RECEIVED

1:16 pm, Apr 02, 2008

Alameda County
Environmental Health

April 1, 2008

Mr. Steven Plunkett Alameda County Department of Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: SLIC Case No. RO0002948, 557 Merrimac Street, Oakland, CA

Dear Mr. Plunkett:

SOMA's "Soil, Soil Vapor and Groundwater Investigation" report for the subject property has been uploaded to the State's GeoTracker database and Alameda County's FTP site for your review.

Thank you for your time in reviewing our report. If you have any questions or comments, please call me at (925) 734-6400.

Sincerely,

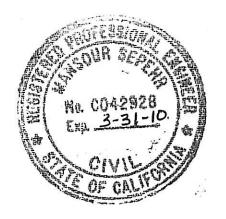
Mansour Sepehr, Ph.D.,PE Principal Hydrogeologist

cc: Mr. Noel Yi w/report enclosure

Soil, Soil Vapor and Groundwater Investigation Report

557 Merrimac Street Oakland, California

April 1, 2008


Project 3022

Prepared for Mr. Noel Yi 2756 Alvarado Street #A-B San Leandro, California 94577

CERTIFICATION

SOMA Environmental Engineering, Inc. has prepared this report on behalf of Mr. Noel Yi, owner of the property located at 557 Merrimac Street, Oakland, California. The report was prepared in accordance with SOMA's Workplan entitled "Workplan to Conduct Additional Soil and Groundwater Investigation Around Former Underground Storage Tanks at 557 Merrimac Street, Oakland, California," dated October 3, 2007, and in compliance with Alameda County Health Care Services Agency correspondence dated December 14, 2007, granting approval of the Workplan.

Mansour Sepehr, Ph.D., P.E. Principal Hydrogeologist

TABLE OF CONTENTS

CERTIFICATION	i
TABLE OF CONTENTS	ii
LIST OF TABLES	iii
LIST OF FIGURES	iii
LIST OF APPENDICES	
1. INTRODUCTION	1
1.1 Site Background	1
1.2 Scope of Work	
2. SOIL AND GROUNDWATER INVESTIGATION	
2.1 Introduction	
2.2 Permit Acquisition, Health and Safety Plan Preparation, and Subs	urface
Utility Clearance	
2.3 Advancement of Boreholes and Sample Collection	5
2.3.1 Site Geology	
2.3.2 Soil Vapor Survey	
2.3.2.1 Soil Vapor Sampling Procedures	
2.3.2.2 Field Parameters During Collection of Vapor Samples	
2.4 Summary of Soil, Groundwater and Soil Vapor Analytical Results.	
2.4.1 Sample Analysis	
2.4.2 Current Soil and Groundwater Analytical Data	9
2.4.2.1 Soil Sampling Results	
2.4.2.2 Groundwater Sampling Results	9
2.4.2.3 Soil Vapor Sampling Results	
3. PREFERENTIAL FLOW PATHWAY STUDY	
3.1 Scope of Work	10
3.2 Identification of Wells	10
3.3 Location of Subsurface Utilities	11
3.4 Climatological Conditions	12
3.5 Land Use	
3.6 Evaluation of Available Information	12
4. CONCLUSIONS AND RECOMMENDATIONS	

LIST OF TABLES

Table 1: Soil Analytical Results

Table 2: Groundwater Analytical Results

Table 3: Soil Vapor Analytical Results

Table 4: Sensitive Receptor Survey Data

LIST OF FIGURES

Figure 1: Site Vicinity Map

Figure 2: Site Map Showing Locations of Utility Conduits, Proposed

Residential Development, Former Groundwater Monitoring Wells

and Current Borings

Figure 2A: Site Map Showing the Footprint of the Proposed Residential

Building

Figure 3: Site Map Showing Locations of Geologic Cross-Sections AA' and

BB'

Figure 4: Geologic Cross-Section AA'

Figure 5: Geologic Cross-Section BB'

Figure 6: Zoning Map

LIST OF APPENDICES

Appendix A: Drilling Permits

Appendix B: Boring Logs and Schematic of the Vapor Probe Sampling System

Appendix C: Soil, Groundwater, and Soil Vapor Analytical Report

Appendix D: Supporting Documentation: Sensitive Receptor and Preferential

Flow Path Study

1. INTRODUCTION

SOMA Environmental Engineering, Inc. has prepared this report on behalf of Mr. Noel Yi, owner of the property located at 557 Merrimac Street, Oakland, California (the Site, Figure 1). The report was prepared in accordance with SOMA's Workplan entitled "Workplan to Conduct Additional Soil and Groundwater Investigation Around Former Underground Storage Tanks at 557 Merrimac Street, Oakland, California," dated October 3, 2007, and in compliance with the Alameda County Health Care Services Agency (ACHCSA) correspondence dated December 14, 2007, granting approval of the Workplan.

This report was prepared to further evaluate the presence of petroleum hydrocarbons in soil and groundwater and determine whether existing chemicals in soil and groundwater pose an unacceptable human health risk to future residents of the property. This report also includes a summary of Site history, constituents of concern (COCs), their representative residual concentrations and known lateral and vertical extent of petroleum hydrocarbon contamination as compared to the cleanup levels, a preferential flow pathway study, and recommendations for Site closure.

The Site was formerly used as a gasoline service station. The property consists of a rectangular-shaped parcel of approximately 14,162 square feet and contains a former service station building, currently vacant and used for storage of the owner's belongings. Areas around the former underground storage tank (UST) pit and former waste oil tank pit are patched with concrete. The concrete foundations for the former pump island are still visible. Three groundwater monitoring wells formerly present at the Site have been decommissioned under the supervision of ACHCSA. Figure 2 shows locations of the decommissioned groundwater monitoring wells.

This report presents the current status of Site environmental conditions and further characterizes the extent of soil and groundwater contamination beneath the Site.

1.1 Site Background

The Site is a closed Leaking Underground Storage Tank (LUST) case. In January 1995, four USTs were removed from the Site, including one 6,000-gallon, one 8,000-gallon and one 10,000-gallon gasoline UST, and one 500-gallon waste oil UST. The removals were witnessed by the ACHCSA. Holes were reported in one of the fuel USTs and in the waste oil UST. Following the UST removals, 17 soil samples were collected from UST pit excavations and stockpiled soils and witnessed by the ACHCSA (sample locations shown in Figure 2). In addition to the 17 samples, three soil samples were collected from beneath the dispenser islands. A groundwater sample was collected from the UST pit.

Results of laboratory analyses showed non-detectable levels for only six soil samples of total petroleum hydrocarbons as gasoline (TPH-g), and for BTEX (benzene, toluene, ethylbenzene and total xylenes). The three samples collected from beneath the dispenser islands yielded largely non-detectable results. The groundwater sample collected from the excavation contained 910 μ g/L TPH-g, and BTEX constituents ranging from 6.9 μ g/L to 19 μ g/L. The soil sample collected from beneath the waste oil tank contained 8.1 mg/kg TPH-g, 74 mg/kg total petroleum hydrocarbon as diesel (TPH-d), and BTEX constituents ranging up to 92 mg/kg xylenes. Oil and grease was detected at 2,500 mg/kg. The LUFT five metals (calcium, chromium, lead, nickel, and zinc) were detected at background concentrations. Chlorinated hydrocarbons were non-detectable.

In February 1995, under supervision of ACHCSA, the waste oil tank was over-excavated. The excavated area was 25' x 25' x 9' and during this process 250 cubic yards of soil were excavated and disposed of off-site at the appropriate waste disposal facility. Furthermore, another 100 cubic yards generated during the gasoline tank removal activities were stockpiled on-site; at this time it is unclear whether said soil was reused or disposed of at the appropriate facility. Four soil samples from sidewalls yielded non-detectable levels of petroleum hydrocarbons. However, a soil sample collected from the bottom of the excavation just above water table contained elevated levels of petroleum hydrocarbons.

Due to presence of petroleum hydrocarbons in soil samples collected from the bottom of the excavation, per ACHCSA's request three groundwater monitoring wells were installed at the Site (Figure 2). Following groundwater monitoring well installations, four quarterly groundwater monitoring events from July 1995 through June 1996 were conducted at the Site. Results indicated non-detectable levels of petroleum hydrocarbons in groundwater with one exception in the March 1996 groundwater monitoring event, when TPH-g and TPH-d were detected at 2,300 μ g/L and 1,100 μ g/L, respectively, at MW-3 located downgradient of the USTs. In addition, a groundwater sample collected from MW-3 contained benzene, ethylbenzene and xylenes concentrations at 30 μ g/L, 140 μ g/L, and 22 μ g/L, respectively.

In a letter dated January 29, 1997, "no further action" (NFA) status was granted by the ACHCSA. In the Case Closure Summary that accompanied this letter, the remaining residual hydrocarbons in soil are stated as 120 mg/kg of TPH-g; 420 mg/kg of TPH-d; 6,800 mg/kg of total oil and grease; and BTEX constituents ranging between 0.032 mg/kg and 0.140 mg/kg. Residual concentrations of dissolved-phase hydrocarbons in groundwater are stated as 150 μ g/L of TPH-g, 58 μ g/L of TPH-d, 0.73 μ g/L of ethylbenzene, and below environmental screening levels (ESLs) of chromium, nickel, and zinc.

The Case Closure Summary specifically states that the reason for Site case closure included removal of the source of contaminants, adequate characterization of the Site, absence of sensitive environmental receptors, and absence of significant human health risk in using the site as commercial development. It was noted that agency notification is required if there is a proposal for change in land use or site activity, or if basements to buildings are to be constructed.

The property owner, Mr. Noel Yi, is planning to convert the Site into a residential dwelling consisting of a 40-unit condominium development with an underground parking garage. Figure 2A shows the footprint of proposed condominium development as well as the surrounding residential properties. There is a potential exposure pathway for volatile organic compounds (VOCs) to impact indoor air quality inside the underground parking garage. As such, in early 2007, the owner informed ACHCSA about his conversion plan and retained PIERS Environmental Services, Inc. (PIERS) to conduct additional investigations to evaluate the current status of environmental conditions at the Site. On February 9, 2007, PIERS drilled two exploratory soil borings, designated B1 and B1A, within 1.5 feet of MW-3. Mr. Jesse Kupers of the Oakland Fire Department witnessed the drilling and sampling collection activities. During drilling no evidence of odor or staining was noted. A soil sample from 11.5 feet below ground surface (bgs) was collected, which would correspond to the area directly below the slab of the proposed parking garage floor. Based on PIERS field observation, a hydrocarbon-stained interval that corresponds with the first waterbearing zone was encountered between 9.25 and 10.8 feet bgs. A soil sample from approximately 10.3 feet bgs was also retained from this interval. Based on PIERS observation, groundwater stabilized at 7.8 feet bgs. A groundwater sample was collected from the borehole using a small-diameter vinyl tubing fitted with a chuck ball tip to surge the water to the surface. No odor or sheen was observed in the water sample.

Soil and groundwater samples were analyzed for TPH-g, TPH-d, BTEX and methyl tertiary-butyl ether (MtBE) using EPA Methods 8015 and 8020.

Soil samples collected from 10.3 feet bgs contained 20 mg/kg TPH-g, 0.065 mg/kg toluene, and 0.0081 mg/kg xylenes. Soil samples collected from 11.5 feet depth did not contain petroleum hydrocarbons above the laboratory-detection limit. The grab groundwater sample collected from the same borehole contained 2,300 μ g/L of TPH-d, and 11,000 μ g/L of motor oil.

1.2 Scope of Work

The purpose of this investigation was to delineate the extent of soil and groundwater chemical plume and verify the concentrations of VOCs in the vadose zone at the Site. The data was used to evaluate the impact of the residual VOC concentrations on the indoor air inside the hypothetical future

parking garage at the Site. The combination of the current and historical investigation data was used to provide a better understanding of subsurface conditions and determine Site eligibility for NFA status under the residential exposure scenario.

The scope of work included the following tasks:

- Task 1: Permit acquisition and preparation of a Site Health and Safety Plan
- Task 2: Advancement of boreholes using direct push technology (DPT) and collection of soil and groundwater samples
- Task 3: Soil gas survey
- Task 4: Laboratory analysis
- Task 5: Preferential flow pathway study
- Task 6: Report preparation

2. SOIL AND GROUNDWATER INVESTIGATION

2.1 Introduction

The Remedial Action Completion Certification, dated January 29, 1997, issued by ACHCSA indicated that residual hydrocarbons were present in soil at up to 120 mg/kg of TPH-g, 420 mg/kg of TPH-d, and residual hydrocarbon contamination remained in groundwater at concentration of up to 150 μ g/L for TPH-g, and 58 μ g/L for TPH-d. Furthermore, four quarterly groundwater monitoring events conducted at the Site, indicated non-detectable levels of petroleum hydrocarbons in groundwater with one exception in the March 1996 groundwater monitoring event, when TPH-g and TPH-d were detected at 2,300 μ g/L and 1,100 μ g/L, respectively at MW-3 located downgradient of USTs. In addition, groundwater sample collected from MW-3 contained benzene, ethylbenzene and xylenes concentrations at 30 μ g/L, 140 μ g/L, and 22 μ g/L, respectively. Benzene concentration at 30 μ g/L exceeded Tier 1 Risk Based Screening Level (RBSL) "groundwater to indoor air" pathway, for residential exposure scenario at 7 μ g/L.

To evaluate whether the existing chemical concentrations in soil and groundwater are harmful to human health under the residential exposure scenario, SOMA drilled eight soil borings and collected soil and groundwater samples for laboratory analysis, and advanced four soil vapor sampling boreholes and collected soil vapor samples.

2.2 Permit Acquisition, Health and Safety Plan Preparation, and Subsurface Utility Clearance

Prior to commencing field activities, SOMA obtained a drilling permit (No. W2008-0052) from the Alameda County Public Works Agency (ACPWA). The permit is included in Appendix A.

Written drilling notifications and grouting inspection requests were emailed to ACHCSA and ACPWA, on February 11, 2008.

On February 4, 2008 all proposed drilling locations were marked with washable white paint. To protect the field crew from underground utility hazards, on February 5, 2008, SOMA contacted Underground Service Alert (USA ticket No 040208), to allow the members of USA to provide information about the location, mark or stake the horizontal path, provide clearance or advise on clearance for facilities that they own. On February 14, 2008, following USA clearance, SOMA retained a private utility locator to survey the proposed drilling areas and locate any additional subsurface conduits.

Before initiating field activities, SOMA prepared a site-specific Health and Safety Plan (HASP). The HASP is a requirement of the Occupational Safety and Health Administration (OSHA), "Hazardous Waste Operation and Emergency Response" guidelines (29 CFR 1910.120) and the California Occupational Safety and Health Administration (Cal/OSHA) "Hazardous Waste Operation and Emergency Response" guidelines (CCR Title 8, section 5192). The HASP is designed to address safety provisions during field activities and protect the field crew from physical and chemical hazards resulting from drilling and sampling. The HASP establishes personnel responsibilities, general safe work practices, field procedures, personal protective equipment standards, decontamination procedures, and emergency action plans. The HASP was reviewed and signed by field staff and contractors prior to beginning field operations at the Site.

2.3 Advancement of Boreholes and Sample Collection

On February 14 and 15, 2008, under SOMA's oversight, Fisch Drilling advanced eight soil boreholes (B-1 through B-8), using direct push drilling method. The direct-push borings were advanced to approximately 20 to 26 feet bgs (Figure 3). Each boring was continuously cored, and the cored soils were described in accordance with the Unified Soil Classification System (USCS). Boring logs are included in Appendix B. In addition, the cored soils were checked for hydrocarbon odors, visual staining, liquid-phase hydrocarbons (free product), and screened using a photo-ionization detector (PID). PID readings were noted on the boring logs. The only elevated PID reading was noted in boring B-8 at approximately 10 feet bgs. At each boring location, two soil samples were collected from the top of water table (capillary fringe area) and one to two below the water table for laboratory analyses, with the exception of boring B-5. Since

boring B-3 was advanced to a greater depth (26 feet bgs) an additional sample was collected at 25 feet bgs and put on hold pending results for the shallower soil sample. Furthermore, once each boring was advanced one grab groundwater sample was collected using 5-foot screen. Groundwater sample collection depths are illustrated on geologic cross-sections AA' and BB'. Boring B-8 did not yield any water at the time of the advancement, so a temporary well casing was installed to allow for groundwater collection. A groundwater sample from the said boring was collected on February 19, 2008.

Following soil and groundwater sampling, all boreholes were decommissioned according to Cal/EPA guidelines with a neat-cement grout mixture. To prevent bridging and help ensure a good seal, grout was kept under pressure during emplacement. This was achieved by use of a tremie pipe to feed grout into the bottom of the hole. At all times, the opening of the tremie pipe was submerged several feet below the level of grout in the hole; the amount of submergence was dependent on the amount of pressure needed to ensure adequate penetration of grout into the formation.

Waste generated during boring activities was temporarily stored on the Site pending transportation to an approved disposal/recycling facility.

2.3.1 Site Geology

Each boring was continuously cored, and the cored soils were described in accordance with the USCS. Based on the soil borings, the Site is underlaid with unconfined sediments consisting primarily of inorganic clays up to approximately 9 feet bgs, with the exception of the fill material in the area of former UST over-excavation. The lower portion of the study area from 9 to 24 feet bgs is a water bearing zone consisting primarily of interbedded clayey sands, sands and gravelly clays. Furthermore, the interbedded sequence is underlain by a clayey layer, visible in borings B-5 and B-8. Boring logs are included in Appendix B. Figure 3 shows locations of geologic cross sections (AA' and BB') for the Site; Figures 4 and 5 show geologic cross sections AA' and BB'. The geologic cross-sections illustrate lateral and vertical extent of soil lithology, location of the former UST pit, encountered and stabilized groundwater, and soil and groundwater analytical results.

2.3.2 Soil Vapor Survey

On February 15, 2008, under SOMA's oversight, Fisch Drilling advanced four soil gas sampling boreholes (SV1 through SV4) using direct push drilling technology (DPT).

As shown in Figure 2, soil vapor probes were drilled around former USTs and waste oil tank areas. Vapor samples were collected at a sampling depth of 5 feet bgs.

The samples were analyzed to evaluate the potential health risk posed by inhaling contaminant vapors from the petroleum hydrocarbon-impacted soil at the Site. SOMA followed protocols for subsurface vapor sampling established by Department of Toxic Substances Control (DTSC).

2.3.2.1 Soil Vapor Sampling Procedures

Soil vapor samples were collected by temporarily inserting a 1-inch-diameter steel drilling rod equipped with a steel drop-off tip. The probe was hydraulically driven through the ground surface by DPT using a Geoprobe. Once the probe reached the designated sampling depth of 5 feet bgs, a ¼-inch diameter Teflon flow sampling tube was inserted down the center of the probe and threaded into the sampling port at the end of the rod. The sampling tube was then capped with a vapor tight valve and the probe was retracted 6 inches and allowed to equilibrate for approximately 20 to 30 minutes. After each use, drive rods and other reusable components were properly decontaminated to prevent cross contamination.

Hydrated bentonite was placed around the top opening of the drill rod and on the ground surface surrounding the drill rod to inhibit surface air migration down the center or outer portion of the drill rod and allowed to set for 30 to 45 minutes. A pre- and post-sample vacuum reading was recorded for each Summa canister sample.

A 200 milliliter/minute (mL/min) flow regulator with a built-in vacuum gauge was connected to the downhole side of the tee fitting. A particulate filter was also installed on the downhole side of the regulator. A vacuum test (mechanical leak check) was performed for 10 minutes to test the connections between the Summa canisters and vapor tight valve. A leak detector compound (isopropyl alcohol) was placed around the borehole subsurface, top of the probe rod, and at the vapor tight valve. The vapor tight valve and purge canister valve were then opened to purge three volumes of air from the sample tubing and borehole. In addition to purging the calculated volume, a visual inspection of the vacuum gauge was noted to insure adequate flow.

After three tubing volumes had been purged, the vapor-tight valve and the purge canister valve were closed. The vapor-tight valve and sample canister valve were closed until after the sample canister gauge indicated approximately 5 inches mercury (Hg) of vacuum remaining in the canister, approximately 20 percent of the pre-sample vacuum. As a quality control measure, one field duplicate field sample was collected from boring SV1 (SV1-DUP).

After the vapor samples were collected, SOMA's field geologist properly labeled the 6-L Summa canisters with the final post-sample recorded vacuum. Fisch then removed the tubing and drilling rod and grouted the borehole with Portland

cement to surface grade. Soil vapor samples were delivered to Torrent Laboratory, Inc, a state-certified analytical laboratory. Please note, samples arrived at the laboratory airtight, and no leaks or receiving discrepancies were reported.

2.3.2.2 Field Parameters During Collection of Vapor Samples

To ensure that stagnant or ambient air is removed from the sampling system and to assure that collected samples are representative of subsurface conditions, prior to collection of each sample, three volumes were purged using a purge Summa canister. The purge volume or "dead space volume" was estimated based on the volume of the sample container, internal volume of tubing used, and annular space around the probe tip.

The effective volume of ¼-inch (1/8-inch inner diameter) diameter Teflon tubing is about 2.41 mL/ft; the average vapor flow rate through the sampling tube was 200 mL/min. The total length of the Teflon tubing was about 6 feet. Additionally, the volume of the 6-inch-long retracting probe rod was about 80 mL. During the sampling event, three tube volumes were purged through the sampling tubes. Therefore, the total purged air volume is calculated as follows:

Total volume of purged air = (2.41 mL/ft x 6 ft+80ml) x 3 = 283.38 mL.

To calculate time during purging, 283.38 mL was divided by 200 mL/min, which equals 1.42 minutes. Since 6-L Summa canisters were used, the sample collection duration at 200 mL/min is:

Sample collection time = 6,000 mL / 200 mL/min = 30 minutes

Appendix B contains the boring logs, which include borehole-specific information of the soil vapor probes (e.g., drilling rod diameter, sampling interval, etc.). In addition, a schematic of the vapor probe sampling system is also included in Appendix B.

2.4 Summary of Soil, Groundwater and Soil Vapor Analytical Results

2.4.1 Sample Analysis

Soil and groundwater samples were submitted to Pacific Analytical Laboratory (PAL), a state-certified environmental laboratory on February 20, 2008. The samples were analyzed for:

- TPH-g (EPA Method 8015)
- TPH-d (EPA Method 8015)
- BTEX and MtBE (EPA Method 8260B).

Please note, the soil vapor samples were not analyzed for total oil and grease and TPH-d, as documented in the "Workplan to Conduct Additional Soil and Groundwater Investigation Around Former Underground Storage Tanks at 557 Merrimac Street, Oakland, California," dated October 3, 2007. With the verbal approval from the regulatory agency (2/11/2008), soil vapor samples were analyzed for TPH-g using Modified TO-3 Method and for VOCs using TO-15 Method.

2.4.2 Current Soil and Groundwater Analytical Data

2.4.2.1 Soil Sampling Results

As Table 1 indicates, laboratory analysis shows that all constituents in soils beneath the Site were detected either below laboratory-reporting limits or at levels significantly lower than the ESLs for the residential exposure scenario.

In the samples collected, benzene (primary constituent of concern [COC]) was not detected above the laboratory-reporting limit. Maximum TPH-g was detected at 10 feet bgs sampling intervals in borings B-1, B-4, and B-8 at 4,090 μ g/kg, 4,290 μ g/kg, and 1,860 μ g/kg respectively. Furthermore, trace concentrations of toluene, ethylbenzene, total xylenes and MtBE were reported in boring B-1 (10 feet bgs sampling interval) at 90.6 μ g/kg, 19.2 μ g/kg, 15 μ g/kg, and 14.8 μ g/kg, respectively. Furthermore, the soil sample B5-25, previously put on hold pending results of the shallower soil sampling, was not analyzed because all constituents of the shallower sample (B5-20) were reported below the laboratory-reporting limit. Soil and groundwater analytical report is attached in Appendix C

2.4.2.2 Groundwater Sampling Results

As Table 2 indicates, laboratory analysis shows that all constituents in the groundwater beneath the Site were detected either below the laboratory-reporting limits or at levels significantly lower than the ESLs for the residential exposure scenario (groundwater is not a drinking water source). Furthermore, benzene was not detected above the laboratory reporting limit, and as such is below the 7 μ g/L Tier 1 risk-based screening level (RBSL) for residential exposure scenario "groundwater to indoor air".

The soil and groundwater analytical laboratory report is included as Appendix C.

2.4.2.3 Soil Vapor Sampling Results

Soil vapor samples were submitted to Torrent Laboratory on February 20, 2008. Soil vapor samples collected from borings SV1 through SV4 were analyzed using EPA Modified Methods TO-3 and TO-17. As a quality control measure, one field duplicate field sample was collected from boring SV1, and labeled as SV1-DUP.

As Table 3 indicates, the results of the laboratory analysis show that all constituents in the soil vapors beneath the Site were detected either below the laboratory-reporting limits or at levels significantly lower than the ESLs "Shallow Soil Gas Screening Levels for Evaluation of Potential Vapor Intrusion Concerns" for the lowest residential exposure scenario.

In the samples collected, benzene (primary COC) was detected at 12 μ g/m³ in SV2. Maximum toluene, ethylbenzene, total xylenes were detected in SV2 at 62 μ g/m³, 16 μ g/m³, 107 μ g/m³, respectively. Maximum TPH-g was detected in SV3 at 1,900 μ g/m³. Table 3 summarizes soil vapor sampling results as compared to the ESLs.

Because results of the soil vapor sampling beneath the Site showed presence of only trace VOC concentrations, illustrating no impact in the form of vapor intrusion into a hypothetical residential building, no further simulation for the indoor air concentrations was conducted at this time.

The laboratory report for the soil vapor samples is attached in Appendix C.

3. PREFERENTIAL FLOW PATHWAY STUDY

3.1 Scope of Work

The purpose of this preferential pathway study was to locate potential migration pathways and conduits and evaluate probability for the residual Site plume to migrate to off-site receptors via preferential pathways and conduits. The State Water Board's "Guidelines for Identification, Location, and Evaluation of Deep Well Conduits" (1986, 2003) was used as a guideline in conducting the study. Furthermore, this study contains all information required by the California Code of Regulations, Division 3, Chapter 16, Section 2654 (b). This study included review of all reasonably obtainable records and maps.

The scope of work is as follows:

Task 1: Identification of Wells

Task 2: Location of Subsurface Utilities

Task 3: Climatological Conditions

Task 4: Land Use

Task 5: Evaluation of Available Information

3.2 Identification of Wells

As part of this study, SOMA reviewed available well data from the California Department of Water Resources (CDWR) and the ACPWA. SOMA located all wells within a ½-mile radius of the Site. The wells were screened to identify

presence of the following wells: abandoned, improperly destroyed, pumping, monitoring, inactive, domestic or irrigation, dewatering, drainage, and cathodic.

On March 5, 2008, SOMA's representative submitted a written request in the form of a well completion report release agreement to the ACPWA and CDWR. In accordance with Water Code Section 13752, information obtained from above agencies shall be kept confidential and shall not be disseminated, published, or made available for inspection by the public without written authorization from the owner(s) of the well(s). This information was solely used for conducting the preferential flow study. Copies obtained from the above agencies were stamped CONFIDENTIAL and are kept in a restricted file at SOMA's office in Pleasanton, California.

Review of CDWR records indicated the presence of 202 entries within the ½-mile radius of the Site. Available records indicated presence of 11 destroyed wells, two irrigation wells, 142 monitoring or test wells, 46 soil borings, and one cathodic well.

Review of ACPWA records indicated the presence of 240 entries within the ½-mile radius of the Site. Available records indicated presence of nine destroyed or abandoned wells, one irrigation well, one industrial well, 217 monitoring or test wells, and three cathodic wells.

During this sensitive receptor study, 105 duplicate wells that were already identified in the search of the CDWR records were identified. "Raw" results of this inquiry and some relevant documentation are included in Appendix D. Table 4 summarizes results of this survey and shows additional information, such as total depth and diameter, for each identified well or boring.

3.3 Location of Subsurface Utilities

In March 2008, SOMA Environmental performed an underground utility survey. This survey consisted of record search with the city of Oakland, and review of the "as build" utility maps. Results of this survey indicated the presence of numerous underground utility lines in the vicinity of the Site. Specifically, 12- to 15-inch storm drain lines, 10- to 12-inch sanitary sewer lines, and a 6-inch waterline main located at shallow depths of approximately 4 to 5 feet bgs, immediately north and west of the Site, under the western portion of Merrimac Street. Furthermore, 10-to 12-inch sanitary sewer lines located at 6.5 to 7 feet bgs were identified as located immediately north of the Site under the Merrimac Street. In addition, a 10-inch sanitary sewer line was identified as located at around 9 feet bgs approximately 110 feet south of the Site under southbound 27th Street. Figure 2 shows locations and flow directions of the utility lines. Detailed maps and construction diagrams are included in Appendix D.

The first encountered groundwater at the time of the drilling, as well as the historical groundwater levels observed in groundwater monitoring wells, suggest that groundwater occurs at 10 feet bgs and deeper. Since the utility lines adjacent to the Site are primarily located between 4 to 7 feet bgs, they cannot act as preferential flow paths.

3.4 Climatological Conditions

The Oakland general area can be characterized as a temperate and seasonally arid Mediterranean climate with dry summers and wet winters, but with a cool modification in summer due to upwelling ocean currents along the California coast. The local climate is influenced by the area's proximity to the Pacific Ocean and San Francisco Bay and the local topography of the area.

Winters are abundant with rainstorms of varying strength and duration, but also produce stretches of bright sunny days and clear cold nights. It does not normally snow, though occasionally the hilltops get a dusting. Spring and fall are transitional and intermediate, with some rainfall and variable temperatures. In late spring and early fall, strong offshore winds of sinking air typically bring heat and dryness to the area. Oakland gets significant cooling maritime fog during the summer but is far enough inland that the fog often burns off by midday, allowing typically sunny California days. The warmest and driest months are typically June and September, with the highest temperatures occurring in September. The average low winter temperatures range from 48 to 49 degrees Fahrenheit, and average high summer temperatures range from 69 to 75 degrees Fahrenheit, with average annual precipitation of 22.94 inches.

3.5 Land Use

According to the City of Oakland General Plan, the Site's general planning design is urban residential "R-80" with commercial land use. The Site is located in an area consisting primarily of residential properties with a community commercial district to the east. Figure 6 illustrates the land use and zoning subdivision of the Site and its general vicinity.

3.6 Evaluation of Available Information

According to Regional Water Board guidance for identification of potential deep conduits, the first well standards in California were adopted in 1968. As such, it is reasonable to assume that the majority of municipal and domestic water wells installed prior to establishment of the well standards might not have been properly constructed with adequate seals, and wells destroyed prior to 1968 were likely not properly destroyed.

Therefore, based on results of the well identification and location program, SOMA conducted this evaluation to determine potential of wells to act as a vertical conduit. Based of the four consecutive groundwater monitoring events at the Site, the groundwater flow is generally southward.

Review of the ACPWA records indicated the presence of two abandoned wells, located at 2821 West Street and 730 29th Street, between 400 feet and 500 feet to the northwest (upgradient) of the Site with unknown or unclear drill dates. Though these wells could act as potential deep preferential pathway conduits, due to their location with respect to the Site this scenario is highly unlikely.

All destroyed wells identified during the present sensitive receptor survey, with the exception of four located at 2720 San Pablo Ave, were destroyed after 1968, and thus assumed to be destroyed in accordance with applicable laws and regulations. Though for the aforementioned four wells records did not indicate the destruction date, their northwesterly (upgradient) locations with respect to the Site indicate that they cannot act as potential deep preferential conduits.

Furthermore, the two irrigation wells identified during the present sensitive receptor survey are located far beyond the study area, and thus can have no potential adverse impact on Site hydrogeology and cannot act as sensitive receptors.

Results of the current preferential pathway study, which were based on information obtained from variety of public and other reasonably available sources, illustrated that the probability of a hypothetical plume emanating from the Site, and encountering preferential pathways and conduits and thus spreading contamination, is minimal.

4. CONCLUSIONS AND RECOMMENDATIONS

Upon further evaluation of current soil analytical data as compared with historical levels of petroleum hydrocarbons around and beneath the former USTs, it was determined that petroleum hydrocarbon impact is minimal and does not pose any danger to human health and the environment under the residential exposure scenario. Furthermore, results of the recent soil gas sampling confirmed that all soil gas levels evaluated for the purpose of vapor intrusion into the future hypothetical residential building are well within the acceptable ESL for vapor intrusion under the residential exposure scenario.

According to the California Regional Water Quality Control Board Interim Guidance Document, dated January 5, 1996, the Site can be categorized as a "Low Risk" petroleum release site based on the following:

- 1. The leak has been stopped and USTs as potential future sources of petroleum hydrocarbons as well as 250 cubic yards of contaminated soil were removed and disposed of off-site.
- 2. The Site has been adequately characterized. Numerous soils, groundwater sampling, and three monitoring wells were constructed on-site, to determine the extent of soil and groundwater contamination. Prior to decommissioning, the aforementioned wells were sampled during four consecutive groundwater monitoring events. Historical groundwater monitoring data reveals that concentrations of COCs are either below the laboratory-reporting limit or at low concentrations. Impacted soils were located primarily under the former USTs and fuel dispensers that have already been removed from the Site.
- 3. No water wells, deeper drinking water aquifers, surface water, or sensitive receptors are likely to be impacted. Due to the low or non-detectable levels of chemicals found on-site, and great distances to the sensitive receptors, the transport of these chemicals to the above-mentioned surface water bodies is highly unlikely. In addition, because the two water supply wells, identified during the sensitive receptor survey, are located beyond the ½-mile radius from the Site, the potential for the groundwater plume emanating from the Site to impact well receptors is unlikely.
- 4. Based on ASTM's E1739-95 "Risk Based Corrective Action Applied at Petroleum Release Sites," as confirmed by current soil, soil vapor and groundwater investigation, the Site presents no significant risk to human health and the environment using a residential exposure scenario. Consequently, remaining residual concentrations of chemicals do not pose any adverse health effects to current or future site workers and residents, or to the environment.

In light of current investigation results, it does not appear that the Site poses any adverse human health risks to current or future Site workers or current or future Site residents. Therefore, SOMA recommends that NFA status be adopted by ACHCSA for the Site, to allow future residential development.

Tables

Table 1
Soil Analytical Results
557 Merrimac Street, Oakland CA

Sample	Date	TPH-g (μg/Kg)	TPH-d (mg/Kg)	Benzene (µg/Kg)	Toluene (µg/Kg)	Ethylbenz ene (µg/Kg)	Total Xylenes (µg/Kg)	MtBE (µg/Kg) EPA 8260B
B1-5	2/14/08	<50.0	<50.0	<0.500	<2.00	<0.500	<2.00	< 0.500
B1-10	2/14/08	1,090	<50.0	<10.0	90.6	19.2	15.0	14.8
B1-20	2/14/08	<50.0	<50.0	<0.500	<2.00	<0.500	<2.00	< 0.500
B2-5	2/15/08	<50.0	<50.0	<0.500	<2.00	< 0.500	<2.00	< 0.500
B2-10	2/15/08	<50.0	<50.0	<0.500	<2.00	<0.500	<2.00	< 0.500
B2-15	2/15/08	<50.0	<50.0	<0.500	<2.00	<0.500	<2.00	< 0.500
B2-20	2/15/08	100	<50.0	<0.500	<2.00	<0.500	<2.00	< 0.500
B3-5	2/15/08	<50.0	<50.0	<0.500	<2.00	<0.500	<2.00	< 0.500
B3-10	2/15/08	643	<50.0	<0.500	<2.00	<0.500	<2.00	< 0.500
B3-15	2/15/08	<50.0	<50.0	< 0.500	<2.00	< 0.500	<2.00	< 0.500
B3-20	2/14/08	<50.0	<50.0	<0.500	<2.00	<0.500	<2.00	< 0.500
B4-5	2/14/08	<50.0	<50.0	<0.500	<2.00	<0.500	<2.00	< 0.500
B4-10	2/14/08	4,290	<50.0	< 0.500	<2.00	< 0.500	<2.00	< 0.500
B4-15	2/14/08	<50.0	<50.0	<0.500	<2.00	< 0.500	<2.00	<0.500
B4-20	2/14/08	<50.0	<50.0	<0.500	<2.00	<0.500	<2.00	<0.500
B5-5	2/14/08	<50.0	<50.0	<0.500	<2.00	< 0.500	<2.00	<0.500
B5-10	2/14/08	<50.0	<50.0	<0.500	<0.500 <2.00		<2.00	<0.500
B5-15	2/14/08	<50.0	<50.0	<0.500	<2.00	< 0.500	<2.00	< 0.500
B5-20	2/14/08	<50.0	<50.0	<0.500	<2.00	< 0.500	<2.00	< 0.500
B5-25	2/14/08				Hold			
B6-5	2/15/08	<50.0	<50.0	<0.500	<2.00	<0.500	<2.00	< 0.500
B6-10	2/15/08	<50.0	<50.0	<0.500	<2.00	<0.500	<2.00	< 0.500
B6-15	2/15/08	<50.0	<50.0	<0.500	<2.00	< 0.500	<2.00	< 0.500
B6-20	2/15/08	<50.0	<50.0	<0.500	<2.00	< 0.500	<2.00	< 0.500
B7-5	2/14/08	<50.0	<50.0	<0.500	<2.00	< 0.500	<2.00	< 0.500
B7-10	2/14/08	<50.0	<50.0	<0.500	<2.00	<0.500	<2.00	< 0.500
B7-15	2/14/08	<50.0	<50.0	<0.500	<2.00	< 0.500	<2.00	< 0.500
B7-20	2/14/08	<50.0	<50.0	<0.500	<2.00	<0.500	<2.00	<0.500
B8-5	2/15/08	<50.0	<50.0	<0.500	<2.00	<0.500	<2.00	<0.500
B8-10	2/15/08	1,860	<50.0	<0.500	<2.00	<0.500	0.860	<0.500
B8-15	2/15/08	<50.0	<50.0	<0.500	<2.00	<0.500	<2.00	<0.500
B8-20	2/15/08	<50.0	<50.0	<0.500	<2.00	<0.500	<2.00	<0.500
ESL Resider GW non drinking		100,000	100	120	29,000	33,000	31,000	8400

Notes:

Note 1: Laboratory reporting limit for m&p-Xylene is 2.00 µg/Kg; for o-xylene it is 0.500 µg/Kg.

< : Not detected at or above laboratory reporting limit (shown)

NA: Not Analyzed; Not Applicable

ESL = environmental screening level, "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater" prepared by the CRWQCB San Francisco Bay Region (Interim Final November 2007), soils less than 3 meters depth, groundwater is a current or potential drinking water source, residential land use

Table 2
Groundwater Analytical Results
557 Merrimac Street, Oakland CA

Sample	Date	TPH-g (μg/L)	TPH-d (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (µg/L)	MtBE (µg/L) EPA 8260B
B1-W	2/14/08	<50.0	<50.0	< 0.500	<2.00	< 0.500	<2.00	< 0.500
B2-W	2/15/08	<50.0	<50.0	< 0.500	<2.00	< 0.500	<2.00	< 0.500
B3-W	2/15/08	<50.0	<50.0	< 0.500	<2.00	< 0.500	<2.00	< 0.500
B4-W	2/14/08	220	196	< 0.500	<2.00	< 0.500	<2.00	< 0.500
B5-W	2/14/08	<50.0	<50.0	< 0.500	<2.00	< 0.500	<2.00	< 0.500
B6-W	2/15/08	<50.0	<50.0	< 0.500	<2.00	< 0.500	<2.00	< 0.500
B7-W	2/14/08	<50.0	<50.0	< 0.500	<2.00	< 0.500	<2.00	< 0.500
B8-W	2/19/08	<50.0	<50.0	<0.500	<2.00	<0.500	<2.00	<0.500
_	Residential vapor intrusion	use soil gas	use soil gas	540 (7.0*)	380000	170000	160000	24000.0
	Residential on drinking	5,000	2,500	540	400	300	5,300	1,800

Notes:

Note 1: Laboratory reporting limit for m&p-Xylene is 2.00 μ g/L; for o-xylene it is 0.500 μ g/L.

< : Not detected at or above laboratory reporting limit (shown)

NA: Not Analyzed; Not Applicable

ESL = environmental screening level, "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater" prepared by the CRWQCB San Francisco Bay Region (Interim Final November 2007), soils less than 3 meters depth, groundwater is a current or potential drinking water source, residential land use

*RBSL = Risk Based Screening Level: Enclosed Space Vapor Inhalation pathways Residential exposure; Building Present

TABLE 3
Soil Vapor Analytical Results
557 Merrimac Street, Oakland CA

Analyte	Units	Date		Sample ID										
Analyte	Ullits	Date	SV1	SV1-DUP	SV2	SV3	SV4	(Residential)						
2-Butanone (MEK)	(µg/m³)	2/15/2008	<1.48	8.7	410	<1.48	<1.48	1,000,000						
Acetone	(µg/m³)	2/15/2008	9.9	48	600	17	42	660,000						
Benzene	(µg/m³)	2/15/2008	<1.6	<1.6	12	<1.6	<1.6	84						
Ethyl Benzene	(µg/m³)	2/15/2008	<2.17	<2.17	16	<2.17	<2.17	210,000						
Total Xylenes	(µg/m³)	2/15/2008	<2.17	<2.17	107	<2.17	14	21,000						
Toluene	(µg/m³)	2/15/2008	2.0	<1.89	62	2.8	12	63,000						
trans-1,2-Dichloroethene	(µg/m³)	2/15/2008	<1.98	<1.98	11	<1.98	<1.98	15,000						
Gasoline	(µg/m³)	2/15/2008	<352	<352	630	1,900	<352	10,000						

Notes:

< Less Than Laboratory Reporting Limit

NA Not Analyzed (Not Applicable)

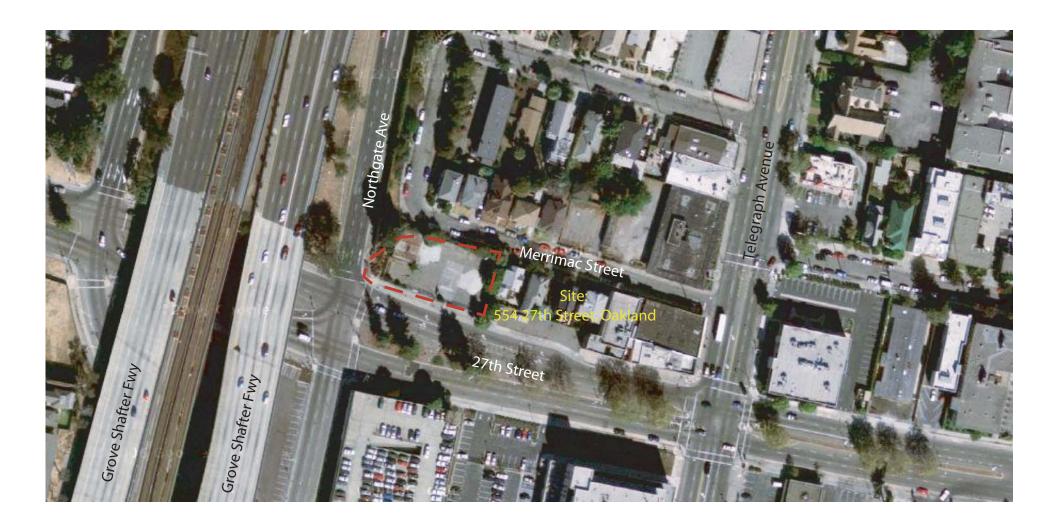
ESL: Environmental Screening Levels SF Bay RWQCB-Interim Final (Table E-2: Shallow Soil Gas Screening Levels for Evaluation of Potential Vapor Intrusion Concerns, lowest residential exposure scenario)

Table 4: Sensitive Receptor Survey Data

<u>Permit</u>	<u>Tr</u>	<u>Section</u>	<u>Address</u>	<u>Longcity</u>	<u>Owner</u>	<u>Update</u>	<u>Xcoord</u>	Ycoord	Matchlevel	<u>Tsrqq</u>	Rec_code	Phone 9	City Drillo	ate Elevation	Totaldepth	Waterdepth	<u>Diameter</u>	<u>Use</u>
Listed in AC	CDPW and D	OWR .																
	1S/4W	26C 1	2821 WEST ST	Oakland	F.L. BROWN	7/31/1984	122273607	37818792	0	1S/4W 26C	2438	0	OAK ?	0	180	30	8	ABN
	1S/4W	26C 2	730 29 ST	Oakland	OAKLAND LDY CO.	7/31/1984	122271876	37819113	8	1S/4W 26C	2439		OAK /2		136	33	0	ABN
	1S/4W	26E 1	889 W. Grand Ave	Oakland	Arco Products	9/18/1992	122277801	37814690	1	1S/4W 26E	7837		OAK 5/9		0	0	0	DES
	1S/4W	26G12	2800 TELEGRAPH S-2	Oakland	SHELL OIL S-2	6/17/1993	122267087	37817164	1	1S/4W 26G	0		OAK 4/9		29	0	3	DES
	1S/4W 1S/4W	26K12 26K4	2225 Telegraph Ave 2225 Telegraph Ave	Oakland Oakland	Texaco MW6A Texaco MW6C	9/21/1992 9/26/1992	122268454 122268454	37812090 37812090	1	1S/4W 26K 1S/4W 26K	7878 8128		DAK 5/9 DAK Nov-		21	0	12	DES DES
	1S/4W	26M	2223 Telegraph Ave	Oakianu	TEXACO IVIVOC	3/20/1332	0	0	9	1S/4W 26M	6906	0	Apr-		35	0	11	DES
	1S/4W	26M					0	0	9	1S/4W 26M	6907	0	Apr-		35	0	11	DES
	1S/4W	26P 2	1700 JEFFERSON (@17th)	Oakland	BLUE PRINT SERVICES	2/23/1988	122272770	37808224	2	1S/4W 26P	2488	0 (OAK Nov-		32	27	4	DES
	1S/4W	26C 4	900 HIGH ST.	Oakland	OAKLAND SCHOOL DIST.	7/31/1984	122216888	37769642	0	1S/4W 26C	2441		OAK ?	0	120	0	0	IRR
93655	1S/4W	2.60E+16	889 W Grand Ave	Oakland	Arco Products Company	12/4/1997	122277825	37814567	1	1S/4W 26E	0		OAK Dec-		15	14	4	EXT
93655	1S/4W	2.60E+17	889 W Grand Ave	Oakland	Arco Products Company	12/4/1997	122277825	37814567	1	1S/4W 26E	0		DAK Dec-		15	13	4	EXT
96544 96544	1S/4W 1S/4W	26F 4 26F 5	2703 Martin Luther King J 2703 Martin Luther King J	Oakland Oakland	Shell Oil Products Compan Shell Oil Products Compan	11/3/1997 11/3/1997	122271197 122271197	37817400 37817400	1	1S/4W 26F 1S/4W 26F	0		DAK 7/9		13	11 8	2	EXT EXT
30344	1S/4W	26K11	2225 Telegraph Ave	Oakland	Exxon Service Stn RW3A	9/21/1992	122268454	37812090	1	1S/4W 26K	7877		DAK 5/9		22	13	4	EXT
	1S/4W	26K 2	2225 Telegraph Avenue	Oakland	Texaco	7/30/1990	122268454	37812090	8	1S/4W 26K	750		OAK May-		25	14	4	EXT
	1S/4W	26K 6	2225 Telegraph Avenue	Oakland	Texaco	7/30/1990	122268454	37812090	8	1S/4W 26K	751	0 (OAK May-	90 100	25	0	4	EXT
	1S/4W	26K 7	2225 Telegraph Avenue	Oakland	Texaco	7/30/1990	122268600	37811700	3	1S/4W 26K	752		OAK May-		25	0	4	EXT
	1S/4W	26P 8	570 18th Street	Oakland	City of Oakland Redvlpmnt	6/12/1991	122271885	37808538	0	1S/4W 26P	1690		OAK 1/9		15	0	4	EXT
	1S/4W	26B 1	29 & TELEGRAPH AV	Oakland	PG&E	7/31/1984	122266800	37818400	8	1S/4W 26B	2437		OAK 4/7		0	8	0	CAT
	1S/4W 1S/4W	26D 1 26P	26 & LINDEN ST S. Pablo & 18th/19th St	Oakland Oakland	PACIFIC GAS & ELECTRIC E.B. Galleria	7/19/1984 7/9/1991	122280000 122271800	37818500 37808400	8	1S/4W 26D 1S/4W 26P	2442 1721		DAK Dec- DAK Dec-		120 120	0	0	CAT
	15/4W	26A 4	3. Pablo & 18th/19th St	Oakland	Connell Oldsmobile	4/17/1991	122260700	37820830	0	1S/4W 26A	1628		DAK Dec-		120	7	4	MON
	1S/4W	26A 5	3093 Broadway	Oakland	Connell Oldsmobile	4/17/1991	122260700	37820830	0	1S/4W 26A	1629		DAK 2/9		40	27	2	MON
	1S/4W	26A 6	3093 Broadway	Oakland	Connell Oldsmobile	4/17/1991	122260700	37820830	0	1S/4W 26A	1630		OAK 2/9		35	22	2	MON
	1S/4W	26A 7	3093 Broadway	Oakland	Connell Oldsmobile	4/17/1991	122260700	37820830	0	1S/4W 26A	1631		OAK 2/9		30	24	2	MON
	1S/4W	26A 8	3093 Broadway	Oakland	Connell Oldsmobile	4/17/1991	122260700	37820830	0	1S/4W 26A	1632		OAK 3/9		35	25	2	MON
95814	1S/4W	26B 2	3045 Telegraph Av	Oakland		7/21/1998	122266610	37819664	1	1S/4W 26B	0		OAK 4/9		16	11	1	MON
95814 95814	1S/4W 1S/4W	26B 3 26B 4	3045 Telegraph Av 3045 Telegraph Av	Oakland Oakland		7/21/1998 7/21/1998	122266610 122266610	37819664 37819664	1	1S/4W 26B 1S/4W 26B	0		DAK 4/9		16 16	11	1	MON MON
96026	1S/4W	26C 5	730 29th St	Oakland	Civic Bank of Commerce	3/12/1998	122272018	37819249	1	1S/4W 26C	0		DAK 2/9		25	19	2	MON
96026	1S/4W	26C 6	730 29th St	Oakland	Civic Bank of Commerce	3/12/1998	122272018	37819249	1	1S/4W 26C	0		OAK 2/9		21	15	2	MON
96026	1S/4W	26C 7	730 29th St	Oakland	Civic Bank of Commerce	3/12/1998	122272018	37819249	1	1S/4W 26C	0		OAK 2/9		21	11	2	MON
94105	1S/4W	26D10	958 28th St	Oakland	Aramark Uniform Services,	2/24/1998	122277679	37819666	1	1S/4W 26D	0	0 (OAK 2/9	0	25	17	2	MON
	1S/4W	26D 8	958 28th St	Oakland	AraTex Service Inc.MW-4A	9/24/1991	122277660	37819674	0	1S/4W 26D	1996		OAK 7/9		27	13	4	MON
	1S/4W	26D 9	958 28th St	Oakland	AraTex Service Inc.MW7	9/24/1991	122277660	37819674	0	1S/4W 26D	1997		OAK 7/9		30	14	4	MON
	1S/4W	26D 2	958 EAST 28TH STREET	Oakland	ARATEX SERVICES INC.	10/1/1989	122236735	37801086	0	1S/4W 26D	2443		OAK Feb-		32	22	4	MON
	1S/4W 1S/4W	26D 3 26D 4	958 EAST 28TH STREET 958 EAST 28TH STREET	Oakland Oakland	ARATEX SERVICES INC. ARATEX SERVICES INC.	10/1/1989 10/1/1989	122236735 122236735	37801086 37801086	0	1S/4W 26D 1S/4W 26D	2444 2445		DAK Feb- DAK Dec-		28 36	22 27	4	MON MON
	1S/4W	26D 5	958 28th Street	Oakland	Aratex Services Inc.	6/21/1990	122277660	37819674	0	1S/4W 26D	304		DAK 3/9		25	22	2	MON
	1S/4W	26D 6	958 28th Street	Oakland	Aratex Servisco	6/21/1990	122277660	37819674	0	1S/4W 26D	305		OAK 3/9		30	17	4	MON
	1S/4W	26D 7	958 28th Street	Oakland	Aratex Servisco	6/21/1990	122277660	37819674	0	1S/4W 26D	306	0 (OAK 2/9	0	30	18	4	MON
	1S/4W	2.60E+13	889 W. Grand Ave.	Oakland	Arco A-5	7/21/1993	122277844	37814558	1	1S/4W 26E	0		OAK 2/9		30	11	2	MON
	1S/4W	2.60E+14	889 W. Grand Ave.	Oakland	Arco A-6	7/21/1993	122277844	37814558	1	1S/4W 26E	0		OAK 2/9		29	10	2	MON
	1S/4W	26E 3	889 W. Grand Ave	Oakland	ARCO Products A-2	9/21/1992	122277801	37814690	1	1S/4W 26E	7888		OAK 3/9		27	12	3	MON
	1S/4W 1S/4W	26E 4 26E 5	889 W. Grand Ave 889 W. Grand Ave	Oakland Oakland	ARCO Products A-3 ARCO Products A-4	9/21/1992	122277801 122277801	37814690 37814690	1	1S/4W 26E 1S/4W 26E	7889 7890		DAK 4/9 DAK 4/9		30	12	3	MON MON
	1S/4W	26E 2	889 W. Grand Ave	Oakland	ARCO Products A-4 ARCO Products A-1	9/21/1992	122277801	37814690	1	1S/4W 26E	7887		DAK 3/9		30	11	3	MON
	1S/4W	26E 8	889 W. Grand Ave	Oakland	ARCO Products AR-1	6/18/1993	122277844	37814544	1	1S/4W 26E	0		DAK 6/9		29	15	4	MON
	1S/4W	26E 6	889 W. Grand Ave	Oakland	ARCO Products AR-1	9/21/1992	122277801	37814690	1	1S/4W 26E	7891		OAK 4/9		30	11	6	MON
	1S/4W	26E 9	889 W. Grand Ave	Oakland	ARCO Products AV-1	6/23/1993	122277845	37814547	1	1S/4W 26E	0	0	OAK 6/9	2 0	14	12	2	MON
	1S/4W	2.60E+11	889 W. Grand Ave	Oakland	ARCO Products AV2	6/23/1993	122277845	37814547	1	1S/4W 26E	0		OAK 6/9		14	12	2	MON
	1S/4W	2.60E+12	889 W. Grand Ave	Oakland	ARCO Products AV3	6/23/1993	122277845	37814547	1	1S/4W 26E	0		OAK 6/9		14	12	2	MON
	1S/4W	26E 7 2.60E+15	2400 Filbert St	Oakland	Cal West MW-1	10/1/1992	122279510	37816804	1	1S/4W 26E	8217		DAK Oct- DAK Dec-		20 25	9	2	MON
	1S/4W 1S/4W	2.60E+15 26F 1	2400 Filbert St 633 Sycamore St	Oakland Oakland	Cal West MW-2 Gilbert Lopez (MW-1)	7/22/1993 12/21/1993	122279504 122271088	37816822 37815824	1	1S/4W 26E 1S/4W 26F	0		DAK Dec- DAK 8/9		25	13	2	MON MON
	1S/4W	26F 2	633 Sycamore St	Oakland	Gilbert Lopez (MW-2)	12/21/1993	122271088	37815824	1	1S/4W 26F	0	-	DAK 8/9		22	9	2	MON
	1S/4W	26F 3	633 Sycamore St	Oakland	Gilbert Lopez (MW-3)	12/21/1993	122271088	37815824	1	1S/4W 26F	0		OAK 8/9		23	11	2	MON
96544	1S/4W	26F 6	2703 Martin Luther King J	Oakland	Shell Oil Products Compan	11/3/1997	122271197	37817400	1	1S/4W 26F	0		OAK 7/9		21	11	2	MON
96544	1S/4W	26F 7	2703 Martin Luther King J	Oakland	Shell Oil Products Compan	11/3/1997	122271197	37817400	1	1S/4W 26F	0		OAK 7/9		21	9	2	MON
98WR283	1S/4W	26G29	450 25th St	Oakland	Friction Materials, Inc	9/29/1998	122266062	37814745	1	1S/4W 26G	0		OAK 7/9		25	15	2	MON
98WR283 98WR283	1S/4W 1S/4W	26G30 26G31	450 25th St 450 25th St	Oakland Oakland	Friction Materials, Inc	9/29/1998 9/29/1998	122266062 122266062	37814745 37814745	1	1S/4W 26G 1S/4W 26G	0		DAK 7/9		25 25	14 15	2	MON MON
98WR283 95379	1S/4W	26G31 26G26	450 25th St 554 27th St	Oakland	Joan Schoonbrood	2/24/1998	122266062	37814745 37816875	1	1S/4W 26G 1S/4W 26G	0		DAK 7/9		25	10	2	MON
95379	1S/4W	26G27	554 27th St 554 27th St	Oakland	Joan Schoonbrood	2/24/1998	122268764	37816875	1	1S/4W 26G	0		DAK 6/9		20	10	2	MON
95379	1S/4W	26G28	554 27th St	Oakland	Joan Schoonbrood	2/24/1998	122268764	37816875	1	1S/4W 26G	0		OAK 6/9		20	10	2	MON
	1S/4W	26G22	2633 Telegraph Av	Oakland	Sears	7/22/1997	122267719	37815695	1	1S/4W 26G	0	0 (DAK Dec-		22	14	2	MON
	1S/4W	26G23	2633 Telegraph Av	Oakland	Sears	7/22/1997	122267719	37815695	1	1S/4W 26G	0		OAK Dec-		22	14	2	MON
	1S/4W	26G24	2633 Telegraph Av	Oakland	Sears	7/22/1997	122267719	37815695	1	1S/4W 26G	0		DAK Dec-		22	14	2	MON
	1S/4W	26G16	2633 Telegraph Ave.	Oakland Oakland	Sears Roebuck & Co. MW1	7/15/1993	122267754	37815668	1	1S/4W 26G	0		DAK Dec-		22	12	2	MON
	1S/4W 1S/4W	26G17 26G18	2633 Telegraph Ave. 2633 Telegraph Ave.	Oakland Oakland	Sears Roebuck & Co. MW2 Sears Roebuck & Co. MW3	7/15/1993 7/15/1993	122267754 122267754	37815668 37815668	1	1S/4W 26G 1S/4W 26G	0		DAK Dec- DAK Dec-		22 25	12	2	MON MON
	15/4W	26G18 26G19	2633 Telegraph Ave.	Oakland	Sears Roebuck & Co. MW4	7/15/1993	122267754	37815668	1	1S/4W 26G	0		DAK Dec-		23	13	2	MON
	1S/4W	26G20	2633 Telegraph Ave.	Oakland	Sears Roebuck & Co. MW5	7/15/1993	122267754	37815668	1	1S/4W 26G	0		DAK Dec-		25	11	2	MON
96399	1S/4W	26G25	2633 Telegraph Av	Oakland	Sears Roebuck and Company	10/19/1997	122267731	37815671	1	1S/4W 26G	0		OAK Oct-		20	15	2	MON
	1S/4W	26G 4	2800 TELEGRAPH AV.	Oakland	SHELL OIL	6/15/1989	122267087	37817156	0	1S/4W 26G	2449		OAK Oct-	8 0	30	11	3	MON
	1S/4W	26G 5	2800 TELEGRAPH AV.	Oakland	SHELL OIL	6/15/1989	122267087	37817156	0	1S/4W 26G	2450		OAK Oct-		24	13	3	MON
	1S/4W	26G 6	2800 TELEGRAPH AV.	Oakland	SHELL OIL	6/15/1989	122267087	37817156	0	1S/4W 26G	2451		OAK Oct-		22	12	3	MON
	1S/4W	26G 7	2800 TELEGRAPH AV.	Oakland	SHELL OIL	6/15/1989	122267087	37817156	0	1S/4W 26G	2452		OAK Oct-		30	12	3	MON
	1S/4W	26G11	2800 TELEGRAPH S11	Oakland Oakland	SHELL OIL	1/22/1990	122267087	37817156	2	1S/4W 26G	2459		OAK Oct-		31	14	3	MON
	1S/4W	26G 8	2800 TELEGRAPH AV S-8 2800 TELEGRAPH AV S-9	Oakland	SHELL OIL CO. SHELL OIL CO.	11/6/1989 11/6/1989	122267087 122267087	37817156 37817156	0	1S/4W 26G 1S/4W 26G	2453 2454		DAK Sep- DAK Sep-		22 32	11	3	MON MON
	18/4\/	260-0																IVICIN
	1S/4W 1S/4W	26G 9 26G10	2800 TELEGRAPH AV S-9 2800 TELEGRAPH AV S10	Oakland	SHELL OIL CO.	11/6/1989	122267087	37817156	2	1S/4W 26G	2455		OAK Sep-		31	14	3	MON

Table 4: Sensitive Receptor Survey Data

<u>Permit</u>	<u>Tr</u>	Section	<u>Address</u>	<u>Longcity</u>	<u>Owner</u>	<u>Update</u>	Xcoord	Ycoord	Matchlevel	<u>Tsrqq</u>	Rec_code	<u>Phone</u>	<u>City</u>	<u>Drilldate</u>	Elevation	Totaldepth		<u>Diameter</u>	<u>Use</u>
-	1S/4W	26G 2	2800 TELEGRAPH AVE	Oakland	SHELL OIL COMPANY	8/8/1988	122267087	37817156	0	1S/4W 26G	2447	0	OAK	Apr-88	0	28	12 12	3	MON MON
	1S/4W 1S/4W	26G 3 26G21	2800 TELEGRAPH AVE 477 25th St.	Oakland Oakland	SHELL OIL COMPANY United Glass MW-1	8/8/1988 12/29/1994	122267087 122266775	37817156 37814637	0	1S/4W 26G 1S/4W 26G	2448	0	OAK OAK	Apr-88 1/94	0	28 20	12	2	MON
	1S/4W	26H19	434 25th St	Oakland	Andre Mercier	7/24/1997	122265772	37814668	1	1S/4W 26H	0	0	OAK	8/94	101	15	14	2	MON
	1S/4W	26H20	434 25th St	Oakland	Andre Mercier	7/24/1997	122265722	37814668	1	1S/4W 26H	0	0	OAK	8/94	101	15	15	2	MON
	1S/4W	26H21	434 25th St	Oakland	Andre Mercier	7/24/1997	122265722	37814668	1	1S/4W 26H	0	0	OAK	8/94	101	15	14	2	MON
97281 97281	1S/4W 1S/4W	26H28 26H29	Valdez St && 26th St Valdez St && 26th St	Oakland Oakland	Broadway Motors Ford Broadway Motors Ford	3/29/1998 3/29/1998	122263016 122263016	37814839 37814839	1	1S/4W 26H 1S/4W 26H	0	0	OAK OAK	5/97 5/97	0	15 15	10 10	2	MON MON
97281	1S/4W	26H30	Valdez St && 26th St	Oakland	Broadway Motors Ford	3/29/1998	122263016	37814839	1	1S/4W 26H	0	0	OAK	5/97	0	15	0	2	MON
0.20.	1S/4W	26H 9	2740 Broadway Ave	Oakland	Broadway Volkswagen	7/29/1991	122263401	37816191	3	1S/4W 26H	1751	0	OAK	4/91	5	17	3	2	MON
	1S/4W	26H 3	2740 BROADWAY	Oakland	BROADWAY VW	6/15/1989	122263401	37816191	0	1S/4W 26H	2462	0	OAK	Jan-89	0	20	7	2	MON
	1S/4W	26H 4	2740 BROADWAY	Oakland	BROADWAY VW	6/15/1989	122263401	37816191	0	1S/4W 26H	2463	0	OAK	Jan-89	0	20	11	2	MON
	1S/4W 1S/4W	26H 5 26H16	2740 BROADWAY 2630 Broadway	Oakland Oakland	BROADWAY VW Chevron Oil B-10 (MW-10)	6/15/1989 12/29/1994	122263401 122263922	37816191 37815367	1	1S/4W 26H 1S/4W 26H	2464	0	OAK OAK	Jan-89 7/94	0	20	11 18	2	MON MON
	1S/4W	26H17	2630 Broadway	Oakland	Chevron Oil B-10 (MW-10)	12/29/1994	122263922	37815367	1	1S/4W 26H	0	0	OAK	7/94	0	20	18	2	MON
	1S/4W	26H18	2630 Broadway	Oakland	Chevron Oil B-12 (MW-12)	12/29/1994	122263922	37815367	1	1S/4W 26H	0	0	OAK	7/94	0	20	17	2	MON
	1S/4W	26H15	2630 Broadway	Oakland	Chevron Oil B-9 (MW-9)	12/29/1994	122263922	37815367	1	1S/4W 26H	0	0	OAK	7/94	0	20	0	2	MON
94239 94239	1S/4W 1S/4W	26H26 26H27	403 28th St 403 28th St	Oakland Oakland	Chrysler Realty Corporati	2/24/1998 2/24/1998	122264962 122264962	37816675 37816675	1	1S/4W 26H 1S/4W 26H	0	0	OAK OAK	5/94 5/94	0	29 29	0	2	MON MON
94239	1S/4W	26H 6	2915 Broadway	Oakland	Chrysler Realty Corporati European Motors	6/21/1990	122262457	37818081	0	1S/4W 26H	322	0	OAK	2/90	45	30	12	2	MON
	1S/4W	26H 7	2915 Broadway	Oakland	European Motors	6/21/1990	122262457	37818081	0	1S/4W 26H	323	0	OAK	2/90	44	30	11	2	MON
	1S/4W	26H 8	2915 Broadway	Oakland	European Motors	6/21/1990	122262457	37818081	0	1S/4W 26H	324	0	OAK	2/90	44	30	10	2	MON
	1S/4W	26H12	294 27th St	Oakland	MR & RB Partnership MW-1	4/8/1993	122262219	37815026	1	1S/4W 26H	8380	0	OAK	2/93	0	18	8	2	MON
02501	1S/4W	26H13	294 27th St	Oakland	MR & RB Partnership MW-2	4/8/1993	122262219	37815026	1	1S/4W 26H	8381	0	OAK	2/93	0	17	7	2	MON
93581 93581	1S/4W 1S/4W	26H22 26H23	2735 Broadway 2735 Broadway	Oakland Oakland	Ravizza Comm. Real Estate Ravizza Comm. Real Estate	11/3/1997 11/3/1997	122263611 122263611	37816268 37816268	1	1S/4W 26H 1S/4W 26H	0	0	OAK	Oct-93 Oct-93	0	38 25	27 19	4	MON MON
93581	1S/4W	26H24	2735 Broadway 2735 Broadway	Oakland	Ravizza Comm. Real Estate	11/3/1997	122263611	37816268	1	1S/4W 26H	0	0	OAK	Oct-93	0	30	20	4	MON
93581	1S/4W	26H25	2735 Broadway	Oakland	Ravizza Comm. Real Estate	11/3/1997	122263611	37816268	1	1S/4W 26H	0	0	OAK	Oct-93	0	30	16	4	MON
	1S/4W	26H10	2740 Broadway	Oakland	Vorelco, Inc.	8/3/1992	122263401	37816191	1	1S/4W 26H	7533	0	OAK	Oct-91	0	30	8	4	MON
	1S/4W	26H11	2740 Broadway	Oakland	Vorelco, Inc.	8/3/1992	122263401	37816191	1	1S/4W 26H	7534	0	OAK	Oct-91	0	27	11	4	MON
	1S/4W 1S/4W	26J11 26J12	2330 Webster St 2330 Webster St	Oakland Oakland	Labor Temple Labor Temple	9/17/1997 9/17/1997	122264578 122264578	37812846 37812846	1	1S/4W 26J 1S/4W 26J	0	0	OAK OAK	Dec-95 1/96	0	30 31	21	2	MON MON
	1S/4W	26J12 26J13	2330 Webster St	Oakland	Labor Temple	9/17/1997	122264578	37812846	1	1S/4W 26J	0	0	OAK	1/96	0	31	23	2	MON
	1S/4W	26J14	2330 Webster St	Oakland	Labor Temple	9/17/1997	122264578	37812846	1	1S/4W 26J	0	0	OAK	1/96	0	31	20	2	MON
	1S/4W	26J15	2330 Webster St	Oakland	Labor Temple	9/17/1997	122264578	37812846	1	1S/4W 26J	0	0	OAK	1/96	0	31	22	2	MON
	1S/4W	26J16	2330 Webster St	Oakland	Labor Temple	9/17/1997	122264578	37812846	1	1S/4W 26J	0	0	OAK	1/96	0	31	20	2	MON
	1S/4W	26J17	2330 Webster St	Oakland	Labor Temple	9/17/1997	122264578	37812846	1	1S/4W 26J	0	0	OAK	1/96	0	31	20	2	MON
	1S/4W 1S/4W	26J 4 26J 5	2302 VALDEZ ST. 2302 VALDEZ ST.	Oakland Oakland	MORRISON & FORESTER MORRISON & FORESTER	11/6/1989 11/6/1989	122263640 122263640	37812297 37812297	0	1S/4W 26J 1S/4W 26J	2469 2470	0	OAK OAK	Aug-89 Aug-89	0	27 27	0	4	MON MON
	1S/4W	26J 6	2302 VALDEZ ST.	Oakland	MORRISON & FORESTER	11/6/1989	122263640	37812297	0	1S/4W 26J	2471	0	OAK	Aug-89	0	27	0	4	MON
	1S/4W	26J 7	2302 VALDEZ ST.	Oakland	MORRISON & FORESTER	11/6/1989	122263640	37812297	0	1S/4W 26J	2472	0	OAK	Aug-89	0	27	0	4	MON
	1S/4W	26J10	2345 Broadway	Oakland	Negherbon Auto Center	6/17/1993	122265564	37813116	1	1S/4W 26J	0	0	OAK	6/92	0	29	22	2	MON
	1S/4W	26J 8	Valdez St.and 23rd Street	Oakland	Oakland Tribune	7/27/1990	122263800	37812100	3	1S/4W 26J	722	0	OAK	May-90	0	27	0	4	MON
	1S/4W 1S/4W	26J 9 26J 1	Valdez St.and 23rd Street 23RD & VALDEZ	Oakland Oakland	Oakland Tribune OAKLAND TRIBUNE	7/29/1990	122263800 122263653	37812100 37812144	3	1S/4W 26J 1S/4W 26J	723 2466	0	OAK OAK	May-90	0	25	0	3	MON MON
	1S/4W	26J 2	23RD & VALDEZ 23RD & VALDEZ	Oakland	OAKLAND TRIBUNE	6/15/1989 6/15/1989	122263653	37812144	8	1S/4W 26J	2467	0	OAK	Aug-88 Aug-88	0	31 31	18 18	3	MON
	1S/4W	26J 3	23RD & VALDEZ	Oakland	OAKLAND TRIBUNE	6/15/1989	122263653	37812144	8	1S/4W 26J	2468	0	OAK	Aug-88	0	26	15	3	MON
	1S/4W	26K 8	2225 TELEGRAPH AV.	Oakland	TEXACO	6/15/1989	122268454	37812090	8	1S/4W 26K	2477	0	OAK	Dec-88	100	22	14	4	MON
	1S/4W	26K 9	2225 TELEGRAPH AV.	Oakland	TEXACO	6/15/1989	122268454	37812090	8	1S/4W 26K	2478	0	OAK	Dec-88	98	21	12	4	MON
	1S/4W	26K10	2225 TELEGRAPH AV.	Oakland	TEXACO	6/15/1989	122268454	37812090	8	1S/4W 26K	2479	0	OAK	Dec-88	98	21	13	4	MON
	1S/4W 1S/4W	26K 7 26K 3	2225 TELEGRAPH AV. 2225 TELEGRAPH AVE	Oakland Oakland	TEXACO TEXACO STA #62488000195	6/15/1989 12/20/1988	122268454 122268454	37812090 37812090	8	1S/4W 26K 1S/4W 26K	6552 2474	0	OAK OAK	Dec-88 Jul-88	100	22 21	14 13	2	MON MON
	1S/4W	26K 4	2225 TELEGRAPH AVE	Oakland	TEXACO STA #62488000195	12/20/1988	122268454	37812090	8	1S/4W 26K	2475	0	OAK	Jul-88	0	19	14	2	MON
	1S/4W	26K 5	2225 TELEGRAPH AVE	Oakland	TEXACO STA #62488000195	12/20/1988	122268454	37812090	8	1S/4W 26K	2476	0	OAK	Jul-88	0	20	14	2	MON
	1S/4W	26K 1	2250 Telegraph Av	Oakland		7/24/1997	122268257	37812378	1	1S/4W 26K	0	0	OAK	3/94	0	19	11	2	MON
	1S/4W	26K 2	2250 Telegraph Av	Oakland		7/24/1997	122268257	37812378	1	1S/4W 26K	0	0	OAK	3/94	0	19	9	2	MON
	1S/4W 1S/4W	26K 3 26K 4	2250 Telegraph Av	Oakland Oakland		7/24/1997 7/24/1997	122268257	37812378	1	1S/4W 26K 1S/4W 26K	0	0	OAK OAK	3/94 3/94	0	19 19	10 10	2	MON MON
	1S/4W 1S/4W	26K 4 26K 2	2250 Telegraph Av	Oakianu		1/24/1997	122268257	37812378 0	9	1S/4W 26K	6903	0	UAK	3/94 Jul-88	0	19	10	2	MON
	1S/4W	26K 3					0	0	9	1S/4W 26K	6904	0		Jul-88	0	21	13	2	MON
	1S/4W	26K 8					0	0	9	1S/4W 26K	6905	0		Dec-88	99	20	12	4	MON
	1S/4W	26L 1	774 W. GRAND AVE	Oakland	DAVID FYNE	6/9/1988	122274728	37813547	0	1S/4W 26L	2480	0	OAK	Apr-88	0	40	13	2	MON
	1S/4W	26L 3	2103 San Pablo Ave	Oakland	Greyhound ES-1	9/30/1992	122273297	37811847	1	1S/4W 26L	7357	0	OAK	Nov-91	0	31	19	4	MON
	1S/4W 1S/4W	26L 4 26L 5	2103 San Pablo Ave 2103 San Pablo Ave	Oakland Oakland	Greyhound ES-2 Greyhound ES-3	9/30/1992 3/9/1992	122273297 122273297	37811847 37811847	1	1S/4W 26L 1S/4W 26L	7358 7359	0	OAK OAK	Nov-91 Nov-91	0	31 35	20 20	4	MON MON
	1S/4W	26L 6	2103 San Pablo Ave	Oakland	Greyhound ES-4	3/9/1992	122273297	37811847	1	1S/4W 26L	7360	0	OAK	Nov-91	0	31	19	4	MON
	1S/4W	26L 7	2103 San Pablo Ave	Oakland	Greyhound ES-5	9/30/1992	122273297	37811847	1	1S/4W 26L	7361	0	OAK	Nov-91	0	32	19	4	MON
	1S/4W	26L 2	577 W. GRAND AV.	Oakland	U.S. POSTAL SVC.	6/15/1989	122269840	37812351	0	1S/4W 26L	2481	0	OAK	Dec-88	0	30	0	2	MON
95389	1S/4W	26M16	850 W. Grand Av	Oakland	Chevron	2/17/1998	122277060	37814417	1	1S/4W 26M	0	0	OAK	8/95	0	27	13	2	MON
95389	1S/4W 1S/4W	26M17 26M 8	850 W. Grand Av 850 W. Grand Ave.	Oakland Oakland	Chevron Chevron	2/17/1998 3/8/1991	122277060 122277075	37814417 37814422	0	1S/4W 26M 1S/4W 26M	0 1160	0	OAK	8/95 Dec-90	18	27 24	13 19	2	MON
	1S/4W	26M 1	850 W. Grand Ave. 850 W GRAND AV & ISABELLA	Oakland	Chevron CHEVRON - USA	11/26/1984	122277075	37814422	0	1S/4W 26M	2482	8322698	OAK	Oct-84	91	30	19	8	MON
	1S/4W	26M 2	850 W GRAND AV & ISABELLA	Oakland	CHEVRON - USA	11/26/1984	122277075	37814422	0	1S/4W 26M	2483	8322698	OAK	Oct-84	90	25	14	8	MON
	1S/4W	26M 3	850 W GRAND AV & ISABELLA	Oakland	CHEVRON - USA	11/26/1984	122277075	37814422	0	1S/4W 26M	2484	8322698	OAK	Oct-84	91	24	15	8	MON
	1S/4W	26M 9	850 W GRAND AV & ISABELLA	Oakland	CHEVRON - USA MW-7	4/16/1993	122277075	37814414	1	1S/4W 26M	0	0	OAK	Oct-92	13	24	13	2	MON
	1S/4W	26M 5	850 W. GRAND AVE.	Oakland	CHEVRON U.S.A.	9/1/1989	122277075	37814422	0	1S/4W 26M	2486	0	OAK	Apr-89	0	25	13	11	MON
	1S/4W	26M 4	850 W. GRAND AVE.	Oakland	CHEVRON U.S.A. INC.	9/1/1989	122277075	37814422	0	1S/4W 26M	2485	0	OAK	Apr-89	0	25	13	11	MON
	1S/4W 1S/4W	26M 6 26M 7	Isabella/W.Grand Isabella/W.Grand	Oakland Oakland	Chevron USA Chevron USA	8/31/1990 8/31/1990	122277600 122277600	37814600 37814600	8	1S/4W 26M 1S/4W 26M	839 840	0	OAK OAK	Jul-90 Jul-90	9	27 25	13 13	2	MON MOM
	15/4W 1S/4W	26M10	850 W Grand Av	Oakland	Chevron USA Inc	9/17/1997	122277058	37814422	1	1S/4W 26M	0	0	OAK	6/93	0	25 15	13	2	MON
	1S/4W	26M11	850 W Grand Av	Oakland	Chevron USA Inc	9/17/1997	122277058	37814422	1	1S/4W 26M	0	0	OAK	6/93	0	15	14	2	MON
	1S/4W	26M12	850 W Grand Av	Oakland	Chevron USA Inc	9/17/1997	122277058	37814422	1	1S/4W 26M	0	0	OAK	6/93	0	15	14	2	MON
	1S/4W	26M13	769 22nd St	Oakland	Greg Keller	9/19/1997	122274968	37812770	1	1S/4W 26M	0	0	OAK	9/94	0	22	13	2	MON
	1S/4W	26M14	769 22nd St	Oakland	Greg Keller	9/19/1997	122274968	37812770	1	1S/4W 26M	0	0	OAK	9/94	0	22	13	2	MON
	1S/4W 1S/4W	26M15 26P 6	769 22nd St CRN OF 18TH & JEFFERSON	Oakland Oakland	Greg Keller BLUE PRINT SERVICE CO	9/19/1997 12/20/1988	122274968 122272600	37812770 37808700	8	1S/4W 26M 1S/4W 26P	0 2492	0	OAK OAK	9/94 Oct-88	0	22 41	13 20	2	MON


Table 4: Sensitive Receptor Survey Data

Permit	Tr	Section	Address	Longcity	Owner	Update	Xcoord	Ycoord	Matchlevel	Tsrqq	Rec code	Phone	City	Drilldate	Elevation	Totaldepth	Waterdepth	Diameter	Use
	1S/4W	26P 1	1700 JEFFERSON (@17th)	Oakland	BLUE PRINT SERVICES	2/23/1988	122272770	37808224	2	1S/4W 26P	2487	0	OAK	6/87	32	34	25	4	MON
	1S/4W	26P 3	1700 JEFFERSON (@17th)	Oakland	BLUE PRINT SERVICES	2/23/1988	122272770	37808224	2	1S/4W 26P	2489	0	OAK	6/87	31	32	25	4	MON
	1S/4W	26P 4	1700 JEFFERSON (@17th)	Oakland	BLUE PRINT SERVICES	2/23/1988	122272770	37808224	2	1S/4W 26P	2490	0	OAK	1/88	31	33	25	4	MON
	1S/4W 1S/4W	26P 5 26P 7	1700 JEFFERSON (@17th) 537 18th Street	Oakland Oakland	BLUE PRINT SERVICES City of Oakland Redylpmnt	2/23/1988 6/12/1991	122272770 122271233	37808224 37808300	0	1S/4W 26P 1S/4W 26P	2491 1689	0	OAK OAK	1/88 1/91	32 98	34 63	26 54	2	MON MON
	1S/4W	26P 6	557 18til Street	Oakianu	City of Oakland Redvipfilit	0/12/1991	0	0	9	1S/4W 26P	6908	0	OAK	Oct-88	0	41	20	2	MON
	1S/4W	26Q 4	21ST & BROADWAY	Oakland	BANK OF AMERICA	6/15/1989	122267100	37810600	8	1S/4W 26Q	2496	0	OAK	Nov-88	0	30	20	2	MON
	1S/4W	26Q11	1911 Telegraph Av	Oakland	Carter Hawley Hale	8/13/1997	122269321	37809130	1	1S/4W 26Q	0	0	OAK	6/93	24	25	15	4	MON
	1S/4W	26Q12	1911 Telegraph Av	Oakland	Carter Hawley Hale	8/13/1997	122269321	37809130	1	1S/4W 26Q	0	0	OAK	6/93	26	30	19	4	MON
	1S/4W	26Q13	1911 Telegraph Av	Oakland	Carter Hawley Hale	8/13/1997	122269321	37809130	1	1S/4W 26Q	0	0	OAK	6/93	23	24	15	4	MON
	1S/4W	26Q14	2025 Telegraph Av	Oakland	Goodyear Tire & Rubber Co	9/11/1997	122269015	37810451	1	1S/4W 26Q	0	0	OAK	5/93	0	24	15	4	MON
	1S/4W 1S/4W	26Q15 26Q16	2025 Telegraph Av 2025 Telegraph Av	Oakland Oakland	Goodyear Tire & Rubber Co Goodyear Tire & Rubber Co	9/11/1997 9/11/1997	122269015 122269015	37810451 37810451	1	1S/4W 26Q 1S/4W 26Q	0	0	OAK OAK	5/93 5/93	0	21	15 15	4	MON MON
	1S/4W	23R 5	3300 WEBSTER ST	Oakland	PAUL FABERMAN & CO	1/22/1990	122262011	37810431	0	1S/4W 23R	2402	0	OAK	Mar-89	89	28	25	2	MON
	1S/4W	23R 3	3300 WEBSTER ST	Oakland	PAUL FABERMAN & CO.	1/10/1990	122262011	37821412	0	1S/4W 23R	2400	0	OAK	Mar-89	91	35	22	2	MON
	1S/4W	23R 4	3300 WEBSTER ST	Oakland	PAUL FABERMAN & CO.	1/22/1990	122262011	37821412	0	1S/4W 23R	2401	0	OAK	Mar-89	99	32	28	2	MON
	1S/4W	23R 7	350 Hawthorne Ave	Oakland	Summit Medical Center MW1	9/22/1992	122263410	37822068	1	1S/4W 23R	7934	0	OAK	4/92	0	40	23	0	MON
	1S/4W	23R 6					0	0	9	1S/4W 23R	6895	0		May-89	0	30	22	2	MON
	1S/4W 1S/4W	25D 3 25D 1	3093 Broadway	Oakland Oakland	Connell Oldsmobile B-10	7/23/1993	122260708 122260708	37820808 37820808	1	1S/4W 25D 1S/4W 25D	0	0	OAK OAK	Oct-92	0	35 40	0	6	MON MON
	1S/4W	25D 1	3093 Broadway 3093 Broadway	Oakland	Connell Oldsmobile B-8 Connell Oldsmobile B-9	7/23/1993 7/23/1993	122260708	37820808	1	1S/4W 25D	0	0	OAK	Oct-92 Oct-92	0	32	0	2	MON
	1S/4W	25D 2	3080 Broadway	Oakland	Gereld Shirar	9/11/1997	122260708	37820308	1	1S/4W 25D	0	0	OAK	7/94	0	40	26	2	MON
93655	1S/4W	2.60E+18	889 W Grand Ave	Oakland	Arco Products Company	12/4/1997	122277825	37814567	1	1S/4W 26E	0	0	OAK	Dec-93	0	27	13	4	REC
93655	1S/4W	2.60E+19	889 W Grand Ave	Oakland	Arco Products Company	12/4/1997	122277825	37814567	1	1S/4W 26E	0	0	OAK	Dec-93	0	24	13	4	REC
	1S/4W	26P15	1700 Jefferson St	Oakland	Blue Print Services	7/18/1997	122272753	37808224	1	1S/4W 26P	0	0	OAK	4/96	0	36	26	2	TES
	1S/4W	26P 9	19th St & San Pablo Ave	Oakland	City of Oakland Redvlpmnt	6/12/1991	122272100	37809300	0	1S/4W 26P	1691	0	OAK	1/91	0	30	23	2	TES
	1S/4W	26P10	611 20th St	Oakland Oakland	City of Oakland Redylpmnt	6/12/1991	122271359	37810437	0	1S/4W 26P	1692	0	OAK OAK	1/91	0	30	23	2	TES TES
	1S/4W 1S/4W	26P11 26P12	612 Williams St 585 20th St	Oakland	City of Oakland Redvlpmnt City of Oakland Redvlpmnt	6/12/1991 6/12/1991	122271229 122270904	37810033 37810372	0	1S/4W 26P 1S/4W 26P	1693 1694	0	OAK	1/91 1/91	0	25 24	23	2	TES
	1S/4W	26P13	588 - 596 Williams St	Oakland	City of Oakland Redvipmint City of Oakland Redvipmint	6/12/1991	122270904	37809978	3	1S/4W 26P	1695	0	OAK	1/91	0	28	23	2	TES
	1S/4W	26P14	536 20th St	Oakland	City of Oakland Redvlpmnt	6/12/1991	122270106	37810458	0	1S/4W 26P	1696	0	OAK	1/91	0	23	14	2	TES
	1S/4W	26P 6					0	0	9	1S/4W 26P	6821	0		Dec-88	0	40	20	2	TES
	1S/4W	26Q 3	1911 TELEGRAPH AVE	Oakland	CARTER-HAWLEY-HALE	6/1/1988	122269338	37809130	0	1S/4W 26Q	2495	0	OAK	Mar-88	0	25	18	2	TES
	1S/4W	26Q 5	17th St & Broadway	Oakland	City of Oakland Redvlpmnt	6/12/1991	122269200	37807300	0	1S/4W 26Q	1697	0	OAK	1/91	0	27	20	2	TES
	1S/4W	26Q 6	557 19th Street	Oakland	City of Oakland Redvlpmnt	6/12/1991	122270854	37809021	0	1S/4W 26Q	1698	0	OAK	1/91	0	25	16	2	TES
	1S/4W 1S/4W	26Q 7 26Q 8	19th St & Telegraph Ave 552 19th St.	Oakland Oakland	City of Oakland Redvlpmnt City of Oakland Redvlpmnt	6/12/1991 6/12/1991	122269300 122270742	37808900 37809207	0	1S/4W 26Q 1S/4W 26Q	1699 1700	0	OAK OAK	1/91 1/91	0	25 24	19 19	2	TES TES
	15/4W	26Q 9	20th St. & Telegraph Ave.	Oakland	City of Oakland Redvlpmnt City of Oakland Redvlpmnt	6/12/1991	122270742	37810200	0	1S/4W 26Q	1700	0	OAK	1/91	0	28	21	2	TES
	1S/4W	26Q10	513 18th St	Oakland	City of Oakland Redylpmnt	6/12/1991	122270108	37808183	0	1S/4W 26Q	1702	0	OAK	1/91	0	26	20	2	TES
	1S/4W	26D	958 EAST 28TH STREET	Oakland	ARATEX SERVICES INC.	10/1/1989	122236735	37801086	0	1S/4W 26D	6548	0	OAK	Feb-89	0	17	0	0	BOR
	1S/4W	26H14	2827 Webster St.	Oakland	Alan Rudy B-2	7/13/1993	122263483	37817098	1	1S/4W 26H	0	0	OAK	8/91	0	10	0	0	BOR
	1S/4W	26H	294 27th St.	Oakland	MR & RB Assoc.	7/27/1993	122262216	37815029	1	1S/4W 26H	0	0	OAK	9/92	0	20	8	0	BOR
	1S/4W	26J	2302 VALDEZ ST.	Oakland	MORRISON & FORESTER	11/6/1989	122263640	37812297	0	1S/4W 26J	2465	0	OAK	Aug-89	0	27	0	0	BOR
	1S/4W 1S/4W	26J 26J					0	0	9	1S/4W 26J 1S/4W 26J	6896 6897	0		Aug-89	0	25 22	0	0	BOR BOR
	1S/4W	26J					0	0	9	1S/4W 26J	6898	0		Aug-89 Aug-89	0	22	0	0	BOR
	1S/4W	26J					0	0	9	1S/4W 26J	6899	0		Aug-89	0	22	0	0	BOR
	1S/4W	26J					0	0	9	1S/4W 26J	6900	0		Aug-89	0	24	0	0	BOR
	1S/4W	26J					0	0	9	1S/4W 26J	6901	0		Aug-89	0	24	0	0	BOR
	1S/4W	26J					0	0	9	1S/4W 26J	6902	0		Aug-89	0	22	0	0	BOR
	1S/4W	26K	Broadway/W Grand Ave	Oakland	Commonwealth Companies	7/27/1990	122266300	37811900	3	1S/4W 26K	739	0	OAK	May-90	0	15	0	0	BOR
	1S/4W	23R	34TH & ELM STS	Oakland	MERITT PERALTA INSTITUTE	8/8/1988	122265800	37822800	8	1S/4W 23R	6543	0	OAK	Jun-88	0	30	14	0	BOR
	1S/4W 1S/4W	23R 23R	3300 WEBSTER ST 3300 WEBSTER ST	Oakland Oakland	PAUL FABERMAN & CO PAUL FABERMAN & CO.	1/22/1990 1/10/1990	122262011 122262011	37821412 37821412	0	1S/4W 23R 1S/4W 23R	6545 6544	0	OAK OAK	May-89 May-89	0	24	23	6	BOR BOR
	1S/4W	23R	3300 WEBSTER 31	Canialiu	FAUL I ABERIVIAN & CO.	1/10/1990	0	0	9	1S/4W 23R	6893	0	OAR	May-89	0	24	23	6	BOR
	1S/4W	25D	3093 Broadway	Oakland	Connell Oldsmobile	7/23/1993	122260708	37820808	1	1S/4W 25D	0	0	OAK	Oct-92	0	35	28	0	BOR
	1S/4W	25D 5	3093 Broadway	Oakland	Connell Oldsmobile B-13	7/23/1993	122260708	37820808	1	1S/4W 25D	0	0	OAK	Oct-92	0	40	36	2	BOR
	1S/4W	26D	958 28th Street	Oakland	Aratex Servisco	6/21/1990	122277660	37819674	0	1S/4W 26D	303	0	OAK	3/90	0	0	0	9	BOR*
	1S/4W	26H	2827 Webster	Oakland	Alan Rudy B-1	8/14/1992	122263492	37817097	1	1S/4W 26H	7679	0	OAK	8/91	0	10	0	2	BOR*
	1S/4W 1S/4W	23R	HAMTHODAIC AV	Oakland	MEDDITT LICEDITAL	7/24/4004	0	0	9	1S/4W 23R	6894	0	0414	Mar-89 4/74	0	0	0	8	BOR*
	1S/4W 1S/4W	23R 2 26A 1	HAWTHORNE AV 450 30TH	Oakland Oakland	MERRITT HOSPITAL PERALTA HOSPITAL	7/31/1984 7/31/1984	122261400 122265138	37821150 37819514	8	1S/4W 23R 1S/4W 26A	2399 2436	0	OAK OAK	4//4 ?	0	345 0	0	0	GEO*
	1S/4W	26H 1	28 & VALDEZ ST	Oakland	CHRSTN CHURCH HOME BLDG	7/31/1984	122262100	37816600	8	1S/4W 26H	2460	0	OAK	?	0	0	0	0	GEO*
	1S/4W	26H 2	20TH ST.	Oakland	COMMUNITY CARE BLDG	7/31/1984	122293000	37817250	2	1S/4W 26H	2461	0	OAK	Nov-78	0	0	0	0	GEO*
	1S/4W	26K 1	2ND AND TELEGRAPH	Oakland	21ST AND TELE PARKING	12/12/1984	122268251	37812747	9	1S/4W 26K	2473	0	OAK	Oct-74	0	0	0	0	GEO*
	1S/4W	26K 2	BROADWAY & 22ND ST	Oakland	SANWA BANK	12/12/1984	122266600	37811400	8	1S/4W 26K	6549	0	OAK	9/74	0	0	0	0	GEO*
	1S/4W	26Q 2	BROADWAY & 20 ST	Oakland	BANK AMERICA	12/12/1984	122267700	37809700	8	1S/4W 26Q	2494	0	OAK	Nov-78	0	0	0	0	GEO*
	1S/4W	26Q 1	19 & FRANKLIN ST	Oakland	MEDDITT LICODITAL	12/12/1984	122267200	37807900	8	1S/4W 26Q	2493	0	OAK	9/74	0	0	0	0	GEO*
	1S/4W 1S/4W	23R 1 26C 3	HAWTHORNE AV 887 30 ST	Oakland Oakland	MERRITT HOSPITAL LANE METAL FINISHING	7/31/1984 7/31/1984	122261400 122273865	37821150 37820528	8	1S/4W 23R 1S/4W 26C	2398 2440	0	OAK OAK	3/75 /35	0	0 125	20	0	GEO* IND
		200 3	007 30 31	Oanidilu	LAINL IVIL IAL FIINIONING	1/31/1904	122213003	31020320	0	13/447 200	Z44U	U	OAN	/30	0	120	20	J	
isted in DV	•	1															1		
	1S/4W	26	2800 Telegraph Ave	Oakland	Shell Oil Products Company SR-1		NA	NA				-		10/89	NA	35	NA	6	DES
	1S/4W	26	2800 Telegraph Ave	Oakland	Shell Oil Products Company S-1		NA	NA						4/88	NA	28.5	12	8	DES
	1S/4W	26	2800 Telegraph Ave	Oakland	Shell Oil Products Company S-4		NA NA	NA NA						10/88	NA NA	28.5	11	3	DES
	1S/4W 1S/4W	26 26D	2800 Telegraph Ave 2720 San Pablo Ave	Oakland Oakland	Shell Oil Products Company S-5 Mr. George Nomura MW-1	-	NA NA	NA NA						10/88 NA	NA NA	24 22.5	14 NA	3 2	DES DES
	1S/4W 1S/4W	26D 26D	2720 San Pablo Ave 2720 San Pablo Ave	Oakland	Mr. George Nomura MW-1 Mr. George Nomura MW-2	 	NA NA	NA NA						NA NA	NA NA	22.5	NA NA	2	DES
	1S/4W	26D	2720 San Pablo Ave	Oakland	Mr. George Nomura MW-3		NA NA	NA NA						NA NA	NA NA	20	NA NA	2	DES
	1S/4W	2.60E+02	889 W Grand Ave	Oakland	Arco Products Company	1	NA NA	NA NA						NA NA	NA NA	NA	NA NA	8	DES
	1S/4W	26C4	900 High St.	Oakland	OAKLAND SCHOOL DIST.		NA	NA						NA	NA	120	NA	NA	IRR
	1S/4W	26R4	300 Lakeside Dr	Oakland	Kaiser Center Inc.		NA	NA						5/91	NA	280	15	6	IRR
	1S/4W	26K2	2225 Telegraph Ave	Oakland	TEXACO Station MW-6A	1	NA	NA						6/88	99.4	21.5	13.5	2	MON
		26K6	2225 Telegraph Ave	Oakland	TEXACO Station RW-3	1	NA	NA	1	İ	i l		1	5/90	100.2	25	14.5	4	MON
	1S/4W 1S/4W	26N1	ZZZO Tolograpii 7110	Oakland	Dignity Housing West		NA NA	NA NA						5/91	27.9	37	27	2	MON

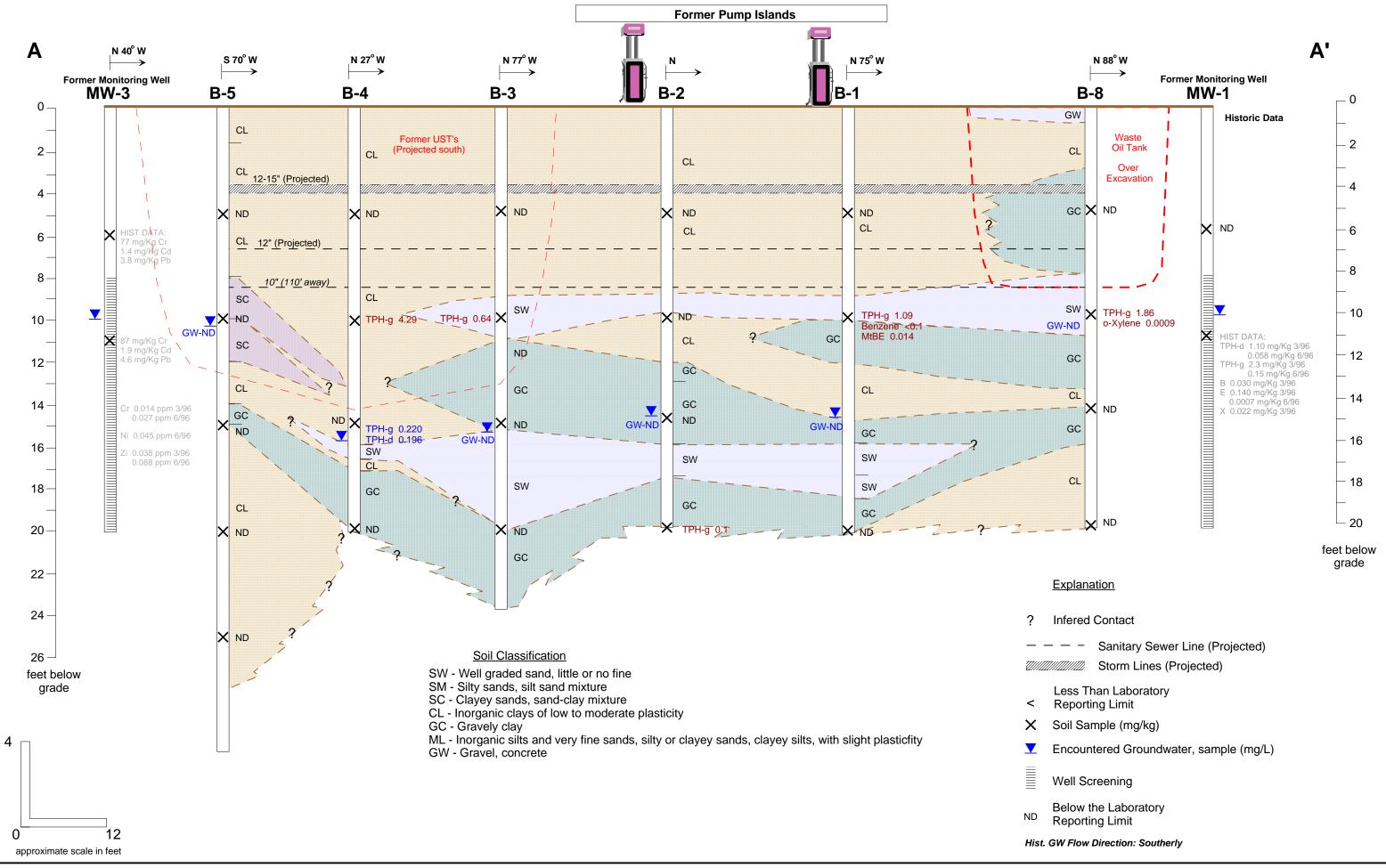
Table 4: Sensitive Receptor Survey Data

<u>Permit</u>	<u>Tr</u>	<u>Section</u>	Address	Longcity	<u>Owner</u>	<u>Update</u>	Xcoord	Ycoord	Matchlevel	Tsrqq	Rec_code	Phone	City	<u>Drilldate</u>	Elevation	Totaldepth	Waterdepth	Diameter	<u>Use</u>
	1S/4W	26N3		Oakland	Dignity Housing West		NA	NA						5/91	NA	35	28	2	MON
	1S/4W	26R1	300 Lakeside Dr	Oakland	Kaiser Center Inc.		NA	NA						10/90	NA	40	6	2	MON
	1S/4W	26R2	2100 Harrison St.	Oakland	Ahmanson Commercial Development		NA	NA						3/91	NA	27	12.1	4	MON
	1S/4W	26R3	2100 Harrison St.	Oakland	Ahmanson Commercial Development		NA	NA						3/91	NA	30	6.6	4	MON
	1S/4W	26R5	300 Lakeside Dr	Oakland	Kaiser Center Inc.		NA	NA						12/91	NA	31.5	9.01	2	MON
	1S/4W	26R6	21st Harrison St.	Oakland	Ahmanson Commercial Development		NA	NA						3/92	NA	25	7	4	MON
	1S/4W	26R7	1975 Webster St	Oakland	Mobil Oil Corporation		NA	NA						4/92	NA	16	5.56	4	MON
	1S/4W	26R8	1975 Webster St	Oakland	Mobil Oil Corporation		NA	NA						4/92	NA	16	6.7	4	MON
	1S/4W	26R9	1975 Webster St	Oakland	Mobil Oil Corporation		NA	NA						4/92	NA	27.5	5.42	4	MON
	1S/4W	26R10	1975 Webster St	Oakland	Mobil Oil Corporation		NA	NA						4/92	NA	16	6.01	4	MON
	1S/4W	26R11	One Kaiser Plaza	Oakland	JMB Properties		NA	NA						3/92	NA	34	18.43	2	MON
	1S/4W	26R12	One Kaiser Plaza	Oakland	JMB Properties		NA	NA						3/92	NA	32	16.48	2	MON
	1S/4W	26R13	One Kaiser Plaza	Oakland	JMB Properties		NA	NA						3/92	NA	27.5	16.48	2	MON
	1S/4W	26P8	570 18th Street	Oakland	Development agency of City of Oakland	d	NA	NA						1/91	NA	30	25	2	TES

Figures

approximate scale in feet
20 40

Figure 2A: Site Map Showing the Footprint of the Proposed Residential Building


ENVIRONMENTAL ENGINEERING, INC.

approximate scale in feet
20 40

Figure 3: Site Map Showing Locations of Geologic Cross-Sections AA' and BB'

ENVIRONMENTAL ENGINEERING, INC.

ENVIRONMENTAL ENGINEERING, INC

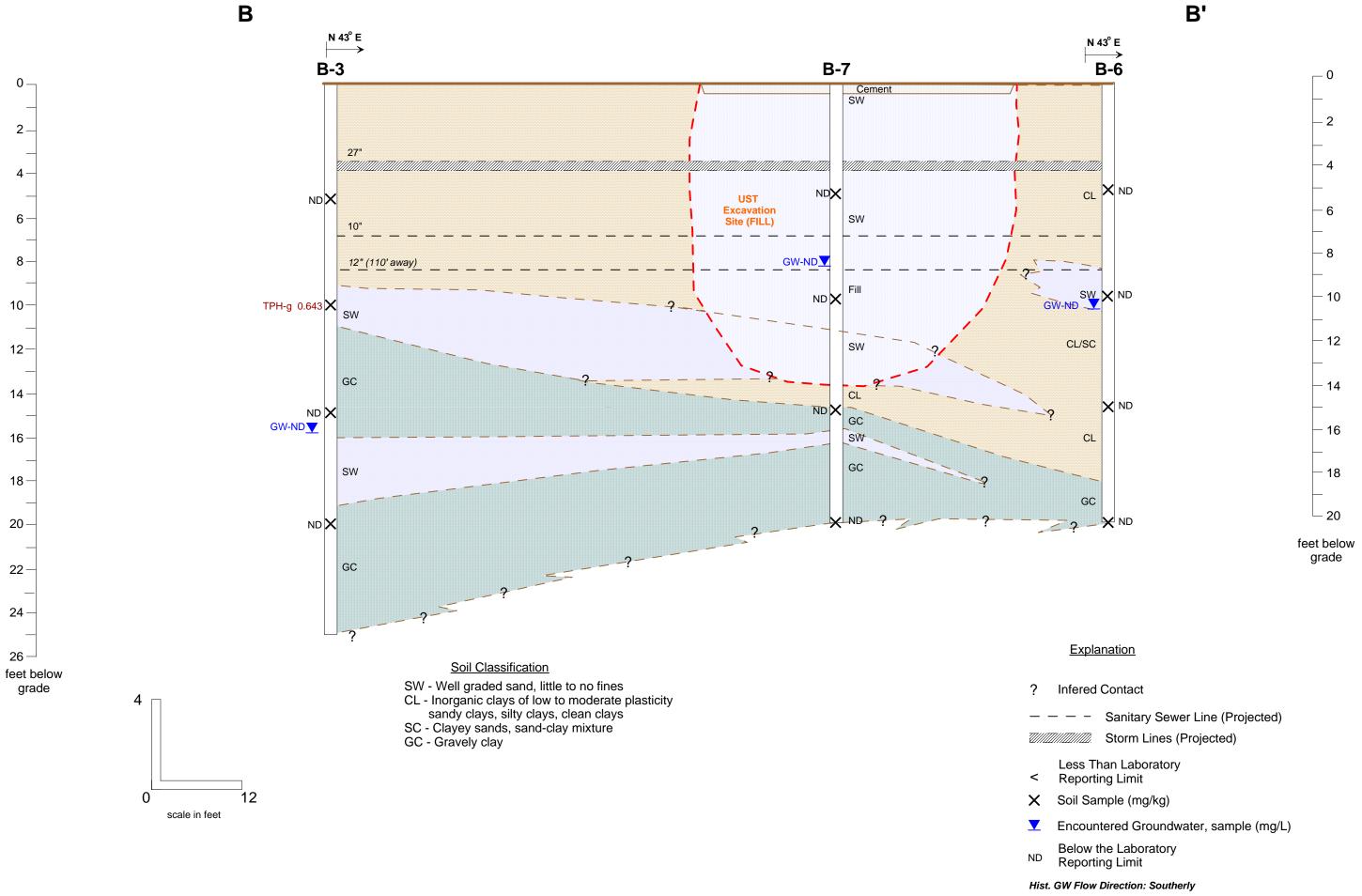
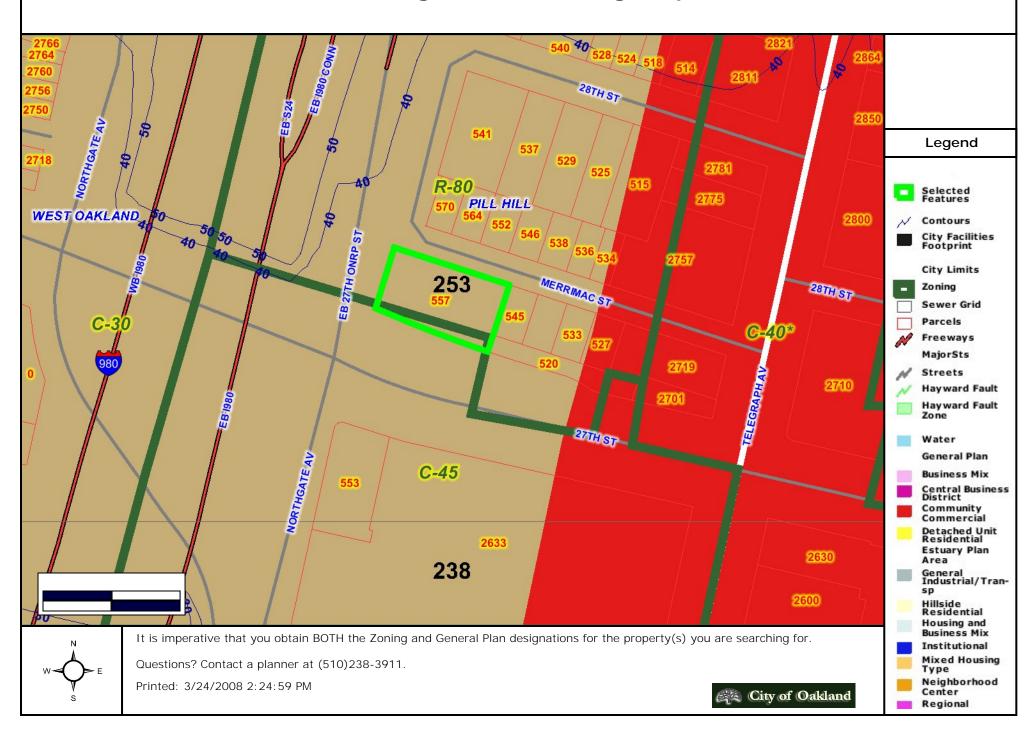



Figure 5: Geologic Cross-Section BB'

Figure 6: Zoning Map

Appendix A Drilling Permits

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 01/31/2008 By jamesy

Permit Numbers: W2008-0052

Permits Valid from 02/14/2008 to 02/18/2008

Application Id: Site Location:

1201642762663 557 Merrimac Ave City of Project Site: Oakland

Oakland, CA 02/14/2008

Completion Date: 02/18/2008

Project Start Date:

SOMA Environmental Engineering - Elena

Phone: 925-734-6400

6620 Owens Drive, Suite A, Pleasanton, CA 94588

Property Owner:

Noel Yi

2756 Alvarado Street #A-B, San Leandro, CA 94577

Phone: --

Client:

Applicant:

** same as Property Owner *

Total Due:

\$200.00

Total Amount Paid:

\$200.00

Receipt Number: WR2008-0038 Payer Name: Mansour Sepehr Paid By: CHECK

PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Contamination Study - 12 Boreholes

Driller: Fisch Drilling - Lic #: 683865 - Method: DP

Work Total: \$200.00

Specifications

Hole Diam Permit Issued Dt **Expire Dt** #

Boreholes

2.00 in.

Max Depth

25.00 ft

Number W2008-

01/31/2008 05/14/2008 12

0052

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

Alameda County Public Works Agency - Water Resources Well Permit

- 5. Applicant shall contact James Yoo for an inspection time at 510-670-6633 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.
- 8. Note: County Holiday Feb 12 and Feb 18

PROGRAMS AND SERVICES

Well Standards Program

The Alameda County Public Works Agency, Water Resources is located at: 399 Elmhurst Street Hayward, CA 94544

For Driving Directions or General Info, Please Contact 510-670-5480 or wells@acpwa.org

For Drilling Permit information and process contact James Yoo at

Phone: 510-670-6633 FAX: 510-782-1939 Email: <u>Jamesy@acpwa.org</u>

Alameda County Public Works is the administering agency of General Ordinance Code, Chapter 6.88. The purpose of this chapter is to provide for the regulation of groundwater wells and exploratory holes as required by California Water Code. The provisions of these laws are administered and enforced by Alameda County Public Works Agency through its Well Standards Program.

Drilling Permit Jurisdictions in Alameda County: There are four jurisdictions in Alameda County.

Location: Agency with Jurisdiction Contact Number

Berkeley City of Berkeley Ph: 510-981-7460

Fax: 510-540-5672

Fremont, Newark, Union City Alameda County Water District Ph: 510-668-4460

Fax: 510-651-1760

Pleasanton, Dublin, Livermore, Sunol Zone 7 Water Agency Ph: 925-454-5000

Fax: 510-454-5728

The Alameda County Public Works Agency, Water Resources has the responsibility and authority to issue drilling permits and to enforce the County Water Well Ordinance 73-68. This jurisdiction covers the western Alameda County area of Oakland, Alameda, Piedmont, Emeryville, Albany, San Leandro, San Lorenzo, Castro Valley, and Hayward. The purpose of the drilling permits are to ensure that any new well or the destruction of wells, including geotechnical investigations and environmental sampling within the above jurisdiction and within Alameda County will not cause pollution or contamination of ground water or otherwise isopardize the health, safety or welfare of the people of Alameda County.

Permits are required for all work pertaining to wells and exploratory holes at any depth within the jurisdiction of the Well Standards Program. A completed permit application (30 Kb)*, along with a site map, should be submitted at least ten (10) working days prior to the planned start of work. Submittals should be sent to the address or fax number provided on the application form. When submitting an application via fax, please use a high resolution scan to retain legibility.

Fees

Beginning April 11, 2005, the following fees shall apply:

A permit to construct, rehabilitate, or destroy wells, including cathodic protection wells, but excluding dewatering wells (*Horizontal hillside dewatering and dewatering for construction period only), shall cost \$300.00 per well.

A permit to bore exploratory holes, including temporary test wells, shall cost \$200 per site. A site includes the project parcel as well as any adjoining parcels.

Please make checks payable to: Treasurer, County of Alameda

Permit Fees are exempt to State & Federal Projects

Applicants shall submit a letter from the agency requesting the fee exemption.

Scheduling Work/Inspections:

Alameda County Public Works Agency (ACPWA), Water Resources Section requires scheduling and inspection of permitted work. All drilling activities must be scheduled in advance. Availability of inspections will vary from week to week and will come on a first come, first served bases. To ensure inspection availability on your desired or driller scheduled date, the following procedures are required:

Please contact James Yoo at 510-670-6633 to schedule the inspection date and time (You must have drilling permit approved prior to scheduling).

Schedule the work as far in advance as possible (at least 5 days in advance); and confirm the scheduled drilling date(s) at least 24 hours prior to drilling.

Once the work has been scheduled, an ACPWA Inspector will coordinate the inspection requirements as well as how the Inspector can be reached if they are not at the site when Inspection is required. Expect for special circumstances given, all work will require the inspection to be conducted during the working hours of 8:30am to 2:30pm., Monday to Friday, excluding holidays.

Request for Permit Extension:

Permits are only valid from the start date to the completion date as stated on the drilling permit application and Conditions of Approval. To request an extension of a drilling permit application, applicants must request in writing prior to the completion date as set forth in the Conditions of Approval of the drilling permit application. Please send fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. There are no additional fees for permit extensions or for re-scheduling inspection dates. You may not extend your drilling permit dates beyond 90 days from the approval date of the permit application. NO refunds shall be given back after 90 days and the permit shall be deemed voided.

Cancel a Drilling Permit:

Applicants may cancel a drilling permit only in writing by mail, fax or email to Water Resources Section, Fax 510-782-1939 or email at wells@acpwa.org. If you do not cancel your drilling permit application before the drilling completion date or notify in writing within 90 days, Alameda County Public Works Agency, Water Resources Section may void the permit and No refunds may be given back.

Refunds/Service Charge:

A service charge of \$25.00 dollars for the first check returned and \$35.00 dollars for each subsequent check returned.

Applicants who cancel a drilling permit application before we issue the approved permit(s), will receive a FULL refund (at any amount) and will be mailed back within two weeks.

Applicants who cancel a drilling permit application after a permit has been issued will then be charged a service fee of \$50.00 (fifty Dollars).

To collect the remaining funds will be determined by the amount of the refund to be refunded (see process below).

Board of Supervisors Minute Order, File No. 9763, dated January 9, 1996, gives blanket authority to the Auditor-Controller to process claims, from all County departments for the refund of fees which do not exceed \$500 (Five Hundred Dollars) (with the exception of the County Clerk whose limit is \$1,500).

Refunds over the amounts must be authorized by the Board of Supervisors Minute Order, File No. 9763 require specific approval by the Board of Supervisors. The forms to request for refunds under \$500.00 (Five Hundred Dollars) are available at this office or any County Offices. If the amount is exceeded, a Board letter and Minute Order must accompany the claim. Applicant shall fill out the request form and the County Fiscal department will process the request.

Enforcement

Penalty. Any person who does any work for which a permit is required by this chapter and who fails to obtain a permit shall be guilty of a misdemeanor punishable by fine not exceeding Five Hundred Dollars (\$500.00) or by imprisonment not exceeding six months, or by both such fine and imprisonment, and such person shall be deemed guilty of a separate offense for each and every day or portion thereof during which any such

violation is committed, continued, or permitted, and shall be subject to the same punishment as for the original offense. (Prior gen. code §3-160.6)

Enforcement actions will be determined by this office on a case-by-case basis

Drilling without a permit shall be the cost of the permit(s) and a fine of \$500.00 (Five Hundred Dollars).

Well Completion Reports (State DWR-188 forms) must be filed with the Well Standards Program within 60 days of completing work. Staff will review the report, assign a state well number, and then forward it to the California Department of Water Resources (DWR). Drillers should not send completed reports to DWR directly. Failure to file a Well Completion Report or deliberate falsification of the information is a misdemeanor; it is also grounds for disciplinary action by the Contractors' State License Board. Also note that filed Well Completion Reports are considered private record protected by state law and can only be released to the well owner or those specifically authorized by government agencies.

See our website (www.acgov.org/pwa/wells/index.shtml) for links to additional forms.

Appendix B Boring Logs and Schematic of the Vapor Probe Sampling System

Page 1 of 1

Project: 3022

Site Location: 557 Merrimac St.

Oakland

Drilling Method: Direct Push Driller: Fisch Environmental

Boring Diameter: 2"

Logged By: L. Hightower

Date Drilled: February 14, 2008

Casing Elevation: NA

Depth to Groundwater: 6.4 ft

T.O.C. To Screen: NA Screen Length: NA

Approved By: R. McKinney

	Loge	jeu by:	L. Higi	ntower Approved	ם ו	у.	R. McKinney
PID ppm	DЕРТН	GRAPHIC LOG	SOIL CLASS.	GEOLOGIC DESCRIPTION	split spoon		WELL DIAGRAM
П				3 1/2" concrete. 1" sand fill.			
2.5	- -	-	CL	CLAY: Dark gray, firm, moist, some fine-grained gravel			
	- 5 -	-	CL	SILTY CLAY: Light brown with yellowish orange mottling, firm, moist, some fine-grained gravel Becomes wet @ 5ft.		X	
4.5	_		CL	SILTY CLAY: Light brown, hard, dry, with medium to coarse-grained gravel			
	_		CL	SANDY CLAY: Olive gray, hard, dry, fine to medium-grained gravel, with some fine-grained gravel			
	10-		sw	SAND: Olive gray, firm, wet, fine to coarse-grained sand with some fine-grained gravel		X	
	_			SAND: Light brown, wet, firm, fine to medium-grained sand			
0	_			GRAVELLY CLAY: Light brown, hard, dry, fine to coarse-grained gravel			
	_	-		SANDY CLAY: Light brown, stiff moist, medium-grained sand, with some fine gravel. NO PHC			
П	15 –			GRAVELLY CLAY: Light brown,hard,moist, fine to coarse-grained gravel. No PHC			
	_			SAND: Light brown, loose, saturated, fine to medium-grained, NO PHC			
0.7	_			GRAVELLY SAND: Light brown, loose, saturated, fine-grained gravel, medium-grained sand, NO PHC			
	20-			GRAVELLY CLAY: Light brown, hard, dry, fine-grained gravel, NO PHC	,	X	
	_						
	_						
	25 –					Ц	
		MENTS		ious Borings-Log 4ft sections			

All except B5 (28') temporary well screens 1"PVC, 5' Screen, 20'-15', 15' blank x Soil samples Sample liner cut & sealed with Teflon end caps No soil 15' saturated

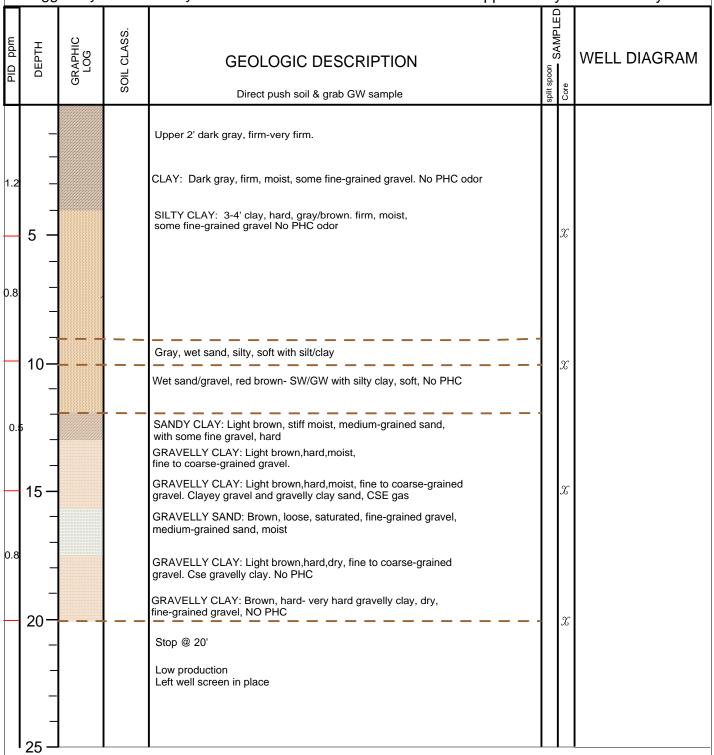
Page 1 of 1

Project: 3022

Site Location: 557 Merrimac St.

Oakland

Drilling Method: Geoprobe Driller: Fisch Environmental


Boring Diameter: 2" Logged By: R. McKinney Date Drilled: February 15, 2008

Casing Elevation: NA

Depth to Groundwater: 11'2"

T.O.C. To Screen: NA Screen Length: NA

Approved By: R. McKinney

COMMENTS: Continuous core-4ft sections

Soil samples Sample liner cut & sealed with Teflon end caps

Page 1 of 1

Project: 3022

Site Location: 557 Merrimac St.

Oakland

Drilling Method: Geoprobe Driller: Fisch Environmental

Boring Diameter: 2" Logged By: Rich McKinney

Date Drilled: February 15, 2008

Casing Elevation: NA

Depth to Groundwater: 11.01 ft

T.O.C. To Screen: NA Screen Length: NA

Approved By: R. McKinney

	99	,				, · <u> </u>	
PID ppm	DЕРТН	GRAPHIC LOG	SOIL CLASS.	GEOLOGIC DESCRIPTION See borings B-1,2 for soil description	split spoon		WELL DIAGRAM
				3 1/2" asphalt & gravel			
2.2	- - - 5 -		CL	CLAY: Dark gray, dry, hard, some fine-grained gravel, No PHC SILTY CLAY: Light brown with yellowish orange mottling, firm-hard, dry, some fine-grained gravel No PHC		X	
				SILTY CLAY: Molding clay light brown with vallowish arange mattling			
2.0			CL	SILTY CLAY: Molding clay,light brown with yellowish orange mottling, firm, increase gravel			
	_ _			SANDY CLAY: Olive gray, hard, dry, fine to medium-grained gravel, with some fine-grained gravel			
	10-			Sand: Gray, wet, firm to medium grained sand, SP, soft. m- PHC		X	
	_						
1.0	- - - 15 -			GRAVELLY CLAY: Greenish-gray, hard, dry, fine to coarse-grained gravel		\mathcal{X}	
	_			GRAVELLY SAND: Light brown, loose, saturated, fine-grained gravel, medium-grained sand			
0.0	_ _ _		SW	Wet SW, brown, gravel Silt/Clay loose ~ 1 Foot thick zone No PHC			
	20-		CL	GRAVELLY CLAY: Light brown, very hard, dry, fine-grained gravel.		X	
	- - -		3-	GW sample ~ 11.0 ft bgs			
	25 —	MENTO					
- 1	CCON/II	$v_1 \vdash v_1 \vdash s_1$	Continu	ious Core 4ft lengths			

COMMENTS: Continuous Core 4ft lengths

**Soil samples Sample liner cut & sealed with Teflon end caps

Page 1 of 1

Project: 3022

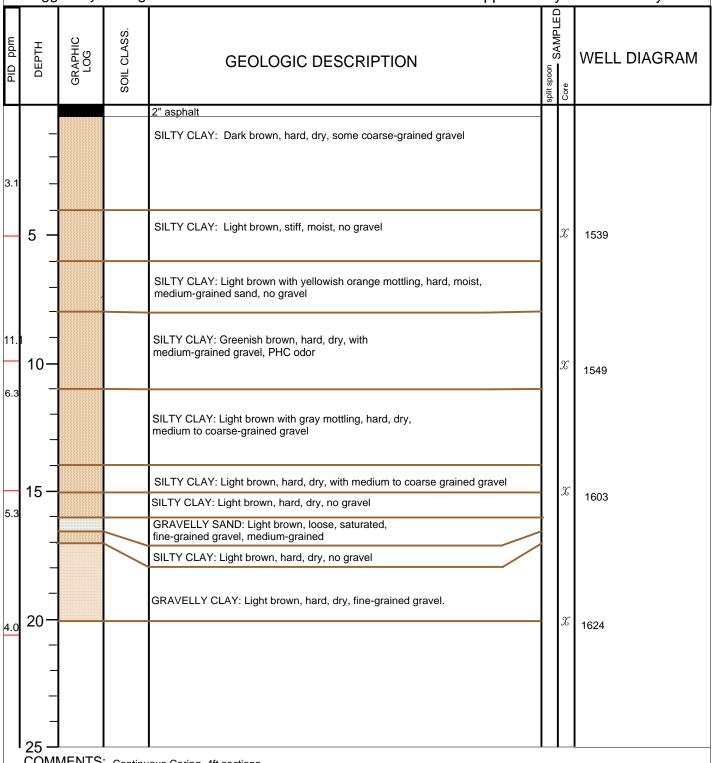
Site Location: 557 Merrimac St.

Oakland

Drilling Method: Geoprobe Driller: Fisch Environmental

Boring Diameter: 2"

Logged By: L. Hightower


Date Drilled: February 14, 2008

Casing Elevation: NA

Depth to Groundwater: 7.91 ft

T.O.C. To Screen: NA Screen Length: NA

Approved By: R. McKinney

COMMENTS: Continuous Coring, 4ft sections

 ${\it x}$ Soil samples Sample liner cut & sealed with Teflon end caps

Page 1 of 2

Project: 3022

Site Location: 557 Merrimac St.

Oakland

Drilling Method: Geoprobe Driller: Fisch Environmental

Boring Diameter: 2"

Logged By: L. Hightower

Date Drilled: February 14, 2008

Casing Elevation: NA

Depth to Groundwater: See notes

T.O.C. To Screen: NA Screen Length: NA

Approved By: R. McKinney

		jou by.	<u> </u>	ntower Approved	<u>، ب</u>	<u>y -</u>	IX. MCKIIIIEy
PID ppm	DЕРТН	GRAPHIC LOG	SOIL CLASS.	GEOLOGIC DESCRIPTION	split spoon	Core	WELL DIAGRAM
П				2" Asphalt	П		
Н	_			CLAY: Dark gray, hard, moist, some fine-grained gravel			
4.0	_			SILTY CLAY: Light brown with yellowish orange mottling, hard, moist, some fine-grained gravel			
1.8	5 -	-		SILTY CLAY: Light brown with yellowish orange mottling, firm, moist, some fine-grained gravel		X	
2.4	_	1		SILTY CLAY: Light brown, soft, moist, no gravel	1		
3.1	10-			SANDY CLAY: Olive gray, hard, dry, fine to medium-grained gravel, with some fine-grained gravel SANDY CLAY: Greenish gray, very stiff, moist, has green mottling, with fine gravel, becomes brown @ 11.5'. PHC odor		X	
5.1	_			SILTY CLAY: Light brown with yellowish orange mottling, firm, moist, some fine-grained gravel			
Н				GRAVELLY CLAY: Light brown, hard, dry, fine-grained gravel.		000	
	15 - -	-		SILTY CLAY: Light brown,hard,dry, medium to coarse-grained gravel, medium-grained sand	-	X	
1.9	-	-		SILTY CLAY: Light brown with yellowish orange mottling, hard, dry, some fine-grained gravel		Ŷ	
	20-	-		SILTY CLAY: Light brown with yellowish orange mottling, firm, moist, some fine-grained gravel		\mathcal{X}	
	_	-		SILTY CLAY: Light brown, hard, moist, medium to coarse-grained gravel			
1 4	-			SILTY CLAY: Light brown, hard, dry, no gravel			
.4	25 –				_	_	

COMMENTS: Continuous Core, 4ft sections

** Soil samples Sample liner cut & sealed with Teflon end caps

Page 2 of 2

Project: 3022

Site Location: 557 Merrimac St.

Oakland

Drilling Method: Geoprobe Driller: Fisch Environmental

Boring Diameter: 2"

Logged By: L. Hightower

Date Drilled: February 14, 2008

Casing Elevation: NA

Depth to Groundwater: See Notes

T.O.C. To Screen: NA Screen Length: NA

Approved By: R. McKinney

	Logg	eu by.	L. i ligi	TIOWEI F	1ppioveu			IX. MCKIIIIEy
PID ppm	ОЕРТН	GRAPHIC LOG	SOIL CLASS.	GEOLOGIC DESCRIPTION		split spoon_SAMPIED	Core	WELL DIAGRAM
	1			SILTY CLAY: Light brown, hard, dry, no gravel				
0.8	-							
	30— - -			Stop @ 28 ft. Tried to find GW- moist at ~ 24 - left well screen sit ~ 2 hrs,~ 2 ft bw in screen - enough to sample. Source may be shallow ~ 9ft-10ft sand lense or deeper-not sure				
	_ 			B5 near former MW-3, South corner of site, GW reported 2007 @ 9-10 ft bgs				
	_							
	- -							
	_							
	_							
	- -							
	_							
	_							
	_							

COMMENTS: Continuous Core, 4ft sections

5' of 1" PVC well screen set at ~28 ft - 23'-blank to surface

Page 1 of 1

Project: 3022

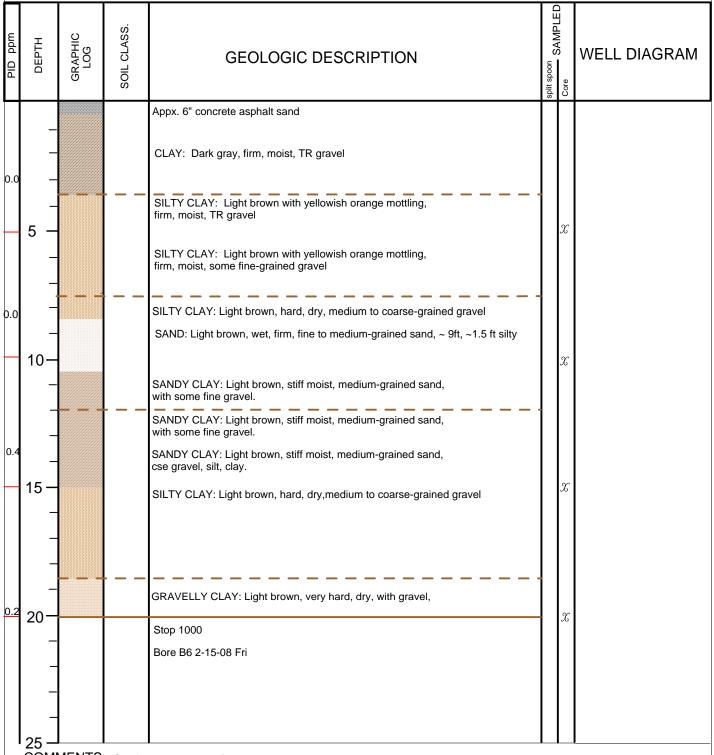
Site Location: 557 Merrimac St.

Oakland

Drilling Method: Geoprobe Driller: Fisch Environmental

Boring Diameter: 2"

Logged By: R. McKinney


Date Drilled: February 15, 2008

Casing Elevation: NA

Depth to Groundwater: 8.2 ft

T.O.C. To Screen: NA Screen Length: NA

Approved By: R. McKinney

COMMENTS: Continuous core to 20 ft per scope

^x Soil samples Sample liner cut & sealed with Teflon end caps

Page 1 of 1

Project: 3022

Site Location: 557 Merrimac St.

Oakland

Drilling Method: Direct Push

Driller: Fisch Environmental

Boring Diameter: 2"

Logged By: L. Hightower

Date Drilled: February 14, 2008

Casing Elevation: NA

Depth to Groundwater: 7.7 ft

T.O.C. To Screen: NA Screen Length: NA

Approved By: R. McKinney

	Loge	jed by:	L	nigntower Approved	ָם ו	y .	R. McKinney
PID ppm	ОЕРТН	GRAPHIC LOG	SOIL CLASS.	GEOLOGIC DESCRIPTION	split spoon		WELL DIAGRAM
				3 1/2" Cement	Г		
	_			SANDY GRAVEL: Light brown, firm, wet, medium to coarse-grained sand			
	_ 			SAND: Light brown, dry, loose, fine to coarse-grained sand, with some fine gravel			
0.03	_			SANDY GRAVEL: Light brown, loose dry, medium to coarse-grained sand, fine-grained gravel			
0.	5 – -			SAND: Light brown, wet, firm, fine to medium-grained sand 1" lense of dark gray sand and gravel @ 5.5'		X	
	_ 			Fill(from UST tank): Light gray, loose dry, fine to coarse-grained gravel with fine to medium-grained sand			
60	- 10-			Fill(from UST tank): Light gray, loose, fine to coarse-grained gravel with fine to medium-grained sand, saturated		X	
0.07 0.09	_			SAND: Light brown, wet, firm, fine to medium-grained sand, saturated Becomes dark gray@11.5'. PHC odor			
	_			SAND: Olive, gray, firm, wet, fine to coarse-grained sand, some fine-grained gravel with bits of shell			
	- 15 –			SANDY CLAY: Light brown, stiff moist, medium-grained sand with some fine gravel. No PHC		X	
	15 -			GRAVELLY CLAY: Light brown,hard,dry, fine-grained gravel.		N	
2	_			SAND: Olive gray, firm, wet, fine to coarse-grained sand with some fine-grained gravel			
3.2	- -			GRAVELLY CLAY: Light brown,hard, fine-grained gravel. Wet from 16.5' to 17'			
	20-				-	X	
	_						
	_						
	25 –	MENTS:	. TD 20 f		_	_	
		1V1 L 1 V 1 O	Continu	ious Core Aft sections			

Continuous Core, 4ft sections

 \emph{x} Soil samples Sample liner cut & sealed with Teflon end caps

Page 1 of 1

Project: 3022

Site Location: 557 Merrimac St.

Oakland

Drilling Method: Geoprobe

Driller: Fisch Environmental

Boring Diameter: 2"

Logged By: R. McKinney

Date Drilled: February 15, 2008

Casing Elevation: NA Depth to Groundwater:

T.O.C. To Screen: NA Screen Length: NA

Approved By: R. McKinney

	_099	eu by.	1 .	Approved	<u> </u>	y	K. MCKIIIIey
PID ppm	ОЕРТН	GRAPHIC LOG	SOIL CLASS.	GEOLOGIC DESCRIPTION	split spoon		WELL DIAGRAM
П				6" concrete asphalt gravel			
0.5	-			SILTY CLAY: Light brown, hard, dry, with medium to coarse-grained gravel			
	- 5 —			Poor recovery 4'-8' - 1Ft of fill Coarse gravel and clay - reddish brown		X	
250	-						
	- 10-		SW	Gray, soft, moist, m PHC odor		X	
2.5				GRAVELLY CLAY: Light brown, hard, dry, fine to coarse-grained gravel. No PHC			
	_			SILTY CLAY: Light brown, very hard, dry, with medium to coarse-grained gravel			
	15 — –			GRAVELLY CLAY: Light brown, hard, dry, fine to coarse-grained gravel, increase gravel to 16'		X	
0.0	-			SILTY CLAY: Light brown, firm, <10% dry, fine to coarse-grained gravel No PHC			
0.0	- 20-			SILTY CLAY: Light brown with yellowish orange mottling, hard, moist, some fine-grained gravel. No PHC		X	
	_			Stop 20' per scope			
	-			Dry - Set 1" PVC Screen Left screen in place over weekend			
	25 — COMI	MENTS:	Continu	ious core, 4ft sections amples Sample liner cut & sealed with Teflon end caps			

PAGE 1 OF 1

PROJECT: 3022

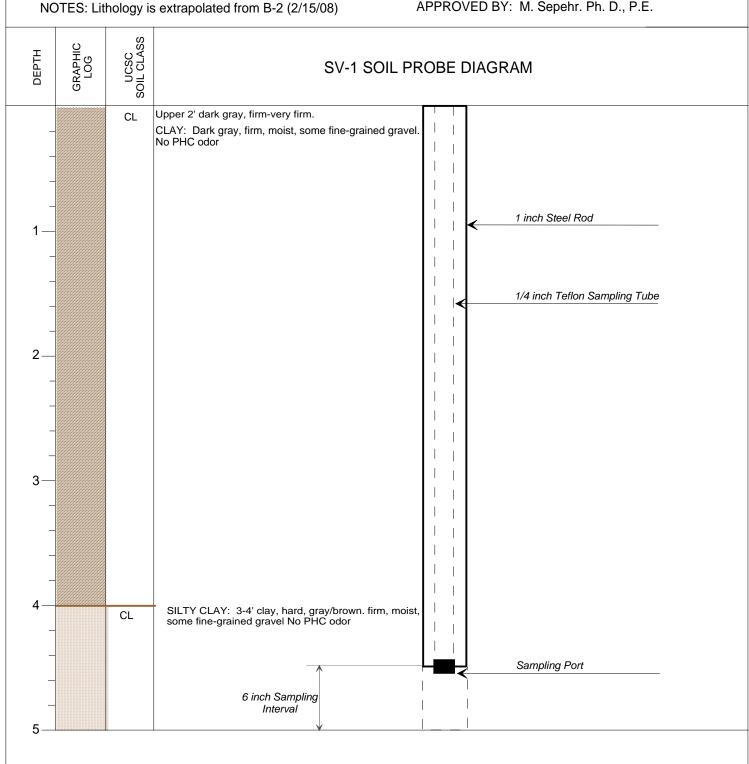
SITE LOCATION: 557 Merrimac Street

Oakland

DRILLING COMPANY: Fisch Environmental

DRILLING METHOD: Direct Push

DEPTH TO GW: NA


T.O.C. TO SCREEN: NA

DATE DRILLED: 02/15/08

CASING ELEVATION: NA

SCREEN LENGTH: NA

APPROVED BY: M. Sepehr. Ph. D., P.E.

PAGE 1 OF 1

PROJECT: 3022

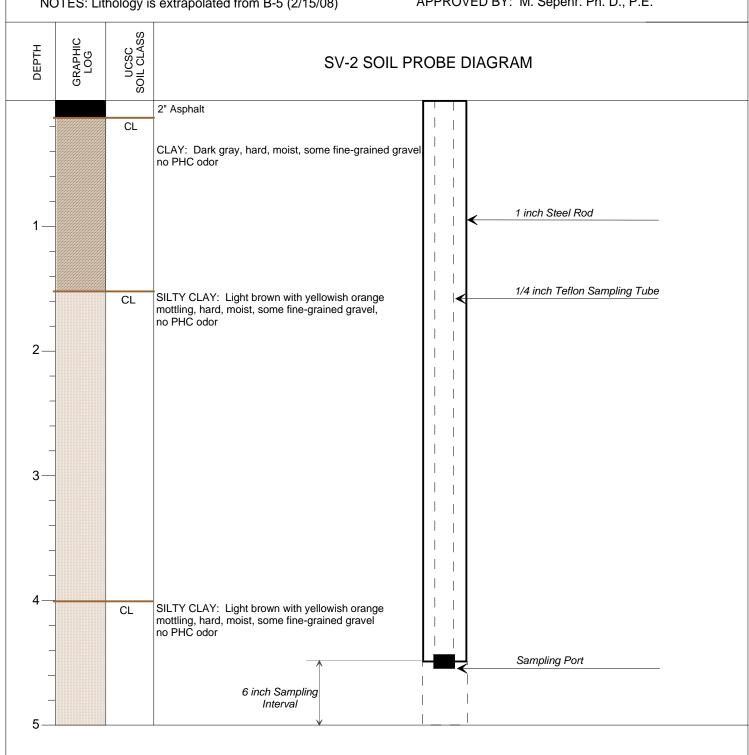
SITE LOCATION: 557 Merrimac Street

Oakland

DRILLING COMPANY: Fisch Environmental

DRILLING METHOD: Direct Push

DEPTH TO GW: NA


T.O.C. TO SCREEN: NA

DATE DRILLED: 02/15/08

CASING ELEVATION: NA

SCREEN LENGTH: NA

APPROVED BY: M. Sepehr. Ph. D., P.E. NOTES: Lithology is extrapolated from B-5 (2/15/08)

PAGE 1 OF 1

PROJECT: 3022

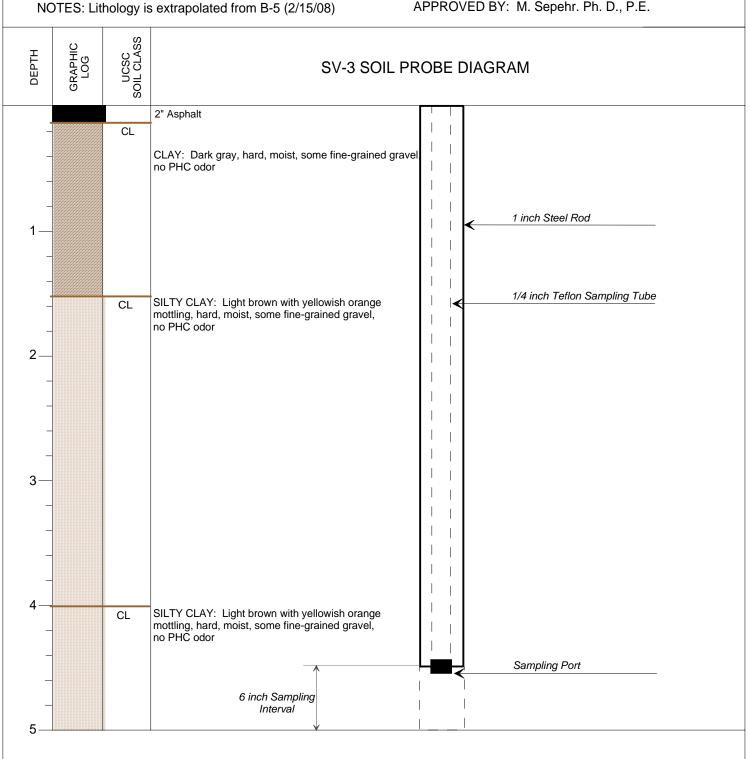
SITE LOCATION: 557 Merrimac Street

Oakland

DRILLING COMPANY: Fisch Environmental

DRILLING METHOD: Direct Push

DATE DRILLED: 02/15/08


CASING ELEVATION: NA

T.O.C. TO SCREEN: NA

SCREEN LENGTH: NA

DEPTH TO GW: NA

APPROVED BY: M. Sepehr. Ph. D., P.E.

PAGE 1 OF 1

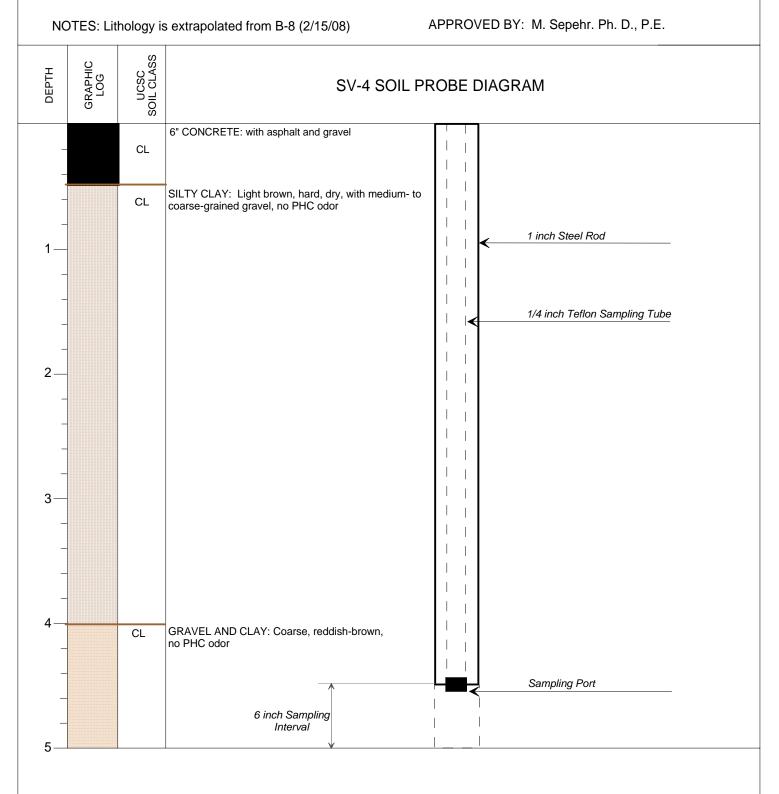
PROJECT: 3022

SITE LOCATION: 557 Merrimac Street

Oakland

DRILLING COMPANY: Fisch Environmental

DRILLING METHOD: Direct Push


DEPTH TO GW: NA

T.O.C. TO SCREEN: NA

DATE DRILLED: 02/15/08

CASING ELEVATION: NA

SCREEN LENGTH: NA

Schematic of Soil Gas Sampling Manifold

F= Filter

V= Valve

Gp= Pressure Gauge

R= Flow Regulator

Gv= Vacuum Gauge Sp= Purge Summa Canister Ss= Sample Summa Canister

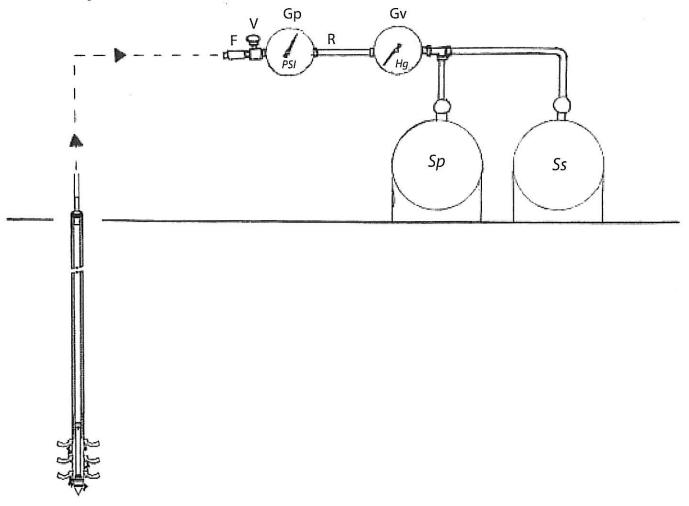


Plate 1: 6-Liter Summa Canisters.

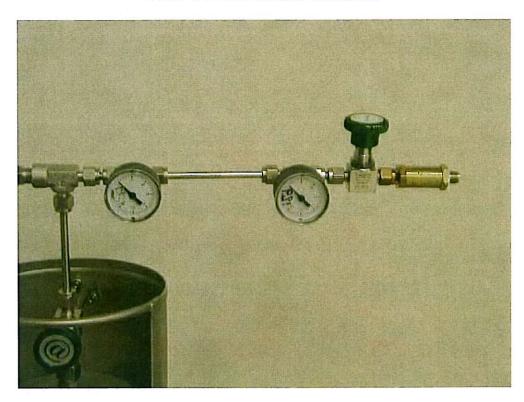


Plate 2: Flow regulator with built-in vacuum gauge connected to the tee fitting.

Appendix C Soil, Groundwater, and Soil Vapor Analytical Report

February 29, 2008

Joyce Bobek

Soma Environmnental Engineering, Inc.

6620 Owens Dr. Suite A

Pleasanton, CA 94588

TEL: (925) 734-6400

FAX (925) 734-6401

RE:

Dear Joyce Bobek:

Order No.: 0802102

Torrent Laboratory, Inc. received 5 samples on 2/20/2008 for the analyses presented in the following report.

All data for associated QC met EPA or laboratory specification(s) except where noted in the case narrative.

Reported data is applicable for only the samples received as part of the order number referenced above.

Torrent Laboratory, Inc, is certified by the State of California, ELAP #1991. If you have any questions regarding these tests results, please feel free to contact the Project Management Team at (408)263-5258;ext: 204.

Sincerely,

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road * Milpitas, CA * Phone: (408) 2635258 * Fax: (408) 263-8293 Visit us ar www.torrentlab.com email: analysis@torrentlab.com

Report Prepaired For: Joyce Bobek

Soma Environmnental Engineering, Inc.

Date Received: Date Reported: 2/20/2008 2/29/2008

Summary Report

SV1	Toxic Organics in Air b	y EPA TO-15		Lab ID:	0802102-001A
<u>Parameter</u>	<u>Preped</u>	<u>Analyzed</u>	Result	<u>RL</u> <u>Ur</u>	<u>iit</u>
Acetone	2/29/2008	2/29/2008	9.9	9.5 µg	/m³
Toluene	2/29/2008	2/29/2008	2.0	1.9 µg	/m³
SV1-DUP	Toxic Organics in Air b		Lab ID:	0802102-002A	
<u>Parameter</u>	<u>Preped</u>	<u>Analyzed</u>	Result	<u>RL</u> <u>Ur</u>	<u>iit</u>
2-Butanone (MEK)	2/29/2008	2/29/2008	8.7	2.3 µg	/m³
Acetone	2/29/2008	2/29/2008	48	15 µg	/m³
SV2	Toxic Organics in Air b	y EPA TO-15		Lab ID:	0802102-003A
<u>Parameter</u>	<u>Preped</u>	<u>Analyzed</u>	Result	<u>RL</u> <u>Ur</u>	<u>iit</u>
1,2,4-Trimethylbenzene	2/29/2008	2/29/2008	53	4.3 µg	/m³
1,3,5-Trimethylbenzene	2/29/2008	2/29/2008	13	4.3 µg	/m³
2-Butanone (MEK)	2/29/2008	2/29/2008	410	2.6 µg	/m³
2-Hexanone	2/29/2008	2/29/2008	73	3.6 µg	/m³
4-Ethyl Toluene	2/29/2008	2/29/2008	42	4.3 µg	/m³
Acetone	2/29/2008	2/29/2008	600	17 µg	/m³
Benzene	2/29/2008	2/29/2008	12	2.8 µg	/m³
Carbon Disulfide	2/29/2008	2/29/2008	14	2.7 µg	/m³
Chloroethane	2/29/2008	2/29/2008	99	2.3 µg	/m³
Ethyl Benzene	2/29/2008	2/29/2008	16	3.8 µg	/m³
Isopropanol	2/29/2008	2/29/2008	76	29 µg	/m³
m,p-Xylene	2/29/2008	2/29/2008	80	3.6 µg	/m³
o-xylene	2/29/2008	2/29/2008	27	3.8 µg	/m³
Toluene	2/29/2008	2/29/2008	62	3.3 µg	/m³
trans-1,2-Dichloroethene	2/29/2008	2/29/2008	11	3.5 µg	/m³
SV2	TO-3 (Mod)Air Analysis	w/Gasoline		Lab ID:	0802102-003A
<u>Parameter</u>	<u>Preped</u>	<u>Analyzed</u>	Result	<u>RL</u> <u>Ur</u>	<u>iit</u>
Gasoline	2/28/2008	2/29/2008	1900	630 µg	/m³
SV3	Toxic Organics in Air b	y EPA TO-15		Lab ID:	0802102-004A
<u>Parameter</u>	Preped	<u>Analyzed</u>	Result	<u>RL</u> <u>Ur</u>	<u>iit</u>
Acetone	2/29/2008	2/29/2008	17	13 µg	/m³

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road * Milpitas, CA * Phone: (408) 2635258 * Fax: (408) 263-8293 Visit us ar www.torrentlab.com email: analysis@torrentlab.com

Report Prepaired For: Joyce Bobek

Soma Environmnental Engineering, Inc.

Date Received: Date Reported: 2/20/2008 2/29/2008

Summary Report

SV3	Toxic Organics in Air by	Lab ID: 0802102-004A		
<u>Parameter</u>	<u>Preped</u>	<u>Analyzed</u>	Result	<u>RL</u> <u>Unit</u>
Toluene	2/29/2008	2/29/2008	2.8	2.6 μg/m³
SV3	TO-3 (Mod)Air Analysis	w/Gasoline		Lab ID: 0802102-004A
<u>Parameter</u>	<u>Preped</u>	<u>Analyzed</u>	Result	<u>RL</u> <u>Unit</u>
Gasoline	2/28/2008	2/29/2008	1900	490 μg/m³
SV4	Toxic Organics in Air by		Lab ID: 0802102-005A	
<u>Parameter</u>	<u>Preped</u>	<u>Analyzed</u>	Result	<u>RL</u> <u>Unit</u>
Acetone	2/29/2008	2/29/2008	42	23 μg/m³
m,p-Xylene	2/29/2008	2/29/2008	14	5.0 μg/m³
Toluene	2/29/2008	2/29/2008	12	4.6 μg/m³

TORRENT LABORATORY, INC.

483 Sinclair Frontage Road • Milpitas, CA • Phone: (408) 263-5258 • Fax: (408) 263-8293

Visit us at www.torrentlab.com email: analysis@torrentlab.com

Lab Sample ID: 0802102-001

Date Prepared:

Report prepared for: Joyce Bobek

Joyce Bobek

Date Received: 2/20/2008

Soma Environmental Engineering, Inc.

Date Reported: 2/29/2008

Client Sample ID: SV1

Sample Location: 557 Merrimac St,Oakland

Sample Matrix: AIR

Date/Time Sampled 2/15/2008 12:35:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1 - Dichloroethene	TO-15	2/29/2008	1.99	1	2.0	ND	µg/m³	R15529
1,1,1,2-Tetrachloroethane	TO-15	2/29/2008	3.44	1	3.4	ND	µg/m³	R15529
1,1,1-Trichloroethane	TO-15	2/29/2008	2.73	1	2.7	ND	µg/m³	R15529
1,1,2,2-Tetrachloroethane	TO-15	2/29/2008	3.44	1	3.4	ND	µg/m³	R15529
1,1,2-Trichloroethane	TO-15	2/29/2008	2.73	1	2.7	ND	µg/m³	R15529
1,1-Dichloroethane	TO-15	2/29/2008	2.03	1	2.0	ND	µg/m³	R15529
1,2,4-Trichlorobenzene	TO-15	2/29/2008	3.56	1	3.6	ND	µg/m³	R15529
1,2,4-Trimethylbenzene	TO-15	2/29/2008	2.46	1	2.5	ND	µg/m³	R15529
1,2-Dibromoethane(Ethylene dibromide)	TO-15	2/29/2008	3.84	1	3.8	ND	µg/m³	R15529
1,2-Dichlorobenzene	TO-15	2/29/2008	3.01	1	3.0	ND	µg/m³	R15529
1,2-Dichloroethane	TO-15	2/29/2008	2.03	1	2.0	ND	µg/m³	R15529
1,2-Dichloropropane	TO-15	2/29/2008	2.31	1	2.3	ND	µg/m³	R15529
1,2- dichlorotetrafluoroethane(F114)	TO-15	2/29/2008	3.13	1	3.1	ND	µg/m³	R15529
1,3,5-Trimethylbenzene	TO-15	2/29/2008	2.46	1	2.5	ND	µg/m³	R15529
1,3-Butadiene	TO-15	2/29/2008	1.11	1	1.1	ND	µg/m³	R15529
1,3-Dichlorobenzene	TO-15	2/29/2008	3.01	1	3.0	ND	µg/m³	R15529
1,4-Dichlorobenzene	TO-15	2/29/2008	3.01	1	3.0	ND	μg/m³	R15529
1,4-Dioxane	TO-15	2/29/2008	1.8	1	1.8	ND	μg/m³	R15529
2-Butanone (MEK)	TO-15	2/29/2008	1.48	1	1.5	ND	μg/m³	R15529
2-Hexanone	TO-15	2/29/2008	2.05	1	2.0	ND	µg/m³	R15529
4-Ethyl Toluene	TO-15	2/29/2008	2.46	1	2.5	ND	µg/m³	R15529
4-Methyl-2-Pentanone (MIBK)	TO-15	2/29/2008	2.05	1	2.0	ND	µg/m³	R15529
Acetone	TO-15	2/29/2008	9.52	1	9.5	9.9	µg/m³	R15529
Benzene	TO-15	2/29/2008	1.6	1	1.6	ND	µg/m³	R15529
Benzyl Chloride	TO-15	2/29/2008	2.88	1	2.9	ND	µg/m³	R15529
Bromodichloromethane	TO-15	2/29/2008	3.35	1	3.4	ND	µg/m³	R15529
Bromoform	TO-15	2/29/2008	5.17	1	5.2	ND	µg/m³	R15529
Bromomethane	TO-15	2/29/2008	1.94	1	1.9	ND	µg/m³	R15529
Carbon Disulfide	TO-15	2/29/2008	1.56	1	1.6	ND	µg/m³	R15529
Carbon Tetrachloride	TO-15	2/29/2008	3.15	1	3.2	ND	µg/m³	R15529
Chlorobenzene	TO-15	2/29/2008	2.3	1	2.3	ND	μg/m³	R15529
Chloroethane	TO-15	2/29/2008	1.32	1	1.3	ND	μg/m³	R15529
Chloroform	TO-15	2/29/2008	2.44	1	2.4	ND	μg/m³	R15529
Chloromethane	TO-15	2/29/2008	1.04	1	1.0	ND	μg/m³	R15529
cis-1,2-dichloroethene	TO-15	2/29/2008	1.98	1	2.0	ND	μg/m³	R15529

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Report prepared for: Joyce Bobek

Soma Environmental Engineering, Inc.

Date Received: 2/20/2008 **Date Reported:** 2/29/2008

SV1

557 Merrimac St,Oakland **Sample Location:**

Sample Matrix:

Client Sample ID:

Date/Time Sampled 2/15/2008 12:35:00 PM **Lab Sample ID:** 0802102-001

Date Prepared:

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
cis-1,3-Dichloropropene	TO-15	2/29/2008	2.27	1	2.3	ND	μg/m³	R15529
Dibromochloromethane	TO-15	2/29/2008	4.26	1	4.3	ND	µg/m³	R15529
Dichlorodifluoromethane	TO-15	2/29/2008	2.48	1	2.5	ND	μg/m³	R15529
Ethyl Acetate	TO-15	2/29/2008	1.8	1	1.8	ND	μg/m³	R15529
Ethyl Benzene	TO-15	2/29/2008	2.17	1	2.2	ND	µg/m³	R15529
Freon 113	TO-15	2/29/2008	3.83	1	3.8	ND	µg/m³	R15529
Hexachlorobutadiene	TO-15	2/29/2008	5.34	1	5.3	ND	µg/m³	R15529
Hexane	TO-15	2/29/2008	3.52	1	3.5	ND	µg/m³	R15529
Isopropanol	TO-15	2/29/2008	16.4	1	16	ND	µg/m³	R15529
m,p-Xylene	TO-15	2/29/2008	2.05	1	2.0	ND	µg/m³	R15529
Methylene Chloride	TO-15	2/29/2008	3.61	1	3.6	ND	µg/m³	R15529
MTBE	TO-15	2/29/2008	1.81	1	1.8	ND	µg/m³	R15529
Naphthalene	TO-15	2/29/2008	2.62	1	2.6	ND	µg/m³	R15529
o-xylene	TO-15	2/29/2008	2.17	1	2.2	ND	µg/m³	R15529
Styrene	TO-15	2/29/2008	2.13	1	2.1	ND	μg/m³	R15529
Tetrachloroethene	TO-15	2/29/2008	3.39	1	3.4	ND	µg/m³	R15529
Tetrahydrofuran	TO-15	2/29/2008	1.48	1	1.5	ND	µg/m³	R15529
Toluene	TO-15	2/29/2008	1.89	1	1.9	2.0	µg/m³	R15529
trans-1,2-Dichloroethene	TO-15	2/29/2008	1.98	1	2.0	ND	μg/m³	R15529
Trichloroethene	TO-15	2/29/2008	2.69	1	2.7	ND	µg/m³	R15529
Trichlorofluoromethane	TO-15	2/29/2008	2.48	1	2.5	ND	µg/m³	R15529
Vinyl Acetate	TO-15	2/29/2008	1.76	1	1.8	ND	μg/m³	R15529
Vinyl Chloride	TO-15	2/29/2008	1.28	1	1.3	ND	μg/m³	R15529
Surr: 4-Bromofluorobenzene	TO-15	2/29/2008	0	1	65-135	86.2	%REC	R15529
Gasoline	TO-3(MOD)	2/28/2008	352	1	350	ND	µg/m³	G15529

Report prepared for: Joyce Bobek

Soma Environmnental Engineering, Inc.

Date Received: 2/20/2008 **Date Reported:** 2/29/2008

SV1-DUP **Lab Sample ID:** 0802102-002

Sample Location: 557 Merrimac St,Oakland Date Prepared:

Sample Matrix: AIR

Client Sample ID:

Date/Time Sampled 12/15/2008 1:15:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1 - Dichloroethene	TO-15	2/29/2008	1.99	1.54	3.1	ND	μg/m³	R15529
1,1,1,2-Tetrachloroethane	TO-15	2/29/2008	3.44	1.54	5.3	ND	μg/m³	R15529
1,1,1-Trichloroethane	TO-15	2/29/2008	2.73	1.54	4.2	ND	µg/m³	R15529
1,1,2,2-Tetrachloroethane	TO-15	2/29/2008	3.44	1.54	5.3	ND	µg/m³	R15529
1,1,2-Trichloroethane	TO-15	2/29/2008	2.73	1.54	4.2	ND	μg/m³	R15529
1,1-Dichloroethane	TO-15	2/29/2008	2.03	1.54	3.1	ND	µg/m³	R15529
1,2,4-Trichlorobenzene	TO-15	2/29/2008	3.56	1.54	5.5	ND	µg/m³	R15529
1,2,4-Trimethylbenzene	TO-15	2/29/2008	2.46	1.54	3.8	ND	µg/m³	R15529
1,2-Dibromoethane(Ethylene dibromide)	TO-15	2/29/2008	3.84	1.54	5.9	ND	μg/m³	R15529
1,2-Dichlorobenzene	TO-15	2/29/2008	3.01	1.54	4.6	ND	μg/m³	R15529
1,2-Dichloroethane	TO-15	2/29/2008	2.03	1.54	3.1	ND	μg/m³	R15529
1,2-Dichloropropane	TO-15	2/29/2008	2.31	1.54	3.6	ND	μg/m³	R15529
1,2- dichlorotetrafluoroethane(F114)	TO-15	2/29/2008	3.13	1.54	4.8	ND	µg/m³	R15529
1,3,5-Trimethylbenzene	TO-15	2/29/2008	2.46	1.54	3.8	ND	μg/m³	R15529
1,3-Butadiene	TO-15	2/29/2008	1.11	1.54	1.7	ND	µg/m³	R15529
1,3-Dichlorobenzene	TO-15	2/29/2008	3.01	1.54	4.6	ND	μg/m³	R15529
1,4-Dichlorobenzene	TO-15	2/29/2008	3.01	1.54	4.6	ND	μg/m³	R15529
1,4-Dioxane	TO-15	2/29/2008	1.8	1.54	2.8	ND	µg/m³	R15529
2-Butanone (MEK)	TO-15	2/29/2008	1.48	1.54	2.3	8.7	µg/m³	R15529
2-Hexanone	TO-15	2/29/2008	2.05	1.54	3.2	ND	µg/m³	R15529
4-Ethyl Toluene	TO-15	2/29/2008	2.46	1.54	3.8	ND	μg/m³	R15529
4-Methyl-2-Pentanone (MIBK)	TO-15	2/29/2008	2.05	1.54	3.2	ND	μg/m³	R15529
Acetone	TO-15	2/29/2008	9.52	1.54	15	48	μg/m³	R15529
Benzene	TO-15	2/29/2008	1.6	1.54	2.5	ND	μg/m³	R15529
Benzyl Chloride	TO-15	2/29/2008	2.88	1.54	4.4	ND	μg/m³	R15529
Bromodichloromethane	TO-15	2/29/2008	3.35	1.54	5.2	ND	µg/m³	R15529
Bromoform	TO-15	2/29/2008	5.17	1.54	8.0	ND	μg/m³	R15529
Bromomethane	TO-15	2/29/2008	1.94	1.54	3.0	ND	μg/m³	R15529
Carbon Disulfide	TO-15	2/29/2008	1.56	1.54	2.4	ND	µg/m³	R15529
Carbon Tetrachloride	TO-15	2/29/2008	3.15	1.54	4.9	ND	µg/m³	R15529
Chlorobenzene	TO-15	2/29/2008	2.3	1.54	3.5	ND	μg/m³	R15529
Chloroethane	TO-15	2/29/2008	1.32	1.54	2.0	ND	μg/m³	R15529
Chloroform	TO-15	2/29/2008	2.44	1.54	3.8	ND	µg/m³	R15529
Chloromethane	TO-15	2/29/2008	1.04	1.54	1.6	ND	μg/m³	R15529
cis-1,2-dichloroethene	TO-15	2/29/2008	1.98	1.54	3.0	ND	μg/m³	R15529
cis-1,3-Dichloropropene	TO-15	2/29/2008	2.27	1.54	3.5	ND	μg/m³	R15529
Dibromochloromethane	TO-15	2/29/2008	4.26	1.54	6.6	ND	μg/m³	R15529
Dichlorodifluoromethane	TO-15	2/29/2008	2.48	1.54	3.8	ND	μg/m³	R15529
Ethyl Acetate	TO-15	2/29/2008	1.8	1.54	2.8	ND	µg/m³	R15529
Ethyl Benzene	TO-15	2/29/2008	2.17	1.54	3.3	ND	μg/m³	R15529
Freon 113	TO-15	2/29/2008	3.83	1.54	5.9	ND	μg/m³	R15529
Hexachlorobutadiene	TO-15	2/29/2008	5.34	1.54	8.2	ND	µg/m³	R15529

Soma Environmental Engineering, Inc. **Date Reported:** 2/29/2008

Client Sample ID: SV1-DUP

I-DUP Lab Sample ID: 0802102-002

Date Prepared:

Sample Location: 557 Merrimac St,Oakland **Sample Matrix:** AIR

Date/Time Sampled	12/15/2008 1:15:00 PM							
Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Hexane	TO-15	2/29/2008	3.52	1.54	5.4	ND	μg/m³	R15529
Isopropanol	TO-15	2/29/2008	16.4	1.54	25	ND	µg/m³	R15529
m,p-Xylene	TO-15	2/29/2008	2.05	1.54	3.2	ND	µg/m³	R15529
Methylene Chloride	TO-15	2/29/2008	3.61	1.54	5.6	ND	µg/m³	R15529
MTBE	TO-15	2/29/2008	1.81	1.54	2.8	ND	µg/m³	R15529
Naphthalene	TO-15	2/29/2008	2.62	1.54	4.0	ND	µg/m³	R15529
o-xylene	TO-15	2/29/2008	2.17	1.54	3.3	ND	µg/m³	R15529
Styrene	TO-15	2/29/2008	2.13	1.54	3.3	ND	µg/m³	R15529
Tetrachloroethene	TO-15	2/29/2008	3.39	1.54	5.2	ND	µg/m³	R15529
Tetrahydrofuran	TO-15	2/29/2008	1.48	1.54	2.3	ND	µg/m³	R15529
Toluene	TO-15	2/29/2008	1.89	1.54	2.9	2.5J	µg/m³	R15529
trans-1,2-Dichloroethene	TO-15	2/29/2008	1.98	1.54	3.0	ND	µg/m³	R15529
Trichloroethene	TO-15	2/29/2008	2.69	1.54	4.1	ND	µg/m³	R15529
Trichlorofluoromethane	TO-15	2/29/2008	2.48	1.54	3.8	ND	μg/m³	R15529
Vinyl Acetate	TO-15	2/29/2008	1.76	1.54	2.7	ND	µg/m³	R15529
Vinyl Chloride	TO-15	2/29/2008	1.28	1.54	2.0	ND	µg/m³	R15529
Surr: 4-Bromofluorobenzene	TO-15	2/29/2008	0	1.54	65-135	90.3	%REC	R15529
Note: Reporting limit increased due to	low initial pressure in a	a canister. J - Estin	nated result	between MD	L and PQL.			
Gasoline	TO-3(MOD)	2/28/2008	352	1.54	540	ND	μg/m³	G15529

Note: Reporting limit increased due to low initial pressure in a canister.

Soma Environmental Engineering, Inc. **Date Reported:** 2/29/2008

Date Prepared:

Client Sample ID: SV2 Lab Sample ID: 0802102-003

Sample Location: 557 Merrimac St,Oakland

Sample Matrix: AIR

Date/Time Sampled 12/15/2008 10:32:00 AM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1 - Dichloroethene	TO-15	2/29/2008	1.99	1.76	3.5	ND	μg/m³	R15529
1,1,1,2-Tetrachloroethane	TO-15	2/29/2008	3.44	1.76	6.1	ND	μg/m³	R15529
1,1,1-Trichloroethane	TO-15	2/29/2008	2.73	1.76	4.8	ND	μg/m³	R15529
1,1,2,2-Tetrachloroethane	TO-15	2/29/2008	3.44	1.76	6.1	ND	μg/m³	R15529
1,1,2-Trichloroethane	TO-15	2/29/2008	2.73	1.76	4.8	ND	μg/m³	R15529
1,1-Dichloroethane	TO-15	2/29/2008	2.03	1.76	3.6	ND	μg/m³	R15529
1,2,4-Trichlorobenzene	TO-15	2/29/2008	3.56	1.76	6.3	ND	μg/m³	R15529
1,2,4-Trimethylbenzene	TO-15	2/29/2008	2.46	1.76	4.3	53	μg/m³	R15529
1,2-Dibromoethane(Ethylene dibromide)	TO-15	2/29/2008	3.84	1.76	6.8	ND	μg/m³	R15529
1,2-Dichlorobenzene	TO-15	2/29/2008	3.01	1.76	5.3	ND	μg/m³	R15529
1,2-Dichloroethane	TO-15	2/29/2008	2.03	1.76	3.6	ND	µg/m³	R15529
1,2-Dichloropropane	TO-15	2/29/2008	2.31	1.76	4.1	ND	μg/m³	R15529
1,2- dichlorotetrafluoroethane(F114)	TO-15	2/29/2008	3.13	1.76	5.5	ND	µg/m³	R15529
1,3,5-Trimethylbenzene	TO-15	2/29/2008	2.46	1.76	4.3	13	μg/m³	R15529
1,3-Butadiene	TO-15	2/29/2008	1.11	1.76	2.0	ND	μg/m³	R15529
1,3-Dichlorobenzene	TO-15	2/29/2008	3.01	1.76	5.3	ND	μg/m³	R15529
1,4-Dichlorobenzene	TO-15	2/29/2008	3.01	1.76	5.3	ND	μg/m³	R15529
1,4-Dioxane	TO-15	2/29/2008	1.8	1.76	3.2	ND	µg/m³	R15529
2-Butanone (MEK)	TO-15	2/29/2008	1.48	1.76	2.6	410	µg/m³	R15529
2-Hexanone	TO-15	2/29/2008	2.05	1.76	3.6	73	µg/m³	R15529
4-Ethyl Toluene	TO-15	2/29/2008	2.46	1.76	4.3	42	μg/m³	R15529
4-Methyl-2-Pentanone (MIBK)	TO-15	2/29/2008	2.05	1.76	3.6	ND	µg/m³	R15529
Acetone	TO-15	2/29/2008	9.52	1.76	17	601E	µg/m³	R15529
Benzene	TO-15	2/29/2008	1.6	1.76	2.8	12	μg/m³	R15529
Benzyl Chloride	TO-15	2/29/2008	2.88	1.76	5.1	ND	μg/m³	R15529
Bromodichloromethane	TO-15	2/29/2008	3.35	1.76	5.9	ND	μg/m³	R15529
Bromoform	TO-15	2/29/2008	5.17	1.76	9.1	ND	µg/m³	R15529
Bromomethane	TO-15	2/29/2008	1.94	1.76	3.4	ND	μg/m³	R15529
Carbon Disulfide	TO-15	2/29/2008	1.56	1.76	2.7	14	µg/m³	R15529
Carbon Tetrachloride	TO-15	2/29/2008	3.15	1.76	5.5	ND	μg/m³	R15529
Chlorobenzene	TO-15	2/29/2008	2.3	1.76	4.0	ND	μg/m³	R15529
Chloroethane	TO-15	2/29/2008	1.32	1.76	2.3	99	μg/m³	R15529
Chloroform	TO-15	2/29/2008	2.44	1.76	4.3	ND	μg/m³	R15529
Chloromethane	TO-15	2/29/2008	1.04	1.76	1.8	ND	μg/m³	R15529
cis-1,2-dichloroethene	TO-15	2/29/2008	1.98	1.76	3.5	ND	µg/m³	R15529
cis-1,3-Dichloropropene	TO-15	2/29/2008	2.27	1.76	4.0	ND	μg/m³	R15529
Dibromochloromethane	TO-15	2/29/2008	4.26	1.76	7.5	ND	μg/m³	R15529
Dichlorodifluoromethane	TO-15	2/29/2008	2.48	1.76	4.4	ND	μg/m³	R15529
Ethyl Acetate	TO-15	2/29/2008	1.8	1.76	3.2	ND	μg/m³	R15529
Ethyl Benzene	TO-15	2/29/2008	2.17	1.76	3.8	16	μg/m³	R15529
Freon 113	TO-15	2/29/2008	3.83	1.76	6.7	ND	μg/m³	R15529
Hexachlorobutadiene	TO-15	2/29/2008	5.34	1.76	9.4	ND	μg/m³	R15529

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Soma Environmental Engineering, Inc. **Date Reported:** 2/29/2008

Client Sample ID: SV2 Lab Sample ID: 0802102-003

Sample Location: 557 Merrimac St,Oakland Date Prepared:

Sample Matrix: AIR

Date/Time Sampled 12/15/2008 10:32:00 AM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Hexane	TO-15	2/29/2008	3.52	1.76	6.2	ND	μg/m³	R15529
Isopropanol	TO-15	2/29/2008	16.4	1.76	29	76	µg/m³	R15529
m,p-Xylene	TO-15	2/29/2008	2.05	1.76	3.6	80	µg/m³	R15529
Methylene Chloride	TO-15	2/29/2008	3.61	1.76	6.4	ND	µg/m³	R15529
MTBE	TO-15	2/29/2008	1.81	1.76	3.2	ND	µg/m³	R15529
Naphthalene	TO-15	2/29/2008	2.62	1.76	4.6	ND	µg/m³	R15529
o-xylene	TO-15	2/29/2008	2.17	1.76	3.8	27	µg/m³	R15529
Styrene	TO-15	2/29/2008	2.13	1.76	3.7	ND	µg/m³	R15529
Tetrachloroethene	TO-15	2/29/2008	3.39	1.76	6.0	ND	µg/m³	R15529
Tetrahydrofuran	TO-15	2/29/2008	1.48	1.76	2.6	ND	µg/m³	R15529
Toluene	TO-15	2/29/2008	1.89	1.76	3.3	62	µg/m³	R15529
trans-1,2-Dichloroethene	TO-15	2/29/2008	1.98	1.76	3.5	11	µg/m³	R15529
Trichloroethene	TO-15	2/29/2008	2.69	1.76	4.7	ND	µg/m³	R15529
Trichlorofluoromethane	TO-15	2/29/2008	2.48	1.76	4.4	ND	µg/m³	R15529
Vinyl Acetate	TO-15	2/29/2008	1.76	1.76	3.1	ND	µg/m³	R15529
Vinyl Chloride	TO-15	2/29/2008	1.28	1.76	2.3	ND	µg/m³	R15529
Surr: 4-Bromofluorobenzene	TO-15	2/29/2008	0	1.76	65-135	89.8	%REC	R15529
Note: E - Estimated value. The amoun	t exceeds the linear ca	libration range of t	he instrume	ent.				
Gasoline	TO-3(MOD)	2/29/2008	352	1.78	630	1910x	μg/m³	G15529

Note: x- Not a typical gasoline. Reported value is the result of discrete peak (light end) of non-gasoline compounds within range of C5-C12 quantified as Gasoline.

Soma Environmental Engineering, Inc. **Date Reported:** 2/29/2008

Date Prepared:

Client Sample ID: SV3 Lab Sample ID: 0802102-004

Sample Location: 557 Merrimac St,Oakland

Sample Matrix: AIR

Date/Time Sampled 12/15/2008 10:10:00 AM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1 - Dichloroethene	TO-15	2/29/2008	1.99	1.39	2.8	ND	μg/m³	R15529
1,1,1,2-Tetrachloroethane	TO-15	2/29/2008	3.44	1.39	4.8	ND	µg/m³	R15529
1,1,1-Trichloroethane	TO-15	2/29/2008	2.73	1.39	3.8	ND	µg/m³	R15529
1,1,2,2-Tetrachloroethane	TO-15	2/29/2008	3.44	1.39	4.8	ND	µg/m³	R15529
I,1,2-Trichloroethane	TO-15	2/29/2008	2.73	1.39	3.8	ND	µg/m³	R15529
1,1-Dichloroethane	TO-15	2/29/2008	2.03	1.39	2.8	ND	µg/m³	R15529
1,2,4-Trichlorobenzene	TO-15	2/29/2008	3.56	1.39	4.9	ND	µg/m³	R15529
1,2,4-Trimethylbenzene	TO-15	2/29/2008	2.46	1.39	3.4	ND	µg/m³	R15529
1,2-Dibromoethane(Ethylene dibromide)	TO-15	2/29/2008	3.84	1.39	5.3	ND	μg/m³	R15529
1,2-Dichlorobenzene	TO-15	2/29/2008	3.01	1.39	4.2	ND	μg/m³	R15529
1,2-Dichloroethane	TO-15	2/29/2008	2.03	1.39	2.8	ND	µg/m³	R15529
,2-Dichloropropane	TO-15	2/29/2008	2.31	1.39	3.2	ND	µg/m³	R15529
,2-	TO-15	2/29/2008	3.13	1.39	4.4	ND	µg/m³	R15529
dichlorotetrafluoroethane(F114)		0/00/0000						
I,3,5-Trimethylbenzene	TO-15	2/29/2008	2.46	1.39	3.4	ND	µg/m³	R15529
1,3-Butadiene	TO-15	2/29/2008	1.11	1.39	1.5	ND	µg/m³	R15529
,3-Dichlorobenzene	TO-15	2/29/2008	3.01	1.39	4.2	ND	µg/m³	R15529
,4-Dichlorobenzene	TO-15	2/29/2008	3.01	1.39	4.2	ND	µg/m³	R15529
,4-Dioxane	TO-15	2/29/2008	1.8	1.39	2.5	ND	µg/m³	R15529
2-Butanone (MEK)	TO-15	2/29/2008	1.48	1.39	2.1	ND	µg/m³	R15529
2-Hexanone	TO-15	2/29/2008	2.05	1.39	2.8	ND	µg/m³	R15529
4-Ethyl Toluene	TO-15	2/29/2008	2.46	1.39	3.4	ND	µg/m³	R15529
1-Methyl-2-Pentanone (MIBK)	TO-15	2/29/2008	2.05	1.39	2.8	ND	μg/m³	R15529
Acetone	TO-15	2/29/2008	9.52	1.39	13	17	µg/m³	R15529
Benzene	TO-15	2/29/2008	1.6	1.39	2.2	ND	μg/m³	R15529
Benzyl Chloride	TO-15	2/29/2008	2.88	1.39	4.0	ND	μg/m³	R15529
Bromodichloromethane	TO-15	2/29/2008	3.35	1.39	4.7	ND	μg/m³	R15529
Bromoform	TO-15	2/29/2008	5.17	1.39	7.2	ND	μg/m³	R15529
Bromomethane	TO-15	2/29/2008	1.94	1.39	2.7	ND	μg/m³	R15529
Carbon Disulfide	TO-15	2/29/2008	1.56	1.39	2.2	ND	µg/m³	R15529
Carbon Tetrachloride	TO-15	2/29/2008	3.15	1.39	4.4	ND	μg/m³	R15529
Chlorobenzene	TO-15	2/29/2008	2.3	1.39	3.2	ND	μg/m³	R15529
Chloroethane	TO-15	2/29/2008	1.32	1.39	1.8	ND	µg/m³	R15529
Chloroform	TO-15	2/29/2008	2.44	1.39	3.4	ND	µg/m³	R15529
Chloromethane	TO-15	2/29/2008	1.04	1.39	1.4	ND	μg/m³	R15529
cis-1,2-dichloroethene	TO-15	2/29/2008	1.98	1.39	2.8	ND	μg/m³	R15529
sis-1,3-Dichloropropene	TO-15	2/29/2008	2.27	1.39	3.2	ND	μg/m³	R15529
Dibromochloromethane	TO-15	2/29/2008	4.26	1.39	5.9	ND	µg/m³	R15529
Dichlorodifluoromethane	TO-15	2/29/2008	2.48	1.39	3.4	ND	µg/m³	R15529
Ethyl Acetate	TO-15	2/29/2008	1.8	1.39	2.5	ND	µg/m³	R15529
Ethyl Benzene	TO-15	2/29/2008	2.17	1.39	3.0	ND	µg/m³	R15529
Freon 113	TO-15	2/29/2008	3.83	1.39	5.3	ND	µg/m³	R15529
Hexachlorobutadiene	TO-15	2/29/2008	5.34	1.39	7.4	ND	µg/m³	R15529

These analyses were performed according to State of California Environmental Laboratory Accreditation program, Certificate # 1991

Soma Environmental Engineering, Inc. **Date Reported:** 2/29/2008

Date Prepared:

Client Sample ID: SV3 Lab Sample ID: 0802102-004

Sample Location: 557 Merrimac St,Oakland

Sample Matrix: AIR

Date/Time Sampled 12/15/2008 10:10:00 AM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Hexane	TO-15	2/29/2008	3.52	1.39	4.9	ND	μg/m³	R15529
Isopropanol	TO-15	2/29/2008	16.4	1.39	23	ND	µg/m³	R15529
m,p-Xylene	TO-15	2/29/2008	2.05	1.39	2.8	ND	µg/m³	R15529
Methylene Chloride	TO-15	2/29/2008	3.61	1.39	5.0	ND	µg/m³	R15529
MTBE	TO-15	2/29/2008	1.81	1.39	2.5	ND	µg/m³	R15529
Naphthalene	TO-15	2/29/2008	2.62	1.39	3.6	ND	µg/m³	R15529
o-xylene	TO-15	2/29/2008	2.17	1.39	3.0	ND	µg/m³	R15529
Styrene	TO-15	2/29/2008	2.13	1.39	3.0	ND	µg/m³	R15529
Tetrachloroethene	TO-15	2/29/2008	3.39	1.39	4.7	ND	µg/m³	R15529
Tetrahydrofuran	TO-15	2/29/2008	1.48	1.39	2.1	ND	µg/m³	R15529
Toluene	TO-15	2/29/2008	1.89	1.39	2.6	2.8	µg/m³	R15529
trans-1,2-Dichloroethene	TO-15	2/29/2008	1.98	1.39	2.8	ND	µg/m³	R15529
Trichloroethene	TO-15	2/29/2008	2.69	1.39	3.7	ND	µg/m³	R15529
Trichlorofluoromethane	TO-15	2/29/2008	2.48	1.39	3.4	ND	µg/m³	R15529
Vinyl Acetate	TO-15	2/29/2008	1.76	1.39	2.4	ND	µg/m³	R15529
Vinyl Chloride	TO-15	2/29/2008	1.28	1.39	1.8	ND	µg/m³	R15529
Surr: 4-Bromofluorobenzene	TO-15	2/29/2008	0	1.39	65-135	89.1	%REC	R15529
Note: Reporting limit increased due to	low initial pressure in a	canister.						
Gasoline	TO-3(MOD)	2/29/2008	352	1.39	490	1940x	μg/m³	G15529

Note: x- Not a typical gasoline. Reported value is the result of discrete peak (light end) of non-gasoline compounds within range of C5-C12 quantified as Gasoline.

Soma Environmental Engineering, Inc. **Date Reported:** 2/29/2008

Client Sample ID: SV4 Lab Sample ID: 0802102-005

Sample Location: 557 Merrimac St,Oakland Date Prepared:

Sample Matrix: AIR

Date/Time Sampled 12/15/2008 2:20:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
1,1 - Dichloroethene	TO-15	2/29/2008	1.99	2.45	4.9	ND	μg/m³	R15529
1,1,1,2-Tetrachloroethane	TO-15	2/29/2008	3.44	2.45	8.4	ND	µg/m³	R15529
1,1,1-Trichloroethane	TO-15	2/29/2008	2.73	2.45	6.7	ND	µg/m³	R15529
1,1,2,2-Tetrachloroethane	TO-15	2/29/2008	3.44	2.45	8.4	ND	µg/m³	R15529
1,1,2-Trichloroethane	TO-15	2/29/2008	2.73	2.45	6.7	ND	µg/m³	R15529
1,1-Dichloroethane	TO-15	2/29/2008	2.03	2.45	5.0	ND	µg/m³	R15529
1,2,4-Trichlorobenzene	TO-15	2/29/2008	3.56	2.45	8.7	ND	µg/m³	R15529
1,2,4-Trimethylbenzene	TO-15	2/29/2008	2.46	2.45	6.0	3.6 J	µg/m³	R15529
1,2-Dibromoethane(Ethylene dibromide)	TO-15	2/29/2008	3.84	2.45	9.4	ND	µg/m³	R15529
1,2-Dichlorobenzene	TO-15	2/29/2008	3.01	2.45	7.4	ND	μg/m³	R15529
1,2-Dichloroethane	TO-15	2/29/2008	2.03	2.45	5.0	ND	μg/m³	R15529
1,2-Dichloropropane	TO-15	2/29/2008	2.31	2.45	5.7	ND	µg/m³	R15529
1,2- dichlorotetrafluoroethane(F114)	TO-15	2/29/2008	3.13	2.45	7.7	ND	µg/m³	R15529
1,3,5-Trimethylbenzene	TO-15	2/29/2008	2.46	2.45	6.0	ND	μg/m³	R15529
1,3-Butadiene	TO-15	2/29/2008	1.11	2.45	2.7	ND	µg/m³	R15529
1,3-Dichlorobenzene	TO-15	2/29/2008	3.01	2.45	7.4	ND	μg/m³	R15529
1,4-Dichlorobenzene	TO-15	2/29/2008	3.01	2.45	7.4	ND	μg/m³	R15529
1,4-Dioxane	TO-15	2/29/2008	1.8	2.45	4.4	ND	µg/m³	R15529
2-Butanone (MEK)	TO-15	2/29/2008	1.48	2.45	3.6	ND	μg/m³	R15529
2-Hexanone	TO-15	2/29/2008	2.05	2.45	5.0	ND	µg/m³	R15529
4-Ethyl Toluene	TO-15	2/29/2008	2.46	2.45	6.0	3.1 J	μg/m³	R15529
4-Methyl-2-Pentanone (MIBK)	TO-15	2/29/2008	2.05	2.45	5.0	ND	μg/m³	R15529
Acetone	TO-15	2/29/2008	9.52	2.45	23	42	μg/m³	R15529
Benzene	TO-15	2/29/2008	1.6	2.45	3.9	2.8 J	μg/m³	R15529
Benzyl Chloride	TO-15	2/29/2008	2.88	2.45	7.1	ND	μg/m³	R15529
Bromodichloromethane	TO-15	2/29/2008	3.35	2.45	8.2	ND	μg/m³	R15529
Bromoform	TO-15	2/29/2008	5.17	2.45	13	ND	μg/m³	R15529
Bromomethane	TO-15	2/29/2008	1.94	2.45	4.8	ND	μg/m³	R15529
Carbon Disulfide	TO-15	2/29/2008	1.56	2.45	3.8	ND	µg/m³	R15529
Carbon Tetrachloride	TO-15	2/29/2008	3.15	2.45	7.7	ND	µg/m³	R15529
Chlorobenzene	TO-15	2/29/2008	2.3	2.45	5.6	ND	μg/m³	R15529
Chloroethane	TO-15	2/29/2008	1.32	2.45	3.2	ND	μg/m³	R15529
Chloroform	TO-15	2/29/2008	2.44	2.45	6.0	ND	μg/m³	R15529
Chloromethane	TO-15	2/29/2008	1.04	2.45	2.5	ND	µg/m³	R15529
cis-1,2-dichloroethene	TO-15	2/29/2008	1.98	2.45	4.9	ND	μg/m³	R15529
cis-1,3-Dichloropropene	TO-15	2/29/2008	2.27	2.45	5.6	ND	μg/m³	R15529
Dibromochloromethane	TO-15	2/29/2008	4.26	2.45	10	ND	µg/m³	R15529
Dichlorodifluoromethane	TO-15	2/29/2008	2.48	2.45	6.1	ND	μg/m³	R15529
Ethyl Acetate	TO-15	2/29/2008	1.8	2.45	4.4	ND	μg/m³	R15529
Ethyl Benzene	TO-15	2/29/2008	2.17	2.45	5.3	2.1 J	μg/m³	R15529
Freon 113	TO-15	2/29/2008	3.83	2.45	9.4	ND	μg/m³	R15529
Hexachlorobutadiene	TO-15	2/29/2008	5.34	2.45	13	ND	µg/m³	R15529

Soma Environmental Engineering, Inc. **Date Reported:** 2/29/2008

Client Sample ID: SV4 Lab Sample ID: 0802102-005

Sample Location: 557 Merrimac St,Oakland Date Prepared:

Sample Matrix: AIR

Date/Time Sampled 12/15/2008 2:20:00 PM

Parameters	Analysis Method	Date Analyzed	RL	Dilution Factor	MRL	Result	Units	Analytical Batch
Hexane	TO-15	2/29/2008	3.52	2.45	8.6	ND	μg/m³	R15529
Isopropanol	TO-15	2/29/2008	16.4	2.45	40	ND	μg/m³	R15529
m,p-Xylene	TO-15	2/29/2008	2.05	2.45	5.0	14	μg/m³	R15529
Methylene Chloride	TO-15	2/29/2008	3.61	2.45	8.8	ND	μg/m³	R15529
MTBE	TO-15	2/29/2008	1.81	2.45	4.4	ND	μg/m³	R15529
Naphthalene	TO-15	2/29/2008	2.62	2.45	6.4	ND	μg/m³	R15529
o-xylene	TO-15	2/29/2008	2.17	2.45	5.3	ND	μg/m³	R15529
Styrene	TO-15	2/29/2008	2.13	2.45	5.2	ND	μg/m³	R15529
Tetrachloroethene	TO-15	2/29/2008	3.39	2.45	8.3	ND	μg/m³	R15529
Tetrahydrofuran	TO-15	2/29/2008	1.48	2.45	3.6	ND	μg/m³	R15529
Toluene	TO-15	2/29/2008	1.89	2.45	4.6	12	μg/m³	R15529
trans-1,2-Dichloroethene	TO-15	2/29/2008	1.98	2.45	4.9	ND	μg/m³	R15529
Trichloroethene	TO-15	2/29/2008	2.69	2.45	6.6	ND	μg/m³	R15529
Trichlorofluoromethane	TO-15	2/29/2008	2.48	2.45	6.1	ND	μg/m³	R15529
Vinyl Acetate	TO-15	2/29/2008	1.76	2.45	4.3	ND	μg/m³	R15529
Vinyl Chloride	TO-15	2/29/2008	1.28	2.45	3.1	ND	μg/m³	R15529
Surr: 4-Bromofluorobenzene	TO-15	2/29/2008	0	2.45	65-135	89.8	%REC	R15529
Note: Reporting limit increased due to	low initial pressure in a	a canister. J - Estir	mated resu	lt between MD	L and PQL.			
Gasoline	TO-3(MOD)	2/29/2008	352	2.45	860	ND	µg/m³	G15529

Note: Reporting limit increased due to low initial pressure in a canister.

Definitions, legends and Notes

Note	Description
ug/kg	Microgram per kilogram (ppb, part per billion).
ug/L	Microgram per liter (ppb, part per billion).
mg/kg	Milligram per kilogram (ppm, part per million).
mg/L	Milligram per liter (ppm, part per million).
LCS/LCSD	Laboratory control sample/laboratory control sample duplicate.
MDL	Method detection limit.
MRL	Modified reporting limit. When sample is subject to dilution, reporting limit times dilution factor yields MRL.
MS/MSD	Matrix spike/matrix spike duplicate.
N/A	Not applicable.
ND	Not detected at or above detection limit.
NR	Not reported.
QC	Quality Control.
RL	Reporting limit.
% RPD	Percent relative difference.
а	pH was measured immediately upon the receipt of the sample, but it was still done outside the holding time.
sub	Analyzed by subcontracting laboratory, Lab Certificate #

Torrent Laboratory, Inc.

Date: 29-Feb-08

CLIENT: Soma Environmental Engineering, Inc.

Work Order: 0802102

BatchID: G15529 **Project:**

Sample ID MB-G	SampType: MBLK	TestCode: TO-3Gas (MO Units: ppbv	Prep Date: 2/28/2008	RunNo: 15529
Client ID: ZZZZZ	Batch ID: G15529	TestNo: TO-3(MOD)	Analysis Date: 2/28/2008	SeqNo: 223177
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Gasoline	ND	100		
Sample ID LCS-G	SampType: LCS	TestCode: TO-3Gas (MO Units: ppbv	Prep Date: 2/28/2008	RunNo: 15529
Client ID: ZZZZZ	Batch ID: G15529	TestNo: TO-3(MOD)	Analysis Date: 2/28/2008	SeqNo: 223178
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Gasoline	1012	100 1000 0	101 50 150	
Sample ID LCSD-G	SampType: LCSD	TestCode: TO-3Gas (MO Units: ppbv	Prep Date: 2/28/2008	RunNo: 15529
Client ID: ZZZZZ	Batch ID: G15529	TestNo: TO-3(MOD)	Analysis Date: 2/29/2008	SeqNo: 223179
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Gasoline	1007	100 1000 0	101 50 150 1012	0.525 30

ANALYTICAL QC SUMMARY REPORT

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 1 of 7

Work Order: 0802102

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R15529

Sample ID MB	SampType: M	BLK	TestCod	e: TO-15	Units: ppbv		Prep Dat	te: 2/29/20	108	RunNo: 155	529	
Client ID: ZZZZZ	Batch ID: R1	15529	TestN	o: TO-15			Analysis Dat	e: 2/29/20	108	SeqNo: 223	3094	
Analyte	R	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1 - Dichloroethene		ND	0.50									
1,1,1,2-Tetrachloroethane		ND	0.50									
1,1,1-Trichloroethane		ND	0.50									
1,1,2,2-Tetrachloroethane		ND	0.50									
1,1,2-Trichloroethane		ND	0.50									
1,1-Dichloroethane		ND	0.50									
1,2,4-Trichlorobenzene		ND	0.50									
1,2,4-Trimethylbenzene		ND	0.50									
1,2-Dibromoethane(Ethylene dib	romide	ND	0.50									
1,2-Dichlorobenzene		ND	0.50									
1,2-Dichloroethane		ND	0.50									
1,2-Dichloropropane		ND	0.50									
1,3,5-Trimethylbenzene		ND	0.50									
1,3-Butadiene		ND	0.50									
1,3-Dichlorobenzene		ND	0.50									
1,4-Dichlorobenzene		ND	0.50									
1,4-Dioxane		ND	0.50									
2-Butanone (MEK)		ND	0.50									
2-Hexanone		ND	0.50									
4-Ethyl Toluene		ND	0.50									
4-Methyl-2-Pentanone (MIBK)		ND	0.50									
Acetone		ND	4.0									
Benzene		ND	0.50									
Benzyl Chloride		ND	0.50									
Bromodichloromethane		ND	0.50									
Bromoform		ND	0.50									
Bromomethane		ND	0.50									
Carbon Disulfide		ND	0.50									
Carbon Tetrachloride		ND	0.50									
Chlorobenzene		ND	0.50									
Chloroethane		ND	0.50									

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 2 of 7

Work Order: 0802102

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R15529

Sample ID MB	SampType: MBLK	TestCode: TO-15	Units: ppbv	Prep Date: 2/29/2008	RunNo: 15529
Client ID: ZZZZZ	Batch ID: R15529	TestNo: TO-15		Analysis Date: 2/29/2008	SeqNo: 223094
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloroform	ND	0.50			
Chloromethane	ND	0.50			
cis-1,2-dichloroethene	ND	0.50			
cis-1,3-Dichloropropene	ND	0.50			
Dibromochloromethane	ND	0.50			
Dichlorodifluoromethane	ND	0.50			
Ethyl Acetate	ND	0.50			
Ethyl Benzene	ND	0.50			
Freon 113	ND	0.50			
Hexachlorobutadiene	ND	0.50			
Hexane	ND	1.0			
Isopropanol	ND	4.0			
m,p-Xylene	ND	0.50			
Methylene Chloride	ND	1.0			
MTBE	ND	0.50			
Naphthalene	ND	5.0			
o-xylene	ND	0.50			
Styrene	ND	0.50			
Tetrachloroethene	ND	0.50			
Toluene	ND	0.50			
trans-1,2-Dichloroethene	ND	0.50			
Trichloroethene	ND	0.50			
Trichlorofluoromethane	ND	0.50			
Vinyl Acetate	ND	0.50			
Vinyl Chloride	ND	0.50			
Surr: 4-Bromofluorobenzene	17.13	0 20	0	85.7 65 135	
Sample ID LCS	SampType: LCS	TestCode: TO-15	Units: ppbv	Prep Date: 2/29/2008	RunNo: 15529
Client ID: ZZZZZ	Batch ID: R15529	TestNo: TO-15		Analysis Date: 2/29/2008	SeqNo: 223095
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 3 of 7

Work Order: 0802102

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R15529

Sample ID LCS Sam	pType: LCS	TestCod	de: TO-15	Units: ppbv		Prep Da	te: 2/29/2 0	008	RunNo: 15	529	
Client ID: ZZZZZ Ba	tch ID: R15529	TestN	lo: TO-15			Analysis Da	te: 2/29/20	008	SeqNo: 22	3095	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1 - Dichloroethene	24.48	0.50	20	0	122	65	135				
1,1,1,2-Tetrachloroethane	21.65	0.50	20	0	108	65	135				
1,1,1-Trichloroethane	20.06	0.50	20	0	100	65	135				
1,1,2,2-Tetrachloroethane	23.14	0.50	20	0	116	65	135				
1,1,2-Trichloroethane	23.54	0.50	20	0	118	65	135				
1,1-Dichloroethane	23.62	0.50	20	0	118	65	135				
1,2,4-Trichlorobenzene	21.13	0.50	20	0	106	65	135				
1,2,4-Trimethylbenzene	22.09	0.50	20	0	110	65	135				
1,2-Dibromoethane(Ethylene dibromide	22.22	0.50	20	0	111	65	135				
1,2-Dichlorobenzene	23.09	0.50	20	0	115	65	135				
1,2-Dichloroethane	23.61	0.50	20	0	118	65	135				
1,2-Dichloropropane	23.52	0.50	20	0	118	65	135				
1,3,5-Trimethylbenzene	21.74	0.50	20	0	109	65	135				
1,3-Butadiene	25.57	0.50	20	0	128	65	135				
1,3-Dichlorobenzene	23.13	0.50	20	0	116	65	135				
1,4-Dichlorobenzene	23.16	0.50	20	0	116	65	135				
1,4-Dioxane	23.79	0.50	20	0	119	65	135				
2-Butanone (MEK)	20.25	0.50	20	0	101	65	135				
2-Hexanone	23.36	0.50	20	0	117	65	135				
4-Ethyl Toluene	21.67	0.50	20	0	108	65	135				
4-Methyl-2-Pentanone (MIBK)	22.38	0.50	20	0	112	65	135				
Acetone	24.35	4.0	20	0	122	65	135				
Benzene	20.81	0.50	20	0	104	65	135				
Benzyl Chloride	22.35	0.50	20	0	112	65	135				
Bromodichloromethane	22.37	0.50	20	0	112	65	135				
Bromoform	22.33	0.50	20	0	112	65	135				
Bromomethane	23.58	0.50	20	0	118	65	135				
Carbon Disulfide	23.28	0.50	20	0	116	65	135				
Carbon Tetrachloride	20.29	0.50	20	0	101	65	135				
Chlorobenzene	22.02	0.50	20	0	110	65	135				
Chloroethane	18.18	0.50	20	0	90.9	65	135				

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 4 of 7

Work Order: 0802102

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R15529

Sample ID LCS	SampType: LCS	TestCoo	le: TO-15	Units: ppbv		Prep Date	: 2/29/20	08	RunNo: 15	529	
Client ID: ZZZZZ	Batch ID: R15529	TestN	lo: TO-15		Analysis Date: 2/29/2008				SeqNo: 223	3095	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloroform	22.84	0.50	20	0	114	65	135				
Chloromethane	14.92	0.50	20	0	74.6	65	135				
cis-1,2-dichloroethene	23.42	0.50	20	0	117	65	135				
cis-1,3-Dichloropropene	22.47	0.50	20	0	112	65	135				
Dibromochloromethane	21.86	0.50	20	0	109	65	135				
Dichlorodifluoromethane	21.37	0.50	20	0	107	65	135				
Ethyl Acetate	20.57	0.50	20	0	103	65	135				
Ethyl Benzene	20.23	0.50	20	0	101	65	135				
Freon 113	21.36	0.50	20	0	107	65	135				
Hexachlorobutadiene	20.66	0.50	20	0	103	65	135				
Hexane	21.12	1.0	20	0.72	102	65	135				
Isopropanol	26.31	4.0	20	0	132	65	135				
m,p-Xylene	42.02	0.50	40	0	105	65	135				
Methylene Chloride	22.51	1.0	20	0	113	65	135				
MTBE	22.38	0.50	20	0	112	65	135				
Naphthalene	22.48	5.0	20	0	112	65	135				
o-xylene	22.35	0.50	20	0	112	65	135				
Styrene	21.58	0.50	20	0	108	65	135				
Tetrachloroethene	20.85	0.50	20	0	104	65	135				
Toluene	21.59	0.50	20	0	108	65	135				
trans-1,2-Dichloroethene	23.44	0.50	20	0	117	65	135				
Trichloroethene	22.15	0.50	20	0	111	65	135				
Trichlorofluoromethane	24.35	0.50	20	0	122	65	135				
Vinyl Acetate	21.11	0.50	20	0	106	65	135				
Vinyl Chloride	26.44	0.50	20	0	132	65	135				
Surr: 4-Bromofluorobenzene	20.00	0	20	0	100	65	135				
Sample ID LCSD	SampType: LCSD	TestCod	le: TO-15	Units: ppbv		Prep Date	e: 2/29/20	08	RunNo: 15	529	
Client ID: ZZZZZ	Batch ID: R15529	TestN	lo: TO-15			Analysis Date	e: 2/29/20	08	SeqNo: 223	3096	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 5 of 7

Work Order: 0802102

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R15529

Sample ID LCSD Sar	mpType: LCSD	TestCod	de: TO-15	Units: ppbv		Prep Da	te: 2/29/20	008	RunNo: 15	529	
Client ID: ZZZZZ B	atch ID: R15529	TestN	lo: TO-15			Analysis Da	te: 2/29/20	800	SeqNo: 22	3096	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1 - Dichloroethene	24.64	0.50	20	0	123	65	135	24.48	0.651	30	
1,1,1,2-Tetrachloroethane	21.72	0.50	20	0	109	65	135	21.65	0.323	30	
1,1,1-Trichloroethane	21.10	0.50	20	0	106	65	135	20.06	5.05	30	
1,1,2,2-Tetrachloroethane	23.05	0.50	20	0	115	65	135	23.14	0.390	30	
1,1,2-Trichloroethane	23.76	0.50	20	0	119	65	135	23.54	0.930	30	
1,1-Dichloroethane	24.15	0.50	20	0	121	65	135	23.62	2.22	30	
1,2,4-Trichlorobenzene	20.98	0.50	20	0	105	65	135	21.13	0.712	30	
1,2,4-Trimethylbenzene	21.88	0.50	20	0	109	65	135	22.09	0.955	30	
1,2-Dibromoethane(Ethylene dibromide	22.22	0.50	20	0	111	65	135	22.22	0	30	
1,2-Dichlorobenzene	23.05	0.50	20	0	115	65	135	23.09	0.173	30	
1,2-Dichloroethane	22.33	0.50	20	0	112	65	135	23.61	5.57	30	
1,2-Dichloropropane	22.59	0.50	20	0	113	65	135	23.52	4.03	30	
1,3,5-Trimethylbenzene	21.52	0.50	20	0	108	65	135	21.74	1.02	30	
1,3-Butadiene	25.78	0.50	20	0	129	65	135	25.57	0.818	30	
1,3-Dichlorobenzene	23.14	0.50	20	0	116	65	135	23.13	0.0432	30	
1,4-Dichlorobenzene	22.67	0.50	20	0	113	65	135	23.16	2.14	30	
1,4-Dioxane	23.51	0.50	20	0	118	65	135	23.79	1.18	30	
2-Butanone (MEK)	21.02	0.50	20	0	105	65	135	20.25	3.73	30	
2-Hexanone	23.67	0.50	20	0	118	65	135	23.36	1.32	30	
4-Ethyl Toluene	21.34	0.50	20	0	107	65	135	21.67	1.53	30	
4-Methyl-2-Pentanone (MIBK)	22.75	0.50	20	0	114	65	135	22.38	1.64	30	
Acetone	23.00	4.0	20	0	115	65	135	24.35	5.70	30	
Benzene	22.35	0.50	20	0	112	65	135	20.81	7.14	30	
Benzyl Chloride	22.40	0.50	20	0	112	65	135	22.35	0.223	30	
Bromodichloromethane	21.95	0.50	20	0	110	65	135	22.37	1.90	30	
Bromoform	22.23	0.50	20	0	111	65	135	22.33	0.449	30	
Bromomethane	25.66	0.50	20	0	128	65	135	23.58	8.45	30	
Carbon Disulfide	23.85	0.50	20	0	119	65	135	23.28	2.42	30	
Carbon Tetrachloride	21.32	0.50	20	0	107	65	135	20.29	4.95	30	
Chlorobenzene	21.37	0.50	20	0	107	65	135	22.02	3.00	30	
Chloroethane	19.84	0.50	20	0	99.2	65	135	18.18	8.73	30	

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 6 of 7

Work Order: 0802102

Project:

ANALYTICAL QC SUMMARY REPORT

BatchID: R15529

Sample ID LCSD	SampType: LCSD	TestCod	de: TO-15	Units: ppbv		Prep Da	te: 2/29/2 0	008	RunNo: 15	529	
Client ID: ZZZZZ	Batch ID: R15529	TestN	No: TO-15			Analysis Da	te: 2/29/2 0	008	SeqNo: 223	3096	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloroform	23.13	0.50	20	0	116	65	135	22.84	1.26	30	
Chloromethane	18.90	0.50	20	0	94.5	65	135	14.92	23.5	30	
cis-1,2-dichloroethene	23.98	0.50	20	0	120	65	135	23.42	2.36	30	
cis-1,3-Dichloropropene	23.15	0.50	20	0	116	65	135	22.47	2.98	30	
Dibromochloromethane	22.34	0.50	20	0	112	65	135	21.86	2.17	30	
Dichlorodifluoromethane	22.37	0.50	20	0	112	65	135	21.37	4.57	30	
Ethyl Acetate	22.19	0.50	20	0	111	65	135	20.57	7.58	30	
Ethyl Benzene	20.52	0.50	20	0	103	65	135	20.23	1.42	30	
Freon 113	21.82	0.50	20	0	109	65	135	21.36	2.13	30	
Hexachlorobutadiene	20.73	0.50	20	0	104	65	135	20.66	0.338	30	
Hexane	22.67	1.0	20	0.72	110	65	135	21.12	7.08	30	
Isopropanol	22.05	4.0	20	0	110	65	135	26.31	17.6	30	
m,p-Xylene	42.34	0.50	40	0	106	65	135	42.02	0.759	30	
Methylene Chloride	23.98	1.0	20	0	120	65	135	22.51	6.32	30	
MTBE	23.25	0.50	20	0	116	65	135	22.38	3.81	30	
Naphthalene	22.52	5.0	20	0	113	65	135	22.48	0.178	30	
o-xylene	21.90	0.50	20	0	110	65	135	22.35	2.03	30	
Styrene	21.09	0.50	20	0	105	65	135	21.58	2.30	30	
Tetrachloroethene	21.12	0.50	20	0	106	65	135	20.85	1.29	30	
Toluene	21.72	0.50	20	0	109	65	135	21.59	0.600	30	
trans-1,2-Dichloroethene	24.01	0.50	20	0	120	65	135	23.44	2.40	30	
Vinyl Acetate	20.86	0.50	20	0	104	65	135	21.11	1.19	30	
Vinyl Chloride	25.70	0.50	20	0	128	65	135	26.44	2.84	30	
Surr: 4-Bromofluorobenzene	19.73	0	20	0	98.6	65	135	0	0	30	

Value above quantitation range Qualifiers:

ND Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Page 7 of 7

483 Sinclair Frontage Road Milpitas, CA 95035 Phone: 408.263.5258 RESET

FAX: 408.263.8293 www.torrentlab.com

CHAIN OF CUSTODY

ONOTE SHADED AREAS ARE FOR TORRENT LABUSE ONLY

Company Name: SOMA ENVIRONG		Location	on of S	ampling	: 55	7 1	Merry	Mac	St.	, Oa	klan	d			
Address: 6620 OWENS DR,	SUITE A , PLE	ASANTON		Purpos	se:	So	U Va	2/201	ſ						
City: PLEASANTON SI	tate: CA	Zip Code	: 94588	Specia	al Instru	ctions /	Comme	ents:	pleas	e em	ail .	prel	imina	y	_
Telephone: (925) 734 - 6400 FA)	(: 1925) 734	6401			·		Comme		hes	ults	to I	byce	1		
REPORT TO: JOYCE BOBEK	EPORT TO: JOYCE BOBEK SAMPLER: RICH MCKINNEY							0.#: 3022 EMAIL: jbobek@domaenv.c							
TURNAROUND TIME:	SAMPLE TYP	E:	REPORT	FORMAT:									-		
10 Work Days 3 Work Days Noon - N 7 Work Days 2 Work Days 2 - 8 Hot 5 Work Days 1 Work Day Other	Wasta Wata	Other	Excel /		0.3	0-15								ANALY	
LAB ID CLIENT'S SAMPLE I.D.	DATE / TIME SAMPLED	MATRIX	# OF CONT	CONT TYPE	F									REMARK	S
OOLA SVI	12/15/08 123	GAS	1	SUMMA	*	×			-						
002A SVI-DUP	1315	-	1		· X	×									
0031 SV2	103	2	. 1		*	Х							, i	·	
0041 SV3	101				×	*									
005A SV4	142	3	1		ጽ	×									
				٠.											
														-	
				V					.,						
	MATHUR 2119	108	Time:		Receiv		ore		Print:	Dore		Date:		Time:	
2 Relinquished By: Print:	Date: 2//		Time: 9:1	8	Receiv	ed By: ↓\\S	N DES	<u> </u>	Print.			Date:	20	Times Q22	10 Oc
Were Samples Received in Good Condition?	Yes NO	Samples on I	_	_	Method	of Shipi	ment			;			1	ct? 🔲 Yes 📭 No	-2696
NOTE: Samples are discarded by the lab						s are ma			Dat	e:			Pag	e of	

CHAIN OF CUSTODY

Analyses

Pacific	Analy	tical	La	bora	tory

851 West Midway Ave., Suite 201B Alameda, CA 94501 510-864-0364 phone 510-864-0365 fax

Project No: 3022

PAL LOGIN # 3 02 0021

Sampler: Lizzie Hightower/Rich McKinney

Report To: Joyce Bobek

Project Name: 557 Merrimac Street, Oakland CA SOMA Environmental Company:

Turna	round Time: Standard		Telepi	hon	e:		925-734-640	00				2	30B				
	IL RESULTS SBORE	Fax:	_			925-734-640					1 8015	E 8260B					
Ema	TE RESULT INOBE	K& SAMIL	00,00		Mat	trix		P	res	erv	ative	TPHd	MtBE				- 1
Lab No.	Sample ID.	Sampling		Soil	Water	Waste	# of Containers	HCL	H ₂ SO ₄	HNO3	ICE	TPH9 TF					
10	B1-5	每14/08	11:08	X			6" Skeve				X	X	X				
02	B1-10	Rm	11:25	X			6" Sleeve				X	X	Χ				
03	B1-20		11:40	X			6" Sleeve				X	X	X				
04	B1-W		11:52		X		1-L Amber	X			X	X	X				
-05	87-5		12:05	X			6' Sleeve				X	X				\Box	
06	B7-10		12:18				6" Sleeve				X	X	X			-	4
07	B7-15	12.00	12:32	X			6" Sleeve	_			X	X	X		1	\Box	
08	87-20		12:40	X			6" Sleeve				X		X				
09	87-W		12:55		X		3 VOAS 1-LAmber	X			X		X				
10	85-5		(3108	_			6" Sleeve				X	X	X				
((B5-10	V	13:22	X			is 1 Sleeve				X	X	X				
Notes	EDF OUTPUT REQUIRE	D		RE	LIN	IQUIS	SHED BY:					RE	CE	IVED BY:			

2-20-08 1430 DATE/TIME

DATE/TIME

14:36

DATE/TIME

DATE/TIME

DATE/TIME

DATE/TIME

Analyses

Pacific Analytical Laboratory

851 West Midway Ave., Suite 201B Alameda, CA 94501 510-864-0364 phone 510-864-0365 fax

PAL LOGIN # 802002

Sampler: Lizzie Hightower/Rich McKinney

Project No: 3022 Report To: Joyce Bobek

Project Name: 557 Merrimac Street, Oakland CA SOMA Environmental Company:

Turnaround Time: Standard Telephone: 925-734-6400

> Fax: 925-734-6401

						Mat	trix		F	res	erv	ativ	e
Lab No.	Sample ID.	Sa	mplin Tin	g Date ne	Soil	Water	Waste	# of Container	HCL s	H ₂ SO ₄	HNO3	ICE	
12	B5-15	2/14	108	1336	X			6"Sleen	2			X	
13	85-20			1342	X			6"Sleen				X	
(4	B5-25			1350	X			6"Sleer				X	
15	84-5			1539	X			6"Sleen	$\overline{}$			X	
W	B4-10			1549	X			6" Sleer	e			X	
17	B4-15			1608	X			6" Sleer	ie			X	
19	B4-20			1624	X			6" Sleen	,			X	
19	185-W			1622		X		1-LAmbe	X			7	3
20	B4-W		1	1635	V	X		3 VUAS 1-LAMb	×X			X	

Notes: EDF OUTPUT REQUIRED

RELINQUISHED BY:

RECEIVED BY:

BTEX, MtBE 8260B TPHg TPHd 8015

X X

HOLD

2.00.08

DATE/TIME

DATE/TIME

DATE/TIME

DATE/TIME

DATE/TIME

Pacific Analytical Laboratory

851 West Midway Ave., Suite 201B Alameda, CA 94501 510-864-0364 phone 510-864-0365 fax

PAL LOGIN#	8020021
	0

Analyses

	Sampler: Lizzie Hightower/Rich McKinney
· ·	

Project No: 3022 Report To: Joyce Bobek

Project Name: 557 Merrimac Street, Oakland CA Company: SOMA Environmental

Turnaround Time: Standard Telephone: 925-734-6400

925-734-6401

gimen RESULTS JBOBER OSOMAGENICOM Matrix Preservative Waste HNO3 Water H₂SO₄ Sampling Date Lab # of CE Sample ID. Time No. B2-5 2115/08 1050 B2-20 1110 22 3 VOY B2 -W L 1320 1-LITER 88-5 1300 B8-15 1315 1325 K 21 1210 1225 X 28 83-20 1232 3 VOY TER X B3-W 36 1240

				1				
X TPHg TPHd 8015	BTEX, MtBE 8260B							
X	K	\top	T					Г
X	X	\top	T					
X	X							
X	X							
X	X							
X	X							
X	X				-			
X	X							
X	X	100		-				
Y	X			0				

Notes: EDF OUTPUT REQUIRED

RELINQUISHED BY:

RECEIVED BY:

2-70-08 1430 DATE/TIME

0.00.68 14:35 DATE/TIME

DATE/TIME

DATE/TIME

DATE/TIME

DATE/TIME

CHAIN OF CUSTODY

Analyses

Pacific Analytical	Laboratory
--------------------	------------

851 West Midway Ave., Suite 201B Alameda, CA 94501

PAL LOGIN# 8020021

Sampler: Lizzie Hightower/Rich McKinney

Joyce Bobek Report To:

Project Name: 557 Merrimac Street, Oakland CA SOMA Environmental Company:

Turnar	ound Time: Standard		Telep	hor	ie:		925-734-640	00				2	8260B				
			Fax:				925-734-640)1				8015	826				
					Mat	trix		Preservati			ative	TPHd	MtBE	5 5 6			
Lab No.	Sample ID.	Samplin		Soil	Water	Waste	# of Containers	HCL	H ₂ SO ₄	HNO3	핑	TPHg TF					
31	B6-5	2115/08	0940	x			1				X	X	X				
32	B6-15	2/15/08	1000	×			1				x	X	X				
33	B6-20	2115/68	1012	K			1				X	X	X				
34	B6-W	2/15/08	1015		X		310AS IL Amber	X			X	X	X				
35	B6-10	2/15/08	0950	X			2 VOAS				X	X	-				
36	B2-10	2115/08	1058	X			/				X		X				
37	B2-15	2/15/08	1100	X			2V 0 AS				X	>	X				
38	B3-10	2/15/08	1218	X			- 1				X		X				
291	B8-10	2/15/08	1308	X			1				X	X	X				
40	B8-W	2/19/08	1155	-	X	H	1 i Amser	X			X	X	K		200		-
Notes	EDF OUTPUT REQUIRED			RI	ELIN	IQUI	SHED BY:	_	_	Ш		RI	ECE	VED BY:	2	7	-

2.20.08 DATE/TIME

DATE/TIME

DATE/TIME

DATE/TIME

DATE/TIME

510-864-0364 phone 510-864-0365 fax

Project No: 3022

03 March 2008

Mansour Sepehr SOMA Environmental Engineering Inc. 6620 Owens Drive, Suite A Pleasanton, CA 94588

RE: 557 Merrimac Street, Oakland CA

Work Order Number: 8020021

Mapad Ach

This Laboratory report has been reviewed for technical correctness and completeness. This entire report was reviewed and approved by the Laboratory Director or the Director's designee, as verified by the following signature.

Sincerely,

Maiid Akhavan

Laboratory Director

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B1-5	8020021-01	Soil	14-Feb-08 11:08	20-Feb-08 17:11
B1-10	8020021-02	Soil	14-Feb-08 11:25	20-Feb-08 17:11
B1-20	8020021-03	Soil	14-Feb-08 11:40	20-Feb-08 17:11
B1-W	8020021-04	Water	14-Feb-08 11:52	20-Feb-08 17:11
B7-5	8020021-05	Soil	14-Feb-08 12:05	20-Feb-08 17:11
B7-10	8020021-06	Soil	14-Feb-08 12:18	20-Feb-08 17:11
B7-15	8020021-07	Soil	14-Feb-08 12:32	20-Feb-08 17:11
B7-20	8020021-08	Soil	14-Feb-08 12:40	20-Feb-08 17:11
B7-W	8020021-09	Water	14-Feb-08 12:55	20-Feb-08 17:11
B5-5	8020021-10	Soil	14-Feb-08 13:08	20-Feb-08 17:11
B5-10	8020021-11	Soil	14-Feb-08 13:22	20-Feb-08 17:11
B5-15	8020021-12	Soil	14-Feb-08 13:36	20-Feb-08 17:11
B5-20	8020021-13	Soil	14-Feb-08 13:42	20-Feb-08 17:11
B4-5	8020021-15	Soil	14-Feb-08 15:39	20-Feb-08 17:11
B4-10	8020021-16	Soil	14-Feb-08 15:49	20-Feb-08 17:11
B4-15	8020021-17	Soil	14-Feb-08 16:08	20-Feb-08 17:11
B4-20	8020021-18	Soil	14-Feb-08 16:24	20-Feb-08 17:11
B5-W	8020021-19	Water	14-Feb-08 16:22	20-Feb-08 17:11
B4-W	8020021-20	Water	14-Feb-08 16:35	20-Feb-08 17:11
B2-5	8020021-21	Soil	15-Feb-08 10:50	20-Feb-08 17:11
B2-20	8020021-22	Soil	15-Feb-08 11:10	20-Feb-08 17:11
B2-W	8020021-23	Water	15-Feb-08 13:20	20-Feb-08 17:11
B8-5	8020021-24	Soil	15-Feb-08 13:00	20-Feb-08 17:11
B8-15	8020021-25	Soil	15-Feb-08 13:15	20-Feb-08 17:11
B8-20	8020021-26	Soil	15-Feb-08 13:25	20-Feb-08 17:11
B3-5	8020021-27	Soil	15-Feb-08 12:10	20-Feb-08 17:11

Pacific Analytical Laboratory

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B3-15	8020021-28	Soil	15-Feb-08 12:25	20-Feb-08 17:11
B3-20	8020021-29	Soil	15-Feb-08 12:32	20-Feb-08 17:11
B3-W	8020021-30	Water	15-Feb-08 12:40	20-Feb-08 17:11
B6-5	8020021-31	Soil	15-Feb-08 09:40	20-Feb-08 17:11
B6-15	8020021-32	Soil	15-Feb-08 10:00	20-Feb-08 17:11
B6-20	8020021-33	Soil	15-Feb-08 10:12	20-Feb-08 17:11
B6-W	8020021-34	Water	15-Feb-08 10:15	20-Feb-08 17:11
B6-10	8020021-35	Soil	15-Feb-08 09:50	20-Feb-08 17:11
B2-10	8020021-36	Soil	15-Feb-08 10:58	20-Feb-08 17:11
B2-15	8020021-37	Soil	15-Feb-08 11:00	20-Feb-08 17:11
B3-10	8020021-38	Soil	15-Feb-08 12:18	20-Feb-08 17:11
B8-10	8020021-39	Soil	15-Feb-08 13:08	20-Feb-08 17:11
B8-W	8020021-40	Water	19-Feb-08 11:55	20-Feb-08 17:11

6620 Owens Drive, Suite A Project Number: 3022 Reported:
Pleasanton CA, 94588 Project Manager: Mansour Sepehr 03-Mar-08 21:32

Extractable Petroleum Hydrocarbons by 8015 DRO Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
B1-5 (8020021-01) Soil Sampled: 14-Feb-08 11:0	8 Received	: 20-Feb-08 17	:11									
Diesel (C10-C24)	ND	50.0	mg/kg	1	BB82401	20-Feb-08	24-Feb-08	EPA 8015M				
Surrogate: Pentacosane		86.8 %	70-	130	"	"	"	"				
B1-10 (8020021-02) Soil Sampled: 14-Feb-08 11:	25 Receive	d: 20-Feb-08 1	7:11									
Diesel (C10-C24)	ND	50.0	mg/kg	1	BB82401	20-Feb-08	24-Feb-08	EPA 8015M				
Surrogate: Pentacosane		84.6 %	70-	130	"	"	"	"				
B1-20 (8020021-03) Soil Sampled: 14-Feb-08 11:	40 Receive	d: 20-Feb-08 1	7:11									
Diesel (C10-C24)	ND	50.0	mg/kg	1	BB82401	20-Feb-08	24-Feb-08	EPA 8015M				
Surrogate: Pentacosane		78.2 %	70-	130	"	"	"	"				
B1-W (8020021-04) Water Sampled: 14-Feb-08	11:52 Recei	ved: 20-Feb-08	8 17:11									
Diesel (C10-C24)	ND	50.0	ug/l	1	BB82801	20-Feb-08	29-Feb-08	EPA 8015M				
Surrogate: Pentacosane		102 %	50.4	-137	"	"	"	"				
B7-5 (8020021-05) Soil Sampled: 14-Feb-08 12:0	5 Received	: 20-Feb-08 17	:11									
Diesel (C10-C24)	ND	50.0	mg/kg	1	BB82401	20-Feb-08	24-Feb-08	EPA 8015M				
Surrogate: Pentacosane		86.8 %	70-	130	"	"	"	"				
B7-10 (8020021-06) Soil Sampled: 14-Feb-08 12:	18 Receive	d: 20-Feb-08 1	7:11									
Diesel (C10-C24)	ND	50.0	mg/kg	1	BB82401	20-Feb-08	24-Feb-08	EPA 8015M				
Surrogate: Pentacosane		92.6 %	70-	130	"	"	"	"				
B7-15 (8020021-07) Soil Sampled: 14-Feb-08 12:32 Received: 20-Feb-08 17:11												
Diesel (C10-C24)	ND	50.0	mg/kg	1	BB82401	20-Feb-08	24-Feb-08	EPA 8015M				
Surrogate: Pentacosane		82.8 %	70-	130	"	"	"	"				

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Extractable Petroleum Hydrocarbons by 8015 DRO

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B7-20 (8020021-08) Soil Sampled: 14-l	Feb-08 12:40 Received	d: 20-Feb-08 1	7:11						
Diesel (C10-C24)	ND	50.0	mg/kg	1	BB82401	20-Feb-08	24-Feb-08	EPA 8015M	
Surrogate: Pentacosane		80.0 %	70-1.	30	"	"	"	"	
B7-W (8020021-09) Water Sampled: 1	4-Feb-08 12:55 Recei	ved: 20-Feb-0	8 17:11						
Diesel (C10-C24)	ND	50.0	ug/l	1	BB82801	20-Feb-08	29-Feb-08	EPA 8015M	
Surrogate: Pentacosane		106 %	50.4-1	137	"	"	"	"	
B5-5 (8020021-10) Soil Sampled: 14-Fe	eb-08 13:08 Received	: 20-Feb-08 17	:11						
Diesel (C10-C24)	ND	50.0	mg/kg	1	BB82401	20-Feb-08	24-Feb-08	EPA 8015M	
Surrogate: Pentacosane		83.6 %	70-1.	30	"	"	"	"	
B5-10 (8020021-11) Soil Sampled: 14-1	Feb-08 13:22 Received	d: 20-Feb-08 1	7:11						
Diesel (C10-C24)	ND	50.0	mg/kg	1	BB82401	20-Feb-08	24-Feb-08	EPA 8015M	
Surrogate: Pentacosane		87.4 %	70-1.	30	"	"	"	"	
B5-15 (8020021-12) Soil Sampled: 14-1	Feb-08 13:36 Received	d: 20-Feb-08 1	7:11						
Diesel (C10-C24)	ND	50.0	mg/kg	1	BB82401	20-Feb-08	24-Feb-08	EPA 8015M	
Surrogate: Pentacosane		84.4 %	70-1.	30	"	"	"	"	
B5-20 (8020021-13) Soil Sampled: 14-1	Feb-08 13:42 Received	d: 20-Feb-08 1	7:11						
Diesel (C10-C24)	ND	50.0	mg/kg	1	BB82401	20-Feb-08	24-Feb-08	EPA 8015M	
Surrogate: Pentacosane		89.4 %	70-1.	30	"	"	"	"	
B4-5 (8020021-15) Soil Sampled: 14-Fe	eb-08 15:39 Received	: 20-Feb-08 17	:11						
Diesel (C10-C24)	ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane		178 %	70-1.	30	"	"	"	"	A-01

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Extractable Petroleum Hydrocarbons by 8015 DRO

Analyte	F	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B4-10 (8020021-16) Soil	Sampled: 14-Feb-08 15:49	Received:	20-Feb-08 1	7:11				<u> </u>		
Diesel (C10-C24)		ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane			84.2 %	70-	130	"	"	"	"	
B4-15 (8020021-17) Soil	Sampled: 14-Feb-08 16:08	Received:	20-Feb-08 1	7:11						
Diesel (C10-C24)		ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane			87.6 %	70-	130	"	"	"	"	
B4-20 (8020021-18) Soil	Sampled: 14-Feb-08 16:24	Received:	20-Feb-08 1	7:11						
Diesel (C10-C24)		ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane			90.4 %	70-	130	"	"	"	"	
B5-W (8020021-19) Water	er Sampled: 14-Feb-08 16:2	2 Receive	ed: 20-Feb-08	3 17:11						
Diesel (C10-C24)		ND	50.0	ug/l	1	BB82801	20-Feb-08	29-Feb-08	EPA 8015M	
Surrogate: Pentacosane			109 %	50.4	-137	"	"	"	"	
B4-W (8020021-20) Water	er Sampled: 14-Feb-08 16:3	5 Receive	d: 20-Feb-08	3 17:11						
Diesel (C10-C24)		196	50.0	ug/l	1	BB82801	20-Feb-08	29-Feb-08	EPA 8015M	D-06, D-30
Surrogate: Pentacosane			118 %	50.4	-137	"	"	"	"	
B2-5 (8020021-21) Soil	Sampled: 15-Feb-08 10:50 F	Received: 2	0-Feb-08 17	:11						
Diesel (C10-C24)		ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane			88.8 %	70-	130	"	"	"	"	
B2-20 (8020021-22) Soil	Sampled: 15-Feb-08 11:10	Received:	20-Feb-08 1	7:11						
Diesel (C10-C24)		ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane			85.0 %	70-	130	"	"	"	"	

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Extractable Petroleum Hydrocarbons by 8015 DRO

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B2-W (8020021-23) Wate	er Sampled: 15-Feb-08 13:2	0 Receive	ed: 20-Feb-08	3 17:11						
Diesel (C10-C24)		ND	50.0	ug/l	1	BB82801	20-Feb-08	29-Feb-08	EPA 8015M	
Surrogate: Pentacosane			112 %	50.4-1	137	"	"	"	"	
B8-5 (8020021-24) Soil	Sampled: 15-Feb-08 13:00	Received: 2	20-Feb-08 17	:11						
Diesel (C10-C24)		ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane			93.0 %	70-1.	30	"	"	"	"	
B8-15 (8020021-25) Soil	Sampled: 15-Feb-08 13:15	Received:	20-Feb-08 1	7:11						
Diesel (C10-C24)		ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane			89.4 %	70-1.	30	"	"	"	"	
B8-20 (8020021-26) Soil	Sampled: 15-Feb-08 13:25	Received:	20-Feb-08 1	7:11						
Diesel (C10-C24)		ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane			94.4 %	70-1.	30	"	"	"	"	
B3-5 (8020021-27) Soil	Sampled: 15-Feb-08 12:10	Received: 2	20-Feb-08 17	:11						
Diesel (C10-C24)		ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane			102 %	70-1.	30	"	"	"	"	
B3-15 (8020021-28) Soil	Sampled: 15-Feb-08 12:25	Received:	20-Feb-08 1	7:11						
Diesel (C10-C24)		ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane			87.6 %	70-1.	30	"	"	"	"	
B3-20 (8020021-29) Soil	Sampled: 15-Feb-08 12:32	Received:	20-Feb-08 1	7:11						
Diesel (C10-C24)		ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane			87.4 %	70-1.	30	"	"	"	"	

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Extractable Petroleum Hydrocarbons by 8015 DRO

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B3-W (8020021-30) Wat	er Sampled: 15-Feb-08 12:4	10 Receiv	ved: 20-Feb-08	3 17:11			•			
Diesel (C10-C24)		ND	50.0	ug/l	1	BB82801	20-Feb-08	29-Feb-08	EPA 8015M	
Surrogate: Pentacosane			98.8 %	50.4-	137	"	"	"	ï.	
B6-5 (8020021-31) Soil	Sampled: 15-Feb-08 09:40	Received:	20-Feb-08 17	:11						
Diesel (C10-C24)		ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane			85.6 %	70-1	130	"	"	"	"	
B6-15 (8020021-32) Soil	Sampled: 15-Feb-08 10:00	Received	: 20-Feb-08 1	7:11						
Diesel (C10-C24)		ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane			84.2 %	70-1	130	"	"	"	"	
B6-20 (8020021-33) Soil	Sampled: 15-Feb-08 10:12	Received	: 20-Feb-08 1	7:11						
Diesel (C10-C24)		ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane			84.0 %	70-1	130	"	"	"	"	
B6-W (8020021-34) Wat	er Sampled: 15-Feb-08 10:1	5 Receiv	ved: 20-Feb-08	3 17:11						
Diesel (C10-C24)		ND	50.0	ug/l	1	BB82801	20-Feb-08	29-Feb-08	EPA 8015M	
Surrogate: Pentacosane			130 %	50.4-	137	"	"	"	ïi .	
B6-10 (8020021-35) Soil	Sampled: 15-Feb-08 09:50	Received	: 20-Feb-08 1	7:11						
Diesel (C10-C24)		ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane			83.2 %	70-1	130	"	"	"	"	
B2-10 (8020021-36) Soil	Sampled: 15-Feb-08 10:58	Received	: 20-Feb-08 1	7:11						
Diesel (C10-C24)		ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane			84.0 %	70-1	130	"	"	"	"	

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Extractable Petroleum Hydrocarbons by 8015 DRO

Analyte	F	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B2-15 (8020021-37) Soil	Sampled: 15-Feb-08 11:00	Received	20-Feb-08 1	7:11						
Diesel (C10-C24)		ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane			88.4 %	70-	130	"	"	"	"	
B3-10 (8020021-38) Soil	Sampled: 15-Feb-08 12:18	Received:	20-Feb-08 1	7:11						
Diesel (C10-C24)		ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane			84.6 %	70-	130	"	"	"	"	
B8-10 (8020021-39) Soil	Sampled: 15-Feb-08 13:08	Received:	20-Feb-08 1	7:11						
Diesel (C10-C24)		ND	50.0	mg/kg	1	BB82401	20-Feb-08	25-Feb-08	EPA 8015M	
Surrogate: Pentacosane			103 %	70-	130	"	"	"	"	
B8-W (8020021-40) Wate	er Sampled: 19-Feb-08 11:5	5 Receiv	ed: 20-Feb-08	3 17:11						
Diesel (C10-C24)		ND	50.0	ug/l	1	BB82801	20-Feb-08	29-Feb-08	EPA 8015M	
Surrogate: Pentacosane			144 %	50.4	-137	"	"	"	"	A-01

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Volatile Organic Compounds by EPA Method 8260B

Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B1-5 (8020021-01) Soil Sampled: 14-Feb-0	08 11:08 Received:	20-Feb-08 17	:11						
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	03-Mar-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		68.0 %	70-	130	"	"	"	"	S-0-
Surrogate: Dibromofluoromethane		98.8 %	70-	130	"	"	"	"	
Surrogate: Perdeuterotoluene		91.4 %	70-	130	"	"	"	"	
B1-10 (8020021-02RE2) Soil Sampled: 14-	-Feb-08 11:25 Rece	eived: 20-Feb-	08 17:11						
Gasoline (C6-C12)	1090	1000	ug/kg	20	BC80301	20-Feb-08	03-Mar-08	EPA 8260B	
Benzene	ND	10.0	"	"	"	"	"	"	
Ethylbenzene	19.2	10.0	"	"	"	"	"	"	
m&p-Xylene	ND	40.0	"	"	"	"	"	"	
o-xylene	15.0	10.0	"	"	"	"	"	"	
Toluene	90.6	40.0	"	"	"	"	"	"	
MTBE	14.8	10.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	70-	130	"	"	"	"	
Surrogate: Dibromofluoromethane		110 %	70-	130	"	"	"	"	
Surrogate: Perdeuterotoluene		98.4 %	70-	130	"	"	"	"	
B1-20 (8020021-03) Soil Sampled: 14-Feb	-08 11:40 Received	: 20-Feb-08 1	7:11						
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	29-Feb-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
		77.4 %	70-	130	"	"	"	"	
Surrogate: 4-Bromofluorobenzene									
Surrogate: 4-Bromofluorobenzene Surrogate: Dibromofluoromethane		122 %	70-	130	"	"	"	"	

Pacific Analytical Laboratory

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Volatile Organic Compounds by EPA Method 8260B

Pacific Analytical Laboratory

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B1-W (8020021-04) Water Sampled: 14-F	Feb-08 11:52 Receiv	ed: 20-Feb-0	8 17:11						
Gasoline (C6-C12)	ND	50.0	ug/l	1	BB82702	20-Feb-08	25-Feb-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.8 %	70-1	30	"	"	"	"	
Surrogate: Dibromofluoromethane		113 %	70-1	30	"	"	"	"	
Surrogate: Perdeuterotoluene		103 %	70-1	30	"	"	"	"	
B7-5 (8020021-05RE1) Soil Sampled: 14-	Feb-08 12:05 Recei	ved: 20-Feb-0	8 17:11						
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	03-Mar-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		56.8 %	70-1	30	"	"	"	"	S-04
Surrogate: Dibromofluoromethane		100 %	70-1	30	"	"	"	"	
Surrogate: Perdeuterotoluene		87.2 %	70-1	30	"	"	"	"	
B7-10 (8020021-06RE1) Soil Sampled: 14	-Feb-08 12:18 Rece	ived: 20-Feb	-08 17:11						
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	03-Mar-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		70.6 %	70-1	30	"	"	"	"	
Surrogate: Dibromofluoromethane		97.6 %	70-1	30	"	"	"	"	
Surrogate: Perdeuterotoluene		93.8 %	70-1	30	"	"	"	"	

Pacific Analytical Laboratory

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Volatile Organic Compounds by EPA Method 8260B Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B7-15 (8020021-07RE1) Soil Sampled: 14	I-Feb-08 12:32 Rec	eived: 20-Feb-	08 17:11						
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	03-Mar-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		65.2 %	70-13	0	"	"	"	"	S-04
Surrogate: Dibromofluoromethane		95.0 %	70-13	0	"	"	"	"	
Surrogate: Perdeuterotoluene		91.0 %	70-13	0	"	"	"	"	
B7-20 (8020021-08RE1) Soil Sampled: 14	4-Feb-08 12:40 Rec	eived: 20-Feb-	08 17:11						
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	03-Mar-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		69.4 %	70-13	0	"	"	"	"	S-04
Surrogate: Dibromofluoromethane		98.8 %	70-13	0	"	"	"	"	
Surrogate: Perdeuterotoluene		93.6 %	70-13	0	"	"	"	"	
B7-W (8020021-09) Water Sampled: 14-I	Feb-08 12:55 Recei	ved: 20-Feb-08	8 17:11						
Gasoline (C6-C12)	ND	50.0	ug/l	1	BB82702	20-Feb-08	25-Feb-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
	ND				"	"	"	"	
o-xylene	ND ND	0.500	"	"	"				
		0.500 2.00	"	"	"	"	"	"	
o-xylene	ND					"	"	"	
o-xylene Toluene	ND ND	2.00	"	"	"			"	
o-xylene Toluene MTBE	ND ND	2.00 0.500	"	0	"	"	II		

Pacific Analytical Laboratory

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Volatile Organic Compounds by EPA Method 8260B Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B5-5 (8020021-10RE1) Soil Sampled: 14-	Feb-08 13:08 Recei	ived: 20-Feb-0	8 17:11						
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	03-Mar-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		66.4 %	70-13	0	"	"	"	"	S-04
Surrogate: Dibromofluoromethane		99.0 %	70-13	0	"	"	"	"	
Surrogate: Perdeuterotoluene		92.2 %	70-13	0	"	"	"	"	
B5-10 (8020021-11RE1) Soil Sampled: 14	-Feb-08 13:22 Rec	eived: 20-Feb-	-08 17:11						
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	03-Mar-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		64.0 %	70-13	0	"	"	"	"	S-04
Surrogate: Dibromofluoromethane		96.8 %	70-13	0	"	"	"	"	
Surrogate: Perdeuterotoluene		91.2 %	70-13	0	"	"	"	"	
B5-15 (8020021-12RE1) Soil Sampled: 14	-Feb-08 13:36 Rec	eived: 20-Feb-	-08 17:11						
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	03-Mar-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		66.4 %	70-13	0	"	"	"	"	S-04
Surrogate: Dibromofluoromethane		99.2 %	70-13	0	"	"	"	"	
Surrogate: Perdeuterotoluene		91.2 %							

Pacific Analytical Laboratory

6620 Owens Drive, Suite A Project Number: 3022 Reported:
Pleasanton CA, 94588 Project Manager: Mansour Sepehr 03-Mar-08 21:32

Volatile Organic Compounds by EPA Method 8260B Pacific Analytical Laboratory

Reporting Result Limit Dilution Notes Analyte Units Batch Prepared Analyzed Method B5-20 (8020021-13) Soil Sampled: 14-Feb-08 13:42 Received: 20-Feb-08 17:11 Gasoline (C6-C12) ND 50.0 BC80301 EPA 8260B 20-Feb-08 29-Feb-08 Benzene ND 0.500 Ethylbenzene ND 0.500 ND m&p-Xylene 2.00 o-xylene ND 0.500 Toluene ND 2.00 MTBE ND 0.500 78.8 % 70-130 Surrogate: 4-Bromofluorobenzene 130 % 70-130 Surrogate: Dibromofluoromethane Surrogate: Perdeuterotoluene 92.6 % 70-130 B4-5 (8020021-15RE1) Soil Sampled: 14-Feb-08 15:39 Received: 20-Feb-08 17:11 Gasoline (C6-C12) ND 50.0 ug/kg BC80301 20-Feb-08 03-Mar-08 EPA 8260B Benzene ND 0.500 ND 0.500 Ethylbenzene m&p-Xylene ND 2.00 o-xylene ND 0.500 Toluene ND 2.00 MTBE ND 0.500 62.8 % 70-130 Surrogate: 4-Bromofluorobenzene S-04 Surrogate: Dibromofluoromethane 99.4 % 70-130 Surrogate: Perdeuterotoluene 91.0 % 70-130 B4-10 (8020021-16) Soil Sampled: 14-Feb-08 15:49 Received: 20-Feb-08 17:11 Gasoline (C6-C12) 4290 50.0 BC80301 20-Feb-08 29-Feb-08 EPA 8260B ug/kg Benzene ND 0.500 Ethylbenzene ND 0.500 m&p-Xylene ND 2.00 ND 0.500 o-xylene Toluene ND 2.00 MTBE ND 0.500 Surrogate: 4-Bromofluorobenzene 119 % 70-130 120 % 70-130 Surrogate: Dibromofluoromethane 102 % 70-130 Surrogate: Perdeuterotoluene

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Volatile Organic Compounds by EPA Method 8260B

Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B4-15 (8020021-17RE1) Soil Sampled: 14	-Feb-08 16:08 Rece	eived: 20-Feb-	08 17:11						
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	03-Mar-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		65.0 %	70-1	30	"	"	"	"	S-0
Surrogate: Dibromofluoromethane		100 %	70-1	30	"	"	"	"	
Surrogate: Perdeuterotoluene		91.2 %	70-1	30	"	"	"	"	
B4-20 (8020021-18RE1) Soil Sampled: 14	-Feb-08 16:24 Rece	eived: 20-Feb-	08 17:11						
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	03-Mar-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		65.8 %	70-1	30	"	"	"	"	S-0
Surrogate: Dibromofluoromethane		101 %	70-1	30	"	"	"	"	
Surrogate: Perdeuterotoluene		91.0 %	70-1	30	"	"	"	"	
B5-W (8020021-19) Water Sampled: 14-F	Feb-08 16:22 Receiv	ed: 20-Feb-08	8 17:11						
Gasoline (C6-C12)	ND	50.0	ug/l	1	BB82702	20-Feb-08	25-Feb-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
TOTUCTIC				"	"	"	"	"	
MTBE	ND	0.500	"	"					
		0.500 95.0 %	70-1		"	"	n .	"	
МТВЕ				30		"	"	"	

Pacific Analytical Laboratory

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Volatile Organic Compounds by EPA Method 8260B Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B4-W (8020021-20) Water Sampled: 14-F	Feb-08 16:35 Recei	ved: 20-Feb-08	8 17:11						
Gasoline (C6-C12)	220	50.0	ug/l	1	BB82702	20-Feb-08	25-Feb-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	70-13)	"	"	"	"	
Surrogate: Dibromofluoromethane		117 %	70-13)	"	"	"	"	
Surrogate: Perdeuterotoluene		106 %	70-13)	"	"	"	"	
B2-5 (8020021-21) Soil Sampled: 15-Feb-	08 10:50 Received:	20-Feb-08 17	:11						
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	29-Feb-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		70.8 %	70-13)	"	"	"	"	
Surrogate: Dibromofluoromethane		145 %	70-13)	"	"	"	"	
Surrogate: Perdeuterotoluene		85.8 %	70-13)	"	"	"	"	
B2-20 (8020021-22) Soil Sampled: 15-Feb	-08 11:10 Received	l: 20-Feb-08 1	7:11						
Gasoline (C6-C12)	100	50.0	ug/kg	1	BC80301	20-Feb-08	29-Feb-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		52.8 %	70-13)	"	"	"	"	S-04
Surrogate: Dibromofluoromethane		157 %	70-13)	"	"	"	"	S-04
Surrogate: Perdeuterotoluene		74.6 %	70-13	1	"	"	"	"	

Pacific Analytical Laboratory

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Volatile Organic Compounds by EPA Method 8260B Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B2-W (8020021-23) Water Sampled: 15-I	Feb-08 13:20 Receiv	ved: 20-Feb-0	8 17:11						
Gasoline (C6-C12)	ND	50.0	ug/l	1	BB82702	20-Feb-08	25-Feb-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.2 %	70-1.	30	"	"	"	"	
Surrogate: Dibromofluoromethane		119 %	70-1.	30	"	"	"	"	
Surrogate: Perdeuterotoluene		104 %	70-1.	30	"	"	"	"	
B8-5 (8020021-24) Soil Sampled: 15-Feb-	08 13:00 Received:	20-Feb-08 17	:11						
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	29-Feb-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		67.2 %	70-1.	30	"	"	"	"	S-0-
Surrogate: Dibromofluoromethane		142 %	70-1.	30	"	"	"	"	S-0-
Surrogate: Perdeuterotoluene		88.0 %	70-1.	30	"	"	"	"	
B8-15 (8020021-25) Soil Sampled: 15-Feb	0-08 13:15 Received	l: 20-Feb-08 1	7:11						
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	29-Feb-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		75.2 %	70-1.	30	"	"	"	"	
Surrogate: Dibromofluoromethane		126 %	70-1.	30	"	"	"	"	

Pacific Analytical Laboratory

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Volatile Organic Compounds by EPA Method 8260B Pacific Analytical Laboratory

Analyte		Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B8-20 (8020021-26) Soil S	Sampled: 15-Feb-08 13:25	Received	1: 20-Feb-08 1	7:11						
Gasoline (C6-C12)		ND	50.0	ug/kg	1	BC80301	20-Feb-08	29-Feb-08	EPA 8260B	
Benzene		ND	0.500	"	"	"	"	"	"	
Ethylbenzene		ND	0.500	"	"	"	"	"	"	
m&p-Xylene		ND	2.00	"	"	"	"	"	"	
o-xylene		ND	0.500	"	"	"	"	"	"	
Toluene		ND	2.00	"	"	"	"	"	"	
MTBE		ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobe	enzene		65.4 %	70-1	30	"	"	"	"	S-0-
Surrogate: Dibromofluorom	ethane		140 %	70-1	30	"	"	"	"	S-0
Surrogate: Perdeuterotoluer	пе		80.0 %	70-1	30	"	"	"	"	
B3-5 (8020021-27) Soil Sa	ampled: 15-Feb-08 12:10	Received:	20-Feb-08 17	:11						
Gasoline (C6-C12)		ND	50.0	ug/kg	1	BC80301	20-Feb-08	29-Feb-08	EPA 8260B	
Benzene		ND	0.500	"	"	"	"	"	"	
Ethylbenzene		ND	0.500	"	"	"	"	"	"	
m&p-Xylene		ND	2.00	"	"	"	"	"	"	
o-xylene		ND	0.500	"	"	"	"	"	"	
Toluene		ND	2.00	"	"	"	"	"	"	
MTBE		ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobe	enzene		75.2 %	70-1	30	"	"	"	"	
Surrogate: Dibromofluorom	ethane		123 %	70-1	30	"	"	"	"	
Surrogate: Perdeuterotoluer	пе		91.0 %	70-1	30	"	"	"	"	
B3-15 (8020021-28) Soil S	Sampled: 15-Feb-08 12:25	Received	l: 20-Feb-08 1	7:11						
Gasoline (C6-C12)		ND	50.0	ug/kg	1	BC80301	20-Feb-08	29-Feb-08	EPA 8260B	
Benzene		ND	0.500	"	"	"	"	"	"	
Ethylbenzene		ND	0.500	"	"	"	"	"	"	
m&p-Xylene		ND	2.00	"	"	"	"	"	"	
o-xylene		ND	0.500	"	"	"	"	"	"	
Toluene		ND	2.00	"	"	"	"	"	"	
MTBE		ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobe	enzene		75.2 %	70-1	30	"	"	"	"	
			120.07	70.1	120	,,	"	"	"	
Surrogate: Dibromofluorom	ethane		129 %	70-1	30					

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Volatile Organic Compounds by EPA Method 8260B Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B3-20 (8020021-29) Soil Sampled: 15-Feb-	-08 12:32 Received	l: 20-Feb-08 1	7:11						
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	29-Feb-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		78.0 %	70-1	30	"	"	"	"	
Surrogate: Dibromofluoromethane		133 %	70-1	30	"	"	"	"	S-04
Surrogate: Perdeuterotoluene		95.0 %	70-1	30	"	"	"	"	
B3-W (8020021-30) Water Sampled: 15-F	eb-08 12:40 Receiv	ved: 20-Feb-08	3 17:11						
Gasoline (C6-C12)	ND	50.0	ug/l	1	BB82702	20-Feb-08	25-Feb-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.2 %	70-1	30	"	"	"	"	
Surrogate: Dibromofluoromethane		122 %	70-1	30	"	"	"	"	
Surrogate: Perdeuterotoluene		104 %	70-1	30	"	"	"	"	
B6-5 (8020021-31) Soil Sampled: 15-Feb-0	08 09:40 Received:	20-Feb-08 17	:11						
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	29-Feb-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		53.6 %	70-1	30	"	"	"	"	S-04
Surrogate: Dibromofluoromethane		140 %	70-1	30	"	"	"	"	S-04

Pacific Analytical Laboratory

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Volatile Organic Compounds by EPA Method 8260B

Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B6-15 (8020021-32RE1) Soil Sampled: 15				Directori	Duton	7 Topurod	. mary zea	monod	1,010.
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	03-Mar-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"		
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		66.8 %	70-1.	20	"	"	"	"	S-04
Surrogate: Dibromofluoromethane		101 %	70-1.	20	"	"	"	"	
Surrogate: Perdeuterotoluene		91.0 %	70-1.	20	"	"	"	"	
B6-20 (8020021-33RE1) Soil Sampled: 15	5-Feb-08 10:12 Rec	eived: 20-Feb-	08 17:11						
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	03-Mar-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		64.8 %	70-1.	20	"	"	"	"	S-04
Surrogate: Dibromofluoromethane		103 %	70-1.	20	"	"	"	"	
Surrogate: Perdeuterotoluene		92.8 %	70-1.	20	"	"	"	"	
B6-W (8020021-34) Water Sampled: 15-I	Feb-08 10:15 Recei	ved: 20-Feb-08	8 17:11						
Gasoline (C6-C12)	ND	50.0	ug/l	1	BB82702	20-Feb-08	25-Feb-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
			"	"	"	"	"	"	
Ethylbenzene	ND	0.500							
Ethylbenzene m&p-Xylene	ND ND	0.500 2.00	"	"	"	"	"	"	
m&p-Xylene				"	"	"	"	"	
<u> </u>	ND	2.00							
m&p-Xylene o-xylene	ND ND	2.00 0.500	"		"	"	"		
m&p-Xylene o-xylene Toluene MTBE	ND ND ND	2.00 0.500 2.00	" "	" "	"	"	"	"	
m&p-Xylene o-xylene Toluene	ND ND ND	2.00 0.500 2.00 0.500	" " " "	" " " " " " " " " " " " " " " " " " " "	" "	" "	" "	" "	

Pacific Analytical Laboratory

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B6-10 (8020021-35RE1) Soil Sampled: 15				Bildion	Buten	Trepured	7 mary zea	Wethou	110105
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	03-Mar-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	.,	,,	,,	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500		"					
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		66.0 %	70-13	0	"	"	"	"	S-04
Surrogate: Dibromofluoromethane		102 %	70-13	0	"	"	"	"	
Surrogate: Perdeuterotoluene		93.8 %	70-13	0	"	"	"	"	
B2-10 (8020021-36RE1) Soil Sampled: 15	5-Feb-08 10:58 Rece	eived: 20-Feb-	08 17:11						
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	03-Mar-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		64.8 %	70-13	0	"	"	"	"	S-04
Surrogate: Dibromofluoromethane		101 %	70-13	0	"	"	"	"	
Surrogate: Perdeuterotoluene		92.2 %	70-13	0	"	"	"	"	
B2-15 (8020021-37RE1) Soil Sampled: 15	5-Feb-08 11:00 Rece	eived: 20-Feb-	08 17:11						
Gasoline (C6-C12)	ND	50.0	ug/kg	1	BC80301	20-Feb-08	03-Mar-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		65.6 %	70-13	0	"	"	"	"	S-04
Surrogate: Dibromofluoromethane		103 %	70-13	0	"	"	"	"	
Surrogate: Perdeuterotoluene		92.0 %	70-13		,,	"	"	"	

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Volatile Organic Compounds by EPA Method 8260B Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
B3-10 (8020021-38RE1) Soil Sampled: 15	5-Feb-08 12:18 Rec	eived: 20-Feb-	08 17:11						
Gasoline (C6-C12)	643	50.0	ug/kg	1	BC80301	20-Feb-08	03-Mar-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		83.2 %	70-13	0	"	"	"	"	
Surrogate: Dibromofluoromethane		103 %	70-13	0	"	"	"	"	
Surrogate: Perdeuterotoluene		99.4 %	70-13	0	"	"	"	"	
B8-10 (8020021-39RE1) Soil Sampled: 15	5-Feb-08 13:08 Rec	eived: 20-Feb-	08 17:11						
Gasoline (C6-C12)	1860	50.0	ug/kg	1	BC80301	20-Feb-08	03-Mar-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	0.860	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.4 %	70-13	0	"	"	"	"	
Surrogate: Dibromofluoromethane		93.6 %	70-13	0	"	"	"	"	
Surrogate: Perdeuterotoluene		101 %	70-13	0	"	"	"	"	
B8-W (8020021-40) Water Sampled: 19-1	Feb-08 11:55 Recei	ved: 20-Feb-08	8 17:11						
Gasoline (C6-C12)	ND	50.0	ug/l	1	BB82702	20-Feb-08	25-Feb-08	EPA 8260B	
Benzene	ND	0.500	"	"	"	"	"	"	
Ethylbenzene	ND	0.500	"	"	"	"	"	"	
m&p-Xylene	ND	2.00	"	"	"	"	"	"	
o-xylene	ND	0.500	"	"	"	"	"	"	
Toluene	ND	2.00	"	"	"	"	"	"	
MTBE	ND	0.500	"	"	"	"	"	"	
		96.6 %	70-13	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		90.0 /0	/0-13	U					
Surrogate: 4-Bromofluorobenzene Surrogate: Dibromofluoromethane		120 %	70-13		"	"	"	"	

Pacific Analytical Laboratory

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Extractable Petroleum Hydrocarbons by 8015 DRO - Quality Control Pacific Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BB82401 - EPA 3550A										
Blank (BB82401-BLK1)				Prepared &	Analyzed:	26-Feb-08	3			
Surrogate: Pentacosane	46.3		mg/kg	50.0		92.6	70-130			
Diesel (C10-C24)	ND	50.0	"							
LCS (BB82401-BS1)	Prepared & Analyzed: 26-Feb-08									
Surrogate: Pentacosane	54.9		mg/kg	50.0		110	70-130			
Diesel (C10-C24)	765	50.0	"	1000		76.5	50-140			
LCS Dup (BB82401-BSD1)	Prepared & Analyzed: 26-Feb-08									
Surrogate: Pentacosane	56.9		mg/kg	50.0		114	70-130		·	
Diesel (C10-C24)	825	50.0	"	1000		82.5	50-140	7.55	40	
Matrix Spike (BB82401-MS1)	Source: 8020021-01			Prepared &	Analyzed:	26-Feb-08	3			
Surrogate: Pentacosane	40.7		mg/kg	50.0		81.4	70-130			
Diesel (C10-C24)	959	50.0	"	1000	ND	95.9	0-200			
Matrix Spike Dup (BB82401-MSD1)	Sou	Source: 8020021-01			Prepared & Analyzed: 26-Feb-08					
Surrogate: Pentacosane	40.8		mg/kg	50.0		81.6	70-130			
Diesel (C10-C24)	897	50.0	"	1000	ND	89.7	0-200	6.68	200	
Batch BB82801 - EPA 3510B										
Blank (BB82801-BLK1)	Prepared & Analyzed: 02-Mar-08									
Surrogate: Pentacosane	46.2		ug/l	50.0		92.4	50.4-137			
Diesel (C10-C24)	ND	50.0	"							
LCS (BB82801-BS1)	Prepared & Analyzed: 02-Mar-08									
Surrogate: Pentacosane	60.9		ug/l	50.0		122	50.4-137			
Diesel (C10-C24)	817	50.0	"	1000		81.7	70-130			

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Extractable Petroleum Hydrocarbons by 8015 DRO - Quality Control

Pacific Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch BB82801 - EPA 3510B

LCS Dup (BB82801-BSD1)	Prepared & Analyzed: 02-Mar-08									
Surrogate: Pentacosane	50.6		ug/l	50.0	101	50.4-137				
Diesel (C10-C24)	724	50.0	"	1000	72.4	70-130	12.1	40		

Project: 557 Merrimac Street, Oakland CA SOMA Environmental Engineering Inc.

6620 Owens Drive, Suite A Project Number: 3022 Reported: Pleasanton CA, 94588 Project Manager: Mansour Sepehr 03-Mar-08 21:32

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Pacific Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes			
Batch BB82702 - EPA 5030 Water MS													
Blank (BB82702-BLK1)				Prepared &	Analyzed:	27-Feb-08							
Surrogate: 4-Bromofluorobenzene	46.9		ug/l	50.0		93.8	70-130						
Surrogate: Dibromofluoromethane	58.9		"	50.0		118	70-130						
Surrogate: Perdeuterotoluene	49.9		"	50.0		99.8	70-130						
Gasoline (C6-C12)	ND	50.0	"										
Benzene	ND	0.500	"										
Ethylbenzene	ND	0.500	"										
m&p-Xylene	ND	2.00	"										
o-xylene	ND	0.500	"										
Toluene	ND	2.00	"										
MTBE	ND	0.500	"										
LCS (BB82702-BS1)				Prepared &	Analyzed:	27-Feb-08							
Surrogate: 4-Bromofluorobenzene	52.4		ug/l	50.0		105	70-130						
Surrogate: Dibromofluoromethane	54.9		"	50.0		110	70-130						
Surrogate: Perdeuterotoluene	50.0		"	50.0		100	70-130						
Gasoline (C6-C12)	1650	50.0	"	2000		82.5	70-130						
Benzene	73.6	0.500	"	100		73.6	70-130						
Toluene	80.5	2.00	"	100		80.5	70-130						
MTBE	73.2	0.500	"	100		73.2	70-130						
LCS Dup (BB82702-BSD1)			Solution Solution										
Surrogate: 4-Bromofluorobenzene	56.5		ug/l	50.0	·	113	70-130			·			
Surrogate: Dibromofluoromethane	56.8		"	50.0		114	70-130						
Surrogate: Perdeuterotoluene	49.7		"	50.0		99.4	70-130						
Gasoline (C6-C12)	1700	50.0	"	2000		85.0	70-130	2.99	20				
Benzene	71.3	0.500	"	100		71.3	70-130	3.17	20				
Toluene	81.7	2.00	"	100		81.7	70-130	1.48	20				
MTBE	117	0.500	"	100		117	70-130	46.1	20	OR			

SOMA Environmental Engineering Inc. Project: 557 Merrimac Street, Oakland CA

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Volatile Organic Compounds by EPA Method 8260B - Quality Control Pacific Analytical Laboratory

Blank BC80301 - EPA 5030 Soil MS	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Maring M	Batch BC80301 - EPA 5030 Soil MS										
Surrogate Dibromofluoromethane 56.3	Blank (BC80301-BLK1)				Prepared &	Analyzed:	03-Mar-08				
Surrogate: Perdeuerotoluene	Surrogate: 4-Bromofluorobenzene	41.0		ug/kg	50.0		82.0	70-130			
Sasoline (C6-C12) ND S0.0 " Studentify S0.0 " Studentify S0.0 " Studentify S0.0 " S0.0 S0.0 " S0.0 S0.0 " S0.0 S0.0 " S0.0	Surrogate: Dibromofluoromethane	56.3		"	50.0		113	70-130			
Benzene	Surrogate: Perdeuterotoluene	47.0		"	50.0		94.0	70-130			
Strongate: 4-Bromofluorobenzene So.8 100	Gasoline (C6-C12)	ND	50.0	"							
ND 2.00 "	Benzene	ND	0.500	"							
ND 0.500 "	Ethylbenzene	ND	0.500	"							
Toluene ND 2.00 " MTBE ND 0.500 " **********************************	m&p-Xylene	ND	2.00	"							
ND ND ND ND ND ND ND ND	o-xylene	ND	0.500	"							
Prepared & Analyzed: 03-Mar-08 Surrogate: 4-Bromofluorobenzene 50.8 ug/kg 50.0 102 70-130 Surrogate: Dibromofluoromethane 52.8 " 50.0 106 70-130 Surrogate: Dibromofluoromethane 48.9 " 50.0 97.8 70-130 Surrogate: Perdeuterotoluene 48.9 " 2000 100 70-130 Surrogate: Perdeuterotoluene 78.6 0.500 " 100 78.6 70-130 Surrogate: Pendeuterotoluene 94.2 2.00 " 100 94.2 70-130 Surrogate: Pendeuterotoluene 94.2 2.00 " 100 94.2 70-130 Surrogate: Pendeuterotoluene 94.2 2.00 " 100 91.0 70-130 Surrogate: Pendeuterotoluene 94.2 2.00 " 100 91.0 70-130 Surrogate: Dibromofluorobenzene 48.4 ug/kg 50.0 96.8 70-130 Surrogate: Dibromofluoromethane 57.7 " 50.0 115 70-130 Surrogate: Pendeuterotoluene 45.2 " 50.0 90.4 70-130 Surrogate:	Toluene	ND	2.00	"							
Surrogate: 4-Bromofluorobenzene 50.8 ug/kg 50.0 102 70-130 Surrogate: Dibromofluoromethane 52.8 " 50.0 106 70-130 Surrogate: Dibromofluoromethane 52.8 " 50.0 106 70-130 Surrogate: Perdeuterotoluene 48.9 " 50.0 97.8 70-130 Gasoline (C6-C12) 2000 50.0 " 2000 100 70-130 Benzene 78.6 0.500 " 100 78.6 70-130 Goldene 94.2 2.00 " 100 94.2 70-130 Goldene 94.2 2.00 " 100 94.2 70-130 Goldene 94.2 70-130 Goldene 94.2 100 94.2 70-130 Goldene 94.2 70-130	MTBE	ND	0.500	"							
Surrogate: Dibromofluoromethane 52.8 " 50.0 106 70-130 Surrogate: Perdeuterotoluene 48.9 " 50.0 97.8 70-130 Surrogate: Perdeuterotoluene 48.9 " 50.0 97.8 70-130 Surrogate: Perdeuterotoluene 78.6 0.500 " 100 78.6 70-130 Surrogate: Perdeuterotoluene 94.2 2.00 " 100 94.2 70-130 Surrogate: Perdeuterotoluene 94.2 2.00 " 100 94.2 70-130 Surrogate: 4-Bromofluorobenzene 48.4 ug/kg 50.0 96.8 70-130 Surrogate: Dibromofluoromethane 57.7 " 50.0 115 70-130 Surrogate: Perdeuterotoluene 45.2 " 50.0 90.4 70-130 Surrogat	LCS (BC80301-BS1)				Prepared &	Analyzed:	03-Mar-08				
Surrogate: Distribution of the control of the con	Surrogate: 4-Bromofluorobenzene	50.8		ug/kg	50.0		102	70-130			
Casoline (C6-C12) 2000 50.0 2000 100 70-130 100 70-130 100 70-130 100 70-130 100 70-130 100 70-130 100 70-130 100 70-130 100 70-130 100 70-130 100 70-130 100 70-130 100 70-130 100 70-130 100	Surrogate: Dibromofluoromethane	52.8		"	50.0		106	70-130			
Renzene 78.6 0.500 " 100 78.6 70-130 Toluene 94.2 2.00 " 100 94.2 70-130 Toluene 94.2 2.00 " 100 91.0 70-130 Toluene 91.0 0.500 " 100 91.0 70-130 Toluene Toluene 48.4 Ug/kg 50.0 96.8 70-130 Toluene 57.7 " 50.0 115 70-130 Toluene Toluene 45.2 " 50.0 90.4 70-130 Toluene Toluene 45.2 " 50.0 90.4 70-130 Toluene Toluene 70.3 0.500 " 100 70.3 70-130 11.1 20 Toluene 70.3 80.0 2.00 " 100 80.0 70-130 16.3 20 Toluene 70.130 70-13	Surrogate: Perdeuterotoluene	48.9		"	50.0		97.8	70-130			
Toluene	Gasoline (C6-C12)	2000	50.0	"	2000		100	70-130			
MTBE 91.0 0.500 " 100 91.0 70-130 LCS Dup (BC80301-BSD1) Prepared & Analyzed: 03-Mar-08 Surrogate: 4-Bromofluorobenzene 48.4 ug/kg 50.0 96.8 70-130 Surrogate: Dibromofluoromethane 57.7 " 50.0 115 70-130 Surrogate: Perdeuterotoluene 45.2 " 50.0 90.4 70-130 Gasoline (C6-C12) 2050 50.0 " 2000 102 70-130 2.47 20 Benzene 70.3 0.500 " 100 70.3 70-130 11.1 20 Toluene 80.0 2.00 " 100 80.0 70-130 16.3 20	Benzene	78.6	0.500	"	100		78.6	70-130			
Prepared & Analyzed: 03-Mar-08 Surrogate: 4-Bromofluorobenzene	Toluene	94.2	2.00	"	100		94.2	70-130			
Surrogate: 4-Bromofluorobenzene 48.4 ug/kg 50.0 96.8 70-130 Surrogate: Dibromofluoromethane 57.7 " 50.0 115 70-130 Surrogate: Perdeuterotoluene 45.2 " 50.0 90.4 70-130 Gasoline (C6-C12) 2050 50.0 " 2000 102 70-130 2.47 20 Benzene 70.3 0.500 " 100 70.3 70-130 11.1 20 Toluene 80.0 2.00 " 100 80.0 70-130 16.3 20	MTBE	91.0	0.500	"	100		91.0	70-130			
Surrogate: Dibromofluoromethane 57.7 " 50.0 115 70-130 Surrogate: Perdeuterotoluene 45.2 " 50.0 90.4 70-130 Gasoline (C6-C12) 2050 50.0 " 2000 102 70-130 2.47 20 Benzene 70.3 0.500 " 100 70.3 70-130 11.1 20 Toluene 80.0 2.00 " 100 80.0 70-130 16.3 20	LCS Dup (BC80301-BSD1)				Prepared &	Analyzed:	03-Mar-08				
Surrogate: Perdeuterotoluene 45.2 " 50.0 90.4 70-130 Gasoline (C6-C12) 2050 50.0 " 2000 102 70-130 2.47 20 Benzene 70.3 0.500 " 100 70.3 70-130 11.1 20 Foluene 80.0 2.00 " 100 80.0 70-130 16.3 20	Surrogate: 4-Bromofluorobenzene	48.4	·	ug/kg	50.0		96.8	70-130			
Gasoline (C6-C12) 2050 50.0 2000 102 70-130 2.47 20 Benzene 70.3 0.500 100 70.3 70-130 11.1 20 Foluene 80.0 2.00 100 80.0 70-130 16.3 20	Surrogate: Dibromofluoromethane	57.7		"	50.0		115	70-130			
Benzene 70.3 0.500 " 100 70.3 70-130 11.1 20 Toluene 80.0 2.00 " 100 80.0 70-130 16.3 20	Surrogate: Perdeuterotoluene	45.2		"	50.0		90.4	70-130			
Toluene 80.0 2.00 " 100 80.0 70-130 16.3 20	Gasoline (C6-C12)	2050	50.0	"	2000		102	70-130	2.47	20	
	Benzene	70.3	0.500	"	100		70.3	70-130	11.1	20	
MTBE 116 0.500 " 100 116 70-130 24.2 20 OR-	Toluene	80.0	2.00	"	100		80.0	70-130	16.3	20	
	MTBE	116	0.500	"	100		116	70-130	24.2	20	QR-0

RPD

%REC

SOMA Environmental Engineering Inc. Project: 557 Merrimac Street, Oakland CA

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Pacific Analytical Laboratory

Spike

Source

		reporting		Брис	Bource		/orche		IG D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BC80301 - EPA 5030 Soil MS										
Matrix Spike (BC80301-MS1)	Sour	ce: 8020021-	01	Prepared &	Analyzed	03-Mar-08	3			
Surrogate: 4-Bromofluorobenzene	42.2		ug/kg	50.0		84.4	70-130			
Surrogate: Dibromofluoromethane	54.4		"	50.0		109	70-130			
Surrogate: Perdeuterotoluene	46.5		"	50.0		93.0	70-130			
Benzene	46.0	0.500	"	100	ND	46.0	70-140			S-G0
Ethylbenzene	59.9	0.500	"	100	ND	59.9	70-130			QM-0
m&p-Xylene	51.9	2.00	"	100	ND	51.9	70-130			QM-0
o-xylene	75.9	0.500	"	100	ND	75.9	70-130			
Toluene	51.1	2.00	"	100	ND	51.1	70-130			QM-0
MTBE	61.8	0.500	"	100	ND	61.8	70-130			QM-0
Matrix Spike Dup (BC80301-MSD1)	Sour	ce: 8020021-	01	Prepared &	Analyzed	03-Mar-08	3			
Surrogate: 4-Bromofluorobenzene	42.4		ug/kg	50.0		84.8	70-130			
Surrogate: Dibromofluoromethane	51.9		"	50.0		104	70-130			
Surrogate: Perdeuterotoluene	46.3		"	50.0		92.6	70-130			
Benzene	47.9	0.500	"	100	ND	47.9	70-140	4.05	20	QM-0
Ethylbenzene	62.7	0.500	"	100	ND	62.7	70-130	4.57	20	QM-0
m&p-Xylene	54.6	2.00	"	100	ND	54.6	70-130	5.07	20	QM-0
o-xylene	79.6	0.500	"	100	ND	79.6	70-130	4.76	20	
Toluene	53.6	2.00	"	100	ND	53.6	70-130	4.78	20	QM-0
MTBE	67.7	0.500	"	100	ND	67.7	70-130	9.11	20	QM-0

SOMA Environmental Engineering Inc. Project: 557 Merrimac Street, Oakland CA

6620 Owens Drive, Suite AProject Number: 3022Reported:Pleasanton CA, 94588Project Manager: Mansour Sepehr03-Mar-08 21:32

Notes and Definitions

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

QR-02 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch

were accepted based on percent recoveries and completeness of QC data.

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were

within acceptance limits showing that the laboratory is in control and the data is acceptable.

D-30 Unidentified hydrocarbons C9-C16.

D-06 The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

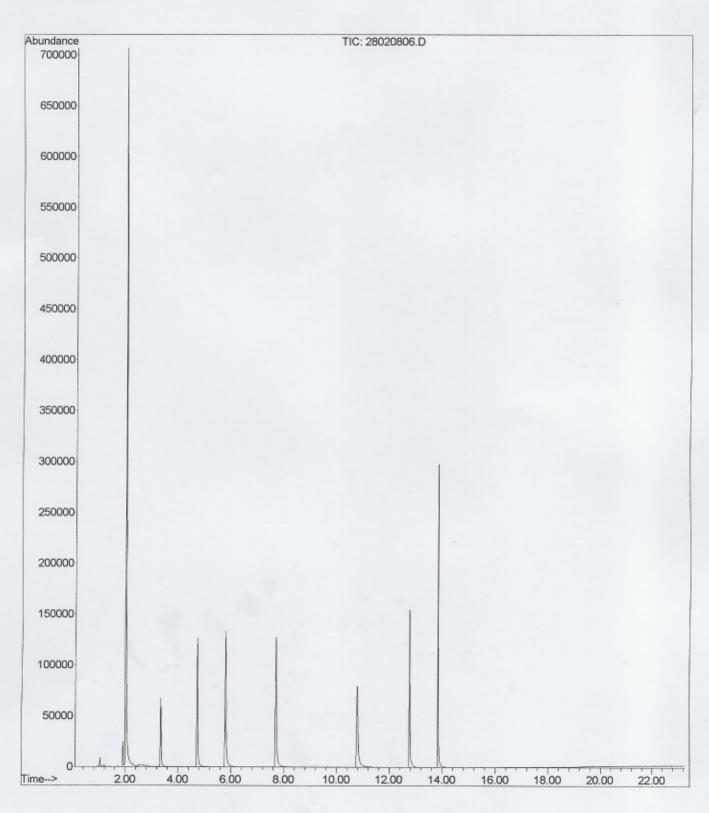
A-01 Sample double-spiked.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

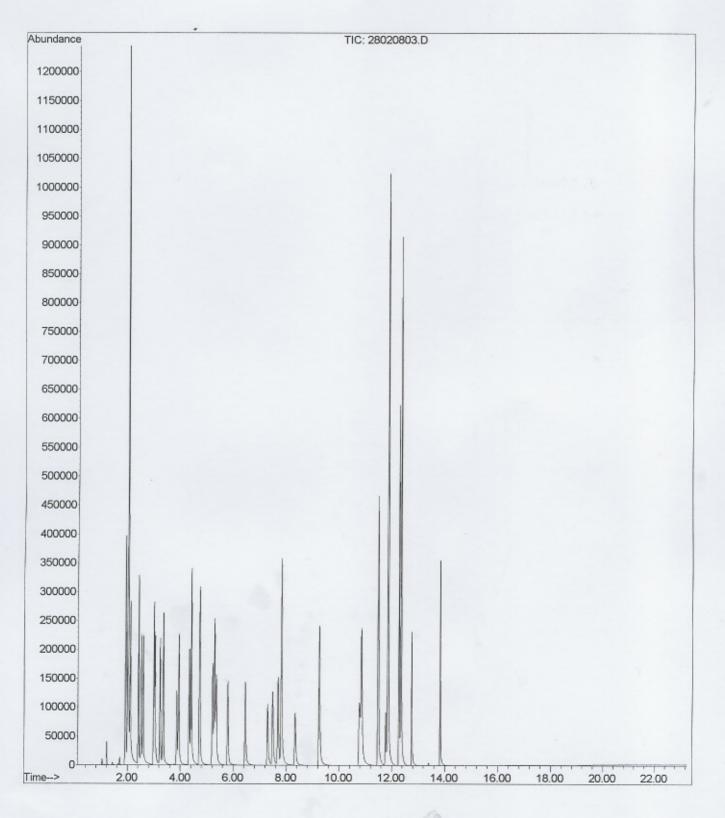

RPD Relative Percent Difference

File :C:\MSDChem\1\DATA\2008-Feb-28-2124.b\28020806.D

Operator

Operator : Acquired : 29 Feb 2008 12:18 am using AcqMethod OXY21506.M

Instrument : PAL GCMS Sample Name: BC80301-BLK1

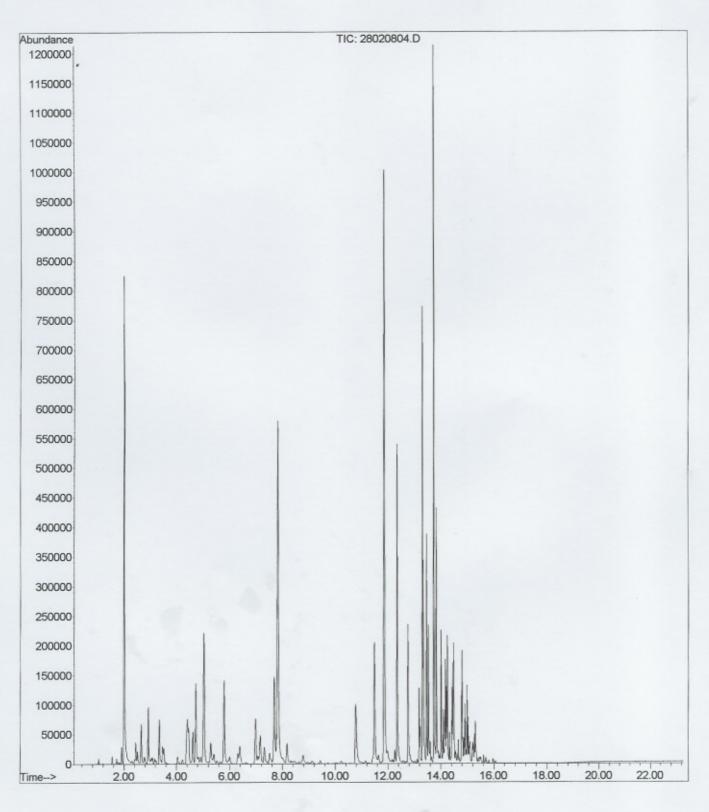

File :C:\MSDChem\1\DATA\2008-Feb-28-2124.b\28020803.D

Operator

Acquired : 28 Feb 2008 10:44 pm using AcqMethod OXY21506.M

Instrument : PAL GCMS

Sample Name: BC80301-BS1@voc


File :C:\MSDChem\1\DATA\2008-Feb-28-2124.b\28020804.D

Operator

Acquired : 28 Feb 2008 11:15 pm using AcqMethod OXY21506.M

Instrument : PAL GCMS

Sample Name: BC80301-BS1@gas



File :C:\MSDChem\1\DATA\2008-Feb-28-2124.b\28020843.D

Operator :

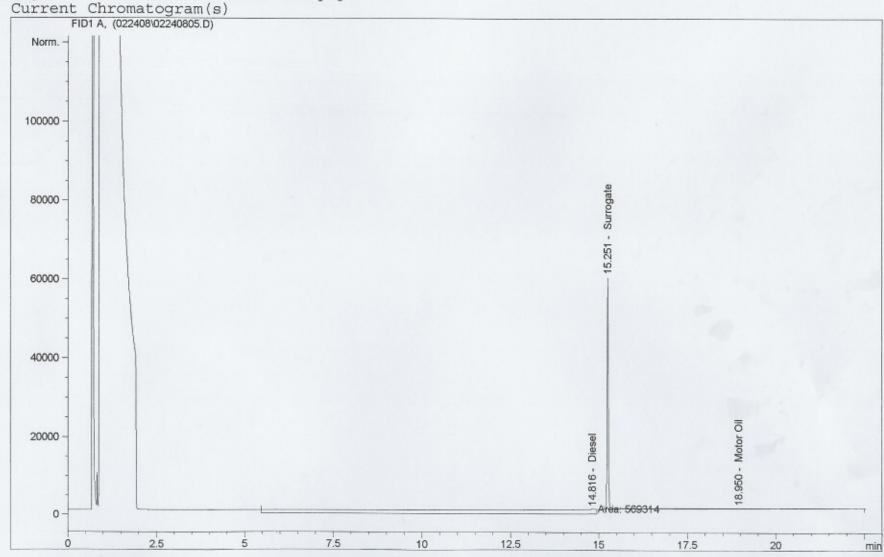
Acquired : 29 Feb 2008 7:32 pm using AcqMethod OXY21506.M

Instrument : PAL GCMS Sample Name: BC80301-MS1

Print of window 38: Current Chromatogram(s)

Injection Date : 2/24/08 4:35:59 PM Sample Name : BB82401-BLK1 Acq. Operator : jz

Seq. Line: 4 Vial: 4


Inj : 1 Inj Volume : 2 ul

Acq. Method : C:\HPCHEM\1\METHODS\GC122607.M

Last changed : 2/21/08 8:25:31 PM by jz

Analysis Method : C:\HPCHEM\1\METHODS\GC122607.M

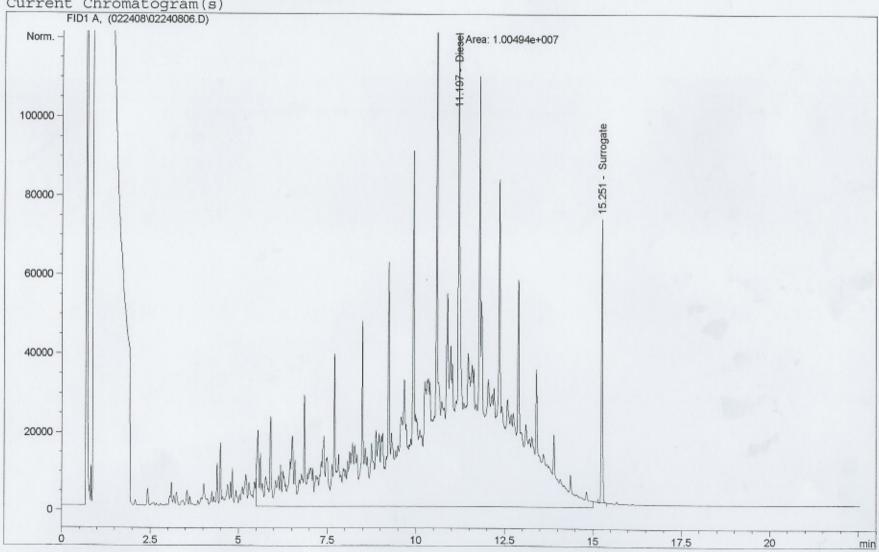
Last changed : 2/28/08 10:18:08 PM by jz

Injection Date Seq. Line :

: 2/24/08 5:07:15 PM Sample Name : BB82401-BS1 Acq. Operator : jz

Vial: 5 Inj: 1

Inj Volume : 2 ul


Acq. Method : C:\HPCHEM\1\METHODS\GC122607.M

Last changed : 2/21/08 8:25:31 PM by jz

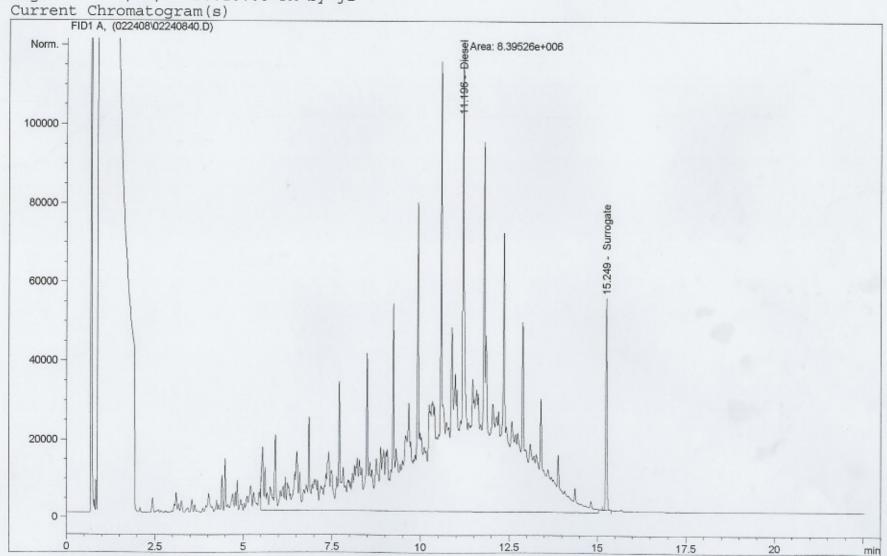
Analysis Method : C:\HPCHEM\1\METHODS\GC122607.M

Last changed : 2/28/08 10:18:08 PM by jz

: 2/25/08 10:44:34 AM Injection Date Sample Name : BB82401-MS1

Seq. Line : Vial: 39

Acq. Operator : jz


Inj: 1 Inj Volume : 2 ul

Acq. Method : C:\HPCHEM\1\METHODS\GC122607.M

: 2/21/08 8:25:31 PM by jz Last changed

Analysis Method : C:\HPCHEM\1\METHODS\GC122607.M

Last changed : 2/28/08 10:18:08 PM by jz

File :C:\MSDChem\1\DATA\2008-Feb-26-1807.b\26020805.D

Operator

Acquired : 26 Feb 2008 8:28 pm using AcqMethod OXY21506.M

Instrument : PAL GCMS Sample Name: BB82702-BLK1

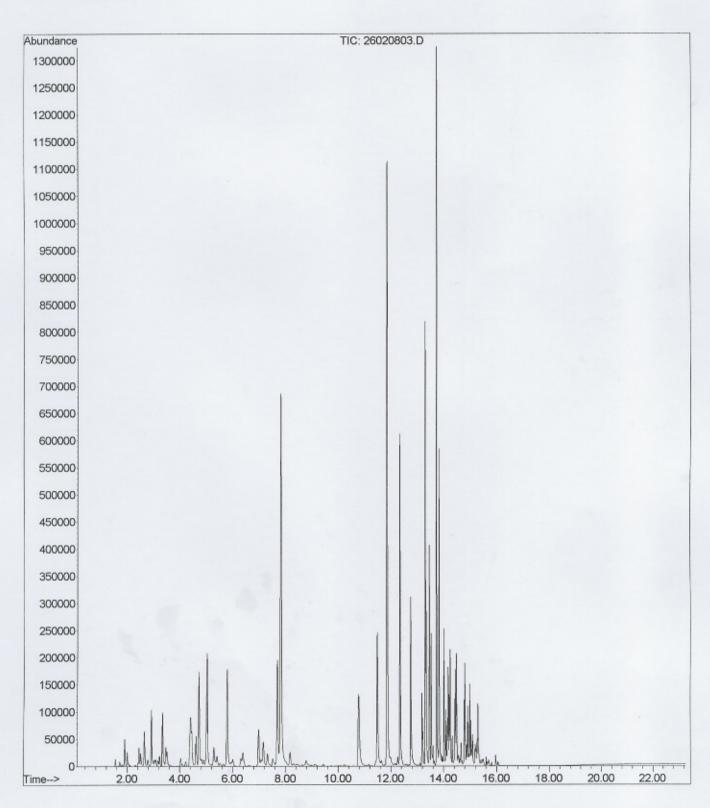
File :C:\MSDChem\1\DATA\2008-Feb-26-1807.b\26020802.D

Operator :

Acquired : 26 Feb 2008 6:54 pm using AcqMethod OXY21506.M

Instrument : PAL GCMS

Sample Name: BB82702-BS1@voc



File :C:\MSDChem\1\DATA\2008-Feb-26-1807.b\26020803.D

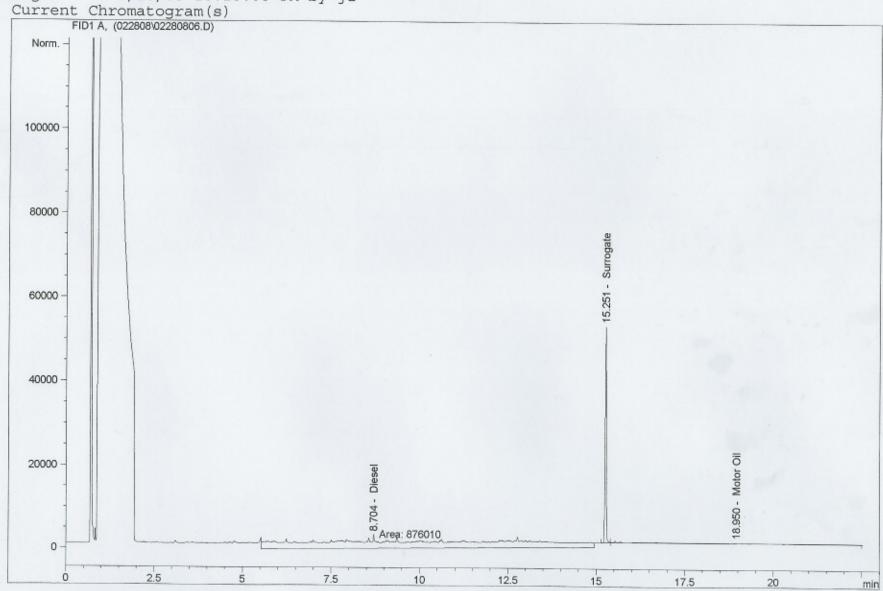
Operator :

Acquired : 26 Feb 2008 7:25 pm using AcqMethod OXY21506.M

Instrument : PAL GCMS Sample Name: BB82702-BS1@gas

Print of Window 38: Current Chromatogram(s)

Injection Date : 2/29/08 12:57:32 AM Seq. Line : 5


Injection Date : 2/29/08 12:57:32 AM
Sample Name : BB82801-BLK1
Acq. Operator : jz

Vial : 4 Inj : 1 Inj Volume : 2 ul

inj voiu

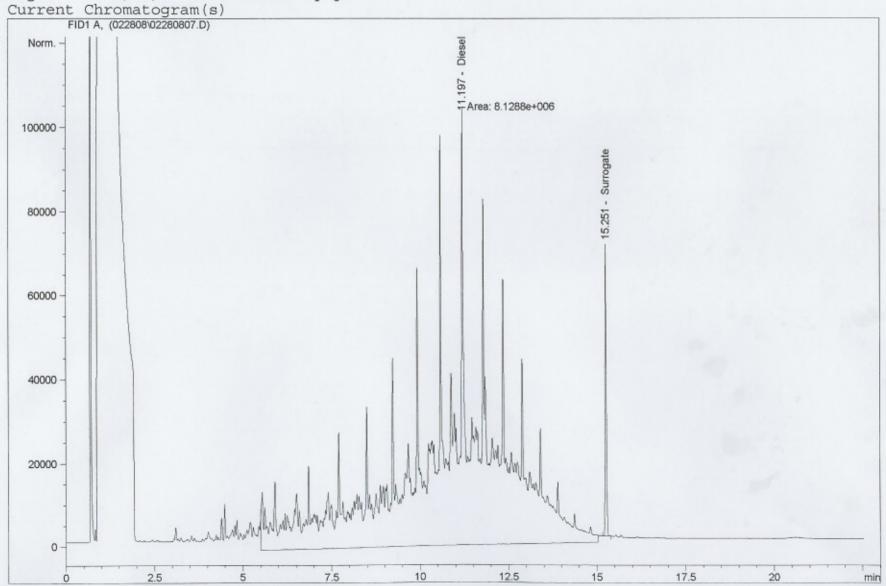
Method : C:\HPCHEM\1\METHODS\GC122607.M

Last changed : 2/28/08 10:18:08 PM by jz

Print of window 38: Current Chromatogram(s)

Injection Date : 2/29/08 1:28:59 AM Sample Name : BB82801-BS1

: jz

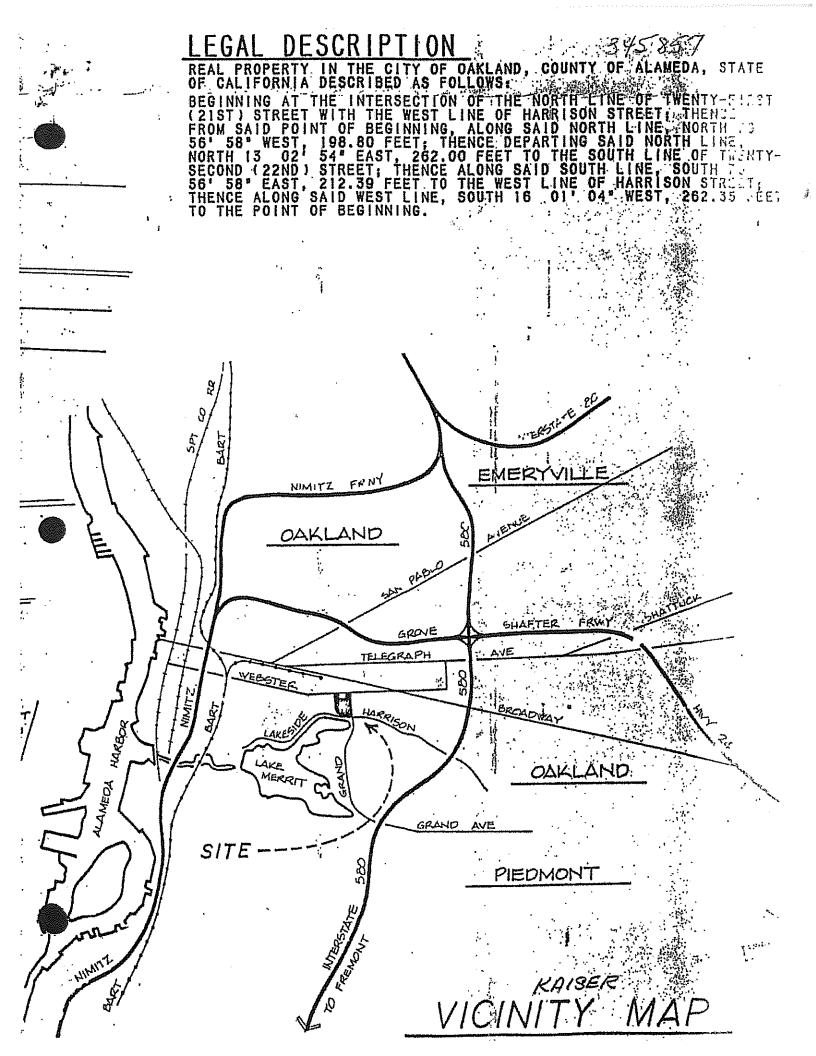

Acq. Operator

Seq. Line: 6 Vial: 5

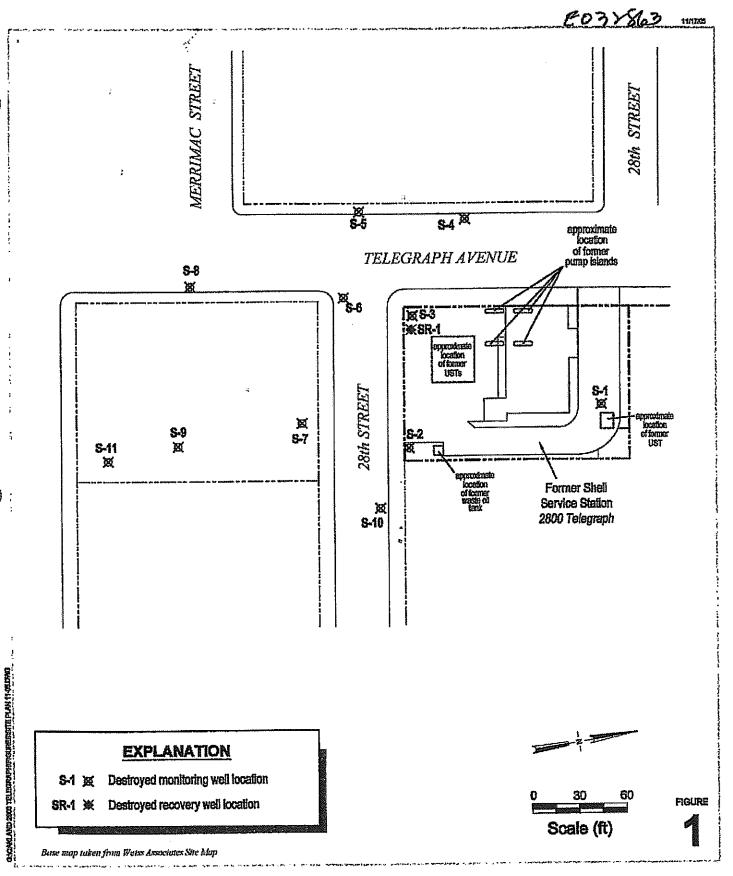
Inj: 1 Inj Volume: 2 ul

Method : C:\HPCHEM\1\METHODS\GC122607.M

Last changed : 2/28/08 10:18:08 PM by jz



Appendix D


Supporting Documentation: Sensitive Receptor and Preferential Flow Path Study

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

Former Shell Service Station

2800 Telegraph Avenue Oakland, California Incident No.97093398

CAMBRIA

Site Plan

FAX NO. : 7074422700

C077863 Nov. 17 2005 12:38PM P6

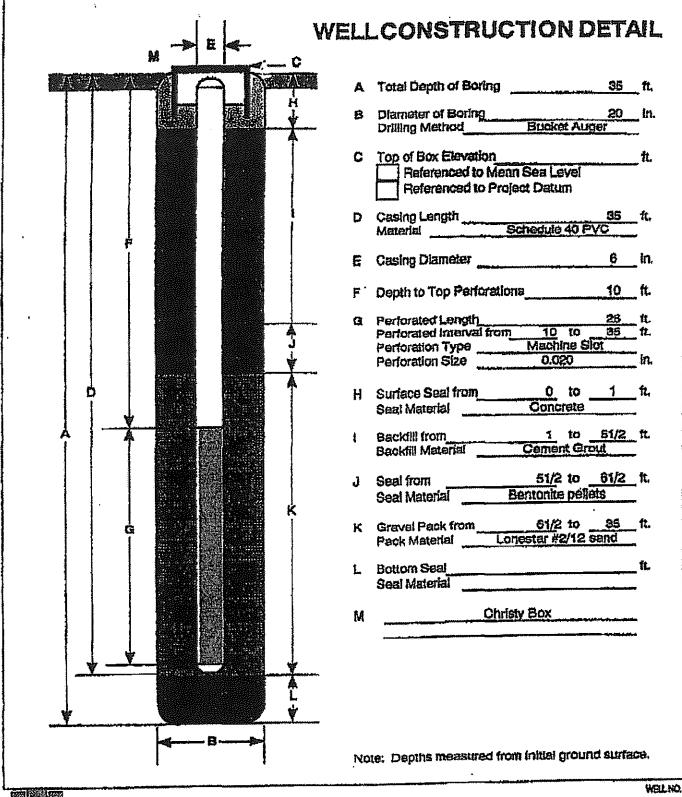
Field lo	stion of	boring			وجشدائش	Art flaction of front		Project No.:	7610	Date:	10/03/89	Boring No:
1	4* ',			·_				Cilent;	Shell Oil Co			SR-1
1		(6	300 Plate	6 2)				Location:	2800 Telegr			
[City:	Oakland, Ca	elifornia		Shoet 1
								Logged by:	T.J.W.	Driller;	Bayland	
Detillees	method:	Hollow-	Stom A:	meter				Casing inste		a Well Com	pletion Detai	ħ
Hole di		8-Inch	OEIII AL	19 0 3	-			Top of Box I		e men dem	Cesturn:	·
	Annia mine del	7	T T	7	T		6	Water Level				1
-8	Description (Pressure (PAS)	88	4.2	The same	Æ	* 2	Symbol (LISCIS)	Time				
P.	1 6 8	P St		1	Service	Person	2 2	Date			<u> </u>	1
	1 2		-	10	1		4 6			Description	, ² .,	***************************************
	-			1								
]	-	1	1					
				1		ļ			irevels, Sand			
	<u> </u>		<u> </u>	[1		}		brown	10YR 2/2), s	uit, damp; n	o chemical c	dor.
96		ļ		1	ļ	ł	1146					-
·	 	}	<u> </u>	2		1			wheels,	· 		· · · · · · · · · · · · · · · · · · ·
	 	 	 	3	 		9 9	Ban Air	An arel		***************************************	
	 	 		1 3	-		14141	Pea Gr	avei			
				4	140							
	100	S&H		1				CLAYE	Y SILT with S	AND (ML) -	very dark gr	ayish brown
130	100	push	SR-1-	5				(10YB	3/2), medium	stiff, damp;	moderate of	emical odo
	150	7.3.7.	5,5	1				X	2 2			-
	7-4			6								
				1								
			1. 14.000	7								
				8								
				8							· · · · · · · · · · · · · · · · · · ·	
	100	888]						6 22 - 3		
295	100	push	SFL-1-	10				COLOF	CHANGE to	Olive (2.54)	4), medium	am, demp:
	100		10.5	11	Ē.,.		<u> </u>	mottied	with gray; m	oparata to e	COM CLEME	Jai Guui.
***************************************				111								
**************************************	 			12								
·				,	-				***************************************	·		, interest
 				13	\vdash					A		· · · · · · · · · · · · · · · · · · ·
				100				<u> </u>			· · · · · · · · · · · · · · · · · · ·	14245-14-1
			<u></u>	14	 	Δ̈́		SAND (SP) - very da	rk gravish b	rown (2.5Y 9	/2), medium
	5	SEH		••			1.	dense.	saturated; me	dium sand;	trace ellt; no	chemical
19.0	10		SR-1-	15				odor.				
	18		15.5					سيهرموذ لاقتهراماها ونساوسات				-
· <u>··*</u>				16				*				
				į l								
				17								
								SAND Y	vith GRAVEL	(SW) - brow	n (10YR 5/3)	, medium
				143			1: : : 1	dense, s	saturated; 25-	30% tine en	Mer	···
										• 14		
				19	لـــا	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		· 		
Remarks	i											
	-	-						-				4 44 4 4
ar last.			tan taa				Log of I	3oring				BORNS IX
	e Geo	Strateg	ied lite,									R_1

REVENED BY MODELS CLANA OCK 1262 DATE 10/89 REVISED DATE REVISED DATE 7610

FAX NO. : 7074422700

6077863 Nov. 17 2005 12:39FM F7

Plaid loc	ation of	boring:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·	<u> </u>			Project No.:	7610	Ontal:	10/03/6	Honey	No:
1	7.							Ciont:		Company			
		15	See Plan	B 2)				Location:		agraph Avenua	<u> </u>	- 8	Ref
ł		,-	(1442	7				Chy:	Dekland	California	***************************************	Sneet	2
								Logged by:	T.J.W.	Dellor:	Bayland		2
								Casing tests	LULYY.	- Contract of	CAYMIN		<u> </u>
Drilling	mallan:	Dell'er.	Stem Au	*****		*************		Cozerif attent		See Well Com	nlation Tes	nik	
Hole dis			SIGNI AL	riei		***************************************		Top of Box E	1	DER LIGHTORIN	Datum:	ent)	
LORD OR		8-Inch			7				MARROW:		Commi-		
	Eltrangit.	War .00	44	a			Soft Group Synthesi (USCS)	Water Lavai	 				-
Pa	18	Append Semple	Semple Semple	D enter	Semple	F	85	Time					
_ 23	i ii	存成	62	ă	A	- 5	254	Date	<u> </u>				
	1		↓	<u> </u>						Oescription			
	7	S&H							44.			·	·
N/A	7		SR-1-] 20					a. b				
	9]	20,5	}									
	ł .	<u> </u>]	21									
	L]									
	ı			22			1						
	1			1									
	1	} 	T	23	\Box				44				
			-	1	 								
***	i		<u> </u>	24				-				mandigles (1)	
	2	S&H	<u> </u>					COLOR	CHANGE	to yellowish ba	COME (10YE	5/60: 15	25%
N/A		7011	SR-1-	25				fine cre	vei: no che	emical odor.			
147	8		25.5					into Biez					
	9			26						**************************************			
'	(;			20									
	1			07						· · · · · · · · · · · · · · · · · · ·			
	1		<u> </u>	27			1					······································	
											·		
	•			28									· · · · · ·
	<u> </u>				<u> </u>		1:13:53						 ,
	<u> </u>			29			1-1:1-1				4045	mid land	
	3	S&H						SILIYS	MED CAN	- yellowish bro	WIT (TUTTS	0/4), KUUI	X2,
N/A	5		SR-1-	30				saturate	o; very fin	e sand; 20-30%	e sik! no ci	ietuksi ö	oor.
•	19		30.5										
				31			, n p						
				-			a a	GRAVE	L with SAM	vb (GW) - yello	wish brown	(10YR E	/5),
				32			8. 1	medium	dense, sa	turated; fine gr	avel; 20-30	% fine to)
1							· · · · · · ·	coarse s	sand; no o	hemical odor,			
				33			# # # #						
											•		
				34									1,
<u></u> (8	8&H						SANDW	th SILT a	TI GRAVEL (S	W) - brown	(10YR 5	/3).
N/A	14		SR-1-	35			$[\cdot,\cdot,\cdot]$	dense	aturated:	50-60% very fir	e sand: 15	% fine or	avel:
14/2	20		35.5					1594 871	rootholes	contained mo	sture: trec	e clav: no	0
	باء ـــ		443.27	36			A	chemica	i propr				
1	1			•••				AL COMMON	- 45411				
				37				Dettem	of haring s	it 35.5 féet.		A	
				U.S.				Detail	et sommin	at 35.5 feet.	,		
							į)			CL GOLD 1887	C. Charles		
*********	·			38				10/03/89	<u> </u>				
	ļ						1	<u> </u>					
				39									
Fizmerics	:												
					-								HAND SOM

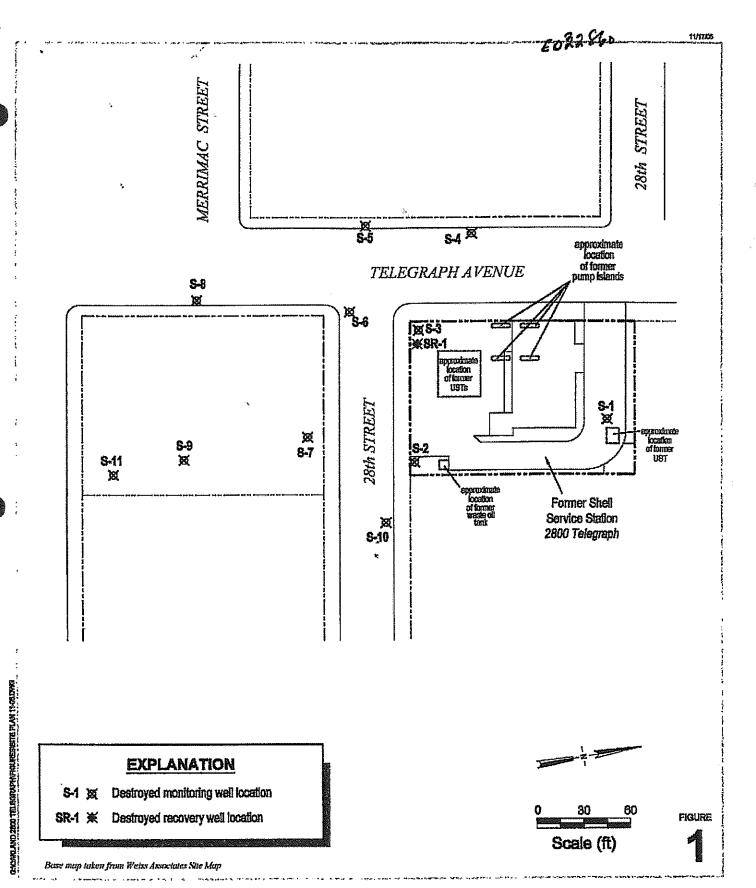


GeoStrategies Inc.

Log of Boring

SR-1

COS NUMBER REVISIONED BY PACES DATE REVISED DATE REVISED DATE 10/89


GSI

GeoStrategies inc.

SR-1

LOS NUMBER PROVINCIO DATE PROVINCIO PREVINCIO DATE PROVINCIO DATE

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

Former Shell Service Station

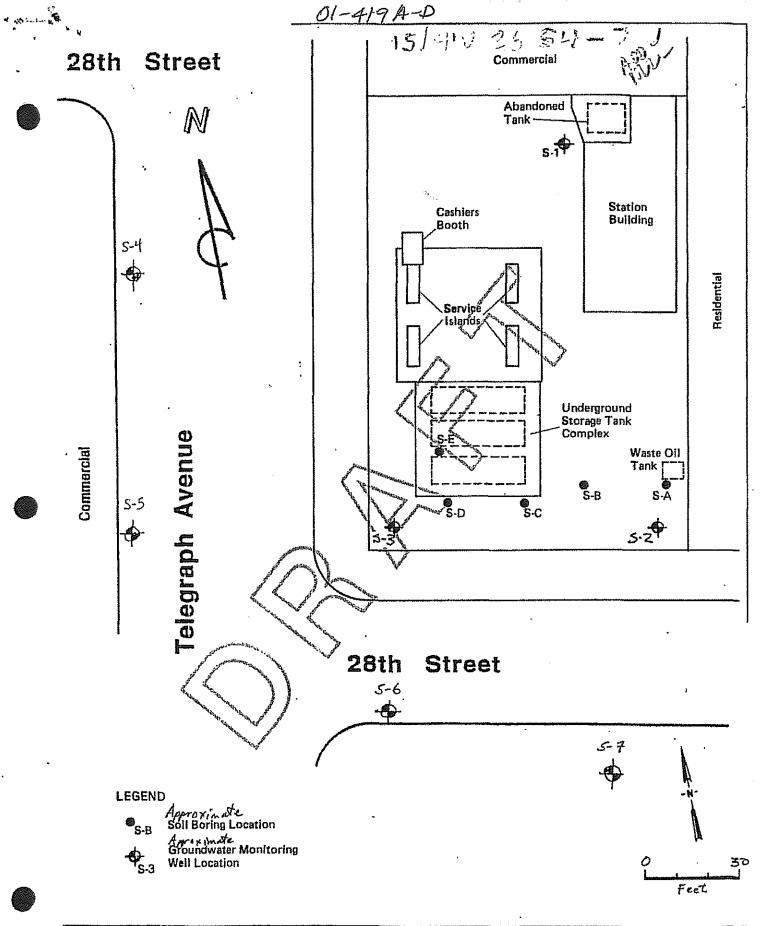
2800 Telegraph Avenue Oakland, California Incident No.97093398

Site Plan

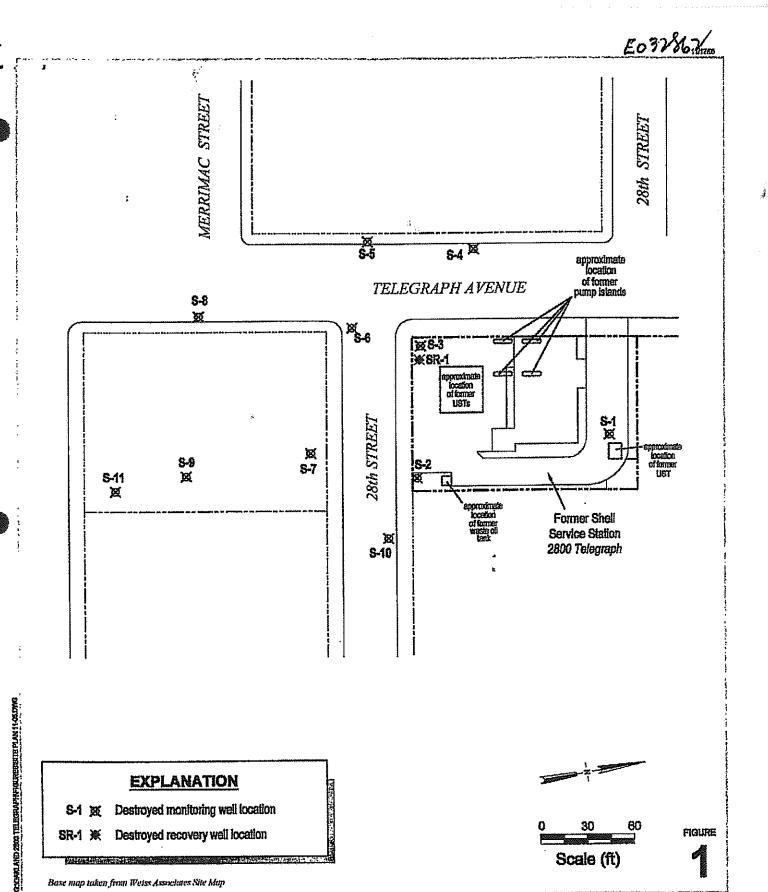
CAMBRIA

GETTLER RYAN NO. 8820011A PROJECT NAME. Woodward-Clyde Consultants ELEVATION AND DATUM MONITORING WELL LOCATION 2000 Telegraph Averso, Deblard CA: 8-1 DATE STARTED DATE FORSHED 4/22/68 Bay Land Dilling CALLER DRILLING AGENCY SAMPLER Modified California COMPLETION 30.6 Sample: CME - BE Truckenours DRILLING EQUIPMENT DEPTH NO. OF DIST. UNDIST. CME Carbida DRILL SIT DRILLING METHOD P HSA 24 MRS. COMPL. WATER PIRST 12 3" PYC SIZE AND TYPE OF CASING LEVEL CHECKED BY: LOGGED BY: FT. FROM 27,5 TO 3.5 TYPE OF PERFORATION 0.020° slatted M. Bonkowski R. Sheetone FT. 盘力 19/20 Monterey Send FROM 20.4 773 BIZE AND TYPE OF PACK FT. Henionite Peteis PROM 2.0 TO 1.5 NO. 1 TPE OF SEA PROM 1.9 TO ĠĠ. Concrete Grout NO. 2 Held MATERIAL DESCRIPTION Construction - ASPHALT SILTY SAND (Camings)
dark brown, with line to medium sand grains, little coarse
send, moist, loose SM ÇI. SILTY CLAY light olive gray and brown monled, little fine sand, low plasticity, soft, moist, appears to be intertsected with thin layers (0.5° - 1° thick) of Silly Sand, trace to little black organic debris H Nu = 0 No Hydrocarbon oddf CL H Nu ≈ 0 CLAY 5 No Hydrocalbon post light brown to olive gray mottled, little fine sand, medium plasticity, stiff, wet GC(?) CLAYEY GRAVEL? (Cuttings) (accepting to driller) SC. H Nu = 0 No Hydrocarbon odor CLAYEY BAND to SANDY CLAY light brown and gray motifed, little coarse sand, some medium to fine sand, little gravel to 1.5", moderate planticity, medium 3 CLAYEY GRAVEL to CLAYEY SAND with interbods of SANDY CLAY to abt. 5° & SILTY SAND H Nu = 0 No Hydrocarbon odor 26 light brown to gray mottled, moderate planticity exturated, medium dance, seturated

GRAVEL Jeconding to 1981 Ž 25 HNU - D SC CLAYEY SAND to SANDY CLAY No Hydrocurbon odoz olive gray to light brown motiled, fine to medium send, moderate pleasibity, still (or med. dense), saturated ₿ Bottom of Well: 29.5 feet 80 LOG OF MONITORING WELL NO. SHEET


STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

01-419A 15/4W 266


CETTLER RYAN Woodward-Clyde Consultants PROJECT NAME NO. 8820011A 2900 Telegraph Averue, Oekland CA; S-4 MONITORING WELL LOCATION ELEVATION AND DATUM DATE STARTED DATE FINISHED Kurt Voss 10/31/88 DRILLING AGENCY Bay Land Drilling DRILLER COMPLETION DEPTH 28.5 Modified Calibraia Sampler SAMPLER DRILLING EQUIPMENT CME-75 Truckmount NO. OF DIST. 8' HSA 6 UNDIST. DRILL BIT DRILLING METHOD CME Catica SAMPLES WATER FIRST COMPL. 24 HPS. 11-14 FROM 30.5 TO 0.5 FT. SIZE AND TYPE OF CASING S' PVC LOGGED BY: TYPE OF PERFORATION 0.020" slotted FROM 30.0 TO Ħ FT. 2/12 Lonester Send FT. SIZE AND TYPE OF PACK FROM 30.5 TO 4.0 JAN 1 31989 Sentonile Peliets FROM 4.0 TO 3.5 FT. NO. 1 TYPE OF SEAL NO. 2 Concrete Grout FROM e:5: FT. Seneral C Cepth (feet) E SPOR **MATERIAL DESCRIPTION** Asphalt and Concrete No Hydrocarobon odor 52-CLAYEY SAND to SANDY CLAY ZZZZZ Q --- درم OMV=0 medium brown with yellow brown mottling, very fine 150-250 to fine sand, low plasticity, firm, moist, few vesicles and root fragments. No Hydrocarobon odor OWN=0 grades to clayey slit with some very fine saind; 2 low plasticity. 10 SAND Not bold 560-40,400 No Hydrocarpbon odor 50 8 15 OMV=0 softer drilling from 16 to 18 feet Charle SAND ø No Hydrocarobon odoright brown with eccational yellow and dark brown motting, very fine to fine sand with ocational fine to medium sand, trace fine gravel, wet to saturated. OMV=0pp~ 20 . -less than 6" layers to grave interbedded (driller) Swp SAND to GRAVELLY SAND with interbedded SILT/CLAY light yellow brown, generally medium to coarse sand with fine gravel, thin (+/- 2") layers of silt and clay, No Hydrocarobon odor ML-25 5 OVM= Oppor 04 saturated. CL-SANDY CLAY to CLAYEY SAND light brown with few yellow brown mottled areas, very fine sand, fittle to some sit, bw to medium plasticity, firm, wet with No Hydrocarobon odor 6 30 DVM=Dpp saturated areas Total depth = 30.5 feet = Laboratory sample

LOG OF MONITORING WELL NO.

SHEET

Project No. 8820011A	Gettler-Ryan	SOIL BORING AND GROUNDWATER MONITORING WELL LOCATION MAP, FORMER SHELL SERVICE	Figure
Woody	vard-Clyde Consultants	STATION, 2800 TELEGRAPH AVE., OAKLAND, CA	2

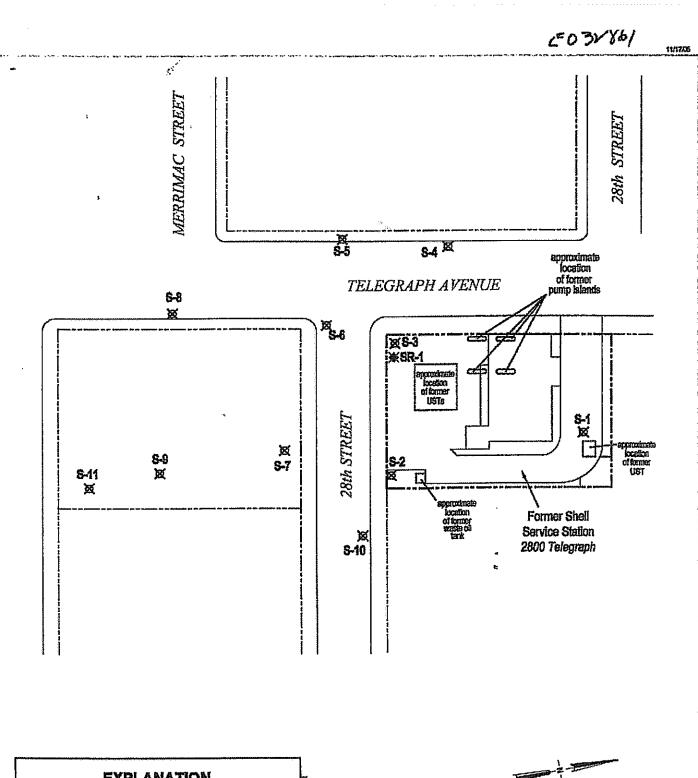
Former Shell Service Station

2800 Telegraph Avenue Oakland, California Incident No.97093398

Site Plan

CAMBRIA

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

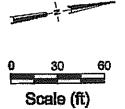

01-4198

GETTLEFFTYAN NO. 8820

Woodward-Clyde Consultants

PROJECT NAME

Woo	dwa	ard-	Clyc	ie Coi	nsultani	S					PROJ	ECT NAME	(3)=11	LETHIYAN	N N	o. <u>882</u> 0	JUTA
MONI	TORIN	3 WEL	T roc	ATION	280	FILE	GRAF	神人	100			ELEVATION	AND DA	TUM			
DRILL	ING A	ENC	1	BayLen	dDn¥ng		DRILLER		KurtVo	:8		DATE STAR	MED HED	10/26/6	39		
DRILL	ING EC	אפונא	ENT	Ta	d-mounted CA	!E75	`					COMPLETION DEPTH	N	24'	SAMPLER	Modifie Calibr	d Ve
DRILL	ING MI	THOE)	8"Hollow	asgusmea,		DAILL B	ıt	CMECa	rbida		NO, OF SAMPLES	DIST.	5	UNDIST.	•	_
SIZE A	ND TY	PE O	FCASI	NG	3" PVC		FROM	24	TO	0.5	FT.	WATER	FIRST	142)	COMPL.	24 H	RS.
TYPE	OF PER	TOR/	ATION	0.0	20" med ihed s	ots	FROM	23.5	TO	6 %	FT.	LOGGED BY	t;		CHECKED	3Y:	
SIZE	YT GAL	PE OF	PACK		2/12 Lonester	and	FROM	24	то	5	FT.	G.	leymen		М	. Bonkowsł	ď
TYPE	OF	N/	D, 1	1/2" Ben	brite Pelets		FROM	5	то	4	FT.						
SEAL		N.	0.2	Cement	grout		FROM	4	то	entace	Fī.		A .				
Cleat)	Samples	Blows					MAT	ERIAL	DESC	RIPTIO	Ą		2			SOSI	West Construc- tion
-			F	load Mai	erial							.V	1/4			- a.	河
											and a	>	**			-11	
		23.	S	LTY CL/ dark b	own, little vi	ary fine sar	nd, kow pla	asticity,	soft, d	amp,	S. A.	d'a				١	
5 –	1	150 PER 150 PE	S	homog ANDY S	eneous LT to SILT	Y SAND					<i>f</i>	/}_	No Hyd	irocarbon o	xxx	ML- SM	2
-			,	mediu	m yelow bro low plasticity	wn, very fi	ne sand, (grades ave	to sity	sanči, drilina	**************************************	< ,				- E	
-			'	(III)	1			<u> </u>								-	
			ś	ILTY SAI	noticates st VD with SA	NDY SILT		-/	William Committee	Canada Cara				,		I	
10 -	2	2 3 3		mediu	n yellow bro tamp, homo	xm, very li	ne sand, g	gradęs [°]	to san	ile yt	STATE SAME	7	No Hyd	rocarbon o	odor _	SM- ML	目
_						3		***	gar yak	1	Service of the servic					-	I
-						,	or the last of the		TAN SERVICE	<						-	目
-				medun	n sand	·				~ -					y	SP- SM	
15	3*	0	3	mediu	n vellow bro	wa. verv fi	ne graine	d laye	supto	3"thic	ζ,	_	No Hyd	rocarbon o	dor _		
_				grades	to sandy s	it, trace or	utotine ĝi	avel, v	erý loc	150, SET	Jrated	3.				-	
***						-	Service of the Servic	Ay,							•	1	H
		4		LĀY - "	. J	ng for .		f 									围
20 -	4*	6 10		darkgi	ray With green er 4 neediu Evesides, vo	en giay mg	itting in u	oper4"	, up to	some s	ilt		No Hyc	lrocarbon c	odor -	a.	目
				around	a 4 7018000 Pvęskies, vo gmenjs	ece hoto	2 mmino	jamet Jamet	o saw er, abu	ndant fi	10 10		_		•	-	個
	-	6 7		1000116	Awette	V /									•] _{CL-}	目
	5"	7		occasi	onal green c	ray motilin	g, mediun	n to hig	h plast	icity						어 다.	犀
25 -			Ti	otal Dep	h = 24 fe	at .									-	- ·	1
-			•	= Lab S	ample										•	1	
]	
30 -															****	-	
															•	-	
_															•]	
															•]	
35																	<u></u>



EXPLANATION

Destroyed monitoring well location

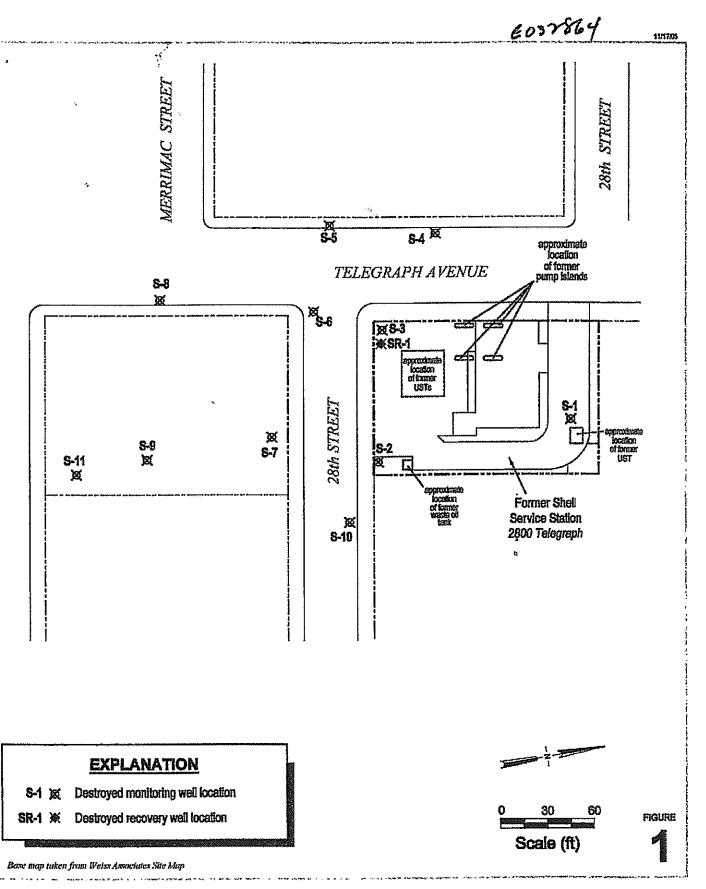
Destroyed recovery well location

Base map taken from Weiss Associates Site Map

FIGURE

Former Shell Service Station

2800 Telegraph Avenue Oakland, California **Incident No.97093398**

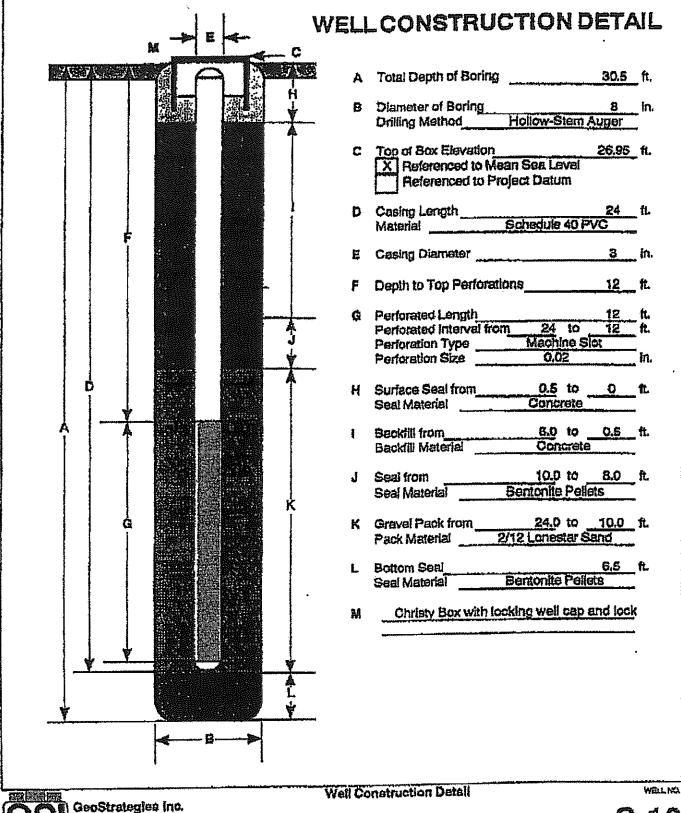

CHOMILAND ZODO TELEGRAPHINAS RESISTERIAN 11-OSLONIS

Site Plan

CAMBRIA

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

Former Shell Service Station


2800 Telegraph Avenue Oakland, California Incident No.97093398

OCONO AND 2000 TELEGRAPHETARRESESTED PLAN 11-65 DWO

CAMBRIA

Site Plan

DATE DATE DEVIEWED BY FGOLG DATE

S-10

CE NUMBER REMEMBED BY RECORD DATE PENASED DATE
7610 OWN CEN (26) 2. 9/89

LIGIG TOC	ation of b	onng:							7610		Date:	07/24/8	3	Borng No:
	•			-				<u> </u>	Shell O					S-10
		(\$	lee Plate	1)				Location:	2800 Telegraph Avenue					
		•		·				City:	Öaklend		lifornia			Shoot 1
									J. Varge		Drillet:	Bayland	<u> </u>	of E
		-		****			**************************************	Cosing install	ation date:	•				
Drilling			Stem Au	ger	-			Top of Box E	es entires.	26.5	<u> </u>	i Datum:	Ara	n Sea-Leve
Hole din	moter	8-Inches			,	<u> </u>	T		i and i	20.0	2:3	1	IAICIC	- Sou-Leve
	1			3			Soft Broup Symbol (USCS)	Water Level	<u> </u>		<u> </u>			
P.	Plosent I	Po eddy Seddys	Service	Copy (A)	Parts.	7 A A	82	Time	<u> </u>					
e R	flowings.	FE	62	8	2	>ຄ	Z E	Date			Description	.1		
	E.			<u> </u>							Politica Pateria		-	
	<u> </u>			İ			1			-				
	}	 			 	•		PAVEM	ENTSE	cho	N - Concre	le/Base F	lock	Sand
	 			1	<u> </u>		2					*****		
								FIII . e	and (SP)	loo	se, maist 9	% fine to	o me	dlum sand;
	 			2				5% clay	Trace c	A CO	ere and det	ris		
	 			-					11000-0					·····
	 			3										
	<u> </u>		i	~		-	1: "			**				
	-		-	4	3									
	150	S&H]			777							
0	150	push	\$-10-5	5				SANDY	CLAY (CL) •	very dark g	ray (5Y 8	/1).	medium
-			1] _	7		<i>\///</i>	stiff, dar	no: 60%	clav	30% fine s	and; 109	& sin	: medium
				6	-			plasticity	, roots,	brow	m oxidation	, trace s	oldu	unded
****								CORRECT	and; no	che	mical odor.			
				7										
				ĺ							·		·····	
				8								,,,,		
	·			1										
				8		}								
	150	S&H	 	1			177							
0	150	push		10		J	1///	CLAYE	SAND	to S/	WDY CLAY	(CLEC	<u> - gr</u>	ay (5Y 6/1),
4104 H-144	150		5-10-10	Ī.				medium	stiff, mo	ist; 4	0-50% fine	sand; 40	-50%	clay; trace
				11				coarse s	aptonu	ded s	and, brown	DXIDELIO	រា នផ	ains; no
				į		[chemice	l odor.				······································	
				12		:								<u> </u>
				i			1/%							
	İ		1	13		:	1//		-			····		
				!		, :	1//				,		Manner, 1944	
				14		. ₩								
	12	S&H				춫	19/9		A. 2		- AALIS	78 75 K	-	a antiques de la descripción d
0	16			15		•		GRAVE	wan C		and SAND	COOL DOS	- 037	P DIOMII
	30		S-10-15		超		6 6	(2.5Y 4/	4), OBNS	e, 861	turated; 50-	A SUBS	<u>교(원</u>	nes Alexas
				16			10/0/0			:UAIS	e sand; trac	0 + 1U70 1	THE P	HU
	1			1		•		chemics	i odor.		<u> </u>			
				17		,	19/0/6	•	** - ****					
	ļ				ļ., :	:	200							
	!	<u> </u>	<u> </u>	18	ļ	}	19/2							
	-			!			19 7						<u></u>	* * * * * * * * * * * * * * * * * * *
Carrai	1	<u> </u>	1	19	السبال	, , , , , , , , , , , , , , , , , , , 	100/0							
Remarks	×													
PER A SERVICE							l an at l	· · · · · · · · · · · · · · · · · · ·						CONTRACT NO

GeoStrategies Inc.

Log of Boring

DATE 9/89 HEVISMED BY PLACES REVISES DATE REVASED DATE 7610

Nov. 17 2005 12:37PM P4 EO3VSW

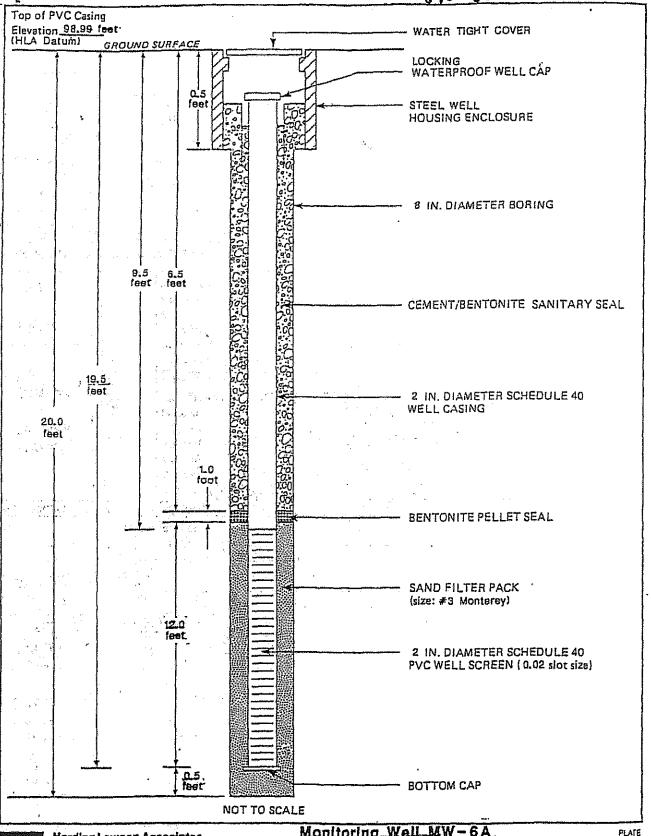
Piold too	ation of b	oring				· · · · · · · · · · · · · · · · · · ·			7610		Date:	07/24/89	Pound wo:
	:							Client! Location:	Shall Of	CON	ph Avenue		S-10
į		iee Plate	1)				City:	Oakland	Cal softio	itomia		Sheet 2	
								Logged by:			i Orifler:	Bayland	d 2
}								Casing install				Garana	<u> </u>
<u> </u>								l Againg suggest	Bhick Lusselle				
Drilling I		Stem Au	der,	-	-		Top of Box Elevation: 26.95 Datum: Mean Sea-Level						
Hole die	enotor:	8-inche	Ę	-		T		Water Level	EASTIOL!	<u> 20.5</u>	3	Burnersti 151E	COLOCA-DAVE
•	. 1		p. h	2	2	_ ~	38	Time	 -				
eğ	Blower.	Signal Signal	St.	Depth (C.)	Se street	New Parket	45	Dele	1		· · · · · · · · · · · · · · · · · · ·		1
~	Blevert. Of Femaleus (vs)	1 m	60.2	≛) "	1	Sea Grup Symbol NSCR		<u> </u>		Description		
	1	S&H		┼		 	10:71		(4-11-11-11-11-11-11-11-11-11-11-11-11-11		·		
	8	Dell		20	_	1	3 50/4	Interber	ided fine	to m	edium sand	famina at 1	9.5 feet.
0	13		9-10-20		-	}	1	HILDIOGE	1004 1114				
			10-10-20	21		1		<u> </u>					
]		1	1		······································				
	-			22		4 5	5						
	 		 	1	-	1	5.000						
-	1			23		1	1					freeze and the second	
	1			1		-		SANDY	CLAY (C)L) - '	yallowish br	own (10YR	5/4),
<u> </u>	1	 		24	iia.	1		muitan	eliff, mo	ist: 6	0-70% clev:	30% fine s	and; trace
 	6	S&H		1		1		silt, med	ilum ples	ticity	, interbedde	ed fine grav	ei lamina
· · · · · · ·	3			25		}		which a	re sature	ted. 1	race suban	gular coars	a graveis.
	7]]		worm b	urrows, t	orowi	OXIDEGOUS	no chemica	u buby.
			Ĭ .	26	L.,	1		} 			,,,,,		
				1]							
				27		1				-			
1]			1///	<u> </u>				the state of the s	- 1011
				28		j		,				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
]		<u> </u>			<u></u>					
				29				L	- domo	inor	eased brow	n staining.	
	6	H&3	<u> </u>	-	A -	1		Dedolini	ום טמוויף	ILEGA	Charle at at) t Diaminingi	
<u> </u>	7			30	//	-{				******************			
<u> </u>	8	<u> </u>	ļ	4	1	∤		Date a	of boring	(of 12	o n teet		
<u></u>	<u> </u>		ļ <u>.</u>	31	ļ	∤		Bottom	or normy	COLLEGE COMP S	30.5 feet.		
	<u> </u>		<u> </u>	ا	<u> </u>	1	1			P 61.1	10.0 100 u	, , , , , , , , , , , , , , , , , , , 	
	<u> </u>		ļ	32		4		07/24/8	Z			 	
 	 	 	 	33	\vdash	1		ļ	n 4 A Ståristenmesske	P4 -1884-3171	ستحدث والوسياد رسير	· · · · · · · · · · · · · · · · · · ·	
 	 	 	 	1		1		<u> </u>					
<u> </u>	1		 	34	1	1	1				,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
	+	 	1	1 - 7		1							
-	+	-	 	35	-	1	1			***	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(4 - 14 - 14 - 14 - 14 - 14 - 14 - 14 - 	
	-	 	 	1	-	1				-			
 	 	 	 	36		1	1						
 	 	1	1	1]							
	1			1]							
		T]				***			
<u> </u>	1		T]]	1						
	1	1	1	1		1	Į	<u> </u>					
		1		39		}							
Flomark	R.		· · · · · · · · · · · · · · · · · · ·										
200 200	22						Log of	Boring					BOANG NO.

GSI

GeoStrategies inc.

S-10

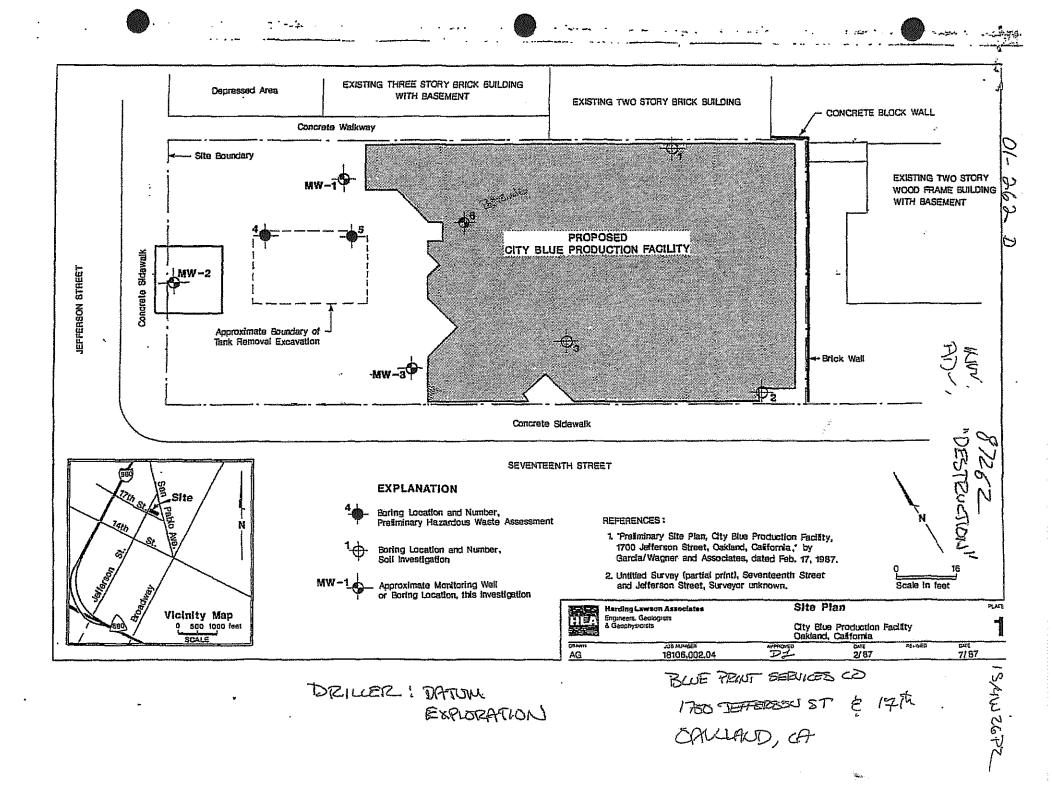
AND REVISION PROCESS DATE REVISION DATE REVI

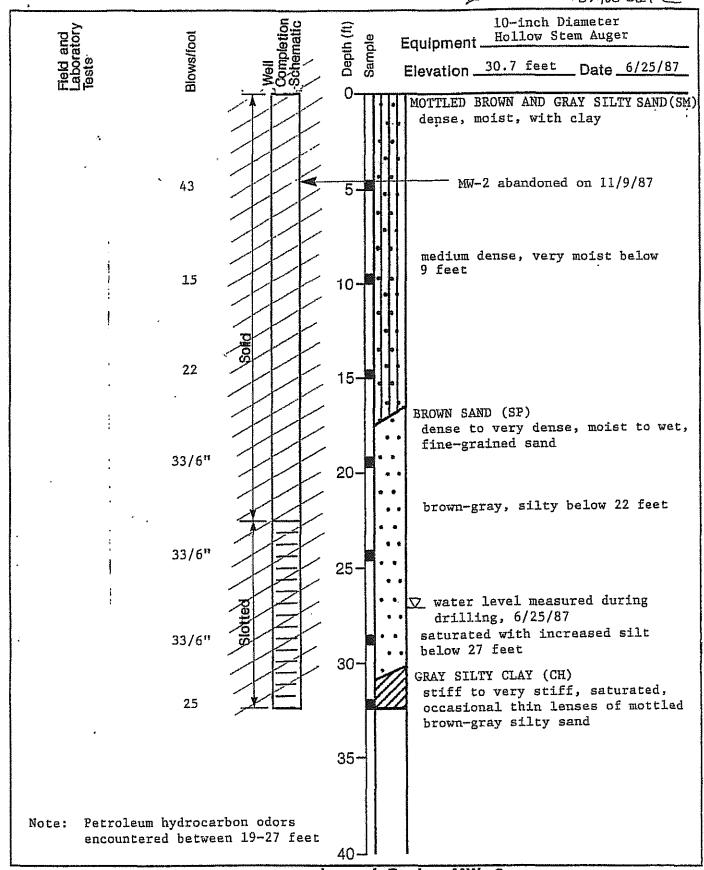

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

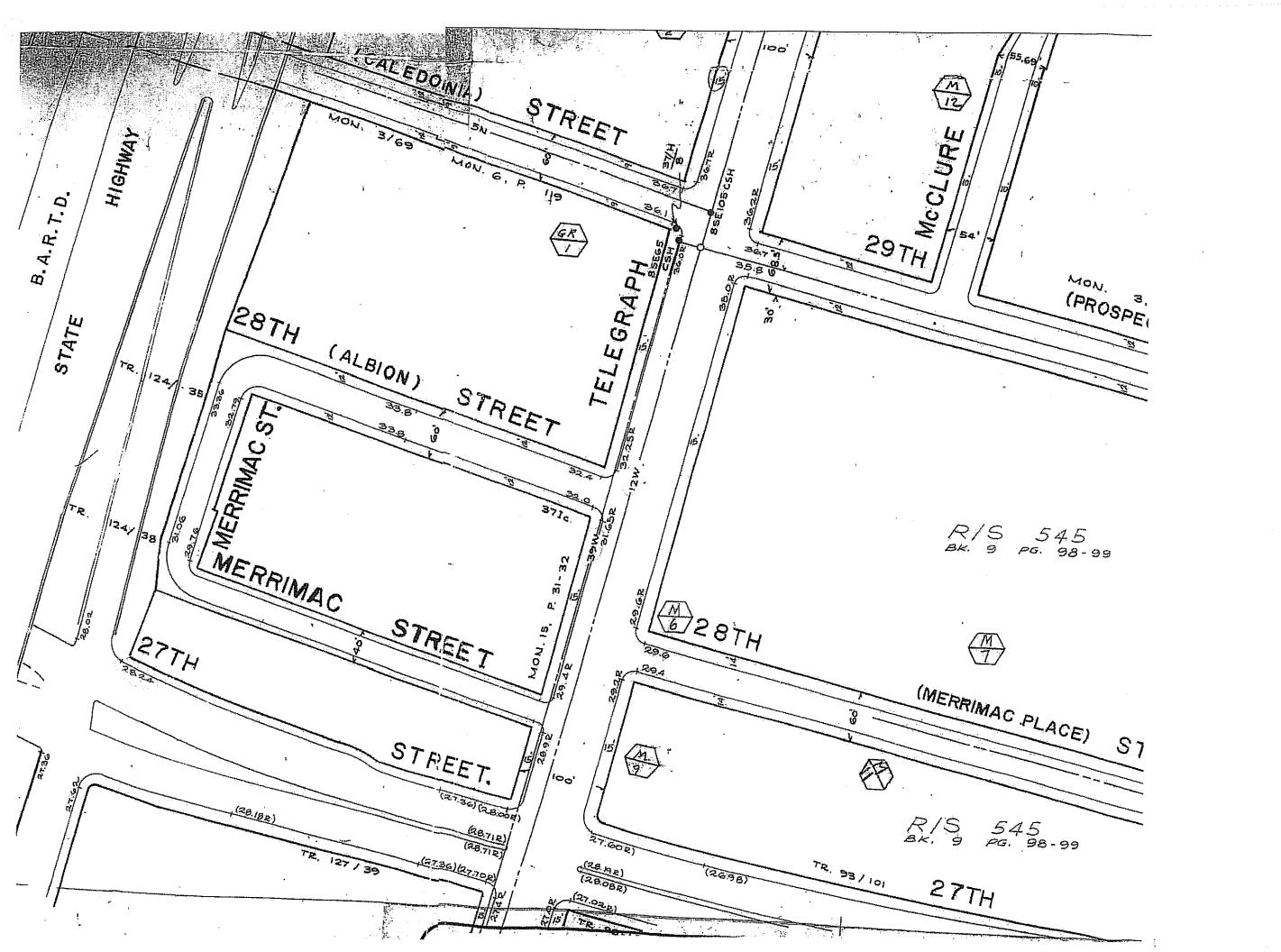

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

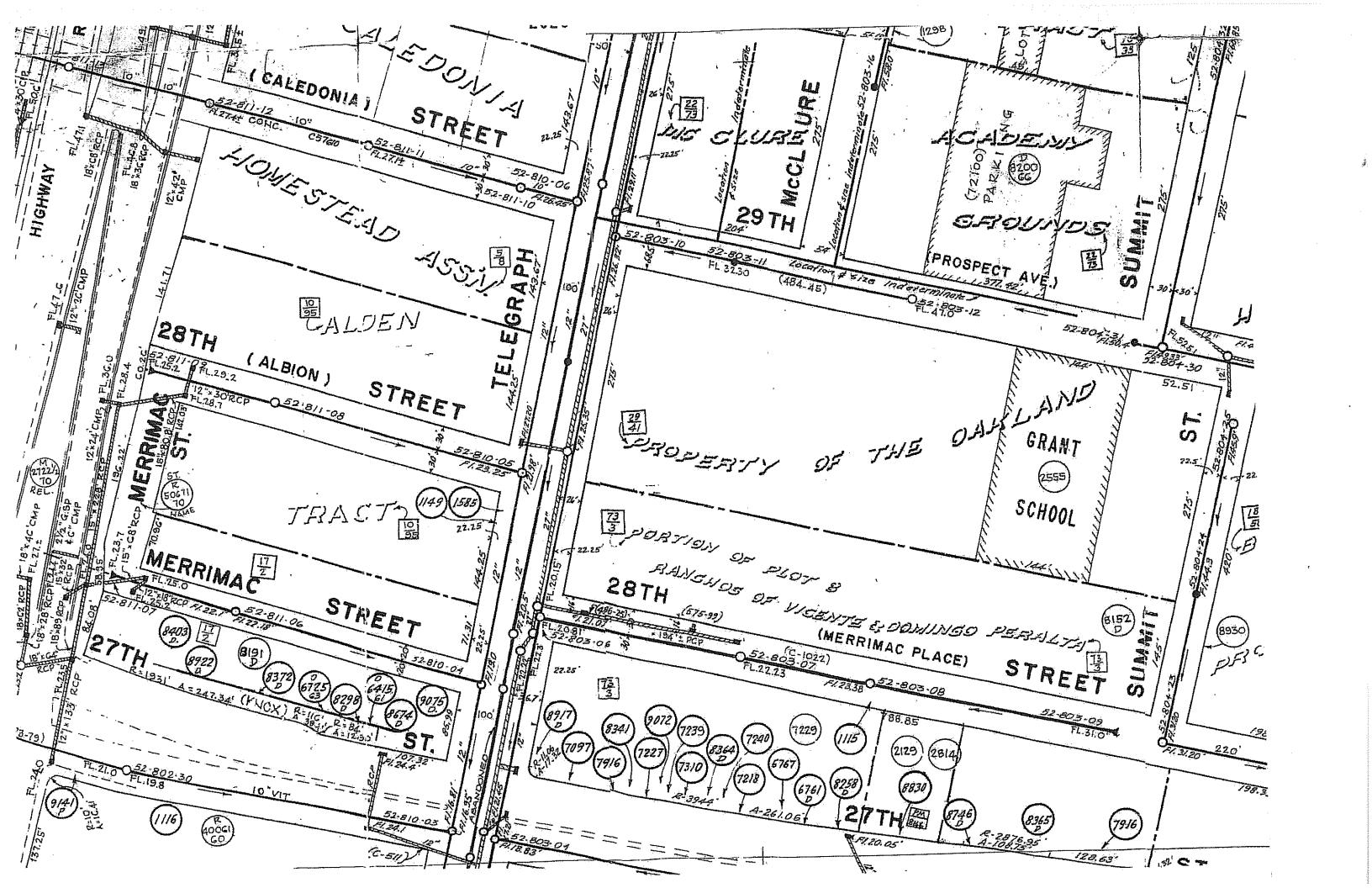


Monitoring Well MW-6A, Completion Detail' Texaco Station - 62488000195 2225 Telegraph Avenue Oakland, California Harding Lawson Associates Engineers, Geologists & Geophysicists пр нимвея DATE 2/89 REVISED APPROVED DATE 10 2251,080.03

FORM GW3

, L.Z.





Harding Lawson Associates Engineers, Geologists & Geophysicists Log of Boring MW-2
Underground Tank Investigation
City Blue Production Facility
Oakland, California

DRAWN	JOB NUMBER	APPROVED	DATE	REVISED	DATE
AG	18106.002.04	D2	7/87		1788

