RECEIVED By Alameda County Environmental Health 2:13 pm, Aug 25, 2016

GROUNDWATER MONITORING REPORT

7th Sampling Event, August 10, 2016

For the Site Located at:

2145 35TH Avenue

Oakland, California 94601

Prepared for:

Salisbury Avenue Associates LLC

11 Saint Lucia Place

Tiburon, California 94920

Prepared by:

Eagle Environmental Construction (EEC)

1485 Bayshore Boulevard, Suite 374

San Francisco, CA 94124

August 25, 2016

Table of Contents

1.0	Introduction	.1
2.0	Groundwater Sampling Activities	.1
3.0	Groundwater Elevations and Flow Direction	. 2
4.0	Groundwater Samples Laboratory Results	. 2
5.0	Waste Management	. 3
6.0	Conclusions and Recommendations	.3

TABLES

TABLE 1	WELL DATA AND GROUNDWATER ELEVATIONS
TABLE 2	SUMMARY OF CHEMICAL ANALYSES OF GROUNWATER SAMPLES COLLECTED FROM THE MONITORING WELLS –PETROLEUM HYDROCARBONS-BTEX, MTBE, AND NAPHTHALENE
TABLE 3	SUMMARY OF CHEMICAL ANALYSES OF GROUNWATER SAMPLES COLLECTED FROM THE MONITORING WELLS –POLYCYCLIC AROMATIC HYDROCARBONS (PAHs)
TABLE 4	SUMMARY OF CHEMICAL ANALYSES OF GROUNWATER SAMPLES COLLECTED FROM THE MONITORING WELLS –LUFT FIVE METALS

FIGURES

- FIGURE 1 SITE LOCATION
- FIGURE 2 WELL LOCATIONS AND GROUNDWATER FLOW DIRECTIONS AND GRADIENT

APPENDICES

APPENDIX A WELL PURGING AND SAMPLING LOGS

APPENDIX B LABORATORY REPORT

1.0 Introduction

This groundwater monitoring report is for the former gasoline service station located at 2145 35th Avenue, Oakland, California (Figure 1). This is the seventh sampling event since the four monitoring wells were installed in July 2012. For background information about the subject site and an update of the activities performed through 2013, review the November 2013 submitted report on the offsite subsurface investigation titled "Soil and Groundwater Investigation" and the updated conceptual site model. Also, see the reports on interim remedial action and soil gas sampling dated July and November 2015.

In the fourth, fifth, sixth, and seventh monitoring events, the following was implemented:

- Eliminated the full suite analysis of Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Method 8270sim due to the fact that only Naphthalene was detected. The remaining PAHs were non-detected in past analysis. Resumed the analysis of Naphthalene by using EPA Method 8260B.
- Lead was not detected in any of the wells. Maximum Nickel concentration to date was detected below the drinking water MCL of 100 µg/l. Nickel was detected in the initial three sampling events at 6.6 µg/l, 9.7 µg/l, and 8.7 µg/l, in Monitoring well MW-4. No other contaminant was detected in monitoring well MW-4. It appears that Nickel at this site is not related to the fuel leak and may be naturally occurring. Therefore, we discontinued the analysis for metals in the monitoring wells at this site.

2.0 Groundwater Sampling Activities

The wells were purged and sampled on August 10, 2016. EEC Engineer, Sami Malaeb, performed the well purging and sampling. The well sampling logs are presented in Appendix A. The depth to water in the wells was measured and recorded after removing the well caps and letting the wells stabilize for approximately 15 minutes. Subsequently, each well was purged of at least three casing volumes and until conductivity, temperature, and pH stabilized. The well purge water was transferred to a 55-gallon, DOT-approved, steel drum. The drum was temporarily stored onsite pending transport and disposal to a licensed facility.

After purging the wells, groundwater samples were collected by using disposable bailers. The water samples were discharged directly into laboratory cleaned 40-millileter volatile organic analysis (VOA) vials with HCL preservative to prevent loss of any volatile constituents. The vials were filled slowly and in such a manner that the meniscus extended above the top of the VOA vial. After the vials were filled and capped, they were inverted to ensure there is no headspace or entrapped air bubbles. The groundwater VOAs were labeled and placed in a cooler chilled to approximately 4°C. Equipment wash and rinse water were transferred to a 55-gallon storage

drum. The drum was sealed with a steel lid and labeled. All containers, VOAs and amber jars were obtained from the laboratory and filled with water from the bailer for the analyses.

The water samples were placed on ice, in an ice cooler, accompanied by a completed chain of custody. The samples were sent to Curtis & Tompkins Laboratory in Berkeley and analyzed for the following:

- Total Petroleum Hydrocarbons as Gasoline (TPH-G) by EPA Method 8015B;
- Total Petroleum Hydrocarbons as Stoddard Solvent (TPHss) by EPA Method 8015B;
- Total Petroleum Hydrocarbons as Diesel (TPH-D) by EPA Method 8015B;
- Total Recoverable Petroleum Hydrocarbons (TRPH) as Motor Oil and Hydraulic Oil, EPA Method 8015;
- Volatile Organics by the GC/MS EPA Method 8260B, MTBE, BTEX, and Naphthalene (no other chlorinated organic compounds were considered for analysis because all previous results from sampling the boreholes did not detect chlorinated solvents).

3.0 Groundwater Elevations and Flow Direction

The groundwater flow direction and gradient were calculated based on the depth to groundwater from top of casing in each well and the surveyed top of casing elevations. The well data are presented in the attached Table 1. The calculated groundwater flow direction was to the south at a gradient of 0.51% (Figure 2).

4.0 Groundwater Samples Laboratory Results

The laboratory report is included in Appendix B. Tables 2 through 4 summarize the analytical results. Laboratory analyses of groundwater samples collected from the monitoring wells indicated the following:

- Floating product or sheen was not observed in any of the wells.
- Similar to the previous sampling events, all the analyzed petroleum hydrocarbons were either non-detected or non-significant in monitoring wells MW-1, MW-3, and MW-4 (Table 2). In this event, no petroleum hydrocarbons were detected in monitoring wells MW-1, MW-3, and MW-4.
- Consistent with the previous sampling events, the most petroleum hydrocarbon impact was detected in monitoring well MW-2, downgradient from the former sources onsite; USTs, piping, and fuel dispenser (Table 2).

- Benzene and Naphthalene were detected only in MW-2. Benzene was detected at 61 μg/l and Naphthalene was detected at 3.5 μg/l (Table 2).
- None of the analyzed contaminants in the groundwater at this site exceeded its limit for Groundwater Screening Levels, Low-Threat Underground Storage Tank Case Closure Policy, Appendix 3, Figure A. The plume appears to be stable.

5.0 Waste Management

A total of one (1) purge water drum was generated from the purging and sampling activities onsite. The drum is stored onsite pending profiling and disposal.

6.0 Conclusions and Recommendations

Based on the analytical findings EEC presents the following conclusions and recommendations:

Conclusions

 It appears that the petroleum hydrocarbon plume is stable and limited to the area downgradient from the sources onsite, and within ~100 feet. All the petroleum hydrocarbons, including BTEX and Naphthalene, were not detected in Monitoring Wells MW-1, MW-3, and MW-4 in this sampling event.

Recommendations

• Since the monitoring wells at this site have been sampled for seven events to date, including wet and dry seasons, and the analytical data indicate stable and limited plume, EEC recommends no further groundwater sampling at this site.

Thank you for your cooperation. If you have any questions, please call at (925) 858-9608 or email Sami Malaeb at <u>s.malaeb@comcast.net</u>.

All engineering information, conclusions, and recommendations contained in this report have been prepared by a California Professional Engineer.

No, 60888 Exp. 12/31

Sami Malaeb, P.E.,QSP/QSD Project Manager

I declare under penalty of perjury, that the information and/or recommendations contained in this report are true and correct to the best of my knowledge.

Multer

Salisbury Avenue Associates LLC Charles Thomas Shurstad Property Owner Managing Partner

TABLES

- TABLE 1WELL DATA AND GROUNDWATER ELEVATIONS
- TABLE 2
 SUMMARY OF CHEMICAL ANALYSES OF GROUNWATER SAMPLES COLLECTED

 FROM THE MONITORING WELLS –PETROLEUM HYDROCARBONS-BTEX AND

 MTBE
- TABLE 3
 SUMMARY OF CHEMICAL ANALYSES OF GROUNWATER SAMPLES COLLECTED

 FROM THE MONITORING WELLS –POLYCYCLIC AROMATIC HYDROCARBONS
 (PAHs)
- TABLE 4SUMMARY OF CHEMICAL ANALYSES OF GROUNWATER SAMPLES COLLECTED
FROM THE MONITORING WELLS –LUFT FIVE METALS

TABLE 1 WELL DATA AND GROUNDWATER ELEVATIONS 2145 35th Avenue Oakland, California

DATE	WELL INFORMATION	MW-1	MW-2	MW-3	MW-4
	Casing Diameter (in)	2	4	4	2
07/18/2012	Total Well Depth (ft)	18	16	18	18
	Depth to Water (ft)	10.13	10.92	11.01	10.85
	Top of Casing Elevation	94.21	94.43	94.61	94.91
	Top of Water Elevation	84.08	83.51	83.60	84.06
	Casing Diameter (in)	2	4	4	2
	Total Well Depth (ft)	18	16	18	18
12/06/2012	Depth to Water (ft)	7.98	10.40	10.40	9.25
	Top of Casing Elevation	94.21	94.43	94.61	94.91
	Top of Water Elevation	86.23	84.03	84.21	85.66
	Casing Diameter (in)	2	4	4	2
	Total Well Depth (ft)	18	16	18	18
03/21/2013	Depth to Water (ft)	9.88	10.77	10.83	10.66
	Top of Casing Elevation	94.21	94.43	94.61	94.91
	Top of Water Elevation	84.33	83.66	83.78	84.25
	Casing Diameter (in)	2	4	4	2
	Total Well Depth (ft)	18	16	18	18
06/21/2013	Depth to Water (ft)	10.09	10.87	10.95	10.84
00/21/2013	Top of Casing Elevation	94.21	94.43	94.61	94.91
	Top of Water Elevation	84.12	83.56	83.66	84.07
	Casing Diameter (in)	2	4	4	2
	Total Well Depth (ft)	18	16	18	18
12/10/2013	Depth to Water (ft)	9.84	10.70	10.79	10.64
	Top of Casing Elevation	94.21	94.43	94.61	94.91
	Top of Water Elevation	84.37	83.73	83.82	84.27
	Casing Diameter (in)	2	4	4	2
	Total Well Depth (ft)	18	16	18	18
12/04/2014	Depth to Water (ft)	8.11	9.82	9.98	9.40
12/04/2014	Top of Casing Elevation	94.21	94.43	94.61	94.91
	Top of Water Elevation	86.10	84.61	84.63	85.51
	Casing Diameter (in)	2	4	4	2
	Total Well Depth (ft)	18	16	18	18
08/10/2016	Depth to Water (ft)	10.47	11.02	11.10	11.15
	Top of Casing Elevation	94.21	94.43	94.61	94.91
	Top of Water Elevation	83.74	83.41	83.51	83.76

TABLE 2

SUMMARY OF CHEMICAL ANALYSES GROUNWATER SAMPLES COLLECTED FROM THE MONITORING WELLS PETROLEUM HYDROCARBONS, BTEX, and MTBE 2145 35th Avenue, Oakland, California

Sample ID	Date Sampled	TPH-G ⁽¹⁾	TPH-ss ⁽³⁾	TPH-D ⁽⁴⁾	TPH as Motor Oil	TPH as Hydraulic Oil	Benzene	Toluene	Ethyl benzene	Total Xylenes	MTBE ⁽⁵⁾	Naphthalene
		(µg/l) ⁽²⁾	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
	07/09/2012	ND<50	ND<50	ND<50	ND<300	ND<300	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
	12/06/2012	ND<50	ND<50	ND<50	ND<300	ND<300	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
	03/21/2013	ND<50	ND<50	ND<49	ND<290	ND<290	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
MW-1	06/21/2013	ND<50	ND<50	$100 (Y)^{(6)}$	ND<290	ND<290	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
	12/10/2013	ND<50	ND<50	ND<49	ND<290	ND<290	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
	12/04/2014	ND<50	ND<50	ND<50	ND<300	ND<300	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
	08/10/2016	ND<50	ND<50	ND<50	ND<300	ND<300	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
	07/09/2012	3,800	3,900 (Y)	1,200 (Y)	ND<300	660 (Y)	82	42	350	189.4	ND<0.5	44
	12/06/2012	5,000	3,300 (Y)	2,300	ND<300	1,500 (Y)	92	42	460	179.6	ND<0.5	62
	03/21/2013	4,500	3,000	1,800 Y	ND<300	1,000(Y)	77	31	230	115.4	ND<1.7	25
MW-2	06/21/2013	4,300	2,900	1,700 (Y)	ND<300	1,100 (Y)	50	24	210	96	ND<1.7	21
	12/10/2013	3,300	2,300 (Y)	1,500 (Y)	ND<300	710 (Y)	40	21	140	63	ND<1.7	6.7
	12/04/2014	4,600	3,200 (Y)	3,900	ND<300	1,300 (Y)	53	24	200	75.2	ND<1.7	30
	08/10/2016	3,800	3,100 (Y)	590 (Y)	ND<300	ND<300	61	28	38	31.2	ND<0.5	3.5
	07/09/2012	85Y	86Y	180 (Y)	ND<300	ND<300	0.8	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
	12/06/2012	1,200	800Y	2,000	ND<300	1,600 (Y)	36	0.8	9.2	1.1	ND<0.5	120
	03/21/2013	130 (Y)	91Y	140 (Y)	ND<300	ND<290	1.8	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
MW-3	06/21/2013	ND<50	ND<50	210 (Y)	ND<300	340 (Y)	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
	12/10/2013	ND<50	ND<50	54 (Y)	ND<300	ND<290	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
	12/04/2014	54 (Y)	ND<50	ND<50	ND<300	ND<300	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
	08/10/2016	ND<50	ND<50	ND<50	ND<300	ND<300	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
	07/09/2012	ND<50	ND<50	ND<50	ND<300	ND<300	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
	12/06/2012	ND<50	ND<50	ND<50	ND<300	ND<300	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
	03/21/2013	ND<50	ND<50	ND<49	ND<290	ND<290	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
MW-4	06/21/2013	ND<50	ND<50	76 (Y)	ND<290	ND<290	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
	12/10/2013	ND<50	ND<50	ND<51	ND<310	ND<310	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
	12/04/2014	ND<50	ND<50	ND<50	ND<300	ND<300	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
	08/10/2016	ND<50	ND<50	ND<50	ND<300	ND<300	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<2.0
Groundwater Screening Threat Underground St Case Closure Policy, A Figure A ⁽⁷⁾	orage Tank	NA ⁽⁷⁾	NA	NA	NA	NA	100	NA	NA	NA	NA	NA

TPH-G ^{(1)} =	Total petroleum hydrocarbons as gasoline by EPA Method 8015B
(2)	

- Microgram per liter
- $\begin{array}{l} \text{(}\mu g / 1) & ^{(2)} = \\ \text{TPH-ss} & ^{(3)} = \\ \text{TPH-D} & ^{(4)} = \\ \text{MTBE} & ^{(5)} = \\ \text{(Y)} & ^{(6)} = \end{array}$

- Total petroleum hydrocarbons as Stoddard solvent by EPA Method 8015B Total petroleum hydrocarbons as diesel by EPA Method 8015B Methyl Tertiary Butyl Ether Sample exhibits chromatographic pattern which does not resemble standard;

NA⁽⁷⁾ = Not Applicable

TABLE 3

SUMMARY OF CHEMICAL ANALYSES GROUNWATER SAMPLES COLLECTED FROM THE MONITORING WELLS POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) 2145 35th Avenue

Oakland, California

Sample ID	Date Sampled	Naphtha -lene (µg/l) ⁽¹⁾	Acena- phthylene (µg/l)	Acena- phtene (μg/l)	Fluo- rene (µg/l)	Phenan -threne (µg/l)	Anth- racene (µg/l)	Fluo- ranthene (µg/l)	Pyrene (µg/l)	Benzo (a) Anth- racene (µg/l)	Chry- sene (µg/l)	Benzo (b) Fluo- ranthene (µg/l)	Benzo (k) Fluo- ranthene (µg/l)	Benzo (a) pyrene (µg/l)	Indeno (1,2,3-cd) pyrene (µg/l)	Dibenz (a,h) Anthracene (µg/l)	Benzo (g,h,i) Perylene (μg/l)
	07/09/2012	<2.0	N/A ⁽²⁾	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	12/06/2012	<2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	03/21/2013	<2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MW-1	06/21/2013	<2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	12/10/2013	<2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	12/04/2014	<2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	08/10/2016	<2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	07/09/2012	44	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	12/06/2012	62	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MW-2	03/21/2013	27	< 0.3	< 0.3	< 0.3	0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	<0.3
IVI VV -2	06/21/2013	21	N/A*	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	12/10/2013	6.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	12/04/2014	30	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	08/10/2016	3.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	07/09/2012	<2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	12/06/2012	120	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MW-3	03/21/2013	0.6	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09	< 0.09
101 00 -5	06/21/2013	<2.0	N/A*	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	12/10/2013	<2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	12/04/2014	<2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	08/10/2016	<2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	07/09/2012	<2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	12/06/2012	<2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	03/21/2013	<2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MW-4	06/21/2013	<2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	12/10/2013	<2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	12/04/2014	<2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	08/10/2016	<2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Groundwate Intrusion Human Levels (reside	Health Risk	20															

*Stopped analyzing for full suite PAHs due to the fact only Naphthalene was detected in previous sampling and analysis.

 $(\mu g/l)^{(1)} =$ Microgram per liter

 $N/A^{(2)}$ = Not applicable or not analyzed for.

⁽³⁾ = Tier 1 Environmental Screening Levels (ESLs), Groundwater Screening Levels, Summary of Groundwater ESLs, Prepared by: California Regional Water Quality Control Board, San Francisco Bay Region, 1515 Clay Street, Suite 1400, Oakland, California 94612, Interim Final (Feb. 2016, Rev. 3).

= Not listed

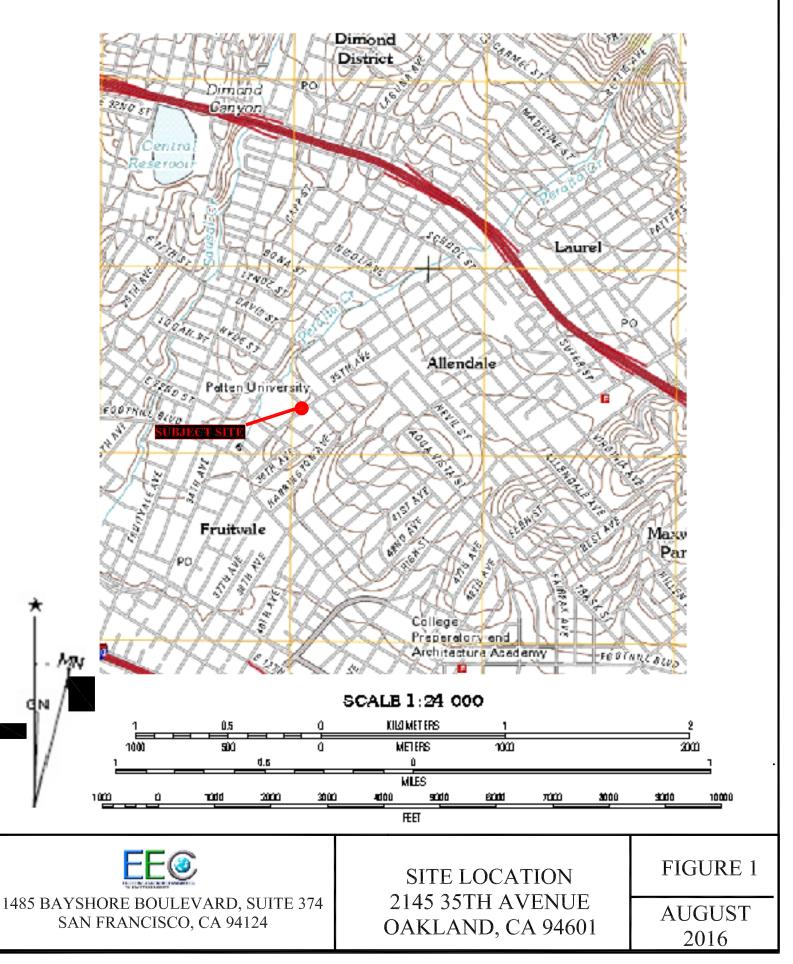
Bold = Concentration presented in bold where such a value is at or exceeds one of the environmental screening levels (ESLs) listed

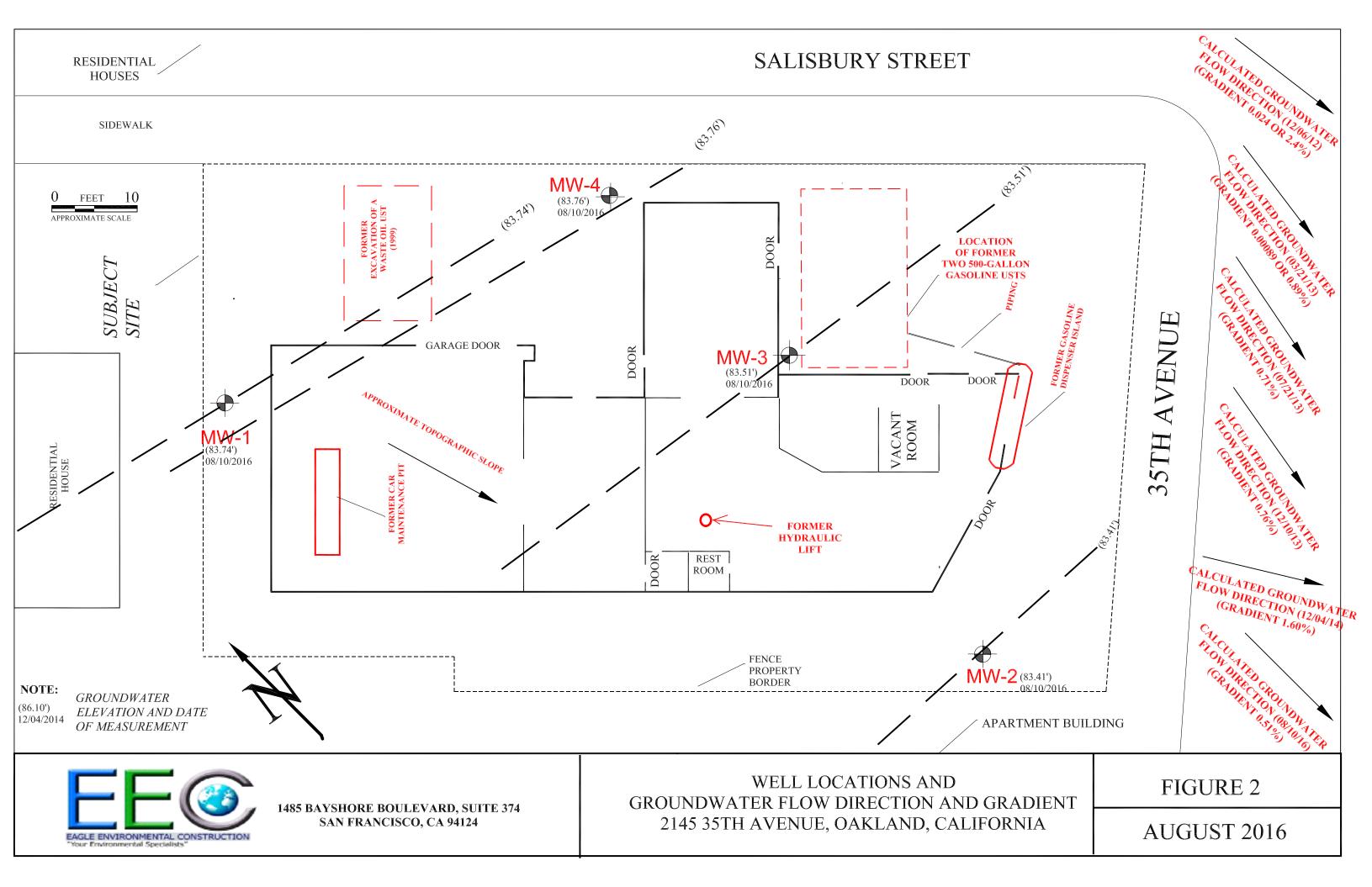
TABLE 4 SUMMARY OF CHEMICAL ANALYSES GROUNWATER SAMPLES COLLECTED FROM THE MONITORING WELLS LUFT FIVE METALS 2145 35th Avenue Oakland, California

Sample ID	Date Sampled	Cadmium (Cd) (µg/l) ⁽¹⁾	Chromium (Cr) (µg/l)	Lead (Pb) (µg/l)	Nickel (Ni) (µg/l)	Zinc (Zn) (µg/l)
	07/09/2012	<5.0	<5.0	<5.0	<5.0	<20
	12/06/2012	<5.0	<5.0	<5.0	7.6	<20
MW-1	03/21/2013	N/A ⁽²⁾	N/A	<5.0	5.5	NA
1/1// 1	06/21/2013*	N/A	N/A	N/A	N/A	N/A
	08/10/2016	N/A	N/A	N/A	N/A	N/A
	07/09/2012	<5.0	<5.0	<5.0	<5.0	<20
	12/06/2012	<5.0	<5.0	<5.0	<5.0	<20
MW-2	03/21/2013	N/A	N/A	<5.0	<5.0	NA
	06/21/2013*	N/A	N/A	N/A	N/A	N/A
	08/10/2016	N/A	N/A	N/A	N/A	N/A
	07/09/2012	<5.0	<5.0	<5.0	<5.0	<20
	12/06/2012	<5.0	<5.0	<5.0	6.1	<20
MW-3	03/21/2013	N/A	N/A	<5.0	5.1	NA
	06/21/2013*	N/A	N/A	N/A	N/A	N/A
	08/10/2016	N/A	N/A	N/A	N/A	N/A
	07/09/2012	<5.0	<5.0	<5.0	6.6	<20
	12/06/2012	<5.0	<5.0	<5.0	9.7	<20
MW-4	03/21/2013	N/A	N/A	<5.0	8.7	NA
	06/21/2013*	N/A	N/A	N/A	N/A	N/A
	08/10/2016	N/A	N/A	N/A	N/A	N/A
Groundwater Scree	ning Levels, MCL ⁽³⁾	5.0	50	15	100	5,000

*Stopped analyzing for LUFT 5 metals due to non-detected to non-significant levels in the water.

Microgram per liter =


(µg/l) (1) N/A (2) Not applicable or not analyzed for the indicated compound Tier 1 Environmental Screening Levels (ESLs), Groundwater =


Screening Levels, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Prepared by (3) = California Regional Water Quality Control Board, San Francisco Bay Region, 1515 Clay Street, Suite 1400, Oakland, California 94612, Summary of Groundwater ESLs (Feb. 2016 (Rev. 3)

FIGURES

- FIGURE 1 SITE LOCATION
- FIGURE 2 WELL LOCATIONS AND GROUNDWATER FLOW DIRECTIONS AND GRADIENT

OAKLAND EAST QUADRANGLE CALIFORNIA 7.5-MINUTE SERIES OAKLAND EAST, CA 2012

APPENDIX A WELL PURGING AND SAMPLING LOGS

Project No. :

Project Name: SALISBURY

Location: 2145 35th Avenue

Oakland, CA 94601

Well ID: Sampled by: Date:

MW-1 EEC S.M. 08/10/2016

Well Diameter:	2"
Total Well Depth:	17.70'
Depth to Water:	10.465
Water Column:	7.235
Calculated Purge:	3.54 8.1
Actual Purge:	4.00 801
Free Product:	NO
Product Sheen:	NO

Purge Volur	me Calculations
for Three Casi	ng Volume Purge
Volume Per One Foot of W	ell: 0,163 9-16m
πr ² x1	
Volume of One Casing:	1.180
Volume of Three Casings:	3.54

Purge Method: Did Well go dry?

baile

Post Purge Depth to Water (DTW)

Time	DTW				
9. ODans.	roruge'				
10:00 an	10.401				

Sampling Method:	b. bailer
Sample Time:	10:00 cm
Analyze for:	

Analyze for:	 		
	 	-	

Time	Conductivity	Temperature	рН	Salinity	Volume Purged
9:31 a.m.	523 MS	19.7°C	6,45		1.25 9011
9:36 G.m.	525 MS	18.900	6.57		2.0054
9:40 Q.n.	524 MS	18.8°C	6.69		3.00 gel
9:41 a	528 MS	18.900	6.73		3.25 5
9:50 on.	524 HS	19.0°C	6.73		4.20 50
4:550-	528 15	18.90C	6.75		4.50 cal
Sample	_				
~10:00 am					
			,		

Project No. :

Project Name:

Well ID:Sampled by:

Date:

<u>MW-2</u> <u>EEC S.M.</u> 8/10/2016

Location: 2145 35th Avenue

Oakland, CA 94601

Well Diameter:	4"
Total Well Depth:	15.41
Depth to Water:	11.020
Water Column:	4,38
Calculated Purge:	8.58
Actual Purge:	-
Free Product:	NO
Product Sheen:	~/0

Purge Volume Calculations				
for Three Casing Volume Purge				
Volume Per One Foot of We	11: 0,653	gallon		
π r ² x 1				
Volume of One Casing:	2.86			
Volume of Three Casings:	8.58			

Purge Method: Did Well go dry?

ie and

Post Purge Depth to Water (DTW)

Post Purge Depth to v	vater (DTW)
Time	DTW
1:470-	12.22'
	•

Sampling Method:	From	baile
Sample Time:	1:50	<i>p</i>

Analyze for:

Time	Conductivity	Temperature	рН	Salinity	Volume Purged
1:13 p.m.	931	20,7 " -	6.66		1 5-11_ 4 9-110-1
1:21 p.m.	936	20.3°C	6.76		4 gellons
1:19 p	920	20.100	6.77		6 sella
1:31 P-	966	20.0 %	6.80		7301101
1:39p-	888	20.0%	6.20		Ballo
1:445	884	20.0%	6.83		9 504-
1:47	87,5	19.200	6.86		10 Soll
			<u> </u>		

Comments:

Project No. :

Project Name:

SALISBURL,

Well ID: Sampled by:

Date:

MW-3 EFC S.M. 08/10/2016

Location: 2145 35th Avenue

Oakland, CA 94601

Well Diameter:	4"
Total Well Depth:	17.68'
Depth to Water:	11.100
Water Column:	6.58
Calculated Purge:	12.80gr
Actual Purge:	
Free Product:	NO
Product Sheen:	NO

Purge Volum	ne Calculations	
for Three Casir	ng Volume Purge	
Volume Per One Foot of We	11:0.653	5916
$\pi r^2 \times 1$		5
Volume of One Casing:	4.30	
Volume of Three Casings:	12.80	

Purge Method:

Purse & Sonde NO

DTW

n.al

•

Did Well go dry?

Time 12:35 P

Post Purge Depth to Water (DTW)

Sample Time:

From beiler 12:40 P-

Analyze for:

Sampling Method:

Time	Conductivity	Temperature	рН	Salinity	Volume Purged
11:56 km	730 tr	20.3 %	6.73		19cllon
12:040.0	734 MS	19.800	6.86		49010-
12:15 P.m	727 73	19.902	6.84		& gallons
12:25 P-	720 MS	20.000	6.86		IT.o sel
12:31 P-	716 MS	19.900	6.88		12'u sell-
12:35 0					
and					
				ļ	
			L		
Comments:	Top q. Cos	to sre	de ~	2.5	[

Project No. :

Purge Method:

Project Name: SALISBURG Well ID: Sampled by:

Date:

MW-4 FC S.M. 08/10/2016

Location: 2145 35th Avenue

Oakland, CA 94601

Well Diameter:	2"
Total Well Depth:	17.72'
Depth to Water:	11.1501
Water Column:	6.55'
Calculated Purge:	3.20 Sell
Actual Purge:	4 Sollar
Free Product:	NO
Product Sheen:	NO

Purge Volume Calculations for Three Casing Volume Purge Volume Per One Foot of Well: 0.163 99/104, $\pi r^2 x 1$ Volume of One Casing: 9-11-068 Volume of Three Casings: 3.20 9-11-

Sampling Method: Sample Time:

In bailer

Did Well go dry?

beilen

Post Purge Depth to Water (DTW)

Time	DTW
Riayas-	Naria
Riays- 11:05 a	11.30'
	*B1

Analyze fo	r:		 	
		_	 	

Time	Conductivity	Temperature	рН	Salinity	Volume Purged
10:47 am	515 MS	20.0 °C	6.60		1991/m
10:46 a	5/3	19.900	6.7		1991/m 1.5 sch
14:50		177	8		
A. C.					
10:50 cm	515 ms	19.9°C	6.78		2.00 502
10:550	515 m	19.900	6.77		2.20-
11:20 0-	522 43	19. Roc	6.80		3:06 re
11:08 cm	52/Ms	19.500	6.80		4:00 5
pomments:	Depth Lyon	surface.	Steel	- +0	+00 Q
pa	Depth from . Ording is ~	DEN	<i>.</i>		0 - 0

Saple

APPENDIX B LABORATORY REPORT

and setting to the

H

Laboratory Job Number 279584 ANALYTICAL REPORT

	Eagle Env. Construction 1485 Bay Shore Boulevard San Francisco, CA 94124	2	:	SALISBURY PROJ Salisbury Proj II	
--	--	---	---	--	--

<u>Sample ID</u>	<u>Lab ID</u>
MW-1	279584-001
MW-2	279584-002
MW-3	279584-003
MW-4	279584-004

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Tracy Babjar Project Manager tracy.babjar@ctberk.com (510) 204-2226

Date: <u>08/23/2016</u>

CA ELAP# 2896, NELAP# 4044-001

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 279584 Eagle Env. Construction SALISBURY PROJECT Salisbury Project 08/10/16 08/10/16

This data package contains sample and QC results for four water samples, requested for the above referenced project on 08/10/16. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

21.0

Analyt 2323 f Berkel	is & Tompkins, Ltd. ical Laboratory Since 1878 Fifth Street ey, CA 94710 86-0900 Phone	Geo a		ji)i				97 <u>)</u>	188	40	S	T	0	D `	Y		Chain Ai	of C	Custo	Paç ody <i>‡</i> al F	יייי זייייייי זייייייייייייייייייייייי	1 ues	of	1] _]		_
1 · · ·	86-0532 Fax		C&T LOGIN # 279584									Oil (wh															
Projec		Traject	- Sami	Ma	lael	b											0										
	t Name: Salisbury Project		Repo	rt 1	0: 8	San							_		260		Lau										
\	ormat X Rpt Leve			an	у :е	Eagle	Enviro	onme	tal Co	nstru	citor	n (EEC	- C)				Ŷ										
Torna	round Time: CRUSH	X Standard	Telep	ho	ne:	(9	25) 8	58-9	9608				-	015			H										
			Email	: s	.ma	lael	b@cc	omo	ast	.net			•	6 8	a de de		l ii										
Lab		Sampli	· · · · · · · · · · · · · · · · · · ·		Matr]		Ch	iemi serva	ical			LPH-SS	Naph.		-Motor C anup)										
Lab No.	Sample ID.	Date	Time	Water	Soil		# of Containers	Ŗ	H₂SO₄	HNO ₃	NaOH	None		TPH-G and TPH-SS by 8015	RTEY. MDRF. Nanhthalana hu 8720		TPH-D; TPH-Motor Oil; TPH-Hydraulic silica gel cleanup)										
	MW-1	08/10/2016	10:00	x		+	3	x	\uparrow					X	<u> </u>	<u>'</u>				+		+	+		┝─┼	+	-
1<	MW-1	08/10/2016		х			3	X	1						×	+	<u> </u>			+	-	+	+	+		+	-
ļ	MW-1	08/10/2016		х			2		T			x				\uparrow	x			1	+	+	+-	\square	\square	1	-
	<u>_MW-2</u>	08/10/2016	1:50-	Х			3	X						X			1				-	\top	1		\square	-	1
$ ^2 \langle$	MW-2	08/10/2016		Х			3	X						\Box	X	Τ	[1			\top	
\vdash	MW-2	08/10/2016		X			2					Х					Х						1	\square	\square		1
	MW-3	_08/10/2016	12:350	Х			3	X						X					Ι			Τ	T		\Box		
3	MW-3	08/10/2016		X			3	X							X												
	MW-3	08/10/2016		х	\square	1	2		ļ			X			_		X										
4	/MW-4 MW-4	08/10/2016				-	3	×	<u> </u>					×		<u> </u>					$-\perp$	\perp					
4	MW-4	08/10/2016		X		+	3	X -							<u> </u>	\perp					\perp		\perp			$ \rightarrow $	_
		08/10/2016	11	X		+	2		_			X				4_	×			_			\bot		\square	\rightarrow	4
Notes:		SAMPLE RE		R	ELIN		JISHE		BY:							ECE	IVED	BY:			 /		⊥		Ll Č		
				1	0 8/	10/	2010	6	X	U	24			28 Te/Tin		6	at	1	M_{a}	~	-fr	5	<u>8</u> /1	<i>0//</i>	'& DATI	_/_ <u>=/тім</u>	
													DA	TE/TIN										I	DATI	e/TIM	E
													DA	TE/TIN	1E									11	DATI	E/TIM	E

COOLER R		CHECKLIS			0/16	Number		Tompkins, L
Client	EEC			Project_	Salis	bury	or coole	rs f
Date Opened Date Logged i Date Labelled	n	By (print) By (print) By (print)		5 <u> </u>	(sign) (sign) (sign)		Mer	
1. Did cooler o Shippin	come with ng info			√ , etc)			_ ∢ YES	NO
 2A. Were cust How m 2B. Were custod 3. Were custod 4. Were custod 5. Is the project 6. Indicate the 	any ody seals i ly papers d ly papers f ct identifia	ntact upon a lry and intac illed out pro ble from cus	_ Name rrival? t when rec perly (ink, stody pape;	eived? signed, c	etc)?	Date	mples YES	NO NO NO NO NO
☐ Cloth 7. Temperature	material documen	X Foam □ Cardł tation:	oard	ńs+	vrofoam		None Paper tov	vels
Type of ic	e used: 🌶	U Wet	Blue/G	fel 🔲	None	Temp(°C	5.9	<u>{</u>
🗙 Tempe	rature bla	nk(s) include	d? 🕅 The	ermomete	r# 4		Gun#	
🗙 Sample	es received	l on ice direa	tly from t	he field. (Cooling pro	cess had	heaun	
8. Were Metho	d 5035 sar what time s arrive ur y missing in the app abels pres	mpling conta were they tr broken/unop / extra samp propriate con	iners press ansferred to bened? les? tainers for	ent? to freezer	d tests?		Y	ES NO ES NO ES NO NO NO
14. Was sufficie	nt amount	of sample s	ent for test	s request	ed?		-	ES NO
16. Did you chec 17. Did you docu 18. Did you char 19. Did you chan	ck preserv iment you ige the hol	atives for all r preservativ ld time in LI d time in I I	bottles for e check? MS for un	r each san (pH strip preserved	nple? lot# l VOAs?)	YES N YES N YES N YES N	10 N/A 10 N/A 10 N/A 10 N/A
20. Are bubbles > 21. Was the clien If YES, W	z contacte	sent in VOA d concerning	samples?	la dalina			YES N	O N/A
If YES, W	ho was c	alled?	s uns samp	Bv Bv	ry?	г	YE Date:	s 🕼
COMMENTS								
		·						
							·	

Detections Summary for 279584

Results for any subcontracted analyses are not included in this summary.

Client : Eagle Env. Construction Project : SALISBURY PROJECT Location : Salisbury Project

Client Sample ID : MW-1

Laboratory Sample ID :

279584-001

No Detections

Client Sample ID : MW-2

Laboratory Sample ID :

279584-002

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	3,800		50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Stoddard Solvent C7-C12	3,100	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Diesel C10-C24	590	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C
Benzene	61		0.5	ug/L	As Recd	1.000	EPA 8260B	EPA 5030B
Toluene	28		0.5	ug/L	As Recd	1.000	EPA 8260B	EPA 5030B
Ethylbenzene	38		0.5	ug/L	As Recd	1.000	EPA 8260B	EPA 5030B
m,p-Xylenes	28		0.5	ug/L	As Recd	1.000	EPA 8260B	EPA 5030B
o-Xylene	3.2		0.5	ug/L	As Recd	1.000	EPA 8260B	EPA 5030B
Naphthalene	3.5		2.0	ug/L	As Recd	1.000	EPA 8260B	EPA 5030B

Client Sample ID : MW-3	Laboratory Sample ID :	279584-003
No Detections		
Client Sample ID : MW-4	Laboratory Sample ID :	279584-004

No Detections

Y = Sample exhibits chromatographic pattern which does not resemble standard $$_{\rm Page \ 1 \ of \ 1}$$

		Total	Volatil	e Hydrocar	bons	
Lab #:	279584			Location:		Salisbury Project
Client:	Eagle Env.	Construct	cion	Prep:		EPA 5030B
Project#:	SALISBURY P	ROJECT		Analysis:		EPA 8015B
Matrix:	Water			Sampled:		08/10/16
Units:	ug/L			Received:		08/10/16
Diln Fac:	1.000					
Field ID:	MW-1			Batch#:		237950
Туре:	SAMPLE			Analyzed:		08/11/16
Lab ID:	279584-001					
	alyte		Result		RL	
Gasoline C7-C		NI)		50	
Stoddard Solv	ent C7-C12	NI)		50	
Sur	rogate	%REC	Limits			
Bromofluorobe		91	80-132			
Field ID: Type: Lab ID:	MW-2 SAMPLE 279584-002			Batch#: Analyzed:		238042 08/15/16
	alyte		Result		RL	
Gasoline C7-C	12		3,800		50	
Stoddard Solv	ent C7-C12		3,100 Y		50	
Sur	rogate	%REC	Limits			
Sur: Bromofluorobe:		% REC	Limits 80-132			
Bromofluorobe				Batch#:		237950
Bromofluorobe: Field ID:	nzene (FID)			Batch#: Analyzed:	_	237950 08/11/16
Bromofluorobe: Field ID: Type:	nzene (FID) MW-3					
Bromofluorobe Field ID: Type: Lab ID:	nzene (FID) MW-3 SAMPLE				RL	
Bromofluorobe: Field ID: Type: Lab ID:	nzene (FID) MW-3 SAMPLE 279584-003 alyte		80-132 Result		RL 50	
Bromofluorobe: Field ID: Type: Lab ID: An	nzene (FID) MW-3 SAMPLE 279584-003 alyte 12	111	80-132 Result			
Bromofluorobe Field ID: Type: Lab ID: Gasoline C7-C Stoddard Solv	nzene (FID) MW-3 SAMPLE 279584-003 alyte 12	111 	80-132 Result		50	

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected RL= Reporting Limit

Page 1 of 2

3.1

		Total	Volatil	.e Hydrocar	bons	
Lab #:	279584			Location:		Salisbury Project
Client:	Eagle Env. C	onstruct	ion	Prep:		EPA 5030B
Project#:	SALISBURY PR			Analysis:		EPA 8015B
Matrix:	Water			Sampled:		08/10/16
Units:	ug/L			Received:		08/10/16
Diln Fac:	1.000					
Field ID: Type: Lab ID:	MW-4 SAMPLE 279584-004			Batch#: Analyzed:		237950 08/11/16
	Analyte		Result		RL	
Gasoline C		NI)		50	
Stoddard So	olvent C7-C12	NE)		50	
2	Surrogate	%REC	Limits			
Bromofluoro	obenzene (FID)	97	80-132			
Type: Lab ID:	BLANK QC846885			Batch#: Analyzed:		237950 08/11/16
	Analyte		Result		RL	
Gasoline C	7-C12	NI)		50	
Stoddard So	olvent C7-C12	NE)		50	
2	Surrogate	%REC	Limits			
	obenzene (FID)	95	80-132			
Type: Lab ID:	BLANK QC847268			Batch#: Analyzed:		238042 08/15/16
	Analyte		Result		RL	
Gasoline C		NE			50	
Stoddard So	olvent C7-C12	NI)		50	
2	Surrogate	%REC	Limits			
Bromofluoro	obenzene (FID)	94	80-132			

3.1

	Total Volatile Hydrocarbons							
Lab #:	279584	Location:	Salisbury Project					
Client:	Eagle Env. Construction	Prep:	EPA 5030B					
Project#:	SALISBURY PROJECT	Analysis:	EPA 8015B					
Type:	LCS	Diln Fac:	1.000					
Lab ID:	QC846886	Batch#:	237950					
Matrix:	Water	Analyzed:	08/11/16					
Units:	ug/L							

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	2,000	1,936	97	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	101	80-132

Total Volatile Hydrocarbons						
Lab #:	279584	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	EPA 5030B			
Project#:	SALISBURY PROJECT	Analysis:	EPA 8015B			
Field ID:	MW-1	Batch#:	237950			
MSS Lab ID:	279584-001	Sampled:	08/10/16			
Matrix:	Water	Received:	08/10/16			
Units:	ug/L	Analyzed:	08/11/16			
Diln Fac:	1.000					

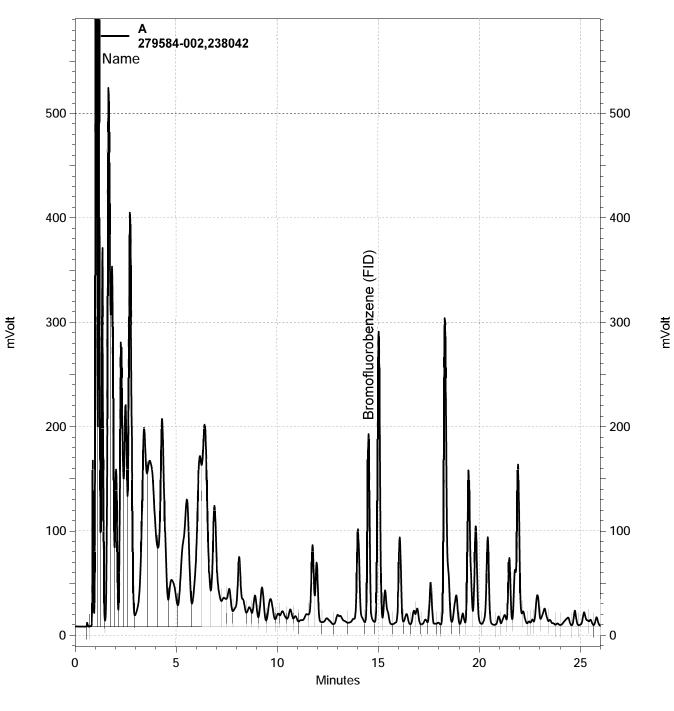
Type: MS		Lab ID:	QC846889		
Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	20.51	2,000	1,864	92	76-120
Surrogate	%REC Limits				
Bromofluorobenzene (FID)	101 80-132				

Type:	MSD			Lab ID:	QC	846890			
	Analyte		Spiked	Re	esult	%REC	Limits	RPD	Lim
Gasoline	C7-C12		2,000	1,	,641	81	76-120	13	20
	Surrogate	%REC	Limits						
Bromofluo	robenzene (FID)	101	80-132						

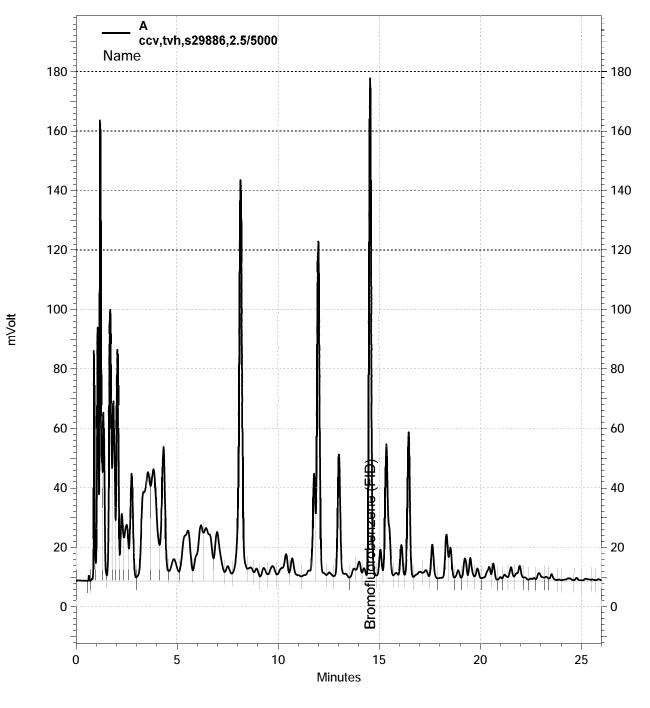
Total Volatile Hydrocarbons						
Lab #:	279584	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	EPA 5030B			
Project#:	SALISBURY PROJECT	Analysis:	EPA 8015B			
Туре:	LCS	Diln Fac:	1.000			
Lab ID:	QC847269	Batch#:	238042			
Matrix:	Water	Analyzed:	08/15/16			
Units:	ug/L					
	~ <u></u> , –					

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	938.1	94	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	88	80-132

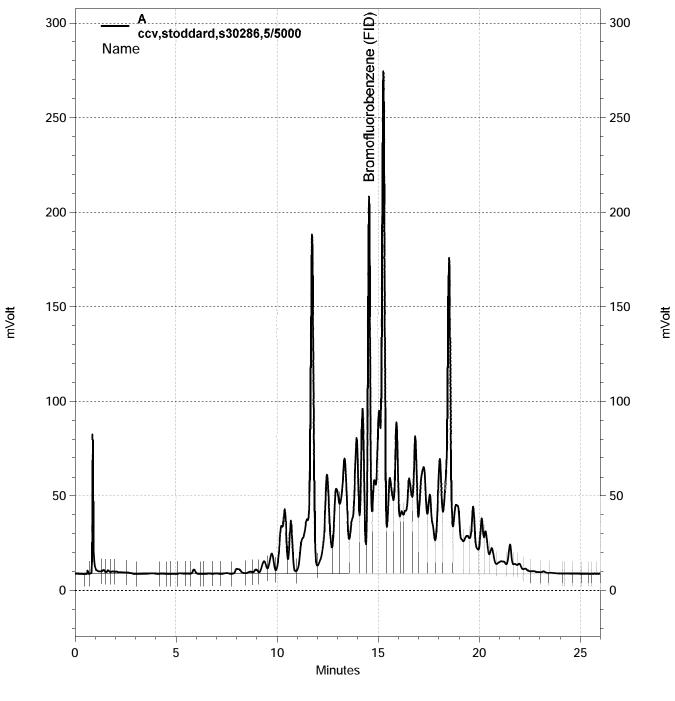


Total Volatile Hydrocarbons						
Lab #:	279584	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	EPA 5030B			
Project#:	SALISBURY PROJECT	Analysis:	EPA 8015B			
Field ID:	ZZZZZZZZZ	Batch#:	238042			
MSS Lab ID:	279714-001	Sampled:	08/11/16			
Matrix:	Water	Received:	08/12/16			
Units:	ug/L	Analyzed:	08/15/16			
Diln Fac:	1.000					


Туре:	MS			Lab ID:	QC847270		
	Analyte	MSS R	esult	Spiked	Result	%REC	Limits
Gasoline (C7-C12		19.29	2,000	1,834	91	76-120
	Surrogate	%REC	Limits				
Bromofluo	robenzene (FID)	102	80-132				

Type:	MSD			Lab ID:		QC847271			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline	C7-C12		2,000		1,799	89	76-120	2	20
	Surrogate	%REC	Limits						
Bromoflue	orobenzene (FID)	101	80-132						

16.0



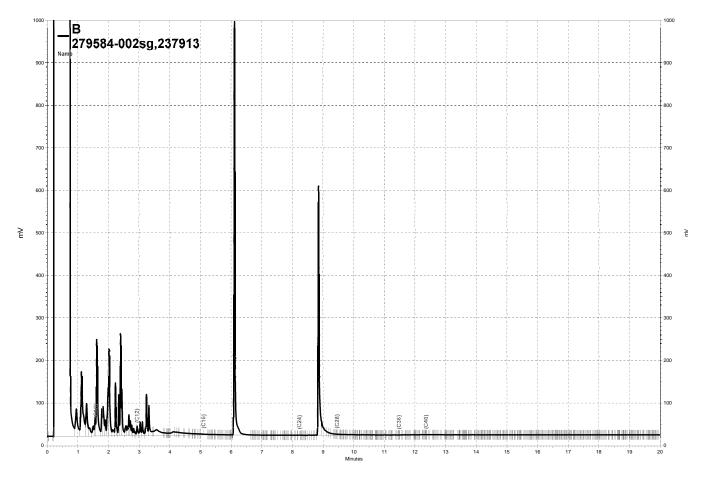
12 of 30

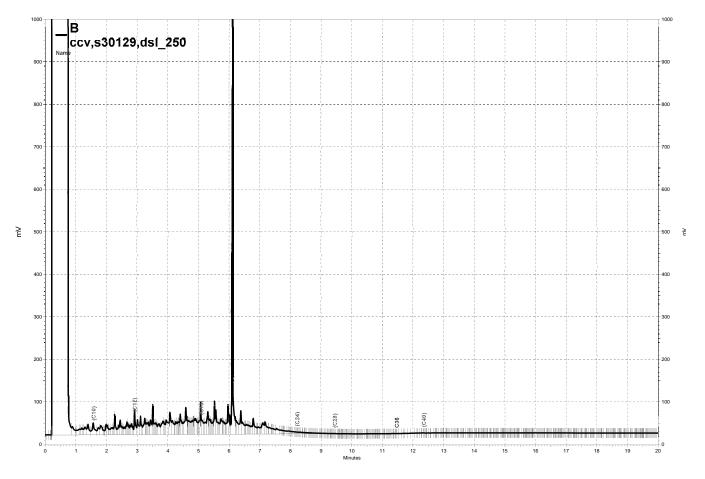
—— \\Lims\gdrive\ezchrom\Projects\GC19\Data\224-003, A

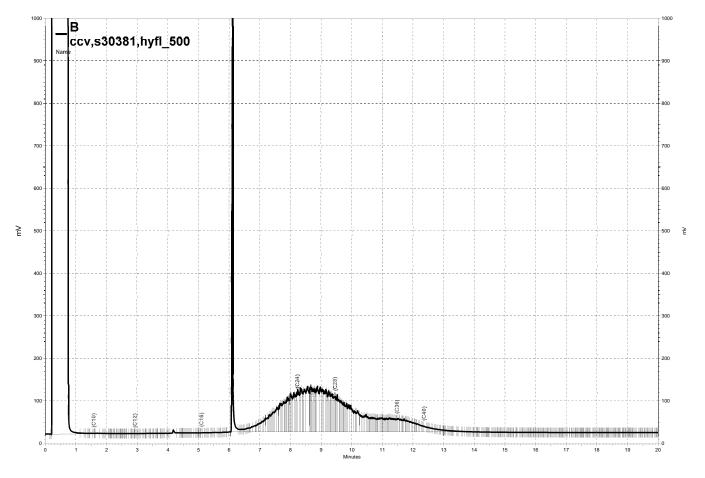
mVolt

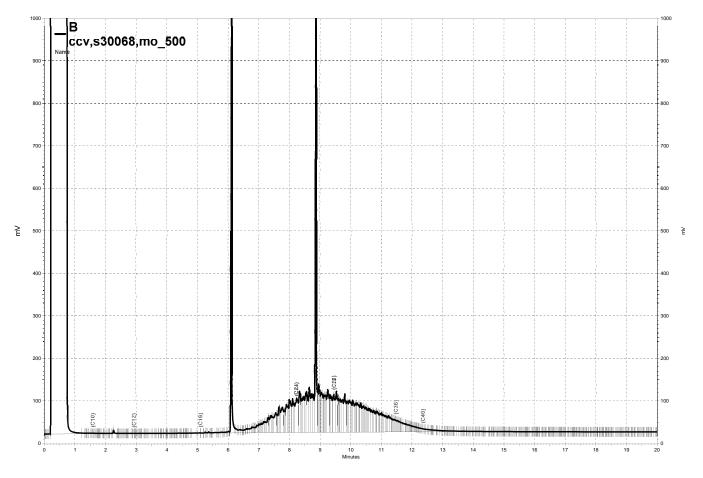
----- \\Lims\gdrive\ezchrom\Projects\GC19\Data\224-005, A

Lab #:	279584			Location:	Salisbury Project
Client:	Eagle Env.	Construct	cion	Prep:	EPA 3520C
Project#:	SALISBURY H	PROJECT		Analysis:	EPA 8015B
latrix:	Water			Sampled:	08/10/16
Jnits:	ug/L			Received:	08/10/16
Diln Fac:	1.000			Prepared:	08/10/16
Batch#:	237913			Analyzed:	08/13/16
ield ID:	MW-1			Lab ID:	279584-001
ype:	SAMPLE			Cleanup Method:	EPA 3630C
	alyte		Result	RL	
Diesel C10-C2		NI		50	
Motor Oil C24		NI		300	
Hydraulic Flu	ıd, Cl2-40	NI)	300	
Sur	rogate	%REC	Limits		
o-Terphenyl		83	67-136		
	MW-2			Lab ID:	279584-002
/pe:	SAMPLE			Cleanup Method:	
ype: An	SAMPLE alyte		Result	Cleanup Method:	
ype: An Diesel C10-C2	SAMPLE alyte 4	NI	Result 590 Y	Cleanup Method: RL 50	
ype: An Diesel C10-C2 Motor Oil C24	SAMPLE alyte 4 -C36	NI	Result 590 Y	Cleanup Method:	
ype: An Diesel C10-C2 Motor Oil C24 Hydraulic Flu	SAMPLE alyte 4 -C36 id, C12-40	NI	Result 590 Y	Cleanup Method: RL 50 300	
ype: An Diesel C10-C2 Motor Oil C24 Hydraulic Flu Sur	SAMPLE alyte 4 -C36	NI %REC	Result 590 Y D Limits	Cleanup Method: RL 50 300	
Diesel C10-C2 Motor Oil C24 Hydraulic Flu	SAMPLE alyte 4 -C36 id, C12-40	NI	Result 590 Y	Cleanup Method: RL 50 300	
ype: An Diesel C10-C2 Motor Oil C24 Hydraulic Flu Sur	SAMPLE alyte 4 -C36 id, C12-40	NI %REC	Result 590 Y D Limits	Cleanup Method: RL 50 300	
ype: An Diesel C10-C2 Motor Oil C24 Hydraulic Flu Sur D-Terphenyl ield ID:	SAMPLE alyte 4 -C36 id, C12-40 rogate	NI %REC	Result 590 Y D Limits	Cleanup Method: RL 50 300 300	EPA 3630C
ype: An Diesel C10-C2 Motor Oil C24 Hydraulic Flu Sur D-Terphenyl ield ID: ype: An	SAMPLE alyte 4 -C36 id, C12-40 rogate MW-3 SAMPLE alyte	NI %REC	Result 590 Y D Limits	Cleanup Method: RL 50 300 300 	EPA 3630C
pe: An viesel C10-C2 votor Oil C24 vydraulic Flu Sur -Terphenyl eld ID: pe: An viesel C10-C2	SAMPLE alyte 4 -C36 id, C12-40 rogate MW-3 SAMPLE alyte 4	NI %REC	Result 590 Y 590 Limits 67-136	Cleanup Method: RL 50 300 300 300 Cleanup Method: RL 50	EPA 3630C
ype: An Diesel C10-C2 Motor Oil C24 Hydraulic Flu D-Terphenyl ield ID: ype: An Diesel C10-C2 Motor Oil C24	SAMPLE alyte 4 -C36 id, C12-40 rogate MW-3 SAMPLE alyte 4 -C36	NI %REC 86	Result 590 Y D Limits 67-136	Cleanup Method: RL 50 300 300 300 Cleanup Method: RL 50 300 300	EPA 3630C
ype: An Diesel C10-C2 Motor Oil C24 Hydraulic Flu D-Terphenyl ield ID: ype: An Diesel C10-C2 Motor Oil C24	SAMPLE alyte 4 -C36 id, C12-40 rogate MW-3 SAMPLE alyte 4 -C36	NI %REC 86 NI	Result 590 Y) Limits 67-136	Cleanup Method: RL 50 300 300 300 Cleanup Method: RL 50	EPA 3630C
ype: An Diesel C10-C2 Motor Oil C24 Hydraulic Flu O-Terphenyl ield ID: ype: An Diesel C10-C2 Motor Oil C24 Hydraulic Flu	SAMPLE alyte 4 -C36 id, C12-40 rogate MW-3 SAMPLE alyte 4 -C36	NI %REC 86 NI NI	Result 590 Y D Limits 67-136	Cleanup Method: RL 50 300 300 300 Cleanup Method: RL 50 300 300	EPA 3630C


ND= Not Detected


		Cotal H	Extracta	able Hydrocarbo	ns
Lab #:	279584			Location:	Salisbury Project
Client:	Eagle Env. Co	onstruct	ion	Prep:	EPA 3520C
Project#:	SALISBURY PRO	JECT		Analysis:	EPA 8015B
Matrix:	Water			Sampled:	08/10/16
Units:	ug/L			Received:	08/10/16
Diln Fac:	1.000			Prepared:	08/10/16
Batch#:	237913			Analyzed:	08/13/16
Field ID: Type:	MW-4 SAMPLE			Lab ID: Cleanup Method:	279584-004 EPA 3630C
Anal	yte		Result	RL	
Diesel C10-C24		ND)	50	
Motor Oil C24-C		ND)	300	
Hydraulic Fluid	, C12-40	ND)	300	
Surro	gate	%REC	Limits		
o-Terphenyl		86	67-136		
Type: Lab ID:	BLANK QC846766			Cleanup Method:	EPA 3630C
Anal	yte		Result	RL	
Diesel C10-C24		ND)	50	
Motor Oil C24-C		ND)	300	
Hydraulic Fluid	, C12-40	ND)	300	
Surro	gate	%REC	Limits		


	Total	Extracta	ble Hydrocarbo	ns			
Lab #:	279584		Location:	Salisbury Pro	ject		
Client:	Eagle Env. Construc	tion	Prep:	EPA 3520C			
Project#:	SALISBURY PROJECT		Analysis:	EPA 8015B			
Matrix:	Water		Batch#:	237913			
Units:	ug/L		Prepared:	08/10/16			
Diln Fac:	1.000		Analyzed:	08/12/16			
Type: Lab ID:	BS QC846767		Cleanup Method:	EPA 3630C			
Anal	yte	Spiked	Result	%REC	Limits		
Diesel C10-C24		2,500	1,975	79	60-121		
Surro	gate %REC	Limits					
o-Terphenyl	90	67-136					
Туре:	BSD		Cleanup Method:	EDA 26200			
Lab ID:	QC846768		cleanup Method.	LPA SOSUC			
	QC846768	Spiked	Result		Limits	RPD	Lim
Lab ID:	QC846768	Spiked 2,500	_		Limits 60-121	RPD	Lim 32
Lab ID:	QC846768	2,500	Result	%REC			


-\\kraken\gdrive\ezchrom\Projects\GC14B\Data\223b094, B

-\\kraken\gdrive\ezchrom\Projects\GC14B\Data\223b065, B

-\\kraken\gdrive\ezchrom\Projects\GC14B\Data\223b090, B

-\\kraken\gdrive\ezchrom\Projects\GC14B\Data\223b064, B

Lab #:	279584	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B
Field ID:	MW-1	Batch#:	237936
Lab ID:	279584-001	Sampled:	08/10/16
Matrix:	Water	Received:	08/10/16
Units:	ug/L	Analyzed:	08/11/16
Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-128
1,2-Dichloroethane-d4	112	75-139
Toluene-d8	102	80-120
Bromofluorobenzene	99	80-120

ND= Not Detected RL= Reporting Limit Page 1 of 1

Lab #:	279584	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B
Field ID:	MW-2	Batch#:	237979
Lab ID:	279584-002	Sampled:	08/10/16
Matrix:	Water	Received:	08/10/16
Units:	ug/L	Analyzed:	08/12/16
Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	61	0.5	
Toluene	28	0.5	
Ethylbenzene	38	0.5	
m,p-Xylenes	28	0.5	
o-Xylene	3.2	0.5	
Naphthalene	3.5	2.0	

Surrogate	%REC	Limits
Dibromofluoromethane	101	80-128
1,2-Dichloroethane-d4	98	75-139
Toluene-d8	103	80-120
Bromofluorobenzene	94	80-120

ND= Not Detected RL= Reporting Limit Page 1 of 1

Lab #:	279584	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B
Field ID:	MW-3	Batch#:	237936
Lab ID:	279584-003	Sampled:	08/10/16
Matrix:	Water	Received:	08/10/16
Units:	ug/L	Analyzed:	08/11/16
Diln Fac:	1.000		

Analyte	Result	RL
MTBE	ND	0.5
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
m,p-Xylenes o-Xylene	ND	0.5
Naphthalene	ND	2.0

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-128
1,2-Dichloroethane-d4	114	75-139
Toluene-d8	103	80-120
Bromofluorobenzene	100	80-120

ND= Not Detected RL= Reporting Limit Page 1 of 1

Lab #:	279584	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B
Field ID:	MW-4	Batch#:	237936
Lab ID:	279584-004	Sampled:	08/10/16
Matrix:	Water	Received:	08/10/16
Units:	ug/L	Analyzed:	08/11/16
Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits
Dibromofluoromethane	103	80-128
1,2-Dichloroethane-d4	115	75-139
Toluene-d8	101	80-120
Bromofluorobenzene	99	80-120

ND= Not Detected RL= Reporting Limit Page 1 of 1

Purgeable Aromatics by GC/MS						
Lab #:	279584	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	EPA 5030B			
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B			
Matrix:	Water	Batch#:	237936			
Units:	ug/L	Analyzed:	08/11/16			
Diln Fac:	1.000					

Type:

BS

QC846837

Analyte	Spiked	Result	%REC	Limits
MTBE	12.50	12.67	101	65-120
Benzene	12.50	14.77	118	80-123
Toluene	12.50	14.50	116	80-121
Ethylbenzene	12.50	14.87	119	80-123
m,p-Xylenes	25.00	29.92	120	80-126
o-Xylene	12.50	14.41	115	80-126

Lab ID:

Surrogate	%REC	imits	
Dibromofluoromethane	101	0-128	
1,2-Dichloroethane-d4	110	5-139	
Toluene-d8	100	0-120	
Bromofluorobenzene	98	0-120	

Type: BSD	Lab I	D: QC84	6838			
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	12.50	12.31	99	65-120	3	22
Benzene	12.50	13.67	109	80-123	8	20
Toluene	12.50	13.59	109	80-121	7	20
Ethylbenzene	12.50	14.05	112	80-123	6	21
m,p-Xylenes	25.00	28.42	114	80-126	5	21
o-Xylene	12.50	13.68	109	80-126	5	20
Surrogate	%REC Limits					
Dibromofluoromethane	101 80-128					
1 2-Dichloroethane-d4	109 75-139					

[⊘] KEC	DIMICS			
101	80-128			
109	75-139			
101	80-120			
99	80-120			
	101 109 101	101 80-128 109 75-139 101 80-120	109 75-139 101 80-120	101 80-128 109 75-139 101 80-120

Purgeable Aromatics by GC/MS						
Lab #:	279584	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	EPA 5030B			
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC846839	Batch#:	237936			
Matrix:	Water	Analyzed:	08/11/16			
Units:	ug/L					

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits
Dibromofluoromethane	103	80-128
1,2-Dichloroethane-d4	113	75-139
Toluene-d8	101	80-120
Bromofluorobenzene	102	80-120

ND= Not Detected RL= Reporting Limit Page 1 of 1

Purgeable Aromatics by GC/MS						
Lab #:	279584	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	EPA 5030B			
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC847013	Batch#:	237979			
Matrix:	Water	Analyzed:	08/12/16			
Units:	ug/L					

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-128
1,2-Dichloroethane-d4	113	75-139
Toluene-d8	103	80-120
Bromofluorobenzene	115	80-120

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Purgeable Are	omatics by GC/M	IS
Lab #:	279584	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC847059	Batch#:	237979
Matrix:	Water	Analyzed:	08/12/16
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
MTBE	12.50	12.27	98	65-120
Benzene	12.50	12.08	97	80-123
Toluene	12.50	12.07	97	80-121
Ethylbenzene	12.50	12.20	98	80-123
m,p-Xylenes	25.00	23.89	96	80-126
o-Xylene	12.50	11.55	92	80-126

Surrogate	%REC	Limits	
Dibromofluoromethane	98	80-128	
1,2-Dichloroethane-d4	111	75-139	
Toluene-d8	103	80-120	
Bromofluorobenzene	97	80-120	

	Purgeable Ar	omatics by GC/	ms
Lab #:	279584	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B
Field ID:	ZZZZZZZZZ	Batch#:	237979
MSS Lab ID:	279606-002	Sampled:	08/10/16
Matrix:	Water	Received:	08/10/16
Units:	ug/L	Analyzed:	08/12/16
Diln Fac:	1.000		

Type:

MS

Lab ID: QC847139

Analyte	MSS Result	Spiked	Result	%REC	Limits
MTBE	<0.1000	25.00	24.60	98	71-120
Benzene	<0.1000	25.00	26.14	105	80-120
Toluene	<0.1000	25.00	24.99	100	80-120
Ethylbenzene	<0.1022	25.00	25.47	102	80-120
m,p-Xylenes	<0.1357	50.00	50.28	101	80-121
o-Xylene	<0.1322	25.00	24.10	96	80-120

Gummagata	%REC	Timita
Surrogate	%REC	Limits
Dibromofluoromethane	102	80-128
1,2-Dichloroethane-d4	113	75-139
Toluene-d8	101	80-120
Bromofluorobenzene	101	80-120

Type:

MSD

Lab ID:

QC847140

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	25.00	23.90	96	71-120	3	20
Benzene	25.00	24.60	98	80-120	6	20
Toluene	25.00	24.11	96	80-120	4	21
Ethylbenzene	25.00	24.53	98	80-120	4	25
m,p-Xylenes	50.00	48.15	96	80-121	4	23
o-Xylene	25.00	23.72	95	80-120	2	25

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-128
1,2-Dichloroethane-d4	109	75-139
Toluene-d8	103	80-120
Bromofluorobenzene	101	80-120