RECEIVED

Date: 11-22-2011

3:11 pm, Nov 23, 2011

Alameda County Environmental Health

Subject: 3200 Santa Rita Road, Pleasanton, California Fuel Leak Case No. RO0003928 0002938

PERJURY STATEMENT

"I declare that to the best of my knowledge at the present time, the information and/or recommendations contained in the attached report are true and correct."

Submitted by Responsible Party:

Jim Gotcher

City of Pleasanton Public Works P.O. Box 520 Pleasanton, CA 94566

Well Installation AND FIRST QUARTER 2011 GROUNDWATER MONITORING REPORT

FIRE STATION NO. 3, SANTA RITA ROAD PLEASANTON, CALIFORNIA

南市

Submitted to:

Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502-6540

E

November 18, 2011 Project No. 6621.100.120

Copyright © 2011 By ENGEO Incorporated. This Document May Not Be Reproduced In Whole Or In Part By Any Means Whatsoeve Nor May It Be Quoted Or Excerpted Without The Express Written Consent Of ENGEO Incorporated

- Expect Excellence -

Project No. **6621.100.120**

November 18, 2011

Mr. Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502-6540

Subject: Fire Station No. 3, Santa Rita Road Pleasanton, California ACEH Case No. RO0002938

WELL INSTALLATION AND FIRST QUARTER 2011 GROUNDWATER MONITORING REPORT

Reference: ENGEO, Workplan for Installation of Groundwater Monitoring Wells, Fire Station No. 3, Santa Rita Road, Pleasanton, California, December 1, 2010.

Dear Mr. Wickham:

ENGEO prepared this report on behalf of the responsible party, City of Pleasanton Public Works. This report summarizes the groundwater monitoring well installation and First Quarter 2011 groundwater monitoring event completed at the Fire Station No. 3, Santa Rita Road (Site), located at 3200 Santa Rita Road, Pleasanton, California (Figure 1).

SITE HISTORY

Based on a review of publically available information, we understand that two underground storage tanks (USTs) were removed from the Site in September 2006. The USTs were both 500 gallons in volume; one tank was used for gasoline, and the other tank was used for diesel fuel. The tanks were reportedly free of holes or rust, but rust and visible leaks were observed on associated piping. Confirmation soil samples recovered at the time of tank removal exhibited detectable concentrations of petroleum hydrocarbons, with the maximum concentration of 2,800 milligrams per kilogram (mg/kg) of total petroleum hydrocarbons as diesel (TPH-d) detected in an excavation sidewall sample.

Additional soil materials were excavated from the former tank locations in November 1996. A sample collected from a gravel soil layer, 2 feet below the ground surface (below the ground surface), exhibited a TPH-d concentration of 12,000 mg/kg. Following additional excavation, a sample collected from the same gravel layer exhibited a trace TPH-d concentration of 2 mg/kg.

In June 2007, Kleinfelder advanced a soil boring near the former UST location for the purpose of soil and groundwater characterization; however, the boring was terminated before groundwater was encountered. A soil sample collected from a depth of 12 feet below the ground surface exhibited a TPH-d concentration of 2.2 mg/kg. An additional boring was advanced at the Site in April 2008. A shallow groundwater sample and a soil sample collected from a depth of 15 feet below the ground surface exhibited TPH-gasoline (TPH-g) and TPH-motor oil (TPH-mo) concentrations in excess of respective Environmental Screening Levels (ESLs) established by the San Francisco Bay Regional Water Quality Control Board.

Kleinfelder performed an additional site investigation in March 2009. Five soil borings were advanced to a maximum depth of 60 feet below the ground surface. Both soil and groundwater samples were collected from the soil borings. Kleinfelder reported one soil sample collected from a depth of 12 feet exhibited TPH-d concentrations in excess of the respective ESL; however, a soil sample collected from a depth of 16 feet exhibited a TPH-d concentration below the respective ESL. Three grab groundwater samples (collected from the borings advanced to a maximum depth of 60 feet) exhibited TPH concentrations in excess of respective ESLs. Although Kleinfelder recommended no further action for the Site, they later concurred with the recommendation of ACEH for the installation of groundwater monitoring wells at the Site.

GROUNDWATER MONITORING WELL INSTALLATION

We provided oversight for the installation of three groundwater monitoring wells (MW-1 through MW-3) at the Site on January 26 and 27, 2011 (Figure 2). The monitoring well installations were completed in general accordance with the referenced work plan and California Code of Regulations, Title 23, Division 3, Chapter 16, Article 4, Section 2649. Prior to beginning the work, we obtained a well installation permit from Zone 7 Water Agency and completed a Site Hazard Form.

Prior to drilling, we marked the location of the three borings and contacted Underground Services Alert (USA). We also cleared the specific well locations using a private utility locator. Additionally, at the locations of MW-2 and MW-3, concrete coring equipment was used to remove hardscape cover prior to drilling.

Gregg Drilling of Martinez, California, a C-57 licensed drilling contractor, advanced three borings (approximately 8 inches in diameter) to depths ranging between 60 and 75 feet below ground surface (below the ground surface) using a hollow-stem auger. The well borings were logged by an ENGEO project manager under the supervision of a Professional Engineer. Soil cuttings from the three borings were logged continuously and screened with a photoionization detector for volatile organic vapors. Because drilling conditions and soil cuttings were not conclusive in indicating if an anticipated coarse-grained layer had been reached, Boring MW-2 was advanced to a depth of 75 feet below the ground surface. Upon extraction of the

drilling augers, it was apparent that the coarse-grained layer had been reached, although it graded with a substantial clay content.

The subsurface geology generally consisted of dark brown and dark gray silty clay from the surface to an approximate depth of 50 feet below the ground surface, where well-graded gravel and sand was encountered. Groundwater was first encountered at a depth of approximately 55 to 60 feet feet below the ground surface during drilling. No hydrocarbon odors or PID responses were observed within the soil cuttings.

Following the completion of each borehole, the wells were constructed using two-inch-diameter PVC well casing. A screened interval (0.020 slot size) was installed for the bottom 10 feet of each casing; details regarding well dimensions are presented in Table 1 below. A sand filter pack (#3 sand) was placed around the PVC casing approximately from 48 to 60 feet below the ground surface (MW-1); from 63 to 75 feet below the ground surface (MW-2); and from 48 to 60 feet below the ground surface (MW-3). A two-foot-thick bentonite seal was applied atop the sand filter pack. The remaining annular space was filled with neat cement grout seal to the ground surface. The wells were completed with traffic-rated flush-mount iron well boxes. Following installation of the wells, we retained a licensed surveyor to survey the top of casing for the three wells. Well construction diagrams and boring logs are attached in Appendix A. Figure 4 presents a typical well construction detail.

Well	Depth of Well (ft. bgs)	Top of Casing (ft. msl)	Bottom of Casing (ft. bgs)	Screened Interval (ft. bgs)
MW-1	60	342.24	59.8	49.8 to 59.8
MW-2	75	342.37	74.8	64.8 to 74.8
MW-3	60	342.95	59.5	49.5 to 59.5

TABLE 1Summary of Well Construction Data

We returned to the Site approximately 72 hours after completing the well installation and developed the wells with a surge block and bailer system. Purge water and soil cuttings were contained in 55-gallon drums for subsequent offsite disposal.

GROUNDWATER MONITORING

Groundwater Elevations

ENGEO measured and recorded the depth to groundwater in monitoring Wells MW-1, MW-2, and MW-3 using a portable electronic water level indicator. The depths to groundwater ranged from 58.00 feet below the TOC in onsite Well MW-2 to 56.62 feet below the TOC in

Well MW-3. Based on the groundwater elevations, the groundwater flow direction is toward the north-northwest with a gradient of approximately 0.04 ft/ft (Figure 2). The groundwater elevation data is summarized in Table A.

GROUNDWATER SAMPLING

After recording groundwater depth measurements, we collected groundwater samples from onsite Wells MW-1, MW-2, and MW-3 on February 14, 2011. The groundwater sampling was conducted using the following methodology.

- Purging was accomplished using dedicated, disposable polyethylene bailers. After purging approximately three well casing volumes, groundwater samples were collected using new disposable bailers and transferred to laboratory-provided containers.
- A portable field meter was used to record turbidity, pH, temperature, and conductivity measurements during purging.
- Groundwater samples were labeled with an identification number and placed on ice with a chain-of-custody record during transportation to the analytical laboratory.
- The samples were submitted to TestAmerica Laboratories, Inc., in Pleasanton, California for the analysis of total petroleum hydrocarbons as gasoline (TPH-g) by EPA Test Method 8260B; total petroleum hydrocarbons as diesel (TPH-d) and motor oil (TPH-mo) by EPA Test Method 8015B with silica gel cleanup (EPA Method 3630); benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Test Method 8260B, and five fuel oxygenates, including MTBE, TBA, DIPE, TAME, and ETBE by EPA Test Method 8260B.
- Purge water was transferred to a 55-gallon drum for subsequent offsite disposal.

GROUNDWATER ANALYTICAL RESULTS

For the February 2011 sampling event, TPH-d and TPH-mo were detected in Wells MW-1 and MW-2. TPH-d concentrations were 72 and 170 micrograms per liter ($\mu g/l$) for Wells MW-1 and MW-2, respectively. TPH-mo concentrations were 210 and 520 micrograms per liter ($\mu g/l$) for Wells MW-1 and MW-2, respectively. The results are presented in Table B and Figure 3. No other detections above laboratory reporting limits were observed. The laboratory analysis reports are presented in their entirety in Appendix C.

FINDINGS

- During drilling of the monitoring well borings, first groundwater was encountered at a depth of approximately 50 to 60 feet below the ground surface. Following completion of the well installations and development, we noted the depth to groundwater in the monitoring wells ranged from 56.62 to 58.00 feet below top of casing. Groundwater elevations observed in the monitoring wells indicate an approximate gradient of 0.04 ft/ft directed toward the north-northwest.
- The concentrations of petroleum hydrocarbons were as follows: detected TPH-d concentrations were 72 and 170 μ g/l for Wells MW-1 and MW-2, respectively, and detected TPH-mo concentrations were 210 and 520 μ g/l for Wells MW-1 and MW-2, respectively. Some of these concentrations, while relatively low, do exceed the respective Environmental Screening Levels (ESLs) promulgated by the San Francisco bay Regional Water Quality Control Board (RWQCB) of 100 μ g/l for both TPH-d and TPH-mo, respectively¹. No benzene, toluene, ethylbenzene, xylene(s) (BTEX) or fuel oxygenates were detected in groundwater.
- We recommend performing a minimum of three additional groundwater monitoring events to confirm the predominant groundwater flow direction and concentration trends. Upon completing four quarterly monitoring events, we can determine whether a no further action (NFA) determination should be requested from ACEH.

LIMITATIONS

We performed our professional services in accordance with generally accepted environmental engineering principles and practices currently employed in Northern California at the time we performed our services. No other warranty is expressed or implied. We limited our investigation to the authorized work scope, which included monitoring of specific groundwater monitoring wells. Our investigation is not intended to be comprehensive, to identify all potential concerns, or to guarantee that no additional environmental contamination beyond that described in this report exists at the site.

Findings in this report are valid as of the day of monitoring. However, changes in groundwater conditions can occur with the passage of time, whether due to natural processes or human activity on the site, or on surrounding properties. This report applies only for Site. We are not responsible for the interpretations of the data in this report made by others. This report does not represent a legal opinion.

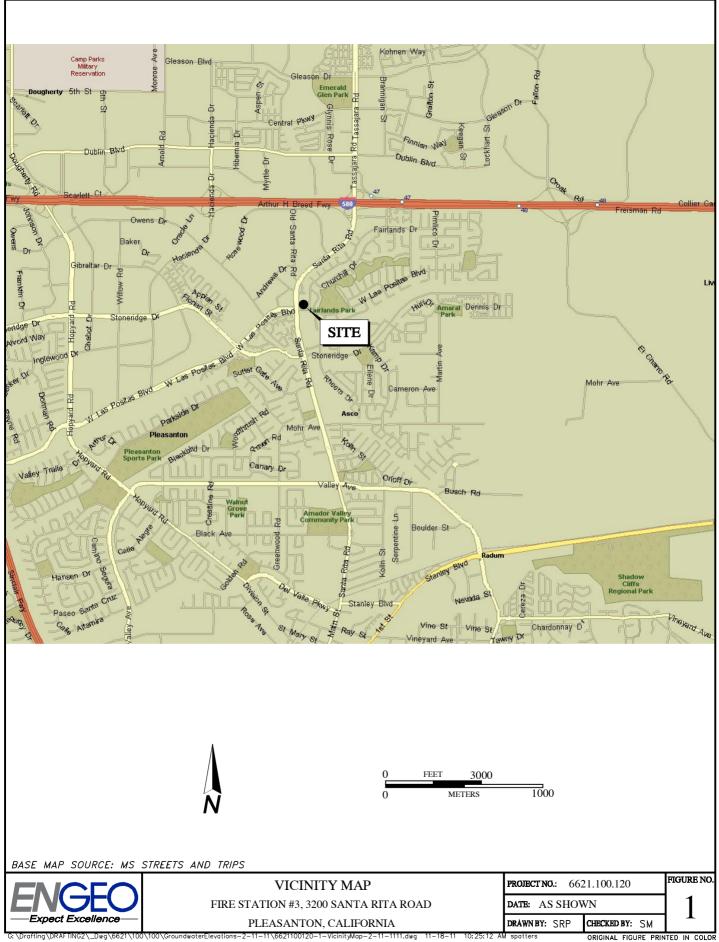
¹ SFRWQCB ESLs, 2008: Table F-1a – Groundwater Screening Levels where Groundwater is a Potential Drinking Water Source.

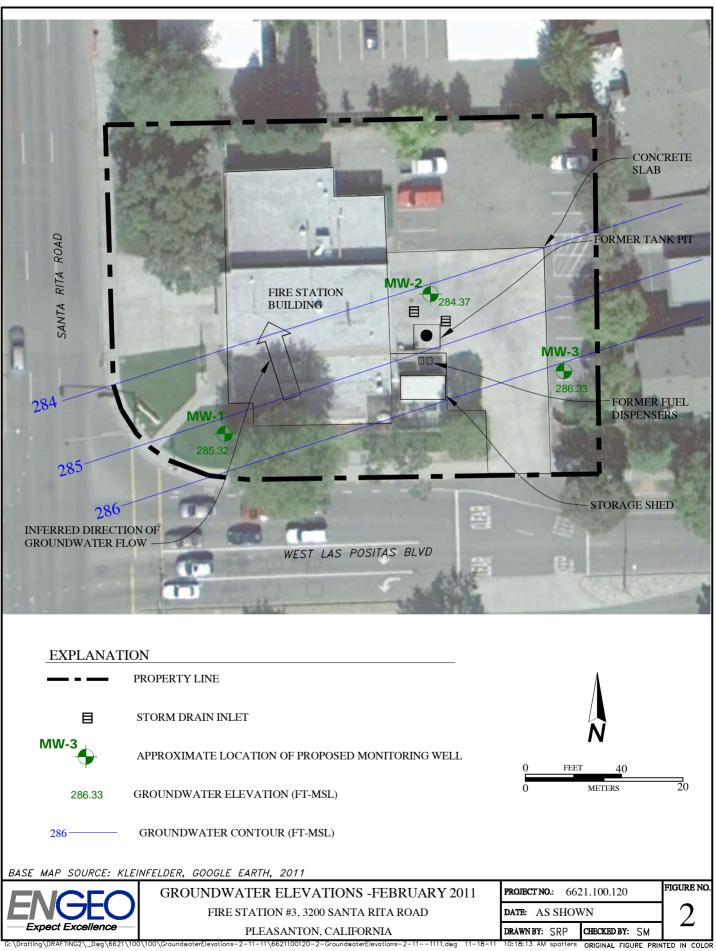
Alameda County Environmental Health6621.100.120Fire Station No. 3, Santa Rita Road, ACEH Case No. RO0002938November 18, 2011WELL INSTALLATIONPage 6AND FIRST QUARTER 2011 GROUNDWATER MONITORING REPORT

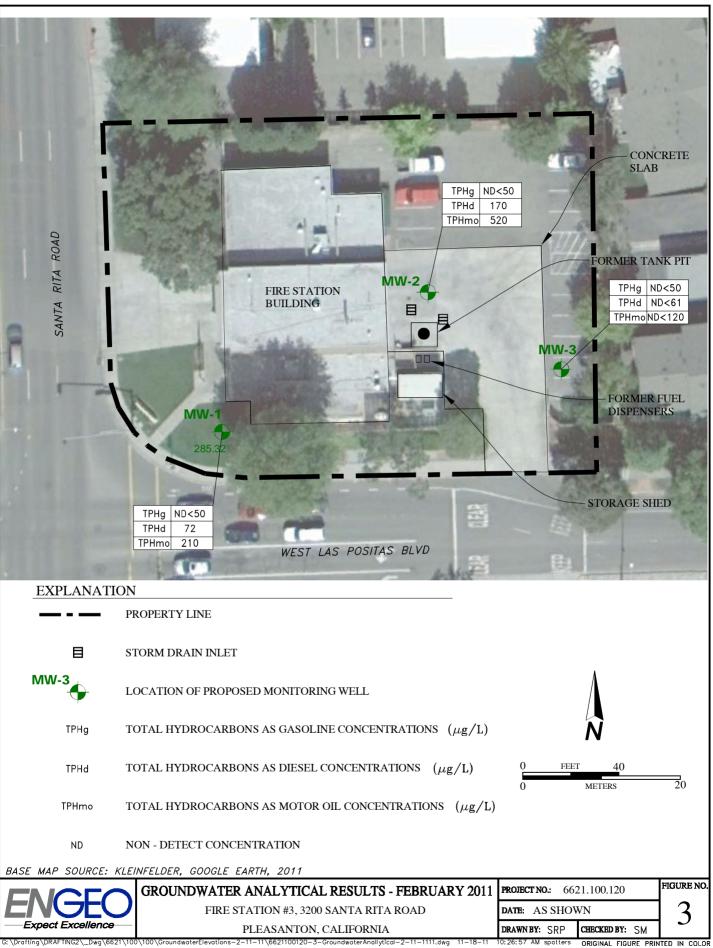
If you have any questions regarding this report, please call and we will be glad to discuss them with you.

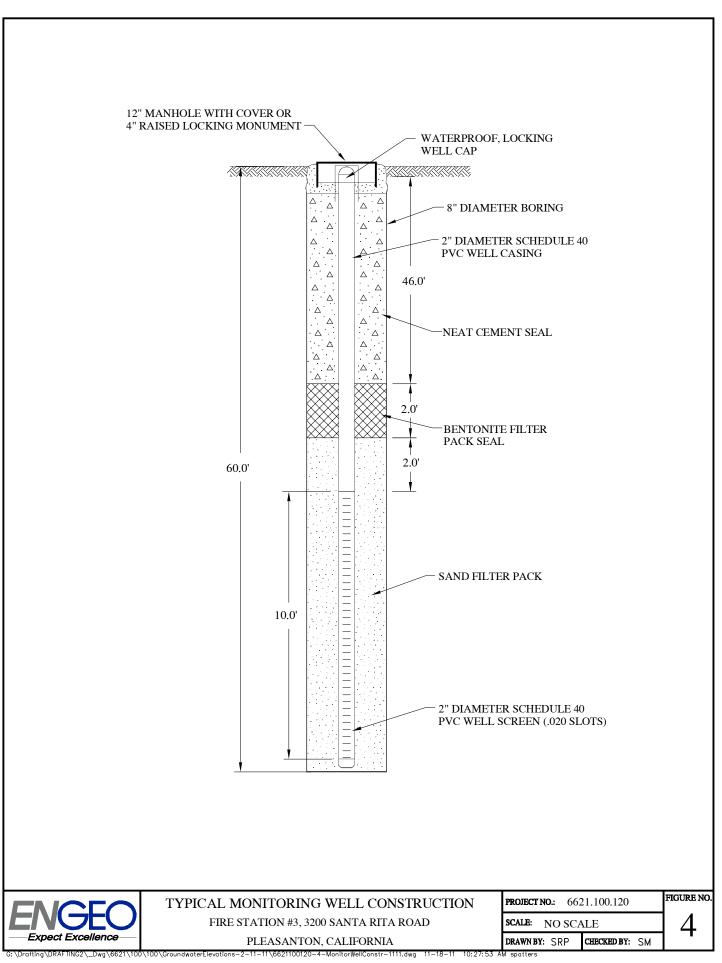
Sincerely,	
ENGEO Incorporated $\left(\begin{array}{c} & & \\ &$	
Exp. 6/30/2012 *	
Jeffrey A. Adams, PhD, PE	Shawn Munger, CHG, REAII
jaa/sm/jf:1stqtr	

Attachments: Figure 1: Vicinity Map


Figure 2: Groundwater Elevations – February 2011
Figure 3: Groundwater Analytical Results – February 2011
Figure 4: Typical Monitoring Well Construction
Table A: Groundwater Elevation Data
Table B: Groundwater Monitoring Well Analytical Data
Appendix A – Boring Logs/Well Construction Diagrams
Appendix B – Well Sampling Logs
Appendix C – Laboratory Analytical Reports and Chain-of-Custody Records




FIGURES


Figure 1 - Vicinity Map Figure 2 - Groundwater Elevations – February 2011 Figure 3 – Groundwater Analytical Results – February 2011 Figure 4 – Typical Monitoring Well Construction

6621.100.120 November 18, 2011 2010 BY ENGED INCORPORATED. THIS DOCUMENT MAY NOT BE REPRODUCED IN WHOLE OR IN PART BY ANY MEANS WHATSOEVER, NOR MAY IT BE QUOTED OR EXCERPTED WITHOUT THE EXPRESS WRITTEN CONSENT OF ENGED INCORPORATED. 0 COPYRIGHT

© 2010 BY ENGED INCORPORATED. THIS DOCUMENT MAY NOT BE REPRODUCED IN WHOLE OR IN PART BY ANY MEANS WHATSOEVER, NOR MAY IT BE QUOTED OR EXCERPTED WITHOUT THE EXPRESS WRITTEN CONSENT OF ENGED INCORPORATED. COPYRIGHT

TABLES

Table A - Groundwater Elevation DataTable B - Groundwater Monitoring Well Analytical Data

6621.100.120 November 18, 2011

TABLE A Groundwater Elevations Fire Station #3, 3200 Santa Rita Road Pleasanton, California

Well Elevation (Ft msl)	MW	7-1	MW	7-2	MW	<i>V</i> -3		
Top of Casing Elevation ⁽²⁾ (feet)	342.2	400	342.3	700	342.9500			
Date	Depth to Groundwater ⁽¹⁾ (ft bgs)	Groundwater Elevation (ft msl)	Depth to Groundwater ⁽¹⁾ (ft bgs)	Groundwater Elevation (ft msl)	Depth to Groundwater ⁽¹⁾ (ft bgs)	Groundwater Elevation (ft msl)		
2/14/2011	56.92	285.32	58.00	284.37	56.62	286.33		

NOTES:

bgs = Below ground surface

msl = Mean sea level

(1) Depth to groundwater measured from top of well casing.

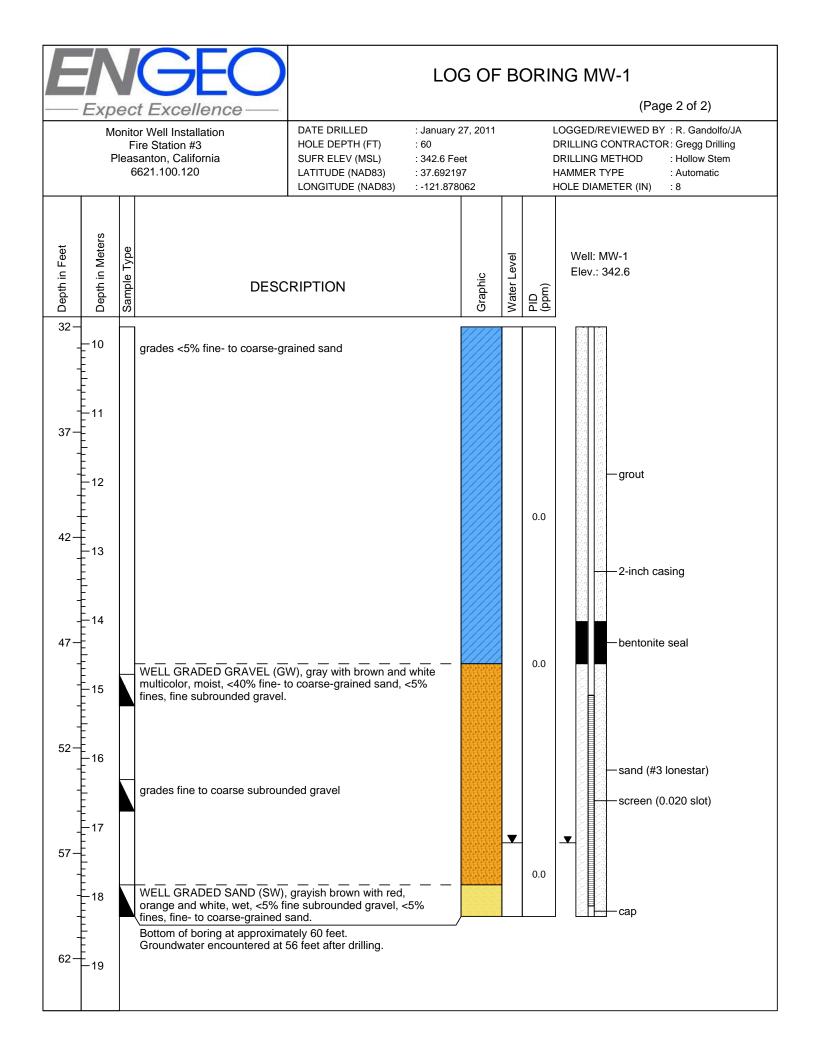
(2) Well casing elevations (NAV 88)surveyed Summer 2011

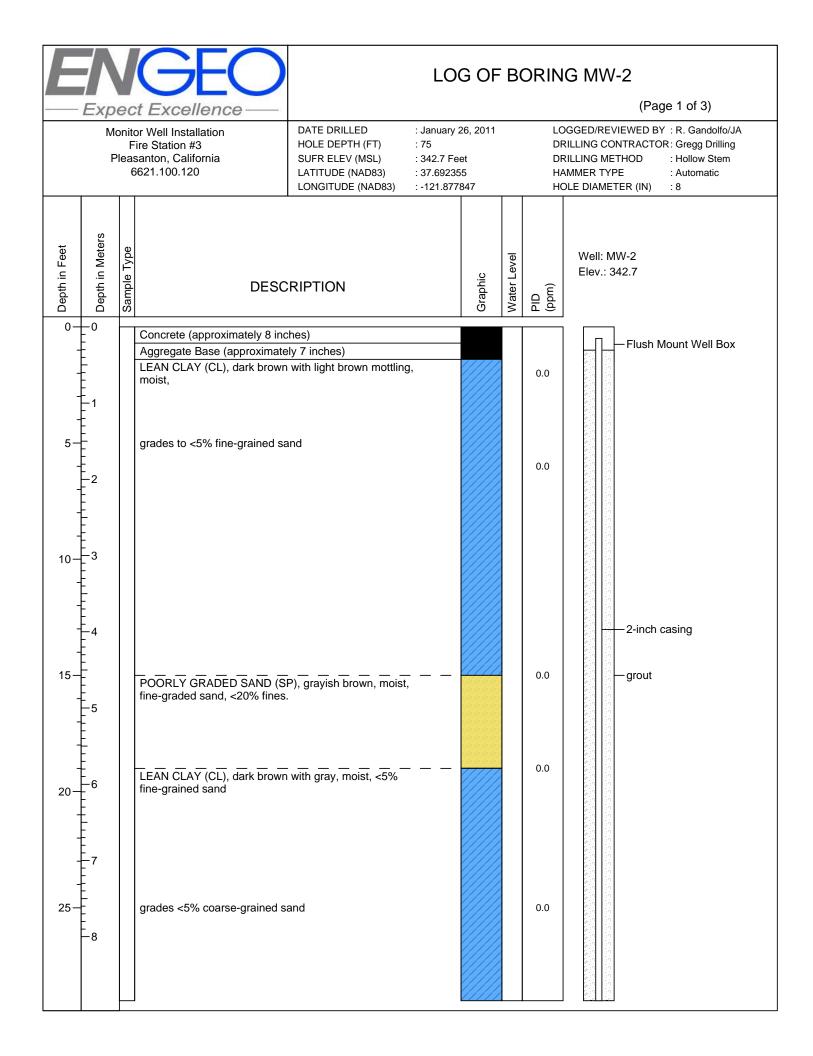
TABLE B Groundwater Monitoring Well Analytical Data Fire Station #3, 3200 Santa Rita Road Pleasanton, California

Sample ID	Date	Depth to Water	Total Petro	oleum Hydrocar	bons (µg/L)	Benzene	Toulene	Ethylbenzene	Xylene(s)	MTBE	TBA	ETBE	DIPE	TAME
Sample ID	Date	ft	Gasoline	Diesel	Motor Oil	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	μg/L	µg/L	µg/L
	2/14/2011	56.92	ND<50	72	210	ND<0.5	ND<0.5	ND<0.5	ND<1	ND<0.5	ND<4	ND<0.5	ND<0.5	ND<0.5
MW-1														
10100-1														
	2/14/2011	58.00	ND<50	170	520	ND<0.5	ND<0.5	ND<0.5	ND<1	ND<0.5	ND<4	ND<0.5	ND<0.5	ND<0.5
MW-2														
10100 2														
	2/14/2011	56.62	ND<50	ND<61	ND<120	ND<0.5	ND<0.5	ND<0.5	ND<1	ND<0.5	ND<4	ND<0.5	ND<0.5	ND<0.5
MW-3														
10100-5														

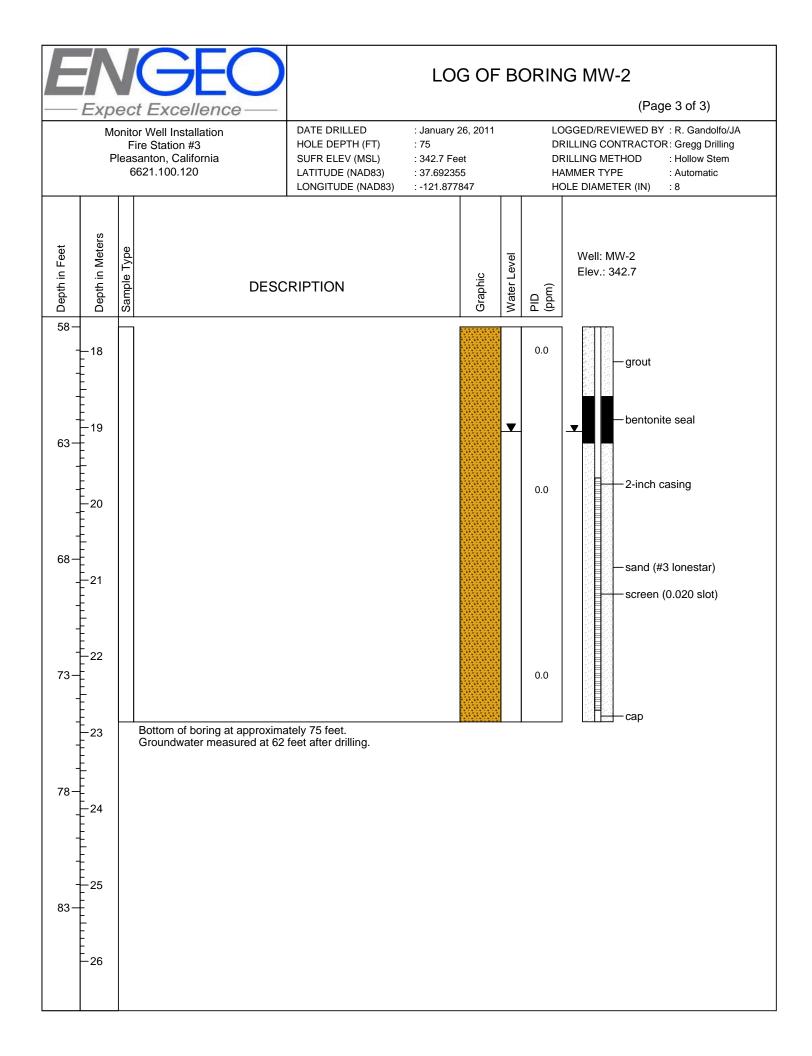
NOTES:

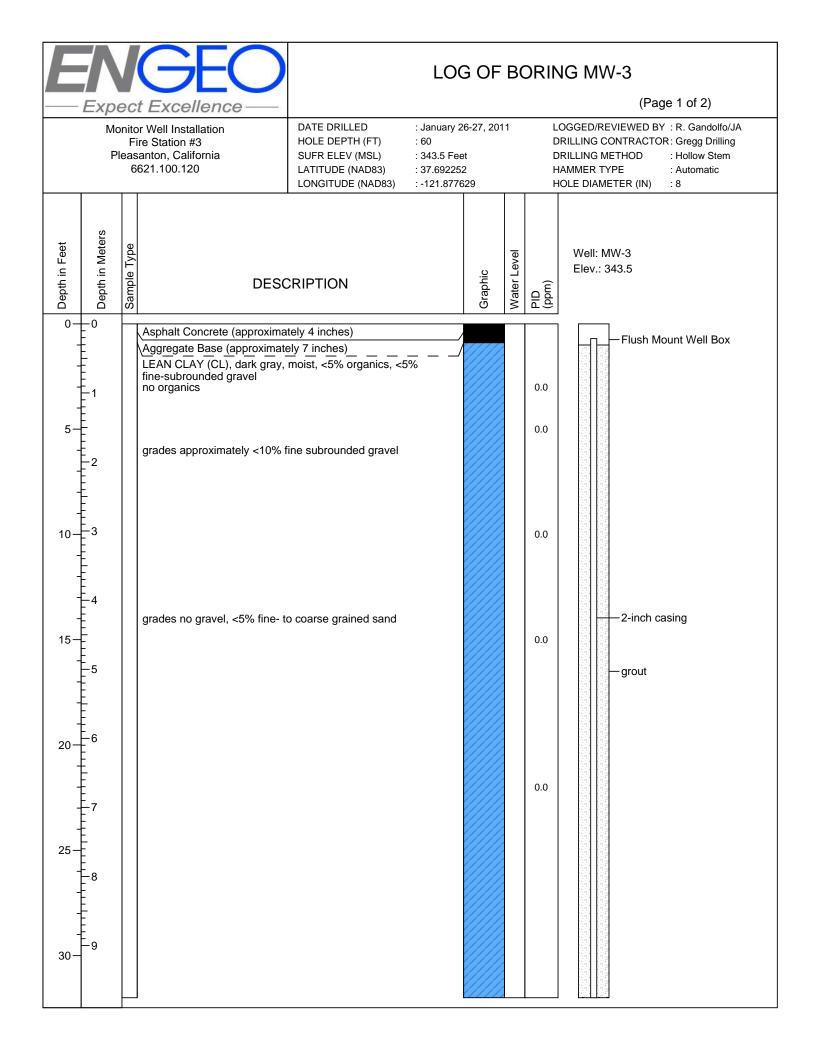
Samples have undergone silica gel cleanup unless otherwise noted. $\mu g/L = micrograms \ per \ liter$

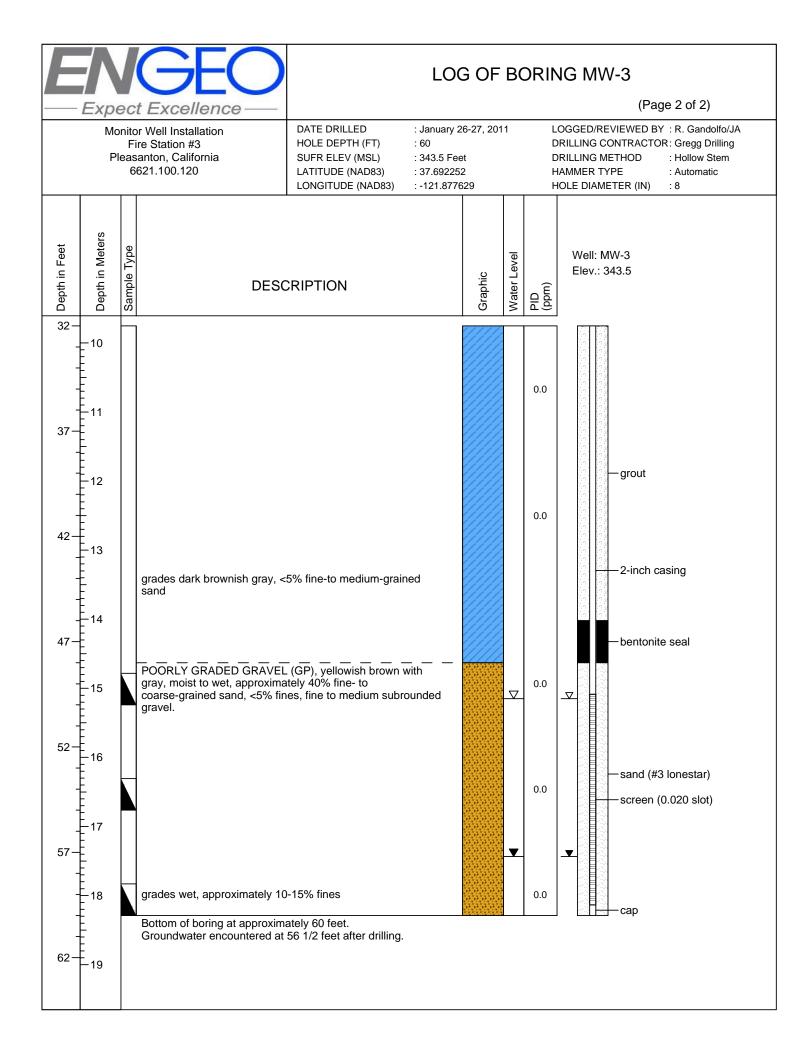



APPENDIX A

Boring Logs / Well Construction Diagrams


6621.100.120 November 18, 2011


ENGE	0	LOG OF BOR	ING MW-1
— Expect Excellence	e		(Page 1 of 2)
Monitor Well Installation Fire Station #3 Pleasanton, California 6621.100.120	HOLE DEPTH (FT): 6SUFR ELEV (MSL): 3LATITUDE (NAD83): 3	anuary 27, 2011 0 42.6 Feet 7.692197 121.878062	LOGGED/REVIEWED BY : R. Gandolfo/JA DRILLING CONTRACTOR : Gregg Drilling DRILLING METHOD : Hollow Stem HAMMER TYPE : Automatic HOLE DIAMETER (IN) : 8
5 -2 -2 -2 -2 -2 -2 -2 -2	DESCRIPTION	0.0	Well: MW-1 Elev.: 342.6



Expect Excellence (Page 2 of 3) Monitor Well Installation Pleasarion. California 6621.100.120 DATE DRILLED USCREEV(MSL) ::danuny 26, 2011 HOLE DePIH (FT) ::danuny 26, 2011 HOLE DEPIH (FT) LOGGED/REVEWED BY : R. Gandolfould DRILLING CONTRACTOR Grag Defining DRILLING METHOD Installing Contractor Grag Defining DRILLING METHOD 6621.100.120 DESCRIPTION ::danuny 26, 2011 USCRIPC (MADS3) ::danuny 26, 2011 USCRIPC (MADS3) USCRIPTION 10 34 - 10 34 - 11 34 - 11 34 - 11 34 - 11 34 - 11 16 34 - 16 54 DESCRIPTION ::danung 20 38 38 38 38 39 39 38 30 30 30 30 30 30 30 30 30 30 30 30 30	E	Λ		GEO		LO	G OF	B	ORIN	IG MW-2	2
29 - 9 9 10 34 - 10 39 - 12 11 11 44 - 11 49 - 15 16 16 17 16 17 17 17 18 19 10 10 10 10 10 10 10 10 10 10		Мо	onito Fi leas	or Well Installation ire Station #3 santon, California	HOLE DEPTH (FT) SUFR ELEV (MSL) LATITUDE (NAD83)	: 75 : 342.7 Fe : 37.69235	et 55		DI DI H/	RILLING CONT RILLING METH AMMER TYPE	WED BY : R. Gandolfo/JA RACTOR: Gregg Drilling IOD : Hollow Stem : Automatic
-9 grades to no sand 34 -10 34 -11 39 -12 grades <10% fine- to coarse-grained sand	Depth in Feet	Depth in Meters	Sample Type	DESC	RIPTION		Graphic	Water Level	PID (ppm)		
44 44 49 15 16 grades approximately 25% fine to medium subangular gravel, fine- to medium-grained sand	29- - - - - - - - - - - - - - - - -	-9-10			rained sand				0.0		
POORLY GRADED GRAVEL (GP), gray and brown, moist to 0.0 -17 wet, fine- to medium-graded sand, < 5% fines, fine to		-14		gravel, fine- to medium-graine	d sand (GP), gray and brown, r				0.0		

APPENDIX B

Well Sampling Logs

6621.100.120 November 18, 2011

MONITORING WELL FIELD SAMPLING LOG

								0 K	
Project:	Pleasanton Fi	re Station #3				-			
Project No.	6621.100.120)				Wol	l ID		IW-1
Location:	3600 Santa R	ita Road				vve	IID	1V	1
Technician:	Richard Gano	lolfo							
Activity:		Quarterly Sam	pling			Develop/Samp	le		
WELL SE	CURITY						Date	2/	14/2011
Well Box Set	in Concrete?			Yes			Comments	5	
Box Cover E	quipped With I	Bolts and Gaske	t?	Yes					
		Well Seal and			No				
_		TION AND V		EVEL DE	TAILS		Date	2/	14/2011
Well Type		Monitoring		Extraction V		Pump [Other		
Well Diamete	er (in)	2				leasurement			
BOC (fbtoc)		59.4	(Enter	measurements	s for wells	with free produ	ct history)	4	
DTW = Dept	h to Water	56.92		0.0" if no mea		-		W	CV Factors
WC (f)		2.48		OTFP (fbtoc)				2" =	0.17
WCV (gal)		0.421		DTW (fbtoc)		_		2 – 4" =	0.66
3 X WCV (gal)	urge Vol)	1.26	-	FPT (ft)		-		 6" =	1.50
		NG AND DE	CON EO		1		Date	-	14/2011
Purging:	, , , , , , , , , , , , , , , , , , , ,	Disposable	201122	12-V		Subm.	Comments		1 1/ 2011
i urgnig.		Bailer	l	Pump		Pump	comments		
Sampling:		Disposable	-	12-V		Subm.		Othe	r
Samping.		Bailer	Į	Pump				ouie	1
Decon:	Was purge pi	imp decontamir	ated hefore		1150?	Pump Yes			
Decon.	Decon Produ	-	TSP/Alcone		Decon Ri				
PURGE W		DRAGE/DIS					Date		
Drums Onsite		17	Drums All I		Yes	pied only)	Dutt		
Drums Used '		< 1/2	Drums Leal		No				Gallons
Total Drums		17		r Processed T		WTS?	Yes	No	Ganons
	L PARAM		i uige wate	I I I I I I I I I I I I I I I I I I I	mougn o	W15.	Date	110	
	1			EC	DO				04
Time	Volume	Temp	рН	EC	DO	Salinity (%)	Turbidit (NTU)	y	Other
1125		(C degrees)	5 .04	(mS/cm)	2.2	0.1			
14:26 14:41	0.5	17.3 17.5	7.34 7.35	0.271	3.3 3.2	0.1	297 500		
14:41	1.5	17.5	7.55	0.272	3.2	0.1	300		
□ Somn1	a collected three	ugh groundwat	ar traatmant	austom using	active ext	raction pump; n		irad	
`	ORY ANALYS			system using		raction pump, n	o purging requ	neu.	
		515	3	VOA's	2	1-liter Ambers	0	500	nl Plastic
Number/Type Preservative:	Containers		HCl	VOAS	Z	1-mer Ambers	0	3001	III Plastic
				TEV. TDU 4	m a Em	1 0			
Analysis: Laboratory/T	ለጥ		-		m.o., Fue	el Oxygenates			
DTW = Depth tc			Test Americ	fbtoc = feet bel	ow top of c-	eina			
BOC = Bottom c				WC = Water Co	-	-			
DTFP = Depth to	-				-	ume (gallons) = W0	Y WCV Factor		
-	uct Thickness			$r \in r = rrater$		ame (sanons) – WC			
HPT - Hree Drod									

MONITORING WELL FIELD SAMPLING LOG

Project:	Pleasanton Fi	re Station #3						U II	
Project No.	6621.100.120								
Location:	3600 Santa R					We	l ID	N	4W-2
Technician:	Richard Gand								
Activity:		Quarterly Sam	pling		Γ	Develop/Samp	ole		
WELL SE	ECURITY		1 8		L	_ 1	Date	2/	/14/2011
	t in Concrete?			Yes			Comments		
	Equipped With E	Bolts and Gaske	et?	Yes			commente		
	Equipped With				No				
_	ONSTRUCT			LEVEL DE	ETAILS	1	Date	2/	/14/2011
Well Type		Monitoring		Extraction			Other		
Well Diamet	er (in)	2				Ieasurement		1	
BOC (fbtoc)		73.8	(Enter	measurement	ts for well	s with free produ	ct history)		
DTW (fbtoc)		58	-	"0.0" if no me		-		WO	CV Factors
WC (f)		15.8		DTFP (fbtoc)				2" =	0.17
WCV (gal)		2.68		DTW (fbtoc)		_		4" =	0.66
3 X WCV (I	Purge Vol)	8.1		FPT (ft)		_		6" =	1.50
	G, SAMPLIN	NG AND DE	ECON EQ	UIPMENT	Γ		Date	2/	/14/2011
Purging:	·	Disposable		12-V		Subm.	Comments		
		Bailer		Pump		L Pump			
Sampling:		Disposable		□ 12-V		Subm.		Othe	r
		Bailer		Pump		L Pump			
Decon:	Was purge pu	Imp decontamin	nated before	e and after this	use?	Yes	No		
	Decon Produc		TSP/Alcor			inse: Distiled W	ater		
PURGE V	VATER STO	DRAGE/DIS	SPOSAL	(For Last V	Vell San	npled Only)	Date		
Drums Onsit	e Arrival	17	Drums All	Labeled?	Yes				
Drums Used	This Event	< 1/2	Drums Lea	aking?	No				Gallons
Total Drums		17	Purge Wat	er Processed	Through C	WTS?	N/A		
PHYSICA	AL PARAMI	ETERS					Date		
Time	Volume	Temp	рН	EC	DO	Salinity (%)	Turbidit	y	Other
	Purged (gal)	(C degrees)		(mS/cm)			(NTU)		
12:25	1	16.9	7.31	0.295	3.23	0.1	45		
12:45	3	16.7	7.34	0.299	3.21	0.1	725		
13:02	5	16.9	7.32	0.306	3.13	0.2	978		
13:21	7	16.6	7.30	0.307	3.23	0.2	> 1000		
13:39	9	16.7	7.30	0.308	3.17	0.2	892		
	1 11			· · · · · · · · · · · · · · · · · · ·		····			
	ORY ANALYS		ter treatmen	t system using	; active ex	traction pump; n	o purging requ	irea.	
Number/Typ		515	3	VOA's	2	1-liter Ambers	0	500	nl Plastic
Preservative:			HC1	VOAS	2	1-Intel Allibers	0	5001	iii r iastic
Analysis:				атба: трп ч	mo Eu	el Oxygenates			
Laboratory/T	ГАТ		Test Amer		, m.o., ru	ci Oxygenates			
DTW = Depth t			r est / milel	fbtoc = feet be	low top of c	asing			
BOC = Bottom				WC = Water C	-	-			
DTFP = Depth t	-				C	lume (gallons) = W0	C X WCV Factor		
· r · · · ·									

FPT = Free Product Thickness

MONITORING WELL FIELD SAMPLING LOG

								O K	
Project:	Pleasanton Fi					4			
Project No.	6621.100.120)				Wol	l ID	N	4W-3
Location:	3600 Santa R	ita Road						1V	1 ** -3
Technician:	Richard Gand	lolfo							
Activity:		Quarterly Samp	pling			Develop/Samp	le		
WELL SE	CURITY						Date	2/	14/2011
Well Box Set	in Concrete?			Yes			Comments		
Box Cover Ec	quipped With I	Bolts and Gaske	t?	Yes					
Well Casing I	Equipped With	Well Seal and	Lock?		No				
WELL CC	NSTRUCT	TION AND V	VATER L	EVEL DE	TAILS		Date	2/	14/2011
Well Type		Monitoring		Extraction V	Vell with l	Pump	Other		
Well Diamete	er (in)	2		Free P	roduct M	leasurement			
BOC (fbtoc)		58.9	(Enter	measurements	s for wells	with free produ	ct history)		
DTW (fbtoc)		56.62		0.0" if no mea		-		WO	CV Factors
WC (f)		2.28		OTFP (fbtoc)		1		2" =	0.17
WCV (gal)		0.387		DTW (fbtoc)		_		4" =	0.66
3 X WCV (P	urge Vol)	1.16		FPT (ft)		_		6" =	1.50
	-	NG AND DE	CON EO	, ,	1		Date	2/	/14/2011
Purging:		Disposable		12-V		Subm.	Comments		
1 41 811181		Bailer		Pump		Pump	0.0111101105		
Sampling:		Disposable		12-V		Subm.		Othe	r
bamping.		Bailer	l	Pump		Pump	\Box		
Decon:	Was nurge ni	imp decontamin	nated before	1	use?	Yes			
Decon.	Decon Produ	-	TSP/Alcone		Decon Ri				
PURGE W	ATER STO	DRAGE/DIS	POSAL (For Last W	Vell San	npled Only)	Date		
Drums Onsite		17	Drums All		N/A	r - <i>J</i> /			
Drums Used		< 1/2	Drums Leal		N/A				Gallons
Total Drums		17		r Processed T		WTS?	N/A		Ganons
	L PARAM		r urge tt ute	1110005500 1	mougn o		Date		
Time	Volume	Temp	" II	EC	DO	Salinity (%)	Turbidity		Other
Time		(C degrees)	рН	(mS/cm)	DO	Samily (70)	(NTU)	y	Other
11:15			7.60	0.272	2.02	0.1			
11:15	1	17.2 17.1	7.69 7.64	0.272	2.92 2.91	0.1	275 410		
11.25	1.5	17.1	7.04	0.271	2.71	0.1	410		
	e collected thro	ugh groundwat	er treatment	system using	active ext	raction pump; n	o purging requ	ired.	
	ORY ANALYS			~)~8			• F 88 - • 1-		
Number/Type			3	VOA's	2	1-liter Ambers	0	500r	nl Plastic
Preservative:	Containers		HCl	10115			0	0001	in i fustic
Analysis:				ТЕХ• ТРН-А	m.o Fue	el Oxygenates			
Laboratory/T	AT:		Test Americ		iii.o., i u	or oxygenates			
DTW = Depth to				fbtoc = feet bel	ow top of ca	sing			
BOC = Bottom o				WC = Water C	-	-			
DTFP = Depth to	-				-	lume (gallons) = WO	C X WCV Factor		
FPT = Free Produ									

APPENDIX C

Laboratory Analytical Reports and Chain-Of-Custody Records

6621.100.120 November 18, 2011

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica San Francisco 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-33358-1 Client Project/Site: Santa Rita FS#3

For: Engeo, Inc. 2010 Crow Canyon Place Suite 250 San Ramon, California 94583

Attn: Richard Gandolfo

Asanaf Sal)

Authorized for release by: 2/22/2011 2:53 PM

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature

is intended to be the legally binding equivalent of a traditionally handwritten signature.

Review your project results through TOTOLACCESS Have a Question? Ask The Expert

..... Links

Visit us at: www.testamericainc.com

Page 1 of 17

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	8
QC Association	11
Chronicle	12
Certification Summary	13
Method Summary	14
Sample Summary	15
Chain of Custody	16
Sample Receipt Checklist	17

Client: Engeo, Inc. Project/Site: Santa Rita FS#3

Glossary

Glossary	Glossary Description
----------	----------------------

tisted under the "D" column to designate that the result is reported on a dry weight basis.

Job ID: 720-33358-1

Laboratory: TestAmerica San Francisco

Narrative

Job Narrative 720-33358-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

GC Semi VOA

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

Detection Summary

Client: Engeo, Inc. Project/Site: Santa Rita FS#3

TestAmerica Job ID: 720-33358-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Diesel Range Organics [C10-C28]	72		53		ug/L	1	_	8015B	Silica Gel Clea
Motor Oil Range Organics [C24-C36]	210		110		ug/L	1		8015B	Silica Gel Clea
Client Sample ID: MW-2						La	b	Sample ID): 720-33358-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
	170		55		ug/L	1	_	8015B	Silica Gel Clea
Diesel Range Organics [C10-C28]			110		ug/L			8015B	Silica Gel Clea

No Detections.

Client Sample ID: MW-1 Date Collected: 02/14/11 15:00 Date Received: 02/14/11 16:50

TBA

DIPE

TAME

Lab Sample ID: 720-33358-1 Matrix: Water

Method: 8260B/CA LUFTMS - 8260B / CA LUFT MS Analyte Result Qualifier RL MDL Unit D Prepared Dil Fac Analyzed 0.50 Benzene ND ug/L 02/16/11 05:26 1 Ethylbenzene ND 0.50 ug/L 02/16/11 05:26 1 Toluene ND 0.50 ug/L 02/16/11 05:26 1 Xylenes, Total ND 1.0 ug/L 02/16/11 05:26 1 Gasoline Range Organics (GRO) ND 50 ug/L 02/16/11 05:26 1 -C5-C12 ND 4.0 ug/L 02/16/11 05:26 1 Methyl tert-butyl ether 02/16/11 05:26 ND 0.50 ug/L 1 Ethyl tert-butyl ether ND 0.50 02/16/11 05:26 ug/L 1 ND 0.50 ug/L 02/16/11 05:26 1 ND 0.50 02/16/11 05:26 ug/L 1 Prepared Surrogate Qualifier Limits Dil Fac % Recovery Analyzed 4-Bromofluorobenzene 98 67 - 130 02/16/11 05:26 1 1,2-Dichloroethane-d4 (Surr) 128 67 - 130 02/16/11 05:26 1 02/16/11 05:26 Toluene-d8 (Surr) 99 70 - 130 1

Method: 8015B - Diesel Range Organics (DRO) (GC) - Silica Gel Cleanup

Analyte	Result Qualifier	RL	MDL Un	t D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	72	53	ug/		02/15/11 16:10	02/16/11 16:34	1
Motor Oil Range Organics [C24-C36]	210	110	ug/	L	02/15/11 16:10	02/16/11 16:34	1

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Capric Acid (Surr)	0.08		0 - 5	02/15/11 16:10	02/16/11 16:34	1
p-Terphenyl	89		31 - 150	02/15/11 16:10	02/16/11 16:34	1

Client Sample ID: MW-2 Date Collected: 02/14/11 13:50

Date Received: 02/14/11 16:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50		ug/L			02/16/11 05:55	1
Ethylbenzene	ND		0.50		ug/L			02/16/11 05:55	1
Toluene	ND		0.50		ug/L			02/16/11 05:55	1
Xylenes, Total	ND		1.0		ug/L			02/16/11 05:55	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			02/16/11 05:55	1
ТВА	ND		4.0		ug/L			02/16/11 05:55	1
Methyl tert-butyl ether	ND		0.50		ug/L			02/16/11 05:55	1
Ethyl tert-butyl ether	ND		0.50		ug/L			02/16/11 05:55	1
DIPE	ND		0.50		ug/L			02/16/11 05:55	1
TAME	ND		0.50		ug/L			02/16/11 05:55	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99		67 - 130			-		02/16/11 05:55	1
1,2-Dichloroethane-d4 (Surr)	125		67 - 130					02/16/11 05:55	1
Toluene-d8 (Surr)	99		70 - 130					02/16/11 05:55	1

Method: 8015B - Diesel Range Org	anics (DRO) (GC) - Silica	Gel Cleanup					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	170	55	ug/L		02/15/11 16:10	02/16/11 16:58	1

Lab Sample ID: 720-33358-2

Matrix: Water

p-Terphenyl

Client Sample ID: MW-2 Date Collected: 02/14/11 13:50 Date Received: 02/14/11 16:50							Lab Sample ID: 720-33358-2 Matrix: Water				
Method: 8015B - Diesel Range	Organics (DRO)	(GC) - Silic	a Gel Cleanup (Continu	ed)						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac		
Motor Oil Range Organics [C24-C36]	520		110		ug/L		02/15/11 16:10	02/16/11 16:58	1		
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
Capric Acid (Surr)	0.2		0 - 5				02/15/11 16:10	02/16/11 16:58	1		
p-Terphenyl	78		31 - 150				02/15/11 16:10	02/16/11 16:58	1		
Client Sample ID: MW-3 Date Collected: 02/14/11 11:30 Date Received: 02/14/11 16:50							Lab Sam	ple ID: 720-3 Matrix	3358-3 <: Water		
_ Method: 8260B/CA_LUFTMS -	8260B / CA LUF	MS									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Benzene	ND		0.50		ug/L			02/16/11 06:24	1		
Ethylbenzene	ND		0.50		ug/L			02/16/11 06:24	1		
Toluene	ND		0.50		ug/L			02/16/11 06:24	1		
Xylenes, Total	ND		1.0		ug/L			02/16/11 06:24	1		
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			02/16/11 06:24	1		
ТВА	ND		4.0		ug/L			02/16/11 06:24	1		
Methyl tert-butyl ether	ND		0.50		ug/L			02/16/11 06:24	1		
Ethyl tert-butyl ether	ND		0.50		ug/L			02/16/11 06:24	1		
DIPE	ND		0.50		ug/L			02/16/11 06:24	1		
TAME	ND		0.50		ug/L			02/16/11 06:24	1		
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
4-Bromofluorobenzene	99		67 - 130					02/16/11 06:24	1		
1,2-Dichloroethane-d4 (Surr)	127		67 - 130					02/16/11 06:24	1		
Toluene-d8 (Surr)	98		70 - 130					02/16/11 06:24	1		
– Method: 8015B - Diesel Range	organics (DRO)	(GC) - Silic	a Gel Cleanup								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Diesel Range Organics [C10-C28]	ND		61		ug/L		02/15/11 16:10	02/16/11 17:21	1		
Motor Oil Range Organics [C24-C36]	ND		120		ug/L		02/15/11 16:10	02/16/11 17:21	1		
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
Capric Acid (Surr)	0.2		0 - 5				02/15/11 16:10	02/16/11 17:21	1		

02/15/11 16:10 02/16/11 17:21

31 - 150

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-86297/5 Matrix: Water

Analysis Batch: 86297

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50		ug/L			02/15/11 21:13	1
Ethylbenzene	ND		0.50		ug/L			02/15/11 21:13	1
Toluene	ND		0.50		ug/L			02/15/11 21:13	1
m-Xylene & p-Xylene	ND		1.0		ug/L			02/15/11 21:13	1
o-Xylene	ND		0.50		ug/L			02/15/11 21:13	1
Xylenes, Total	ND		1.0		ug/L			02/15/11 21:13	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			02/15/11 21:13	1
ТВА	ND		4.0		ug/L			02/15/11 21:13	1
Methyl tert-butyl ether	ND		0.50		ug/L			02/15/11 21:13	1
Ethyl tert-butyl ether	ND		0.50		ug/L			02/15/11 21:13	1
DIPE	ND		0.50		ug/L			02/15/11 21:13	1
TAME	ND		0.50		ug/L			02/15/11 21:13	1
	МВ	МВ							
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		67 - 130			-		02/15/11 21:13	1
1,2-Dichloroethane-d4 (Surr)	106		67 - 130					02/15/11 21:13	1
Toluene-d8 (Surr)	100		70 - 130					02/15/11 21:13	1

Lab Sample ID: LCS 720-86297/6 Matrix: Water Analysis Batch: 86297

	Spike	LCS	LCS				% Rec.
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits
Benzene	25.0	25.1		ug/L		100	82 - 127
Ethylbenzene	25.0	26.8		ug/L		107	86 - 135
Toluene	25.0	24.6		ug/L		99	83 - 129
m-Xylene & p-Xylene	50.0	56.3		ug/L		113	70 - 142
o-Xylene	25.0	28.4		ug/L		114	89 - 136
ТВА	500	497		ug/L		99	82 - 116
Methyl tert-butyl ether	25.0	26.9		ug/L		107	62 - 130
Ethyl tert-butyl ether	25.0	25.7		ug/L		103	70 - 130
DIPE	25.0	24.1		ug/L		96	74 - 155
TAME	25.0	27.9		ug/L		111	79 - 129

	LCS	LCS	
Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	103		67 - 130
1,2-Dichloroethane-d4 (Surr)	108		67 - 130
Toluene-d8 (Surr)	103		70 - 130

Lab Sample ID: LCS 720-86297/8 Matrix: Water Analysis Batch: 86297

Analysis Datch. 00297								
	Spike	LCS	LCS				% Rec.	
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Gasoline Range Organics (GRO)	500	398		ug/L		80	62 - 117	
-C5-C12								

TestAmerica Job ID: 720-33358-1

Client Sample ID: LCS 720-86297/6 Prep Type: Total/NA

Client Sample ID: LCS 720-86297/8

Prep Type: Total/NA

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

TestAmerica Job ID: 720-33358-1 Client Sample ID: LCS 720-86297/8 Prep Type: Total/NA Client Sample ID: LCSD 720-86297/7 Prep Type: Total/NA

5 6 7 8

Lab Sample ID: LCS 720-86297/8 Matrix: Water Analysis Batch: 86297

	LCS	LCS	
Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	105		67 - 130
1,2-Dichloroethane-d4 (Surr)	109		67 - 130
Toluene-d8 (Surr)	105		70 - 130

Lab Sample ID: LCSD 720-86297/7

Matrix: Water Analysis Batch: 86297

Unit	D % Rec	% Rec. Limits	RPD	RPD
		Limits	PPD	
			NF D	Limit
ug/L	100	82 - 127	0	20
ug/L	105	86 - 135	2	20
ug/L	97	83 - 129	1	20
ug/L	111	70 - 142	2	20
ug/L	111	89 - 136	3	20
ug/L	101	82 - 116	2	20
ug/L	107	62 - 130	1	20
ug/L	103	70 - 130	0	20
ug/L	97	74 - 155	1	20
ug/L	111	79 - 129	0	20
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ug/L 105 ug/L 97 ug/L 111 ug/L 111 ug/L 101 ug/L 107 ug/L 103 ug/L 97	ug/L 105 86 - 135 ug/L 97 83 - 129 ug/L 111 70 - 142 ug/L 111 89 - 136 ug/L 101 82 - 116 ug/L 107 62 - 130 ug/L 103 70 - 130 ug/L 97 74 - 155	ug/L 105 86 - 135 2 ug/L 97 83 - 129 1 ug/L 111 70 - 142 2 ug/L 111 89 - 136 3 ug/L 101 82 - 116 2 ug/L 107 62 - 130 1 ug/L 103 70 - 130 0 ug/L 97 74 - 155 1

	LCSD	LCSD	
Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	102		67 - 130
1,2-Dichloroethane-d4 (Surr)	108		67 - 130
Toluene-d8 (Surr)	104		70 - 130

Lab Sample ID: LCSD 720-86297/9

Matrix: Water Analysia Bataby 96207

Analysis Batch: 86297									
	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	0	% Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO) -C5-C12	 500	389		ug/L		78	62 - 117	2	20

	LCSD LCSD	
Surrogate	% Recovery Qualifier	Limits
4-Bromofluorobenzene	103	67 - 130
1,2-Dichloroethane-d4 (Surr)	110	67 - 130
Toluene-d8 (Surr)	104	70 - 130

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 720-86278/1-A Matrix: Water Analysis Batch: 86306 MB MB							Client Sample ID: MB 720-86278/1-A Prep Type: Silica Gel Cleanup Prep Batch: 86278		
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		50		ug/L		02/15/11 13:09	02/16/11 10:19	1
Motor Oil Range Organics [C24-C36]	ND		99		ug/L		02/15/11 13:09	02/16/11 10:19	1

Client Sample ID: LCSD 720-86297/9

Prep Type: Total/NA

Analysis Batch: 86306

Client Sample ID: MB 720-86278/1-A Prep Type: Silica Gel Cleanup

Prep Batch: 86278

5 7

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)	
Lab Sample ID: MB 720-86278/1-A	
Matrix: Water	

	М	B MB									
Surrogate	% Recover	y Qualifier	Limits				Р	repared	Analyze	∋d	Dil Fac
Capric Acid (Surr)	0.	2	0 - 5				02/1	5/11 13:09	02/16/11 1	0:19	1
p-Terphenyl	8	7	31 - 150				02/1	5/11 13:09	02/16/11 1	0:19	1
Lab Sample ID: LCS 720-86	278/2-A						Clier	nt Sample	D: LCS 7	20-862	78/2-A
Matrix: Water								Prep T	ype: Silica	Gel Cl	eanup
Analysis Batch: 86306									Prep	Batch:	86278
			Spike	LCS	LCS				% Rec.		
Analyte			Added	Result	Qualifier	Unit	D	% Rec	Limits		
Diesel Range Organics [C10-C28]			2500	1550		ug/L		62	32 - 119		
	LCS LC	s									
Surrogate	% Recovery Qu	ıalifier	Limits								
p-Terphenyl	107		31 - 150								
Lab Sample ID: LCSD 720-8	36278/3-A						Client	Sample I	D: LCSD 7	20-862	78/3-A
Matrix: Water								Prep T	ype: Silica	Gel Cl	eanup
Analysis Batch: 86306									Prep	Batch:	86278
-			Spike	LCSD	LCSD				% Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Diesel Range Organics [C10-C28]			2500	1430		ug/L		57	32 - 119	8	35
	LCSD LC	SD									
Surrogate	% Recovery Qu		Limits								
p-Terphenyl	101		31 - 150								

GC/MS VOA

Analysis Batch: 86297

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-33358-1	MW-1	Total/NA	Water	8260B/CA_LUF	
				TMS	
720-33358-2	MW-2	Total/NA	Water	8260B/CA_LUF	
				TMS	
720-33358-3	MW-3	Total/NA	Water	8260B/CA_LUF	
				TMS	
MB 720-86297/5	MB 720-86297/5	Total/NA	Water	8260B/CA_LUF	
				TMS	
LCS 720-86297/6	LCS 720-86297/6	Total/NA	Water	8260B/CA_LUF	
				TMS	
LCSD 720-86297/7	LCSD 720-86297/7	Total/NA	Water	8260B/CA_LUF	
				TMS	
LCS 720-86297/8	LCS 720-86297/8	Total/NA	Water	8260B/CA_LUF	
				TMS	
LCSD 720-86297/9	LCSD 720-86297/9	Total/NA	Water	8260B/CA_LUF	
				TMS	

GC Semi VOA

Prep Batch: 86278

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 720-86278/1-A	MB 720-86278/1-A	Silica Gel Cleanup	Water	3510C SGC	
720-33358-1	MW-1	Silica Gel Cleanup	Water	3510C SGC	
720-33358-2	MW-2	Silica Gel Cleanup	Water	3510C SGC	
720-33358-3	MW-3	Silica Gel Cleanup	Water	3510C SGC	
LCS 720-86278/2-A	LCS 720-86278/2-A	Silica Gel Cleanup	Water	3510C SGC	
LCSD 720-86278/3-A	LCSD 720-86278/3-A	Silica Gel Cleanup	Water	3510C SGC	

Analysis Batch: 86306

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LCS 720-86278/2-A	LCS 720-86278/2-A	Silica Gel Cleanup	Water	8015B	86278
LCSD 720-86278/3-A	LCSD 720-86278/3-A	Silica Gel Cleanup	Water	8015B	86278
720-33358-1	MW-1	Silica Gel Cleanup	Water	8015B	86278
720-33358-2	MW-2	Silica Gel Cleanup	Water	8015B	86278
720-33358-3	MW-3	Silica Gel Cleanup	Water	8015B	86278
MB 720-86278/1-A	MB 720-86278/1-A	Silica Gel Cleanup	Water	8015B	86278

Client Sample ID: MW-1 Date Collected: 02/14/11 15:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUF TMS		1	86297	02/16/11 05:26	AC	TestAmerica San Francisco
Silica Gel Cleanup	Prep	3510C SGC			86278	02/15/11 16:10	NP	TestAmerica San Francisco
Silica Gel Cleanup	Analysis	8015B		1	86306	02/16/11 16:34	DH	TestAmerica San Francisco

Client Sample ID: MW-2 Date Collected: 02/14/11 13:50 Date Received: 02/14/11 16:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUF TMS		1	86297	02/16/11 05:55	AC	TestAmerica San Francisco
Silica Gel Cleanup	Prep	3510C SGC			86278	02/15/11 16:10	NP	TestAmerica San Francisco
Silica Gel Cleanup	Analysis	8015B		1	86306	02/16/11 16:58	DH	TestAmerica San Francisco

Client Sample ID: MW-3 Date Collected: 02/14/11 11:30 Date Received: 02/14/11 16:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUF TMS		1	86297	02/16/11 06:24	AC	TestAmerica San Francisco
Silica Gel Cleanup	Prep	3510C SGC			86278	02/15/11 16:10	NP	TestAmerica San Francisco
Silica Gel Cleanup	Analysis	8015B		1	86306	02/16/11 17:21	DH	TestAmerica San Francisco

TestAmerica Job ID: 720-33358-1

Lab Sample ID: 720-33358-1 3 Matrix: Water 4 stAmerica San Francisco 5 stAmerica San Francisco 6

Lab Sample ID: 720-33358-2 Matrix: Water

Lab Sample ID: 720-33358-3

Matrix: Water

Certification Summary

Client: Engeo, Inc. Project/Site: Santa Rita FS#3

Laboratory	Authority	Program	EPA Region	Certification ID	* Expiration Date
TestAmerica San Francisco	California	State Program	9	2496	01/31/12

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

* Any expired certifications in this list are currently pending renewal and are considered valid.

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFT MS	8260B / CA LUFT MS	SW846	TAL SF
8015B	Diesel Range Organics (DRO) (GC)	SW846	TAL SF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SF = TestAmerica San Francisco, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

TestAmerica Job ID: 720-33358-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-33358-1	MW-1	Water	02/14/11 15:00	02/14/11 16:50
720-33358-2	MW-2	Water	02/14/11 13:50	02/14/11 16:50
720-33358-3	MW-3	Water	02/14/11 11:30	02/14/11 16:50

	Testar The leader in end				TEST 12	AME 220 Qi Phone	RIC uarry e: (9)	A Sa ' Lah 25) 4	e • 1 84-19	RO ancia Pleas 919	sco (anton Fax				5		erence $\frac{\partial}{\partial r}$			<u>/29</u> Page_	<u>1645</u>	 f		
	Company: ENGEO Address: Phone: Ema Bill To: Attn: Sample ID	ill: Sampled By: K (Son C Phone: Date Time (Mat Preserv	TPH EPA - X 3260B X Gas w/ X BTEX D MTBE	X	EPA 8260B: CL Cas CL BTEX	(HVOCs) EPA 8021 by 8260B	Volatile Organics GC/MS (VOCs)	Semivolatiles GC/MS	Oil and Grease 🗂 Petroleum (EPA 1664) 🛛 Total	Pesticides [] EPA 8081 [] 608 PCBs [] EPA 8082 [] 608		CAM17 Metals (EPA 6010/7470/7471) Si	Metals: 🗆 Lead 🗆 LUFT 🗆 RCRA	EPA 200.8/6020		□ Hexavalent Chromium □ pH (24h hold time for H ₂ O)	D Spec. Cond. D Alkalinity D TSS D TDS	1 SO ₄ El NO ₃ El F 1 NO ₂ El PO ₄				Number of Containers	
7 8 8 8 4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	/N/11 IS:00 IS:00 IS:50 IS:50 U:3 V 11:30 II:30	W HCI HCI HCI HCI HCI HCI																				323232	
ŀ	Project Info Project Name: Santa Kita FS #3 Project#: 6621,100,120	Temp	^{s:} 5		Printed	re Chare	6	IFI	(с ^т	:) ime 2/14/ Date	[11]	Signal	inquishe ure	d by:		Time		Sigr	ted Nar	shed by		Time		and a second provide a second seco
F F	Day Day Day Day	Conforms to re Other: Level 4		nk -	Compar 1) Rece Signatur	ived by Do e		M	2	/ (6. ime ['4-	Ð 1	Comp 2) Rec Signat	any eived by ure	r <u>.</u>		Time		Corr 3) R	npany eceived			Date		
\$	ee Terms and Conditions on reverse FestAmerica SF reports 8015M from C_{2} - C_{24}	(industry norm). Defa	ult for 80158 (s. C ₁₀ -C ₂	ā	Printed I	ol.	<u>4 m</u>		E	Date		Printec Compa	I Name	*********		Date	······		ied Nan	ne		Date Rev(09/09	•

Z Z 77 v 5

5

Client: Engeo, Inc.

Login Number: 33358

Creator: Mullen, Joan

List Number: 1

Question	T / F/ NA Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A
The cooler's custody seal, if present, is intact.	N/A
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the sample IDs on the containers and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True
If necessary, staff have been informed of any short hold time or quick TAT needs	True
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True

14

Job Number: 720-33358-1

List Source: TestAmerica San Francisco