

April 25, 2008

881.060.03.004

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Attention: Mr. Jerry Wickham

Transmittal
First Quarter 2008
Groundwater Monitoring Report
Sparkle Cleaners
Eastmont Town Center
7000 Bancroft Avenue
Oakland, California
SLIC Case RO0002942

Dear Mr. Wickham:

On behalf of SKB-Eastmont Oakland Associates, LLC, attached please find our report documenting the results of the first quarter 2008 groundwater monitoring event at the Sparkle Cleaners facility. I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

We trust that this is the information that you require at this time. Please contact us with any further questions.

Yours very truly,

PES ENVIRONMENTAL, INC.

William W. Mast, P.G. Associate Engineer

cc: Ms. Kathleen Schulz - SKB - Eastmont Oakland Associates, LLC

RECEIVED

2:54 pm, Apr 28, 2008

Alameda County Environmental Health

88106003T004.doc

A Report Prepared for:

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Attention: Mr. Jerry Wickham

FIRST QUARTER 2008
GROUNDWATER MONITORING REPORT
SPARKLE CLEANERS
EASTMONT TOWN CENTER
7000 BANCROFT AVENUE
OAKLAND, CALIFORNIA

APRIL 25, 2008

By:

Gary Thomas, P.G.

Senior Geologist

William W. Mast, P.G.

Associate Engineer

No. 5647

No. 5647

881.060.03.004

TABLE OF CONTENTS

LIST OF TABLES		iii								
LIST OF ILLUSTRAT	TIONS	iii								
1.0 INTRODUCTION	N	1								
2.0 BACKGROUND INFORMATION										
3.0 SITE DESCRIPT	3.0 SITE DESCRIPTION									
4.0 GROUNDWATER MONITORING WELL SAMPLING ACTIVITIES										
5.1 Groundwater E5.2 Groundwater Sa5.2.1 Volatile Or5.2.2 Petroleum	Elevation ample rganic Hydro	NITORING RESULTS 3 on Measurements 3 Analytical Results 3 Compounds 3 carbons 3 allity Control Assessment of Chemical Data 4								
6.0 SUMMARY		4								
7.0 REFERENCES		5								
TABLES										
ILLUSTRATIONS										
APPENDICES A	A	MONITORING WELL SAMPLING FORMS								
I	В	LABORATORY ANALYTICAL REPORT AND CHAIN-OF- CUSTODY DOCUMENTATION								

88106003R003.doc ii

DISTRIBUTION

LIST OF TABLES

Table 1	Groundwater Monitoring Well Construction Details
Table 2	Groundwater Elevation Data
Table 3	Summary of Analytical Results for Groundwater Monitoring Well Samples

LIST OF ILLUSTRATIONS

Plate 1	Site Location Map
Plate 2	Interpretive Groundwater Potentiometric Surface Map -
	February 6, 2008

88106003R003.doc iii

1.0 INTRODUCTION

This report presents the results of groundwater monitoring activities conducted during the first quarter 2008 monitoring event at the Sparkle Cleaners facility (Site). The Site is located at 7000 Bancroft Avenue, Oakland, California and is situated in the northwest portion of Eastmont Town Center (Plates 1 and 2). Sparkle Cleaners is an active dry-cleaning facility that uses tetrachloroethene (PCE) as a dry-cleaning solvent. This report has been prepared for the Alameda County Environmental Health Department (ACEH) by PES Environmental, Inc. (PES) on behalf of SKB – Eastmont Oakland Associates, LLC (SKBEOA), the property owner.

2.0 BACKGROUND INFORMATION

The groundwater monitoring activities were conducted in accordance with PES' Remedial Action Workplan (RAW) that was approved by ACEH in a letter dated February 27, 2007 (PES, 2007a; ACEH, 2007a). The RAW's scope of work also included removing the source of PCE soil contamination beneath Sparkle Cleaners and installing four groundwater monitoring wells. Excavation activities to remove the source of PCE in soil were successfully completed in July 2007 and documented in the report titled *Post-Remediation Report*, *Voluntary Soil Remediation, Sparkle Cleaners, Eastmont Town Center, 7000 Bancroft Avenue, Oakland, California* (PES, 2007b) that was previously submitted to ACEH. The groundwater monitoring wells were installed in July 2007 and the baseline groundwater sampling event was conducted in August 2007. The details of the well installations and the results of the baseline sampling event are presented in the *Third Quarter 2007 Groundwater Monitoring Report* (PES, 2007c). In a letter dated October 4, 2007, ACEH provided comments on the *Post-Remediation Report* and requested additional analytical testing during two quarters of groundwater monitoring (ACEH, 2007b).

As described in the RAW, the purpose of the groundwater monitoring is to: (1) document the initial concentrations of volatile organic compounds (VOCs) in the newly installed wells at the Site; (2) monitor groundwater flow directions(s), gradient, and seasonal fluctuations; (3) evaluate the groundwater chemical response to the removal of the source of contamination; and (4) verify that groundwater quality down gradient of Sparkle Cleaners are not declining.

3.0 SITE DESCRIPTION

The Sparkle Cleaners tenant space (Suite 11) covers approximately 1,800 square feet in the northwest portion of Eastmont Town Center (Plate 2). The area in front (north) of Sparkle Cleaners includes storefront parking and a mall driveway. The rear (south) of the tenant space opens into a common hallway that traverses the width of the building from east to west. An alleyway is located approximately 20 feet to the east.

The ground surface elevation at Sparkle Cleaners is approximately 60 feet above mean seal level (MSL). The site topography slopes gently to the southwest. To the east and northeast of the site, the topography steepens and continues to rise to approximately 360 feet MSL (Plate 1).

4.0 GROUNDWATER MONITORING WELL SAMPLING ACTIVITIES

First quarter 2008 groundwater monitoring activities consisted of: (1) collection of depth to groundwater measurements and calculation of groundwater elevations; (2) groundwater sample collection; and (3) laboratory analysis of the samples for halogenated VOCs, naphthalene, methyl-tert-butyl ether (MTBE), gasoline oxygenates, total petroleum hydrocarbons quantified as gasoline (TPHg), and TPH quantified as diesel (TPHd). Field activities were conducted by Blaine Tech Services (BTS) of San Jose, California on February 6, 2008. Construction details for the four monitoring wells are provided in Table 1.

4.1 Depth to Groundwater Measurements

Depth-to-groundwater measurements were obtained for the monitoring wells using an electronic water-level indicator and recorded to the nearest 0.01-foot. The portion of the water-level indicator that was submerged in the wells was cleaned with a solution of Alconox and deionized (DI) water, and then rinsed with DI water between measurements. Decontamination fluids were stored temporarily on site in a DOT-approved 55-gallon drum pending offsite disposal. Depth-to-groundwater data were converted to groundwater elevations referenced to mean sea level and are presented in Table 2. Groundwater elevation contours are presented on Plate 2.

4.2 Monitoring Well Sampling

After collecting water-level data, BTS sampled the four monitoring wells. Three casing volumes of groundwater were purged from each well prior to collecting the samples. The wells were purged using a new disposable bailer for each well. Samples were collected using a disposable bailer and decanted into laboratory-provided sample containers. Groundwater temperature, pH, conductivity, and turbidity were monitored during purging. The BTS monitoring well sampling forms are presented in Appendix A.

The samples were transported to TestAmerica Laboratories, Inc. (TestAmerica) under chain-of-custody protocol and analyzed for:

- Halogenated VOCs (8010 list), MTBE, fuel oxygenates, and naphthalene by U.S. Environmental Protection Agency (EPA) Test Method 8260B;
- TPHg by U.S. EPA Test Method 8260B; and
- TPHd by U.S. EPA Test Method 8015B.

5.0 GROUNDWATER MONITORING RESULTS

5.1 Groundwater Elevation Measurements

Groundwater elevations measured on February 6, 2008 ranged from 26.58 feet MSL in well MW-01 to 34.96 feet MSL in well MW-02 (see Table 2 and Plate 2). As indicated on Plate 2, the elevation data from well MW-02 is not used for contouring because the groundwater elevation in this well is significantly higher than the elevations in the other wells. As described in the previous monitoring reports, the cause of the higher water-level elevation at Well MW-02 appears to be from a screen interval that is at least 9 feet shallower (i.e., relative to the ground surface) than the other three wells. Well MW-2 was constructed in this manner because groundwater was detected at a shallower depth while drilling the borehole for this well.

Based on the groundwater elevation data from wells MW-01, MW-03, and MW-04, the hydraulic gradient during the first quarter 2008 monitoring event was approximately 0.007 foot per foot to the west (see Plate 2). In addition, the analytical results discussed below suggest a westerly to northwesterly direction for groundwater flow.

5.2 Groundwater Sample Analytical Results

The analytical results for the groundwater samples collected on February 6, 2008 are summarized below and presented in Table 3. The laboratory analytical report and chain-of-custody documentation are provided in Appendix B.

5.2.1 Volatile Organic Compounds

PCE was detected in three of the four monitoring wells at concentrations ranging from $2.0~\mu g/L$ in well MW-03 to $130~\mu g/L$ in well MW-01 (PCE was also detected at $130~\mu g/L$ in the duplicate sample from well MW-01). TCE was detected at concentrations of 5.8~and $0.90~\mu g/L$ in wells MW-01 and MW-02, and cis-1,2-dichloroethene (DCE) was detected at a concentration of $0.58~\mu g/L$ in well MW-01. No other VOCs were detected at concentrations exceeding laboratory reporting limits in the samples from wells MW-01 through MW-03, and no VOCs were detected in well MW-04 (Table 3).

The distribution of PCE and TCE in groundwater is consistent with the observed westerly groundwater flow direction, and with prior monitoring data.

5.2.2 Petroleum Hydrocarbons

TPHg was detected in well MW-01 at a concentration of 140 μ g/L (TPHg was also detected at 140 μ g/L in the duplicate sample from well MW-01). However, the laboratory qualified these data and indicated that the reported TPHg concentration is due to presence of PCE.

TPHd was detected in three of the four monitoring wells at concentrations ranging from 57 μ g/L in well MW-01 (65 μ g/L in the duplicate sample from this well) to 200 μ g/L in well MW-02 (Table 3). The TPHd data were consistent with concentrations observed during fourth quarter 2007 monitoring.

BTEX compounds, fuel oxygenates, and naphthalene were not detected in the water samples.

5.3 Quality Assurance/Quality Control Assessment of Chemical Data

The quality of the chemical data reported by TestAmerica was assessed from the results of internal laboratory spike and method blank. The data are within acceptable recovery limits. The results for the duplicate sample collected at MW-01 indicate good reproducibility with PCE, TCE, TPHg, and TPHd detected in both the regular and duplicate sample. The relative percent differences for the PCE, TCE, TPHg, and TPHd concentrations detected in this sample are 0, 0.87, 0, and 6.6 percent, respectively. The water samples were analyzed within acceptable EPA holding times. The data from TestAmerica are considered to be representative and of good quality.

6.0 SUMMARY

The first quarter 2008 groundwater monitoring event has been conducted in accordance with the RAW.

Based on the groundwater elevation data from wells MW-01, MW-03, and MW-04, groundwater flow at the Site during the first quarter 2008 sampling event is westerly (see Plate 2). The only VOC constituents detected above laboratory reporting limits in groundwater during this monitoring event were PCE, TCE and cis-1,2-DCE. The maximum concentrations of PCE and TCE were detected in well MW-01 at 130 μ g/L and 5.8 μ g/L, respectively. These concentrations are slightly higher than those observed during third and fourth quarter 2007 monitoring.

TPHd was detected above laboratory reporting limits in groundwater during this monitoring event in each well, except well MW-04. TPHd concentrations range from 57 μ g/L in well MW-01 to 200 μ g/L in well MW-02. According to the analytical laboratory, the TPHg detected in well MW-01 is due to the presence of PCE. No other petroleum hydrocarbons were detected.

The first quarter 2008 is the second of two quarters of total petroleum hydrocarbon (i.e., TPHd and TPHg) monitoring that were requested by ACEH (ACEH, 2007b). As such, no further monitoring for these constituents will be performed. Monitoring of the four wells will continue for another quarter to assess whether concentrations of VOCs in groundwater decrease as a result of the Site remediation activities. The second quarter 2008 groundwater monitoring event will be conducted in early May 2008.

7.0 REFERENCES

- Alameda County Environmental Health (ACEH), 2007a. SLIC Case RO0002942 and Geotracker Global ID SLT19735483, Sparkle Cleaners, 7000 Bancroft Avenue, Oakland, CA 94605 Work Plan Approval. February 27.
- ACEH, 2007b. SLIC Case RO0002942 and Geotracker Global ID SLT19735483, Sparkle Cleaners, 7000 Bancroft Avenue, Oakland, CA 94605 Post-Remediation Report Review. October 4.
- PES Environmental, Inc. (PES), 2007a. Remedial Action Workplan, Voluntary Soil Remediation, Sparkle Cleaner, Eastmont Town Center, 7000 Bancroft Avenue, Oakland, California. January 5.
- PES, 2007b. Post-Remediation Report, Voluntary Soil Remediation, Sparkle Cleaners, Eastmont Town Center, 7000 Bancroft Avenue, Oakland, California. September 9.
- PES, 2007c. Third Quarter 2007 Groundwater Monitoring Report, Sparkle Cleaners, Eastmont Town Center, 7000 Bancroft Avenue, Oakland, California. October 8.

TABLES

Table 1 Groundwater Monitoring Well Construction Details Sparkle Cleaners Eastmont Town Center 7000 Bancroft Avenue Oakland, California

Well ID	Date Completed	Top of Casing Elevation (feet MSL)	Borehole Diameter (inches)	Borehole Depth (feet bgs)	Well Depth (feet bgs)	Casing Diameter (inches)	Screen Interval (feet bgs)	Sand Filter Interval (feet bgs)	Screen Slot Size (inches)
MW-01	7/23/2007	49.51	8	47	47	2	31.5 to 46.5	29.5 to 47	0.020
MW-02	7/24/2007	49.07	8	36.5	35	2	19.5 to 34.5	17.5 to 36.5	0.020
MW-03	7/24/2007	50.43	8	44	44	2	28.5 to 43.5	26.5 to 44	0.020
MW-04	7/23/2007	49.81	8	48.5	48.5	2	33 to 48	31 to 48.5	0.020

Note:

bgs - Below ground surface

MSL - Mean sea level

88106003R003.xls 4/25/2008

Table 2
Groundwater Elevation Data
Sparkle Cleaners
Eastmont Town Center
7000 Bancroft Avenue
Oakland, California

Well ID	Date Measured	Top of Casing Elevation (feet MSL)	Depth to Groundwater (feet BTOC)	Groundwater Elevation (feet MSL)
MW-01	8/7/2007	49.51	23.62	25.89
MW-01	11/19/2007	49.51	24.85	24.66
MW-01	2/6/2008	49.51	22.93	26.58
MW-02	8/7/2007	49.07	14.30	34.77
MW-02	11/19/2007	49.07	14.83	34.24
MW-02	2/6/2008	49.07	14.11	34.96
MW-03	8/7/2007	50.43	17.82	32.61
MW-03	11/19/2007	50.43	24.70	25.73
MW-03	2/6/2008	50.43	22.86	27.57
MW-04	8/7/2007	49.81	22.43	27.38
MW-04	11/19/2007	49.81	23.81	26.00
MW-04	2/6/2008	49.81	22.80	27.01

Note:

MSL - Mean sea level BTOC - Below top of casing

88106003R003.xls 4/25/2008

Table 3 Summary of Analytical Results for Groundwater Monitoring Well Samples Sparkle Cleaners Eastmont Town Center 7000 Bancroft Avenue Oakland, California

		Petroleum H	ydrocarbons				/	/olatile Organ	ic Compounds	S			
Sample	Sample	TPHg	TPHd	PCE	TCE	cis-1,2-DCE	Naphthalene	MTBE	TAME	TBA	DIPE	ETBE	Other VOCs
Location	Date	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-01 MW-01 (D) MW-01 MW-01 (D) MW-01 (D)	8/7/2007 8/7/2007 11/19/2007 11/19/2007 2/6/2008 2/6/2008	NA NA 110 ⁽¹⁾ 110 ⁽¹⁾ 140 ⁽¹⁾	NA NA 52 79 57 65	60 71 110 100 130 130	3.1 3.1 5.2 5.0 5.8 5.7	ND (0.50) ND (0.50) ND (1.0) ND (1.0) 0.58 0.60	NA NA ND (2.0) ND (2.0) ND (1.0) ND (1.0)	NA NA ND (0.50) ND (0.50) ND (0.50) ND (0.50)	NA NA ND (0.50) ND (0.50) ND (0.50) ND (0.50)	NA NA ND (5.0) ND (5.0) ND (5.0) ND (5.0)	NA NA ND (1.0) ND (1.0) ND (1.0) ND (1.0)	NA NA ND (0.50) ND (0.50) ND (0.50) ND (0.50)	ND ND ND ND ND
MW-02	8/7/2007	NA	NA	25	1.2	ND (0.50)	NA	NA	NA	NA	NA	NA	ND
MW-02	11/19/2007	ND (50)	120	26	0.93	ND (0.50)	ND (1.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-02	2/6/2008	ND (50)	200	25	0.90	ND (0.50)	ND (1.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-03	8/7/2007	NA	NA	1.6	ND (0.50)	ND (0.50)	NA	NA	NA	NA	NA	NA	ND
MW-03	11/19/2007	ND (50)	79	2.1	ND (0.50)	ND (0.50)	ND (1.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-03	2/6/2008	ND (50)	70	2.0	ND (0.50)	ND (0.50)	ND (1.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-04	8/7/2007	NA	NA	ND (0.50)	ND (0.50)	ND (0.50)	NA	NA	NA	NA	NA	NA	ND
MW-04	11/19/2007	ND (50)	69	ND (0.50)	ND (0.50)	ND (0.50)	ND (1.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND
MW-04	2/6/2008	ND (50)	ND (50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (1.0)	ND (0.50)	ND (0.50)	ND (5.0)	ND (1.0)	ND (0.50)	ND

Notes:

TPHg - Gasoline range organics (C5-C12)

TPHd - Diesel range organics (C10-C28)

DCE - Dichloroethene

PCE - Tetrachloroethene

TCE - Trichloroethene

MTBE - Methyl tert-butyl ether

TAME - Tert-amyl methyl ether

TBA - Tert-butyl alcohol

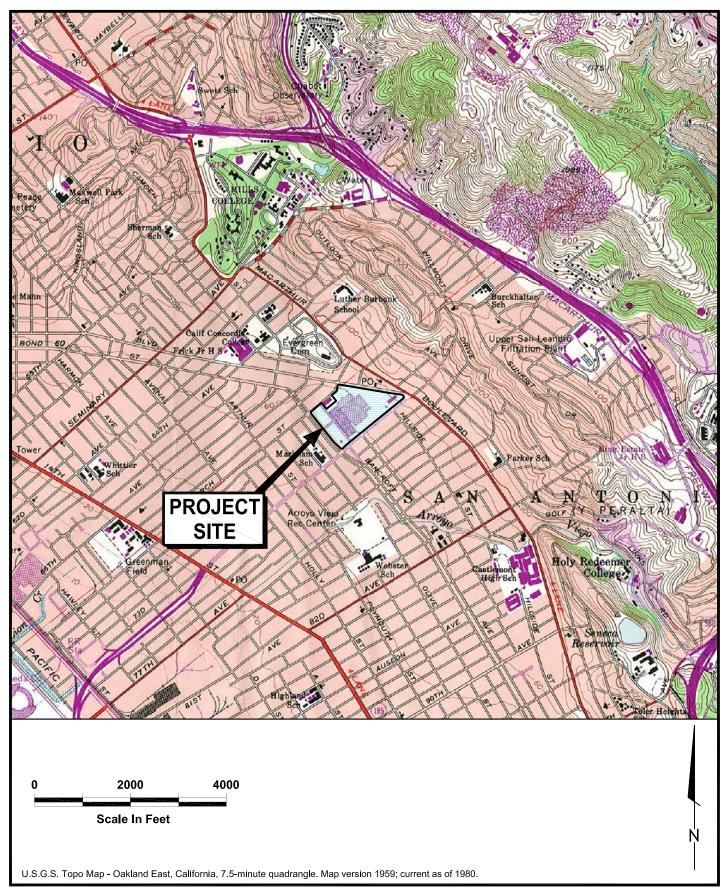
DIPE - Diisopropyl ether

ETBE - Ethyl tert-butyl ether

μg/L - Micrograms per liter

NA - Not Analyzed

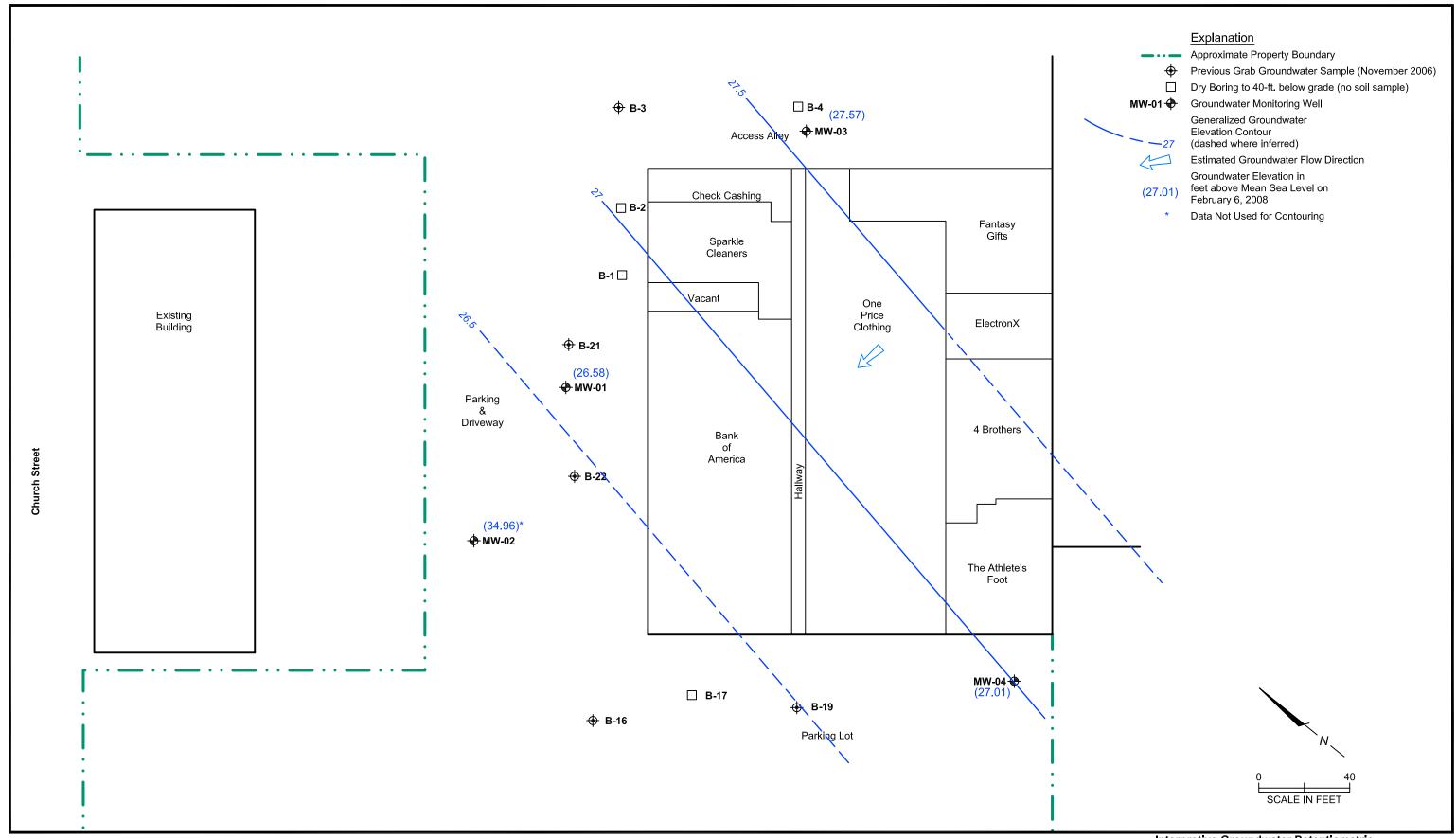
ND (0.5) - Not detected at or above indicated laboratory reporting limit


ND - Not detected at or above the laboratory reporting limit (varies by analyte)

88106003R003.xls

⁽D) - Field duplicate sample

^{(1) -} The analytical laboratory narrative states that the reported gasoline range organics concentration is due to the presence of PCE.


ILLUSTRATIONS

Site Location Map Sparkle Cleaners **Eastmont Town Center** Oakland, California

PLATE

Interpretive Groundwater Potentiometric Surface Map - February 6, 2008 Sparkle Cleaners Eastmont Town Center Oakland, California

PLATE

2

APPENDIX A

MONITORING WELL SAMPLING FORMS

SPH or Purge Water Drum Log

	~	1	e						
•	•		-	-	• 1		٠		
				•	1				
•	•	1	•	1		ь.			

Site Address:

STATUS OF DRUM(S) UPON	ARRIVAL				
Date	8-1-07	81762	11/19/07	02/06/08	
Number of drum(s) empty:	3		2 '	2	
Number of drum(s) 1/4 full:					
Number of drum(s) 1/2 full:					
Number of drum(s) 3/4 full:		1			
Number of drum(s) full:	2	184	5	0	
Total drum(s) on site:	6	6	7	2	
Are the drum(s) properly labeled?		7	Y	MN	
Drum ID & Contents:		Purgeveter soil Cutting	fluge to		
If any drum(s) are partially or totally filled, what is the first use date:					

- If you add any SPH to an empty or partially filled drum, drum must have at least 20 gals. of Purgewater or DI Water.
- -If drum contains SPH, the drum MUST be steel AND labeled with the appropriate label.
- -All BTS drums MUST be labeled appropriately.

STATUS OF DRUM(S) UPON	DEPARTU	JRE			
Date	8-1-07	8/7/07	11/19/07	102/106/09	
Number of drums empty:		2	2	2	
Number of drum(s) 1/4 full:					
Number of drum(s) 1/2 full:					
Number of drum(s) 3/4 full:					
Number of drum(s) full:	15	Ц	\$ 6	8	
Total drum(s) on site:	6	7	8	3	
Are the drum(s) properly labeled?	6	И	Yı	14	
Drum ID & Contents:	Soil/ouralw	JEV .	Pune voltà	A TOPOP	

LOCATION OF DRUM(S)

Describe location of drum(s): In Storage area next to cleaners / RM # 15

FINAL STATUS					
Number of new drum(s) left on site this event	0	,	1		
Date of inspection:	8-1-07	8762	11/19/07	toldolar-	
Drum(s) labelled properly:	V V	Y	Y	V	
Logged by BTS Field Tech:	DW	R	Ÿ	MO	
Office reviewed by:	M	N	न	R	

WELL GAUGING DATA

Project # 080205-MOI Date 62/06/08 Client PES

Site 7200 Banch Ft, Oakland, Ca

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	(ml)	Depth to water (ft.)	bottom (ft.)	Survey Point: TOB or	Notes
mw-1	6940	2					22.93	98.29		
MW-2	0933	2					14.11	34.64		
mw-3	0927	2					22.86	46.85		
MW-2 MW-3 MW-4	0917	2					22.93 [4.[] 22.86 22.90	99.11		
					·				e de la companya de l	u ŝ
										- V - V - V - V - V - V - V - V - V - V

Page ____ of ___ WELLHEAD INSPECTION CHECKLIST Job Number 080206 -mp/ Technician MPIERCE Debris Other Action Well Not Well Inspected -Water Bailed Wellbox Cap Removed Taken Lock Inspected No Corrective From Components (explain Replaced From Replaced (explain Well ID Action Required Wellbox Cleaned Wellbox below) below) mw -1 has a hole in NOTES:

V. LL MONITORING DATA SHE

Project #:	0802	06-	m01	Client:	PE	> - 42	D) Bancast, Dave				
Sampler:	9 m			Date:	02/0	06/08					
Well I.D.:	MW-	- 1		Well D	iameter:	: ② 3 4	6 8				
Total Well l	Depth (TD): 4	16.29	Depth to Water (DTW): 22.93							
Depth to Fro	ee Product			Thickness of Free Product (feet):							
Referenced	to:	PVC	Grade	D.O. M	leter (if		YSI HACH				
DTW with 8	DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 26.										
Purge Method: Bailer Disposable Bailer Positive Air Displacement Electric Submersible Other Other: Waterra Sampling Method: Bailer Peristaltic Extraction Pump Extraction Port Dedicated Tubing Other: Well Diameter Multiplier Well Diameter Multiplier 1" 0.04 4" 0.65 2" 0.16 6" 1.47											
1 Case Volume	,	fied Volum	nes Calculated Vo	[]	3"	0.37 Other	radius ² * 0.163				
Time	Temp (°F or ©)	pH 7 .96	Cond. (mS or(us)	(N')	oidity (TUs)	Gals. Removed	Observations				
1(16	19.0	7.09	910	60	6	8,0					
(121	18.6	7.23	920	676	>	12.0					
Did well de	water?	Yes	X19)	Gallons	s actuall	y evacuated:	12.0				
Sampling D	_{ate:} 62(0	6/08	Sampling Tim	e: / /	31	Depth to Water	r: 27.38				
Sample I.D.	: MW	-		Labora	tory:	Kiff CalScience	Other 775				
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ates (5)	Other:	recoc				
EB I.D. (if a	pplicable)	:	@ Time	Duplica	ate I.D. ((if applicable):	DUP				
Analyzed fo	Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: See COC										
D.O. (if req'	d): Pr	e-purge:		$^{ m mg}/_{ m L}$	Po	ost-purge:	$^{mg}/_{L}$				
O.R.P. (if re	q'd): Pr	e-purge:		mV	Po	ost-purge:	mV				

WELL MONITORING DATA SHEET

Project #: 090206-MD				Client: PE	5 - 7200	S Boncall, Oak	
Sampler: MD			Date: 02 0	6 (08			
Well I.D.: MW - Z			Well Diamete	Well Diameter: (2) 3 4 6 8			
Total Well Depth (TD): 34.64			Depth to Wat	er (DTW):	4.11		
Depth to Free Product:			Thickness of	Free Product (fe	et):		
Referenced	to:	EVC	Grade	D.O. Meter (i	f req'd):	YSI HACH	
DTW with 8	80% Rech	arge [(H	leight of Water	Column x 0.20	0) + DTW]:	18.22	
Purge Method: Bailer Waterra Sampling Method: Bailer Positive Air Displacement Extraction Pump Electric Submersible Other Well Diameter Multiplier Well Diameter Multiplier					Dipposable Bailer Extraction Port Dedicated Tubing		
1 Case Volume	Gals.) X	5 fied Volum	=	Gals. $\frac{2^n}{3^n}$	0.16 6" 0.37 Other	1.47 radius² * 0.163	
Time 1044 1046	Temp (°F or 6) 17,4 18,1	pH 7.20 7.14 6.94	Cond. (mS or (mS) (123)	Turbidity (NTUs) 620 796 813	Gals. Removed 3.3 6.6 9.9	Observations	
	[[- (6-17	117+	015	(e (
Did well de	water?	Yes (No	Gallons actua	lly evacuated:	9.9	
Sampling D	ate: 02 (0)	,	Sampling Time	e: / (O	Depth to Wate	10 0	
Sample I.D.	: Mh	s - Z		Laboratory:	Kiff CalScience	e Other A	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: See	cec	
EB I.D. (if a	ipplicable)		@ Time	Duplicate I.D	(if applicable):		
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:		
D.O. (if req'	d): Pr	e-purge:	and a property of the process of the second	mg/L	Post-purge:	mg/L	
O.R.P. (if re	eq'd): Pr	e-purge:	, , , , , , , , , , , , , , , , , , , ,	mV	Post-purge:	mV	

WELL MONITORING DATA SHEET

Project #: 080205 -MD				Client: PES	7200	Bancrofs, Och	
Sampler: MO				Date: 02/06/08			
Well I.D.: MW - 3			Well Diameter	2 3 4	6 8		
Total Well D	epth (TD):	46.85	Depth to Water	(DTW): 2	2.86	
Depth to Free	Product			Thickness of F	ree Product (fee	et):	
Referenced to):	W	Grade	D.O. Meter (if	req'd):	YSI HACH	
DTW with 80)% Recha	arge [(H	leight of Water	Column x 0.20)	+ DTW]:	27.66	
P E	Bailer Psposable Ba Positive Air E Electric Subm	Displaceme		Waterra Peristaltic tion Pump Well Diamete	Other: Multiplier Well I	Extraction Port Dedicated Tubing Diameter Multiplier 0.65 1.47	
1 Case Volume		fied Volum	nes Calculated Vo	- 2"	0.37 Other	radius ² * 0.163	
Time (Temp (°F or °C)	pН	Cond. (mS or µS)	Turbidity (NTUs)	Gals. Removed	Observations	
1021	7.9	6.15	525	65	3.8		
1024	19,0	7.65	533	516	7.6		
1028	19.3	740	547	746	11. F	Later and the same of the same	
,	l	·		•			
Did well dew	ater?	Yes (No	Gallons actuall	y evacuated:	11.4	
Sampling Dat	te:02/6	6(08	Sampling Time	e: 1031	Depth to Water	r: 27.12	
Sample I.D.:	MW	-3		Laboratory:	Kiff CalScience	Other A	
Analyzed for:	TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: . See	Coc	
EB I.D. (if applicable): © Duplicate I.D. (if applicable):							
Analyzed for:	TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:		
D.O. (if req'd)): Pr	e-purge:		mg/ _L P	ost-purge:	mg _{/L}	
O.R.P. (if req	'd): Pr	e-purge:		mV P	ost-purge:	mV	

WELL MONITORING DATA SHEET

Project #: 040206-mn]				Client:	PE	5 :	- 72	_00	Bancoult
Sampler:	mp			Date: 02 (06 (08					
Well I.D.:	mw-	- 4		Well Diar	meter:	(3	3 4	6	8
Total Well I	Depth (TD	·): (99.11	Depth to	Water	· (DTW): 27	2-9	<u>jo</u>
Depth to Fre	ee Product	•		Thickness	s of Fr	ree Prod	duct (fee	et):	
Referenced	to:	PVC	Grade	D.O. Met	er (if i	req'd):		YSI	НАСН
DTW with 8	30% Recha	arge [(H	eight of Water	Column x	(0.20)	+ DTV	V]: 2	1	.06
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other Other: Well Diameter Multiplier Well Diameter Multiplier Multiplier						Disposable Bailer Extraction Port Dedicated Tubing Multiplier			
3.4 (C) 1 Case Volume	Gals.) X	5 fied Volum	$= \underbrace{10.2}_{\text{Calculated Vo}}$	_Gals.	1" [2" 3"	0.04 0.16 0.37	4" 6" Other		0.65 1.47 radius ² * 0.163
Time	Temp	рН	Cond. (mS or μS)	Turbidi (NTUs	- [Gals. R	Lemoved		Observations
1000	18.8	8.44	596	8//		3.	4		
(003	18.9	8.00	703	7/00	2	6.	8		
1005	19.7	7,65	681	7100		10	. 2		
Did well de	water?	Yes Z	No.	Gallons a	ctually	y evacu	ated:		0.2
Sampling D	Sampling Date: 02/06/68 Sampling Time: //// Depth to Water: 26.3								
Sample I.D.: MW -4 Laboratory: Kiff CalScience Other TR									
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: See COC									
EB I.D. (if a	applicable)):	(d) Time	Duplicate	: I.D. (if appli	icable):		
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates	s (5)	Other:			
D.O. (if req'	d): Pr	re-purge:	And the second s	mg/Ļ	Po	ost-purge	e:		mg/ _[
O.R.P. (ifre	eq'd): Pı	re-purge:		mV	Po	ost-purge	e:		mV

APPENDIX B

LABORATORY ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY DOCUMENTATION

ANALYTICAL REPORT

Job Number: 720-12932-1

Job Description: Eastmont Town Center

For:

PES Environmental, Inc. 1682 Novato Boulevard Suite 100 Novato, CA 94947-7021

Attention: Mr. Miguel Rizo

Akanef Sal

Afsaneh Salimpour
Project Manager I
afsaneh.salimpour@testamericainc.com
02/18/2008
Revision: 1

Job Narrative 720-J12932-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: Sample 720-12932-1,5 had gases hits duo to discrete peak(Tetrachloroethene).

No other analytical or quality issues were noted.

GC Semi VOA

No analytical or quality issues were noted.

Organic Prep
No analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: PES Environmental, Inc. Job Number: 720-12932-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-12932-1	MW-1				
Gasoline Range Or Trichloroethene Tetrachloroethene cis-1,2-Dichloroethe Diesel Range Orga	rganics (GRO)-C5-C12 ene	140 5.8 130 0.58 57	50 0.50 1.0 0.50 50	ug/L ug/L ug/L ug/L ug/L	8260B 8260B 8260B 8260B 8015B
720-12932-2	MW-2				
Trichloroethene Tetrachloroethene Diesel Range Orga	nics [C10-C28]	0.90 25 200	0.50 0.50 50	ug/L ug/L ug/L	8260B 8260B 8015B
720-12932-3	MW-3				
Tetrachloroethene Diesel Range Orga	nics [C10-C28]	2.0 70	0.50 50	ug/L ug/L	8260B 8015B
720-12932-5	DUP				
Gasoline Range Or Trichloroethene Tetrachloroethene cis-1,2-Dichloroethene Diesel Range Orga		140 5.7 130 0.60 65	50 0.50 1.0 0.50 50	ug/L ug/L ug/L ug/L ug/L	8260B 8260B 8260B 8260B 8015B

METHOD SUMMARY

Client: PES Environmental, Inc.

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds by GC/MS	TAL SF	SW846 8260B	
Volatile Organic Compounds by GC/MS (Low Level)	TAL SF	SW846 8260B	
Purge-and-Trap	TAL SF		SW846 5030B
Purge-and-Trap	TAL SF		SW846 5030B
Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)	TAL SF	SW846 8015B	
Separatory Funnel Liquid-Liquid Extraction	TAL SF		SW846 3510C

Lab References:

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Job Number: 720-12932-1

METHOD / ANALYST SUMMARY

Client: PES Environmental, Inc. Job Number: 720-12932-1

Method	Analyst	Analyst ID
SW846 8260B	Ali, Badri	ВА
SW846 8260B	Chen, Amy	AC
SW846 8260B	Le, Lien	LL
SW846 8015B	Hayashi, Derek	DH

SAMPLE SUMMARY

Client: PES Environmental, Inc. Job Number: 720-12932-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-12932-1	MW-1	Water	02/06/2008 0000	02/07/2008 1405
720-12932-2	MW-2	Water	02/06/2008 0000	02/07/2008 1405
720-12932-3	MW-3	Water	02/06/2008 0000	02/07/2008 1405
720-12932-4	MW-4	Water	02/06/2008 0000	02/07/2008 1405
720-12932-5	DUP	Water	02/06/2008 0000	02/07/2008 1405
720-12932-6TB	ТВ	Water	02/06/2008 0000	02/07/2008 1405

Client: PES Environmental, Inc. Job Number: 720-12932-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-12932-1
 Date Sampled:
 02/06/2008 0000

 Client Matrix:
 Water
 Date Received:
 02/07/2008 1405

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-31689 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200802\02

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 02/08/2008 1318 Final Weight/Volume: 40 mL

Date Prepared: 02/08/2008 1318

1,1-Dichloroethene ND 0.50 Trichloroethene 5.8 0.50 Naphthalene ND 1.0 Chlorobenzene ND 0.50 1,1,1-Trichloroethane ND 0.50
NaphthaleneND1.0ChlorobenzeneND0.501,1,1-TrichloroethaneND0.50
ChlorobenzeneND0.501,1,1-TrichloroethaneND0.50
1,1,1-Trichloroethane ND 0.50
cis-1,3-Dichloropropene ND 0.50
Bromoform ND 1.0
1,1-Dichloroethane ND 0.50
1,2-Dichloroethane ND 0.50
1,2-Dichloropropane ND 0.50
1,1,2-Trichloroethane ND 0.50
Dichlorodifluoromethane ND 0.50
1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50
Methylene Chloride ND 5.0
Chloromethane ND 1.0
Bromomethane ND 1.0
Chlorodibromomethane ND 0.50
1,2,4-Trichlorobenzene ND 1.0
1,3-Dichlorobenzene ND 0.50
trans-1,2-Dichloroethene ND 0.50
1,1,2,2-Tetrachloroethane ND 0.50
Chloroethane ND 1.0
1,2-Dichlorobenzene ND 0.50
Trichlorofluoromethane ND 1.0
trans-1,3-Dichloropropene ND 0.50
cis-1,2-Dichloroethene 0.58 0.50
Chloroform ND 1.0
Vinyl chloride ND 0.50
EDB ND 0.50
Carbon tetrachloride ND 0.50
1,4-Dichlorobenzene ND 0.50
Dichlorobromomethane ND 0.50
Surrogate %Rec Acceptance Limits
Toluene-d8 (Surr) 107 73 - 117
4-Bromofluorobenzene 115 71 - 139
1,2-Dichloroethane-d4 (Surr) 110 62 - 118

Client: PES Environmental, Inc. Job Number: 720-12932-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-12932-1
 Date Sampled:
 02/06/2008 0000

 Client Matrix:
 Water
 Date Received:
 02/07/2008 1405

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-31941 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200802\02

Dilution: 2.0 Initial Weight/Volume: 40 mL Date Analyzed: 02/15/2008 1209 Final Weight/Volume: 40 mL

Date Prepared: 02/15/2008 1209

Analyte Result (ug/L) Qualifier RL
Tetrachloroethene 130 1.0

Client: PES Environmental, Inc. Job Number: 720-12932-1

Client Sample ID: MW-1

Lab Sample ID: 720-12932-1 Date Sampled: 02/06/2008 0000 Client Matrix: Water Date Received: 02/07/2008 1405

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 720-31788 Varian 3900C Instrument ID:

Preparation: 5030B Lab File ID: c:\saturnws\data\200802\02

Dilution: 1.0 Initial Weight/Volume: 40 mL 40 mL

Date Analyzed: 02/12/2008 1523 Final Weight/Volume: Date Prepared: 02/12/2008 1523

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
Ethylbenzene	ND		0.50
MTBE	ND		0.50
TAME	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
TBA	ND		5.0
DIPE	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	140		50
Ethyl tert-butyl ether	ND		0.50
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	99		77 - 121
1.2 Diablara than a d4 (Curr)	0.2		72 120

Client: PES Environmental, Inc. Job Number: 720-12932-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-12932-2
 Date Sampled:
 02/06/2008 0000

 Client Matrix:
 Water
 Date Received:
 02/07/2008 1405

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-31689 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200802\02

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 02/08/2008 1351 Final Weight/Volume: 40 mL

Date Prepared: 02/08/2008 1351

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
Trichloroethene	0.90		0.50
Naphthalene	ND		1.0
Chlorobenzene	ND		0.50
1,1,1-Trichloroethane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
Bromoform	ND		1.0
Tetrachloroethene	25		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,2-Dichloropropane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
Methylene Chloride	ND		5.0
Chloromethane	ND		1.0
Bromomethane	ND		1.0
Chlorodibromomethane	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
1,3-Dichlorobenzene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Chloroethane	ND		1.0
1,2-Dichlorobenzene	ND		0.50
Trichlorofluoromethane	ND		1.0
trans-1,3-Dichloropropene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
Vinyl chloride	ND		0.50
EDB	ND		0.50
Carbon tetrachloride	ND		0.50
1,4-Dichlorobenzene	ND		0.50
Dichlorobromomethane	ND		0.50
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	108		73 - 117
4-Bromofluorobenzene	114		71 - 139
1,2-Dichloroethane-d4 (Surr)	111		62 - 118
.,			02 110

Client: PES Environmental, Inc. Job Number: 720-12932-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-12932-2
 Date Sampled:
 02/06/2008 0000

 Client Matrix:
 Water
 Date Received:
 02/07/2008 1405

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 720-31788 Instrument ID: Varian 3900C

Preparation: 5030B Lab File ID: c:\saturnws\data\200802\02

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 02/12/2008 1549 Final Weight/Volume: 40 mL Date Prepared: 02/12/2008 1549

Result (ug/L) Qualifier RLAnalyte Benzene ND 0.50 Ethylbenzene ND 0.50 MTBE ND 0.50 **TAME** 0.50 ND Toluene 0.50 ND Xylenes, Total ND 1.0 TBA ND 5.0 DIPE ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50 Ethyl tert-butyl ether ND 0.50

Surrogate	%Rec	Acceptance Limits
Toluene-d8 (Surr)	90	77 - 121
1,2-Dichloroethane-d4 (Surr)	99	73 - 130

Client: PES Environmental, Inc. Job Number: 720-12932-1

Client Sample ID: MW-3

 Lab Sample ID:
 720-12932-3
 Date Sampled:
 02/06/2008 0000

 Client Matrix:
 Water
 Date Received:
 02/07/2008 1405

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-31689 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200802\02

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 02/08/2008 1531 Final Weight/Volume: 40 mL

Date Prepared: 02/08/2008 1531

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
Trichloroethene	ND		0.50
Naphthalene	ND		1.0
Chlorobenzene	ND		0.50
1,1,1-Trichloroethane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
Bromoform	ND		1.0
Tetrachloroethene	2.0		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,2-Dichloropropane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
Methylene Chloride	ND		5.0
Chloromethane	ND		1.0
Bromomethane	ND		1.0
Chlorodibromomethane	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
1,3-Dichlorobenzene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Chloroethane	ND		1.0
1,2-Dichlorobenzene	ND		0.50
Trichlorofluoromethane	ND		1.0
trans-1,3-Dichloropropene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
Vinyl chloride	ND		0.50
EDB	ND		0.50
Carbon tetrachloride	ND		0.50
1,4-Dichlorobenzene	ND		0.50
Dichlorobromomethane	ND		0.50
Currogata	0/ Doo		Acceptance Limite
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	107		73 - 117
4-Bromofluorobenzene	112		71 - 139
1,2-Dichloroethane-d4 (Surr)	116		62 - 118

Client: PES Environmental, Inc. Job Number: 720-12932-1

Client Sample ID: MW-3

Lab Sample ID: 720-12932-3 Date Sampled: 02/06/2008 0000 Client Matrix: Water 02/07/2008 1405 Date Received:

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 720-31788 Varian 3900C Instrument ID:

Preparation: 5030B Lab File ID: c:\saturnws\data\200802\02

Dilution: 1.0 Initial Weight/Volume: 40 mL

40 mL Date Analyzed: 02/12/2008 1615 Final Weight/Volume: Date Prepared: 02/12/2008 1615

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND	Qualifici	0.50
Ethylbenzene	ND		0.50
MTBE	ND		0.50
TAME	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
TBA	ND		5.0
DIPE	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
Ethyl tert-butyl ether	ND		0.50
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	100		77 - 121

Client: PES Environmental, Inc. Job Number: 720-12932-1

Client Sample ID: MW-4

 Lab Sample ID:
 720-12932-4
 Date Sampled:
 02/06/2008 0000

 Client Matrix:
 Water
 Date Received:
 02/07/2008 1405

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-31689 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200802\02

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 02/08/2008 1711 Final Weight/Volume: 40 mL

Date Prepared: 02/08/2008 1711

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
Trichloroethene	ND		0.50
Naphthalene	ND		1.0
Chlorobenzene	ND		0.50
1,1,1-Trichloroethane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
Bromoform	ND		1.0
Tetrachloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,2-Dichloropropane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
Methylene Chloride	ND		5.0
Chloromethane	ND		1.0
Bromomethane	ND		1.0
Chlorodibromomethane	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
1,3-Dichlorobenzene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Chloroethane	ND		1.0
1,2-Dichlorobenzene	ND		0.50
Trichlorofluoromethane	ND		1.0
trans-1,3-Dichloropropene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
Vinyl chloride	ND		0.50
EDB	ND		0.50
Carbon tetrachloride	ND		0.50
1,4-Dichlorobenzene	ND		0.50
Dichlorobromomethane	ND		0.50
Surrogato	%Rec		Acceptance Limits
Surrogate Talvara di (Cura)			Acceptance Limits
Toluene-d8 (Surr)	107		73 - 117
4-Bromofluorobenzene	111		71 - 139
1,2-Dichloroethane-d4 (Surr)	111		62 - 118

Client: PES Environmental, Inc. Job Number: 720-12932-1

Client Sample ID: MW-4

 Lab Sample ID:
 720-12932-4
 Date Sampled:
 02/06/2008 0000

 Client Matrix:
 Water
 Date Received:
 02/07/2008 1405

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 720-31788 Instrument ID: Varian 3900C

Preparation: 5030B Lab File ID: c:\saturnws\data\200802\02

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 02/12/2008 1942 Final Weight/Volume: 40 mL

Date Prepared: 02/12/2008 1942

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
Ethylbenzene	ND		0.50
MTBE	ND		0.50
TAME	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
TBA	ND		5.0
DIPE	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
Ethyl tert-butyl ether	ND		0.50
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	93		77 - 121
1,2-Dichloroethane-d4 (Surr)	113		73 - 130

Client: PES Environmental, Inc. Job Number: 720-12932-1

Client Sample ID: DUP

 Lab Sample ID:
 720-12932-5
 Date Sampled:
 02/06/2008 0000

 Client Matrix:
 Water
 Date Received:
 02/07/2008 1405

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-31689 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200802\02

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 02/08/2008 1851 Final Weight/Volume: 40 mL

Date Prepared: 02/08/2008 1851

1,1-Dichloroethene ND 0.50 Trichloroethene 5.7 0.50 Naphthalene ND 1.0 Chlorobenzene ND 0.50 1,1,1-Trichloroethane ND 0.50 cis-1,3-Dichloropropene ND 0.50 Bromoform ND 1.0 1,1-Dichloroethane ND 0.50
Naphthalene ND 1.0 Chlorobenzene ND 0.50 1,1,1-Trichloroethane ND 0.50 cis-1,3-Dichloropropene ND 0.50 Bromoform ND 1.0
Chlorobenzene ND 0.50 1,1,1-Trichloroethane ND 0.50 cis-1,3-Dichloropropene ND 0.50 Bromoform ND 1.0
1,1,1-TrichloroethaneND0.50cis-1,3-DichloropropeneND0.50BromoformND1.0
cis-1,3-Dichloropropene ND 0.50 Bromoform ND 1.0
Bromoform ND 1.0
1.1 Dichloroothano
1, 1-DIGHIGHO HID U.3U
1,2-Dichloroethane ND 0.50
1,2-Dichloropropane ND 0.50
1,1,2-Trichloroethane ND 0.50
Dichlorodifluoromethane ND 0.50
1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50
Methylene Chloride ND 5.0
Chloromethane ND 1.0
Bromomethane ND 1.0
Chlorodibromomethane ND 0.50
1,2,4-Trichlorobenzene ND 1.0
1,3-Dichlorobenzene ND 0.50
trans-1,2-Dichloroethene ND 0.50
1,1,2,2-Tetrachloroethane ND 0.50
Chloroethane ND 1.0
1,2-Dichlorobenzene ND 0.50
Trichlorofluoromethane ND 1.0
trans-1,3-Dichloropropene ND 0.50
cis-1,2-Dichloroethene 0.60 0.50
Chloroform ND 1.0
Vinyl chloride ND 0.50
EDB ND 0.50
Carbon tetrachloride ND 0.50
1,4-Dichlorobenzene ND 0.50
Dichlorobromomethane ND 0.50
Surrogate %Rec Acceptance Limits
Toluene-d8 (Surr) 108 73 - 117
4-Bromofluorobenzene 112 71 - 139
1,2-Dichloroethane-d4 (Surr) 114 62 - 118

Client: PES Environmental, Inc. Job Number: 720-12932-1

Client Sample ID: DUP

 Lab Sample ID:
 720-12932-5
 Date Sampled:
 02/06/2008 0000

 Client Matrix:
 Water
 Date Received:
 02/07/2008 1405

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-31941 Instrument ID: Varian 3900G

Preparation: 5030B Lab File ID: c:\saturnws\data\200802\02

Dilution: 2.0 Initial Weight/Volume: 40 mL Date Analyzed: 02/15/2008 1243 Final Weight/Volume: 40 mL

Date Prepared: 02/15/2008 1243

Analyte Result (ug/L) Qualifier RL
Tetrachloroethene 130 1.0

Client: PES Environmental, Inc. Job Number: 720-12932-1

Client Sample ID: DUP

 Lab Sample ID:
 720-12932-5
 Date Sampled:
 02/06/2008 0000

 Client Matrix:
 Water
 Date Received:
 02/07/2008 1405

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 720-31788 Instrument ID: Varian 3900C

Preparation: 5030B Lab File ID: c:\saturnws\data\200802\02

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 02/12/2008 2008 Final Weight/Volume: 40 mL Date Prepared: 02/12/2008 2008

Result (ug/L) Qualifier RLAnalyte Benzene ND 0.50 Ethylbenzene ND 0.50 MTBE ND 0.50 **TAME** 0.50 ND Toluene 0.50 ND Xylenes, Total ND 1.0 TBA ND 5.0 DIPE ND 1.0 Gasoline Range Organics (GRO)-C5-C12 50 140 Ethyl tert-butyl ether ND 0.50

Surrogate	%Rec	Acceptance Limits
Toluene-d8 (Surr)	98	77 - 121
1,2-Dichloroethane-d4 (Surr)	110	73 - 130

Client: PES Environmental, Inc. Job Number: 720-12932-1

Client Sample ID: TB

 Lab Sample ID:
 720-12932-6TB
 Date Sampled:
 02/06/2008 0000

 Client Matrix:
 Water
 Date Received:
 02/07/2008 1405

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-31689 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200802\02

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 02/08/2008 1138 Final Weight/Volume: 40 mL

Date Prepared: 02/08/2008 1138

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
Trichloroethene	ND		0.50
Chlorobenzene	ND		0.50
Naphthalene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
Bromoform	ND		1.0
Tetrachloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
Methylene Chloride	ND		5.0
Chloromethane	ND		1.0
Bromomethane	ND		1.0
Chlorodibromomethane	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
1,3-Dichlorobenzene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Chloroethane	ND		1.0
1,2-Dichlorobenzene	ND		0.50
Trichlorofluoromethane	ND		1.0
trans-1,3-Dichloropropene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
Vinyl chloride	ND		0.50
EDB	ND		0.50
Carbon tetrachloride	ND		0.50
1,4-Dichlorobenzene	ND		0.50
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	107		73 - 117
4-Bromofluorobenzene	112		71 - 139
1,2-Dichloroethane-d4 (Surr)	113		62 - 118

Client: PES Environmental, Inc. Job Number: 720-12932-1

Client Sample ID: TB

 Lab Sample ID:
 720-12932-6TB
 Date Sampled:
 02/06/2008 0000

 Client Matrix:
 Water
 Date Received:
 02/07/2008 1405

8260B Volatile Organic Compounds by GC/MS

Method: 8260B Analysis Batch: 720-31788 Instrument ID: Varian 3900C

Preparation: 5030B Lab File ID: c:\saturnws\data\200802\02

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 02/12/2008 1759 Final Weight/Volume: 40 mL

Date Analyzed: 02/12/2008 1759
Date Prepared: 02/12/2008 1759

Analyte	Result (ug/L)	Qualifier	RL
Benzene	ND		0.50
Ethylbenzene	ND		0.50
MTBE	ND		0.50
TAME	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
TBA	ND		5.0
DIPE	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
Ethyl tert-butyl ether	ND		0.50
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	91		77 - 121
1,2-Dichloroethane-d4 (Surr)	105		73 - 130

Client: PES Environmental, Inc. Job Number: 720-12932-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-12932-1
 Date Sampled:
 02/06/2008 0000

 Client Matrix:
 Water
 Date Received:
 02/07/2008 1405

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Method: 8015B Analysis Batch: 720-31887 Instrument ID: HP DRO5
Preparation: 3510C Prep Batch: 720-31682 Lab File ID: N/A

Dilution: 1.0 Initial Weight/Volume: 250 mL

Date Analyzed: 02/11/2008 2242 Final Weight/Volume: 1 mL

Date Prepared: 02/08/2008 1230 Injection Volume: Column ID: PRIMARY

Analyte Result (ug/L) Qualifier RL
Diesel Range Organics [C10-C28] 57 50

Surrogate%RecAcceptance Limitsp-Terphenyl9150 - 150

Client: PES Environmental, Inc. Job Number: 720-12932-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-12932-2
 Date Sampled:
 02/06/2008 0000

 Client Matrix:
 Water
 Date Received:
 02/07/2008 1405

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Method: 8015B Analysis Batch: 720-31887 Instrument ID: HP DRO5
Preparation: 3510C Prep Batch: 720-31682 Lab File ID: N/A

Dilution: 1.0 Initial Weight/Volume: 250 mL

Date Analyzed: 02/12/2008 0029 Final Weight/Volume: 1 mL

Date Prepared: 02/08/2008 1230 Injection Volume:

Column ID: PRIMARY

Analyte Result (ug/L) Qualifier RL
Diesel Range Organics [C10-C28] 200 50

Surrogate%RecAcceptance Limitsp-Terphenyl8150 - 150

Client: PES Environmental, Inc. Job Number: 720-12932-1

Client Sample ID: MW-3

 Lab Sample ID:
 720-12932-3
 Date Sampled:
 02/06/2008 0000

 Client Matrix:
 Water
 Date Received:
 02/07/2008 1405

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Method: 8015B Analysis Batch: 720-31887 Instrument ID: HP DRO5
Preparation: 3510C Prep Batch: 720-31682 Lab File ID: N/A

Dilution: 1.0 Initial Weight/Volume: 250 mL

Date Analyzed: 02/12/2008 0056 Final Weight/Volume: 1 mL

Date Prepared: 02/08/2008 1230 Injection Volume:

Column ID: PRIMARY

Analyte Result (ug/L) Qualifier RL
Diesel Range Organics [C10-C28] 70 50

Surrogate%RecAcceptance Limitsp-Terphenyl9150 - 150

Client: PES Environmental, Inc. Job Number: 720-12932-1

Client Sample ID: MW-4

 Lab Sample ID:
 720-12932-4
 Date Sampled:
 02/06/2008 0000

 Client Matrix:
 Water
 Date Received:
 02/07/2008 1405

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Method: 8015B Analysis Batch: 720-31887 Instrument ID: HP DRO5
Preparation: 3510C Prep Batch: 720-31682 Lab File ID: N/A

Dilution: 1.0 Initial Weight/Volume: 250 mL

Date Analyzed: 02/12/2008 0122 Final Weight/Volume: 1 mL

Date Prepared: 02/08/2008 1230 Injection Volume:

Column ID: PRIMARY

Analyte Result (ug/L) Qualifier RL
Diesel Range Organics [C10-C28] ND 50

Surrogate%RecAcceptance Limitsp-Terphenyl9150 - 150

Client: PES Environmental, Inc. Job Number: 720-12932-1

Client Sample ID: DUP

Lab Sample ID: 720-12932-5 Date Sampled: 02/06/2008 0000 Client Matrix: Water Date Received: 02/07/2008 1405

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Analysis Batch: 720-31887 HP DRO5 Method: 8015B Instrument ID: Preparation: 3510C Prep Batch: 720-31682 Lab File ID: N/A

Dilution: 1.0 Initial Weight/Volume: 250 mL

Date Analyzed: 02/12/2008 0149 Final Weight/Volume: 1 mL

Date Prepared: 02/08/2008 1230 Injection Volume:

Column ID: **PRIMARY**

Analyte Result (ug/L) Qualifier RLDiesel Range Organics [C10-C28] 65 50

%Rec Surrogate Acceptance Limits p-Terphenyl 85 50 - 150

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

QUALITY CONTROL RESULTS

Client: PES Environmental, Inc. Job Number: 720-12932-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA	Chefit Sample ID	Dusis	Cheffit Waterix	Metriou	Prep Batch
	14690				
Analysis Batch:720-3 LCS 720-31689/2	Lab Control Spike	Т	Water	8260B	
LCSD 720-31689/1	Lab Control Spike Duplicate	T	Water	8260B	
MB 720-31689/3	Method Blank	Ť	Water	8260B	
720-12932-1	MW-1	T	Water	8260B	
720-12932-2	MW-2	Ť	Water	8260B	
720-12932-2MS	Matrix Spike	T	Water	8260B	
720-12932-2MSD	Matrix Spike Duplicate	Ť	Water	8260B	
720-12932-3	MW-3	T	Water	8260B	
720-12932-4	MW-4	Ť	Water	8260B	
720-12932-5	DUP	T	Water	8260B	
720-12932-6TB	TB	Ť	Water	8260B	
Analysis Batch:720-3					
LCS 720-31788/2	Lab Control Spike	T	Water	8260B	
LCSD 720-31788/1	Lab Control Spike Duplicate	Т	Water	8260B	
MB 720-31788/3	Method Blank	Т	Water	8260B	
720-12932-1	MW-1	Т	Water	8260B	
720-12932-1MS	Matrix Spike	Т	Water	8260B	
720-12932-1MSD	Matrix Spike Duplicate	Т	Water	8260B	
720-12932-2	MW-2	Т	Water	8260B	
720-12932-3	MW-3	Т	Water	8260B	
720-12932-4	MW-4	Т	Water	8260B	
720-12932-5	DUP	T	Water	8260B	
720-12932-6TB	ТВ	T	Water	8260B	
Analysis Batch:720-3	1941				
LCS 720-31941/2	Lab Control Spike	Т	Water	8260B	
LCSD 720-31941/1	Lab Control Spike Duplicate	T	Water	8260B	
MB 720-31941/3	Method Blank	Ť	Water	8260B	
720-12932-1	MW-1	T	Water	8260B	
720-12932-1 720-12932-5	DUP	Ť	Water	8260B	

Report Basis T = Total

Client: PES Environmental, Inc. Job Number: 720-12932-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC Semi VOA					
Prep Batch: 720-3168	2				
LCS 720-31682/2-A	Lab Control Spike	T	Water	3510C	
LCSD 720-31682/3-A	Lab Control Spike Duplicate	T	Water	3510C	
MB 720-31682/1-A	Method Blank	T	Water	3510C	
720-12932-1	MW-1	Т	Water	3510C	
720-12932-2	MW-2	Т	Water	3510C	
720-12932-3	MW-3	T	Water	3510C	
720-12932-4	MW-4	T	Water	3510C	
720-12932-5	DUP	Т	Water	3510C	
Analysis Batch:720-3	1887				
LCS 720-31682/2-A	Lab Control Spike	Т	Water	8015B	720-31682
LCSD 720-31682/3-A	Lab Control Spike Duplicate	T	Water	8015B	720-31682
MB 720-31682/1-A	Method Blank	T	Water	8015B	720-31682
720-12932-1	MW-1	T	Water	8015B	720-31682
720-12932-2	MW-2	T	Water	8015B	720-31682
720-12932-3	MW-3	Т	Water	8015B	720-31682
720-12932-4	MW-4	Т	Water	8015B	720-31682
720-12932-5	DUP	Ť	Water	8015B	720-31682

Report Basis

T = Total

Job Number: 720-12932-1 Client: PES Environmental, Inc.

Method Blank - Batch: 720-31689 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-31689/3 Analysis Batch: 720-31689 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200802\02

Dilution: Units: ug/L Initial Weight/Volume: 40 mL 1.0

Date Analyzed: 02/08/2008 1105 Final Weight/Volume: 40 mL Date Prepared: 02/08/2008 1105

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
Trichloroethene	ND		0.50
Naphthalene	ND		1.0
Chlorobenzene	ND		0.50
1,1,1-Trichloroethane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
Bromoform	ND		1.0
Tetrachloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,2-Dichloropropane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
Methylene Chloride	ND		5.0
Chloromethane	ND		1.0
Bromomethane	ND		1.0
Chlorodibromomethane	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
1,3-Dichlorobenzene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Chloroethane	ND		1.0
1,2-Dichlorobenzene	ND		0.50
Trichlorofluoromethane	ND		1.0
trans-1,3-Dichloropropene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
Vinyl chloride	ND		0.50
EDB	ND		0.50
Carbon tetrachloride	ND		0.50
1,4-Dichlorobenzene	ND		0.50
Dichlorobromomethane	ND		0.50
Surrogate	% Rec	Acceptance Limits	
Toluene-d8 (Surr)	110	73 - 117	
4-Bromofluorobenzene	116	71 - 139	
1,2-Dichloroethane-d4 (Surr)	114	62 - 118	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: PES Environmental, Inc. Job Number: 720-12932-1

Lab Control Spike/ Method: 8260B
Lab Control Spike Duplicate Recovery Report - Batch: 720-31689 Preparation: 5030B

LCS Lab Sample ID: LCS 720-31689/2 Analysis Batch: 720-31689 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200802\01

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 02/08/2008 0957 Final Weight/Volume: 40 ml

Date Analyzed: 02/08/2008 0957 Final Weight/Volume: 40 mL Date Prepared: 02/08/2008 0957

LCSD Lab Sample ID: LCSD 720-31689/1 Analysis Batch: 720-31689 Instrument ID: Varian 3900F

Date Prepared:

02/08/2008 1032

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200802\020

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 02/08/2008 1032 Final Weight/Volume: 40 mL

% Rec. LCS **LCSD RPD** RPD Limit LCS Qual LCSD Qual Analyte Limit 1,1-Dichloroethene 99 96 65 - 125 3 20 Trichloroethene 89 91 74 - 134 20 3 Chlorobenzene 101 104 61 - 121 2 20 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 107 Toluene-d8 (Surr) 105 73 - 117 4-Bromofluorobenzene 71 - 139 112 114 1,2-Dichloroethane-d4 (Surr) 110 107 62 - 118

Client: PES Environmental, Inc. Job Number: 720-12932-1

Matrix Spike/ Method: 8260B
Matrix Spike Duplicate Recovery Report - Batch: 720-31689 Preparation: 5030B

MS Lab Sample ID: 720-12932-2 Analysis Batch: 720-31689 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200802\(

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 02/08/2008 1424 Final Weight/Volume: 40 mL Date Prepared: 02/08/2008 1424

MSD Lab Sample ID: 720-12932-2 Analysis Batch: 720-31689 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200802\02

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 02/08/2008 1458 Final Weight/Volume: 40 mL Date Prepared: 02/08/2008 1458

% Rec. MS MSD RPD MS Qual MSD Qual Analyte Limit **RPD Limit** 65 - 125 1,1-Dichloroethene 108 105 3 20 Trichloroethene 92 90 74 - 134 2 20 Chlorobenzene 105 108 61 - 121 3 20 MS % Rec Surrogate MSD % Rec Acceptance Limits Toluene-d8 (Surr) 106 108 73 - 117 4-Bromofluorobenzene 109 114 71 - 139 1,2-Dichloroethane-d4 (Surr) 113 115 62 - 118

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: PES Environmental, Inc. Job Number: 720-12932-1

Method Blank - Batch: 720-31788 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-31788/3 Analysis Batch: 720-31788 Instrument ID: Varian 3900C

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200802\02

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 02/12/2008 1214 Final Weight/Volume: 40 mL

Date Analyzed: 02/12/2008 1214 Final Weight/Volume: 40 mL Date Prepared: 02/12/2008 1214

Analyte	Result	Qual	RL
Benzene	ND		0.50
Ethylbenzene	ND		0.50
MTBE	ND		0.50
TAME	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
TBA	ND		5.0
DIPE	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
Ethyl tert-butyl ether	ND		0.50
Surrogate	% Rec	Acceptance Li	imits
Toluene-d8 (Surr)	98	77 - 121	
1,2-Dichloroethane-d4 (Surr)	95	73 - 130	

Client: PES Environmental, Inc. Job Number: 720-12932-1

Lab Control Spike/ Method: 8260B
Lab Control Spike Duplicate Recovery Report - Batch: 720-31788 Preparation: 5030B

LCS Lab Sample ID: LCS 720-31788/2 Analysis Batch: 720-31788 Instrument ID: Varian 3900C

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200802\0%

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 02/12/2008 1332 Final Weight/Volume: 40 mL Date Prepared: 02/12/2008 1332

LCSD Lab Sample ID: LCSD 720-31788/1 Analysis Batch: 720-31788 Instrument ID: Varian 3900C

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200802\021

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 02/12/2008 1357 Final Weight/Volume: 40 mL

Date Prepared:

02/12/2008 1357

% Rec. LCS **LCSD** RPD RPD Limit LCS Qual LCSD Qual Analyte Limit 78 64 - 140 Benzene 90 15 20 MTBE 91 92 44 - 134 20 1 Toluene 101 89 52 - 109 12 20 Surrogate LCS % Rec LCSD % Rec Acceptance Limits Toluene-d8 (Surr) 101 96 77 - 121 1,2-Dichloroethane-d4 (Surr) 108 73 - 130 108

Client: PES Environmental, Inc. Job Number: 720-12932-1

Matrix Spike/ Method: 8260B
Matrix Spike Duplicate Recovery Report - Batch: 720-31788 Preparation: 5030B

MS Lab Sample ID: 720-12932-1 Analysis Batch: 720-31788 Instrument ID: Varian 3900C

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200802\(

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 02/12/2008 1641 Final Weight/Volume: 40 mL Date Prepared: 02/12/2008 1641

MSD Lab Sample ID: 720-12932-1 Analysis Batch: 720-31788 Instrument ID: Varian 3900C

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200802\02

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 02/12/2008 1707 Final Weight/Volume: 40 mL Date Prepared: 02/12/2008 1707

% Rec. MS MSD RPD **RPD Limit** MS Qual MSD Qual Analyte Limit Benzene 64 - 140 86 96 11 20 MTBF 95 98 44 - 134 4 20 Toluene 96 96 52 - 109 1 20 MS % Rec Surrogate MSD % Rec Acceptance Limits Toluene-d8 (Surr) 101 94 77 - 121 1,2-Dichloroethane-d4 (Surr) 114 100 73 - 130

Job Number: 720-12932-1 Client: PES Environmental, Inc.

Method Blank - Batch: 720-31941 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-31941/3 Analysis Batch: 720-31941 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200802\02

Dilution: Units: ug/L Initial Weight/Volume: 40 mL 1.0

Date Analyzed: 02/15/2008 1029 Final Weight/Volume: 40 mL Date Prepared: 02/15/2008 1029

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
Trichloroethene	ND		0.50
Naphthalene	ND		1.0
Chlorobenzene	ND		0.50
1,1,1-Trichloroethane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
Bromoform	ND		1.0
Tetrachloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,2-Dichloropropane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
Methylene Chloride	ND		5.0
Chloromethane	ND		1.0
Bromomethane	ND		1.0
Chlorodibromomethane	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
1,3-Dichlorobenzene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Chloroethane	ND		1.0
1,2-Dichlorobenzene	ND		0.50
Trichlorofluoromethane	ND		1.0
trans-1,3-Dichloropropene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
Vinyl chloride	ND		0.50
EDB	ND		0.50
Carbon tetrachloride	ND		0.50
1,4-Dichlorobenzene	ND		0.50
Dichlorobromomethane	ND		0.50
Surrogate	% Rec	Acceptance Limits	
Toluene-d8 (Surr)	108	73 - 117	
4-Bromofluorobenzene	110	71 - 139	
1,2-Dichloroethane-d4 (Surr)	96	62 - 118	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client: PES Environmental, Inc. Job Number: 720-12932-1

Lab Control Spike/ Method: 8260B
Lab Control Spike Duplicate Recovery Report - Batch: 720-31941 Preparation: 5030B

LCS Lab Sample ID: LCS 720-31941/2 Analysis Batch: 720-31941 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200802\01

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 02/15/2008 0922 Final Weight/Volume: 40 ml

Date Analyzed: 02/15/2008 0922 Final Weight/Volume: 40 mL Date Prepared: 02/15/2008 0922

LCSD Lab Sample ID: LCSD 720-31941/1 Analysis Batch: 720-31941 Instrument ID: Varian 3900G

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200802\021

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 02/15/2008 0955 Final Weight/Volume: 40 mL

Date Prepared:

02/15/2008 0955

% Rec. LCS **LCSD RPD** RPD Limit LCS Qual LCSD Qual Analyte Limit 1,1-Dichloroethene 99 95 65 - 125 5 20 Trichloroethene 90 89 74 - 134 2 20 Chlorobenzene 103 103 61 - 121 20 0 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 102 92 Toluene-d8 (Surr) 73 - 117 4-Bromofluorobenzene 106 97 71 - 139 1,2-Dichloroethane-d4 (Surr) 92 87 62 - 118

50 - 150

Client: PES Environmental, Inc. Job Number: 720-12932-1

Method Blank - Batch: 720-31682 Method: 8015B Preparation: 3510C

Lab Sample ID: MB 720-31682/1-A Analysis Batch: 720-31887 Instrument ID: HP DRO5

Client Matrix: Water Prep Batch: 720-31682 Lab File ID: N/A

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 250 mL Date Analyzed: 02/11/2008 2215 Initial Weight/Volume: 1 mL

Date Prepared: 02/08/2008 1230 Injection Volume:

Column ID: PRIMARY

 Analyte
 Result
 Qual
 RL

 Diesel Range Organics [C10-C28]
 ND
 50

Surrogate % Rec Acceptance Limits

p-Terphenyl 86 50 - 150

Lab Control Spike/ Method: 8015B
Lab Control Spike Duplicate Recovery Report - Batch: 720-31682 Preparation: 3510C

LCS Lab Sample ID: LCS 720-31682/2-A Analysis Batch: 720-31887 Instrument ID: HP DRO5

Client Matrix: Water Prep Batch: 720-31682 Lab File ID: N/A

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 250 mL Date Analyzed: 02/11/2008 2121 Final Weight/Volume: 1 mL

Date Prepared: 02/08/2008 1230 Injection Volume:

Column ID: PRIMARY

LCSD Lab Sample ID: LCSD 720-31682/3-A Analysis Batch: 720-31887 Instrument ID: HP DRO5

Client Matrix: Water Prep Batch: 720-31682 Lab File ID: N/A
Dilution: 1.0 Units: ug/L Initial Weight/Volume: 250 mL

88

Date Analyzed: 02/11/2008 2148 Final Weight/Volume: 1 mL

Date Prepared: 02/08/2008 1230 Injection Volume:

Column ID: PRIMARY

% Rec. RPD LCS **LCSD** RPD Limit LCS Qual LCSD Qual Analyte Limit Diesel Range Organics [C10-C28] 77 73 50 - 130 6 30 Surrogate LCS % Rec LCSD % Rec Acceptance Limits

83

Calculations are performed before rounding to avoid round-off errors in calculated results.

p-Terphenyl

DI AINIE 1680 ROGERS AVEN	44.000000	CO	NDUCT A	NALYSIS	O DETECT	LAB	TA - San Fr		DHS#
SAMPLE I.D. DATE TIME SAN JOSE, CALIFORNIA 95112-11 FAX (408) 573-75 PHONE (408) 573-05 P	MMPOSITE ALL CONTAINERS reluding BTEX, Fuel Oxys, Naphalene (EPA	X TPH-G (8260E) 3	X TPH-D (8015)	NALYSIS	ODETECT	LAB ALL ANALYSES MUSLIMITS SET BY CALI EPA LIA OTHER SPECIAL INSTRUCT Invoice and Rep Attn: Gary Tho	IONS ort to: PES mas	FICATIONS ANI ND RWQCB RE-	DETECTION GION 330
mw-2 1 101 1 1	$++\times$	X		+					ir.
mw-3 1031	+	∀ ¢							
mw-4 / 1011 VV	+	X	Ŷ					1	
DUP VIIII	1/2	$\langle \times \rangle$	X						
TB 07/06 W2	1/7	X							
<u> </u>									
to all the second secon									
SAMPLING DATE TIME SAMPLING						RESULTS NEEDED			
COMPLETED 02/66 1240 PERFORMED BY M. A	016	2 C	E:			NO LATER THAN	STANDARD	TAT	
RELEASED BY	DATE 02/06	109	TIME	7	RECEIVED BY	BF Curno		DATE 2/6/00	TIME (73
SELEASED BY (Sample Cust)	DATE 2/76		TIME 122		RECEIVED BY		<u> </u>	DATE 2/7/08	TIME
RELEASED BY	DATE /	0.0	TIME		RECEIVED BY	1. 10 11/	J	DATE	JIME ,
HIPPED VIA	DATE SE	NT NT	TIME SE		COOLER#	Jos Gull	TAL-ST	77/0	8 140
Maria a company of the company of th	1			erety:	96501 (CANON) (CATC)	7	Tow Z	40	

Login Sample Receipt Check List

Client: PES Environmental, Inc. Job Number: 720-12932-1

List Source: TestAmerica San Francisco

Login Number: 12932 Creator: Bullock, Tracy

List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

DISTRIBUTION

FIRST QUARTER 2008 GROUNDWATER MONITORING REPORT SPARKLE CLEANERS EASTMONT TOWN CENTER 7000 BANCROFT AVENUE OAKLAND, CALIFORNIA

APRIL 25, 2008

	COPY NO.	
		Copy No
1 Copy	Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502	PDF only
	Attention: Mr. Jerry Wickham	
1 Copy	SKB – Eastmont Oakland Associates, LLC 1211 SW Fifth Avenue, Suite 2600 Portland, Oregon 97204	1
	Attention: Ms. Kathleen Schultz	
1 Copy	PES Job File	2
1 Copy	Unbound Original	3