

QUARTERLY GROUNDWATER MONITORING REPORT

For the Site Located at:

2145 35TH AVENUE

OAKLAND, CALIFORNIA 94601

Prepared for:

Salisbury Avenue Associates LLC

2917 MacArthur Boulevard, #A3F

Oakland, CA 94602

Prepared by:

Eagle Environmental Construction (EEC)

1485 Bayshore Boulevard, Suite 374

San Francisco, CA 94124

January 25, 2013

Table of Contents

1.0	Introduction	. 1
2.0	Groundwater Sampling Activities	1
3.0	Groundwater Elevations and Flow Direction	. 2
4.0	Groundwater Samples Laboratory Results	. 2
5.0	Waste Management	3
6.0	Conclusions and Recommendations	. 3

TABLES

TABLE 1	WELL DATA AND GROUNDWATER ELEVATIONS
TABLE 2	SUMMARY OF CHEMICAL ANALYSIS OF GROUNWATER SAMPLES COLLECTED FROM THE MONITORING WELLS
FIGURES	

FIGURE 1	SITE LOCATION
FIGURE 2	WELL LOCATIONS AND GROUNDWATER FLOW DIRECTIONS AND GRADIENT
FIGURE 3	GROUNDWATER CONTAMINANT CONCENTRATIONS, JULY AND DECEMBER 2012

APPENDICES

APPENDIX A WELL PURGING AND SAMPLING LOGS

APPENDIX B LABORATORY REPORT

1.0 Introduction

This quarterly groundwater monitoring report is for the former gasoline service station located at 2145 35th Avenue, Oakland, California (Figure 1). This is the second quarterly sampling event since the four monitoring wells w ere installed in Ju ly 2012. The f irst samplin g event was performed on July 9, 2012 and documented in a detailed r eport titled "Phase II Environmental Investigation Report and Supplemental Investigation Workplan", dated August 2012. The scope of work documented in the August 2012 report included the following:

- Removal of the car maintenance pit;
- Removal of the hydraulic lift;
- Removal of the dispenser island and associated piping;
- Drilling of fifteen soil borings with soil and groundwater sampling and analysis;
- Installation and closing of 4 temporary piezometers; and
- Drilling and sampling of four monitoring wells

This report documents the groundwater sampling event performed on December 6, 2012. For background information about the subject site and an update of the activities performed through July 2012, review the August 2012 report mentioned above.

2.0 Groundwater Sampling Activities

The wells w ere purged and sample d on Dece mber 06, 2012. EEC Engineer, Sami Malaeb, performed the well purging and sampling. The well sampling logs are presented in Appendix A. The depth t o water in t he wells was measured and recorded after removing the well caps an d letting the wells stabilize for approximately 15 minutes. Subsequently, each well was purged of at least thre e casing volumes and u ntil conductivity, temperature, and pH stabilized. The well purge water was transferred to 55-gallon, DOT-approved, steel d rums. The drums were temporarily stored onsite pending transport and disposal to a licensed facility.

After purgin g the wells, groundwater samples were colle cted. The water samples were discharged directly into laboratory cleaned 40-millileter volatile organic analysis (VOA) vials with HCL preservative to prevent loss of any volatile constituents. The vials were filled slowly and in such a manner that the meniscus e xtended above the top of the VOA vial. After the vials were filled and capped, they were inverted to ensure there is no headspace or entrapped air bubbles. The groundwater VOAs were labeled and pla ced in a co oler chilled to approximately 4°C. Equipment wash and rinse water were transferr ed to a 55-g allon storage drum. The drum was sealed with a steel lid and labeled. Other containers, amber jars, one liter plastic bottles, were obtained from the labor atory and filled with wat er from the bailer for the TPH-D, TPH-mo, and LUFT-Five-Metal analysis.

The water samples were placed on ice, in an ice cooler, a ccompanied by a completed chain of custody. The samples were sent to Curtis & Tompkins Laboratory in Berkeley and analyzed for r the following:

- Total Petroleum Hydrocarbons as Gasoline (TPH-G) by EPA Method 8015B;
- Total Petroleum Hydrocarbons as Stoddard Solvent (TPHss) by EPA Method 8015B;
- Total Petroleum Hydrocarbons as Diesel (TPH-D) by EPA Method 8015B;
- Volatile Organics by the GC/MS EPA Method 8260, MTBE, BTEX, and Naphthalene (no other chlorinated organic compounds were considered for analysis because all previous results from sampling the boreholes did not detect chlorinated solvents);
- Total Recoverable Petroleum Hydrocarbons (TRPH) as Motor Oil and Hydraulic Oil , EPA Method 8015; *and*
- LUFT 5 Metals by EPA Method 6010/7471 (with filtering before analysis).

3.0 Groundwater Elevations and Flow Direction

The groundwater flow direction and gradient were calculated based on the depth to groundwater from top of casing in ea ch well and the surve yed top of casing elevations. The well data are presented in the attached Table 1. Due to the measurable rain f all in November and ear ly December 2012, the groundwater elevations in the wells increased by an average o f 1.22 foot. The calculated ground water flow direction was to the south at a gradient of 0.024 or 2.4 % (Figure 2).

4.0 Groundwater Samples Laboratory Results

The laboratory report i s included in Appendix B. Table 2 summariz es the analytical result s. Also, Figure 3 depicts the laboratory results from July and December 2012. Laboratory analysis of groundwater samples collected from the monitoring wells indicated the following:

- Floating product was not observed in any of the wells.
- Similar to t he first sampling eve nt in July 2012, none of the an alyzed petroleum hydrocarbons was detected in monitoring wells MW-1 and MW-4.
- Similar to the first sampling event in July 2012, the most petroleum hydrocarbon impact was detected in monitoring well MW-2, downgradient from the former sources on site; USTs, piping, and fuel dispenser. Groundwater from monitoring well MW-2 exceeded the ESL for drinking water scenario for TPH-G; TPH-D; TPHss; BTEX; and Naphthalene.
- Petroleum hydrocarbon concentra tions in g roundwater samples collected from monitoring MW-3 were slightly high er than in the previous sampling event. For example

benzene increased from 0.8 μ g/l to 36 μ g/l (Table 2). This increase may be attributed to the rise in the water table.

5.0 Waste Management

A total of two (2) purge water drums were generated from the purging and sampling activities onsite. These drums are stored onsite pending profiling and disposal.

6.0 Conclusions and Recommendations

Based on the analytical findings EEC presents the following conclusions and recommendations:

Conclusions

- Similar to t he first sampling eve nt in July 2012, none of the an alyzed petroleum hydrocarbons was detected in monitoring wells MW-1 and MW-4.
- Groundwater in the remaining monitoring wells MW-2 and MW-3 is impacted with petroleum hydrocarbons above the ESLs for drinking and non-drinking water scenarios.

Recommendations

- Continue the quarterly sampling of wells un til at least four monitoring events are completed.
- As request ed in the r egulatory letter from Alameda County Enviro nmental Health (ACEH), da ted December 18, 20 12, Laboratory analysi s for Polycyclic Aromatic Hydrocarbons (PAHs) By EPA Me thod 8270-SIM will be conducted in the upcomin g sampling events. Due to the non-detected results for all the an alyzed petroleum hydrocarbon compounds in both sampling events (in July and Dec ember 201 2) in monitoring wells MW-1 and MW-4, analysis f or PAHs wi II be conducted on only the groundwater from monitoring wells MW-2 and MW-3.
- As request ed in the r egulatory letter from Alameda County Enviro nmental Health (ACEH), dated December 18, 2012, the full lab oratory analysis for the LUFT 5 met als will be discontinued in the upcoming events except the analysis for Lead (Pb) and Nickel (Ni) will be continued.

Thank you for your cooperation. If you have any questions, please call at (925) 858-9608 or email Sami Malaeb at <u>s.malaeb@comcast.net</u>.

All engineering information, conclusions, and recommendations contained in this report have been prepared by a California Professional Engineer.

Vale of 60888 OF CAL

Sami Malaeb, P.E.,QSP/QSD

Project Manager

I declare under penalty of perjury, that the information and/or recommendations contained in this report are true and correct to the best of my knowledge.

Star Ritter

Salisbury Avenue Associates LLC Peter Robertson Property Owner

TABLES

TABLE 1WELL DATA AND GROUNDWATER ELEVATIONS

TABLE 2SUMMARY OF CHEMICAL ANALYSIS OF GROUNWATER SAMPLES
COLLECTED FROM THE MONITORING WELLS

TABLE 1WELL DATA AND GROUNDWATER ELEVATIONS2145 35th AvenueOakland, California

DATE	WELL INFORMATION	MW-1	MW-2	MW-3	MW-4
	Casing Diameter (in)	2	4	4	2
	Total Well Depth (ft)	18	16	18	18
07/18/2012	Depth to Water (ft)	10.13	10.92	11.01	10.85
	Top of Casing Elevation	94.21	94.43	94.61	94.91
	Top of Water Elevation	84.08	83.51	83.60	84.06
	Casing Diameter (in)	2	4	4	2
	Total Well Depth (ft)	18	16	18	18
12/06/2012	Depth to Water (ft)	7.98	10.40	10.40	9.25
	Top of Casing Elevation	94.21	94.43	94.61	94.91
	Top of Water Elevation	86.23	84.03	84.21	85.66

TABLE 2 SUMMARY OF CHEMICAL ANALYSES GROUNWATER SAMPLES COLLECTED FROM THE MONITORING WELLS 2145 35th Avenue Oakland, California

Sample ID	Date Sampled	ТРН-G ⁽¹⁾ (µg/l) ⁽²⁾	TPH-ss ⁽³⁾ (μg/l)	ТРН-D ⁽⁴⁾ (µg/l)	TPH as Motor Oil (µg/l)	TPH as Hydraulic Oil (µg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl benzene (µg/l)	Total Xylenes (µg/l)	Naphthalene (µg/l)	MTBE ⁽⁵⁾ (µg/l)	Nickel (Ni) (µg/l)
MW-1		<50	<50	<50	<300	<300	< 0.5	<0.5	< 0.5	<1.0	<2.0	< 0.5	<5.0
MW-2	07/00/2012	3,800	3,900 (Y) ⁽⁶⁾	1,200 Y	<300	660Y	82	42	350	189.4	44	< 0.5	<5.0
MW-3	07/09/2012	85Y	86Y	180Y	<300	<300	0.8	< 0.5	< 0.5	<1.0	<2.0	< 0.5	<5.0
MW-4		<50	<50	<50	<300	<300	< 0.5	< 0.5	< 0.5	<1.0	<2.0	< 0.5	6.6
MW-1		<50	<50	<50	<300	<300	<0.5	<0.5	< 0.5	<1.0	<2.0	<0.5	7.6
MW-2	12/06/2012	5,000	3,300 (Y) ⁽⁴⁾	2,300	<300	1,500Y	92	42	460	179.6	62	< 0.5	<5.0
MW-3		1,200	800Y	2,000	<300	1,600Y	36	0.8	9.2	1.1	120	< 0.5	6.1
MW-4		<50	<50	<50	<300	<300	< 0.5	< 0.5	< 0.5	<1.0	<2.0	< 0.5	9.7
Groundwater Screening Levels, drinking water ⁽⁷⁾		100	100	100	100	100	1.0	40	30	20	17	5.0	8.2
Groundwater Screening Levels, non- drinking water ⁽⁸⁾		210	210	210	210	210	46	130	43	100	24	1,800	8.2
Groundwater Screening Levels for Evaluation of Potential Vapor Intrusion Concerns (Volatile Chemicals Only) ⁽⁹⁾		Use Soil Gas	Use Soil Gas	Use Soil Gas	Use Soil Gas	Use Soil Gas	540	380,000	170,000	160,000	3,200	24,000	NA

TPH-G⁽¹⁾ = Total petroleum hydrocarbons as gasoline by EPA Method 8015B

 $(\mu g/l)^{(2)} =$ Microgram per liter

TPH-ss $^{(3)}$ = Total petroleum hydrocarbons as Stoddard solvent by EPA Method 8015B

TPH-D⁽⁴⁾ = Total petroleum hydrocarbons as diesel by EPA Method 8015B

MTBE⁽⁵⁾ = Methyl Tertiary Butyl Ether

 $(Y)^{(6)}$ = Sample exhibits chromatographic pattern which does not resemble standard

(7) = Tier 1 Environmental Screening Levels (ESLs), Groundwater Screening Levels, Groundwater is Current or Potential Source of Drinking Water (Table F-1A), Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Prepared by: California Regional Water Quality Control Board, San Francisco Bay Region, 1515 Clay Street, Suite 1400, Oakland, California 94612, Interim Final - November 2007, (Revised May 2008).

⁽⁸⁾ = Tier 1 Environmental Screening Levels (ESLs), Groundwater Screening Levels, Groundwater is not Current or Potential Source of Drinking Water

(Table F-1B), Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Prepared by: California Regional Water Quality Control Board, San Francisco Bay Region, 1515 Clay Street, Suite 1400, Oakland, California 94612, Interim Final - November 2007, (Revised May 2008).

- ⁽⁸⁾ = Tier 1 Environmental Screening Levels (ESLs), Groundwater Screening Levels, Groundwater is not Current or Potential Source of Drinking Water (Table E-1), Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Prepared by: California Regional Water Quality Control Board, San Francisco Bay Region, 1515 Clay Street, Suite 1400, Oakland, California 94612, Interim Final - November 2007, (Revised May 2008).
- **Bold** = Concentration presented in bold where such a value is at or exceeds one of the environmental screening levels (ESLs) listed

FIGURES

- FIGURE 1 SITE LOCATION
- FIGURE 2 WELL LOCATIONS AND GROUNDWATER FLOW DIRECTIONS AND GRADIENT
- FIGURE 3 GROUNDWATER CONTAMINANT CONCENTRATIONS, JULY AND DECEMBER 2012

OAKLAND EAST QUADRANGLE CALIFORNIA 7.5-MINUTE SERIES

OAKLAND EAST, CA 2012

APPENDIX A WELL PURGING AND SAMPLING LOGS

Project No. :

Project Name: salisbury

Location: 2145 35th Avenue

Oakland, CA

Sampled by: Date:

Well ID:

MW-1 EEC sami Malaeb December 6. 2012

Well Diameter:	2"
Total Well Depth:	17.70'
Depth to Water:	7.85
Water Column:	9.851
Calculated Purge:	5 gallons
Actual Purge:	
Free Product:	
Product Sheen:	

Purge Volume Calculationsfor Three Casing Volume PurgeVolume Per One Foot of Well:0./632. gallows $\pi r^2 \times 1$ 0./632. gallowsVolume of One Casing:1.66 gallowsVolume of Three Casings: $4.98 \sim 5.00$ gallows

Purge Method: Did Well go dry?

Using disposeble

Post Purge Depth to Water (DTW)

<u> </u>	<u> </u>
Time	DTW
11:580-	7.98 BF

Sampling Method:

Sample Time:

3 volume Purse or Stabilization (b gevonetary 12:00 p.n.

Analyze for:

······································		
	8. F	

Time	Conductivity ^{MS}	ے ہ Temperature	pН	Salinity	Volume Purged
10:05	7/34	NENSC	mg		Karaddeens
11:30 cm	625	18.0	7. 32		1901/04
11:35° am	557	12.0	7.24		2 Scllor,
11:40 am	580	18.2	7.23		3 Sellor,
11:45 0-	556	18.1	7.19		U gallor 1
11:50 am	481	18.0	7.17		Scellor
11:52 cm	484	17.9	7.14		5.25 0-12
4:56 c-	496	17.9	7.20		5150 301L
			,		Scale
					•
	<u> </u>	<u> </u>			
Comments:					

195

Project No. :

Project Name:

Location: 2145 35th Avenue

Oakland, CA

Sampled by: Date:

Well ID:

<u>MW-2</u> <u>EEC SOMi Malael</u> <u>December 6, 201</u>

Well Diameter:	4"
Total Well Depth:	15.401
Depth to Water:	9.561
Water Column:	5.841
Calculated Purge:	11.5099(10)
Actual Purge:	5
Free Product:	
Product Sheen:	

SALISBURY

Purge Volume Calculations				
for Three Casing Volume Purge				
Volume Per One Foot of Well: 0.653 sc/lows				
π r ² x 1				
Volume of One Casing: 3. 8				
Volume of Three Casings: 11.44 99 lons ~ 11.5 and				

Purge Method: Did Well go dry?

using dispusable bailer

Post Purge Depth to Water (DTW)

<u> </u>	
Time	DTW
2:56 P.n	10.40'

Sampling Method:

3 volume Rurge on Poremeter stebilizeti 3:00 P.M

Analyze for:

Sample Time:

1	
1	
1	
1	
1	
1	
1	
1	
l	

Time	حرصر Conductivity	ے ہ Temperature	pН	Salinity	Volume Purged
2:20 P.M.	686	18.8	6.84		1 Galla
2:30 p	813	18.8	6.80		5 Gellov.
2:40 0-	754	18.8	6.89		8 Gellon,
2:45 p_	706	18:8	6.92		9 Gelluns
2:50P-	735	18.8	1.91		10 6-15
2:538-	724	18.8	6.94		11 Gallon
2:55	721	18.9	6.92		12 Gallor
			L		
·					
Comments:					

Project No	.:	
Project Na	me:	SALTSBURY
Location:	2145	35th Avenue

Oakland, CA

Well ID: Sampled by:

AA INI L

Date:

1410	<u>v</u>	>	
FEC	R	<i>mi</i>	Malaeb
e Cem	ber	6,	2010

Well Diameter: 4" Total Well Depth: 60 Depth to Water: 1 Water Column: 2. 01 **Calculated Purge:** to gellon 65. Actual Purge: 16 60, Free Product: NO **Product Sheen:** NO

Purge Volume Calculations				
for Three Casing Volume Purge				
Volume Per One Foot of Well: 07/632 gallons				
πr ² x1 0.653				
Volume of One Casing: 601 Gollon 5				
5.23				
Volume of Three Casings: 392 sollars				
15.70 ~ 4= sallon				

Purge Method: Did Well go dry?

Using disposeble baitor

Post Purge Depth to Water (DTW)

Time	DTW /0.40'	
1:40 p-		
	,	
- 	* .	
e e		

Sampling Method:

Sample Time:

3 volume purs Stabilization g perometers

Analyze for:

Time	Conductivity MS	Temperature	рН	Salinity	Volume Purged
12:45 P.m.	631	19:6	6.93		1 GALLON
1:00 p.m	815	19.4	6.86		5 Gollons
1:10 A-	72.2	19.5	6.88		7 sellor,
1:15 P-	692	19.5	6.29		10 Gellov,
1:20 A-	664	19.7	6.90		12 Gelle
1:25 P-	676	199	7.14		13 Gella 7
1:31 R	665	19.4~	6.96		14 90/1021
			6.93		
1:25 RI-	643	19,4	6.91		1) sellos
1:40 R	651	19.5	6.96		16 gell-
Comments:					

Project No. :		Well ID:	MW-4		
Project Name: SAL	ESBORY	Sampled by:	EEC Sami Malach		
Location: 2145 35th Avenue		Date:	Decense 6, 2012		
Oakland, CA					
Well Diameter:	2"	Purg	e Volume Calculations		
Total Well Depth:	17.721	for Th	ree Casing Volume Purge		
Depth to Water:	9.171	Volume Per One Foot of Well: 0, 16 3			
Water Column:	8.55'	$\pi r^2 \times 1$			
Calculated Purge:	4.20 20/1/2-2	Volume of One Casing: ONER Collars			
Actual Purge: 5.50 coll			1.40 6014		
Free Product:		Volume of Three Ca	asings: 4,20 seeld		
Product Sheen:					
Purge Method: <u>By</u>	Dispusable	Sampling Method:	3 Volumes		
Did Well go dry?	ler	Sample Time: <i>Peroveta</i> Stabilize			
Deat Duran Death to Mat		A			

Analyze for:

Post Purge Depth to Water (DTW)

Time	DTW
11:15 a.m	9.25'

Time	Conductivity MS	Temperature	рН	Salinity	Volume Purged
10:05 a.n.	731	18.5	7.19		1 Gallon
10:25 g.m	583	19.0	7.19		2 0
10:30 Q.m	586	19.1	7.18		3 //
10:25 0	58?	19.3	7.10		4 gella
10:48 a	564	19.1	7.13		5 gellos
10:40 m	555	18.8	7.05		5.5 961105
					Saple
					<u> </u>
Comments:					

APPENDIX B LABORATORY REPORT

and setting to the

H

Laboratory Job Number 241776 ANALYTICAL REPORT

Eagle Env. Construction
3150 Hilltop Road
Richmond, CA 94806

Project : SALISBURY PROJECT Location : Salisbury Project Level : II

<u>Sample ID</u>	<u>Lab ID</u>
MW-1	241776-001
MW-2	241776-002
MW-3	241776-003
MW-4	241776-004
TB	241776-005

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Deine 71. Tetralt

Signature: _

Desiree N. Tetrault Project Manager (510) 486-0900

Date: <u>12/20/2012</u>

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: Client: Project: Location: Request Date: Samples Received: 241776 Eagle Env. Construction SALISBURY PROJECT Salisbury Project 12/06/12 12/06/12

This data package contains sample and QC results for five water samples, requested for the above referenced project on 12/06/12. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Metals (EPA 6010B):

No analytical problems were encountered.

			CHA		1 (OF	= (CI	JS	T	01	DY										
ct	Curtis & Tompk	kins Labo	oratori	es	Ge	otra	ack	ker	61	LOB	AL	ID:	TU	61	977	788	'40	•	Pa	ge _	<u>, </u>	of
	ENVIRONMENTAL ANALYT	ICAL TESTING	LABORATO	DRY		C&T I	ocu	N #	241	77(n					C	nain e	of C	ustoc	ly #		
2323 F Berkel	Fifth Street ey, CA 94710	510) 486-0 510) 486-0 510) 486-0	1878 900 532			UGI	N #	<u>c (†</u>	<u>. </u>]	<u>v</u>	ع ک		28	NAL	2510	AL	REG	UES	J			
Project	No:	Sc	mpler:	FEC			R	м.				R		9	20	60	L					
Project	Name: SALISBURY PRO	SELT Re	eport To:	SAN	12		A/ .	4.56	,				N S S	82		6	4					
Project	P. O. No: 2145 35th M	Ve Oaklan C	ompany:	ÊÉ	`C							-0,	E		9		1					
EDD For	mat: Report Level		lephone:	192	5)	25	9_0	96N	8			3	AA	4	4	Q	2					
Turnarou		Standard En	nail: S. M	ALA	EB	<u></u>	0 <u></u>) M C	200 +		•+		2	1 H		Ha	عناي	4					
				T		ר א						Ā	S	8	N	a l	12	20				
Lab	Sample ID.	SAMPI	ling	МА	TRIX	ain.	PI	CHEN Reser				i i i		Н	a	2		0				
No.		Date Collected	Time Collected	ater		of Cont		2504	Ы	Due		-HJ.	TEX	ML A	C-HJ	¥-4	UET	P Yay				
. /	hátat l	In lact		≥ ∾ N	┝╌┠╌	#	Ŧ	ΞÍ	Ĭ	ž		N	p	g	N	7	1					
	M h l	12/06/12	<u>J2:'00P</u>	 X _		3				┨╌┨		X	$\left - \right $		+		\downarrow	\vdash	\perp	\perp	\square	
	M W-1					3			+	+			 X				+	\vdash	<u> </u>	<u> </u>	\vdash	
	MW-1	10			\vdash					+			┝╌┼		┼┻┤		+	┝─╋	_+-	<u> </u>	┝──╊	
	MW-2	11	2000-			2			+	+			+		┼─┼		┼┻┤	<u> </u>	-+-		┝╌┾	
24	NW-2	4	Ľ			2			+		ŀ	x			┼┼		┼─┤			+	┝╼╋	
	MW-L		~	x		2			1	+	ŀ		┝┻┼		╏		┼─┤				\vdash	
	NW-1	4	1	v		1			+		ł				┢┻┼						┝─╋	
3/	MW-3	- 11	1:50pm	x		3				\square	ľ	×						-			┝─╊╸	
Ĕ₩	<u>MW-3</u>	4	10	x		3					Ī		x				++	+		1		+ +
- +	<u>M W_ 3</u>	11		x		2									×					+		
	<u>mw-7</u>	-11	4	X		1					-						X					
Notes:	please litter	SAMPLE		,																		
Plast	h'c Containers	RECEIPT	1				11/3	6/4	~~~~~	51	52					RECE	:IVEC	<u>) BY</u>	: 151		·	
Sam	e day 18 LUFT	Intact -	M	11		<u>_'</u>	7	DATE:	1	TIME	<u> </u>	_ _		2. See . S		-		DA		6 TIF	<u>ие</u> :Г	00
5 ME	TAL ANALMOSA						0	DATE:	1	TIME:									TE .			
		On Ice						ATC.				_ _	<u> </u>						<u> </u>		<u>11C.</u>	
										IIME:		-				·		DA	<u>(E:</u>	TIN	<u>/E:</u>	

		(CHA	IN	(OF	= (Cl	JS	TC	D	Y										
C	Curtis & Tomple ENVIRONMENTAL ANALYT	(INS LODO	ratori Aborato	es Ry	Geo	tra	cke	r 6	- LO	BAL IH	2D		TO.	619	77	884 Ch	40 nain (of Ci	Paç ustod	је <u>2</u> у # _	<u></u> of	f <u>2.</u>
2323 I Berkel	Fifth Street ey, CA 94710	In Bus Phone (51 Fax (51	iness Since 0) 486-0 0) 486-0	878 200 532	C	2&T L(DGI	N #	271	<u> </u>		2	Y	A	NAL C	/C) ווע א,	AL	REG	UES	T		
Project	No:	<u>Sar</u>	npler:	Έ <u>ε</u> ς		8	u				_	5198			an c	200						
Project P. O. No: 2145 25th. AVE., Oakland Company: EEC																						
Turnaro		III IV Tele	ail: S. A	925 1AL) 8 9 Eć	58 39	- 4 COR	160 1cas	<u> </u>	NET	-	-Hd	ut have	28	- <i>#</i> d1	<i>avlic</i>	2	6010				
Lab	Sample ID.	SAMPL	NG	MA	RIX	ntainers	PI	CHEN	IICA VATI	L VE		Y		4	a	Abert.	2.	PA-				
NO.		Date Collected	Time Collected	<u>Water</u> Solid		# of Co	ΗĊΙ	H2SO4	HOPN	None		HAI	875	MIG	-Hall	- Hall	LUF	4				
#	MW-4 MW-4	- 12/06/M	10.500	×		33					×	4	×									
	<u>MW-4</u> MW-4		12	X X		2.									X		×					
	TB	11		x		1							×			·						
																					\pm	
Notes:	Please lilter	SAMPLE			RELIN	VQUI	SHE	D BY:								RECI	EIVEI		 /.			
Pla. Sau	stic containers ne day for	RECEIPT	A	M	44	le	2	/ 2/06 DATE:	11	TIME:	8-		Æ	A		RECI			י זב: לא		1E:	700
LUF ANA	T 5 METAL LYSES	Cold On Ice	<u></u>				1	DATE:		TIME: TIME:								DA DA	IE: IE:	<u>tin</u>	<u>1E:</u> /1E:	
L	 																					

COOLER RECEIPT CHECKLIST

Rev 10, 11/11

Login # 241776 Date Received 12/6/12 Number of co Client EEC Project Salisbury Phyled	olers
Date Opened $ 2 2 2 2 By (print)\mathcal{U}(sign)\widehat{\Sigma}\mathcal{L}Date Logged in\mathcal{L}By (print)\mathcal{L}(sign)$	$\overline{1}$
1. Did cooler come with a shipping slip (airbill, etc) Shipping info	YES NO
2A. Were custody seals present? □ YES (circle) on cooler on sample How many Name Date	s <u>A</u> NO
2B. Were custody seals intact upon arrival?	TES NO (N/A)
4. Were custody papers filled out properly (ink_signed_etc)?	TES NO
5 Is the project identifiable from custody papers? (If so fill out top of form)	ES NO
6. Indicate the packing in cooler: (if other, describe)	
Bubble Wrap X Foam blocks X Bags INon	e
Cloth material Cardboard Styrofoam Pap	er towels
7. Temperature documentation: * Notify PM if temperature exceeds 6°C	
Type of ice used: \square Wet \square Blue/Gel \square None Temp(°C)_	2.0
□ Samples Received on ice & cold without a temperature blank; temp. ta	ken with IR gun
A Samples received on ice directly from the field. Cooling process had be	egun
8. Were Method 5035 sampling containers present?	YES XO
If YES, what time were they transferred to freezer?	
9. Did all bottles arrive unbroken/unopened?	YES NO
10. Are there any missing / extra samples?	YES NO
11. Are samples in the appropriate containers for indicated tests?	_ KEN NO
12. Are sample labels present, in good condition and complete?	NO
13. Do the sample labels agree with custody papers?	NO
15 Are the samples appropriately preserved?	ES NO N/A
16. Did vou check preservatives for all bottles for each sample? Y	ES NO N/A
17. Did you document your preservative check?Y	ES NO N/A
18. Did you change the hold time in LIMS for unpreserved VOAs?Y	ES NO NA
19. Did you change the hold time in LIMS for preserved terracores?Y	ES NO NTA
20. Are bubbles > 6mm absent in VOA samples?	ES NO NA
21. was the client contacted concerning this sample delivery?	TES NO
Da Dy Da	

COMMENTS

Curtis & Tompkins, Ltd.

		Total	Volatil	e Hydrocar	bons	
Lab #:	241776			Location:		Salisbury Project
Client:	Eagle Env. (Construct	ion	Prep:		EPA 5030B
Project#:	SALISBURY P	ROJECT		Analysis:		EPA 8015B
Matrix:	Water			Sampled:		12/06/12
Units:	ug/L			Received:		12/06/12
Diln Fac:	1.000					
Field ID.	MT7 1			Dotab#.		102612
Field ID.				Ballurod:		193013
Iype.	SAMPLE			Analyzed.		12/07/12
Lad ID:	241//6-001					
	Analyte		Result		RL	
Gasoline	C7-C12	ND			50	
Stoddard	Solvent C7-C12	ND			50	
	Surrogate	%REC	T.imite			
Bromofluo	robenzene (FID)	113	75-124			
Field ID: Type: Lab ID:	MW-2 SAMPLE 241776-002			Batch#: Analyzed:		193675 12/10/12
	Analyte		Result		RL	
Gasoline	C7-C12		5,000		50	
Stoddard	Solvent C7-C12		3,300 Y		50	
	Gurrogata	%DEC	Timita			
Bromofluo	robenzene (FID)	103	75-124			
Field ID: Type:	MW-3 SAMPLE			Batch#: Analyzed:		193675 12/10/12
Lab ID:	241776-003			iniar j zea		12, 10, 12
	211/10 005					
	Analyte		Result		RL	
Gasoline	C7-C12		1,200		50	
Stoddard	Solvent C7-C12		800 Y		50	
	Surrogate	%REC	Limits			
Bromofluo	robenzene (FID)	102	75-124			

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected

241776				
241770		Location:		Salisbury Project
Eagle Env. C	onstruction	Prep:		EPA 5030B
SALISBURY PR	OJECT	Analysis:		EPA 8015B
Water		Sampled:		12/06/12
ug/L		Received:		12/06/12
1.000				
MLI 4		Dot ob#•		102612
		Batch#.		193013
SAMPLE 241776 004		Analyzed.		12/07/12
241/76-004				
Analyte	Result		RL	
$C_{1} = C_{12}$	UN CIN		50 50	
Solvent C7-C12	ND		50	
Surrogate	%REC Limits			
robenzene (FID)	112 75-124			
BLANK QC669174		Batch#: Analyzed:		193613 12/07/12
Analyte	Result		RL	
C7-C12	ND		50	
Solvent C7-C12	ND		50	
Surrogate	%REC Limits			
robenzene (FID)	106 75-124			
BLANK		Batch#:		193675
0C669439		Analyzed:		12/10/12
20009109		iniary zea		12, 10, 12
Analyte	Result		RL	
C7-C12	ND		50	
Solvent C7-C12	ND		50	
Surrogate	%REC Limits			
robenzene (FID)	95 75-124			
	SALISBURY PR Water ug/L 1.000 MW-4 SAMPLE 241776-004 Analyte C7-C12 Solvent C7-C12 Surrogate robenzene (FID) BLANK QC669174 Analyte C7-C12 Solvent C7-C12 Surrogate robenzene (FID) BLANK QC669439 Analyte C7-C12 Solvent C7-C12	SALISBURY PROJECT Water ug/L 1.000 1.000 MW-4 SAMPLE 241776-004 Result Z7-C12 ND Solvent C7-C12 ND Surrogate %REC Limits robenzene (FID) 112 75-124 BLANK QC669174 Result Solvent C7-C12 ND Surrogate %REC Limits robenzene (FID) 106 75-124 BLANK QC669439 Result BLANK QC669439 ND Surrogate %REC Limits Solvent C7-C12 ND Solvent C7-C12 ND Surrogate %REC Limits Solvent C7-C12 ND Solvent C7-C12 ND Surrogate %REC Limits robenzene (FID) 95 75-124	SALISBURY PROJECT Analysis: Water Sampled: ug/L Received: 1.000 Received: MW-4 Batch#: SAMPLE Analyzed: 241776-004 Batch#: MW-4 Batch#: SAMPLE Analyzed: 241776-004 ND Solvent C7-C12 ND Surrogate %REC Limits robenzene (FID) 112 75-124 BLANK Batch#: QC669174 Analyzed: MD Solvent C7-C12 ND Surrogate %REC Limits robenzene (FID) 106 75-124 BLANK Batch#: QC669439 Analyzed: Malyzed: Malyzed: Malyzed: ND Solvent C7-C12 ND BLANK Batch#:: QC669439 Analyzed: Malyzed: ND Solvent C7-C12 ND Surrogate %REC Surogate %REC Suro	SALISBURY PROJECT Analysis: Water Sampled: ug/L Received: 1.000 Received: 1.000 Received: 1.000 Received: MW-4 Batch#: SAMPLE Analyzed: 241776-004 Analyzed: MW-4 Sampled: Analyte Result T7-C12 ND Solvent C7-C12 ND Surrogate %REC Limits cobenzene (FID) 112 T5-124 BLANK Batch#: QC669174 Analyzed: MD 50 Solvent C7-C12 ND Solvent C7-C12 ND Solvent C7-C12 ND Surrogate %REC Limits robenzene (FID) 106 75-124

Total Volatile Hydrocarbons											
Lab #:	241776	Location:	Salisbury Project								
Client:	Eagle Env. Construction	Prep:	EPA 5030B								
Project#:	SALISBURY PROJECT	Analysis:	EPA 8015B								
Type:	LCS	Diln Fac:	1.000								
Lab ID:	QC669173	Batch#:	193613								
Matrix:	Water	Analyzed:	12/07/12								
Units:	ug/L										

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	975.6	98	80-120

Surrogate	%REC	Limits	
Bromofluorobenzene (FID)	105	75-124	

Total Volatile Hydrocarbons											
Lab #:	241776	Location:	Salisbury Project								
Client:	Eagle Env. Construction	Prep:	EPA 5030B								
Project#:	SALISBURY PROJECT	Analysis:	EPA 8015B								
Field ID:	ZZZZZZZZZ	Batch#:	193613								
MSS Lab ID:	241783-001	Sampled:	12/05/12								
Matrix:	Water	Received:	12/06/12								
Units:	ug/L	Analyzed:	12/07/12								
Diln Fac:	1.000										

Type:	MS		Lab) ID:	QC669175		
	Analyte	MSS Rea	sult	Spiked	Result	%REC	Limits
Gasoline C	C7-C12	1'	7.88	2,000	2,060	102	71-120
	Surrogate	%REC	Limits				
Bromofluor	robenzene (FID)	119	75-124				

Type:	MSD			Lab ID:	(QC669176			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Gasoline	C7-C12		2,000		1,923	95	71-120	7	22
	Surrogate	%REC	Limits						
Bromoflu	orobenzene (FID)	117	75-124						

Total Volatile Hydrocarbons							
Lab #:	241776	Location:	Salisbury Project				
Client:	Eagle Env. Construction	Prep:	EPA 5030B				
Project#:	SALISBURY PROJECT	Analysis:	EPA 8015B				
Туре:	LCS	Diln Fac:	1.000				
Lab ID:	QC669438	Batch#:	193675				
Matrix:	Water	Analyzed:	12/10/12				
Units:	ug/L						

Gasoline C7-C12 1,000 1,041 104 80-120	Analyte	Spiked	Result	%REC	Limits
	Gasoline C7-C12	1,000	1,041	104	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	100	75-124

Total Volatile Hydrocarbons								
Lab #:	241776	Location:	Salisbury Project					
Client:	Eagle Env. Construction	Prep:	EPA 5030B					
Project#:	SALISBURY PROJECT	Analysis:	EPA 8015B					
Field ID:	MW-2	Batch#:	193675					
MSS Lab ID:	241776-002	Sampled:	12/06/12					
Matrix:	Water	Received:	12/06/12					
Units:	ug/L	Analyzed:	12/10/12					
Diln Fac:	1.000							

Туре:	MS			Lab	ID:	QC	669440		
	Analyte	MSS Re	sult		Spiked		Result	%REC	Limits
Gasoline	C7-C12	4,9	79		2,000		6,417	72	71-120
-									
	Surrogate	%REC	Limits						
Bromofluc	probenzene (FID)	105	75-124						

Type:	MSD			Lab ID:	QC66944	1			
	Analyte		Spiked	Re	esult	%REC	Limits	RPD	Lim
Gasoline	C7-C12		2,000	б,	,492	76	71-120	1	22
	Surrogate	%REC	Limits						
Bromofluc	probenzene (FID)	106	75-124						

-- \\Lims\gdrive\ezchrom\Projects\GC07\Data\345-010, A

mVolt

- \\Lims\gdrive\ezchrom\Projects\GC07\Data\345-013, A

mVolt

----- \\Lims\gdrive\ezchrom\Projects\GC04\Data\342-004, A

mVolt

		Total 1	Extracta	ble Hydrod	arbo	ns	
Lab #:	241776			Location:		Salisbury Project	
Client:	Eagle Env.	Construct	ion	Prep:		EPA 3520C	
Project#:	SALISBURY F	ROJECT		Analysis:		EPA 8015B	
Matrix:	Water			Sampled:		12/06/12	
Units:	ug/L			Received:		12/06/12	
Diln Fac:	1.000			Prepared:		12/11/12	
Batch#:	193711			Analyzed:		12/12/12	
Field ID:	MW-1			Lab ID:		241776-001	
Туре:	SAMPLE						
Ar	nalyte		Result		RL		
Diesel C10-C2	24	NI)		50		
Motor Oil C24	1-C36	NI)		300		
Hydraulic Flu	uid, C12-40	NI)		300		
Sur	crogate	%REC	Limits				
o-Terphenyl		103	61-134				
Field ID.							
Type:	MW-2 SAMPLE			Lab ID:		241776-002	
Type:	MW-2 SAMPLE nalyte		Result	Lab ID:	RL	241776-002	
Type: Diesel C10-C2	MW-2 SAMPLE nalyte		Result 2,300	Lab ID:	RL 50	241776-002	
Type: Diesel C10-C2 Motor Oil C24	MW-2 SAMPLE nalyte 24 4-C36	NI	Result 2,300	Lab ID:	RL 50 300	241776-002	
Type: Diesel C10-C2 Motor Oil C24 Hydraulic Flu	MW-2 SAMPLE nalyte 24 4-C36 11d, C12-40	NI	Result 2,300 1,500 Y	Lab ID:	RL 50 300 300	241776-002	
Type: Type: Diesel C10-C2 Motor Oil C24 Hydraulic Flu	MW-2 SAMPLE Alyte 24 4-C36 aid, C12-40	NI %REC	Result 2,300 1,500 Y Limits	Lab ID:	RL 50 300 300	241776-002	
Type: Type: Diesel C10-C2 Motor Oil C24 Hydraulic Flu Sur o-Terphenyl	MW-2 SAMPLE malyte 24 4-C36 mid, C12-40 crogate	NI %REC 107	Result 2,300 1,500 Y Limits 61-134	Lab ID:	RL 50 300 300	241776-002	
Type: Type: Diesel C10-C2 Motor Oil C24 Hydraulic Flu Sur o-Terphenyl Field ID: Type:	MW-2 SAMPLE alyte 24 4-C36 aid, C12-40 crogate MW-3 SAMPLE	NI %REC 107	Result 2,300 1,500 Y Limits 61-134	Lab ID:	RL 50 300 300	241776-002	
Type: Type: Diesel C10-C2 Motor Oil C24 Hydraulic Flu Sur o-Terphenyl Field ID: Type:	MW-2 SAMPLE A-C36 hid, C12-40 crogate MW-3 SAMPLE	NI %REC 107	Result 2,300 1,500 Y Limits 61-134	Lab ID:	RL 50 300 300	241776-002	
Type: Type: Diesel C10-C2 Motor Oil C24 Hydraulic Flu Sur o-Terphenyl Field ID: Type: Ar Diesel C10-C2	MW-2 SAMPLE alyte 24 4-C36 aid, C12-40 crogate MW-3 SAMPLE alyte	NI %REC 107	Result 2,300 1,500 Y Limits 61-134 Result 2,000	Lab ID:	RL 50 300 300 	241776-002	
Type: Type: Diesel C10-C2 Motor Oil C24 Hydraulic Flu Sur o-Terphenyl Field ID: Type: Ar Diesel C10-C2 Motor Oil C24	MW-2 SAMPLE alyte 24 4-C36 aid, C12-40 crogate MW-3 SAMPLE alyte 24 4-C36	NI %REC 107	Result 2,300 1,500 Y Limits 61-134	Lab ID:	RL 50 300 300 	241776-002	
Type: Type: Diesel C10-C2 Motor Oil C24 Hydraulic Flu Sur o-Terphenyl Field ID: Type: Diesel C10-C2 Motor Oil C24 Hydraulic Flu	MW-2 SAMPLE halyte 24 4-C36 hid, C12-40 Crogate MW-3 SAMPLE halyte 24 4-C36 hid, C12-40	NI %REC 107	Result 2,300 1,500 Y Limits 61-134 61-134 2,000	Lab ID:	RL 50 300 300 800 50 300 300	241776-002	
Type: Type: Ar Diesel C10-C2 Motor Oil C24 Hydraulic Flu O-Terphenyl Field ID: Type: Ar Diesel C10-C2 Motor Oil C24 Hydraulic Flu	MW-2 SAMPLE 24 4-C36 11d, C12-40 Crogate MW-3 SAMPLE 14 4-C36 11d, C12-40	NI %REC 107 NI	Result 2,300 1,500 Y Limits 61-134 Result 2,000 1,600 Y	Lab ID:	RL 50 300 300 700 300 300 300	241776-002	
Field ID: Type: Diesel C10-C2 Motor Oil C24 Hydraulic Flu Sur o-Terphenyl Field ID: Type: Diesel C10-C2 Motor Oil C24 Hydraulic Flu	MW-2 SAMPLE 24 4-C36 11d, C12-40 crogate MW-3 SAMPLE 24 4-C36 11d, C12-40 crogate	NI %REC 107 NI %REC	Result 2,300 1,500 Y Limits 61-134 2,000 1,600 Y Limits	Lab ID:	RL 50 300 300 700 700 700 300 300 300	241776-002	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

		Total H	Ixtracta	ble Hydroc	arbo	ns
Lab #:	241776			Location:		Salisbury Project
Client:	Eagle Env. Co	onstruct	ion	Prep:		EPA 3520C
Project#:	SALISBURY PRO	JECT		Analysis:		EPA 8015B
Matrix:	Water			Sampled:		12/06/12
Units:	ug/L			Received:		12/06/12
Diln Fac:	1.000			Prepared:		12/11/12
Batch#:	193711			Analyzed:		12/12/12
Field ID: Type:	MW-4 SAMPLE			Lab ID:		241776-004
	Analyte		Result		RL	
Diesel Cl	0-C24	ND			50	
Motor Oil	C24-C36	ND	1		300	
Hydraulic	Fluid, C12-40	ND			300	
	Surrogate	%REC	Limits			
o-Terphen	yl	103	61-134			
Type:	BLANK			Lab ID:		QC669591
	Analyte		Result		RL	
Diesel C1	0-C24	ND			50	
Motor Oil	C24-C36	ND			300	
Hydraulic	Fluid, C12-40	ND			300	
	Surrogate	%REC	Limits			

104

61-134

o-Terphenyl

Total Extractable Hydrocarbons								
Lab #:	241776	Location:	Salisbury Project					
Client:	Eagle Env. Construction	Prep:	EPA 3520C					
Project#:	SALISBURY PROJECT	Analysis:	EPA 8015B					
Туре:	LCS	Diln Fac:	1.000					
Lab ID:	QC669592	Batch#:	193711					
Matrix:	Water	Prepared:	12/11/12					
Units:	ug/L	Analyzed:	12/12/12					

Cleanup Method: EPA 3630C

Analyte	:	Spiked	Result	%REC	Limits
Diesel C10-C24		2,500	1,899	76	60-120
Surrogate	%REC	Limits			
o-Terphenyl	104	61-134			

Total Extractable Hydrocarbons							
Lab #:	241776	Location:	Salisbury Project				
Client:	Eagle Env. Construction	Prep:	EPA 3520C				
Project#:	SALISBURY PROJECT	Analysis:	EPA 8015B				
Field ID:	ZZZZZZZZZ	Batch#:	193711				
MSS Lab ID:	241722-003	Sampled:	12/03/12				
Matrix:	Water	Received:	12/05/12				
Units:	ug/L	Prepared:	12/11/12				
Diln Fac:	1.000	Analyzed:	12/12/12				

Туре:	MS			Lab ID:	(QC669593		
Analyte	e MSS	Resu	ılt	Spiked		Result	%REC	Limits
Diesel C10-C24		2,365	5	2,500		4,840	99	44-135
Surrog	gate %	REC	Limits					
o-Terphenyl	10	3	61-134					

Туре:	MSD			Lab ID:	Q	C669594			
	Analyte		Spiked		Result	%REC	Limits	RPD	Lim
Diesel C1	L0-C24		5,000		7,465	102	44-135	2	42
	Surrogate	%REC	Limits						
o-Terpher	nyl	102	61-134						

-\\lims\gdrive\ezchrom\Projects\GC27\Data\347a019.dat, Front Signal

-\\lims\gdrive\ezchrom\Projects\GC27\Data\347a020.dat, Front Signal

-\\lims\gdrive\ezchrom\Projects\GC27\Data\347a010.dat, Front Signal

-\\lims\gdrive\ezchrom\Projects\GC27\Data\347a011.dat, Front Signal

-\\lims\gdrive\ezchrom\Projects\GC27\Data\347a009.dat, Front Signal

Lab #:	241776	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B
Field ID:	MW-1	Batch#:	193815
Lab ID:	241776-001	Sampled:	12/06/12
Matrix:	Water	Received:	12/06/12
Units:	ug/L	Analyzed:	12/13/12
Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits
Dibromofluoromethane	112	80-127
1,2-Dichloroethane-d4	115	69-148
Toluene-d8	100	80-120
Bromofluorobenzene	113	80-121

ND= Not Detected RL= Reporting Limit Page 1 of 1

Lab #:	241776	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B
Field ID:	MW-2	Units:	ug/L
Lab ID:	241776-002	Sampled:	12/06/12
Matrix:	Water	Received:	12/06/12

Analyte	Result	RL	Diln Fac	Batch# Analyzed
MTBE	ND	0.5	1.000	193815 12/13/12
Benzene	92	0.5	1.000	193815 12/13/12
Toluene	42	0.5	1.000	193815 12/13/12
Ethylbenzene	460	4.2	8.333	193870 12/14/12
m,p-Xylenes	170	4.2	8.333	193870 12/14/12
o-Xylene	9.6	0.5	1.000	193815 12/13/12
Naphthalene	62	2.0	1.000	193815 12/13/12

Surrogate	%REC	Limits	Diln Fac	Batch# Analyzed
Dibromofluoromethane	108	80-127	1.000	193815 12/13/12
1,2-Dichloroethane-d4	113	69-148	1.000	193815 12/13/12
Toluene-d8	100	80-120	1.000	193815 12/13/12
Bromofluorobenzene	105	80-121	1.000	193815 12/13/12

ND= Not Detected RL= Reporting Limit Page 1 of 1

Lab #:	241776	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B
Field ID:	MW-3	Units:	ug/L
Lab ID:	241776-003	Sampled:	12/06/12
Matrix:	Water	Received:	12/06/12

Analyte	Result	RL	Diln Fac	Batch# Analyzed
MTBE	ND	0.5	1.000	193870 12/14/12
Benzene	36	0.5	1.000	193870 12/14/12
Toluene	0.8	0.5	1.000	193870 12/14/12
Ethylbenzene	9.2	0.5	1.000	193870 12/14/12
m,p-Xylenes	0.6	0.5	1.000	193870 12/14/12
o-Xylene	ND	0.5	1.000	193870 12/14/12
Naphthalene	120	10	5.000	194007 12/19/12

Surrogate	%REC	Limits	Diln Fac	Batch# Analyzed
Dibromofluoromethane	99	80-127	1.000	193870 12/14/12
1,2-Dichloroethane-d4	96	69-148	1.000	193870 12/14/12
Toluene-d8	101	80-120	1.000	193870 12/14/12
Bromofluorobenzene	100	80-121	1.000	193870 12/14/12

ND= Not Detected RL= Reporting Limit Page 1 of 1

Lab #:	241776	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B
Field ID:	MW-4	Batch#:	194007
Lab ID:	241776-004	Sampled:	12/06/12
Matrix:	Water	Received:	12/06/12
Units:	ug/L	Analyzed:	12/19/12
Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits
Dibromofluoromethane	102	80-127
1,2-Dichloroethane-d4	73	69-148
Toluene-d8	99	80-120
Bromofluorobenzene	100	80-121

Lab #:	241776	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B
Field ID:	ТВ	Batch#:	193815
Lab ID:	241776-005	Sampled:	12/06/12
Matrix:	Water	Received:	12/06/12
Units:	ug/L	Analyzed:	12/13/12
Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits
Dibromofluoromethane	116	80-127
1,2-Dichloroethane-d4	117	69-148
Toluene-d8	100	80-120
Bromofluorobenzene	116	80-121

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Purgeable Arc	matics by GC/M	S
Lab #:	241776	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	193815
Units:	ug/L	Analyzed:	12/13/12
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC670029

Analyte	Spiked	Result	%REC	Limits
MTBE	12.50	11.90	95	59-120
Benzene	12.50	12.38	99	80-123
Toluene	12.50	12.13	97	80-120
Ethylbenzene	12.50	12.79	102	80-123
m,p-Xylenes	25.00	25.76	103	80-123
o-Xylene	12.50	11.98	96	80-122

Surrogate	%REC	Limits
Dibromofluoromethane	108	80-127
1,2-Dichloroethane-d4	112	69-148
Toluene-d8	101	80-120
Bromofluorobenzene	110	80-121

Type: BSD		L	ab ID:	QC6	70030			
Analyte		Spiked		Result	%REC	Limits	RPD	Lim
MTBE		12.50		12.45	100	59-120	4	20
Benzene		12.50		12.67	101	80-123	2	20
Toluene		12.50		12.09	97	80-120	0	20
Ethylbenzene		12.50		12.55	100	80-123	2	20
m,p-Xylenes		25.00		25.86	103	80-123	0	20
o-Xylene		12.50		11.88	95	80-122	1	20
Surrogate	%REC	Limits						
Dibromofluoromethane	110	80-127						

Bullogale	SKEC	
Dibromofluoromethane	110	80-127
1,2-Dichloroethane-d4	117	69-148
Toluene-d8	98	80-120
Bromofluorobenzene	109	80-121

	Purgeable Aro	matics by GC/M	S
Lab #:	241776	Location:	Salisbury Project
Client:	Eagle Env. Construction	Prep:	EPA 5030B
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B
Туре:	BLANK	Diln Fac:	1.000
Lab ID:	QC670031	Batch#:	193815
Matrix:	Water	Analyzed:	12/13/12
Units:	ug/L		

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits
Dibromofluoromethane	110	80-127
1,2-Dichloroethane-d4	116	69-148
Toluene-d8	99	80-120
Bromofluorobenzene	113	80-121

ND= Not Detected RL= Reporting Limit Page 1 of 1

Purgeable Aromatics by GC/MS						
Lab #:	241776	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	EPA 5030B			
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B			
Matrix:	Water	Batch#:	193870			
Units:	ug/L	Analyzed:	12/14/12			
Diln Fac:	1.000					

Type:

BS

Lab ID:

QC670246

Analyte	Spiked	Result	%REC	Limits
MTBE	12.50	11.92	95	59-120
Benzene	12.50	11.69	94	80-123
Toluene	12.50	11.81	94	80-120
Ethylbenzene	12.50	12.12	97	80-123
m,p-Xylenes	25.00	23.32	93	80-123
o-Xylene	12.50	11.45	92	80-122

Surrogate	%REC	Limits
Dibromofluoromethane	103	80-127
1,2-Dichloroethane-d4	102	69-148
Toluene-d8	102	80-120
Bromofluorobenzene	99	80-121

Туре: В	BSD	L	ab ID:	QC6	70247			
Analyt	te	Spiked	R	esult	%REC	Limits	RPD	Lim
MTBE		12.50		12.15	97	59-120	2	20
Benzene		12.50		12.09	97	80-123	3	20
Toluene		12.50		12.15	97	80-120	3	20
Ethylbenzene		12.50		12.29	98	80-123	1	20
m,p-Xylenes		25.00		24.13	97	80-123	3	20
o-Xylene		12.50		11.82	95	80-122	3	20
Surroga	ate %REC	Limits						
Dibnomofluonomoth	102	00 107						

Surroyate	SKEC	LIMICS
Dibromofluoromethane	103	80-127
1,2-Dichloroethane-d4	103	69-148
Toluene-d8	102	80-120
Bromofluorobenzene	100	80-121

Purgeable Aromatics by GC/MS						
Lab #:	241776	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	EPA 5030B			
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B			
Туре:	BLANK	Diln Fac:	1.000			
Lab ID:	QC670248	Batch#:	193870			
Matrix:	Water	Analyzed:	12/14/12			
Units:	ug/L					

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits
Dibromofluoromethane	105	80-127
1,2-Dichloroethane-d4	103	69-148
Toluene-d8	103	80-120
Bromofluorobenzene	102	80-121

ND= Not Detected RL= Reporting Limit Page 1 of 1

Purgeable Aromatics by GC/MS						
Lab #:	241776	Location:	Salisbury Project			
Client:	Eagle Env. Construction	Prep:	EPA 5030B			
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B			
Matrix:	Water	Batch#:	194007			
Units:	ug/L	Analyzed:	12/19/12			
Diln Fac:	1.000					

Type:

BS

QC670803

Analyte	Spiked	Result	%REC	Limits
MTBE	25.00	18.72	75	59-120
Benzene	25.00	28.88	116	80-123
Toluene	25.00	28.66	115	80-120
Ethylbenzene	25.00	27.51	110	80-123
m,p-Xylenes	50.00	55.00	110	80-123
o-Xylene	25.00	26.03	104	80-122

Lab ID:

Surrogate	%REC	Limits
Dibromofluoromethane	102	80-127
1,2-Dichloroethane-d4	72	69-148
Toluene-d8	99	80-120
Bromofluorobenzene	96	80-121

Туре:	BSD	Lab I	D: QC670	804			
	Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE		25.00	18.71	75	59-120	0	20
Benzene		25.00	29.72	119	80-123	3	20
Toluene		25.00	28.74	115	80-120	0	20
Ethylbenze	ene	25.00	27.86	111	80-123	1	20
m,p-Xylene	s	50.00	53.71	107	80-123	2	20
o-Xylene		25.00	26.41	106	80-122	1	20
	Surrogate	%REC Limits					

Surrogate	%REC	LIMITS	
Dibromofluoromethane	103	80-127	
1,2-Dichloroethane-d4	73	69-148	
Toluene-d8	101	80-120	
Bromofluorobenzene	99	80-121	

Purgeable Aromatics by GC/MS				
Lab #:	241776	Location:	Salisbury Project	
Client:	Eagle Env. Construction	Prep:	EPA 5030B	
Project#:	SALISBURY PROJECT	Analysis:	EPA 8260B	
Туре:	BLANK	Diln Fac:	1.000	
Lab ID:	QC670807	Batch#:	194007	
Matrix:	Water	Analyzed:	12/19/12	
Units:	ug/L			

-	_		
Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Naphthalene	ND	2.0	

Surrogate	%REC	Limits
Dibromofluoromethane	101	80-127
1,2-Dichloroethane-d4	72	69-148
Toluene-d8	99	80-120
Bromofluorobenzene	99	80-121

ND= Not Detected RL= Reporting Limit Page 1 of 1

	D	issolved (Calif	ornia LUFT	Metals	
Lab #:	241776			Location:	Salisbury Project	
Client:	Eagle Env. C	onstruction		Prep:	METHOD	
Project#:	SALISBURY PR	OJECT		Analysis:	EPA 6010B	
Matrix:	Filtrate			Sampled:	12/06/12	
Units:	ug/L			Received:	12/06/12	
Diln Fac:	1.000			Prepared:	12/12/12	
Batch#:	193793			Analyzed:	12/14/12	
Field ID: Type:	MW-1 SAMPLE			Lab ID:	241776-001	
	Analyte	Resu	ılt		RL	
Cadmium		ND			5.0	
Chromium		ND			5.0	
Lead		ND			5.0	
Nickel			7.6		5.0	
Zinc		ND			20	
Field ID: Type:	MW-2 SAMPLE			Lab ID:	241776-002	
Field ID: Type:	MW-2 SAMPLE Analyte	Resu	ılt	Lab ID:	241776-002 RL	
Field ID: Type: Cadmium	MW-2 SAMPLE Analyte	Resu	ılt	Lab ID:	241776-002 RL 5.0	
Field ID: Type: Cadmium Chromium	MW-2 SAMPLE Analyte	Resu ND ND	ılt	Lab ID:	241776-002 RL 5.0 5.0	
Field ID: Type: Cadmium Chromium Lead	MW-2 SAMPLE Analyte	Resu ND ND ND	ılt	Lab ID:	241776-002 RL 5.0 5.0 5.0 5.0	
Field ID: Type: Cadmium Chromium Lead Nickel	MW-2 SAMPLE Analyte	Rest ND ND ND ND ND	ılt	Lab ID:	241776-002 RL 5.0 5.0 5.0 5.0 5.0 5.0	
Field ID: Type: Cadmium Chromium Lead Nickel Zinc	MW-2 SAMPLE Analyte	Rest ND ND ND ND ND ND	ilt	Lab ID:	241776-002	
Field ID: Type: Cadmium Chromium Lead Nickel Zinc Field ID: Type:	MW-2 SAMPLE Analyte MW-3 SAMPLE	Resu ND ND ND ND ND	ilt	Lab ID:	241776-002 RL 5.0 5.0 5.0 5.0 20	
Field ID: Type: Cadmium Chromium Lead Nickel Zinc Field ID: Type:	MW-2 SAMPLE Analyte MW-3 SAMPLE Analyte	Resu ND ND ND ND	ilt	Lab ID:	241776-002 RL 5.0 5.0 5.0 5.0 20 241776-003 RL	
Field ID: Type: Cadmium Chromium Lead Nickel Zinc Field ID: Type: Cadmium	MW-2 SAMPLE Analyte MW-3 SAMPLE Analyte	Resu ND ND ND ND ND	ilt	Lab ID:	241776-002	
Field ID: Type: Cadmium Chromium Lead Nickel Zinc Field ID: Type: Cadmium Chromium	MW-2 SAMPLE Analyte MW-3 SAMPLE Analyte	Resu ND ND ND ND ND ND	ilt	Lab ID:	241776-002	
Field ID: Type: Cadmium Chromium Lead Nickel Zinc Field ID: Type: Cadmium Chromium Lead	MW-2 SAMPLE Analyte MW-3 SAMPLE Analyte	Resu ND ND ND ND ND ND ND ND ND ND ND	ilt	Lab ID:	241776-002	
Field ID: Type: Cadmium Chromium Lead Nickel Zinc Field ID: Type: Cadmium Chromium Lead Nickel	MW-2 SAMPLE Analyte MW-3 SAMPLE Analyte	Rest ND ND ND ND ND ND ND ND ND ND ND	11t 11t 6.1	Lab ID:	241776-002 RL 5.0 5.0 5.0 5.0 20	

Dissolved California LUFT Metals					
Lab #:	241776		Location:	Salisbury Project	
Client:	Eagle Env. (Construction	Prep:	METHOD	
Project#:	SALISBURY P	ROJECT	Analysis:	EPA 6010B	
Matrix:	Filtrate		Sampled:	12/06/12	
Units:	ug/L		Received:	12/06/12	
Diln Fac:	1.000		Prepared:	12/12/12	
Batch#:	193793		Analyzed:	12/14/12	
Field ID: Type:	MW-4 SAMPLE		Lab ID:	241776-004	
	Analyte	Result		RL	
Cadmium		ND		5.0	
Chromium		ND		5.0	
Lead		ND		5.0	

Туре:	BLANK		Lab ID: Q	C669938
i	Analyte	Result	RL	
Cadmium		ND	5.0	
Chromium		ND	5.0	
Lead		ND	5.0	
Nickel		ND	5.0	
Zinc		ND	20	

5.0

20

9.7

ND

ND= Not Detected RL= Reporting Limit Page 2 of 2

Nickel

Zinc

Dissolved California LUFT Metals				
Lab #:	241776	Location:	Salisbury Project	
Client:	Eagle Env. Construction	Prep:	METHOD	
Project#:	SALISBURY PROJECT	Analysis:	EPA 6010B	
Matrix:	Filtrate	Batch#:	193793	
Units:	ug/L	Prepared:	12/12/12	
Diln Fac:	1.000	Analyzed:	12/14/12	

Type:

BS

Lab ID: QC669939

Analyte	Spiked	Result	%REC	Limits
Cadmium	50.00	50.44	101	80-120
Chromium	200.0	194.1	97	80-120
Lead	100.0	96.18	96	78-120
Nickel	500.0	475.7	95	80-120
Zinc	500.0	501.4	100	80-120

Type:

BSD

Lab ID: QC669940

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Cadmium	50.00	49.62	99	80-120	2	20
Chromium	200.0	192.8	96	80-120	1	20
Lead	100.0	94.78	95	78-120	1	20
Nickel	500.0	470.5	94	80-120	1	20
Zinc	500.0	492.6	99	80-120	2	20

Dissolved California LUFT Metals				
Lab #:	241776	Location:	Salisbury Project	
Client:	Eagle Env. Construction	Prep:	METHOD	
Project#:	SALISBURY PROJECT	Analysis:	EPA 6010B	
Field ID:	ZZZZZZZZZ	Batch#:	193793	
MSS Lab ID:	241820-001	Sampled:	12/07/12	
Matrix:	Filtrate	Received:	12/10/12	
Units:	ug/L	Prepared:	12/12/12	
Diln Fac:	1.000	Analyzed:	12/14/12	

Type:

Zinc

MS

Lab ID:

QC669941

675.1

95

75-124

27

1

Analyte	MSS Result	Spiked	Result	%REC	Limits
Cadmium	<0.4753	50.00	48.08	96	76-120
Chromium	<0.6310	200.0	185.5	93	74-120
Lead	<1.552	100.0	92.11	92	65-120
Nickel	2.979	500.0	455.4	90	74-120
Zinc	201.4	500.0	666.1	93	75-124

Туре:	MSD	Lab ID:	QC669942				
A	nalyte	Spiked	Result	%REC	Limits	RPD	Lim
Cadmium		50.00	49.03	98	76-120	2	20
Chromium		200.0	191.0	96	74-120	3	21
Lead		100.0	93.97	94	65-120	2	29
Nickel		500.0	464.9	92	74-120	2	21

500.0