Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

SUBJECT: Perjury Statement

To Whom It May Concern:

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached reports, 2nd Qtr Semi-annual 2013 and Preferential Pathway Study and Data Gaps Investigation Workplan for the site at 3442 Adeline Street, Oakland, CA, is true and correct to the best of my knowledge.

Signed: Staffi 3 immerman Dated 3/30/14

September 10, 2013	San Francisco HC
	Atlanta
SEMI-ANNUAL GROUNDWATER MONITORING REPORT Second Quarter, 2013	Chicago
	Costa Mesa
Property Identification: 3442 Adeline Street Oakland, California	Dallas
AEI Project No. 281939 ACEH Site: RO 02936	Denver
	Los Angeles
Prepared for: Ms. Steffi Zimmerman 3289 Lomas Verdes Place	Miami
Larayette, CA 94545	New York
Prepared by: AEI Consultants 2500 Camino Diablo Walnut Creek, CA 94597	Phoenix
(925) 746-6000	Portland
	San Jose
National Presence	

Local Solutions

Regional Focus

TABLE OF CONTENTS

1.0	INTRODUCTION	.1
2.0	SITE DESCRIPTION AND BACKGROUND	.1
3.0	ENVIRONMENTAL CONCERNS	.2
4.0	GEOLOGY AND HYDROLOGY	.3
5.0	SUMMARY OF GROUNDWATER SAMPLING ACTIVITIES	.4
6.0	ANALYTICAL RESULTS	.5
7.0	SUMMARY	.6
8.0	REPORT LIMITATIONS AND SIGNATURES	.6

FIGURES

FIGURE 1	SITE LOCATION MAP
FIGURE 2	Site Map
FIGURE 3	Detail Site Map
FIGURE 4	GROUNDWATER ANALYTICAL DATA (4/25/2012)

TABLES

TABLE 1	Well Construction Details
TABLE 2	GROUNDWATER ELEVATION DATA
TABLE 3	GROUNDWATER ANALYTICAL DATA

APPENDICES

APPENDIX AMONITORING WELL FIELD SAMPLING FORMSAPPENDIX BANALYTICAL REPORTS AND CHAIN OF CUSTODY DOCUMENTS

2500 Camino Diablo, Walnut Creek, CA 94597

Environmental & Engineering Services

Tel: 925.746.6000 Fax: 925.746.6099

1.0 INTRODUCTION

AEI Consultants (AEI) has prepared this report on behalf of Ms. Steffi Zimmerman, the owner of the property located at 3442 Adeline Street in the City of Oakland, Alameda County, California. AEI has been retained by Ms. Zimmerman to provide environmental engineering and consulting services relating to the release of gasoline from a former underground storage tank (UST) on the property.

Previous site investigations have identified a release of gasoline from the former UST. This report summarizes the results of the Second Quarter 2013 Semi-Annual Groundwater Monitoring event.

2.0 SITE DESCRIPTION AND BACKGROUND

The subject site (hereinafter referred to as the "site" or "property") is located on the northeast corner of 35th Street and Chestnut Street in a mixed commercial, industrial and residential area of Oakland. The Main entrance to the property is on 3442 Adeline Street. A second entrance is located at 3433 Chestnut Street. The on-site building covers approximately 65% of the property and is currently being used as a warehouse facility. Refer to Figure 2 for an aerial photo of the property and Figure 3, Site Map.

2.1 Tank Closure

A single-wall 3,750 gallon UST was removed from the site on February 22, 2000. Analyses of the sidewall soil samples reported TPH-g, TPH-d and benzene at concentrations up to 920 milligrams per kilogram (mg/kg), 850 mg/kg, and 0.3 mg/kg, respectively. TPH-g, TPH-d, and benzene were reported in the excavation groundwater sample at concentrations of 7,400 micrograms per liter (μ g/L), 34,000 μ g/L, and 3,300 μ g/L, respectively. The location of the former UST and sample locations are presented in Figure 3.

2.2 Site Investigations

2006 Clearwater Investigation

On June 23, 2006 Clearwater Group (Clearwater) advanced four (4) soil borings (S1 - S4) on the subject site. The location of soil borings are shown in Figure 3.

Analysis of the soil samples reported TPH-g, TPH-d and benzene at concentrations up to 1,200 mg/kg, 250 mg/kg, and 1.3 mg/kg, respectively. Analysis of groundwater samples reported TPH-g, and BTEX at concentrations up to 120,000 μ g/L, 7,000 μ g/L, 260 μ g/L, 3,500 μ g/L, and 3,300 μ g/L, respectively. TPH-d was reported as non-detectable at reporting limits ranging from 1,500 μ g/L to 40,000 μ g/L.

2007 - 2008 AEI Investigation

In October and December of 2007 and May of 2008, AEI advanced thirty-one soil borings (SB-1 through SB-31) to depths up to 16 feet bgs and three (3) soil vapor samples (VB-1 through VB-3). Soil boring and vapor sample locations are shown on Figure 3.

The maximum concentrations of TPH-g, TPH-d, and benzene reported in soil analyses were 1,200 mg/kg, 450 mg/kg, and 6.9 mg/kg, respectively. MTBE was reported in only one sample, SB-11-15.5, at a concentration of 0.14 mg/kg. The maximum concentrations of TPH-g, TPH-d and benzene reported in groundwater were 83,000 μ g/L, 12,000 μ g/L, and 10,000 μ g/L, respectively.

The results of these and previous soil, soil vapor, and groundwater analyses can be found in *Site Investigation Report*, dated February 14, 2008 and *Groundwater Monitoring Well Installation Report*, dated July 31, 2009.

2009 Interim Source Removal

During March and April of 2009, AEI excavated impacted soil from down gradient of the former UST and inside the building. The excavation measured 35 feet by 75 feet by approximately 12 feet deep. The base of the excavation was backfilled with a layer of permeable rock to allow normal groundwater movement. Five (5) 4-inch diameter casings were installed in the permeable bridge to allow dewatering of the excavation. These casings, BF-1 through BF-5, were left in place. The excavation and backfill activities are summarized in the *Interim Source Removal Report*, dated August 31, 2009.

2009 Well Installation

On April 1 - 2, 2009 and May 12 - 13, 2009, AEI advanced eight soil borings (MW-1 through MW-7 and IW-1) at the property and converted seven (7) of the borings (MW-1 through MW-7) into groundwater monitoring wells and one boring (IW-1) into an injection/sparge well. The monitoring wells were installed at a depth of 17 feet bgs; the sparge well was installed at a depth of 15 feet bgs. The locations of the wells are shown on Figure 3. The details of the well installation are summarized in the *Groundwater Monitoring Well Installation Report*, dated July 31, 2009.

3.0 ENVIRONMENTAL CONCERNS

3.1 Soil

Gasoline contamination has been identified in the shallow soil at significant concentrations (>83 mg/kg) between depths of 7.5 feet and 12 feet bgs, except in the area of well MW-6. Maximum concentrations of TPH-g, and benzene reported in the tank removal confirmation samples were 920 mg/kg and 0.3 mg/kg, respectively. Maximum concentrations of TPH-g and benzene reported in soil boring samples (SB-3) were 1,200 mg/kg and 6.9 mg/kg, respectively. The

distribution of hydrocarbons in the soil is variable and appears related to variations in lithology and permeability.

3.2 Groundwater

The primary contaminant reported in soil and groundwater analyses is gasoline range hydrocarbons with related BTEX. Diesel range hydrocarbons are reported in the groundwater but examinations of chart patterns show the diesel range hydrocarbons to be the heavy end of weathered gasoline. Despite the weathered nature of the gasoline, benzene concentrations remain high.

Examination of EPA Method 8015Bm chromatograph charts for groundwater samples from soil borings SB-16, SB-18 and SB-19 show the presence of a hydrocarbon centered in the overlap area of the diesel and motor oil ranges. These borings are located on the up gradient edge of the plume on Chestnut Street and are up gradient of the former UST location. These heavier than gasoline range hydrocarbons suggest a separate release has occurred up gradient of the site, possibly of heavy heating oil composition.

Maximum concentrations of TPH-g and BTEX reported in groundwater samples from soil borings were 120,000 μ g/L (S-4), 10,000 μ g/L (SB-11) 930 μ g/L (SB-11), 3,500 μ g/L (S-4), and 7,900 μ g/L (SB-11), respectively. Contaminant concentrations reported in groundwater samples from monitoring wells were significantly lower than earlier concentrations reported from soil borings. The higher concentrations in soil borings water samples are believed to have resulted from hydrocarbons adsorbed to sediment in the muddy grab water samples. Maximum TPH-g and BTEX reported in monitoring wells were in samples from MW-2 on August 27, 2009 at concentrations of 26,000 μ g/L, 3,600 μ g/L, 70 μ g/L, 1,500 μ g/L, and 3,000 μ g/L, respectively. No MTBE has been reported in monitoring well groundwater samples.

The calculated direction of groundwater flow is to the west, however the orientation of the hydrocarbon plume and hydrocarbon distribution in the groundwater indicates that the actual groundwater flow is somewhat sinuous and appears to follow permeability channels (sands and gravels).

Historically depth to groundwater has ranged from 3.25 feet bgs (MW-5, 27.14 ft amsl 5/5/2011) to 11.84 feet bgs (MW-6, 17.50 ft amsl 8/27/2009).

4.0 GEOLOGY AND HYDROLOGY

The site lies on the distal end of the Temescal Creek Alluvial Fan at approximately 45 feet above mean seal level (amsl). The Temescal Alluvial Fan is a low relief broad fan sloping westerly and southwesterly from the mouth of the Temescal Creek. The Holocene age alluvial fan deposits are mapped as Qhaf (Helley 1997). The sediments are described as typically,

brown to tan gravelly sand or sandy gravel, which generally grades upward into sandy or silty clay.

At the subject site the sediments in the upper four (4) to five (5) feet underlying the site are black silty clay – clayey silt containing variable amounts of scattered gravel. These sediments are considered to be bay margin sediments.

The shallow fine grained surface layer is underlain by alluvial deposits of intercalated, lenticular bodies of silt, clay, sand, and gravel. The sediments are typically highly variable mixtures of the four primary lithologies. Permeability (transmissivity) of the coarse grained sediments is typically low due to the presence of interstitial clay; however scattered clean sands and gravels are present with good permeability. These permeable bodies appear to act as preferential channels for groundwater flow across the site and are the likely cause of the slightly sinuous, asymmetric appearance of the hydrocarbon plume in the soil and groundwater.

5.0 SUMMARY OF GROUNDWATER SAMPLING ACTIVITIES

The 2nd quarter 2013 Semi Annual Groundwater Monitoring event was performed on April 4, 2013. The well caps were removed from each well (MW-1, MW-2, MW-4 through MW-7, and IW-1; well MW-3 has not been located) and the wells were allowed to equilibrate with the atmosphere for a minimum of 30 minutes.

Depth to water was measured to the nearest one hundredth of a foot with an electronic depth to water meter. The depth to water measurements from this and previous quarterly monitoring events are summarized on Table 2.

The monitoring wells were purged with a peristaltic pump with the sampling tubing at a depth opposite of the permeable sand/gravel in each well. Groundwater parameters of temperature, pH, specific conductivity, dissolved oxygen (DO), and oxidation-reduction potential (ORP) were measured during purging. A visual evaluation of turbidity was made and noted. Groundwater measurements recorded in the field are reported on the field sampling forms included in Appendix A.

Groundwater samples were collected from backfill casings BF-1 and BF-5 using a peristaltic pump after purging approximately 5.0 liters of water.

When groundwater parameters of the purged water stabilized, water samples were collected using the peristaltic pump. Samples for TPH-g and MBTEX were collected in hydrochloric acid (HCI) preserved 40-milliliter (ml) volatile organic analysis vials (VOAs). All samples were labeled with at minimum, project number, sample number, time, date, and sampler's name.

The samples were entered on a chain-of-custody form and placed on ice in a cooler pending same day transportation under chain of custody protocols to McCampbell Analytical, Inc. of Pittsburg, California (Department of Health Services Certification # 1644).

Groundwater samples from the wells were analyzed for TPH-g, MTBE, benzene, toluene, ethylbenzene, and total xylenes (MBTEX), by SW8021B/8015Bm.

5.1 Field Results

Second Quarter 2013 water table elevations in the accessible monitoring wells ranged from 24.49 (MW-1) to 21.97 (MW-6) feet above mean sea level (amsl). These elevations are an average of 1.60 feet lower than at the time of the previous monitoring event on April 24, 2012. The groundwater hydraulic gradient was 0.01 ft/ft to the west. The westerly groundwater flow direction and hydraulic gradient is consistent with previous monitoring events.

Current and historical groundwater elevation data are summarized in Table 2. The groundwater elevation contours and the groundwater flow direction are presented in Figure 4. Groundwater Monitoring Well Field Sampling Forms are presented in Appendix A.

6.0 ANALYTICAL RESULTS

6.1 Backfill Casings (BF-1 and BF-5)

On April 4, 2013, TPH-g, BTEX and MTBE concentrations in backfill casings BF-1 and BF-5 continued to be reported as non-detectable at standard laboratory reporting limits.

6.2 Monitoring Wells

Changes in TPH-g and benzene concentrations are summarized below. Toluene, ethylbenzene and total xylenes concentrations are not detailed below but typically vary in a similar fashion to benzene concentrations.

The TPH-g, BTEX and MTBE concentrations in monitoring well MW-1 continues to be reported as non-detectable at standard laboratory reporting limits.

The TPH-g concentrations in monitoring well MW-2 increased from 2,900 μ g/L on December 20, 2012 to 7,900 μ g/L on April 4, 2013. Benzene concentrations in MW-2 also increased from 63 μ g/L on December 20, 2012 to 960 μ g/L on April 4, 2013.

The TPH-g concentrations in monitoring well MW-4 increased from 150 μ g/L on December 20, 2012 to 1,000 μ g/L on April 4, 2013. Benzene concentrations in MW-4 decreased from 5.8 μ g/L on December 20, 2012 to 30 μ g/L on April 4, 2013.

The TPH-g concentrations in monitoring well MW-5 remained constant at ND<50 μ g/L. Benzene concentrations in MW-5 continue to be reported as ND<0.5 μ g/L.

The TPH-g concentration in monitoring well MW-6 decreased from 5,500 μ g/L on December 20, 2012 to 5,300 μ g/L on April 4, 2013. Benzene concentrations in MW-6 decreased from 81 μ g/L on December 20, 2012 to 76 μ g/L on April 4, 2013.

The TPH-g concentration in monitoring well MW-7 increased from 8,600 μ g/L on April 25, 2012 to 12,000 μ g/L on April 4, 2013. Benzene concentrations in MW-6 increased from 1,000 μ g/L on April 25, 2012 to 2,800 μ g/L on April 4, 2013.

The TPH-g concentration in monitoring well IW-1 continues to be reported as non-detectable at standard laboratory reporting limits. Benzene concentration in IW-1 continues to be reported as non-detectable at standard laboratory reporting limits.

A summary of groundwater analytical data is presented in Table 3 and Figure 5. TPH-g contaminant isopleths are presented in Figure 6. Laboratory results and chain of custody documents are included in Appendix B.

7.0 SUMMARY

TPH-g concentrations in the wells ranged from 12,000 μ g/L (MW-7) to ND<50 μ g/L (MW-1, MW-5, IW-1, BF-1, and BF-5). Benzene concentrations in the wells ranged from 2,800 μ g/L (MW-7) to ND<0.5 μ g/L (MW-1, MW-5, IW-1, BF-1, and BF-5).

TPH-g is not reported in the excavation backfill casings despite historic higher hydrocarbon concentrations in the up gradient monitoring well MW-7. This appears to be due to the high dissolved oxygen (DO) concentrations maintained in the permeable fill in the base of the backfilled excavation. The excavation appears to have to a large extent cut off the down gradient migration of groundwater plume from the original source area around the former gasoline UST.

The next groundwater monitoring event is tentatively scheduled for October 2013 or after the wet season begins.

8.0 **REPORT LIMITATIONS AND SIGNATURES**

This report presents a summary of work completed by AEI, including observations and descriptions of site conditions. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide requested information, but it cannot be assumed that they are entirely representative of all areas not sampled. All conclusions and recommendations are based on these analyses and

observations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices in the geologic, environmental engineering and construction fields that existed at the time and location of the work

Please contact Robert F. Flory at (925) 746-6000 extension 122, if you have any questions regarding the findings and recommendations included in this report.

Sincerely, **AEI Consultants**

Adrian M. Angel, GIT Project Geologist

Sont

Robert F. Flory, PG Senior Geologist

FIGURES

Approximate Scale: 1 inch = 55 feet

0'

55'

AEI CONSULTANTS 2500 Camino Diablo, Suite 200, Walnut Creek, CA 94597

Site Vicinity Map

3442 Adeline Street Oakland, CA 94608

N

FIGURE 2 Job No: 281939

		CHESTNUT STR	REET	
LEGEND		DRAFTED BY RFF	AEI CONS	SULTANTS
- Monitoring Well	Former Gasoline UST		2500 CAMINO DIAB	LO, WALNUT CREEK
Monitoring Well AEI Soil Boring Clear Water Soil Boring	Interim Source Removal Excavation		TPH-g in Monitorin	g Wells (4/4/2013)
Proposed Vapor Probe			3442 ADELINE STREET OAKLAND, CALIFORNIA	FIGURE 6 PROJECT NO. 281939

TABLES

Well ID	Date	Top of	Well Box	Depth to	Well	Casing	Casing	Slotted	Slot	Sand	Sand	Bentonite	Grout
	Installed	Casing	Rim	Water	Depth	Material	Diameter	Casing	Size	Interval	Size	Interval	Interval
		Elevation	Elevation	12/20/12									
		(ft amsl)	(ft amsl)	(ft)	(ft)		(in)	(ft)	(in)	(ft)		(ft)	(ft)
MW-1	04/01/09	31.12	32.13	5.35	17	PVC	4	7-17	0.020	6-17	# 2/12	4-6	0.75 - 5
MW-2	04/01/09	31.19	31.43	6.47	17	PVC	4	7-17	0.020	6-17	# 2/12	4-6	0.75 - 5
MW-3	04/01/09	32.07	32.39		17	PVC	4	7-17	0.020	6-17	# 2/12	4-6	0.75 - 5
MW-4	04/02/09	31.68	31.98	6.21	17	PVC	2	7-17	0.020	6-17	# 2/12	4-6	0.75 - 5
MW-5	05/12/09	30.39	30.82	5.43	17	PVC	2	7-17	0.020	6-17	# 2/12	4-6	0.75 - 5
MW-6	04/02/09	29.34	29.96	5.23	17	PVC	2	7-17	0.020	6-17	# 2/12	4-6	0.75 - 5
MW-7	05/13/09	31.04	31.45		17	PVC	2	7-17	0.020	6-17	# 2/12	4-6	0.75 - 5
IW-1	05/12/09	31.66	31.90	12.88	15	PVC/ stainless	2	13-15	40 mesh	12-15	# 2/12	11-12	0.75-12

Table 1:Monitoring Well Construction Details3442 Adeline Street St. Oakland, CA 94608

Notes:

ft amsl = feet above mean sea level

ft btc = feet below top of casing

3442 Adeline Street St. Oakland, CA 94608									
Well ID	Date	Top of Casing	Depth to	Groundwater	Elevation				
(Screen Interval)	Collected	Elevation	Water	Elevation	Change				
		(ft amsl)	(ft)	(ft amsl)	(ft)				
MW-1	6/10/2009	31.12	7.01	24.11					
(7-17)	8/27/2009	31.12	6.96	24.16	0.05				
	12/15/2009	31.12	5.96	25.16	1.00				
	3/12/2010	31.12	5.06	26.06	0.90				
	10/21/2010	31.12	7.00	24.12	-1.94				
	5/5/2011	31.12	5.88	25.24	1.12				
	4/25/2012	31.12	5.33	25.79	0.55				
	12/12/2012	31.12	5.35	25.77	-0.02				
	4/4/2013	31.12	6.63	24.49	-1.28				
MW-2	6/10/2009	31.19	9.50	21.69					
(7-17)	8/27/2009	31.19	10.50	20.69	-1.00				
	12/15/2009	31.19	8.68	22.51	1.82				
	3/12/2010	31.19	5.09	26.10	3.59				
	10/21/2010	31.19	7.51	23.68	-2.42				
	5/5/2011	31.19	6.68	24.51	0.83				
	4/25/2012	31.19	5.58	25.61	1.10				
	12/12/2012	31.19	6.47	24.72	-0.89				
	4/4/2013	31.19	7.56	23.63	-1.09				
MW-3	6/10/2009	32.07	8.44	23.63					
(7-17)	8/27/2009	32.07	8.59	23.48	-0.15				
、 ,	12/15/2009	32.07	7.66	24.41	0.93				
	3/12/2010	Well inaccessible							
	10/21/2010	Well inaccessible							
M///-4	6/10/2009	31.68	9 45	22.23					
(7-17)	8/27/2009	31.68	10 29	21.39	-0.84				
(, , , , ,	12/15/2009	31.68	8.19	23.49	2.10				
	3/12/2010	31.68	5.45	26.23	2.74				
	10/21/2010	31.68	9.93	21.75	-4.48				
	5/5/2011	31.68	6.60	25.08	3.33				
	4/25/2012	31.68	5.73	25.95	0.87				
	12/12/2012	31.68	6.21	25.47	-0.48				
	4/4/2013	31.68	7.88	23.80	-1.67				
M\W-5	6/10/2009	30 30	9.13	21.26					
(7-17)	8/27/2009	30.39	9.54	20.85	-0 41				
(* **)	12/15/2009	30.39	8.33	22.00	1 21				
	3/12/2010	Well inaccessible							
	10/21/2010	30.39	6.85	23.54	1.48				
	5/5/2011	30.39	3.25	27.14	3.60				
	4/25/2012	30.39	4,50	25.89	-1.25				
	12/12/2012	30.39	5.43	24.96	-0.93				
	4/4/2013	30.39	7.25	23.14	-1.82				
	1, 1, 2010	,	,.20		1.02				

Table 2:Groundwater Elevation Data

Table 2:Groundwater Elevation Data

MW-6 6/10/2009 29.34 9.98 19.36 (7-17) 8/27/2009 29.34 11.84 17.50 -1.86 3/12/2010 29.34 8.33 21.01 3.51 3/12/2010 29.34 4.66 24.68 3.67 10/21/2010 29.34 4.66 24.68 3.67 10/21/2010 29.34 5.59 23.75 4.41 4/25/2012 29.34 5.23 24.11 -0.41 4/4/2013 29.34 5.23 24.51 12/25/2012 29.34 5.53 24.51 4/4/2013 29.34 5.73 24.97 -2.14 MW-7 6/10/2009 31.04 6.53 24.51 12/15/2009 31.04 5.71 25.33 0.48 3/12/2010 31.04 5.78 25.06 0.61 4/25/2012 31.04 5.78 24.45 -1.25 10/21/2010 31.66 7.70		3442 Adeline St	reet St. Oakland	, CA 94608		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-6	6/10/2009	29.34	9.98	19.36	
$\frac{12/15/2009}{3/12/2010} = \frac{29.34}{29.34} = \frac{8.33}{4.66} = \frac{21.68}{24.68} = \frac{3.67}{3.67} \\ \frac{3/12/2010}{10/21/2010} = \frac{29.34}{29.34} = \frac{10.00}{10.9.34} = \frac{5.34}{5.59} \\ \frac{5/5/2011}{4/25/2012} = \frac{29.34}{29.34} = \frac{5.59}{5.23} = \frac{23.75}{24.11} = \frac{4.41}{0.41} \\ \frac{4/4/2013}{4/4/2013} = \frac{29.34}{29.34} = \frac{7.37}{7} = \frac{21.97}{2.14} \\ \frac{4/4/2013}{7} = \frac{29.34}{29.34} = \frac{7.37}{7} = \frac{21.97}{2.197} = \frac{-2.14}{-2.14} \\ \frac{10/21}{12/20/2012} = \frac{29.34}{29.34} = \frac{5.33}{7.37} = \frac{21.97}{21.97} = \frac{-2.14}{-2.14} \\ \frac{10/21}{12/2009} = \frac{31.04}{3.104} = \frac{6.53}{6.19} = \frac{24.85}{24.85} = \frac{0.34}{0.34} \\ \frac{3/12/2010}{12/15/2009} = \frac{31.04}{3.104} = \frac{5.34}{5.57} = \frac{25.33}{25.33} = \frac{0.48}{0.48} \\ \frac{3/12/2010}{31.04} = \frac{5.57}{12} = \frac{25.33}{25.33} = \frac{0.48}{0.48} \\ \frac{3/12/2010}{10/21/2010} = \frac{31.04}{3.104} = \frac{5.71}{5.83} = \frac{25.66}{0.61} = \frac{0.61}{12} \\ \frac{4/25/2012}{12/20/2012} = \frac{10.44}{3.104} = \frac{5.71}{25.33} = \frac{25.33}{0.27} \\ \frac{10/21/2010}{12/2/2010} = \frac{31.66}{7.65} = \frac{24.01}{0.05} \\ \frac{12/15/2009}{12/15/2009} = \frac{31.66}{7.70} = \frac{23.96}{2.36} = \frac{-0.05}{0.05} \\ \frac{12/15/2009}{10/21/2010} = \frac{31.66}{3.166} = \frac{7.65}{23.61} = \frac{23.29}{-3.35} \\ \frac{5/5/2011}{5/5/2011} = \frac{31.66}{3.166} = \frac{12.81}{2.88} = \frac{18.85}{0.07} \\ \frac{10/21}{12/20/2012} = \frac{31.66}{3.166} = \frac{12.88}{18.78} = \frac{4.83}{4.83} \\ \frac{4/4/2013}{4/4/2013} = \frac{4.42}{31.66} = \frac{12.81}{12.88} = \frac{18.85}{0.07} \\ \frac{10/21}{12/20/2012} = \frac{25.01}{3.1.66} = \frac{-2.94}{0.05} \\ \frac{10/21/2010}{22.81} = \frac{2.94}{2.33} = \frac{10.99}{0.07} \\ \frac{10/21/2010}{22.81} = \frac{2.94}{2.33} = \frac{10.99}{0.07} \\ \frac{10/21/2010}{22.81} = \frac{2.94}{2.33} = \frac{10.99}{0.07} \\ \frac{10/21/2010}{22.81} = \frac{2.94}{2.94} = \frac{10.01}{0.00} \\ \frac{10/21/2010}{22.81} = \frac{2.94}{2.94} = \frac{10.01}{0.00} \\ \frac{10.95}{0.00} \\ \frac{10.95}{0.00} = \frac$	(7-17)	8/27/2009	29.34	11.84	17.50	-1.86
3/12/2010 29.34 4.66 24.68 3.67 10/21/2010 29.34 10.00 19.34 -5.34 5/5/2011 29.34 5.59 23.75 4.41 4/25/2012 29.34 4.82 24.52 0.77 12/20/2012 29.34 5.23 24.11 -0.41 4/4/2013 29.34 7.37 21.97 -2.14 MW-7 6/10/2009 31.04 6.53 24.51 (7-17) 8/27/2009 31.04 5.71 25.33 0.48 3/12/2010 31.04 5.71 25.33 0.48 3/12/2010 31.04 5.71 25.33 0.27 12/15/2009 31.66 7.65 24.45 -1.25 5/5/2011 31.04 5.71 25.33 0.27 12/20/2012 Well Unaccessible 4/25/201 (13-15) 8/27/2009 31.66 7.65 24.01 12/15/2009		12/15/2009	29.34	8.33	21.01	3.51
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3/12/2010	29.34	4.66	24.68	3.67
5/5/2011 29.34 5.59 23.75 4.41 4/25/2012 29.34 4.82 24.52 0.77 12/20/2012 29.34 5.59 24.11 -0.41 4/4/2013 29.34 7.37 21.97 -2.14 MW-7 6/10/2009 31.04 6.53 24.51 12/15/2009 31.04 5.71 25.33 0.48 3/12/2010 31.04 5.34 25.70 0.37 10/21/2010 31.04 5.71 25.33 0.48 4/4/2013 31.04 5.71 25.33 0.27 12/20/2012 Well Unaccessible 4/4/2013 31.04 5.71 25.33 0.27 12/20/2012 31.66 7.65 24.01 (13-15) 8/27/2009 31.66 7.65 24.01 (13-15) 8/27/2009 31.66 10.99 20.67 -3.29 31/2/5/2011		10/21/2010	29.34	10.00	19.34	-5.34
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		5/5/2011	29.34	5.59	23.75	4.41
12/20/2012 4/4/201329.34 29.345.23 7.3724.11 21.97-0.41 -2.14MW-7 (7-17) $6/10/2009$ 31.04 31.04 6.53 6.53 24.51 $$ 25.33 0.34 0.37 (7-17) $8/27/2009$ 31.04 5.71 $12/15/2009$ 31.04 5.71 5.34 25.33 25.06 0.48 0.611 $4/25/2011$ 31.04 5.71 5.98 25.06 0.611 $4/25/2012$ 31.04 5.71 25.33 0.27 Well Unaccessible $4/25/2012$ $12/20/2012$ 31.04 31.04 5.71 25.33 0.27 Well Unaccessible $4/4/2013$ 31.04 31.04 5.71 25.33 0.27 Well Unaccessible $4/4/2013$ 31.06 31.66 7.65 24.01 $$ $$ (13-15) $8/27/2009$ 31.66 7.65 22.31 24.93 2.66 $3/12/2010$ 31.66 31.66 0.99 22.31 22.31 -3.35 22.31 $4/25/2012$ 31.66 31.66 12.88 18.78 18.78 -4.83 -4.83 $4/4/2013$ 31.66 12.88 18.78 18.78 -4.83 -4.83 $4/4/2013$ 31.66 12.88 18.78 18.78 -4.83 -4.83 $12/15/2009$ 23.42 $$ 15.8 West (0.0186) 2 $8/27/2009$ 22.40 $$ West (0.0186) 3 $12/15/2009$ 22.40 $$ West (0.0186) 4 $4/3/12/2010$ 25.75 2.33 West (0.0186) 3 $3/12/2100$ 22.42 23.42 1.58 		4/25/2012	29.34	4.82	24.52	0.77
4/4/2013 29.34 7.37 21.97 2.14 MW-7 (7-17) 6/10/2009 31.04 6.53 24.51 12/15/2009 31.04 6.19 24.85 0.34 3/12/2010 31.04 5.71 25.33 0.48 3/12/2010 31.04 5.74 25.70 0.37 10/21/2010 31.04 5.98 26.66 0.61 4/25/2012 31.04 5.98 25.06 0.61 4/25/2012 31.04 5.71 25.33 0.27 12/20/2012 Well Unaccessible 4/25/2012 31.06 7.76 24.96 -0.05 12/15/2009 31.66 7.70 23.96 -0.05 12/15/2009 31.66 7.70 23.96 -0.05 12/15/2009 31.66 10.99 20.67 -3.29 3/12/2010 31.66 6.73 24.93 2.62 4/25/2012 31.66 12.88		12/20/2012	29.34	5.23	24.11	-0.41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4/4/2013	29.34	7.37	21.97	-2.14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N/\\/_7	6/10/2009	31 04	6 5 3	24 51	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(7-17)	8/27/2009	31.04	6.19	24.51	0.34
$\frac{11}{10/21/2010} = 31.64 = 5.71 = 25.50 = 0.37 = 0.37 = 0.27 = 0.37 = 0.27 = 0.37 = 0.27 =$	(/-1/)	12/15/2009	31.04	5 71	25.33	0.34
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3/12/2010	31.04	5 34	25.55	0.40
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		10/21/2010	31.04	6 59	24.45	-1 25
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		5/5/2011	31.04	5.98	25.06	0.61
$ \begin{array}{ c c c c c c } \hline & Well Unaccessible \\ \hline & 4/4/2013 \\ \hline & Well Unaccessible \\ \hline & 4/4/2013 \\ \hline & 31.04 \\ \hline & 6.18 \\ \hline & 24.86 \\ \hline & -0.47 \\ \hline & \\ \hline \hline \\ \hline \\$		4/25/2012	31.04	5 71	25.33	0.27
$ \begin{array}{ c c c c c c } \hline How of normalized boundary boundary$		12/20/2012	Well Unaccessible	0.71	20.00	0.27
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		4/4/2013	31.04	6.18	24.86	-0.47
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IW-1	6/10/2009	31.66	7.65	24.01	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(13-15)	8/27/2009	31.66	7.70	23.96	-0.05
3/12/2010 31.66 6.00 25.66 4.99 10/21/2010 31.66 9.35 22.31 -3.35 5/5/2011 31.66 6.73 24.93 2.62 4/25/2012 31.66 8.05 23.61 -1.32 12/20/2012 31.66 12.88 18.78 -4.83 4/4/2013 31.66 12.81 18.85 0.07 Event Date Average Water Table Elevation (ft amsl) Change from Previous Episode (ft) Flow Direction (gradient) 1 6/10/2009 22.40 West (0.0186) 2 8/27/2009 23.42 1.58 West (0.0186) 3 12/15/2009 23.42 1.58 West (0.0181) 4 3/12/2010 25.75 2.33 West (0.004) 5 10/21/2010 22.81 -2.94 North Northwest (0.041) 6 5/5/2011 25.52 0.38 West (0.01) 7 4/25/2012 25.52 0.38 West (0.01)		12/15/2009	31.66	10.99	20.67	-3.29
10/21/2010 31.66 9.35 22.31 -3.35 5/5/2011 31.66 6.73 24.93 2.62 4/25/2012 31.66 8.05 23.61 -1.32 12/20/2012 31.66 12.88 18.78 -4.83 4/4/2013 31.66 12.81 18.85 0.07 Event Date Average Water Table Elevation (ft amsl) Change from Previous Episode (ft) Flow Direction (gradient) 1 6/10/2009 22.40 West (0.0186) 2 8/27/2009 21.85 -0.55 West (0.0186) 3 12/15/2009 23.42 1.58 West (0.0181) 4 3/12/2010 25.75 2.33 West (0.004) 5 10/21/2010 22.81 -2.94 North Northwest (0.041) 6 5/5/2011 25.13 2.32 West (0.01) 7 4/25/2012 25.52 0.38 West (0.01) 8 12/20/2012 25.01 -0.51 West (0.01)		3/12/2010	31.66	6.00	25.66	4.99
5/5/2011 31.66 6.73 24.93 2.62 4/25/2012 31.66 8.05 23.61 -1.32 12/20/2012 31.66 12.88 18.78 -4.83 4/4/2013 31.66 12.81 18.85 0.07 Event Date Average Water Table Elevation (ft amsl) Change from Previous Episode (ft) Flow Direction (gradient) 1 6/10/2009 22.40 West (0.0186) 2 8/27/2009 21.85 -0.55 West (0.0186) 3 12/15/2009 23.42 1.58 West (0.0181) 4 3/12/2010 25.75 2.33 West (0.004) 5 10/21/2010 22.81 -2.94 North Northwest (0.041) 6 5/5/2011 25.13 2.32 West (0.01) 7 4/25/2012 25.52 0.38 West (0.01) 8 12/20/2012 25.01 -0.51 West (0.01)		10/21/2010	31.66	9.35	22.31	-3.35
4/25/2012 12/20/2012 4/4/2013 31.66 31.66 8.05 12.88 12.81 23.61 18.78 18.78 -1.32 -4.83 Event Date Average Water Table Elevation (ft amsl) Change from Previous Episode (ft) Flow Direction (gradient) 1 6/10/2009 22.40 West (0.0186) 2 8/27/2009 21.85 -0.55 West (0.0186) 3 12/15/2009 23.42 1.58 West (0.0186) 4 3/12/2010 25.75 2.33 West (0.004) 5 10/21/2010 22.81 -2.94 North Northwest (0.041) 6 5/5/2011 25.13 2.32 West (0.01) 7 4/25/2012 25.52 0.38 West (0.01) 8 12/20/2012 25.01 -0.51 West (0.01)		5/5/2011	31.66	6.73	24.93	2.62
12/20/2012 4/4/2013 31.66 31.66 12.88 12.81 18.78 18.85 -4.83 0.07 Event Date Average Water Table Elevation (ft amsl) Change from Previous Episode (ft) Flow Direction (gradient) 1 6/10/2009 22.40 West (0.0186) 2 8/27/2009 21.85 -0.55 West (0.0186) 3 12/15/2009 23.42 1.58 West (0.0181) 4 3/12/2010 25.75 2.33 West (0.004) 5 10/21/2010 22.81 -2.94 North Northwest (0.041) 6 5/5/2011 25.13 2.32 West (0.01) 7 4/25/2012 25.52 0.38 West (0.01) 8 12/20/2012 25.01 -0.51 West (0.01)		4/25/2012	31.66	8.05	23.61	-1.32
4/4/2013 31.66 12.81 18.85 0.07 Event Date Average Water Table Elevation (ft amsl) Change from Previous Episode (ft) Flow Direction (gradient) 1 6/10/2009 22.40 West (0.0186) 2 8/27/2009 21.85 -0.55 West (0.0186) 3 12/15/2009 23.42 1.58 West (0.0181) 4 3/12/2010 25.75 2.33 West (0.004) 5 10/21/2010 22.81 -2.94 North Northwest (0.041) 6 5/5/2011 25.13 2.32 West (0.01) 7 4/25/2012 25.52 0.38 West (0.01) 8 12/20/2012 25.01 -0.51 West (0.01) 8 12/20/2012 25.01 -0.51 West (0.01)		12/20/2012	31.66	12.88	18.78	-4.83
Event Date Average Water Table Elevation (ft amsl) Change from Previous Episode (ft) Flow Direction (gradient) (ft/ft) 1 6/10/2009 22.40 West (0.0186) 2 8/27/2009 21.85 -0.55 West (0.0186) 3 12/15/2009 23.42 1.58 West (0.0181) 4 3/12/2010 25.75 2.33 West (0.004) 5 10/21/2010 22.81 -2.94 North Northwest (0.041) 6 5/5/2011 25.13 2.32 West (0.01) 7 4/25/2012 25.52 0.38 West (0.01) 8 12/20/2012 25.01 -0.51 West (0.01)		4/4/2013	31.66	12.81	18.85	0.07
Event Date Average Water Table Elevation (ft amsl) Change from Previous Episode (ft) Flow Direction (gradient) 1 6/10/2009 22.40 West (0.0186) 2 8/27/2009 21.85 -0.55 West (0.0186) 3 12/15/2009 23.42 1.58 West (0.0181) 4 3/12/2010 25.75 2.33 West (0.004) 5 10/21/2010 22.81 -2.94 North Northwest (0.041) 6 5/5/2011 25.13 2.32 West (0.01) 7 4/25/2012 25.52 0.38 West (0.01) 8 12/20/2012 25.01 -0.51 West (0.01)						
Table Elevation (ft amsl)Previous Episode (ft)(gradient) (ft/ft)16/10/200922.4028/27/200921.85-0.55312/15/200923.421.5843/12/201025.752.33510/21/201022.81-2.9465/5/201125.132.3274/25/201225.520.38812/20/201225.01-0.51812/20/201225.010.51	Event	Date	Average Water	Change from	Flow Di	rection
(ft amsl)(ft)(ft/ft)16/10/200922.40West (0.0186)28/27/200921.85-0.55West (0.0186)312/15/200923.421.58West (0.0181)43/12/201025.752.33West (0.004)510/21/201022.81-2.94North Northwest (0.041)65/5/201125.132.32West (0.01)74/25/201225.520.38West (0.01)812/20/201225.01-0.51West (0.01)			Table Elevation	Previous Episode	(grad	lient)
16/10/200922.40West (0.0186)28/27/200921.85-0.55West (0.0186)312/15/200923.421.58West (0.0181)43/12/201025.752.33West (0.004)510/21/201022.81-2.94North Northwest (0.041)65/5/201125.132.32West (0.01)74/25/201225.520.38West (0.01)812/20/201225.01-0.51West (0.01)			(ft amsl)	(ft)	(ft/	/ft)
2 8/27/2009 21.85 -0.55 West (0.0186) 3 12/15/2009 23.42 1.58 West (0.0181) 4 3/12/2010 25.75 2.33 West (0.004) 5 10/21/2010 22.81 -2.94 North Northwest (0.041) 6 5/5/2011 25.13 2.32 West (0.01) 7 4/25/2012 25.52 0.38 West (0.01) 8 12/20/2012 25.01 -0.51 West (0.01)	1	6/10/2009	22.40		West (0).0186)
3 12/15/2009 23.42 1.58 West (0.0181) 4 3/12/2010 25.75 2.33 West (0.004) 5 10/21/2010 22.81 -2.94 North Northwest (0.041) 6 5/5/2011 25.13 2.32 West (0.01) 7 4/25/2012 25.52 0.38 West (0.01) 8 12/20/2012 25.01 -0.51 West (0.01)	2	8/27/2009	21.85	-0.55	West (0).0186)
4 3/12/2010 25.75 2.33 West (0.004) 5 10/21/2010 22.81 -2.94 North Northwest (0.041) 6 5/5/2011 25.13 2.32 West (0.01) 7 4/25/2012 25.52 0.38 West (0.01) 8 12/20/2012 25.01 -0.51 West (0.01)	3	12/15/2009	23.42	1.58	West (0).0181)
5 10/21/2010 22.81 -2.94 North Northwest (0.041) 6 5/5/2011 25.13 2.32 West (0.01) 7 4/25/2012 25.52 0.38 West (0.01) 8 12/20/2012 25.01 -0.51 West (0.01)	4	3/12/2010	25.75	2.33	West (0.004)
6 5/5/2011 25.13 2.32 West (0.01) 7 4/25/2012 25.52 0.38 West (0.01) 8 12/20/2012 25.01 -0.51 West (0.01)	5	10/21/2010	22.81	-2.94	North North	vest (0.041)
7 4/25/2012 25.52 0.38 West (0.01) 8 12/20/2012 25.01 -0.51 West (0.01)	6	5/5/2011	25.13	2.32	West	(0.01)
8 12/20/2012 25.01 -0.51 West (0.01)	7	4/25/2012	25.52	0.38	West	(0.01)
	8	12/20/2012	25.01	-0.51	West	(0.01)
9 4/4/2013 23.41 -1.60 West (0.01)	9	4/4/2013	23.41	-1.60	West	(0.01)

Sample	Date	Depth to Water	TPH-d	TPH-g	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes
			Method	d 8015C		/	Method 8021	3	
		(ft)				(ua/L)		-	
ESL - current	or potenital D)W	100	100	5.0	1.0	40	30	20
ESL - not pote	enital DW		210	210	1,800	46	130	43	100
M\\/_1	0/1/17/00	7 01	07	220	~5.0	10	<05	3.0	5 /
10100-1	04/17/09	6.96	77	7 000	< 1.0	610	<0.5 10	3.0	220
	09/17/09			92	< 15	0.91	0 70	<05	< 0.5
	12/15/09	5 96		2500	< 50	170	6.4	<0.5 66	<0.5 120
	03/12/10	5.06		500	< 5.0	4 0	11	0.6	0.7
	10/21/10	7.00		< 50	< 5.0	<05	<0.5	<0.5	<0.7
	05/05/11	5.88		< 50	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	04/25/12	5 33		< 50	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	12/20/12	5 35		< 50	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	04/04/13	6.63		<50	< 5.0	<0.5	<0.5	< 0.5	<0.5
MW-2	04/17/09	9 50	2 200	7 000	<100	850	19	93	470
	08/27/09	10 50		26,000	< 1 200	3 600	< 25	1 200	3,000
	12/15/09	8 68		25,000	< 250	2 900	70	1,200	2 400
	03/12/10	5.69		7 300	< 350	590	7.0	6.4	680
	10/21/10	7 51		1 900	<15	140	14	28	140
	05/05/11	6.68		27 000	<180	2,300	13	1 700	2 600
	04/25/12	5 58		9 600	< 120	440	8.8	260	920
	12/20/12	6 47		2 900	< 35	63	2.6	200	85
	04/04/13	7.56		7,900	<150	960	10	380	690
MW-3	04/17/09	8 4 4	2 200	10 000	<110	930	5.6	270	920
	08/27/09	8.59	_,	17.000	<250	3800	38	730	710
	09/17/09			260	<15	1.8	1.0	< 0.5	2.1
	10/14/09			1.800	< 30	220	13	37	130
	12/15/09	7.66		4,900	<50	890	13	160	130
	03/12/10	Well inacces	ssible	.,					
	10/21/10	Well inacc	essible						
MW-4	04/17/09	9.45	1,200	4.700	<30	140	2.0	28	18
	08/27/09	10.29		4.300	<25	75	11	8.6	3.4
	12/15/09	8.19		3,000	<15	64	11	5.6	3.3
	03/12/10	5.45		6,100	<35	1200	14	170	6.2
	10/21/10	9.93		1,900	<15	120	4.7	5.7	1.8
	05/05/11	6.60		4,900	<25	560	2.6	41	17
	04/25/12	5.73		330	< 5.0	23	1.4	2.0	4.2
	12/20/12	6.21		150	<5.0	5.8	<0.5	<0.5	<0.5
	04/04/13	7.88		1,000	<5.0	30	4.6	0.61	0.65

Table 3:Groundwater Analytical Data3442 Adeline Street St. Oakland, CA 94608

Sample ID	Date	Depth to Water	TPH-d	TPH-g	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes
			Method	d 8015C		/	Method 8021	В	I
		(ft)		L		(ua/L)			
ESL - current	or potenital D)W	100	100	5.0	1.0	40	30	20
ESL - not pot	enital DW		210	210	1,800	46	130	43	100
	05/00/00	0.40	0.000	11000	100		4.0	0.40	100
WW-5	05/22/09	9.13	2,800	14,000	<100	3,000	12	340	420
	08/27/09	9.54		25,000	<400	3,300	36	110	160
	12/15/09	8.33		8,200	<250	1,200	6.9	300	610
	03/12/10	well inacces	ssidie	50	ГО	1.0	0.5	0 F	0.5
	10/21/10	6.85		<50	< 5.0	1.3	< 0.5	< 0.5	< 0.5
	05/05/11	3.25		/90	<20	140	1.0	29	30
	04/25/12	4.51		67	< 5.0	3.4	< 0.5	1.4	0.83
	12/20/12	5.43		<50	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	04/04/13	7.25		<50	<5.0	<0.5	<0.5	<0.5	<0.5
MW-6	04/17/09	9.98	1,000	5,600	<300	210	3.0	180	160
	08/27/09	11.84		2,200	<120	98	7.9	20	1.1
	12/15/09	8.59		4,700	<250	370	6.9	260	300
	03/12/10	4.66		9,300	<90	210	12	250	110
	10/21/10	10.00		380	<5.0	35	1.2	4.6	3.8
	05/05/11	5.59		7,000	<75	80	2.9	120	28
	04/25/12	4.82		7,400	<150	99	11.0	100	27
	12/20/12	5.23		5,500	<50	81	3.1	78	16
	04/04/13	7.37		5,300	<70	76	5.7	50	12
MW-7	04/17/09	6.53	3.700	12.000	<120	1.000	37	100	36
	08/27/09	6.19		12,000	<100	550	30	130	33
	12/15/09	5.71		9,600	<100	620	26	140	20
	03/12/10	5.34		10.000	<25	850	33	87	28
	10/21/10	6.59		7.900	<180	1.100	22	44	21
	05/05/11	5.98		9,300	<200	690	23	42	21
	04/25/12	5.71		8.600	<75	1.000	31	10	20
	12/20/12	Well inacces	sable due to	parked car		,			
	04/04/13	6.18		12,000	<210	2,800	51	96	37
IW-1	05/22/09	7.65	680	1,200	<15	58	27	23	18
	08/27/09	7 70		160	< 5.0	4 1	0.5	0.8	1.6
	09/17/09			300	< 5.0	8.0	15	14	0.85
	12/15/09	10 99		220	< 5.0	5.4	1.0	0.65	0.7
	03/12/10	6.00		< 50	< 5.0	19	< 0.5	< 0.5	< 0.5
	10/21/10	9.35		< 50	< 5.0	<05	<0.5	<0.5	<0.5
	05/05/11	6 73		< 50	< 5.0 < 5.0	<0.5	<0.5 <0.5	<0.5 <0.5	۲۵.5 ۲۵.5
	04/25/12	8.05		< 50	< 5.0	0.91	<0.5	<0.5	0.57
	12/20/12	12 88		< 50	< 5.0	<05	<0.5	<0.5	<05
	04/04/13	12.81		<50	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5

Table 3:Groundwater Analytical Data3442 Adeline Street St. Oakland, CA 94608

Sample	Date	Depth	TPH-d	TPH-g	MTBE	Benzene	Toluene	Ethyl	Xylenes
ID		to Water						benzene	
			Method	1 8015C		1	Method 8021	8	
		(ft)				(µg/L)			
ESL - current of	or potenital D	W	100	100	5.0	1.0	40	30	20
ESL - not pote	nital DW		210	210	1,800	46	130	43	100
BF-1	03/27/09			19.000	<250	890	27	460	1,200
post H ₂ O ₂	06/17/09			6,700	<150	840	19	170	150
pre-aeration	08/10/09			11,000	<120	710	14	440	290
post aeration	08/27/09			9,600	<90	590	14	350	220
•	09/13/09			<50	<5.0	1.2	<0.5	<0.5	<0.5
	10/14/09			2,400	<10	83	1.9	5.0	120
	12/11/09	6.70		200	<5.0	12	<0.5	2.2	9.6
	03/12/10	5.61		<50	< 0.5	2.9	<0.5	<0.5	<0.5
	10/21/10	7.95		560	<5.0	68	1.5	6.7	25
	05/05/11	6.25		<50	<5.0	0.65	<0.5	<0.5	<0.5
	04/25/12	5.85		<50	<5.0	<0.5	<0.5	<0.5	<0.5
	12/20/12	5.82		<50	<5.0	<0.5	<0.5	<0.5	<0.5
	04/04/13	6.78		<50	<5.0	<0.5	<0.5	<0.5	<0.5
BF-5	08/27/09			170	<25	32	0.55	4.2	220
	10/14/09			<50	<5.0	<0.5	<0.5	<0.5	<0.5
	12/11/09	7.25		130	<5.0	40	<0.5	0.91	<0.5
	03/12/10	6.09		<50	<5.0	4.3	<0.5	0.91	<0.5
	10/21/10	8.62		80	<5.0	8.8	<0.5	1.4	4.5
	05/05/11	6.75		<50	<5.0	<0.5	<0.5	<0.5	<0.5
	04/25/12	6.37		<50	<5.0	<0.5	<0.5	<0.5	<0.5
	12/20/12	6.33		<50	<5.0	<0.5	<0.5	<0.5	<0.5
	04/04/13	7.25		<50	<5.0	<0.5	<0.5	<0.5	<0.5

Table 3:Groundwater Analytical Data3442 Adeline Street St. Oakland, CA 94608

Notes:

 $\mu g/L = micrograms per liter$

ESL = Environmental Screening Level

TPH-g = total petroleum hydrocarbons as gasoline

680 = Current concentration above ESL

TPH-d = total petroleum hydrocarbons as diesel MTBE = methyl tert-butyl ether **680** = most recent sample

APPENDIX A

Groundwater Monitoring Well Field Sampling Forms

Monitoring Well Number: MW-1

Project Name:	Zimmerman	Date of Sampling:	4-4-13
Job Number:	281939	Name of Sampler:	J. S <mark>i</mark> gg
Project Address:	3442 Adeline St. Oakland Cal		

MONITORIN	IG WELL DAT	Α		
Well Casing Diameter (2"/4"/6")		4"		
Wellhead Condition	ОК	•		
Elevation of Top of Casing (feet above msl)		31.12		
epth of Well 17.00				
Depth to Water (from top of casing)	6.63			
Water Elevation (feet above msl)				
Well Volumes Purged		Micropurged		
Actual Volume Purged (liters)		5		
Appearance of Purge Water		CIEAR		
Free Product Present	? No	Thickness (ft):		

		G	ROUNDWA	TER SAMPL	ES		State States
Number of Samples/Container Size				3 VOA			
Time	Vol Removed (Liters)	Temperature (deg C)	pН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
1020	1	17.37	7.66	807	5.24	321.8	
	2	17.41	7.66	795	4.73	323.0	
	3	17.45	7.64	790	4.37	324.7	•
	4	17.48	7.64	787	2.95	324.9	
1030	5	17.50	7.62	783	2.54	325.3	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Bottom of drop tube at 11.5 feet bgs. Purge rate <0.5 liters per minute.

no odon

Monitoring Well Number: MW-2

Project Name:	Zimmerman	Date of Sampling:	4-4-13
Job Number:	281939	Name of Sampler:	J. Sigg
Project Address:	3442 Adeline St. Oakland Cal		

MONITORIN	G WELL DAT	Α		
Well Casing Diameter (2"/4"/6")		. 4"		
Wellhead Condition	ОК		•	
Elevation of Top of Casing (feet above msl)		31.19		
Depth of Well 17.00				
Depth to Water (from top of casing)	7.56			
Water Elevation (feet above msl)				
Well Volumes Purged		Micropurged		
Actual Volume Purged (liters)	liters) 5			
Appearance of Purge Water		Clear		
Free Product Present?	No	Thickness (ft):		

umber of Samples/Container Size			3 VOA				
Time	Vol Removed (Liters)	Temperature (deg C)	pН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
0950		17.43	7.04	790	5.24	304.8	
	2	17.50	7.06	783	4.63	301.7	
	3	17.58	7.06	777	4.21	298.5	*
	4	17.63	7.05	770	3.84	296.1	
1000	5	17.67	7.05	765	3,22	293.4	
		· · · · ·					
				-			
				-			
-							

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Monitoring Well Number: MW-4

1

Project Name:	Zimmerman	Date of Sampling:	4-4-13
Job Number:	281939	Name of Sampler:	J. Sigg
Project Address:	3442 Adeline St. Oakland Cal		

MONITOR	ING WELL DATA			
Well Casing Diameter (2"/4"/6")	2"			
Wellhead Condition	ОК			
Elevation of Top of Casing (feet above msl)	31.68			
Depth of Well	17.00			
Depth to Water (from top of casing)	7.88			
Water Elevation (feet above msl)				
Well Volumes Purged	Micropurged			
Actual Volume Purged (liters)	5			
Appearance of Purge Water	Clean			
Free Product Prese	nt? No Thickness (ft):	-		

Imber of Samples/Container Size			3 VOA				
Time	Vol Removed (Liters)	Temperature (deg C)	pН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
0970	1	17.40	6.84	628	6.24	285.4	
0.02	2	17.45	10.82	622	5.72	266.	
	3	17.58	6.80	620	5.03	260.4	
_	4	17.62	6.80	617	4.72	257.3	
0930	5	17.66	6.81	615	4.10	255.2	
		1					

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

oder no

Monitoring Well Number: MW-4

1

Project Name:	Zimmerman	Date of Sampling: 4	+-4-13
Job Number:	281939	Name of Sampler:	J. Sigg
Project Address:	3442 Adeline St. Oakland Cal		

MONIT	ORING WELL DATA	Shuda a tri atte trada			
Well Casing Diameter (2"/4"/6")	2"				
Wellhead Condition	ОК	▼			
Elevation of Top of Casing (feet above msl)	31.68	-			
Depth of Well	17.00				
Depth to Water (from top of casing)	7.88				
Water Elevation (feet above msl)					
Well Volumes Purged	Micropurged				
Actual Volume Purged (liters)	5				
Appearance of Purge Water	Clean				
Free Product P	resent? No Thickness (ft):				

lumber of Samples/Container Size			3 VOA				
Time	Vol Removed (Liters)	Temperature (deg C)	рН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
0970	1	17.40	6.84	628	6.24	285.4	
0.00	2	17.45	10.82	622	5.72	266.	
	3	17.58	6.80	620	5.03	260.4	
_	4	17.62	6.80	617	4.72	257.3	
0930	5	17.66	6.81	615	4.10	255.2	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Monitoring Well Number: MW-5

Project Name:	Zimmerman	Date of Sampling: 4	-4-13
Job Number:	281939	Name of Sampler:	J. Sigg
Project Address:	3442 Adeline St. Oakland Cal		

MONITORING	WELL DAT	Α	2004	
Well Casing Diameter (2"/4"/6")		. 2"		
Wellhead Condition	ЭК		-	
Elevation of Top of Casing (feet above msl)		30.39		
Depth of Well	17.00			
Depth to Water (from top of casing)	7.25			
Water Elevation (feet above msl)				
Well Volumes Purged		Micropurged		
Actual Volume Purged (liters)		5		
Appearance of Purge Water		CICAR		
Free Product Present?	No	Thickness (ft):		

ber of Samp	oles/Container S	Size		3 VOA		x	
Time	Vol Removed (Liters)	Temperature (deg C)	рН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
0850	1	17.33	6.44	624	4.98	181.7	
	2	17.40	6.51	620	4.22	180.5	
	3	17.47	6.53	631	390	183.3	
	4	17.49	6.55	634	3.65	187.2	
0960	5	17.53	6.55	630	3.21	185.1	
		4					

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Monitoring Well Number: MW-6

Project Name:	Zimmerman	Date of Sampling: 4-4-13	
Job Number:	281939	Name of Sampler: J. Sigg	
Project Address:	3442 Adeline St. Oakland Cal		

MONITORING	WELL DATA		Karal March		
Well Casing Diameter (2"/4"/6")		2"			
Wellhead Condition	ЭК				
Elevation of Top of Casing (feet above msl)		29.34			
Depth of Well	17.00				
Depth to Water (from top of casing)	7.37				
Water Elevation (feet above msl)					
Well Volumes Purged		Micropurged			
Actual Volume Purged (liters)	3.0-5				
Appearance of Purge Water		Clear			
Free Product Present?	No	Thickness (ft):			

mber of Sam	ples/Container S	Size		3 VOA		2	
Time	Vol Removed (Liters)	Temperature (deg C)	pН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
0820	1	17.42	6.82	882	4.27	82.4	
	2	17.46	6.80	876	3.65	77.6	
	3	17.50	6.80	870	3.14	70.3	6
	4	17.55	6.79	864	2.73	66.7	
0830	5	17.57	6.78	853	2.17	60.1	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Clear with slight hydrocarbon odor.	
Bottom of drop tube at 13.0 feet bgs. Purge rate <0.5 liters per minute.	14.

Monitoring Well Number: MW-7

Project Name:	Zimmerman	Date of Sampling:	4-4-13
Job Number:	281939	Name of Sampler:	J. Sigg
Project Address:	3442 Adeline St. Oakland Cal		

MONITORING	WELL DA	TA	Station of the		
Well Casing Diameter (2"/4"/6")		. 2"			
Wellhead Condition	OK		•		
Elevation of Top of Casing (feet above msl)		31.04			
Depth of Well	17.00				
Depth to Water (from top of casing)	6.18				
Water Elevation (feet above msl)					
Well Volumes Purged		Micropurged			
Actual Volume Purged (liters)		5			
Appearance of Purge Water		Clear			
Free Product Present?	No	Thickness (ft):			

		G	ROUNDWA	TER SAMPL	.ES		
Number of Samp	les/Container S	Size		3 VOA			
Time	Vol Removed (Liters)	Temperature (deg C)	pН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
0650		17.44	6.91	724	3.92	77.4	
	2	17.49	6.90	720	3.04	75.1	
	3	17.58	6.90	720	2.73	73.7	•
	4	17.61	6.90	717	2.21	70.2	
0700	6	17.64	6.92	714	1.85	68.7	
		ý.					
*							

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Clear with strong hydrocarbon odors.	/
Bottom of drop tube at 12.0 feet bgs. Purge rate <0.5 liters per minute.	
Slight hydrocarbon or	don

Monitoring Well Number: IW-1

1

Project Name:	Zimmerman	Date of Sampling: 4 - 4 - 13	
Job Number:	281939	Name of Sampler: J. Sigg	
Project Address:	3442 Adeline St. Oakland Cal		

MONITORING	WELL DAT	4		
Well Casing Diameter (2"/4"/6")		. 2"		
Wellhead Condition	ОК		•	
Elevation of Top of Casing (feet above msl)		31.66		
Depth of Well	15.00			
Depth to Water (from top of casing)	12.81			
Water Elevation (feet above msl)				
Well Volumes Purged		Micropurged		
Actual Volume Purged (liters)		5		
Appearance of Purge Water		clear		
Free Product Present?	No	Thickness (ft):		

umber of Samp	les/Container S	Size		3 VOA		24	
Time	Vol Removed (Liters)	Temperature (deg C)	рН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
0720	l	17.51	7.24	1286	5.82	204.3	
	2	17.56	7.27	1285	4.97	200.1	
	3	17.56	7.29	1280	4.48	197.6	٠
	4	17.58	7.31	1278	4.10	190.3	
0730	5	17.60	7.33	1274	3.82	182.4	
		6		1			

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Clear with no odors.

Bottom of drop tube at 13.0 feet bgs. Purge rate <0.5 liters per minute.

Screened interval - 13-15 feet bgs

Monitoring Well Number: BF-1

Project Name:	Zimmerman	Date of Sampling: 4-4-13
Job Number:	281939	Name of Sampler: J. Sigg
Project Address:	3442 Adeline St. Oakland Cal	

MONITORIN	IG WELL DAT.	Α	
Well Casing Diameter (2"/4"/6")		. 4 ⁿ	
Wellhead Condition	ОК		•
Elevation of Top of Casing (feet above msl)		Unsurveyed	
Depth of Well		12.00	
Depth to Water (from top of casing)		678	
Water Elevation (feet above msl)			
Well Volumes Purged		Micropurged	
Actual Volume Purged (liters)	-	5	
Appearance of Purge Water		clean	
Free Product Present	? No	Thickness (ft):	

mber of Sam	ples/Container S	Size		3 VOA		8	
Time	Vol Removed (Liters)	Temperature (deg C)	pН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
1050	I	17.33	7.64	1280	6.07	304.2	
	2.	17.37	7.64	1276	5.62	298.7	
	3	17.38	7.62	1274	4.73	290.6	*
	4	17.40	7.60	1270	4.07	2.84.1	
1100	5	17.42	7.60	1260	3.88	280.0	
		8					

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Clear with no hydrocarbon odor.

Monitoring Well Number: BF-5

Project Name:	Zimmerman	Date of Sampling:	4-4-13
Job Number:	281939	Name of Sampler:	J. Sigg
Project Address:	3442 Adeline St. Oakland Cal		

MONITORIN	G WELL DATA		
Well Casing Diameter (2"/4"/6")		. 4"	
Wellhead Condition	ОК		
Elevation of Top of Casing (feet above msl)		Unsurveyed	
Depth of Well		12.00	
Depth to Water (from top of casing)		7.29	
Water Elevation (feet above msl)			
Well Volumes Purged		Micropurged	
Actual Volume Purged (liters)		5	
Appearance of Purge Water		Clear	
Free Product Present?	No	Thickness (ft):	

		G	ROUNDWA	TER SAMPL	.ES		
Number of Samp	les/Container S	Size		3 VOA		14	
Time	Vol Removed (Liters)	Temperature (deg C)	pН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
1120		17.40	7.12	121	6.62	250.4	
	2	17.47	7,10	1118	6.07	249.7	
	3	17.49	7.10	1111	5.65	247.2	
	4	17.51	7.07	1105	4.99	243.1	
1130	5	17.53	7.09	1101	4.27	240.2	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Clear, no odor.

APPENDIX B

Laboratory Analytical Reports With Chain of Custody Documentation

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

AEI Consultants	Client Project ID: #281939; Zimmerman	Date Sampled: 04/04/13
2500 Camino Diablo. Ste #200		Date Received: 04/04/13
	Client Contact: Robert Flory	Date Reported: 04/09/13
Walnut Creek, CA 94597	Client P.O.: #WC084039	Date Completed: 04/09/13

WorkOrder: 1304181

April 09, 2013

Dear Robert:

Enclosed within are:

- 1) The results of the **9** analyzed samples from your project: **#281939; Zimmerman,**
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

	MON		504	-19	51	D	0						-					01	_		0			0.0			7.10	-				
Telepho	McCA1	MPBE 153 Pi 2-9262	LL ANA 4 Willow Pas ttsburg, CA 9	L Y I s Road 4565	ICAI F	2 IN ax: ('	925)	252	-926	59				TU	RN	AF	80	UN	HA D 1	IN FIN	O IE	F. (SI SH	10		6 R	48		للله (7:] 2 HR	5 DA
Papart To: Pohart	Flory		F	GII T	o. cam	ρ							+	SUT	Rec	un	cur	An	alvs	is R	equ	est	<u> </u>	10				(the		Cor	ment
Company: AEI Co	onsultants			<u>, , , , , , , , , , , , , , , , , , , </u>	o, sam								-	-				C KII	ary s	15 1	eq.	USI				_			The		Con	mitent
2500 (Camino Diab	lo												-	664				a Ge													
Walnu	ut Creek, CA	94597		E-Ma	il:rflor	y@ac	icons	ulta	nts.c	om				Ca e	PA 1				Silic				10									
Tele: (925) 746-60	000		F	ax: ((925)	746-	5099	1					01510	v silis	elE	8.1)			/M.(/ 83									
Project #: 281939	PO: WC084	1039	F	rojec	t Nam	e: Zi	mme	rma	ın					lge v	sil 6	(418		6	015)				\$270									
Project Location:34	442 Adeline	Street, C	Dakland, C.	4									8020	-Lau	a w/	Suos		802(10 8	ALY			5/8			(0)						
Sampler Signature:	. Som	Sig	g										(602	Mult	ateri	ocard		02 /	NQ	s ON		SC	A 62			2/60						
	D	SAN	IFLING				MAT	RIX	<	PRI	IETH ESEI	HOD R VEF	Gas	5)-1	le M	lydn	0	A 6	9	CB.		SVC	EP	020		239.					120	
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containen	Water	Soil	Sludge	Other	Ice	HCI	HNO ₃	MBTEX & TPH as	TPH as Diesel (801	Hexare Extractab	Total Petroleum H	HVOCs EPA 826	BTEX ONLY (EI	TPH Multi-Range	EPA 608 / 8080 F	EPA 624 / 8260	EPA 625 / 8270 -	PAH's / PNA's by	CAM-17 Metals (LUFT 5 Metals	Lead (7240/7421/	RCI					
MW-1		4-4-13	5 1030	3		X				X			>	<																		
MW-2		1	1000	3		X				X			2	<																		
MW-4			6930	3		X				X			,	<																		
MW-5			0900	3		X				x			,	¢																	*	
MW-6			0830	3		X				X			>	c																		
MW-7			0700	3		x	-		-	X		-	1,	<	1														-	-		
IW-1			0720	3		X	-	-	-	X	-	-	1	2	1									_				_	-	-		
BE-1			1100	3		x	-	-		X			1								-			1					-			
DF 5		M	1120	2		v	-	-		v	-	-		/	-						-								-	-	-	
51-5		×	1150										Í	`																		
Relinquished By:	8	Date:	3 1303 Time:	Rec	eived By	г.	11	a	 .>	2	2/1	-2	5	ICH GO HE	E/t°	CON		TION	N_U ENT			PAC	RES PPF ON	ER CAL	VA1 RIA NEI	TIO TE	N	AS	0&G	M	ETALS	OTHE
Relinquished By:		Date:	Time:	Rece	eived By	y:							1	DE	CHL	ORI	INA'	FED	IN	LAI	3		PEI	RSE	RV	ED	IN L	AB_		-		

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-926	52				V	VorkO	rder: 1	304181		Clien	tCod	e: AE	L					
		WaterTrax	x UriteOn	✓ EDF	Ē	Excel	E	EQuIS	VE	mail		HardCo	ору		Party	J-fl	ag	
Report to:						Bi	II to:						Reque	ested TA	г:	5 (days	
Robert Flory AEI Consultants 2500 Camino Dia Walnut Creek, C (408) 559-7600	ablo, Ste.#200 A 94597 FAX: (408) 559-7601	Email: cc: PO: ProjectNo:	rflory@aeiconsu #WC084039 #281939; Zimm	ıltants.com erman			Sara (AEI C 2500 (Walnu Accou	Guerin onsultar Camino ut Creek intsPaya	nts Diablo , CA 94 able@ <i>I</i>	, Ste. #2 4597 \EICons	00 ultant	s.c	Date Date	Receive Printed:	d:	04/04/2 04/05/2	2013 2013	
									Req	uested To	ests (S	See leg	end be	elow)				
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12	2
1304181-001	MW-1		Water	4/4/2013 10:30		A	A											
1304181-002	MW-2		Water	4/4/2013 10:00		А										-		
1304181-003	MW-4		Water	4/4/2013 9:30		А										-		
1304181-004	MW-5		Water	4/4/2013 9:00		А												
1304181-005	MW-6		Water	4/4/2013 8:30		А												
1304181-006	MW-7		Water	4/4/2013 7:00		А											1	

4/4/2013 7:30

4/4/2013 11:00

4/4/2013 11:30

Test Legend:

1304181-007

1304181-008

1304181-009

1	G-MBTEX_W
6	
11	

2	PREDF REPORT	
7		
12		

Water

Water

Water

IW-1

BF-1

BF-5

3	
8	

 \square

 \square

А

А

А

5	
10	

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	AEI Consultants				Date	and Time Received:	4/4/2013 1:03:00 PM
Project Name:	#281939; Zimme	erman			LogIr	n Reviewed by:	Maria Venegas
WorkOrder N°:	1304181	Matrix: Water			Carri	er: <u>Client Drop-In</u>	
		<u>Cha</u>	in of Cu	stody (C	OC) Informa	ation	
Chain of custody	present?		Yes	✓	No		
Chain of custody	signed when reline	quished and received?	Yes	✓	No 🗌		
Chain of custody	agrees with samp	le labels?	Yes	✓	No 🗌		
Sample IDs note	d by Client on CO	C?	Yes	✓	No		
Date and Time o	f collection noted b	by Client on COC?	Yes	✓	No		
Sampler's name	noted on COC?		Yes	✓	No		
			<u>Sample</u>	Receipt	Information	1	
Custody seals in	tact on shipping cc	ontainer/cooler?	Yes		No 🗌		NA 🗹
Shipping contain	er/cooler in good c	ondition?	Yes	✓	No		
Samples in prope	er containers/bottle	es?	Yes	✓	No		
Sample containe	ers intact?		Yes	✓	No		
Sufficient sample	e volume for indica	ted test?	Yes	✓	No 🗌		
		Sample Pres	ervation	n and Ho	old Time (HT) Information	
All samples rece	ived within holding	time?	Yes	✓	No		
Container/Temp	Blank temperature		Coole	r Temp:	3.8°C		
Water - VOA vial	ls have zero heads	pace / no bubbles?	Yes	✓	No	No VOA vials subm	itted
Sample labels ch	necked for correct	preservation?	Yes	✓	No		
Metal - pH accep	table upon receipt	(pH<2)?	Yes		No		NA 🗹
Samples Receive	ed on Ice?		Yes	✓	No		
		(Ісе Тур	e: WE	TICE)		
* NOTE: If the "N	lo" box is checked	, see comments below.					

Comments:

McCampbell Analy "When Quality Count				lytical, Inc. <i>unts''</i> 1534 Willo Toll Free Telep http://www.mcc				Pass Road, Pittsburg, CA 94565-1701 one: (877) 252-9262 / Fax: (925) 252-9269 npbell.com / E-mail: main@mccampbell.com				
AEI Consultants Client Project ID:					#281939; Date Sampled: 04/04/13							
2500	Camino Diablo. Ste.#	ŧ200		Zimmei	rman			Date Receiv	ed: 04/04	4/13		
	,			Client C	Contact: Ro	bert Flory		Date Extract	ted: 04/0	5/13-04	/09/13	
Walnu	ıt Creek, CA 94597			Client H	P.O.: #WC0	84039		Date Analyz	xed: 04/05	5/13-04	/09/13	
E-tur etia	Gase	oline Ra	nge (C	C6-C12)	Volatile Hy	drocarbons	s as Gasolii	ne with BTE	X and MTI	BE*	de Orada ar	1204101
Lab ID	Client ID	Matrix	т		Analyt	Benzene	Toluene	Ethylbanzana	Vylanas			Comments
	Chem iD	Width		11(g)	WIDL	Denzene	Toldelle	Euryibenzene	Aylenes	DI	/0.55	Comments
001A	MW-1	W]	ND	ND	ND	ND	ND	ND	1	103	
002A	MW-2	W	7	900	ND<150	960	10	380	690	10	124	d1
003A	MW-4	W	1	000	ND	30	4.6	0.61	0.65	1	#	d1
004A	MW-5	w]	ND	ND	ND	ND	ND	ND	1	102	
005A	MW-6	w	5	300	ND<70	76	5.7	50	12	5	#	d1
006A	MW-7	w	12	2,000	ND<210	2800	51	96	37	10	#	d1
007A	IW-1	w]	ND	ND	ND	ND	ND	ND	1	106	
008A	BF-1	w]	ND	ND	ND	ND	ND	ND	1	107	
009A	BF-5	w]	ND	ND	ND	ND	ND	ND	1	102	
<u> </u>		•			·	*		•				÷

Reporting Limit for $DF = 1$; ND means not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	µg/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 76221		WorkO	rder: 1304181
EPA Method: SW8021B/8015Bm Extraction: SV	W5030B					;	Spiked Sam	ple ID:	1304168-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	92.4	92	0.436	96	70 - 130	20	70 - 130
MTBE	ND	10	91.1	89	2.33	90.8	70 - 130	20	70 - 130
Benzene	ND	10	96.5	92.7	4.05	106	70 - 130	20	70 - 130
Toluene	ND	10	95.5	91.8	4.00	107	70 - 130	20	70 - 130
Ethylbenzene	ND	10	95.6	91.9	3.96	105	70 - 130	20	70 - 130
Xylenes	ND	30	96.1	92.4	3.96	106	70 - 130	20	70 - 130
% SS:	101	10	97	95	2.23	97	70 - 130	20	70 - 130
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE									

BATCH 76221 SUMMARY											
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed				
1304181-001A	04/04/13 10:30 AM	04/05/13	04/05/13 9:40 PM	1304181-002A	04/04/13 10:00 AM	04/09/13	04/09/13 3:41 AM				
1304181-003A	04/04/13 9:30 AM	04/05/13	04/05/13 10:39 PM	1304181-004A	04/04/13 9:00 AM	04/05/13	04/05/13 11:09 PM				
1304181-005A	04/04/13 8:30 AM	04/09/13	04/09/13 4:10 AM	1304181-006A	04/04/13 7:00 AM	04/06/13	04/06/13 12:07 AM				
1304181-007A	04/04/13 7:30 AM	04/06/13	04/06/13 12:37 AM	1304181-008A	04/04/13 11:00 AM	04/06/13	04/06/13 1:06 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

₩___QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 76222		WorkC	order: 1304181
EPA Method: SW8021B/8015Bm Extraction: SW5030B Spiked Sample ID: 130						1304181-009A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	98.9	99.4	0.423	97.3	70 - 130	20	70 - 130
MTBE	ND	10	76.7	76.2	0.609	87.7	70 - 130	20	70 - 130
Benzene	ND	10	109	110	0.756	98	70 - 130	20	70 - 130
Toluene	ND	10	112	116	3.41	98.1	70 - 130	20	70 - 130
Ethylbenzene	ND	10	109	109	0	98.6	70 - 130	20	70 - 130
Xylenes	ND	30	110	108	1.90	99.3	70 - 130	20	70 - 130
%SS:	102	10	104	111	5.96	100	70 - 130	20	70 - 130
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE									

BATCH 76222 SUMMARY										
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed			
1304181-009A	04/04/13 11:30 AM	04/06/13	04/06/13 2:34 AM							

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

DHS ELAP Certification 1644

₩___QA/QC Officer