6-Tribromophenol       | 103 20-120  |         |          |          |         |
| Nitrobenzene-d5            | 72 39-120   |         |          |          |         |
| 2-Fluorobiphenyl           | 77 44-120   |         |          |          |         |
| Terphenyl-d14              | 76 39-120   |         |          |          |         |



|             | Semivolatile C    | organics by GC/ | MS           |
|-------------|-------------------|-----------------|--------------|
| Lab #:      | 196134            | Location:       | Hanson Radum |
| Client:     | LFR Levine Fricke | Prep:           | EPA 3550B    |
| Project#:   | 001-09567-01      | Analysis:       | EPA 8270C    |
| Field ID:   | ZZZZZZZZZ         | Batch#:         | 127666       |
| MSS Lab ID: | 196215-012        | Sampled:        | 07/24/07     |
| Matrix:     | Soil              | Received:       | 07/25/07     |
| Units:      | ug/Kg             | Prepared:       | 07/26/07     |
| Basis:      | as received       | Analyzed:       | 07/27/07     |
| Diln Fac:   | 1.000             | -               |              |

| Type: MS                |             | Lab ID: | QC398147 |      |        |
|-------------------------|-------------|---------|----------|------|--------|
| Analyte                 | MSS Result  | Spiked  | Result   | %REC | Limits |
| Phenol                  | <67.94      | 2,665   | 2,098    | 79   | 38-120 |
| 2-Chlorophenol          | <70.72      | 2,665   | 2,076    | 78   | 38-120 |
| 1,4-Dichlorobenzene     | <16.89      | 1,332   | 1,150    | 86   | 49-120 |
| N-Nitroso-di-n-propylar | nine <13.97 | 1,332   | 1,017    | 76   | 43-120 |
| 1,2,4-Trichlorobenzene  | <15.09      | 1,332   | 1,169    | 88   | 47-120 |
| 4-Chloro-3-methylpheno  | L <69.99    | 2,665   | 2,229    | 84   | 44-120 |
| Acenaphthene            | <14.89      | 1,332   | 1,051    | 79   | 48-120 |
| 4-Nitrophenol           | <83.91      | 2,665   | 2,029    | 76   | 30-120 |
| 2,4-Dinitrotoluene      | <15.22      | 1,332   | 1,131    | 85   | 41-120 |
| Pentachlorophenol       | <66.58      | 2,665   | 1,888    | 71   | 13-120 |
| Pyrene                  | <14.88      | 1,332   | 1,059    | 79   | 42-120 |
| Surrogate               | %REC Limits |         |          |      |        |
| 2-Fluorophenol          | 77 28-120   |         |          |      |        |
| Phenol-d5               | 80 30-120   |         |          |      |        |
| 2,4,6-Tribromophenol    | 103 20-120  |         |          |      |        |
| Nithinghomeono d        |             |         |          |      |        |

|                                  | Analyte   |                | Spiked                     |         | Result | %REC     | Limits | RPD Li | m |
|----------------------------------|-----------|----------------|----------------------------|---------|--------|----------|--------|--------|---|
| Туре:                            | MSD       |                |                            | Lab ID: |        | QC398148 |        |        |   |
| Nitrober<br>2-Fluoro<br>Terpheny | obiphenyl | 79<br>79<br>75 | 39-120<br>44-120<br>39-120 |         |        |          |        |        |   |

| Analyte                    | L<br>L | spiked | Result | %REC | Limits | RPD | Lim |
|----------------------------|--------|--------|--------|------|--------|-----|-----|
| Phenol                     | 2      | 2,658  | 1,857  | 70   | 38-120 | 12  | 26  |
| 2-Chlorophenol             | 2      | 2,658  | 1,879  | 71   | 38-120 | 10  | 28  |
| 1,4-Dichlorobenzene        | 1      | ,329   | 1,039  | 78   | 49-120 | 10  | 27  |
| N-Nitroso-di-n-propylamine | 1      | ,329   | 881.9  | 66   | 43-120 | 14  | 28  |
| 1,2,4-Trichlorobenzene     |        | ,329   | 1,084  | 82   | 47-120 | 7   | 26  |
| 4-Chloro-3-methylphenol    | 2      | 2,658  | 2,056  | 77   | 44-120 | 8   | 28  |
| Acenaphthene               | 1      | ,329   | 970.9  | 73   | 48-120 | 8   | 29  |
| 4-Nitrophenol              | 2      | 2,658  | 1,807  | 68   | 30-120 | 11  | 38  |
| 2,4-Dinitrotoluene         | 1      | ,329   | 1,054  | 79   | 41-120 | 7   | 26  |
| Pentachlorophenol          | 2      | 2,658  | 1,838  | 69   | 13-120 | 2   | 55  |
| Pyrene                     | 1      | ,329   | 954.3  | 72   | 42-120 | 10  | 30  |
| Surrogate                  | %REC   | Limits |        |      |        |     |     |
| 2-Fluorophenol             | 69     | 28-120 |        |      |        |     |     |
| Phenol-d5                  | 71     | 30-120 |        |      |        |     |     |
| 2,4,6-Tribromophenol       | 98     | 20-120 |        |      |        |     |     |
| Nitrobenzene-d5            | 69     | 39-120 |        |      |        |     |     |
| 2-Fluorobiphenyl           | 73     | 44-120 |        |      |        |     |     |
| Terphenyl-d14              | 68     | 39-120 |        |      |        |     |     |



| Organochlorine Pesticides |                   |           |              |  |
|---------------------------|-------------------|-----------|--------------|--|
| Lab #:                    | 196134            | Location: | Hanson Radum |  |
| Client:                   | LFR Levine Fricke | Prep:     | EPA 3550B    |  |
| Project#:                 | 001-09567-01      | Analysis: | EPA 8081A    |  |
| Field ID:                 | SS-31(C)-5.5      | Batch#:   | 127545       |  |
| Lab ID:                   | 196134-003        | Sampled:  | 07/20/07     |  |
| Matrix:                   | Soil              | Received: | 07/23/07     |  |
| Units:                    | ug/Kg             | Prepared: | 07/24/07     |  |
| Basis:                    | as received       | Analyzed: | 07/26/07     |  |
| Diln Fac:                 | 1.000             |           |              |  |

| Analyte            | Result | RL  |  |
|--------------------|--------|-----|--|
| alpha-BHC          | ND     | 1.7 |  |
| beta-BHC           | ND     | 1.7 |  |
| gamma-BHC          | ND     | 1.7 |  |
| delta-BHC          | ND     | 1.7 |  |
| Heptachlor         | ND     | 1.7 |  |
| Aldrin             | ND     | 1.7 |  |
| Heptachlor epoxide | ND     | 1.7 |  |
| Endosulfan I       | ND     | 1.7 |  |
| Dieldrin           | ND     | 3.3 |  |
| 4,4'-DDE           | ND     | 3.3 |  |
| Endrin             | ND     | 3.3 |  |
| Endosulfan II      | ND     | 3.3 |  |
| Endosulfan sulfate | ND     | 3.3 |  |
| 4,4'-DDD           | ND     | 3.3 |  |
| Endrin aldehyde    | ND     | 3.3 |  |
| 4,4'-DDT           | ND     | 3.3 |  |
| alpha-Chlordane    | ND     | 1.7 |  |
| gamma-Chlordane    | ND     | 1.7 |  |
| Methoxychlor       | ND     | 17  |  |
| Toxaphene          | ND     | 60  |  |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 77   | 50-120 |
| Decachlorobiphenyl | 85   | 54-133 |



| Organochlorine Pesticides |                   |           |              |  |
|---------------------------|-------------------|-----------|--------------|--|
| Lab #:                    | 196134            | Location: | Hanson Radum |  |
| Client:                   | LFR Levine Fricke | Prep:     | EPA 3550B    |  |
| Project#:                 | 001-09567-01      | Analysis: | EPA 8081A    |  |
| Field ID:                 | SS-31(C)-10.5     | Batch#:   | 127545       |  |
| Lab ID:                   | 196134-004        | Sampled:  | 07/20/07     |  |
| Matrix:                   | Soil              | Received: | 07/23/07     |  |
| Units:                    | ug/Kg             | Prepared: | 07/24/07     |  |
| Basis:                    | as received       | Analyzed: | 07/26/07     |  |
| Diln Fac:                 | 1.000             |           |              |  |

| Analyte            | Result | RL  |  |
|--------------------|--------|-----|--|
| alpha-BHC          | ND     | 1.7 |  |
| beta-BHC           | ND     | 1.7 |  |
| gamma-BHC          | ND     | 1.7 |  |
| delta-BHC          | ND     | 1.7 |  |
| Heptachlor         | ND     | 1.7 |  |
| Aldrin             | ND     | 1.7 |  |
| Heptachlor epoxide | ND     | 1.7 |  |
| Endosulfan I       | ND     | 1.7 |  |
| Dieldrin           | ND     | 3.3 |  |
| 4,4'-DDE           | ND     | 3.3 |  |
| Endrin             | ND     | 3.3 |  |
| Endosulfan II      | ND     | 3.3 |  |
| Endosulfan sulfate | ND     | 3.3 |  |
| 4,4'-DDD           | ND     | 3.3 |  |
| Endrin aldehyde    | ND     | 3.3 |  |
| 4,4'-DDT           | ND     | 3.3 |  |
| alpha-Chlordane    | ND     | 1.7 |  |
| gamma-Chlordane    | ND     | 1.7 |  |
| Methoxychlor       | ND     | 17  |  |
| Toxaphene          | ND     | 60  |  |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 92   | 50-120 |
| Decachlorobiphenyl | 100  | 54-133 |



| Organochlorine Pesticides |                   |           |              |  |
|---------------------------|-------------------|-----------|--------------|--|
| Lab #:                    | 196134            | Location: | Hanson Radum |  |
| Client:                   | LFR Levine Fricke | Prep:     | EPA 3550B    |  |
| Project#:                 | 001-09567-01      | Analysis: | EPA 8081A    |  |
| Field ID:                 | SS-31(D)-5.5      | Batch#:   | 127545       |  |
| Lab ID:                   | 196134-013        | Sampled:  | 07/20/07     |  |
| Matrix:                   | Soil              | Received: | 07/23/07     |  |
| Units:                    | ug/Kg             | Prepared: | 07/24/07     |  |
| Basis:                    | as received       | Analyzed: | 07/26/07     |  |
| Diln Fac:                 | 1.000             |           |              |  |

| Analyte            | Result | RL  |  |
|--------------------|--------|-----|--|
| alpha-BHC          | ND     | 1.7 |  |
| beta-BHC           | ND     | 1.7 |  |
| gamma-BHC          | ND     | 1.7 |  |
| delta-BHC          | ND     | 1.7 |  |
| Heptachlor         | ND     | 1.7 |  |
| Aldrin             | ND     | 1.7 |  |
| Heptachlor epoxide | ND     | 1.7 |  |
| Endosulfan I       | ND     | 1.7 |  |
| Dieldrin           | ND     | 3.3 |  |
| 4,4'-DDE           | ND     | 3.3 |  |
| Endrin             | ND     | 3.3 |  |
| Endosulfan II      | ND     | 3.3 |  |
| Endosulfan sulfate | ND     | 3.3 |  |
| 4,4'-DDD           | ND     | 3.3 |  |
| Endrin aldehyde    | ND     | 3.3 |  |
| 4,4'-DDT           | ND     | 3.3 |  |
| alpha-Chlordane    | ND     | 1.7 |  |
| gamma-Chlordane    | ND     | 1.7 |  |
| Methoxychlor       | ND     | 17  |  |
| Toxaphene          | ND     | 60  |  |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 102  | 50-120 |
| Decachlorobiphenyl | 113  | 54-133 |



| Organochlorine Pesticides |                   |           |              |  |
|---------------------------|-------------------|-----------|--------------|--|
| Lab #:                    | 196134            | Location: | Hanson Radum |  |
| Client:                   | LFR Levine Fricke | Prep:     | EPA 3550B    |  |
| Project#:                 | 001-09567-01      | Analysis: | EPA 8081A    |  |
| Field ID:                 | SS-31(D)-10.5     | Batch#:   | 127545       |  |
| Lab ID:                   | 196134-014        | Sampled:  | 07/20/07     |  |
| Matrix:                   | Soil              | Received: | 07/23/07     |  |
| Units:                    | ug/Kg             | Prepared: | 07/24/07     |  |
| Basis:                    | as received       | Analyzed: | 07/26/07     |  |
| Diln Fac:                 | 1.000             |           |              |  |

| Analyte            | Result | RL  |  |
|--------------------|--------|-----|--|
| alpha-BHC          | ND     | 1.7 |  |
| beta-BHC           | ND     | 1.7 |  |
| gamma-BHC          | ND     | 1.7 |  |
| delta-BHC          | ND     | 1.7 |  |
| Heptachlor         | ND     | 1.7 |  |
| Aldrin             | ND     | 1.7 |  |
| Heptachlor epoxide | ND     | 1.7 |  |
| Endosulfan I       | ND     | 1.7 |  |
| Dieldrin           | ND     | 3.3 |  |
| 4,4'-DDE           | ND     | 3.3 |  |
| Endrin             | ND     | 3.3 |  |
| Endosulfan II      | ND     | 3.3 |  |
| Endosulfan sulfate | ND     | 3.3 |  |
| 4,4'-DDD           | ND     | 3.3 |  |
| Endrin aldehyde    | ND     | 3.3 |  |
| 4,4'-DDT           | ND     | 3.3 |  |
| alpha-Chlordane    | ND     | 1.7 |  |
| gamma-Chlordane    | ND     | 1.7 |  |
| Methoxychlor       | ND     | 17  |  |
| Toxaphene          | ND     | 60  |  |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 98   | 50-120 |
| Decachlorobiphenyl | 107  | 54-133 |



|           | Organochlorine Pesticides |           |              |  |  |  |  |  |  |
|-----------|---------------------------|-----------|--------------|--|--|--|--|--|--|
| Lab #:    | 196134                    | Location: | Hanson Radum |  |  |  |  |  |  |
| Client:   | LFR Levine Fricke         | Prep:     | EPA 3550B    |  |  |  |  |  |  |
| Project#: | 001-09567-01              | Analysis: | EPA 8081A    |  |  |  |  |  |  |
| Type:     | BLANK                     | Diln Fac: | 1.000        |  |  |  |  |  |  |
| Lab ID:   | QC397627                  | Batch#:   | 127545       |  |  |  |  |  |  |
| Matrix:   | Soil                      | Prepared: | 07/24/07     |  |  |  |  |  |  |
| Units:    | ug/Kg                     | Analyzed: | 07/25/07     |  |  |  |  |  |  |
| Basis:    | as received               |           |              |  |  |  |  |  |  |

| alpha-BHC          |    |     |  |
|--------------------|----|-----|--|
| -                  | ND | 1.7 |  |
| beta-BHC           | ND | 1.7 |  |
| gamma-BHC          | ND | 1.7 |  |
| delta-BHC          | ND | 1.7 |  |
| Heptachlor         | ND | 1.7 |  |
| Aldrin             | ND | 1.7 |  |
| Heptachlor epoxide | ND | 1.7 |  |
| Endosulfan I       | ND | 1.7 |  |
| Dieldrin           | ND | 3.3 |  |
| 4,4'-DDE           | ND | 3.3 |  |
| Endrin             | ND | 3.3 |  |
| Endosulfan II      | ND | 3.3 |  |
| Endosulfan sulfate | ND | 3.3 |  |
| 4,4'-DDD           | ND | 3.3 |  |
| Endrin aldehyde    | ND | 3.3 |  |
| 4,4'-DDT           | ND | 3.3 |  |
| alpha-Chlordane    | ND | 1.7 |  |
| gamma-Chlordane    | ND | 1.7 |  |
| Methoxychlor       | ND | 17  |  |
| Toxaphene          | ND | 59  |  |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 107  | 50-120 |
| Decachlorobiphenyl | 117  | 54-133 |



| Organochlorine Pesticides |                   |           |              |  |  |  |  |  |
|---------------------------|-------------------|-----------|--------------|--|--|--|--|--|
| Lab #:                    | 196134            | Location: | Hanson Radum |  |  |  |  |  |
| Client:                   | LFR Levine Fricke | Prep:     | EPA 3550B    |  |  |  |  |  |
| Project#:                 | 001-09567-01      | Analysis: | EPA 8081A    |  |  |  |  |  |
| Type:                     | LCS               | Diln Fac: | 1.000        |  |  |  |  |  |
| Lab ID:                   | QC397631          | Batch#:   | 127545       |  |  |  |  |  |
| Matrix:                   | Soil              | Prepared: | 07/24/07     |  |  |  |  |  |
| Units:                    | ug/Kg             | Analyzed: | 07/25/07     |  |  |  |  |  |
| Basis:                    | as received       |           |              |  |  |  |  |  |

| Analyte    | Spiked | Result | %REC | Limits |
|------------|--------|--------|------|--------|
| gamma-BHC  | 13.20  | 8.652  | 66   | 42-120 |
| Heptachlor | 13.20  | 9.825  | 74   | 44-130 |
| Aldrin     | 13.20  | 9.239  | 70   | 47-120 |
| Dieldrin   | 26.40  | 22.53  | 85   | 50-121 |
| Endrin     | 26.40  | 12.50  | 47   | 39-130 |
| 4,4'-DDT   | 26.40  | 24.31  | 92   | 45-127 |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 62   | 50-120 |
| Decachlorobiphenyl | 94   | 54-133 |



|             | Organochlorine Pesticides |           |              |  |  |  |  |  |
|-------------|---------------------------|-----------|--------------|--|--|--|--|--|
| Lab #:      | 196134                    | Location: | Hanson Radum |  |  |  |  |  |
| Client:     | LFR Levine Fricke         | Prep:     | EPA 3550B    |  |  |  |  |  |
| Project#:   | 001-09567-01              | Analysis: | EPA 8081A    |  |  |  |  |  |
| Field ID:   | ZZZZZZZZZ                 | Batch#:   | 127545       |  |  |  |  |  |
| MSS Lab ID: | 196124-006                | Sampled:  | 07/20/07     |  |  |  |  |  |
| Matrix:     | Soil                      | Received: | 07/20/07     |  |  |  |  |  |
| Units:      | ug/Kg                     | Prepared: | 07/24/07     |  |  |  |  |  |
| Basis:      | as received               | Analyzed: | 07/31/07     |  |  |  |  |  |
| Diln Fac:   | 1.000                     |           |              |  |  |  |  |  |

Type: Lab ID: MS QC397632 Cleanup Method: EPA 3620B

| Analyte    | MSS Result | Spiked | Result  | %REC | Limits |  |
|------------|------------|--------|---------|------|--------|--|
| gamma-BHC  | <0.3685    | 13.26  | 9.911   | 75   | 45-120 |  |
| Heptachlor | <0.4792    | 13.26  | 10.79   | 81   | 50-124 |  |
| Aldrin     | <0.3149    | 13.26  | 10.52 # | 79   | 47-122 |  |
| Dieldrin   | <0.9902    | 26.52  | 22.46   | 85   | 47-122 |  |
| Endrin     | <1.174     | 26.52  | 22.14 # | 83   | 46-127 |  |
| 4,4'-DDT   | <1.265     | 26.52  | 23.60   | 89   | 27-136 |  |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 87   | 50-120 |
| Decachlorobiphenyl | 128  | 54-133 |

Type: Lab ID: MSD QC397633 Cleanup Method: EPA 3620B

Analyte Spiked Result %REC Limits RPD Lim 13.32 11.74 88 45-120 16 39 gamma-BHC Heptachlor 13.32 12.61 50-124 95 15 37 Aldrin 13.32 12.18 # 47-122 91 14 35 Dieldrin 26.64 24.43 92 47-122 8 34 Endrin 26.64 28.32 # 106 46-127 24 37 4,4'-DDT 26.64 23.80 27-136 49 89 0

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 92   | 50-120 |
| Decachlorobiphenyl | 104  | 54-133 |

#= CCV drift outside limits; average CCV drift within limits per method requirements RPD= Relative Percent Difference



|                                                                                                              | Рс                                      | lychlo                           | orinated         | Biphenyls (PC                                      | Bs)                                        |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------|------------------|----------------------------------------------------|--------------------------------------------|
| Lab #:<br>Client:<br>Project#:                                                                               | 196134<br>LFR Levine Fr<br>001-09567-01 | icke                             |                  | Location:<br>Prep:<br>Analysis:                    | Hanson Radum<br>EPA 3550B<br>EPA 8082      |
| Matrix:<br>Units:<br>Basis:<br>Diln Fac:                                                                     | Soil<br>ug/Kg<br>as received<br>1.000   |                                  |                  | Batch#:<br>Sampled:<br>Received:<br>Prepared:      | 127545<br>07/20/07<br>07/23/07<br>07/24/07 |
| Field ID:<br>Type:<br>Lab ID:                                                                                | SS-31(C)-5.5<br>SAMPLE<br>196134-003    |                                  |                  | Analyzed:<br>Cleanup Method:                       | 07/25/07<br>EPA 3665A                      |
| Anal                                                                                                         | vte                                     |                                  | Result           | RL                                                 |                                            |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260 |                                         | NI<br>NI<br>NI<br>NI<br>NI       | )<br>)<br>)<br>) | 12<br>24<br>12<br>12<br>12<br>12<br>12<br>12<br>12 |                                            |
| Surro                                                                                                        | gate                                    | %REC                             | Limits           |                                                    |                                            |
| TCMX<br>Decachlorobiphe                                                                                      | nvl                                     | 107<br>106                       | 63-141<br>50-158 |                                                    |                                            |
| Field ID:<br>Type:<br>Lab ID:                                                                                | SS-31(C)-10.5<br>SAMPLE<br>196134-004   |                                  |                  | Analyzed:<br>Cleanup Method:                       | 07/25/07<br>EPA 3665A                      |
| Anal                                                                                                         | yte                                     |                                  | Result           | RL                                                 |                                            |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260 |                                         | NE<br>NI<br>NI<br>NI<br>NI<br>NI | )<br>)<br>)      | 12<br>24<br>12<br>12<br>12<br>12<br>12<br>12       |                                            |
| Surro                                                                                                        | gate                                    | %REC                             | Limits           |                                                    |                                            |
| TCMX<br>Decachlorobiphe                                                                                      |                                         | 115<br>121                       | 63-141<br>50-158 |                                                    |                                            |
| Field ID:<br>Type:<br>Lab ID:                                                                                | SS-31(D)-5.5<br>SAMPLE<br>196134-013    |                                  |                  | Analyzed:<br>Cleanup Method:                       | 07/25/07<br>EPA 3665A                      |
| Anal<br>Aroclor-1016                                                                                         | yte                                     |                                  | Result           | <b>RL</b><br>12                                    |                                            |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260 |                                         | NI<br>NI<br>NI<br>NI<br>NI<br>NI | )<br>)<br>)      | 12<br>24<br>12<br>12<br>12<br>12<br>12<br>12       |                                            |
| Surro                                                                                                        | gate                                    | %REC                             | Limits           |                                                    |                                            |
| TCMX<br>Decachlorobiphe                                                                                      | nyl                                     | 119<br>117                       | 63-141<br>50-158 |                                                    |                                            |

ND= Not Detected RL= Reporting Limit Page 1 of 2



|                                                                                                              | Po                                             | olychlo                          | orinated         | Biphenyls (PC                                      | Bs)                                             |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------|------------------|----------------------------------------------------|-------------------------------------------------|
| Lab #:<br>Client:<br>Project#:<br>Matrix:                                                                    | 196134<br>LFR Levine F<br>001-09567-01<br>Soil | ricke                            |                  | Location:<br>Prep:<br>Analysis:<br>Batch#:         | Hanson Radum<br>EPA 3550B<br>EPA 8082<br>127545 |
| Units:<br>Basis:<br>Diln Fac:                                                                                | ug/Kg<br>as received<br>1.000                  |                                  |                  | Sampled:<br>Received:<br>Prepared:                 | 07/20/07<br>07/23/07<br>07/24/07                |
| Field ID:<br>Type:<br>Lab ID:                                                                                | SS-31(D)-10.5<br>SAMPLE<br>196134-014          |                                  |                  | Analyzed:<br>Cleanup Method:                       | 07/25/07<br>EPA 3665A                           |
| Ana                                                                                                          | lyte                                           |                                  | Result           | RL                                                 |                                                 |
| Aroclor-1016<br>Aroclor-1221<br>Aroclor-1232<br>Aroclor-1242<br>Aroclor-1248<br>Aroclor-1254<br>Aroclor-1260 |                                                | ND<br>ND<br>ND<br>ND<br>ND<br>ND |                  | 12<br>24<br>12<br>12<br>12<br>12<br>12<br>12<br>12 |                                                 |
|                                                                                                              | ogate                                          | %REC                             | Limits           |                                                    |                                                 |
| TCMX<br>Decachlorobiph                                                                                       | lenyl                                          | 116<br>124                       | 63-141<br>50-158 |                                                    |                                                 |
| Type:<br>Lab ID:                                                                                             | BLANK<br>OC397627                              |                                  |                  | Analyzed:<br>Cleanup Method:                       | 07/24/07<br>FDA 3665A                           |

| Lab ID:    | QC397627 |        | Cleanup Method: | EPA 3665A |
|------------|----------|--------|-----------------|-----------|
|            | Analyte  | Result | RL              |           |
| Aroclor-10 | 016      | ND     | 12              |           |
| Aroclor-12 | 221      | ND     | 24              |           |
| Aroclor-12 | 232      | ND     | 12              |           |
| Aroclor-12 | 242      | ND     | 12              |           |
| Aroclor-12 | 248      | ND     | 12              |           |
| Aroclor-12 | 254      | ND     | 12              |           |
| Aroclor-12 | 260      | ND     | 12              |           |

| S           | urrogate | %REC | Limits |
|-------------|----------|------|--------|
| TCMX        |          | 119  | 63-141 |
| Decachlorob | iphenyl  | 128  | 50-158 |



|           | Polychlorinated   | Biphenyls (PC | Bs)          |
|-----------|-------------------|---------------|--------------|
| Lab #:    | 196134            | Location:     | Hanson Radum |
| Client:   | LFR Levine Fricke | Prep:         | EPA 3550B    |
| Project#: | 001-09567-01      | Analysis:     | EPA 8082     |
| Туре:     | LCS               | Diln Fac:     | 1.000        |
| Lab ID:   | QC397628          | Batch#:       | 127545       |
| Matrix:   | Soil              | Prepared:     | 07/24/07     |
| Units:    | ug/Kg             | Analyzed:     | 07/24/07     |
| Basis:    | as received       |               |              |

Cleanup Method: EPA 3665A

| Analyte      | Spiked | Result | %REC | Limits |
|--------------|--------|--------|------|--------|
| Aroclor-1232 | 164.3  | 188.8  | 115  | 68-138 |
|              |        |        |      |        |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 119  | 63-141 |
| Decachlorobiphenyl | 122  | 50-158 |



|             | Polychlorinated   | Biphenyls (PC | Bs)          |
|-------------|-------------------|---------------|--------------|
| Lab #:      | 196134            | Location:     | Hanson Radum |
| Client:     | LFR Levine Fricke | Prep:         | EPA 3550B    |
| Project#:   | 001-09567-01      | Analysis:     | EPA 8082     |
| Field ID:   | ZZZZZZZZZ         | Batch#:       | 127545       |
| MSS Lab ID: | 196124-006        | Sampled:      | 07/20/07     |
| Matrix:     | Soil              | Received:     | 07/20/07     |
| Units:      | ug/Kg             | Prepared:     | 07/24/07     |
| Basis:      | as received       | Analyzed:     | 07/24/07     |
| Diln Fac:   | 1.000             |               |              |

Type: Lab ID:

MS QC397629 Cleanup Method: EPA 3665A

| Analyte      | MSS Result | Spiked | Result | %REC | Limits |
|--------------|------------|--------|--------|------|--------|
| Aroclor-1232 | <2.400     | 164.6  | 166.8  | 101  | 72-140 |

| Surrogate          | %REC | Limits |
|--------------------|------|--------|
| TCMX               | 109  | 63-141 |
| Decachlorobiphenyl | 108  | 50-158 |

| Type:<br>Lab ID: | MSD<br>QC397630 |      |        | Cleanup Method: EPA | 3665A |        |     |     |
|------------------|-----------------|------|--------|---------------------|-------|--------|-----|-----|
|                  | Analyte         |      | Spiked | Result              | %REC  | Limits | RPD | Lim |
| Aroclor-123      | 32              |      | 166.6  | 179.9               | 108   | 72-140 | б   | 27  |
|                  |                 |      |        |                     |       |        |     |     |
| S                | Surrogate       | %REC | Limits |                     |       |        |     |     |
| TCMX             |                 | 113  | 63-141 |                     |       |        |     |     |
| Decachlorob      | oiphenyl        | 116  | 50-158 |                     |       |        |     |     |



| California Title 26 Metals |                   |                 |              |          |  |
|----------------------------|-------------------|-----------------|--------------|----------|--|
| Lab #:                     | 196134            | Project#:       | 001-09567-01 |          |  |
| Client:                    | LFR Levine Fricke | Location:       | Hanson Radum |          |  |
| Field ID:                  | SS-31(C)-5.5      | Diln Fac:       | 1.000        |          |  |
| Lab ID:                    | 196134-003        | Sampled:        | 07/20/07     |          |  |
| Matrix:                    | Soil              | Received:       | 07/23/07     |          |  |
| Units:                     | mg/Kg             | Analyzed:       | 07/25/07     |          |  |
| Basis:                     | as received       |                 |              |          |  |
| Analyte                    | Result            | RL Batch# Prepa | red Prep     | Analysis |  |

| Analyte    | Result | RL    | Batch# Prepared | Prep      | Analysis  |
|------------|--------|-------|-----------------|-----------|-----------|
| Antimony   | ND     | 0.50  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Arsenic    | 7.3    | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Barium     | 260    | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Beryllium  | 0.41   | 0.10  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Cadmium    | ND     | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Chromium   | 22     | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Cobalt     | 8.2    | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Copper     | 18     | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Lead       | 5.2    | 0.15  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Mercury    | 0.089  | 0.020 | 127600 07/25/07 | METHOD    | EPA 7471A |
| Molybdenum | ND     | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Nickel     | 28     | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Selenium   | ND     | 0.50  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Silver     | ND     | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Thallium   | ND     | 0.50  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Vanadium   | 35     | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Zinc       | 38     | 1.0   | 127580 07/24/07 | EPA 3050B | EPA 6010B |



| California Title 26 Metals |                   |       |                 |              |          |
|----------------------------|-------------------|-------|-----------------|--------------|----------|
| Lab #:                     | 196134            |       | Project#:       | 001-09567-01 |          |
| Client:                    | LFR Levine Fricke |       | Location:       | Hanson Radum |          |
| Field ID:                  | SS-31(C)-10.5     |       | Diln Fac:       | 1.000        |          |
| Lab ID:                    | 196134-004        |       | Sampled:        | 07/20/07     |          |
| Matrix:                    | Soil              |       | Received:       | 07/23/07     |          |
| Units:                     | mg/Kg             |       | Analyzed:       | 07/25/07     |          |
| Basis:                     | as received       |       |                 |              |          |
|                            |                   |       |                 |              |          |
| Analyte                    | Result            | RL    | Batch# Prepared | Prep         | Analysis |
| Antimony                   |                   | 0 5 0 | 127500 07/24/07 |              |          |

| Analyte    | Result | RL    | Batch# Prepared      | Prep     | Analysis |
|------------|--------|-------|----------------------|----------|----------|
| Antimony   | ND     | 0.50  | 127580 07/24/07 EPA  | 3050B EI | PA 6010B |
| Arsenic    | 6.3    | 0.25  | 127580 07/24/07 EPA  | 3050B EI | PA 6010B |
| Barium     | 270    | 0.25  | 127580 07/24/07 EPA  | 3050B EI | PA 6010B |
| Beryllium  | 0.42   | 0.10  | 127580 07/24/07 EPA  | 3050B EI | PA 6010B |
| Cadmium    | ND     | 0.25  | 127580 07/24/07 EPA  | 3050B EI | PA 6010B |
| Chromium   | 44     | 0.25  | 127580 07/24/07 EPA  | 3050B EI | PA 6010B |
| Cobalt     | 12     | 0.25  | 127580 07/24/07 EPA  | 3050B EI | PA 6010B |
| Copper     | 25     | 0.25  | 127580 07/24/07 EPA  | 3050B EI | PA 6010B |
| Lead       | 6.4    | 0.15  | 127580 07/24/07 EPA  | 3050B EI | PA 6010B |
| Mercury    | 0.091  | 0.020 | 127600 07/25/07 METH | HOD EI   | PA 7471A |
| Molybdenum | ND     | 0.25  | 127580 07/24/07 EPA  | 3050B EI | PA 6010B |
| Nickel     | 71     | 0.25  | 127580 07/24/07 EPA  | 3050B EI | PA 6010B |
| Selenium   | ND     | 0.50  | 127580 07/24/07 EPA  | 3050B EI | PA 6010B |
| Silver     | ND     | 0.25  | 127580 07/24/07 EPA  | 3050B EI | PA 6010B |
| Thallium   | ND     | 0.50  | 127580 07/24/07 EPA  | 3050B EI | PA 6010B |
| Vanadium   | 36     | 0.25  | 127580 07/24/07 EPA  | 3050B EI | PA 6010B |
| Zinc       | 45     | 1.0   | 127580 07/24/07 EPA  | 3050B E1 | PA 6010B |



| California Title 26 Metals |                   |           |              |  |  |
|----------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                     | 196134            | Project#: | 001-09567-01 |  |  |
| Client:                    | LFR Levine Fricke | Location: | Hanson Radum |  |  |
| Field ID:                  | SS-31(D)-5.5      | Diln Fac: | 1.000        |  |  |
| Lab ID:                    | 196134-013        | Sampled:  | 07/20/07     |  |  |
| Matrix:                    | Soil              | Received: | 07/23/07     |  |  |
| Units:                     | mg/Kg             | Analyzed: | 07/25/07     |  |  |
| Basis:                     | as received       |           |              |  |  |

| Analyte    | Result | RL    | Batch# Prepared Prep Analysis       |
|------------|--------|-------|-------------------------------------|
| Antimony   | ND     | 0.50  | 127580 07/24/07 EPA 3050B EPA 6010B |
| Arsenic    | 5.0    | 0.25  | 127580 07/24/07 EPA 3050B EPA 6010B |
| Barium     | 270    | 0.25  | 127580 07/24/07 EPA 3050B EPA 6010B |
| Beryllium  | 0.39   | 0.10  | 127580 07/24/07 EPA 3050B EPA 6010B |
| Cadmium    | ND     | 0.25  | 127580 07/24/07 EPA 3050B EPA 6010B |
| Chromium   | 39     | 0.25  | 127580 07/24/07 EPA 3050B EPA 6010B |
| Cobalt     | 9.7    | 0.25  | 127580 07/24/07 EPA 3050B EPA 6010B |
| Copper     | 22     | 0.25  | 127580 07/24/07 EPA 3050B EPA 6010B |
| Lead       | 4.6    | 0.15  | 127580 07/24/07 EPA 3050B EPA 6010B |
| Mercury    | 0.058  | 0.020 | 127600 07/25/07 METHOD EPA 7471A    |
| Molybdenum | ND     | 0.25  | 127580 07/24/07 EPA 3050B EPA 6010B |
| Nickel     | 63     | 0.25  | 127580 07/24/07 EPA 3050B EPA 6010B |
| Selenium   | ND     | 0.50  | 127580 07/24/07 EPA 3050B EPA 6010B |
| Silver     | ND     | 0.25  | 127580 07/24/07 EPA 3050B EPA 6010B |
| Thallium   | ND     | 0.50  | 127580 07/24/07 EPA 3050B EPA 6010B |
| Vanadium   | 30     | 0.25  | 127580 07/24/07 EPA 3050B EPA 6010B |
| Zinc       | 38     | 1.0   | 127580 07/24/07 EPA 3050B EPA 6010B |



|           | Califor           | nia Title 26 Metals |               |
|-----------|-------------------|---------------------|---------------|
| Lab #:    | 196134            | Project#:           | 001-09567-01  |
| Client:   | LFR Levine Fricke | Location:           | Hanson Radum  |
| Field ID: | SS-31(D)-10.5     | Diln Fac:           | 1.000         |
| Lab ID:   | 196134-014        | Sampled:            | 07/20/07      |
| Matrix:   | Soil              | Received:           | 07/23/07      |
| Units:    | mg/Kg             | Analyzed:           | 07/25/07      |
| Basis:    | as received       |                     |               |
| Analyte   | Result            | RL Batch# Prepared  | Prep Analysis |

| Analyte    | Result | RL    | Batch# Prepared | Prep      | Analysis  |
|------------|--------|-------|-----------------|-----------|-----------|
| Antimony   | ND     | 0.50  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Arsenic    | 6.0    | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Barium     | 330    | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Beryllium  | 0.44   | 0.10  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Cadmium    | ND     | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Chromium   | 38     | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Cobalt     | 11     | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Copper     | 25     | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Lead       | 6.6    | 0.15  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Mercury    | 0.087  | 0.020 | 127600 07/25/07 | METHOD    | EPA 7471A |
| Molybdenum | ND     | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Nickel     | 57     | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Selenium   | ND     | 0.50  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Silver     | ND     | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Thallium   | ND     | 0.50  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Vanadium   | 36     | 0.25  | 127580 07/24/07 | EPA 3050B | EPA 6010B |
| Zinc       | 45     | 1.0   | 127580 07/24/07 | EPA 3050B | EPA 6010B |



| California Title 26 Metals |                   |           |              |  |
|----------------------------|-------------------|-----------|--------------|--|
| Lab #:                     | 196134            | Location: | Hanson Radum |  |
| Client:                    | LFR Levine Fricke | Prep:     | EPA 3050B    |  |
| Project#:                  | 001-09567-01      | Analysis: | EPA 6010B    |  |
| Type:                      | BLANK             | Diln Fac: | 1.000        |  |
| Lab ID:                    | QC397759          | Batch#:   | 127580       |  |
| Matrix:                    | Soil              | Prepared: | 07/24/07     |  |
| Units:                     | mg/Kg             | Analyzed: | 07/25/07     |  |
| Basis:                     | as received       |           |              |  |

| Analyte    | Result | RL   |  |
|------------|--------|------|--|
| Antimony   | ND     | 0.50 |  |
| Arsenic    | ND     | 0.25 |  |
| Barium     | ND     | 0.25 |  |
| Beryllium  | ND     | 0.10 |  |
| Cadmium    | ND     | 0.25 |  |
| Chromium   | ND     | 0.25 |  |
| Cobalt     | ND     | 0.25 |  |
| Copper     | ND     | 0.25 |  |
| Lead       | ND     | 0.15 |  |
| Molybdenum | ND     | 0.25 |  |
| Nickel     | ND     | 0.25 |  |
| Selenium   | ND     | 0.50 |  |
| Silver     | ND     | 0.25 |  |
| Thallium   | ND     | 0.50 |  |
| Vanadium   | ND     | 0.25 |  |
| Zinc       | ND     | 1.0  |  |



|                                          | Californ                                    | nia Title 26 Meta                 | ls                                     |  |
|------------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|--|
| Lab #:<br>Client:<br>Project#:           | 196134<br>LFR Levine Fricke<br>001-09567-01 | Location:<br>Prep:<br>Analysis:   | Hanson Radum<br>EPA 3050B<br>EPA 6010B |  |
| Matrix:<br>Units:<br>Basis:<br>Diln Fac: | Soil<br>mg/Kg<br>as received<br>1.000       | Batch#:<br>Prepared:<br>Analyzed: | 127580<br>07/24/07<br>07/25/07         |  |

| Type: BS   | Lab ID: | QC3977 | 60   |        |
|------------|---------|--------|------|--------|
| Analyte    | Spiked  | Result | %REC | Limits |
| Antimony   | 100.0   | 97.85  | 98   | 80-120 |
| Arsenic    | 50.00   | 48.81  | 98   | 80-120 |
| Barium     | 100.0   | 98.96  | 99   | 80-120 |
| Beryllium  | 2.500   | 2.394  | 96   | 80-120 |
| Cadmium    | 10.00   | 10.08  | 101  | 80-120 |
| Chromium   | 100.0   | 96.09  | 96   | 80-120 |
| Cobalt     | 25.00   | 23.47  | 94   | 80-120 |
| Copper     | 12.50   | 11.79  | 94   | 80-120 |
| Lead       | 100.0   | 95.17  | 95   | 80-120 |
| Molybdenum | 20.00   | 20.34  | 102  | 80-120 |
| Nickel     | 25.00   | 23.56  | 94   | 80-120 |
| Selenium   | 50.00   | 48.95  | 98   | 80-120 |
| Silver     | 10.00   | 9.538  | 95   | 80-120 |
| Thallium   | 50.00   | 47.17  | 94   | 80-120 |
| Vanadium   | 25.00   | 24.24  | 97   | 80-120 |
| Zinc       | 25.00   | 24.42  | 98   | 80-120 |

| Type:      | BSD     | Lab ID: | QC397  | 761  |        |     |     |
|------------|---------|---------|--------|------|--------|-----|-----|
|            | Analyte | Spiked  | Result | %REC | Limits | RPD | Lim |
| Antimony   |         | 100.0   | 98.74  | 99   | 80-120 | 1   | 20  |
| Arsenic    |         | 50.00   | 48.42  | 97   | 80-120 | 1   | 20  |
| Barium     |         | 100.0   | 100.1  | 100  | 80-120 | 1   | 20  |
| Beryllium  |         | 2.500   | 2.424  | 97   | 80-120 | 1   | 20  |
| Cadmium    |         | 10.00   | 10.16  | 102  | 80-120 | 1   | 20  |
| Chromium   |         | 100.0   | 97.18  | 97   | 80-120 | 1   | 20  |
| Cobalt     |         | 25.00   | 23.76  | 95   | 80-120 | 1   | 20  |
| Copper     |         | 12.50   | 11.91  | 95   | 80-120 | 1   | 20  |
| Lead       |         | 100.0   | 96.75  | 97   | 80-120 | 2   | 20  |
| Molybdenum |         | 20.00   | 20.77  | 104  | 80-120 | 2   | 20  |
| Nicĥel     |         | 25.00   | 23.85  | 95   | 80-120 | 1   | 20  |
| Selenium   |         | 50.00   | 50.20  | 100  | 80-120 | 3   | 20  |
| Silver     |         | 10.00   | 9.695  | 97   | 80-120 | 2   | 20  |
| Thallium   |         | 50.00   | 47.65  | 95   | 80-120 | 1   | 20  |
| Vanadium   |         | 25.00   | 24.51  | 98   | 80-120 | 1   | 20  |
| Zinc       |         | 25.00   | 24.47  | 98   | 80-120 | 0   | 20  |



|             | California Title 26 Metals |           |              |  |  |
|-------------|----------------------------|-----------|--------------|--|--|
| Lab #:      | 196134                     | Location: | Hanson Radum |  |  |
| Client:     | LFR Levine Fricke          | Prep:     | EPA 3050B    |  |  |
| Project#:   | 001-09567-01               | Analysis: | EPA 6010B    |  |  |
| Field ID:   | ZZZZZZZZZZ                 | Batch#:   | 127580       |  |  |
| MSS Lab ID: | 196147-001                 | Sampled:  | 07/20/07     |  |  |
| Matrix:     | Soil                       | Received: | 07/23/07     |  |  |
| Units:      | mg/Kg                      | Prepared: | 07/24/07     |  |  |
| Basis:      | as received                | Analyzed: | 07/25/07     |  |  |
| Diln Fac:   | 1.000                      | -         |              |  |  |

| Type:      | MS         | Lab ID: | QC397762 |      |        |
|------------|------------|---------|----------|------|--------|
| Analyte    | MSS Result | Spiked  | Result   | %REC | Limits |
| Antimony   | 0.1763     | 93.46   | 45.95    | 49   | 1-129  |
| Arsenic    | 1.998      | 46.73   | 47.18    | 97   | 72-120 |
| Barium     | 65.70      | 93.46   | 159.8    | 101  | 49-138 |
| Beryllium  | 0.3264     | 2.336   | 2.535    | 95   | 80-120 |
| Cadmium    | <0.02395   | 9.346   | 8.852    | 95   | 72-120 |
| Chromium   | 7.338      | 93.46   | 93.65    | 92   | 63-122 |
| Cobalt     | 3.009      | 23.36   | 24.04    | 90   | 61-120 |
| Copper     | 5.529      | 11.68   | 16.58    | 95   | 59-137 |
| Lead       | 2.300      | 93.46   | 85.55    | 89   | 55-122 |
| Molybdenum | 0.1733     | 18.69   | 17.88    | 95   | 66-120 |
| Nickel     | 2.666      | 23.36   | 23.53    | 89   | 45-139 |
| Selenium   | <0.04713   | 46.73   | 44.67    | 96   | 73-120 |
| Silver     | <0.05716   | 9.346   | 8.830    | 94   | 53-120 |
| Thallium   | <0.08561   | 46.73   | 40.58    | 87   | 64-120 |
| Vanadium   | 33.31      | 23.36   | 55.69    | 96   | 55-139 |
| Zinc       | 17.77      | 23.36   | 40.34    | 97   | 49-140 |

| Type: MSD  | Lab ID: | QC397  | 763  |        |     |     |
|------------|---------|--------|------|--------|-----|-----|
| Analyte    | Spiked  | Result | %REC | Limits | RPD | Lim |
| Antimony   | 93.46   | 45.87  | 49   | 1-129  | 0   | 23  |
| Arsenic    | 46.73   | 49.36  | 101  | 72-120 | 5   | 20  |
| Barium     | 93.46   | 168.8  | 110  | 49-138 | 6   | 23  |
| Beryllium  | 2.336   | 2.627  | 98   | 80-120 | 4   | 20  |
| Cadmium    | 9.346   | 9.195  | 98   | 72-120 | 4   | 20  |
| Chromium   | 93.46   | 96.55  | 95   | 63-122 | 3   | 20  |
| Cobalt     | 23.36   | 25.17  | 95   | 61-120 | 5   | 23  |
| Copper     | 11.68   | 17.61  | 103  | 59-137 | 6   | 20  |
| Lead       | 93.46   | 89.51  | 93   | 55-122 | 5   | 26  |
| Molybdenum | 18.69   | 18.60  | 99   | 66-120 | 4   | 20  |
| Nickel     | 23.36   | 24.95  | 95   | 45-139 | 6   | 26  |
| Selenium   | 46.73   | 43.31  | 93   | 73-120 | 3   | 20  |
| Silver     | 9.346   | 9.048  | 97   | 53-120 | 2   | 22  |
| Thallium   | 46.73   | 41.92  | 90   | 64-120 | 3   | 20  |
| Vanadium   | 23.36   | 58.60  | 108  | 55-139 | 5   | 20  |
| Zinc       | 23.36   | 43.34  | 109  | 49-140 | 7   | 23  |



| Lab #:    | 196134            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
|           |                   |           |              |  |
| Client:   | LFR Levine Fricke | Prep:     | METHOD       |  |
| Project#: | 001-09567-01      | Analysis: | EPA 7471A    |  |
| Analyte:  | Mercury           | Basis:    | as received  |  |
| Type:     | BLANK             | Diln Fac: | 1.000        |  |
| Lab ID:   | QC397831          | Batch#:   | 127600       |  |
| Matrix:   | Soil              | Prepared: | 07/25/07     |  |
| Units:    | mg/Kg             | Analyzed: | 07/25/07     |  |

| Result | RL    |  |
|--------|-------|--|
| ND     | 0.020 |  |

ND= Not Detected RL= Reporting Limit Page 1 of 1



| California Title 26 Metals |                   |           |              |  |  |
|----------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                     | 196134            | Location: | Hanson Radum |  |  |
| Client:                    | LFR Levine Fricke | Prep:     | METHOD       |  |  |
| Project#:                  | 001-09567-01      | Analysis: | EPA 7471A    |  |  |
| Analyte:                   | Mercury           | Diln Fac: | 1.000        |  |  |
| Matrix:                    | Soil              | Batch#:   | 127600       |  |  |
| Units:                     | mg/Kg             | Prepared: | 07/25/07     |  |  |
| Basis:                     | as received       | Analyzed: | 07/25/07     |  |  |
|                            |                   |           |              |  |  |

| Туре | Lab ID   | Spiked | Result | %REC | Limits | RPD | Lim |
|------|----------|--------|--------|------|--------|-----|-----|
| BS   | QC397832 | 0.5000 | 0.4540 | 91   | 80-120 |     |     |
| BSD  | QC397833 | 0.5000 | 0.4240 | 85   | 80-120 | 7   | 20  |



QC397836

MSD

| California Title 26 Metals |                   |           |        |          |        |     |     |
|----------------------------|-------------------|-----------|--------|----------|--------|-----|-----|
| Lab #:                     | 196134            | Location: | Hans   | on Radum | 1      |     |     |
| Client:                    | LFR Levine Fricke | Prep:     | METH   | OD       |        |     |     |
| Project#:                  | 001-09567-01      | Analysis: | EPA    | 7471A    |        |     |     |
| Analyte:                   | Mercury           | Diln Fac: | 1.00   | 0        |        |     |     |
| Field ID:                  | ZZZZZZZZZ         | Batch#:   | 1276   | 00       |        |     |     |
| MSS Lab ID:                | 196123-001        | Sampled:  | 07/2   | 0/07     |        |     |     |
| Matrix:                    | Soil              | Received: | 07/2   | 0/07     |        |     |     |
| Units:                     | mg/Kg             | Prepared: | 07/2   | 5/07     |        |     |     |
| Basis:                     | as received       | Analyzed: | 07/2   | 5/07     |        |     |     |
|                            |                   |           |        |          |        |     |     |
| Type Lab ID                | MSS Result        | Spiked    | Result | %REC     | Limits | RPD | Lim |
| MS QC397835                | 0.08440           | 0.4808    | 0.5990 | 107      | 67-143 |     |     |

0.4717

0.4774

83

23

67-143 21



| LFR Levine Fricke<br>1900 Powell Street<br>Emeryville, CA 94608 | Project : 001-09567-01<br>Location : Hanson Radum<br>Level : II |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------|--|
|-----------------------------------------------------------------|-----------------------------------------------------------------|--|

| <u>Sample ID</u> | <u>Lab ID</u> |
|------------------|---------------|
| SS-31(D)-GGW     | 196163-001    |
| SS-123(F1)-GGW   | 196163-002    |
| SS-31(D)-25      | 196163-003    |
| SS-31(D)-30      | 196163-004    |
| SS-31(D)-40      | 196163-005    |
| SS-31(D)-50.5    | 196163-006    |
| SS-31(D)-60.5    | 196163-007    |
| SS-123(F1)-5.5   | 196163-008    |
| SS-123(F1)-15.5  | 196163-009    |
| SS-123(F2)-6     | 196163-010    |
| SS-123(F2)-11.5  | 196163-011    |
| SS-123(F2)-16.5  | 196163-012    |

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Signature: Project Manager Signature:

Operations Manager

Date: 07/30/2007

Date: 07/30/2007

NELAP # 01107CA

Page 1 of \_\_\_\_



### CASE NARRATIVE

Laboratory number:196163Client:LFR Levine FrickeProject:001-09567-01Location:Hanson RadumRequest Date:07/23/07Samples Received:07/23/07

This hardcopy data package contains sample and QC results for nine soil samples and two water samples, requested for the above referenced project on 07/23/07. The samples were received cold and intact. All data were e-mailed to Katrin Schliewen on 07/26/07.

### TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

### TPH-Extractables by GC (EPA 8015B) Water:

No analytical problems were encountered.

#### TPH-Extractables by GC (EPA 8015B) Soil:

High RPD was observed for diesel C10-C24 in the MS/MSD of SS-31(D)-50.5 (lab # 196163-006). No other analytical problems were encountered.

### Volatile Organics by GC/MS (EPA 8260B) Water:

No analytical problems were encountered.

#### Volatile Organics by GC/MS (EPA 8260B) Soil:

No analytical problems were encountered.



|                                           | Total         | Volatil | le Hydrocar | bons         |   |
|-------------------------------------------|---------------|---------|-------------|--------------|---|
| Lab #: 1961                               | 63            |         | Location:   | Hanson Radum | 1 |
| Client: LFR                               | Levine Fricke |         | Prep:       | EPA 5030B    |   |
| Project#: 001-                            | 09567-01      |         | Analysis:   | EPA 8015B    |   |
| Matrix: Soil                              |               |         | Batch#:     | 127568       |   |
| Units: mg/K                               | a             |         | Sampled:    | 07/23/07     |   |
| 5.                                        | eceived       |         | Received:   | 07/23/07     |   |
| Diln Fac: 1.00                            |               |         | Analyzed:   | 07/24/07     |   |
|                                           |               |         | -           |              |   |
|                                           | (D)-25        |         | Lab ID:     | 196163-003   |   |
| Type: SAMPL                               | Ε             |         |             |              |   |
| Analyte                                   |               | Result  |             | RL           |   |
| Gasoline C7-C12                           | NI            | )       |             | 1.0          |   |
|                                           |               |         |             |              |   |
| Surrogate                                 | %REC          | Limits  |             |              |   |
| Trifluorotoluene (FID                     | -             | 70-132  |             |              |   |
| Bromofluorobenzene (F                     | ID) 102       | 66-138  |             |              |   |
| Field ID: SS-31<br>Type: SAMPL            | (D)-30<br>E   |         | Lab ID:     | 196163-004   |   |
| Analyte                                   |               | Result  |             | RL           |   |
| Gasoline C7-C12                           | NI            | )       |             | 0.99         |   |
| aurea act a                               | 8-DEC         | Limits  |             |              |   |
| <b>Surrogate</b><br>Trifluorotoluene (FID | ) 101         | 70-132  |             |              |   |
| -                                         |               |         |             |              |   |
| Bromofluorobenzene (F                     | 10) 107       | 66-138  |             |              |   |
| Field ID: SS-31                           | (D)-40        |         | Lab ID:     | 196163-005   |   |
| Type: SAMPL                               | Ε             |         |             |              |   |
| Analyte                                   |               | Result  |             | RL           |   |
| Gasoline C7-C12                           | NI            | )       |             | 1.0          |   |
|                                           |               |         |             |              |   |
| Surrogate                                 | %REC          | Limits  |             |              |   |
| Trifluorotoluene (FID                     | ) 107         | 70-132  |             |              |   |
| Bromofluorobenzene (F                     |               | 66-138  |             |              |   |
| `                                         |               |         |             |              |   |



|                                                                                                                 |                                                                                                                     | Total                                  | Volatil                              | .e Hydrocarb | ons                         |  |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------|--------------|-----------------------------|--|
|                                                                                                                 |                                                                                                                     | TOCAL                                  |                                      |              |                             |  |
| Lab #:                                                                                                          | 196163                                                                                                              |                                        |                                      | Location:    | Hanson Radum                |  |
| Client:                                                                                                         | LFR Levine Fr                                                                                                       | icke                                   |                                      | Prep:        | EPA 5030B                   |  |
| Project#:                                                                                                       | 001-09567-01                                                                                                        |                                        |                                      | Analysis:    | EPA 8015B                   |  |
| Matrix:                                                                                                         | Soil                                                                                                                |                                        |                                      | Batch#:      | 127568                      |  |
| Units:                                                                                                          | mg/Kg                                                                                                               |                                        |                                      | Sampled:     | 07/23/07                    |  |
| Basis:                                                                                                          | as received                                                                                                         |                                        |                                      | Received:    | 07/23/07                    |  |
| Diln Fac:                                                                                                       | 1.000                                                                                                               |                                        |                                      | Analyzed:    | 07/24/07                    |  |
|                                                                                                                 |                                                                                                                     |                                        |                                      |              |                             |  |
| Field ID:                                                                                                       | SS-31(D)-50.5                                                                                                       |                                        |                                      | Lab ID:      | 196163-006                  |  |
| Type:                                                                                                           | SAMPLE                                                                                                              |                                        |                                      |              |                             |  |
|                                                                                                                 | nalyte                                                                                                              |                                        | Result                               |              | RL                          |  |
| Gasoline C7-C                                                                                                   | 212                                                                                                                 | ND                                     | )                                    |              | 0.95                        |  |
|                                                                                                                 |                                                                                                                     | <b>A</b> = = <b>a</b>                  |                                      |              |                             |  |
|                                                                                                                 | rrogate                                                                                                             | %REC                                   | <b>Limits</b><br>70-132              |              |                             |  |
| Trifluorotolu<br>Bromofluorobe                                                                                  |                                                                                                                     | 99<br>104                              | 70-132<br>66-138                     |              |                             |  |
|                                                                                                                 | · · ·                                                                                                               |                                        |                                      |              |                             |  |
|                                                                                                                 |                                                                                                                     |                                        |                                      |              |                             |  |
| Field ID:<br>Type:                                                                                              | SS-31(D)-60.5<br>SAMPLE                                                                                             |                                        |                                      | Lab ID:      | 196163-007                  |  |
| Туре:                                                                                                           |                                                                                                                     |                                        | Result                               |              | 196163-007<br>RL            |  |
| Туре:                                                                                                           | SAMPLE                                                                                                              | NĽ                                     |                                      |              |                             |  |
| Type:<br>Ar<br>Gasoline C7-C                                                                                    | SAMPLE<br>malyte                                                                                                    | ND                                     | )                                    |              | RL                          |  |
| Type:<br>Ar<br>Gasoline C7-C                                                                                    | SAMPLE<br>malyte<br>C12<br>rrogate                                                                                  | ND<br><b>%REC</b>                      | Limits                               |              | RL                          |  |
| Type:<br>Gasoline C7-C                                                                                          | SAMPLE<br>malyte<br>C12<br>rrogate<br>Lene (FID)                                                                    | ND<br><b>%REC</b><br>102               | <b>Limits</b><br>70-132              |              | RL                          |  |
| Type:<br>Ar<br>Gasoline C7-C                                                                                    | SAMPLE<br>malyte<br>C12<br>rrogate<br>Lene (FID)                                                                    | ND<br><b>%REC</b>                      | Limits                               |              | RL                          |  |
| Type:<br>Gasoline C7-C                                                                                          | SAMPLE<br>malyte<br>C12<br>rrogate<br>Lene (FID)                                                                    | ND<br><b>%REC</b><br>102               | <b>Limits</b><br>70-132              |              | RL                          |  |
| Type:<br>Type:<br>Gasoline C7-C<br>Sur<br>Trifluorotolu<br>Bromofluorobe<br>Type:                               | SAMPLE<br>nalyte<br>C12<br>rrogate<br>Lene (FID)<br>enzene (FID)<br>BLANK                                           | NE<br>%REC<br>102<br>104               | <b>Limits</b><br>70-132<br>66-138    | Lab ID:      | RL<br>1.0<br>QC397711       |  |
| Type:<br>Type:<br>Gasoline C7-C<br>Sur<br>Trifluorotolu<br>Bromofluorobe<br>Type:                               | SAMPLE<br>nalyte<br>C12<br>rrogate<br>Lene (FID)<br>enzene (FID)<br>BLANK<br>halyte                                 | NE<br>%REC<br>102<br>104               | Limits<br>70-132<br>66-138<br>Result | Lab ID:      | RL<br>1.0                   |  |
| Type:<br>Type:<br>Gasoline C7-C<br>Sur<br>Trifluorotolu<br>Bromofluorobe<br>Type:<br>Ar<br>Gasoline C7-C        | SAMPLE<br>nalyte<br>Cl2<br>rrogate<br>Lene (FID)<br>enzene (FID)<br>BLANK<br>BLANK<br>nalyte<br>Cl2                 | NE<br>%REC<br>102<br>104<br>NE         | Limits<br>70-132<br>66-138<br>Result | Lab ID:      | RL<br>1.0<br>QC397711<br>RL |  |
| Type:<br>Type:<br>Gasoline C7-C<br>Sur<br>Trifluorotolu<br>Bromofluorobe<br>Type:<br>Ar<br>Gasoline C7-C<br>Sur | SAMPLE<br>nalyte<br>Cl2<br>rrogate<br>Lene (FID)<br>enzene (FID)<br>BLANK<br>balyte<br>Cl2<br>rrogate               | ND<br>%REC<br>102<br>104<br>ND<br>%REC | Limits<br>70-132<br>66-138<br>Result | Lab ID:      | RL<br>1.0<br>QC397711<br>RL |  |
| Type:<br>Type:<br>Gasoline C7-C<br>Sur<br>Trifluorotolu<br>Bromofluorobe<br>Type:<br>Ar<br>Gasoline C7-C        | SAMPLE<br>nalyte<br>C12<br>rrogate<br>Lene (FID)<br>enzene (FID)<br>BLANK<br>nalyte<br>C12<br>rrogate<br>Lene (FID) | NE<br>%REC<br>102<br>104<br>NE         | Limits<br>70-132<br>66-138<br>Result | Lab ID:      | RL<br>1.0<br>QC397711<br>RL |  |



| Total Volatile Hydrocarbons |                   |           |              |  |  |  |
|-----------------------------|-------------------|-----------|--------------|--|--|--|
| Lab #:                      | 196163            | Location: | Hanson Radum |  |  |  |
| Client:                     | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |  |
| Project#:                   | 001-09567-01      | Analysis: | EPA 8015B    |  |  |  |
| Туре:                       | LCS               | Basis:    | as received  |  |  |  |
| Lab ID:                     | QC397712          | Diln Fac: | 1.000        |  |  |  |
| Matrix:                     | Soil              | Batch#:   | 127568       |  |  |  |
| Units:                      | mg/Kg             | Analyzed: | 07/24/07     |  |  |  |

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 10.00  | 9.959  | 100  | 80-120 |

| Surrogate                | %REC | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 106  | 70-132 |
| Bromofluorobenzene (FID) | 101  | 66-138 |



| Total Volatile Hydrocarbons |                   |           |              |  |  |
|-----------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                      | 196163            | Location: | Hanson Radum |  |  |
| Client:                     | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |
| Project#:                   | 001-09567-01      | Analysis: | EPA 8015B    |  |  |
| Field ID:                   | SS-31(D)-25       | Diln Fac: | 1.000        |  |  |
| MSS Lab ID:                 | 196163-003        | Batch#:   | 127568       |  |  |
| Matrix:                     | Soil              | Sampled:  | 07/23/07     |  |  |
| Units:                      | mg/Kg             | Received: | 07/23/07     |  |  |
| Basis:                      | as received       | Analyzed: | 07/24/07     |  |  |

| Туре:     | MS              |            |        | Lab ID: | Q      | C397713 |        |         |
|-----------|-----------------|------------|--------|---------|--------|---------|--------|---------|
|           | Analyte         | MSS Result |        | Spiked  |        | Result  | %REC   | Limits  |
| Gasoline  | C7-C12          | 0          | .09166 | 9       | .901   | 9.881   | 99     | 36-120  |
|           | Surrogate       | %REC       | Limits |         |        |         |        |         |
| Trifluoro | toluene (FID)   | 114        | 70-132 |         |        |         |        |         |
| Bromofluo | robenzene (FID) | 112        | 66-138 |         |        |         |        |         |
|           |                 |            |        |         |        |         |        |         |
| Туре:     | MSD             |            |        | Lab ID: | Q      | C397714 |        |         |
|           | Analyte         |            | Spiked |         | Result | %REC    | Limits | RPD Lim |
| Gasoline  | C7-C12          |            | 10.20  |         | 10.22  | 99      | 36-120 | 0 29    |
|           | Surrogate       | %REC       | Limits |         |        |         |        |         |

| Surrogate                | %REC | Limits |  |
|--------------------------|------|--------|--|
| Trifluorotoluene (FID)   | 107  | 70-132 |  |
| Bromofluorobenzene (FID) | 107  | 66-138 |  |



| Total Extrac                                                                          | ctable Hydrocarbons                             |
|---------------------------------------------------------------------------------------|-------------------------------------------------|
| Lab #: 196163                                                                         | Location: Hanson Radum                          |
| Client: LFR Levine Fricke                                                             | Prep: EPA 3520C                                 |
| Project#: 001-09567-01                                                                | Analysis: EPA 8015B                             |
| Matrix: Water                                                                         | Sampled: 07/23/07                               |
| Units: ug/L                                                                           | Received: 07/23/07                              |
| Diln Fac: 1.000                                                                       | Prepared: 07/24/07                              |
| Batch#: 127571                                                                        | Analyzed: 07/25/07                              |
|                                                                                       |                                                 |
| Field ID: SS-31(D)-GGW                                                                | Lab ID: 196163-001                              |
| Type: SAMPLE                                                                          | Cleanup Method: EPA 3630C                       |
| Analyte Result                                                                        | t RL                                            |
| Diesel C10-C24 ND                                                                     | 50                                              |
| Motor Oil C24-C36 ND                                                                  | 300                                             |
|                                                                                       |                                                 |
| Surrogate%RECLimitHexacosane8961-13                                                   |                                                 |
| Field ID: SS-123(F1)-GGW<br>Type: SAMPLE                                              | Lab ID: 196163-002<br>Cleanup Method: EPA 3630C |
| Analyte Result                                                                        | t RL                                            |
| Diesel C10-C24 ND                                                                     | 50                                              |
| Motor Oil C24-C36 ND                                                                  | 300                                             |
| Surrogate %REC Limit                                                                  | ts                                              |
| Hexacosane 101 61-13                                                                  | 34                                              |
|                                                                                       |                                                 |
| Type: BLANK<br>Lab ID: QC397725                                                       | Cleanup Method: EPA 3630C                       |
|                                                                                       |                                                 |
| Lab ID: QC397725                                                                      |                                                 |
| Lab ID: QC397725 Analyte Result                                                       | t RL                                            |
| Lab ID: QC397725           Analyte         Result           Diesel C10-C24         ND | t RL<br>50<br>300                               |



|                  | 1               | otal 1 | Extracta | ble Hydrocarbo  | ns           |        |     |     |
|------------------|-----------------|--------|----------|-----------------|--------------|--------|-----|-----|
| Lab #:           | 196163          |        |          | Location:       | Hanson Radum |        |     |     |
| Client:          | LFR Levine Fr   | ricke  |          | Prep:           | EPA 3520C    |        |     |     |
| Project#:        | 001-09567-01    |        |          | Analysis:       | EPA 8015B    |        |     |     |
| Matrix:          | Water           |        |          | Batch#:         | 127571       |        |     |     |
| Units:           | ug/L            |        |          | Prepared:       | 07/24/07     |        |     |     |
| Diln Fac:        | 1.000           |        |          | Analyzed:       | 07/25/07     |        |     |     |
| Type:<br>Lab ID: | BS<br>QC397726  |        |          | Cleanup Method: | EPA 3630C    |        |     |     |
|                  | Analyte         |        | Spiked   | Result          | %REC         | Limits |     |     |
| Diesel C10-      | C24             |        | 2,500    | 2,330           | 93           | 58-130 |     |     |
| S                | urrogate        | %REC   | Limits   |                 |              |        |     |     |
| Hexacosane       |                 | 99     | 61-134   |                 |              |        |     |     |
| Type:<br>Lab ID: | BSD<br>QC397727 |        |          | Cleanup Method: | EPA 3630C    |        |     |     |
|                  | Analyte         |        | Spiked   | Result          | %REC         | Limits | RPD | Lim |
| Diesel C10-      | C24             |        | 2,500    | 2,389           | 96           | 58-130 | 3   | 27  |
| S                | urrogate        | %REC   | Limits   |                 |              |        |     |     |
| Hexacosane       |                 | 100    | 61-134   |                 |              |        |     |     |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Т                                                                                                                                                                                      | otal I                                                                              | Extracta                                                                                   | ble Hydrocarbo                                                                                    | ns                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Lab #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 196163                                                                                                                                                                                 |                                                                                     |                                                                                            | Location:                                                                                         | Hanson Radum                                                      |
| Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LFR Levine Fr                                                                                                                                                                          | icke                                                                                |                                                                                            | Prep:                                                                                             | SHAKER TABLE                                                      |
| Project#:<br>Matrix:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>001-09567-01</u><br>Soil                                                                                                                                                            |                                                                                     |                                                                                            | Analysis:<br>Sampled:                                                                             | EPA 8015B<br>07/23/07                                             |
| Units:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/Kg                                                                                                                                                                                  |                                                                                     |                                                                                            | Received:                                                                                         | 07/23/07                                                          |
| Basis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | as received                                                                                                                                                                            |                                                                                     |                                                                                            | Prepared:                                                                                         | 07/24/07                                                          |
| Batch#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 127577                                                                                                                                                                                 |                                                                                     |                                                                                            | Analyzed:                                                                                         | 07/25/07                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                        |                                                                                     |                                                                                            |                                                                                                   | 1 000                                                             |
| Field ID:<br>Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SS-31(D)-25<br>SAMPLE                                                                                                                                                                  |                                                                                     |                                                                                            | Diln Fac:<br>Cleanup Method:                                                                      | 1.000<br>FDA 3630C                                                |
| Lab ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 196163-003                                                                                                                                                                             |                                                                                     |                                                                                            | erealing Meenou!                                                                                  | EIA SUSUE                                                         |
| 1000 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 190100 000                                                                                                                                                                             |                                                                                     |                                                                                            |                                                                                                   |                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | alyte                                                                                                                                                                                  |                                                                                     | Result                                                                                     | RL                                                                                                |                                                                   |
| Diesel C10-C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                        | NE                                                                                  |                                                                                            |                                                                                                   | 99                                                                |
| Motor Oil C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -036                                                                                                                                                                                   | ND                                                                                  | )                                                                                          | 5.                                                                                                | 0                                                                 |
| Sur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rogate                                                                                                                                                                                 | %REC                                                                                | Limits                                                                                     |                                                                                                   |                                                                   |
| Hexacosane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        | 85                                                                                  | 40-127                                                                                     |                                                                                                   |                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                        |                                                                                     |                                                                                            |                                                                                                   |                                                                   |
| Field ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SS-31(D)-30                                                                                                                                                                            |                                                                                     |                                                                                            | Diln Fac:                                                                                         |                                                                   |
| Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLE                                                                                                                                                                                 |                                                                                     |                                                                                            | Cleanup Method:                                                                                   | EPA 3630C                                                         |
| Lab ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 196163-004                                                                                                                                                                             |                                                                                     |                                                                                            |                                                                                                   |                                                                   |
| ۵n:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | alyte                                                                                                                                                                                  |                                                                                     | Result                                                                                     | RL                                                                                                |                                                                   |
| Diesel C10-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        | NE                                                                                  |                                                                                            | 1.                                                                                                | 0                                                                 |
| Motor Oil C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                        | NE                                                                                  |                                                                                            | 5.                                                                                                |                                                                   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                        |                                                                                     |                                                                                            |                                                                                                   |                                                                   |
| Sur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rogate                                                                                                                                                                                 | %REC                                                                                | Limits                                                                                     |                                                                                                   |                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                        |                                                                                     |                                                                                            |                                                                                                   |                                                                   |
| Hexacosane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        | 74                                                                                  | 40-127                                                                                     |                                                                                                   |                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                        |                                                                                     |                                                                                            |                                                                                                   |                                                                   |
| Hexacosane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |                                                                                     |                                                                                            |                                                                                                   |                                                                   |
| Hexacosane<br>Field ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SS-31(D)-40                                                                                                                                                                            |                                                                                     |                                                                                            | Diln Fac:                                                                                         | 1.000                                                             |
| Hexacosane<br>Field ID:<br>Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SS-31(D)-40<br>SAMPLE                                                                                                                                                                  |                                                                                     |                                                                                            | Diln Fac:<br>Cleanup Method:                                                                      | 1.000<br>EPA 3630C                                                |
| Hexacosane<br>Field ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SS-31(D)-40                                                                                                                                                                            |                                                                                     |                                                                                            | Diln Fac:<br>Cleanup Method:                                                                      | 1.000<br>EPA 3630C                                                |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SS-31(D)-40<br>SAMPLE                                                                                                                                                                  | 74                                                                                  | 40-127                                                                                     | Diln Fac:<br>Cleanup Method:<br>RL                                                                | 1.000<br>EPA 3630C                                                |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SS-31(D)-40<br>SAMPLE<br>196163-005<br><b>alyte</b><br>4                                                                                                                               | 74<br>                                                                              | 40-127                                                                                     | Cleanup Method:<br>RL<br>1.                                                                       | EPA 3630C                                                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SS-31(D)-40<br>SAMPLE<br>196163-005<br><b>alyte</b><br>4                                                                                                                               | 74                                                                                  | 40-127                                                                                     | Cleanup Method:                                                                                   | EPA 3630C                                                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C2<br>Motor Oil C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS-31(D)-40<br>SAMPLE<br>196163-005<br><b>alyte</b><br>4<br>-C36                                                                                                                       | 74<br>NE<br>NE                                                                      | 40-127                                                                                     | Cleanup Method:<br>RL<br>1.                                                                       | EPA 3630C                                                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C2<br>Motor Oil C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS-31(D)-40<br>SAMPLE<br>196163-005<br><b>alyte</b><br>4                                                                                                                               | 74<br>                                                                              | 40-127                                                                                     | Cleanup Method:<br>RL<br>1.                                                                       | EPA 3630C                                                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C2<br>Motor Oil C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS-31(D)-40<br>SAMPLE<br>196163-005<br><b>alyte</b><br>4<br>-C36                                                                                                                       | 74<br>NE<br>NE                                                                      | 40-127<br>Result                                                                           | Cleanup Method:<br>RL<br>1.                                                                       | EPA 3630C                                                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C2<br>Motor Oil C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS-31(D)-40<br>SAMPLE<br>196163-005<br><b>alyte</b><br>4<br>-C36                                                                                                                       | 74<br>NE<br>NE                                                                      | 40-127<br>Result                                                                           | Cleanup Method:<br>RL<br>1.                                                                       | EPA 3630C                                                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24<br>Hexacosane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SS-31(D)-40<br>SAMPLE<br>196163-005<br>alyte<br>4<br>-C36<br>rogate                                                                                                                    | 74<br>NE<br>NE                                                                      | 40-127<br>Result                                                                           | Cleanup Method:<br>RL<br>1.<br>5.                                                                 | EPA 3630C                                                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24:<br>Motor Oil C24:<br>Field ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SS-31(D)-40<br>SAMPLE<br>196163-005<br>alyte<br>4<br>-C36<br>rogate<br>SS-31(D)-50.5                                                                                                   | 74<br>NE<br>NE                                                                      | 40-127<br>Result                                                                           | Cleanup Method:<br>RL<br>1.<br>5.<br>Diln Fac:                                                    | EPA 3630C                                                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24:<br>Motor Oil C24:<br>Hexacosane<br>Field ID:<br>Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SS-31(D)-40<br>SAMPLE<br>196163-005<br>alyte<br>4<br>-C36<br>rogate<br>SS-31(D)-50.5<br>SAMPLE                                                                                         | 74<br>NE<br>NE                                                                      | 40-127<br>Result                                                                           | Cleanup Method:<br>RL<br>1.<br>5.                                                                 | EPA 3630C                                                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24:<br>Motor Oil C24:<br>Field ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SS-31(D)-40<br>SAMPLE<br>196163-005<br>alyte<br>4<br>-C36<br>rogate<br>SS-31(D)-50.5                                                                                                   | 74<br>NE<br>NE                                                                      | 40-127<br>Result                                                                           | Cleanup Method:<br>RL<br>1.<br>5.<br>Diln Fac:                                                    | EPA 3630C                                                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24:<br>Motor Oil C24:<br>Field ID:<br>Type:<br>Lab ID:<br>Ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SS-31(D)-40<br>SAMPLE<br>196163-005<br>alyte<br>4<br>-C36<br>rogate<br>SS-31(D)-50.5<br>SAMPLE<br>196163-006<br>alyte                                                                  | 74<br>NI<br>NI<br>8REC<br>77                                                        | 40-127<br>Result<br>Limits<br>40-127<br>Result                                             | Cleanup Method:<br>RL<br>1.<br>5.<br>Diln Fac:<br>Cleanup Method:<br>RL                           | EPA 3630C<br>0<br>0<br>1.000<br>EPA 3630C                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C2:<br>Motor Oil C24:<br>Motor Oil C24:<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C2:<br>Ana<br>Diesel C10-C2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS-31(D)-40<br>SAMPLE<br>196163-005<br>alyte<br>4<br>-C36<br>rogate<br>SS-31(D)-50.5<br>SAMPLE<br>196163-006<br>alyte<br>4                                                             | 74<br>NL<br>NE<br>77<br>NE                                                          | 40-127<br>Result<br>Limits<br>40-127<br>Result                                             | Cleanup Method:<br>RL<br>1.<br>5.<br>Diln Fac:<br>Cleanup Method:<br>RL<br>1.                     | EPA 3630C<br>0<br>0<br>1.000<br>EPA 3630C                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24:<br>Motor Oil C24:<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SS-31(D)-40<br>SAMPLE<br>196163-005<br>alyte<br>4<br>-C36<br>rogate<br>SS-31(D)-50.5<br>SAMPLE<br>196163-006<br>alyte<br>4                                                             | 74<br>NI<br>NI<br>8REC<br>77                                                        | 40-127<br>Result<br>Limits<br>40-127<br>Result                                             | Cleanup Method:<br>RL<br>1.<br>5.<br>Diln Fac:<br>Cleanup Method:<br>RL                           | EPA 3630C<br>0<br>0<br>1.000<br>EPA 3630C                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24:<br>Motor Oil C24:<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C2:<br>Motor Oil C24:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS-31(D)-40<br>SAMPLE<br>196163-005<br>alyte<br>4<br>-C36<br>rogate<br>SS-31(D)-50.5<br>SAMPLE<br>196163-006<br>alyte<br>4<br>-C36                                                     | 74<br>NE<br>NE<br>77                                                                | 40-127<br>Result<br>0<br>Limits<br>40-127<br>Result                                        | Cleanup Method:<br>RL<br>1.<br>5.<br>Diln Fac:<br>Cleanup Method:<br>RL<br>1.                     | EPA 3630C<br>0<br>0<br>1.000<br>EPA 3630C                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24:<br>Motor Oil C24:<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C2:<br>Motor Oil C24:<br>Motor Oil C24:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SS-31(D)-40<br>SAMPLE<br>196163-005<br>alyte<br>4<br>-C36<br>rogate<br>SS-31(D)-50.5<br>SAMPLE<br>196163-006<br>alyte<br>4                                                             | 74<br>NL<br>NE<br>77<br>NE                                                          | 40-127<br>Result<br>0<br>Limits<br>40-127<br>Result                                        | Cleanup Method:<br>RL<br>1.<br>5.<br>Diln Fac:<br>Cleanup Method:<br>RL<br>1.                     | EPA 3630C<br>0<br>0<br>1.000<br>EPA 3630C                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C2<br>Motor Oil C24<br>Surr<br>Ana<br>Diesel C10-C2<br>Motor Oil C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SS-31(D)-40<br>SAMPLE<br>196163-005<br>alyte<br>4<br>-C36<br>rogate<br>SS-31(D)-50.5<br>SAMPLE<br>196163-006<br>alyte<br>4<br>-C36                                                     | 74<br>NE<br>NE<br>77<br>77<br>NE<br>NE                                              | 40-127<br>Result<br>0<br>Limits<br>40-127<br>Result<br>0<br>Limits                         | Cleanup Method:<br>RL<br>1.<br>5.<br>Diln Fac:<br>Cleanup Method:<br>RL<br>1.                     | EPA 3630C<br>0<br>0<br>1.000<br>EPA 3630C                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C2:<br>Motor Oil C24:<br>Motor Oil C24:<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C2:<br>Motor Oil C24:<br>Motor Oil C24:<br>Motor Oil C24:<br>Hexacosane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SS-31(D)-40<br>SAMPLE<br>196163-005<br>alyte<br>4<br>-C36<br>rogate<br>SS-31(D)-50.5<br>SAMPLE<br>196163-006<br>alyte<br>4<br>-C36<br>rogate                                           | 74<br>NI<br>NE<br><b>%REC</b><br>77<br>NE<br>NE<br>NE<br>NE<br>77                   | 40-127<br><b>Result</b><br>0<br>Limits<br>40-127<br><b>Result</b><br>0<br>Limits<br>40-127 | Cleanup Method:<br>RL<br>1.<br>5.<br>Diln Fac:<br>Cleanup Method:<br>RL<br>1.<br>5.               | EPA 3630C<br>0<br>0<br>1.000<br>EPA 3630C                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24<br>Motor Oil C24<br>Field ID:<br>Type:<br>Lab ID:<br>Type:<br>Lab ID:<br>Motor Oil C24<br>Motor Oil C24<br>Motor Oil C24<br>Motor Oil C24<br>Hexacosane<br>H= Heavier hyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SS-31(D)-40<br>SAMPLE<br>196163-005<br>alyte<br>4<br>-C36<br>rogate<br>SS-31(D)-50.5<br>SAMPLE<br>196163-006<br>alyte<br>4<br>-C36<br>rogate<br>drocarbons contri                      | 74<br>NL<br>NE<br><b>%REC</b><br>77<br>NL<br>NE<br>NE<br>77<br>27<br>27<br>20<br>27 | 40-127<br>Result<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1          | Cleanup Method:<br>RL<br>1.<br>5.<br>Diln Fac:<br>Cleanup Method:<br>RL<br>1.<br>5.<br>Antitation | EPA 3630C<br>0<br>0<br>1.000<br>EPA 3630C                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24:<br>Motor Oil C24:<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C2:<br>Motor Oil C24:<br>Motor Oil C24:<br>Motor Oil C24:<br>Hexacosane<br>H= Heavier hydrighter hydrol hyd | SS-31(D)-40<br>SAMPLE<br>196163-005<br>alyte<br>4<br>-C36<br>rogate<br>SS-31(D)-50.5<br>SAMPLE<br>196163-006<br>alyte<br>4<br>-C36<br>rogate<br>drocarbons contri<br>drocarbons contri | 74<br>NE<br>NE<br>77<br>77<br><b>%REC</b><br>77<br><b>%REC</b><br>77<br>buted t     | 40-127<br>Result<br>0<br>Limits<br>40-127<br>A0-127<br>Limits<br>40-127<br>                | Cleanup Method:<br>RL<br>1.<br>5.<br>Diln Fac:<br>Cleanup Method:<br>RL<br>1.<br>5.<br>Antitation | EPA 3630C 0 0 1.000 EPA 3630C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |

DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 1 of 3



|                                                                                                                                                                                                         | Tot                                                                                                                 | al Extracta                                                                                                                                                                          | ble Hydrocarbo                                                                | ns                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------|
| Lab #:<br>Client:<br>Project#:                                                                                                                                                                          | 196163<br>LFR Levine Fric<br>001-09567-01                                                                           | se                                                                                                                                                                                   | Location:<br>Prep:<br>Analysis:                                               | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B  |
| Matrix:<br>Units:<br>Basis:<br>Datab#:                                                                                                                                                                  | Soil<br>mg/Kg<br>as received<br>127577                                                                              |                                                                                                                                                                                      | Sampled:<br>Received:<br>Prepared:                                            | 07/23/07<br>07/23/07<br>07/24/07           |
| Batch#:                                                                                                                                                                                                 | 12/5//                                                                                                              |                                                                                                                                                                                      | Analyzed:                                                                     | 07/25/07                                   |
| Field ID:<br>Type:<br>Lab ID:                                                                                                                                                                           | SS-31(D)-60.5<br>SAMPLE<br>196163-007                                                                               |                                                                                                                                                                                      | Diln Fac:<br>Cleanup Method:                                                  | 1.000<br>EPA 3630C                         |
| Ana                                                                                                                                                                                                     | lyte                                                                                                                | Result                                                                                                                                                                               | RL                                                                            |                                            |
| Diesel C10-C24                                                                                                                                                                                          |                                                                                                                     | ND                                                                                                                                                                                   | 0.                                                                            | 99                                         |
| Motor Oil C24-0                                                                                                                                                                                         | 236                                                                                                                 | ND                                                                                                                                                                                   | 5.                                                                            | 0                                          |
| Surro                                                                                                                                                                                                   | ogate                                                                                                               | REC Limits                                                                                                                                                                           |                                                                               |                                            |
| Hexacosane                                                                                                                                                                                              | 9:                                                                                                                  |                                                                                                                                                                                      |                                                                               |                                            |
| Field ID:<br>Type:<br>Lab ID:                                                                                                                                                                           | SS-123(F1)-5.5<br>SAMPLE<br>196163-008                                                                              |                                                                                                                                                                                      | Diln Fac:<br>Cleanup Method:                                                  | 1.000<br>EPA 3630C                         |
| Anal                                                                                                                                                                                                    | lyte                                                                                                                | Result                                                                                                                                                                               | RL                                                                            |                                            |
| Diesel C10-C24                                                                                                                                                                                          |                                                                                                                     | 14 H Y                                                                                                                                                                               |                                                                               |                                            |
| Motor Oil C24-0                                                                                                                                                                                         | .30                                                                                                                 | 46 H I                                                                                                                                                                               | 5.                                                                            | 0                                          |
| Surro                                                                                                                                                                                                   | ogate (                                                                                                             |                                                                                                                                                                                      |                                                                               |                                            |
|                                                                                                                                                                                                         |                                                                                                                     | REC Limits                                                                                                                                                                           |                                                                               |                                            |
| Hexacosane                                                                                                                                                                                              | 79 <b>222</b>                                                                                                       |                                                                                                                                                                                      |                                                                               |                                            |
|                                                                                                                                                                                                         |                                                                                                                     |                                                                                                                                                                                      | Diln Fac:<br>Cleanup Method:                                                  | 1.000<br>EPA 3630C                         |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Ana                                                                                                                                                      | 7:<br>SS-123(F1)-15.5<br>SAMPLE<br>196163-009                                                                       |                                                                                                                                                                                      |                                                                               |                                            |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br><b>Ana</b><br>Diesel C10-C24                                                                                                                             | 7:<br>SS-123(F1)-15.5<br>SAMPLE<br>196163-009<br>L <b>yte</b>                                                       | 9 40-127<br>Result<br>20 H Y                                                                                                                                                         | Cleanup Method:<br>RL<br>0.                                                   | EPA 3630C                                  |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Ana                                                                                                                                                      | 7:<br>SS-123(F1)-15.5<br>SAMPLE<br>196163-009<br>L <b>yte</b>                                                       | 9 40-127<br>Result                                                                                                                                                                   | Cleanup Method:<br>RL<br>0.                                                   | EPA 3630C                                  |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24                                                                                                                                           | 7:<br>SS-123(F1)-15.5<br>SAMPLE<br>196163-009<br>L <b>yte</b><br>C36                                                | 9 40-127<br>Result<br>20 H Y                                                                                                                                                         | Cleanup Method:<br>RL<br>0.                                                   | EPA 3630C                                  |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-C                                                                                                                        | 7:<br>SS-123(F1)-15.5<br>SAMPLE<br>196163-009<br>L <b>yte</b><br>C36                                                | 9 40-127<br>Result<br>20 H Y<br>110 H I<br>%REC Limits                                                                                                                               | Cleanup Method:<br>RL<br>0.                                                   | EPA 3630C                                  |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diesel C10-C24<br>Motor Oil C24-C                                                                                                                        | 7:<br>SS-123(F1)-15.5<br>SAMPLE<br>196163-009<br>Lyte<br>C36<br>Sgate                                               | 9 40-127<br>Result<br>20 H Y<br>110 H I<br>%REC Limits                                                                                                                               | Cleanup Method:<br>RL<br>0.                                                   | EPA 3630C<br>99<br>0<br>10.00              |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24-0<br>Motor Oil C24-0<br>Field ID:<br>Type:<br>Lab ID:<br>Anal                                                                              | 7:<br>SS-123(F1)-15.5<br>SAMPLE<br>196163-009<br>Lyte<br>C36<br>SS-123(F2)-6<br>SAMPLE<br>196163-010                | Result         20 H Y         110 H I         %REC Limits         40-127                                                                                                             | Cleanup Method:<br>RL<br>0.<br>5.<br>Diln Fac:<br>Cleanup Method:<br>RL       | EPA 3630C<br>99<br>0<br>10.00<br>EPA 3630C |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:                                                                                                                                                             | 7:<br>SS-123(F1)-15.5<br>SAMPLE<br>196163-009<br>Lyte<br>236<br>9:<br>SS-123(F2)-6<br>SAMPLE<br>196163-010<br>Lyte  | Result         20 H Y         110 H I         %REC Limits         5         40-127                                                                                                   | Cleanup Method:<br>RL<br>0.<br>5.<br>Diln Fac:<br>Cleanup Method:<br>RL<br>9. | EPA 3630C<br>99<br>0<br>10.00<br>EPA 3630C |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Mathematical Surrows<br>Field ID:<br>Type:<br>Lab ID:<br>Anal                                                                                            | 7:<br>SS-123(F1)-15.5<br>SAMPLE<br>196163-009<br>Lyte<br>236<br>9:<br>SS-123(F2)-6<br>SAMPLE<br>196163-010<br>Lyte  | Result         20 H Y         110 H I         %REC Limits         40-127                                                                                                             | Cleanup Method:<br>RL<br>0.<br>5.<br>Diln Fac:<br>Cleanup Method:<br>RL<br>9. | EPA 3630C<br>99<br>0<br>10.00<br>EPA 3630C |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24-0<br>Field ID:<br>Type:<br>Lab ID:<br>Type:<br>Lab ID:<br>Motor Oil C24-0<br>Motor Oil C24-0                                               | 7:<br>SS-123(F1)-15.5<br>SAMPLE<br>196163-009<br>Lyte<br>236<br>SS-123(F2)-6<br>SAMPLE<br>196163-010<br>Lyte<br>236 | Result         20 H Y         110 H I         & Result         5 40-127         Result         5 40-127         \$40-127         \$6 40-127         \$6 40-127         \$6 40-127    | Cleanup Method:<br>RL<br>0.<br>5.<br>Diln Fac:<br>Cleanup Method:<br>RL<br>9. | EPA 3630C<br>99<br>0<br>10.00<br>EPA 3630C |
| Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Motor Oil C24-0<br>Field ID:<br>Type:<br>Lab ID:<br>Type:<br>Lab ID:<br>Motor Oil C24-0<br>Field ID:<br>Type:<br>Lab ID:<br>Mainter Surrow<br>Hexacosane | 7:<br>SS-123(F1)-15.5<br>SAMPLE<br>196163-009<br>Lyte<br>236<br>SS-123(F2)-6<br>SAMPLE<br>196163-010<br>Lyte<br>236 | Result         20 H Y         110 H I         & Result         5 40-127         Result         5 40-127         \$REC Limits         5 40-127         \$KREC Limits         5 40-127 | Cleanup Method:<br>RL<br>0.<br>5.<br>Diln Fac:<br>Cleanup Method:<br>RL<br>9. | EPA 3630C<br>99<br>0<br>10.00<br>EPA 3630C |

L= Lighter hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard DO= Diluted Out ND= Not Detected DL= Detected

RL= Reporting Limit

Page 2 of 3



|                                                                          | Total                                                                                 | Extracta                  | ble Hydrocarbo                                                                     | ns                                                                                        |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Lab #:<br>Client:<br>Project#:<br>Matrix:<br>Units:<br>Basis:<br>Batch#: | 196163<br>LFR Levine Fricke<br>001-09567-01<br>Soil<br>mg/Kg<br>as received<br>127577 |                           | Location:<br>Prep:<br>Analysis:<br>Sampled:<br>Received:<br>Prepared:<br>Analyzed: | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B<br>07/23/07<br>07/23/07<br>07/24/07<br>07/25/07 |
| Field ID:<br>Type:<br>Lab ID:                                            | SS-123(F2)-11.5<br>SAMPLE<br>196163-011                                               |                           | Diln Fac:<br>Cleanup Method:                                                       | 5 000                                                                                     |
| Anal                                                                     | lyte                                                                                  | Result                    | RL                                                                                 | <b>A</b>                                                                                  |
| Diesel C10-C24<br>Motor Oil C24-C                                        | 236                                                                                   | 35 H Y<br>290 H I         |                                                                                    | 0                                                                                         |
| Surro                                                                    | gate %RE(                                                                             | C Limits                  |                                                                                    |                                                                                           |
| Hexacosane                                                               | 82                                                                                    | 40-127                    |                                                                                    |                                                                                           |
| Type:<br>Lab ID:                                                         | BLANK<br>QC397747                                                                     |                           | Diln Fac:<br>Cleanup Method:                                                       | 1.000<br>EPA 3630C                                                                        |
| Anal<br>Diesel C10-C24                                                   |                                                                                       | Result                    | RL                                                                                 | 0                                                                                         |
| Motor Oil C24-C                                                          |                                                                                       | 1D<br>1D                  | 1.<br>5.                                                                           |                                                                                           |
| Surro<br>Hexacosane                                                      | ogate %REC                                                                            | <b>C Limits</b><br>40-127 |                                                                                    |                                                                                           |
| HEACUSAILE                                                               | /3                                                                                    | H0-T71                    |                                                                                    |                                                                                           |

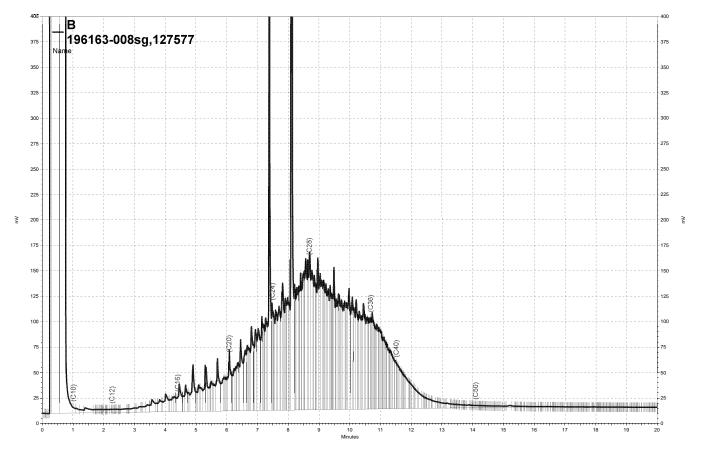


| Total Extractable Hydrocarbons |                   |           |              |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                         | 196163            | Location: | Hanson Radum |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | SHAKER TABLE |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |
| Туре:                          | LCS               | Diln Fac: | 1.000        |  |  |
| Lab ID:                        | QC397748          | Batch#:   | 127577       |  |  |
| Matrix:                        | Soil              | Prepared: | 07/24/07     |  |  |
| Units:                         | mg/Kg             | Analyzed: | 07/25/07     |  |  |
| Basis:                         | as received       |           |              |  |  |

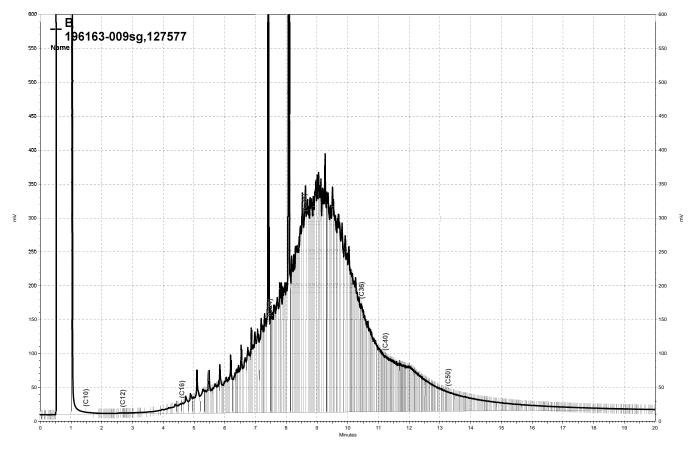
Cleanup Method: EPA 3630C

Hexacosane

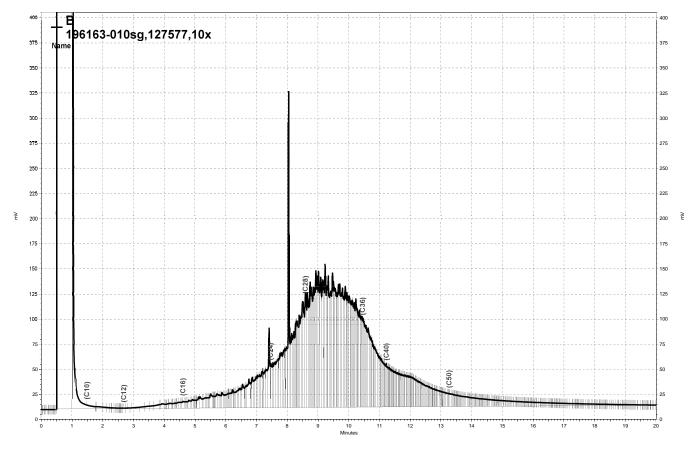
| Analyte        | Spiked      | Result | %REC | Limits |
|----------------|-------------|--------|------|--------|
| Diesel C10-C24 | 49.82       | 36.61  | 73   | 58-127 |
|                |             |        |      |        |
| Surrogate      | %REC Limits |        |      |        |


40-127

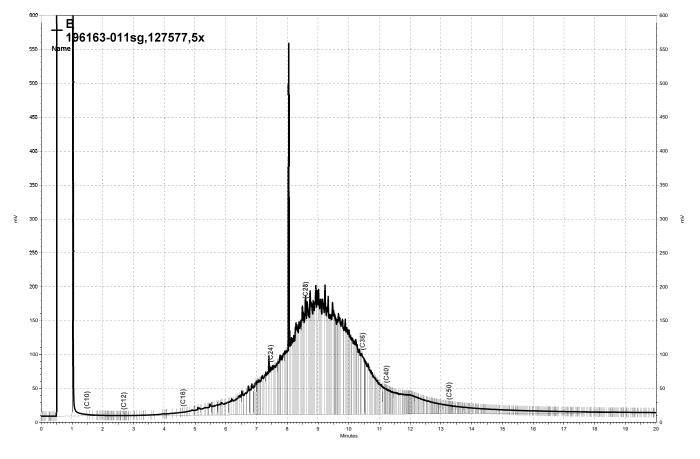
72



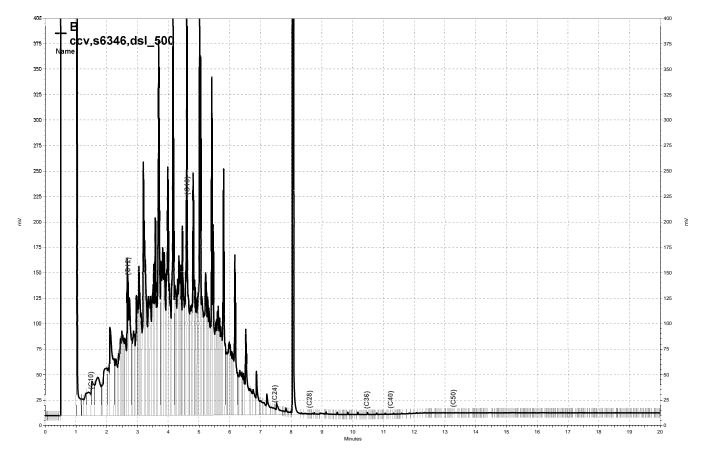

|                            | Т               | otal E  | xtracta | ble Hydrocarbo  | ns           |        |      |     |
|----------------------------|-----------------|---------|---------|-----------------|--------------|--------|------|-----|
| Lab #:                     | 196163          |         |         | Location:       | Hanson Radum |        |      |     |
| Client:                    | LFR Levine Fr   | icke    |         | Prep:           | SHAKER TABLE |        |      |     |
| Project#:                  | 001-09567-01    |         |         | Analysis:       | EPA 8015B    |        |      |     |
| Field ID:                  | SS-31(D)-50.5   |         |         | Batch#:         | 127577       |        |      |     |
| MSS Lab ID:                | 196163-006      |         |         | Sampled:        | 07/23/07     |        |      |     |
| Matrix:                    | Soil            |         |         | Received:       | 07/23/07     |        |      |     |
| Units:                     | mg/Kg           |         |         | Prepared:       | 07/24/07     |        |      |     |
| Basis:                     | as received     |         |         | Analyzed:       | 07/25/07     |        |      |     |
| Diln Fac:                  | 1.000           |         |         |                 |              |        |      |     |
| Type:<br>Lab ID:<br>Analyt | QC397749        | MSS Res | ult     | Spiked          | Result       | %REC   | Lim  | its |
| Diesel C10-C24             |                 | <0      | .1859   | 50.04           | 23.34        | 47     | 29-  | 147 |
| Gumm                       |                 | %REC    | Limits  |                 |              |        |      |     |
| Hexacosane                 | ogate           | 47      | 40-127  |                 |              |        |      |     |
| Type:<br>Lab ID:           | MSD<br>QC397750 | 1,      | 10 12,  | Cleanup Method: | EPA 3630C    |        |      |     |
|                            | -               |         |         |                 |              |        |      |     |
|                            | lyte            |         | Spiked  | Result          |              | Limits |      | Lim |
| Diesel C10-C24             |                 |         | 50.41   | 39.             | 44 78        | 29-147 | 51 * | 46  |


| Surrogate  | %REC | Limits |
|------------|------|--------|
| Hexacosane | 78   | 40-127 |

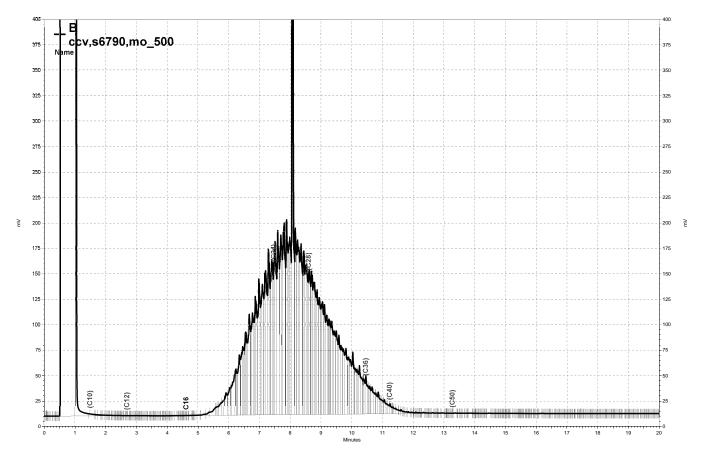



\\Lims\gdrive\ezchrom\Projects\GC14B\Data\206b015, B




\\Lims\gdrive\ezchrom\Projects\GC15B\Data\206b012, B




\\Lims\gdrive\ezchrom\Projects\GC15B\Data\206b017, B



\\Lims\gdrive\ezchrom\Projects\GC15B\Data\206b018, B



\\Lims\gdrive\ezchrom\Projects\GC15B\Data\206b003, B



\Lims\gdrive\ezchrom\Projects\GC15B\Data\206b005, B



|                                   |                                     | Gasoline | by GC/MS                    |              |
|-----------------------------------|-------------------------------------|----------|-----------------------------|--------------|
| Lab #:                            | 196163                              |          | Location:                   | Hanson Radum |
| Client:                           | LFR Levine Fricke                   |          | Prep:                       | EPA 5030B    |
| Project#:<br>Field ID:            | <u>001-09567-01</u><br>SS-31(D)-GGW |          | <u>Analysis:</u><br>Batch#: | <u> </u>     |
| Lab ID:                           | 196163-001                          |          | Sampled:                    | 07/23/07     |
| Matrix:                           | Water                               |          | Received:                   | 07/23/07     |
| Units:                            | ug/L                                |          | Analyzed:                   | 07/24/07     |
| Diln Fac:                         | 1.000                               |          |                             |              |
| Anal                              | vte                                 | Result   |                             | RI.          |
| Gasoline C7-C12                   |                                     | ND       |                             | 50           |
| tert-Butyl Alco                   | hol (TBA)                           | ND       |                             | 10           |
| Freon 12                          |                                     | ND       |                             | 1.0          |
| Chloromethane                     |                                     | ND       |                             | 1.0          |
| Vinyl Chloride<br>Isopropyl Ether |                                     | ND<br>ND |                             | 0.5<br>0.5   |
| Bromomethane                      |                                     | ND       |                             | 1.0          |
| Ethyl tert-Buty                   | l Ether (ETBE)                      | ND       |                             | 0.5          |
|                                   |                                     |          |                             |              |

| Gasoline C/-Cl2               | ND  | 50  |  |
|-------------------------------|-----|-----|--|
| tert-Butyl Alcohol (TBA)      | ND  | 10  |  |
| Freon 12                      | ND  | 1.0 |  |
| Chloromethane                 | ND  | 1.0 |  |
| Vinyl Chloride                | ND  | 0.5 |  |
| Isopropyl Ether (DIPE)        | ND  | 0.5 |  |
| Bromomethane                  | ND  | 1.0 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND  | 0.5 |  |
| Methyl tert-Amyl Ether (TAME) | ND  | 0.5 |  |
| Chloroethane                  | ND  | 1.0 |  |
| Trichlorofluoromethane        | ND  | 1.0 |  |
| Acetone                       | ND  | 10  |  |
|                               | ND  | 0.5 |  |
| Freon 113                     |     |     |  |
| 1,1-Dichloroethene            | ND  | 0.5 |  |
| Methylene Chloride            | ND  | 10  |  |
| Carbon Disulfide              | ND  | 0.5 |  |
| MTBE                          | ND  | 0.5 |  |
| trans-1,2-Dichloroethene      | ND  | 0.5 |  |
| Vinyl Acetate                 | ND  | 10  |  |
| 1,1-Dichloroethane            | ND  | 0.5 |  |
| 2-Butanone                    | ND  | 10  |  |
| cis-1,2-Dichloroethene        | ND  | 0.5 |  |
| 2,2-Dichloropropane           | ND  | 0.5 |  |
| Chloroform                    | ND  | 0.5 |  |
| Bromochloromethane            | ND  | 0.5 |  |
| 1,1,1-Trichloroethane         | ND  | 0.5 |  |
| 1,1-Dichloropropene           | ND  | 0.5 |  |
| Carbon Tetrachloride          | ND  | 0.5 |  |
|                               |     | 0.5 |  |
| 1,2-Dichloroethane            | ND  | 0.5 |  |
| Benzene                       | ND  | 0.5 |  |
| Trichloroethene               | ND  | 0.5 |  |
| 1,2-Dichloropropane           | ND  | 0.5 |  |
| Bromodichloromethane          | ND  | 0.5 |  |
| Dibromomethane                | ND  | 0.5 |  |
| 4-Methyl-2-Pentanone          | ND  | 10  |  |
| cis-1,3-Dichloropropene       | ND  | 0.5 |  |
| Toluene                       | ND  | 0.5 |  |
| trans-1,3-Dichloropropene     | ND  | 0.5 |  |
| 1,1,2-Trichloroethane         | ND  | 0.5 |  |
| 2-Hexanone                    | ND  | 10  |  |
| 1,3-Dichloropropane           | ND  | 0.5 |  |
| Tetrachloroethene             | ND  | 0.5 |  |
| Dibromochloromethane          | ND  | 0.5 |  |
|                               |     | 0.5 |  |
| 1,2-Dibromoethane             | ND  |     |  |
| Chlorobenzene                 | ND  | 0.5 |  |
| 1,1,1,2-Tetrachloroethane     | ND  | 0.5 |  |
| Ethylbenzene                  | ND  | 0.5 |  |
| m,p-Xylenes                   | ND  | 0.5 |  |
| o-Xylene                      | ND  | 0.5 |  |
| Styrene                       | ND  | 0.5 |  |
| Bromoform                     | ND  | 1.0 |  |
| Isopropylbenzene              | ND  | 0.5 |  |
|                               | ND  | 0.5 |  |
| 1,1,2,2-Tetrachloroethane     | IND | 0.5 |  |



|                                                       | Gasolin     | e by GC/MS |              |
|-------------------------------------------------------|-------------|------------|--------------|
| Lab #: 196163                                         |             | Location:  | Hanson Radum |
| Client: LFR Levine F                                  | ricke       | Prep:      | EPA 5030B    |
| Project#: 001-09567-01                                |             | Analysis:  | EPA 8260B    |
| Field ID: SS-31(D)-GGW                                |             | Batch#:    | 127548       |
| Lab ID: 196163-001                                    |             | Sampled:   | 07/23/07     |
| Matrix: Water                                         |             | Received:  | 07/23/07     |
| Units: ug/L                                           |             | Analyzed:  | 07/24/07     |
| Diln Fac: 1.000                                       |             |            |              |
|                                                       |             |            |              |
| Analyte                                               | Result      |            | RL           |
| Propylbenzene                                         | ND          |            | 0.5          |
| Bromobenzene                                          | ND          |            | 0.5          |
| 1,3,5-Trimethylbenzene                                | ND          |            | 0.5          |
| 2-Chlorotoluene                                       | ND          |            | 0.5          |
| 4-Chlorotoluene                                       | ND          |            | 0.5          |
| tert-Butylbenzene                                     | ND          |            | 0.5          |
| 1,2,4-Trimethylbenzene                                | ND          |            | 0.5<br>0.5   |
| sec-Butylbenzene                                      | ND          |            | 0.5          |
| para-Isopropyl Toluene                                | ND          |            | 0.5          |
| 1,3-Dichlorobenzene                                   | ND          |            | 0.5          |
| 1,4-Dichlorobenzene                                   | ND<br>ND    |            | 0.5          |
| n-Butylbenzene<br>1,2-Dichlorobenzene                 | ND<br>ND    |            | 0.5          |
| 1,2-Dichiorobelizelle                                 | ND<br>ND    |            | 2.0          |
| 1,2-Dibromo-3-Chloropropane<br>1,2,4-Trichlorobenzene | ND<br>ND    |            | 0.5          |
| Hexachlorobutadiene                                   | ND<br>ND    |            | 0.5          |
| Naphthalene                                           | ND          |            | 2.0          |
| 1,2,3-Trichlorobenzene                                | ND          |            | 0.5          |
|                                                       | ND          |            | 0.5          |
| Surrogate                                             | %REC Limits |            |              |
| Dibromofluoromethane                                  | 96 80-123   |            |              |
| 1,2-Dichloroethane-d4                                 | 104 79-134  |            |              |
| Toluene-d8                                            | 97 80-120   |            |              |
| Bromofluorobenzene                                    | 102 80-122  |            |              |



| Gasoline by GC/MS                                      |                                                        |                                               |                                            |  |  |  |
|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|--------------------------------------------|--|--|--|
| Lab #:<br>Client:<br>Project#:                         | 196163<br>LFR Levine Fricke<br>001-09567-01            | Location:<br>Prep:<br>Analysis:               | Hanson Radum<br>EPA 5030B<br>EPA 8260B     |  |  |  |
| Field ID:<br>Lab ID:<br>Matrix:<br>Units:<br>Diln Fac: | SS-123(F1)-GGW<br>196163-002<br>Water<br>ug/L<br>1.000 | Batch#:<br>Sampled:<br>Received:<br>Analyzed: | 127548<br>07/23/07<br>07/23/07<br>07/24/07 |  |  |  |

| Analyte                                       | Result   | RL    |
|-----------------------------------------------|----------|-------|
| Gasoline C7-C12                               | ND       | 50    |
| tert-Butyl Alcohol (TBA)                      | ND       | 10    |
| Freon 12                                      | ND       | 1.0   |
| Chloromethane                                 | ND       | 1.0   |
| Vinyl Chloride                                | ND       | 0.5   |
| Isopropyl Ether (DIPE)                        | ND       | 0.5   |
| Bromomethane                                  | ND       | 1.0   |
|                                               | ND       | 0.5   |
| Ethyl tert-Butyl Ether (ETBE)                 | ND       | 0.5   |
| Methyl tert-Amyl Ether (TAME)<br>Chloroethane | ND<br>ND | 1.0   |
|                                               |          | - • • |
| Trichlorofluoromethane                        | ND       | 1.0   |
| Acetone                                       | ND       | 10    |
| Freon 113                                     | ND       | 0.5   |
| 1,1-Dichloroethene                            | ND       | 0.5   |
| Methylene Chloride                            | ND       | 10    |
| Carbon Disulfide                              | ND       | 0.5   |
| MTBE                                          | ND       | 0.5   |
| trans-1,2-Dichloroethene                      | ND       | 0.5   |
| Vinyl Acetate                                 | ND       | 10    |
| 1,1-Dichloroethane                            | ND       | 0.5   |
| 2-Butanone                                    | ND       | 10    |
| cis-1,2-Dichloroethene                        | ND       | 0.5   |
| 2,2-Dichloropropane                           | ND       | 0.5   |
| Chloroform                                    | ND       | 0.5   |
| Bromochloromethane                            | ND       | 0.5   |
| 1,1,1-Trichloroethane                         | ND       | 0.5   |
| 1,1-Dichloropropene                           | ND       | 0.5   |
| Carbon Tetrachloride                          | ND       | 0.5   |
| 1,2-Dichloroethane                            | ND       | 0.5   |
| Benzene                                       | ND       | 0.5   |
| Trichloroethene                               | ND       | 0.5   |
| 1,2-Dichloropropane                           | ND       | 0.5   |
| Bromodichloromethane                          | ND       | 0.5   |
| Dibromomethane                                | ND       | 0.5   |
| 4-Methyl-2-Pentanone                          | ND       | 10    |
| cis-1,3-Dichloropropene                       | ND       | 0.5   |
| Toluene                                       | ND       | 0.5   |
| trans-1,3-Dichloropropene                     | ND       | 0.5   |
| 1,1,2-Trichloroethane                         | ND       | 0.5   |
| 2-Hexanone                                    | ND       | 10    |
| 1,3-Dichloropropane                           | ND       | 0.5   |
| Tetrachloroethene                             | ND       | 0.5   |
| Dibromochloromethane                          | ND<br>ND | 0.5   |
|                                               | ND<br>ND | 0.5   |
| 1,2-Dibromoethane                             |          |       |
| Chlorobenzene                                 | ND       | 0.5   |
| 1,1,1,2-Tetrachloroethane                     | ND       | 0.5   |
| Ethylbenzene                                  | ND       | 0.5   |
| m,p-Xylenes                                   | ND       | 0.5   |
| o-Xylene                                      | ND       | 0.5   |
| Styrene                                       | ND       | 0.5   |
| Bromoform                                     | ND       | 1.0   |
| Isopropylbenzene                              | ND       | 0.5   |
| 1,1,2,2-Tetrachloroethane                     | ND       | 0.5   |
| 1,2,3-Trichloropropane                        | ND       | 0.5   |

ND= Not Detected RL= Reporting Limit Page 1 of 2



|                                      |                  | G   | asoline | by GC/MS  |              |  |
|--------------------------------------|------------------|-----|---------|-----------|--------------|--|
| Lab #:                               | 196163           |     |         | Location: | Hanson Radum |  |
| Client:                              | LFR Levine Frick | ce  |         | Prep:     | EPA 5030B    |  |
| Project#:                            | 001-09567-01     |     |         | Analysis: | EPA 8260B    |  |
| Field ID:                            | SS-123(F1)-GGW   |     |         | Batch#:   | 127548       |  |
| Lab ID:                              | 196163-002       |     |         | Sampled:  | 07/23/07     |  |
| Matrix:                              | Water            |     |         | Received: | 07/23/07     |  |
| Units:                               | ug/L             |     |         | Analyzed: | 07/24/07     |  |
| Diln Fac:                            | 1.000            |     |         |           |              |  |
| <u> </u>                             |                  |     | Result  |           | RL           |  |
| Analy                                | Le               | ND  | Result  |           | 0.5          |  |
| Propylbenzene<br>Bromobenzene        |                  | ND  |         |           | 0.5          |  |
|                                      |                  | ND  |         |           | 0.5          |  |
| 1,3,5-Trimethylbe<br>2-Chlorotoluene | enzene           | ND  |         |           | 0.5          |  |
| 4-Chlorotoluene                      |                  | ND  |         |           | 0.5          |  |
| tert-Butylbenzene                    | 2                | ND  |         |           | 0.5          |  |
| 1,2,4-Trimethylbe                    |                  | ND  |         |           | 0.5          |  |
| sec-Butylbenzene                     | enzene           | ND  |         |           | 0.5          |  |
| para-Isopropyl To                    | luene            | ND  |         |           | 0.5          |  |
| 1,3-Dichlorobenze                    |                  | ND  |         |           | 0.5          |  |
| 1,4-Dichlorobenze                    |                  | ND  |         |           | 0.5          |  |
| n-Butylbenzene                       |                  | ND  |         |           | 0.5          |  |
| 1,2-Dichlorobenze                    | ene              | ND  |         |           | 0.5          |  |
| 1,2-Dibromo-3-Ch                     |                  | ND  |         |           | 2.0          |  |
| 1,2,4-Trichlorobe                    |                  | ND  |         |           | 0.5          |  |
| Hexachlorobutadie                    |                  | ND  |         |           | 0.5          |  |
| Naphthalene                          |                  | ND  |         |           | 2.0          |  |
| 1,2,3-Trichlorobe                    | enzene           | ND  |         |           | 0.5          |  |
| , , ,                                |                  |     |         |           |              |  |
| Surroga                              |                  | REC | Limits  |           |              |  |
| Dibromofluorometh                    |                  |     | 80-123  |           |              |  |
| 1,2-Dichloroethan                    |                  | 24  | 79-134  |           |              |  |
| Toluene-d8                           | 99               |     | 80-120  |           |              |  |
| Bromofluorobenzer                    | ne 10            | )7  | 80-122  |           |              |  |



|                                | Gasoline                                    | by GC/MS                        |                                        |
|--------------------------------|---------------------------------------------|---------------------------------|----------------------------------------|
| Lab #:<br>Client:<br>Project#: | 196163<br>LFR Levine Fricke<br>001-09567-01 | Location:<br>Prep:<br>Analysis: | Hanson Radum<br>EPA 5030B<br>EPA 8260B |
| Matrix:<br>Units:<br>Diln Fac: | Water<br>ug/L<br>1.000                      | Batch#:<br>Analyzed:            | 127548<br>07/24/07                     |

| Туре:       | BS                 |      |        | Lab ID: | QC     | 2397639 |        |  |
|-------------|--------------------|------|--------|---------|--------|---------|--------|--|
|             | Analyte            |      | Spiked |         | Result | %REC    | Limits |  |
|             | Alcohol (TBA)      |      | 125.0  |         | 113.4  | 91      | 68-132 |  |
| Isopropyl E | ther (DIPE)        |      | 25.00  |         | 21.18  | 85      | 65-120 |  |
| Ethyl tert- | Butyl Ether (ETBE) |      | 25.00  |         | 21.52  | 86      | 75-124 |  |
|             | -Amyl Ether (TAME) |      | 25.00  |         | 26.02  | 104     | 77-120 |  |
| 1,1-Dichlor |                    |      | 25.00  |         | 26.02  | 104     | 80-132 |  |
| Benzene     |                    |      | 25.00  |         | 25.63  | 103     | 80-120 |  |
| Trichloroet | hene               |      | 25.00  |         | 27.10  | 108     | 80-120 |  |
| Toluene     |                    |      | 25.00  |         | 26.95  | 108     | 80-120 |  |
| Chlorobenze | ene                |      | 25.00  |         | 26.34  | 105     | 80-120 |  |
| S           | urrogate           | %REC | Limits |         |        |         |        |  |
| Dibromofluc | promethane         | 97   | 80-123 |         |        |         |        |  |
|             | oethane-d4         | 101  | 79-134 |         |        |         |        |  |

| Dibromofluoromethane  | 97  | 80-123 |
|-----------------------|-----|--------|
| 1,2-Dichloroethane-d4 | 101 | 79–134 |
| Toluene-d8            | 101 | 80-120 |
| Bromofluorobenzene    | 98  | 80-122 |
|                       |     |        |

| Type: BSD               |          |        | Lab ID: | QC39   | 97640 |        |     |     |
|-------------------------|----------|--------|---------|--------|-------|--------|-----|-----|
| Analyte                 |          | Spiked |         | Result | %REC  | Limits | RPD | Lim |
| tert-Butyl Alcohol (TBA | 7)       | 125.0  |         | 112.6  | 90    | 68-132 | 1   | 20  |
| Isopropyl Ether (DIPE)  |          | 25.00  |         | 19.99  | 80    | 65-120 | 6   | 20  |
| Ethyl tert-Butyl Ether  | (ETBE)   | 25.00  |         | 20.37  | 81    | 75-124 | 5   | 20  |
| Methyl tert-Amyl Ether  | (TAME)   | 25.00  |         | 24.22  | 97    | 77-120 | 7   | 20  |
| 1,1-Dichloroethene      |          | 25.00  |         | 24.08  | 96    | 80-132 | 8   | 20  |
| Benzene                 |          | 25.00  |         | 24.78  | 99    | 80-120 | 3   | 20  |
| Trichloroethene         |          | 25.00  |         | 26.17  | 105   | 80-120 | 3   | 20  |
| Toluene                 |          | 25.00  |         | 25.93  | 104   | 80-120 | 4   | 20  |
| Chlorobenzene           |          | 25.00  |         | 24.84  | 99    | 80-120 | 6   | 20  |
|                         | <b>.</b> |        |         |        |       |        |     |     |
| Surrogate               | %REC     | Limits |         |        |       |        |     |     |
| Dibromofluoromethane    | 94       | 80-123 |         |        |       |        |     |     |
| 1,2-Dichloroethane-d4   | 101      | 79-134 |         |        |       |        |     |     |
| Toluene-d8              | 100      | 80-120 |         |        |       |        |     |     |
| Bromofluorobenzene      | 98       | 80-122 |         |        |       |        |     |     |



|           | Gasc              | line by GC/MS |              |  |
|-----------|-------------------|---------------|--------------|--|
| Lab #:    | 196163            | Location:     | Hanson Radum |  |
| Client:   | LFR Levine Fricke | Prep:         | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis:     | EPA 8260B    |  |
| Matrix:   | Water             | Batch#:       | 127548       |  |
| Units:    | ug/L              | Analyzed:     | 07/24/07     |  |
| Diln Fac: | 1.000             |               |              |  |

Type:

BS

Lab ID:

QC397641

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 1,500  | 1,511  | 101  | 70-130 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 92   | 80-123 |
| 1,2-Dichloroethane-d4 | 103  | 79-134 |
| Toluene-d8            | 102  | 80-120 |
| Bromofluorobenzene    | 95   | 80-122 |

| Type: BSD             |      |        | Lab ID: |        | QC397642 |        |     |     |
|-----------------------|------|--------|---------|--------|----------|--------|-----|-----|
| Analyte               |      | Spiked |         | Result | %REC     | Limits | RPD | Lim |
| Gasoline C7-C12       |      | 1,500  |         | 1,440  | 96       | 70-130 | 5   | 20  |
|                       |      |        |         |        |          |        |     |     |
| Surrogate             | %REC | Limits |         |        |          |        |     |     |
| Dibromofluoromethane  | 91   | 80-123 |         |        |          |        |     |     |
| 1,2-Dichloroethane-d4 | 99   | 79-134 |         |        |          |        |     |     |
| Toluene-d8            | 96   | 80-120 |         |        |          |        |     |     |
| Bromofluorobenzene    | 97   | 80-122 |         |        |          |        |     |     |



|                                       | Gasoline by GC/MS                           |                                                |                                        |  |  |  |  |
|---------------------------------------|---------------------------------------------|------------------------------------------------|----------------------------------------|--|--|--|--|
| Lab #:<br>Client:<br>Project#:        | 196163<br>LFR Levine Fricke<br>001-09567-01 | Location:<br>Prep:<br>Analysis:                | Hanson Radum<br>EPA 5030B<br>EPA 8260B |  |  |  |  |
| Type:<br>Lab ID:<br>Matrix:<br>Units: | BLANK<br>QC397643<br>Water<br>ug/L          | Diln <sup>®</sup> Fac:<br>Batch#:<br>Analyzed: | 1.000<br>127548<br>07/24/07            |  |  |  |  |

| Analyte                       | Result   | RL        |
|-------------------------------|----------|-----------|
| Gasoline C7-C12               | ND       | 50        |
| tert-Butyl Alcohol (TBA)      | ND       | 10        |
| Freon 12                      | ND       | 1.0       |
| Chloromethane                 | ND       | 1.0       |
| Vinyl Chloride                | ND       | 0.5       |
| Isopropyl Ether (DIPE)        | ND       | 0.5       |
| Bromomethane                  | ND       | 1.0       |
| Ethyl tert-Butyl Ether (ETBE) | ND       | 0.5       |
| Methyl tert-Amyl Ether (TAME) | ND       | 0.5       |
| Chloroethane                  | ND       | 1.0       |
| Trichlorofluoromethane        | ND<br>ND | 1.0       |
|                               |          |           |
| Acetone                       | ND       | 10<br>0.5 |
| Freon 113                     | ND       | 0.5       |
| 1,1-Dichloroethene            | ND       |           |
| Methylene Chloride            | ND       | 10        |
| Carbon Disulfide              | ND       | 0.5       |
| MTBE                          | ND       | 0.5       |
| trans-1,2-Dichloroethene      | ND       | 0.5       |
| Vinyl Acetate                 | ND       | 10        |
| 1,1-Dichloroethane            | ND       | 0.5       |
| 2-Butanone                    | ND       | 10        |
| cis-1,2-Dichloroethene        | ND       | 0.5       |
| 2,2-Dichloropropane           | ND       | 0.5       |
| Chloroform                    | ND       | 0.5       |
| Bromochloromethane            | ND       | 0.5       |
| 1,1,1-Trichloroethane         | ND       | 0.5       |
| 1,1-Dichloropropene           | ND       | 0.5       |
| Carbon Tetrachloride          | ND       | 0.5       |
| 1,2-Dichloroethane            | ND       | 0.5       |
| Benzene                       | ND       | 0.5       |
| Trichloroethene               | ND       | 0.5       |
| 1,2-Dichloropropane           | ND       | 0.5       |
| Bromodichloromethane          | ND       | 0.5       |
| Dibromomethane                | ND       | 0.5       |
| 4-Methyl-2-Pentanone          | ND       | 10        |
| cis-1,3-Dichloropropene       | ND       | 0.5       |
| Toluene                       | ND       | 0.5       |
| trans-1,3-Dichloropropene     | ND       | 0.5       |
| 1,1,2-Trichloroethane         | ND       | 0.5       |
| 2-Hexanone                    | ND       | 10        |
| 1,3-Dichloropropane           | ND       | 0.5       |
| Tetrachloroethene             | ND       | 0.5       |
| Dibromochloromethane          | ND       | 0.5       |
| 1,2-Dibromoethane             | ND       | 0.5       |
| Chlorobenzene                 | ND       | 0.5       |
| 1,1,1,2-Tetrachloroethane     | ND       | 0.5       |
| Ethylbenzene                  | ND       | 0.5       |
| m,p-Xylenes                   | ND       | 0.5       |
| o-Xylene                      | ND       | 0.5       |
| Styrene                       | ND       | 0.5       |
| Bromoform                     | ND       | 1.0       |
| Isopropylbenzene              | ND       | 0.5       |
| 1,1,2,2-Tetrachloroethane     | ND       | 0.5       |
|                               | ND<br>ND | 0.5       |
| 1,2,3-Trichloropropane        |          | 0.5       |

ND= Not Detected RL= Reporting Limit Page 1 of 2



| Lab #:           | 196163            | Location: | Hanson Radum |  |
|------------------|-------------------|-----------|--------------|--|
| Client:          | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#:        | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Type:<br>Lab ID: | BLANK             | Diln Fac: | 1.000        |  |
| Lab ID:          | QC397643          | Batch#:   | 127548       |  |
| Matrix:          | Water             | Analyzed: | 07/24/07     |  |
| Jnits:           | ug/L              | -         |              |  |

| Propylbenzene               | ND      |        | 0.5 |
|-----------------------------|---------|--------|-----|
| Bromobenzene                | ND      |        | 0.5 |
| 1,3,5-Trimethylbenzene      | ND      |        | 0.5 |
| 2-Chlorotoluene             | ND      |        | 0.5 |
| 4-Chlorotoluene             | ND      |        | 0.5 |
| tert-Butylbenzene           | ND      |        | 0.5 |
| 1,2,4-Trimethylbenzene      | ND      |        | 0.5 |
| sec-Butylbenzene            | ND      |        | 0.5 |
| para-Isopropyl Toluene      | ND      |        | 0.5 |
| 1,3-Dichlorobenzene         | ND      |        | 0.5 |
| 1,4-Dichlorobenzene         | ND      |        | 0.5 |
| n-Butylbenzene              | ND      |        | 0.5 |
| 1,2-Dichlorobenzene         | ND      |        | 0.5 |
| 1,2-Dibromo-3-Chloropropane | ND      |        | 2.0 |
| 1,2,4-Trichlorobenzene      | ND      |        | 0.5 |
| Hexachlorobutadiene         | ND      |        | 0.5 |
| Naphthalene                 | ND      |        | 2.0 |
| 1,2,3-Trichlorobenzene      | ND      |        | 0.5 |
|                             | 0.5.7.4 |        |     |
| Surrogate                   | %REC    | Limits |     |
| Dibromofluoromethane        | 90      | 80-123 |     |
| 1,2-Dichloroethane-d4       | 100     | 79-134 |     |
| Toluene-d8                  | 98      | 80-120 |     |
| Bromofluorobenzene          | 101     | 80-122 |     |

ND= Not Detected RL= Reporting Limit Page 2 of 2



## BTXE & Oxygenates

| Lab #:    | 196163            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(D)-25       | Diln Fac: | 1.000        |  |
| Lab ID:   | 196163-003        | Batch#:   | 127547       |  |
| Matrix:   | Soil              | Sampled:  | 07/23/07     |  |
| Units:    | ug/Kg             | Received: | 07/23/07     |  |
| Basis:    | as received       | Analyzed: | 07/24/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 100 |  |
| MTBE                          | ND     | 5.0 |  |
| Isopropyl Ether (DIPE)        | ND     | 5.0 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 5.0 |  |
| 1,2-Dichloroethane            | ND     | 5.0 |  |
| Benzene                       | ND     | 5.0 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 5.0 |  |
| Toluene                       | ND     | 5.0 |  |
| 1,2-Dibromoethane             | ND     | 5.0 |  |
| Ethylbenzene                  | ND     | 5.0 |  |
| m,p-Xylenes                   | ND     | 5.0 |  |
| o-Xylene                      | ND     | 5.0 |  |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 95   | 78-126 |
| 1,2-Dichloroethane-d4 | 98   | 76-135 |
| Toluene-d8            | 96   | 80-120 |
| Bromofluorobenzene    | 91   | 80-126 |



## BTXE & Oxygenates

| Lab #:    | 196163            | Location: | Hanson Radum |  |
|-----------|-------------------|-----------|--------------|--|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |
| Field ID: | SS-31(D)-30       | Diln Fac: | 0.9434       |  |
| Lab ID:   | 196163-004        | Batch#:   | 127547       |  |
| Matrix:   | Soil              | Sampled:  | 07/23/07     |  |
| Units:    | ug/Kg             | Received: | 07/23/07     |  |
| Basis:    | as received       | Analyzed: | 07/24/07     |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 94  |  |
| MTBE                          | ND     | 4.7 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.7 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.7 |  |
| 1,2-Dichloroethane            | ND     | 4.7 |  |
| Benzene                       | ND     | 4.7 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.7 |  |
| Toluene                       | ND     | 4.7 |  |
| 1,2-Dibromoethane             | ND     | 4.7 |  |
| Ethylbenzene                  | ND     | 4.7 |  |
| m,p-Xylenes                   | ND     | 4.7 |  |
| o-Xylene                      | ND     | 4.7 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 94   | 78-126 |  |
| 1,2-Dichloroethane-d4 | 97   | 76-135 |  |
| Toluene-d8            | 97   | 80-120 |  |
| Bromofluorobenzene    | 91   | 80-126 |  |



## BTXE & Oxygenates

| Lab #:    | 196163            | Location: | Hanson Radum |
|-----------|-------------------|-----------|--------------|
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |
| Field ID: | SS-31(D)-40       | Diln Fac: | 0.9804       |
| Lab ID:   | 196163-005        | Batch#:   | 127547       |
| Matrix:   | Soil              | Sampled:  | 07/23/07     |
| Units:    | ug/Kg             | Received: | 07/23/07     |
| Basis:    | as received       | Analyzed: | 07/24/07     |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 98  |  |
| MTBE                          | ND     | 4.9 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.9 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.9 |  |
| 1,2-Dichloroethane            | ND     | 4.9 |  |
| Benzene                       | ND     | 4.9 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.9 |  |
| Toluene                       | ND     | 4.9 |  |
| 1,2-Dibromoethane             | ND     | 4.9 |  |
| Ethylbenzene                  | ND     | 4.9 |  |
| m,p-Xylenes                   | ND     | 4.9 |  |
| o-Xylene                      | ND     | 4.9 |  |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 95   | 78-126 |
| 1,2-Dichloroethane-d4 | 97   | 76-135 |
| Toluene-d8            | 96   | 80-120 |
| Bromofluorobenzene    | 93   | 80-126 |



#### BTXE & Oxygenates Lab #: Hanson Radum 196163 Location: Client: LFR Levine Fricke Prep: EPA 5030B Project#: 001-09567-01 Analysis: EPA 8260B SS-31(D)-50.5 Field ID: Diln Fac: 0.9091 Lab ID: 196163-006 Batch#: 127547 Matrix: Soil Sampled: 07/23/07 07/23/07 Units: ug/Kg Received: Analyzed: Basis: as received 07/24/07

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 91  |  |
| MTBE                          | ND     | 4.5 |  |
| Isopropyl Ether (DIPE)        | ND     | 4.5 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.5 |  |
| 1,2-Dichloroethane            | ND     | 4.5 |  |
| Benzene                       | ND     | 4.5 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.5 |  |
| Toluene                       | ND     | 4.5 |  |
| 1,2-Dibromoethane             | ND     | 4.5 |  |
| Ethylbenzene                  | ND     | 4.5 |  |
| m,p-Xylenes                   | ND     | 4.5 |  |
| o-Xylene                      | ND     | 4.5 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 96   | 78-126 |  |
| 1,2-Dichloroethane-d4 | 97   | 76-135 |  |
| Toluene-d8            | 96   | 80-120 |  |
| Bromofluorobenzene    | 93   | 80-126 |  |



#### BTXE & Oxygenates Lab #: Hanson Radum 196163 Location: Client: LFR Levine Fricke Prep: EPA 5030B Project#: 001-09567-01 Analysis: EPA 8260B SS-31(D)-60.5 Field ID: Diln Fac: 1.000 Lab ID: 196163-007 Batch#: 127547 Matrix: Soil Sampled: 07/23/07 07/23/07 Units: ug/Kg Received: Basis: Analyzed: as received 07/24/07

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 100 |  |
| MTBE                          | ND     | 5.0 |  |
| Isopropyl Ether (DIPE)        | ND     | 5.0 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 5.0 |  |
| 1,2-Dichloroethane            | ND     | 5.0 |  |
| Benzene                       | ND     | 5.0 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 5.0 |  |
| Toluene                       | ND     | 5.0 |  |
| 1,2-Dibromoethane             | ND     | 5.0 |  |
| Ethylbenzene                  | ND     | 5.0 |  |
| m,p-Xylenes                   | ND     | 5.0 |  |
| o-Xylene                      | ND     | 5.0 |  |

| Surrogate             | %REC | imits |  |
|-----------------------|------|-------|--|
| Dibromofluoromethane  | 95   | 8-126 |  |
| 1,2-Dichloroethane-d4 | 101  | 6-135 |  |
| Toluene-d8            | 96   | 0-120 |  |
| Bromofluorobenzene    | 95   | 0-126 |  |



|           | BTXE & Oxygenates |           |              |  |  |  |  |
|-----------|-------------------|-----------|--------------|--|--|--|--|
| Lab #:    | 196163            | Location: | Hanson Radum |  |  |  |  |
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |  |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |  |  |  |
| Type:     | LCS               | Basis:    | as received  |  |  |  |  |
| Lab ID:   | QC397637          | Diln Fac: | 1.000        |  |  |  |  |
| Matrix:   | Soil              | Batch#:   | 127547       |  |  |  |  |
| Units:    | ug/Kg             | Analyzed: | 07/24/07     |  |  |  |  |

| Analyte                       | Spiked | Result | %REC | Limits |
|-------------------------------|--------|--------|------|--------|
| tert-Butyl Alcohol (TBA)      | 125.0  | 154.6  | 124  | 56-130 |
| MTBE                          | 25.00  | 25.73  | 103  | 66-120 |
| Isopropyl Ether (DIPE)        | 25.00  | 23.17  | 93   | 57-120 |
| Ethyl tert-Butyl Ether (ETBE) | 25.00  | 23.59  | 94   | 68-120 |
| 1,2-Dichloroethane            | 25.00  | 29.08  | 116  | 73-120 |
| Benzene                       | 25.00  | 25.86  | 103  | 80-120 |
| Methyl tert-Amyl Ether (TAME) | 25.00  | 26.65  | 107  | 73-120 |
| Toluene                       | 25.00  | 26.60  | 106  | 80-120 |
| 1,2-Dibromoethane             | 25.00  | 26.38  | 106  | 80-120 |
| Ethylbenzene                  | 25.00  | 27.96  | 112  | 80-125 |
| m,p-Xylenes                   | 50.00  | 52.61  | 105  | 80-123 |
| o-Xylene                      | 25.00  | 26.12  | 104  | 80-122 |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 107  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 118  | 76-135 |  |
| Toluene-d8            | 101  | 80-120 |  |
| Bromofluorobenzene    | 101  | 80-126 |  |



|           | BTXE & Oxygenates |           |              |  |  |  |  |
|-----------|-------------------|-----------|--------------|--|--|--|--|
| Lab #:    | 196163            | Location: | Hanson Radum |  |  |  |  |
| Client:   | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |  |  |
| Project#: | 001-09567-01      | Analysis: | EPA 8260B    |  |  |  |  |
| Type:     | BLANK             | Basis:    | as received  |  |  |  |  |
| Lab ID:   | QC397638          | Diln Fac: | 1.000        |  |  |  |  |
| Matrix:   | Soil              | Batch#:   | 127547       |  |  |  |  |
| Units:    | ug/Kg             | Analyzed: | 07/24/07     |  |  |  |  |

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | ND     | 100 |  |
| MTBE                          | ND     | 5.0 |  |
| Isopropyl Ether (DIPE)        | ND     | 5.0 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 5.0 |  |
| 1,2-Dichloroethane            | ND     | 5.0 |  |
| Benzene                       | ND     | 5.0 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 5.0 |  |
| Toluene                       | ND     | 5.0 |  |
| 1,2-Dibromoethane             | ND     | 5.0 |  |
| Ethylbenzene                  | ND     | 5.0 |  |
| m,p-Xylenes                   | ND     | 5.0 |  |
| o-Xylene                      | ND     | 5.0 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 105  | 78-126 |  |
| 1,2-Dichloroethane-d4 | 119  | 76-135 |  |
| Toluene-d8            | 101  | 80-120 |  |
| Bromofluorobenzene    | 101  | 80-126 |  |



|                   | BTX                         | E & Oxygenates     |                           |  |
|-------------------|-----------------------------|--------------------|---------------------------|--|
| Lab #:<br>Client: | 196163<br>LFR Levine Fricke | Location:<br>Prep: | Hanson Radum<br>EPA 5030B |  |
| Project#:         | 001-09567-01                | Analysis:          | EPA 8260B                 |  |
| Field ID:         | SS-31(D)-40                 | Diln Fac:          | 0.9804                    |  |
| MSS Lab ID:       | 196163-005                  | Batch#:            | 127547                    |  |
| Matrix:           | Soil                        | Sampled:           | 07/23/07                  |  |
| Units:            | ug/Kg                       | Received:          | 07/23/07                  |  |
| Basis:            | as received                 | Analyzed:          | 07/25/07                  |  |

| Type: MS                      |       |          | Lab ID: | QC397671 |      |        |
|-------------------------------|-------|----------|---------|----------|------|--------|
| Analyte                       | MSS   | Result   | Spiked  | Result   | %REC | Limits |
| tert-Butyl Alcohol (TBA)      |       | <3.013   | 245.1   | 183.1    | 75   | 45-123 |
| MTBE                          |       | <0.1879  | 49.02   | 37.58    | 77   | 55-120 |
| Isopropyl Ether (DIPE)        |       | <0.1696  | 49.02   | 36.34    | 74   | 50-120 |
| Ethyl tert-Butyl Ether (ETBE) |       | <0.08887 | 49.02   | 36.27    | 74   | 58-120 |
| 1,2-Dichloroethane            |       | <0.1943  | 49.02   | 39.97    | 82   | 56-120 |
| Benzene                       |       | <0.1351  | 49.02   | 42.71    | 87   | 61-122 |
| Methyl tert-Amyl Ether (TAME) |       | <0.1769  | 49.02   | 42.18    | 86   | 60-120 |
| Toluene                       |       | <0.5418  | 49.02   | 44.05    | 90   | 57-124 |
| 1,2-Dibromoethane             |       | <0.2179  | 49.02   | 41.39    | 84   | 57-120 |
| Ethylbenzene                  |       | <0.5715  | 49.02   | 45.63    | 93   | 55-129 |
| m,p-Xylenes                   |       | <1.282   | 98.04   | 87.89    | 90   | 53-127 |
| o-Xylene                      |       | <0.5054  | 49.02   | 44.61    | 91   | 54-127 |
|                               | 0.5-0 |          |         |          |      |        |
| Surrogate                     | %REC  | Limits   |         |          |      |        |
| Dibromofluoromethane          | 99    | 78-126   |         |          |      |        |
| 1,2-Dichloroethane-d4         | 99    | 76-135   |         |          |      |        |
| Toluene-d8                    | 99    | 80-120   |         |          |      |        |
| Bromofluorobenzene            | 95    | 80-126   |         |          |      |        |

| Type: MSD                                                                                                                                                                                                |                                        | Lab ID: Q | QC397672                                             |                                                                                        |                                                               |                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------|------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|
| Analyte<br>tert-Butyl Alcohol (TBA)<br>MTBE<br>Isopropyl Ether (DIPE)<br>Ethyl tert-Butyl Ether (ETBE)<br>1,2-Dichloroethane<br>Benzene<br>Methyl tert-Amyl Ether (TAME)<br>Toluene<br>1,2-Dibromoethane | 49<br>49<br>49<br>49<br>49<br>49<br>49 |           | 83<br>5 75<br>4 70<br>70<br>76<br>2 86<br>85<br>5 89 | Limits<br>45-123<br>55-120<br>50-120<br>56-120<br>61-122<br>60-120<br>57-124<br>57-120 | <b>RPD</b> 10 2 5 5 7 2 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | Lim<br>32<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>21<br>20 |
| Ethylbenzene<br>m,p-Xylenes<br>o-Xylene<br>Dibromofluoromethane<br>1,2-Dichloroethane-d4<br>Toluene-d8<br>Bromofluorobenzene                                                                             | 98                                     | 26<br>35  | . 91                                                 | 55-129<br>53-127<br>54-127                                                             | 1<br>2<br>1                                                   | 23<br>23<br>22                                                  |



| Project : 001-09567-02  | LFR Levine Fricke    |
|-------------------------|----------------------|
| Location : Hanson Radum | 1900 Powell Street   |
| Level : II              | Emeryville, CA 94608 |

| Sample ID       | Lab ID     |
|-----------------|------------|
| SS-123(F2)-16.5 | 196188-001 |
| SS-123(F2)-21   | 196188-002 |
| SS-123(F2)-GGW  | 196188-003 |
| SS-123(AA)-GGW  | 196188-004 |
| SS-123(F3)-5.5  | 196188-005 |
| SS-123(F3)-10.5 | 196188-006 |
| SS-123(F3)-15.5 | 196188-007 |
| SS-123(F3)-20.5 | 196188-008 |
| SS-123(F3)-25.5 | 196188-009 |
| SS-123(F3)-GGW  | 196188-010 |
| SS-123(AA)-5.5  | 196188-011 |
| SS-123(AA)-7.5  | 196188-012 |
| SS-123(AA)-10.5 | 196188-013 |
| SS-123(AA)-15.5 | 196188-014 |
| SS-123(AA)-18   | 196188-015 |

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Signature: Project Manager

Signature:

Operations Manager

Date: <u>07/30/200</u>7

Date: 07/31/2007

NELAP # 01107CA

Page 1 of \_\_\_\_



### CASE NARRATIVE

Laboratory number:196188Client:LFR Levine FrickeProject:001-09567-02Location:Hanson RadumRequest Date:07/24/07Samples Received:07/24/07

This hardcopy data package contains sample and QC results for twelve soil samples and three water samples, requested for the above referenced project on 07/24/07. The samples were received cold and intact. All data were e-mailed to Katrin Schliewen on 07/26/07.

### TPH-Extractables by GC (EPA 8015B) Water:

No analytical problems were encountered.

### TPH-Extractables by GC (EPA 8015B) Soil:

No analytical problems were encountered.

### Volatile Organics by GC/MS (EPA 8260B):

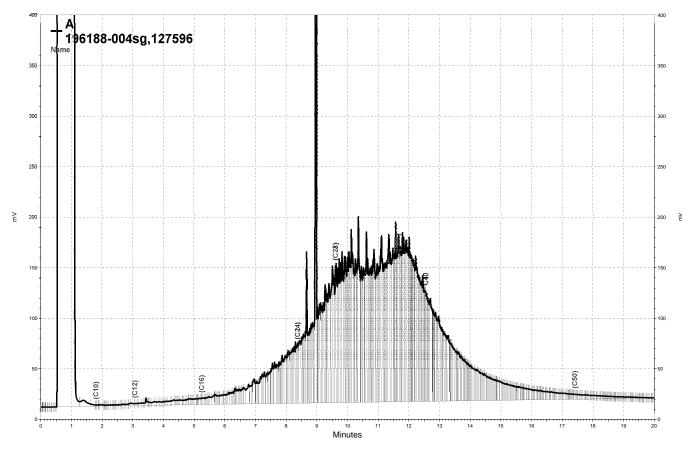
SS-123(F2)-GGW (lab # 196188-003) and SS-123(AA)-GGW (lab # 196188-004) had pH greater than 2. No other analytical problems were encountered.



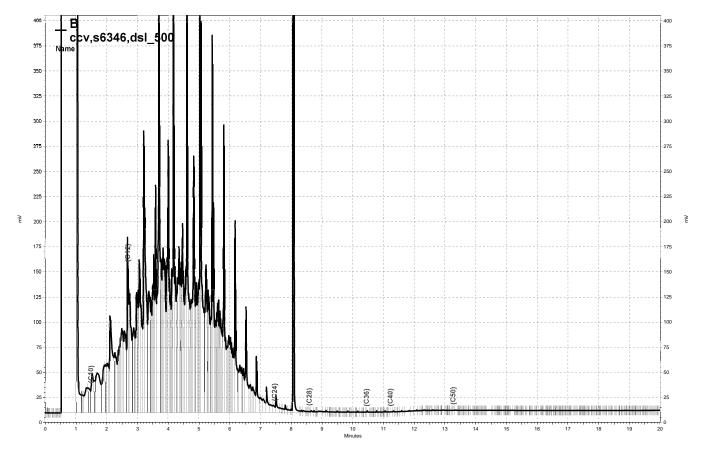
| Total Extractable Hydrocarbons            |                                          |                     |                                              |                                                 |                                              |  |
|-------------------------------------------|------------------------------------------|---------------------|----------------------------------------------|-------------------------------------------------|----------------------------------------------|--|
| Lab #:<br>Client:<br>Project#:            | 196188<br>LFR Levine Fri<br>001-09567-02 | .cke                |                                              | Location:<br>Prep:<br>Analysis:                 | Hanson Radum<br>EPA 3520C<br>EPA 8015B       |  |
| Matrix:<br>Units:<br>Diln Fac:<br>Batch#: | Water<br>ug/L<br>1.000<br>127596         |                     |                                              | Sampled:<br>Received:<br>Prepared:<br>Analyzed: | 07/24/07<br>07/24/07<br>07/25/07<br>07/26/07 |  |
| Field ID:<br>Type:                        | SS-123(F2)-GGW<br>SAMPLE                 |                     |                                              | Lab ID:<br>Cleanup Method:                      | 196188-003<br>EPA 3630C                      |  |
| Anal<br>Diesel C10-C24<br>Motor Oil C24-C |                                          |                     | Result           990 H Y           4,000 H L | <b>RL</b><br>50<br>300                          |                                              |  |
| Surro<br>Hexacosane                       | gate                                     | <b>%REC</b><br>90   | <b>Limits</b><br>61-134                      |                                                 |                                              |  |
| Field ID:<br>Type:                        | SS-123(AA)-GGW<br>SAMPLE                 |                     |                                              | Lab ID:<br>Cleanup Method:                      | 196188-004<br>EPA 3630C                      |  |
| Anal<br>Diesel C10-C24<br>Motor Oil C24-C |                                          |                     | Result           340 H Y           2,400 H I | <b>RL</b><br>50<br>300                          |                                              |  |
| Surro<br>Hexacosane                       | gate                                     | % <b>REC</b><br>110 | <b>Limits</b><br>61-134                      |                                                 |                                              |  |
| Field ID:<br>Type:                        | SS-123(F3)-GGW<br>SAMPLE                 |                     |                                              | Lab ID:<br>Cleanup Method:                      | 196188-010<br>EPA 3630C                      |  |
| Anal<br>Diesel C10-C24                    | yte                                      | NI                  | Result                                       | <b>RL</b><br>50                                 |                                              |  |
| Motor Oil C24-C                           | 36                                       | NI                  |                                              | 300                                             |                                              |  |
| Surro<br>Hexacosane                       | gate                                     | <b>%REC</b><br>108  | <b>Limits</b><br>61-134                      |                                                 |                                              |  |
| Type:<br>Lab ID:                          | BLANK<br>QC397819                        |                     |                                              | Cleanup Method:                                 | EPA 3630C                                    |  |
| Anal<br>Diesel C10-C24<br>Motor Oil C24-C |                                          | NI<br>NI            |                                              | <b>RL</b><br>50<br>300                          |                                              |  |
| Surro<br>Hexacosane                       | gate                                     | <b>%REC</b><br>110  | <b>Limits</b><br>61-134                      |                                                 |                                              |  |

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation

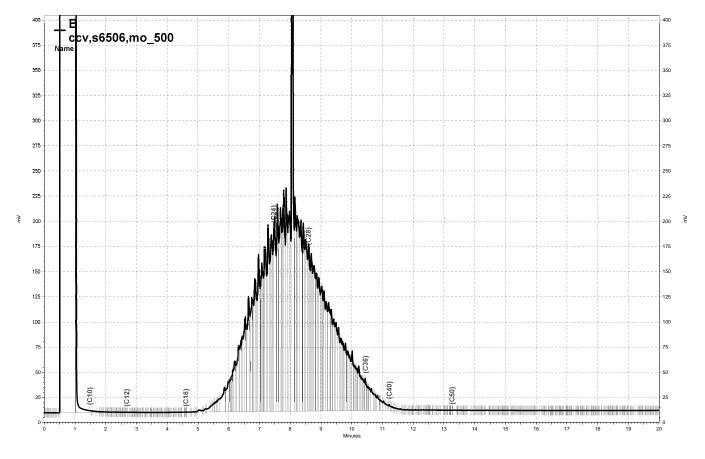
Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit


Page 1 of 1




|                  | r               | otal 1 | Extracta | ble Hydrocarbo  | ns           |        |     |     |
|------------------|-----------------|--------|----------|-----------------|--------------|--------|-----|-----|
| Lab #:           | 196188          |        |          | Location:       | Hanson Radum |        |     |     |
| Client:          | LFR Levine Fr   | icke   |          | Prep:           | EPA 3520C    |        |     |     |
| Project#:        | 001-09567-02    |        |          | Analysis:       | EPA 8015B    |        |     |     |
| Matrix:          | Water           |        |          | Batch#:         | 127596       |        |     |     |
| Units:           | ug/L            |        |          | Prepared:       | 07/25/07     |        |     |     |
| Diln Fac:        | 1.000           |        |          | Analyzed:       | 07/26/07     |        |     |     |
| Type:<br>Lab ID: | BS<br>QC397820  |        |          | Cleanup Method: | EPA 3630C    |        |     |     |
| An               | alyte           |        | Spiked   | Result          | %REC         | Limits |     |     |
| Diesel C10-C2    | 24              |        | 2,500    | 2,461           | 98           | 58-130 |     |     |
| Sur              | rogate          | %REC   | Limits   |                 |              |        |     |     |
| Hexacosane       |                 | 115    | 61-134   |                 |              |        |     |     |
| Type:<br>Lab ID: | BSD<br>QC397821 |        |          | Cleanup Method: | EPA 3630C    |        |     |     |
|                  | alyte           |        | Spiked   | Result          | %REC         | Limits | RPD | Lim |
| Diesel C10-C2    | 24              |        | 2,500    | 2,634           | 105          | 58-130 | 7   | 27  |
| Sur              | rogate          | %REC   | Limits   |                 |              |        |     |     |
| Hexacosane       |                 | 124    | 61-134   |                 |              |        |     |     |




\\Lims\gdrive\ezchrom\Projects\GC17A\Data\206a049, A



\\Lims\gdrive\ezchrom\Projects\GC17A\Data\206a050, A



\\Lims\gdrive\ezchrom\Projects\GC15B\Data\207b004, B



\Lims\gdrive\ezchrom\Projects\GC15B\Data\207b005, B



|                                            | Tota                                             | al Extracta      | ble Hydrocarbo                           | ns                                        |
|--------------------------------------------|--------------------------------------------------|------------------|------------------------------------------|-------------------------------------------|
| Lab #:<br>Client:<br>Project#:             | 196188<br>LFR Levine Frick<br>001-09567-02       | e                | Location:<br>Prep:<br>Analysis:          | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B |
| Matrix:<br>Units:<br>Basis:                | Soil<br>mg/Kg<br>as received                     |                  | Batch#:<br>Received:<br>Prepared:        | 127616<br>07/24/07<br>07/25/07            |
| Field ID:<br>Type:<br>Lab ID:<br>Diln Fac: | SS-123(F2)-16.5<br>SAMPLE<br>196188-001<br>1.000 |                  | Sampled:<br>Analyzed:<br>Cleanup Method: | 07/23/07<br>07/26/07<br>EPA 3630C         |
| Anal<br>Diesel C10-C24                     | yte                                              | Result<br>27 H Y | <b>RI.</b>                               | 99                                        |
| Motor Oil C24-C                            | 36                                               | 120 H L          |                                          |                                           |
| Surro<br>Hexacosane                        | gate %                                           | REC Limits       |                                          |                                           |
| Field ID:<br>Type:<br>Lab ID:<br>Diln Fac: | SS-123(F2)-21<br>SAMPLE<br>196188-002<br>1.000   |                  | Sampled:<br>Analyzed:<br>Cleanup Method: | 07/24/07<br>07/26/07<br>EPA 3630C         |
|                                            |                                                  | Result           | RL                                       |                                           |
| Anal<br>Diesel C10-C24<br>Motor Oil C24-C  | -                                                | 10 H Y<br>29 H L | 0.                                       | 99<br>0                                   |
| Surro                                      |                                                  | REC Limits       |                                          |                                           |
| Hexacosane                                 | 87                                               | 40-127           |                                          |                                           |
| Field ID:<br>Type:<br>Lab ID:<br>Diln Fac: | SS-123(F3)-5.5<br>SAMPLE<br>196188-005<br>20.00  |                  | Sampled:<br>Analyzed:<br>Cleanup Method: | 07/24/07<br>07/26/07<br>EPA 3630C         |
| Anal                                       | yte                                              | Result           | RL                                       |                                           |
| Diesel C10-C24<br>Motor Oil C24-C          | 36                                               | 83 Н Ү<br>970 Н  | 20<br>100                                |                                           |
| Surro                                      | gate %                                           | REC Limits       |                                          |                                           |
| Hexacosane                                 | <u>0</u>                                         | 40-127           |                                          |                                           |

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks DO= Diluted Out ND= Not Detected

- RL= Reporting Limit
- Page 1 of 5



|                                                                                                                                  | Total                                                                                                    | Extracta                                           | ble Hydrocarbo                                       | ns                                |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|-----------------------------------|
| Lab #:<br>Client:                                                                                                                | 196188<br>LFR Levine Fricke                                                                              |                                                    | Location:                                            | Hanson Radum<br>SHAKER TABLE      |
| Project#:                                                                                                                        | 001-09567-02                                                                                             |                                                    | Prep:<br>Analysis:                                   | EPA 8015B                         |
| Matrix:                                                                                                                          | Soil                                                                                                     |                                                    | Batch#:                                              | 127616                            |
| Units:                                                                                                                           | mg/Kg                                                                                                    |                                                    | Received:                                            | 07/24/07                          |
| Basis:                                                                                                                           | as received                                                                                              |                                                    | Prepared:                                            | 07/25/07                          |
| Field ID:<br>Type:<br>Lab ID:<br>Diln Fac:                                                                                       | SS-123(F3)-10.5<br>SAMPLE<br>196188-006<br>1.000                                                         |                                                    | Sampled:<br>Analyzed:<br>Cleanup Method:             | 07/24/07<br>07/26/07<br>EPA 3630C |
| Anal                                                                                                                             | vte                                                                                                      | Result                                             | RL                                                   |                                   |
| Diesel C10-C24                                                                                                                   |                                                                                                          | 3.3 H                                              |                                                      | 0                                 |
| Motor Oil C24-C                                                                                                                  | 236                                                                                                      | 39 H                                               | 5.                                                   | 0                                 |
| Current                                                                                                                          | gate %REC                                                                                                | Limits                                             |                                                      |                                   |
| Surro<br>Hexacosane                                                                                                              | 95                                                                                                       | 40-127                                             |                                                      |                                   |
| Field ID:<br>Type:<br>Lab ID:<br>Diln Fac:                                                                                       | SS-123(F3)-15.5<br>SAMPLE<br>196188-007<br>10.00                                                         |                                                    | Sampled:<br>Analyzed:<br>Cleanup Method:             | 07/24/07<br>07/26/07<br>EPA 3630C |
|                                                                                                                                  |                                                                                                          | _                                                  |                                                      |                                   |
| Anal                                                                                                                             |                                                                                                          | Result                                             | RL 10                                                |                                   |
| Diesel C10-C24                                                                                                                   | yte                                                                                                      | 19 H Y                                             | 10                                                   |                                   |
| Diesel C10-C24<br>Motor Oil C24-C                                                                                                | <b>.yte</b><br>236                                                                                       | 19 Н Ү<br>270 Н                                    |                                                      |                                   |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surro                                                                                       | yte<br>136<br>ogate %REC                                                                                 | 19 H Y<br>270 H<br>Limits                          | 10                                                   |                                   |
| Diesel C10-C24<br>Motor Oil C24-C                                                                                                | <b>.yte</b><br>236                                                                                       | 19 Н Ү<br>270 Н                                    | 10                                                   | 07/24/07<br>07/26/07<br>EPA 3630C |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diln Fac:                           | yte<br>236<br>bgate %REC<br>DO<br>SS-123(F3)-20.5<br>SAMPLE<br>196188-008<br>1.000                       | 19 H Y<br>270 H<br>Limits<br>40-127                | Sampled:<br>Analyzed:<br>Cleanup Method:             | 07/26/07                          |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diln Fac:<br>Anal<br>Diesel C10-C24 | yte<br>236<br>Dogate %REC<br>DO<br>SS-123(F3)-20.5<br>SAMPLE<br>196188-008<br>1.000<br>.yte              | 19 H Y<br>270 H<br>Limits<br>40-127<br>Result      | Sampled:<br>Analyzed:<br>Cleanup Method:<br>RL<br>1. | 07/26/07<br>EPA 3630C             |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diln Fac:<br>Anal                   | yte<br>236<br>Dogate %REC<br>DO<br>SS-123(F3)-20.5<br>SAMPLE<br>196188-008<br>1.000<br>.yte              | 19 H Y<br>270 H<br>Limits<br>40-127<br>Result      | Sampled:<br>Analyzed:<br>Cleanup Method:<br>RL       | 07/26/07<br>EPA 3630C             |
| Diesel C10-C24<br>Motor Oil C24-C<br>Surro<br>Hexacosane<br>Field ID:<br>Type:<br>Lab ID:<br>Diln Fac:<br>Anal<br>Diesel C10-C24 | yte<br>236<br>bgate %REC<br>DO<br>SS-123(F3)-20.5<br>SAMPLE<br>196188-008<br>1.000<br>.yte<br>N<br>236 N | 19 H Y<br>270 H<br>Limits<br>40-127<br>Result<br>D | Sampled:<br>Analyzed:<br>Cleanup Method:<br>RL<br>1. | 07/26/07<br>EPA 3630C             |

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks DO= Diluted Out

ND= Not Detected

RL= Reporting Limit

Page 2 of 5



|                                            | То                                               | tal E              | Extractal               | ble Hydrocarbo                           | ns                                        |
|--------------------------------------------|--------------------------------------------------|--------------------|-------------------------|------------------------------------------|-------------------------------------------|
| Lab #:<br>Client:<br>Project#:             | 196188<br>LFR Levine Fri<br>001-09567-02         | cke                |                         | Location:<br>Prep:<br>Analysis:          | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B |
| Matrix:<br>Units:<br>Basis:                | Soil<br>mg/Kg<br>as received                     |                    |                         | Batch#:<br>Received:<br>Prepared:        | 127616<br>07/24/07<br>07/25/07            |
| Field ID:<br>Type:<br>Lab ID:<br>Diln Fac: | SS-123(F3)-25.5<br>SAMPLE<br>196188-009<br>1.000 |                    |                         | Sampled:<br>Analyzed:<br>Cleanup Method: | 07/24/07<br>07/26/07<br>EPA 3630C         |
| ۸na                                        | lyte                                             |                    | Result                  | RL                                       |                                           |
| Diesel C10-C24                             |                                                  |                    | 1.5 H                   | YZ 1.                                    |                                           |
| Motor Oil C24-                             | C36                                              |                    | 8.2 H                   | 5.                                       | 0                                         |
| Surr                                       | ogate                                            | %REC               | Limits                  |                                          |                                           |
| Hexacosane                                 |                                                  | 82                 | 40-127                  |                                          |                                           |
| Field ID:<br>Type:<br>Lab ID:<br>Diln Fac: | SS-123(AA)-5.5<br>SAMPLE<br>196188-011<br>1.000  |                    |                         | Sampled:<br>Analyzed:<br>Cleanup Method: | 07/24/07<br>07/26/07<br>EPA 3630C         |
| Ana<br>Diesel C10-C24                      | lyte                                             |                    | Result<br>1.6 H         | <u>RL</u><br>Y 1.                        | 0                                         |
| Motor Oil C24-                             | C36                                              |                    | 15 H                    | 5.                                       |                                           |
| Surr<br>Hexacosane                         | ogate                                            | % <b>REC</b><br>78 | <b>Limits</b><br>40-127 |                                          |                                           |
| Field ID:<br>Type:<br>Lab ID:<br>Diln Fac: | SS-123(AA)-7.5<br>SAMPLE<br>196188-012<br>20.00  |                    |                         | Sampled:<br>Analyzed:<br>Cleanup Method: | 07/24/07<br>07/25/07<br>EPA 3630C         |
| -                                          |                                                  |                    | Result                  | RL                                       |                                           |
|                                            | lyte                                             |                    |                         |                                          |                                           |
| Ana<br>Diesel C10-C24<br>Motor Oil C24-    |                                                  |                    | 89 H Y<br>810 H         |                                          |                                           |
| Diesel C10-C24<br>Motor Oil C24-           |                                                  | %REC               | 89 H Y<br>810 H         | 20                                       |                                           |

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks DO= Diluted Out

ND= Not Detected

RL= Reporting Limit

Page 3 of 5



|                                            |                                                  | Extractal                | ble Hydrocarbo                           |                                           |
|--------------------------------------------|--------------------------------------------------|--------------------------|------------------------------------------|-------------------------------------------|
| Lab #:<br>Client:<br>Project#:             | 196188<br>LFR Levine Fricke<br>001-09567-02      |                          | Location:<br>Prep:<br>Analysis:          | Hanson Radum<br>SHAKER TABLE<br>EPA 8015B |
| Matrix:<br>Units:<br>Basis:                | Soil<br>mg/Kg<br>as received                     |                          | Batch#:<br>Received:<br>Prepared:        | 127616<br>07/24/07<br>07/25/07            |
| Field ID:<br>Type:<br>Lab ID:<br>Diln Fac: | SS-123(AA)-10.5<br>SAMPLE<br>196188-013<br>1.000 |                          | Sampled:<br>Analyzed:<br>Cleanup Method: | 07/24/07<br>07/26/07<br>EPA 3630C         |
| Anal                                       | vte                                              | Result                   | RL                                       |                                           |
| Diesel C10-C24                             |                                                  | 1.9 H                    | YZ 1.                                    |                                           |
| Motor Oil C24-C                            | 36                                               | 11 H                     | 5.                                       | 0                                         |
| Surro                                      | gate %REC                                        | Limits                   |                                          |                                           |
| Hexacosane                                 | 75                                               | 40-127                   |                                          |                                           |
| Field ID:<br>Type:<br>Lab ID:<br>Diln Fac: | SS-123(AA)-15.5<br>SAMPLE<br>196188-014<br>10.00 |                          | Sampled:<br>Analyzed:<br>Cleanup Method: | 07/24/07<br>07/25/07<br>EPA 3630C         |
| Anal                                       | yte                                              | Result                   | RL                                       |                                           |
| Diesel C10-C24<br>Motor Oil C24-C          | 36                                               | 39 Н Ү<br>450 Н          | 10<br>50                                 |                                           |
|                                            |                                                  |                          |                                          |                                           |
| Surro<br>Hexacosane                        | gate %REC<br>DO                                  | <b>Limits</b><br>40-127  |                                          |                                           |
| Field ID:<br>Type:<br>Lab ID:<br>Diln Fac: | SS-123(AA)-18<br>SAMPLE<br>196188-015<br>50.00   | 10-127                   | Sampled:<br>Analyzed:<br>Cleanup Method: | 07/24/07<br>07/25/07<br>EPA 3630C         |
|                                            |                                                  |                          |                                          |                                           |
| Anal<br>Diesel C10-C24                     | yte                                              | <b>Result</b><br>170 H Y | <b>RL</b><br>50                          |                                           |
| Motor Oil C24-C                            | 36                                               | 1,500 H                  | 250                                      |                                           |
|                                            |                                                  |                          |                                          |                                           |
| Surro<br>Hexacosane                        | gate %REC<br>DO                                  | Limits<br>40-127         |                                          |                                           |
|                                            | 20                                               |                          |                                          |                                           |

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks DO= Diluted Out

ND= Not Detected

RL= Reporting Limit

Page 4 of 5



| Total Extractable Hydrocarbons |                                           |             |                                    |                       |  |  |
|--------------------------------|-------------------------------------------|-------------|------------------------------------|-----------------------|--|--|
| Lab #:                         | 196188                                    |             | Location:                          | Hanson Radum          |  |  |
| Client:                        | LFR Levine Fr:                            | icke        | Prep:                              | SHAKER TABLE          |  |  |
| Project#:                      | 001-09567-02                              |             | Analysis:                          | EPA 8015B             |  |  |
| Matrix:                        | Soil                                      |             | Batch#:                            | 127616                |  |  |
| Units:                         | mg/Kg                                     |             | Received:                          | 07/24/07              |  |  |
| Basis:                         | as received                               |             | Prepared:                          | 07/25/07              |  |  |
| Type:<br>Lab ID:<br>Diln Fac:  | BLANK<br>QC397896<br>1.000<br><b>lyte</b> | Result      | Analyzed:<br>Cleanup Method:<br>RL | 07/25/07<br>EPA 3630C |  |  |
| Diesel C10-C24                 |                                           | ND Result   |                                    | 0                     |  |  |
| Motor Oil C24-                 |                                           | ND<br>ND    | 1.<br>5.                           |                       |  |  |
| MOCOL OIL C24-                 | C30                                       |             | 5.                                 | 0                     |  |  |
| Surr                           | ogate                                     | %REC Limits |                                    |                       |  |  |
| Hexacosane                     |                                           | 66 40-127   |                                    |                       |  |  |

H= Heavier hydrocarbons contributed to the quantitation L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard Z= Sample exhibits unknown single peak or peaks DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 5 of 5

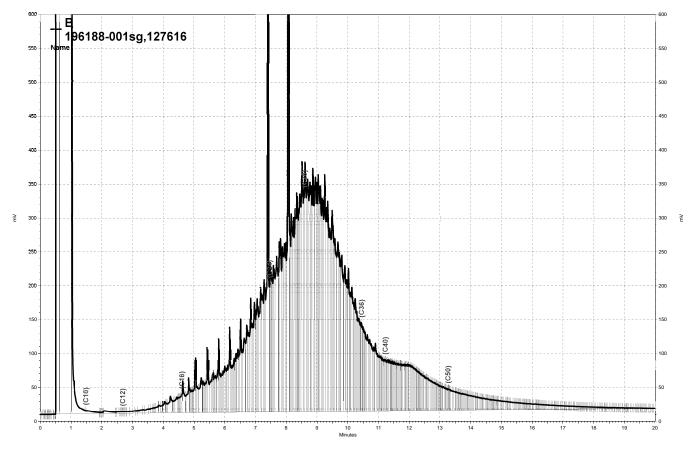


| Total Extractable Hydrocarbons |                   |           |              |  |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|--|
| Lab #:                         | 196188            | Location: | Hanson Radum |  |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | SHAKER TABLE |  |  |  |
| Project#:                      | 001-09567-02      | Analysis: | EPA 8015B    |  |  |  |
| Туре:                          | LCS               | Diln Fac: | 1.000        |  |  |  |
| Lab ID:                        | QC397897          | Batch#:   | 127616       |  |  |  |
| Matrix:                        | Soil              | Prepared: | 07/25/07     |  |  |  |
| Units:                         | mg/Kg             | Analyzed: | 07/25/07     |  |  |  |
| Basis:                         | as received       |           |              |  |  |  |

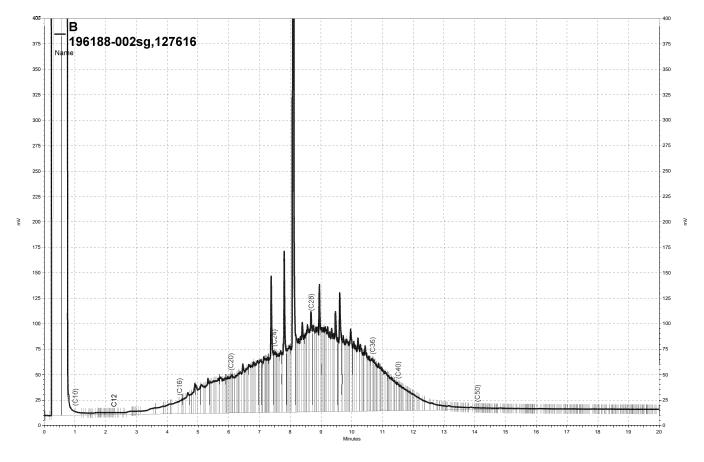
Cleanup Method: EPA 3630C

Hexacosane

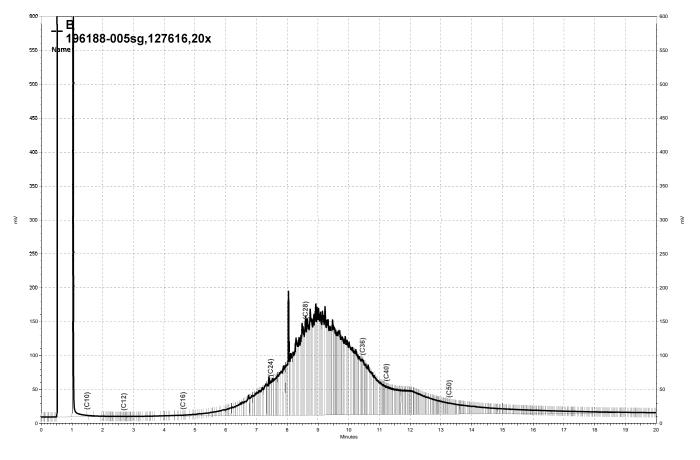
| Analyte        | Spiked      | Result | %REC | Limits |
|----------------|-------------|--------|------|--------|
| Diesel C10-C24 | 49.85       | 38.76  | 78   | 58-127 |
|                |             |        |      |        |
| Surrogate      | %REC Limits |        |      |        |


40-127

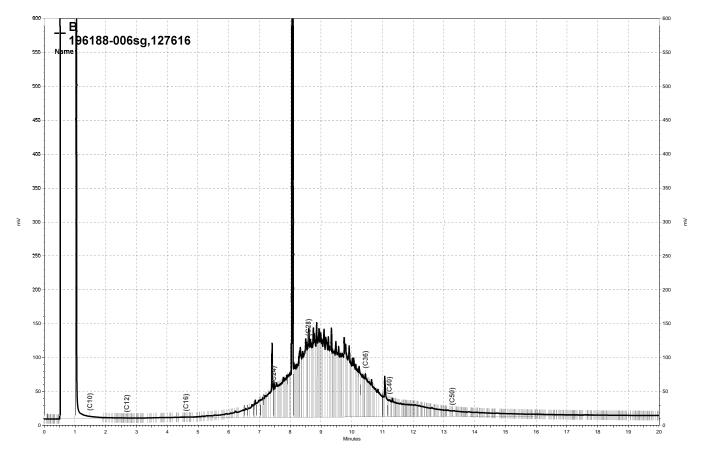
80



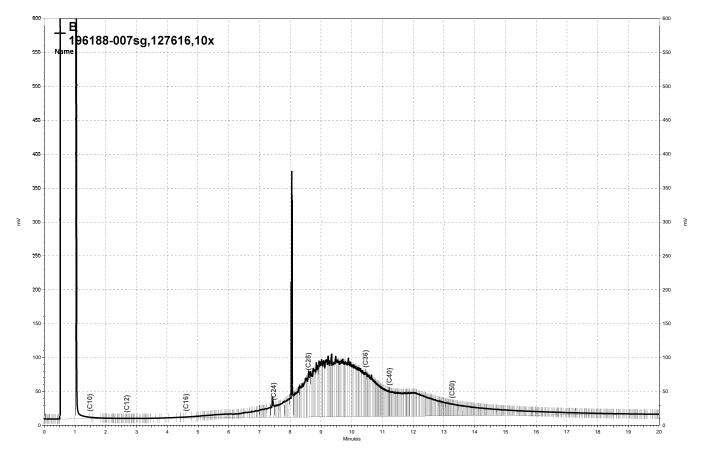

| Total Extractable Hydrocarbons |                   |           |              |  |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|--|
|                                |                   |           |              |  |  |  |
| Lab #:                         | 196188            | Location: | Hanson Radum |  |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | SHAKER TABLE |  |  |  |
| Project#:                      | 001-09567-02      | Analysis: | EPA 8015B    |  |  |  |
| Field ID:                      | ZZZZZZZZZ         | Batch#:   | 127616       |  |  |  |
| MSS Lab ID:                    | 196197-007        | Sampled:  | 07/24/07     |  |  |  |
| Matrix:                        | Soil              | Received: | 07/25/07     |  |  |  |
| Units:                         | mg/Kg             | Prepared: | 07/25/07     |  |  |  |
| Basis:                         | as received       | Analyzed: | 07/26/07     |  |  |  |
| Diln Fac:                      | 1.000             |           |              |  |  |  |


| Туре:     | MS        |         |        | Lab ID: | QC3    | 97898  |        |       |     |
|-----------|-----------|---------|--------|---------|--------|--------|--------|-------|-----|
|           | Analyte   | MSS Res | ult    | Spiked  | 1      | Result | %REC   | Limit | ts  |
| Diesel Cl | 0-C24     | 6       | .942   | 49.9    | 91     | 48.64  | 84     | 29-14 | 47  |
|           | Surrogate | %REC    | Limits |         |        |        |        |       |     |
| Hexacosan | e         | 98      | 40-127 |         |        |        |        |       |     |
|           |           |         |        |         |        |        |        |       |     |
| Туре:     | MSD       |         |        | Lab ID: | QC3    | 97899  |        |       |     |
|           | Analyte   |         | Spiked |         | Result | %REC   | Limits | RPD I | Lim |
| Diesel Cl | 0-C24     |         | 49.88  |         | 54.94  | 96     | 29-147 | 12 4  | 46  |
|           | Surrogate | %REC    | Limits |         |        |        |        |       |     |
| Hexacosan | e         | 107     | 40-127 |         |        |        |        |       |     |

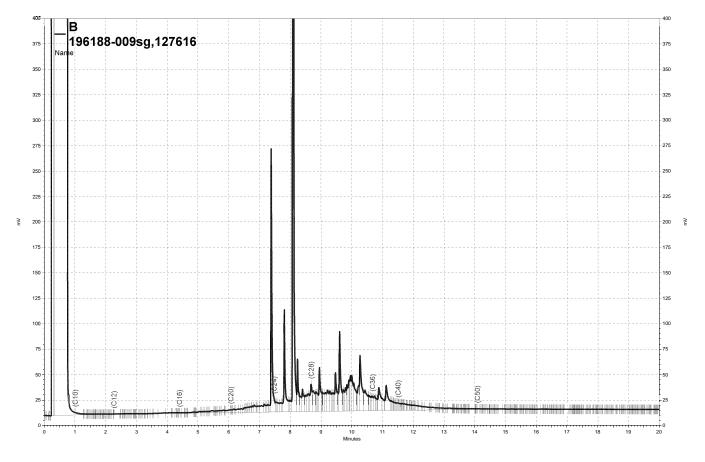



\\Lims\gdrive\ezchrom\Projects\GC15B\Data\206b028, B

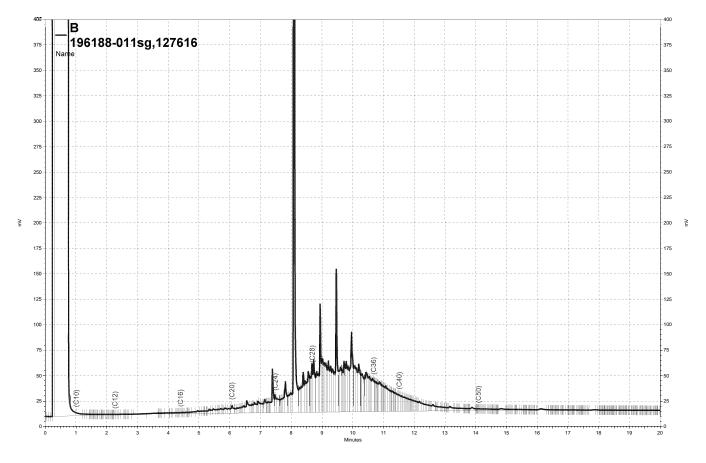



\Lims\gdrive\ezchrom\Projects\GC14B\Data\206b028, B

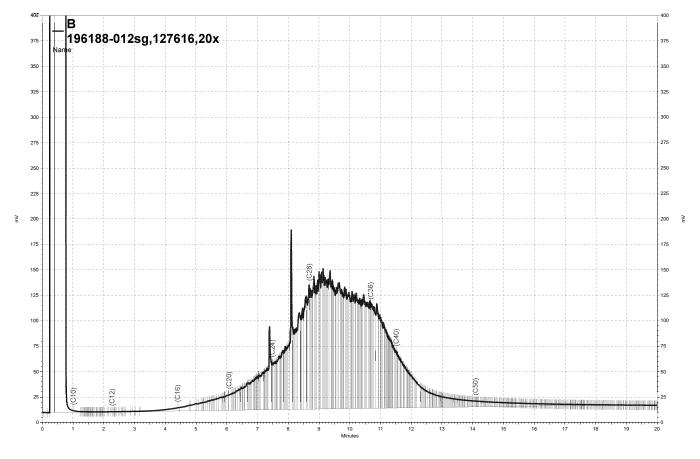



\\Lims\gdrive\ezchrom\Projects\GC15B\Data\206b032, B

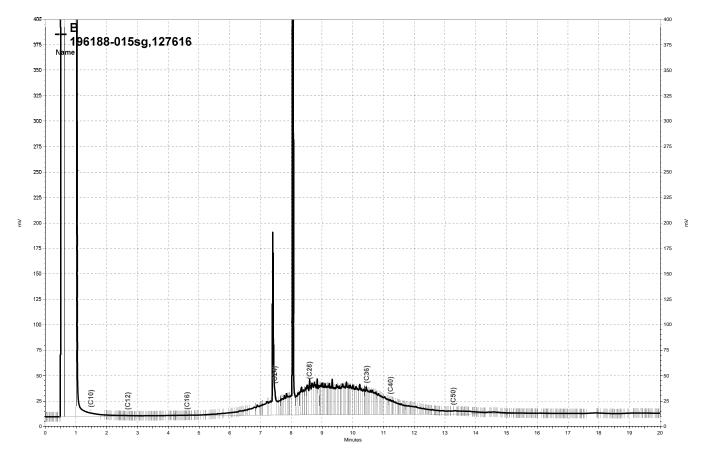



\\Lims\gdrive\ezchrom\Projects\GC15B\Data\206b031, B

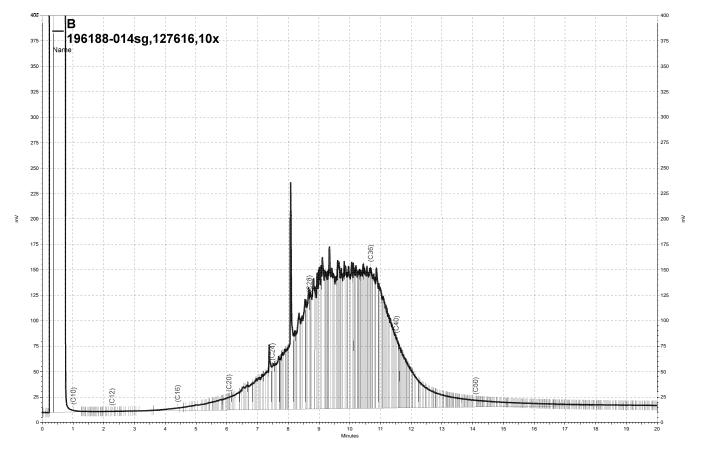



\\Lims\gdrive\ezchrom\Projects\GC15B\Data\206b033, B

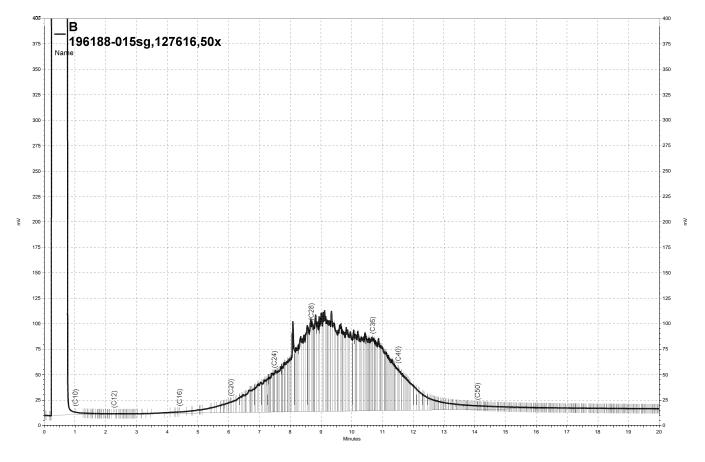



\\Lims\gdrive\ezchrom\Projects\GC14B\Data\206b026, B

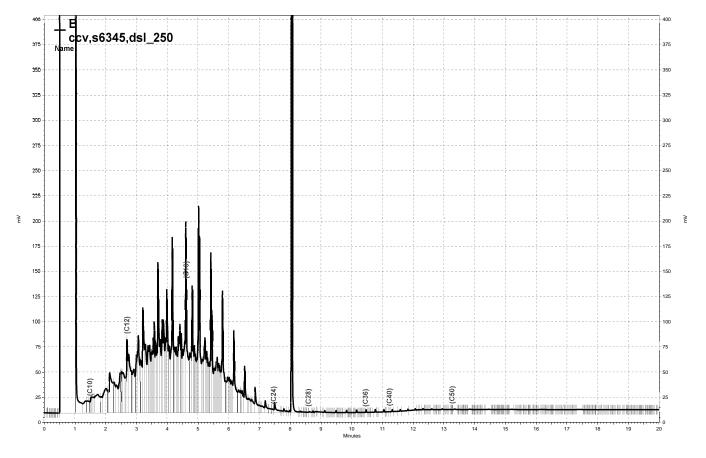



\Lims\gdrive\ezchrom\Projects\GC14B\Data\206b029, B

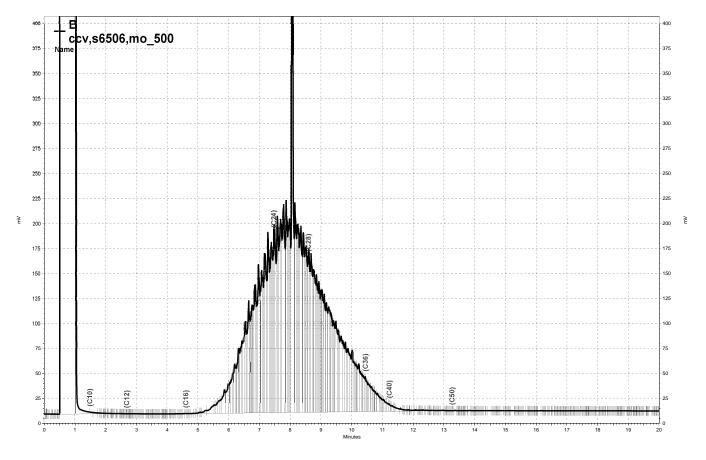



\Lims\gdrive\ezchrom\Projects\GC14B\Data\206b024, B




\Lims\gdrive\ezchrom\Projects\GC15B\Data\206b025, B




\Lims\gdrive\ezchrom\Projects\GC14B\Data\206b022, B



\Lims\gdrive\ezchrom\Projects\GC14B\Data\206b023, B



\\Lims\gdrive\ezchrom\Projects\GC15B\Data\206b020, B



\\Lims\gdrive\ezchrom\Projects\GC15B\Data\206b021, B



|                                                                   |                                                        | Gasoline                       | by GC/MS                                      |                                            |
|-------------------------------------------------------------------|--------------------------------------------------------|--------------------------------|-----------------------------------------------|--------------------------------------------|
| Lab #:<br>Client:<br>Project#:                                    | 196188<br>LFR Levine Fricke<br>001-09567-02            |                                | Location:<br>Prep:<br>Analysis:               | Hanson Radum<br>EPA 5030B<br>EPA 8260B     |
| Field ID:<br>Lab ID:<br>Matrix:<br>Units:<br>Diln Fac:            | SS-123(F2)-GGW<br>196188-003<br>Water<br>ug/L<br>1.000 |                                | Batcĥ#:<br>Sampled:<br>Received:<br>Analyzed: | 127594<br>07/24/07<br>07/24/07<br>07/25/07 |
| An<br>Gasoline C7-C<br>Freon 12<br>tert-Butyl Al<br>Chloromethane | .cohol (TBA)                                           | Result<br>ND<br>ND<br>ND<br>ND |                                               | <b>RI.</b><br>50<br>1.0<br>10              |

| Gasoline C7-C12               | ND |     | 50            |  |
|-------------------------------|----|-----|---------------|--|
| Freon 12                      | ND |     | 1.0           |  |
| tert-Butyl Alcohol (TBA)      | ND |     | 10            |  |
| Chloromethane                 | ND |     | 1.0           |  |
| Isopropyl Ether (DIPE)        | ND |     | 0.5           |  |
| Vinyl Chloride                | ND |     | 0.5           |  |
| Bromomethane                  | ND |     | 1.0           |  |
| Ethyl tert-Butyl Ether (ETBE) | ND |     | 0.5           |  |
| Chloroethane                  | ND |     | 1.0           |  |
| Methyl tert-Amyl Ether (TAME) | ND |     | 0.5           |  |
| Trichlorofluoromethane        | ND |     | 1.0           |  |
| Acetone                       | ND |     | 10            |  |
| Freon 113                     | ND |     | 0.5           |  |
| 1,1-Dichloroethene            | ND |     | 0.5           |  |
| Methylene Chloride            | ND |     | 10            |  |
| Carbon Disulfide              | ND | 0.5 | 0.5           |  |
| MTBE                          | ND | 0.5 | 0.5           |  |
| trans-1,2-Dichloroethene      | ND |     | 0.5           |  |
|                               |    |     | 10            |  |
| Vinyl Acetate                 | ND |     |               |  |
| 1,1-Dichloroethane            | ND |     | 0.5<br>10     |  |
| 2-Butanone                    | ND |     |               |  |
| cis-1,2-Dichloroethene        | ND |     | 0.5           |  |
| 2,2-Dichloropropane           | ND |     | 0.5           |  |
| Chloroform                    | ND |     | 0.5           |  |
| Bromochloromethane            | ND |     | 0.5           |  |
| 1,1,1-Trichloroethane         | ND |     | 0.5           |  |
| 1,1-Dichloropropene           | ND |     | 0.5           |  |
| Carbon Tetrachloride          | ND |     | 0.5           |  |
| 1,2-Dichloroethane            | ND |     | 0.5           |  |
| Benzene                       | ND |     | 0.5           |  |
| Trichloroethene               | ND |     | 0.5           |  |
| 1,2-Dichloropropane           | ND |     | 0.5           |  |
| Bromodichloromethane          | ND |     | 0.5           |  |
| Dibromomethane                | ND |     | 0.5           |  |
| 4-Methyl-2-Pentanone          | ND |     | 10            |  |
| cis-1,3-Dichloropropene       | ND |     | 0.5           |  |
| Toluene                       |    | 2.2 | 0.5           |  |
| trans-1,3-Dichloropropene     | ND |     | 0.5           |  |
| 1,1,2-Trichloroethane         | ND |     | 0.5           |  |
| 2-Hexanone                    | ND |     | 10            |  |
| 1,3-Dichloropropane           | ND |     | 0.5           |  |
| Tetrachloroethene             | ND |     | 0.5           |  |
| Dibromochloromethane          | ND |     | 0.5           |  |
| 1,2-Dibromoethane             | ND |     | 0.5           |  |
| Chlorobenzene                 | ND |     | 0.5           |  |
| 1,1,1,2-Tetrachloroethane     | ND |     | 0.5           |  |
| Ethylbenzene                  | ND |     | 0.5           |  |
| m,p-Xylenes                   | ND |     | 0.5           |  |
| o-Xylene                      | ND |     | 0.5           |  |
| Styrene                       | ND |     | 0.5           |  |
| Bromoform                     | ND |     | 1.0           |  |
| Isopropylbenzene              | ND |     | 0.5           |  |
| 1,1,2,2-Tetrachloroethane     | ND |     | 0.5           |  |
| 1,1,2,2-Tetrachioroethane     | ND |     | 0.5           |  |
|                               |    |     | $\frac{1}{2}$ |  |



|                                         |                  | Ga       | asoline | by GC/MS  |              |
|-----------------------------------------|------------------|----------|---------|-----------|--------------|
| Lab #: 1                                | 96188            |          |         | Location: | Hanson Radum |
| Client: L                               | FR Levine Fricke |          |         | Prep:     | EPA 5030B    |
| Project#: 0                             | 01-09567-02      |          |         | Analysis: | EPA 8260B    |
| Field ID: S                             | S-123(F2)-GGW    |          |         | Batch#:   | 127594       |
| Lab ID: 1                               | 96188-003        |          |         | Sampled:  | 07/24/07     |
| Matrix: W                               | ater             |          |         | Received: | 07/24/07     |
|                                         | g/L              |          |         | Analyzed: | 07/25/07     |
| Diln Fac: 1                             | .000             |          |         |           |              |
| · · · · · · · · · · · · · · · · · · ·   |                  | _        |         |           |              |
| Analyte                                 |                  |          | esult   |           | RL           |
| Propylbenzene                           |                  | ND       |         |           | 0.5          |
| Bromobenzene                            |                  | ND       |         |           | 0.5          |
| 1,3,5-Trimethylben<br>2-Chlorotoluene   | zene             | ND       |         |           | 0.5<br>0.5   |
| 4-Chlorotoluene                         |                  | ND<br>ND |         |           | 0.5          |
|                                         |                  | ND       |         |           | 0.5          |
| tert-Butylbenzene<br>1,2,4-Trimethylben | 5000             | ND       | 0.7     |           | 0.5          |
| sec-Butylbenzene                        | 20110            | ND       | 0.7     |           | 0.5          |
| para-Isopropyl Tol                      | 11000            | Ш        | 0.7     |           | 0.5          |
| 1,3-Dichlorobenzen                      |                  | ND       | 0.7     |           | 0.5          |
| 1,4-Dichlorobenzen                      |                  | ND       |         |           | 0.5          |
| n-Butylbenzene                          |                  | ND       |         |           | 0.5          |
| 1,2-Dichlorobenzen                      | e                | ND       |         |           | 0.5          |
| 1,2-Dibromo-3-Chlo                      |                  | ND       |         |           | 2.0          |
| 1,2,4-Trichloroben                      |                  | ND       |         |           | 0.5          |
| Hexachlorobutadien                      |                  | ND       |         |           | 0.5          |
| Naphthalene                             | -                |          | 4.6     |           | 2.0          |
| 1,2,3-Trichloroben                      | zene             | ND       | · ·     |           | 0.5          |
|                                         |                  |          |         |           |              |
| Surrogat                                |                  |          | Limits  |           |              |
| Dibromofluorometha                      |                  |          | 80-123  |           |              |
| 1,2-Dichloroethane                      |                  |          | 79-134  |           |              |
| Toluene-d8                              | 99               |          | 80-120  |           |              |
| Bromofluorobenzene                      | 101              |          | 80-122  |           |              |



| Gasoline by GC/MS                                      |                                                        |                                               |                                            |  |  |
|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|--------------------------------------------|--|--|
| Lab #:<br>Client:<br>Project#:                         | 196188<br>LFR Levine Fricke<br>001-09567-02            | Location:<br>Prep:<br>Analysis:               | Hanson Radum<br>EPA 5030B<br>EPA 8260B     |  |  |
| Field ID:<br>Lab ID:<br>Matrix:<br>Units:<br>Diln Fac: | SS-123(AA)-GGW<br>196188-004<br>Water<br>ug/L<br>1.000 | Batch#:<br>Sampled:<br>Received:<br>Analyzed: | 127594<br>07/24/07<br>07/24/07<br>07/25/07 |  |  |

| Analyte                       | Result   | RL  |
|-------------------------------|----------|-----|
| Gasoline C7-C12               | ND       | 50  |
| Freon 12                      | ND       | 1.0 |
| tert-Butyl Alcohol (TBA)      | ND       | 10  |
| Chloromethane                 | ND       | 1.0 |
| Isopropyl Ether (DIPE)        | ND       | 0.5 |
| Vinyl Chloride                | ND       | 0.5 |
| Bromomethane                  | ND       | 1.0 |
| Ethyl tert-Butyl Ether (ETBE) | ND       | 0.5 |
| Chloroethane                  | ND       | 1.0 |
| Methyl tert-Amyl Ether (TAME) | ND       | 0.5 |
| Trichlorofluoromethane        | ND       | 1.0 |
| Acetone                       | ND       | 10  |
| Freon 113                     | ND       | 0.5 |
| 1,1-Dichloroethene            | ND       | 0.5 |
| Methylene Chloride            | ND       | 10  |
| Carbon Disulfide              | ND       | 0.5 |
| MTBE                          | ND       | 0.5 |
| trans-1,2-Dichloroethene      | ND       | 0.5 |
| Vinyl Acetate                 | ND       | 10  |
| 1,1-Dichloroethane            | ND       | 0.5 |
| 2-Butanone                    | ND       | 10  |
| cis-1,2-Dichloroethene        | ND       | 0.5 |
| 2,2-Dichloropropane           | ND       | 0.5 |
| Chloroform                    | ND       | 0.5 |
| Bromochloromethane            | ND       | 0.5 |
| 1,1,1-Trichloroethane         | ND       | 0.5 |
| 1,1-Dichloropropene           | ND       | 0.5 |
| Carbon Tetrachloride          | ND       | 0.5 |
| 1,2-Dichloroethane            | ND       | 0.5 |
| Benzene                       | ND       | 0.5 |
| Trichloroethene               | ND       | 0.5 |
| 1,2-Dichloropropane           | ND       | 0.5 |
| Bromodichloromethane          | ND       | 0.5 |
| Dibromomethane                | ND       | 0.5 |
| 4-Methyl-2-Pentanone          | ND       | 10  |
| cis-1,3-Dichloropropene       | ND       | 0.5 |
| Toluene                       | ND       | 0.5 |
| trans-1,3-Dichloropropene     | ND       | 0.5 |
| 1,1,2-Trichloroethane         | ND       | 0.5 |
| 2-Hexanone                    | ND       | 10  |
| 1,3-Dichloropropane           | ND       | 0.5 |
| Tetrachloroethene             | ND       | 0.5 |
| Dibromochloromethane          | ND       | 0.5 |
| 1,2-Dibromoethane             | ND       | 0.5 |
| Chlorobenzene                 | ND       | 0.5 |
| 1,1,1,2-Tetrachloroethane     | ND       | 0.5 |
|                               | ND       | 0.5 |
| Ethylbenzene                  | ND<br>ND | 0.5 |
| m,p-Xylenes                   | ND<br>ND | 0.5 |
| o-Xylene                      | ND<br>ND | 0.5 |
| Styrene                       |          | 1.0 |
| Bromoform                     | ND<br>ND |     |
| Isopropylbenzene              | ND       | 0.5 |
| 1,1,2,2-Tetrachloroethane     | ND       | 0.5 |
| 1,2,3-Trichloropropane        | ND       | 0.5 |



|                                       |                 | G        | asoline     | by GC/MS  |              |  |
|---------------------------------------|-----------------|----------|-------------|-----------|--------------|--|
| Lab #:                                | 196188          |          |             | Location: | Hanson Radum |  |
| Client:                               | LFR Levine Fric | ke       |             | Prep:     | EPA 5030B    |  |
| Project#:                             | 001-09567-02    |          |             | Analysis: | EPA 8260B    |  |
| Field ID:                             | SS-123(AA)-GGW  |          |             | Batch#:   | 127594       |  |
| Lab ID:                               | 196188-004      |          |             | Sampled:  | 07/24/07     |  |
| Matrix:                               | Water           |          |             | Received: | 07/24/07     |  |
| Units:                                | ug/L            |          |             | Analyzed: | 07/25/07     |  |
| Diln Fac:                             | 1.000           |          |             |           |              |  |
| Amo last                              |                 |          | D = = - 1 + |           | RL           |  |
| Analy                                 | Le              | <br>ND   | Result      |           | 0.5          |  |
| Propylbenzene<br>Bromobenzene         |                 | ND<br>ND |             |           | 0.5          |  |
| 1,3,5-Trimethylbe                     |                 | ND<br>ND |             |           | 0.5          |  |
| 2-Chlorotoluene                       | elizelle        | ND<br>ND |             |           | 0.5          |  |
| 4-Chlorotoluene                       |                 | ND       |             |           | 0.5          |  |
| tert-Butylbenzene                     |                 | ND       |             |           | 0.5          |  |
| 1,2,4-Trimethylbe                     |                 | ND       |             |           | 0.5          |  |
| sec-Butylbenzene                      | enzene          | ND       |             |           | 0.5          |  |
| para-Isopropyl To                     | aluene          | ND       |             |           | 0.5          |  |
| 1,3-Dichlorobenze                     |                 | ND       |             |           | 0.5          |  |
| 1,4-Dichlorobenze                     |                 | ND       |             |           | 0.5          |  |
| n-Butylbenzene                        | ene             | ND       |             |           | 0.5          |  |
| 1,2-Dichlorobenze                     | ene             | ND       |             |           | 0.5          |  |
| 1,2-Dibromo-3-Ch                      | loropropane     | ND       |             |           | 2.0          |  |
| 1,2,4-Trichlorobe                     |                 | ND       |             |           | 0.5          |  |
| Hexachlorobutadie                     |                 | ND       |             |           | 0.5          |  |
| Naphthalene                           |                 | ND       |             |           | 2.0          |  |
| 1,2,3-Trichlorobe                     | enzene          | ND       |             |           | 0.5          |  |
| · · · · · · · · · · · · · · · · · · · |                 |          |             |           |              |  |
| Surroga                               | ate             | %REC     | Limits      |           |              |  |
| Dibromofluoromet                      |                 |          | 80-123      |           |              |  |
| 1,2-Dichloroethan                     |                 | 05       | 79-134      |           |              |  |
| Toluene-d8                            | 9               |          | 80-120      |           |              |  |
| Bromofluorobenzer                     | ne 1            | 00       | 80-122      |           |              |  |



| Gasoline by GC/MS                                      |                                                        |                                               |                                            |  |  |
|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|--------------------------------------------|--|--|
| Lab #:<br>Client:<br>Project#:                         | 196188<br>LFR Levine Fricke<br>001-09567-02            | Location:<br>Prep:<br>Analysis:               | Hanson Radum<br>EPA 5030B<br>EPA 8260B     |  |  |
| Field ID:<br>Lab ID:<br>Matrix:<br>Units:<br>Diln Fac: | SS-123(F3)-GGW<br>196188-010<br>Water<br>ug/L<br>1.000 | Batch#:<br>Sampled:<br>Received:<br>Analyzed: | 127594<br>07/24/07<br>07/24/07<br>07/25/07 |  |  |

| Analyte                       | Result   | RL  |
|-------------------------------|----------|-----|
| Gasoline C7-C12               | ND       | 50  |
| Freon 12                      | ND       | 1.0 |
| tert-Butyl Alcohol (TBA)      | ND       | 10  |
| Chloromethane                 | ND       | 1.0 |
| Isopropyl Ether (DIPE)        | ND       | 0.5 |
| Vinyl Chloride                | ND       | 0.5 |
| Bromomethane                  | ND       | 1.0 |
| Ethyl tert-Butyl Ether (ETBE) | ND       | 0.5 |
| Chloroethane                  | ND       | 1.0 |
| Methyl tert-Amyl Ether (TAME) | ND<br>ND | 0.5 |
| Trichlorofluoromethane        | ND<br>ND | 1.0 |
|                               |          |     |
| Acetone                       | ND       | 10  |
| Freon 113                     | ND       | 0.5 |
| 1,1-Dichloroethene            | ND       | 0.5 |
| Methylene Chloride            | ND       | 10  |
| Carbon Disulfide              | ND       | 0.5 |
| MTBE                          | ND       | 0.5 |
| trans-1,2-Dichloroethene      | ND       | 0.5 |
| Vinyl Acetate                 | ND       | 10  |
| 1,1-Dichloroethane            | ND       | 0.5 |
| 2-Butanone                    | ND       | 10  |
| cis-1,2-Dichloroethene        | ND       | 0.5 |
| 2,2-Dichloropropane           | ND       | 0.5 |
| Chloroform                    | ND       | 0.5 |
| Bromochloromethane            | ND       | 0.5 |
| 1,1,1-Trichloroethane         | ND       | 0.5 |
| 1,1-Dichloropropene           | ND       | 0.5 |
| Carbon Tetrachloride          | ND       | 0.5 |
| 1,2-Dichloroethane            | ND       | 0.5 |
| Benzene                       | ND       | 0.5 |
| Trichloroethene               | ND       | 0.5 |
| 1,2-Dichloropropane           | ND       | 0.5 |
| Bromodichloromethane          | ND       | 0.5 |
| Dibromomethane                | ND       | 0.5 |
| 4-Methyl-2-Pentanone          | ND       | 10  |
| cis-1,3-Dichloropropene       | ND       | 0.5 |
| Toluene                       | ND       | 0.5 |
| trans-1,3-Dichloropropene     | ND       | 0.5 |
| 1,1,2-Trichloroethane         | ND       | 0.5 |
| 2-Hexanone                    | ND       | 10  |
| 1,3-Dichloropropane           | ND       | 0.5 |
| Tetrachloroethene             | ND       | 0.5 |
| Dibromochloromethane          | ND       | 0.5 |
| 1,2-Dibromoethane             | ND<br>ND | 0.5 |
|                               |          | 0.5 |
| Chlorobenzene                 | ND       |     |
| 1,1,1,2-Tetrachloroethane     | ND       | 0.5 |
| Ethylbenzene                  | ND       | 0.5 |
| m,p-Xylenes                   | ND       | 0.5 |
| o-Xylene                      | ND       | 0.5 |
| Styrene                       | ND       | 0.5 |
| Bromoform                     | ND       | 1.0 |
| Isopropylbenzene              | ND       | 0.5 |
| 1,1,2,2-Tetrachloroethane     | ND       | 0.5 |
| 1,2,3-Trichloropropane        | ND       | 0.5 |



|                                            | Gasolin     | e by GC/MS |              |
|--------------------------------------------|-------------|------------|--------------|
| Lab #: 196188                              |             | Location:  | Hanson Radum |
| Client: LFR Levine Fr                      | ricke       | Prep:      | EPA 5030B    |
| Project#: 001-09567-02                     |             | Analysis:  | EPA 8260B    |
| Field ID: SS-123(F3)-GG                    | W           | Batch#:    | 127594       |
| Lab ID: 196188-010                         |             | Sampled:   | 07/24/07     |
| Matrix: Water                              |             | Received:  | 07/24/07     |
| Units: ug/L                                |             | Analyzed:  | 07/25/07     |
| Diln Fac: 1.000                            |             |            |              |
|                                            |             |            |              |
| Analyte                                    | Result      |            | RL           |
| Propylbenzene                              | ND          |            | 0.5          |
| Bromobenzene                               | ND          |            | 0.5          |
| 1,3,5-Trimethylbenzene                     | ND          |            | 0.5          |
| 2-Chlorotoluene                            | ND          |            | 0.5          |
| 4-Chlorotoluene                            | ND          |            | 0.5<br>0.5   |
| tert-Butylbenzene                          | ND          |            | 0.5          |
| 1,2,4-Trimethylbenzene<br>sec-Butylbenzene | ND<br>ND    |            | 0.5          |
| para-Isopropyl Toluene                     | ND<br>ND    |            | 0.5          |
| 1,3-Dichlorobenzene                        | ND          |            | 0.5          |
| 1,4-Dichlorobenzene                        | ND          |            | 0.5          |
| n-Butylbenzene                             | ND          |            | 0.5          |
| 1,2-Dichlorobenzene                        | ND          |            | 0.5          |
| 1,2-Dibromo-3-Chloropropane                | ND          |            | 2.0          |
| 1,2,4-Trichlorobenzene                     | ND          |            | 0.5          |
| Hexachlorobutadiene                        | ND          |            | 0.5          |
| Naphthalene                                | ND          |            | 2.0          |
| 1,2,3-Trichlorobenzene                     | ND          |            | 0.5          |
|                                            |             |            | •••          |
| Surrogate                                  | %REC Limits |            |              |
| Dibromofluoromethane                       | 98 80-123   |            |              |
| 1,2-Dichloroethane-d4                      | 105 79-134  |            |              |
| Toluene-d8                                 | 100 80-120  |            |              |
| Bromofluorobenzene                         | 106 80-122  |            |              |



| Gasoline by GC/MS              |                                             |                                 |                                        |  |  |
|--------------------------------|---------------------------------------------|---------------------------------|----------------------------------------|--|--|
| Lab #:<br>Client:<br>Project#: | 196188<br>LFR Levine Fricke<br>001-09567-02 | Location:<br>Prep:<br>Analysis: | Hanson Radum<br>EPA 5030B<br>EPA 8260B |  |  |
| Matrix:<br>Units:<br>Diln Fac: | Water<br>ug/L<br>1.000                      | Batch#:<br>Analyzed:            | 127594<br>07/25/07                     |  |  |

| Type: BS                  |       |        | Lab ID: | QC39   | 97811 |        |  |
|---------------------------|-------|--------|---------|--------|-------|--------|--|
| Analyte                   |       | Spiked |         | Result | %REC  | Limits |  |
| tert-Butyl Alcohol (TBA)  |       | 125.0  |         | 112.2  | 90    | 68-132 |  |
| Isopropyl Ether (DIPE)    |       | 25.00  |         | 19.99  | 80    | 65-120 |  |
|                           | FBE ) | 25.00  |         | 20.71  | 83    | 75-124 |  |
| Methyl tert-Amyl Ether (T | AME)  | 25.00  |         | 24.56  | 98    | 77-120 |  |
| 1,1-Dichloroethene        |       | 25.00  |         | 24.16  | 97    | 80-132 |  |
| Benzene                   |       | 25.00  |         | 25.20  | 101   | 80-120 |  |
| Trichloroethene           |       | 25.00  |         | 25.59  | 102   | 80-120 |  |
| Toluene                   |       | 25.00  |         | 27.12  | 108   | 80-120 |  |
| Chlorobenzene             |       | 25.00  |         | 25.47  | 102   | 80-120 |  |
| Surrogate                 | %REC  | Limits |         |        |       |        |  |
| Dibromofluoromethane      | 94    | 80-123 |         |        |       |        |  |
| 1.2-Dichloroethane-d4     | 103   | 79-134 |         |        |       |        |  |

| Durroguoo             | 011110 |        |
|-----------------------|--------|--------|
| Dibromofluoromethane  | 94     | 80-123 |
| 1,2-Dichloroethane-d4 | 103    | 79–134 |
| Toluene-d8            | 98     | 80-120 |
| Bromofluorobenzene    | 98     | 80-122 |
|                       |        |        |

| Type: BSD                     |      |        | Lab ID: | QC3    | 97812 |        |     |     |
|-------------------------------|------|--------|---------|--------|-------|--------|-----|-----|
| Analyte                       |      | Spiked |         | Result | %REC  | Limits | RPD | Lim |
| tert-Butyl Alcohol (TBA)      |      | 125.0  |         | 106.4  | 85    | 68-132 | 5   | 20  |
| Isopropyl Ether (DIPE)        |      | 25.00  |         | 18.91  | 76    | 65-120 | 6   | 20  |
| Ethyl tert-Butyl Ether (ETBE) |      | 25.00  |         | 19.08  | 76    | 75-124 | 8   | 20  |
| Methyl tert-Amyl Ether (TAME) |      | 25.00  |         | 23.58  | 94    | 77-120 | 4   | 20  |
| 1,1-Dichloroethene            |      | 25.00  |         | 22.44  | 90    | 80-132 | 7   | 20  |
| Benzene                       |      | 25.00  |         | 23.09  | 92    | 80-120 | 9   | 20  |
| Trichloroethene               |      | 25.00  |         | 23.50  | 94    | 80-120 | 9   | 20  |
| Toluene                       |      | 25.00  |         | 25.12  | 100   | 80-120 | 8   | 20  |
| Chlorobenzene                 |      | 25.00  |         | 24.03  | 96    | 80-120 | 6   | 20  |
|                               |      |        |         |        |       |        |     |     |
| Surrogate                     | %REC | Limits |         |        |       |        |     |     |
| Dibromofluoromethane          | 93   | 80-123 |         |        |       |        |     |     |
| 1,2-Dichloroethane-d4         | 100  | 79-134 |         |        |       |        |     |     |
| Toluene-d8                    | 98   | 80-120 |         |        |       |        |     |     |
| Bromofluorobenzene            | 99   | 80-122 |         |        |       |        |     |     |



| Gasoline by GC/MS |                   |           |              |  |  |  |
|-------------------|-------------------|-----------|--------------|--|--|--|
| Lab #:            | 196188            | Location: | Hanson Radum |  |  |  |
| Client:           | LFR Levine Fricke | Prep:     | EPA 5030B    |  |  |  |
| Project#:         | 001-09567-02      | Analysis: | EPA 8260B    |  |  |  |
| Matrix:           | Water             | Batch#:   | 127594       |  |  |  |
| Units:            | ug/L              | Analyzed: | 07/25/07     |  |  |  |
| Diln Fac:         | 1.000             |           |              |  |  |  |

Type:

Bromofluorobenzene

BS

Lab ID:

QC397813

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 1,000  | 943.9  | 94   | 70-130 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 94   | 80-123 |
| 1,2-Dichloroethane-d4 | 100  | 79-134 |
| Toluene-d8            | 98   | 80-120 |
| Bromofluorobenzene    | 99   | 80-122 |

| Type:        | BSD        |      |        | Lab ID: | QC3    | 897814 |        |     |     |
|--------------|------------|------|--------|---------|--------|--------|--------|-----|-----|
| 1            | Analyte    |      | Spiked |         | Result | %REC   | Limits | RPD | Lim |
| Gasoline C7- | -C12       |      | 1,000  |         | 831.4  | 83     | 70-130 | 13  | 20  |
|              |            |      |        |         |        |        |        |     |     |
| Su           | ırrogate   | %REC | Limits |         |        |        |        |     |     |
| Dibromofluor | romethane  | 94   | 80-123 |         |        |        |        |     |     |
| 1,2-Dichloro | bethane-d4 | 100  | 79-134 |         |        |        |        |     |     |
| Toluene-d8   |            | 100  | 80-120 |         |        |        |        |     |     |

80-122

99



|                                       | Gasoline by GC/MS                           |                                   |                                        |  |  |  |
|---------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|--|--|--|
| Lab #:<br>Client:<br>Project#:        | 196188<br>LFR Levine Fricke<br>001-09567-02 | Location:<br>Prep:<br>Analysis:   | Hanson Radum<br>EPA 5030B<br>EPA 8260B |  |  |  |
| Type:<br>Lab ID:<br>Matrix:<br>Units: | BLANK<br>QC397815<br>Water<br>ug/L          | Diln Fac:<br>Batch#:<br>Analyzed: | 1.000<br>127594<br>07/25/07            |  |  |  |

| Analyte                       | Result   | RL        |
|-------------------------------|----------|-----------|
| Gasoline C7-C12               | ND       | 50        |
| Freon 12                      | ND       | 1.0       |
| tert-Butyl Alcohol (TBA)      | ND       | 10        |
| Chloromethane                 | ND       | 1.0       |
| Isopropyl Ether (DIPE)        | ND       | 0.5       |
| Vinyl Chloride                | ND       | 0.5       |
| Bromomethane                  | ND       | 1.0       |
| Ethyl tert-Butyl Ether (ETBE) | ND       | 0.5       |
| Chloroethane                  | ND<br>ND | 1.0       |
|                               | ND<br>ND | 0.5       |
| Methyl tert-Amyl Ether (TAME) | ND<br>ND | 1.0       |
| Trichlorofluoromethane        |          |           |
| Acetone                       | ND       | 10<br>0.5 |
| Freon 113                     | ND       | 0.5       |
| 1,1-Dichloroethene            | ND       |           |
| Methylene Chloride            | ND       | 10        |
| Carbon Disulfide              | ND       | 0.5       |
| MTBE                          | ND       | 0.5       |
| trans-1,2-Dichloroethene      | ND       | 0.5       |
| Vinyl Acetate                 | ND       | 10        |
| 1,1-Dichloroethane            | ND       | 0.5       |
| 2-Butanone                    | ND       | 10        |
| cis-1,2-Dichloroethene        | ND       | 0.5       |
| 2,2-Dichloropropane           | ND       | 0.5       |
| Chloroform                    | ND       | 0.5       |
| Bromochloromethane            | ND       | 0.5       |
| 1,1,1-Trichloroethane         | ND       | 0.5       |
| 1,1-Dichloropropene           | ND       | 0.5       |
| Carbon Tetrachloride          | ND       | 0.5       |
| 1,2-Dichloroethane            | ND       | 0.5       |
| Benzene                       | ND       | 0.5       |
| Trichloroethene               | ND       | 0.5       |
| 1,2-Dichloropropane           | ND       | 0.5       |
| Bromodichloromethane          | ND       | 0.5       |
| Dibromomethane                | ND       | 0.5       |
| 4-Methyl-2-Pentanone          | ND       | 10        |
| cis-1,3-Dichloropropene       | ND       | 0.5       |
| Toluene                       | ND       | 0.5       |
| trans-1,3-Dichloropropene     | ND       | 0.5       |
| 1,1,2-Trichloroethane         | ND       | 0.5       |
| 2-Hexanone                    | ND       | 10        |
| 1,3-Dichloropropane           | ND       | 0.5       |
| Tetrachloroethene             | ND       | 0.5       |
| Dibromochloromethane          | ND       | 0.5       |
| 1,2-Dibromoethane             | ND       | 0.5       |
| Chlorobenzene                 | ND       | 0.5       |
| 1,1,1,2-Tetrachloroethane     | ND       | 0.5       |
| Ethylbenzene                  | ND       | 0.5       |
| m,p-Xylenes                   | ND       | 0.5       |
| o-Xylene                      | ND       | 0.5       |
| Styrene                       | ND       | 0.5       |
| Bromoform                     | ND       | 1.0       |
| Isopropylbenzene              | ND<br>ND | 0.5       |
| 1,1,2,2-Tetrachloroethane     | ND<br>ND | 0.5       |
|                               | ND<br>ND | 0.5       |
| 1,2,3-Trichloropropane        | ЛИГ      | C. J      |



|               |                  | Gasoline | e by GC/MS |              |  |
|---------------|------------------|----------|------------|--------------|--|
| Lab #:        | 196188           |          | Location:  | Hanson Radum |  |
| Client:       | LFR Levine Frick | e        | Prep:      | EPA 5030B    |  |
| Project#:     | 001-09567-02     |          | Analysis:  | EPA 8260B    |  |
| Type:         | BLANK            |          | Diln Fac:  | 1.000        |  |
| Lab ID:       | QC397815         |          | Batch#:    | 127594       |  |
| Matrix:       | Water            |          | Analyzed:  | 07/25/07     |  |
| Units:        | ug/L             |          | _          |              |  |
|               |                  |          |            |              |  |
|               | nalyte           | Result   |            | RL           |  |
| Propylbenzene |                  | ND       |            | 0.5          |  |
| Bromobenzene  |                  | ND       |            | 0.5          |  |
| 1,3,5-Trimeth | hylbenzene       | ND       |            | 0.5          |  |
| 2-Chlorotolue | ene              | ND       |            | 0.5          |  |
| 4-Chlorotolue | ene              | ND       |            | 0.5          |  |
| tert-Butylber | nzene            | ND       |            | 0.5          |  |

| 2-Chlorotoluene             | ND          | 0.5 |  |
|-----------------------------|-------------|-----|--|
| 4-Chlorotoluene             | ND          | 0.5 |  |
| tert-Butylbenzene           | ND          | 0.5 |  |
| 1,2,4-Trimethylbenzene      | ND          | 0.5 |  |
| sec-Butylbenzene            | ND          | 0.5 |  |
| para-Isopropyl Toluene      | ND          | 0.5 |  |
| 1,3-Dichlorobenzene         | ND          | 0.5 |  |
| 1,4-Dichlorobenzene         | ND          | 0.5 |  |
| n-Butylbenzene              | ND          | 0.5 |  |
| 1,2-Dichlorobenzene         | ND          | 0.5 |  |
| 1,2-Dibromo-3-Chloropropane | ND          | 2.0 |  |
| 1,2,4-Trichlorobenzene      | ND          | 0.5 |  |
| Hexachlorobutadiene         | ND          | 0.5 |  |
| Naphthalene                 | ND          | 2.0 |  |
| 1,2,3-Trichlorobenzene      | ND          | 0.5 |  |
|                             |             |     |  |
| Surrogate                   | %REC Limits |     |  |
| Dibromofluoromethane        | 93 80-123   |     |  |
| 1,2-Dichloroethane-d4       | 99 79-134   |     |  |
| Toluene-d8                  | 101 80-120  |     |  |
| Bromofluorobenzene          | 106 80-122  |     |  |



| LFR Levine Fricke    | Project : 001-09567-01  |
|----------------------|-------------------------|
| 1900 Powell Street   | Location : Hanson Radum |
| Emeryville, CA 94608 | Level : II              |

Sample ID TW-5

<u>Lab ID</u> 195957-001

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Signature: Project Manager

Signature:

Operations Manager

Date: <u>07/25/2007</u>

Date: 07/25/2007

NELAP # 01107CA

Page 1 of \_\_\_\_



#### CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 195957 LFR Levine Fricke 001-09567-01 Hanson Radum 07/12/07 07/12/07

This hardcopy data package contains sample and QC results for one water sample, requested for the above referenced project on 07/12/07. The sample was received cold and intact. All data were e-mailed to Katrin Schliewen on 07/23/07.

#### TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

#### Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

#### Semivolatile Organics by GC/MS (EPA 8270C):

No analytical problems were encountered.

#### Metals (EPA 6010B and EPA 7470A):

No analytical problems were encountered.



| Total Extractable Hydrocarbons |                      |      |        |                 |              |  |
|--------------------------------|----------------------|------|--------|-----------------|--------------|--|
| Lab #:                         | 195957               |      |        | Location:       | Hanson Radum |  |
| Client:                        | LFR Levine Fr        | icke |        | Prep:           | EPA 3520C    |  |
| Project#:                      | 001-09567-01         |      |        | Analysis:       | EPA 8015B    |  |
| Field ID:                      | TW-5                 |      |        | Sampled:        | 07/12/07     |  |
| Matrix:                        | Water                |      |        | Received:       | 07/12/07     |  |
| Units:                         | ug/L                 |      |        | Prepared:       | 07/13/07     |  |
| Diln Fac:                      | 1.000                |      |        | Analyzed:       | 07/20/07     |  |
| Batch#:                        | 127244               |      |        |                 |              |  |
| Type:<br>Lab ID:               | SAMPLE<br>195957-001 |      |        | Cleanup Method: | EPA 3630C    |  |
|                                | alyte                |      | Result | RL              |              |  |
| Diesel C10-C2                  |                      | NI   | )      | 50              |              |  |
| Motor Oil C24                  | L-C36                | NI   | )      | 300             |              |  |
| Sur                            | rogate               | %REC | Limits |                 |              |  |
| Hexacosane                     |                      | 113  | 61-134 |                 |              |  |
| Type:<br>Lab ID:               | BLANK<br>QC396220    |      |        | Cleanup Method: | EPA 3630C    |  |
|                                | alyte                |      | Result | RL              |              |  |
| Diesel C10-C2                  |                      | NI   | )      | 50              |              |  |
| Motor Oil C24                  | -C36                 | NI   | )      | 300             |              |  |
| Sur                            | rogate               | %REC | Limits |                 |              |  |
| Hexacosane                     | -                    | 114  | 61-134 |                 |              |  |



| Total Extractable Hydrocarbons |                   |           |              |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                         | 195957            | Location: | Hanson Radum |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3520C    |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |
| Туре:                          | LCS               | Diln Fac: | 1.000        |  |  |
| Lab ID:                        | QC396221          | Batch#:   | 127244       |  |  |
| Matrix:                        | Water             | Prepared: | 07/13/07     |  |  |
| Units:                         | ug/L              | Analyzed: | 07/20/07     |  |  |

Cleanup Method: EPA 3630C

| Analyte        |       | Spiked | Result | %REC | Limits |
|----------------|-------|--------|--------|------|--------|
| Diesel C10-C24 | 2,500 |        | 2,697  | 108  | 58-130 |
|                |       |        |        |      |        |
| Surrogate      | %REC  | Limits |        |      |        |
| Hexacosane     | 129   | 61-134 |        |      |        |



| Total Extractable Hydrocarbons |                   |           |              |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                         | 195957            | Location: | Hanson Radum |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3520C    |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8015B    |  |  |
| Field ID:                      | ZZZZZZZZZ         | Batch#:   | 127244       |  |  |
| MSS Lab ID:                    | 195929-004        | Sampled:  | 07/11/07     |  |  |
| Matrix:                        | Water             | Received: | 07/12/07     |  |  |
| Units:                         | ug/L              | Prepared: | 07/13/07     |  |  |
| Diln Fac:                      | 1.000             | Analyzed: | 07/17/07     |  |  |

| Type:      | MS        |         |        | Lab ID: | QC396222 |      |        |
|------------|-----------|---------|--------|---------|----------|------|--------|
| 1          | Analyte   | MSS Res | ult    | Spiked  | Result   | %REC | Limits |
| Diesel Cl( | 0-C24     | 25      | .03    | 2,500   | 2,571    | 102  | 57-134 |
|            |           |         |        |         |          |      |        |
|            | Surrogate | %REC    | Limits |         |          |      |        |
| Hexacosane | e         | 105     | 61-134 |         |          |      |        |
|            |           |         |        |         |          |      |        |
|            |           |         |        |         |          |      |        |

| Type:          | be: MSD   |       | Lab ID: | QC396223 |      |        |     |     |
|----------------|-----------|-------|---------|----------|------|--------|-----|-----|
| Analyte        |           |       | Spiked  |          | %REC | Limits | RPD | Lim |
| Diesel C10-C24 |           | 2,500 |         | 2,577    | 102  | 57-134 | 0   | 32  |
|                |           |       |         |          |      |        |     |     |
|                | Surrogate | %REC  | Limits  |          |      |        |     |     |
| Hexacosane     |           | 106   | 61-134  |          |      |        |     |     |



|                                                        | Gasoline by GC/MS                            |                                               |                                            |  |  |  |
|--------------------------------------------------------|----------------------------------------------|-----------------------------------------------|--------------------------------------------|--|--|--|
| Lab #:<br>Client:<br>Project#:                         | 195957<br>LFR Levine Fricke<br>STANDARD      | Prep:<br>Analysis:                            | EPA 5030B<br>EPA 8260B                     |  |  |  |
| Field ID:<br>Lab ID:<br>Matrix:<br>Units:<br>Diln Fac: | TW-5<br>195957-001<br>Water<br>ug/L<br>1.000 | Batch#:<br>Sampled:<br>Received:<br>Analyzed: | 127216<br>07/12/07<br>07/12/07<br>07/13/07 |  |  |  |

| Analyte                       | Result | RL  |
|-------------------------------|--------|-----|
| Gasoline C7-C12               | ND     | 50  |
| Freon 12                      | ND     | 1.0 |
| tert-Butyl Alcohol (TBA)      | ND     | 10  |
| Chloromethane                 | ND     | 1.0 |
| Isopropyl Ether (DIPE)        | ND     | 0.5 |
| Vinyl Chloride                | ND     | 0.5 |
| Bromomethane                  | ND     | 1.0 |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 0.5 |
| Chloroethane                  | ND     | 1.0 |
| Methyl tert-Amyl Ether (TAME) | ND     | 0.5 |
| Trichlorofluoromethane        | ND     | 1.0 |
| Acetone                       | ND     | 10  |
| Freon 113                     | ND     | 0.5 |
| 1,1-Dichloroethene            | ND     | 0.5 |
| Methylene Chloride            | ND     | 10  |
| Carbon Disulfide              | ND     | 0.5 |
| MTBE                          | ND     | 0.5 |
| trans-1,2-Dichloroethene      | ND     | 0.5 |
| Vinyl Acetate                 | ND     | 10  |
| 1,1-Dichloroethane            | ND     | 0.5 |
| 2-Butanone                    | ND     | 10  |
| cis-1,2-Dichloroethene        | ND     | 0.5 |
| 2,2-Dichloropropane           | ND     | 0.5 |
| Chloroform                    | ND     | 0.5 |
| Bromochloromethane            | ND     | 0.5 |
| 1,1,1-Trichloroethane         | ND     | 0.5 |
| 1,1-Dichloropropene           | ND     | 0.5 |
| Carbon Tetrachloride          | ND     | 0.5 |
| 1,2-Dichloroethane            | ND     | 0.5 |
| Benzene                       | ND     | 0.5 |
| Trichloroethene               | ND     | 0.5 |
| 1,2-Dichloropropane           | ND     | 0.5 |
| Bromodichloromethane          | ND     | 0.5 |
| Dibromomethane                | ND     | 0.5 |
| 4-Methyl-2-Pentanone          | ND     | 10  |
| cis-1,3-Dichloropropene       | ND     | 0.5 |
| Toluene                       | ND     | 0.5 |
| trans-1,3-Dichloropropene     | ND     | 0.5 |
| 1,1,2-Trichloroethane         | ND     | 0.5 |
| 2-Hexanone                    | ND     | 10  |
| 1,3-Dichloropropane           | ND     | 0.5 |
| Tetrachloroethene             | ND     | 0.5 |
| Dibromochloromethane          | ND     | 0.5 |
| 1,2-Dibromoethane             | ND     | 0.5 |
| Chlorobenzene                 | ND     | 0.5 |
| 1,1,1,2-Tetrachloroethane     | ND     | 0.5 |
| Ethylbenzene                  | ND     | 0.5 |
| m,p-Xylenes                   | ND     | 0.5 |
| o-Xylene                      | ND     | 0.5 |
| Styrene                       | ND     | 0.5 |
| Bromoform                     | ND     | 1.0 |
| Isopropylbenzene              | ND     | 0.5 |
| 1,1,2,2-Tetrachloroethane     | ND     | 0.5 |
| 1,2,3-Trichloropropane        | ND     | 0.5 |
| 1,2,3 IIICHIOLOPIOPAHE        |        | 0.5 |



|                                     | Gasoline               | by GC/MS  |               |
|-------------------------------------|------------------------|-----------|---------------|
| Lab #: 195957                       |                        | Prep:     | EPA 5030B     |
| Client: LFR Levine F:               | ricke                  | Analysis: | EPA 8260B     |
| Project#: STANDARD                  |                        |           |               |
| Field ID: TW-5                      |                        | Batch#:   | 127216        |
| Lab ID: 195957-001                  |                        | Sampled:  | 07/12/07      |
| Matrix: Water                       |                        | Received: | 07/12/07      |
| Units: ug/L                         |                        | Analyzed: | 07/13/07      |
| Diln Fac: 1.000                     |                        |           |               |
| ) ma luta                           | Dogult                 |           | DI            |
| Analyte<br>Propylbenzene            | Result<br>ND           |           | <b>RL</b> 0.5 |
| Bromobenzene                        | ND                     |           | 0.5           |
| 1,3,5-Trimethylbenzene              | ND                     |           | 0.5           |
| 2-Chlorotoluene                     | ND                     |           | 0.5           |
| 4-Chlorotoluene                     | ND                     |           | 0.5           |
| tert-Butylbenzene                   | ND                     |           | 0.5           |
| 1,2,4-Trimethylbenzene              | ND                     |           | 0.5           |
| sec-Butylbenzene                    | ND                     |           | 0.5           |
| para-Isopropyl Toluene              | ND                     |           | 0.5           |
| 1,3-Dichlorobenzene                 | ND                     |           | 0.5           |
| 1,4-Dichlorobenzene                 | ND                     |           | 0.5           |
| n-Butylbenzene                      | ND                     |           | 0.5           |
| 1,2-Dichlorobenzene                 | ND                     |           | 0.5           |
| 1,2-Dibromo-3-Chloropropane         | ND                     |           | 2.0           |
| 1,2,4-Trichlorobenzene              | ND                     |           | 0.5           |
| Hexachlorobutadiene                 | ND                     |           | 0.5           |
| Naphthalene                         | ND                     |           | 2.0           |
| 1,2,3-Trichlorobenzene              | ND                     |           | 0.5           |
|                                     |                        |           |               |
| Surrogate                           | %REC Limits            |           |               |
| Dibromofluoromethane                | 95 80-123              |           |               |
| 1,2-Dichloroethane-d4<br>Toluene-d8 | 96 79-134<br>98 80-120 |           |               |
| Bromofluorobenzene                  | 98 80-120<br>99 80-122 |           |               |
| BLOWOLTHOLODEUZEUE                  | <u>99</u> 80-122       |           |               |



| Gasoline by GC/MS                     |                                         |                                   |                             |  |  |
|---------------------------------------|-----------------------------------------|-----------------------------------|-----------------------------|--|--|
| Lab #:<br>Client:<br>Project#:        | 195957<br>LFR Levine Fricke<br>STANDARD | Prep:<br>Analysis:                | EPA 5030B<br>EPA 8260B      |  |  |
| Type:<br>Lab ID:<br>Matrix:<br>Units: | BLANK<br>QC396077<br>Water<br>ug/L      | Diln Fac:<br>Batch#:<br>Analyzed: | 1.000<br>127216<br>07/13/07 |  |  |

| Analyte                       | Result | RL    |
|-------------------------------|--------|-------|
| Gasoline C7-C12               | ND     | 50    |
| Freon 12                      | ND     | 1.0   |
| tert-Butyl Alcohol (TBA)      | ND     | 10    |
| Chloromethane                 | ND     | 1.0   |
| Isopropyl Ether (DIPE)        | ND     | 0.5   |
| Vinyl Chloride                | ND     | 0.5   |
| Bromomethane                  | ND     | 1.0   |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 0.5   |
| Chloroethane                  | ND     | 1.0   |
| Methyl tert-Amyl Ether (TAME) | ND     | 0.5   |
| Trichlorofluoromethane        | ND     | 1.0   |
| Acetone                       | ND     | 10    |
| Freon 113                     | ND     | 0.5   |
| 1,1-Dichloroethene            | ND     | 0.5   |
| Methylene Chloride            | ND     | 10    |
| Carbon Disulfide              | ND     | 0.5   |
| MTBE                          | ND     | 0.5   |
| trans-1,2-Dichloroethene      | ND     | 0.5   |
| Vinyl Acetate                 | ND     | 10    |
| 1,1-Dichloroethane            | ND     | 0.5   |
| 2-Butanone                    | ND     | 10    |
| cis-1,2-Dichloroethene        | ND     | 0.5   |
| 2,2-Dichloropropane           | ND     | 0.5   |
| Chloroform                    | ND     | 0.5   |
| Bromochloromethane            | ND     | 0.5   |
| 1,1,1-Trichloroethane         | ND     | 0.5   |
| 1,1-Dichloropropene           | ND     | 0.5   |
| Carbon Tetrachloride          | ND     | 0.5   |
| 1,2-Dichloroethane            | ND     | 0.5   |
| Benzene                       | ND     | 0.5   |
| Trichloroethene               | ND     | 0.5   |
| 1,2-Dichloropropane           | ND     | 0.5   |
| Bromodichloromethane          | ND     | 0.5   |
| Dibromomethane                | ND     | 0.5   |
| 4-Methyl-2-Pentanone          | ND     | 10    |
| cis-1,3-Dichloropropene       | ND     | 0.5   |
| Toluene                       | ND     | 0.5   |
| trans-1,3-Dichloropropene     | ND     | 0.5   |
| 1,1,2-Trichloroethane         | ND     | 0.5   |
| 2-Hexanone                    | ND     | 10    |
| 1,3-Dichloropropane           | ND     | 0.5   |
| Tetrachloroethene             | ND     | 0.5   |
| Dibromochloromethane          | ND     | 0.5   |
| 1,2-Dibromoethane             | ND     | 0.5   |
| Chlorobenzene                 | ND     | 0.5   |
| 1,1,1,2-Tetrachloroethane     | ND     | 0.5   |
| Ethylbenzene                  | ND     | 0.5   |
| m,p-Xylenes                   | ND     | 0.5   |
| o-Xylene                      | ND     | 0.5   |
| Styrene                       | ND     | 0.5   |
| Bromoform                     | ND     | 1.0   |
| Isopropylbenzene              | ND     | 0.5   |
| 1,1,2,2-Tetrachloroethane     | ND     | 0.5   |
| 1,2,3-Trichloropropane        | ND     | 0.5   |
| -,-, -, - IIIOIIIOIOPIOPUIC   | 1,2    | · · · |



|                                                       | Gasolin     | e by GC/MS |            |  |
|-------------------------------------------------------|-------------|------------|------------|--|
| Lab #: 195957                                         |             | Prep:      | EPA 5030B  |  |
| Client: LFR Levine H                                  | ricke       | Analysis:  | EPA 8260B  |  |
| Project#: STANDARD                                    |             |            |            |  |
| Type: BLANK                                           |             | Diln Fac:  | 1.000      |  |
| Lab ID: QC396077                                      |             | Batch#:    | 127216     |  |
| Matrix: Water                                         |             | Analyzed:  | 07/13/07   |  |
| Units: ug/L                                           |             |            |            |  |
|                                                       |             |            |            |  |
| Analyte                                               | Result      |            | RL         |  |
| Propylbenzene                                         | ND          |            | 0.5        |  |
| Bromobenzene                                          | ND          |            | 0.5        |  |
| 1,3,5-Trimethylbenzene                                | ND          |            | 0.5        |  |
| 2-Chlorotoluene                                       | ND          |            | 0.5        |  |
| 4-Chlorotoluene                                       | ND          |            | 0.5        |  |
| tert-Butylbenzene                                     | ND          |            | 0.5        |  |
| 1,2,4-Trimethylbenzene                                | ND          |            | 0.5        |  |
| sec-Butylbenzene                                      | ND          |            | 0.5        |  |
| para-Isopropyl Toluene                                | ND          |            | 0.5        |  |
| 1,3-Dichlorobenzene                                   | ND          |            | 0.5        |  |
| 1,4-Dichlorobenzene                                   | ND          |            | 0.5        |  |
| n-Butylbenzene                                        | ND          |            | 0.5<br>0.5 |  |
| 1,2-Dichlorobenzene                                   | ND          |            | 2.0        |  |
| 1,2-Dibromo-3-Chloropropane<br>1,2,4-Trichlorobenzene | ND<br>ND    |            | 0.5        |  |
| Hexachlorobutadiene                                   | ND<br>ND    |            | 0.5        |  |
| Naphthalene                                           | ND<br>ND    |            | 2.0        |  |
| 1,2,3-Trichlorobenzene                                | ND          |            | 0.5        |  |
| 1,2,3-1110100001120112                                | ND          |            | 0.5        |  |
| Surrogate                                             | %REC Limits |            |            |  |
| Dibromofluoromethane                                  | 94 80-123   |            |            |  |
| 1,2-Dichloroethane-d4                                 | 95 79-134   |            |            |  |
| Toluene-d8                                            | 98 80-120   |            |            |  |
| Bromofluorobenzene                                    | 100 80-122  |            |            |  |



| Gasoline by GC/MS              |                                         |                      |                        |  |  |
|--------------------------------|-----------------------------------------|----------------------|------------------------|--|--|
| Lab #:<br>Client:<br>Project#: | 195957<br>LFR Levine Fricke<br>STANDARD | Prep:<br>Analysis:   | EPA 5030B<br>EPA 8260B |  |  |
| Matrix:<br>Units:<br>Diln Fac: | Water<br>ug/L<br>1.000                  | Batch#:<br>Analyzed: | 127216<br>07/13/07     |  |  |

| Type: BS                      |             | Lab ID: QC3 | 96078 |        |
|-------------------------------|-------------|-------------|-------|--------|
| Analyte                       | Spiked      | Result      | %REC  | Limits |
| tert-Butyl Alcohol (TBA)      | 150.0       | 157.5       | 105   | 68-132 |
| Isopropyl Ether (DIPE)        | 30.00       | 25.77       | 86    | 65-120 |
| Ethyl tert-Butyl Ether (ETBE) | 30.00       | 29.99       | 100   | 75-124 |
| Methyl tert-Amyl Ether (TAME) | 30.00       | 32.54       | 108   | 77-120 |
| 1,1-Dichloroethene            | 30.00       | 32.29       | 108   | 80-132 |
| Benzene                       | 30.00       | 30.15       | 100   | 80-120 |
| Trichloroethene               | 30.00       | 28.88       | 96    | 80-120 |
| Toluene                       | 30.00       | 31.17       | 104   | 80-120 |
| Chlorobenzene                 | 30.00       | 30.69       | 102   | 80-120 |
| Surrogate                     | %REC Limits |             |       |        |
| Dibromofluoromethane          | 97 80-123   |             |       |        |
| 1 2-Dichloroethane-d4         | 95 79-134   |             |       |        |

| Burrogace             | -ortic | DIMICS |  |
|-----------------------|--------|--------|--|
| Dibromofluoromethane  | 97     | 80-123 |  |
| 1,2-Dichloroethane-d4 | 95     | 79-134 |  |
| Toluene-d8            | 97     | 80-120 |  |
| Bromofluorobenzene    | 97     | 80-122 |  |
|                       |        |        |  |

| Type: BSD                     |      |        | Lab ID: | QC39   | 6079 |        |     |     |
|-------------------------------|------|--------|---------|--------|------|--------|-----|-----|
| Analyte                       |      | Spiked |         | Result | %REC | Limits | RPD | Lim |
| tert-Butyl Alcohol (TBA)      |      | 150.0  |         | 167.4  | 112  | 68-132 | 6   | 20  |
| Isopropyl Ether (DIPE)        |      | 30.00  |         | 27.39  | 91   | 65-120 | 6   | 20  |
| Ethyl tert-Butyl Ether (ETBE) |      | 30.00  |         | 30.87  | 103  | 75-124 | 3   | 20  |
| Methyl tert-Amyl Ether (TAME) |      | 30.00  |         | 33.64  | 112  | 77-120 | 3   | 20  |
| 1,1-Dichloroethene            |      | 30.00  |         | 34.57  | 115  | 80-132 | 7   | 20  |
| Benzene                       |      | 30.00  |         | 31.40  | 105  | 80-120 | 4   | 20  |
| Trichloroethene               |      | 30.00  |         | 29.60  | 99   | 80-120 | 2   | 20  |
| Toluene                       |      | 30.00  |         | 32.85  | 110  | 80-120 | 5   | 20  |
| Chlorobenzene                 |      | 30.00  |         | 31.73  | 106  | 80-120 | 3   | 20  |
|                               |      |        |         |        |      |        |     |     |
| Surrogate                     | %REC | Limits |         |        |      |        |     |     |
| Dibromofluoromethane          | 96   | 80-123 |         |        |      |        |     |     |
| 1,2-Dichloroethane-d4         | 96   | 79-134 |         |        |      |        |     |     |
| Toluene-d8                    | 100  | 80-120 |         |        |      |        |     |     |
| Bromofluorobenzene            | 96   | 80-122 |         |        |      |        |     |     |



| Gasoline by GC/MS |                   |           |           |  |  |
|-------------------|-------------------|-----------|-----------|--|--|
| Lab #:            | 195957            | Prep:     | EPA 5030B |  |  |
| Client:           | LFR Levine Fricke | Analysis: | EPA 8260B |  |  |
| Project#:         | STANDARD          |           |           |  |  |
| Matrix:           | Water             | Batch#:   | 127216    |  |  |
| Units:            | ug/L              | Analyzed: | 07/13/07  |  |  |
| Diln Fac:         | 1.000             |           |           |  |  |

Type:

BS

Bromofluorobenzene

Lab ID:

QC396080

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 1,500  | 1,352  | 90   | 70-130 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 93   | 80-123 |
| 1,2-Dichloroethane-d4 | 95   | 79-134 |
| Toluene-d8            | 99   | 80-120 |
| Bromofluorobenzene    | 98   | 80-122 |

| Type: BSD            |       |        | Lab ID: | (      | QC396081 |        |     |     |
|----------------------|-------|--------|---------|--------|----------|--------|-----|-----|
| Analyte              |       | Spiked |         | Result | %REC     | Limits | RPD | Lim |
| Gasoline C7-C12      |       | 1,500  |         | 1,320  | 88       | 70-130 | 2   | 20  |
| ann an the           | %REC  | Limits |         |        |          |        |     |     |
| Surrogate            |       |        |         |        |          |        |     |     |
|                      | -SKEC |        |         |        |          |        |     |     |
| Dibromofluoromethane | 96    | 80-123 |         |        |          |        |     |     |
|                      |       |        |         |        |          |        |     |     |

80-122

94



|                   | S              | emivolatile | Organics by    | GC/MS      |
|-------------------|----------------|-------------|----------------|------------|
| Lab #:            | 195957         |             | Prep:          | EPA 3520C  |
| Client:           | LFR Levine Fri | lcke        | Analysis:      | EPA 8270C  |
| Project#:         | STANDARD       |             | <b>Z</b> ·- ·- |            |
| Field ID:         | TW-5           |             | Batch#:        | 127305     |
| Lab ID:           | 195957-001     |             | Sampled:       | 07/12/07   |
| Matrix:           | Water          |             | Received:      | 07/12/07   |
| Units:            | ug/L           |             | Prepared:      | 07/16/07   |
| Diln Fac:         | 1.000          |             | Analyzed:      | 07/17/07   |
| Dim Fac.          | 1.000          |             | Anaryzeu       | 07717707   |
| Analy             | te             | Result      |                | RL         |
| N-Nitrosodimethy  |                | ND          |                | 9.4        |
| Phenol            |                | ND          |                | 9.4        |
| bis(2-Chloroethy) | 1)ether        | ND          |                | 9.4        |
| 2-Chlorophenol    |                | ND          |                | 9.4        |
| 1,3-Dichlorobenz  | ene            | ND          |                | 9.4        |
| 1,4-Dichlorobenz  |                | ND          |                | 9.4        |
| Benzyl alcohol    |                | ND          |                | 9.4        |
| 1,2-Dichlorobenz  | ene            | ND          |                | 9.4        |
| 2-Methylphenol    | C11C           | ND          |                | 9.4        |
| bis(2-Chloroisop: | ropyl) ether   | ND          |                | 9.4        |
| 4-Methylphenol    | TODAT' COUCT   | ND          |                | 9.4        |
| N-Nitroso-di-n-p  | ronulamino     | ND          |                | 9.4        |
| Hexachloroethane  |                | ND<br>ND    |                | 9.4        |
| Nitrobenzene      |                | ND<br>ND    |                | 9.4<br>9.4 |
|                   |                |             |                | 9.4        |
| Isophorone        |                | ND          |                | 19         |
| 2-Nitrophenol     | - ]            | ND          |                | 9.4        |
| 2,4-Dimethylphene | 01             | ND          |                |            |
| Benzoic acid      | ) I.I.         | ND          |                | 47         |
| bis(2-Chloroetho  |                | ND          |                | 9.4        |
| 2,4-Dichlorophene |                | ND          |                | 9.4        |
| 1,2,4-Trichlorob  | enzene         | ND          |                | 9.4        |
| Naphthalene       |                | ND          |                | 9.4        |
| 4-Chloroaniline   |                | ND          |                | 9.4        |
| Hexachlorobutadi  |                | ND          |                | 9.4        |
| 4-Chloro-3-methy  |                | ND          |                | 9.4        |
| 2-Methylnaphthal  |                | ND          |                | 9.4        |
| Hexachlorocyclop  |                | ND          |                | 19         |
| 2,4,6-Trichlorop  |                | ND          |                | 9.4        |
| 2,4,5-Trichlorop  |                | ND          |                | 9.4        |
| 2-Chloronaphthal  | ene            | ND          |                | 9.4        |
| 2-Nitroaniline    |                | ND          |                | 19         |
| Dimethylphthalat  | e              | ND          |                | 9.4        |
| Acenaphthylene    |                | ND          |                | 9.4        |
| 2,6-Dinitrotolue  | ne             | ND          |                | 9.4        |
| 3-Nitroaniline    |                | ND          |                | 19         |
| Acenaphthene      |                | ND          |                | 9.4        |
| 2,4-Dinitropheno  | 1              | ND          |                | 19         |
| 4-Nitrophenol     |                | ND          |                | 19         |
| Dibenzofuran      |                | ND          |                | 9.4        |
| 2,4-Dinitrotolue  |                | ND          |                | 9.4        |
| Diethylphthalate  |                | ND          |                | 9.4        |
| Fluorene          |                | ND          |                | 9.4        |
| 4-Chlorophenyl-pl | henylether     | ND          |                | 9.4        |
| 4-Nitroaniline    | -              | ND          |                | 19         |
| 4,6-Dinitro-2-me  | thylphenol     | ND          |                | 19         |
| N-Nitrosodipheny  | lamine         | ND          |                | 9.4        |
| Azobenzene        |                | ND          |                | 9.4        |
| 4-Bromophenyl-ph  | envlether      | ND          |                | 9.4        |
| Hexachlorobenzen  |                | ND          |                | 9.4        |
| Pentachloropheno  |                | ND          |                | 19         |
| Phenanthrene      |                | ND          |                | 9.4        |
| Anthracene        |                | ND          |                | 9.4        |
| Di-n-butylphthala | ate            | ND          |                | 9.4        |
| Fluoranthene      |                | ND          |                | 9.4        |
|                   |                |             |                | - • •      |



|                                     |              | Semivolati | le Organics by       | GC/MS     |  |
|-------------------------------------|--------------|------------|----------------------|-----------|--|
| Lab #:                              | 195957       |            | Prep:                | EPA 3520C |  |
| Client:                             | LFR Levine F | ricke      | Analysis:            | EPA 8270C |  |
| Project#:                           | STANDARD     |            |                      |           |  |
| Field ID:                           | TW-5         |            | Batch#:              | 127305    |  |
| Lab ID:                             | 195957-001   |            | Sampled              | 07/12/07  |  |
| Matrix:                             | Water        |            | Received:            | 07/12/07  |  |
| Units:                              | ug/L         |            | Prepared             | 07/16/07  |  |
| Diln Fac:                           | 1.000        |            | Analyzed:            | 07/17/07  |  |
| Analy                               | 7+0          | Resu       | 11+                  | RL        |  |
| Pyrene                              | 'Le          | ND         |                      | 9.4       |  |
| Butylbenzylphtha                    | lato         | ND         |                      | 9.4       |  |
| 3,3'-Dichloroben                    |              | ND         |                      | 19        |  |
| Benzo(a)anthrace                    |              | ND         |                      | 9.4       |  |
| Chrysene                            |              | ND         |                      | 9.4       |  |
| bis(2-Ethylhexyl                    | )phthalate   | ND         |                      | 9.4       |  |
| Di-n-octylphthal                    | ate          | ND         |                      | 9.4       |  |
| Benzo(b)fluorant                    |              | ND         |                      | 9.4       |  |
| Benzo(k)fluorant                    |              | ND         |                      | 9.4       |  |
| Benzo(a)pyrene                      |              | ND         |                      | 9.4       |  |
| Indeno $(1, 2, 3-cd)$               | pyrene       | ND         |                      | 9.4       |  |
| Dibenz(a,h)anthr                    | racene       | ND         |                      | 9.4       |  |
| Benzo(g,h,i)pery                    | /lene        | ND         |                      | 9.4       |  |
|                                     |              | <u> </u>   |                      |           |  |
| Surrog                              | jate         |            | nits                 |           |  |
| 2-Fluorophenol<br>Phenol-d5         |              |            | -120<br>-120         |           |  |
|                                     | onol         |            | -120                 |           |  |
| 2,4,6-Tribromoph<br>Nitrobenzene-d5 | TellOT       |            | -120                 |           |  |
|                                     |              |            |                      |           |  |
| Terphenyl -d14                      | -            |            |                      |           |  |
| 2-Fluorobiphenyl<br>Terphenyl-dl4   | -            | 77 50-     | -120<br>-120<br>-120 |           |  |



|                                  | Semivolatile | Organics by G | C/MS      |
|----------------------------------|--------------|---------------|-----------|
| Lab #: 195957                    |              | Prep:         | EPA 3520C |
| Client: LFR Levine F:            | ricke        | Analysis:     | EPA 8270C |
| Project#: STANDARD               |              |               |           |
| Type: BLANK                      |              | Diln Fac:     | 1.000     |
| Lab ID: QC396535                 |              | Batch#:       | 127305    |
| Matrix: Water                    |              | Prepared:     | 07/16/07  |
| Units: uq/L                      |              | Analyzed:     | 07/17/07  |
| UIILS: ug/L                      |              | Analyzeu      | 07/17/07  |
| Analyte                          | Result       | RI            | _         |
|                                  | ND           |               | 0         |
| N-Nitrosodimethylamine<br>Phenol |              |               | 0         |
|                                  | ND           | -             | 0         |
| bis(2-Chloroethyl)ether          | ND           |               |           |
| 2-Chlorophenol                   | ND           |               | .0        |
| 1,3-Dichlorobenzene              | ND           |               | .0        |
| 1,4-Dichlorobenzene              | ND           |               | .0        |
| Benzyl alcohol                   | ND           |               | _0        |
| 1,2-Dichlorobenzene              | ND           |               | _0        |
| 2-Methylphenol                   | ND           |               | _0        |
| bis(2-Chloroisopropyl) ether     | ND           |               | _0        |
| 4-Methylphenol                   | ND           |               | _0        |
| N-Nitroso-di-n-propylamine       | ND           |               | _0        |
| Hexachloroethane                 | ND           |               | .0        |
| Nitrobenzene                     | ND           |               | 0         |
| Isophorone                       | ND           |               | 0         |
| 2-Nitrophenol                    | ND           |               | 20        |
| 2,4-Dimethylphenol               | ND           |               | 0         |
| Benzoic acid                     | ND           |               | 50        |
| bis(2-Chloroethoxy)methane       | ND           |               | 0         |
|                                  |              |               |           |
| 2,4-Dichlorophenol               | ND           |               | .0        |
| 1,2,4-Trichlorobenzene           | ND           |               | .0        |
| Naphthalene                      | ND           |               | .0        |
| 4-Chloroaniline                  | ND           |               | .0        |
| Hexachlorobutadiene              | ND           |               | .0        |
| 4-Chloro-3-methylphenol          | ND           |               | _0        |
| 2-Methylnaphthalene              | ND           |               | _0        |
| Hexachlorocyclopentadiene        | ND           |               | 20        |
| 2,4,6-Trichlorophenol            | ND           |               | .0        |
| 2,4,5-Trichlorophenol            | ND           | 1             | _0        |
| 2-Chloronaphthalene              | ND           | 1             | _0        |
| 2-Nitroaniline                   | ND           | 2             | 20        |
| Dimethylphthalate                | ND           |               | _0        |
| Acenaphthylene                   | ND           |               | .0        |
| 2,6-Dinitrotoluene               | ND           |               | 0         |
| 3-Nitroaniline                   | ND           |               | 20        |
| Acenaphthene                     | ND           |               | 0         |
| 2,4-Dinitrophenol                | ND           |               | 20        |
| 4-Nitrophenol                    | ND           |               | 20        |
| Dibenzofuran                     | ND           |               | 0         |
| 2,4-Dinitrotoluene               | ND<br>ND     |               | 0         |
|                                  |              |               |           |
| Diethylphthalate                 | ND           |               | -0        |
| Fluorene                         | ND           |               | .0        |
| 4-Chlorophenyl-phenylether       | ND           |               | _0        |
| 4-Nitroaniline                   | ND           |               | 20        |
| 4,6-Dinitro-2-methylphenol       | ND           |               | 20        |
| N-Nitrosodiphenylamine           | ND           |               | .0        |
| Azobenzene                       | ND           |               | .0        |
| 4-Bromophenyl-phenylether        | ND           |               | _0        |
| Hexachlorobenzene                | ND           |               | .0        |
| Pentachlorophenol                | ND           |               | 20        |
| Phenanthrene                     | ND           |               | _0        |
| Anthracene                       | ND           |               | 0         |
| Di-n-butylphthalate              | ND           |               | 0         |
| Fluoranthene                     | ND           |               | 0         |
|                                  |              | -             | -         |

ND= Not Detected RL= Reporting Limit

Page 1 of 2



|                                                                                                                                                                                                                                         |                                                                                       | Semivo                                                   | latile C                                                           | rganics by                                     | GC/№                                                                 |                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|
| Lab #:<br>Client:<br>Project#:                                                                                                                                                                                                          | 195957<br>LFR Levine B<br>STANDARD                                                    | Fricke                                                   |                                                                    | Prep:<br>Analysis:                             |                                                                      | EPA 3520C<br>EPA 8270C                  |
| Type:<br>Lab ID:<br>Matrix:<br>Units:                                                                                                                                                                                                   | BLANK<br>QC396535<br>Water<br>ug/L                                                    |                                                          |                                                                    | Diln Fac:<br>Batch#:<br>Prepared:<br>Analyzed: |                                                                      | 1.000<br>127305<br>07/16/07<br>07/17/07 |
| Anal                                                                                                                                                                                                                                    | vte                                                                                   |                                                          | Result                                                             |                                                | RL                                                                   |                                         |
| Pyrene<br>Butylbenzylphtha<br>3,3'-Dichlorober<br>Benzo(a)anthrace<br>Chrysene<br>bis(2-Ethylhexy<br>Di-n-octylphtha<br>Benzo(b)fluorant<br>Benzo(k)fluorant<br>Benzo(a)pyrene<br>Indeno(1,2,3-cd<br>Dibenz(a,h)anth<br>Benzo(g,h,i)per | alate<br>nzidine<br>ene<br>l)phthalate<br>late<br>thene<br>thene<br>)pyrene<br>racene | NI<br>NI<br>NI<br>NI<br>NI<br>NI<br>NI<br>NI<br>NI<br>NI |                                                                    |                                                | 10<br>10<br>20<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |                                         |
| Surrog<br>2-Fluorophenol<br>Phenol-d5<br>2,4,6-Tribromopl<br>Nitrobenzene-d5<br>2-Fluorobipheny<br>Terphenyl-d14                                                                                                                        | nenol                                                                                 | <b>%REC</b><br>59<br>75<br>95<br>73<br>74<br>75          | Limits<br>40-120<br>38-120<br>40-120<br>48-120<br>50-120<br>23-120 |                                                |                                                                      |                                         |



|                                | Semivolati                              | lle Organics by G    | C/MS                   |  |
|--------------------------------|-----------------------------------------|----------------------|------------------------|--|
| Lab #:<br>Client:<br>Project#: | 195957<br>LFR Levine Fricke<br>STANDARD | Prep:<br>Analysis:   | EPA 3520C<br>EPA 8270C |  |
| Matrix:<br>Units:<br>Diln Fac: | Water<br>ug/L<br>1.000                  | Batch#:<br>Prepared: | 127305<br>07/16/07     |  |

|                  | BS<br>QC396536 |      |        | Analyzed: | 07/    | 17/07 |        |  |
|------------------|----------------|------|--------|-----------|--------|-------|--------|--|
| Analy            | te             |      | Spiked |           | Result | %REC  | Limits |  |
| Phenol           |                |      | 80.00  |           | 58.00  | 72    | 47-120 |  |
| 2-Chlorophenol   |                |      | 80.00  |           | 61.38  | 77    | 52-120 |  |
| 1,4-Dichlorobenz |                |      | 40.00  |           | 28.95  | 72    | 41-120 |  |
| N-Nitroso-di-n-p | ropylamine     |      | 40.00  |           | 27.46  | 69    | 46-120 |  |
| 1,2,4-Trichlorok |                |      | 40.00  |           | 30.96  | 77    | 45-120 |  |
| 4-Chloro-3-methy |                |      | 80.00  |           | 65.23  | 82    | 52-120 |  |
| Acenaphthene     | -              |      | 40.00  |           | 31.16  | 78    | 52-120 |  |
| 4-Nitrophenol    |                |      | 80.00  |           | 62.86  | 79    | 46-120 |  |
| 2,4-Dinitrotolue | ne             |      | 40.00  |           | 36.06  | 90    | 49-120 |  |
| Pentachlorophenc |                |      | 80.00  |           | 73.13  | 91    | 39-120 |  |
| Pyrene           |                |      | 40.00  |           | 32.86  | 82    | 48-120 |  |
|                  |                |      |        |           |        |       |        |  |
| Surrog           | ate            | %REC | Limits |           |        |       |        |  |
| 2-Fluorophenol   |                | 74   | 40-120 |           |        |       |        |  |
| Phenol-d5        |                | 76   | 38-120 |           |        |       |        |  |
| 2,4,6-Tribromoph | lenol          | 108  | 40-120 |           |        |       |        |  |
| Nitrobenzene-d5  |                | 76   | 48-120 |           |        |       |        |  |
| 2-Fluorobiphenyl |                | 76   | 50-120 |           |        |       |        |  |
| Terphenyl-d14    |                | 82   | 23-120 |           |        |       |        |  |

Type:

Terphenyl-d14

BSD

Lab ID: QC396537 Analyte Spiked Result %REC Limits RPD Lim 50.40 Phenol 80.00 47-120 14 28 63 52-120 27 2-Chlorophenol 80.00 54.46 68 12 1,4-Dichlorobenzene 40.00 26.04 65 41-120 11 32 23.33 N-Nitroso-di-n-propylamine 40.00 58 46-120 28 16 1,2,4-Trichlorobenzene 40.00 28.03 70 45-120 10 29 4-Chloro-3-methylphenol 52-120 26 56.51 71 14 80.00 70 52-120 Acenaphthene 40.00 27.83 11 27 52.21 4-Nitrophenol 80.00 65 46-120 19 31 29 2,4-Dinitrotoluene 32.43 49-120 11 40.00 81 Pentachlorophenol 80.00 67.20 84 39-120 8 28 P<u>yrene</u> <u>31.</u>79 79 40.00 48-120 30 3 Surrogate %REC Limits 2-Fluorophenol 40-120 65 Phenol-d5 67 38-120 40-120 2,4,6-Tribromophenol 102 Nitrobenzene-d5 67 48-120 2-Fluorobiphenyl 71 50-120

80

23-120

Analyzed:

07/18/07



|           | Dissolved Cal     | ifornia Title 26 | 5 Metals |  |
|-----------|-------------------|------------------|----------|--|
| Lab #:    | 195957            | Project#:        | STANDARD |  |
| Client:   | LFR Levine Fricke |                  |          |  |
| Field ID: | TW-5              | Diln Fac:        | 1.000    |  |
| Lab ID:   | 195957-001        | Sampled:         | 07/12/07 |  |
| Matrix:   | Filtrate          | Received:        | 07/12/07 |  |
| Units:    | ug/L              |                  |          |  |
|           |                   |                  |          |  |

| Analyte    | Result | RL   | Batch# | Prepared | Analyzed |      | Prep  | Analysis  |
|------------|--------|------|--------|----------|----------|------|-------|-----------|
| Antimony   | ND     | 10   | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA 6010B |
| Arsenic    | ND     | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA 6010B |
| Barium     | 280    | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA 6010B |
| Beryllium  | ND     | 2.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA 6010B |
| Cadmium    | ND     | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA 6010B |
| Chromium   | ND     | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA 6010B |
| Cobalt     | ND     | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA 6010B |
| Copper     | ND     | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA 6010B |
| Lead       | ND     | 3.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA 6010B |
| Mercury    | ND     | 0.20 | 127271 | 07/16/07 | 07/16/07 | METI | HOD   | EPA 7470A |
| Molybdenum | ND     | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA 6010B |
| Nickel     | ND     | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA 6010B |
| Selenium   | ND     | 10   | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA 6010B |
| Silver     | ND     | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA 6010B |
| Thallium   | ND     | 10   | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA 6010B |
| Vanadium   | ND     | 5.0  | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA 6010B |
| Zinc       | 30     | 20   | 127328 | 07/17/07 | 07/17/07 | EPA  | 3010A | EPA 6010B |



| Lab #:    | 195957            | Prep:     | METHOD    |  |
|-----------|-------------------|-----------|-----------|--|
| Client:   | LFR Levine Fricke | Analysis: | EPA 7470A |  |
| Project#: | STANDARD          |           |           |  |
| Analyte:  | Mercury           | Diln Fac: | 1.000     |  |
| Type:     | BLANK             | Batch#:   | 127271    |  |
| Lab ID:   | QC396345          | Prepared: | 07/16/07  |  |
| Matrix:   | Water             | Analyzed: | 07/16/07  |  |
| Units:    | ug/L              |           |           |  |

| Result | RL   |  |
|--------|------|--|
| ND     | 0.20 |  |



| Dissolved California Title 26 Metals |                   |           |           |  |  |
|--------------------------------------|-------------------|-----------|-----------|--|--|
| Lab #:                               | 195957            | Prep:     | METHOD    |  |  |
| Client:                              | LFR Levine Fricke | Analysis: | EPA 7470A |  |  |
| Project#:                            | STANDARD          |           |           |  |  |
| Analyte:                             | Mercury           | Batch#:   | 127271    |  |  |
| Matrix:                              | Water             | Prepared: | 07/16/07  |  |  |
| Units:                               | ug/L              | Analyzed: | 07/16/07  |  |  |
| Diln Fac:                            | 1.000             |           |           |  |  |

| Туре | Lab ID   | Spiked | Result | %REC | Limits | RPD | Lim |
|------|----------|--------|--------|------|--------|-----|-----|
| BS   | QC396346 | 5.000  | 5.020  | 100  | 80-120 |     |     |
| BSD  | QC396347 | 5.000  | 5.100  | 102  | 80-120 | 2   | 20  |



| Tab #•      | 195957            | Drager !  | MERILOD   |
|-------------|-------------------|-----------|-----------|
| Lab #:      |                   | Prep:     | METHOD    |
| Client:     | LFR Levine Fricke | Analysis: | EPA 7470A |
| Project#:   | STANDARD          |           |           |
| Analyte:    | Mercury           | Batch#:   | 127271    |
| Field ID:   | ZZZZZZZZZ         | Sampled:  | 07/13/07  |
| MSS Lab ID: | 195975-001        | Received: | 07/13/07  |
| Matrix:     | Water             | Prepared: | 07/16/07  |
| Units:      | ug/L              | Analyzed: | 07/16/07  |
| Diln Fac:   | 1.000             |           |           |

| Type | Lab ID   | MSS Result | Spiked | Result | %REC | Limits | RPD | Lim |
|------|----------|------------|--------|--------|------|--------|-----|-----|
| MS   | QC396349 | <0.02083   | 5.000  | 5.380  | 108  | 80-123 |     |     |
| MSD  | QC396350 |            | 5.000  | 5.500  | 110  | 80-123 | 2   | 20  |



| Dissolved California Title 26 Metals |                   |           |           |  |  |
|--------------------------------------|-------------------|-----------|-----------|--|--|
| Lab #:                               | 195957            | Prep:     | EPA 3010A |  |  |
| Client:                              | LFR Levine Fricke | Analysis: | EPA 6010B |  |  |
| Project#:                            | STANDARD          |           |           |  |  |
| Type:                                | BLANK             | Diln Fac: | 1.000     |  |  |
| Lab ID:                              | QC396613          | Batch#:   | 127328    |  |  |
| Matrix:                              | Water             | Prepared: | 07/17/07  |  |  |
| Units:                               | ug/L              | Analyzed: | 07/17/07  |  |  |

| Analyte    | Result | RL  |  |
|------------|--------|-----|--|
| Antimony   | ND     | 10  |  |
| Arsenic    | ND     | 5.0 |  |
| Barium     | ND     | 5.0 |  |
| Beryllium  | ND     | 2.0 |  |
| Cadmium    | ND     | 5.0 |  |
| Chromium   | ND     | 5.0 |  |
| Cobalt     | ND     | 5.0 |  |
| Copper     | ND     | 5.0 |  |
| Lead       | ND     | 3.0 |  |
| Molybdenum | ND     | 5.0 |  |
| Nickel     | ND     | 5.0 |  |
| Selenium   | ND     | 10  |  |
| Silver     | ND     | 5.0 |  |
| Thallium   | ND     | 10  |  |
| Vanadium   | ND     | 5.0 |  |
| Zinc       | ND     | 20  |  |



| Dissolved California Title 26 Metals |                                         |                                   |                                |  |  |
|--------------------------------------|-----------------------------------------|-----------------------------------|--------------------------------|--|--|
| Lab #:<br>Client:<br>Project#:       | 195957<br>LFR Levine Fricke<br>STANDARD | Prep:<br>Analysis:                | EPA 3010A<br>EPA 6010B         |  |  |
| Matrix:<br>Units:<br>Diln Fac:       | Water<br>ug/L<br>1.000                  | Batch#:<br>Prepared:<br>Analyzed: | 127328<br>07/17/07<br>07/17/07 |  |  |

| Type: BS   | Lab    | ID: QC39 | 6614 |        |
|------------|--------|----------|------|--------|
| Analyte    | Spiked | Result   | %REC | Limits |
| Antimony   | 500.0  | 490.2    | 98   | 80-120 |
| Arsenic    | 100.0  | 98.40    | 98   | 80-120 |
| Barium     | 2,000  | 1,969    | 98   | 80-120 |
| Beryllium  | 50.00  | 53.58    | 107  | 80-120 |
| Cadmium    | 50.00  | 50.37    | 101  | 80-120 |
| Chromium   | 200.0  | 192.8    | 96   | 80-120 |
| Cobalt     | 500.0  | 480.3    | 96   | 80-120 |
| Copper     | 250.0  | 231.8    | 93   | 80-120 |
| Lead       | 100.0  | 97.59    | 98   | 80-120 |
| Molybdenum | 400.0  | 385.3    | 96   | 80-120 |
| Nickel     | 500.0  | 488.5    | 98   | 80-120 |
| Selenium   | 100.0  | 100.6    | 101  | 80-120 |
| Silver     | 50.00  | 48.79    | 98   | 80-120 |
| Thallium   | 100.0  | 102.1    | 102  | 80-120 |
| Vanadium   | 500.0  | 488.3    | 98   | 80-120 |
| Zinc       | 500.0  | 505.7    | 101  | 80-120 |

| Туре:      | BSD   | Lab ID | : QC396 | 615  |        |     |     |
|------------|-------|--------|---------|------|--------|-----|-----|
| Ana        | alyte | Spiked | Result  | %REC | Limits | RPD | Lim |
| Antimony   |       | 500.0  | 493.8   | 99   | 80-120 | 1   | 20  |
| Arsenic    |       | 100.0  | 98.72   | 99   | 80-120 | 0   | 20  |
| Barium     |       | 2,000  | 1,993   | 100  | 80-120 | 1   | 20  |
| Beryllium  |       | 50.00  | 54.31   | 109  | 80-120 | 1   | 20  |
| Cadmium    |       | 50.00  | 50.87   | 102  | 80-120 | 1   | 20  |
| Chromium   |       | 200.0  | 195.3   | 98   | 80-120 | 1   | 20  |
| Cobalt     |       | 500.0  | 487.2   | 97   | 80-120 | 1   | 20  |
| Copper     |       | 250.0  | 234.7   | 94   | 80-120 | 1   | 20  |
| Lead       |       | 100.0  | 98.50   | 98   | 80-120 | 1   | 20  |
| Molybdenum |       | 400.0  | 389.1   | 97   | 80-120 | 1   | 20  |
| Nickel     |       | 500.0  | 494.7   | 99   | 80-120 | 1   | 20  |
| Selenium   |       | 100.0  | 102.1   | 102  | 80-120 | 1   | 20  |
| Silver     |       | 50.00  | 49.84   | 100  | 80-120 | 2   | 20  |
| Thallium   |       | 100.0  | 103.2   | 103  | 80-120 | 1   | 20  |
| Vanadium   |       | 500.0  | 496.4   | 99   | 80-120 | 2   | 20  |
| Zinc       |       | 500.0  | 512.3   | 102  | 80-120 | 1   | 20  |



| Dissolved California Title 26 Metals |                   |           |           |  |  |  |
|--------------------------------------|-------------------|-----------|-----------|--|--|--|
| Lab #:                               | 195957            | Prep:     | EPA 3010A |  |  |  |
| Client:                              | LFR Levine Fricke | Analysis: | EPA 6010B |  |  |  |
| Project#:                            | STANDARD          | —         |           |  |  |  |
| Field ID:                            | ZZZZZZZZZ         | Batch#:   | 127328    |  |  |  |
| MSS Lab ID:                          | 195996-001        | Sampled:  | 07/16/07  |  |  |  |
| Matrix:                              | Water             | Received: | 07/16/07  |  |  |  |
| Units:                               | ug/L              | Prepared: | 07/17/07  |  |  |  |
| Diln Fac:                            | 1.000             | Analyzed: | 07/17/07  |  |  |  |

| Type: MS   |            | Lab ID: | QC396616 |      |        |
|------------|------------|---------|----------|------|--------|
| Analyte    | MSS Result | Spiked  | Result   | %REC | Limits |
| Antimony   | 4.239      | 500.0   | 528.3    | 105  | 78-122 |
| Arsenic    | 10.22      | 100.0   | 116.2    | 106  | 79-128 |
| Barium     | 116.7      | 2,000   | 2,050    | 97   | 80-120 |
| Beryllium  | 0.4010     | 50.00   | 55.29    | 110  | 80-122 |
| Cadmium    | <0.3555    | 50.00   | 50.10    | 100  | 80-121 |
| Chromium   | 34.56      | 200.0   | 227.3    | 96   | 80-120 |
| Cobalt     | 1.742      | 500.0   | 479.6    | 96   | 80-120 |
| Copper     | 120.4      | 250.0   | 372.8    | 101  | 80-120 |
| Lead       | <1.150     | 100.0   | 89.51    | 90   | 70-120 |
| Molybdenum | 7.493      | 400.0   | 404.6    | 99   | 80-120 |
| Nickel     | 25.49      | 500.0   | 502.3    | 95   | 78-120 |
| Selenium   | 3.711      | 100.0   | 111.0    | 107  | 78-132 |
| Silver     | 1.955      | 50.00   | 53.72    | 104  | 72-123 |
| Thallium   | <1.131     | 100.0   | 92.49    | 92   | 72-120 |
| Vanadium   | 45.42      | 500.0   | 550.1    | 101  | 80-120 |
| Zinc       | 107.6      | 500.0   | 614.0    | 101  | 80-124 |

| Type: MSD  | Lab ID: | QC39   | 6617 |        |     |     |
|------------|---------|--------|------|--------|-----|-----|
| Analyte    | Spiked  | Result | %REC | Limits | RPD | Lim |
| Antimony   | 500.0   | 531.6  | 105  | 78-122 | 1   | 20  |
| Arsenic    | 100.0   | 116.5  | 106  | 79-128 | 0   | 20  |
| Barium     | 2,000   | 2,078  | 98   | 80-120 | 1   | 20  |
| Beryllium  | 50.00   | 55.40  | 110  | 80-122 | 0   | 20  |
| Cadmium    | 50.00   | 49.91  | 100  | 80-121 | 0   | 20  |
| Chromium   | 200.0   | 228.0  | 97   | 80-120 | 0   | 20  |
| Cobalt     | 500.0   | 481.3  | 96   | 80-120 | 0   | 20  |
| Copper     | 250.0   | 375.2  | 102  | 80-120 | 1   | 20  |
| Lead       | 100.0   | 90.49  | 90   | 70-120 | 1   | 20  |
| Molybdenum | 400.0   | 408.8  | 100  | 80-120 | 1   | 20  |
| Nickel     | 500.0   | 504.2  | 96   | 78-120 | 0   | 20  |
| Selenium   | 100.0   | 113.7  | 110  | 78-132 | 2   | 20  |
| Silver     | 50.00   | 54.61  | 105  | 72-123 | 2   | 20  |
| Thallium   | 100.0   | 92.63  | 93   | 72-120 | 0   | 20  |
| Vanadium   | 500.0   | 550.1  | 101  | 80-120 | 0   | 20  |
| Zinc       | 500.0   | 619.3  | 102  | 80-124 | 1   | 20  |



| LFR Levine Fricke    | Project : 001-09567-01  |
|----------------------|-------------------------|
| 1900 Powell Street   | Location : Hanson Radum |
| Emeryville, CA 94608 | Level : II              |

| <u>Sample ID</u> | <u>Lab ID</u> |
|------------------|---------------|
| 3S/1E 10D8       | 196218-001    |
| 3S/1E 10N3       | 196218-002    |
| 3S/1E 10K2       | 196218-003    |
| MW-10            | 196218-004    |
| TB-072507        | 196218-005    |

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Signature: Project Manager Signature:

Operations Manager

signature.

Date: 07/31/2007

Date: 07/31/2007

NELAP # 01107CA

Page 1 of \_\_\_\_



#### CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 196218 LFR Levine Fricke 001-09567-01 Hanson Radum 07/25/07 07/25/07

This hardcopy data package contains sample and QC results for five water samples, requested for the above referenced project on 07/25/07. The samples were received cold and intact. All data were e-mailed to Katrin Schliewen on 07/26/07.

#### TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

#### Volatile Organics by GC/MS (EPA 8260B):

Low recovery was observed for 1,1-dichloroethene in the MSD for batch 127592; the parent sample was not a project sample, and the BS/BSD were within limits. High RPD was also observed for 1,1-dichloroethene in the MS/MSD for batch 127592; the RPD was acceptable in the BS/BSD, and this analyte was not detected at or above the RL in the associated sample. 1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene were detected between the MDL and the RL in the method blank for batch 127592 and the method blank for batch 127594; these analytes were not detected in samples at or above the RL. No other analytical problems were encountered.

#### Semivolatile Organics by GC/MS (EPA 8270C):

No analytical problems were encountered.

#### Metals (EPA 6020 and EPA 7470A):

No analytical problems were encountered.



|                    |                      | Total I | Extracta | able Hydroc | arboi | ns           |
|--------------------|----------------------|---------|----------|-------------|-------|--------------|
| Lab #:             | 196218               |         |          | Location:   |       | Hanson Radum |
| Client:            | LFR Levine F         | ricke   |          | Prep:       |       | EPA 3520C    |
| Project#:          | 001-09567-01         |         |          | Analysis:   |       | EPA 8015B    |
| Matrix:            | Water                |         |          | Sampled:    |       | 07/25/07     |
| Units:             | ug/L                 |         |          | Received:   |       | 07/25/07     |
| Diln Fac:          | 1.000                |         |          | Prepared:   |       | 07/25/07     |
| Batch#:            | 127596               |         |          | Analyzed:   |       | 07/26/07     |
| Field ID:          | 3S/1E 10D8           |         |          | Lab ID:     |       | 196218-001   |
| Туре:              | SAMPLE               |         |          |             |       |              |
| An                 | alyte                |         | Result   |             | RL    |              |
| Diesel C10-C2      | 4                    | NE      | )        |             | 50    |              |
| Motor Oil C24      | -C36                 | NE      | )        |             | 300   |              |
|                    |                      |         |          |             |       |              |
|                    | rogate               | %REC    | Limits   |             |       |              |
| Hexacosane         |                      | 100     | 61-134   |             |       |              |
| Field ID:<br>Type: | 3S/1E 10N3<br>SAMPLE |         |          | Lab ID:     |       | 196218-002   |
| An                 | alyte                |         | Result   |             | RL    |              |
| Diesel C10-C2      | 4                    | NE      | )        |             | 50    |              |
| Motor Oil C24      | -C36                 | NE      | )        |             | 300   |              |
| Sur                | rogate               | %REC    | Limits   |             |       |              |
| Hexacosane         | IOgace               | 110     | 61-134   |             |       |              |
| lichaeoballe       |                      | 110     | 01 151   |             |       |              |
| Field ID:<br>Type: | 3S/1E 10K2<br>SAMPLE |         |          | Lab ID:     |       | 196218-003   |
| An                 | alyte                |         | Result   |             | RL    |              |
| Diesel C10-C2      |                      | NE      |          |             | 50    |              |
| Motor Oil C24      |                      | NE      | )        |             | 300   |              |
|                    |                      |         |          |             |       |              |
|                    | rogate               | %REC    | Limits   |             |       |              |
| Hexacosane         |                      | 99      | 61-134   |             |       |              |



|                    |                 | Total I | Extracta | able Hydrod | arbo | ns           |  |
|--------------------|-----------------|---------|----------|-------------|------|--------------|--|
| T = 1- 11 +        |                 |         |          |             |      |              |  |
| Lab #:             | 196218          |         |          | Location:   |      | Hanson Radum |  |
| Client:            | LFR Levine F    |         |          | Prep:       |      | EPA 3520C    |  |
| Project#:          | 001-09567-01    |         |          | Analysis:   |      | EPA 8015B    |  |
| Matrix:            | Water           |         |          | Sampled:    |      | 07/25/07     |  |
| Units:             | ug/L            |         |          | Received:   |      | 07/25/07     |  |
| Diln Fac:          | 1.000           |         |          | Prepared:   |      | 07/25/07     |  |
| Batch#:            | 127596          |         |          | Analyzed:   |      | 07/26/07     |  |
| Field ID:<br>Type: | MW-10<br>SAMPLE |         |          | Lab ID:     |      | 196218-004   |  |
|                    | alyte           |         | Result   |             | RL   |              |  |
| Diesel C10-C2      |                 | NI      | )        |             | 50   |              |  |
| Motor Oil C24      | -C36            | NE      | )        |             | 300  |              |  |
| Sur                | rogate          | %REC    | Limits   |             |      |              |  |
| Hexacosane         |                 | 96      | 61-134   |             |      |              |  |
|                    |                 |         |          |             |      |              |  |
| Type:              | BLANK           |         |          | Lab ID:     |      | QC397819     |  |
| An                 | alyte           |         | Result   |             | RL   |              |  |
| Diesel C10-C2      | 4               | NE      | )        |             | 50   |              |  |
| Motor Oil C24      | -C36            | NI      | )        |             | 300  |              |  |
| Sur                | rogate          | %REC    | Limits   |             |      |              |  |
| Hexacosane         |                 | 116     | 61-134   |             |      |              |  |
| iichaeobaiie       |                 |         | <u> </u> |             |      |              |  |



|                  | Т               | otal 1 | Extracta | ble Hydrocarbo  | ns           |        |     |     |
|------------------|-----------------|--------|----------|-----------------|--------------|--------|-----|-----|
| Lab #:           | 196218          |        |          | Location:       | Hanson Radum |        |     |     |
| Client:          | LFR Levine Fr   | icke   |          | Prep:           | EPA 3520C    |        |     |     |
| Project#:        | 001-09567-01    |        |          | Analysis:       | EPA 8015B    |        |     |     |
| Matrix:          | Water           |        |          | Batch#:         | 127596       |        |     |     |
| Units:           | ug/L            |        |          | Prepared:       | 07/25/07     |        |     |     |
| Diln Fac:        | 1.000           |        |          | Analyzed:       | 07/26/07     |        |     |     |
| Type:<br>Lab ID: | BS<br>QC397820  |        |          | Cleanup Method: | EPA 3630C    |        |     |     |
| Ana              | lyte            |        | Spiked   | Result          | %REC         | Limits |     |     |
| Diesel C10-C24   |                 |        | 2,500    | 2,461           | 98           | 58-130 |     |     |
| Surr             | ogate           | %REC   | Limits   |                 |              |        |     |     |
| Hexacosane       |                 | 115    | 61-134   |                 |              |        |     |     |
| Type:<br>Lab ID: | BSD<br>QC397821 |        |          | Cleanup Method: | EPA 3630C    |        |     |     |
|                  | lyte            |        | Spiked   | Result          | %REC         | Limits | RPD | Lim |
| Diesel C10-C24   |                 |        | 2,500    | 2,634           | 105          | 58-130 | 7   | 27  |
| Surr             | ogate           | %REC   | Limits   |                 |              |        |     |     |
| Hexacosane       |                 | 124    | 61-134   |                 |              |        |     |     |



|                                | Purgeable Org          | anics by GC/MS         |                      |
|--------------------------------|------------------------|------------------------|----------------------|
| Lab #:                         | 196218                 | Location:              | Hanson Radum         |
| Client:                        | LFR Levine Fricke      | Prep:                  | EPA 5030B            |
| Project#:                      | 001-09567-01           | Analysis:              | EPA 8260B            |
| Field ID:                      | TB-072507              | Batcĥ#:                | 127592               |
| Lab ID:                        | 196218-005             | Sampled:               | 07/25/07             |
| Matrix:<br>Units:<br>Diln Fac: | Water<br>ug/L<br>1.000 | Received:<br>Analyzed: | 07/25/07<br>07/25/07 |

| Analyte                   | Result   | RL  |  |
|---------------------------|----------|-----|--|
| Freon 12                  | ND       | 1.0 |  |
| Chloromethane             | ND       | 1.0 |  |
| Vinyl Chloride            | ND       | 0.5 |  |
| Bromomethane              | 0.6 J    | 1.0 |  |
| Chloroethane              | ND 0.00  | 1.0 |  |
| Trichlorofluoromethane    | ND       | 1.0 |  |
| Acetone                   | ND<br>ND | 10  |  |
| Freon 113                 | ND       | 5.0 |  |
|                           |          | 0.5 |  |
| 1,1-Dichloroethene        | ND       | 5.0 |  |
| Methylene Chloride        | ND       |     |  |
| Carbon Disulfide          | ND       | 0.5 |  |
| MTBE                      | ND       | 0.5 |  |
| trans-1,2-Dichloroethene  | ND       | 0.5 |  |
| Vinyl Acetate             | ND       | 10  |  |
| 1,1-Dichloroethane        | ND       | 0.5 |  |
| 2-Butanone                | ND       | 10  |  |
| cis-1,2-Dichloroethene    | ND       | 0.5 |  |
| 2,2-Dichloropropane       | ND       | 0.5 |  |
| Chloroform                | ND       | 0.5 |  |
| Bromochloromethane        | ND       | 0.5 |  |
| 1,1,1-Trichloroethane     | ND       | 0.5 |  |
| 1,1-Dichloropropene       | ND       | 0.5 |  |
| Carbon Tetrachloride      | ND       | 0.5 |  |
| 1,2-Dichloroethane        | ND       | 0.5 |  |
| Benzene                   | ND       | 0.5 |  |
| Trichloroethene           | ND       | 0.5 |  |
| 1,2-Dichloropropane       | ND       | 0.5 |  |
| Bromodichloromethane      | ND       | 0.5 |  |
| Dibromomethane            | ND       | 0.5 |  |
| 4-Methyl-2-Pentanone      | ND       | 10  |  |
| cis-1,3-Dichloropropene   | ND       | 0.5 |  |
| Toluene                   | ND       | 0.5 |  |
| trans-1,3-Dichloropropene | ND       | 0.5 |  |
| 1,1,2-Trichloroethane     | ND       |     |  |
|                           |          | 0.5 |  |
| 2-Hexanone                | ND       | 10  |  |
| 1,3-Dichloropropane       | ND       | 0.5 |  |
| Tetrachloroethene         | ND       | 0.5 |  |
| Dibromochloromethane      | ND       | 0.5 |  |
| 1,2-Dibromoethane         | ND       | 0.5 |  |
| Chlorobenzene             | ND       | 0.5 |  |
| 1,1,1,2-Tetrachloroethane | ND       | 0.5 |  |
| Ethylbenzene              | ND       | 0.5 |  |
| m,p-Xylenes               | ND       | 0.5 |  |
| o-Xylene                  | ND       | 0.5 |  |
| Styrene                   | ND       | 0.5 |  |
| Bromoform                 | ND       | 1.0 |  |
| Isopropylbenzene          | ND       | 0.5 |  |
| 1,1,2,2-Tetrachloroethane | ND       | 0.5 |  |
| 1,2,3-Trichloropropane    | ND       | 0.5 |  |
| Propylbenzene             | ND       | 0.5 |  |
| Bromobenzene              | ND       | 0.5 |  |
| 1,3,5-Trimethylbenzene    | ND       | 0.5 |  |
| 2-Chlorotoluene           | ND       | 0.5 |  |
|                           | 112      | v   |  |

J= Estimated value ND= Not Detected RL= Reporting Limit Page 1 of 2



|                                                   | Purgeable    | Organics by GC | /MS          |
|---------------------------------------------------|--------------|----------------|--------------|
| Lab #: 196218                                     |              | Location:      | Hanson Radum |
|                                                   | evine Fricke | Prep:          | EPA 5030B    |
|                                                   | 9567-01      | Analysis:      | EPA 8260B    |
| Field ID: TB-072                                  |              | Batch#:        | 127592       |
| Lab ID: 196218                                    | 3-005        | Sampled:       | 07/25/07     |
| Matrix: Water                                     |              | Received:      | 07/25/07     |
| Units: ug/L                                       |              | Analyzed:      | 07/25/07     |
| Diln Fac: 1.000                                   |              |                |              |
|                                                   |              |                |              |
| Analyte                                           | Resu         | Lt 1           | RL           |
| 4-Chlorotoluene                                   | ND           |                | 0.5          |
| tert-Butylbenzene                                 | ND           |                | 0.5          |
| 1,2,4-Trimethylbenzene                            | ND           |                | 0.5          |
| sec-Butylbenzene                                  | ND           |                | 0.5          |
| para-Isopropyl Toluene                            | ND           |                | 0.5          |
| 1,3-Dichlorobenzene                               | ND           |                | 0.5<br>0.5   |
| 1,4-Dichlorobenzene                               | ND           |                | 0.5          |
| n-Butylbenzene                                    | ND<br>ND     |                | 0.5          |
| 1,2-Dichlorobenzene                               |              |                | 0.5          |
| 1,2-Dibromo-3-Chloropro<br>1,2,4-Trichlorobenzene | ND ND        |                | 0.5          |
| Hexachlorobutadiene                               | ND           |                | 0.5          |
| Naphthalene                                       | ND           |                | 2.0          |
| 1,2,3-Trichlorobenzene                            | ND           |                | 0.5          |
| 1,2,5 IIICIIIOIODEIIZEIIE                         | ND           |                | 0.5          |
| Surrogate                                         | %REC Lim     | its            |              |
| Dibromofluoromethane                              | 103 80-1     |                |              |
| 1,2-Dichloroethane-d4                             | 102 79-1     | 134            |              |
| Toluene-d8                                        | 101 80-1     | 120            |              |
| Bromofluorobenzene                                | 111 80-3     | 122            |              |

J= Estimated value ND= Not Detected RL= Reporting Limit Page 2 of 2



|           | Purgeable Org     | anics by GC/MS |              |
|-----------|-------------------|----------------|--------------|
| Lab #:    | 196218            | Location:      | Hanson Radum |
| Client:   | LFR Levine Fricke | Prep:          | EPA 5030B    |
| Project#: | 001-09567-01      | Analysis:      | EPA 8260B    |
| Matrix:   | Water             | Batch#:        | 127592       |
| Units:    | ug/L              | Analyzed:      | 07/25/07     |
| Diln Fac: | 1.000             |                |              |

Type:

BS

| Spiked | Result                           | %REC                                                                                                          | Limits                                                                                                                                                        |
|--------|----------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25.00  | 25.76                            | 103                                                                                                           | 80-132                                                                                                                                                        |
| 25.00  | 25.85                            | 103                                                                                                           | 80-120                                                                                                                                                        |
| 25.00  | 25.29                            | 101                                                                                                           | 80-120                                                                                                                                                        |
| 25.00  | 28.19                            | 113                                                                                                           | 80-120                                                                                                                                                        |
| 25.00  | 24.63                            | 99                                                                                                            | 80-120                                                                                                                                                        |
|        | 25.00<br>25.00<br>25.00<br>25.00 | 25.00         25.76           25.00         25.85           25.00         25.29           25.00         28.19 | 25.00         25.76         103           25.00         25.85         103           25.00         25.29         101           25.00         28.19         113 |

Lab ID: QC397804

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 102  | 80-123 |  |
| 1,2-Dichloroethane-d4 | 96   | 79-134 |  |
| Toluene-d8            | 100  | 80-120 |  |
| Bromofluorobenzene    | 101  | 80-122 |  |

Type:

BSD

Lab ID:

QC397805

| Analyte            | Spiked      | Result | %REC | Limits | RPD | Lim |
|--------------------|-------------|--------|------|--------|-----|-----|
| 1,1-Dichloroethene | 25.00       | 21.89  | 88   | 80-132 | 16  | 20  |
| Benzene            | 25.00       | 22.88  | 92   | 80-120 | 12  | 20  |
| Trichloroethene    | 25.00       | 22.03  | 88   | 80-120 | 14  | 20  |
| Toluene            | 25.00       | 25.21  | 101  | 80-120 | 11  | 20  |
| Chlorobenzene      | 25.00       | 21.74  | 87   | 80-120 | 12  | 20  |
|                    |             |        |      |        |     |     |
| Surrogate          | %REC Limits |        |      |        |     |     |

| 5                     |     |        |
|-----------------------|-----|--------|
| Dibromofluoromethane  | 101 | 80-123 |
| 1,2-Dichloroethane-d4 | 96  | 79-134 |
| Toluene-d8            | 101 | 80-120 |
| Bromofluorobenzene    | 102 | 80-122 |
|                       |     |        |



|                  | Purgeable Organics by GC/MS |           |              |  |  |  |  |
|------------------|-----------------------------|-----------|--------------|--|--|--|--|
| Lab #:           | 196218                      | Location: | Hanson Radum |  |  |  |  |
| Client:          | LFR Levine Fricke           | Prep:     | EPA 5030B    |  |  |  |  |
| Project#:        | 001-09567-01                | Analysis  | EPA 8260B    |  |  |  |  |
| Type:<br>Lab ID: | BLANK                       | Diln Fac: | 1.000        |  |  |  |  |
|                  | QC397806                    | Batch#:   | 127592       |  |  |  |  |
| Matrix:          | Water                       | Analyzed: | 07/25/07     |  |  |  |  |
| Units:           | ug/L                        |           |              |  |  |  |  |

| Analyte                   | Result   | RL  |  |
|---------------------------|----------|-----|--|
| Freon 12                  | ND       | 1.0 |  |
| Chloromethane             | ND       | 1.0 |  |
| Vinyl Chloride            | ND       | 0.5 |  |
| Bromomethane              | ND       | 1.0 |  |
| Chloroethane              | ND       | 1.0 |  |
| Trichlorofluoromethane    | ND       | 1.0 |  |
| Acetone                   | ND<br>ND | 1.0 |  |
| Freon 113                 |          |     |  |
|                           | ND       | 0.5 |  |
| 1,1-Dichloroethene        | ND       | 0.5 |  |
| Methylene Chloride        | ND       | 5.0 |  |
| Carbon Disulfide          | ND       | 0.5 |  |
| MTBE                      | ND       | 0.5 |  |
| trans-1,2-Dichloroethene  | ND       | 0.5 |  |
| Vinyl Acetate             | ND       | 10  |  |
| 1,1-Dichloroethane        | ND       | 0.5 |  |
| 2-Butanone                | ND       | 10  |  |
| cis-1,2-Dichloroethene    | ND       | 0.5 |  |
| 2,2-Dichloropropane       | ND       | 0.5 |  |
| Chloroform                | ND       | 0.5 |  |
| Bromochloromethane        | ND       | 0.5 |  |
| 1,1,1-Trichloroethane     | ND       | 0.5 |  |
| 1,1-Dichloropropene       | ND       | 0.5 |  |
| Carbon Tetrachloride      | ND       | 0.5 |  |
| 1,2-Dichloroethane        | ND       | 0.5 |  |
| Benzene                   | ND       | 0.5 |  |
| Trichloroethene           |          | 0.5 |  |
|                           | ND       |     |  |
| 1,2-Dichloropropane       | ND       | 0.5 |  |
| Bromodichloromethane      | ND       | 0.5 |  |
| Dibromomethane            | ND       | 0.5 |  |
| 4-Methyl-2-Pentanone      | ND       | 10  |  |
| cis-1,3-Dichloropropene   | ND       | 0.5 |  |
| Toluene                   | ND       | 0.5 |  |
| trans-1,3-Dichloropropene | ND       | 0.5 |  |
| 1,1,2-Trichloroethane     | ND       | 0.5 |  |
| 2-Hexanone                | ND       | 10  |  |
| 1,3-Dichloropropane       | ND       | 0.5 |  |
| Tetrachloroethene         | ND       | 0.5 |  |
| Dibromochloromethane      | ND       | 0.5 |  |
| 1,2-Dibromoethane         | ND       | 0.5 |  |
| Chlorobenzene             | ND       | 0.5 |  |
| 1,1,1,2-Tetrachloroethane | ND       | 0.5 |  |
| Ethylbenzene              | ND       | 0.5 |  |
| m,p-Xylenes               | ND       | 0.5 |  |
| o-Xylene                  | ND       | 0.5 |  |
|                           | ND       | 0.5 |  |
| Styrene<br>Bromoform      | ND<br>ND | 1.0 |  |
|                           |          |     |  |
| Isopropylbenzene          | ND       | 0.5 |  |
| 1,1,2,2-Tetrachloroethane | ND       | 0.5 |  |
| 1,2,3-Trichloropropane    | ND       | 0.5 |  |
| Propylbenzene             | ND       | 0.5 |  |
| Bromobenzene              | ND       | 0.5 |  |
| 1,3,5-Trimethylbenzene    | ND       | 0.5 |  |
| 2-Chlorotoluene           | ND       | 0.5 |  |

J= Estimated value ND= Not Detected RL= Reporting Limit Page 1 of 2



|                  |                 | irgeabl | e Organics by |              |  |
|------------------|-----------------|---------|---------------|--------------|--|
| Lab #:           | 196218          |         | Location:     | Hanson Radum |  |
| Client:          | LFR Levine Fric | ke      | Prep:         | EPA 5030B    |  |
| Project#:        | 001-09567-01    |         | Analysis:     | EPA 8260B    |  |
| Type:            | BLANK           |         | Diln Fac:     | 1.000        |  |
| Lab ID:          | QC397806        |         | Batch#:       | 127592       |  |
| Matrix:          | Water           |         | Analyzed:     | 07/25/07     |  |
| Units:           | ug/L            |         |               |              |  |
|                  |                 |         |               |              |  |
| Analy            |                 | Res     | ult           | RL           |  |
| 4-Chlorotoluene  |                 | ND      |               | 0.5          |  |
| tert-Butylbenzer |                 | ND      |               | 0.5          |  |
| 1,2,4-Trimethyll |                 | ND      |               | 0.5          |  |
| sec-Butylbenzen  |                 | ND      |               | 0.5          |  |
| para-Isopropyl   |                 | ND      |               | 0.5          |  |
| 1,3-Dichloroben  |                 | ND      |               | 0.5          |  |
| 1,4-Dichloroben  | zene            | ND      |               | 0.5          |  |
| n-Butylbenzene   |                 | ND      |               | 0.5          |  |
| 1,2-Dichloroben  |                 | ND      |               | 0.5          |  |
| 1,2-Dibromo-3-C  |                 | ND      |               | 0.5          |  |
| 1,2,4-Trichloro  |                 | ND      |               | 0.5          |  |
| Hexachlorobutad  | lene            | ND      |               | 0.5          |  |
| Naphthalene      |                 | ND      |               | 2.0          |  |
| 1,2,3-Trichloro  | benzene         |         | 0.3 J         | 0.5          |  |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 102  | 80-123 |
| 1,2-Dichloroethane-d4 | 100  | 79-134 |
| Toluene-d8            | 100  | 80-120 |
| Bromofluorobenzene    | 109  | 80-122 |

J= Estimated value ND= Not Detected RL= Reporting Limit Page 2 of 2



|             | Purgeable         | e Organics by GC | 'ms          |  |
|-------------|-------------------|------------------|--------------|--|
| Lab #:      | 196218            | Location:        | Hanson Radum |  |
| Client:     | LFR Levine Fricke | Prep:            | EPA 5030B    |  |
| Project#:   | 001-09567-01      | Analysis:        | EPA 8260B    |  |
| Field ID:   | ZZZZZZZZZ         | Batch#:          | 127592       |  |
| MSS Lab ID: | 196196-001        | Sampled:         | 07/23/07     |  |
| Matrix:     | Water             | Received:        | 07/24/07     |  |
| Units:      | ug/L              | Analyzed:        | 07/25/07     |  |
| Diln Fac:   | 1.000             |                  |              |  |

Type:

MS

Lab ID: QC397882

| Analyte            | MSS Result | Spiked | Result | %REC | Limits |
|--------------------|------------|--------|--------|------|--------|
| 1,1-Dichloroethene | <0.1169    | 25.00  | 27.27  | 109  | 80-139 |
| Benzene            | <0.06286   | 25.00  | 25.68  | 103  | 80-123 |
| Trichloroethene    | 0.1668     | 25.00  | 26.08  | 104  | 75-129 |
| Toluene            | <0.1220    | 25.00  | 25.55  | 102  | 80-122 |
| Chlorobenzene      | <0.1069    | 25.00  | 23.81  | 95   | 80-120 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 104  | 80-123 |
| 1,2-Dichloroethane-d4 | 99   | 79-134 |
| Toluene-d8            | 101  | 80-120 |
| Bromofluorobenzene    | 101  | 80-122 |

| Type: MSD             |             | Lab ID: QC | 397883 |             |     |
|-----------------------|-------------|------------|--------|-------------|-----|
| Analyte               | Spiked      | Result     | %REC   | Limits RPD  | Lim |
| 1,1-Dichloroethene    | 25.00       | 19.85      | 79 *   | 80-139 31 * | 20  |
| Benzene               | 25.00       | 25.12      | 100    | 80-123 2    | 20  |
| Trichloroethene       | 25.00       | 25.51      | 101    | 75-129 2    | 20  |
| Toluene               | 25.00       | 24.63      | 99     | 80-122 4    | 20  |
| Chlorobenzene         | 25.00       | 23.17      | 93     | 80-120 3    | 20  |
| Surrogate             | %REC Limits |            |        |             |     |
| Dibromofluoromethane  | 104 80-123  |            |        |             |     |
| 1 2-Dichloroothano-d/ | 09 70-13/   |            |        |             |     |

| Dibromofluoromethane  | 104 | 80-123 |
|-----------------------|-----|--------|
| 1,2-Dichloroethane-d4 | 98  | 79-134 |
| Toluene-d8            | 102 | 80-120 |
| Bromofluorobenzene    | 102 | 80-122 |

\*= Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1



|                                                                                          | Gas                                                                                               | oline by GC/MS                                                                   |                                                                                      |  |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| Lab #:<br>Client:<br>Project#:<br>Field ID:<br>Lab ID:<br>Matrix:<br>Units:<br>Diln Fac: | 196218<br>LFR Levine Fricke<br>001-09567-01<br>3S/1E 10D8<br>196218-001<br>Water<br>ug/L<br>1.000 | Location:<br>Prep:<br>Analysis:<br>Batch#:<br>Sampled:<br>Received:<br>Analyzed: | Hanson Radum<br>EPA 5030B<br>EPA 8260B<br>127594<br>07/25/07<br>07/25/07<br>07/25/07 |  |

| Analyte                                       | Result   | RL         |
|-----------------------------------------------|----------|------------|
| Gasoline C7-C12                               | ND       | 50         |
| tert-Butyl Alcohol (TBA)                      | ND       | 10         |
| Freon 12                                      | ND       | 1.0        |
| Chloromethane                                 | ND       | 1.0        |
| Vinyl Chloride                                | ND       | 0.5        |
| Isopropyl Ether (DIPE)                        | ND       | 0.5        |
| Bromomethane                                  | ND       | 1.0        |
| Ethyl tert-Butyl Ether (ETBE)                 | ND       | 0.5        |
|                                               | ND       | 0.5        |
| Methyl tert-Amyl Ether (TAME)<br>Chloroethane | ND       | 1.0        |
| Trichlorofluoromethane                        | ND       | 1.0        |
| Acetone                                       | ND       | 10         |
| Freon 113                                     | ND<br>ND | 0.5        |
| 1,1-Dichloroethene                            | ND<br>ND | 0.5        |
|                                               | ND<br>ND | 10         |
| Methylene Chloride                            |          |            |
| Carbon Disulfide                              | ND       | 0.5        |
| MTBE                                          | ND       | 0.5        |
| trans-1,2-Dichloroethene                      | ND       | 0.5        |
| Vinyl Acetate                                 | ND       |            |
| 1,1-Dichloroethane                            | ND       | 0.5        |
| 2-Butanone                                    | ND       | 10         |
| cis-1,2-Dichloroethene                        | ND       | 0.5        |
| 2,2-Dichloropropane                           | ND       | 0.5        |
| Chloroform                                    | ND       | 0.5        |
| Bromochloromethane                            | ND       | 0.5        |
| 1,1,1-Trichloroethane                         | ND       | 0.5        |
| 1,1-Dichloropropene                           | ND       | 0.5        |
| Carbon Tetrachloride                          | ND       | 0.5        |
| 1,2-Dichloroethane                            | ND       | 0.5        |
| Benzene                                       | ND       | 0.5        |
| Trichloroethene                               | ND       | 0.5        |
| 1,2-Dichloropropane                           | ND       | 0.5        |
| Bromodichloromethane                          | ND       | 0.5        |
| Dibromomethane                                | ND       | 0.5        |
| 4-Methyl-2-Pentanone                          | ND       | 10         |
| cis-1,3-Dichloropropene                       | ND       | 0.5        |
| Toluene                                       | ND       | 0.5        |
| trans-1,3-Dichloropropene                     | ND       | 0.5        |
| 1,1,2-Trichloroethane                         | ND       | 0.5        |
| 2-Hexanone                                    | ND       | 10         |
| 1,3-Dichloropropane                           | ND       | 0.5        |
| Tetrachloroethene                             | ND       | 0.5        |
| Dibromochloromethane                          | ND       | 0.5        |
| 1,2-Dibromoethane                             | ND       | 0.5        |
| Chlorobenzene                                 | ND       | 0.5        |
| 1,1,1,2-Tetrachloroethane                     | ND       | 0.5<br>0.5 |
| Ethylbenzene                                  | ND       |            |
| m,p-Xylenes                                   | ND       | 0.5        |
| o-Xylene                                      | ND       | 0.5        |
| Styrene                                       | ND       | 0.5        |
| Bromoform                                     | ND       | 1.0        |
| Isopropylbenzene                              | ND       | 0.5        |
| 1,1,2,2-Tetrachloroethane                     | ND       | 0.5        |
| 1,2,3-Trichloropropane                        | ND       | 0.5        |



|                             | Gasolin     | e by GC/MS |              |
|-----------------------------|-------------|------------|--------------|
| Lab #: 196218               |             | Location:  | Hanson Radum |
| Client: LFR Levine Fr       | icke        | Prep:      | EPA 5030B    |
| Project#: 001-09567-01      |             | Analysis:  | EPA 8260B    |
| Field ID: 3S/1E 10D8        |             | Batch#:    | 127594       |
| Lab ID: 196218-001          |             | Sampled    | 07/25/07     |
| Matrix: Water               |             | Received:  | 07/25/07     |
| Units: ug/L                 |             | Analyzed:  | 07/25/07     |
| Diln Fac: 1.000             |             |            |              |
| Analyte                     | Result      |            | RL           |
| Propylbenzene               | ND          |            | 0.5          |
| Bromobenzene                | ND          |            | 0.5          |
| 1,3,5-Trimethylbenzene      | ND          |            | 0.5          |
| 2-Chlorotoluene             | ND          |            | 0.5          |
| 4-Chlorotoluene             | ND          |            | 0.5          |
| tert-Butylbenzene           | ND          |            | 0.5          |
| 1,2,4-Trimethylbenzene      | ND          |            | 0.5          |
| sec-Butylbenzene            | ND          |            | 0.5          |
| para-Isopropyl Toluene      | ND          |            | 0.5          |
| 1,3-Dichlorobenzene         | ND          |            | 0.5          |
| 1,4-Dichlorobenzene         | ND          |            | 0.5          |
| n-Butylbenzene              | ND          |            | 0.5          |
| 1,2-Dichlorobenzene         | ND          |            | 0.5          |
| 1,2-Dibromo-3-Chloropropane | ND          |            | 2.0          |
| 1,2,4-Trichlorobenzene      | ND          |            | 0.5          |
| Hexachlorobutadiene         | ND          |            | 0.5          |
| Naphthalene                 | ND          |            | 2.0          |
| 1,2,3-Trichlorobenzene      | ND          |            | 0.5          |
| Surrogate                   | %REC Limits |            |              |
| Dibromofluoromethane        | 96 80-123   |            |              |
| 1,2-Dichloroethane-d4       | 104 79-134  |            |              |
| Toluene-d8                  | 98 80-120   |            |              |
| Bromofluorobenzene          | 105 80-122  |            |              |



| Gasoline by GC/MS                                                                        |                                                                                                   |                                                                                  |                                                                                      |  |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| Lab #:<br>Client:<br>Project#:<br>Field ID:<br>Lab ID:<br>Matrix:<br>Units:<br>Diln Fac: | 196218<br>LFR Levine Fricke<br>001-09567-01<br>3S/1E 10N3<br>196218-002<br>Water<br>ug/L<br>1.000 | Location:<br>Prep:<br>Analysis:<br>Batch#:<br>Sampled:<br>Received:<br>Analyzed: | Hanson Radum<br>EPA 5030B<br>EPA 8260B<br>127594<br>07/25/07<br>07/25/07<br>07/25/07 |  |

| Analyte                                       | Result   | RL  |
|-----------------------------------------------|----------|-----|
| Gasoline C7-C12                               | ND       | 50  |
| tert-Butyl Alcohol (TBA)                      | ND       | 10  |
| Freon 12                                      | ND       | 1.0 |
| Chloromethane                                 | ND       | 1.0 |
| Vinyl Chloride                                | ND       | 0.5 |
| Isopropyl Ether (DIPE)                        | ND       | 0.5 |
| Bromomethane                                  | ND       | 1.0 |
| Ethyl tert-Butyl Ether (ETBE)                 | ND       | 0.5 |
|                                               | ND       | 0.5 |
| Methyl tert-Amyl Ether (TAME)<br>Chloroethane | ND       | 1.0 |
| Trichlorofluoromethane                        | ND       | 1.0 |
| Acetone                                       | ND       | 10  |
| Freon 113                                     | ND<br>ND | 0.5 |
| 1,1-Dichloroethene                            | ND<br>ND | 0.5 |
|                                               | ND<br>ND | 10  |
| Methylene Chloride                            |          |     |
| Carbon Disulfide                              | ND       | 0.5 |
| MTBE                                          | ND       | 0.5 |
| trans-1,2-Dichloroethene                      | ND       | 0.5 |
| Vinyl Acetate                                 | ND       | 10  |
| 1,1-Dichloroethane                            | ND       | 0.5 |
| 2-Butanone                                    | ND       | 10  |
| cis-1,2-Dichloroethene                        | ND       | 0.5 |
| 2,2-Dichloropropane                           | ND       | 0.5 |
| Chloroform                                    | ND       | 0.5 |
| Bromochloromethane                            | ND       | 0.5 |
| 1,1,1-Trichloroethane                         | ND       | 0.5 |
| 1,1-Dichloropropene                           | ND       | 0.5 |
| Carbon Tetrachloride                          | ND       | 0.5 |
| 1,2-Dichloroethane                            | ND       | 0.5 |
| Benzene                                       | ND       | 0.5 |
| Trichloroethene                               | ND       | 0.5 |
| 1,2-Dichloropropane                           | ND       | 0.5 |
| Bromodichloromethane                          | ND       | 0.5 |
| Dibromomethane                                | ND       | 0.5 |
| 4-Methyl-2-Pentanone                          | ND       | 10  |
| cis-1,3-Dichloropropene                       | ND       | 0.5 |
| Toluene                                       | ND       | 0.5 |
| trans-1,3-Dichloropropene                     | ND       | 0.5 |
| 1,1,2-Trichloroethane                         | ND       | 0.5 |
| 2-Hexanone                                    | ND       | 10  |
| 1,3-Dichloropropane                           | ND       | 0.5 |
| Tetrachloroethene                             | ND       | 0.5 |
| Dibromochloromethane                          | ND       | 0.5 |
| 1,2-Dibromoethane                             | ND       | 0.5 |
| Chlorobenzene                                 | ND       | 0.5 |
| 1,1,1,2-Tetrachloroethane                     | ND       | 0.5 |
| Ethylbenzene                                  | ND       | 0.5 |
| m,p-Xylenes                                   | ND       | 0.5 |
| o-Xylene                                      | ND       | 0.5 |
| Styrene                                       | ND       | 0.5 |
| Bromoform                                     | ND       | 1.0 |
| Isopropylbenzene                              | ND       | 0.5 |
| 1,1,2,2-Tetrachloroethane                     | ND       | 0.5 |
| 1,2,3-Trichloropropane                        | ND       | 0.5 |



|                                       | Gasolin     | e by GC/MS |              |
|---------------------------------------|-------------|------------|--------------|
| Lab #: 196218                         |             | Location:  | Hanson Radum |
| Client: LFR Levine Fr                 | ricke       | Prep:      | EPA 5030B    |
| Project#: 001-09567-01                |             | Analysis:  | EPA 8260B    |
| Field ID: 3S/1E 10N3                  |             | Batch#:    | 127594       |
| Lab ID: 196218-002                    |             | Sampled    | 07/25/07     |
| Matrix: Water                         |             | Received:  | 07/25/07     |
| Units: ug/L                           |             | Analyzed:  | 07/25/07     |
| Diln Fac: 1.000                       |             |            |              |
| Analyte                               | Result      |            | RL           |
| Propylbenzene                         | ND          |            | 0.5          |
| Bromobenzene                          | ND          |            | 0.5          |
| 1,3,5-Trimethylbenzene                | ND          |            | 0.5          |
| 2-Chlorotoluene                       | ND          |            | 0.5          |
| 4-Chlorotoluene                       | ND          |            | 0.5          |
| tert-Butylbenzene                     | ND          |            | 0.5          |
| 1,2,4-Trimethylbenzene                | ND          |            | 0.5          |
| sec-Butylbenzene                      | ND          |            | 0.5          |
| para-Isopropyl Toluene                | ND          |            | 0.5          |
| 1,3-Dichlorobenzene                   | ND          |            | 0.5          |
| 1,4-Dichlorobenzene                   | ND          |            | 0.5          |
| n-Butylbenzene                        | ND          |            | 0.5          |
| 1,2-Dichlorobenzene                   | ND          |            | 0.5          |
| 1,2-Dibromo-3-Chloropropane           | ND          |            | 2.0          |
| 1,2,4-Trichlorobenzene                | ND          |            | 0.5          |
| Hexachlorobutadiene                   | ND<br>ND    |            | 0.5<br>2.0   |
| Naphthalene<br>1,2,3-Trichlorobenzene | ND          |            | 0.5          |
| 1,2,3-IIICHIOLODEHZEHE                | עוו         |            | 0.5          |
| Surrogate                             | %REC Limits |            |              |
| Dibromofluoromethane                  | 97 80-123   |            |              |
| 1,2-Dichloroethane-d4                 | 103 79-134  |            |              |
| Toluene-d8                            | 101 80-120  |            |              |
| Bromofluorobenzene                    | 105 80-122  |            |              |



| Gasoline by GC/MS                                                           |                                                                                          |                                                                                  |                                                                                      |  |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| Lab #:<br>Client:<br>Project#:<br>Field ID:<br>Lab ID:<br>Matrix:<br>Units: | 196218<br>LFR Levine Fricke<br>001-09567-01<br>3S/1E 10K2<br>196218-003<br>Water<br>ug/L | Location:<br>Prep:<br>Analysis:<br>Batch#:<br>Sampled:<br>Received:<br>Analyzed: | Hanson Radum<br>EPA 5030B<br>EPA 8260B<br>127594<br>07/25/07<br>07/25/07<br>07/25/07 |  |
| Diln Fac:                                                                   | 1.000                                                                                    |                                                                                  |                                                                                      |  |

| Analyte                       | Result   | RL  |
|-------------------------------|----------|-----|
| Gasoline C7-C12               | ND       | 50  |
| tert-Butyl Alcohol (TBA)      | ND       | 10  |
| Freon 12                      | ND       | 1.0 |
| Chloromethane                 | ND       | 1.0 |
| Vinyl Chloride                | ND       | 0.5 |
| Isopropyl Ether (DIPE)        | ND       | 0.5 |
| Bromomethane                  | ND       | 1.0 |
| Ethyl tert-Butyl Ether (ETBE) | ND       | 0.5 |
| Methyl tert-Amyl Ether (TAME) | ND       | 0.5 |
| Chloroethane                  | ND       | 1.0 |
| Trichlorofluoromethane        | ND       | 1.0 |
| Acetone                       | ND       | 10  |
| Freon 113                     | ND<br>ND | 0.5 |
| 1,1-Dichloroethene            |          | 0.5 |
|                               | ND       | 10  |
| Methylene Chloride            | ND       |     |
| Carbon Disulfide              | ND       | 0.5 |
| MTBE                          | ND       | 0.5 |
| trans-1,2-Dichloroethene      | ND       | 0.5 |
| Vinyl Acetate                 | ND       | 10  |
| 1,1-Dichloroethane            | ND       | 0.5 |
| 2-Butanone                    | ND       | 10  |
| cis-1,2-Dichloroethene        | ND       | 0.5 |
| 2,2-Dichloropropane           | ND       | 0.5 |
| Chloroform                    | ND       | 0.5 |
| Bromochloromethane            | ND       | 0.5 |
| 1,1,1-Trichloroethane         | ND       | 0.5 |
| 1,1-Dichloropropene           | ND       | 0.5 |
| Carbon Tetrachloride          | ND       | 0.5 |
| 1,2-Dichloroethane            | ND       | 0.5 |
| Benzene                       | ND       | 0.5 |
| Trichloroethene               | ND       | 0.5 |
| 1,2-Dichloropropane           | ND       | 0.5 |
| Bromodichloromethane          | ND       | 0.5 |
| Dibromomethane                | ND       | 0.5 |
| 4-Methyl-2-Pentanone          | ND       | 10  |
| cis-1,3-Dichloropropene       | ND       | 0.5 |
| Toluene                       | ND       | 0.5 |
| trans-1,3-Dichloropropene     | ND       | 0.5 |
| 1,1,2-Trichloroethane         | ND       | 0.5 |
| 2-Hexanone                    | ND       | 10  |
| 1,3-Dichloropropane           | ND       | 0.5 |
| Tetrachloroethene             | ND       | 0.5 |
| Dibromochloromethane          | ND       | 0.5 |
| 1,2-Dibromoethane             | ND       | 0.5 |
| Chlorobenzene                 | ND       | 0.5 |
| 1,1,1,2-Tetrachloroethane     | ND       | 0.5 |
| Ethylbenzene                  | ND       | 0.5 |
| m,p-Xylenes                   | ND       | 0.5 |
| o-Xylene                      | ND       | 0.5 |
| Styrene                       | ND       | 0.5 |
| Bromoform                     | ND       | 1.0 |
| Isopropylbenzene              | ND       | 0.5 |
| 1,1,2,2-Tetrachloroethane     | ND       | 0.5 |
| 1,2,3-Trichloropropane        | ND       | 0.5 |
| 1,2,5 IIICHIOLOPIOPAHE        |          | 0.5 |



|                               | Gasolin      | e by GC/MS |              |
|-------------------------------|--------------|------------|--------------|
| Lab #: 196218                 |              | Location:  | Hanson Radum |
| Client: LFR Levine Fr         | icke         | Prep:      | EPA 5030B    |
| Project#: 001-09567-01        |              | Analysis:  | EPA 8260B    |
| Field ID: 3S/1E 10K2          |              | Batch#:    | 127594       |
| Lab ID: 196218-003            |              | Sampled:   | 07/25/07     |
| Matrix: Water                 |              | Received:  | 07/25/07     |
| Units: ug/L                   |              | Analyzed:  | 07/25/07     |
| Diln Fac: 1.000               |              |            |              |
|                               |              |            |              |
| Analyte                       | Result<br>ND |            |              |
| Propylbenzene<br>Bromobenzene | ND<br>ND     |            | 0.5<br>0.5   |
| 1,3,5-Trimethylbenzene        | ND<br>ND     |            | 0.5          |
| 2-Chlorotoluene               | ND           |            | 0.5          |
| 4-Chlorotoluene               | ND           |            | 0.5          |
| tert-Butylbenzene             | ND           |            | 0.5          |
| 1,2,4-Trimethylbenzene        | ND           |            | 0.5          |
| sec-Butylbenzene              | ND           |            | 0.5          |
| para-Isopropyl Toluene        | ND           |            | 0.5          |
| 1,3-Dichlorobenzene           | ND           |            | 0.5          |
| 1,4-Dichlorobenzene           | ND           |            | 0.5          |
| n-Butylbenzene                | ND           |            | 0.5          |
| 1,2-Dichlorobenzene           | ND           |            | 0.5          |
| 1,2-Dibromo-3-Chloropropane   | ND           |            | 2.0          |
| 1,2,4-Trichlorobenzene        | ND           |            | 0.5          |
| Hexachlorobutadiene           | ND           |            | 0.5          |
| Naphthalene                   | ND           |            | 2.0          |
| 1,2,3-Trichlorobenzene        | ND           |            | 0.5          |
|                               |              |            |              |
| Surrogate                     | %REC Limits  |            |              |
| Dibromofluoromethane          | 98 80-123    |            |              |
| 1,2-Dichloroethane-d4         | 100 79-134   |            |              |
| Toluene-d8                    | 97 80-120    |            |              |
| Bromofluorobenzene            | 104 80-122   |            |              |



| Gasoline by GC/MS                                      |                                               |                                               |                                            |
|--------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------------|
| Lab #:<br>Client:<br>Project#:                         | 196218<br>LFR Levine Fricke<br>001-09567-01   | Location:<br>Prep:<br>Analysis:               | Hanson Radum<br>EPA 5030B<br>EPA 8260B     |
| Field ID:<br>Lab ID:<br>Matrix:<br>Units:<br>Diln Fac: | MW-10<br>196218-004<br>Water<br>ug/L<br>1.000 | Batch#:<br>Sampled:<br>Received:<br>Analyzed: | 127594<br>07/25/07<br>07/25/07<br>07/25/07 |

| Analyte                       | Result   | RL  |
|-------------------------------|----------|-----|
| Gasoline C7-C12               | ND       | 50  |
| tert-Butyl Alcohol (TBA)      | ND       | 10  |
| Freon 12                      | ND       | 1.0 |
| Chloromethane                 | ND       | 1.0 |
| Vinyl Chloride                | ND       | 0.5 |
| Isopropyl Ether (DIPE)        | ND       | 0.5 |
| Bromomethane                  | ND       | 1.0 |
| Ethyl tert-Butyl Ether (ETBE) | ND       | 0.5 |
| Methyl tert-Amyl Ether (TAME) | ND       | 0.5 |
| Chloroethane                  | ND       | 1.0 |
| Trichlorofluoromethane        | ND       | 1.0 |
| Acetone                       | ND       | 10  |
| Freon 113                     | ND       | 0.5 |
| 1,1-Dichloroethene            | ND       | 0.5 |
| Methylene Chloride            | ND       | 10  |
| Carbon Disulfide              | ND       | 0.5 |
| MTBE                          | ND       | 0.5 |
| trans-1,2-Dichloroethene      | ND       | 0.5 |
| Vinyl Acetate                 | ND       | 10  |
| 1,1-Dichloroethane            | ND       | 0.5 |
| 2-Butanone                    | ND       | 10  |
| cis-1,2-Dichloroethene        | ND       | 0.5 |
| 2,2-Dichloropropane           | ND       | 0.5 |
| Chloroform                    | ND       | 0.5 |
| Bromochloromethane            | ND       | 0.5 |
| 1,1,1-Trichloroethane         | ND       | 0.5 |
| 1,1-Dichloropropene           | ND       | 0.5 |
| Carbon Tetrachloride          | ND       | 0.5 |
| 1,2-Dichloroethane            | ND       | 0.5 |
| Benzene                       | ND       | 0.5 |
| Trichloroethene               | ND       | 0.5 |
| 1,2-Dichloropropane           | ND       | 0.5 |
| Bromodichloromethane          | ND       | 0.5 |
| Dibromomethane                | ND       | 0.5 |
| 4-Methyl-2-Pentanone          | ND       | 10  |
| cis-1,3-Dichloropropene       | ND       | 0.5 |
| Toluene                       | ND       | 0.5 |
| trans-1,3-Dichloropropene     | ND       | 0.5 |
| 1,1,2-Trichloroethane         | ND       | 0.5 |
| 2-Hexanone                    | ND       | 10  |
| 1,3-Dichloropropane           | ND       | 0.5 |
| Tetrachloroethene             | ND       | 0.5 |
| Dibromochloromethane          | ND       | 0.5 |
| 1,2-Dibromoethane             | ND       | 0.5 |
| Chlorobenzene                 | ND       | 0.5 |
| 1,1,1,2-Tetrachloroethane     | ND       | 0.5 |
| Ethylbenzene                  | ND       | 0.5 |
| m,p-Xylenes                   | ND       | 0.5 |
|                               | ND<br>ND | 0.5 |
| o-Xylene<br>Styropo           | ND<br>ND | 0.5 |
| Styrene<br>Bromoform          | ND<br>ND | 1.0 |
|                               | ND<br>ND | 0.5 |
| Isopropylbenzene              |          | 0.5 |
| 1,1,2,2-Tetrachloroethane     | ND       | 0.5 |
| 1,2,3-Trichloropropane        | ND       | 0.5 |



|                                     | Gasolin                  | by GC/MS   |              |
|-------------------------------------|--------------------------|------------|--------------|
| Lab #: 196218                       |                          |            | Hanson Radum |
| Client: LFR Levine Fr               | ricke                    | - <b>L</b> | EPA 5030B    |
| Project#: 001-09567-01              |                          |            | EPA 8260B    |
| Field ID: MW-10                     |                          |            | 127594       |
| Lab ID: 196218-004                  |                          |            | 07/25/07     |
| Matrix: Water                       |                          |            | 07/25/07     |
| Units: ug/L                         |                          | Analyzed:  | 07/25/07     |
| Diln Fac: 1.000                     |                          |            |              |
| Analyte                             | Result                   | RL         |              |
| Propylbenzene                       | ND Result                | 0.5        |              |
| Bromobenzene                        | ND                       | 0.5        |              |
| 1,3,5-Trimethylbenzene              | ND                       | 0.5        |              |
| 2-Chlorotoluene                     | ND                       | 0.5        |              |
| 4-Chlorotoluene                     | ND                       | 0.5        |              |
| tert-Butylbenzene                   | ND                       | 0.5        |              |
| 1,2,4-Trimethylbenzene              | ND                       | 0.5        |              |
| sec-Butylbenzene                    | ND                       | 0.5        |              |
| para-Isopropyl Toluene              | ND                       | 0.5        |              |
| 1,3-Dichlorobenzene                 | ND                       | 0.5        |              |
| 1,4-Dichlorobenzene                 | ND                       | 0.5        |              |
| n-Butylbenzene                      | ND                       | 0.5        |              |
| 1,2-Dichlorobenzene                 | ND                       | 0.5        |              |
| 1,2-Dibromo-3-Chloropropane         | ND                       | 2.0        |              |
| 1,2,4-Trichlorobenzene              | ND                       | 0.5        |              |
| Hexachlorobutadiene                 | ND                       | 0.5        |              |
| Naphthalene                         | ND                       | 2.0        |              |
| 1,2,3-Trichlorobenzene              | ND                       | 0.5        |              |
|                                     |                          |            |              |
| Surrogate<br>Dibromofluoromethane   | %REC Limits              |            |              |
|                                     | 97 80-123<br>104 79-134  |            |              |
| 1,2-Dichloroethane-d4<br>Toluene-d8 | 104 79-134<br>99 80-120  |            |              |
| Bromofluorobenzene                  | 100 80-120<br>100 80-122 |            |              |
| BLOMOLIUOLODEHZEHE                  | 100 00-122               |            |              |



|                                | Gasoline                                    | e by GC/MS                      |                                        |
|--------------------------------|---------------------------------------------|---------------------------------|----------------------------------------|
| Lab #:<br>Client:<br>Project#: | 196218<br>LFR Levine Fricke<br>001-09567-01 | Location:<br>Prep:<br>Analysis: | Hanson Radum<br>EPA 5030B<br>EPA 8260B |
| Matrix:<br>Units:<br>Diln Fac: | Water<br>ug/L<br>1.000                      | Batch#:<br>Analyzed:            | 127594<br>07/25/07                     |

| Type: BS                      |      |        | Lab ID: | QC3    | 97811 |        |  |
|-------------------------------|------|--------|---------|--------|-------|--------|--|
| Analyte                       |      | Spiked |         | Result | %REC  | Limits |  |
| tert-Butyl Alcohol (TBA)      |      | 125.0  |         | 112.2  | 90    | 68-132 |  |
| Isopropyl Ether (DIPE)        |      | 25.00  |         | 19.99  | 80    | 65-120 |  |
| Ethyl tert-Butyl Ether (ETBE) |      | 25.00  |         | 20.71  | 83    | 75-124 |  |
| Methyl tert-Amyl Ether (TAME) |      | 25.00  |         | 24.56  | 98    | 77-120 |  |
| 1,1-Dichloroethene            |      | 25.00  |         | 24.16  | 97    | 80-132 |  |
| Benzene                       |      | 25.00  |         | 25.20  | 101   | 80-120 |  |
| Trichloroethene               |      | 25.00  |         | 25.59  | 102   | 80-120 |  |
| Toluene                       |      | 25.00  |         | 27.12  | 108   | 80-120 |  |
| Chlorobenzene                 |      | 25.00  |         | 25.47  | 102   | 80-120 |  |
| Surrogate                     | %REC | Limits |         |        |       |        |  |
| Dibromofluoromethane          | 94   | 80-123 |         |        |       |        |  |
| 1,2-Dichloroethane-d4         | 103  | 79-134 |         |        |       |        |  |

| Durroguoo             | 011110 |        |
|-----------------------|--------|--------|
| Dibromofluoromethane  | 94     | 80-123 |
| 1,2-Dichloroethane-d4 | 103    | 79–134 |
| Toluene-d8            | 98     | 80-120 |
| Bromofluorobenzene    | 98     | 80-122 |
|                       |        |        |

| Type: BSD                     |      |        | Lab ID: | QC39   | 7812 |        |     |     |
|-------------------------------|------|--------|---------|--------|------|--------|-----|-----|
| Analyte                       |      | Spiked |         | Result | %REC | Limits | RPD | Lim |
| tert-Butyl Alcohol (TBA)      |      | 125.0  |         | 106.4  | 85   | 68-132 | 5   | 20  |
| Isopropyl Ether (DIPE)        |      | 25.00  |         | 18.91  | 76   | 65-120 | 6   | 20  |
| Ethyl tert-Butyl Ether (ETBE) |      | 25.00  |         | 19.08  | 76   | 75-124 | 8   | 20  |
| Methyl tert-Amyl Ether (TAME) |      | 25.00  |         | 23.58  | 94   | 77-120 | 4   | 20  |
| 1,1-Dichloroethene            |      | 25.00  |         | 22.44  | 90   | 80-132 | 7   | 20  |
| Benzene                       |      | 25.00  |         | 23.09  | 92   | 80-120 | 9   | 20  |
| Trichloroethene               |      | 25.00  |         | 23.50  | 94   | 80-120 | 9   | 20  |
| Toluene                       |      | 25.00  |         | 25.12  | 100  | 80-120 | 8   | 20  |
| Chlorobenzene                 |      | 25.00  |         | 24.03  | 96   | 80-120 | 6   | 20  |
|                               |      |        |         |        |      |        |     |     |
| Surrogate                     | %REC | Limits |         |        |      |        |     |     |
| Dibromofluoromethane          | 93   | 80-123 |         |        |      |        |     |     |
| 1,2-Dichloroethane-d4         | 100  | 79-134 |         |        |      |        |     |     |
| Toluene-d8                    | 98   | 80-120 |         |        |      |        |     |     |
| Bromofluorobenzene            | 99   | 80-122 |         |        |      |        |     |     |



|           | Gasc              | line by GC/MS |              |  |
|-----------|-------------------|---------------|--------------|--|
| Lab #:    | 196218            | Location:     | Hanson Radum |  |
| Client:   | LFR Levine Fricke | Prep:         | EPA 5030B    |  |
| Project#: | 001-09567-01      | Analysis:     | EPA 8260B    |  |
| Matrix:   | Water             | Batch#:       | 127594       |  |
| Units:    | ug/L              | Analyzed:     | 07/25/07     |  |
| Diln Fac: | 1.000             |               |              |  |

Type:

Bromofluorobenzene

BS

Lab ID:

QC397813

| Analyte         | Spiked | Result | %REC | Limits |
|-----------------|--------|--------|------|--------|
| Gasoline C7-C12 | 1,000  | 943.9  | 94   | 70-130 |

| Surrogate               | %REC | Limits |
|-------------------------|------|--------|
| Dibromofluoromethane 9  | 94   | 80-123 |
| 1,2-Dichloroethane-d4 1 | 100  | 79-134 |
| Toluene-d8 9            | 98   | 80-120 |
| Bromofluorobenzene      | 99   | 80-122 |

| Туре:      | BSD         |      |        | Lab ID: | QC3    | 97814 |        |     |     |
|------------|-------------|------|--------|---------|--------|-------|--------|-----|-----|
|            | Analyte     |      | Spiked |         | Result | %REC  | Limits | RPD | Lim |
| Gasoline C | 7-C12       |      | 1,000  |         | 831.4  | 83    | 70-130 | 13  | 20  |
|            | Surrogate   | %REC | Limits |         |        |       |        |     |     |
| Dibromoflu | oromethane  | 94   | 80-123 |         |        |       |        |     |     |
| 1,2-Dichlo | roethane-d4 | 100  | 79-134 |         |        |       |        |     |     |
| Toluene-d8 |             | 100  | 80-120 |         |        |       |        |     |     |

80-122

99



|                                       | Gase                                        | oline by GC/MS                    |                                        |  |
|---------------------------------------|---------------------------------------------|-----------------------------------|----------------------------------------|--|
| Lab #:<br>Client:<br>Project#:        | 196218<br>LFR Levine Fricke<br>001-09567-01 | Location:<br>Prep:<br>Analysis:   | Hanson Radum<br>EPA 5030B<br>EPA 8260B |  |
| Type:<br>Lab ID:<br>Matrix:<br>Units: | BLANK<br>QC397815<br>Water<br>ug/L          | Diln Fac:<br>Batch#:<br>Analyzed: | 1.000<br>127594<br>07/25/07            |  |

| Analyte                       | Result   | RL              |
|-------------------------------|----------|-----------------|
| Gasoline C7-C12               | ND       | 50              |
| tert-Butyl Alcohol (TBA)      | ND       | 10              |
| Freon 12                      | ND       | 1.0             |
| Chloromethane                 | ND       | $\frac{1}{1.0}$ |
| Vinyl Chloride                | ND       | 0.5             |
| Isopropyl Ether (DIPE)        | ND       | 0.5             |
| Bromomethane                  | ND       | 1.0             |
| Ethyl tert-Butyl Ether (ETBE) | ND       | 0.5             |
| Methyl tert-Amyl Ether (TAME) | ND       | 0.5             |
| Chloroethane                  | ND       | 1.0             |
| Trichlorofluoromethane        | ND       | 1.0             |
| Acetone                       | ND       | 10              |
| Freon 113                     | ND       | 0.5             |
| 1,1-Dichloroethene            | ND       | 0.5             |
| Methylene Chloride            | ND       | 5.0             |
| Carbon Disulfide              | ND       | 0.5             |
| MTBE                          | ND       | 0.5             |
| trans-1,2-Dichloroethene      | ND       | 0.5             |
| Vinyl Acetate                 | ND       | 10              |
| 1,1-Dichloroethane            | ND       | 0.5             |
| 2-Butanone                    | ND       | 10              |
| cis-1,2-Dichloroethene        | ND       | 0.5             |
| 2,2-Dichloropropane           | ND       | 0.5             |
| Chloroform                    | ND       | 0.5             |
| Bromochloromethane            | ND       | 0.5             |
| 1,1,1-Trichloroethane         | ND       | 0.5             |
| 1,1-Dichloropropene           | ND       | 0.5             |
| Carbon Tetrachloride          | ND       | 0.5             |
| 1,2-Dichloroethane            | ND       | 0.5             |
| Benzene                       | ND       | 0.5             |
| Trichloroethene               | ND       | 0.5             |
| 1,2-Dichloropropane           | ND       | 0.5             |
| Bromodichloromethane          | ND       | 0.5             |
| Dibromomethane                | ND       | 0.5             |
| 4-Methyl-2-Pentanone          | ND       | 10              |
| cis-1,3-Dichloropropene       | ND       | 0.5             |
| Toluene                       | ND       | 0.5             |
| trans-1,3-Dichloropropene     | ND       | 0.5             |
| 1,1,2-Trichloroethane         | ND       | 0.5             |
| 2-Hexanone                    | ND       | 10              |
| 1,3-Dichloropropane           | ND       | 0.5             |
| Tetrachloroethene             | ND       | 0.5             |
| Dibromochloromethane          | ND       | 0.5             |
| 1,2-Dibromoethane             | ND       | 0.5             |
| Chlorobenzene                 | ND       | 0.5             |
| 1,1,1,2-Tetrachloroethane     | ND       | 0.5             |
| Ethylbenzene                  | ND       | 0.5             |
| m,p-Xylenes                   | ND<br>ND | 0.5             |
|                               | ND<br>ND | 0.5             |
| o-Xylene                      | ND<br>ND | 0.5             |
| Styrene                       | ND<br>ND | 1.0             |
| Bromoform                     |          |                 |
| Isopropylbenzene              | ND       | 0.5<br>0.5      |
| 1,1,2,2-Tetrachloroethane     | ND       | 0.5             |

J= Estimated value ND= Not Detected RL= Reporting Limit

```
Page 1 of 2
```



|                     |                 | asoline | by GC/MS  |              |
|---------------------|-----------------|---------|-----------|--------------|
|                     | 6218            |         | Location: | Hanson Radum |
| Client: LF          | R Levine Fricke |         | Prep:     | EPA 5030B    |
|                     | 1-09567-01      |         | Analysis: | EPA 8260B    |
|                     | ANK             |         | Diln Fac: | 1.000        |
|                     | 397815          |         | Batch#:   | 127594       |
|                     | ter             |         | Analyzed: | 07/25/07     |
| Units: ug           | /L              |         |           |              |
|                     |                 |         |           |              |
| Analyte             |                 | Result  |           | RL           |
| 1,2,3-Trichloroprop |                 |         |           | 0.5          |
| Propylbenzene       | ND              |         |           | 0.5          |
| Bromobenzene        | ND              |         |           | 0.5          |
| 1,3,5-Trimethylbenz |                 |         |           | 0.5          |
| 2-Chlorotoluene     | ND              |         |           | 0.5          |
| 4-Chlorotoluene     | ND              |         |           | 0.5          |
| tert-Butylbenzene   | ND              |         |           | 0.5          |
| 1,2,4-Trimethylbenz |                 |         |           | 0.5          |
| sec-Butylbenzene    | ND              |         |           | 0.5          |
| para-Isopropyl Tolu |                 |         |           | 0.5          |
| 1,3-Dichlorobenzene |                 |         |           | 0.5          |
| 1,4-Dichlorobenzene |                 |         |           | 0.5          |
| n-Butylbenzene      | ND              |         |           | 0.5          |
| 1,2-Dichlorobenzene |                 |         |           | 0.5          |
| 1,2-Dibromo-3-Chlor |                 |         |           | 0.5<br>0.5   |
| 1,2,4-Trichlorobenz |                 | 0.4 J   |           | 0.5          |
| Hexachlorobutadiene | ND              |         |           | 0.5          |
| Naphthalene         | ND              |         |           | 2.0          |
| 1,2,3-Trichlorobenz | ene ND          |         |           | 0.5          |
| Surrogate           | %REC            | Limits  |           |              |
| Dibromofluoromethan | e 93            | 80-123  |           |              |
| 1,2-Dichloroethane- |                 | 79-134  |           |              |
| Toluene-d8          | 101             | 80-120  |           |              |
| Bromofluorobenzene  | 106             | 80-122  |           |              |



| Sen                                      | ivolatile    | Organics by        | GC/MS                     |
|------------------------------------------|--------------|--------------------|---------------------------|
|                                          |              |                    |                           |
| Lab #: 196218<br>Client: LFR Levine Fric | 20           | Location:          | Hanson Radum<br>EPA 3520C |
| Project#: 001-09567-01                   | 76           | Prep:<br>Analysis: | EPA 8270C                 |
| Field ID: 3S/1E 10D8                     |              | Batch#:            | 127624                    |
| Lab ID: 196218-001                       |              | Sampled:           | 07/25/07                  |
| Matrix: Water                            |              | Received:          | 07/25/07                  |
| Units: ug/L                              |              | Prepared:          | 07/25/07                  |
| Diln Fac: 1.000                          |              | Analyzed:          | 07/26/07                  |
|                                          |              |                    |                           |
| Analyte                                  | Result<br>ND |                    | <u>PL</u><br>9.4          |
| N-Nitrosodimethylamine<br>Phenol         | ND           |                    | 9.4                       |
| bis(2-Chloroethyl)ether                  | ND           |                    | 9.4                       |
| 2-Chlorophenol                           | ND           |                    | 9.4                       |
| 1,3-Dichlorobenzene                      | ND           |                    | 9.4                       |
| 1,4-Dichlorobenzene                      | ND           |                    | 9.4                       |
| Benzyl alcohol                           | ND           |                    | 9.4                       |
| 1,2-Dichlorobenzene                      | ND           |                    | 9.4                       |
| 2-Methylphenol                           | ND           |                    | 9.4                       |
| bis(2-Chloroisopropyl) ether             | ND           |                    | 9.4                       |
| 4-Methylphenol                           | ND           |                    | 9.4                       |
| N-Nitroso-di-n-propylamine               | ND           |                    | 9.4                       |
| Hexachloroethane                         | ND           |                    | 9.4                       |
| Nitrobenzene                             | ND           |                    | 9.4                       |
| Isophorone                               | ND           |                    | 9.4                       |
| 2-Nitrophenol                            | ND           |                    | 19                        |
| 2,4-Dimethylphenol                       | ND           |                    | 9.4                       |
| Benzoic acid                             | ND           |                    | 47                        |
| bis(2-Chloroethoxy)methane               | ND           |                    | 9.4                       |
| 2,4-Dichlorophenol                       | ND           |                    | 9.4                       |
| 1,2,4-Trichlorobenzene<br>Naphthalene    | ND<br>ND     |                    | 9.4<br>9.4                |
| 4-Chloroaniline                          | ND<br>ND     |                    | 9.4                       |
| Hexachlorobutadiene                      | ND           |                    | 9.4                       |
| 4-Chloro-3-methylphenol                  | ND           |                    | 9.4                       |
| 2-Methylnaphthalene                      | ND           |                    | 9.4                       |
| Hexachlorocyclopentadiene                | ND           |                    | 19                        |
| 2,4,6-Trichlorophenol                    | ND           |                    | 9.4                       |
| 2,4,5-Trichlorophenol                    | ND           |                    | 9.4                       |
| 2-Chloronaphthalene                      | ND           |                    | 9.4                       |
| 2-Nitroaniline                           | ND           |                    | 19                        |
| Dimethylphthalate                        | ND           |                    | 9.4                       |
| Acenaphthylene                           | ND           |                    | 9.4                       |
| 2,6-Dinitrotoluene                       | ND           |                    | 9.4                       |
| 3-Nitroaniline                           | ND           |                    | 19                        |
| Acenaphthene                             | ND           |                    | 9.4                       |
| 2,4-Dinitrophenol                        | ND           |                    | 19                        |
| 4-Nitrophenol                            | ND<br>ND     |                    | 19<br>9.4                 |
| Dibenzofuran<br>2,4-Dinitrotoluene       | ND<br>ND     |                    | 9.4                       |
| Diethylphthalate                         | ND<br>ND     |                    | 9.4                       |
| Fluorene                                 | ND           |                    | 9.4                       |
| 4-Chlorophenyl-phenylether               | ND           |                    | 9.4                       |
| 4-Nitroaniline                           | ND           |                    | 19                        |
| 4,6-Dinitro-2-methylphenol               | ND           |                    | 19                        |
| N-Nitrosodiphenylamine                   | ND           |                    | 9.4                       |
| Azobenzene                               | ND           |                    | 9.4                       |
| 4-Bromophenyl-phenylether                | ND           |                    | 9.4                       |
| Hexachlorobenzene                        | ND           |                    | 9.4                       |
| Pentachlorophenol                        | ND           |                    | 19                        |
| Phenanthrene                             | ND           |                    | 9.4                       |
| Anthracene                               | ND           |                    | 9.4                       |
| Di-n-butylphthalate                      | ND           |                    | 9.4                       |
| Fluoranthene                             | ND           |                    | 9.4                       |



|                                      | 2                   | Semivol  | atile ( | Organics by           | GC/MS                |  |
|--------------------------------------|---------------------|----------|---------|-----------------------|----------------------|--|
|                                      | 196218              |          |         | Location:             | Hanson Radum         |  |
|                                      | LFR Levine Fr       | ricke    |         | Prep:                 | EPA 3520C            |  |
|                                      | 001-09567-01        |          |         | Analysis:             | EPA 8270C            |  |
|                                      | 3S/1E 10D8          |          |         | Batch#:               | 127624               |  |
|                                      | 196218-001<br>Water |          |         | Sampled:<br>Received: | 07/25/07<br>07/25/07 |  |
|                                      | uq/L                |          |         | Prepared:             | 07/25/07             |  |
|                                      | 1.000               |          |         | Analyzed:             | 07/26/07             |  |
| Dim rac.                             | 1.000               |          |         | Anaryzeu              | 01/20/01             |  |
| Analyte                              | 9                   | F        | lesult  |                       | RL                   |  |
| Pyrene                               |                     | ND       |         |                       | 9.4                  |  |
| Butylbenzylphthala                   |                     | ND       |         |                       | 9.4                  |  |
| 3,3'-Dichlorobenz:                   |                     | ND       |         |                       | 19                   |  |
| Benzo(a)anthracene                   | 9                   | ND       |         |                       | 9.4                  |  |
| Chrysene                             |                     | ND       | 0.5     |                       | 9.4                  |  |
| bis(2-Ethylhexyl)                    | phthalate           |          | 25      |                       | 9.4                  |  |
| Di-n-octylphthalat                   |                     | ND       |         |                       | 9.4                  |  |
| Benzo(b)fluoranthe                   |                     | ND       |         |                       | 9.4<br>9.4           |  |
| Benzo(k)fluoranthe                   | ene                 | ND<br>ND |         |                       | 9.4                  |  |
| Benzo(a)pyrene<br>Indeno(1,2,3-cd)py | mono                | ND<br>ND |         |                       | 9.4<br>9.4           |  |
| Dibenz(a,h)anthrad                   |                     | ND       |         |                       | 9.4                  |  |
| Benzo(g,h,i)peryle                   |                     | ND       |         |                       | 9.4                  |  |
|                                      |                     | ND       |         |                       | <b>J</b> . 1         |  |
| Surrogat                             | te                  | %REC     | Limits  |                       |                      |  |
| 2-Fluorophenol                       |                     | 68       | 40-120  |                       |                      |  |
| Phenol-d5                            | _                   | 68       | 38-120  |                       |                      |  |
| 2,4,6-Tribromopher                   | nol                 | 85       | 40-120  |                       |                      |  |
| Nitrobenzene-d5                      |                     | 69       | 48-120  |                       |                      |  |
| 2-Fluorobiphenyl                     |                     | 75       | 50-120  |                       |                      |  |
| Terphenyl-d14                        |                     | 69       | 23-120  |                       |                      |  |



| Lab #:         196218         Location:         Hanson Radum           Client:         LFR Levine Fricke         Prep:         EPA 8270C           Field ID:         13/1E 1003         Batch#:         12/624           Lab LI:         14810-002         Samired:         07/25/07           Wits:         Wet20-002         Samired:         07/25/07           Diln Fac:         1.000         Analyzed:         07/25/07           Mutrosodimethylamine         ND         9.4           Phenol         ND         3.4           Diln Fac:         1.000         Analyzed:         07/25/07           Mairs:         0.00         3.4         07/25/07           Diln Fac:         1.000         9.4         07/25/07           Mairs:         ND         9.4         07/25/07           Diln Fac:         ND         9.4         07/25/07           Samirs:         ND         9.4         07/25/07           Diln Fac:         ND         9.4         07/25/07           Samirs:         ND         9.4         07/25/07           Samirs:         ND         9.4         07/25/07           Samirs:         ND         9.4         07/25/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | Semivolatile | Organics by | GC/MS    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|-------------|----------|
| Client:         LFR Levine Fricke         Prep:         EPA 8270C           Field ID:         35/1E 1003         BatChH:         127624           Lab ID:         196218-002         Sampled:         07/25/07           Matrix:         Water         Received:         07/25/07           Matrix:         Water         Received:         07/26/07           Diles:         ug/L         Prepared:         07/26/07           Mitrosodimethylamine         ND         9.4           Dis[2-Chloroethyl]ether         ND         9.4           2-Chlorophenal         ND         9.4           1.3-Dichlorobenzene         ND         9.4           2-Chlorosoprophil         ND         9.4           1.2-Dichlorobenzene         ND         9.4           N'NTtrobenzene         ND         9.4           N'Nobis(2-Chlorosthane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |              | -           |          |
| Project#:         001-09567-01         Analysis:         PPA 8270C           Lab ID:         195218-002         Sampled:         07/25/07           Matrix:         Water         Received:         07/25/07           Units:         ug/L         Prepared:         07/25/07           Din Fac:         1.000         Analyzei:         07/25/07           Nutrosodimethylamine         ND         9.4           Phenol         ND         9.4           Precodimethylamine         ND         9.4           1.3-Dichorobenzene         ND         9.4           1.4-Dichlorobenzene         ND         9.4           2-Mitrophenol         ND         9.4           2-Nitrosodi-n-propylamine         ND         9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | ricko        |             |          |
| Field ID:         38/1E 10N3         Batchi:         127624           Lab ID:         196218-002         Sampled:         07/25/07           Matrix:         Water         Received:         07/25/07           Diln Fac:         1.000         Analyzed:         07/25/07           Diln Fac:         1.000         Analyzed:         07/25/07           Mitrosodimethylamine         ND         9.4           Dis(2-Chloroethyl)ether         ND         9.4           1.3-Dichlorobenzene         ND         9.4           1.4-Dichlorobenzene         ND         9.4           1.2-Dichlorobenzene         ND         9.4           1.4-Dichlorobenzene         ND         9.4           1.2-Dichlorobenzene         ND         9.4           1.4-Dichlorobenzene         ND         9.4           1.4-Dichlorobenzene         ND         9.4           2-Methylphenol         ND         9.4           Matrix:         ND         9.4           1.2-Dichlorobend:         ND         9.4           2-Methylphenol         ND         9.4           2-Methylphenol         ND         9.4           2-Apphenol         ND         9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | LICKE        |             |          |
| Lab ID:         196218-002         Sampled:         07/25/07           Matrix:         Water         Received:         07/25/07           Diln Fac:         1.000         Analyzed:         07/25/07           M-Nitrosodimethylamine         ND         9.4           Diln Fac:         ND         9.4           Did(2-Chloroethyl)ether         ND         9.4           2-Chlorophenol         ND         9.4           1.4-Dichlorobenzene         ND         9.4           Benzyl alcohol         ND         9.4           Benzyl alcohol         ND         9.4           1.4-Dichlorobenzene         ND         9.4           V=Methylphenol         ND         9.4           V=Methylphenol         ND         9.4           Hexachloroethane         ND         9.4           Nitrobenzene         ND         9.4           Nitrobenzene         ND         9.4           Nutrobenzene         ND         9.4           2-Methylphenol         ND         9.4           2-Methylphenol         ND         9.4           1.2,0-FTIchloroethane         ND         9.4           2-Altrophenol         ND         9.4 <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |              |             |          |
| Units:         ug/L         Prepared:         07/25/07           Analyte         Result         Rt           N-Ntrosodimethylamine         ND         9.4           Denote         ND         9.4           2-Chlorophenol         ND         9.4           1.3-Dichlorobenzene         ND         9.4           1.4-Dichlorobenzene         ND         9.4           2-Machylphenol         ND         9.4           -4-Machylphenol         ND         9.4           -4-Methylphenol         ND         9.4           -Machylphenol         ND         9.4           -Machylphenol         ND         9.4           Nitroberzene         ND         9.4           Resacic acid         ND         9.4           Resacic acid         ND         9.4           2.4-Dichlorophenol         ND         9.4           2.4-Dichlorophenol         ND         9.4           2.4-Dichlorophenol         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lab ID: 196218-002         |              |             | 07/25/07 |
| Diln Fac:         1.000         Analyzed:         07/26/07           Analyte         Result         Rt           Phenol         ND         9.4           Dis(2-Chlorothyl)ether         ND         9.4           1,3-Dichlorobenzene         ND         9.4           1,3-Dichlorobenzene         ND         9.4           1,3-Dichlorobenzene         ND         9.4           1,2-Dichlorobenzene         ND         9.4           2-Methylphenol         ND         9.4           2-Methylphenol         ND         9.4           Mirobenzene         ND         9.4           2-Methylphenol         ND         9.4           Nirobenzene         ND         9.4           Mirobenzene         ND         9.4           Nirobenzene         ND         9.4           Sephorone         ND         9.4           2-Nirophenol         ND         9.4           2-Abitohrophenol         ND         9.4           2.4-Dichlorobenzene         ND         9.4           2.4-Dichlorophenol         ND         9.4           2.4-Dichlorophenol         ND         9.4           2.4-Dichlorophenol         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |              |             |          |
| Analyte         Result         RL           N-Nitrosodimethylamine         ND         9.4           Dhenol         ND         9.4           2-Chlorophenol         ND         9.4           2-Chlorophenol         ND         9.4           1,4-Dichlorobenzene         ND         9.4           1,2-Dichlorobenzene         ND         9.4           1,2-Dichloroborgorpyl) ether         ND         9.4           Mitrobenzene         ND         9.4           M-Nitroso-di-n-propylamine         ND         9.4           Nitrobenzene         ND         9.4           Z-Abinophenol         ND         9.4           Benzoic acid         ND         9.4           Z-A-Dimophenol         ND         9.4           Z, 4-Dichlorophenol         ND         9.4           Z, 4-Dichlorophenol         ND         9.4           Z, 4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |              |             |          |
| N.NitrosodimethylamineND9.4PhenolND9.4JaclarophenolND9.42-ChlorophenolND9.41,3-DichlorobenzeneND9.41,2-DichlorobenzeneND9.41,2-DichlorobenzeneND9.41,2-DichlorobenzeneND9.41,2-DichlorobenzeneND9.41,2-DichlorobenzeneND9.42-MethylphenolND9.44-MethylphenolND9.44-MethylphenolND9.4NutrobenzeneND9.4IsophoroneND9.42-NitrophenolND9.42-NitrophenolND9.42-NitrophenolND9.42-NitrophenolND9.42-AltorophenolND9.42-AltorophenolND9.42,4-DimethylphenolND9.42,4-DimethylphenolND9.42,4-DirocohoreneeND9.42,4-TrichlorophenzeneND9.41,2,2-TrichlorophenzeneND9.42,4-TrichlorophenzeneND9.42,4-TrichlorophenzeneND9.44-ChloroanilineND9.44-ChloroanilineND9.42,4-TrichlorophenzeneND9.42,4-TrichlorophenzeneND9.42,4-TrichlorophenzeneND9.42,4-TrichlorophenzeneND9.42,4-TrichlorophenzeneND9.42,4-Tric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Diln Fac: 1.000            |              | Analyzed:   | 07/26/07 |
| N.Nitrosodimethylamine         ND         9.4           Phenol         ND         9.4           2-Chlorophenol         ND         9.4           2-Chlorophenol         ND         9.4           1,3-Dichlorobenzene         ND         9.4           1,2-Dichlorobenzene         ND         9.4           1,2-Dichlorobenzene         ND         9.4           1,2-Dichlorobenzene         ND         9.4           1,2-Dichlorobenzene         ND         9.4           2-Methylphenol         ND         9.4           Methylphenol         ND         9.4           Methylphenol         ND         9.4           Methylphenol         ND         9.4           Hexachloroethane         ND         9.4           Nitrobenzene         ND         9.4           Z-Mitrophenol         ND         9.4           Z-Abitorobenzene         ND         9.4           Z-Arbitorobenzene         ND         9.4           Z-Arbitorobenzene         ND         9.4           Z-Arbitorobenzene         ND         9.4           Z-Arbitorobenzene         ND         9.4           Z-Arbitolorobenzene         ND         9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analyte                    | Result       |             | RL       |
| bis(2-Chloroethyl)ether         ND         9.4           2-Chlorophenol         ND         9.4           1,3-Dichlorobenzene         ND         9.4           Benzyl alcohol         ND         9.4           Benzyl alcohol         ND         9.4           2-Methylphenol         ND         9.4           2-Methylphenol         ND         9.4           4-Methylphenol         ND         9.4           4-Methylphenol         ND         9.4           Hexachloroethane         ND         9.4           Hexachloroethane         ND         9.4           Hexachloroethane         ND         9.4           Z-Nicrophenol         ND         9.4           Z-Nicrophenol         ND         9.4           Parolic acid         ND         9.4           Parolic acid         ND         9.4           2.4-Dirmethylphenol         ND         9.4           1,2,4-Trichlorobenzene         ND         9.4           1,2,4-Trichlorobenzene         ND         9.4           1,2,4-Trichlorophenol         ND         9.4           1,2,4-Frichlorophenol         ND         9.4           4-Chloroexalilne         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |              |             | 9.4      |
| 2-chlorophenol       ND       9.4         1, 3-Dichlorobenzene       ND       9.4         1, 4-Dichlorobenzene       ND       9.4         2-bichlorobenzene       ND       9.4         2-wethylphenol       ND       9.4         2-Methylphenol       ND       9.4         4-Methylphenol       ND       9.4         4-Methylphenol       ND       9.4         Molicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophylicitosophyl |                            |              |             | 9.4      |
| 1,3-DichlorobenzeneND9.41,4-DichlorobenzeneND9.4Benzyl alcoholND9.41,2-DichlorobenzeneND9.42-MethylphenolND9.44-MethylphenolND9.44-MethylphenolND9.4MenzoldanND9.44-MethylphenolND9.4MitrobenzeneND9.4HexachloroethaneND9.4HexachloroethaneND9.4JophoroneND9.4Z-NitrophenolND9.4Benzolia ocidND9.4Barolia ocidND9.42,4-DichlorobenzeneND9.42,4-DichlorobenzeneND9.41,2,4-TrichlorobenzeneND9.4NaphthaleneND9.44-ChloroanilineND9.4HexachlorobutadieneND9.4HexachloroputadieneND9.4HexachloropothalND9.4A-ChloroanilineND9.4HexachloroputadieneND9.4A-ChloroanilineND9.4HexachloropothalND9.4A-GoraphthaleneND9.4A-GoraphthaleneND9.4A-GoraphthaleneND9.4A-ChloronaphthaleneND9.4A-GoraphthaleneND9.4A-GoraphthaleneND9.4A-GoraphthaleneND9.4A-GoraphthaleneND9.4 <t< td=""><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |              |             |          |
| 1 (4-DichlorobenzeneND9.4Benzyl alcoholND9.41,2-DichlorobenzeneND9.42-MethylphenolND9.4bis(2-Chloroisopropyl) etherND9.44-MethylphenolND9.4N-Nitroso-di-n-propylamineND9.4HexachloroethaneND9.4NitrobenzeneND9.4IsophoroneND9.42-NitrophenolND9.4Benzoic acidND9.42.4-DimethylphenolND9.42.4-DimethylphenolND9.42.4-DichlorophenolND9.41, 2, 4-TrichlorobenzeneND9.4NaphthaleneND9.44-ChlorophenolND9.42.4-DichlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.42.4-FrichlorophenolND9.42.4-FrichlorophenolND9.42.4-FrichlorophenolND9.42.4-S-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42.4.6-FrichlorophenolND9.42.4.6-FrichlorophenolND9.42.4.6-FrichlorophenolND9.42.4.6-FrichlorophenolND9.42.4.6-FrichlorophenolND9.42.4.6-FrichlorophenolND9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |              |             |          |
| Bérzyl alcoholND9.41,2-DichloroberzeneND9.42-WethylphenolND9.4bis(2-Chloroisopropyl) etherND9.44-MethylphenolND9.4N.Nitroso-di-n-propylamineND9.4NexchloroethaneND9.4IsophoroneND9.42.4-DimethylphenolND9.42.4-DimethylphenolND9.42.4-DichlorophenolND9.42.4-DichlorophenolND9.42.4-DichlorophenolND9.41.2.4-TrichlorophenolND9.44-ChloroethoxylmethaneND9.44-ChloroethoxylmethaneND9.44-ChloroethoxylmethaneND9.42.4-DichlorophenolND9.44-ChloroethoxylmethaneND9.44-ChlorophenolND9.42.4-DichlorophenolND9.44-ChloroothutadieneND9.44-ChloroothutadieneND9.42.4-DichlorophenolND9.42.4-DichlorophenolND9.42.4-DichlorophenolND9.42.4-DichlorophenolND9.42.4-DichlorophenolND9.42.4-DichlorophenolND9.42.4-DichlorophenolND9.42.4-DichlorophenolND9.42.4-DichlorophenolND9.42.4-ChloronilineND9.42.4-StrichlorophenolND9.42.4-Strichl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |              |             |          |
| 1,2-DichlorobenzeneND9.42-MethylphenolND9.4bis(2-Chloroisopropyl) etherND9.44-MethylphenolND9.44-MethylphenolND9.4NNitrobenzeneND9.4HexachloroethaneND9.4IsophoroneND9.42-NitrophenolND9.4Benzoic acidND9.42,4-DimethylphenolND9.42,4-DichlorophenolND9.42,4-DichlorophenolND9.41,2,4-TrichlorobenzeneND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.42,4-5-TrichlorophenolND9.42,4-6-TrichlorophenolND9.42,4-6-TrichlorophenolND9.42,4-6-TrichlorophenolND9.42,6-DinitrotolueneND9.42,6-DinitrotolueneND9.42,6-DinitrotolueneND9.42,6-DinitrotolueneND9.42,6-DinitrotolueneND9.42,6-DinitrotolueneND9.42,6-DinitrotolueneND9.42,6-DinitrotolueneND9.42,4-DinitrophenolND9.42,4-Dinit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |              |             |          |
| 2-MethylphenolND9.44-MethylphenolND9.44-MethylphenolND9.4N-Nitroso-di-n-propylamineND9.4NexchloroethaneND9.4NitrobenzeneND9.4IsophoroneND9.42.4-DimethylphenolND9.42.4-DimethylphenolND9.42.4-TimethylphenolND9.42.4-DichorophenolND9.41.2.4-TrichlorobenzeneND9.42.4-DichorophenolND9.41.2.4-TrichlorobenzeneND9.44-Chloro-a-methylphenolND9.44-Chloro-alineND9.44-Chloro-alineND9.44-Chloro-alineND9.44-Chloro-alineND9.44-Chloro-alineND9.44-Chloro-alineND9.42.4.5-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42.6-DinitroolueneND9.42.6-DinitroolueneND9.42.6-DinitroolueneND9.42.6-DinitroolueneND9.42.6-DinitroolueneND9.42.6-DinitroolueneND9.42.6-DinitroolueneND9.42.6-DinitroolueneND9.42.6-DinitroolueneND9.42.6-DinitroolueneND9.4<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |              |             |          |
| bis(2-Chloroisopropyl) etherND9.44-MethylphenolND9.4N-Nitroso-di-n-propylamineND9.4HexachloroethaneND9.4HexachloroethaneND9.4IsophoroneND9.4IsophoroneND9.42-NitrophenolND9.42.4-DinethylphenolND9.42.4-DichlorophenolND9.41.2,4-TrichlorobenzeneND9.41.2,4-TrichlorobenzeneND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.42,4-DintorophenolND9.42,4-DintorophenolND9.42,4-DintorophenolND9.42,4-StrichlorophenolND9.42,4-StrichlorophenolND9.42,4-StrichlorophenolND9.42,4-StrichlorophenolND9.42,4-DinitrophenolND9.42,4-DinitrophenolND9.42,4-DinitrophenolND9.42,4-DinitrophenolND9.42,4-DinitrophenolND9.42,4-DinitrophenolND9.42,4-DinitrophenolND9.42,4-Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |              |             |          |
| 4-Methylphenol9.4N-Nitroso-di-n-propylamineND9.4N-Nitroso-di-n-propylamineND9.4NitrobenzeneND9.4IsophoroneND9.42.4-DimethylphenolND9.4Benzoic acidND9.4MaphingND9.42.4-DinethylphenolND9.42.4-DinethylphenolND9.42.4-DichlorophenolND9.42.4-DichlorophenolND9.41.2,4-TrichlorobenzeneND9.4NaphthaleneND9.44-Chloro-3-methylphenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.42.4.5-TrichlorophenolND9.42.4.6-TrichlorophenolND9.42.4.6-TrichlorophenolND9.42.4.6-TrichlorophenolND9.42.6-DinitrotolueneND9.42.6-DinitrotolueneND9.42.6-DinitrotolueneND9.43-NitroanilineND19DienzofuranND9.42.4-DinitrophenolND19DibenzoruanND9.42.4.6-TrichlorophenolND19DibenzoruanND9.43-NitroanilineND9.42.4-DinitrophenolND <t< td=""><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |              |             |          |
| N-Nitrôso-di-n-propylamineND9.4HexachloroethaneND9.4NitrobenzeneND9.4IsophoroneND9.4IsophoroneND9.42-NitrophenolND9.42-AltrophenolND9.42.4-Dictoroethoxy)methaneND9.42.4-DicthlorophenolND9.42.4-TrichlorobenzeneND9.41.2,4-TrichlorobenzeneND9.44-ChloroanilineND9.4HexachlorobutadieneND9.44-Chloro-3-methylphenolND9.42.4,6-TrichlorophenolND9.42.4,6-TrichlorophenolND9.42.4,6-TrichlorophenolND9.42.4,6-TrichlorophenolND9.42.4,6-TrichlorophenolND9.42.4,6-TrichlorophenolND9.42.4,6-TrichlorophenolND9.42.4,6-TrichlorophenolND9.42.4,6-TrichlorophenolND9.42.4,6-TrichlorophenolND9.42.4,6-TrichlorophenolND9.42.4,6-TrichlorophenolND9.42.4,6-TrichlorophenolND9.42.4,6-TrichlorophenolND9.42.4,6-TrichlorophenolND9.42.4,6-TrichlorophenolND9.42.4,6-TrichlorophenolND9.42.4,6-TrichlorophenolND9.42.4,6-TrichlorophenolND9.42.4,6-TrichlorophenolND <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |              |             |          |
| HexachloroethaneND9.4NitrobenzeneND9.4IsophoroneND9.42.A-DimethylphenolND192.4-DimethylphenolND9.4Benzoic acidND9.42.4-DichlorophenolND9.42.4-DichlorophenolND9.41.2.4-TrichlorophenolND9.41.2.4-TrichlorobenzeneND9.4NaphthaleneND9.44-Chloro-3-methylphenolND9.42-MethylnaphthaleneND9.44-Chloro-3-methylphenolND9.42-MethylnaphthaleneND9.42-MethylnaphthaleneND9.42-MethylnaphthaleneND9.42-MethylnaphthaleneND9.42-MethylnaphthaleneND9.42-A-DironaphthaleneND9.42.4.5-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42.4.5-TrichlorophenolND9.4<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N-Nitroso-di-n-propylamine | ND           |             |          |
| IsophoroneND9.42-NitrophenolND192.4-DimethylphenolND9.4Benzoic acidND47Benzoic acidND9.42.4-DichlorophenolND9.41.2.4-TrichlorobenzeneND9.4NaphthaleneND9.44-ChloroanilineND9.44-Chloro-3-methylphenolND9.44-chlorobenzeneND9.44-chloro-3-methylphenolND9.42.4.5-TrichlorophenolND9.42.4.6-TrichlorophenolND9.42.4.6-TrichlorophenolND9.42.4.6-TrichlorophenolND9.42.4.6-TrichlorophenolND9.42.4.6-TrichlorophenolND9.42.4.6-TrichlorophenolND9.42.4.6-TrichlorophenolND9.42.4.6-TrichlorophenolND9.42.6-DinitrotolueneND9.42.6-DinitrotolueneND9.42.6-DinitrotolueneND9.42.6-DinitrotolueneND94-NitroanilineND19PiebenzoluanND9.42.4-DinitrotolueneND9.42.4-DinitrotolueneND9.42.4-DinitrotolueneND9.42.4-DinitrotolueneND9.42.4-DinitrotolueneND9.42.4-DinitrotolueneND9.42.4-DinitrotolueneND9.42.4-DinitrotolueneND <t< td=""><td>Hexachloroethane</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hexachloroethane           |              |             |          |
| 2-NitrophenolND192,4-DimethylphenolND9.4Benzoic acidND47bis(2-Chloroethoxy)methaneND9.42,4-DichlorophenolND9.41,2,4-TrichlorobenzeneND9.4NaphthaleneND9.44-ChloroanilineND9.4HexachlorobutadieneND9.44-Chloro-3-methylphenolND9.42,4,5-TrichlorophenolND9.4HexachlorocyclopentadieneND9.42,4,6-TrichlorophenolND9.42,4,6-TrichlorophenolND9.42,4,5-TrichlorophenolND9.42,4,5-TrichlorophenolND9.42,2-ChloronaphthaleneND9.42,2-ChloronaphthaleneND9.42,2-ChloronaphthaleneND9.42,2-ChloronaphthaleneND9.42,2-ChloronaphthaleneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND19AcenaphthylenND19AcenaphtheneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.44-NitrophenolND9.44-NitrophenolND9.44-Nitrophenol9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenylet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |              |             |          |
| 2,4-DimethylphenolND9.4Benzoic acidND47Benzoic acidND9.42,4-DichlorophenolND9.41,2,4-TrichlorobenzeneND9.4NaphthaleneND9.4A-ChloroanilineND9.4HexachlorobutadieneND9.4-Chloro-3-methylphenolND9.44-Chloro-3-methylphenolND9.42-MethylnaphthaleneND9.42-MethylnaphthaleneND9.42-AchlorophenolND9.42-AchlorophenolND9.42-AchlorophenolND9.42-AchlorophenolND9.42-AchlorophenolND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |              |             |          |
| Benzoic acidND47bis(2-Chloroethoxy)methaneND9.42,4-DichlorophenolND9.41,2,4-TrichlorobenzeneND9.4NaphthaleneND9.44-ChloroanilineND9.4HexachlorobutadieneND9.44-Chloro-3-methylphenolND9.42-MethylnaphthaleneND9.42-MethylnaphthaleneND9.42-MethylnaphthaleneND9.42-MethylnaphthaleneND9.42,4,6-TrichlorophenolND9.42,4,5-TrichlorophenolND9.42-NitroanilineND9.42-NitroanilineND9.42,6-DinitrotolueneND9.43-NitroanilineND9.42,4-DinitrotolueneND9.44-AcenaphthyleneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.44-ChlorophenolND19DibenzofuranND9.44-NitrophenolND9.42,4-DinitrotolueneND9.44-NitrophenolND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |              |             |          |
| bis(2-Chloroethoxy)methaneND9.42,4-DichlorophenolND9.41,2,4-TrichlorobenzeneND9.4NaphthaleneND9.44-ChloroanilineND9.44-Chloro-3-methylphenolND9.42-MethylnaphthaleneND9.44-Chloro-3-methylphenolND9.42-MethylnaphthaleneND9.42-MethylnaphthaleneND9.42-MethylnaphthaleneND9.42-MethylnaphthaleneND9.42-AftoronzoptophenolND9.42,4,5-TrichlorophenolND9.42-ChloronaphthaleneND9.42-NitroanilineND9.42-NitroanilineND9.43-NitroanilineND9.4AcenaphthyleneND9.42,6-DinitrotolueneND9.43-NitrophenolND19AcenaphtheneND9.42,4-DinitrophenolND19DibenzofuranND19DibenzofuranND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND9.44-Chlorophenyl-phenyletherND9.44-ChlorophenolND9.44-Chlorophenol9.44-Chlorophenyl-phenyletherND<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |              |             |          |
| 2,4-DichlorophenolND9.41,2,4-TrichlorobenzeneND9.4NaphthaleneND9.44-ChloroanilineND9.4HexachlorobutadieneND9.44-Chloro-3-methylphenolND9.42-MethylnaphthaleneND9.4HexachlorocyclopentadieneND9.42,4,6-TrichlorophenolND9.42,4,6-TrichlorophenolND9.42-ChloronaphthaleneND9.42-NitroanilineND9.42-NitroanilineND9.42,6-DinitrotolueneND9.42,6-DinitrotolueneND9.42,4-DinitrophenolND9.42,6-DinitrotolueneND9.42,4-DinitrophenolND9.42,4-DinitrophenolND9.42,6-DinitrotolueneND9.42,4-DinitrophenolND19JibbenzofuranND19JibenzofuranND9.42,4-DinitrotolueneND9.44-NitrophenolND9.44,6-DinitrotolueneND9.44,6-DinitrotolueneND9.44,6-DinitrotolueneND9.44,6-DinitrotolueneND9.44,6-Dinitro-2-methylphenolND19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |              |             |          |
| 1,2,4-TrichlorobenzeneND9.4NaphthaleneND9.4A-ChloroanilineND9.4HexachlorobutadieneND9.44-Chloro-3-methylphenolND9.42-MethylnaphthaleneND9.4HexachlorocyclopentadieneND9.42.4,6-TrichlorophenolND9.42-chloronaphthaleneND9.42-chloronaphthaleneND9.42-chloronaphthaleneND9.42-chloronaphthaleneND9.42-chloronaphthaleneND9.42-chloronaphthaleneND9.42-chloronaphthaleneND9.42-chloronaphthaleneND9.42-chloronaphthaleneND9.42-chloronaphthaleneND9.42-chloronaphthaleneND9.42-chloronaphthaleneND9.42-chloronaphthaleneND9.42-chloronaphthaleneND9.42-chloronaphthaleneND9.42-chloronaphthaleneND9.42-chloronaphthaleneND9.42-chloronaphthaleneND9.42-chlorophenolND19DibenzofuranND9.42-d-DinitrotolueneND9.42-d-DinitrotolueneND9.42-d-DinitrotolueneND9.42-d-Dinophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND19<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |              |             |          |
| NaphthaleneND9.44-ChloroanilineND9.44-Chloro-3-methylphenolND9.44-Chloro-3-methylphenolND9.42-MethylnaphthaleneND9.4HexachlorocyclopentadieneND9.42,4,6-TrichlorophenolND9.42,4,5-TrichlorophenolND9.42-ChloronaphthaleneND9.42-NitroanilineND9.42-NitroanilineND9.42,6-DinitrotolueneND9.42,6-DinitrotolueneND9.42,6-DinitrophenolND9.42,6-DinitrotolueneND9.42,4-DinitrophenolND19DimethylphthalateND9.42,4-DinitrophenolND194-NitrophenolND194-NitrophenolND9.42,4-DinitrotolueneND9.44-NitrophenolND9.44-NitrophenolND9.44-NitrotolueneND9.44-NitrotolueneND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND19<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |              |             |          |
| HexachlorobutadieneND9.44-Chloro-3-methylphenolND9.42-MethylnaphthaleneND9.42-MethylnaphthaleneND192,4,6-TrichlorophenolND9.42,4,6-TrichlorophenolND9.42,4,5-TrichlorophenolND9.42-ChloronaphthaleneND9.42-NitroanilineND9.42-NitroanilineND9.42-NitroanilineND9.42,6-DinitrotolueneND9.43-NitroanilineND19AcenaphtheneND9.42,4-DinitrophenolND19AcenaphtheneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND19DibenzofuranND19DibenzofuranND9.42,4-ChlorophenolND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND9.44-NitrozohueneND9.41919109.4109.41111121213131414151416ND9.41719181919191919101911191219131914191519161017 <td< td=""><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |              |             |          |
| 4-Chloro-3-methylphenolND9.42-MethylnaphthaleneND9.4HexachlorocyclopentadieneND192,4,6-TrichlorophenolND9.42,4,5-TrichlorophenolND9.42-ChloronaphthaleneND9.42-NitroanilineND19DimethylphthalateND9.42,6-DinitrotolueneND9.43-NitroanilineND19AcenaphtheneND9.42,4-DinitrophenolND9.42,6-DinitrotolueneND19AcenaphtheneND19AcenaphtheneND19AcenaphtheneND19AcenaphtheneND19AcenaphtheneND19JibenzofuranND9.42,4-DinitrotolueneND9.44-NitrophenolND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND194,6-Dinitro-2-methylphenolND19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | ND           |             | 9.4      |
| 2-MethylnaphthaleneND9.4HexachlorocyclopentadieneND192,4,6-TrichlorophenolND9.42,4,5-TrichlorophenolND9.42-ChloronaphthaleneND9.42-NitroanilineND19DimethylphthalateND9.4AcenaphthyleneND9.42,6-DinitrotolueneND9.42,6-DinitrotolueneND9.43-NitroanilineND19AcenaphtheneND9.42,4-DinitrophenolND19AcenaphtheneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.44-NitrophenolND19DibenzofuranND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.44-NitrophenolND9.44-NitroonilineND9.4FluoreneND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND194,6-Dinitro-2-methylphenolND19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |              |             |          |
| HexachlorocyclopentadieneND192,4,6-TrichlorophenolND9.42,4,5-TrichlorophenolND9.42-ChloronaphthaleneND9.42-NitroanilineND19DimethylphthalateND9.4AcenaphthyleneND9.42,6-DinitrotolueneND9.43-NitroanilineND9.42,4-DinitrotolueneND9.42,4-DinitrophenolND19AcenaphtheneND19AcenaphtheneND194-NitrophenolND19DibenzofuranND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.44-NitrophenolND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Dinitro-2-methylphenolND19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |              |             |          |
| 2,4,6-TrichlorophenolND9.42,4,5-TrichlorophenolND9.42-ChloronaphtaleneND9.42-NitroanilineND19DimethylphthalateND9.4AcenaphthyleneND9.42,6-DinitrotolueneND9.43-NitroanilineND19AcenaphtheneND9.42,4-DinitrotolueneND9.43-NitroanilineND19AcenaphtheneND19AcenaphtheneND194-NitrophenolND19DibenzofuranND9.42,4-DinitrotolueneND9.44.4-DinitrotolueneND9.44.4-NitrophenolND9.44.6-DinitrotolueneND9.44.6-DinitrotolueneND9.44.6-DinitrotolueneND9.44.6-DinitrotolueneND9.44.6-Dinitro-2-methylphenolND19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |              |             |          |
| 2,4,5-TrichlorophenolND9.42-ChloronaphthaleneND9.42-NitroanilineND19DimethylphthalateND9.4AcenaphthyleneND9.42,6-DinitrotolueneND9.43-NitroanilineND19AcenaphtheneND19AcenaphtheneND19AcenaphtheneND19AcenaphtheneND19J-NitrophenolND19DibenzofuranND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.44-NitrophenolND9.4J-AchiltereND9.44.6-DinitrotolueneND9.44-NitroanilineND9.44-NitroanilineND9.44-NitroanilineND9.44-NitroanilineND194,6-Dinitro-2-methylphenolND19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |              |             |          |
| 2-ChloronaphthaleneND9.42-NitroanilineND19DimethylphthalateND9.4AcenaphthyleneND9.42,6-DinitrotolueneND9.43-NitroanilineND19AcenaphtheneND9.42,4-DinitrophenolND194-NitrophenolND19DibenzofuranND19DiethylphthalateND9.42,4-DinitrotolueneND9.44-NitrophenolND9.44,4-DinitrotolueneND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44,6-Dinitro-2-methylphenolND19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |              |             |          |
| 2-NitroanilineND19DimethylphthalateND9.4AcenaphthyleneND9.42,6-DinitrotolueneND9.43-NitroanilineND19AcenaphtheneND9.42,4-DinitrophenolND194-NitrophenolND19DibenzofuranND9.42,4-DinitrotolueneND9.4JitrotolueneND9.4JitrotolueneND9.4JitrotolueneND9.4JitrophenolND9.4JitrotolueneND9.4JitrophenylphthalateND9.4FluoreneND9.44-Chlorophenyl-phenyletherND9.44,6-Dinitro-2-methylphenolND19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |              |             |          |
| DimethylphthalateND9.4AcenaphthyleneND9.42,6-DinitrotolueneND9.43-NitroanilineND19AcenaphtheneND9.42,4-DinitrophenolND194-NitrophenolND19DibenzofuranND9.42,4-DinitrotolueneND9.4HyphthalateND9.4JethylphthalateND9.4FluoreneND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND9.44-NitroanilineND194,6-Dinitro-2-methylphenolND19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |              |             |          |
| AcenaphthyleneND9.42,6-DinitrotolueneND9.43-NitroanilineND19AcenaphtheneND9.42,4-DinitrophenolND194-NitrophenolND19DibenzofuranND9.42,4-DinitrotolueneND9.4DiethylphthalateND9.4FluoreneND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND194,6-Dinitro-2-methylphenolND19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |              |             |          |
| 2,6-DinitrotolueneND9.43-NitroanilineND19AcenaphtheneND9.42,4-DinitrophenolND194-NitrophenolND19DibenzofuranND9.42,4-DinitrotolueneND9.4DiethylphthalateND9.4FluoreneND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND194,6-Dinitro-2-methylphenolND19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | ND           |             | 9.4      |
| AcenaphtheneND9.42,4-DinitrophenolND194-NitrophenolND19DibenzofuranND9.42,4-DinitrotolueneND9.4DiethylphthalateND9.4FluoreneND9.44-Chlorophenyl-phenyletherND9.44.NitroanilineND194,6-Dinitro-2-methylphenolND19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,6-Dinitrotoluene         |              |             |          |
| 2,4-DinitrophenolND194-NitrophenolND19DibenzofuranND9.42,4-DinitrotolueneND9.4DiethylphthalateND9.4FluoreneND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND194,6-Dinitro-2-methylphenolND19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |              |             |          |
| 4-NitrophenolND19DibenzofuranND9.42,4-DinitrotolueneND9.4DiethylphthalateND9.4FluoreneND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND194,6-Dinitro-2-methylphenolND19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |              |             |          |
| DibenzofuranND9.42,4-DinitrotolueneND9.4DiethylphthalateND9.4FluoreneND9.44-Chlorophenyl-phenyletherND9.44. AnitroanilineND194,6-Dinitro-2-methylphenolND19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |              |             |          |
| 2,4-DinitrotolueneND9.4DiethylphthalateND9.4FluoreneND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND194,6-Dinitro-2-methylphenolND19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |              |             | 9 4      |
| DiethylphthalateND9.4FluoreneND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND194,6-Dinitro-2-methylphenolND19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |              |             |          |
| FluoreneND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND194,6-Dinitro-2-methylphenolND19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |              |             |          |
| 4-Chlorophenyl-phenyletherND9.44-NitroanilineND194,6-Dinitro-2-methylphenolND19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fluorene                   |              |             | 9.4      |
| 4,6-Dinitro-2-methylphenol ND 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-Chlorophenyl-phenylether | ND           |             | 9.4      |
| 4,6-Dinitro-2-methylphenol ND 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-Nitroaniline             |              |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,6-Dinitro-2-methylphenol |              |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N-Nitrosodiphenylamine     | ND           |             | 9.4      |
| Azobenzene ND 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |              |             |          |
| 4-Bromophenyl-phenyletherND9.4HexachlorobenzeneND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hevachlorobenzono          |              |             |          |
| Pentachlorophenol ND 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |              |             |          |
| Phenanthrene ND 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |              |             |          |
| Anthracene ND 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |              |             |          |
| Di-n-butylphthalate ND 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |              |             |          |
| Fluoranthene ND 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | ND           |             |          |



|                                     | Semivolatile           | Organics by | GC/MS        |  |
|-------------------------------------|------------------------|-------------|--------------|--|
| Lab #: 196218                       |                        | Location:   | Hanson Radum |  |
|                                     | vine Fricke            | Prep:       | EPA 3520C    |  |
|                                     | 567-01                 | Analysis:   | EPA 8270C    |  |
| Field ID: 3S/1E                     |                        | Batch#:     | 127624       |  |
| Lab ID: 196218                      | -002                   | Sampled     | 07/25/07     |  |
| Matrix: Water                       |                        | Received:   | 07/25/07     |  |
| Units: ug/L                         |                        | Prepared:   | 07/25/07     |  |
| Diln Fac: 1.000                     |                        | Analyzed:   | 07/26/07     |  |
| Analyte                             | Result                 |             | RL           |  |
| Pyrene                              | ND                     |             | 9.4          |  |
| Butylbenzylphthalate                | ND                     |             | 9.4          |  |
| 3,3 <sup>°</sup> -Dichlorobenzidine | ND                     |             | 19           |  |
| Benzo(a)anthracene                  | ND                     |             | 9.4          |  |
| Chrysene                            | ND                     |             | 9.4          |  |
| bis(2-Ethylhexyl)phthal             | ate ND                 |             | 9.4          |  |
| Di-n-octylphthalate                 | ND                     |             | 9.4          |  |
| Benzo(b)fluoranthene                | ND                     |             | 9.4          |  |
| Benzo(k)fluoranthene                | ND                     |             | 9.4          |  |
| Benzo(a)pyrene                      | ND                     |             | 9.4          |  |
| Indeno(1,2,3-cd)pyrene              | ND                     |             | 9.4          |  |
| Dibenz(a,h)anthracene               | ND                     |             | 9.4          |  |
| Benzo(g,h,i)perylene                | ND                     |             | 9.4          |  |
| Gummogata                           | %REC Limits            |             |              |  |
| Surrogate<br>2-Fluorophenol         | 77 40-120              |             |              |  |
| Phenol-d5                           | 72 38-120              |             |              |  |
| 2,4,6-Tribromophenol                | 72 38-120<br>78 40-120 |             |              |  |
| Nitrobenzene-d5                     | 78 48-120              |             |              |  |
| 2-Fluorobiphenyl                    | 71 50-120              |             |              |  |
| Terphenyl-d14                       | 74 23-120              |             |              |  |



|                              | ivolatile | Organics by |              |
|------------------------------|-----------|-------------|--------------|
| Lab #: 196218                |           | Location:   | Hanson Radum |
| Client: LFR Levine Fric      | ke        | Prep:       | EPA 3520C    |
| Project#: 001-09567-01       |           | Analysis:   | EPA 8270C    |
| Field ID: 3S/1E 10K2         |           | Batch#:     | 127624       |
| Lab ID: 196218-003           |           | Sampled:    | 07/25/07     |
| Matrix: Water                |           | Received:   | 07/25/07     |
| Units: ug/L                  |           | Prepared:   | 07/25/07     |
| Diln Fac: 1.000              |           | Analyzed:   | 07/26/07     |
| DIIII Fac: 1.000             |           | Analyzeu    | 07/20/07     |
| Analyte                      | Result    |             | RL           |
| N-Nitrosodimethylamine       | ND        |             | 9.4          |
| Phenol                       | ND        |             | 9.4          |
| bis(2-Chloroethyl)ether      | ND        |             | 9.4          |
| 2-Chlorophenol               | ND        |             | 9.4          |
|                              |           |             | 9.4          |
| 1,3-Dichlorobenzene          | ND        |             | 9.4          |
| 1,4-Dichlorobenzene          | ND        |             |              |
| Benzyl alcohol               | ND        |             | 9.4          |
| 1,2-Dichlorobenzene          | ND        |             | 9.4          |
| 2-Methylphenol               | ND        |             | 9.4          |
| bis(2-Chloroisopropyl) ether | ND        |             | 9.4          |
| 4-Methylphenol               | ND        |             | 9.4          |
| N-Nitroso-di-n-propylamine   | ND        |             | 9.4          |
| Hexachloroethane             | ND        |             | 9.4          |
| Nitrobenzene                 | ND        |             | 9.4          |
| Isophorone                   | ND        |             | 9.4          |
| 2-Nitrophenol                | ND        |             | 19           |
| 2,4-Dimethylphenol           | ND        |             | 9.4          |
| Benzoic acid                 | ND        |             | 47           |
| bis(2-Chloroethoxy)methane   | ND        |             | 9.4          |
| 2,4-Dichlorophenol           | ND        |             | 9.4          |
| 1,2,4-Trichlorobenzene       | ND        |             | 9.4          |
| Naphthalene                  | ND        |             | 9.4          |
| 4-Chloroaniline              | ND        |             | 9.4          |
| Hexachlorobutadiene          | ND        |             | 9.4          |
| 4-Chloro-3-methylphenol      | ND        |             | 9.4          |
| 2-Methylnaphthalene          | ND        |             | 9.4          |
| Hexachlorocyclopentadiene    | ND        |             | 19           |
| 2,4,6-Trichlorophenol        | ND        |             | 9.4          |
| 2,4,5-Trichlorophenol        | ND        |             | 9.4          |
| 2-Chloronaphthalene          | ND        |             | 9.4          |
| 2-Nitroaniline               |           |             | 19           |
|                              | ND        |             |              |
| Dimethylphthalate            | ND        |             | 9.4          |
| Acenaphthylene               | ND        |             | 9.4          |
| 2,6-Dinitrotoluene           | ND        |             | 9.4          |
| 3-Nitroaniline               | ND        |             | 19           |
| Acenaphthene                 | ND        |             | 9.4          |
| 2,4-Dinitrophenol            | ND        |             | 19           |
| 4-Nitrophenol                | ND        |             | 19           |
| Dibenzofuran                 | ND        |             | 9.4          |
| 2,4-Dinitrotoluene           | ND        |             | 9.4          |
| Diethylphthalate             | ND        |             | 9.4          |
| Fluorene                     | ND        |             | 9.4          |
| 4-Chlorophenyl-phenylether   | ND        |             | 9.4          |
| 4-Nitroaniline               | ND        |             | 19           |
| 4,6-Dinitro-2-methylphenol   | ND        |             | 19           |
| N-Nitrosodiphenylamine       | ND        |             | 9.4          |
| Azobenzene                   | ND        |             | 9.4          |
| 4-Bromophenyl-phenylether    | ND        |             | 9.4          |
| Hexachlorobenzene            | ND        |             | 9.4          |
| Pentachlorophenol            | ND        |             | 19           |
| Phenanthrene                 | ND        |             | 9.4          |
| Anthracene                   | ND        |             | 9.4          |
| Di-n-butylphthalate          | ND        |             | 9.4          |
| Fluoranthene                 | ND        |             | 9.4          |
|                              |           |             | - ·          |

Г



|                    | Semi             | volatile      | Organics by | GC/MS        |  |
|--------------------|------------------|---------------|-------------|--------------|--|
|                    | 96218            |               | Location:   | Hanson Radum |  |
|                    | FR Levine Fricke | 9             | Prep:       | EPA 3520C    |  |
|                    | 01-09567-01      |               | Analysis:   | EPA 8270C    |  |
|                    | S/1E 10K2        |               | Batch#:     | 127624       |  |
|                    | 96218-003        |               | Sampled     | 07/25/07     |  |
|                    | ater             |               | Received:   | 07/25/07     |  |
|                    | g/L              |               | Prepared:   | 07/25/07     |  |
| Diln Fac: 1        | .000             |               | Analyzed:   | 07/26/07     |  |
| Analyte            |                  | Result        |             | RL           |  |
| Pyrene             |                  | ND            |             | 9.4          |  |
| Butylbenzylphthala | te               | ND            |             | 9.4          |  |
| 3,3'-Dichlorobenzi |                  | ND            |             | 19           |  |
| Benzo(a)anthracene |                  | ND            |             | 9.4          |  |
| Chrysene           |                  | ND            |             | 9.4          |  |
| bis(2-Ethylhexyl)p |                  | ND            |             | 9.4          |  |
| Di-n-octylphthalat |                  | ND            |             | 9.4          |  |
| Benzo(b)fluoranthe |                  | ND            |             | 9.4          |  |
| Benzo(k)fluoranthe | ne               | ND            |             | 9.4          |  |
| Benzo(a)pyrene     |                  | ND            |             | 9.4          |  |
| Indeno(1,2,3-cd)py |                  | ND            |             | 9.4          |  |
| Dibenz(a,h)anthrac |                  | ND            |             | 9.4          |  |
| Benzo(g,h,i)peryle | ne               | ND            |             | 9.4          |  |
| Surrogat           | o %              | REC Limits    |             |              |  |
| 2-Fluorophenol     | 75               | <u>40-120</u> |             |              |  |
| Phenol-d5          | 72               | 38-120        |             |              |  |
| 2,4,6-Tribromophen |                  | 40-120        |             |              |  |
| Nitrobenzene-d5    | 79               | 48-120        |             |              |  |
| 2-Fluorobiphenyl   | 73               | 50-120        |             |              |  |
| Terphenyl-d14      | 71               | 23-120        |             |              |  |



| Lab #:         195216         Location:         Hanson Radum           Cilent:         LFR Levine Pricke         Pregist:         EDA 3520C           Projecti:         001-0355/-01         Analyzi:         EDA 3520C           Lab D1:         195218-004         Sampled:         D7/25/07           Matrix:         Water         Received:         07/25/07           Matrix:         Water         Received:         07/25/07           Din Fac:         1.000         Analyzed:         07/25/07           Matrix:         Water         No         9.4           Phenol         9.4         Phenol         9.4           Din Corberbyl)ether         ND         9.4           L:         Dickicobargene         ND<                                                     | Se                     | emivolatile | Organics by GC/MS      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|------------------------|
| Project#:         001-09567-01         Analysis:         EPA 8270C           Lab D:         196218-004         Batchi:         127624           Lab D:         196218-004         Sampled:         07/25/07           Diln Fac:         1400         Pepace:         07/25/07           Diln Fac:         1400         Pepace:         07/26/07           Natyte         Result         Result         Result           Phenol         0.4         ND         3.4           Phenol         3.4         ND         3.4           Phenol         3.4         ND         3.4           1.4-Dichlorobenzene         ND         9.4         1.4-Dichlorobenzene           1.2-Dichlorobenzene         ND         9.4         1.2-Dichlorobenzene           1.2-Dichlorobenzene         ND         9.4         1.2-Dichlorobenzene           ND         9.4         1.2-Dichlorobenzene         ND         9.4           1.4-Dichlorobenzene         ND         9.4         1.2-Dichlorobenzene         ND           1.2-Dichlorobenzene         ND         9.4         1.2-Dichlorobenzene         ND           1.2-Dichlorobenzene         ND         9.4         1.2-Dichlorobenzene         ND                  |                        |             | Location: Hanson Radum |
| Tield ID:         NM-10         Batch::         127624           Lab D:         136218-004         Sampled:         07/25/07           Matrix:         Water         Bacclived:         07/25/07           Diln Fac:         1.00         Prepared:         07/25/07           Diln Fac:         1.00         Naiyzed:         07/26/07           N=Mirosoclimethylamine         ND         3.4           Phenol         ND         9.4           1.3-Dichlorobenzene         ND         9.4           1.4-Dichlorobenzene         ND         9.4 </td <td></td> <td>cke</td> <td>Prep: EPA 3520C</td> |                        | cke         | Prep: EPA 3520C        |
| Lab ID:         195218-004         Sampled:         07/25/07           Watrix:         Watr         Received:         07/25/07           Diln Fac:         1.000         Analyzed:         07/25/07           Analyze         Result         NL           Prepared:         07/25/07         Analyzed:         07/25/07           Analyzed:         07/25/07         Analyzed:         07/25/07           Phenol         9.4         9.4           Diarophenol         ND         9.4           2-Chlorophenol         ND         9.4           1.4 - Dichlorophenzene         ND         9.4           2-Methylphenol         ND         9.4           Hanger         ND         9.4           2-Methylphenol         ND         9.4           Hexachloropethane         ND         9.4           Hexachloropethane         ND         9.4           Hexachloropethane         ND         9.4           Nitrobenzene         ND         9.4           Lapothylphenol         ND         9.4           2.4-Dimethylphenol         ND         9.4           Nitrobenzene         ND         9.4           Lapothylphenol         N                                                                             | Project#: 001-09567-01 |             | Analysis: EPA 8270C    |
| Matrix:         Water         Recèived:         07/25/07           Din Fac:         1.000         Analyzed:         07/25/07           Din Fac:         1.000         Analyzed:         07/25/07           Immediate trylamine         ND         9.4           Tevitrosodimethylamine         ND         9.4           Chlorosthyl)ether         ND         9.4           1.4-Dichlorobenzene         ND         9.4           Hitrosodimethylphenol         ND         9.4           Hexachlorochane         ND         9.4           Hitrobenzene         ND         9.4           Hitrobenzene         ND         9.4           1.2.4-Dichlorochane         ND         9.4           2.4-Dichlorophenol         ND         9.4           1.2.4-Dichlorophenol                                                          |                        |             | Batch#: 127624         |
| Units:         ug/L         Prepared:         07/26/07           Nalyce         Result         N           PNitosodimethylamine         ND         9.4           PNitosodimethylamine         ND         9.4           1:302         ND         9.4           2-Chlorophenol         ND         9.4           1:3-Dichlorobenzene         ND         9.4           1:3-Dichlorobenzene         ND         9.4           1:A-Dichlorobenzene         ND         9.4           1:A-Dichlorobenzene         ND         9.4           1:A-Dichlorobenzene         ND         9.4           Nettryphenol         ND         9.4           N=Nitroscin-propylamine         ND         9.4           Hexachloroethane         ND         9.4           Hexachloroethane         ND         9.4           Hexachloroethane         ND         9.4           Jointorethane         ND         9.4           Jointorethane         ND         9.4           Hexachloroethane         ND         9.4           Jointorethany/methane         ND         9.4           J.2,4-Trichlorobenzene         ND         9.4           J.2,4-Frichloro                                                                            | Lab ID: 196218-004     |             | Sampled: 07/25/07      |
| Din Fac:         1.000         Analyzed:         07/26/07           Analyte         Result         Rt           Phenol         ND         9.4           Discontinethylenter         ND         9.4           1.3-Dichlorobenzene         ND         9.4           1.4-Dichlorobenzene         ND         9.4           1.4-Dichlorobenzene         ND         9.4           Benzyl alcohol         ND         9.4           1.3-Dichlorobenzene         ND         9.4           Henzyl alcohol         ND         9.4           Holicobrockinsching         ND         9.4           Holicobrozene         ND         9.4           Hildobrozene         ND         9.4           Storophenol         ND         9.4           L-4-Dichloroethaxylmethane         ND         9.4           Holicobrozenzene         ND         9.4           L-4-Dichlorophenol                                                                                              | Matrix: Water          |             | Received: 07/25/07     |
| Analyte         Result         Rt           M-Nitrosodimethylamine         ND         9.4           Dhenol         ND         9.4           Dis(2-Clorosthyl)ether         ND         9.4           1.3-Dicfilorobenzene         ND         9.4           Hardinoversene         ND         9.4           L1.4-Dicfilorobenzene         ND         9.4           Enzyl alcohol         ND         9.4           1.3-Dicfilorobenzene         ND         9.4           Z-Methylphenol         ND         9.4           Hit/2-Clloroisopropyl ether         ND         9.4           Hexachloroethane         ND         9.4           Hexachloroethane         ND         9.4           Hexachloroethane         ND         9.4           Hexachloroethane         ND         9.4           Hexachlorophenol         ND         9.4           S.4-Dimethylphenol         ND         9.4           Hexachlorophenol         ND         9.4           Hexachlorophenol         ND         9.4           A-Chlorophenol         ND         9.4           Hexachlorophenol         ND         9.4           A-Chlorophenol         ND </td <td>Units: ug/L</td> <td></td> <td>Prepared: 07/25/07</td>              | Units: ug/L            |             | Prepared: 07/25/07     |
| NH:trosodimethylamine         ND         9.4           Dhenol         ND         9.4           Dis(2-Chloroethyl)ether         ND         9.4           1.3-Dichlorobenzene         ND         9.4           1.3-Dichlorobenzene         ND         9.4           1.4-Dichlorobenzene         ND         9.4           1.4-Dichlorobenzene         ND         9.4           1.4-Dichlorobenzene         ND         9.4           1.4-Dichlorobenzene         ND         9.4           2-Methylphenol         ND         9.4           -Amethylphenol         ND         9.4           Hexachloroethane         ND         9.4           Nitrobenzene         ND         9.4           Isophorone         ND         9.4           2-Hitrophenol         ND         9.4           Nitrobenzene         ND         9.4           Sigohorone         ND         9.4           2-4-Dichloroethane         ND         9.4           2/4-Dichlorophenol         ND         9.4           2/4-Dichlorophenol         ND         9.4           2/4-Dichlorophenol         ND         9.4           2/4-Dichlorophenol         ND                                                                                      | Diln Fac: 1.000        |             | Analyzed: 07/26/07     |
| NH:trosodimethylamine         ND         9.4           Dhenol         ND         9.4           Dis(2-Chloroethyl)ether         ND         9.4           1.3-Dichlorobenzene         ND         9.4           1.3-Dichlorobenzene         ND         9.4           1.4-Dichlorobenzene         ND         9.4           1.4-Dichlorobenzene         ND         9.4           1.4-Dichlorobenzene         ND         9.4           1.4-Dichlorobenzene         ND         9.4           2-Methylphenol         ND         9.4           -Amethylphenol         ND         9.4           Hexachloroethane         ND         9.4           Nitrobenzene         ND         9.4           Isophorone         ND         9.4           2-Hitrophenol         ND         9.4           Nitrobenzene         ND         9.4           Sigohorone         ND         9.4           2-4-Dichloroethane         ND         9.4           2/4-Dichlorophenol         ND         9.4           2/4-Dichlorophenol         ND         9.4           2/4-Dichlorophenol         ND         9.4           2/4-Dichlorophenol         ND                                                                                      |                        |             |                        |
| Phenol         ND         9.4           2-Chlorophenol         ND         9.4           2-Chlorophenol         ND         9.4           1.3-Dichlorobenzene         ND         9.4           1.4-Dichlorobenzene         ND         9.4           Hexachloroctin-neprogylamine         ND         9.4           Hexachloroctin-neprogylamine         ND         9.4           Schobrone         ND         9.4           Schobrone         ND         9.4           Schobrone         ND         9.4           2.4-Dichlorophenol         ND         9.4           2.4-Dichorophenol                                                                            |                        |             |                        |
| bis(2-Chloroethyl)ether         ND         9.4           2-Chlorophenol         ND         9.4           1,4-Dichlorobenzene         ND         9.4           1,2-Dichlorobenzene         ND         9.4           1,2-Dichlorobenzene         ND         9.4           1,2-Dichlorobenzene         ND         9.4           1,2-Dichlorobenzene         ND         9.4           2-Methylphenol         ND         9.4           Holtorobenzene         ND         9.4           4-Methylphenol         ND         9.4           Hitrosocil-n-propylamine         ND         9.4           Hitrosocil-n-propylamine         ND         9.4           Hitrosocil-n-propylamine         ND         9.4           Holtorobenzene         ND         9.4           Holtorobenzene         ND         9.4           J-A-Dimethylphenol         ND         9.4           2-A-Dichlorophenol         ND         9.4           2-A-Dichlorophenol         ND         9.4           2-A-Dichlorophenol         ND         9.4           2-A-Dichlorophenol         ND         9.4           2-Chorochtoxylmethalene         ND         9.4 <t< td=""><td></td><td></td><td></td></t<>                                 |                        |             |                        |
| 2-Chlorophenol       ND       9.4         1.3-Dichlorobenzene       ND       9.4         1.4-Dichlorobenzene       ND       9.4         L.2-Dichlorobenzene       ND       9.4         1.2-Dichlorobenzene       ND       9.4         2-Methylphenol       ND       9.4         2-Methylphenol       ND       9.4         Seventylphenol       ND       9.4         Hexachloroethane       ND       9.4         Hexachloroethane       ND       9.4         Isophorone       ND       9.4         2-Anitrophenol       ND       9.4         2-Anitrophenol       ND       9.4         2.4-Dichloroethoxylmethane       ND       9.4         2.4-Dichlorophenol       ND       9.4         2.4-Chorosentaliene       ND       9.4         2.4.5-Trichlorophenol       ND       9.4                                                                                                                                         |                        |             |                        |
| 1,3-Dichlorobenzene     ND     9,4       1,4-Dichlorobenzene     ND     9,4       Benzyl alcohol     ND     9,4       1,2-Dichlorobenzene     ND     9,4       2-Methylphenol     ND     9,4       2-Methylphenol     ND     9,4       4-Methylphenol     ND     9,4       Menzohlorobenzene     ND     9,4       Menzohlorobenzene     ND     9,4       Menzohlorobenzene     ND     9,4       Herxachloroethane     ND     9,4       Nitrobenzene     ND     9,4       12-Nitrophenol     ND     9,4       2,4-Dinethylphenol     ND     9,4       1,2,2,4-Trichlorobenzene     ND     9,4       1,2,2,4-Trichlorobenzene     ND     9,4       4-Chloroaline     ND     9,4       4-Chloroaline     ND     9,4       4-Chloroaline     ND     9,4       2-Methylphenol     ND     9,4       2,4,5-Trichlorophenol     ND     9,4       2,4,6-Trichlorophenol     ND     9,4       2,4,5-Trichlorophenol     ND     9,4       2,4,5-Trichlorophenol     ND     9,4       2,4,5-Trichlorophenol     ND     9,4       2,4,5-Trichlorophenol     ND     <                                                                                                                                                       |                        |             |                        |
| 1,4-Dichlorobenzene     ND     9,4       Benzyl alcohol     ND     9,4       1,2-Dichlorobenzene     ND     9,4       2-Methylphenol     ND     9,4       Heis(2-Chloroisopropyl) ether     ND     9,4       Molicylophenol     ND     9,4       Nitroso-di-n-propylamine     ND     9,4       Nitrobenzene     ND     9,4       Isophorone     ND     9,4       2-Nitrophenol     ND     9,4       2-Nitrophenol     ND     9,4       2-Nitrophenol     ND     9,4       2-Alchorote     ND     9,4       2-Alchorobenzene     ND     9,4       4-Chloroaniline     ND     9,4       4-Chlorobutadiene     ND     9,4       4-Actiorocylopentadiene     ND     9,4       2-Alchorophenol     ND     9,4       2-Chloroophthalene     ND     9,4       2-Chloronaphthalene <t< td=""><td></td><td></td><td>9.4</td></t<>                                                                                                                                               |                        |             | 9.4                    |
| Benzyl alcohol         ND         9.4           1,2-Dichlorobsprogyl) ether         ND         9.4           4-Methylphenol         ND         9.4           Methylphenol         ND         9.4           Methylphenol         ND         9.4           Mexachloroethane         ND         9.4           Hexachloroethane         ND         9.4           Isophorone         ND         9.4           2-Nitrophenol         ND         9.4           2-Nitrophenol         ND         9.4           2-Nitrophenol         ND         9.4           Senzoic acid         ND         9.4           2,4-Dinethylphenol         ND         9.4           Senzoic acid         ND         9.4           2,4-Dichlorophenol         ND         9.4           2,4-Dichlorophenol         ND         9.4           1,2,4-Trichlorophenol         ND         9.4           Hexachloropubatiene         ND         9.4           4-Chloroa-methylphenol         ND         9.4           2-Methylnaphthalene         ND         9.4           2-Methylnaphthalene         ND         9.4           2-Chloronaphthalene         ND                                                                                    |                        |             |                        |
| 1,2-DichlorobenzeneND9.42-MethylphenolND9.44-MethylphenolND9.44-MethylphenolND9.4Nitroso-di-n-propylamineND9.4NitrobenzeneND9.4IsophoroneND9.42-NitrophenolND9.42-NitrophenolND9.42-NitrophenolND9.42-NitrophenolND9.42-AblehlorophenolND9.42-AblehlorophenolND9.42-AblehlorophenolND9.42-AblehlorophenolND9.42-AblehlorophenolND9.42-AblehlorophenolND9.42-AblehlorophenolND9.42-MethylnaphthaleneND9.44-Chloro-1-methylphenolND9.44-Chloro-2-methylphenolND9.42-MethylnaphthaleneND9.42-MethylnaphthaleneND9.42-ChloronaphthalteneND9.42-ChloronaphthalteneND9.42-ChloronaphthalteneND9.42-ChloronaphthalteneND9.42-ChloronaphthalteneND9.42-ChloronaphthalteneND9.42-ChloronaphthalteneND9.42-ChloronaphthalteneND9.42-ChloronaphthalteneND9.42-ChloronaphthalteneND9.42-ChloronaphthalteneND9.42-ChloronaphthalteneND <td></td> <td></td> <td>9.4</td>                                                                                                                                                                                                                                                                                                                                                    |                        |             | 9.4                    |
| 2-Methylphenol         ND         9.4           bis(2-Chloroisopropyl) ether         ND         9.4           M-Nitroso-din-propylamine         ND         9.4           NNitrobenzene         ND         9.4           Hexachloroethane         ND         9.4           Isophorone         ND         9.4           Z-Nitrophenol         ND         9.4           2-Nitrophenol         ND         9.4           2.4-Dimethylphenol         ND         9.4           2.4-Dimethylphenol         ND         9.4           2.4-Dinorobuzene         ND         9.4           2.4-Dinorobuzene         ND         9.4           2.4-Dichlorophenol         ND         9.4           2.4-Dichlorophenol         ND         9.4           1.2.4-Trichlorophenol         ND         9.4           4-Chloroaliline         ND         9.4           Hexachlorocoulophenol         ND         9.4           2-Methylnaphthalene         ND         9.4           2.4.6-Trichlorophenol         ND         9.4           2.4.7-5-Trichlorophenol         ND         9.4           2.4.7-5-Trichlorophenol         ND         9.4           2.4.7-                                                                   |                        |             |                        |
| bis(2-Chloroisopropyl) ether         ND         9.4           4-Methylphenol         ND         9.4           N.Nitroso-din-propylamine         ND         9.4           Nextoroethane         ND         9.4           Nitrobenzene         ND         9.4           Nitrobenzene         ND         9.4           Loophorone         ND         9.4           2.4-Dimethylphenol         ND         9.4           2.4-Dichlorophenol         ND         9.4           2.4-Dichlorophenol         ND         9.4           2.4-Dichlorophenol         ND         9.4           1.2,4-Trichlorophenol         ND         9.4           4-Chloroniline         ND         9.4           4-Chlorophenol         ND         9.4           2.4, 5-Trichlorophenol         ND         9.4           2.4, 5-Trichlorophenol         ND         9.4           2.4, 6-Trichlorophenol                                                                                 |                        |             |                        |
| 4-Methylphenol         ND         9.4           N-Nitroso-di-n-propylamine         ND         9.4           Hexachloroethane         ND         9.4           Nitrobenzene         ND         9.4           Toophorone         ND         9.4           Z-Nitrophenol         ND         9.4           Z-Nitrophenol         ND         9.4           Z-Nitrophenol         ND         9.4           Z-A-Dimethylphenol         ND         9.4           Z-A-Dimethylphenol         ND         9.4           Z-A-Dirophenol         ND         9.4           Z-A-Trichlorophenol         ND         9.4           J.2, A-Trichlorophenol         ND         9.4           J.2, A-Trichlorophenol         ND         9.4           Hexachlorocyclopentadiene         ND         9.4           -A-Chloronaphthalene         ND         9.4           Z-Methylnaphthalene         ND         9.4           Z-Methylnaphtha                                                                   |                        |             |                        |
| N-Nitroso-di-n-propylamineND9.4HexachloroethaneND9.4NitrobenzeneND9.4NitrobenzeneND9.4LophoroneND9.42-NitrophenolND9.42-NitrophenolND9.4Benzoic acidND9.4A-Dichloroethoxy/methaneND9.41,2,4-TitchlorobenzeneND9.44-Chloroothoxy/methaneND9.44-Chloroothoxy/methaneND9.44-ChloroothoxidieneND9.44-ChloroothoxidieneND9.44-ChloroophenolND9.44-ChloroophenolND9.44-ChloroophenolND9.44-ChloroophenolND9.42.4, 5-TrichlorophenolND9.42.4, 6-TrichlorophenolND9.42.4, 6-TrichlorophenolND9.4<                                                                                                                                                                                                                                                                                                                                                      |                        |             |                        |
| HexachloroethaneND9.4NitrobenzeneND9.4IsophoroneND9.42-NitrophenolND92.A-DimethylphenolND9.4Benzoic acidND9.42.4-DichlorophenolND9.41.2.4-TrichlorobenzeneND9.4NaphthaleneND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.42.4.6-TrichlorophenolND9.42.4.6-TrichlorophenolND9.42.4.6-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42.4.6-DinitrotolueneND9.42.4.6-DinitrotolueneND9.42.6-DinitrotolueneND9.42.7.4-DinitrophenolND9.42.6-DinitrotolueneND9.42.7.4-DinitrophenolND9.42.6-DinitrotolueneND9.42.7.4-DinitrophenolND9.42.7.4-DinitrophenolND9.42.7.4-DinitrophenolND194-Chlorophenyl-phenyletherND9.42.7.4-DinitrophenolND194-Chlorophenyl-phenyletherND9.42.7.4-DinitrophenolND19 <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                |                        |             |                        |
| NitrobenzeneND9.4IsophoroneND9.42-NitrophenolND192.4-DienethylphenolND9.4Benzoic acidND47bis(2-Chloroethoxy)methaneND9.41.2,4-TrichlorophenolND9.41.2,4-TrichlorophenolND9.4HexachlorobutadieneND9.44-Chloroethoxy)methaneND9.4HexachlorobutadieneND9.44-Chloro-3-methylphenolND9.42-MethylmaphthaleneND9.42-MethylmaphthaleneND9.42-MethylphenolND9.42-MethylmaphthaleneND9.42-MethylphenolND9.42-MethylphenolND9.42-MethylphenolND9.42.4, 6-TrichlorophenolND9.42.4, 5-TrichlorophenolND9.42.4, 6-TrichlorophenolND9.42.4, 6-TrichlorophenolND9.42.4, 6-TrichlorophenolND9.42.6-DinitrotolueneND9.42.6-DinitrotolueneND9.42.6-DinitrotolueneND9.42.4-DinitrophenolND19DibenzofuranND9.42.4-DinitrophenolND9.42.4-DinitrophenolND9.42.4-DinitrophenolND9.42.4-DinitrophenolND9.42.4-DinitrophenolND9.42.4-DinitrophenolND <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                      |                        |             |                        |
| IsophoroneND9.42-NitrophenolND192.AitrophenolND9.4Benzoic acidND47bis(2-Chloroethoxy)methaneND9.41.2.4-TrichlorophenolND9.41.2.4-TrichlorobenzeneND9.4A-ChloroanilineND9.4HexachlorobutadieneND9.44-ChloroophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.42-MethylnaphthaleneND9.42-AritrohlorophenolND9.42.4.5-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42-MitroanilineND9.42-MitroanilineND9.42-MitroanilineND9.4AcenaphthyleneND9.42.6-DinitrotolueneND9.42.4-DinitrophenolND19DimethylphthalateND19DibenzofuranND19DibenzofuranND9.42.4-DinitrotolueneND9.42.4-DinitrophenolND19DibenzofuranND9.42.4-DinitroclueneND9.42.4-DinitroclueneND9.42.4-DinitroclueneND9.42.4-DinitroclueneND9.42.4-DinitroclueneND9.44-Nitrosolipenyl-phenylether                                                                                                                                                                                                                                                                                                                                                                                                            |                        |             |                        |
| 2.4-Directed productND192.4-Directed productND9.4Benzoic acidND47bis(2-Chloroethoxy)methaneND9.41.2,4-TrichlorophenolND9.41.2,4-TrichlorophenolND9.4MaphthaleneND9.44-ChloroanilineND9.4HexachlorobutadieneND9.44-Chloro-3-methylphenolND9.44-Chloro-7-methylphenolND9.44-Chloro-7-TrichlorophenolND9.42-MethylnaphthaleneND9.42.4, 6-TrichlorophenolND9.42.4, 5-TrichlorophenolND9.42.4, 5-TrichlorophenolND9.42.4, 5-TrichlorophenolND9.42.4, 5-TrichlorophenolND9.42.6-DiritrotolueneND9.4AcenaphthyleneND9.4AcenaphtheneND19DimethylphthalateND19AcenaphtheneND9.42.4-DiritrophenolND19DibenzofuranND19DibenzofuranND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Nitrosodiphenyl-phenyletherND9.44-Nitrosodiphenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-NitrosodiphenylamineND19N-Nitrosodiphenylamine9.44-StorosceneND9.4                                                                                                                                                                                                                                                                                                                                             |                        |             |                        |
| 2,4-DimethylphenolND9,4Benzoic acidND47bis(2-Chloropthaxy)methaneND9,42,4-DichlorophenolND9,41,2,4-TrichlorobenzeneND9,4NaphthaleneND9,4A-ChloroanilineND9,4HexachlorobutadieneND9,44-ChlorophenolND9,4HexachloroputadieneND9,42-MethylnaphthaleneND9,42,4,5-TrichlorophenolND9,42,4,5-TrichlorophenolND9,42-NitroanilineND9,42-NitroanilineND9,42-NitroanilineND9,42-NitroanilineND9,42,6-DinitrotolueneND9,43-NitroanilineND19DimethylphthalateND9,42,4-DinitrophenolND19DimethylphthalateND9,42,4-DinitrotolueneND9,42,6-DinitrotolueneND19DibenzofuranND19DibenzofuranND9,42,4-DinitrophenolND9,42,4-DinitrotolueneND9,42,4-DinitrotolueneND9,42,4-DinitrotolueneND9,42,4-DinitrotolueneND9,42,4-DinitrotolueneND9,42,4-DinitrotolueneND9,44-NitrophenolND19ND9,44-Nitrophenol9,4 <tr< td=""><td></td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                            |                        |             |                        |
| Benzoic acidND47bis(2-Chloroethoxy)methaneND9.42.4-DichlorophenolND9.41.2.4-TrichlorophenolND9.4NaphthaleneND9.44-ChloroanilineND9.4HexachlorobutadieneND9.44-Chloro-3-methylphenolND9.42-MethylnaphthaleneND9.42-MethylnaphthaleneND9.42-MethylnaphthaleneND9.42.4.6-TrichlorophenolND9.42.4.5-TrichlorophenolND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-NitroanilineND9.42-NitroanilineND9.42-NitroanilineND9.42-NitroanilineND9.42.4-DinitroblueneND9.42.4-DinitroblueneND9.42.4-DinitrophenolND9.42.4-DinitrophenolND9.42.4-DinitrophenolND9.42.4-DinitrophenolND9.42.4-DinitrophenolND9.42.4-DinitrophenolND9.42.4-DinitrophenolND9.42.4-DinitrophenolND9.42.4-DinitrophenolND9.42.4-DinitrophenolND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Nitrosodiphenyl-phenyl                                                                                                                                                                                                                                                                                                                                                                        |                        |             | 9 4                    |
| bis(2-Chloropethoxy)methaneND9.42.4-DichlorophenolND9.41.2,4-TrichlorophenzeneND9.4NaphthaleneND9.44-ChloropanilineND9.4HexachlorobutadieneND9.44-ChlorophenolND9.44-ChlorophenolND9.42-MethylnaphthaleneND9.42.4,6-TrichlorophenolND9.42.4,5-TrichlorophenolND9.42.4,5-TrichlorophenolND9.42.4,5-TrichlorophenolND9.42.6-DinitrotolueneND9.42.6-DinitrotolueneND9.43-NitroanilineND9.43-NitroanilineND9.44-ChlorophenolND9.42.6-DinitrotolueneND9.42.6-DinitrotolueneND9.42.6-DinitrotolueneND9.42.4-DinitrotolueneND9.42.4-DinitrotolueneND9.44-ChlorophenolND194-ChlorophenolND9.42.4-DinitrotolueneND9.44-DinitrotolueneND9.44-DinitrotolueneND9.44-Oliorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-DinitrotolueneND9.44-DinitrotolueneND9.44-DinitrotolueneND9.44-Nitrosodiphenyl-phenyletherND9.44-Nitrosodiphenyl                                                                                                                                                                                                                                                                                                                                                                        |                        |             |                        |
| 2.4-DichlorophenolND9.41.2,4-TrichlorophenzeneND9.4NaphthaleneND9.44-ChloroallineND9.4HexachlorobutadieneND9.44-Chloro-3-methylphenolND9.42-MethylnaphthaleneND9.42-MethylonghthaleneND9.42.4,6-TrichlorophenolND9.42.4,5-TrichlorophenolND9.42-ChloronaphthaleneND9.42-NitroanilineND9.42-NitroanilineND9.42.6-DinitrotolueneND9.42.6-DinitrotolueneND9.42.6-DinitrotolueneND9.42.6-DinitrophenolND9.42.6-DinitrotolueneND9.42.6-DinitrotolueneND9.42.6-DinitrotolueneND9.42.6-DinitrophenolND19AcenaphtheneND192.4-DinitrophenolND194-Chlorophenyl-phenyletherND9.42.4-DinitrotolueneND9.42.4-DinitrotolueneND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-NitrosodiphenylamineND194-NitrosodiphenylamineND9.44-Stophenyl-phenyletherND9.44-Stophenyl-phenyletherND <td< td=""><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                        |                        |             |                        |
| 1,2,4-TrichlorobenzeneND9.4MaphthaleneND9.44-ChloroanilineND9.44-Chloro-3-methylphenolND9.42-MethylnaphthaleneND9.42-MethylnaphthaleneND9.42-AethorocyclopentadieneND9.42-A. 6-TrichlorophenolND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42.6-DinitrotolueneND9.42.6-DinitrotolueneND9.43-WitroanilineND19AcenaphtheneND9.42.4-DinitrophenolND194-ChlorophenolND194-ChlorophenolND9.42.4-DinitrotolueneND9.42.4-DinitrotolueneND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-ChlorophenolND9.44-Chlorophenol9.44-Chlorophenol9.44-Chlorophenol9.44-Chlorophenol9.44-Chlorophenol9.44-NitroanilineND9.44-N                                                                                                                                                                                                                                                                                                                                                                                                   |                        |             |                        |
| NaphthaleneND9.44-ChloroanilineND9.4HexachlorobutadieneND9.44-Chloro-3-methylphenolND9.42-MethylnaphthaleneND9.4HexachlorocyclopentadieneND9.42.4, 6-TrichlorophenolND9.42.4, 5-TrichlorophenolND9.42.4, 5-TrichlorophenolND9.4AccnaphthaleneND9.42.4, 5-DinitrotolueneND9.43-NitroanilineND19JohenzofuranND19DibenzofuranND9.42.4-DinitrotolueneND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-ChlorophenolND19N-NitrosodiphenylamineND9.4AzobenzeneND9.44-Bromophenol </td <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                   |                        |             |                        |
| 4-ChloroanilineND9.4HexachlorobutadieneND9.44-Chloro-3-methylphenolND9.42-MethylnaphthaleneND9.42-MethylnaphthaleneND9.42.4, 6-TrichlorophenolND9.42.4, 5-TrichlorophenolND9.42.4, 5-TrichlorophenolND9.42.6.15 TrichlorophenolND9.42.7 NitroanilineND9.42.6.15 InitrotolueneND9.42.6.26 TrichlorophenolND9.42.6.27 NitroanilineND9.4AcenaphthyleneND9.42.6.27 NitroanilineND9.43-NitroanilineND9.42.4-DinitrotolueneND9.42.4-DinitrophenolND9.42.4-DinitrotolueneND9.42.4-DinitrotolueneND9.42.4-DinitrotolueneND9.42.4-DinitrotolueneND9.42.4-DinitrotolueneND9.42.4-DinitrotolueneND9.42.4-DinitrotolueneND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND194-SobenzeneND9.44-SobenzeneND9.44-Bromophenyl-phenyletherND9.44-NitrosodiphenylamineND9.44-Bromophenyl-phenyletherND9.44-Bromophenyl-phenyletherND9.4 </td <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                     |                        |             |                        |
| HexachlorobutadieneND9.44-Chloro-3-methylphenolND9.42-MethylnaphthaleneND9.42-MethylnaphthaleneND9.42.4,6-TrichlorophenolND9.42.4,5-TrichlorophenolND9.42-ChloronaphthaleneND9.42-NitroanilineND9.42-ChloronaphthaleneND9.42-ChloronaphthyleneND9.42-NitroanilineND9.42.NitroanilineND9.42.6-DinitrotolueneND9.42.6-DinitrotolueneND9.42.4-DinitrophenolND19AcenaphtheneND9.42.4-DinitrophenolND19DibenzofuranND19DibenzofuranND9.42.4-DinitrotolueneND9.42.4-DinitrotolueneND9.44-MitroanilineND9.44-Chlorophenyl-phenyletherND9.44-Chiorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Storophenyl-phenyletherND9.44-Storophenyl-phenyletherND9.44-Storophenyl-phenyletherND9.44-Storophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Storophenyl-phenyletherND9.44-Raromophenyl-phenyletherND9.44-Bromophenol                                                                                                                                                                                                                                                                                                                                             |                        |             |                        |
| 4-Chloro-3-methylphenolND9.42-MethylnaphthaleneND9.4142-MethylnaphthaleneND9.42.4, 6-TrichlorophenolND9.42.4, 5-TrichlorophenolND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42-ChloronaphthaleneND9.42.6-DinitrotolueneND9.43-NitroanilineND19AcenaphtheneND192.4-DinitrophenolND194-NitrophenolND19DibenzofuranND9.42.4-DinitrotolueneND9.42.4-DinitrotolueneND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND19N-NitrosodiphenylamineND19N-NitrosodiphenylamineND9.4AzobenzeneND9.44-Bromophenyl-phenyletherND9.4ArchlorophenolND19N-Nitrosodiphenol9.4ArchlorophenolND9.4ArchlorophenolND9.4ArchlorophenolND9.4Archlorophenol9.4Archlorophenol9.4Archlorophenol9.4Arc                                                                                                                                                                                                                                                                                                                                                                                 |                        |             |                        |
| 2-MethylnaphthaleneND9.4HexachlorocyclopentadieneND192,4,6-TrichlorophenolND9.42,4,5-TrichlorophenolND9.42-ChloronaphthaleneND9.42-NitroanilineND19DimethylphthalateND9.4AcenaphthyleneND9.42,6-DinitrotolueneND9.43-NitroanilineND9.4AcenaphtheneND9.42,4-DinitrotolueneND9.43-NitroanilineND194-NitrophenolND194-NitrophenolND194-NitrophenolND19bibenzofuranND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44,6-Dinitro-2-methylphenolND19N-NitrosodiphenylamineND9.44-Bromophenyl-phenyletherND9.44-Bromophenyl-phenyletherND9.4HexachlorophenolND9.4HexachlorophenolND9.4HexachlorophenolND9.4HexachlorophenolND9.4HexachlorophenolN                                                                                                                                                                                                                                                                                                                                                                                 |                        |             |                        |
| HexachlorocyclopentadieneND192,4,6-TrichlorophenolND9.42,4,5-TrichlorophenolND9.42-ChloronaphthaleneND9.42-NitroanilineND19DimethylphthalateND9.4AcenaphthyleneND9.42,6-DinitrotolueneND9.43-NitroanilineND9.42,4-DinitrotolueneND9.42,4-DinitrophenolND19AcenaphtheneND9.42,4-DinitrophenolND19AcenaphtheneND9.42,4-DinitrophenolND19DibezofuranND9.4DiethylphthalateND9.4DiethylphthalateND9.4PlucreneND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.4AzobenzeneND19N-NitrosodiphenylamineND9.4HexachlorophenolND9.4HexachlorophenolND9.4HexachlorophenolND9.4HexachlorophenolND9.4HexachlorophenolND9.4HexachlorophenolND9.4HexachlorophenolND9.4AchlorophenolND9.4AchlorophenolND9.4HexachlorophenolND9.4HexachlorophenolND9.4HexachlorophenolND9.4Hexachlorophenol <td< td=""><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                       |                        |             |                        |
| 2,4,6-TrichlorophenolND9.42,4,6-TrichlorophenolND9.42-ChloronaphthaleneND9.42-NitroanilineND19DimethylphthalateND9.4AcenaphthyleneND9.42,6-DinitrotolueneND9.43-NitroanilineND19AcenaphtheneND19AcenaphtheneND19AcenaphtheneND19AcenaphtheneND192,4-DinitrophenolND19DibenzofuranND19DibenzofuranND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.44-NitrophenolND19DibenzofuranND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND19N-NitrosodiphenylamineND19N-Nitrosodiphenyl-phenyletherND9.44-Bromophenyl-phenyletherND9.4HexachlorobenzeneND9.4HexachlorobenzeneND9.4HexachlorophenolND19PhenanthreneND9.4Di-n-butylphthalateND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |             |                        |
| 2,4,5-TrichlorophenolND9.42-ChloronaphthaleneND9.42-NitroanilineND19DimethylphthalateND9.4AcenaphthyleneND9.42,6-DinitrotolueneND9.43-NitroanilineND19AcenaphtheneND9.42,4-DinitrophenolND19AcenaphteneND9.42,4-DinitrophenolND194-NitrophenolND19DibenzofuranND9.42,4-DinitrotolueneND9.414-NitrophenolND9.42,4-DinitrotolueneND9.414-NitroanilineND9.415-NitroanilineND9.416-thylphthalateND9.417-Nitrosodiphenyl-phenyletherND9.44-Chlorophenyl-phenyletherND19N-NitrosodiphenylamineND19N-Nitrosodiphenyl-phenyletherND9.44-Bromophenyl-phenyletherND9.4HexachlorobenzeneND9.4HexachlorophenolND19PhenathreneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | ND          | 9.4                    |
| 2-NitroanilineND19DimethylphthalateND9.4AcenaphthyleneND9.42,6-DinitrotolueneND9.43-NitroanilineND19AcenaphtheneND9.42,4-DinitrophenolND194-NitrophenolND19bibenzofuranND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44-Chirtoo-2-methylphenolND194-aboenzeneND9.44-bromoghenyl-phenyletherND9.44-bromophenyl-phenyletherND9.44-bromophenyl-phenyletherND9.44-bromophenyl-phenyletherND9.44-bromophenyl-phenyletherND9.44-bromophenyl-phenyletherND9.44-bromophenyl-phenyletherND9.4PentachlorophenolND19PhenanthreneND9.4AnthraceneND9.4Di-n-butylphthalateND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | ND          |                        |
| DimethylphthalateND9.4AcenaphthyleneND9.42,6-DinitrotolueneND9.43-NitroanilineND19AcenaphtheneND9.42,4-DinitrophenolND194-NitrophenolND19DibenzofuranND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.44-NitroanilineND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND19N-NitrosodiphenylamineND9.4AzobenzeneND9.44-Bromophenyl-phenyletherND9.44-Bromophenyl-phenyletherND9.4AzobenzeneND9.4HexachlorophenolND19PhenathreneND9.4Di-n-butylphthalateND9.4AnthraceneND9.4PhenathreneND9.4PhenathreneND9.4PhenathreneND9.4AnthraceneND9.4PhenathreneND9.4PhenathreneND9.4PhenathreneND9.4PhenathreneND9.4PhenathreneND9.4PhenathreneND9.4PhenathreneND<                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | ND          | 9.4                    |
| AcenaphthyleneND9.42,6-DinitrotolueneND9.43-NitroanilineND19AcenaphtheneND9.42,4-DinitrophenolND194-NitrophenolND19bibenzofuranND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44,6-Dinitro-2-methylphenolND19N-NitrosodiphenylamineND9.4AzobenzeneND9.4HexachlorophenolND9.4PentachlorophenolND9.4AnthraceneND9.4Di-n-butylphthalateND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4 <tr< td=""><td>2-Nitroaniline</td><td>ND</td><td>19</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                | 2-Nitroaniline         | ND          | 19                     |
| AcenaphthyleneND9.42,6-DinitrotolueneND9.43-NitroanilineND19AcenaphtheneND9.42,4-DinitrophenolND194-NitrophenolND19bibenzofuranND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.42,4-DinitrotolueneND9.44-Chlorophenyl-phenyletherND9.44-Chlorophenyl-phenyletherND9.44,6-Dinitro-2-methylphenolND19N-NitrosodiphenylamineND9.4AzobenzeneND9.4HexachlorophenolND9.4PentachlorophenolND9.4AnthraceneND9.4Di-n-butylphthalateND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4 <tr< td=""><td>Dimethylphthalate</td><td>ND</td><td>9.4</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                            | Dimethylphthalate      | ND          | 9.4                    |
| 3-NitroanilineND19AcenaphtheneND9.42,4-DinitrophenolND194-NitrophenolND19DibenzofuranND9.42,4-DinitrotolueneND9.4DiethylphthalateND9.4FluoreneND9.44-NitroanilineND9.44-NitroanilineND9.44-Chlorophenyl-phenyletherND9.44,6-Dinitro-2-methylphenolND19N-NitrosodiphenylamineND9.4AzobenzeneND9.4HexachlorophenolND9.4HexachlorophenolND9.4AnthraceneND9.4PontachlorophenolND9.4HexachlorophenolND9.4HexachlorophenolND9.4HexachlorophenolND9.4PontachlorophenolND9.4PontachlorophenolND9.4PontachlorophenolND9.4PontachlorophenolND9.4PontachlorophenolND9.4PontachlorophenolND9.4PontachlorophenolND9.4PontachlorophenolND9.4PontachlorophenolND9.4PontachlorophenolND9.4PontachlorophenolND9.4PontachlorophenolND9.4PontachlorophenolND9.4Pontachlorophenol9.4Pontachlorophenol9.4                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | ND          | 9.4                    |
| AcenaphtheneND9.42,4-DinitrophenolND194-NitrophenolND19DibenzofuranND9.42,4-DinitrotolueneND9.4DiethylphthalateND9.4FluoreneND9.44-Chlorophenyl-phenyletherND9.44,6-Dinitro-2-methylphenolND19N-NitrosodiphenylamineND9.4AzobenzeneND9.4Hexachlorophenyl-phenyletherND9.49.4ArtorogeneND9.49.4ArbraceneND9.49.4ArbraceneND9.49.4Hexachlorophenyl-phenyletherND9.4Horophenyl-phenyletherND9.4AnthraceneND9.4PentachlorophenolND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.4AnthraceneND9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | ND          |                        |
| 2,4-DinitrophenolND194-NitrophenolND19DibenzofuranND9.42,4-DinitrotolueneND9.4DiethylphthalateND9.4FluoreneND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND194,6-Dinitro-2-methylphenolND19N-NitrosodiphenylamineND9.44-Bromophenyl-phenyletherND9.4HexachlorobenzeneND9.4HexachlorobenzeneND9.4HenathreneND9.4DiethorophenolND9.4HexachlorophenolND9.4HexachlorophenolND9.4PhonathreneND9.4Di-n-butylphthalateND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |             |                        |
| 4-NitrophenolND19DibenzofuranND9.42,4-DinitrotolueneND9.4DiethylphthalateND9.4FluoreneND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND194,6-Dinitro-2-methylphenolND19N-NitrosodiphenylamineND9.44-Bromophenyl-phenyletherND9.44-Bromophenyl-phenyletherND9.4HexachlorobenzeneND9.4HenathreneND9.4DienathreneND9.4HorophenolND9.4HenathreneND9.4AnthraceneND9.4Di-n-butylphthalateND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |             |                        |
| DibenzofuranND9.42,4-DinitrotolueneND9.4DiethylphthalateND9.4FluoreneND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND194,6-Dinitro-2-methylphenolND19N-NitrosodiphenylamineND9.4AzobenzeneND9.4HexachlorobenzeneND9.4PentachlorophenolND9.4DintreneND9.4Jong PhenanthreneND9.4Jong PhenathreneND9.4Jong PhenathreneND9.4AnthraceneND9.4Di-n-butylphthalateND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,4-Dinitrophenol      |             |                        |
| 2,4-DinitrotolueneND9.4DiethylphthalateND9.4FluoreneND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND194,6-Dinitro-2-methylphenolND19N-NitrosodiphenylamineND9.4AzobenzeneND9.44-Bromophenyl-phenyletherND9.4HexachlorobenzeneND9.4PentachlorophenolND9.4Di-n-butylphthalateND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |             | 19                     |
| DiethylphthalateND9.4FluoreneND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND194,6-Dinitro-2-methylphenolND19N-NitrosodiphenylamineND9.4AzobenzeneND9.44-Bromophenyl-phenyletherND9.4HexachlorobenzeneND9.4PentachlorophenolND19PhenanthreneND9.4AnthraceneND9.4Di -n-butylphthalateND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |             |                        |
| FluoreneND9.44-Chlorophenyl-phenyletherND9.44-NitroanilineND194,6-Dinitro-2-methylphenolND19N-NitrosodiphenylamineND9.4AzobenzeneND9.44-Bromophenyl-phenyletherND9.4HexachlorobenzeneND9.4PentachlorophenolND19PhenanthreneND9.4AnthraceneND9.4Di-n-butylphthalateND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |             |                        |
| 4-Chlorophenyl-phenyletherND9.44-NitroanilineND194,6-Dinitro-2-methylphenolND19N-NitrosodiphenylamineND9.4AzobenzeneND9.44-Bromophenyl-phenyletherND9.4HexachlorobenzeneND9.4PentachlorophenolND9.4PhenanthreneND9.4AnthraceneND9.4Di-n-butylphthalateND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |             |                        |
| 4-NitroanilineND194,6-Dinitro-2-methylphenolND19N-NitrosodiphenylamineND9.4AzobenzeneND9.44-Bromophenyl-phenyletherND9.4HexachlorobenzeneND9.4PentachlorophenolND19PhenanthreneND9.4AnthraceneND9.4Di-n-butylphthalateND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |             |                        |
| 4,6-Dinitro-2-methylphenolND19N-NitrosodiphenylamineND9.4AzobenzeneND9.44-Bromophenyl-phenyletherND9.4HexachlorobenzeneND9.4PentachlorophenolND19PhenanthreneND9.4AnthraceneND9.4Di-n-butylphthalateND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |             |                        |
| N-NitrosodiphenylamineND9.4AzobenzeneND9.44-Bromophenyl-phenyletherND9.4HexachlorobenzeneND9.4PentachlorophenolND19PhenanthreneND9.4AnthraceneND9.4Di-n-butylphthalateND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |             |                        |
| AzobenzeneND9.44-Bromophenyl-phenyletherND9.4HexachlorobenzeneND9.4PentachlorophenolND19PhenanthreneND9.4AnthraceneND9.4Di-n-butylphthalateND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             |                        |
| 4-Bromophenyl-phenyletherND9.4HexachlorobenzeneND9.4PentachlorophenolND19PhenanthreneND9.4AnthraceneND9.4Di-n-butylphthalateND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |             |                        |
| HexachlorobenzeneND9.4PentachlorophenolND19PhenanthreneND9.4AnthraceneND9.4Di-n-butylphthalateND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |             |                        |
| PentachlorophenolND19PhenanthreneND9.4AnthraceneND9.4Di-n-butylphthalateND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |             |                        |
| PhenanthreneND9.4AnthraceneND9.4Di-n-butylphthalateND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |             |                        |
| AnthraceneND9.4Di-n-butylphthalateND9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |             |                        |
| Di-n-butylphthalate ND 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FILOLAIICHEHE          | עמ          | 7.1                    |



|                                        | Semivolati      | le Organics by | GC/MS        |  |
|----------------------------------------|-----------------|----------------|--------------|--|
|                                        | 6218            | Location:      | Hanson Radum |  |
|                                        | R Levine Fricke | Prep:          | EPA 3520C    |  |
|                                        | 1-09567-01      | Analysis:      | EPA 8270C    |  |
|                                        | -10             | Batch#:        | 127624       |  |
|                                        | 6218-004        | Sampled:       | 07/25/07     |  |
|                                        | ter             | Received:      | 07/25/07     |  |
| Units: ug,                             |                 | Prepared:      | 07/25/07     |  |
| Diln Fac: 1.0                          | 000             | Analyzed:      | 07/26/07     |  |
|                                        |                 |                | 57           |  |
| Analyte                                | Resu            | 111            | RL           |  |
| Pyrene                                 | ND              |                | 9.4          |  |
| Butylbenzylphthalate                   | e ND            |                | 9.4<br>19    |  |
| 3,3 <sup>-</sup> -Dichlorobenzid:      | ine ND<br>ND    |                | 9.4          |  |
| Benzo(a)anthracene<br>Chrysene         | ND<br>ND        |                | 9.4          |  |
| bis(2-Ethylhexyl)pht                   |                 |                | 9.4          |  |
| Di-n-octylphthalate                    | ND ND           |                | 9.4          |  |
| Benzo(b)fluoranthene                   |                 |                | 9.4          |  |
| Benzo(k)fluoranthene                   |                 |                | 9.4          |  |
|                                        | e ND<br>ND      |                | 9.4          |  |
| Benzo(a)pyrene<br>Indeno(1,2,3-cd)pyre |                 |                | 9.4          |  |
| Dibenz(a,h)anthrace                    |                 |                | 9.4          |  |
| Benzo(g,h,i)perylene                   |                 |                | 9.4          |  |
| Belizo(g, li, 1)peryrelle              |                 |                | 9.1          |  |
| Surrogate                              | %REC Lim        | nits           |              |  |
| 2-Fluorophenol                         | 74 40-          | -120           |              |  |
| Phenol-d5                              | 71 38-          | -120           |              |  |
| 2,4,6-Tribromopheno                    | l 74 40-        | -120           |              |  |
| Nitrobenzene-d5                        |                 | -120           |              |  |
| 2-Fluorobiphenyl                       |                 | -120           |              |  |
| Terphenyl-d14                          | 70 23-          | -120           |              |  |



| Se                                 | mivolatile | Organics by | GC/M     | 1S           |
|------------------------------------|------------|-------------|----------|--------------|
| Lab #: 196218                      |            | Location:   |          | Hanson Radum |
| Client: LFR Levine Frid            | cke        | Prep:       |          | EPA 3520C    |
| Project#: 001-09567-01             |            | Analysis:   |          | EPA 8270C    |
| Type: BLANK                        |            | Diln Fac:   |          | 1.000        |
| Lab ID: QC397939                   |            | Batch#:     |          | 127624       |
| Matrix: Ŵater                      |            | Prepared:   |          | 07/25/07     |
| Units: ug/L                        |            | Analyzed:   |          | 07/26/07     |
|                                    |            | 1           |          |              |
| Analyte                            | Result     |             | RL       |              |
| N-Nitrosodimethylamine             | ND         |             | 10       |              |
| Phenol                             | ND         |             | 10       |              |
| bis(2-Chloroethyl)ether            | ND         |             | 10       |              |
| 2-Chlorophenol                     | ND         |             | 10       |              |
| 1,3-Dichlorobenzene                | ND         |             | 10       |              |
| 1,4-Dichlorobenzene                | ND         |             | 10       |              |
| Benzyl alcohol                     | ND         |             | 10       |              |
| 1,2-Dichlorobenzene                | ND         |             | 10       |              |
| 2-Methylphenol                     | ND         |             | 10       |              |
| bis(2-Chloroisopropyl) ether       | ND         |             | 10       |              |
| 4-Methylphenol                     | ND         |             | 10       |              |
| N-Nitroso-di-n-propylamine         | ND         |             | 10       |              |
| Hexachloroethane                   | ND         |             | 10       |              |
| Nitrobenzene                       | ND         |             | 10       |              |
| Isophorone                         | ND         |             | 10       |              |
| 2-Nitrophenol                      | ND         |             | 20       |              |
|                                    | ND         |             | 10       |              |
| 2,4-Dimethylphenol<br>Benzoic acid |            |             | 50       |              |
|                                    | ND         |             | 50<br>10 |              |
| bis(2-Chloroethoxy)methane         | ND         |             |          |              |
| 2,4-Dichlorophenol                 | ND         |             | 10       |              |
| 1,2,4-Trichlorobenzene             | ND         |             | 10<br>10 |              |
| Naphthalene                        | ND         |             |          |              |
| 4-Chloroaniline                    | ND         |             | 10       |              |
| Hexachlorobutadiene                | ND         |             | 10<br>10 |              |
| 4-Chloro-3-methylphenol            | ND         |             |          |              |
| 2-Methylnaphthalene                | ND         |             | 10       |              |
| Hexachlorocyclopentadiene          | ND         |             | 20       |              |
| 2,4,6-Trichlorophenol              | ND         |             | 10       |              |
| 2,4,5-Trichlorophenol              | ND         |             | 10       |              |
| 2-Chloronaphthalene                | ND         |             | 10       |              |
| 2-Nitroaniline                     | ND         |             | 20       |              |
| Dimethylphthalate                  | ND         |             | 10       |              |
| Acenaphthylene                     | ND         |             | 10       |              |
| 2,6-Dinitrotoluene                 | ND         |             | 10       |              |
| 3-Nitroaniline                     | ND         |             | 20       |              |
| Acenaphthene                       | ND         |             | 10       |              |
| 2,4-Dinitrophenol                  | ND         |             | 20       |              |
| 4-Nitrophenol                      | ND         |             | 20       |              |
| Dibenzofuran                       | ND         |             | 10       |              |
| 2,4-Dinitrotoluene                 | ND         |             | 10       |              |
| Diethylphthalate                   | ND         |             | 10       |              |
| Fluorene                           | ND         |             | 10       |              |
| 4-Chlorophenyl-phenylether         | ND         |             | 10       |              |
| 4-Nitroaniline                     | ND         |             | 20       |              |
| 4,6-Dinitro-2-methylphenol         | ND         |             | 20       |              |
| N-Nitrosodiphenylamine             | ND         |             | 10       |              |
| Azobenzene                         | ND         |             | 10       |              |
| 4-Bromophenyl-phenylether          | ND         |             | 10       |              |
| Hexachlorobenzene                  | ND         |             | 10       |              |
| Pentachlorophenol                  | ND         |             | 20       |              |
| Phenanthrene                       | ND         |             | 10       |              |
| Anthracene                         | ND         |             | 10       |              |
| Di-n-butylphthalate                | ND         |             | 10       |              |
| Fluoranthene                       | ND         |             | 10       |              |

ND= Not Detected RL= Reporting Limit

Page 1 of 2



|                                          |                              | Semivol  | atile C | rganics by                    | GC/I     |                    |
|------------------------------------------|------------------------------|----------|---------|-------------------------------|----------|--------------------|
|                                          | 196218                       |          |         | Location:                     |          | Hanson Radum       |
|                                          | LFR Levine Fr                | lcke     |         | Prep:                         |          | EPA 3520C          |
|                                          | <u>001-09567-01</u><br>BLANK |          |         | <u>Analysis:</u><br>Diln Fac: |          | EPA 8270C<br>1.000 |
|                                          | 2C397939                     |          |         | Batch#:                       |          | 127624             |
|                                          | Water                        |          |         | Prepared:                     |          | 07/25/07           |
|                                          | lacer<br>lack                |          |         | Analyzed:                     |          | 07/26/07           |
|                                          |                              |          |         |                               |          |                    |
| Analyte                                  | 9                            |          | Result  |                               | RL       |                    |
| Pyrene                                   |                              | ND       |         |                               | 10       |                    |
| Butylbenzylphthala                       |                              | ND       |         |                               | 10<br>20 |                    |
| 3,3'-Dichlorobenz:<br>Benzo(a)anthracene |                              | ND<br>ND |         |                               | 20<br>10 |                    |
| Chrysene                                 | 5                            | ND       |         |                               | 10       |                    |
| bis(2-Ethylhexyl)                        | phthalate                    | ND       |         |                               | 10       |                    |
| Di-n-octylphthala                        |                              | ND       |         |                               | 10       |                    |
| Benzo(b)fluoranthe                       |                              | ND       |         |                               | 10       |                    |
| Benzo(k)fluoranthe                       | ene                          | ND       |         |                               | 10       |                    |
| Benzo(a)pyrene                           |                              | ND       |         |                               | 10       |                    |
| Indeno(1,2,3-cd)py                       |                              | ND       |         |                               | 10       |                    |
| Dibenz(a,h)anthrad                       |                              | ND       |         |                               | 10       |                    |
| Benzo(g,h,i)peryle                       | ene                          | ND       |         |                               | 10       |                    |
| Surrogat                                 | te                           | %REC     | Limits  |                               |          |                    |
| 2-Fluorophenol                           |                              | 82       | 40-120  |                               |          |                    |
| Phenol-d5                                |                              | 88       | 38-120  |                               |          |                    |
| 2,4,6-Tribromopher                       | nol                          | 92       | 40-120  |                               |          |                    |
| Nitrobenzene-d5                          |                              | 90       | 48-120  |                               |          |                    |
| 2-Fluorobiphenyl                         |                              | 87       | 50-120  |                               |          |                    |
| Terphenyl-d14                            |                              | 82       | 23-120  |                               |          |                    |



| Semivolatile Organics by GC/MS |                   |           |              |  |  |
|--------------------------------|-------------------|-----------|--------------|--|--|
| Lab #:                         | 196218            | Location: | Hanson Radum |  |  |
| Client:                        | LFR Levine Fricke | Prep:     | EPA 3520C    |  |  |
| Project#:                      | 001-09567-01      | Analysis: | EPA 8270C    |  |  |
| Matrix:                        | Water             | Batch#:   | 127624       |  |  |
| Units:                         | ug/L              | Prepared: | 07/25/07     |  |  |
| Diln Fac:                      | 1.000             | Analyzed: | 07/26/07     |  |  |

| Type: BS                   |      |        | Lab ID: | QC39   | 7940 |        |
|----------------------------|------|--------|---------|--------|------|--------|
| Analyte                    |      | Spiked |         | Result | %REC | Limits |
| Phenol                     |      | 80.00  |         | 62.76  | 78   | 47-120 |
| 2-Chlorophenol             |      | 80.00  |         | 66.09  | 83   | 52-120 |
| 1,4-Dichlorobenzene        |      | 40.00  |         | 34.87  | 87   | 41-120 |
| N-Nitroso-di-n-propylamine |      | 40.00  |         | 29.04  | 73   | 46-120 |
| 1,2,4-Trichlorobenzene     |      | 40.00  |         | 36.24  | 91   | 45-120 |
| 4-Chloro-3-methylphenol    |      | 80.00  |         | 67.94  | 85   | 52-120 |
| Acenaphthene               |      | 40.00  |         | 33.26  | 83   | 52-120 |
| 4-Nitrophenol              |      | 80.00  |         | 61.64  | 77   | 46-120 |
| 2,4-Dinitrotoluene         |      | 40.00  |         | 36.51  | 91   | 49-120 |
| Pentachlorophenol          |      | 80.00  |         | 72.44  | 91   | 39-120 |
| Pyrene                     |      | 40.00  |         | 31.70  | 79   | 48-120 |
|                            |      |        |         |        |      |        |
| Surrogate                  | %REC | Limits |         |        |      |        |
| 2-Fluorophenol             | 77   | 40-120 |         |        |      |        |
| Phenol-d5                  | 81   | 38-120 |         |        |      |        |
| 2,4,6-Tribromophenol       | 116  | 40-120 |         |        |      |        |
| Nitrobenzene-d5            | 80   | 48-120 |         |        |      |        |
| 2-Fluorobiphenyl           | 83   | 50-120 |         |        |      |        |
| Terphenyl-d14              | 74   | 23-120 |         |        |      |        |

| Type: BSD               |       |        | Lab ID: | QC39   | 7941 |        |     |     |
|-------------------------|-------|--------|---------|--------|------|--------|-----|-----|
| Analyte                 |       | Spiked |         | Result | %REC | Limits | RPD | Lim |
| Phenol                  |       | 80.00  |         | 63.21  | 79   | 47-120 | 1   | 28  |
| 2-Chlorophenol          |       | 80.00  |         | 65.64  | 82   | 52-120 | 1   | 27  |
| 1,4-Dichlorobenzene     |       | 40.00  |         | 33.24  | 83   | 41-120 | 5   | 32  |
| N-Nitroso-di-n-propylam | ine   | 40.00  |         | 30.42  | 76   | 46-120 | 5   | 28  |
| 1,2,4-Trichlorobenzene  |       | 40.00  |         | 33.46  | 84   | 45-120 | 8   | 29  |
| 4-Chloro-3-methylphenol |       | 80.00  |         | 68.58  | 86   | 52-120 | 1   | 26  |
| Acenaphthene            |       | 40.00  |         | 32.20  | 81   | 52-120 | 3   | 27  |
| 4-Nitrophenol           |       | 80.00  |         | 59.16  | 74   | 46-120 | 4   | 31  |
| 2,4-Dinitrotoluene      |       | 40.00  |         | 35.77  | 89   | 49-120 | 2   | 29  |
| Pentachlorophenol       |       | 80.00  |         | 71.47  | 89   | 39-120 | 1   | 28  |
| Pyrene                  |       | 40.00  |         | 32.05  | 80   | 48-120 | 1   | 30  |
| Gunna act a             | 8.DEC | Timita |         |        |      |        |     |     |
| Surrogate               | %REC  | Limits |         |        |      |        |     |     |
| 2-Fluorophenol          | //    | 40-120 |         |        |      |        |     |     |
| Phenol-d5               | 82    | 38-120 |         |        |      |        |     |     |
| 2,4,6-Tribromophenol    | 106   | 40-120 |         |        |      |        |     |     |
| Nitrobenzene-d5         | 82    | 48-120 |         |        |      |        |     |     |
| 2-Fluorobiphenyl        | 81    | 50-120 |         |        |      |        |     |     |
| Terphenyl-d14           | 73    | 23-120 |         |        |      |        |     |     |



|            | Dissolv           | ved Calif | ornia Ti | tle 26 | Metals   |          |           |  |
|------------|-------------------|-----------|----------|--------|----------|----------|-----------|--|
| Lab #:     | 196218            |           | Locati   | on:    | Hansor   | n Radum  |           |  |
| Client:    | LFR Levine Fricke | e         | Prep:    |        | METHOI   | C        |           |  |
| Project#:  | 001-09567-01      |           |          |        |          |          |           |  |
| Field ID:  | 3S/1E 10D8        |           | Units:   |        | ug/L     |          |           |  |
| Lab ID:    | 196218-001        |           | Sample   | d:     | 07/25/   | /07      |           |  |
| Matrix:    | Filtrate          |           | Receiv   | ed:    | 07/25,   | /07      |           |  |
| Analyte    | Result            | RL        | Diln Fac | Batch# | Prepared | Analyzed | Analysis  |  |
| Antimony   | ND                | 1.0       | 1.000    |        | 07/26/07 |          |           |  |
| Arsenic    | 1.2               | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Barium     | 370               | 1.0       | 5.000    | 127634 | 07/25/07 | 07/25/07 | EPA 6020  |  |
| Beryllium  | ND                | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Cadmium    | ND                | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Chromium   | 6.3               | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Cobalt     | ND                | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Copper     | ND                | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Lead       | ND                | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Mercury    | 0.63              | 0.20      | 1.000    | 127647 | 07/26/07 | 07/26/07 | EPA 7470A |  |
| Molybdenum | 1.2               | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Nickel     | 1.3               | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Selenium   | ND                | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Silver     | ND                | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Thallium   | ND                | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Vanadium   | 3.4               | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Zinc       | 8.0               | 5.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |



|            | Dissolve          | ed Cali | fornia Ti | tle 26 | Metals   |          |           |
|------------|-------------------|---------|-----------|--------|----------|----------|-----------|
| Lab #:     | 196218            |         | Locati    | on:    | Hanson   | n Radum  |           |
| Client:    | LFR Levine Fricke |         | Prep:     |        | METHOI   | 0        |           |
| Project#:  | 001-09567-01      |         |           |        |          |          |           |
| Field ID:  | 3S/1E 10N3        |         | Units:    |        | ug/L     |          |           |
| Lab ID:    | 196218-002        |         | Sample    | d:     | 07/25,   | /07      |           |
| Matrix:    | Filtrate          |         | Receiv    | ed:    | 07/25,   | /07      |           |
| Analyte    | Result            | RL      | Diln Fac  | Batch# | Prepared | Analyzed | Analysis  |
| Antimony   | ND                | 1.0     | 1.000     | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Arsenic    | ND                | 1.0     | 1.000     | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Barium     | 260               | 1.0     | 5.000     | 127634 | 07/25/07 | 07/25/07 | EPA 6020  |
| Beryllium  | ND                | 1.0     | 1.000     | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Cadmium    | ND                | 1.0     | 1.000     | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Chromium   | 2.6               | 1.0     | 1.000     | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Cobalt     | ND                | 1.0     | 1.000     | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Copper     | ND                | 1.0     | 1.000     | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Lead       | ND                | 1.0     | 1.000     | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Mercury    | ND                | 0.20    | 1.000     | 127647 | 07/26/07 | 07/26/07 | EPA 7470A |
| Molybdenum | ND                | 1.0     | 1.000     | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Nickel     | ND                | 1.0     | 1.000     | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Selenium   | ND                | 1.0     | 1.000     | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Silver     | ND                | 1.0     | 1.000     | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Thallium   | ND                | 1.0     | 1.000     | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Vanadium   | 1.4               | 1.0     | 1.000     | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Zinc       | ND                | 5.0     | 5.000     | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |



|            | Dissolve          | ed Califo | ornia Ti | tle 26 | Metals   |          |           |  |
|------------|-------------------|-----------|----------|--------|----------|----------|-----------|--|
| Lab #:     | 196218            |           | Locati   | on:    | Hanson   | n Radum  |           |  |
| Client:    | LFR Levine Fricke |           | Prep:    |        | METHOI   | 0        |           |  |
| Project#:  | 001-09567-01      |           |          |        |          |          |           |  |
| Field ID:  | 3S/1E 10K2        |           | Units:   |        | ug/L     |          |           |  |
| Lab ID:    | 196218-003        |           | Sample   | d:     | 07/25,   | /07      |           |  |
| Matrix:    | Filtrate          |           | Receive  | ed:    | 07/25,   | /07      |           |  |
| Analyte    | Result            | RL        | Diln Fac | Batch# | Prepared | Analyzed | Analysis  |  |
| Antimony   | ND                | 1.0       | 1.000    |        | 07/26/07 | =        | =         |  |
| Arsenic    | ND                | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Barium     | 230               | 1.0       | 5.000    | 127634 | 07/25/07 | 07/25/07 | EPA 6020  |  |
| Beryllium  | ND                | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Cadmium    | ND                | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Chromium   | 7.8               | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Cobalt     | ND                | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Copper     | ND                | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Lead       | ND                | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Mercury    | 0.42              | 0.20      | 1.000    | 127647 | 07/26/07 | 07/26/07 | EPA 7470A |  |
| Molybdenum | ND                | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Nickel     | ND                | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Selenium   | ND                | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Silver     | ND                | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Thallium   | ND                | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Vanadium   | 1.6               | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |
| Zinc       | ND                | 5.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |  |



|            | Dissol           | ved Calif | ornia Ti | tle 26 | Metals   |          |           |
|------------|------------------|-----------|----------|--------|----------|----------|-----------|
| Lab #:     | 196218           |           | Locati   | on:    | Hanson   | n Radum  |           |
| Client:    | LFR Levine Frick | e         | Prep:    |        | METHOI   | 0        |           |
| Project#:  | 001-09567-01     |           |          |        |          |          |           |
| Field ID:  | MW-10            |           | Units:   |        | ug/L     |          |           |
| Lab ID:    | 196218-004       |           | Sample   | d:     | 07/25,   | /07      |           |
| Matrix:    | Filtrate         |           | Receiv   | ed:    | 07/25,   | /07      |           |
| Analyte    | Result           | RL        | Diln Fac | Batch# | Prepared | Analyzed | Analysis  |
| Antimony   | ND               | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Arsenic    | ND               | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Barium     | 230              | 1.0       | 5.000    | 127634 | 07/25/07 | 07/25/07 | EPA 6020  |
| Beryllium  | ND               | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Cadmium    | ND               | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Chromium   | 7.6              | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Cobalt     | ND               | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Copper     | ND               | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Lead       | ND               | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Mercury    | 0.33             | 0.20      | 1.000    | 127647 | 07/26/07 | 07/26/07 | EPA 7470A |
| Molybdenum | ND               | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Nickel     | ND               | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Selenium   | ND               | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Silver     | ND               | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Thallium   | ND               | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Vanadium   | 1.5              | 1.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |
| Zinc       | ND               | 5.0       | 1.000    | 127644 | 07/26/07 | 07/26/07 | EPA 6020  |



| Dissolved California Title 26 Metals |                   |           |              |  |  |  |  |
|--------------------------------------|-------------------|-----------|--------------|--|--|--|--|
| Lab #:                               | 196218            | Location: | Hanson Radum |  |  |  |  |
| Client:                              | LFR Levine Fricke | Prep:     | METHOD       |  |  |  |  |
| Project#:                            | 001-09567-01      | Analysis: | EPA 6020     |  |  |  |  |
| Analyte:                             | Barium            | Diln Fac: | 1.000        |  |  |  |  |
| Type:                                | BLANK             | Batch#:   | 127634       |  |  |  |  |
| Lab ID:                              | QC397987          | Prepared: | 07/25/07     |  |  |  |  |
| Matrix:                              | Filtrate          | Analyzed: | 07/25/07     |  |  |  |  |
| Units:                               | ug/L              |           |              |  |  |  |  |
| D1+                                  |                   |           |              |  |  |  |  |

| Result | RL  |  |
|--------|-----|--|
| ND     | 1.0 |  |



| Dissolved California Title 26 Metals |                   |           |              |  |  |  |  |
|--------------------------------------|-------------------|-----------|--------------|--|--|--|--|
| Lab #:                               | 196218            | Location: | Hanson Radum |  |  |  |  |
| Client:                              | LFR Levine Fricke | Prep:     | METHOD       |  |  |  |  |
| Project#:                            | 001-09567-01      | Analysis: | EPA 6020     |  |  |  |  |
| Analyte:                             | Barium            | Batch#:   | 127634       |  |  |  |  |
| Matrix:                              | Filtrate          | Prepared: | 07/25/07     |  |  |  |  |
| Units:                               | ug/L              | Analyzed: | 07/25/07     |  |  |  |  |
| Diln Fac:                            | 1.000             |           |              |  |  |  |  |

| Type | Lab ID   | Spiked | Result | %REC | Limits | RPD | Lim |
|------|----------|--------|--------|------|--------|-----|-----|
| BS   | QC397988 | 100.0  | 103.0  | 103  | 80-120 |     |     |
| BSD  | QC397989 | 100.0  | 98.23  | 98   | 80-120 | 5   | 20  |



|             |                   |           | -            |  |
|-------------|-------------------|-----------|--------------|--|
| Lab #:      | 196218            | Location: | Hanson Radum |  |
| Client:     | LFR Levine Fricke | Prep:     | METHOD       |  |
| Project#:   | 001-09567-01      | Analysis: | EPA 6020     |  |
| Analyte:    | Barium            | Batch#:   | 127634       |  |
| Field ID:   | 3S/1E 10D8        | Sampled:  | 07/25/07     |  |
| MSS Lab ID: | 196218-001        | Received: | 07/25/07     |  |
| Matrix:     | Filtrate          | Prepared: | 07/25/07     |  |
| Units:      | ug/L              | Analyzed: | 07/25/07     |  |
| Diln Fac:   | 5.000             |           |              |  |

| Type | Lab ID   | MSS Result | Spiked | Result | %REC | Limits | RPD | Lim |
|------|----------|------------|--------|--------|------|--------|-----|-----|
| MS   | QC397990 | 367.0      | 100.0  | 466.1  | 99   | 73-125 |     |     |
| MSD  | QC397991 |            | 100.0  | 475.7  | 109  | 73-125 | 2   | 20  |



| Dissolved California Title 26 Metals |                   |           |              |  |  |  |  |
|--------------------------------------|-------------------|-----------|--------------|--|--|--|--|
| Lab #:                               | 196218            | Location: | Hanson Radum |  |  |  |  |
| Client:                              | LFR Levine Fricke | Prep:     | METHOD       |  |  |  |  |
| Project#:                            | 001-09567-01      | Analysis: | EPA 6020     |  |  |  |  |
| Туре:                                | BLANK             | Diln Fac: | 1.000        |  |  |  |  |
| Lab ID:                              | QC398057          | Batch#:   | 127644       |  |  |  |  |
| Matrix:                              | Filtrate          | Prepared: | 07/26/07     |  |  |  |  |
| Units:                               | ug/L              | Analyzed: | 07/26/07     |  |  |  |  |

| Analyte    | Result | RL  |  |
|------------|--------|-----|--|
| Antimony   | ND     | 1.0 |  |
| Arsenic    | ND     | 1.0 |  |
| Beryllium  | ND     | 1.0 |  |
| Cadmium    | ND     | 1.0 |  |
| Chromium   | ND     | 1.0 |  |
| Cobalt     | ND     | 1.0 |  |
| Copper     | ND     | 1.0 |  |
| Lead       | ND     | 1.0 |  |
| Molybdenum | ND     | 1.0 |  |
| Nickel     | ND     | 1.0 |  |
| Selenium   | ND     | 1.0 |  |
| Silver     | ND     | 1.0 |  |
| Thallium   | ND     | 1.0 |  |
| Vanadium   | ND     | 1.0 |  |
| Zinc       | ND     | 5.0 |  |



|           | Dissolved Cal     | lifornia Title 26 | Metals       |  |
|-----------|-------------------|-------------------|--------------|--|
| Lab #:    | 196218            | Location:         | Hanson Radum |  |
| Client:   | LFR Levine Fricke | Prep:             | METHOD       |  |
| Project#: | 001-09567-01      | Analysis:         | EPA 6020     |  |
| Matrix:   | Filtrate          | Batch#:           | 127644       |  |
| Units:    | ug/L              | Prepared:         | 07/26/07     |  |
| Diln Fac: | 1.000             | Analyzed:         | 07/26/07     |  |

| Type: BS   | Lab    | ID: QC398 | 3058 |        |
|------------|--------|-----------|------|--------|
| Analyte    | Spiked | Result    | %REC | Limits |
| Antimony   | 100.0  | 89.18     | 89   | 80-120 |
| Arsenic    | 100.0  | 97.99     | 98   | 80-120 |
| Beryllium  | 100.0  | 95.92     | 96   | 80-120 |
| Cadmium    | 100.0  | 96.88     | 97   | 80-120 |
| Chromium   | 100.0  | 97.41     | 97   | 80-120 |
| Cobalt     | 100.0  | 98.27     | 98   | 80-120 |
| Copper     | 100.0  | 98.14     | 98   | 80-120 |
| Lead       | 100.0  | 96.76     | 97   | 80-120 |
| Molybdenum | 100.0  | 92.00     | 92   | 80-120 |
| Nickel     | 100.0  | 98.27     | 98   | 80-120 |
| Selenium   | 100.0  | 100.3     | 100  | 79-120 |
| Silver     | 100.0  | 92.10     | 92   | 80-120 |
| Thallium   | 50.00  | 49.90     | 100  | 80-120 |
| Vanadium   | 100.0  | 97.81     | 98   | 80-120 |
| Zinc       | 100.0  | 95.84     | 96   | 80-120 |

| Type:      | BSD   |        | Lab ID:    | QC398059 |   |        |     |     |
|------------|-------|--------|------------|----------|---|--------|-----|-----|
| An         | alyte | Spiked | Result     |          |   | Limits | RPD | Lim |
| Antimony   |       | 100.0  | <b>•</b> · | .94 88   | - | 30-120 | 1   | 20  |
| Arsenic    |       | 100.0  | 97         | .57 98   | 8 | 30-120 | 0   | 20  |
| Beryllium  |       | 100.0  | 96         | .07 96   | 8 | 30-120 | 0   | 20  |
| Cadmium    |       | 100.0  | 95         | .77 96   | 8 | 30-120 | 1   | 20  |
| Chromium   |       | 100.0  | 97         | .42 97   | 8 | 30-120 | 0   | 20  |
| Cobalt     |       | 100.0  | 97         | .60 98   | 8 | 30-120 | 1   | 20  |
| Copper     |       | 100.0  | 96         | .85 97   | 8 | 30-120 | 1   | 20  |
| Lead       |       | 100.0  | 96         | .05 96   | 8 | 30-120 | 1   | 20  |
| Molybdenum |       | 100.0  | 90         | .79 91   | 8 | 30-120 | 1   | 20  |
| Nickel     |       | 100.0  | 97         | .77 98   | 8 | 30-120 | 1   | 20  |
| Selenium   |       | 100.0  | 97         | .48 97   | 7 | 79-120 | 3   | 20  |
| Silver     |       | 100.0  | 91         | .05 91   | 8 | 30-120 | 1   | 20  |
| Thallium   |       | 50.00  | 49         |          | - | 30-120 | 1   | 20  |
| Vanadium   |       | 100.0  |            | .32 97   | 8 | 30-120 | 1   | 20  |
| Zinc       |       | 100.0  |            | .63 95   | - | 30-120 | 1   | 20  |



|             | Dissolved Cal     | lifornia Title 26 | Metals       |  |
|-------------|-------------------|-------------------|--------------|--|
| Lab #:      | 196218            | Location:         | Hanson Radum |  |
| Client:     | LFR Levine Fricke | Prep:             | METHOD       |  |
| Project#:   | 001-09567-01      | Analysis:         | EPA 6020     |  |
| Field ID:   | 3S/1E 10D8        | Batch#:           | 127644       |  |
| MSS Lab ID: | 196218-001        | Sampled:          | 07/25/07     |  |
| Matrix:     | Filtrate          | Received:         | 07/25/07     |  |
| Units:      | ug/L              | Prepared:         | 07/26/07     |  |
| Diln Fac:   | 5.000             | Analyzed:         | 07/26/07     |  |

| Type: MS   |            | Lab ID: | QC398060 |      |        |
|------------|------------|---------|----------|------|--------|
| Analyte    | MSS Result | Spiked  | Result   | %REC | Limits |
| Antimony   | 0.1235     | 100.0   | 91.25    | 91   | 80-120 |
| Arsenic    | 1.214      | 100.0   | 102.1    | 101  | 79-120 |
| Beryllium  | <0.01066   | 100.0   | 97.79    | 98   | 80-120 |
| Cadmium    | <0.008202  | 100.0   | 95.87    | 96   | 77-120 |
| Chromium   | 6.262      | 100.0   | 102.9    | 97   | 77-120 |
| Cobalt     | 0.04638    | 100.0   | 96.42    | 96   | 79-120 |
| Copper     | <0.03605   | 100.0   | 96.30    | 96   | 78-120 |
| Lead       | 0.02065    | 100.0   | 91.79    | 92   | 80-120 |
| Molybdenum | 1.154      | 100.0   | 91.64    | 90   | 80-120 |
| Nickel     | 1.275      | 100.0   | 98.03    | 97   | 75-120 |
| Selenium   | 0.2970     | 100.0   | 104.1    | 104  | 69-120 |
| Silver     | <0.005482  | 100.0   | 88.07    | 88   | 73-120 |
| Thallium   | <0.003884  | 50.00   | 44.87    | 90   | 71-120 |
| Vanadium   | 3.350      | 100.0   | 101.5    | 98   | 77-120 |
| Zinc       | 7.970      | 100.0   | 96.14    | 88   | 61-125 |

| Type: MSD  | Lab II | D: QC398 | 061  |        |     |     |
|------------|--------|----------|------|--------|-----|-----|
| Analyte    | Spiked | Result   | %REC | Limits | RPD | Lim |
| Antimony   | 100.0  | 91.17    | 91   | 80-120 | 0   | 20  |
| Arsenic    | 100.0  | 99.80    | 99   | 79-120 | 2   | 20  |
| Beryllium  | 100.0  | 96.05    | 96   | 80-120 | 2   | 20  |
| Cadmium    | 100.0  | 96.00    | 96   | 77-120 | 0   | 20  |
| Chromium   | 100.0  | 102.9    | 97   | 77-120 | 0   | 20  |
| Cobalt     | 100.0  | 96.65    | 97   | 79-120 | 0   | 20  |
| Copper     | 100.0  | 96.44    | 96   | 78-120 | 0   | 20  |
| Lead       | 100.0  | 91.98    | 92   | 80-120 | 0   | 20  |
| Molybdenum | 100.0  | 93.61    | 92   | 80-120 | 2   | 20  |
| Nickel     | 100.0  | 97.85    | 97   | 75-120 | 0   | 20  |
| Selenium   | 100.0  | 104.9    | 105  | 69-120 | 1   | 20  |
| Silver     | 100.0  | 87.74    | 88   | 73-120 | 0   | 20  |
| Thallium   | 50.00  | 44.80    | 90   | 71-120 | 0   | 20  |
| Vanadium   | 100.0  | 101.0    | 98   | 77-120 | 0   | 20  |
| Zinc       | 100.0  | 111.7    | 104  | 61-125 | 15  | 20  |



| Dissolved Cal     | lifornia Title 26                                                                    | 5 Metals                                                                                                              |                                                                                                                                                  |
|-------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 196218            | Location:                                                                            | Hanson Radum                                                                                                          |                                                                                                                                                  |
| LFR Levine Fricke | Prep:                                                                                | METHOD                                                                                                                |                                                                                                                                                  |
| 001-09567-01      | Analysis:                                                                            | EPA 7470A                                                                                                             |                                                                                                                                                  |
| Mercury           | Diln Fac:                                                                            | 1.000                                                                                                                 |                                                                                                                                                  |
| BLANK             | Batch#:                                                                              | 127647                                                                                                                |                                                                                                                                                  |
| QC398067          | Prepared:                                                                            | 07/26/07                                                                                                              |                                                                                                                                                  |
| Water             | Analyzed:                                                                            | 07/26/07                                                                                                              |                                                                                                                                                  |
| uq/L              |                                                                                      |                                                                                                                       |                                                                                                                                                  |
|                   | 196218<br>LFR Levine Fricke<br>001-09567-01<br>Mercury<br>BLANK<br>QC398067<br>Water | 196218Location:LFR Levine FrickePrep:001-09567-01Analysis:MercuryDiln Fac:BLANKBatch#:QC398067Prepared:WaterAnalyzed: | LFR Levine FrickePrep:METHOD001-09567-01Analysis:EPA 7470AMercuryDiln Fac:1.000BLANKBatch#:127647QC398067Prepared:07/26/07WaterAnalyzed:07/26/07 |

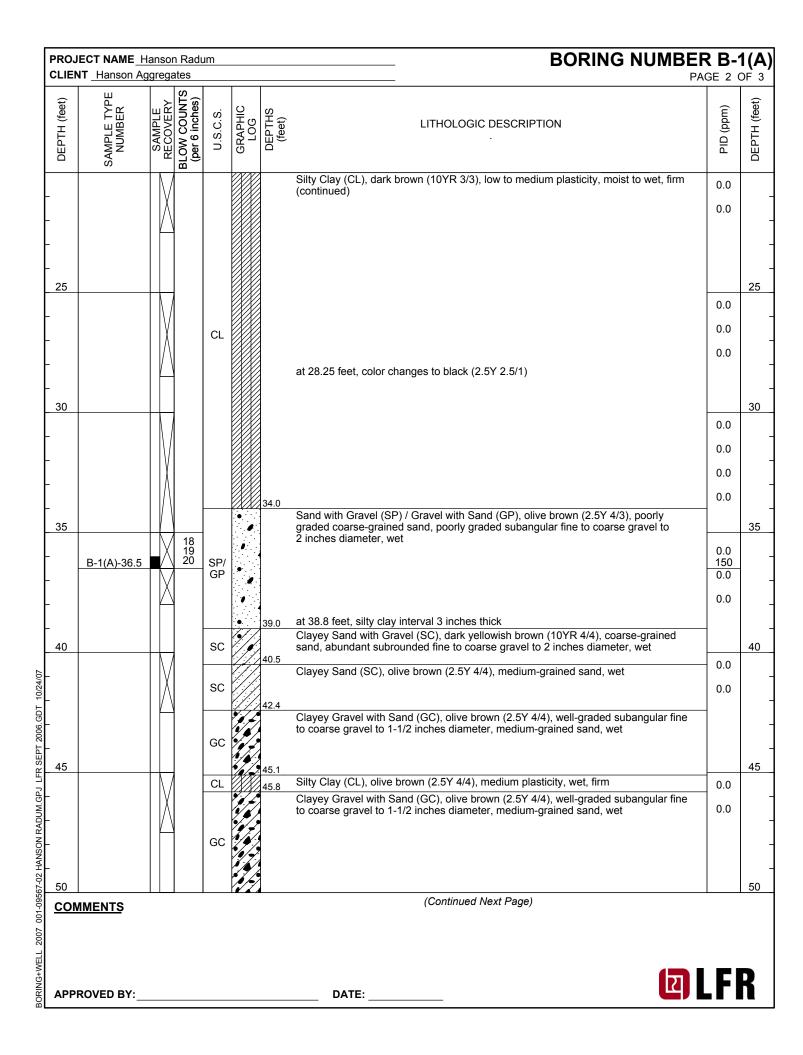
| Result | RL   |  |
|--------|------|--|
| ND     | 0.20 |  |

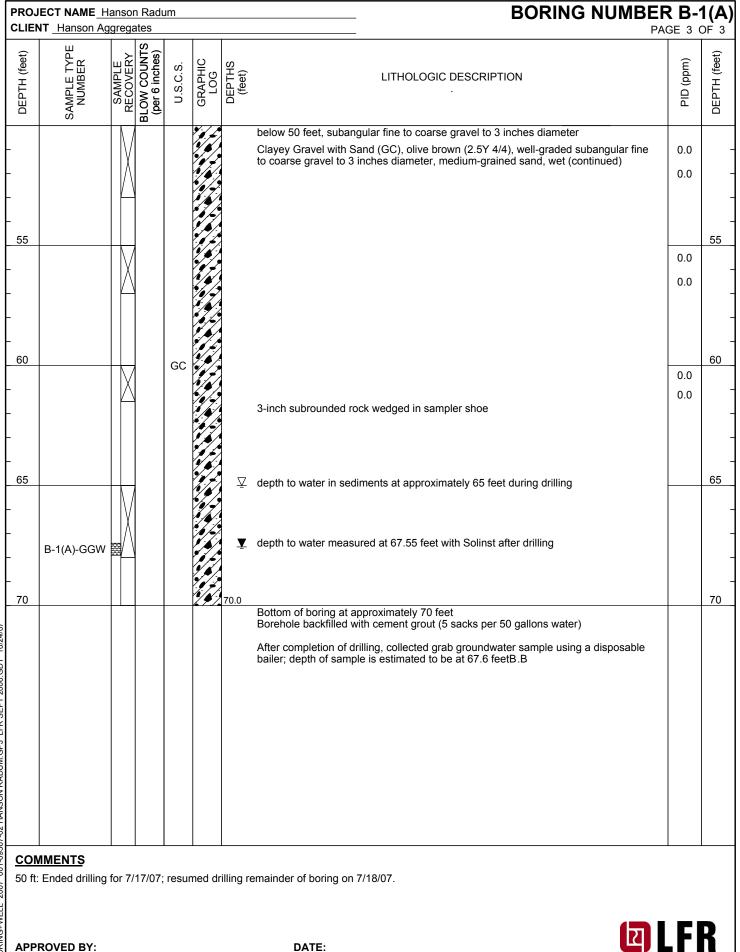


|           | Dissolved Califor | rnia Title 26 M | etals        |
|-----------|-------------------|-----------------|--------------|
| Lab #:    | 196218            | Location:       | Hanson Radum |
| Client:   | LFR Levine Fricke | Prep:           | METHOD       |
| Project#: | 001-09567-01      | Analysis:       | EPA 7470A    |
| Analyte:  | Mercury           | Batch#:         | 127647       |
| Matrix:   | Water             | Prepared:       | 07/26/07     |
| Units:    | ug/L              | Analyzed:       | 07/26/07     |
| Diln Fac: | 1.000             |                 |              |

| Type | Lab ID   | Spiked | Result | %REC | Limits | RPD | Lim |
|------|----------|--------|--------|------|--------|-----|-----|
| BS   | QC398068 | 5.000  | 5.210  | 104  | 80-120 |     |     |
| BSD  | QC398069 | 5.000  | 5.280  | 106  | 80-120 | 1   | 20  |



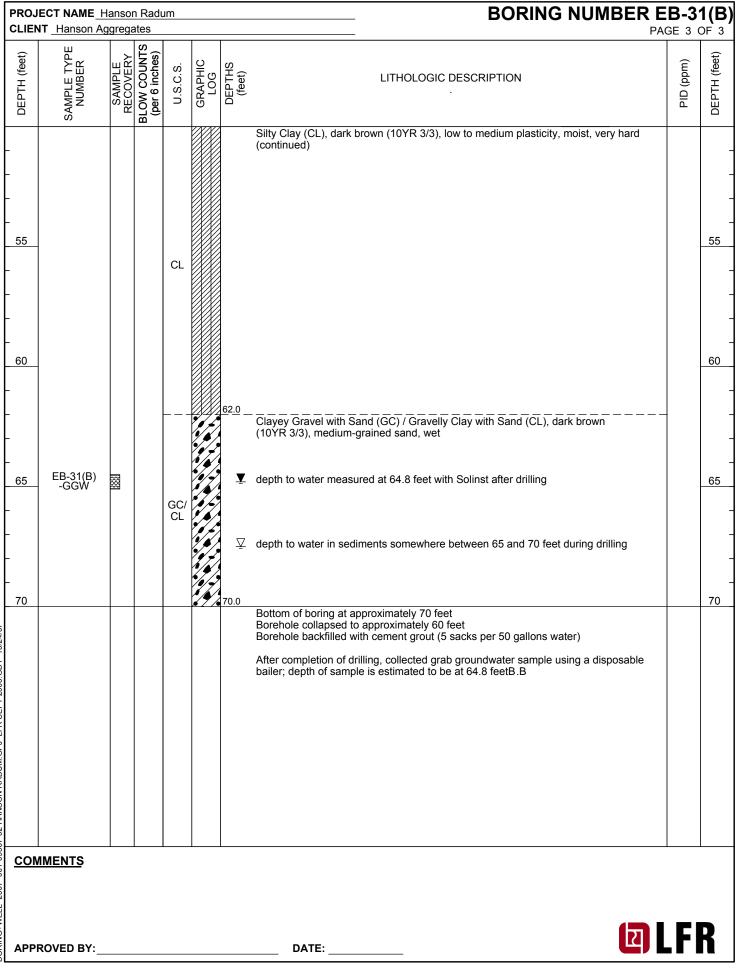

| - 1         | 100010            |           |              |
|-------------|-------------------|-----------|--------------|
| Lab #:      | 196218            | Location: | Hanson Radum |
| Client:     | LFR Levine Fricke | Prep:     | METHOD       |
| Project#:   | 001-09567-01      | Analysis: | EPA 7470A    |
| Analyte:    | Mercury           | Batch#:   | 127647       |
| Field ID:   | ZZZZZZZZZ         | Sampled:  | 07/25/07     |
| MSS Lab ID: | 196239-005        | Received: | 07/25/07     |
| Matrix:     | Filtrate          | Prepared: | 07/26/07     |
| Units:      | ug/L              | Analyzed: | 07/26/07     |
| Diln Fac:   | 1.000             |           |              |


| Type | Lab ID   | MSS Result | Spiked | Result | %REC | Limits | RPD | Lim |
|------|----------|------------|--------|--------|------|--------|-----|-----|
| MS   | QC398074 | 0.8730     | 5.000  | 5.780  | 98   | 80-123 |     |     |
| MSD  | QC398075 |            | 5.000  | 5.400  | 91   | 80-123 | 7   | 20  |

## APPENDIX C

Soil Boring Logs

| PROJECT NAME_Hanson Radum         CLIENT_Hanson Aggregates |                       |                        |                               |          |                | BORING NUMBER                                                                                                                            | <b>R B-</b> ' | 1(A)         |
|------------------------------------------------------------|-----------------------|------------------------|-------------------------------|----------|----------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|
|                                                            |                       |                        |                               | usch F   | Road, F        | leasanton, California DRILLING CONTRACTOR HEW Drilling                                                                                   |               | 0. 0         |
| PROJ                                                       | ECT NUMBER            | R <u>001</u>           | -0956                         | 7-02     |                | DRILLING METHOD Hollow Stem Auger (CME 75)                                                                                               |               |              |
| LOCA                                                       | TION Not rec          | orded                  |                               |          |                | STAMP (IF APPLICABLE) AND/OR NOTES                                                                                                       |               |              |
| SAMP                                                       | LING METHO            | D_Ca                   | lifornia                      | a Mod    | ified; c       | ontinuous soil core                                                                                                                      |               |              |
| GROL                                                       | JND ELEVATIO          | ON N                   | ot ava                        | ilable   |                | HOLE DIAMETER 8 inches                                                                                                                   |               |              |
| ТОР С                                                      | OF CASING EL          | EVA                    | TION                          | N/A      |                | HOLE DEPTH 70.0 ft                                                                                                                       |               |              |
| <br>⊈ FIR                                                  |                       | TERE                   | D WA                          | TER (    | 65.0 ft        |                                                                                                                                          |               |              |
| I ST.                                                      | ABILIZED WA           | TER                    | 67.6 f                        | t        |                |                                                                                                                                          |               |              |
| LOGG                                                       | ED BY Larry           | Lapu                   | yade                          |          | DA             | TE _7/17/07 - 7/18/07                                                                                                                    |               |              |
|                                                            |                       |                        |                               |          |                |                                                                                                                                          |               | st)          |
| DEPTH (feet)                                               | SAMPLE TYPE<br>NUMBER | SAMPLE<br>RECOVERY     | BLOW COUNTS<br>(per 6 inches) | U.S.C.S. | GRAPHIC<br>LOG | S H LITHOLOGIC DESCRIPTION                                                                                                               | PID (ppm)     | DEPTH (feet) |
| EPTH                                                       | MPL                   | SAM                    | o N O<br>er 6 i               | U.S.     | GRAI           | CEP<br>(fe                                                                                                                               | ) OIG         | EPT          |
|                                                            | SA                    | <u>۳</u>               | В<br>В<br>С                   |          |                |                                                                                                                                          |               |              |
|                                                            |                       |                        |                               |          |                | Silty Gravel (GM), light yellowish brown (2.5Y 6/3), well-graded subangular fine to coarse gravel to 1-1/2 inches diameter, dry to moist |               |              |
|                                                            |                       | N                      | 20<br>20<br>20                | GM       |                |                                                                                                                                          | 0.0           | _            |
|                                                            |                       | $\left  \right\rangle$ | 20                            | -        |                | 3.0                                                                                                                                      |               |              |
|                                                            |                       | ΙŇ                     | 10<br>10                      |          |                | Silty Clay (CL), dark brown (10YR 3/3), low to medium plasticity, moist, firm                                                            | 0.0           | _            |
| 5                                                          | B-1(A)-4.5            | $\square$              | 20<br>20<br>23                |          |                | at 4 feet, color changes to black (5Y 2.5), odor of organic matter                                                                       | 0.0           | 5            |
|                                                            |                       | $\left  \right\rangle$ | -                             | -        |                | at 5 feet, color changes to dark yellowish brown (10YR 3/4)<br>at 5.5 feet, color changes to very dark brown (10YR 2/2)                  |               | -            |
|                                                            |                       | IХ                     | 5<br>5<br>7                   |          |                |                                                                                                                                          | 0.0           | -            |
|                                                            |                       | $\mathbb{N}$           | 6<br>6                        |          |                |                                                                                                                                          | 0.0           |              |
| -                                                          |                       | +                      | 9<br>6                        | -        |                |                                                                                                                                          |               | -            |
| 10                                                         | B-1(A)-9.5            | ΠX                     | 11                            |          |                | at 9 feet, becomes very dark grayish brown (2.5Y 3/2), moist to wet, soft                                                                | 0.0           | 10           |
|                                                            |                       |                        |                               |          |                |                                                                                                                                          | 0.0           | 10           |
| -                                                          |                       | $  \rangle$            |                               | CL       |                |                                                                                                                                          | 0.0           | -            |
| 74/01                                                      |                       | ΙŇ                     |                               |          |                |                                                                                                                                          | 0.0           | -            |
| <u>è</u> -                                                 |                       | $  \rangle$            |                               |          |                |                                                                                                                                          | 0.0           | -            |
|                                                            |                       |                        |                               |          |                | at 14.5 feet, becomes dark brown (10YR 3/3), firm                                                                                        |               | -            |
| N <u>15</u>                                                |                       | 11/                    |                               |          |                |                                                                                                                                          | 0.0           | 15           |
|                                                            |                       | $  \rangle$            |                               |          |                |                                                                                                                                          | 0.0           | -            |
|                                                            |                       | $      \rangle$        |                               |          |                | at 17.25 feet, trace fine to coarse gravel to 1-1/2 inches diameter                                                                      | 0.0           | -            |
|                                                            |                       |                        |                               |          |                |                                                                                                                                          |               |              |
|                                                            |                       |                        |                               |          |                |                                                                                                                                          |               | -            |
|                                                            | MENTS                 |                        |                               |          | <u>XXX</u>     | (Continued Next Page)                                                                                                                    | <u> </u>      | 20           |
| NG+WELL 2007 001-09967                                     | ROVED BY:             |                        |                               |          |                | DATE:                                                                                                                                    | LFI           | R            |






| PROJECT NAME Hanson Radum CLIENT Hanson Aggregates |                       |                    |                               |          |                |                                                      |                                                                                  | EB-3<br>AGE 1 |              |
|----------------------------------------------------|-----------------------|--------------------|-------------------------------|----------|----------------|------------------------------------------------------|----------------------------------------------------------------------------------|---------------|--------------|
|                                                    |                       | 0 0                |                               | usch R   | load, F        | Pleasanton, California                               | DRILLING CONTRACTOR HEW Drilling                                                 |               | 01 2         |
|                                                    |                       |                    |                               |          |                | ,<br>                                                | DRILLING METHOD_Hollow Stem Auger (CME 75)                                       |               |              |
| LOC                                                | ATION Not rec         | orded              | 1                             |          |                |                                                      | STAMP (IF APPLICABLE) AND/OR NOTES                                               |               |              |
| SAM                                                | PLING METHO           | D_Ca               | lifornia                      | a Mod    | ified d        | riven with 140-lb hammer                             |                                                                                  |               |              |
| GRO                                                |                       | 0N_N               | lot ava                       | ilable   |                | HOLE DIAMETER 8 inches                               |                                                                                  |               |              |
| ТОР                                                | OF CASING EL          | EVA                |                               | N/A      |                | HOLE DEPTH 20.5 ft                                   |                                                                                  |               |              |
| F                                                  |                       | FERE               | D WA                          | TER      |                |                                                      |                                                                                  |               |              |
| S                                                  | TABILIZED WA          | TER_               |                               |          |                |                                                      |                                                                                  |               |              |
| LOG                                                | GED BY Larry          | Lapu               |                               |          | DA             | TE _7/17/07                                          |                                                                                  |               |              |
| DEPTH (feet)                                       | SAMPLE TYPE<br>NUMBER | SAMPLE<br>RECOVERY | BLOW COUNTS<br>(per 6 inches) | U.S.C.S. | GRAPHIC<br>LOG | DEPTHS<br>(feet)                                     | LITHOLOGIC DESCRIPTION                                                           | PID (ppm)     | DEPTH (feet) |
|                                                    |                       |                    |                               | GM       |                | Silty Gravel (GM), yello<br>coarse gravel to 2 inche | wish brown (10YR 5/4), well-graded subangular fine to es diameter, moist         |               | _            |
| -                                                  |                       |                    | 38<br>40<br>50                | ML       |                | Silt (ML), dark yellowish<br>2.5                     | n brown (10YR 3/4), dry to moist                                                 | 0.0           | _            |
| F                                                  |                       |                    | 13<br>13<br>16                | CL       |                | Silty Clay (CL), dark ye                             | llowish brown (10YR 3/4), medium plasticity, dry, very hard                      | 0.0           | -            |
| 5                                                  | EB-31(A)-5.5          |                    | 18<br>13<br>9                 | ML       |                | Silt (ML), dark yellowish                            | n brown (10YR 3/4), dry                                                          | 0.0           | 5            |
| E                                                  |                       |                    | 4<br>7<br>5                   |          |                |                                                      | llowish brown (10YR 4/6), medium plasticity, dry to moist,                       | 0.0           | _            |
| -                                                  |                       |                    | 5<br>5<br>7                   | CL       |                | 8.8                                                  |                                                                                  | 0.0           | _            |
| - 10                                               | EB-31(A)-10.5         |                    | 5<br>7<br>8                   | ML       |                |                                                      | n brown (10YR 4/6), dry to moist                                                 | 0.0           | 10           |
| $\frac{1}{2}$                                      |                       |                    | 7<br>7<br>9                   | CL       |                |                                                      | llowish brown (10YR 4/6), medium plasticity, moist, firm                         | 0.0           |              |
|                                                    |                       | X                  | 5<br>7<br>8                   |          |                | 13.0                                                 |                                                                                  | 0.0           |              |
|                                                    |                       |                    | 5<br>8<br>11                  | ML       |                |                                                      | rellowish brown (10YR 4/6), nonplastic to low plasticity, moist                  | 0.0           | -            |
| 15                                                 | EB-31(A)-15.5         |                    | 6<br>8<br>10                  | -        |                | 15.0<br>Silty Clay (CL), dark ye                     | llowish brown (10YR 4/6), medium plasticity, moist, firm                         | 0.0           | 15           |
|                                                    |                       |                    | 5<br>7<br>8                   | CL       |                |                                                      |                                                                                  | 0.0           | _            |
|                                                    |                       |                    | 5<br>8<br>14                  | -        |                |                                                      |                                                                                  | 0.0           | -            |
| 20                                                 |                       |                    | 5<br>6                        | ML       |                | Clayey Silt (ML), dark y                             | rellowish brown (10YR 4/4), low plasticity, moist, firm<br>(Continued Next Page) | 0.0           | 20           |
| NGTWELL 2007 001-09307                             | <u>MMENTS</u>         |                    |                               |          |                | DATE:                                                |                                                                                  | LFI           | R            |

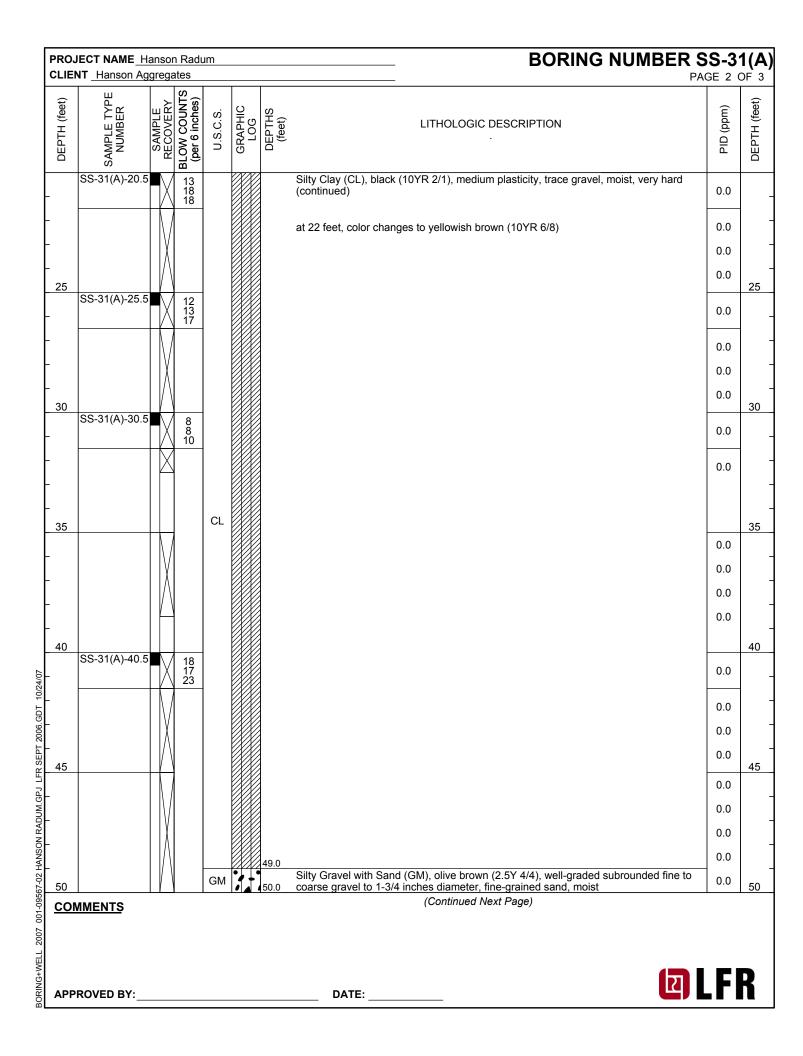
| PROJECT NAME Hanson Radum         CLIENT Hanson Aggregates |                       |                    |                               |           |                  |                                                    | BORING NUMBER                                                | PAGE 1    |              |
|------------------------------------------------------------|-----------------------|--------------------|-------------------------------|-----------|------------------|----------------------------------------------------|--------------------------------------------------------------|-----------|--------------|
| PROJECT LOCATION 3000 Busch Road, Pleasanton, California   |                       |                    |                               |           |                  |                                                    | DRILLING CONTRACTOR HEW Drilling                             |           |              |
| PROJ                                                       | JECT NUMBER           | 001                | -0956                         | 7-02      |                  |                                                    | DRILLING METHOD_Hollow Stem Auger (CME 75)                   |           |              |
| LOCATION Not recorded                                      |                       |                    |                               |           |                  |                                                    | STAMP (IF APPLICABLE) AND/OR NOTES                           |           |              |
|                                                            |                       |                    |                               | a Mod     | ified; c         | ontinuous soil core                                |                                                              |           |              |
| GRO                                                        | UND ELEVATIO          | <u></u> NC         | lot ava                       | ilable    |                  | HOLE DIAMETER 8 inches                             |                                                              |           |              |
| TOP                                                        | OF CASING EL          | .EVA               |                               | N/A       |                  | HOLE DEPTH 70.0 ft                                 |                                                              |           |              |
| ⊥<br>TIF                                                   | RST ENCOUNT           | ERE                | D WA                          | TER       | 67.5 ft          |                                                    |                                                              |           |              |
| <b>⊈</b> ѕт                                                | ABILIZED WA           | TER                | 64.8 f                        | t         |                  |                                                    |                                                              |           |              |
| LOGO                                                       | GED BY Larry          | Lapu               |                               |           | DA               | TE 7/16/07                                         |                                                              |           |              |
| DEPTH (feet)                                               | SAMPLE TYPE<br>NUMBER | SAMPLE<br>RECOVERY | BLOW COUNTS<br>(per 6 inches) | U.S.C.S.  | GRAPHIC<br>LOG   | DEPTHS<br>(feet)                                   | LITHOLOGIC DESCRIPTION                                       | PID (ppm) | DEPTH (feet) |
| -                                                          |                       |                    |                               |           |                  | Silty Gravel (GM) / Gra<br>subangular fine gravel, | velly Silt (ML), olive brown (2.5Y 4/4), poorly graded moist | 0.0       | _            |
| Ē                                                          |                       |                    |                               | GM/<br>ML |                  | at 1.5 to 5.ft. PID readir                         | ngs from auger cuttings                                      | 0.0       | _            |
| Ē                                                          |                       |                    |                               |           |                  |                                                    |                                                              | 0.0       | _            |
| 5                                                          |                       |                    |                               |           |                  | 5.0                                                |                                                              |           | 5            |
|                                                            | EB-31(B)-5.5          |                    |                               | ML        |                  | Clayey Silt (ML), dark b<br>6.0                    | prown (10YR 3/3), low plasticity, moist, firm                | 0.0       |              |
|                                                            |                       | $\left  \right $   |                               |           |                  | Silt (ML), dark brown (1                           | IOYR 3/3), moist, no staining or odor                        |           |              |
|                                                            |                       |                    |                               | ML        |                  |                                                    |                                                              | 0.0       |              |
|                                                            |                       | IN                 |                               | IVIL      |                  |                                                    |                                                              | 0.0       | _            |
| _ 10                                                       |                       |                    |                               |           |                  | 10.0                                               |                                                              |           | 10           |
| -                                                          | EB-31(B)-10.5         |                    |                               | CL        |                  | Silty Clay (CL), dark bro                          | own (10YR 3/3), medium plasticity, moist, firm               | 0.0       | -            |
| _ 15                                                       | EB-31(B)-15.5         |                    | 5                             |           |                  |                                                    |                                                              |           | 15           |
| -                                                          |                       |                    | 5<br>7<br>13                  |           | <i>(XX)</i><br>• | 16.0<br>Sand with Gravel (SP),                     | olive brown (2.5Y 4/4), poorly graded fine-grained sand,     | 0.0       |              |
| -                                                          |                       |                    | 8<br>12<br>8                  | SP        |                  | abundant subrounded f                              | tine gravel, moist                                           | 0.0       |              |
| F                                                          |                       |                    | 3<br>5<br>10                  | CL        |                  | Silty Clay (CL), dark ye<br>firm                   | llowish brown (10YR 4/4), low to medium plasticity, moist,   | 0.0       |              |
| 20                                                         |                       |                    |                               |           | XXX              | at 20 feet, becomes ve                             | ry hard<br>(Continued Next Page)                             |           | 20           |
|                                                            | ROVED BY:             |                    |                               |           |                  | DATE:                                              |                                                              | LF        | R            |

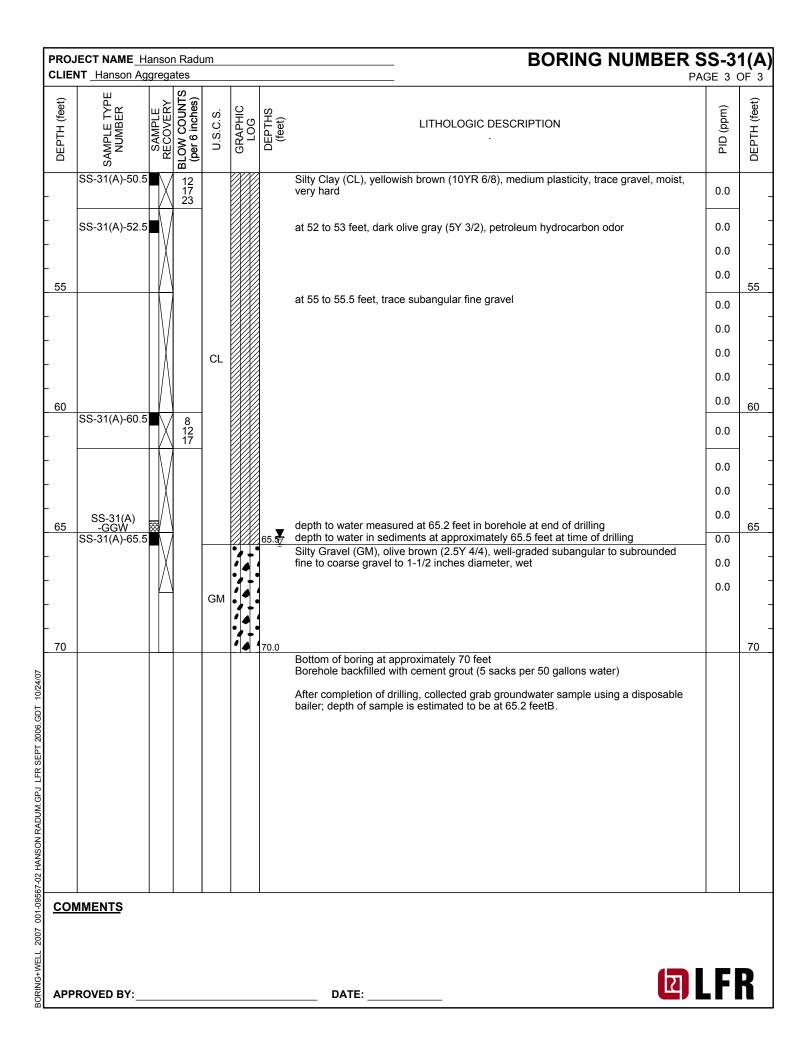
|                       | JECT NAME_H<br>NT_Hanson Ag |                    |                               | um       |                |                  | BORING NUMBER E                                                                                                                                          | <b>B-3</b><br>GE 2 ( | <b>1(B)</b><br>DF 3 |
|-----------------------|-----------------------------|--------------------|-------------------------------|----------|----------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|
| DEPTH (feet)          | SAMPLE TYPE<br>NUMBER       | SAMPLE<br>RECOVERY | BLOW COUNTS<br>(per 6 inches) | U.S.C.S. | GRAPHIC<br>LOG | DEPTHS<br>(feet) | LITHOLOGIC DESCRIPTION                                                                                                                                   | PID (ppm)            | DEPTH (feet)        |
| -                     | EB-31(B)-20.5               |                    | 3<br>3<br>3                   |          |                |                  | Silty Clay (CL), dark yellowish brown (10YR 4/4), low to medium plasticity, moist, very hard (continued) at 21.5 feet, start logging from auger cuttings | 0.0                  |                     |
| -<br>-<br>_ <u>25</u> | -                           |                    |                               |          |                |                  | at about 25 feet, color changes to dark brown (10YR 3/3)                                                                                                 |                      | -<br>-<br>25        |
| -                     |                             |                    |                               |          |                |                  |                                                                                                                                                          |                      | -                   |
| <u>30</u><br>-        | -                           |                    |                               |          |                |                  |                                                                                                                                                          |                      | 30 -                |
| -<br>-<br>_ 35        | -                           |                    |                               | CL       |                |                  |                                                                                                                                                          |                      | -<br>35             |
| -                     |                             |                    |                               |          |                |                  |                                                                                                                                                          |                      | -                   |
| 40                    |                             |                    |                               |          |                |                  |                                                                                                                                                          |                      | 40 _                |
| 45                    | -                           |                    |                               |          |                |                  |                                                                                                                                                          |                      | -<br>_<br>          |
|                       |                             |                    |                               |          |                |                  |                                                                                                                                                          |                      | -                   |
| 50<br><u>COI</u>      | MMENTS                      | 1                  | <u> </u>                      | <u> </u> | <u> </u>       | 1                | (Continued Next Page)                                                                                                                                    | I                    | 50                  |
| APP                   | ROVED BY:                   |                    |                               |          |                |                  | DATE:                                                                                                                                                    | .FI                  | R                   |



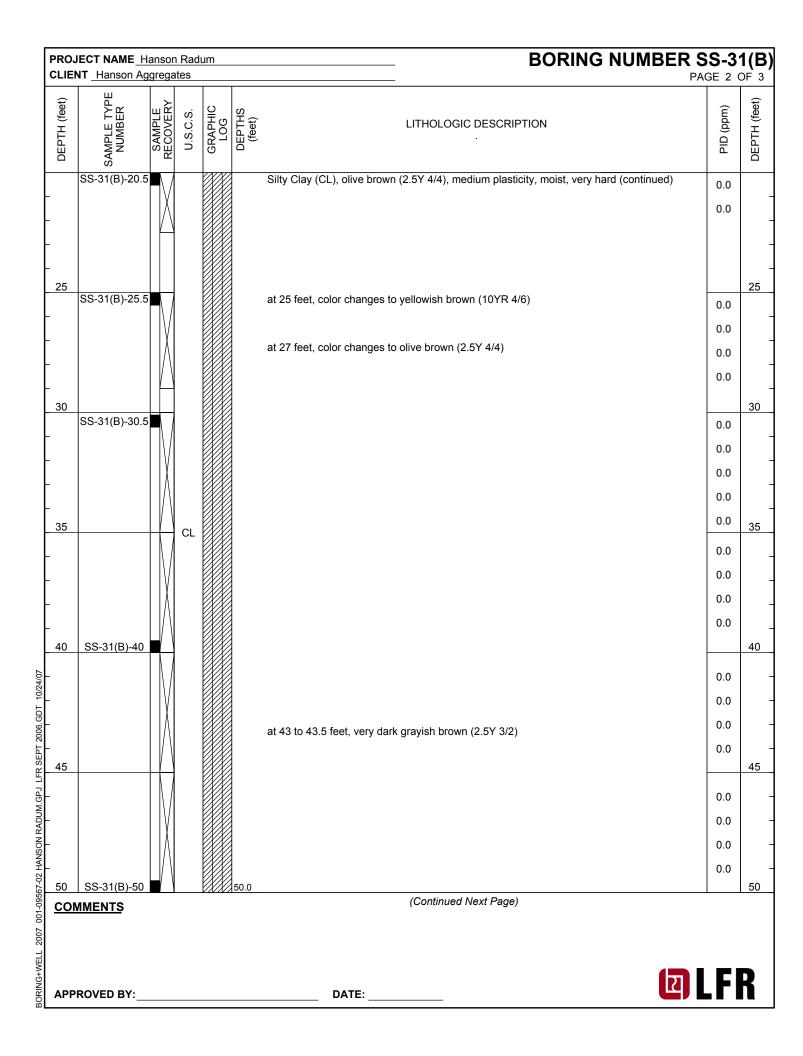
BORING+WELL 2007 001-09567-02 HANSON RADUM.GPJ LFR SEPT 2006.GDT 10/24/07

|                   | IECT NAME_H<br>NT_Hanson Ag |                    |                               | um       |                |                                                                 |                                                                         | EB-3<br>AGE 1 | <b>1(C)</b><br>OF 1 |
|-------------------|-----------------------------|--------------------|-------------------------------|----------|----------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|---------------|---------------------|
|                   |                             | 0 0                |                               | isch R   | Road, F        | Pleasanton, California                                          | DRILLING CONTRACTOR HEW Drilling                                        |               |                     |
| PRO.              |                             | <u>001</u>         | -0956                         | 7-02     |                |                                                                 | DRILLING METHOD Hollow Stem Auger (CME 75)                              |               |                     |
| LOCA              | TION Not rec                | orded              |                               |          |                |                                                                 | STAMP (IF APPLICABLE) AND/OR NOTES                                      |               |                     |
| SAMI              | LING METHO                  | D_Ca               | llifornia                     | a Mod    | ified d        | riven with 140-lb hammer                                        |                                                                         |               |                     |
| GRO               | JND ELEVATIO                | <b>N_N</b>         | ot ava                        | ilable   |                | HOLE DIAMETER 8 inches                                          |                                                                         |               |                     |
| ТОР               | OF CASING EL                | EVA                | TION_                         | N/A      |                | HOLE DEPTH 20.0 ft                                              |                                                                         |               |                     |
| FI                |                             | ERE                | D WA                          | TER      |                |                                                                 |                                                                         |               |                     |
| ST                | ABILIZED WA                 | TER_               |                               |          |                |                                                                 |                                                                         |               |                     |
| LOG               | GED BY Larry                | Lapu               |                               |          | DA             | TE _7/16/07                                                     |                                                                         |               |                     |
| DEPTH (feet)      | SAMPLE TYPE<br>NUMBER       | SAMPLE<br>RECOVERY | BLOW COUNTS<br>(per 6 inches) | U.S.C.S. | GRAPHIC<br>LOG | DEPTHS<br>(feet)                                                | LITHOLOGIC DESCRIPTION                                                  | PID (ppm)     | DEPTH (feet)        |
|                   |                             |                    | 35                            |          | ¥/_            | 0.6 Gravel fill over asphalt<br>Clavey Gravel (GC), ol          | concrete<br>ive brown (2.5Y 4/4), poorly graded subangular fine gravel, |               | _                   |
|                   |                             |                    | 35<br>35<br>16                | GC       |                | 2.0 moist                                                       |                                                                         | 0.0           |                     |
|                   |                             | N                  | 8<br>10                       | SP       |                | 3.0                                                             | 5/1), poorly graded fine- to coarse-grained sand, dry                   | 0.0           | _                   |
|                   |                             |                    | 14<br>5                       | CL       |                |                                                                 | rown (10YR 3/3), medium plasticity, moist, very hard                    |               | -                   |
| 5                 | EB-31(C)-5                  |                    | 10<br>11                      |          | XX.            | at 4.5 feet, dry intervals<br>5.0<br>at 5 feet, water in bore   |                                                                         | 0.0           | 5                   |
| Ļ                 |                             |                    |                               |          |                |                                                                 |                                                                         |               | _                   |
| -                 |                             |                    |                               |          |                | [No sampling from 5 to                                          | 8 feet due to obstruction; see comment below]                           |               | -                   |
| -                 |                             |                    | 5                             | ML       |                | 8.0<br>8.7 Silt (ML), dark olive bro                            | own (2.5Y 3/3), moist                                                   |               |                     |
| -                 |                             | ΙŇ                 | 5<br>5<br>6                   |          |                |                                                                 | ive brown (2.5Y 3/3), medium plasticity, moist, soft                    | 0.0           |                     |
| 10                | EB-31(C)-10.5               |                    | 3<br>4<br>5                   | CL       |                |                                                                 |                                                                         | 0.0           | 10                  |
| -                 |                             |                    | -                             |          |                | 11.5                                                            |                                                                         |               |                     |
| 10,44             |                             |                    | 3<br>6<br>7                   | -        |                | moist, firm                                                     | L), dark olive brown (2.5Y 3/3), low to medium plasticity,              | 0.0           |                     |
| ≧-<br>5           |                             |                    | 333                           |          |                |                                                                 |                                                                         | 0.0           | _                   |
| 15                |                             | $\mathbb{N}$       | 4                             | -        |                |                                                                 |                                                                         | 0.0           | 15                  |
|                   | EB-31(C)-15.5               |                    | 10                            | ML/      |                |                                                                 |                                                                         | 0.0           | - 10 -              |
|                   |                             |                    | 3<br>6<br>6                   | CL       |                |                                                                 |                                                                         | 0.0           |                     |
|                   |                             |                    | 6<br>9<br>9                   |          |                |                                                                 |                                                                         | 0.0           | -                   |
|                   |                             |                    | 6<br>6<br>7                   | -        |                | Bottom of boring at app                                         | proximately 20 feet                                                     | 0.0           | -                   |
| 20<br>5 <b>CO</b> | EB-31(C)-20                 |                    |                               |          |                | 20.0 Borehole backfilled with                                   | h cement grout (5 sacks per 50 gallons water)                           |               | 20                  |
| 5 ft:             | Pounded from {              | 5 to 6             | feet; r                       | no rec   | overy          | because encountered metal wi<br>one wire from auger. Drilled to | re at base of borehole at approximately 6 feet.                         |               |                     |
| 5                 |                             | natery             | 0018                          |          | cicpiic        |                                                                 | o root to roourite admpility.                                           |               |                     |
|                   |                             |                    |                               |          |                |                                                                 |                                                                         |               |                     |
|                   |                             |                    |                               |          |                |                                                                 | 5                                                                       |               | D                   |
| APP               | ROVED BY:                   |                    |                               |          |                | DATE:                                                           |                                                                         | LF            | Π                   |


|                                               | IECT NAME_H           |                    |                               | um       |                |                                                      | BORING NUMBER E                                                                                 | <b>B-3</b><br>GE 1 | <b>5(A)</b><br>OF 1 |
|-----------------------------------------------|-----------------------|--------------------|-------------------------------|----------|----------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------|---------------------|
| PROJ                                          |                       | <b>DN</b> _30      | 000 Bi                        | usch F   | Road, F        | Pleasanton, California                               | DRILLING CONTRACTOR HEW Drilling                                                                |                    |                     |
| PROJ                                          |                       | R <u>001</u>       | -0956                         | 7-02     |                |                                                      | DRILLING METHOD Hollow Stem Auger (CME 75)                                                      |                    |                     |
| LOCA                                          | TION Not rec          | ordec              | ł                             |          |                |                                                      | STAMP (IF APPLICABLE) AND/OR NOTES                                                              |                    |                     |
| SAMF                                          | LING METHO            | D_Ca               | alifornia                     | a Mod    | ified d        | riven with 140-lb hammer                             | _                                                                                               |                    |                     |
| GROU                                          |                       | 0N_N               | lot ava                       | ailable  |                | HOLE DIAMETER 8 inches                               | _                                                                                               |                    |                     |
| тор о                                         | OF CASING EI          | EVA                |                               | N/A      |                | HOLE DEPTH 10.5 ft                                   | _                                                                                               |                    |                     |
| FIF                                           | RST ENCOUN            | TERE               | D WA                          | TER_     |                |                                                      | _                                                                                               |                    |                     |
| 5т                                            | ABILIZED WA           |                    |                               |          |                |                                                      | _                                                                                               |                    |                     |
| LOGO                                          | GED BY Larry          | Lapu               |                               |          | DA             | TE _7/17/07                                          | -                                                                                               | _                  |                     |
| DEPTH (feet)                                  | SAMPLE TYPE<br>NUMBER | SAMPLE<br>RECOVERY | BLOW COUNTS<br>(per 6 inches) | U.S.C.S. | GRAPHIC<br>LOG | DEPTHS<br>(feet)                                     | LITHOLOGIC DESCRIPTION                                                                          | PID (ppm)          | DEPTH (feet)        |
| -                                             |                       |                    | 20<br>36<br>50                |          |                | Silty Gravel (GM), light gravel to 2 inches diam     | t olive brown (2.5Y 5/3), well-graded subangular fine to coarse neter, dry                      | 0.0                | -                   |
| ╞                                             |                       |                    | 40<br>44<br>40                | GM       |                |                                                      | um product observed: dry, similar to asphalt concrete, trace                                    | 0.0                | -                   |
| F                                             | EB-35(A)-3            |                    | 40<br>80<br>90                | -        |                | oil                                                  |                                                                                                 | 0.0                | -                   |
| F _                                           | EB-35(A)-4            |                    |                               |          |                | 4.5                                                  |                                                                                                 |                    | -                   |
| <u>5</u>                                      | -                     |                    | 22<br>38<br>50                | _        |                | Gravelly Clay (CL), oliv<br>fine to coarse gravel to | ve brown (2.5Y 4/4), medium plasticity, abundant subangular<br>o 2 inches diameter, moist, firm | 0.0                | 5                   |
| -                                             |                       |                    | 11<br>16<br>11                | CL       |                | at 7.5 fact 0.1/0 inch                               | diamater gravel in complex chast no receiver.                                                   | 0.0                | -                   |
| F                                             |                       |                    | 13<br>12<br>13                |          |                | at 7.5 leet, 2-1/2-inch-t                            | diameter gravel in sampler shoe; no recovery                                                    |                    | -                   |
| 10                                            | EB-35(A)-9.5          |                    | 4<br>5<br>6                   |          |                | at 9 feet, increasing mo                             | oisture, very soft, less gravel                                                                 | 0.0                | 10                  |
|                                               |                       |                    |                               |          |                |                                                      | proximately 10.5 feet<br>h cement grout (5 sacks per 50 gallons water)                          |                    |                     |
|                                               |                       |                    |                               |          |                |                                                      |                                                                                                 |                    |                     |
| COMMENTS           APPROVED BY:         DATE: |                       |                    |                               |          |                |                                                      |                                                                                                 |                    | R                   |

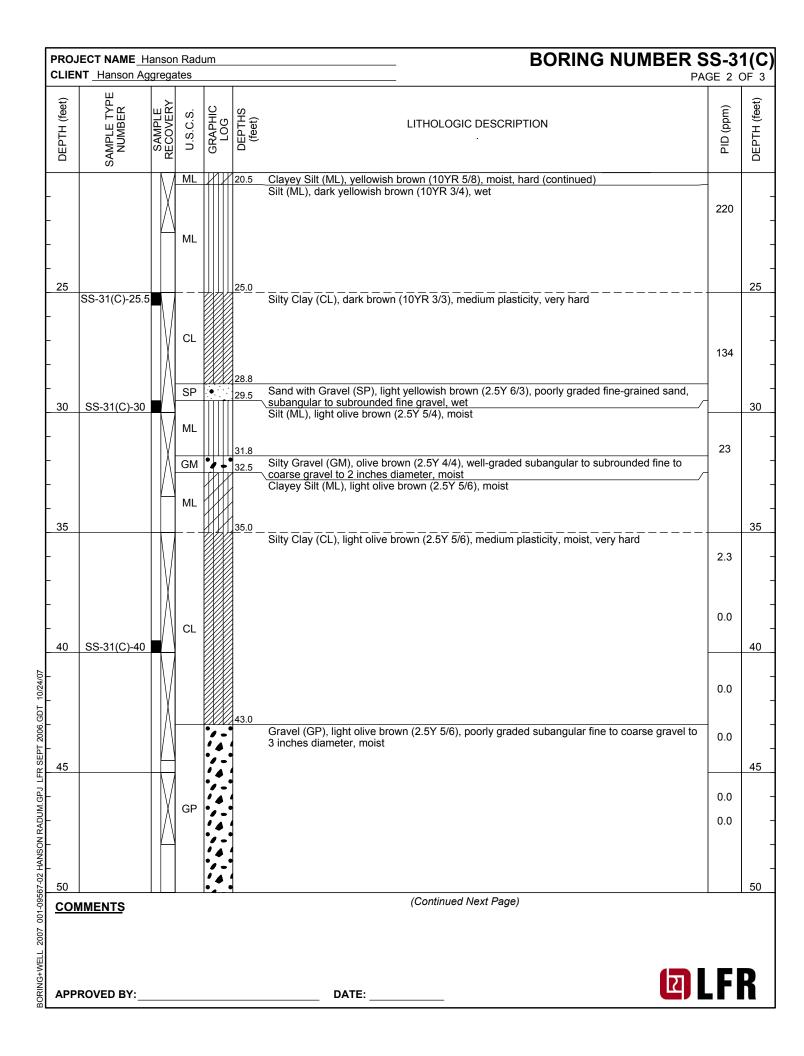

|              | IECT NAME_H                |                    |                               | um       |                |                  | BORING NUMBER                                                                                                                          | EB-3<br>AGE 1 | <b>5(B)</b><br>OF 1 |
|--------------|----------------------------|--------------------|-------------------------------|----------|----------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------|
| PRO          |                            | <b>DN</b> _30      | 000 Bi                        | usch R   | Road, F        | Pleasanto        | n, California DRILLING CONTRACTOR_HEW Drilling                                                                                         |               |                     |
| PROJ         |                            | R <u>001</u>       | -0956                         | 7-02     |                |                  | DRILLING METHOD Hollow Stem Auger (CME 75)                                                                                             |               |                     |
| LOCA         | TION Not rec               | orded              |                               |          |                |                  | STAMP (IF APPLICABLE) AND/OR NOTES                                                                                                     |               |                     |
| SAM          | PLING METHO                | D_Ca               | lifornia                      | a Mod    | ified d        | riven with       | 140-lb hammer                                                                                                                          |               |                     |
| GRO          |                            | <b>0N</b> _N       | ot ava                        | ilable   |                | HOLE             | DIAMETER 8 inches                                                                                                                      |               |                     |
| ТОР          | OF CASING EL               | EVA                | TION_                         | N/A      |                | HOLE             | DEPTH _10.0 ft                                                                                                                         |               |                     |
| FI           |                            | TERE               | D WA                          | TER      |                |                  |                                                                                                                                        |               |                     |
| ST           | ABILIZED WA                | TER_               |                               |          |                |                  |                                                                                                                                        |               |                     |
| LOGO         | GED BY Larry               | Lapu               | yade                          |          | DA             | TE _7/17         | 7/07                                                                                                                                   |               |                     |
| DEPTH (feet) | SAMPLE TYPE<br>NUMBER      | SAMPLE<br>RECOVERY | BLOW COUNTS<br>(per 6 inches) | U.S.C.S. | GRAPHIC<br>LOG | DEPTHS<br>(feet) | LITHOLOGIC DESCRIPTION                                                                                                                 | PID (ppm)     | DEPTH (feet)        |
| -            |                            |                    | 14<br>38<br>50                |          |                | s<br>g           | ilty Gravel (GM), light olive brown (2.5Y 5/3), poorly graded subrounded fine ravel, trace coarse gravel to 2-1/2 inches diameter, dry | 0.0           | -                   |
| -            | EB-35(B)-2.5               |                    | 48<br>50<br>50                | GM       |                |                  | t 2 to 2.5 feet, black petroleum product observed: dry, similar to asphalt concrete, race oil                                          | 0.0           |                     |
| -            |                            | HÀ                 | 70<br>40                      | -        |                |                  |                                                                                                                                        | 0.0           | -                   |
| 5            | EB-35(B)-5                 |                    | 45<br>10                      |          |                | 5.5              |                                                                                                                                        | 0.0           | 5                   |
| -            |                            |                    | 16<br>12<br>16<br><u>7</u>    |          |                | S                | ilty Clay (CL), olive brown (2.5Y 4/4), medium plasticity, moist, hard                                                                 | 0.0           | -                   |
|              | EB-35(B)-9                 |                    | 7<br>8<br>8<br>7              | CL       |                |                  |                                                                                                                                        | 0.0           | -                   |
| 10           |                            |                    | 8                             |          |                | 10.0<br>B<br>B   | Bottom of boring at approximately 10 feet<br>Borehole backfilled with cement grout (5 sacks per 50 gallons water)                      |               | 10                  |
|              |                            |                    |                               |          |                |                  |                                                                                                                                        |               |                     |
|              | <u>MMENTS</u><br>ROVED BY: |                    |                               |          |                |                  | DATE:                                                                                                                                  | LFI           | R                   |

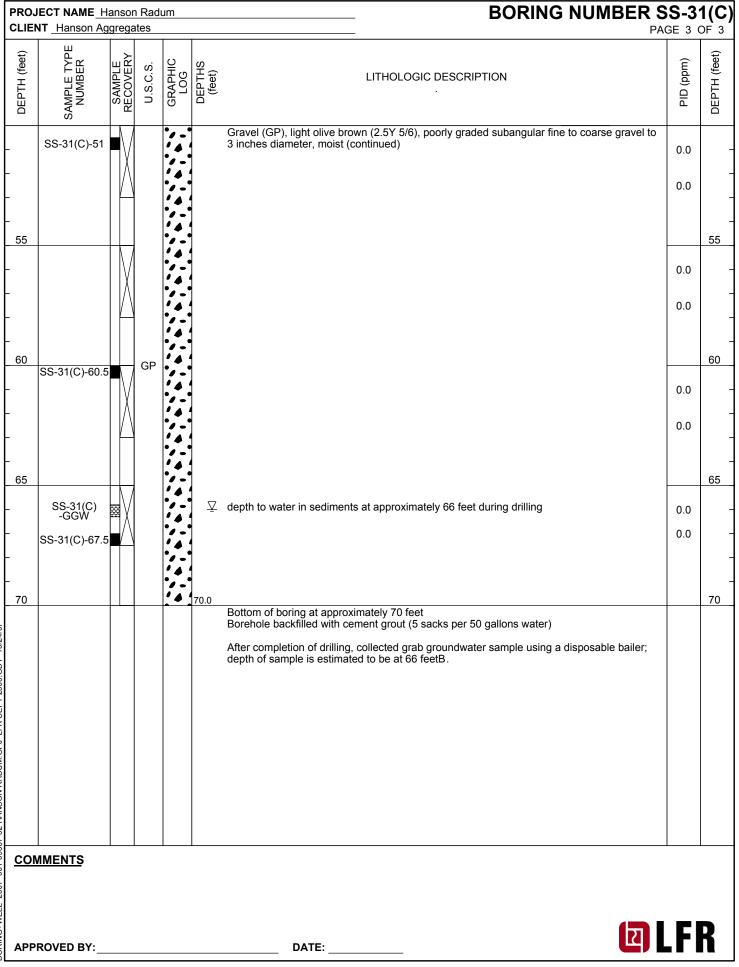
|                                             | JECT NAME_Hai<br>NT_Hanson Agg |                    |                               | um       |                |                     | BORING NUMBER E                                                                                                          | <b>B-3</b><br>GE 1 ( | 5(C)<br>OF 1 |
|---------------------------------------------|--------------------------------|--------------------|-------------------------------|----------|----------------|---------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|
|                                             |                                |                    |                               | isch R   | load, F        | Pleasanto           |                                                                                                                          |                      |              |
| PRO                                         | JECT NUMBER_                   | 001·               | -09567                        | 7-02     |                |                     | DRILLING METHOD Hollow Stem Auger (CME 75)                                                                               |                      |              |
| LOCA                                        | ATION Not recor                | rded               |                               |          |                |                     | STAMP (IF APPLICABLE) AND/OR NOTES                                                                                       |                      |              |
| SAM                                         | PLING METHOD                   | Ca                 | lifornia                      | a Mod    | ified d        | riven with          | n 140-lb hammer                                                                                                          |                      |              |
| GRO                                         | UND ELEVATIO                   | <u>n</u> N         | ot ava                        | ilable   |                | HOLE                | DIAMETER 8 inches                                                                                                        |                      |              |
| ТОР                                         | OF CASING ELE                  | EVA                |                               | N/A      |                | HOLE                | DEPTH _11.5 ft                                                                                                           |                      |              |
| FI                                          | RST ENCOUNTE                   | ERE                | D WA                          | TER      |                |                     |                                                                                                                          |                      |              |
| SI                                          |                                | ER_                |                               |          |                |                     |                                                                                                                          |                      |              |
| LOG                                         | GED BY Larry La                |                    |                               |          | DA             | TE 7/18             | 8/07                                                                                                                     |                      |              |
| DEPTH (feet)                                | SAMPLE TYPE<br>NUMBER          | SAMPLE<br>RECOVERY | BLOW COUNTS<br>(per 6 inches) | U.S.C.S. | GRAPHIC<br>LOG | DEPTHS<br>(feet)    | LITHOLOGIC DESCRIPTION                                                                                                   | (mqq) OI9            | DEPTH (feet) |
|                                             |                                |                    |                               |          |                | s<br>g              | Silty Gravel (GM), light olive brown (2.5Y 5/3), well-graded subangular fine to coarse gravel to 3 inches diameter, dry  |                      |              |
|                                             | EB-35(C)-2.5                   | X                  | 26<br>20<br>26                | GM       |                |                     |                                                                                                                          | 0.0                  | _            |
| -                                           |                                | M                  | 21                            | GC       |                | <u>2.5</u><br>3.0 C | Clayey Gravel (GC), olive brown (2.5Y 4/4), well-graded subangular fine to coarse gravel to 1-3/4 inches diameter, moist | 0.0                  | -            |
| -                                           |                                | $\square$          | 20<br>21<br>14                | SW       |                | S                   | and with Gravel (SW), olive brown (2.5Y 4/4), well-graded sand, subangular to ubrounded fine gravel, moist               | 0.0                  |              |
| 5                                           | EB-35(C)-5.5                   | X                  | 12<br>14                      | 300      |                |                     |                                                                                                                          | 0.0                  | 5            |
| -                                           |                                | Χ                  | 11<br>17                      |          |                | 5.8<br>S            | Silty Clay (CL), light olive brown (2.5Y 5/3), medium plasticity, moist, firm                                            | 0.0                  | -            |
| F                                           |                                | $\square$          | 27<br>14<br>17                | CL       |                |                     |                                                                                                                          | 0.0                  | -            |
| -                                           |                                | $\mathbb{A}$       | 39<br>9                       |          |                | 8.5                 | Silty Sand (SM), olive brown (2.5Y 4/4), fine-grained sand, moist                                                        | 0.0                  | -            |
| 10                                          |                                | X                  | 99                            | SM       |                |                     |                                                                                                                          | 0.0                  | 10           |
| -                                           | EB-35(C)-10.5                  | X                  | 17<br>23<br>27                | OW       |                | b<br>11.5           | below 10 feet, trace gravel                                                                                              | 0.0                  | -            |
|                                             |                                |                    |                               |          | F              | I B                 | Bottom of boring at approximately 11.5 feet<br>Borehole backfilled with cement grout (5 sacks per 50 gallons water)      |                      |              |
| COMMENTS         APPROVED BY:         DATE: |                                |                    |                               |          |                |                     |                                                                                                                          |                      | R            |


|              | JECT NAME_H<br>NT_Hanson Ag |                    |                               | um       |                |                                                       |                                                                                      | <b>B-3</b><br>GE 1 | 5(D)<br>OF 1 |
|--------------|-----------------------------|--------------------|-------------------------------|----------|----------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------|--------------|
| PRO.         |                             | <b>DN</b> _30      | 000 Bi                        | usch F   | Road, F        | leasanton, California                                 | DRILLING CONTRACTOR_HEW Drilling                                                     |                    |              |
| PRO.         | JECT NUMBER                 | <u>001</u>         | -0956                         | 7-02     |                |                                                       | DRILLING METHOD Hollow Stem Auger (CME 75)                                           |                    |              |
| LOC          | ATION Not rec               | ordec              | 1                             |          |                |                                                       | STAMP (IF APPLICABLE) AND/OR NOTES                                                   |                    |              |
| SAM          | PLING METHO                 | D_Ca               | lifornia                      | a Mod    | ified d        | iven with 140-lb hammer                               |                                                                                      |                    |              |
| GRO          | UND ELEVATIO                | 0N_N               | lot ava                       | ilable   |                | HOLE DIAMETER 8 inches                                |                                                                                      |                    |              |
| тор          | OF CASING EL                | EVA                |                               | N/A      |                | HOLE DEPTH 11.0 ft                                    |                                                                                      |                    |              |
| FI           |                             | FERE               | D WA                          | TER      |                |                                                       |                                                                                      |                    |              |
| S1           | ABILIZED WA                 | TER                |                               |          |                |                                                       |                                                                                      |                    |              |
| LOG          | GED BY Larry                | Lapu               | -                             | <u> </u> | DA             | TE <u>7/17/07</u>                                     |                                                                                      | 1                  | 1            |
| DEPTH (feet) | SAMPLE TYPE<br>NUMBER       | SAMPLE<br>RECOVERY | BLOW COUNTS<br>(per 6 inches) | U.S.C.S. | GRAPHIC<br>LOG | DEPTHS<br>(feet)                                      | LITHOLOGIC DESCRIPTION                                                               | PID (ppm)          | DEPTH (feet) |
| -            |                             |                    | 14<br>30<br>35                | GM       |                | Silty Gravel (GM), light og gravel to 2-1/2 inches di | blive brown (2.5Y 5/3), well-graded subangular fine to coarse iameter, dry           | 0.0                | -            |
| ╞            | EB-35(D)-2.5                |                    | 14<br>26<br>19                |          |                |                                                       | product observed: dry, black, asphalt-like coating on                                | 0.0                | -            |
| -            |                             |                    | 13<br>13<br>14<br>14          |          |                | 0.0                                                   | own (2.5Y 4/4), medium plasticity, trace fine to coarse gravel<br>oist, firm to hard | 0.0                | -            |
| 5            | EB-35(D)-5.5                |                    | 7                             |          |                |                                                       |                                                                                      | 0.0                | 5            |
| -            |                             |                    | 10<br>5<br>7<br>7             | CL       |                |                                                       |                                                                                      | 0.0                | _            |
| -            | EB-35(D)-9.5                |                    | 5<br>7<br>7                   |          |                |                                                       |                                                                                      | 0.0                | -            |
| 10           | <u></u>                     |                    |                               | -        |                | 11.0                                                  |                                                                                      |                    | 10           |
| -            |                             |                    |                               |          |                | Bottom of boring at appr                              | roximately 11 feet<br>cement grout (5 sacks per 50 gallons water)                    |                    | -            |
|              |                             |                    |                               |          |                |                                                       |                                                                                      |                    |              |
|              |                             |                    |                               |          |                |                                                       |                                                                                      |                    |              |
|              |                             |                    |                               |          |                |                                                       |                                                                                      |                    |              |
|              |                             |                    |                               |          |                |                                                       |                                                                                      |                    |              |
|              |                             |                    |                               |          |                |                                                       |                                                                                      |                    |              |
|              |                             |                    |                               |          |                |                                                       |                                                                                      |                    |              |
|              |                             |                    |                               |          |                |                                                       |                                                                                      |                    |              |
|              |                             |                    |                               |          |                |                                                       |                                                                                      |                    |              |
| <u>co</u>    | <u>MMENTS</u>               |                    |                               |          |                |                                                       |                                                                                      |                    |              |
|              |                             |                    |                               |          |                |                                                       |                                                                                      |                    |              |
|              |                             |                    |                               |          |                |                                                       |                                                                                      |                    |              |
|              |                             |                    |                               |          |                |                                                       |                                                                                      |                    | _            |
| АРР          | ROVED BY:                   |                    |                               |          |                | DATE:                                                 |                                                                                      | F                  | R            |

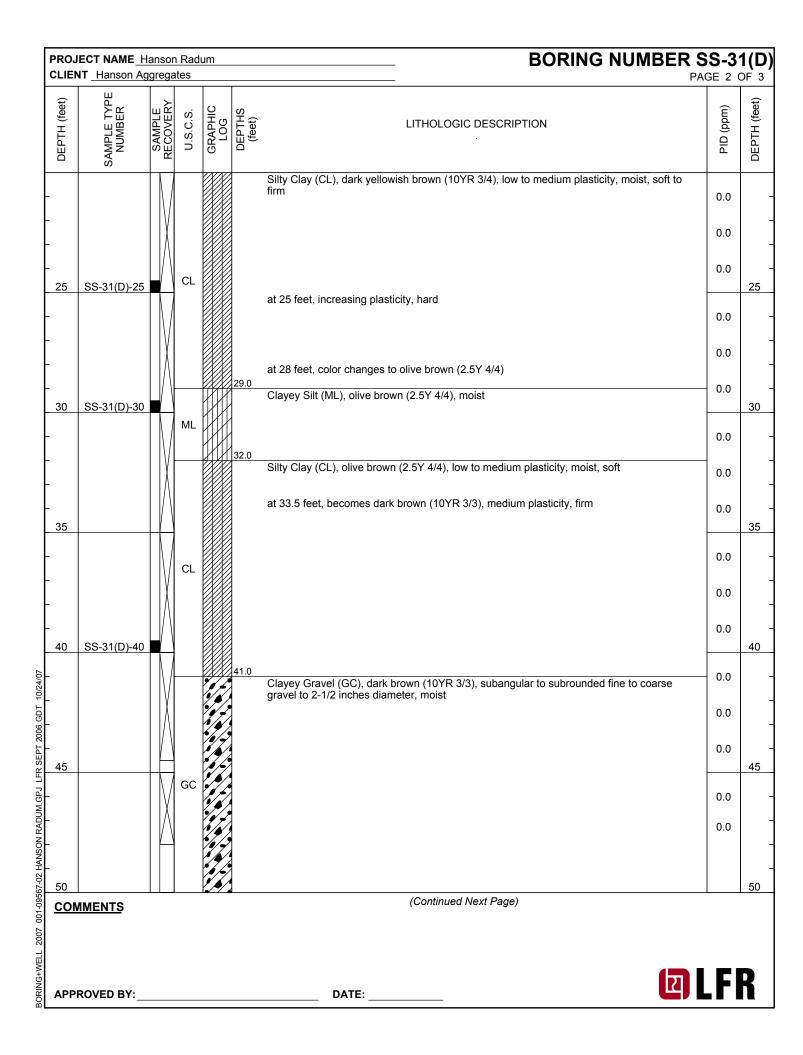
|              | JECT NAME_H<br>NT_Hanson Ag |                     |                               | um       |                |                                         |                                                              | SS-3<br>PAGE 1 |              |
|--------------|-----------------------------|---------------------|-------------------------------|----------|----------------|-----------------------------------------|--------------------------------------------------------------|----------------|--------------|
| PRO          |                             | <b>DN</b> _3        | 000 Bu                        | isch F   | Road, F        | Pleasanton, California                  | DRILLING CONTRACTOR_HEW Drilling                             |                |              |
| PRO          |                             | <b>R_001</b>        | -0956                         | 7-02     |                |                                         | DRILLING METHOD Hollow Stem Auger (CME 75)                   |                |              |
| LOCA         | ATION Not rec               | ordeo               | ł                             |          |                |                                         | STAMP (IF APPLICABLE) AND/OR NOTES                           |                |              |
| SAM          | PLING METHO                 | <b>D</b> _Ca        | alifornia                     | a Mod    | lified; c      | ontinuous soil core                     |                                                              |                |              |
| GRO          | UND ELEVATIO                | <u>0N</u>           | lot ava                       | ilable   |                | HOLE DIAMETER 8 inches                  |                                                              |                |              |
| ТОР          | OF CASING EL                | EVA                 |                               | N/A      |                | HOLE DEPTH 70.0 ft                      |                                                              |                |              |
|              |                             | FERE                | D WA                          | TER      | 65.5 ft        |                                         |                                                              |                |              |
| <b>⊈</b> S1  | ABILIZED WA                 | TER                 | 65.2 f                        | t        |                |                                         |                                                              |                |              |
| LOG          | GED BY Larry                | Lapu                |                               |          | DA             | TE <u>7/18/07 - 7/19/07</u>             |                                                              |                |              |
| DEPTH (feet) | SAMPLE TYPE<br>NUMBER       | SAMPLE<br>RECOVERY  | BLOW COUNTS<br>(per 6 inches) | U.S.C.S. | GRAPHIC<br>LOG | DEPTHS<br>(feet)                        | LITHOLOGIC DESCRIPTION                                       | PID (ppm)      | DEPTH (feet) |
|              |                             |                     |                               |          |                | Silty Clay (CL), light oli<br>very hard | ve brown (2.5Y 5/4), medium plasticity, trace gravel, moist, | 0.0            |              |
|              |                             | $  \rangle$         |                               |          |                |                                         |                                                              | 0.0            |              |
|              |                             |                     |                               |          |                |                                         |                                                              | 0.0            | _            |
|              |                             |                     |                               |          |                |                                         |                                                              | 0.0            | -            |
| 5            | 00.01(4) 5.5                |                     |                               |          |                |                                         |                                                              |                | 5            |
| -            | SS-31(A)-5.5                |                     | 7<br>9<br>12                  |          |                |                                         |                                                              | 0.0            | -            |
| -            |                             | T.                  |                               |          |                |                                         |                                                              | 0.0            | -            |
| F            |                             | $  \rangle$         |                               |          |                |                                         |                                                              | 0.0            | -            |
| -            |                             |                     |                               |          |                |                                         |                                                              | 0.0            | -            |
| 10           | SS-31(A)-10.5               |                     | 8<br>12                       | CL       |                |                                         |                                                              | 0.0            | 10           |
|              |                             | $\left  \right ^{}$ | 15                            |          |                |                                         |                                                              |                | -            |
|              |                             | $  \rangle$         |                               |          |                | at 12 feet, color change                | es to black (10YR 2/1)                                       | 0.0            |              |
|              |                             | IŇ                  |                               |          |                |                                         |                                                              | 0.0            | -            |
| 15           | SS-31(A)-15.5               |                     | -                             |          |                |                                         |                                                              | 0.0            | 15           |
|              |                             |                     | 5<br>12<br>19                 |          |                |                                         |                                                              | 0.0            |              |
|              |                             |                     |                               |          |                |                                         |                                                              | 0.0            | -            |
| -            |                             | $  \rangle$         |                               |          |                |                                         |                                                              | 0.0            | -            |
| 20           |                             | $ \rangle$          |                               |          |                |                                         |                                                              | 0.0            | 20           |
| :            | MMENTS                      | <u></u>             | 1                             |          | <u>/////</u>   | 1                                       | (Continued Next Page)                                        | <b>I</b>       |              |
|              |                             |                     |                               |          |                |                                         |                                                              |                |              |
| 8            |                             |                     |                               |          |                |                                         |                                                              |                |              |
|              |                             |                     |                               |          |                |                                         |                                                              |                |              |
|              |                             |                     |                               |          |                |                                         | โข                                                           | LF             | R            |
| APP          | ROVED BY:                   |                     |                               |          |                | DATE:                                   |                                                              |                |              |

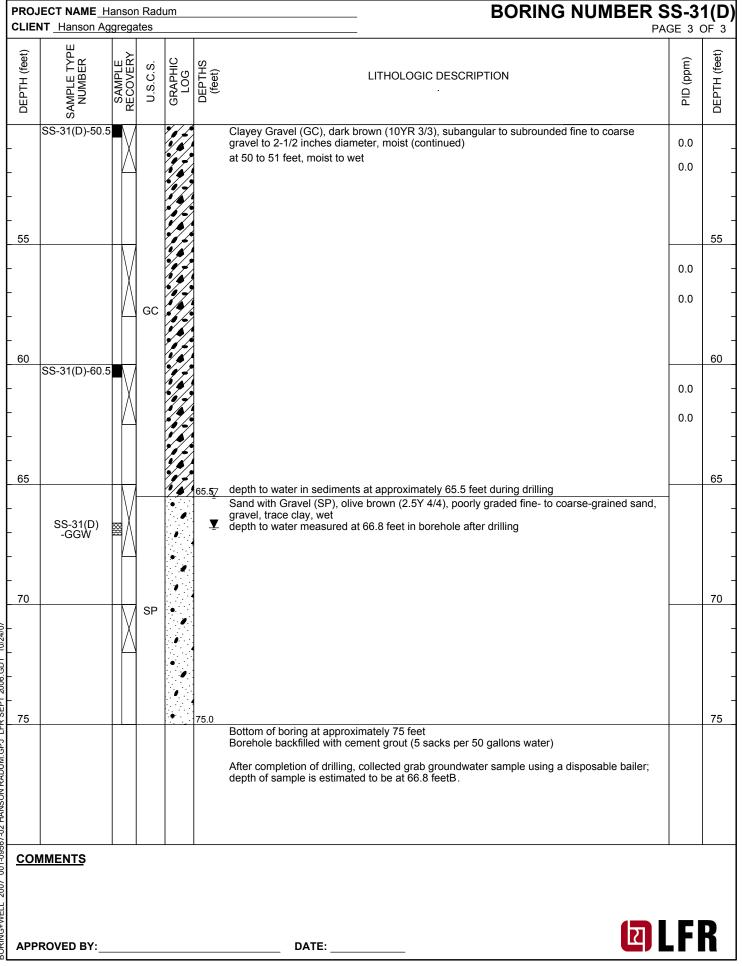




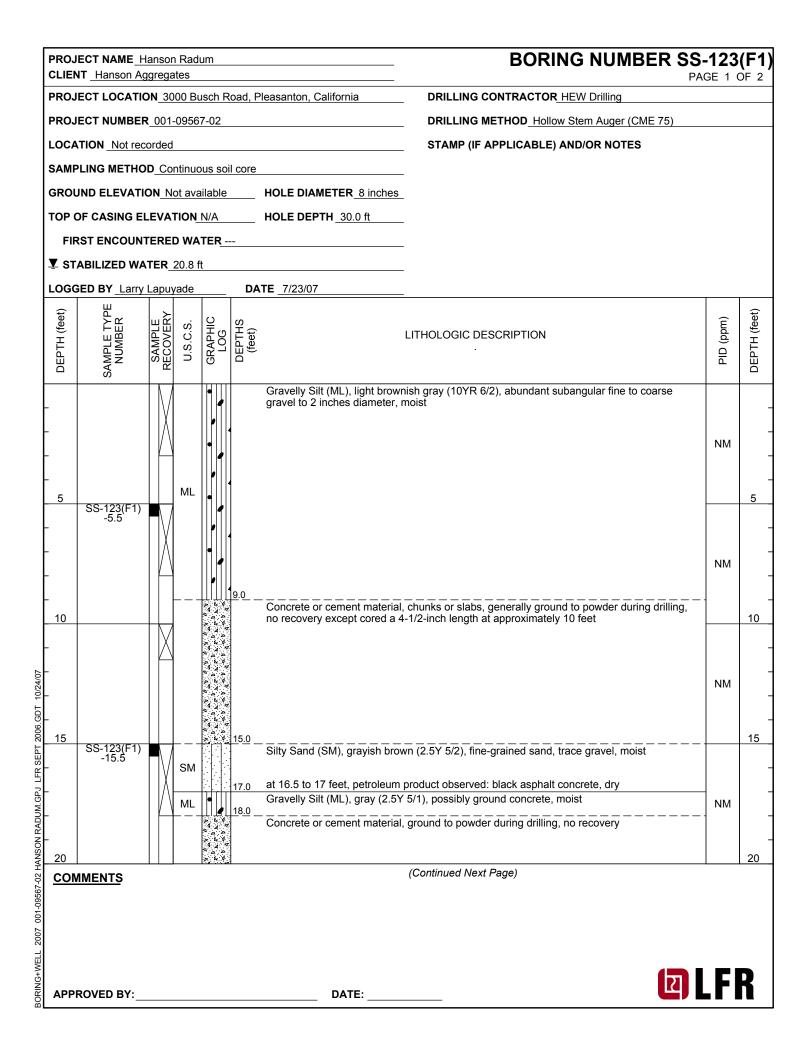


|              | JECT NAME_Ha          |                    |          | um             |                  |                                                                   |                                                                  | <b>SS-3</b><br>AGE 1     |              |
|--------------|-----------------------|--------------------|----------|----------------|------------------|-------------------------------------------------------------------|------------------------------------------------------------------|--------------------------|--------------|
| PRO.         | JECT LOCATIO          | N_30               | 000 Bi   | usch R         | oad, F           | Pleasanton, California                                            | DRILLING CONTRACTOR HEW Drilling                                 |                          |              |
| PRO.         | JECT NUMBER           | 001                | -0956    | 7-02           |                  |                                                                   | DRILLING METHOD Hollow Stem Auger (CME 75)                       |                          |              |
| LOCA         | ATION Not reco        | orded              |          |                |                  |                                                                   | STAMP (IF APPLICABLE) AND/OR NOTES                               |                          |              |
| SAM          | PLING METHO           | <b>D</b> _Co       | ntinuc   | ous soi        | l core           |                                                                   | _                                                                |                          |              |
| GRO          | UND ELEVATIO          | <b>n_</b> N        | ot ava   | ailable        |                  | HOLE DIAMETER 8 inches                                            |                                                                  |                          |              |
| ТОР          | OF CASING EL          | EVA                |          | N/A            |                  | HOLE DEPTH 70.0 ft                                                |                                                                  |                          |              |
| ∑ FI         | RST ENCOUNT           | ERE                | D WA     | TER 6          | 6.0 ft           |                                                                   |                                                                  |                          |              |
| SI           | ABILIZED WA           | TER_               |          |                |                  |                                                                   |                                                                  |                          |              |
| LOG          | GED BY Larry I        | apu                | yade     |                | DA               | TE <u>7/19/07 - 7/20/07</u>                                       |                                                                  |                          |              |
| DEPTH (feet) | SAMPLE TYPE<br>NUMBER | SAMPLE<br>RECOVERY | U.S.C.S. | GRAPHIC<br>LOG | DEPTHS<br>(feet) |                                                                   | LITHOLOGIC DESCRIPTION                                           | PID (ppm)                | DEPTH (feet) |
|              |                       |                    | GM       | • •            | 0.8              | Silty Gravel (GM), olive brow                                     | n (2.5Y 4/4), poorly graded subangular fine gravel, dry          |                          |              |
|              | SS-31(B)-5.5          | X                  | CL       |                |                  | Silty Clay (CL), olive brown (3<br>at 12 feet, color changes to b | 2.5Y 4/4), medium plasticity, dry, very hard<br>black (10YR 2/1) | 0.0<br>0.0<br>0.0<br>0.0 |              |
| 15           |                       |                    |          |                |                  |                                                                   |                                                                  |                          | 15           |
|              | SS-31(B)-15.5         |                    |          |                |                  | at 15 feet, color changes to c                                    | live brown (2.5Y 4/4)                                            | 0.0                      |              |
|              |                       |                    |          |                |                  |                                                                   |                                                                  | 0.0                      |              |
|              |                       |                    |          |                |                  |                                                                   |                                                                  | 0.0                      |              |
|              |                       |                    |          |                |                  |                                                                   |                                                                  | 0.0                      | _            |
| 20           |                       |                    |          | XX.            |                  |                                                                   | (Continued Neut Deve)                                            |                          | 20           |
|              | MMENTS                |                    |          |                |                  | DATE:                                                             | (Continued Next Page)                                            | LF                       | R            |

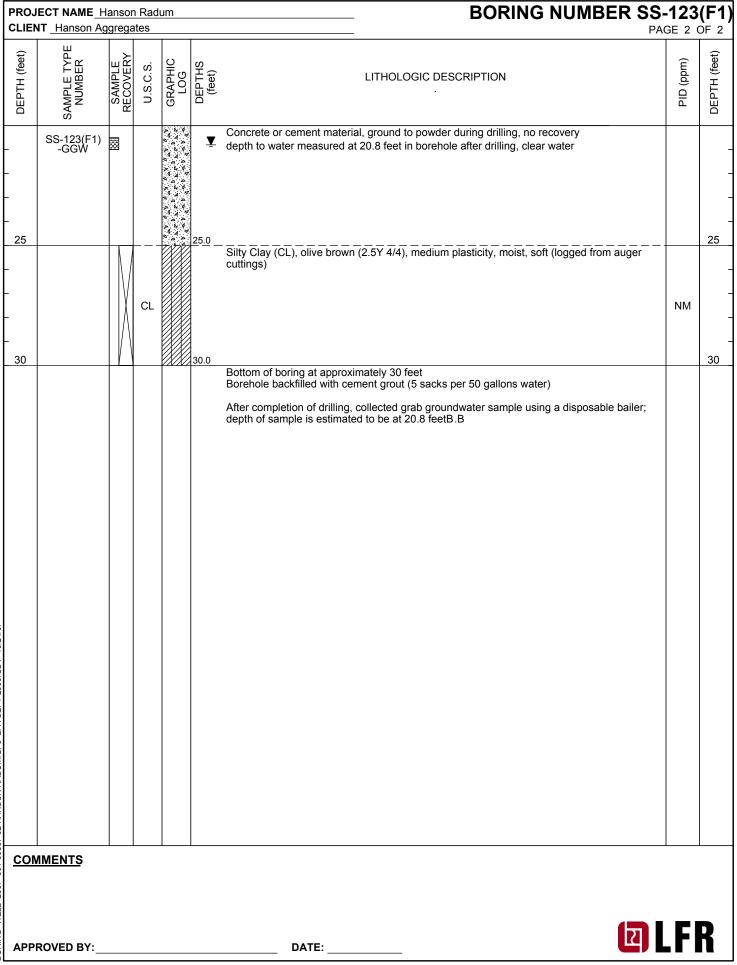



| PROJECT NAME <u>Hanson Radum</u><br>CLIENT <u>Hanson Aggregates</u>                                                                | BORING NUMBER S                                                                                                                                                                                                                                                    | BORING NUMBER SS-31 |                         |  |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|--|
| DEPTH (feet)<br>SAMPLE TYPE<br>NUMBER<br>SAMPLE<br>SAMPLE<br>SAMPLE<br>COVERY<br>U.S.C.S.<br>U.S.C.S.<br>CGRAPHIC<br>LOG<br>DEPTHS | EITHOLOGIC DESCRIPTION                                                                                                                                                                                                                                             | PID (ppm)           | DEPTH (feet)            |  |
|                                                                                                                                    | Gravel (GP), olive brown (2.5Y 4/3), poorly graded subrounded fine to coarse gravel to 2-1/2 inches diameter, moist                                                                                                                                                | 0.0                 | -                       |  |
|                                                                                                                                    | at 55 feet, increase in maximum gravel size to 3 inches, increasing clay                                                                                                                                                                                           | 0.0                 | 55 -                    |  |
| 60<br>SS-31(B)-60.5<br>-<br>-<br>-<br>-<br>-<br>65                                                                                 |                                                                                                                                                                                                                                                                    | 0.0                 | 60<br>-<br>-<br>-<br>65 |  |
|                                                                                                                                    | ☑ depth to water in sediments at approximately 66 feet during drilling 0                                                                                                                                                                                           |                     |                         |  |
|                                                                                                                                    | Bottom of boring at approximately 70 feet<br>Borehole backfilled with cement grout (5 sacks per 50 gallons water)<br>After completion of drilling, collected grab groundwater sample using a disposable bailer;<br>depth of sample is estimated to be at 66 feetB. |                     |                         |  |
| COMMENTS                                                                                                                           | DATE:                                                                                                                                                                                                                                                              |                     | D                       |  |

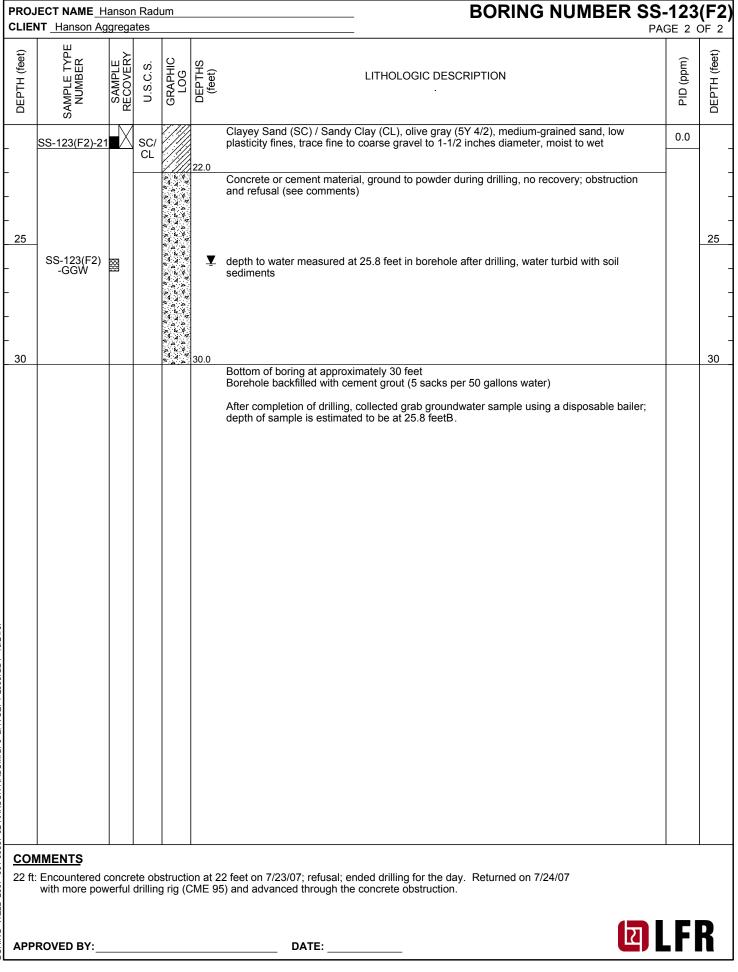

|              | JECT NAME_H<br>NT_Hanson Ag |                    |          | um             |                  |                                                                  | BORING NUMBER                                                                       | <b>SS-3</b><br>PAGE 1 ( |              |
|--------------|-----------------------------|--------------------|----------|----------------|------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------|--------------|
| PRO.         |                             | <b>DN</b> _30      | 000 Bi   | usch R         | oad, P           | leasanton, California                                            | DRILLING CONTRACTOR HEW Drilling                                                    |                         |              |
| PRO          | JECT NUMBER                 | <b>र</b> _001      | -0956    | 7-02           |                  |                                                                  | DRILLING METHOD Hollow Stem Auger (CME 75)                                          |                         |              |
| LOCA         | ATION Not rec               | orded              |          |                |                  |                                                                  | _ STAMP (IF APPLICABLE) AND/OR NOTES                                                |                         |              |
| SAMI         | PLING METHO                 | D_Co               | ntinuo   | ous soi        | l core           |                                                                  | _                                                                                   |                         |              |
| GRO          | UND ELEVATIO                | <b>0n</b> N        | ot ava   | ailable        |                  | HOLE DIAMETER 8 inches                                           |                                                                                     |                         |              |
|              | OF CASING EL                |                    |          |                |                  | HOLE DEPTH _70.0 ft                                              | -                                                                                   |                         |              |
|              | RST ENCOUN                  |                    | _        |                | 6 0 ft           |                                                                  | -                                                                                   |                         |              |
|              | ABILIZED WA                 |                    |          |                | 0.0 11           |                                                                  | -                                                                                   |                         |              |
|              | GED BY Larry                | _                  |          |                | DA               | TE _7/20/07                                                      | -                                                                                   |                         |              |
| et)          | Ш                           | ≻                  |          |                |                  |                                                                  |                                                                                     |                         | et)          |
| DEPTH (feet) | SAMPLE TYPE<br>NUMBER       | SAMPLE<br>RECOVERY | U.S.C.S. | GRAPHIC<br>LOG | DEPTHS<br>(feet) |                                                                  | LITHOLOGIC DESCRIPTION                                                              | (mqq) OIA               | DEPTH (feet) |
| EPTI         | MPL                         | SAN                | U.S.     | GRA            | DEP<br>(fe       |                                                                  |                                                                                     | DIA (                   | EPTI         |
| ā            | SA                          | <u>۳</u>           |          |                |                  |                                                                  |                                                                                     |                         | Ō            |
|              |                             | N                  |          |                | 0.5              | Asphalt concrete fragments a<br>Silty Clay (CL), light olive bro | and gravel<br>own (2.5Y 5/4), medium plasticity, moist, very hard                   |                         |              |
|              |                             | ΙŇ                 |          |                |                  |                                                                  |                                                                                     | 9,999                   |              |
| Γ            |                             |                    |          |                |                  |                                                                  |                                                                                     |                         |              |
| F            |                             |                    |          |                |                  |                                                                  |                                                                                     |                         | _            |
| 5            |                             |                    |          |                |                  |                                                                  |                                                                                     |                         | 5            |
|              | SS-31(C)-5.5                |                    |          |                |                  |                                                                  |                                                                                     |                         | 5            |
| F            |                             | $  \rangle $       |          |                |                  |                                                                  |                                                                                     |                         | -            |
| F            |                             | $  \rangle$        |          |                |                  |                                                                  |                                                                                     | 9,999                   | -            |
| -            |                             |                    |          |                |                  |                                                                  |                                                                                     |                         | -            |
| -            |                             |                    |          |                |                  | at 9 to 10 feet, black (10YR 2                                   | 2/1)                                                                                |                         | -            |
| 10           | SS-31(C)-10.5               |                    | CL       |                |                  |                                                                  |                                                                                     | 9,999                   | 10           |
| Ļ            | 33-31(0)-10.3               |                    |          |                |                  |                                                                  |                                                                                     |                         | _            |
|              |                             | $  \rangle$        |          |                |                  |                                                                  |                                                                                     |                         | _            |
|              |                             | ΙX                 |          |                |                  |                                                                  |                                                                                     |                         |              |
| -            |                             | $  \rangle$        |          |                |                  |                                                                  |                                                                                     |                         |              |
| 15           |                             | $  \rangle$        |          |                |                  |                                                                  |                                                                                     | 2,500                   | 15           |
|              | SS-31(C)-15.5               | 5                  |          |                |                  | at 15 feet, color changes to c                                   | blive brown (2.5Y 4/4)                                                              | _,                      |              |
|              |                             | $  \rangle $       |          |                |                  |                                                                  |                                                                                     |                         | _            |
| -<br>-       |                             | IIY                |          |                |                  |                                                                  |                                                                                     | 274                     | _            |
|              |                             |                    |          |                |                  | at 17.5 to 18.5 feet, black (10                                  | JYR 2/1)                                                                            |                         | -            |
|              | SS-31(C)-19.5               | 5                  |          |                | 19.5             |                                                                  |                                                                                     | 71                      | -            |
| 20           |                             |                    | ML       | INX            |                  | Clayey Silt (ML), yellowish bi                                   | rown (10YR 5/8), nonplastic to low plasticity, moist, hard<br>(Continued Next Page) |                         | 20           |
|              | <u>MMENTS</u>               |                    |          |                |                  |                                                                  |                                                                                     |                         |              |
| 20-100       |                             |                    |          |                |                  |                                                                  |                                                                                     |                         |              |
| 1007         |                             |                    |          |                |                  |                                                                  |                                                                                     |                         |              |
|              |                             |                    |          |                |                  |                                                                  |                                                                                     |                         |              |
| 100          |                             |                    |          |                |                  |                                                                  |                                                                                     | LF                      | R            |
| APP          | ROVED BY:                   |                    |          |                |                  | DATE:                                                            |                                                                                     |                         |              |



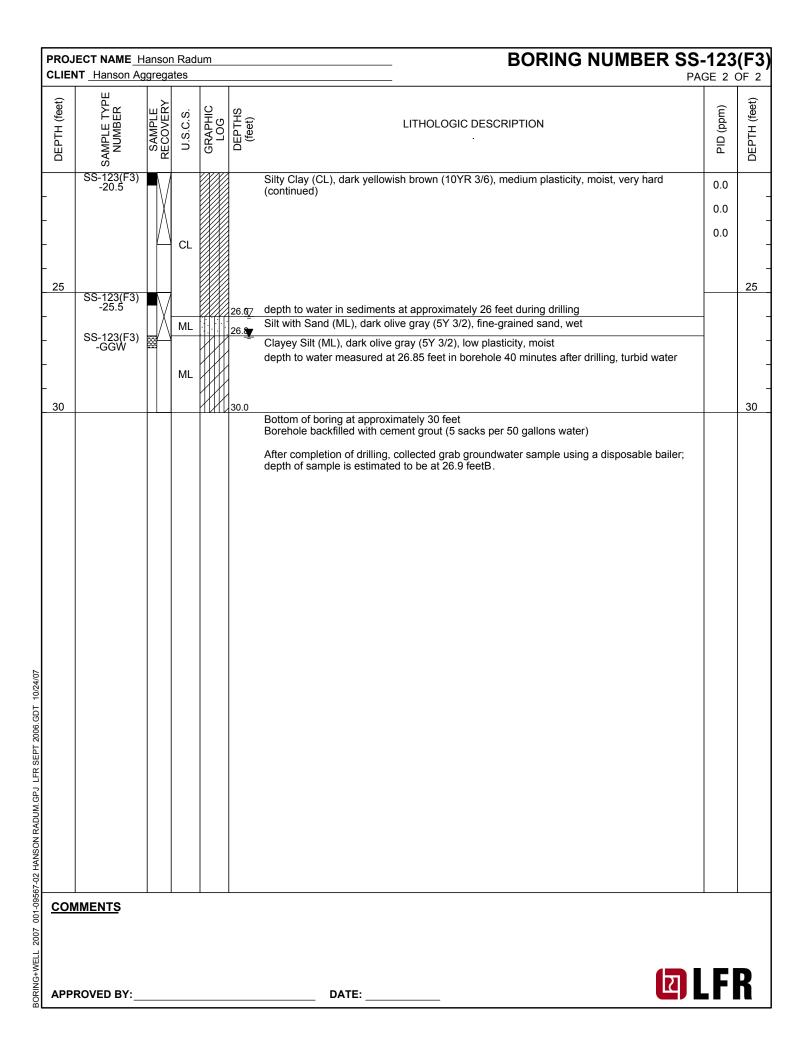




|              | JECT NAME_H<br>NT_Hanson Ag |                    |          | um             |                  |                                  | BORING NUMBER                                             | R SS-3<br>PAGE 1 | <b>1(D)</b><br>OF 3 |
|--------------|-----------------------------|--------------------|----------|----------------|------------------|----------------------------------|-----------------------------------------------------------|------------------|---------------------|
| PRO          | JECT LOCATIO                | <b>DN</b> _30      | 000 Bi   | usch R         | oad, P           | leasanton, California            | DRILLING CONTRACTOR HEW Drilling                          |                  |                     |
| PRO          |                             | R <u>001</u>       | -0956    | 7-02           |                  |                                  | DRILLING METHOD Hollow Stem Auger (CME 75)                |                  |                     |
| LOC          | ATION Not rec               | orded              |          |                |                  |                                  | STAMP (IF APPLICABLE) AND/OR NOTES                        |                  |                     |
| SAM          | PLING METHO                 | D_Co               | ntinuo   | ous soi        | l core           |                                  |                                                           |                  |                     |
| GRO          | UND ELEVATIO                | <b>0N</b> _N       | ot ava   | ailable        |                  | HOLE DIAMETER 8 inches           | _                                                         |                  |                     |
| ТОР          | OF CASING EL                | EVA                |          | N/A            |                  | HOLE DEPTH 75.0 ft               | _                                                         |                  |                     |
| ע דו         |                             | TERE               | D WA     | TER 6          | 5.5 ft           |                                  | -                                                         |                  |                     |
| <b>⊈</b> s1  | ABILIZED WA                 | TER_               | 66.81    | ft             |                  |                                  |                                                           |                  |                     |
| LOG          | GED BY Larry                | Lapu               | yade     |                | DA               | TE <u>7/20/07 - 7/23/07</u>      |                                                           |                  |                     |
| DEPTH (feet) | SAMPLE TYPE<br>NUMBER       | SAMPLE<br>RECOVERY | U.S.C.S. | GRAPHIC<br>LOG | DEPTHS<br>(feet) |                                  | LITHOLOGIC DESCRIPTION                                    | PID (ppm)        | DEPTH (feet)        |
|              |                             | $ \Lambda $        | GM       |                | 1.0              | Silty Gravel (GM), dark brown    | n (10YR 3/3), poorly graded subangular fine gravel, moist | 0.0              |                     |
| -            |                             | ΙX                 |          |                |                  | Silty Clay (CL), light olive bro | wn (2.5Y 5/3), medium plasticity, moist, very hard        | 0.0              |                     |
| F            |                             |                    |          |                |                  |                                  |                                                           |                  |                     |
| F            |                             |                    |          |                |                  |                                  |                                                           |                  |                     |
| 5            |                             |                    |          |                |                  |                                  |                                                           |                  | 5                   |
|              | SS-31(D)-5.5                |                    |          |                |                  |                                  |                                                           | 0.0              |                     |
| F            |                             | $  \rangle$        |          |                |                  |                                  |                                                           | 0.0              |                     |
| F            |                             | IX                 |          |                |                  |                                  |                                                           | 0.0              |                     |
|              |                             |                    |          |                |                  |                                  |                                                           | 0.0              |                     |
| 10           |                             |                    |          |                |                  |                                  |                                                           | 0.0              | 10                  |
|              | SS-31(D)-10.5               | 5                  | CL       |                |                  |                                  |                                                           | 0.0              |                     |
|              |                             |                    |          |                |                  |                                  |                                                           | 0.0              |                     |
|              |                             | ΙX                 |          |                |                  | at 12.5 feet, color changes to   | o dark olive brown (2.5Y 3/3)                             | 0.0              |                     |
|              |                             |                    |          |                |                  |                                  |                                                           | 0.0              |                     |
| 15           | SS-31(D)-15                 |                    |          |                |                  |                                  |                                                           | 0.0              | 15                  |
|              |                             | $  \rangle$        |          |                |                  |                                  |                                                           | 0.0              |                     |
|              |                             |                    |          |                |                  |                                  |                                                           | 0.0              |                     |
|              |                             | ΙX                 |          |                |                  |                                  |                                                           | 0.0              |                     |
|              |                             |                    |          |                |                  |                                  |                                                           | 0.0              |                     |
| 20           | SS-31(D)-19.5               |                    |          |                |                  |                                  |                                                           |                  | 20                  |
|              | <u>MMENTS</u>               |                    |          |                |                  |                                  | (Continued Next Page)                                     |                  |                     |
| 000          |                             |                    |          |                |                  |                                  |                                                           |                  |                     |
|              |                             |                    |          |                |                  |                                  |                                                           |                  |                     |
|              |                             |                    |          |                |                  |                                  |                                                           |                  |                     |
|              |                             |                    |          |                |                  |                                  | य                                                         | LF               | R                   |
|              | ROVED BY:                   |                    |          |                |                  | DATE:                            |                                                           |                  |                     |






|                     | ECT NAME_H                          |                    |           | um             |                  | BORING NUMBER SS-                                                                                                                                                                    | <b>123</b><br>GE 1 |              |
|---------------------|-------------------------------------|--------------------|-----------|----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|
| PROJ                | ECT LOCATIO                         | <b>DN</b> _30      | 000 Bi    | usch F         | Road, P          | leasanton, California DRILLING CONTRACTOR HEW Drilling                                                                                                                               |                    |              |
| PROJ                |                                     | <b>R</b> _001      | -0956     | 7-02           |                  | DRILLING METHOD Hollow Stem Auger (CME 95)                                                                                                                                           |                    |              |
| LOCA                | TION Not rec                        | orded              | I         |                |                  | STAMP (IF APPLICABLE) AND/OR NOTES                                                                                                                                                   |                    |              |
| SAMF                | LING METHO                          | <b>D</b> Co        | ntinuc    | ous so         | il core          |                                                                                                                                                                                      |                    |              |
| GROU                | JND ELEVATIO                        | <b>0N</b> _N       | ot ava    | ailable        |                  | HOLE DIAMETER 8 inches                                                                                                                                                               |                    |              |
| TOP                 | OF CASING EL                        | EVA                | TION      | N/A            |                  | HOLE DEPTH _20.0 ft                                                                                                                                                                  |                    |              |
| <br>↓<br>↓<br>▼ FIF |                                     | ΓERE               | D WA      | TER 1          | 16.0 ft          |                                                                                                                                                                                      |                    |              |
|                     | ABILIZED WA                         |                    |           |                |                  |                                                                                                                                                                                      |                    |              |
|                     | ED BY Larry                         |                    |           |                | DA               | TE 7/24/07                                                                                                                                                                           |                    |              |
|                     |                                     |                    |           |                |                  |                                                                                                                                                                                      |                    | it)          |
| H (fee              | BER                                 | PLE                | C.S.      | RAPHIC<br>LOG  | et)              | LITHOLOGIC DESCRIPTION                                                                                                                                                               | (mqq               | H (fee       |
| DEPTH (feet)        | SAMPLE TYPE<br>NUMBER               | SAMPLE<br>RECOVERY | U.S.C.S.  | GRAPHIC<br>LOG | DEPTHS<br>(feet) | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                | PID (ppm)          | DEPTH (feet) |
|                     | SA                                  |                    |           |                |                  |                                                                                                                                                                                      |                    |              |
|                     |                                     | IΧ                 | ML        |                | 0.5              | Silty Gravel (GM) / Gravelly Silt (ML), light olive brown (2.5Y 5/3), poorly graded<br>subangular to subrounded fine to coarse gravel to 1-1/4 inches diameter, dry                  | -                  |              |
|                     |                                     |                    |           |                |                  | Silty Clay (CL), black (10YR 2/1), medium plasticity, moist, very hard                                                                                                               |                    |              |
|                     |                                     |                    |           |                |                  |                                                                                                                                                                                      |                    |              |
|                     |                                     |                    |           |                |                  |                                                                                                                                                                                      |                    | _            |
| 5                   |                                     |                    |           |                |                  |                                                                                                                                                                                      |                    | 5            |
|                     | SS-123(AA)<br>-5.5                  | $\square$          |           |                |                  | at 5 feet, color changes to very dark gray (2.5Y 3/1), trace subangular gravel                                                                                                       | 0.0                |              |
|                     | 00.400/44                           | ΙŇ                 |           |                |                  |                                                                                                                                                                                      | 0.0                |              |
| Γ                   | SS-123(AA)<br>-7.5                  |                    |           |                |                  | at 7.5 feet, petroleum product observed: black asphalt bound with gravel and sand, pieces                                                                                            | 0.0                |              |
| Γ                   |                                     |                    |           |                |                  | up to 2-1/2 inches, dry, no odor, similar to asphalt concrete (i.e., roadway paving)                                                                                                 |                    |              |
| 10                  |                                     |                    |           |                |                  |                                                                                                                                                                                      |                    | 10           |
|                     | SS-123(AA)<br>-10.5                 |                    | CL        |                |                  | at 10 feet, color changes to olive (5Y 5/3)                                                                                                                                          |                    |              |
| F                   |                                     | IIV                |           |                |                  |                                                                                                                                                                                      | 0.0                | -            |
| 1                   |                                     | ΙİΪ                |           |                |                  | at 12.5 feet, petroleum product observed: black asphalt as described at 7.5 feet                                                                                                     | 0.0                | -            |
| 2-                  |                                     | $  \rangle$        |           |                |                  |                                                                                                                                                                                      | 0.0                | -            |
| 5-<br>9007 15       |                                     |                    |           |                |                  | at 14.5 to 15 feet, concrete chunks                                                                                                                                                  |                    | 15           |
|                     | SS-123(AA)<br>-15.5                 |                    |           |                | ₹                | at 15.5 feet, petroleum product observed: black asphalt as described at 7.5 feet depth to water measured at 15.65 feet in borehole after drilling                                    | 0.0                |              |
| Ě                   | SS-123(AA)<br>-GGW                  | ₩                  |           |                | Υ¥               | at 16 feet, color changes to black (5Y 2.5); depth to water in sediments at approximately 16 feet during drilling                                                                    | 0.0                | -            |
| 41.GPJ              | SS-123(AA)<br>-18                   |                    |           |                |                  |                                                                                                                                                                                      | 0.0                | -            |
|                     | -18` ′                              |                    |           |                |                  |                                                                                                                                                                                      |                    | -            |
|                     |                                     |                    |           |                |                  | Bottom of boring at approximately 20 feet                                                                                                                                            |                    | -            |
| 20<br>CON           | IMENTS                              |                    | 1         | <u>XX</u> X/   | 20.0             | Borehole backfilled with cement grout (5 sacks per 50 gallons water)                                                                                                                 |                    | 20           |
| 15.5                | ft: Petroleum p<br>ft: After comple | etion o            | of drilli | ng, co         | ollected         | s observed only at depths noted above (7.5, 12.5, and 15.5 feet).<br>grab groundwater sample using a disposable bailer; depth of sample is<br>was turbid, containing soil sediments. |                    |              |
|                     | ROVED BY:                           |                    |           |                |                  | DATE:                                                                                                                                                                                | F                  | R            |






|              | JECT NAME_H<br>NT_Hanson Ac |                    |          | um                                      |                  | BORING NUMBER S                                                                                                                                   | S-123<br>PAGE 1                  |              |  |  |  |  |
|--------------|-----------------------------|--------------------|----------|-----------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------|--|--|--|--|
| PRO          |                             | <b>DN</b> _30      | 000 B    | usch R                                  | oad, P           | leasanton, California DRILLING CONTRACTOR HEW Drilling                                                                                            | DRILLING CONTRACTOR HEW Drilling |              |  |  |  |  |
| PRO          | PROJECT NUMBER_001-09567-02 |                    |          |                                         |                  | DRILLING METHOD Hollow Stem Auger (CME 75 and                                                                                                     | CME 95)                          |              |  |  |  |  |
| LOCA         | LOCATION Not recorded       |                    |          |                                         |                  | STAMP (IF APPLICABLE) AND/OR NOTES                                                                                                                |                                  |              |  |  |  |  |
| SAM          | PLING METHO                 | D Co               | ntinu    | ous so                                  | l core           |                                                                                                                                                   |                                  |              |  |  |  |  |
| GRO          |                             | <b>0N</b> _N       | ot ava   | ailable                                 |                  | HOLE DIAMETER 8 inches                                                                                                                            |                                  |              |  |  |  |  |
| ТОР          | OF CASING EI                | EVA                | TION     | N/A                                     |                  | HOLE DEPTH _ 30.0 ft                                                                                                                              |                                  |              |  |  |  |  |
| FI           | RST ENCOUN                  | TERE               | D WA     | TER -                                   |                  |                                                                                                                                                   |                                  |              |  |  |  |  |
| <b>⊈</b> s1  | ABILIZED WA                 | TER                | 25.8     | ft                                      |                  |                                                                                                                                                   |                                  |              |  |  |  |  |
| LOG          | GED BY Larry                | Lapu               | yade     |                                         | DA               | TE _7/23/07 - 7/24/07                                                                                                                             |                                  |              |  |  |  |  |
|              |                             |                    |          |                                         |                  |                                                                                                                                                   |                                  | et)          |  |  |  |  |
| DEPTH (feet) | SAMPLE TYPE<br>NUMBER       | SAMPLE<br>RECOVERY | C.S.     | GRAPHIC<br>LOG                          | DEPTHS<br>(feet) | LITHOLOGIC DESCRIPTION                                                                                                                            | PID (ppm)                        | DEPTH (feet) |  |  |  |  |
| EP TI        | MPL                         | SAN                | U.S.C.S. | GRA                                     | DEP<br>(fe       | · ·                                                                                                                                               | DIG (                            | EPT          |  |  |  |  |
|              | SA                          |                    |          |                                         |                  |                                                                                                                                                   |                                  |              |  |  |  |  |
|              |                             | N                  |          |                                         |                  | Silty Gravel (GM) / Gravelly Silt (ML), light brownish gray (2.5Y 6/2), poorly graded subrounded fine gravel, dry                                 | 0.0                              | _            |  |  |  |  |
|              |                             |                    |          |                                         |                  | at 1.2 feet, color changes to gray (2.5Y 6.1), moist at 1.5 feet, 0.3-foot-thick interval, silt, dark reddish gray (5YR 4/2), dry; odor of ground |                                  | _            |  |  |  |  |
|              |                             |                    |          |                                         |                  | cement                                                                                                                                            |                                  |              |  |  |  |  |
| Γ            |                             |                    |          |                                         |                  |                                                                                                                                                   |                                  | -            |  |  |  |  |
| 5            |                             |                    |          |                                         |                  |                                                                                                                                                   |                                  | 5            |  |  |  |  |
|              | SS-123(F2)-6                |                    |          |                                         |                  |                                                                                                                                                   | 0.0                              |              |  |  |  |  |
| F            | 00-120(12)-0                | $\square$          |          |                                         |                  |                                                                                                                                                   | 0.0                              | -            |  |  |  |  |
| F            |                             |                    | GM/      |                                         |                  |                                                                                                                                                   |                                  | -            |  |  |  |  |
| F            |                             |                    | ML       |                                         |                  |                                                                                                                                                   |                                  | -            |  |  |  |  |
| $\vdash$     |                             |                    |          |                                         |                  |                                                                                                                                                   |                                  |              |  |  |  |  |
| 10           |                             | $H_{/}$            |          |                                         |                  |                                                                                                                                                   |                                  | 10           |  |  |  |  |
| $\mathbf{F}$ | SS-123(F2)<br>-11.5         |                    |          |                                         |                  |                                                                                                                                                   | 0.0                              | -            |  |  |  |  |
|              | -11.5                       | Π                  |          |                                         |                  |                                                                                                                                                   |                                  | -            |  |  |  |  |
| 101/24       |                             |                    |          |                                         |                  |                                                                                                                                                   |                                  | -            |  |  |  |  |
|              |                             |                    |          |                                         |                  |                                                                                                                                                   |                                  | -            |  |  |  |  |
| 15           |                             |                    | <u> </u> |                                         | 15.0             | Sand with Gravel (SP), dark olive brown (2.5Y 3/3), poorly graded fine-grained sand,                                                              | _                                | 15           |  |  |  |  |
|              | SS-123(F2)                  |                    | SP       |                                         | 16 5             | subrounded gravel, moist                                                                                                                          | 0.0                              | -            |  |  |  |  |
| 5-<br>-      | SS-123(F2)<br>-16.5         |                    |          | P 4 4 9                                 | 16.5             | Concrete or cement material, ground to powder during drilling, no recovery                                                                        |                                  | -            |  |  |  |  |
|              |                             |                    |          | 4 4 4 4<br>9 4 4 4<br>9 4 4             |                  |                                                                                                                                                   |                                  | _            |  |  |  |  |
| N KAL        |                             |                    |          | A - A - A - A - A - A - A - A - A - A - |                  |                                                                                                                                                   |                                  | _            |  |  |  |  |
|              |                             |                    |          |                                         | 20.0             |                                                                                                                                                   |                                  | 20           |  |  |  |  |
|              | MMENTS                      |                    |          |                                         |                  | (Continued Next Page)                                                                                                                             |                                  |              |  |  |  |  |
| 9960-1       |                             |                    |          |                                         |                  |                                                                                                                                                   |                                  |              |  |  |  |  |
| .00 / (      |                             |                    |          |                                         |                  |                                                                                                                                                   |                                  |              |  |  |  |  |
| LL 200       |                             |                    |          |                                         |                  |                                                                                                                                                   |                                  |              |  |  |  |  |
| 0+WEI        |                             |                    |          |                                         |                  |                                                                                                                                                   |                                  | D            |  |  |  |  |
|              | ROVED BY:                   |                    |          |                                         |                  | DATE:                                                                                                                                             | LF                               | n            |  |  |  |  |
|              |                             |                    |          |                                         |                  |                                                                                                                                                   |                                  |              |  |  |  |  |



| PROJECT NAME_Hanson Radum           CLIENT_Hanson Aggregates |                       |                    |          |                                       |                  |                                                                                                                     | BORING NUMBER                                                                                         | SS- | <b>123</b><br>E 1 ( | (F3)<br>DF 2 |
|--------------------------------------------------------------|-----------------------|--------------------|----------|---------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----|---------------------|--------------|
| PROJ                                                         |                       | <b>DN</b> _30      | 000 B    | usch R                                | oad, F           | easanton, California                                                                                                | DRILLING CONTRACTOR HEW Drilling                                                                      |     |                     |              |
| PROJ                                                         |                       | <b>R_</b> 001      | -0956    | 7-02                                  |                  |                                                                                                                     | DRILLING METHOD Hollow Stem Auger (CME 95)                                                            |     |                     |              |
| LOCATION Not recorded                                        |                       |                    |          |                                       |                  |                                                                                                                     | STAMP (IF APPLICABLE) AND/OR NOTES                                                                    |     |                     |              |
| SAMF                                                         | LING METHO            | D Co               | ontinuo  | ous soi                               | l core           |                                                                                                                     |                                                                                                       |     |                     |              |
| GROL                                                         | JND ELEVATI           | <b>0N</b> _N       | lot ava  | ailable                               |                  | HOLE DIAMETER 8 inches                                                                                              |                                                                                                       |     |                     |              |
| ТОР                                                          | OF CASING EL          | EVA                |          | N/A                                   |                  | HOLE DEPTH 30.0 ft                                                                                                  |                                                                                                       |     |                     |              |
| <b>∑</b> FIF                                                 |                       | TERE               | D WA     | TER 2                                 | 6.0 ft           |                                                                                                                     |                                                                                                       |     |                     |              |
| I ⊈ ST                                                       | ABILIZED WA           | TER                | 26.9     | ft                                    |                  |                                                                                                                     |                                                                                                       |     |                     |              |
| LOGO                                                         | GED BY Larry          | Lapu               | yade     |                                       | DA               | re <u>7/24/07</u>                                                                                                   |                                                                                                       |     |                     |              |
| DEPTH (feet)                                                 | SAMPLE TYPE<br>NUMBER | SAMPLE<br>RECOVERY | U.S.C.S. | GRAPHIC<br>LOG                        | DEPTHS<br>(feet) | LITH                                                                                                                | OLOGIC DESCRIPTION                                                                                    |     | PID (ppm)           | DEPTH (feet) |
| -                                                            |                       |                    | GM       |                                       | 1.0              | coarse gravel to 1-1/2 inches diam<br>diameter in top 1/2 foot, moist                                               | own (10YR 4/2), poorly graded subrounded fine to<br>heter, asphalt concrete fragments to 2-1/2 inches |     |                     |              |
| -<br>-<br>- 5                                                |                       |                    | CL       |                                       | 5.0              | fragment in sampler shoe results in                                                                                 | 4/4), medium plasticity, moist, very hard; concrete<br>n poor recovery                                |     |                     |              |
| -                                                            | SS-123(F3)<br>-5.5    |                    | GM<br>CL |                                       | 5.5<br>7.0       | coarse gravel to 1-1/2 inches diam<br>Silty Clay (CL), light olive brown (2<br>trace gravel at soil contact with co | 2.5Y 5/4), low plasticity, dry, very hard                                                             |     | 0.0                 | -            |
| -<br>-<br>10                                                 |                       |                    |          | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 10.0             | Concrete                                                                                                            |                                                                                                       |     | 0.0<br>0.0          | -<br>-<br>10 |
|                                                              | SS-123(F3)<br>-10.5   |                    |          |                                       | 10.0             | Silty Clay (CL), black (10YR 2/1), r                                                                                | medium plasticity, moist, very hard                                                                   |     |                     | 10           |
|                                                              |                       | $  \rangle$        |          |                                       |                  | at 11.5 feet, color changes to dark                                                                                 | olive gray (5Y 3/2)                                                                                   |     | 0.0<br>0.0          | -            |
| -                                                            |                       |                    |          |                                       |                  |                                                                                                                     |                                                                                                       |     | 0.0                 | -            |
| 15                                                           | SS-123(F3)<br>-15.5   |                    | CL       |                                       |                  |                                                                                                                     |                                                                                                       | -   | 0.0                 | -<br>15      |
|                                                              | -15.5 ´               | $\left[ \right] $  |          |                                       |                  | at 15.5 to 17.5 feet, trace gravel                                                                                  |                                                                                                       |     | 0.0                 | -            |
| <u>,</u>                                                     |                       | $  \rangle$        |          |                                       |                  | of 17 E fact color charges to deal                                                                                  | vallowich brown (10VD 2/6)                                                                            |     | 0.0                 | -            |
|                                                              |                       |                    |          |                                       |                  | at 17.5 feet, color changes to dark                                                                                 |                                                                                                       |     | 0.0                 | -            |
| _                                                            |                       | $  \rangle$        |          |                                       |                  |                                                                                                                     |                                                                                                       |     | 0.0                 | -            |
| 20<br>CON                                                    | MENTS                 |                    |          | <u>XXX</u>                            |                  | (Cor                                                                                                                | ntinued Next Page)                                                                                    |     |                     | 20           |
|                                                              | ROVED BY:             |                    |          |                                       |                  | DATE:                                                                                                               |                                                                                                       |     | .FI                 | R            |
|                                                              |                       |                    |          |                                       |                  |                                                                                                                     | _                                                                                                     |     |                     |              |



APPENDIX D

Groundwater Monitoring Well Sampling Field Sheets

## WATER-GUALITY SAMPLING INFORMATION

| Project I                    | Name <u>H</u>               | ANSON RAD                                       | UM_                              |                               |                                     | Р        | roject N | 10. 001-095               | <u>567-</u> 0 |
|------------------------------|-----------------------------|-------------------------------------------------|----------------------------------|-------------------------------|-------------------------------------|----------|----------|---------------------------|---------------|
| Date _                       | 7                           | (12/07                                          | s                                | ample N                       | 10. <u>TW-5</u>                     |          |          |                           |               |
| Sampler                      | s Name                      | LARRY LI                                        | PUYAD                            | 2                             | 1                                   | r        |          |                           | ı             |
| Samplin                      | g Location                  | PLEASANT                                        | on, ca                           |                               | - 6                                 |          | NO       | .70                       |               |
| Samplin                      | g Method                    | Disposale                                       | li BA                            | leg                           |                                     |          | -53      | .20                       |               |
| Analyses                     | s Requested T               | PHIL TPHO,                                      | Fuel DX, 1                       | bis (F)                       | HSOL)                               |          | 57       | 66                        |               |
|                              |                             | Sample Bottles us                               |                                  |                               |                                     | ICE      | 245      | 00                        |               |
| Method                       | of Shipment                 | HAND Delive                                     | <u></u>                          |                               |                                     | ]        | 575      | 50                        |               |
|                              | GROUND W                    | VATER                                           |                                  | SURFAC                        | E WATER                             |          | 9,2.     | 0.0.6                     |               |
| Well No.                     | - TW-                       | 5                                               | _ Stream V                       | Vidth                         |                                     | <u>.</u> |          |                           |               |
| Well Dia                     | meter (in.)                 | 2                                               | _ Stream I                       | Depth                         | •<br>•                              | <b> </b> | 1*       |                           |               |
| Depth to<br>Static (ft       | Water, 53,                  | 20                                              | Stream V                         | Velocity _                    | ·                                   |          |          |                           |               |
|                              | Well Box                    | ·                                               | Rained n                         | ecently ?                     |                                     |          | •        |                           |               |
|                              | oth (ft) $\underline{ll}$   | 9,70                                            | Other                            |                               |                                     | _        |          |                           |               |
|                              |                             | 1                                               | 2-inc                            | h casing                      | = 0.16 gal/ft                       |          |          |                           |               |
| Column                       | in Well                     | 57,50                                           |                                  | h casing                      | = 0.65 gal/ft                       | l        |          |                           |               |
| Water Vo                     | olume in Well               | 9.2 GAR                                         | = 5-inc                          | h casing                      | = 1.02 gal/ft                       |          |          | LOCATION MAP              |               |
|                              |                             |                                                 |                                  |                               |                                     |          |          |                           |               |
|                              |                             |                                                 | 6-inc                            | h casing                      | = 1.47 gal/ft                       |          |          |                           |               |
| *#<br>TIME                   | DEPTH TO<br>WATER<br>(feet) | VOLUME<br>WITHDRAWN<br>(gallons)                | 6-inc<br>TEMP<br>(deg. C)        | рн                            | = 1.47 gal/ft<br>COND<br>(umhos/cm) | ОПН      | ER       | REMARKS                   |               |
| 1                            | WATER                       | VOLUME<br>WITHDRAWN                             | ТЕМР                             | рн                            | COND                                |          |          | REMARKS<br>BEGIN BA       | un            |
| 1                            | WATER                       | VOLUME<br>WITHDRAWN                             | TEMP<br>(deg. C)                 | pH<br>(S.U.)                  | COND<br>(umhos/cm)                  |          |          | <u> </u>                  | un            |
| тіме<br>405<br>1450          | WATER                       | VOLUME<br>WITHDRAWN                             | TEMP<br>(deg. C)                 | рн<br>(s.u.)<br>6.t/7         | COND<br>(umhos/cm)                  |          |          | <u> </u>                  | un            |
| тіме<br>1450<br>1534         | WATER                       | VOLUME<br>WITHDRAWN<br>(gallons)<br>9.5<br>18.5 | TEMP<br>(deg. C)                 | pH<br>(S.U.)<br>6.1/7<br>7.2/ | COND<br>(umhos/cm)<br>62<br>-2      |          |          | BEGIN BAN<br>Lean<br>Lean | un            |
| тіме<br>1450<br>1534<br>1618 | WATER<br>(feet)             | VOLUME<br>WITHDRAWN<br>(gallons)                | TEMP<br>(deg. C)<br>20.2<br>20.3 | pH<br>(S.U.)<br>6.1/7<br>7.2/ | COND<br>(umhos/cm)                  |          |          | BEGIN BAN<br>Lean<br>Lean | Un<br>lo      |
| тіме<br>1450<br>1534         | WATER                       | VOLUME<br>WITHDRAWN<br>(gallons)<br>9.5<br>18.5 | TEMP<br>(deg. C)                 | pH<br>(S.U.)<br>6.1/7<br>7.2/ | COND<br>(umhos/cm)<br>62<br>-2      |          |          | <u> </u>                  | un<br>k       |
| тіме<br>1450<br>1534<br>1618 | WATER<br>(feet)             | VOLUME<br>WITHDRAWN<br>(gallons)<br>9.5<br>18.5 | TEMP<br>(deg. C)                 | pH<br>(S.U.)<br>6.1/7<br>7.2/ | COND<br>(umhos/cm)<br>62<br>-2      |          |          | BEGIN BAN<br>Lean<br>Lean | Cen<br>E      |
| тіме<br>1450<br>1534<br>16/8 | WATER<br>(feet)             | VOLUME<br>WITHDRAWN<br>(gallons)<br>9.5<br>18.5 | TEMP<br>(deg. C)                 | pH<br>(S.U.)<br>6.1/7<br>7.2/ | COND<br>(umhos/cm)<br>62<br>-2      |          |          | BEGIN BAN<br>Lean<br>Lean | un<br>k       |
| тіме<br>1450<br>1534<br>16/8 | WATER<br>(feet)             | VOLUME<br>WITHDRAWN<br>(gallons)<br>9.5<br>18.5 | TEMP<br>(deg. C)                 | pH<br>(S.U.)<br>6.1/7<br>7.2/ | COND<br>(umhos/cm)<br>62<br>-2      |          |          | BEGIN BAN<br>Lean<br>Lean | Len<br>&      |
| тіме<br>1450<br>1534<br>1618 | WATER<br>(feet)             | VOLUME<br>WITHDRAWN<br>(gallons)<br>9.5<br>18.5 | TEMP<br>(deg. C)                 | pH<br>(S.U.)<br>6.1/7<br>7.2/ | COND<br>(umhos/cm)<br>62<br>-2      |          |          | BEGIN BAN<br>Lean<br>Lean | Len<br>k      |
| тіме<br>1450<br>1534<br>1618 | WATER<br>(feet)             | VOLUME<br>WITHDRAWN<br>(gallons)<br>9.5<br>18.5 | TEMP<br>(deg. C)                 | pH<br>(S.U.)<br>6.1/7<br>7.2/ | COND<br>(umhos/cm)<br>62<br>-2      |          |          | BEGIN BAN<br>Lean<br>Lean | un<br>k       |
| тіме<br>1450<br>1534<br>1618 | WATER<br>(feet)             | VOLUME<br>WITHDRAWN<br>(gallons)<br>9.5<br>18.5 | TEMP<br>(deg. C)                 | pH<br>(S.U.)<br>6.1/7<br>7.2/ | COND<br>(umhos/cm)<br>62<br>-2      |          |          | BEGIN BAN<br>Lean<br>Lean | Cen<br>k      |

Suggested Method for Purging Well

|                                 |                                                                             | 111                      |                                                                     |                              |                                                            |                              |                  |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------|------------------------------|------------------------------------------------------------|------------------------------|------------------|--|--|--|
| Project #                       | · 070725.0                                                                  | ואל                      |                                                                     | Client: LFR                  |                                                            |                              |                  |  |  |  |
| Sampler:                        |                                                                             |                          | ·····                                                               | Start Date: 7/25/07          |                                                            |                              |                  |  |  |  |
| Well I.D                        | .:35/1E10D                                                                  | F                        | <u></u>                                                             | Well Diameter: 2 3 4 6 8     |                                                            |                              |                  |  |  |  |
|                                 | ell Depth: 2                                                                |                          | ra multinativ <u>unitati kantati ka</u>                             | Depth to Water: 56.32        |                                                            |                              |                  |  |  |  |
| Before:                         |                                                                             | After:                   |                                                                     | Before: After:               |                                                            |                              |                  |  |  |  |
| Depth to                        | Free Produ                                                                  | ct:                      |                                                                     | Thickness of                 | f Free Product (fee                                        | t):                          |                  |  |  |  |
| Referenc                        | ed to:                                                                      | <u>v</u> o               | Grade                                                               | D.O. Meter (                 | `                                                          | YSI HAC                      | ж                |  |  |  |
| Purge Meth                      | od: Pump i<br>Bailer<br>Disposable Bai<br>Positive Air Di<br>Electric Subme | splacement               | Waterra<br>Peristaltic<br>Extraction Pump<br>& Other <u>2" Redi</u> |                              | Disposabl<br>Extraction<br>Dedicated<br>& Other: <u>NE</u> | Port                         | <b>6</b> 7       |  |  |  |
| <mark>عج</mark><br>1 Case Volum | _\` /                                                                       | <u>3</u> = cified Volume | = <b>76</b> Gals.<br>s Calculated Volum                             | 1"<br>2"<br>2"               | 0.04 4"<br>0.16 6"<br>0.37 Other                           | 0.65<br>1.47                 | .163             |  |  |  |
| Time                            | Temp.<br>(°F or 🌮)                                                          | pH                       | Conductivity (mS<br>or 🔊                                            | Turbidity<br>(NTU)           | Gals. Removed                                              | (Fe.)<br>VTW、<br>Observation | (m<br>150f       |  |  |  |
| 940                             | 18.6                                                                        | 6.93                     | 24168                                                               | 95                           | initial                                                    | 56.40                        | -2               |  |  |  |
| 947                             | 18.8                                                                        | 691                      | 1499                                                                | 6                            | 25                                                         | 56-40                        | Э                |  |  |  |
| 953                             | 20.4                                                                        | 6.90                     | 1215                                                                | 5                            | 50                                                         | 510.44                       | 2                |  |  |  |
| 959                             | 20.6                                                                        | 6.96                     | 1208                                                                | 5                            | 75                                                         | 56.48                        | 5                |  |  |  |
|                                 |                                                                             |                          |                                                                     | Final DTW                    | 56.30                                                      |                              | 5                |  |  |  |
| Did well o                      | lewater?                                                                    | Yes                      | R)                                                                  | Gallons actua                | ally evacuated:                                            | 75                           |                  |  |  |  |
| Sampling                        | Time: 100                                                                   | 8                        |                                                                     | Sampling Da                  | te: 7/25 67                                                | 1                            |                  |  |  |  |
| Sample I.                       | D.: 35/1E                                                                   | 1008                     |                                                                     | Laboratory: STL CET          |                                                            |                              |                  |  |  |  |
| Analyzed                        | for: TP                                                                     | H-G BTEX                 | MTBE TPH-D                                                          | Other: see CC                | <i>p</i> C                                                 | $\smile$                     |                  |  |  |  |
| Equipmen                        | t Blank I.D                                                                 | ).:                      | · @                                                                 | Duplicate I.D                |                                                            |                              |                  |  |  |  |
| Analyzed                        | for: TP                                                                     | H-G BTEX                 | MTBE TPH-D                                                          | Other:                       |                                                            |                              |                  |  |  |  |
| D.O. (if re                     | q'd):                                                                       |                          | Pre-purge:                                                          | <sup>mg</sup> / <sub>I</sub> | Post-purge:                                                |                              | <sup>mg</sup> /L |  |  |  |
| ORP (if re                      | :<br>;                                                                      |                          | Pre-purge:                                                          | mV                           | Post-purge:                                                | 1                            | mV               |  |  |  |
|                                 |                                                                             |                          |                                                                     |                              |                                                            |                              |                  |  |  |  |

WELL MONITORING DATA SHEET

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

| r                                             |                                                                                                                |               | WELL MO                                | ONITORI                                | NG DATA                           | <b>SHEET</b> | ſ                               |                                       |  |  |  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------|----------------------------------------|-----------------------------------|--------------|---------------------------------|---------------------------------------|--|--|--|
| Project #                                     | : 07072                                                                                                        | <u>5-pw-1</u> |                                        | Client: LFR                            |                                   |              |                                 |                                       |  |  |  |
| Sampler:                                      | ow                                                                                                             |               |                                        | Date: 7-25-67                          |                                   |              |                                 |                                       |  |  |  |
| Well I.D.                                     | : <u>35//8</u>                                                                                                 | Eloka         |                                        | Well Diameter: $2  3  4  6  8$         |                                   |              |                                 |                                       |  |  |  |
| Total We                                      |                                                                                                                | 590.0         |                                        | Depth to Water Pre: <b>SS.50</b> Post: |                                   |              |                                 |                                       |  |  |  |
| Depth to                                      | Free Produ                                                                                                     | let:          | ······································ |                                        | Thickness of Free Product (feet): |              |                                 |                                       |  |  |  |
| Referenc                                      | the second s | (vc)          | Grade                                  | Flow Cell                              | Type:                             |              |                                 |                                       |  |  |  |
| Sampling $M$                                  |                                                                                                                | Dedicated     | os Pump<br>Tubing                      | )<br>}                                 | Peristaltic Pump Bladder Pump     |              |                                 |                                       |  |  |  |
| Time                                          | (°C)or °F)                                                                                                     | pН            | Cond.<br>(mS or (aS))                  | Turbidity<br>(NTUs)                    | D.O.<br>(mg/L)                    | ORP<br>(mV)  | Water Removed<br>(gals. or mL). |                                       |  |  |  |
| 1027                                          | 19.3                                                                                                           | 7.4           | 880                                    | 5                                      |                                   | 90           | 348                             | Observations                          |  |  |  |
| 1210                                          | 19.3                                                                                                           | 7.6           | 781                                    | 6                                      |                                   | 76           | 696                             |                                       |  |  |  |
| 1320                                          | 18.9                                                                                                           | 7.6           | 788                                    | 5                                      | _                                 | 73           | 1043                            | · · · · · · · · · · · · · · · · · · · |  |  |  |
| <u>,                                     </u> |                                                                                                                | ···           |                                        |                                        |                                   |              |                                 |                                       |  |  |  |
| <u> </u>                                      |                                                                                                                |               |                                        |                                        |                                   |              |                                 |                                       |  |  |  |
| · · · · · · · · · · · · · · · · · · ·         |                                                                                                                |               |                                        |                                        |                                   |              |                                 |                                       |  |  |  |
|                                               |                                                                                                                |               |                                        |                                        |                                   |              |                                 |                                       |  |  |  |
|                                               |                                                                                                                |               |                                        |                                        | · · ·                             |              |                                 |                                       |  |  |  |
|                                               |                                                                                                                |               |                                        |                                        |                                   |              |                                 |                                       |  |  |  |
|                                               |                                                                                                                |               |                                        |                                        |                                   |              |                                 |                                       |  |  |  |
| <u> </u>                                      |                                                                                                                |               |                                        |                                        |                                   |              |                                 |                                       |  |  |  |
| Did well o                                    | dewater?                                                                                                       | Yes           | No                                     |                                        | Amount a                          | ctually e    | vacuated: 104                   | 13 10                                 |  |  |  |
| Sampling                                      |                                                                                                                | 325           |                                        |                                        | Sampling                          |              | 1-25.07                         | <u> </u>                              |  |  |  |
| Sample I.                                     | D.: 35//                                                                                                       | Elok2         | -                                      |                                        | Laborator                         |              |                                 |                                       |  |  |  |
| Analyzed                                      |                                                                                                                |               | BTEX) MTB                              | $\sim$                                 |                                   | Other:       | ···                             |                                       |  |  |  |
| Equipmen                                      | t Blank I.I                                                                                                    | D.:           | @<br>Time                              |                                        | ······                            | I.D.: 30     | 5/1Elok2-                       | 0 0 A                                 |  |  |  |
|                                               |                                                                                                                | ····          |                                        |                                        | <u> </u>                          |              | y IUR 2 -                       | VUK (M 13)S                           |  |  |  |

Blaine Tech Services, Inc. 1680 Rogers Ave. San Jose, CA 95112

2

| Project #                             | 070725.DL                                                                   | <u>ار ا</u>       |                                                                                                   | Client: LFR                  |                                                            |                                             |  |  |  |
|---------------------------------------|-----------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------|---------------------------------------------|--|--|--|
| Sampler:                              |                                                                             |                   |                                                                                                   | Start Date: 7/25/07          |                                                            |                                             |  |  |  |
|                                       | : 35/16(0                                                                   | N 3               |                                                                                                   | Well Diameter: 2 3 4 6 8     |                                                            |                                             |  |  |  |
|                                       | ell Depth: (ๆ                                                               |                   | . <u> </u>                                                                                        | Depth to Water: 56-80        |                                                            |                                             |  |  |  |
| Before:                               |                                                                             | After:            |                                                                                                   | Before: After:               |                                                            |                                             |  |  |  |
| Depth to                              | Free Produ                                                                  | ct:               | · · · · · · · · · · · · · · · · · · ·                                                             | Thickness of                 | Free Product (fee                                          | t):                                         |  |  |  |
| Reference                             | ed to:                                                                      | E                 | Grade                                                                                             | D.O. Meter (i                | ·····                                                      | YSI HACH                                    |  |  |  |
| Purge Meth                            | od: Pumpin<br>Bailer<br>Disposable Bai<br>Positive Air Di<br>Electric Subme | ler<br>splacement | 80 <sup>°</sup><br>Waterra<br>Peristaltic<br>Extraction Pump<br>∧ Other <u>2<sup>°</sup> Redy</u> |                              | Disposable<br>Extraction<br>Dedicated<br>Other: <b>F</b> 8 | Port                                        |  |  |  |
| 21-4<br>1 Case Volun                  | _(Gals.) X<br>ne Spe                                                        | <u> </u>          | s Calculated Volum                                                                                | e 1"<br>2"<br>3"             | 0.04 4"<br>0.16 6"<br>0.37 Other                           | 0.65<br>1.47<br>radius <sup>2</sup> * 0.163 |  |  |  |
| Time *                                | Temp.<br>(°F or                                                             | pH                | Conductivity (mS<br>or                                                                            | Turbidity<br>(NTU)           | Gals. Removed                                              | DTW:<br>Observations                        |  |  |  |
| 1040                                  | 21-1                                                                        | 7-48              | 748.0                                                                                             | 27                           | initial                                                    | 56.80 5                                     |  |  |  |
| 1046                                  | 20.6                                                                        | 8.16              | 735.2                                                                                             | 6                            | 21.5                                                       | 56-80 6                                     |  |  |  |
| 1051                                  | 226                                                                         | 6.96              | 742.2                                                                                             | 5                            | 43                                                         | 56.80 6                                     |  |  |  |
| 1056                                  | 21.8                                                                        | 7.13              | 738.4                                                                                             | 5                            | 64.5                                                       | 56.80 6                                     |  |  |  |
| 24<br>1                               |                                                                             |                   |                                                                                                   | Final DT                     | W- 56-84                                                   |                                             |  |  |  |
| Did well o                            | dewater?                                                                    | Yes               | ND                                                                                                |                              | ای evacuated:                                              | (-5                                         |  |  |  |
| Sampling                              | Time: (102                                                                  |                   |                                                                                                   | Sampling Date: 7 25 07       |                                                            |                                             |  |  |  |
|                                       | D.: 35/1E1                                                                  |                   |                                                                                                   | Laboratory:                  |                                                            | CET)                                        |  |  |  |
| Analyzed                              | •                                                                           | H-G BTEX          | MTBE TPH-D                                                                                        | Other: See Cox               |                                                            |                                             |  |  |  |
| Equipmen                              | nt Blank I.D                                                                | ).:               | 6                                                                                                 | Duplicate I.D.               |                                                            |                                             |  |  |  |
| Analyzed                              | for: TP                                                                     | H-G BTEX          | MTBE TPH-D                                                                                        | Other:                       | ······································                     |                                             |  |  |  |
| D.O. (if re                           | eq'd):                                                                      |                   | Pre-purge:                                                                                        | <sup>mg</sup> / <sub>L</sub> | Post-purge:                                                | <sup>mg</sup> / <sub>L</sub>                |  |  |  |
| ORP (if re                            | eq'd):                                                                      |                   | Pre-purge:                                                                                        | mV                           | Post-purge:                                                | mV                                          |  |  |  |
| · · · · · · · · · · · · · · · · · · · | -                                                                           |                   |                                                                                                   |                              | · · · · · · · · · · · · · · · · · · ·                      | <b>L</b>                                    |  |  |  |

## WELL MONITORING DATA SHEET

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

1