RECEIVED

5:53 pm, Jun 18, 2012

Alameda County Environmental Health

Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

SUBJECT: Perjury Statement

To Whom It May Concern:

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached reports for the site at 3442 Adeline Street, Oakland, CA is true and correct to the best of my knowledge.

Signed: Steffi Zimmerman Dated 6/12/12

May 31, 2011 San Francisco HQ

SEMI ANNUAL
GROUNDWATER MONITORING REPORT
Second Quarter, 2012

Property Identification:

3442 Adeline Street Oakland, California

AEI Project No. 281939 ACEH Site: RO 02936

Prepared for:

Ms. Steffi Zimmerman 3289 Lomas Verdes Place Lafayette, CA 94545

Prepared by:

AEI Consultants 2500 Camino Diablo Walnut Creek, CA 94597 (925) 746-6000 Atlanta

Chicago

Costa Mesa

Dallas

Denver

Los Angeles

Miami

New York

Phoenix

Portland

San Jose

National Presence

Regional Focus

Local Solutions

TABLE OF CONTENTS

1.0 INTRODUCT	ION1
2.0 SITE DESCRI	PTION AND BACKGROUND1
3.0 ENVIRONME	NTAL CONCERNS3
4.0 GEOLOGY AN	ID HYDROLOGY4
5.0 SUMMARY O	F GROUNDWATER SAMPLING ACTIVITIES5
6.0 ANALYTICAL	RESULTS6
7.0 SUMMARY	7
8.0 REPORT LIM	ITATIONS AND SIGNATURES7
	FIGURES
FIGURE 1	SITE LOCATION MAP
FIGURE 2	SITE MAP
FIGURE 3	DETAIL SITE MAP
FIGURE 4	GROUNDWATER ANALYTICAL DATA (4/25/2011)
	TABLES
TABLE 1	Well Construction Details
TABLE 2	GROUNDWATER ELEVATION DATA
TABLE 3	GROUNDWATER ANALYTICAL DATA
	APPENDICES
APPENDIX A	MONITORING WELL FIELD SAMPLING FORMS
APPENDIX B	Analytical Reports and Chain of Custody Documents

Environmental & Engineering Services

Tel: 925.746.6000 Fax: 925.746.6099

1.0 Introduction

AEI Consultants (AEI) has prepared this report on behalf of Ms. Steffi Zimmerman, the owner of the property located at 3442 Adeline Street in the City of Oakland, Alameda County, California. AEI has been retained by Ms. Zimmerman to provide environmental engineering and consulting services relating to the release of gasoline from a former underground storage tank (UST) on the property.

Previous site investigations have identified a release of gasoline from the former UST. This report summarizes the results of the Second Quarter Semi-Annual Groundwater Monitoring event.

2.0 SITE DESCRIPTION AND BACKGROUND

The subject site (hereinafter referred to as the "site" or "property") is located on the northeast corner of 35th Street and Chestnut Street in a mixed commercial, industrial and residential area of Oakland. The Main entrance to the property is on 3442 Adeline Street. A second entrance is located at 3433 Chestnut Street. The on-site building covers approximately 65% of the property and is currently being used as a warehouse facility. Refer to Figure 2 for an aerial photo of the property and Figure 3, Site Map.

2.1 Tank Closure

A single-wall 3,750 gallon UST was removed from the site on February 22, 2000. Soil and groundwater samples were collected from the tank excavation pit and analyzed for total petroleum hydrocarbons as gasoline (TPH-g), as diesel (TPH-d), and BTEX (benzene, toluene, ethyl benzene, and total xylenes). Analyses of the soil sidewall samples reported TPH-g, TPH-d and BTEX at concentrations up to 920 milligrams per kilogram (mg/kg), 850 mg/kg, 0.3 mg/kg, 0.37 mg/kg, 0.73 mg/kg, and 0.22 mg/kg, respectively. TPH-g, TPH-d, and BTEX were reported in the excavation groundwater sample at concentrations of 7,400 micrograms per liter (μ g/L), 34,000 μ g/L, and 3,300 μ g/L, 930 μ g/L, 400 μ g/L, and 6,200 μ g/L, respectively.

Following receipt of the tank removal report, the City of Oakland Fire Department requested (May 15, 2006) requested additional soil and groundwater samples to further characterize the site. The location of the former UST and sample locations are presented in Figure 3.

2.2 Site Investigations

2006 Clearwater Investigation

On June 23, 2006 Clearwater Group (Clearwater) advanced four (4) soil borings (S1 - S4) on the subject site. The location of soil borings are shown in Figure 3.

Analysis of the soil samples reported TPH-g, TPH-d and BTEX at concentrations up to 1,200 mg/kg, 250 mg/kg, 1.3 mg/kg, 0.52 mg/kg, 18 mg/kg, and 100 mg/kg, respectively. Analysis of groundwater samples reported TPH-g, and BTEX at concentrations up to 120,000 μ g/L, 7,000 μ g/L, 260 μ g/L, 3,500 μ g/L, and 3,300 μ g/L, respectively. TPH-d was reported as non-detectable at reporting limits ranging from 1,500 μ g/L to 40,000 μ g/L.

2007 – 2008 AEI Investigation

In October and December of 2007 and May of 2008, AEI advanced thirty-one soil borings (SB-1 through SB-31) to depths up to 16 feet bgs and three (3) soil vapor samples (VB-1 through VB-3). Soil boring and vapor sample locations are shown on Figure 3.

The maximum concentrations of TPH-g, TPH-d, and BTEX reported in soil analyses were 1,200 mg/kg, 450 mg/kg, 6.9 mg/kg, 2.5 mg/kg, 24 mg/kg and 110 mg/kg, respectively. MTBE was reported in only one sample, SB-11-15.5, at a concentration of 0.14 mg/kg. The maximum concentrations of TPH-g, TPH-d and BTEX reported in groundwater were 83,000 μ g/L, 12,000 μ g/L, 10,000 μ g/L, 640 μ g/L, 2,700 μ g/L and 7,900 μ g/L, respectively.

The results of these and previous soil, soil vapor, and groundwater analyses can be found in *Site Investigation Report*, dated February 14, 2008 and *Groundwater Monitoring Well Installation Report*, dated July 31, 2009.

2009 Interim Source Removal

During March and April of 2009, AEI excavated impacted soil from down gradient of the former UST and inside the building. The excavation measured 35 feet by 75 feet by approximately 12 feet deep. The base of the excavation was backfilled with a layer of permeable rock to allow normal groundwater movement. Five (5) 4-inch diameter casings were installed in the permeable bridge to allow dewatering of the excavation. These casings, BF-1 through BF-5, were left in place. The excavation and backfill activities are summarized in the *Interim Source Removal Report*, dated August 31, 2009.

2009 Well Installation

On April 1 - 2, 2009 and May 12 - 13, 2009, AEI advanced eight soil borings (MW-1 through MW-7 and IW-1) at the property and converted seven (7) of the borings (MW-1 through MW-7) into groundwater monitoring wells and one boring (IW-1) into an injection/sparge well. The

monitoring wells were installed at a depth of 17 feet bgs; the sparge well was installed at a depth of 15 feet bgs. The locations of the wells are shown on Figure 3. The details of the well installation are summarized in the *Groundwater Monitoring Well Installation Report*, dated July 31, 2009.

TPH-g was reported in soil samples collected from the monitoring wells at concentrations ranging from ND<1.0 mg/kg to 1,100 mg/kg (MW-4-1). TPH-d was reported at concentrations ranging from ND<1.0 mg/kg to 99 mg/kg (MW-4-12). Inspection of 8015 chromatographs indicates that the hydrocarbon present in the soil is weathered gasoline and that the diesel range hydrocarbon concentrations reported represent the heavy portion of gasoline component compounds.

TPH-g and TPH-d were reported in initial monitoring well groundwater samples at maximum concentrations of 14,000 μ g/L (MW-5) and 3,700 μ g/L (MW-7), respectively. Inspection of 8015 chromatographs indicated that the hydrocarbons present are gasoline. The diesel range hydrocarbon concentrations reported represent the heavy portion of gasoline component compounds.

BTEX was reported at maximum concentrations of 3,000 μ g/L (MW-5), 37 μ g/L (MW-7), 340 μ g/L (MW-5), and 920 μ g/L (MW-3), respectively. MTBE was reported as non-detectable at a laboratory reporting limit of 5.0 μ g/L in MW-1 and as non-detectable at elevated reporting limits in the other monitoring wells.

On March 27, 2009, TPH-g and MBTEX were reported in backfill well casing BF-1 at concentrations of 19,000 μ g/L, ND<250 μ g/L, 890 μ g/L, 27 μ g/L, 460 μ g/L, and 1200 μ g/L, respectively.

AEI prepared and submitted a work Plan for Remedial Investigation and Feasibility study on April 30, 2010. The work plan proposed installing three (3) additional monitoring wells, one (1) additional air sparging test well, and three (3) permanent soil gas probes. An air sparging/soil vapor extraction/soil venting pilot test was proposed to evaluate a variety of remedial approaches.

3.0 Environmental Concerns

3.1 Soil

Gasoline contamination has been identified in the shallow soil at significant concentrations (>83 mg/kg) between the depths 7.5 feet and 12 feet bgs except in the area of well MW-6. Maximum concentrations of TPH-g, and benzene reported in the tank removal samples were 920 mg/kg and 0.3 mg/kg, respectively. Maximum concentrations of TPH-g and benzene reported in soil boring samples were 1,200 mg/kg and 6.9 mg/kg, respectively in boring S3. The distribution of

hydrocarbons in the soil is variable and appears related to variations in lithology and permeability.

3.2 Groundwater

The primary contaminant reported in soil and groundwater analyses is gasoline range hydrocarbons with related BTEX. Diesel range hydrocarbons are reported in the groundwater but examinations of chart patterns show the diesel range hydrocarbons to be weathered gasoline. Despite the weather nature of the gasoline, benzene concentrations remain high.

As discussed in the *Well Installation Report*, examination of 8015 chromatograph charts for groundwater samples from soil borings SB-16, SB-18 and SB-19 show the presence of a hydrocarbon centered in the overlap area of the diesel and motor oil ranges. These borings are located on the up gradient edge of the plume on Chestnut Street and are up gradient of the former UST location. These heavier than gasoline range hydrocarbons suggest a separate release has occurred up gradient of the site, possibly of heavy heating oil composition.

Maximum concentrations of TPH-g and BTEX reported in groundwater samples from soil borings were 120,000 μ g/L (S-4), 10,000 μ g/L (SB-11) 930 μ g/L (SB-11), 3,500 μ g/L (S-4), and 7,900 μ g/L (SB-11), respectively. Contaminant concentrations reported in groundwater samples from monitoring wells were significantly lower than earlier concentrations reported from soil borings. The higher concentrations in soil borings water samples are believed to have resulted from hydrocarbons adsorbed to sediment in the muddy grab water samples. Maximum TPH-g and BTEX reported in monitoring wells were in samples from MW-2 on August 27, 2009 at concentrations of 26,000 μ g/L, 3,600 μ g/L, 70 μ g/L, 1,500 μ g/L, and 3,000 μ g/L, respectively. No MTBE has been reported in monitoring well groundwater samples.

The calculated direction of groundwater flow is to the west, however the orientation of the hydrocarbon plume and hydrocarbon distribution in the groundwater indicates that the actual groundwater flow is somewhat sinuous and appears to follow permeability channels (sands and gravels).

Historically depth to groundwater has ranged from 3.25 feet bgs (MW-5, 27.14 ft amsl 5/5/2011) to 11.84 feet bgs (MW-6, 17.50 ft amsl 8/27/2009).

4.0 GEOLOGY AND HYDROLOGY

The site lies on the distal end of the Temescal Creek Alluvial Fan at approximately 45 feet above mean seal level (amsl). The Temescal Alluvial Fan is a low relief broad fan sloping westerly and southwesterly from the mouth of the Temescal Creek. The Holocene age alluvial fan deposits are mapped as Qhaf (Helley 1997). The sediments are described as typically, brown to tan gravelly sand or sandy gravel, which generally grades upward into sandy or silty clay.

At the subject site the sediments in the upper four (4) to five (5) feet underlying the site are black silty clay – clayey silt containing variable amounts of scattered gravel. These sediments are considered to be bay margin sediments.

The shallow fine grained surface layer is underlain by alluvial deposits of intercalated, lenticular bodies of silt, clay, sand, and gravel. The sediments are typically highly variable mixtures of the four primary lithologies. Permeability (transmissivity) of the coarse grained sediments is typically low due to the presence of interstitial clay; however scattered clean sands and gravels are present with good permeability. These permeable bodies appear to act as preferential channels for groundwater flow across the site and are the likely cause of the slightly sinuous, asymmetric appearance of the hydrocarbon plume in the soil and groundwater.

5.0 SUMMARY OF GROUNDWATER SAMPLING ACTIVITIES

The 2nd quarter 2012 Semi Annual Groundwater Monitoring event was performed on April 25, 2012. The well caps were removed from each well (MW-1, MW-2, MW-4 through MW-7, and IW-1) and the wells were allowed to equilibrate with the atmosphere for a minimum of 30 minutes. Well MW-3 could not be located. It appears that the well may have been covered by concrete during floor leveling.

Depth to water was measured to the nearest one hundredth of a foot with an electronic depth to water meter. The depth to water measurements from this and previous quarterly monitoring events are summarized on Table 3.

The monitoring wells were purged with a peristaltic pump with the sampling tubing at a depth opposite of the permeable sand/gravel in each well. Groundwater parameters of temperature, pH, specific conductivity, dissolved oxygen (DO), and oxidation-reduction potential (ORP) were measured during purging. A visual evaluation of turbidity was made and noted. Groundwater measurements recorded in the field are reported on the field sampling forms included in Appendix A.

Groundwater samples were collected from backfill casings BF-1 and BF-5 using a peristaltic pump after purging approximately 3.5 liters of water.

When groundwater parameters of the purged water stabilized, water samples were collected using the peristaltic pump. Samples for TPH-g and MBTEX were collected in hydrochloric acid (HCI) preserved 40-milliliter (ml) volatile organic analysis vials (VOAs). All samples were labeled with at minimum, project number, sample number, time, date, and sampler's name.

The samples were entered on a chain-of-custody form and placed on ice in a cooler pending same day transportation under chain of custody protocols to McCampbell Analytical, Inc. of Pittsburg, California (Department of Health Services Certification # 1644).

Groundwater samples from the wells were analyzed for TPH-g, MTBE, benzene, toluene, ethylbenzene, and total xylenes (MBTEX), by SW8021B/8015Bm.

5.1 Field Results

April 25, 2012, groundwater elevations in the monitoring wells ranged from 25.95 (MW-4) to 24.52 (MW-6) feet above mean sea level (amsl). These elevations are an average of 0.38 feet higher than at the time of the previous quarterly monitoring event. The groundwater hydraulic gradient is 0.01 ft/ft to the west.

Current and historical groundwater elevation data are summarized in Table 2. The groundwater elevation contours and the groundwater flow direction are presented in Figure 4. Groundwater Monitoring Well Field Sampling Forms are presented Appendix A.

6.0 ANALYTICAL RESULTS

6.1 Backfill Casings

On April 25, 2012, TPH-g, BTEX and MTXE concentrations in backfill casings BF-1 and BF-5 were reported as nondetectable at standard method reporting limits.

6.2 Monitoring Wells

Changes in TPH-g and benzene concentrations are summarized below. Toluene, ethylbenzene and total xylenes concentrations are not detailed below but typically vary in a similar fashion to benzene concentrations.

The TPH-g, BTEX and MTBE concentrations in monitoring well MW-1 continues to be reported as nondetectable at standard method reporting limits.

The TPH-g concentrations in monitoring well MW-2 decreased significantly from 27,000 μ g/L on May 5, 2011 to 9,600 μ g/L on April 25, 2012. Benzene concentrations in MW-2 decreased significantly from 2,300 μ g/L on May 5, 2011 to 440 μ g/L on April 25, 2012.

The TPH-g concentrations in monitoring well MW-4 decreased significantly from 4,900 μ g/L on May 5, 2011 to 330 μ g/L on May 5, 2011. Benzene concentrations in MW-4 decreased from 560 μ g/L on May 5, 2011 to 23 μ g/L on April 25, 2012.

The TPH-g concentrations in monitoring well MW-5 decreased from 790 μ g/L on May 5, 2011 to 67 μ g/L on April 25, 2012. Benzene concentrations in MW-5 decreased from 140 μ g/L on May 5, 2011 to 3.4 μ g/L on April 25, 2012.

The TPH-g concentration in monitoring well MW-6 increased from 7,000 μ g/L on May 5, 2011 to 7,400 μ g/L on April 25, 2012. Benzene concentrations in MW-6 increased from 80 μ g/L on May 5, 2011 to 99 μ g/L on April 25, 2012.

The TPH-g concentration in monitoring well MW-7 decreased slightly from 9,300 μ g/L on May 5, 2011 to 8,600 μ g/L on April 25, 2012. Benzene concentrations in MW-6 increased from 690 μ g/L on May 5, 2011 to 1,000 μ g/L on April 25, 2012.

The TPH-g concentration in monitoring well IW-1 remained below standard method reporting limits of 50 μ g/L on May 5, 2011. Benzene concentrations in MW-6 increased from ND<0.5 μ g/L on May 5, 2011 to 0.91 μ g/L on April 25, 2012.

A summary of groundwater analytical data is presented in Table 3 and Figure 5. TPH-g contaminant isopleths are presented in Figure 6. Laboratory results and chain of custody documents are included in Appendix B.

7.0 SUMMARY

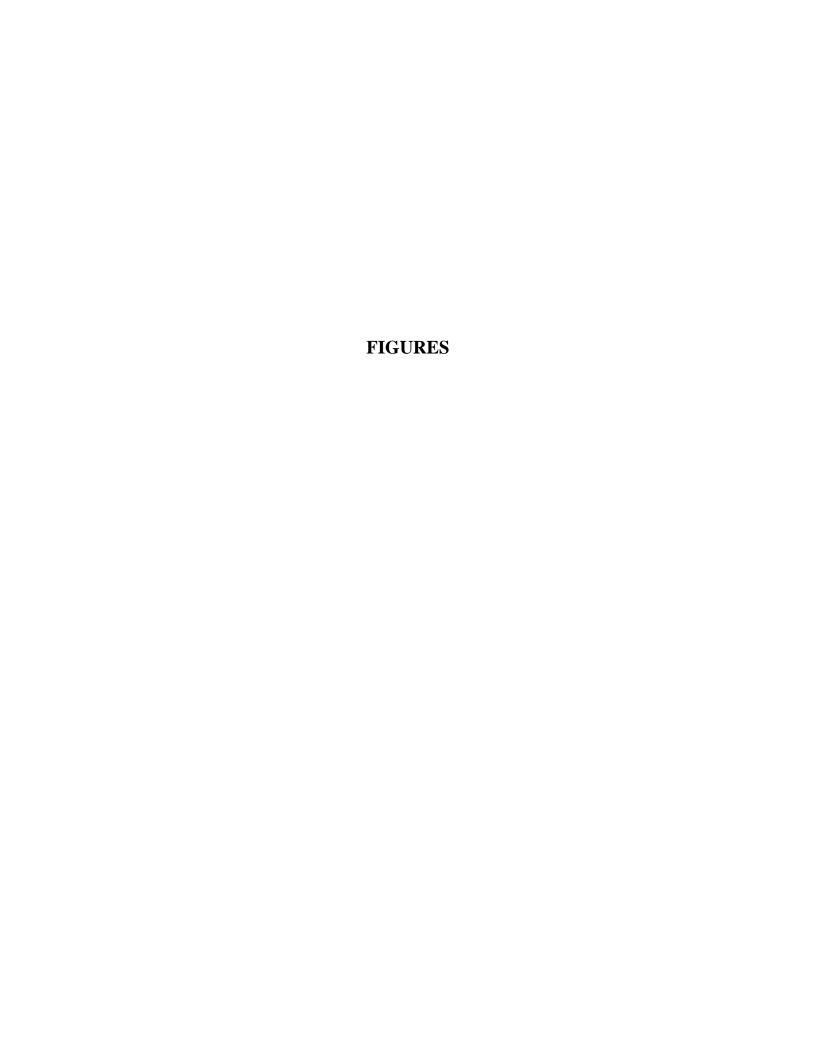
TPH-g concentrations in the monitoring wells ranged from 9,600 μ g/L (MW-2) to ND<50 μ g/L (MW-1, IW-1). Benzene concentrations in the monitoring wells ranged from 1,000 μ g/L (MW-7) to ND<0.5 μ g/L (MW-1).

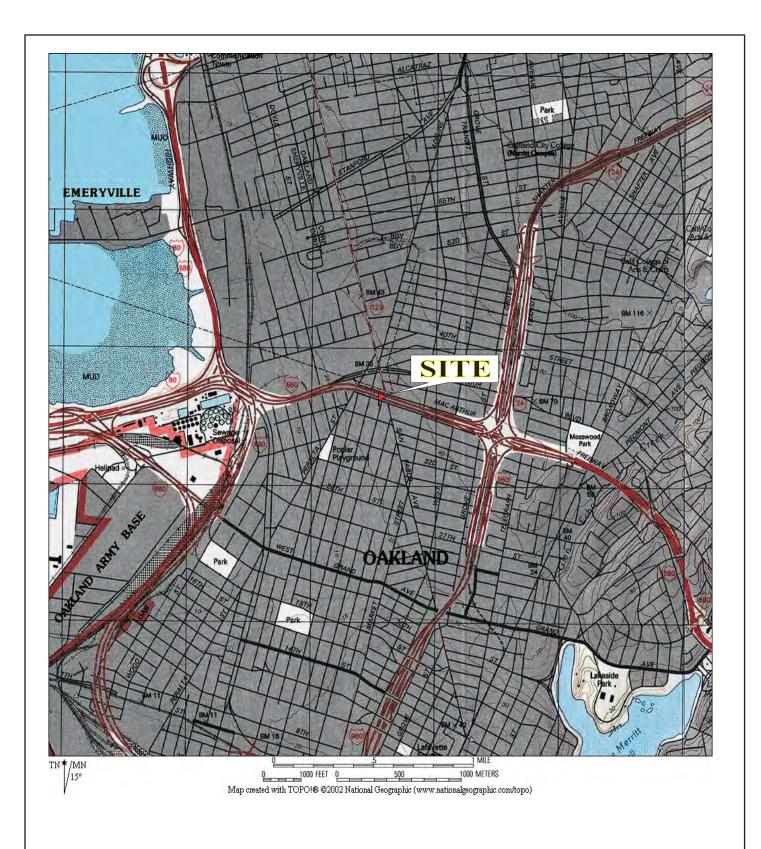
TPH-g is not reported in the excavation backfill casings despite higher concentration in the up gradient monitoring well MW-7. This appears to be due to the higher oxygen levels in the permeable fill in the base of the backfill which results in higher rates of biodegradation of dissolved phase hydrocarbons. The excavation appears to have to a large extent cut off the down gradient migration of groundwater plume from the original source area around the former gasoline UST.

The next quarterly groundwater monitoring event is tentatively scheduled for November 2012.

8.0 REPORT LIMITATIONS AND SIGNATURES

This report presents a summary of work completed by AEI, including observations and descriptions of site conditions. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide requested information, but it cannot be assumed that they are entirely representative of all areas not sampled. All conclusions and recommendations are based on these analyses and observations. Conclusions beyond those stated and reported herein should not be inferred from this document.


These services were performed in accordance with generally accepted practices in the geologic, environmental engineering and construction fields that existed at the time and location of the work


Please contact Robert F. Flory at (925) 746-6000 extension 122, if you have any questions regarding the findings and recommendations included in this report.

Sincerely,

AEI Consultants

Adrian M. Angel, GIT Project Geologist Robert F. Flory, PG Senior Geologist No. 5825

AEI CONSULTANTS

2500 Camino Diablo, Suite 200, Walnut Creek, CA 94597

Site Location Map

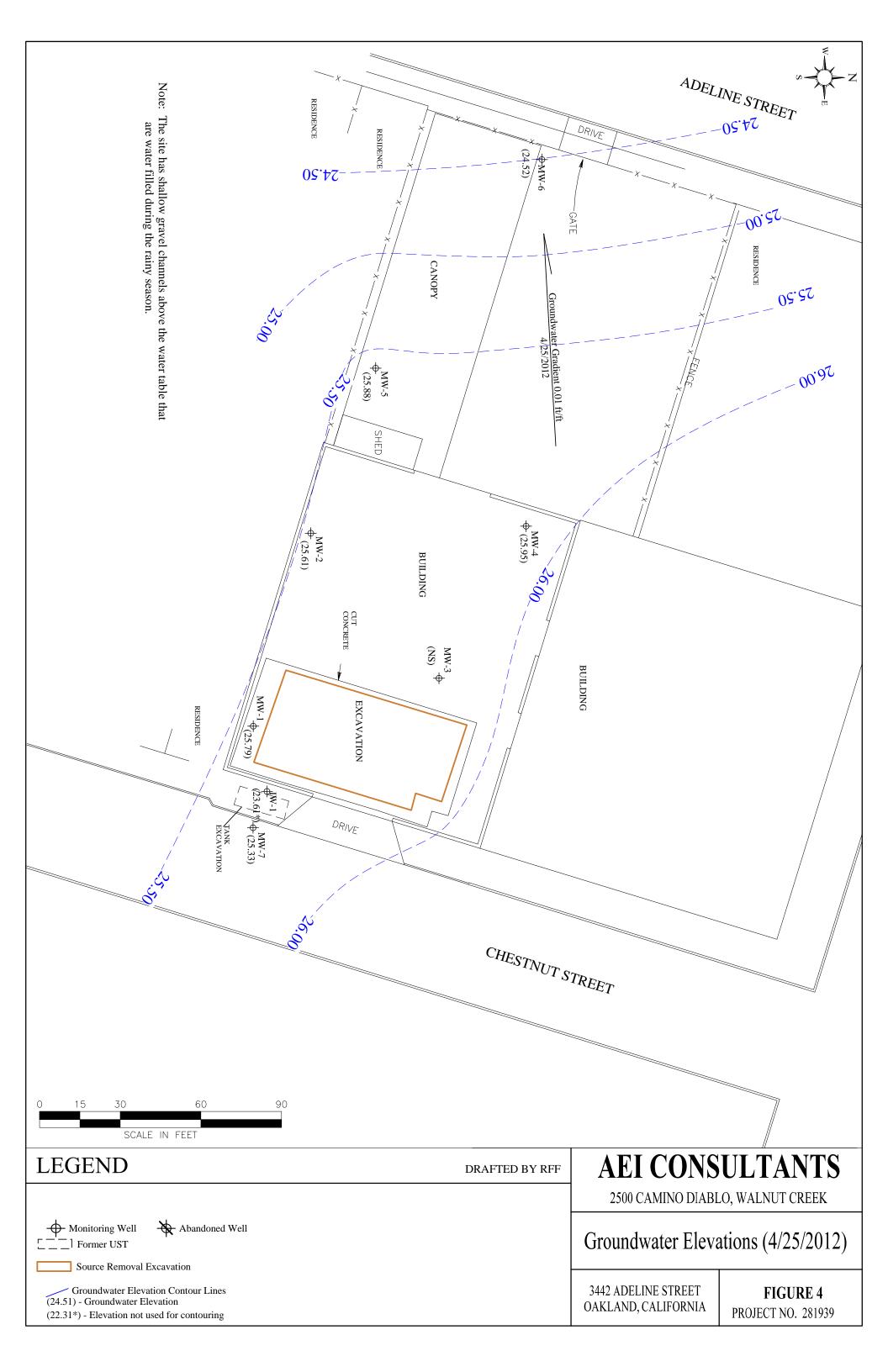
3442 Adeline Street FIGURE 1
Oakland, CA 94608 Job No: 281939

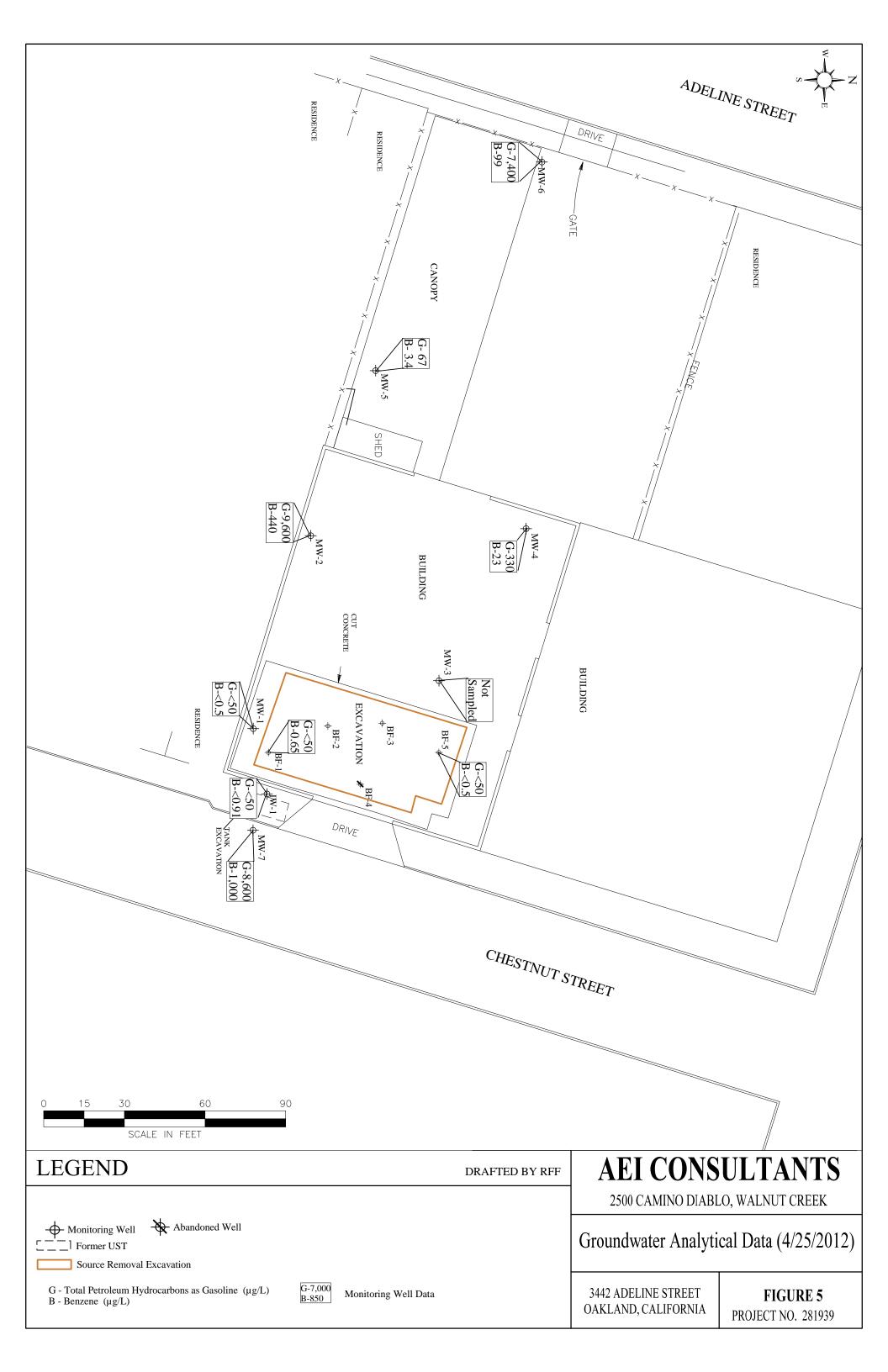
Property Boundary

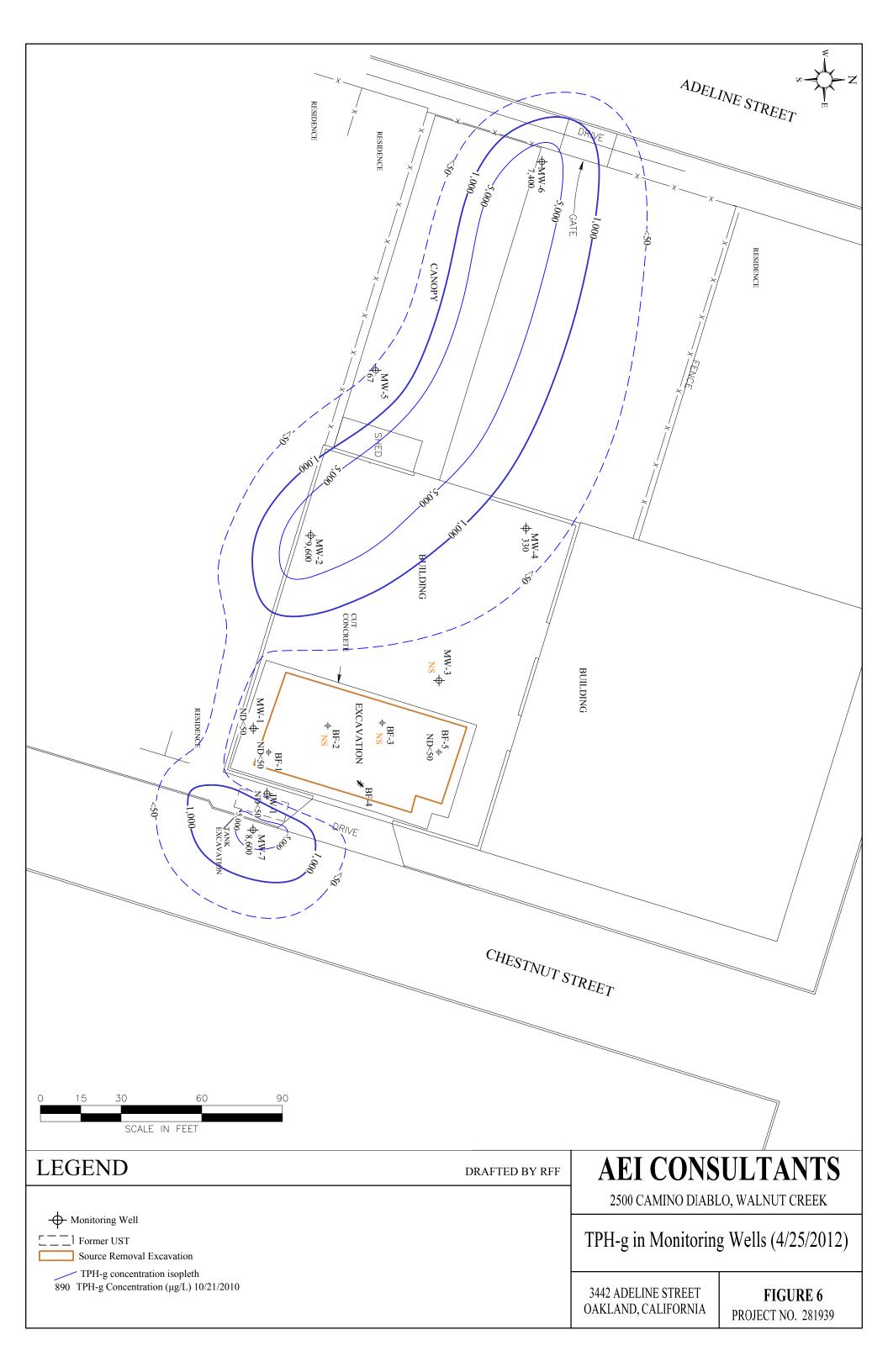
Former UST Area

Approximate Scale: 1 inch = 55 feet

AEI CONSULTANTS


2500 Camino Diablo, Suite 200, Walnut Creek, CA 94597


Site Vicinity Map


3442 Adeline Street Oakland, CA 94608 FIGURE 2

Job No: 281939

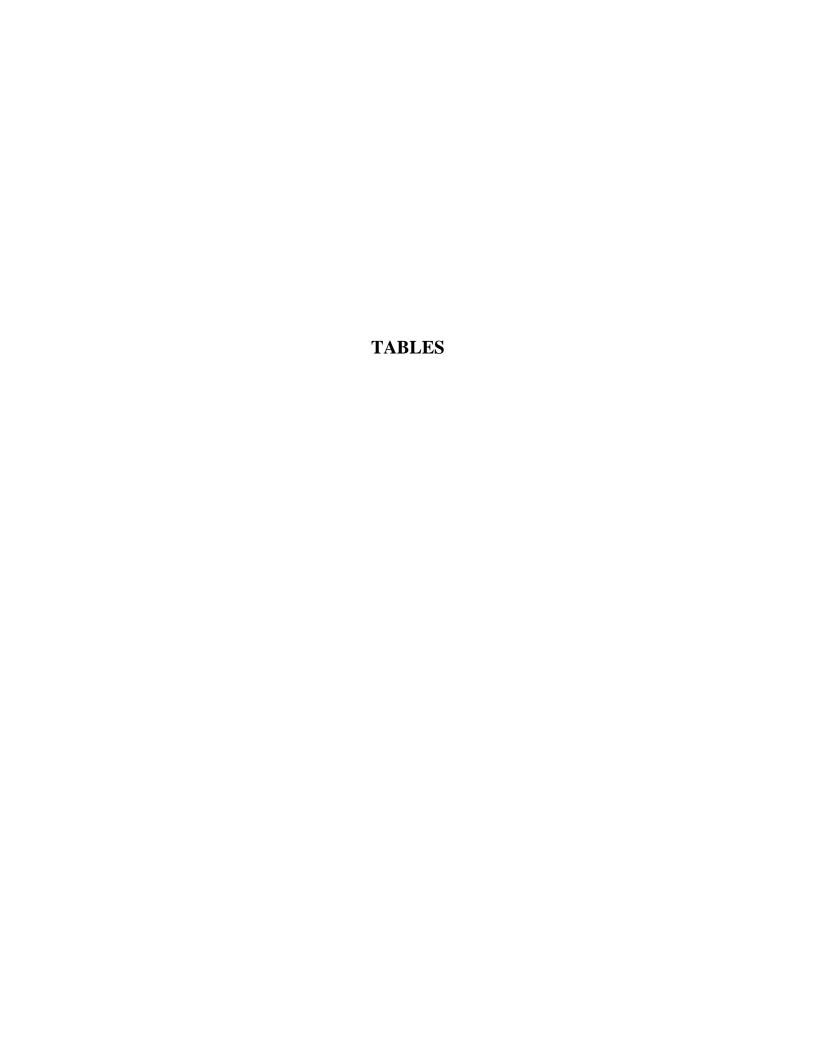


Table 1: Monitoring Well Construction Details 3442 Adeline Street St. Oakland, CA 94608

Well ID	Date Installed	Top of Casing	Well Box Rim	Depth to Water	Well Depth	Casing Material	Casing Diameter	Slotted Casing	Slot Size	Sand Interval	Sand Size	Bentonite Interval	Grout Interval
		Elevation (ft amsl)	Elevation (ft amsl)	5/5/11 (ft)	(ft)		(in)	(ft)	(in)	(ft)		(ft)	(ft)
MW-1	04/01/09	31.12	32.13	5.88	17	PVC	4	7-17	0.020	6-17	# 2/12	4-6	0.75 - 5
MW-2	04/01/09	31.19	31.43	6.68	17	PVC	4	7-17	0.020	6-17	# 2/12	4-6	0.75 - 5
MW-3	04/01/09	32.07	32.39		17	PVC	4	7-17	0.020	6-17	# 2/12	4-6	0.75 - 5
MW-4	04/02/09	31.68	31.98	6.60	17	PVC	2	7-17	0.020	6-17	# 2/12	4-6	0.75 - 5
MW-5	05/12/09	30.39	30.82	3.25	17	PVC	2	7-17	0.020	6-17	# 2/12	4-6	0.75 - 5
MW-6	04/02/09	29.34	29.96	5.59	17	PVC	2	7-17	0.020	6-17	# 2/12	4-6	0.75 - 5
MW-7	05/13/09	31.04	31.45	5.98	17	PVC	2	7-17	0.020	6-17	# 2/12	4-6	0.75 - 5
IW-1	05/12/09	31.66	31.90	6.73	15	PVC/ stainless	2	13-15	40 mesh	12-15	# 2/12	11-12	0.75-12

Notes:

ft amsl = feet above mean sea level

ft btc = feet below top of casing

Table 2: Groundwater Elevation Data
3442 Adeline Street St. Oakland, CA 94608

	Date	Top of Casing	Depth to	Groundwater	Elevation
Well ID (Screen Interval)	Collected	Elevation	Water	Elevation	Change
(Screen interval)	Conected	(ft amsl)	(ft)	(ft amsl)	•
		(It ailisi)	(11)	(It ailisi)	(ft)
MW-1	6/10/2009	31.12	7.01	24.11	
(7-17)	8/27/2009	31.12	6.96	24.16	0.05
(7 17)	12/15/2009	31.12	5.96	25.16	1.00
	3/12/2010	31.12	5.06	26.06	0.90
	10/21/2010	31.12	7.00	24.12	-1.94
	5/5/2011	31.12	5.88	25.24	1.12
	4/25/2012	31.12	5.33	25.79	0.55
					0.55
MW-2	6/10/2009	31.19	9.50	21.69	
(7-17)	8/27/2009	31.19	10.50	20.69	-1.00
	12/15/2009	31.19	8.68	22.51	1.82
	3/12/2010	31.19	5.09	26.10	3.59
	10/21/2010	31.19	7.51	23.68	-2.42
	5/5/2011	31.19	6.68	24.51	0.83
	4/25/2012	31.19	5.58	25.61	1.10
MW-3	6/10/2009	32.07	8.44	23.63	
(7-17)	8/27/2009	32.07	8.59	23.48	-0.15
` ,	12/15/2009	32.07	7.66	24.41	0.93
	3/12/2010	Well inaccessible			
	10/21/2010	Well inaccessible			
MW-4	6/10/2009	31.68	9.45	22.23	
(7-17)	8/27/2009	31.68	10.29	21.39	-0.84
(7-17)	12/15/2009	31.68	8.19	23.49	2.10
	3/12/2010	31.68	5.45	26.23	2.74
	10/21/2010	31.68	9.93	21.75	-4.48
	5/5/2011	31.68	6.60	25.08	3.33
	4/25/2011	31.68	5.73	25.06 25.95	0.87
					0.87
MW-5	6/10/2009	30.39	9.13	21.26	
(7-17)	8/27/2009	30.39	9.54	20.85	-0.41
	12/15/2009	30.39	8.33	22.06	1.21
	3/12/2010	Well inaccessible			
	10/21/2010	30.39	6.85	23.54	1.48
	5/5/2011	30.39	3.25	27.14	3.60
	4/25/2012	30.39	4.50	25.89	-1.25
MW-6	6/10/2009	29.34	9.98	19.36	
(7-17)	8/27/2009	29.34	11.84	17.50	-1.86
(= .,)	12/15/2009	29.34	8.33	21.01	3.51
	3/12/2010	29.34	4.66	24.68	3.67
	10/21/2010	29.34	10.00	19.34	-5.34
	5/5/2011	29.34	5.59	23.75	4.41
	4/25/2012	29.34	4.82	24.52	0.77

Table 2: **Groundwater Elevation Data** 3442 Adeline Street St. Oakland, CA 94608 MW-7 6/10/2009 31.04 6.53 24.51 (7-17)8/27/2009 31.04 6.19 0.34 24.85 12/15/2009 31.04 5.71 25.33 0.48 3/12/2010 31.04 5.34 25.70 0.37 31.04 10/21/2010 6.59 24.45 -1.255/5/2011 31.04 5.98 25.06 0.61 4/25/2012 25.33 0.27 31.04 5.71 IW-1 6/10/2009 7.65 24.01 31.66 (13-15)8/27/2009 31.66 7.70 23.96 -0.05 -3.29 12/15/2009 31.66 10.99 20.67 31.66 6.00 25.66 4.99 3/12/2010 10/21/2010 31.66 9.35 22.31 -3.35 31.66 5/5/2011 6.73 24.93 2.62

31.66

4/25/2012

Event	Date	Average Water Table Elevation (ft amsl)	Change from Previous Episode (ft)	Flow Direction (gradient) (ft/ft)
1	6/10/2009	22.40		West (0.0186)
2	8/27/2009	21.85	-0.55	West (0.0186)
3	12/15/2009	23.42	1.58	West (0.0181)
4	3/12/2010	25.75	2.33	West (0.004)
5	10/21/2010	22.81	-2.94	North Northwest (0.041)
6	5/5/2011	25.13	2.32	West (0.01)
7	4/25/2012	25.52	0.38	West (0.01)

8.05

23.61

-1.32

Table 3: Groundwater Analytical Data 3442 Adeline Street St. Oakland, CA 94608

Sample ID Date to Water (ft) TPH-d TPH-g MTBE Benzene Toluene Ethyl benzer Method 8015C Method 8021B	Xylenes e
Method 8015C Method 8021B	
	20
	20
ESL - current or potenital DW 100 100 5.0 1.0 40 30	
ESL - not potenital DW 210 210 1,800 46 130 43	100
MW-1 04/17/09 7.01 97 220 <5.0 10 <0.5 3.0	5.4
08/27/09 6.96 7,000 <180 610 10 320	220
09/17/09 92 <15 0.91 0.70 <0.5	< 0.5
12/15/09 5.96 2500 <50 170 6.4 66	120
03/12/10 5.06 500 <5.0 4.0 1.1 0.6	0.7
10/21/10 7.00 <50 <5.0 <0.5 <0.5 <0.5	< 0.5
05/05/11 5.88 <50 <5.0 <0.5 <0.5 <0.5	< 0.5
04/25/12 5.33 <50 <5.0 <0.5 <0.5 <0.5	< 0.5
MW-2 04/17/09 9.50 2,200 7,000 <100 850 19 93	470
08/27/09 10.50 26,000 <1,200 3,600 <25 1,200	3,000
12/15/09 8.68 25,000 <250 2,900 70 1,500	2,400
03/12/10 5.69 7,300 <350 590 7.0 6.4	680
10/21/10 7.51 1,900 <15 140 1.4 28	140
05/05/11 6.68 27,000 <180 2,300 13 1,700	2,600
04/25/12 5.58 9,600 <120 440 8.8 260	920
MW-3 04/17/09 8.44 2,200 10,000 <110 930 5.6 270	920
08/27/09 8.59 17,000 <250 3800 38 730	710
09/17/09 260 <15 1.8 1.0 <0.5	2.1
10/14/09 1,800 <30 220 13 37	130
12/15/09 7.66 4,900 <50 890 13 160	130
03/12/10 Well inaccessible	
10/21/10 Well inaccessible	
MW-4 04/17/09 9.45 1,200 4,700 <30 140 2.0 28	18
08/27/09 10.29 4,300 <25 75 11 8.6	3.4
12/15/09 8.19 3,000 <15 64 11 5.6	3.3
03/12/10 5.45 6,100 <35 1200 14 170	6.2
10/21/10 9.93 1,900 <15 120 4.7 5.7	1.8
05/05/11 6.60 4,900 <25 560 2.6 41	17
04/25/12 5.73 330 <5.0 23 1.4 2.0	4.2
MW-5 05/22/09 9.13 2,800 14,000 <100 3,000 12 340	420
08/27/09 9.54 25,000 <400 3,300 36 110	160
12/15/09 8.33 8,200 <250 1,200 6.9 300	610
03/12/10 Well inaccessible	
10/21/10 6.85 <50 <5.0 1.3 <0.5 <0.5	< 0.5
05/05/11 3.25 790 <20 140 1.0 29	30
04/25/12 4.51 67 <5.0 3.4 <0.5 1.4	0.83
MW-6 04/17/09 9.98 1,000 5,600 <300 210 3.0 180	160
08/27/09 11.84 2,200 <120 98 7.9 20	1.1
12/15/09 8.59 4,700 <250 370 6.9 260	300
03/12/10 4.66 9,300 <90 210 12 250	110
10/21/10 10.00 380 <5.0 35 1.2 4.6	3.8
05/05/11 5.59 7,000 <75 80 2.9 120	28
04/25/12 4.82 7,400 <150 99 11.0 100	27

Table 3: Groundwater Analytical Data 3442 Adeline Street St. Oakland, CA 94608

08 12	4/17/09 8/27/09 2/15/09	(ft) W	100 210	100 210	5.0	(µg/L)	Method 8021	benzene B	
MW-7 04	4/17/09 8/27/09 2/15/09	W	100	100	5.0	(µg/L)	Method 8021	В	
MW-7 04	4/17/09 8/27/09 2/15/09	W			5.0				
MW-7 04	4/17/09 8/27/09 2/15/09				5.0				
MW-7 04	4/17/09 8/27/09 2/15/09	6.53	210	210		1.0	40	30	20
08 12	8/27/09 2/15/09	6.53		-10	1,800	46	130	43	100
08 12	8/27/09 2/15/09	6.53							
12	2/15/09		3,700	12,000	<120	1,000	37	100	36
		6.19		12,000	<100	550	30	130	33
		5.71		9,600	<100	620	26	140	20
	3/12/10	5.34		10,000	<25	850	33	87	28
	0/21/10	6.59		7,900	<180	1,100	22	44	21
	5/05/11	5.98		9,300	< 200	690	23	42	21
04	/25/12	5.71		8,600	<75	1,000	31	10	20
IW-1 05	5/22/09	7.65	680	1,200	<15	58	2.7	2.3	18
30	8/27/09	7.70		160	< 5.0	4.1	0.5	0.8	1.6
09	9/17/09			300	< 5.0	8.0	1.5	1.4	0.85
12	2/15/09	10.99		220	< 5.0	5.4	1.4	0.65	0.7
03	3/12/10	6.00		< 50	< 5.0	1.9	< 0.5	< 0.5	< 0.5
10	0/21/10	9.35		< 50	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
05	5/05/11	6.73		< 50	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
04	/25/12	8.05		<50	< 5.0	0.91	< 0.5	< 0.5	0.57
BF-1 03	3/27/09			19,000	<250	890	27	460	1,200
	6/17/09			6,700	<150	840	19	170	150
	8/10/09			11,000	<120	710	14	440	290
	8/27/09			9,600	<90	590	14	350	220
•	9/13/09			<50	< 5.0	1.2	< 0.5	< 0.5	< 0.5
	0/14/09			2,400	<10	83	1.9	5.0	120
12	2/11/09	6.70		200	< 5.0	12	< 0.5	2.2	9.6
03	3/12/10	5.61		< 50	< 0.5	2.9	< 0.5	< 0.5	< 0.5
10	0/21/10	7.95		560	< 5.0	68	1.5	6.7	25
05	5/05/11	6.25		< 50	< 5.0	0.65	< 0.5	< 0.5	< 0.5
04	/25/12	5.85		<50	< 5.0	< 0.5	<0.5	<0.5	< 0.5
BF-5 08	8/27/09			170	<25	32	0.55	4.2	220
	0/14/09			<50	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	2/11/09	7.25		130	< 5.0	40	< 0.5	0.91	< 0.5
	3/12/10	6.09		<50	< 5.0	4.3	< 0.5	0.91	< 0.5
	0/21/10	8.62		80	< 5.0	8.8	< 0.5	1.4	4.5
	5/05/11	6.75		<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5
	/25/12	6.37		< 50	<5.0	<0.5	<0.5	<0.5	<0.5

Notes:

 $\mu g/L$ = micrograms per liter

ESL = Environmental Screening Level

TPH-g = total petroleum hydrocarbons as gasoline

680 = Current concentration above ESL

TPH-d = total petroleum hydrocarbons as diesel

MTBE = methyl tert-butyl ether

680 = most recent sample

APPENDIX A

Groundwater Monitoring Well Field Sampling Forms

		Monitoring Well Number: MW-1
Project Name:	Zimmerman	Date of Sampling: 4-25-12
Job Number:	281939	Name of Sampler: J. Sigg
Project Address:	3442 Adeline St. Oakland Cal	

MONITORING WELL DATA				
Well Casing Diameter (2"/4"/6")		4"		
Wellhead Condition	OK	L = 74.000	~	
Elevation of Top of Casing (feet above msl)		31.12		
Depth of Well		17.00		
Depth to Water (from top of casing)		5.33		
Water Elevation (feet above msl)				
Well Volumes Purged —		Micropurged		
Actual Volume Purged (liters)		5		
Appearance of Purge Water		Clear		
Free Product Present?	No	Thickness (ft):		

		G	ROUNDWA	TER SAMPL	.ES		
Number of Sam	ples/Container S	Size		3 VOA			
Time	Vol Removed (Liters)	Temperature (deg C)	рН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
0950	C C	17.15	7.46	1160	7.42	-69.6	Clear
	2	7.09	7.42	1099	6.26	-88.3	11
	3	17.06	7.41	1098	5.52	-93-1	11
	4	17.04	7.42	1098	5.24	-95.2	11
1000	5	17.04	7.42	1097	5.14	96.0	el
			1.				

4 2 2

Monitoring	Well	Number:	MW-2

Project Name:	Zimmerman	Date of Sampling: 4	-25-12
Job Number:	281939	Name of Sampler:	J. Sigg
Project Address:	3442 Adeline St. Oakland Cal	-	

MONITORING WELL DATA					
Well Casing Diameter (2"/4"/6")		4"			
Wellhead Condition	ОК		-		
Elevation of Top of Casing (feet above msl)		31.19			
Depth of Well		17.00			
Depth to Water (from top of casing)		5.58			
Water Elevation (feet above msl)					
Well Volumes Purged		Micropurged			
Actual Volume Purged (liters)		5			
Appearance of Purge Water		Clear			
Free Product Present?	No	Thickness (ft):			

		G	ROUNDWA	ATER SAMPL	.ES		
Number of Sampl	es/Container S	Size		3 VOA			
Time	Vol Removed (Liters)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
1610	J	16-67	7.20	380	5-73	-232.7	Crew
	2	16.61	7.01	379	1.65	-7430	J J
	3	16.59	6-97	378	,78	-246.1	11
	4	16.58	6.97	377	.67	-247.5	11
1020	5	6.57	6.98	377·	162	-248.2	ıl

Bottom of drop tube at 11.0 feet bgs. Purge rate <0.5 liters per minute.	

				_
Project Name:	Zimmerman	Date of Sampling:		
Job Number:	281939	Name of Sampler:	J. Sigg	
Project Address:	3442 Adeline St. Oakland Cal			_

Monitoring Well Number:

MW-3

MONI	TORING WELL DATA
Well Casing Diameter (2"/4"/6")	4"
Wellhead Condition	OK
Elevation of Top of Casing (feet above msl)	32.07
Depth of Well	17.00
Depth to Water (from top of casing)	
Water Elevation (feet above msl)	
Well Volumes Purged	Micropurged
Actual Volume Purged (liters)	
Appearance of Purge Water	
Free Product P	resent? No Thickness (ft):

nber of Sam	nples/Container S	OUNDWA	ATER SAMPLE 3 VOA	<u>ES</u>		
Time	Vol Removed (Liters)	 рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Well inaccesable - covered by carpet, concrete?, not locatable.

Monitoring	Well	Number:	
------------	------	---------	--

MW-4

Project Name:	Zimmerman	Date of Sampling: 4-25-12
Job Number:	281939	Name of Sampler: J. Sigg
Project Address:	3442 Adeline St. Oakland Cal	

MONITORIN	G WELL DATA	A
Well Casing Diameter (2"/4"/6")		2"
Wellhead Condition	ОК	•
Elevation of Top of Casing (feet above msl)		31.68
Depth of Well		17.00
Depth to Water (from top of casing)		5.73
Water Elevation (feet above msl)		
Well Volumes Purged		Micropurged
Actual Volume Purged (liters)		5
Appearance of Purge Water		Clear
Free Product Present?	No	Thickness (ft):

les/Container S	ize		3 VOA			
Vol Removed (Liters)	Temperature (deg C)	рН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
	17-10	7.22	583	7.87	-1435	Cleas
2	16.69	7.14	27	7-29	-132.9	11
3	16-60	6.99	212	7.20	-117-2	U
et	16.57	698	197	4.10	-110-6	1(
5	16.56	6-98	188	+.09	-108.2	,)(
	Vol Removed (Liters)	Vol Removed (Liters) Temperature (deg C) 1 17-10 1 16-69 4 16-57	Vol Removed (Liters) Temperature (deg C) pH 1 17-10 7.22 1 16.69 7.14 3 16.60 6.99 4 16.57 6.98	Vol Removed (Liters) Temperature (deg C) pH Conductivity (μS/cm) 1 17-10 7.22 583 1 16.69 7.14 271 3 16.69 699 2.17 4 16.57 698 197	Vol Removed (Liters) Temperature (deg C) pH Conductivity (μS/cm) DO (mg/L) 1 17-10 7.22 583 7.87 1 16.69 7.14 271 7.29 3 16.60 6.99 2.12 7.20 4 16.57 6.98 197 7.10	Vol Removed (Liters) Temperature (deg C) pH Conductivity (μS/cm) DO (mg/L) ORP (meV) 1 17-10 7.22 583 7.87 143.5 1 16.69 7.14 271 7.29 -132.9 3 16.60 6.99 2.12 7.20 -117.2 4 16.57 6.98 197 7.10 -110.6

Bottom of drop tube at 11.0 fo	eet bgs. Purge rate <0.5 liters per minute.	
Bottom of Grop tabo at 11.01		

Project Name:	Zimmerman	Date of Sampling:	4-25-12
Job Number:	281939	Name of Sampler:	J. Sigg
Project Address:	3442 Adeline St. Oakland Cal		

Monitoring Well Number:

MW-5

MONITORING WELL DATA					
Well Casing Diameter (2"/4"/6")		2"			
Wellhead Condition	ОК		•		
Elevation of Top of Casing (feet above msl)	30.39				
Depth of Well	17.00				
Depth to Water (from top of casing)	4.51				
Water Elevation (feet above msl)					
Well Volumes Purged	Micropurged				
Actual Volume Purged (liters)	5				
Appearance of Purge Water	Purge Water Clear				
Free Product Present?	No	Thickness (ft):			

		G	ROUNDWA	TER SAMPL	.ES		
umber of Samp	les/Container S	Size		3 VOA		,	
Time	Vol Removed (Liters)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
0835	1	14.99	8.78	367	5.72	-158.3	Clear
	2	14.90	8.50	365	1.54	-149.5	()
	3	14.81	8.44	347	1.16	-142.7	- 11
	4	14.70	8.46	313	1.32	-130.2	10
0845	5	14.65	8.50	315	1.27	-121.4	[[

Bottom of drop tube at 10.0 feet bgs.	Purge rate <0.5 liters per minute.	

Monitoring	Well	Number:	MW-6
INI A I I I CALLII M		IIONIIINOII	

Project Name:	Zimmerman	Date of Sampling:	4-25-12
Job Number:	281939	Name of Sampler:	J. Sigg
Project Address:	3442 Adeline St. Oakland Cal		

MONITORIN	G WELL DA	TA			
Well Casing Diameter (2"/4"/6")		2"			
Wellhead Condition	ОК	▼			
Elevation of Top of Casing (feet above msl)	29.34				
Depth of Well	17.00				
Depth to Water (from top of casing)	4.82				
Water Elevation (feet above msl)	· ·				
Well Volumes Purged	Micropurged				
Actual Volume Purged (liters)	3.0-5				
Appearance of Purge Water	Clear				
Free Product Present?	No	Thickness (ft):			

		G	ROUNDWA	TER SAMPL	.ES		
Number of Samp	oles/Container S	Size		3 VOA			
Time	Vol Removed (Liters)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
0805	1	15.82	6.19	843	2.83	-703.2	Clear
	2	15.65	5.93	838	1.22	-201.8	11
	3	15.52	5.80	835	-91	-197.2	1 (
	4	15.45	5.73	833	.80	-194.0	11
0815	5	15.41	5.7	832	.74	-193.1	1 (
							- 100

Bottom of drop tube at 13.0	feet bgs. Purge rate <0.5 liters per minute.	
•		

		Monitoring Well Number:	MW-7	
Project Name:	Zimmerman	Date of Sampling:	4-25-12	
Job Number:	281939	Name of Sampler:	J. Sigg	
Project Address:	3442 Adeline St. Oakland Cal			

MONITORING WELL DATA					
Well Casing Diameter (2"/4"/6")		2"			
Wellhead Condition	OK				
Elevation of Top of Casing (feet above msl)	31.04				
Depth of Well	17.00				
Depth to Water (from top of casing)	5.71				
Water Elevation (feet above msl)					
Well Volumes Purged	Micropurged				
Actual Volume Purged (liters)	5				
Appearance of Purge Water	Clear				
Free Product Present?	No	Thickness (ft):			

		G	ROUNDWA	ATER SAMPL	ES		
lumber of Samp	les/Container S	Size		3 VOA	- (
Time	Vol Removed (Liters)	Temperature (deg C)	рН	Conductivity (µS/cm)	DO (mg/L)	ORP (meV)	Comments
0635	1	7-59	6:31	1041	7.23	-268.3	Clear
	2	17.60	6.50	1039	1.56	-277.2	11
	3	17.59	6.52	1040	1.25	-276.1	11
	4	17.58	6.53	1042	1.05	-275.3	11
0645	5	17.58	6.52	1641	.94	-273.6	i
=30 (10 m) (20) - (3 (10) (2 (10) (2 (10))							15 x 1

2

Monitoring Well Number:	BF-1
-------------------------	------

Project Name:	Zimmerman	Date of Sampling: 4-25-12
Job Number:	281939	Name of Sampler: J. Sigg
Project Address:	3442 Adeline St. Oakland Cal	

MONITORING WELL DATA				
Well Casing Diameter (2"/4"/6")	4"			
Wellhead Condition	OK	▼		
Elevation of Top of Casing (feet above msl)	Unsurveyed			
Depth of Well	12.00			
Depth to Water (from top of casing)	5.85			
Water Elevation (feet above msl)				
Well Volumes Purged	Micropurged			
Actual Volume Purged (liters)	5			
Appearance of Purge Water		Clear		
Free Product Present?	No	Thickness (ft):		

		G	ROUNDWA	TER SAMPL	.ES		
Number of Sam	ples/Container S	Size		3 VOA			
Time	Vol Removed (Liters)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
0925	1 2	17.92	7.25	1178	16.14	-68.8	Clear
	3	17.87	7.21	1171	8.31	-blo.4	VI
0935	5	7.87	720	1170	1854	-66.0	1

Bottom of drop tube at 10.0 feet	bgs. Purge rate <0.5 liters per minute.	

Project Name:	Zimmerman	Date of Sampling: 4 25 12
Job Number:	281939	Name of Sampler: J. Sigg
Project Address:	3442 Adeline St. Oakland Cal	

Monitoring Well Number:

BF-5

MONITORING WELL DATA				
Well Casing Diameter (2"/4"/6")	4"			
Wellhead Condition	ОК		•	
Elevation of Top of Casing (feet above msl)	Unsurveyed			
Depth of Well	12.00			
Depth to Water (from top of casing)	6.38			
Water Elevation (feet above msl)				
Vell Volumes Purged Micropurged				
Actual Volume Purged (liters)	ers)			
Appearance of Purge Water		Clear		
Free Product Present?	No	Thickness (ft):		

		G	ROUNDWA	ATER SAMPL	.ES		
Number of Sam	ples/Container S	Size		3 VOA		,	
Time	Vol Removed (Liters)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
0900	1	18.10	6.82	1221	1194	-42.3	Clear
	2	18.12	7.06	1211	12.04	-75.2	1.(
	3	18.13	7.09	1201	11.40	-79.0	1)
	4	18.13	7.12	1193	10.94	-80.7	[]
0910	5	18.13	7.13	1189	10.63	-81.6	<u> </u>

Bottom of drop tube at 11.0) feet bgs. Purge rate <0.5 liters per minute.	

Monitoring	Well Number:	IW-1
Monitorina	well Number.	IVV-I

Project Name:	Zimmerman	Date of Sampling: 4-25-	12
Job Number:	281939	Name of Sampler: J. S	igg
Project Address:	3442 Adeline St. Oakland Cal		

MONITORING WELL DATA				
Well Casing Diameter (2"/4"/6")	2"			
Wellhead Condition	OK	▼		
Elevation of Top of Casing (feet above msl)	31.66			
Depth of Well	15.00			
Depth to Water (from top of casing)	8.05			
Water Elevation (feet above msl)				
Well Volumes Purged	Micropurged			
Actual Volume Purged (liters)	5			
Appearance of Purge Water		Clear		
Free Product Present?	No	Thickness (ft):		

		G	ROUNDWA	ATER SAMPL	ES		
mber of Samp	les/Container S	Size		3 VOA			
Time	Vol Removed (Liters)	Temperature (deg C)	рН	Conductivity (μS/cm)	DO (mg/L)	ORP (meV)	Comments
0655	1	17.92	6.26	1338	1.81	-116.9	Clear
	2	17.88	6.25	1339	.70	-110.8	11
	3	17.86	6.24	1276	.66	-101.7	11
	4	17.85	6.24	1262	164	-93.4	. (
0705	5	17.85	6.24	1258	.62	-96.2	1.1

Bottom of drop tube at 13.0 feet bgs. Purge rate <0.5 liters per minute.	
Screened interval - 13-15 feet bgs	

	McCA	MPE	5.E.L. 1534 V	L ANA Villow Pass	LYT Road	ICA	L]	IN(C.						_					CE	ΙA	IN	O	F					Y I	₹E	CO	RD)	·	-
Telepho	one: (925) 25		Pittsl	burg, CA 9		•									Ι	UI	N	AR	O	JN	D T	IM	Œ		Ę					Γ			T	K	
resepno)ne: (925) 25	92-9 <u>2</u> (0.2			F	ax:	(92	5) 2:	52-9	269				TE I	DF:	Req	nira	-49	Į.		Yes				JSH No		24 F	IR	4	8 HR	ı	72 HR	5	DAY
Report To: Harm	ony TomSu	n)E	ill To	: sam	e		P	.O. ;	# W	C08	333	0		<u> </u>	rteq	un			- vol	is R		-14-44	닠.	INO			W W/	T	Oth		"T~	*****	*****
Company: AEI C																						IJ A		CSt	-			-		+-	Oth	er		mme	ents
	Camino Dia															а	&F)				a Gel														
	iut Creek, C	A 94	597			ail: rf				sulta	nts.c	om			BE	Egg	ŁF/E				Silic	1			10										
Tele: (925) 944-2						925)				·					8015)/MTBE	with Silica Gel Cleanup	& Grease (5520 E&F/B&F)	3.1)			(G/D/MO) 8015 w/ Silica				/ 83										
Project #: 281939	^ 			P	rojec	t Nan	1e;	Zim	ıme	rma	n				801	a G	(552	(41)			8015				270							<u>.</u>			
Project Location: Sampler Signatur	3442 Adelir	ne Sti	reet,	<u>Oakland</u>	<u>, CA</u>									i	+ 07	Silic	ase	oons		8020	(0]	ĽΫ́			5./8			6							
Sampler Signatur	SAMPLING MET								_	7/80	vith	Gre	ocar		02 /	D/N	Q	i	Ç	4 62			09/			.									
		Sz	AMP	LINGU		SIS		ΜA	TR	IX		MET RES			09) sı)il &	lydra	_	9 Y	Ð,	GB.		SVC	EP,	070		39.2			, [
SAMPLE ID	Field Point				ers	aine					1				as Gas (602/8020	(801	m C	m	826	Ē	ange	80 P	99	70 -	's by	als 6		121/2							
STATE OF THE	Name				tair	ont									IPH	esel	role	rolei	EPA	N.	# <u></u>	/ 80	/ 82	/ 82	NA	Met	vleta	7//01					ł		
		Dat	te	Time	Containers	Type Containers	Water			Sludge	I S	_	ő	er	втех & трн	TPH as Diesel (8015)	Total Petroleum Oil	Total Petroleum Hydrocarbons (418.1)	HVOCs EPA 8260	BTEX ONLY (EPA 602 / 8020)	TPH Multi-Range	EPA 608 / 8080 PCB's ONLY	EPA 624 / 8260	EPA 625 / 8270 - SVOCs	PAH's / PNA's by EPA 625 / 8270 / 8310	CAM-17 Metals 6020	LUFT 5 Metals	Lead (7240/7421/239.2/6010)			.				
				1	#	Ę	ž	Soil	Air	ਤੋਂ ਟੋ	٤	HCH	HNO,	Other	BTE	PH a	Tota	Tota	ЭЛН	BTE	TPH	EPA	EPA	EPA	PAH	CAN	3	Lead	RCI						
MW-1	MW-1	4-29	5-12-	1000	3	VAA	х				\ x	[X	Ε.					****				49.70					 		-		TOTAL TO 1	
MW-2	MW-2			1020	3	VDA	Х				T _X	: .		_					-											ļ					
MW-3	-MW-3				3_	YOK	-7X				+																			-		+			
MW-4	MW-4			1100	3	VOA				_	x	-			X						-		-							ļ					
MW-5	MW-5			0845	3	UAA	X			-	X	+		\dashv	X															 					
MW-6	MW-6			0815	3	VOA	X			_	X				X			-									-		ļ	-					
MW-7	MW-7			0645	3	VOA	X			-	X				X																	_			
IW-1	IW-1			0705	3	VOA	L			-	x			\dashv	X															<u> </u>		_			
BF-1	BF-1		1	0935	3	υσΑ	X			+	x			\dashv	X														-						
BF-5	BF-5	7		0910	3	JOA				-	''	 -		\dashv	X							-							-			_			
			R.	0.110		72.1	-1			_	╀	· 			Α.																				
						<u> </u>						 		_																					
	·								<u> </u>		-			_																					
								-			-																								
Dalinanish at Dec		-			-																														
Relinguished Ry:)	י ב ויי	Date		Time:	Rece	ived By	/: 		,																				n marriethic	1	NAME OF TAXABLE PARTY.	1	**************************************		
Religguished By:	T	Date		Time:	Raar	Cal D	d C/4				ť°						٠	P	RES	SER	VA'	ፐፐብ		DAS	0&6	3 1	METAL	s o	THER						
	' '	Date	•	11016:	Rec€	weu By	ed by:					GOC	DD C	ON	DIT	ION	[<u> </u>			A	PPI	ROF	'RL	TE											
Relinquished By:		Date	;	Time:	Rece	ived By	ed By:				IEA VEC	D SI	PAC	CE A	BSE	ENT	LAE					NE		TRI F											
						- , 00, 20,	•								1	- 100	LELI	/1 \1 .	1 171. I	LEST	. FIL	L/N.D	`		F L	ien	JK V	EU.	ary I	LAB_		—			

APPENDIX B

Laboratory Analytical Reports
With
Chain of Custody Documentation

Analytical Report

AEI Consultants	Client Project ID: #281939; Zimmerman	Date Sampled: 04/25/12
2500 Camino Diablo, Ste. #200		Date Received: 04/25/12
2500 Cammio Blacto, Sec. #200	Client Contact: Robert Flory	Date Reported: 05/02/12
Walnut Creek, CA 94597	Client P.O.: #WC083330	Date Completed: 04/27/12

WorkOrder: 1204766

May 02, 2012

Dear Robert:

Enclosed within are:

- 1) The results of the 9 analyzed samples from your project: #281939; Zimmerman,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

Telephone: (925) 252-9262		McCA	MPBEL	L ANA	LY	TICA	L	INC	C.						Г					CI	HA	IN	10	F	CI	IST	ΓO	D	V F	REC	COL	RE)		
Telephone: (25) 252-3962 Fax: (25) 252-968 EDF Required? Yes No. 24 In 18 In 1								7 /	14	17(01	0			7	ΓU	RN	AI				7													
Report To: Harmony TomSun Bill To: same	Telepho	one: (925) 25		sourg, CA	4505	F	ax:	(92	5) 2	252-9	26	9			_													24 H	IR	48	HR		72 HR	5 D	AY
Company: AEI Consultants 2500 Canishin Diablo Walnut Creek, CA 94597 E-Mail: rflory@aciconsultants.com Freely Canishin Diable Freely C	Danort To: Harn	ony TomSu	n	1	SILT.	01 607	20		1	20	4 1	VCO	922	220	E	DF	Rec	uir	ed?	_	-			noof	_	No	_				Oth		Co		
2500 Camino Diable Walnut Creek, CA 94597 E-Mail: rilory@aciconsultants.com 1500 15		-		-	JIII 1	o. san	ic			.0.	77 4	100	000	300	H					All		SIS F	veq	uest						<u> </u>	Othe	er.	Col	nmen	ts
Project M: 281939 Project Location: 3442 Adeline Street, Oakland, CA Sampler Signature: SAMPLING SAMPLIN		-	blo				1.7									0	&F)				a Ge														
Project M: 281939 Project Location: 3442 Adeline Street, Oakland, CA Sampler Signature: SAMPLING SAMPLIN	Wali	ut Creek, C	A 94597		E-M	ail: rf	lory	(a)ae	icor	nsulta	nts	com			BE	aun	EF/B				Silic				2										
MW-1 MW-1 425-12 1000 3 VoA x x x x x x x X X X X X X X X X X X X	Tele: (925) 944-	2899		I	ax:	(925)	94	4-28	95							CE	0 E8	8.1)			W				/ 83								-		
MW-1 MW-1 425-12 1000 3 VoA x x x x x x x X X X X X X X X X X X X						et Nar	ne:	Zin	ıme	erma	n				8015	a Ge	(552	14)		6	8015	700			8270										
MW-1 MW-1 425-12 1000 3 100 x x x x x x x x x x x x x x x x x x					l, CA										+ 02	Silic	case	pons		802	(0)	ALY.			25/1			6							
MW-1 MW-1 425-12 1000 3 100 x x x x x x x x x x x x x x x x x x	Sampler Signatur	re:			_	_	_				_	ME	TIL	OB	27/80	vith	G G	ocar		05/	S. C.	s Ol			A 6.	0020		2/60							
MW-1 MW-1 425-12 1000 3 100 x x x x x x x x x x x x x x x x x x		SAMPLINGV S MATRIX PR								as (6		Oii &	Hydr	9	PA (e (G	CB		SV	y EF	9050		/239												
MW-1 MW-1 425-12 1000 3 100 x x x x x x x x x x x x x x x x x x	SAMPLE ID				ers	ain					Т			Т	100	(80	E S	una	1 820	Y (E	Sang	080	260	270	Y's b	tals	als	7421							
MW-1 MW-1 425-12 1000 3 100 x x x x x x x x x x x x x x x x x x	SAMPLEID		Date	Time	tai	on	١.			9					TPH	iesel	strok	strole	EP/	Z	H	8/8	4/8	5/8	PN.	7 Mc	Met	240/							
MW-1 MW-1 425-12 1000 3 VoA x x x x x x x X X X X X X X X X X X X			Date	Time	S	be (ate	=	L	gpn	le	J 40	3 5	her 5	EX &	as D	al Pe	al Pe	ő	EX	H	A 60	A 62	A 62	H's/	M-1	FT 5	(7) be	_				190		
MW-2 MW-3 WW-3					#	Ę	3	So	A	S	키	9 3		ō	BII	IPH	Tot	Tot	呈	BT	H	H	EB	EP	PA	S	3	3	RC						
MW-4 MW-4 100 3 voa x x x x x x MW-5 MW-5 0845 3 voa x x x x x x x x x x x x x x x x x x x	MW-1	MW-1	4-25-12	1000	3	VOA	х				T	х			х																				
MW-4 MW-4 1100 3	MW-2	MW-2		1020	3	VOA	X				1	X			X	-			-														15		-
MW-5 MW-6	MW-3	MW-3		-	3	VOR	X				1	x			х																				
MW-6 MW-6 0815 3 U6A x	MW-4	MW-4		1100	3	VOA	X				1	x			х																				
MW-6 MW-6 0815 3 U6A x	MW-5	MW-5		0845	3	USA	х				1	X	T		x																\top	\top			
MW-7	MW-6	MW-6			3	V6A	X				1	X			x																	\top			
IW-1	MW-7	MW-7				The Real Property lies	_				1	X	T		х																				
BF-1 BF-1 O936 3 UPA X X X X X X X X X X X X X X X X X X X	IW-1	IW-1		0705	3	VOA	Х				1	X	T		X																\top	\top			
Retinquished By: Date: Time: Received By: VOAS O&G METALS OTHER Retinquished By: Date: Time: Received By: FRESERVATION APPROPRIATE CONTAINERS	BF-1	BF-1			_	UOA	X				1	x	T		X																				
Relinquished By: Date: Time: Received By: Voas O&G METALS OTHER Relinquished By: Date: Time: Received By: FRESERVATION APPROPRIATE CONTAINERS	BF-5	BF-5	A		3	NOA	X				T	x			х																				
Relinquished By: Date: Time: Recoved By: Date: Time: Recoved By: CE/t° 3. © PRESERVATION APPROPRIATE CONTAINERS						Ť					1		Ť																			\pm			
Relinquished By: Date: Time: Recoved By: Date: Time: Recoved By: CE/t° 3. © PRESERVATION APPROPRIATE CONTAINERS											1		1																		\top	+			
Relinquished By: Date: Time: Recoved By: Date: Time: Recoved By: ICE/t° 3. © GOOD CONDITION HEAD SPACE ABSENT Own METALS OTHER PRESERVATION APPROPRIATE CONTAINERS							t				1		T																			+			
Relinquished By: Date: Time: Recoved By: Date: Time: Recoved By: ICE/t° 3. © GOOD CONDITION HEAD SPACE ABSENT Own METALS OTHER PRESERVATION APPROPRIATE CONTAINERS							t				1		+																			+			
Relinquished By: Date: Time: Recoved By: GOOD CONDITION APPROPRIATE HEAD SPACE ABSENT CONTAINERS	Relinquished By:			Time:	Rec	eived B	y:				_				\vdash															_		_			
Relinquished By: Date: Time: Recoved By: GOOD CONDITION APPROPRIATE HEAD SPACE ABSENT CONTAINERS	Somona	300	4-25-12	4 133	1	Zel	1	1	4							100	2	- (0											DAS	O&G	:	METAL	OTH	IER
HEAD SPACE ABSENT CONTAINERS	Relinquished By:	01	Date:				ICE/t								LIO	N								_						_					
Relinquished By: Date: Time: Received By: DECHLORINATED IN LABPERSERVED IN LAB							HEA					AD S	PA	CE.	ABS	EN'				CON	TAI	NE	RS_		_										
	Relinquished By:	quished By: Date: Time: Received By:				-	DE	CHL	OR	INA	TEI) IN	LA	В		PE	RSE	ERV	ED	IN I	LAB_		1337												

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1204766 ClientCode: AEL □WaterTrax ☐ WriteOn **✓** EDF □ Excel □ Fax **✓** Email ☐ HardCopy ☐ ThirdParty Report to: Bill to: Requested TAT: 5 days Robert Flory rflory@aeiconsultants.com Sara Guerin Email: **AEI Consultants AEI Consultants** cc: Date Received: 04/25/2012 2500 Camino Diablo, Ste. #200 PO: #WC083330 2500 Camino Diablo, Ste. #200 Walnut Creek, CA 94597 Walnut Creek, CA 94597 ProjectNo: #281939; Zimmerman Date Printed: 04/25/2012 (925) 283-6000 FAX: (925) 283-6121 AccountsPayable@AEIConsultants.co Requested Tests (See legend below) 2 3 4 5 7 8 9 10 Lab ID Client ID Matrix Collection Date Hold 1 11 12 1204766-001 MW-1 Water 4/25/2012 10:00 Α Α 1204766-002 MW-2 Water 4/25/2012 10:20 Α 1204766-003 MW-4 Water 4/25/2012 11:00 Α 1204766-004 MW-5 Water 4/25/2012 8:45 Α 1204766-005 MW-6 Water 4/25/2012 8:15 Α 1204766-006 MW-7 Water 4/25/2012 6:45 Α 1204766-007 IW-1 Water 4/25/2012 7:05 Α 1204766-008 BF-1 4/25/2012 9:35 Α Water 1204766-009 BF-5 Water 4/25/2012 9:10 Α **Test Legend:** 2 1 **G-MBTEX W** PREDF REPORT 3 4 5 7 9 6 8 10 11 12

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Zoraida Cortez

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and time Received:	4/25/2012 /	:43:U1 PW
Project Name:	#281939; Zimmerm	an			LogIn	Reviewed by:		Zoraida Cortez
WorkOrder N°:	1204766	Matrix: Water			Carrie	r: Client Drop-In		
		<u>Cha</u>	in of Cu	ustody (C	OC) Informat	tion		
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	signed when relinquis	shed and received?	Yes	✓	No 🗌			
Chain of custody	agrees with sample I	abels?	Yes	✓	No 🗌			
Sample IDs note	d by Client on COC?		Yes	✓	No 🗌			
Date and Time of	f collection noted by 0	Client on COC?	Yes	•	No 🗌			
Sampler's name	noted on COC?		Yes	•	No 🗌			
			<u>Sample</u>	e Receipt	<u>Information</u>			
Custody seals int	tact on shipping conta	niner/cooler?	Yes		No 🗌		NA 🗹	
Shipping containe	er/cooler in good cond	dition?	Yes	✓	No 🗌			
Samples in prope	er containers/bottles?		Yes	•	No 🗌			
Sample containe	rs intact?		Yes	✓	No 🗌			
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌			
		Sample Pres	ervatio	n and Ho	ld Time (HT)	<u>Information</u>		
All samples recei	ived within holding tim	ne?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	3.6°C		NA \square	
Water - VOA vial	s have zero headspa	ce / no bubbles?	Yes	✓	No 🗌	No VOA vials submi	tted	
Sample labels ch	necked for correct pre	servation?	Yes	•	No 🗌			
Metal - pH accep	table upon receipt (pl	H<2)?	Yes		No 🗌		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗌			
		(Ісе Тур	e: WE	TICE)				
* NOTE: If the "N	lo" box is checked, se	ee comments below.						

AEI Consultants	Client Project ID: #281939;	Date Sampled:	04/25/12
2500 Camino Diablo, Ste. #200	Zimmerman	Date Received:	04/25/12
′	Client Contact: Robert Flory	Date Extracted:	04/26/12-05/01/12
Walnut Creek, CA 94597	Client P.O.: #WC083330	Date Analyzed:	04/26/12-05/01/12

	Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* Extraction method: SW5030B Analytical methods: SW8021B/8015Bm Work Order: 1204766													
Extraction	on method: SW5030B			Analyti	ical methods:	SW8021B/8015I	3m		Wor	rk Order:	1204766			
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments			
001A	MW-1	W	ND	ND	ND	ND	ND	ND	1	93				
002A	MW-2	w	9600	ND120	440	8.8	260	920	10	110	d1			
003A	MW-4	W	330	ND	23	1.4	2.0	4.2	1	#	d1			
004A	MW-5	W	67	ND	3.4	ND	1.4	0.83	1	108	d1			
005A	MW-6	W	7400	ND<150	99	11	100	27	10	120	d1			
006A	MW-7	W	8600	ND<75	1000	31	10	20	10	#	d1			
007A	IW-1	W	ND	ND	0.91	ND	ND	0.57	1	98				
008A	BF-1	W	ND	ND	ND	ND	ND	ND	1	96				
009A	BF-5	w	ND	ND	ND	ND	ND	ND	1	102				
	orting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5		μg/I				
	neans not detected at or ove the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/K				

^{*} water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 67056 WorkOrder: 1204766

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					;	Spiked Sam	ple ID:	1204690-001B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, was, ye	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	96.6	94.2	2.46	93.3	70 - 130	20	70 - 130
MTBE	ND	10	77.9	82.4	5.55	89.2	70 - 130	20	70 - 130
Benzene	ND	10	95.1	105	9.91	95.9	70 - 130	20	70 - 130
Toluene	ND	10	97.2	104	7.04	96.8	70 - 130	20	70 - 130
Ethylbenzene	ND	10	99.6	105	4.99	98.7	70 - 130	20	70 - 130
Xylenes	ND	30	103	106	2.91	101	70 - 130	20	70 - 130
%SS:	98	10	92	99	6.52	97	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 67056 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1204766-001A	04/25/12 10:00 AM	I 04/26/12	04/26/12 10:38 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 67086 WorkOrder: 1204766

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					;	Spiked Sam	ple ID:	1204806-001E
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
Analyse	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	88.4	89.7	1.42	89.2	70 - 130	20	70 - 130
MTBE	ND	10	75.9	78	2.70	91.4	70 - 130	20	70 - 130
Benzene	ND	10	91	93.1	2.29	90.4	70 - 130	20	70 - 130
Toluene	ND	10	88.7	94.9	6.72	91.9	70 - 130	20	70 - 130
Ethylbenzene	ND	10	89.2	94.1	5.33	90.6	70 - 130	20	70 - 130
Xylenes	ND	30	92.5	97.4	5.19	93.5	70 - 130	20	70 - 130
%SS:	104	10	97	101	4.58	95	70 - 130	20	70 - 130

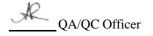
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 67086 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1204766-006A	04/25/12 6:45 AM	04/27/12	04/27/12 6:02 AM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

OC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 67105 WorkOrder: 1204766

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					;	Spiked Sam	ple ID:	1204766-009A
Analyte	Sample	Sample Spiked MS MSD MS-MSD LCS Accepta				eptance	ance Criteria (%)		
Analyse	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	98.2	94.6	3.74	94.8	70 - 130	20	70 - 130
MTBE	ND	10	78.6	82.3	4.60	80.4	70 - 130	20	70 - 130
Benzene	ND	10	99	96.4	2.71	105	70 - 130	20	70 - 130
Toluene	ND	10	103	99.4	3.18	108	70 - 130	20	70 - 130
Ethylbenzene	ND	10	102	98.3	3.69	106	70 - 130	20	70 - 130
Xylenes	ND	30	105	102	2.89	106	70 - 130	20	70 - 130
%SS:	102	10	96	95	1.12	101	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 67105 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1204766-002A	04/25/12 10:20 AM	04/27/12	04/27/12 6:30 AM	1204766-003A	04/25/12 11:00 AM	04/26/12	04/26/12 3:11 PM
1204766-004A	04/25/12 8:45 AM	04/27/12	04/27/12 4:03 AM	1204766-005A	04/25/12 8:15 AM	04/27/12	04/27/12 7:00 AM
1204766-007A	04/25/12 7:05 AM	05/01/12	05/01/12 12:44 AM	1204766-008A	04/25/12 9:35 AM	04/27/12	04/27/12 11:53 PM
1204766-009A	04/25/12 9:10 AM	04/27/12	04/27/12 5:32 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

