

October 9, 2007

881.060.03.004

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Attention: Mr. Jerry Wickham

Transmittal
Third Quarter 2007
Groundwater Monitoring Report
Sparkle Cleaners
Eastmont Town Center
7000 Bancroft Avenue
Oakland, California
SLIC Case RO0002942

Dear Mr. Wickham:

On behalf of SKB-Eastmont Oakland Associates, LLC, attached please find our report documenting the installation of four groundwater monitoring wells and providing the results of the initial groundwater monitoring event at the Sparkle Cleaners facility. I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

We trust that this is the information that you require at this time. Please contact us with any further questions.

Yours very truly,

PES ENVIRONMENTAL, INC.

William W. Mast, P.G.

Associate Engineer

cc: Ms. Kathleen Schulz - SKB - Eastmont Oakland Associates, LLC

88106003T001.doc

RECEIVED

1:22 pm, Oct 11, 2007

Alameda County

Environmental Health

A Report Prepared for:

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Attention: Mr. Jerry Wickham

THIRD QUARTER 2007
GROUNDWATER MONITORING REPORT
SPARKLE CLEANERS
EASTMONT TOWN CENTER
7000 BANCROFT AVENUE
OAKLAND, CALIFORNIA

OCTOBER 8, 2007

By:

Gary Thomas, P.G.

Senior Geologist

William W. Mast, P.G.

Associate Engineer

No. 5647

881.060.03.004

TABLE OF CONTENTS

LIST OF TABLES	• • • • • • • • •	iii
LIST OF ILLUSTR	ATION	Siii
1.0 INTRODUCTI	ON	1
2.0 SITE DESCRI	PTION	1
3.0 BACKGROUN	D INFO	DRMATION
4.1 Drilling Acti4.2 Monitoring V4.3 Monitoring V	vities Well Co Well De	INSTALLATIONS 3 nstruction Details 3 velopment Activities 4
5.1 Depth to Gro	oundwat	ONITORING WELL SAMPLING ACTIVITIES4 er Measurements
6.1 Groundwater6.2 Groundwater	r Elevati r Sample	DNITORING RESULTS 5 on Measurements 5 e Analytical Results 5 quality Control Assessment of Chemical Data 6
7.0 SUMMARY		6
8.0 REFERENCES	5	6
TABLES		
ILLUSTRATIONS		
APPENDICES	A	ALAMEDA COUNTY PUBLIC WORKS AGENCY – WATER RESOURCES WELL PERMIT
	В	MONITORING WELL LITHOLOGIC LOGS AND WELL CONSTRUCTION DIAGRAMS
	C	MONITORING WELL DEVELOPMENT FORMS
	D	MONITORING WELL SURVEY DATA
	E	MONITORING WELL SAMPLING FORMS
	F	LABORATORY ANALYTICAL REPORT AND CHAIN-OF- CUSTODY DOCUMENTATION

DISTRIBUTION

LIST OF TABLES

Table 1	Groundwater Monitoring Well Construction Details
Table 2	Groundwater Elevation Data
Table 3	Summary of Analytical Results for Groundwater Monitoring Well Samples

LIST OF ILLUSTRATIONS

Plate 2 Site Plan and Interpretive Groundwater Potentiometric Surface Map – August 7, 2007

88106003R001.doc iii

1.0 INTRODUCTION

This report presents the results of well installation and groundwater monitoring activities conducted during the third quarter 2007 baseline monitoring event at the Sparkle Cleaners facility (Site). The Site is located at 7000 Bancroft Avenue, Oakland, California and is situated in the northwest portion of Eastmont Town Center (Plates 1 and 2). Sparkle Cleaners is an active dry-cleaning facility that has historically and currently (i.e., the current dry-cleaning unit [DCU] is a closed-loop system) uses tetrachloroethene (PCE) as a dry-cleaning solvent. This report has been prepared for the Alameda County Environmental Health Department (ACEH) by PES Environmental, Inc. (PES) on behalf of SKB – Eastmont Oakland Associates, LLC (SKBEOA), the property owner.

The well installation and groundwater monitoring activities were conducted in accordance with PES' Remedial Action Workplan (RAW) that was approved by ACEH in a letter dated February 27, 2007 (PES, 2007a; ACEH, 2007). The RAW's scope of work also included removing the source of PCE soil contamination beneath Sparkle Cleaners. Excavation activities to remove the source of PCE in soil were successfully completed in July 2007. The results of the excavation activities are presented in the report titled *Post-Remediation Report*, *Voluntary Soil Remediation, Sparkle Cleaners, Eastmont Town Center, 7000 Bancroft Avenue, Oakland, California* (PES, 2007b) that was previously submitted to ACEH.

As described in the RAW, the purpose of the groundwater monitoring is to: (1) document the initial concentrations of volatile organic compounds (VOCs) in the newly installed wells at the Site; (2) monitor groundwater flow directions(s), gradient, and seasonal fluctuations; (3) evaluate the groundwater chemical response to the removal of the source of contamination; and (4) verify that groundwater quality down gradient of Sparkle Cleaners are not declining.

2.0 SITE DESCRIPTION

The Sparkle Cleaners tenant space (Suite 11) covers approximately 1,800 square feet in the northwest portion of Eastmont Town Center (Plate 2). The area in front (north) of Sparkle Cleaners includes storefront parking and a mall driveway. The rear (south) of the tenant space opens into a common hallway that traverses the width of the building from east to west. An alleyway is located approximately 20 feet to the east.

The ground surface elevation at Sparkle Cleaners is approximately 60 feet above mean seal level (MSL). The topography is relatively level and slopes slightly to the southwest. To the east and northeast of the site, the topography steepens and continues to rise to approximately 360 feet MSL (Plate 1).

3.0 BACKGROUND INFORMATION

Environmental investigations have been conducted at Eastmont Center since the late 1980s. The focus of the early investigations appears to have been related to general characterization of soil and groundwater beneath the site, underground storage tanks at two former auto service centers, and Sparkle Cleaners. ACEH closed the underground storage tank cases at the subject property in letters dated February 10, 1995 and April 16, 1998 (ACEH, 1995; 1998). Details of these historical investigations are provided in the RAW.

As part of SKBEOA's environmental due diligence activities prior to its acquisition of the property, subsurface investigations were conducted by PES to assess soil and groundwater conditions.

Limited access drilling equipment was used to collect soil gas and soil matrix samples from the interior and exterior of Sparkle Cleaners in October 2006. Interior samples were collected in the vicinity of the current DCU, the former DCU location, chemical waste storage, spotting chemical storage, and the inferred sanitary sewer line. Exterior sampling locations included the parking lot northwest of the dry-cleaning facility and near the utility corridor along the northeast side of the building. A groundwater sample was collected from one of the exterior borings (location B-3 on Plate 2). PCE, trichloroethene (TCE), and cis-1,2-dichloroethene (DCE) were detected in the majority of the soil gas samples. In addition, PCE was detected in the three interior soil matrix samples near the former DCU at concentrations ranging from 1,400 to 3,000 micrograms per kilogram (μ g/kg). No VOCs were detected in the other interior soil matrix samples, the exterior soil matrix samples, or the exterior groundwater sample from location B-3.

Additional investigation was performed in November 2006, to further evaluate the extent of PCE-affected soil and groundwater. Interior drilling locations were sited to assess the lateral and vertical extent of PCE-affected soils associated with elevated concentrations of PCE. Soil matrix samples were collected at depths ranging up to 18 feet bgs. In addition to the interior sampling locations, groundwater samples were collected from four borings located in the parking lot and driveway areas to the northwest and southwest of Sparkle Cleaners (locations B-16, B-19, B-21, and B-22 on Plate 2). PCE (up to $140 \mu g/kg$) and TCE (up to $6.8 \mu g/kg$) were detected in the soil samples; no other VOCs were detected. PCE and TCE were also detected in two of the four exterior groundwater grab samples at concentrations ranging up to 40 and 2.4 micrograms per liter ($\mu g/L$), respectively.

On the basis of the detections of PCE in groundwater near Sparkle Cleaners, the RAW included installation and monitoring of four groundwater wells. These activities are described in the following sections.

4.0 MONITORING WELL INSTALLATIONS

4.1 Drilling Activities

Monitoring wells MW-01 through MW-04 (Plate 2) were installed by Gregg Drilling Co. (Gregg) of Martinez, California on July 23 and 24, 2007, under the oversight of a PES geologist. A permit to install the well was obtained from Alameda County Public Works Agency and is included in Appendix A. The well locations are shown on Plate 2.

The well boreholes were advanced using a truck-mounted drill rig equipped with 8-inch hollow stem augers to depths ranging between 35 and 48.5 feet below ground surface (bgs). A monitoring well was completed in each boring as described in Section 4.2.

While advancing the borings, a geologist logged and classified the soils according to the Unified Soil Classification System. A *Boring Log Legend*, which includes a copy of the Unified Soil Classification System, is presented on Plate B-1 in Appendix B. As indicated on the monitoring well lithologic logs (see Plates B-2 through B-5 in Appendix B), soil samples were generally collected at 5-foot intervals, but continuous sampling was performed in the interval where first encountered groundwater was anticipated. The soil samples were collected using either a California modified split spoon sampler or standard penetration split spoon sampler.

4.2 Monitoring Well Construction Details

Gregg converted the four borings to monitoring wells upon completion of drilling and sampling each boring. Well construction details are summarized on Table 1 and on the monitoring well lithologic logs in Appendix B.

A single 2-inch diameter well was installed in each of the four borings. The wells were constructed with schedule-40 polyvinyl chloride (PVC) casing with flush-threaded joints. A 0.020-inch factory machine slotted well screen was used for each of the wells. As indicated on Table 1, 15 feet of screen was installed in the lowermost portion of each borehole; the top of the screen interval was positioned to capture the first encountered wet zone in each borehole. A filter pack consisting of #3 Monterey sand was placed in the annulus between the well screen and the borehole wall. The filter pack extended from the bottom of each boring to approximately two feet above the top of the well screen. Approximately two feet of bentonite clay chips were placed above the filter pack; the chips were hydrated after being placed. The remaining well annulus was grouted with neat cement to within about one foot below ground surface. The well-head completions consist of traffic-rated flush-mount vaults. A wing nut well cap was used to secure and seal the top of each well casing.

4.3 Monitoring Well Development Activities

Blaine Tech Services, Inc. (Blaine) of San Jose, California developed the newly installed monitoring wells on August 1, 2007 to set the filter pack, remove sediment from the casing and filter pack, and increase the hydraulic radius of each well. Blaine used a 2-inch diameter block to surge each monitoring well for approximately fifteen minutes. After surging, Blaine purged the wells using a positive air displacement (pneumatic bladder) pump. Approximately 10 casing volumes of water were purged from each well, except well MW-03 which pumped dry after removing approximately 6 casing volumes. During purging, the water was monitored for temperature, pH, electrical conductivity, and turbidity. Monitoring well development forms are presented in Appendix C.

4.4 Surveying

PES retained the services of Chapman Land Surveying, Inc. (Chapman) of Concord, California to survey each well for the following information: (1) horizontal coordinates (i.e., northing, easting, latitude, and longitude); and (2) top of lid and top of PVC well casing elevations relative to MSL. Chapman is a California State licensed surveyor. The survey data are included in Appendix D.

5.0 GROUNDWATER MONITORING WELL SAMPLING ACTIVITIES

Third quarter 2007 groundwater monitoring activities consisted of: (1) collection of depth to groundwater measurements and calculation of groundwater elevations; and (2) sampling of wells for VOCs. Field activities were conducted by Blaine on August 7, 2007.

5.1 Depth to Groundwater Measurements

Depth-to-groundwater measurements were obtained for the monitoring wells using an electronic water-level indicator and recorded to the nearest 0.01-foot. The portion of the water-level indicator that was submerged in the wells was cleaned with a solution of Alconox and deionized (DI) water, and then rinsed with DI water between well measurements. Decontamination fluids were stored temporarily on site in a DOT-approved 55-gallon drum pending offsite disposal. Depth-to-groundwater data were converted to groundwater elevations referenced to mean sea level and are presented in Table 2. Groundwater elevation contours are presented on Plate 2.

5.2 Monitoring Well Sampling

After collecting water-level data, Blaine Tech sampled the four monitoring wells. Three casing volumes of groundwater were purged from each well prior to collecting the samples. The wells were purged using a positive air displacement pump that was decontaminated prior to each use. All samples were collected using disposable bailers and decanted into laboratory

provided sample containers. Groundwater temperature, pH, conductivity and turbidity were monitored during purging. Monitoring well sampling forms are presented in Appendix E.

The samples were transported to TestAmerica Laboratories, Inc. (TestAmerica) under chain-of-custody protocol and analyzed for halogenated VOCs (8010 list) by U.S. EPA Test Method 8260B.

6.0 GROUNDWATER MONITORING RESULTS

6.1 Groundwater Elevation Measurements

Groundwater elevations measured on August 7, 2007 ranged from 25.89 feet MSL in well MW-01 to 34.77 feet MSL in well MW-02 (see Table 2 and Plate 2). As indicated on Plate 2, the elevation data from well MW-02 is not used for contouring because the groundwater elevation in this well is significantly higher than the elevations in the other wells. The cause of the higher water-level elevation at Well MW-02 appears to be from a screen interval that is at least 9-feet shallower (i.e., relative to the ground surface) than the other three wells. Well MW-2 was constructed in this manner because groundwater was detected at a shallower depth while drilling the borehole for this well.

Based on the groundwater elevation data from wells MW-01, MW-03, and MW-04, the hydraulic gradient during the third quarter 2007 monitoring event was approximately 0.043 foot per foot to the west (see Plate 2). In addition, the analytical results discussed below suggest a westward direction for groundwater flow.

6.2 Groundwater Sample Analytical Results

The analytical results for the groundwater samples collected on August 7, 2007 are summarized below and presented in Table 3. The laboratory analytical report and chain-of-custody documentation are included in Appendix F.

PCE was detected in three of the four monitoring wells at concentrations ranging from $1.6~\mu g/L$ in well MW-03 to $60~\mu g/L$ in well MW-01 (PCE was detected at $71~\mu g/L$ in the duplicate sample from well MW-01). TCE was detected at concentrations of $3.1~\mu g/L$ in well MW-01 and $1.2~\mu g/L$ in well MW-02. No other VOCs were detected at concentrations exceeding the respective laboratory reporting limits in the samples from wells MW-01 through MW-03, and no VOCs were detected at concentrations exceeding the respective laboratory reporting limits in well MW-04 (Table 3).

The distribution of PCE and TCE in groundwater is consistent with the observed westerly groundwater flow direction, and with the concentrations and distribution of these chemicals observed during the fall 2006 investigations.

6.3 Quality Assurance/Quality Control Assessment of Chemical Data

The quality of the chemical data reported by TestAmerica was assessed from the results of internal laboratory spike and method blank. The data are within acceptable recovery limits. The results for the duplicate sample collected at MW-01 indicate good reproducibility with PCE and TCE detected in both the regular and duplicate sample. The relative percent differences for the PCE and TCE concentrations in this sample are 8.4 and 0 percent, respectively. The water samples were also analyzed within acceptable EPA holding times. The data from TestAmerica are considered to be representative and of good quality.

7.0 SUMMARY

The installation of four groundwater monitoring wells and the third quarter 2007 baseline groundwater monitoring event have been conducted in accordance with the RAW.

Based on the groundwater elevation data from wells MW-01, MW-03, and MW-04, groundwater flow at the Site is to the west (see Plate 2). The only VOC constituents detected above laboratory reporting limits in groundwater during this monitoring event were PCE and TCE. The maximum concentrations of PCE and TCE were detected in well MW-01 at $60~\mu g/L$ (PCE was detected at $71~\mu g/L$ in the duplicate sample from well MW-01) $3.1~\mu g/L$, respectively.

Monitoring of the four wells will continue for another three quarters to assess whether concentrations of VOCs in groundwater decrease as a result of the recently completed remedial activities at the Site.

8.0 REFERENCES

- Alameda County Environmental Health (ACEH), 1995. Remedial Action Completion Certification, J.C. Penney Store, 1 Eastmont Mall, Oakland, CA. February 10.
- ACEH, 1998. Remedial Action Completion Certification, 1 Eastmont Mall, Oakland, CA (1-500 gallon waste oil tank removed in October 23, 1995). April 16.
- ACEH, 2007. SLIC Case RO0002942 and Geotracker Global ID SLT19735483, Sparkle Cleaners, 7000 Bancroft Avenue, Oakland, CA 94605 Work Plan Approval. . February 27.
- PES Environmental, Inc. (PES), 2007a. Remedial Action Workplan, Voluntary Soil Remediation, Sparkle Cleaner, Eastmont Town Center, 7000 Bancroft Avenue, Oakland, California. January 5.
- PES, 2007b. Post-Remediation Report, Voluntary Soil Remediation, Sparkle Cleaners, Eastmont Town Center, 7000 Bancroft Avenue, Oakland, California. September 9.

TABLES

Table 1 Groundwater Monitoring Well Construction Details Sparkle Cleaners Eastmont Town Center 7000 Bancroft Avenue Oakland, California

Well ID	Date Completed	Top of Casing Elevation (feet MSL)	Borehole Diameter (inches)	Borehole Depth (feet bgs)	Well Depth (feet bgs)	Casing Diameter (inches)	Screen Interval (feet bgs)	Sand Filter Interval (feet bgs)	Screen Slot Size (inches)
MW-01	7/23/2007	49.51	8	47	47	2	31.5 to 46.5	29.5 to 47	0.020
MW-02	7/24/2007	49.07	8	36.5	35	2	19.5 to 34.5	17.5 to 36.5	0.020
MW-03	7/24/2007	50.43	8	44	44	2	28.5 to 43.5	26.5 to 44	0.020
MW-04	7/23/2007	49.81	8	48.5	48.5	2	33 to 48	31 to 48.5	0.020

Note:

bgs - Below ground surface MSL - Mean sea level

88106003R001.xls 10/8/2007

Table 2 Groundwater Elevation Data Sparkle Cleaners Eastmont Town Center 7000 Bancroft Avenue Oakland, California

Well ID	Date Measured	Top of Casing Elevation (feet MSL)	Depth to Groundwater (feet BTOC)	Groundwater Elevation (feet MSL)
MW-01	8/7/2007	49.51	23.62	25.89
MW-02	8/7/2007	49.07	14.30	34.77
MW-03	8/7/2007	50.43	17.82	32.61
MW-04	8/7/2007	49.81	22.43	27.38

Note:

MSL - Mean sea level BTOC - Below top of casing

88106003R001.xls 10/8/2007

Table 3 Summary of Analytical Results for Groundwater Monitoring Well Samples Sparkle Cleaners Eastmont Town Center 7000 Bancroft Avenue Oakland, California

Sample Location	Sample Date	PCE (µg/L)	TCE (µg/L)	cis-1,2-DCE (μg/L)	Other VOCs (µg/L)
MW-01 DUP	8/7/2007 8/7/2007	60 71	3.1 3.1	ND (0.50) ND (0.50)	ND ND
MW-02	8/7/2007	25	1.2	ND (0.50)	ND
MW-03	8/7/2007	1.6	ND (0.50)	ND (0.50)	ND
MW-04	8/7/2007	ND (0.50)	ND (0.50)	ND (0.50)	ND

Notes:

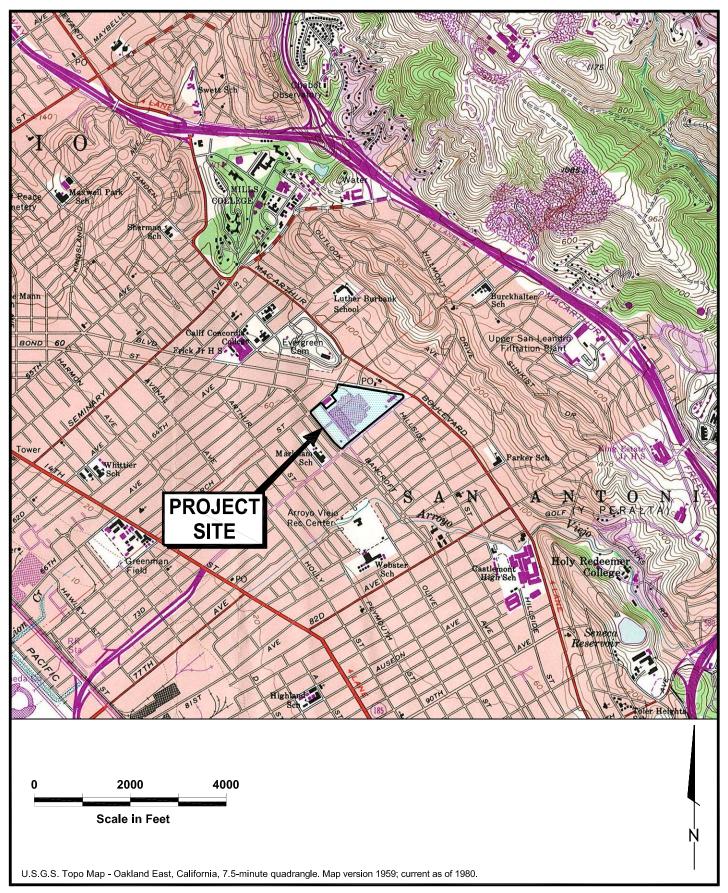
PCE - Tetrachloroethene

TCE - Trichloroethene

cis-1,2-DCE - cis-1,2-Dichloroethene

μg/L - Micrograms per liter

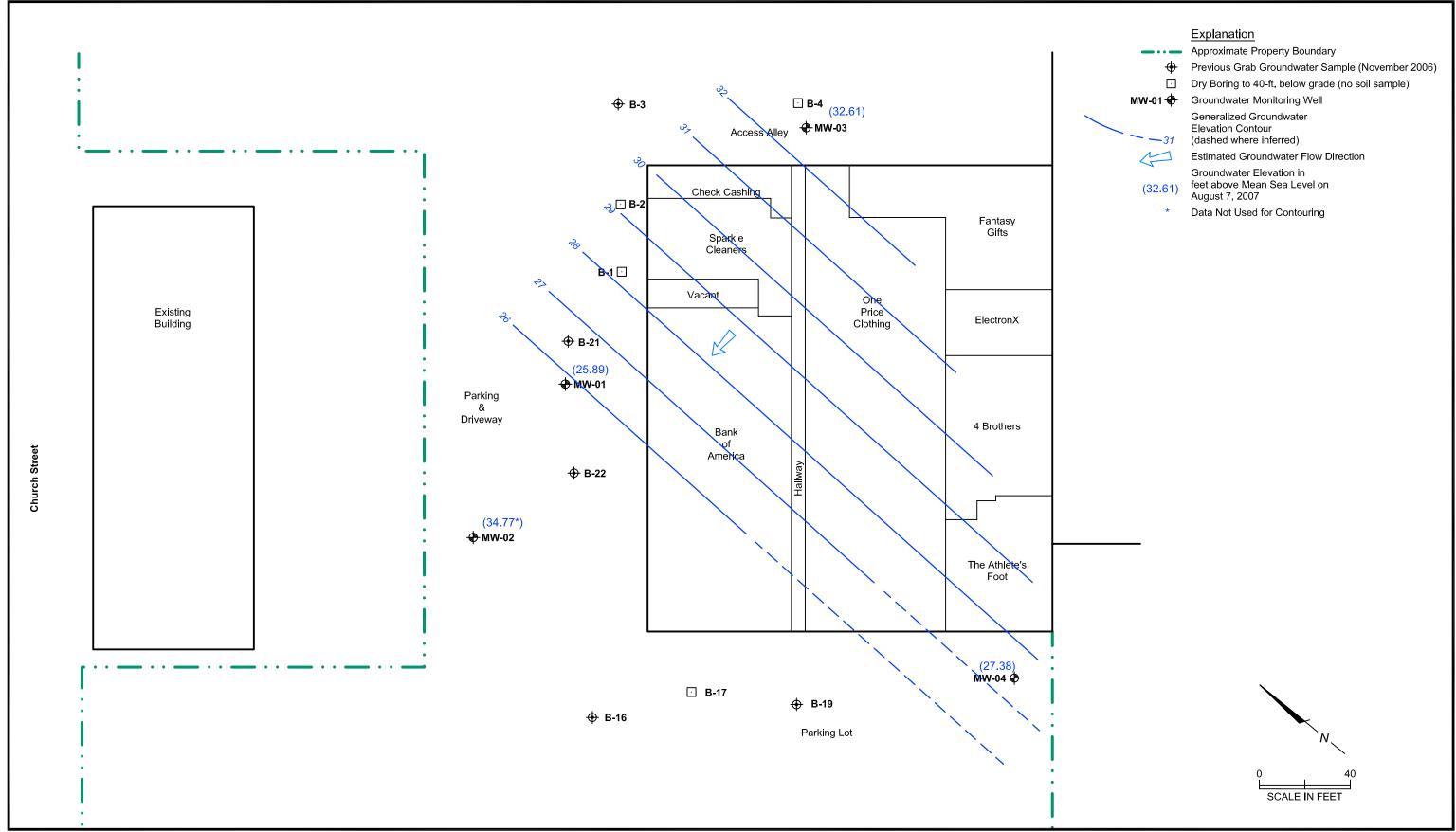
ND (0.5) - Not detected at or above indicated laboratory reporting limit


ND - Not detected at or above the laboratory reporting limit (varies by analyte)

DUP - Field duplicate sample

88106003R001.xls 10/8/2007

PES Environmental, Inc.


ILLUSTRATIONS

Site Location MapSparkle Cleaners
Eastmont Town Center
Oakland, California

PLATE

PES Environmental, Inc.
Engineering & Environmental Services

Interpretive Groundwater Potentiometric Surface Map - August 7, 2007 Sparkle Cleaners Eastmont Town Center Oakland, California

PLATE

2

APPENDIX A

ALAMEDA COUNTY PUBLIC WORKS AGENCY – WATER RESOURCES WELL PERMIT

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 06/06/2007 By jamesy Permit Numbers: W2007-0672 to W2007-0675

Permits Valid from 07/23/2007 to 07/24/2007

Phone: 415-899-1600

\$1200.00

Work Total: \$1200.00

1181167447580 Application Id: Site Location: **Eastmont Town Center**

7200 Bancroft Avenue

Oakland, CA

06/21/2007 **Project Start Date:** Extension Start Date: 07/23/2007

Extension Count:

Property Owner:

Completion Date: 06/27/2007 Extension End Date: 07/24/2007

City of Project Site: Oakland

Extended By: vickyh1

Phone: --

Applicant: PES Environmental, Inc. - Gary Thomas

1682 Novato Boulevard, Suite 100, Novato, CA 94947

Eastmont Oakland Associates, LLC

1211 SW Fifth Avenue, Suite 2600, Portland, OR 97204 ** same as Property Owner **

Client:

Phone: 415-899-1600 Contact: Gary Thomas Cell: 415-250-7217

Total Due: Receipt Number: WR2007-0254 Total Amount Paid:

\$1200.00 Payer Name: PES Environmental Inc Paid By: VISA **PAID IN FULL**

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 4 Wells Driller: Gregg Drilling - Lic #: 485165 - Method: hstem

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2007- 0672	06/06/2007	09/19/2007	MW-01	10.00 in.	2.00 in.	33.00 ft	50.00 ft
W2007- 0673	06/06/2007	09/19/2007	MW-02	10.00 in.	2.00 in.	33.00 ft	50.00 ft
W2007- 0674	06/06/2007	09/19/2007	MW-03	10.00 in.	2.00 in.	33.00 ft	50.00 ft
W2007- 0675	06/06/2007	09/19/2007	MW-04	10.00 in.	2.00 in.	33.00 ft	50.00 ft

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with

Alameda County Public Works Agency - Water Resources Well Permit

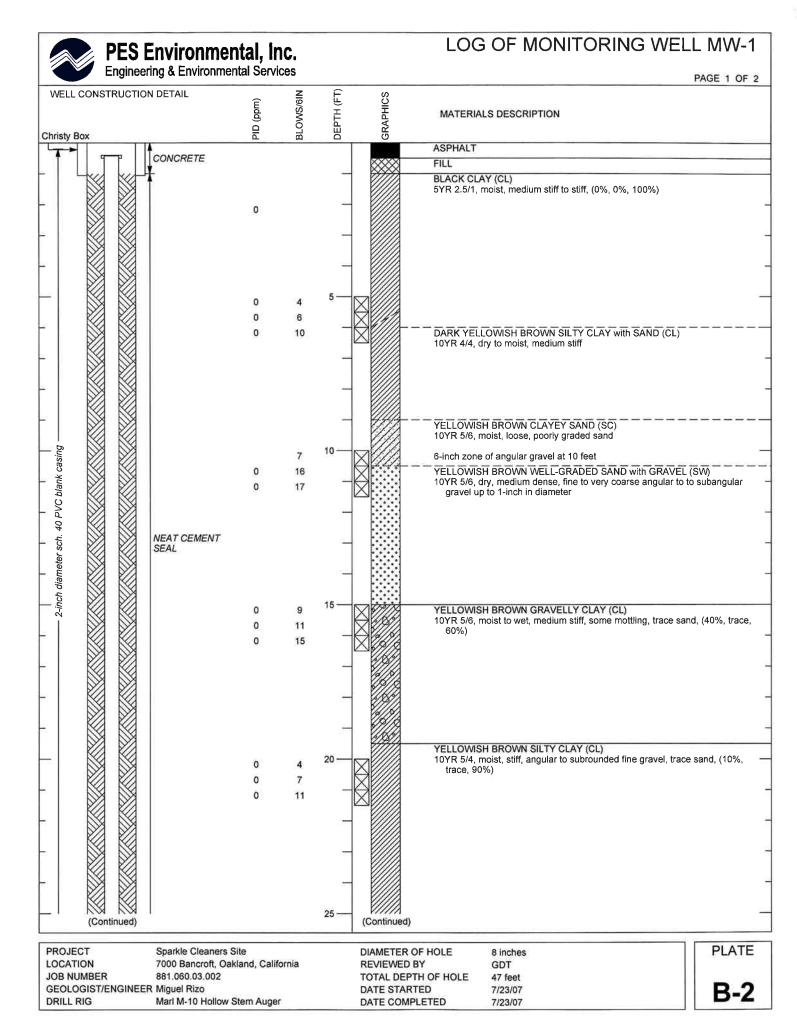
appropriate State reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.

- 4. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 6. Minimum surface seal thickness is two inches of cement grout placed by tremie
- 7. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.
- 8. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

APPENDIX B

MONITORING WELL LITHOLOGIC LOGS AND WELL CONSTRUCTION DIAGRAMS

	MAJOR DIVIS	SIONS			TYPICAL NAMES	
	IVIAGOR DIVISIONS			.98.	TTFICAL NAMES	
		CLEAN GRAVELS WITH LESS THAN	GW		WELL-GRADED GRAVELS WITH OR WITHOUT SAND	
200 SIEVE	GRAVELS MORE THAN HALF	15% FINES	GP		POORLY-GRADED GRAVELS WITH OR WITHOUT SAND	
	COARSE FRACTION IS LARGER THAN NO. 4 SIEVE	GRAVELS WITH	GM		SILTY GRAVELS WITH OR WITHOUT SAND	
NINED SOI		15% OR MORE FINES	GC		CLAYEY GRAVELS WITH OR WITHOUT SAND	
RSE-GRA		CLEAN SANDS	sw		WELL-GRADED SANDS WITH OR WITHOUT GRAVEL	
COARSE-GRAINED SOILS MORE THAN HALF IS COARSER THAN NO.	SANDS MORE THAN HALF	WITH LESS THAN 15% FINES	SP		POORLY-GRADED SANDS WITH OR WITHOUT GRAVEL	
MORET	COARSE FRACTION IS FINER THAN NO. 4 SIEVE SIZE	SANDS WITH 15%	SM		SILTY SANDS WITH OR WITHOUT GRAVEL	
		OR MORE FINES	sc		CLAYEY SANDS WITH OR WITHOUT GRAVEL	
SIEVE		M			INORGANIC SILTS OF LOW TO MEDIUM PLASTICITY WITH OR WITHOUT SAND OR GRAVEL	
200	SILTS AND CLAYS LIQUID LIMIT 50% OR LESS		CL		INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY WITH OR WITHOUT SAND OR GRAVEL	
VED SOIL!		OL		ORGANIC SILTS OR CLAYS OF LOW TO MEDIUM PLASTICITY WITH OR WITHOUT SAND OR GRAVEL		
FINE-GRAINED SOILS HALF IS FINER THAN NO,					INORGANIC SILTS OF HIGH PLASTICITY WITH OR WITHOUT SAND OR GRAVEL	
FI ORE THAN HA		ID CLAYS EATER THAN 50%	СН		INORGANIC CLAYS OF HIGH PLASTICITY WITH OR WITHOUT SAND OR GRAVEL	
MORE			ОН		ORGANIC SILTS OR CLAYS OF HIGH PLASTICITY WITH OR WITHOUT SAND OR GRAVEL	
	HIGHLY ORGAN	IC SOILS	PT	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PEAT AND OTHER HIGHLY ORGANIC SOILS	
	ABBREVIA	TION KEY			SYMBOLS KEY	
PID (PP	M) - Photo Ionization million from field	Detector readings in pa	rts per	□ No	Soil Sample Recovered	
				│ ☑ Pa	artial Soil Sample Recovered	
BLOWS	indicated on the I	drive sampler 6 inches ogs using sample drive unds falling 30 inches.		_	ndisturbed Soil Sample Recovered	
		ing to Muncell Soil Cole	or Charts		oil Sample Submitted for Laboratory Analysis	
2.5YR 6					ratopation dample	
2.5YR 6	(1994 Revised Ed	dition)			rst Encountered Groundwater Level	


Unified Soil Classification System Chart Sparkle Cleaners

Eastmont Town Center, Oakland, California

881.060.04.004

GDT

USCS Chart

PES Environmental, Inc. Engineering & Environmental Services PAGE 2 OF 2 WELL CONSTRUCTION DETAIL DEPTH (FT) BLOWS/6IN GRAPHICS (mdd) MATERIALS DESCRIPTION 吕 2 2-inch diameter sch. 40 PVC blank casing YELLOWISH BROWN CLAY with GRAVEL (CL) 8 10YR 5/6, moist to wet, medium stiff, fine gravel, reddish brown (5YR 3/4) NEAT CEMENT 12 mottling, (20%, trace, 80%) SEAL BENTONITE PELLET SEAL LIGHT OLIVE BROWN CLAY with SILT (CL) 2.5Y 5/6, dry to moist, stiff, trace sand, (0%, trace, 95-100%) 4 10 LIGHT OLIVE BROWN SILTY CLAY (CL) 11 2.5Y 5/6, dry to moist, stiff, trace sand (0%, trace, 100%) YELLOWISH BROWN SILTY CLAY with SAND (CL) 10YR 5/6, moist, medium stiff to stiff, very fine sand, (0%, 15%, 85%) 4 40 PVC 0.020 inch slotted screen 7 18 10 Wet at 36.5 ft bgs 4 7 RMC #3 SANDPACK 9 Change in density to soft at 38 feet bgs. rincrease in sand to 25% (0%, 25%, 75%) YELLOWISH BROWN POORLY GRADED SAND (SP) 6 10YR 5/6, wet, loose, trace clay and gravel, (trace, 95%, trace) 11 0 13 diameter sch. 12 22 0 27 2-inch DARK BROWN WELL-GRADED SAND (SW) 10YR 3/3, wet, dense, very coarse sand, some fine gravel, (10%, 90%, 0) 13 22 27 Increase in clay content to 10%, (10%, 80%, 10%) at 45 feet bgs Bottom of Borehole at 47 feet bgs. 50 PLATE **PROJECT** Sparkle Cleaners Site DIAMETER OF HOLE 8 inches 7000 Bancroft, Oakland, California LOCATION **REVIEWED BY** GDT

TOTAL DEPTH OF HOLE

DATE STARTED

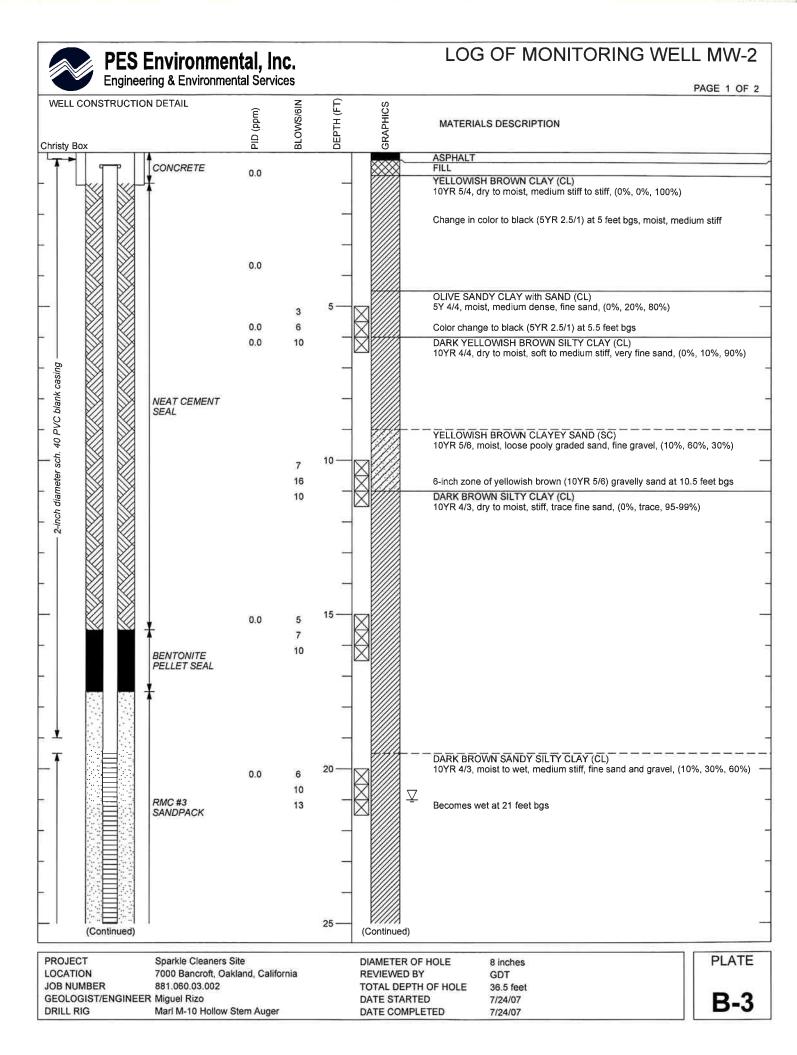
DATE COMPLETED

47 feet

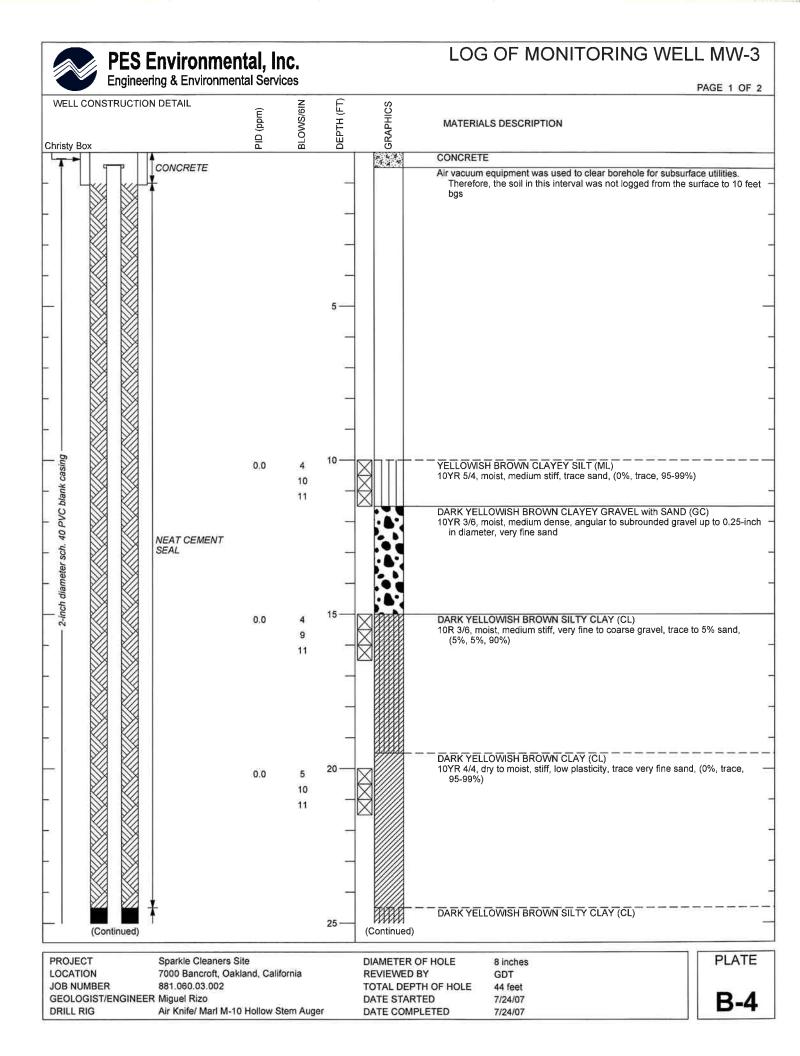
7/23/07

7/23/07

JOB NUMBER


DRILL RIG

GEOLOGIST/ENGINEER Miguel Rizo


881.060.03.002

Marl M-10 Hollow Stem Auger

LOG OF MONITORING WELL MW-1

PES Environmental, Inc. Engineering & Environmental Services PAGE 2 OF 2 WELL CONSTRUCTION DETAIL E GRAPHICS **BLOWS/6IN** (mdd) DEPTH (MATERIALS DESCRIPTION PID (10YR 4/6, dry to moist, stiff, (0%, 0%, 100%) BENTONITE 12 PELLET SEAL 10% angular to subrounded gravel at 26.5 bgs, light gray (5Y7/1) mottling 0.0 5 10 Driller indicates wet soil at approximately 30 feet bgs DARK YELLOWISH BROWN SANDY CLAY (CL) 11 10YR 4/6, moist, medium stiff, very fine sand, trace to 5% very coarse gravel, light green (5Y7/1) mottling present, (5%, 30%, 75%) 40 PVC 0.020 inch slotted screen YELLOWISH BROWN CLAY (CH) 10YR 5/6, moist, high plasticity, soft to medium stiff, (0%, 0%, 100%) **RMC #3** 35 SANDPACK 0.0 4 6 9 0.0 3 Stifft at 36.5 feet bgs diameter sch. 0.0 6 9 6 8 0.0 2-inch YELLOWISH BROWN SILTY CLAY (CL) 13 10YR 5/6, moist, medium stiff, fine sand, (trace, 10%, 85-89%) 0.0 4 6 8 YELLOWISH BROWN GRAVELLY CLAY (CL) 10YR 5/4, moist to wet, soft to medium stiff, angular to subangular gravel up 0.0 18 25 to 0.5-inch in diameter, (30%, 10%, 60%) 28 0.0 11 28 38 Bottom of Borehole at 44 feet bgs. 45 50 PLATE **PROJECT** Sparkle Cleaners Site DIAMETER OF HOLE 8 inches

REVIEWED BY

DATE STARTED

DATE COMPLETED

TOTAL DEPTH OF HOLE

GDT

44 feet

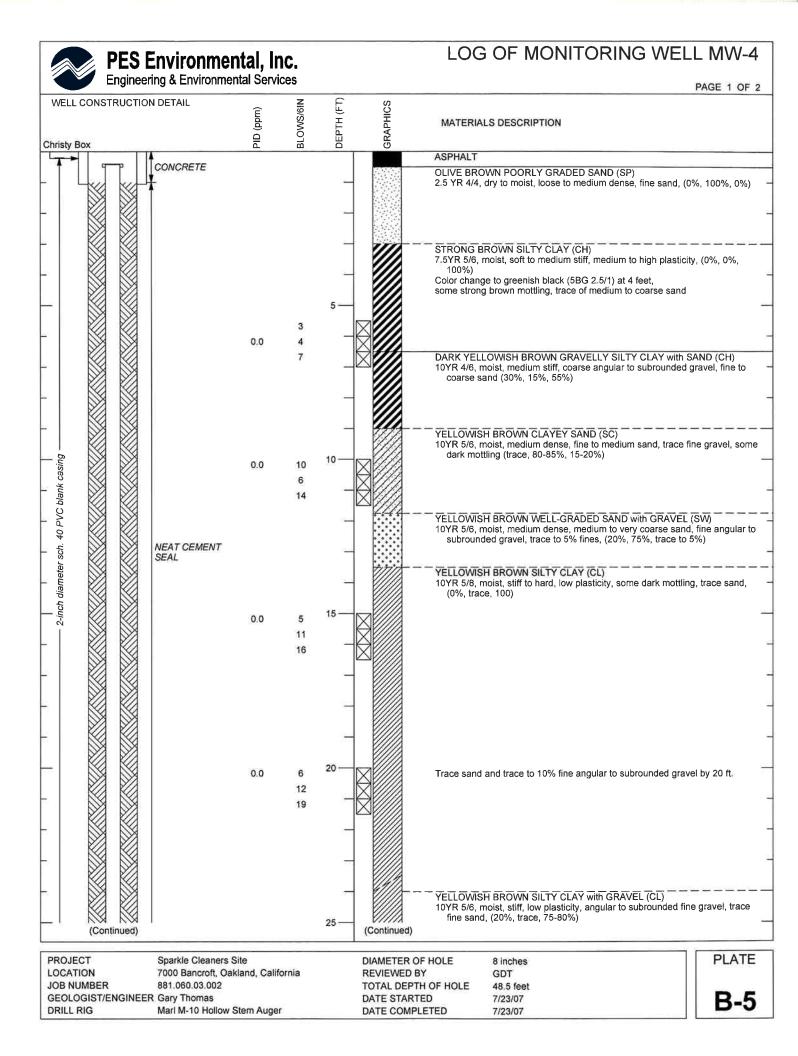
7/24/07

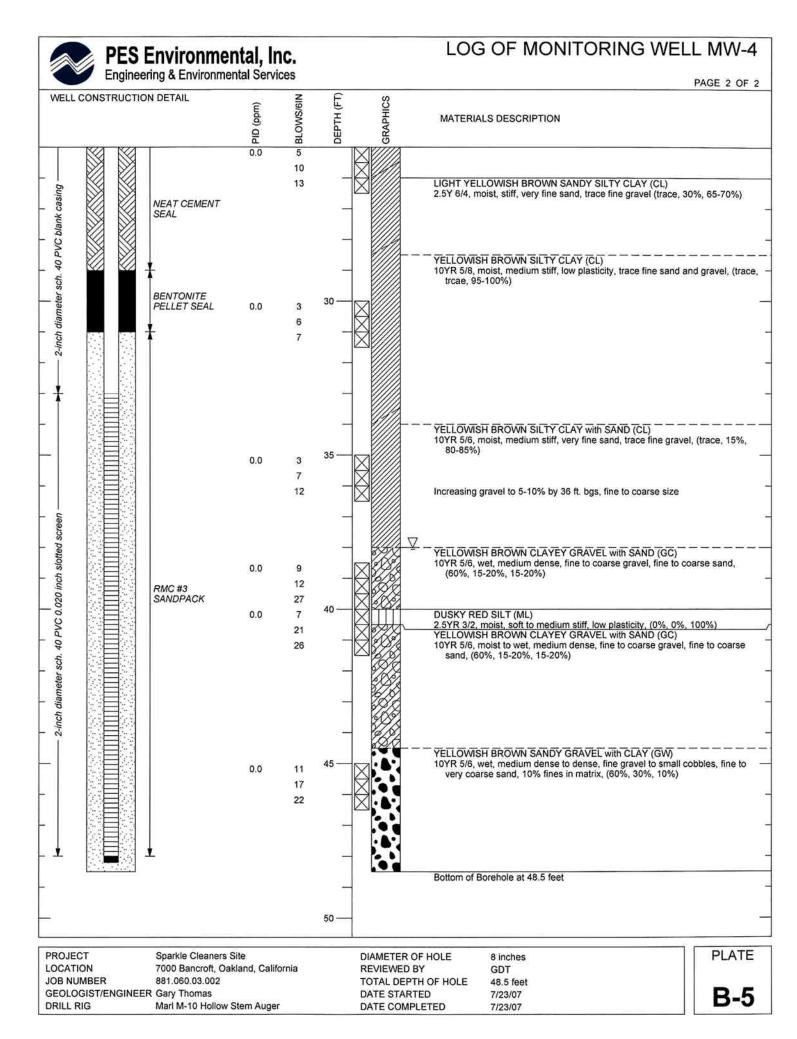
7/24/07

LOCATION

DRILL RIG

JOB NUMBER


GEOLOGIST/ENGINEER Miguel Rizo


7000 Bancroft, Oakland, California

Air Knife/ Marl M-10 Hollow Stem Auger

881.060.03.002

LOG OF MONITORING WELL MW-3

APPENDIX C

MONITORING WELL DEVELOPMENT FORMS

WELL DEVELOPMENT DATÁ SHEET

Client: PES			
Date Developed: 8/1/07			
Well Diameter: (circle one) ② 3 4 6			
Depth to Water:			
Before 23.11 After 19, 29			
If Free Product, thickness:			
VCF 0.1,6			
0.37 0.65			
1.47 4.08			
6.87			
10 _38_			
ified Volumes = gallons			
☐ Electric Submersible			
Pump Positive Air Displacement			
2" Swge Slock			
TURBIDITY VOLUME (NTUs) REMOVED: NOTATIONS:			
7 >1000 3.8 surged for 15 min			
7 3000 71 1			
7/000 11.4 Scown			
>1000 15,2			
codh Lucil 2 fo			
700			
>1000 266 Brown /5:144			
> 1000 30.4 Lighter brown			
= 1000 34,2			
> 000 38,0			
Gallons Actually Evacuated: 38 g/S.			

WELL MONITORING DATA SHEET

			MRTT M	ONITORI	ING DATA	A SHEE	\mathbf{T}	
Project #	t: 070801	-ow-1		Client: 7		TORIGE		
					- 1-07	-		
	: mw-0;				meter:	3 4	1 6 8	
1	ell Depth:		34.84	Depth to		Pre: 7		: 22.80
	Free Prod		,		of Free P			. 22.80
Reference		PVO	Grade	Flow Cell		Toduct (1		
Purge Meth Sampling N	lethod:	2" Grund: Dedicated	d Tubing		Peristaltic I New Tubin	g .	Other	
Flow Rate:	cv= 3,4	Y 10 =			Pump Dept	n: used	2" surger	block
Time	Temp.	pН	Cond. (mS or (uS))	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gats. or mL).	Observations
0850	70.2	6.51	2673	>1000	>	-	3.4	Surged well : 1
0855	69.1	6.52	1714	>1000	_	_ 16	6.8	21/19/01000
0900	68.5	6.54	1502	>1000	J		10.2	Silty Brown
0903	68.3	6.67	1444	71000).	13.6	1177 /01000
0908	68.2	6.65	1389	> 1000	_	ie.	17.0	
0927	67.4	6.87	1353	71000	-	_	20.4	Surged well=10. Brown/silty silty/Srown
0932	67.9	6.91	1359	71000	_	-	23.8	siltry/Srown
0935	68.1	6.93	1328	71200	_)	27.2	4 4
0939	68.3	6.90	1319	71000	_	-	30.6	66 V4
0944	68.5	7.11	1296	>1000	_	-	34.0	u n
							hard betton	
Did well d	lewater?	Yes \(N)	1	Amount a	chually e	vacuated:\3	V ola
Sampling	Time:		\		Sampling	Date:	\	19/5
Sample I.I	D.: \			/	Laboratory	1		
Analyzed	for:	TPH-G	втех мтві		<u> </u>	Other:		
Equipmen	t Blank I.L).:	@ Time	· · · · · · · · · · · · · · · · · · ·	Duplicate		_	
					1 7			1

WELL MONITORING DATA SHEET

				OTHE OW	NUDAL	4 5 H K K			
Project #	#: 070&1	- 0w-1			Client: PES				
Sampler	: DW/RF			Date: 8			-		
Well I.D	.: MW-03	3		Well Dian		3 4	6 8		
Total We	ell Depth:	44.13		Depth to V		Pre: A			
	Free Prod			Thickness	The Name of the Control of the Contr				
Reference	ed to:	PVC	Grade	Flow Cell	Type:	roduct (1			
Purge Meth Sampling N Flow Rate:		2" Grundf Dedicated	l Tubing		Peristaltic I New Tubin	g .	Bladder Pump Other		
	Temp.		Cond.	Turbidity	D.O.	7	2" surge bloc	<u></u>	
Time	(°C or (F))	pН	(mS or (LS)	(NTUs)	(mg/L)	ORP (mV)	Water Removed (gals, or mL).	Observations	
130	69.0	7-21	712	>1000			y	Surged = 15 min	
1356	68,7	7.10	728	7/000		U	8	Beown/Silty	
1402	69.3	7.19	691	7/000		_	17	le tr	
1410	68,8	7.26	750	>1000	-	_	16	€e (,	
1418	68.8	7.29	780	71000	_		20	OTW= 4600	
1449	71.8	7.49	769	>1000	_	_	24	Sarged well = 10 pm	
	ivell deu	ratered	@ 25	f	Wz 41.81	5			
1505	DTWZ	39.36		, , , ,	78.5				
=		-							
Did well o	lewater?	Yes]			Amount a	ctually ex	vacuated:		
Sampling	Time:	\		4			racuated.		
Sample I.I		_			Sampling Date: Laboratory:				
Analyzed	for.	TPH-G	втех мтве			Other:	$\overline{}$		
Equipmen	t Blank I.E		@ Nunc		Duplicate	_			
			Afric		- apricate	ı.D.,		1	

WELL DEVELOPMENT DATA SHEET

Project #: 070901-0W	-1			Client: PES Date Developed: 8-1-07			
Developer: ow/KF							
Well I.D. Mw-oy				Well Diameter: (circle one) (2) 3 4 6			
Total Well Depth:				Depth to Water:			
Before 46,10 Aft	er 48.43	5		Before 22,05 After 25.35			
Reason not developed:				If Free Product, thickness:			
Additional Notations:				i fae			
Volume Conversion Factor (VCF):	We	II dia.	VC				
$\{12 \times (d^2/4) \times \pi\} /231$		2" =	0.1				
where	;	3" =	= 0.3				
12 = in / foot	4	1" =	0.6				
$d = diameter (in.)$ $\pi = 3.1416$		5" =	= 1.4				
$\pi = 3.1416$ 231 = in 3/gal		0" = 2" =	4.05 6.8				
3.8	X		10	38			
1 Case Volume		Spe	ecified	d Volumes = gallons			
Purging Device:	☐ Ba	iler		☐ Electric Submersible			
	☐ Su	ction	Pump				

Type of Installed Pump _

Other equipment used 2" Surge block

	1	Ciner equipm	Cond.	z surge		T-11
TIME	TEMP (F)	pН	(mS or μS)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTA TIONS.
	67.9	7.29			3, 8	NOTATIONS:
1025	-		1310	7/000		Surged well = 15 Min
1031	68.3	7.24	1142	>1000	7.6	bown
1038	67.8	7.20	1073	71000	11.4	("
1043	68.6	7.12	1245	7(000)	15.2	a a
1048	68.9	7.10	1007	7(000)	19.0	a
1105	68.4	7.18	1108	7 1000	22.8	Surged well= 10 min Brown/silty
(110	69.2	7.10	1018	> 1000	26.6	,
1115	69.1	7.12	956	71000	30.4	A little lighter brown
1121	69.2	7.08	947	71000	34.2	Brown
1126	69.4	7.07	927	71000	38.0	Hard bottom
			8a - 62	<i>\$</i>	• •	
oid Well Dewater? Ap If yes, note above.				Gallons Actually	Evacuated:	38 gls

APPENDIX D

MONITORING WELL SURVEY DATA

925-524-9100

PES-EASTMONT.job 10/08/07 16:58:18

Page 1 of 1

Point	Northing	Easting	Elevation	Description	Latitude	Longitude	Height
3 4 5 6 7 8 9 10 2 11 2 12 2 13	2,051,467.2249 2,106,685.4664 2,106,635.3212 2,106,589.9950 2,106,579.0334 2,106,579.1294 2,106,554.6759 2,106,355.3241 2,106,578.3839 2,106,578.5630 2,100,020.0166	6,102,005.0598 6,076,801.4729 6,076,724.0968 6,076,746.6948 6,076,746.7232 6,076,668.8621 6,076,668.8231 6,076,623.2820 6,076,770.3159 6,076,770.2100 6,076,900.8650 6,076,900.9141 6,068,736.6448	50.88 50.43	CP N&S CP MW-01 LID MW-01 TOP PVC MW-02 LID MW-02 TOP PVC CP N&S MW-04 LID MW-04 TOP PVC MW-03 LID MW-03 TOP PVC CP AA3814 HPGN	37.370557855 37.460708923 37.460657982 37.460613577 37.460613607 37.460601456 37.460601456 37.460576475 37.460382018 37.460381965 37.460604831 37.460605009 37.445975880	-122.051367938 -122.103920167 -122.104015402 -122.103986249 -122.103986214 -122.104082927 -122.104082978 -122.104139143 -122.103951595 -122.103794006 -122.103793949 -122.121811807	-70.24 -55.70 -56.26 -55.81 -56.48 -56.73 -56.18 -55.73 -56.19 -55.11 -55.56 -94.73

Surveyed by Matthew Edward Chapman PLS 7054 Matthe Clyn

APPENDIX E

MONITORING WELL SAMPLING FORMS

V. LL MONITORING DATA SHL

Project #:070807-Pc3				Clien	Client: PES, Bastmont town Center				
					Date: 8/7/07				
Well I.D.:	MW-01			Well	Diamete	r: ② 3 4	6 8		
Total Well		D):46.9	18	Depth	to Wate	er (DTW): 23	2.62		
Depth to F	ree Produc	ot:				Free Product (f			
Referenced	i to:	P Vc	Grade		Meter (if		YSI HACH		
DTW with	80% Recl	narge [(I	Height of Water	r Colum	ın x 0.20) + DTW]: 2	8.29		
Purge Method: Bailer V Disposable Bailer Per Positive Air Displacement Extraction Electric Submersible Other					c	Sampling Metho Othe	≺Disposable Bailer Extraction Port Dedicated Tubing		
3.7 1 Case Volume	Gals.) XSpec	3 ified Volur	= [[]] mes Calculated Vo	_ Gals. olume	1" 2" 3"	0.04 4" 0.16 6" 0.37 Oth	0.65 1.47		
Time	Temp (°F or 🍆	pН	Cond. (mS or µS)		bidity ΓUs)	Gals. Removed	Observations		
14424	20.1	7-12	1803	7100	90	3.7	brown		
1449	20.3	6.87	1470	۲۱۶	290	7-4			
1454	20.4	6.86	1395) <	990	114	L		
			7, 2			380			
Did well dev	water?	Yes	6	Gallons	actually	evacuated:	1-1		
Sampling Da	ate: 8/7/	07	Sampling Time	: 1500		Depth to Wate	r: 2620		
Sample I.D.:	MUSI			Laborat		Kiff CalScience			
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	tes (5)	Other: Voc's			
B I.D. (if a	pplicable):		@ Time	Duplica		f applicable):	Dure 1510		
nalyzed for	:: ТРН-G	BTEX		Oxygena		Other:	Vav(C 1310		
O.O. (if req'o	l): Pre	-purge:		mg/L	Po	st-purge:	mg/L		
R.P. (if red	q'd): Pre	-purge:		mV	Pos	st-purge:	mV		

V. LL MONITORING DATA SHE

Project #: 070867-Pc1			Client: PKS Kastmond Town Center						
la d					Date: 817/07				
Well I.D.:	MWOZ			Well Diamete	er: (2) 3 4	6 8			
Total Well	Depth (TI	32.70		Depth to Wat	er (DTW): (4.)	30			
Depth to F	ree Produc	t:		Thickness of	Free Product (f	eet):			
Referenced	l to:	₽ ŶC	Grade	D.O. Meter (i	f req'd):	YSI HACH			
DTW with	80% Rech	arge [(F	Height of Water	r Column x 0.2	0) + DTW]: 17	1.98			
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Electric Submersible Other Other:									
(Gals.) X						0.65 1.47			
Time	Temp	pН	Cond. (mS or ms)	Turbidity (NTUs)	Gals. Removed	Observations			
1418	20.3	6.82	2410	7(000)	3	brown			
1424	20.4	6.57	1844	71000	6				
1429	20.4	6.52	1792	71600	8.7				
					#1				
Did well de	water?	Yes (B	Gallons actual	ly evacuated: 4	.7			
Sampling D	ate: 8 7 6	7	Sampling Time	e: 1436	Depth to Wate	r: [7.58			
Sample I.D.				Laboratory:	Kiff CalScience	Other TA			
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other: Voc.				
EB I.D. (if a	pplicable)		@ Time	Duplicate I.D.	(if applicable):				
Analyzed for	r: TPH-G	BTEX		Oxygenates (5)	Other:				
O.O. (if req'o	d): Pro	e-purge:		mg/ _L F	ost-purge:	mg/L			
D.R.P. (if re	q'd): Pre	e-purge:		mV P	ost-purge:	mV			

V. _L MONITORING DATA SHL _.'

Project #: 070%07-R4			Clien	Client: PES, Bastmont TownCenter					
Sampler: PC				Date:	Date: 8/7/07				
Well I.D.:	MW-03					r: 🕭 3	4	6 8	
Total Well	Depth (T)	D): ५३.५	7	Depth	to Wate	er (DTW):	17.9	52	
Depth to F	ree Produc	et:		Thick	ness of I	Free Produc	ct (fe	et):	
Reference	l to:	PVC	Grade	D.O. 1	Meter (if	req'd):		YSI HACH	
DTW with	80% Rech	narge [(I	leight of Wate	r Colum	ın x 0.20) + DTW]:	2	3.65	
Purge Method: Bailer Waterra Sampling Method: Disposable Bailer Peristaltic Positive Air Displacement Extraction Pump Electric Submersible Other						Bailer Disposable Bailer Extraction Port Dedicated Tubing			
1-2 (1 Case Volume	,	. ろ ified Volum	$= \frac{12 \cdot 6}{\text{Calculated V}}$	_ Gals.	Well Diameter 1" 2" 3"	0.04 0.16 0.37	Well E 4" 6" Other	0.65 1.47 radius ² * 0.163	
Time	Temp	pН	Cond. (mS or TS)	1	bidity TUs)	Gals. Rem	oved	Observations	
1348	19.9	7-22	1498	7100	ව	4-2		prowy	
1352	19.7	6-79	1428	>toe	90	8-4			
1400	19.7	6.76	1510	3015	×0	17.6		1	
						,			
Did well dev	water?	Yes	©	Gallons	s actually	y evacuated	d: \Z	-6	
Sampling Da	ate: 8/7/0	7	Sampling Time	: (પ <i>o</i> ડ		Depth to V	Vater	: 23.00	
Sample I.D.	MW.03			Laborat		Kiff CalSc		Other TA	
Analyzed for	r: TPH-G	BTEX	МТВЕ ТРН-D	Oxygena	ites (5)	Other: Voc's	v :		
EB I.D. (if a	pplicable):		@ Time	Duplica		if applicab			
Analyzed for	r: ТРН-G	BTEX		Oxygena		Other:			
O.O. (if req'o	d): Pre	e-purge:		mg/L	Po	st-purge:		nig/L	
D.R.P. (if red	q'd): Pre	-purge:		mV	Po	st-purge:		mV	

V. LL MONITORING DATA SHE

Project #: 570807 RCL			Clien	Client: PB, Eastmont Town Conter					
Sampler: 00				Date:	Date: Blilo7				
Well I.D.:	استه			Well	Diameter	r: ② 3 4	6 8		
Total Well	Depth (TI	D): 48.9	50	Depth	to Wate	er (DTW):22.	ч 3		
Depth to Fi						ree Product (fe			
Referenced	to:	€ Væ	Grade	D.O. I	Meter (if	req'd):	YSI HACH		
DTW with	80% Rech	arge [(F	leight of Water	Colum	n x 0.20) + DTW]: Q:	1-64		
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Electric Submersible Other Other:									
<u>4-2</u> ((1 Case Volume	Gals.) XSpeci	্র fied Volun	es Calculated Vo		Well Diameter I" 2" 3"	er <u>Multiplier</u> <u>Well</u> 0.04 4" 0.16 6" 0.37 Othe	Diameter Multiplier 0.65 1.47 radius² * 0.163		
Time	Temp (°F or °€)	pН	Cond. (mS or µ\$)	1	bidity TUs)	Gals. Removed	Observations		
1308	20.8	7.16	1923	7100	0	4.2	brown		
1315	207	7.04	1960	>(00	×O	8.4			
1377	90.6	696	1931	7100	0	12-6			
						< c			
Did well dev	water?	Yes (<u>1</u> 196	Gallon	s actually	y evacuated: [7	26		
Sampling Da	ate: 8/7/07		Sampling Time	: 1330	1	Depth to Wate	r: 24.15		
Sample I.D.:	MUDE			Labora		Kiff CalScience			
Analyzed for	r: TPH-G	BTEX	MTBE TPH-D	Oxygena	ites (5)	Other: YOU'S			
EB I.D. (if a	pplicable):		@ Time	Duplica		if applicable):			
Analyzed for	r: трн-G	BTEX	MTBE TPH-D	Oxygena	tes (5)	Other:			
D.O. (if req'o	d): Pro	-purge:		$^{ m mg}/_{ m L}$	Po	ost-purge:	^{nig} /L		
O.R.P. (if red	a'd): Pre	-purge:		mV	Po	st-nurge:	mV		

APPENDIX F

LABORATORY ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY DOCUMENTATION

ANALYTICAL REPORT

Job Number: 720-10253-1

Job Description: Eastmont Town Center

For:
PES Environmental, Inc.
1682 Novato Boulevard
Suite 100
Novato, CA 94947-7021

Attention: Mr. Miguel Rizo

Survivider Sidhu

Designee for
Afsaneh Salimpour
Project Manager I
afsaneh.salimpour@testamericainc.com
08/15/2007

Job Narrative 720-J10253-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: PES Environmental, Inc.

Job Number: 720-10253-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method	
720-10253-1	MW-01					
Trichloroethene Tetrachloroethene		3.1 60	0.50 0.50	ug/L ug/L	8260B 8260B	
720-10253-2	MW-02					
Trichloroethene Tetrachloroethene		1.2 25	0.50 0.50	ug/L ug/L	8260B 8260B	
720-10253-3	MW-03					
Tetrachloroethene		1.6	0.50	ug/L	8260B	
720-10253-6	DUP					
Trichloroethene Tetrachloroethene		3.1 71	0.50 0.50	ug/L ug/L	8260B 8260B	

METHOD SUMMARY

Client: PES Environmental, Inc.

Job Number: 720-10253-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds by GC/MS (Low Level)	TAL SF	SW846 8260B	
Purge-and-Trap	TAL SF		SW846 5030B

Lab References:

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Job Number: 720-10253-1

Client: PES Environmental, Inc.

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received	
720-10253-1	MW-01	Water	08/07/2007 1500	08/08/2007 1510	
720-10253-2	MW-02	Water	08/07/2007 1436	08/08/2007 1510	
720-10253-3	MW-03	Water	08/07/2007 1405	08/08/2007 1510	
720-10253-4	MW-04	Water	08/07/2007 1330	08/08/2007 1510	
720-10253-5TB	ТВ	Water	08/07/2007 0000	08/08/2007 1510	
720-10253-6	DUP	Water	08/07/2007 1510	08/08/2007 1510	

Client: PES Environmental, Inc.

Job Number: 720-10253-1

Client Sample ID: N

MW-01

Lab Sample ID:

720-10253-1

Client Matrix:

Water

Date Sampled:

08/07/2007 1500

Date Received:

08/08/2007 1510

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method:

8260B

Analysis Batch: 720-24783

Instrument ID:

Varian 3900D

Preparation:

5030B

•

Lab File ID:

c:\saturnws\data\200708\08

Dilution:

1.0

Initial Weight/Volume:

40 mL

Date Analyzed:

08/14/2007 1545

Final Weight/Volume:

40 mL

Date Prepared:

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	3.1		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	60		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	NÐ		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	110		82 - 126
4-Bromofluorobenzene	113		83 - 127
1,2-Dichloroethane-d4 (Surr)	105		86 - 129

Client: PES Environmental, Inc.

Job Number: 720-10253-1

Client Sample ID:

MW-02

Lab Sample ID:

720-10253-2

Client Matrix:

Water

Date Sampled:

08/07/2007 1436

Date Received:

08/08/2007 1510

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: Preparation:

Dilution:

8260B 5030B

Analysis Batch: 720-24783

Instrument ID:

Varian 3900D

Lab File ID:

c:\saturnws\data\200708\08

Initial Weight/Volume: Final Weight/Volume:

40 mL 40 mL

Date Analyzed: Date Prepared: 1.0

08/14/2007 1617

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	1.2		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	25		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	107		82 - 126
	107		02 - 120
4-Bromofluorobenzene	112		83 - 127

Client: PES Environmental, Inc.

Job Number: 720-10253-1

Client Sample ID:

MW-03

Lab Sample ID:

720-10253-3

Client Matrix:

Water

Date Sampled:

08/07/2007 1405

Date Received:

08/08/2007 1510

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method:

8260B

Analysis Batch: 720-24783

Instrument ID:

Varian 3900D

Preparation:

5030B

Lab File ID:

c:\saturnws\data\200708\08

Dilution:

Initial Weight/Volume:

40 mL

Date Analyzed:

1.0

08/14/2007 1722

Final Weight/Volume:

40 mL

Date Prepared:

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	1.6		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	107		82 - 126
4-Bromofluorobenzene	110		83 - 127
1,2-Dichloroethane-d4 (Surr)	105		86 - 129

Client: PES Environmental, Inc. Job Number: 720-10253-1

Client Sample ID: MW-04

 Lab Sample ID:
 720-10253-4
 Date Sampled:
 08/07/2007 1330

 Client Matrix:
 Water
 Date Received:
 08/08/2007 1510

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-24783 Instrument ID: Varian 3900D

Preparation: 5030B Lab File ID: c:\saturnws\data\200708\08

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 08/14/2007 1755 Final Weight/Volume: 40 mL

Date Prepared: 08/14/2007 1755

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	113	00	82 - 126
4-Bromofluorobenzene	118		83 - 127
1,2-Dichloroethane-d4 (Surr)	111		86 - 129

Client: PES Environmental, Inc. Job Number: 720-10253-1

Client Sample ID: TB

 Lab Sample ID:
 720-10253-5TB
 Date Sampled:
 08/07/2007
 0000

 Client Matrix:
 Water
 Date Received:
 08/08/2007
 1510

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-24783 Instrument ID: Varian 3900D

Preparation: 5030B Lab File ID: c:\saturnws\data\200708\08

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 08/14/2007 1303 Final Weight/Volume: 40 mL

Date Analyzed: 08/14/2007 1303 Final Weight/Volume: 40
Date Prepared: 08/14/2007 1303

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	103		82 - 126
4-Bromofluorobenzene	109		83 - 127
1,2-Dichloroethane-d4 (Surr)	105		86 - 129

Client: PES Environmental, Inc.

Job Number: 720-10253-1

Client Sample ID:

DUP

Lab Sample ID:

720-10253-6

Client Matrix:

Water

Date Sampled:

08/07/2007 1510

Date Received:

08/08/2007 1510

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method:

8260B

Analysis Batch: 720-24783

Instrument ID:

Varian 3900D

Preparation:

Lab File ID:

c:\saturnws\data\200708\08

Dilution:

5030B 1.0

Initial Weight/Volume:

40 mL

Date Analyzed:

08/14/2007 1827

Final Weight/Volume:

40 mL

Date Prepared:

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND	***************************************	0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	3.1		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	71		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	%Rec		Acceptance Limits
Toluene-d8 (Surr)	109		82 - 126
4-Bromofluorobenzene	113		83 - 127
1,2-Dichloroethane-d4 (Surr)	108		86 - 129

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Quality Control Results

Client: PES Environmental, Inc.

Job Number: 720-10253-1

QC Association Summary

	Report			
Client Sample ID	Basis	Client Matrix	Method	Prep Batch
4783				
Lab Control Spike	T	Water	8260B	
Method Blank	Т	Water	8260B	
MW-01	Т	Water	8260B	
MW-02	Т	Water	8260B	
MW-03	Т	Water	8260B	
MW-04	Т	Water	8260B	
ТВ	Т	Water	8260B	
DUP	Т	Water	8260B	
Matrix Spike	Т	Water	8260B	
Matrix Spike Duplicate	Т	Water	8260B	
	Lab Control Spike Method Blank MW-01 MW-02 MW-03 MW-04 TB DUP Matrix Spike	Client Sample ID 4783 Lab Control Spike T Method Blank T MW-01 T MW-02 T MW-03 T MW-04 T TB T DUP Matrix Spike T	Client Sample ID Basis Client Matrix 4783 Lab Control Spike T Water Method Blank T Water MW-01 T Water MW-02 T Water MW-03 T Water MW-04 T Water TB T Water DUP T Water Matrix Spike T Water	Client Sample ID Basis Client Matrix Method 4783 Lab Control Spike T Water 8260B Method Blank T Water 8260B MW-01 T Water 8260B MW-02 T Water 8260B MW-03 T Water 8260B MW-04 T Water 8260B TB T Water 8260B DUP T Water 8260B Matrix Spike T Water 8260B

Report Basis T = Total

Quality Control Results

Client: PES Environmental, Inc.

Job Number: 720-10253-1

Method Blank - Batch: 720-24783

Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-24783/2

Analysis Batch: 720-24783

Instrument ID: Varian 3900D

Client Matrix: Water

Prep Batch: N/A

Lab File ID: c:\saturnws\data\200708\08

Dilution: 1.0 Units: ug/L

Date Analyzed: 08/14/2007 1159 Date Prepared: 08/14/2007 1159

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0,50
1,2,4-Trichlorobenzene	ND		1.0
Surrogate	% Rec	Acceptance Limits	
Toluene-d8 (Surr)	114	82 - 126	
4-Bromofluorobenzene	107	83 - 127	
1,2-Dichloroethane-d4 (Surr)	111	86 - 129	

Calculations are performed before rounding to avoid round-off errors in calculated results.

Quality Control Results

Client: PES Environmental, Inc.

Job Number: 720-10253-1

Lab Control Spike - Batch: 720-24783

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 720-24783/1

Client Matrix: Water Dilution: 1.0

Date Analyzed: 08/14/2007 1126 Date Prepared: 08/14/2007 1126 Analysis Batch: 720-24783

Prep Batch: N/A

Units: ug/L

Instrument ID: Varian 3900D

Lab File ID: c:\saturnws\data\200708\08

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1-Dichloroethene	20.0	20.9	104	65 - 125	
Trichloroethene	20.0	17.9	90	74 - 134	
Chlorobenzene	20.0	19.9	100	61 - 121	
Surrogate	% R	ec	Acc	ceptance Limits	
Toluene-d8 (Surr)	11	2		82 - 126	
4-Bromofluorobenzene	11	1		83 - 127	
1,2-Dichloroethane-d4 (Surr)	10	7		86 - 129	

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 720-24783

Method: 8260B

MS Lab Sample ID:

720-10290-B-1 MS

Client Matrix: Dilution:

Water 1.0

Date Analyzed:

08/14/2007 1408

Date Prepared:

08/14/2007 1408

Preparation: 5030B

Instrument ID: Varian 3900D

c:\saturnws\data\200708\(Lab File ID:

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

MSD Lab Sample ID: 720-10290-C-1 MSD

Client Matrix: Dilution:

Water

1.0

Date Analyzed:

Date Prepared:

08/14/2007 1440

08/14/2007 1440

Prep Batch: N/A

Analysis Batch: 720-24783

Analysis Batch: 720-24783

Prep Batch: N/A

Instrument ID: Varian 3900D

Lab File ID: c:\saturnws\data\200708\08

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

	<u>%</u>	Rec.				
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual MSD Qual
1,1-Dichloroethene	110	111	65 - 125	1	20	
Trichloroethene	87	91	74 - 134	5	20	
Chlorobenzene	100	101	61 - 121	1	20	
Surrogate		MS % Rec	MSD	% Rec	Acce	ptance Limits
Toluene-d8 (Surr)		100	99		82	2 - 126
4-Bromofluorobenzene 107		108		83	3 - 127	
1,2-Dichloroethane-d4 (Surr)		103	102		86	6 - 129

Calculations are performed before rounding to avoid round-off errors in calculated results.

	PS I A				1680 R	OGERS	AVENUE	<u>-</u>		CON	DUCT AN	ALYSIS	TO DE	TECT		LAB	TA - San Fra	406619	DHS#
(BLA TECH SER CHAIN OF CUS CLIENT SITE	RVICES, 16 STODY PES Eastmo	BTS # nt Town	Cente	F/ PHON 20 ₹ · €	AX (408) NE (408)		COMPOSITE ALL CONTAINERS	VOCs (8010 list by EPA 8260)							ALL ANALYSES MUS LIMITS SET BY CALL EPA LIA OTHER SPECIAL INSTRUCT Invoice and Rep Attn; Miguel Ri	IONS ort to : PES	®D □ RWQCB RE	EGION
s	MWD1	DATE 81707	TIME 1500	# % W	TOTAL	3240	m) HolVan	Ü	Š.			+			_	ADD'L INFORMATION	STATUS	CONDITION	LAB SAMPLE#
2,_	MW-02		1436	1	3				9										17
3,_	MW-03		1405		3				1										of 1
1	mw-ou		1330	$\vdash \vdash$	3			_	1	_	_			\sqcup					16
5,-	TB	- —	-	\vdash	3	1		_	Λ	-	_	-	-	\vdash					Page
Ø, _	Dup	- —	1510		>		1	-	X,			-	-						
_																			
_		-					_	_	_	4	_								
c	AMPLING OMPLETED	BATE 8	TIME 15 Z	SAMPLI PERFO	NG RMED B	Y F.(iornish									RESULTS NEEDED NO LATER THAN	STANDARD	TAT	,
	ELEASED BY	Potin					4	ATE	7107	F .	TIME 1630			IVED B	lu	1		BATE 817 lo3	
R	ELEASED BY	200	-(8.	angle	che	17)		ATE	66		125°	ı	RECE	IVED B	Y	2-2-		DATE / 67	1250
R	ELEASED BY	Boo	12				0	ATE		1	1510		REGE	家!	× i	to		DATE 8/8/07	TIME
S	HIPPED VIA								SENT		TIME SEN		CÓOL	ER#		5.400		V ()	,

LOGIN SAMPLE RECEIPT CHECK LIST

Client: PES Environmental, Inc.

Job Number: 720-10253-1

Login Number: 10253

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with	. True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

DISTRIBUTION

THIRD QUARTER 2007 GROUNDWATER MONITORING REPORT SPARKLE CLEANERS EASTMONT TOWN CENTER 7000 BANCROFT AVENUE OAKLAND, CALIFORNIA

OCTOBER 8, 2007

	COPY NO.	
		Copy No.
1 Copy	Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502	PDF only
	Attention: Mr. Jerry Wickham	
1 Copy	SKB – Eastmont Oakland Associates, LLC 1211 SW Fifth Avenue, Suite 2600 Portland, Oregon 97204	1
	Attention: Ms. Kathleen Schultz	
2 Copies	PES Job Files	2 - 3
1 Copy	Unbound Original	4