August 22, 2017

Johnny Browning 6200 Shattuck Partners, LLC 15 Mulberry Court, #5 Belmont, CA 94002

Phone: 650-271-6842

Email: johnnywgroup@gmail.com

Re.: Second Quarter 2017 Groundwater Monitoring Report

Automasters 6200 Shattuck Avenue Oakland, California ACEH Case #RO2935

I declare, that to the best of my knowledge at the present time, the information and/or recommendations contained in the attached document are true and correct.

Submitted by,

Johnny Browning LLC Manager

15 Mulberry Court, #5 Belmont, CA 94002

GROUNDWATER MONITORING REPORT SECOND QUARTER 2017

Automasters
Leaking Underground Tank Site
6200 Shattuck Avenue
Oakland
Case No. RO2935

Prepared for:

6200 Shattuck Partners LLC Oakland

Submitted to:

Alameda County Department of Environmental Health Oakland

Prepared by:

West & Associates Environmental Engineers, Inc. Vacaville

September 2017

ACKNOWLEDGMENTS

This Groundwater Monitoring Report was prepared under authorization of our client, the Automasters property owner, and is intended for his exclusive use.

Groundwater investigation at the Automasters site is under jurisdiction of Alameda County Department of Environmental Health; 5550 Skyline Blvd., Suite A, Oakland, California 95403. The case has been assigned No. RO0002935.

In the preparation of this Site Assessment reliance was made on previous environmental investigation performed by Pangea in 2006.

The Automasters site has been assigned the GeoTracker Global ID T0619748201.

In the completion of this project reliance was made on chemical analytical testing performed by McCampbell Analytical in Pittsburg. McCampbell is certified by the State of California for the analyses performed.

This Report was prepared by West & Associates Environmental Engineers, Inc.; 630 Eubanks Ct., Unit G, Vacaville, California 95688. Principal author is Mr. Brian W. West, PE, (707) 761-2307; RCE 32319, expires 12/31/18.

i

TABLE OF CONTENTS

SEC1	<u> </u>		<u>PAGE</u>
ACKI	NOWLE	_EDGMENTS	i
TABL	_E OF (CONTENTS	ii
1.0	INTR	RODUCTION	1
	1.1	Scope	1
	1.2	Summarized Background	1
2.0	SITE	E CHARACTERISTICS	3
	2.1	Physical Setting	3
	2.2	Subsurface Conditions	3
3.0	HYD	DROLOGIC MONITORING	3
4.0	GRO	OUNDWATER SAMPLE COLLECTION	4
	4.1	Purge Water	4
	4.2	Groundwater Sample Analysis	4
	4.3	Groundwater Sample Analytical Results	5
	4.4	Quality Assurance/Quality Control	6
5.0	DISC	CUSSION	6
6.0	CON	NCLUSIONS AND RECOMMENDATIONS	6
7.0	ELEC	ECTRONIC DATA SUBMITTAL CONFIRMATIONS	7
	<u>APP</u>	PENDICES PENDICES	
	B – F C – A D – F	Figures Purge Data Record Forms Analytical Lab Report Historical Groundwater Analytical Results Electronic Data Submittal Confirmations	

1.0 INTRODUCTION

This Groundwater Monitoring Report presents results of field measurements, hydrologic evaluation and groundwater analysis activities completed at the Automasters leaking underground fuel tank site located at 6200 Shattuck Avenue in Oakland, CA.

The Automasters site regional setting is shown on *Figure 1*. An aerial view of the property is presented on *Figure 2*. Both figures are included in *Appendix A*.

1.1 Scope

The scope of this project consisted of performing groundwater monitoring in the first encountered groundwater zone at the subject site. Specific scope items include:

- Hydrologic measurement to determine the local groundwater gradient direction and magnitude
- Collection of representative groundwater samples from three existing wells
- Proper management of investigative derived wastes (IDW)
- Arrange for groundwater sample analysis in a State certified laboratory
- Quality Control/ Quality Assurance Measures
- Prepare and submit this written monitoring report
- Data upload to GeoTracker

1.2 Summarized Background

The Automasters facility is located at the northeast corner of Shattuck Avenue and 62nd Street in an area of mixed residential and commercial land use. The elevation of the Site is 131 feet above mean sea level, with local topography sloping gently to the southwest (US Geological Survey [USGS], Oakland West Quadrangle, California). Surrounding properties are primarily single-family and multi-family residences with a few commercial buildings located along Shattuck Avenue to the south and northwest of the Site.

Shortly after purchasing the Site in 1986, Mr. Glenn Logan contracted with Ray Walker Hydraulics of Pleasanton, CA to remove two small underground gasoline storage tanks (USTs) from the southern portion of the Site. W&A contacted Mr. Walker in December 2014 to gather more information on these USTs and determine whether any contaminated soil was encountered during their removal. Mr. Walker searched his archived files but did not have any written information on this Site as the work was performed almost 30 years ago. To the best of his recollection both USTs were used for gasoline and either 500 or 1,000 gallons in size.

Mr. Logan distinctly remembers that contaminated soil between the USTs was removed and transported offsite for disposal. Attempts to contact the Oakland Fire Department regarding this Site were unsuccessful, so there is no written documentation of the quantity of soil removed or where it was taken.

WEST ASSOCIATES

The initial site assessment activities at this Site were performed by Pangea in 2006. Three soil borings were advanced across the Site at the locations shown on *Figure 2*. Borings SB-1 and SB-3 were clean, i.e. there were no detectable concentrations of TPH-g, , BTEX compounds, fuel oxygenates, lead scavengers, TPH-d or TPH-motor oil detected in any of the soil samples collected from these borings. The sample collected from boring SB-2 at 11 feet below ground surface (bgs) was reported to contain TPH-g at 3,000 mg/kg, TPH-d at 850 mg/kg, naphthalene at 10 mg/kg, and negligible concentrations of BTEX compounds and fuel additives. The 8-foot and 16-foot deep samples from SB-2 had insignificant concentrations of TPH-g and TPH-d, indicating that the zone of contamination was very limited in vertical extent. Total lead concentrations in all samples were typical of background levels in the vicinity.

No groundwater was encountered during the drilling of this 48-foot deep borehole. The SB-2 borehole was left open overnight with a 10-foot screen placed near the bottom and a groundwater "grab" sample was collected from SB-2 the following day. The depth to groundwater in this borehole was 8 feet bgs. TPH-g at 1,700 μ g/L, TPH-d at 1,000 μ g/, TPH-motor oil at 1,100 μ g/L, and naphthalene at 440 μ g/L were reported in this sample along with modest concentrations of BTEX compounds and fuel additives. This groundwater was in direct contact with the sand and gravel layer at 11-12 feet bgs, so it is unclear whether these results are indicative of actual groundwater concentrations.

A more extensive site investigation program was conducted in December 2015 Subsurface conditions encountered during the 2015 remedial investigation were consistent with those reported by Pangea in 2006. There is a relatively permeable silty sand strata (USCS 'GM') found between 7 to 12 feet BGS. The silty sand strata is overlain and underlain by a much less permeable clayey silt strata (USCS 'ML').

Soil borings advanced to 20 feet BGS are observed to be dry. However, when these borings are converted to groundwater monitoring wells the potentiometric groundwater surface rises to 4-7 feet bgs, indicating that shallow groundwater is at least partially confined.

The soil sample analytical results obtained by West & Associates in 2015 from 7 boreholes sampled to 20 feet bgs are also consistent with the results reported during the limited site investigation program conducted by Pangea. Both sampling activities reported significant concentrations of TPH-g and TPH-d in the vicinity of the former fuel dispenser island. Contamination is predominantly found in the permeable silty sand strata between 7 to 12 feet BGS.

Two of the groundwater monitoring wells installed in 2015 had significant concentrations of TPH-g, TPH-d, BTEX compounds and naphthalene when first sampled on December 31^{st} . MW-101, the well located west of the former USTs and dispenser island, was reported to contain TPH-g at $18,000~\mu g/L$, TPH-d at $5,100~\mu g/L$, benzene at $1,000~\mu g/L$, and naphthalene at $170~\mu g/L$. MW-103, south of the former USTs, was reported to contain TPH-g at $4,700~\mu g/L$, TPH-d at $1,400~\mu g/L$, benzene at $110~\mu g/L$, and naphthalene at $78~\mu g/L$. The groundwater sample from upgradient well MW-102 was clean.

All three wells have been monitored quarterly since June 2016. Sample results from the three quarterly monitoring events in 2016 were consistent, with the highest concentrations being reported in MW-101 (TPH-g ranging from 14,000 to 17,000 μ g/L, benzene ranging from 900 to 990 μ g/L, and naphthalene ranging from 190 to 210 μ g/L). MW-103 was reported with lower but nonetheless actionable concentrations of these COCS and MW-102 has remained clean.

Additional site investigation activities were performed in March 2017. The results of this investigation are presented in a separate report titled "Remedial Investigation Report – July 2017".

2.0 SITE CHARACTERISTICS

This section presents, physical site characteristics pertinent to the hydrogeologic assessment.

2.1 Physical Setting

The Automasters site is located at 6200 Shattuck Avenue, Oakland, California. It is an active motor vehicle repair facility approximately 0.1 acres in size. The site is surrounded by individual and multi-family private residences along with a few small commercial establishments. *Figure 3* shows the locations of the former USTs and dispenser island at the site.

The lead regulatory agency for UST and groundwater issues at the site is Alameda County Department of Environmental Health Services (ACDEH), the LOP for Alameda County. The site is also in the jurisdiction of the Regional Water Quality Control Board, San Francisco Bay Region.

2.2 Subsurface Conditions

Soil types encountered during the 2006 and 2015 site investigation activities consisted predominantly of silty clay to clayey silt with some sands and gravels to 36 feet below ground surface (bgs) and stiff clay from 36 feet to 48 feet bgs. The two borings advanced in 2006 closest to the former USTs and dispenser islands had a distinct sand and gravel lens at 10 to 12 feet bgs. The 2015 remedial investigation confirmed that shallow soils are predominately silty clay to clayey silt with a sand and gravel lens at 10 to 12 feet bgs.

The depth to first groundwater ranges from approximately 3 to 8 feet bgs. This shallow groundwater appears to comprise a perched aquifer that is not capable of providing a sustained yield of 200 gallons per day (the threshold for beneficial use designation).

3.0 HYDROLOGIC MONITORING

Hydrologic measurements were made at the Automasters site on July 6, 2017. This work was scheduled for June 30th but the site owner had a large, inoperable vehicle parked in a manner that was blocking MW-103. The vehicle was unable to be moved out of the way until July 6th, so monitoring and sampling were performed on that day. The static depth to groundwater (dtw) on that date was measured in each of the wells using a Solinst electronic sounding meter with a measurement accuracy of +/- 0.01 feet.

Table 1 presents top-of-casing (TOC) elevations, dtw measurements and groundwater elevations for the July 6, 2017 monitoring event. Hydrologic field data is presented on the "Purge Data Record Forms" included in *Appendix B*.

Groundwater elevations from this sampling event are plotted on *Figure 4*. The local groundwater gradient direction as calculated using the July 6, 2017 data is to the west south west with a gradient of 0.004 feet per foot.

TABLE 1 HYDROLOGIC MEASUREMENTS Automasters July 6, 2017

(all measurements in feet)

Well ID	тос	DTW	GWE
MW-101	128.84	5.49	123.35
MW-102	130.35	6.53	123.82
MW-103	130.03	6.31	123.72

Abbreviations:

TOC: Top of Casing

DTW: Depth to Groundwater GWE: Groundwater Elevation

4.0 GROUNDWATER SAMPLE COLLECTION

Groundwater monitoring wells MW-101, MW-102, and MW-103 were purged and sampled on July 6, 2017. All techniques, equipment and procedures used in the collection of groundwater samples conformed to West & Associates "Standard Field Procedures". Groundwater purging data was recorded on the "Purge Data Record Forms" included in *Appendix B*.

Groundwater samples were collected using new, disposable plastic bailers. Upon retrieval to the surface, each water sample was transferred to laboratory-supplied containers for analysis of petroleum compounds as described below. All water samples were labeled, placed into an ice chilled cooler and transported under EPA chain-of-custody protocol to a State certified analytical laboratory for testing.

4.1 Purge Water

Monitoring well purge water was stored on site in a labeled 55-gallon drum pending laboratory chemical analysis results and subsequent proper disposal.

4.2 Groundwater Sample Analysis

On July 10, 2017 the Automasters groundwater sample set was submitted under chain of custody protocol to McCampbell Laboratories for chemical analysis. McCampbell is certified by the State of California for the analyses performed.

Each groundwater sample was analyzed for the following:

- Total Petroleum Hydrocarbons as gasoline (TPH-g) by Method 8015b
- Total Petroleum Hydrocarbons as diesel (TPH-d) by Method 8015b
- Total Petroleum Hydrocarbons as Motor Oil (TPH-mo) by Method 8015b
- Volatile Organic Compounds (VOCs) by EPA Method 8260 (including BTEX, MtBE and naphthalene)

Minimum laboratory detection limits for all analyses are presented in the original laboratory reports appearing in *Appendix C*.

4.3 Groundwater Sample Analytical Results

Groundwater sample analytical results for contaminants of concern are presented in *Table 2*.

A summary of historical groundwater sample analytical results is presented in *Appendix D*.

TABLE 2 GROUNDWATER SAMPLE ANALYSIS Automasters July 6, 2017

(all values in micrograms per liter, i.e. ug/l or ppb)

Sample ID	TPH-g	В	Т	E	Х	М	N	TPH-d	TPH-mo	Other VOCs
MW-101	17,000	860	<25	650	960	<25	130	4,800	5,200	*
MW-102	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<250	No
MW-103	2,900	46	<5	100	73	<5	20	970	<250	*

Notes & Abbreviations:

B = Benzene

T = Toluene

E = Ethylbenzene

X = Total Xylenes

M = MtBE

N = Naphthalene

TABLE 2.1 VOC GROUNDWATER RESULTS Automasters

(Other than BTEX, MtBE & Naphthalene)

Sample ID	Isopropyl benzene	n-Propyl benzene	1,2,4 Trimethyl benzene	1,3,5 Trimethyl benzene	n-Butyl benzene	sec-Butyl benzene
MW-101	69	150	810	130	35	<25
MW-102	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-103	21	49	86	11	16	6.6

Groundwater quality data for this reporting period is displayed graphically on Figure 3.

^{*} See Table 2.1

4.4 Quality Assurance/Quality Control

QA/QC measures employed on the Automasters groundwater monitoring project conformed to West & Associates Standard Field Procedures. To summarize, QA/QC measures included:

- Assigning experienced and capable staff
- Following approved procedures and techniques
- Utilizing appropriate equipment and supplies
- Thorough and frequent decontamination of field equipment
- Maintaining detailed field notes
- Utilizing laboratory supplied sample containers
- Timely delivery of samples to the testing laboratory
- Keeping an unbroken Chain of Custody Record
- Adhering to EPA approved analytical procedures

All QA/QC procedures for this project were within acceptable parameters. A QA/QC review of the data set generated during this project reveals no anomalies. Analytical results are consistent with field observations and previously generated site data. The QA/QC report provided by the testing laboratory exhibits no flagged items. It is concluded that the data presented in this Report has an acceptable level or credibility and can be relied upon to accurately represent prevailing environmental conditions at the site.

5.0 DISCUSSION

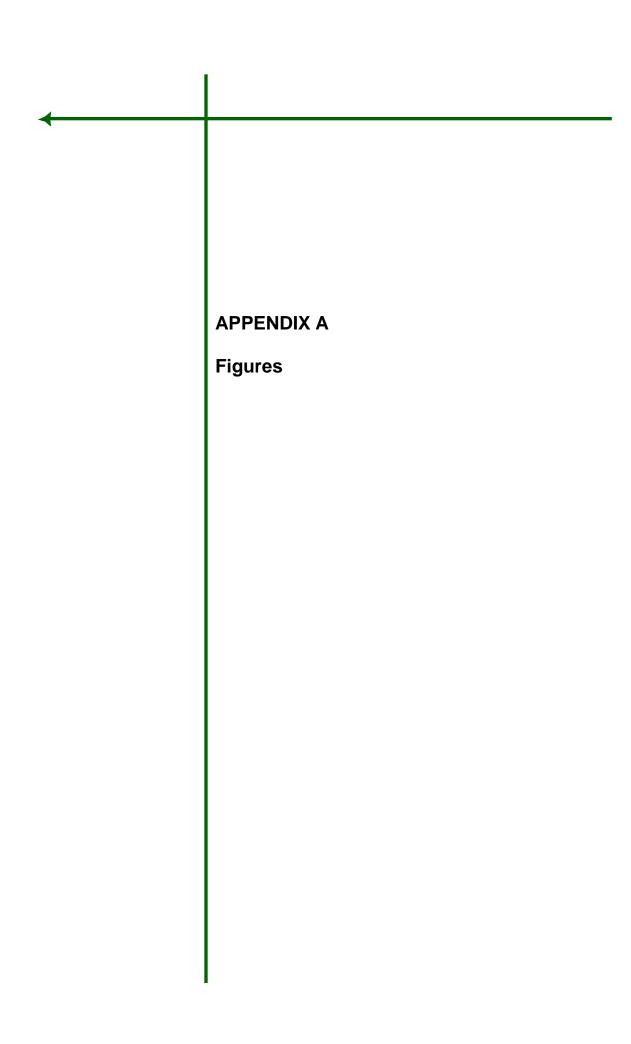
The Automasters 2nd Quarter 2017 groundwater monitoring project was completed in conformance with the ACDEH and San Francisco Bay RWQCB guidelines for groundwater sampling and analysis. No deviations from the standard QA/QC protocols occurred during this monitoring activity. The data presented in this report is considered representative of prevailing site conditions.

Hydrologic measurements made at the Automasters site on July 6, 2017 were interpreted to represent a groundwater gradient flowing to the east south east at 265 degrees. The gradient magnitude was calculated to be 0.004 feet per foot. This hydrologic data is consistent with previous site measurements.

Elevated concentrations of gasoline constituent contaminants were reported in groundwater samples collected from wells MW-101 and MW-103. This data is consistent with results of the previous monitoring activities in 2016 and January 2017.

6.0 CONCLUSIONS AND RECOMMENDATIONS

No anomalies were observed during the 2nd quarter 2017 Automasters groundwater monitoring event. Hydrologic conditions were found to be very similar to those measured during the previous four quarterly monitoring events. Contaminant concentrations in groundwater at wells MW-101 and MW-103 were within the range previously reported. No detectable groundwater contamination was again observed at well MW-102.



The information generated during the 2nd quarter 2017 groundwater monitoring event confirms that active remediation will be required at this Site in order to achieve case closure. Based on meetings and discussions with ACDEH and the UST Cleanup Fund ECAP program case worker regarding this Site, it is recommended that the impacted area be over-excavated to remove contaminated soil that is acting as a secondary source for groundwater contamination. This work will be performed once funding is available and the budget is approved by the ECAP Program Manager.

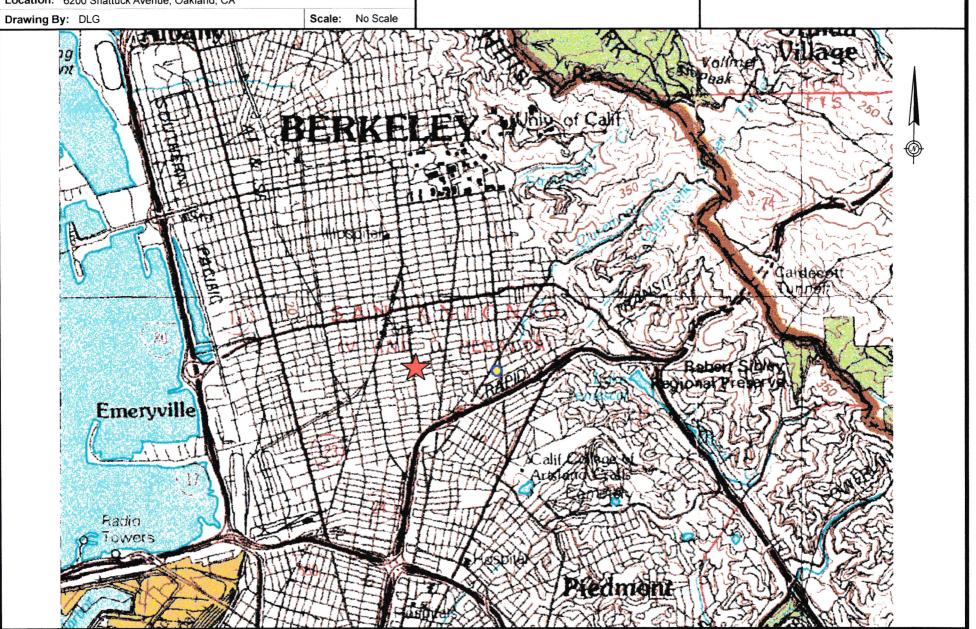
7.0 ELECTRONIC DATA SUBMITTAL COMPLIANCE

This Groundwater Monitoring Report has been uploaded to the ACDEH web site per instructions included with the ACDEH letter requesting it. Once approved by ACDEH, it will be uploaded to the Automasters GeoTracker Domain, Global ID T0619748201. The upload certificate is presented in *Appendix E.* Selected future work products will be uploaded to the GeoTracker database in conformance with State requirements.

Monitoring data from the Automasters Leaking Underground Tank site can be accessed through the ACDEH web site or through GeoTracker at http://www.geotracker.swrcb.ca.gov/.

PO Box 5891, Vacaville, CA 95696

Date: February 2016 Project Name: Automasters


Location: 6200 Shattuck Avenue, Oakland, CA

Legend

★ Site Location

FIGURE 1 **Regional Site Location**

PO Box 5891, Vacaville, CA 95696

Project Name: Automasters

Date: February 2016

Scale: No Scale

Location: 6200 Shattuck Avenue, Oakland, CA

Drawing By: DLG

Legend

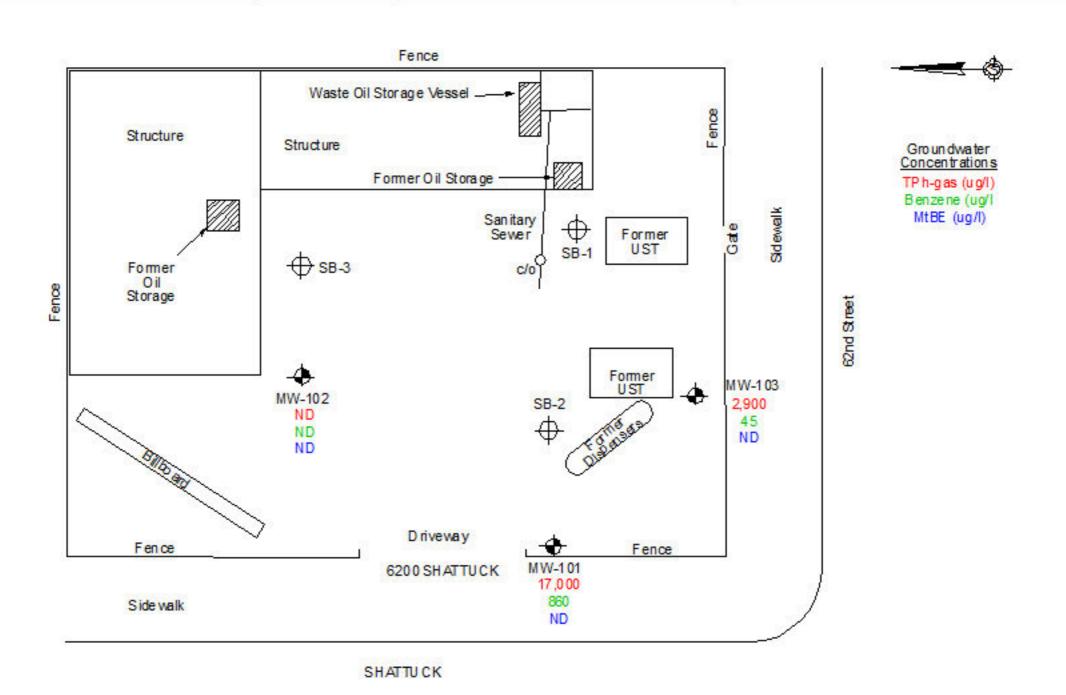
Site Location

FIGURE 2 Aerial Photo

PO Box 5891, Vacaville, CA 95898

Project Name: Automesters Date: Mar 2017

Location: 6200 Shattuck Avenue, Oakland, CA


Drawing By: DLG Scale: NS

Legend

Monitoring Well

Pangea Boring (2006)

FIGURE 3 Contaminant Concentrations 2nd Quarter 2017

PO Box 5891, Vacaville, CA 95696

Project Name: Automasters Date: July 2017

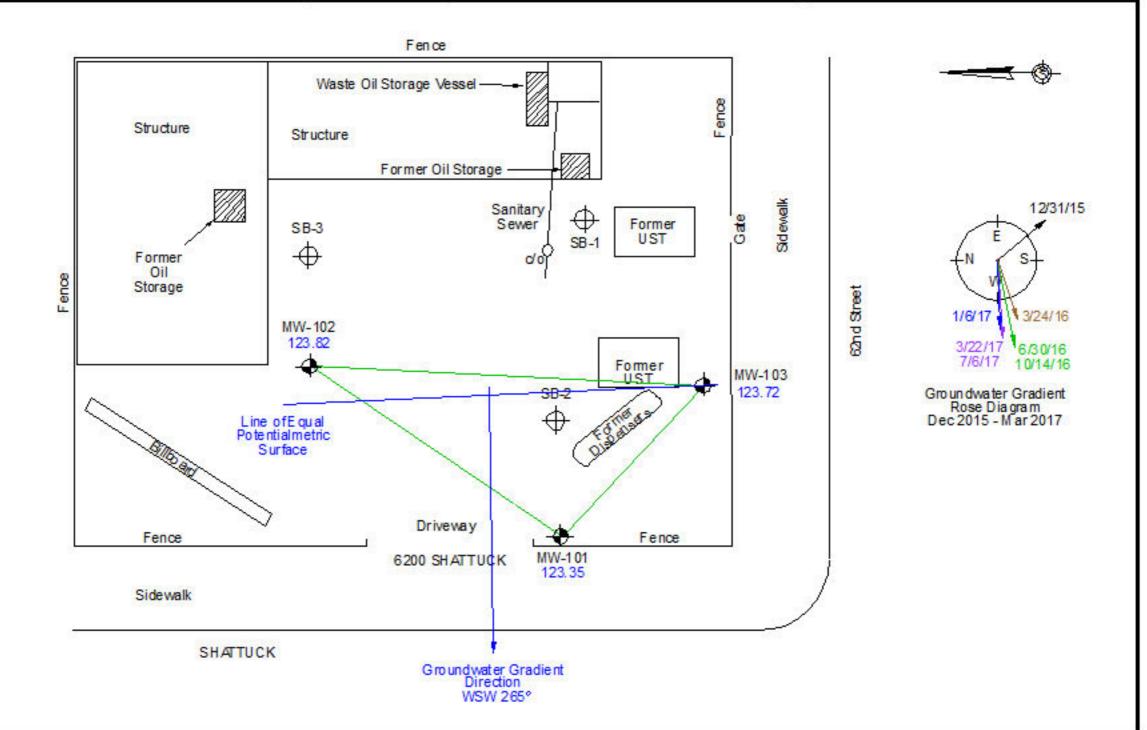
Location: 6200 Shattuck Avenue, Oakland, CA

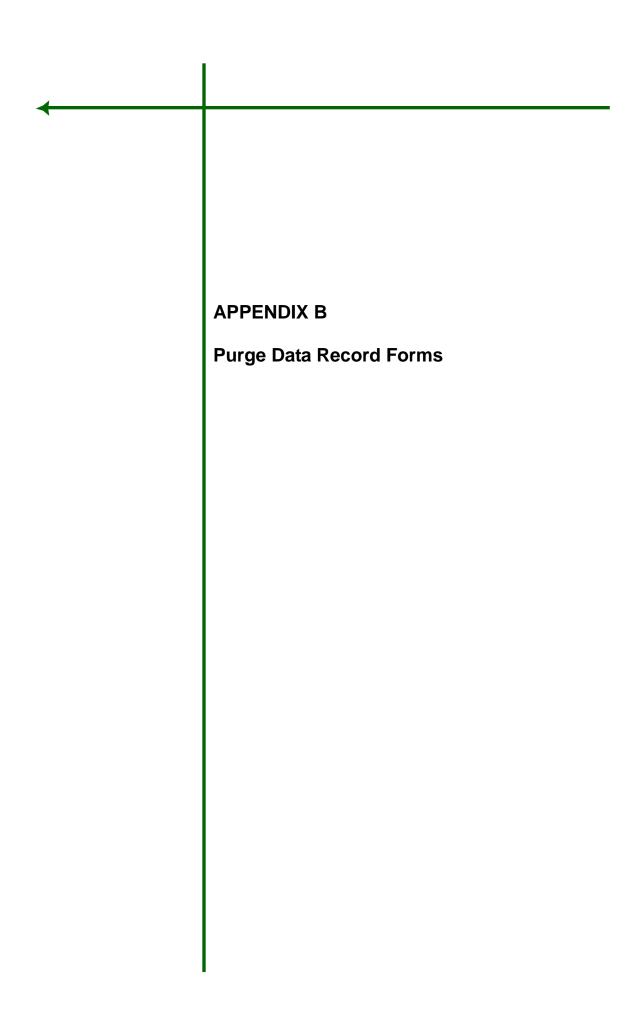
Drawing By: DLG Scale: NS

Legend

♦ м

Monitoring Well


- Well Triangle


Line of Equal Potentiametric Surface

Groundwater Gradient Direction

123.82 Groundwater Elevation Relative to MSL

FIGURE 4
Groundwater Elevations & Gradient
July 6, 2017

GROUNDWATER SAMPLING PURGE DATA RECORD FORM

MONITOR	ING WELL ID: MW	/-101		SAMPLER: _	BAJ	
MONITOR	ING WELL LOCATION	ON:				
DATE: 7	6.17			TIME: 3:24	-	_ AM PM
DISSOLVE	D OXYGEN CONCE	NTRATION:	1	N/A	Mg/L – Bi	FORE PURGE
			1	N/A	_ Mg/L – Ai	TER PURGE
FDEE D U/	ASE PRODUCT: Y	N INCH	1E6	PETROLEUM S	SHEEN: Y	$\left(\begin{array}{c} \mathbf{N} \end{array} \right)$
DOR/AP	PEARANCE: Mo	oderate petrolet	um odor/clear	mild turbidity		
DDOR/AP	PEARANCE: Mo	oderate petroleu	um odor/clear	– mild turbidity		
DDOR/AP			_	-		
Odor/Ap	20'	5.49	2" 4"	2.47		
Odor/Ap	20'	5.49	2" 4"	-		
ODOR/AP	20'	<u>5.49</u> H — DTGW	2" 4"	2.47 6 = CASING VOLU		
DDOR/AP	20'	<u>5.49</u> H — DTGW	2" 4" x .17 .66	2.47 6 = CASING VOLU		
	20' WELL DEPTH	5.49 DTGW PURGI	2" 4" x .17 .66 E MEASURE TEMP.	2.47 CASING VOLU MENTS CONDUCTIVITY	IME (GALS)	
Тіме	20' WELL DEPTH PURGE VOLUME GALLONS	5.49 DTGW PURGI	2" 4" x .17 .66 E MEASURE TEMP. °C	2.47 S = CASING VOLU MENTS Conductivity μS	IME (GALS) pH	Turbidity
TIME 3:29	PURGE VOLUME GALLONS 0	5.49 H — DTGW PURGI CUMULATIVE GALLONS 0	2" 4" x .17 .66 E MEASURE TEMP. °C 21.2	2.47 CASING VOLU MENTS CONDUCTIVITY μS 820	pH 6.4	Turbidity Clear
TIME 3:29 3:34	PURGE VOLUME GALLONS 0 2.5	5.49 H — DTGW PURGI CUMULATIVE GALLONS 0 2.5	2" 4" x .17 .66 E MEASURE TEMP. °C 21.2 19.9	2.47 CASING VOLU MENTS CONDUCTIVITY μS 820 790	pH 6.4 6.6	Turbidity Clear Clear
TIME 3:29 3:34 3:42	PURGE VOLUME GALLONS 0 2.5 2.5	5.49 PURGI CUMULATIVE GALLONS 0 2.5 5.0	2" 4" x .17 .66 E MEASURE TEMP. °C 21.2 19.9 19.1	2.47 CASING VOLU MENTS CONDUCTIVITY μS 820 790 760	pH 6.4 6.6 6.7	Turbidity Clear Clear Clear
TIME 3:29 3:34 3:42	PURGE VOLUME GALLONS 0 2.5 2.5	5.49 PURGI CUMULATIVE GALLONS 0 2.5 5.0	2" 4" x .17 .66 E MEASURE TEMP. °C 21.2 19.9 19.1	2.47 CASING VOLU MENTS CONDUCTIVITY μS 820 790 760	pH 6.4 6.6 6.7	Turbidity Clear Clear Clear

GROUNDWATER SAMPLING PURGE DATA RECORD FORM

MONITOR	ING WELL ID: MW	/-102		SAMPLER: _	BAJ	
MONITOR	ING WELL LOCATIO	N:				
D ATE: <u>7</u>	.6.17			TIME: 4:05		_ AM PM
Dissolve	ED OXYGEN CONCE	NTRATION:		N/A	_	
FREE PH	ASE PRODUCT: Y	N INC		N/A PETROLEUM S	_	
ODOR/AP	PEARANCE: No	odor/clear – m	nedium turbidit	у		
	20'	6 53	(2") 4"	2 20		
	20' WELL DEPTH	6.53 DTGW		$\frac{2.29}{\text{CASING VOLU}}$		
		H — DTGW		6 = CASING VOLU		
Тіме		H — DTGW	x .17 .66	6 = CASING VOLU		Turbidity
TIME 4:09	WELL DEPTH	PURG CUMULATIVE	X .17 .66 E MEASURE TEMP.	EMENTS CONDUCTIVITY	ME (GALS)	
	PURGE VOLUME GALLONS	PURG CUMULATIVE GALLONS	X .17 .66 E MEASURE TEMP. °C	EMENTS CONDUCTIVITY μS	ME (GALS)	Turbidity
4:09	PURGE VOLUME GALLONS 0	PURG CUMULATIVE GALLONS	X .17 .66 E MEASURE TEMP. °C 21.0	EMENTS CONDUCTIVITY	pH 6.8	Turbidity Clear
4:09 4:17	PURGE VOLUME GALLONS 0 2.5	PURG CUMULATIVE GALLONS 0 2.5	X .17 .66 E MEASURE TEMP. °C 21.0 20.5	EMENTS CONDUCTIVITY	pH 6.8 6.6	Turbidity Clear Mild

GROUNDWATER SAMPLING PURGE DATA RECORD FORM

/ IONITORI	ING WELL ID: MW	<u>/-103</u>		SAMPLER: _E	BAJ	
/ IONITORI	ING WELL LOCATIO	N:				
DATE: <u>7.</u>	6.17			TIME: 4:54		_ AM PM
DISSOLVE	D OXYGEN CONCE	NTRATION:	1	N/A	_ Mg/L – Bi	FORE PURGE
			1	N/A	_ Mg/L – Ar	TER PURGE
REE PHA	ASE PRODUCT: Y	N INCH	IES	PETROLEUM S	HEEN: Y	\overline{N}
						
DOR/AP	PEARANCE: Mil	d petroleum od	or/clear – mild	d turbidity		
DDOR/AP						
Odor/Ap	20'	6.31	2" 4"	2.33		
DDOR/AP		6.31	2" 4"			
ODOR/AP	20'	<u>6.31</u> H — DTGW	2" 4"	2.33 6 = CASING VOLU		
DDOR/AP	20'	<u>6.31</u> H — DTGW	2" 4" x .17 .66	2.33 6 = CASING VOLU		Turbidity
	20' WELL DEPTH	6.31 H — DTGW PURGE	2" 4" x .17 .66 E MEASURE TEMP.	2.33 CASING VOLU EMENTS CONDUCTIVITY	ME (GALS)	
Тіме	20' WELL DEPTH PURGE VOLUME GALLONS	6.31 PURGE CUMULATIVE GALLONS	2" 4" x .17 .66 E MEASURE TEMP. °C	2.33 CASING VOLU EMENTS CONDUCTIVITY μS	ME (GALS)	Turbidity
TIME 4:55	PURGE VOLUME GALLONS 0	6.31 PURGE CUMULATIVE GALLONS 0	2" 4" x .17 .66 E MEASURE TEMP. °C 19.8	2.33 CASING VOLU MENTS CONDUCTIVITY μS 650	mE (GALS) pH 6.5	Turbidity Clear
TIME 4:55 5:00	PURGE VOLUME GALLONS 0 2.5	6.31 PURGE CUMULATIVE GALLONS 0 2.5	2" 4" x .17 .66 E MEASURE TEMP. °C 19.8 18.7	2.33 S = CASING VOLU EMENTS Conductivity μS 650 830	pH 6.5 6.6	Turbidity Clear Mild
TIME 4:55 5:00 5:07	PURGE VOLUME GALLONS 0 2.5 2.5	6.31 PURGE CUMULATIVE GALLONS 0 2.5 5.0	2" 4" x .17 .66 E MEASURE TEMP. °C 19.8 18.7 18.3	$ \begin{array}{r} 2.33 \\ \hline S = CASING VOLU \\ \hline SMENTS \\ \hline CONDUCTIVITY \\ \mu S \\ \hline 650 \\ 830 \\ \hline 720 \\ \end{array} $	pH 6.5 6.6 6.7	Turbidity Clear Mild Mild

APPENDIX C Analytical Lab Reports McCampbell WO #1707274

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1707274

Report Created for: West & Associates

630 Eubanks Ct, Unit #G Vacaville, CA 95688

Project Contact: Bruce Jacobsen

Project P.O.:

Project Name: Automasters; 6200 Shattuck Ave., Oakland, CA

Project Received: 07/10/2017

Analytical Report reviewed & approved for release on 07/17/2017 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: West & Associates

Project: Automasters; 6200 Shattuck Ave., Oakland, CA

WorkOrder: 1707274

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: West & Associates

Project: Automasters; 6200 Shattuck Ave., Oakland, CA

WorkOrder: 1707274

Analytical Qualifiers

S	Surrogate spike recovery outside accepted recovery limits
b6	Lighter than water immiscible sheen/product is present
c2	Surrogate recovery outside of the control limits due to matrix interference.
c4	Surrogate recovery outside of the control limits due to coelution with another peak(s) / cluttered chromatogram.
d1	Weakly modified or unmodified gasoline is significant
e4	Gasoline range compounds are significant.
e7	Oil range compounds are significant

Analytical Report

Client:West & AssociatesWorkOrder:1707274Date Received:7/10/17 14:19Extraction Method:SW5030BDate Prepared:7/14/17Analytical Method:SW8260B

Project: Automasters; 6200 Shattuck Ave., Oakland, CA Unit: μg/L

Volatile Organics

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
MW-101	1707274-001B	Water	07/06/20	017 16:00 GC18	142057
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Acetone	ND		500	50	07/14/2017 22:39
tert-Amyl methyl ether (TAME)	ND		25	50	07/14/2017 22:39
Benzene	860		25	50	07/14/2017 22:39
Bromobenzene	ND		25	50	07/14/2017 22:39
Bromochloromethane	ND		25	50	07/14/2017 22:39
Bromodichloromethane	ND		25	50	07/14/2017 22:39
Bromoform	ND		25	50	07/14/2017 22:39
Bromomethane	ND		25	50	07/14/2017 22:39
2-Butanone (MEK)	ND		100	50	07/14/2017 22:39
t-Butyl alcohol (TBA)	ND		100	50	07/14/2017 22:39
n-Butyl benzene	35		25	50	07/14/2017 22:39
sec-Butyl benzene	ND		25	50	07/14/2017 22:39
tert-Butyl benzene	ND		25	50	07/14/2017 22:39
Carbon Disulfide	ND		25	50	07/14/2017 22:39
Carbon Tetrachloride	ND		25	50	07/14/2017 22:39
Chlorobenzene	ND		25	50	07/14/2017 22:39
Chloroethane	ND		25	50	07/14/2017 22:39
Chloroform	ND		25	50	07/14/2017 22:39
Chloromethane	ND		25	50	07/14/2017 22:39
2-Chlorotoluene	ND		25	50	07/14/2017 22:39
4-Chlorotoluene	ND		25	50	07/14/2017 22:39
Dibromochloromethane	ND		25	50	07/14/2017 22:39
1,2-Dibromo-3-chloropropane	ND		10	50	07/14/2017 22:39
1,2-Dibromoethane (EDB)	ND		25	50	07/14/2017 22:39
Dibromomethane	ND		25	50	07/14/2017 22:39
1,2-Dichlorobenzene	ND		25	50	07/14/2017 22:39
1,3-Dichlorobenzene	ND		25	50	07/14/2017 22:39
1,4-Dichlorobenzene	ND		25	50	07/14/2017 22:39
Dichlorodifluoromethane	ND		25	50	07/14/2017 22:39
1,1-Dichloroethane	ND		25	50	07/14/2017 22:39
1,2-Dichloroethane (1,2-DCA)	ND		25	50	07/14/2017 22:39
1,1-Dichloroethene	ND		25	50	07/14/2017 22:39
cis-1,2-Dichloroethene	ND		25	50	07/14/2017 22:39
trans-1,2-Dichloroethene	ND		25	50	07/14/2017 22:39
1,2-Dichloropropane	ND		25	50	07/14/2017 22:39
1,3-Dichloropropane	ND		25	50	07/14/2017 22:39
2,2-Dichloropropane	ND		25	50	07/14/2017 22:39

(Cont.)

Analytical Report

 Client:
 West & Associates
 WorkOrder:
 1707274

 Date Received:
 7/10/17 14:19
 Extraction Method:
 SW5030B

 Date Prepared:
 7/14/17
 Analytical Method:
 SW8260B

Project: Automasters; 6200 Shattuck Ave., Oakland, CA Unit: μg/L

Volatile Organics

Client ID	Lab ID	Matrix	Date (Collected Instrument	Batch ID
MW-101	1707274-001B	Water	07/06/2	017 16:00 GC18	142057
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
1,1-Dichloropropene	ND		25	50	07/14/2017 22:39
cis-1,3-Dichloropropene	ND		25	50	07/14/2017 22:39
trans-1,3-Dichloropropene	ND		25	50	07/14/2017 22:39
Diisopropyl ether (DIPE)	ND		25	50	07/14/2017 22:39
Ethylbenzene	650		25	50	07/14/2017 22:39
Ethyl tert-butyl ether (ETBE)	ND		25	50	07/14/2017 22:39
Freon 113	ND		25	50	07/14/2017 22:39
Hexachlorobutadiene	ND		25	50	07/14/2017 22:39
Hexachloroethane	ND		25	50	07/14/2017 22:39
2-Hexanone	ND		25	50	07/14/2017 22:39
Isopropylbenzene	69		25	50	07/14/2017 22:39
4-Isopropyl toluene	ND		25	50	07/14/2017 22:39
Methyl-t-butyl ether (MTBE)	ND		25	50	07/14/2017 22:39
Methylene chloride	ND		25	50	07/14/2017 22:39
4-Methyl-2-pentanone (MIBK)	ND		25	50	07/14/2017 22:39
Naphthalene	130		25	50	07/14/2017 22:39
n-Propyl benzene	150		25	50	07/14/2017 22:39
Styrene	ND		25	50	07/14/2017 22:39
1,1,1,2-Tetrachloroethane	ND		25	50	07/14/2017 22:39
1,1,2,2-Tetrachloroethane	ND		25	50	07/14/2017 22:39
Tetrachloroethene	ND		25	50	07/14/2017 22:39
Toluene	ND		25	50	07/14/2017 22:39
1,2,3-Trichlorobenzene	ND		25	50	07/14/2017 22:39
1,2,4-Trichlorobenzene	ND		25	50	07/14/2017 22:39
1,1,1-Trichloroethane	ND		25	50	07/14/2017 22:39
1,1,2-Trichloroethane	ND		25	50	07/14/2017 22:39
Trichloroethene	ND		25	50	07/14/2017 22:39
Trichlorofluoromethane	ND		25	50	07/14/2017 22:39
1,2,3-Trichloropropane	ND		25	50	07/14/2017 22:39
1,2,4-Trimethylbenzene	810		25	50	07/14/2017 22:39
1,3,5-Trimethylbenzene	130		25	50	07/14/2017 22:39
Vinyl Chloride	ND		25	50	07/14/2017 22:39
Xylenes, Total	960		25	50	07/14/2017 22:39

Analytical Report

Client:West & AssociatesWorkOrder:1707274Date Received:7/10/17 14:19Extraction Method:SW5030BDate Prepared:7/14/17Analytical Method:SW8260B

Project: Automasters; 6200 Shattuck Ave., Oakland, CA Unit: μg/L

Volatile Organics						
Lab ID Matrix	Date Collected Instrument	Batch ID				
1707274-001B Water	07/06/2017 16:00 GC18	142057				
Result	<u>RL</u> <u>DF</u>	Date Analyzed				
<u>REC (%)</u>	<u>Limits</u>					
95	70-130	07/14/2017 22:39				
94	70-130	07/14/2017 22:39				
84	70-130	07/14/2017 22:39				
	Lab ID Matrix 1707274-001B Water Result REC (%) 95 94	Lab ID Matrix Date Collected Instrument 1707274-001B Water 07/06/2017 16:00 GC18 Result RL DF REC (%) Limits 95 70-130 94 70-130				

Analytical Report

Client:West & AssociatesWorkOrder:1707274Date Received:7/10/17 14:19Extraction Method:SW5030BDate Prepared:7/14/17Analytical Method:SW8260B

Project: Automasters; 6200 Shattuck Ave., Oakland, CA Unit: µg/L

T 7 1	4 • 1	\sim	•
Vol	atıle	()rg	anics

Client ID	Lab ID	Matrix	Date C	ollected Instrum	ent Batch ID
MW-102	1707274-002B	Water	07/06/20	17 16:37 GC18	142057
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Acetone	ND		10	1	07/14/2017 23:18
tert-Amyl methyl ether (TAME)	ND		0.50	1	07/14/2017 23:18
Benzene	ND		0.50	1	07/14/2017 23:18
Bromobenzene	ND		0.50	1	07/14/2017 23:18
Bromochloromethane	ND		0.50	1	07/14/2017 23:18
Bromodichloromethane	ND		0.50	1	07/14/2017 23:18
Bromoform	ND		0.50	1	07/14/2017 23:18
Bromomethane	ND		0.50	1	07/14/2017 23:18
2-Butanone (MEK)	ND		2.0	1	07/14/2017 23:18
t-Butyl alcohol (TBA)	ND		2.0	1	07/14/2017 23:18
n-Butyl benzene	ND		0.50	1	07/14/2017 23:18
sec-Butyl benzene	ND		0.50	1	07/14/2017 23:18
tert-Butyl benzene	ND		0.50	1	07/14/2017 23:18
Carbon Disulfide	ND		0.50	1	07/14/2017 23:18
Carbon Tetrachloride	ND		0.50	1	07/14/2017 23:18
Chlorobenzene	ND		0.50	1	07/14/2017 23:18
Chloroethane	ND		0.50	1	07/14/2017 23:18
Chloroform	ND		0.50	1	07/14/2017 23:18
Chloromethane	ND		0.50	1	07/14/2017 23:18
2-Chlorotoluene	ND		0.50	1	07/14/2017 23:18
4-Chlorotoluene	ND		0.50	1	07/14/2017 23:18
Dibromochloromethane	ND		0.50	1	07/14/2017 23:18
1,2-Dibromo-3-chloropropane	ND		0.20	1	07/14/2017 23:18
1,2-Dibromoethane (EDB)	ND		0.50	1	07/14/2017 23:18
Dibromomethane	ND		0.50	1	07/14/2017 23:18
1,2-Dichlorobenzene	ND		0.50	1	07/14/2017 23:18
1,3-Dichlorobenzene	ND		0.50	1	07/14/2017 23:18
1,4-Dichlorobenzene	ND		0.50	1	07/14/2017 23:18
Dichlorodifluoromethane	ND		0.50	1	07/14/2017 23:18
1,1-Dichloroethane	ND		0.50	1	07/14/2017 23:18
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1	07/14/2017 23:18
1,1-Dichloroethene	ND		0.50	1	07/14/2017 23:18
cis-1,2-Dichloroethene	ND		0.50	1	07/14/2017 23:18
trans-1,2-Dichloroethene	ND		0.50	1	07/14/2017 23:18
1,2-Dichloropropane	ND		0.50	1	07/14/2017 23:18
1,3-Dichloropropane	ND		0.50	1	07/14/2017 23:18
2,2-Dichloropropane	ND		0.50	1	07/14/2017 23:18

(Cont.)

Analytical Report

 Client:
 West & Associates
 WorkOrder:
 1707274

 Date Received:
 7/10/17 14:19
 Extraction Method:
 SW5030B

 Date Prepared:
 7/14/17
 Analytical Method:
 SW8260B

Project: Automasters; 6200 Shattuck Ave., Oakland, CA Unit: µg/L

Volatile Organics

Client ID	Lab ID	Matrix	Date C	Collected Instrument	Batch ID
MW-102	1707274-002B	Water	07/06/2017 16:37 GC18		142057
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
1,1-Dichloropropene	ND		0.50	1	07/14/2017 23:18
cis-1,3-Dichloropropene	ND		0.50	1	07/14/2017 23:18
trans-1,3-Dichloropropene	ND		0.50	1	07/14/2017 23:18
Diisopropyl ether (DIPE)	ND		0.50	1	07/14/2017 23:18
Ethylbenzene	ND		0.50	1	07/14/2017 23:18
Ethyl tert-butyl ether (ETBE)	ND		0.50	1	07/14/2017 23:18
Freon 113	ND		0.50	1	07/14/2017 23:18
Hexachlorobutadiene	ND		0.50	1	07/14/2017 23:18
Hexachloroethane	ND		0.50	1	07/14/2017 23:18
2-Hexanone	ND		0.50	1	07/14/2017 23:18
Isopropylbenzene	ND		0.50	1	07/14/2017 23:18
4-Isopropyl toluene	ND		0.50	1	07/14/2017 23:18
Methyl-t-butyl ether (MTBE)	ND		0.50	1	07/14/2017 23:18
Methylene chloride	ND		0.50	1	07/14/2017 23:18
4-Methyl-2-pentanone (MIBK)	ND		0.50	1	07/14/2017 23:18
Naphthalene	ND		0.50	1	07/14/2017 23:18
n-Propyl benzene	ND		0.50	1	07/14/2017 23:18
Styrene	ND		0.50	1	07/14/2017 23:18
1,1,1,2-Tetrachloroethane	ND		0.50	1	07/14/2017 23:18
1,1,2,2-Tetrachloroethane	ND		0.50	1	07/14/2017 23:18
Tetrachloroethene	ND		0.50	1	07/14/2017 23:18
Toluene	ND		0.50	1	07/14/2017 23:18
1,2,3-Trichlorobenzene	ND		0.50	1	07/14/2017 23:18
1,2,4-Trichlorobenzene	ND		0.50	1	07/14/2017 23:18
1,1,1-Trichloroethane	ND		0.50	1	07/14/2017 23:18
1,1,2-Trichloroethane	ND		0.50	1	07/14/2017 23:18
Trichloroethene	ND		0.50	1	07/14/2017 23:18
Trichlorofluoromethane	ND		0.50	1	07/14/2017 23:18
1,2,3-Trichloropropane	ND		0.50	1	07/14/2017 23:18
1,2,4-Trimethylbenzene	ND		0.50	1	07/14/2017 23:18
1,3,5-Trimethylbenzene	ND		0.50	1	07/14/2017 23:18
Vinyl Chloride	ND		0.50	1	07/14/2017 23:18
Xylenes, Total	ND		0.50	1	07/14/2017 23:18

Analytical Report

 Client:
 West & Associates
 WorkOrder:
 1707274

 Date Received:
 7/10/17 14:19
 Extraction Method:
 SW5030B

 Date Prepared:
 7/14/17
 Analytical Method:
 SW8260B

Project: Automasters; 6200 Shattuck Ave., Oakland, CA Unit: μg/L

Volatile Organics							
Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID				
MW-102	1707274-002B Water	07/06/2017 16:37 GC18	142057				
Analytes	Result	<u>RL</u> <u>DF</u>	Date Analyzed				
Surrogates	REC (%)	<u>Limits</u>					
Dibromofluoromethane	97	70-130	07/14/2017 23:18				
Toluene-d8	93	70-130	07/14/2017 23:18				
4-BFB	85	70-130	07/14/2017 23:18				
Analyst(s): KF							

Analytical Report

Client:West & AssociatesWorkOrder:1707274Date Received:7/10/17 14:19Extraction Method:SW5030BDate Prepared:7/14/17Analytical Method:SW8260B

Project: Automasters; 6200 Shattuck Ave., Oakland, CA Unit: μg/L

Volatile Organics

Client ID	Lab ID	Matrix	Date C	ollected Instru	ument Batch ID
MW-103	1707274-003B	Water	07/06/20	17 17:27 GC18	142057
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Acetone	ND		100	10	07/14/2017 23:58
tert-Amyl methyl ether (TAME)	ND		5.0	10	07/14/2017 23:58
Benzene	46		5.0	10	07/14/2017 23:58
Bromobenzene	ND		5.0	10	07/14/2017 23:58
Bromochloromethane	ND		5.0	10	07/14/2017 23:58
Bromodichloromethane	ND		5.0	10	07/14/2017 23:58
Bromoform	ND		5.0	10	07/14/2017 23:58
Bromomethane	ND		5.0	10	07/14/2017 23:58
2-Butanone (MEK)	ND		20	10	07/14/2017 23:58
t-Butyl alcohol (TBA)	ND		20	10	07/14/2017 23:58
n-Butyl benzene	16		5.0	10	07/14/2017 23:58
sec-Butyl benzene	6.6		5.0	10	07/14/2017 23:58
tert-Butyl benzene	ND		5.0	10	07/14/2017 23:58
Carbon Disulfide	ND		5.0	10	07/14/2017 23:58
Carbon Tetrachloride	ND		5.0	10	07/14/2017 23:58
Chlorobenzene	ND		5.0	10	07/14/2017 23:58
Chloroethane	ND		5.0	10	07/14/2017 23:58
Chloroform	ND		5.0	10	07/14/2017 23:58
Chloromethane	ND		5.0	10	07/14/2017 23:58
2-Chlorotoluene	ND		5.0	10	07/14/2017 23:58
4-Chlorotoluene	ND		5.0	10	07/14/2017 23:58
Dibromochloromethane	ND		5.0	10	07/14/2017 23:58
1,2-Dibromo-3-chloropropane	ND		2.0	10	07/14/2017 23:58
1,2-Dibromoethane (EDB)	ND		5.0	10	07/14/2017 23:58
Dibromomethane	ND		5.0	10	07/14/2017 23:58
1,2-Dichlorobenzene	ND		5.0	10	07/14/2017 23:58
1,3-Dichlorobenzene	ND		5.0	10	07/14/2017 23:58
1,4-Dichlorobenzene	ND		5.0	10	07/14/2017 23:58
Dichlorodifluoromethane	ND		5.0	10	07/14/2017 23:58
1,1-Dichloroethane	ND		5.0	10	07/14/2017 23:58
1,2-Dichloroethane (1,2-DCA)	ND		5.0	10	07/14/2017 23:58
1,1-Dichloroethene	ND		5.0	10	07/14/2017 23:58
cis-1,2-Dichloroethene	ND		5.0	10	07/14/2017 23:58
trans-1,2-Dichloroethene	ND		5.0	10	07/14/2017 23:58
1,2-Dichloropropane	ND		5.0	10	07/14/2017 23:58
1,3-Dichloropropane	ND		5.0	10	07/14/2017 23:58
2,2-Dichloropropane	ND		5.0	10	07/14/2017 23:58

(Cont.)

Analytical Report

 Client:
 West & Associates
 WorkOrder:
 1707274

 Date Received:
 7/10/17 14:19
 Extraction Method:
 SW5030B

 Date Prepared:
 7/14/17
 Analytical Method:
 SW8260B

Project: Automasters; 6200 Shattuck Ave., Oakland, CA Unit: μg/L

Volatile Organics

Client ID	Lab ID	Matrix	Date C	Collected Instrument	Batch ID
MW-103	1707274-003B	Water	07/06/20	017 17:27 GC18	142057
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
1,1-Dichloropropene	ND		5.0	10	07/14/2017 23:58
cis-1,3-Dichloropropene	ND		5.0	10	07/14/2017 23:58
trans-1,3-Dichloropropene	ND		5.0	10	07/14/2017 23:58
Diisopropyl ether (DIPE)	ND		5.0	10	07/14/2017 23:58
Ethylbenzene	100		5.0	10	07/14/2017 23:58
Ethyl tert-butyl ether (ETBE)	ND		5.0	10	07/14/2017 23:58
Freon 113	ND		5.0	10	07/14/2017 23:58
Hexachlorobutadiene	ND		5.0	10	07/14/2017 23:58
Hexachloroethane	ND		5.0	10	07/14/2017 23:58
2-Hexanone	ND		5.0	10	07/14/2017 23:58
Isopropylbenzene	21		5.0	10	07/14/2017 23:58
4-Isopropyl toluene	ND		5.0	10	07/14/2017 23:58
Methyl-t-butyl ether (MTBE)	ND		5.0	10	07/14/2017 23:58
Methylene chloride	ND		5.0	10	07/14/2017 23:58
4-Methyl-2-pentanone (MIBK)	ND		5.0	10	07/14/2017 23:58
Naphthalene	20		5.0	10	07/14/2017 23:58
n-Propyl benzene	49		5.0	10	07/14/2017 23:58
Styrene	ND		5.0	10	07/14/2017 23:58
1,1,1,2-Tetrachloroethane	ND		5.0	10	07/14/2017 23:58
1,1,2,2-Tetrachloroethane	ND		5.0	10	07/14/2017 23:58
Tetrachloroethene	ND		5.0	10	07/14/2017 23:58
Toluene	ND		5.0	10	07/14/2017 23:58
1,2,3-Trichlorobenzene	ND		5.0	10	07/14/2017 23:58
1,2,4-Trichlorobenzene	ND		5.0	10	07/14/2017 23:58
1,1,1-Trichloroethane	ND		5.0	10	07/14/2017 23:58
1,1,2-Trichloroethane	ND		5.0	10	07/14/2017 23:58
Trichloroethene	ND		5.0	10	07/14/2017 23:58
Trichlorofluoromethane	ND		5.0	10	07/14/2017 23:58
1,2,3-Trichloropropane	ND		5.0	10	07/14/2017 23:58
1,2,4-Trimethylbenzene	86		5.0	10	07/14/2017 23:58
1,3,5-Trimethylbenzene	11		5.0	10	07/14/2017 23:58
Vinyl Chloride	ND		5.0	10	07/14/2017 23:58
Xylenes, Total	73		5.0	10	07/14/2017 23:58

Analytical Report

 Client:
 West & Associates
 WorkOrder:
 1707274

 Date Received:
 7/10/17 14:19
 Extraction Method:
 SW5030B

 Date Prepared:
 7/14/17
 Analytical Method:
 SW8260B

Project: Automasters; 6200 Shattuck Ave., Oakland, CA Unit: μg/L

Volatile Organics							
Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID				
MW-103	1707274-003B Water	07/06/2017 17:27 GC18	142057				
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed				
Surrogates	<u>REC (%)</u>	<u>Limits</u>					
Dibromofluoromethane	96	70-130	07/14/2017 23:58				
Toluene-d8	94	70-130	07/14/2017 23:58				
4-BFB	86	70-130	07/14/2017 23:58				

Analytical Report

Client: West & Associates WorkOrder: 1707274 **Date Received:** 7/10/17 14:19 **Extraction Method: SW5030B**

Date Prepared: 7/11/17 **Analytical Method:** SW8021B/8015Bm

Project: Automasters; 6200 Shattuck Ave., Oakland, CA Unit: $\mu g/L$

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix	Date (Collected Instrument	Batch ID
MW-101	1707274-001A	Water	07/06/2	2017 16:00 GC3	141849
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g) (C6-C12)	17,000		500	10	07/11/2017 21:15
MTBE			50	10	07/11/2017 21:15
Benzene			5.0	10	07/11/2017 21:15
Toluene			5.0	10	07/11/2017 21:15
Ethylbenzene			5.0	10	07/11/2017 21:15
Xylenes			15	10	07/11/2017 21:15
<u>Surrogates</u>	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>		
aaa-TFT	146	S	89-115		07/11/2017 21:15
Analyst(s): HD			Analytical Cor	nments: d1.c4	

Analyst(s): HD Analytical Comments: d1,c4

Client ID	Lab ID	Matrix	Date C	Collected Instrument	Batch ID	
MW-102	1707274-002A Water		07/06/20	017 16:37 GC3	141849	
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed	
TPH(g) (C6-C12)	ND		50	1	07/11/2017 21:46	
MTBE			5.0	1	07/11/2017 21:46	
Benzene			0.50	1	07/11/2017 21:46	
Toluene			0.50	1	07/11/2017 21:46	
Ethylbenzene			0.50	1	07/11/2017 21:46	
Xylenes			1.5	1	07/11/2017 21:46	
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
aaa-TFT	101		89-115		07/11/2017 21:46	
Analyst(s): HD						

Analytical Report

Client: West & Associates WorkOrder: 1707274

Date Received: 7/10/17 14:19 Extraction Method: SW5030B

Date Prepared: 7/11/17 **Analytical Method:** SW8021B/8015Bm

Project: Automasters; 6200 Shattuck Ave., Oakland, CA Unit: µg/L

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix	Date C	Collected Instrument	Batch ID
MW-103	1707274-003 <i>k</i>	A Water	07/06/2	017 17:27 GC3	141849
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g) (C6-C12)	2900		500	10	07/11/2017 23:19
MTBE			50	10	07/11/2017 23:19
Benzene			5.0	10	07/11/2017 23:19
Toluene			5.0	10	07/11/2017 23:19
Ethylbenzene			5.0	10	07/11/2017 23:19
Xylenes			15	10	07/11/2017 23:19
<u>Surrogates</u>	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>		
aaa-TFT	137	S	89-115		07/11/2017 23:19
Analyst(s): HD			Analytical Com	nments: d1,c4	

Analytical Report

Client: West & Associates

Date Received: 7/10/17 14:19

Date Prepared: 7/10/17

Project: Automasters; 6200 Shattuck Ave., Oakland, CA

WorkOrder: 1707274 Extraction Method: SW3510C

Analytical Method: SW8015B

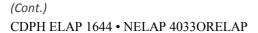
Unit: μg/L

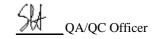
Analytical Comments: e4

Total Extractable Petroleum Hydrocarbons w/out SG Clean-Up							
Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch II	
MW-101	1707274-001A	Water	07/06/20	17 16:00	GC6B	141736	
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed	
TPH-Diesel (C10-C23)	4800		500	10		07/12/2017 12:54	
TPH-Motor Oil (C18-C36)	5200		2500	10		07/12/2017 12:54	
<u>Surrogates</u>	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>				
C9	207	S	66-138			07/12/2017 12:54	
Analyst(s): TK							
Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch II	
MW-102	1707274-002A	Water	07/06/20	17 16:37	GC39A	141736	
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed	
TPH-Diesel (C10-C23)	ND		50	1		07/11/2017 18:21	
TPH-Motor Oil (C18-C36)	ND		250	1		07/11/2017 18:21	
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>				
C9	106		66-138			07/11/2017 18:21	
Analyst(s): TK							
Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch II	
MW-103	1707274-003A	Water	07/06/20	17 17:27	GC39A	141736	
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed	
TPH-Diesel (C10-C23)	970		50	1		07/11/2017 17:04	
TPH-Motor Oil (C18-C36)	ND		250	1		07/11/2017 17:04	
<u>Surrogates</u>	REC (%)		<u>Limits</u>				
C9	106		66-138			07/11/2017 17:0	

Analyst(s): TK

Quality Control Report


Client:West & AssociatesWorkOrder:1707274Date Prepared:7/14/17BatchID:142057Date Analyzed:7/14/17Extraction Method:SW5030BInstrument:GC18Analytical Method:SW8260B


Matrix: Water Unit: μg/I

Project: Automasters; 6200 Shattuck Ave., Oakland, CA Sample ID: MB/LCS/LCSD-142057

QC Summary Report for SW8260B

Analyte	MB	RL	SPK	MB SS	MB SS
	Result		Val	%REC	Limits
Acetone	ND	10	-	-	-
tert-Amyl methyl ether (TAME)	ND	0.50	-	-	-
Benzene	ND	0.50	-	-	-
Bromobenzene	ND	0.50	-	-	-
Bromochloromethane	ND	0.50	-	-	-
Bromodichloromethane	ND	0.50	-	-	-
Bromoform	ND	0.50	-	-	-
Bromomethane	ND	0.50	-	-	-
2-Butanone (MEK)	ND	2.0	-	-	-
t-Butyl alcohol (TBA)	ND	2.0	-	-	-
n-Butyl benzene	ND	0.50	-	-	-
sec-Butyl benzene	ND	0.50	-	-	-
tert-Butyl benzene	ND	0.50	-	-	-
Carbon Disulfide	ND	0.50	-	-	-
Carbon Tetrachloride	ND	0.50	-	-	-
Chlorobenzene	ND	0.50	-	-	-
Chloroethane	ND	0.50	-	-	-
Chloroform	ND	0.50	-	-	-
Chloromethane	ND	0.50	-	-	-
2-Chlorotoluene	ND	0.50	-	-	-
4-Chlorotoluene	ND	0.50	-	-	-
Dibromochloromethane	ND	0.50	-	-	-
1,2-Dibromo-3-chloropropane	ND	0.20	-	-	-
1,2-Dibromoethane (EDB)	ND	0.50	-	-	-
Dibromomethane	ND	0.50	-	-	-
1,2-Dichlorobenzene	ND	0.50	-	-	-
1,3-Dichlorobenzene	ND	0.50	-	-	-
1,4-Dichlorobenzene	ND	0.50	-	-	-
Dichlorodifluoromethane	ND	0.50	-	-	-
1,1-Dichloroethane	ND	0.50	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	0.50	-	-	-
1,1-Dichloroethene	ND	0.50	-	-	-
cis-1,2-Dichloroethene	ND	0.50	-	-	-
trans-1,2-Dichloroethene	ND	0.50	-	-	-
1,2-Dichloropropane	ND	0.50	-	-	-
1,3-Dichloropropane	ND	0.50	-	-	-
2,2-Dichloropropane	ND	0.50	-	-	-
1,1-Dichloropropene	ND	0.50	-	-	-
cis-1,3-Dichloropropene	ND	0.50	-	-	-

Quality Control Report

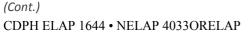
Client:West & AssociatesWorkOrder:1707274Date Prepared:7/14/17BatchID:142057Date Analyzed:7/14/17Extraction Method:SW5030BInstrument:GC18Analytical Method:SW8260B

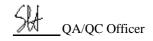
Matrix: Water Unit: μg/I

Project: Automasters; 6200 Shattuck Ave., Oakland, CA Sample ID: MB/LCS/LCSD-142057

Analyte	MB Result	RL	SPK Val	MB SS %REC	MB SS Limits
trans-1,3-Dichloropropene	ND	0.50	-	-	-
Diisopropyl ether (DIPE)	ND	0.50	-	-	-
Ethylbenzene	ND	0.50	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	0.50	-	-	-
Freon 113	ND	0.50	-	-	-
Hexachlorobutadiene	ND	0.50	-	-	-
Hexachloroethane	ND	0.50	-	-	-
2-Hexanone	ND	0.50	-	-	-
Isopropylbenzene	ND	0.50	-	-	-
4-Isopropyl toluene	ND	0.50	-	-	=
Methyl-t-butyl ether (MTBE)	ND	0.50	-	-	=
Methylene chloride	ND	0.50	-	-	=
4-Methyl-2-pentanone (MIBK)	ND	0.50	-	-	=
Naphthalene	ND	0.50	-	-	-
n-Propyl benzene	ND	0.50	-	-	=
Styrene	ND	0.50	-	-	=-
1,1,1,2-Tetrachloroethane	ND	0.50	-	-	=
1,1,2,2-Tetrachloroethane	ND	0.50	-	-	=
Tetrachloroethene	ND	0.50	-	-	=
Toluene	ND	0.50	-	-	=
1,2,3-Trichlorobenzene	ND	0.50	-	-	=
1,2,4-Trichlorobenzene	ND	0.50	-	-	=
1,1,1-Trichloroethane	ND	0.50	-	-	=
1,1,2-Trichloroethane	ND	0.50	-	-	=
Trichloroethene	ND	0.50	-	-	=
Trichlorofluoromethane	ND	0.50	-	-	=
1,2,3-Trichloropropane	ND	0.50	-	-	-
1,2,4-Trimethylbenzene	ND	0.50	-	-	=
1,3,5-Trimethylbenzene	ND	0.50	-	-	=
Vinyl Chloride	ND	0.50	-	-	=
Xylenes, Total	ND	0.50	-	-	-
Surrogate Recovery					
Dibromofluoromethane	23.94		25	96	70-130
Toluene-d8	23.16		25	93	70-130
4-BFB	2.091		2.5	84	70-130

Quality Control Report


Client:West & AssociatesWorkOrder:1707274Date Prepared:7/14/17BatchID:142057Date Analyzed:7/14/17Extraction Method:SW5030B


Instrument:GC18Analytical Method:SW8260BMatrix:WaterUnit:µg/L

Project: Automasters; 6200 Shattuck Ave., Oakland, CA Sample ID: MB/LCS/LCSD-142057

QC Summary Report for SW8260B

ent-Amyl methyl ether (TAME) 9.20 9.03 10 92 90 54-140 1.90 20 Benzene 8.65 8.55 10 86 86 47-158 0 20 Bromochrome 8.42 8.51 10 84 85 50-155 0.987 20 Bromochromethane 9.05 8.90 10 91 89 48-160 17.4 20 Bromochromethane 9.02 9.01 10 95 93 43-149 2.12 20 Bromomethane 9.58 10.0 10 96 101 61-159 4.80 20 Butyl alcohol (TBA) 45.7 41.9 40 114 105 42-140 8.66 20 Butyl alcohol (TBA) 45.7 41.9 40 114 105 42-140 8.66 20 Butyl alcohol (TBA) 45.7 41.9 40 114 105 42-140 8.66 74-138 8.69 2	Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Benzene 8.65 8.55 10 86 86 47-158 0 20 20 Paramobenzene 8.42 8.51 10 84 85 50-155 0.987 20 20 Paramobenzene 8.42 8.51 10 84 85 50-155 0.987 20 20 Paramobrane 9.05 8.90 10 91 89 48-160 1.74 20 20 Paramobrane 9.02 9.01 10 90 90 60-156 0 20 Paramobrane 9.52 9.32 10 95 93 43-149 2.12 20 20 Paramobrane 9.58 10.0 10 96 101 61-159 4.80 20 Paramobrane 9.58 10.0 10 96 101 61-159 4.80 20 Paramobrane 9.58 10.0 10 96 101 61-154 2.90 20 Paramobrane 9.58 10.0 10 96 101 61-154 2.90 20 Paramobrane 9.58 10.0 10 96 101 61-124 2.90 20 Paramobrane 9.58 10.0 10 96 101 61-124 2.90 20 Paramobrane 9.58 10.0 10 98 91 61-124 2.90 20 Paramobrane 9.58 10.0 10 98 91 72-142 2.54 20 Paramobrane 9.58 10.0 10 85 86 74-138 0.593 20 Paramobrane 9.58 10.0 10 89 91 72-142 2.54 20 Paramobrane 9.58 10.0 10 89 91 72-142 2.54 20 Paramobrane 9.58 10.0 10 89 91 72-142 2.54 20 Paramobrane 9.58 10.0 10 89 91 72-142 2.54 20 Paramobrane 9.58 10.0 89 91 72-142 2.54 20 Paramobrane 9.58 10.0 89 89 91 72-142 2.54 20 Paramobrane 9.58 10.0 89 89 91 72-142 2.54 20 Paramobrane 9.58 10.0 89 89 91 72-142 2.54 20 Paramobrane 9.58 10 89 89 91 72-142 2.54 20 Paramobrane 9.58 10 89 89 91 72-142 2.54 20 Paramobrane 9.58 10 89 89 91 72-142 2.54 20 Paramobrane 9.58 10 89 89 91 72-142 2.54 20 Paramobrane 9.59 9.42 10 89 89 91 91-158 20 Paramobrane 9.50 9.42 10 93 94 50-127 1.29 20 Paramobrane 9.50 9.42 10 93 94 50-127 1.29 20 Paramobrane 9.50 9.42 10 93 94 50-127 1.29 20 Paramobrane 9.50 9.42 10 93 94 50-127 1.29 20 Paramobrane 9.58 9.95 9.15 10 90 91 50-155 2.15 20 Paramobrane 9.50 9.42 10 93 94 50-127 1.29 20 Paramobrane 9.58 9.95 9.15 10 90 91 50-155 2.15 20 Paramobrane 9.50 9.42 10 93 94 50-127 1.29 20 Paramobrane 9.50 9.42 10 93 94 50-127 1.29 20 Paramobrane 9.50 9.50 91 91 50-155 2.55 20 Paramobrane 9.50 91 91 50-155 2.55 20 Paramobrane 9.50 91 91 91 90 91 50-155 2.55 20 91 91 91 91 91 91 91 91 91 91 91 91 91	Acetone	184	178	200	92	89	46-155	3.00	20
Stromobenzene 8.42 8.51 10 84 85 50-155 0.987 20	tert-Amyl methyl ether (TAME)	9.20	9.03	10	92	90	54-140	1.90	20
Bromochloromethane 9.05 8.90 10 91 89 48.160 1.74 20	Benzene	8.65	8.55	10	86	86	47-158	0	20
Bromodichloromethane 9.02 9.01 10 90 90 60-156 0 20 20 20 20 30 30 32 32	Bromobenzene	8.42	8.51	10	84	85	50-155	0.987	20
Seromoform 9.52 9.32 10 95 93 43-149 2.12 20	Bromochloromethane	9.05	8.90	10	91	89	48-160	1.74	20
Paramomethane 9.58 10.0 10 96 101 61-159 4.80 20	Bromodichloromethane	9.02	9.01	10	90	90	60-156	0	20
Patientone (MEK) 37.6 36.5 40 94 91 61-124 2.90 20	Bromoform	9.52	9.32	10	95	93	43-149	2.12	20
-Butyl alcohol (TBA)	Bromomethane	9.58	10.0	10	96	101	61-159	4.80	20
n-Buyl benzene 8.55 8.60 10 85 86 74-138 0.593 20 sec-Buyl benzene 8.88 9.11 10 89 91 72-142 2.54 20 entr-Buyl benzene 8.88 9.11 10 89 91 72-142 2.54 20 entr-Buyl benzene 8.34 8.63 10 83 86 74-140 3.38 20 Carbon Disulfide 8.53 8.42 10 85 84 64-127 1.38 20 Carbon Disulfide 8.93 8.85 10 89 89 61-158 0 20 Chlorobenzene 8.54 8.53 10 85 85 43-157 0 20 Chlorobenzene 9.54 8.53 10 85 85 43-157 0 20 Chlorothane 9.30 9.42 10 93 94 50-127 1.29 20 Chlorothane 9.67 9.87 10 93 94 50-127 1.29 20 Chlorothane 9.67 9.87 10 97 99 41-132 2.06 20 Chlorotoluene 8.95 9.15 10 90 91 50-155 2.15 20 40-100 40 40 40 40 40 40 40 40 40 40 40 40 4	2-Butanone (MEK)	37.6	36.5	40	94	91	61-124	2.90	20
Sec-Butyl benzene 8.88 9.11 10 89 91 72-142 2.54 20	t-Butyl alcohol (TBA)	45.7	41.9	40	114	105	42-140	8.66	20
cert-Buyl benzene 8.34 8.63 10 83 86 74-140 3.38 20 Carbon Disulfide 8.53 8.42 10 85 84 64-127 1.38 20 Carbon Tetrachloride 8.93 8.85 10 89 89 61-158 0 20 Chloroberscene 8.54 8.53 10 85 85 43-157 0 20 Chlorobethane 9.30 9.42 10 93 94 50-127 1.29 20 Chlorotofrom 8.45 8.36 10 84 84 56-154 0 20 Chlorotoluene 9.67 9.87 10 97 99 41-132 2.06 20 4-Chlorotoluene 8.23 8.38 10 82 84 53-153 1.75 20 4-Chlorotoluene 8.23 8.38 10 82 84 53-153 1.75 20 4-Chlorotoluene 8	n-Butyl benzene	8.55	8.60	10	85	86	74-138	0.593	20
Carbon Disulfide 8.53 8.42 10 85 84 64-127 1.38 20 Carbon Tetrachloride 8.93 8.85 10 89 89 61-158 0 20 Chlorobenzene 8.54 8.53 10 85 85 43-157 0 20 Chlorothane 9.30 9.42 10 93 94 50-127 1.29 20 Chlorothane 9.67 9.87 10 97 99 41-132 2.06 20 Chlorotoluene 8.95 9.15 10 90 91 50-155 2.15 20 4-Chlorotoluene 8.23 8.38 10 82 84 53-153 1.75 20 Dibromochioromethane 8.38 8.36 10 84 84 49-156 0 20 1,2-Dibromo-3-chloropropane 3.75 3.58 4 94 90 46-149 4.56 20 1,2-Dibromoethane (EDB)<	sec-Butyl benzene	8.88	9.11	10	89	91	72-142	2.54	20
Carbon Tetrachloride 8.93 8.85 10 89 89 61-158 0 20 Chlorobenzene 8.54 8.53 10 85 85 43-157 0 20 Chlorobenzene 8.54 8.53 10 85 85 43-157 0 20 Chlorobethane 9.30 9.42 10 93 94 50-127 1.29 20 Chloroform 8.45 8.36 10 84 84 56-154 0 20 Chloromethane 9.67 9.87 10 97 99 41-132 2.06 20 20 20 20 20 20 20 20 20 20 20 20 20	tert-Butyl benzene	8.34	8.63	10	83	86	74-140	3.38	20
Chlorobenzene 8.54 8.53 10 85 85 43-157 0 20 Chloroethane 9.30 9.42 10 93 94 50-127 1.29 20 Chloroform 8.45 8.36 10 84 84 56-154 0 20 Chlorotoluene 9.67 9.87 10 97 99 41-132 2.06 20 C-Chlorotoluene 8.95 9.15 10 90 91 50-155 2.15 20 4-Chlorotoluene 8.23 8.38 10 82 84 53-153 1.75 20 4-Chlorotoluene 8.23 8.38 10 82 84 53-153 1.75 20 4-Chlorotoluene 8.23 8.38 10 84 84 49-156 0 20 1,2-Dichloropenzene 3.75 3.58 4 94 90 46-149 4.56 20 1,2-Dichlorobenzene 9.17 </td <td>Carbon Disulfide</td> <td>8.53</td> <td>8.42</td> <td>10</td> <td>85</td> <td>84</td> <td>64-127</td> <td>1.38</td> <td>20</td>	Carbon Disulfide	8.53	8.42	10	85	84	64-127	1.38	20
Chloroethane 9.30 9.42 10 93 94 50-127 1.29 20 Chloroform 8.45 8.36 10 84 84 56-154 0 20 Chloromethane 9.67 9.87 10 97 99 41-132 2.06 20 2-Chlorotoluene 8.95 9.15 10 90 91 50-155 2.15 20 4-Chlorotoluene 8.23 8.38 10 82 84 53-153 1.75 20 Dibromochloromethane 8.38 8.36 10 84 84 49-156 0 20 1,2-Dibromo-3-chloropropane 3.75 3.58 4 94 90 46-149 4.56 20 1,2-Dibromoethane (EDB) 9.04 8.91 10 90 89 44-155 1.49 20 Dibromomethane 9.17 8.93 10 92 89 50-157 2.68 20 1,2-Dichlorobenzen	Carbon Tetrachloride	8.93	8.85	10	89	89	61-158	0	20
Chloroform 8.45 8.36 10 84 84 56-154 0 20 Chloromethane 9.67 9.87 10 97 99 41-132 2.06 20 2-Chlorotoluene 8.95 9.15 10 90 91 50-155 2.15 20 4-Chlorotoluene 8.23 8.38 10 82 84 53-153 1.75 20 Dibromochloromethane 8.38 8.36 10 84 84 49-156 0 20 1,2-Dibromo-3-chloropropane 3.75 3.58 4 94 90 46-149 4.56 20 1,2-Dibromoethane (EDB) 9.04 8.91 10 90 89 44-155 1.49 20 Dibromomethane 9.17 8.93 10 92 89 50-157 2.68 20 1,2-Dichlorobenzene 8.54 8.42 10 85 84 48-156 1.41 20 1,3-Dichlor	Chlorobenzene	8.54	8.53	10	85	85	43-157	0	20
Chloromethane 9.67 9.87 10 97 99 41-132 2.06 20 2-Chlorotoluene 8.95 9.15 10 90 91 50-155 2.15 20 4-Chlorotoluene 8.23 8.38 10 82 84 53-153 1.75 20 Dibromochloromethane 8.38 8.36 10 84 84 49-156 0 20 1,2-Dibromo-3-chloropropane 3.75 3.58 4 94 90 46-149 4.56 20 1,2-Dibromoethane (EDB) 9.04 8.91 10 90 89 44-155 1.49 20 1,2-Dichlorobenzene (EDB) 9.04 8.91 10 90 89 44-155 1.49 20 1,2-Dichlorobenzene 8.54 8.93 10 92 89 50-157 2.68 20 1,3-Dichlorobenzene 8.54 8.42 10 85 84 48-156 1.41 20	Chloroethane	9.30	9.42	10	93	94	50-127	1.29	20
2-Chlorotoluene 8.95 9.15 10 90 91 50-155 2.15 20 4-Chlorotoluene 8.23 8.38 10 82 84 53-153 1.75 20 Dibromochloromethane 8.38 8.36 10 84 84 49-156 0 20 1,2-Dibromo-3-chloropropane 3.75 3.58 4 94 90 46-149 4.56 20 1,2-Dibromoethane (EDB) 9.04 8.91 10 90 89 44-155 1.49 20 Dibromomethane 9.17 8.93 10 92 89 50-157 2.68 20 1,2-Dichlorobenzene 8.54 8.42 10 85 84 48-156 1.41 20 1,3-Dichlorobenzene 9.30 9.28 10 93 93 49-159 0 20 1,4-Dichlorodifluoromethane 9.24 9.27 10 92 93 61-117 0.301 20 1,1-Dichlorodifluoromethane (1,2-DCA) 9.05 8.97 10 91 90 66-125 0.895 20 1,1-Dichlorotethane (1,2-DCA) 9.05 8.97 10 91 90 66-125 0.895 20 1,1-Dichloroethene 8.32 8.24 10 88 87 53-153 1.47 20 1,1-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichloroethene 8.83 8.66 8.77 10 89 88 49-150 1.07 20 1,1-Dichloropropane 8.88 8.77 10 89 88 49-150 1.07 20 1,1-Dichloropropane 8.88 8.79 10 89 87 74-147 1.76 20 1,1-Dichloropropane 8.88 8.79 10 89 87 74-147 1.76 20 1,1-Dichloropropane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropropane 8.86 8.77 10 89 88 49-150 1.07 20 1,1-Dichloropropane 8.86 8.79 10 89 87 74-147 1.76 20 1,1-Dichloropropane 8.86 8.79 10 89 87 74-147 1.76 20 1,1-Dichloropropane 8.86 8.79 10 89 87 74-147 1.76 20 1,1-Dichloropropane 8.86 8.79 10 89 87 74-147 1.76 20 1,1-Dichloropropane 8.86 8.79 10 89 87 74-147 1.76 20 1,1-Dichloropropane 8.86 8.79 10 89 87 74-147 1.76 20 1,1-Dichloropropane 8.86 8	Chloroform	8.45	8.36	10	84	84	56-154	0	20
4-Chlorotoluene 8.23 8.38 10 82 84 53-153 1.75 20 Dibromochloromethane 8.38 8.36 10 84 84 49-156 0 20 1,2-Dibromo-3-chloropropane 3.75 3.58 4 94 90 46-149 4.56 20 1,2-Dibromoethane (EDB) 9.04 8.91 10 90 89 44-155 1.49 20 Dibromomethane 9.17 8.93 10 92 89 50-157 2.68 20 1,2-Dichlorobenzene 8.54 8.42 10 85 84 48-156 1.41 20 1,3-Dichlorobenzene 9.30 9.28 10 93 93 49-159 0 20 1,4-Dichlorodentane 9.24 9.27 10 86 85 51-151 0.482 20 1,1-Dichlorodentane 9.24 9.27 10 92 93 61-117 0.301 20 1,1-Dichlorothane 8.80 8.67 10 88 87 53-153 1.47 20 1,1-Dichlorothane (1,2-DCA) 9.05 8.97 10 91 90 66-125 0.895 20 1,1-Dichlorothene 8.32 8.24 10 83 82 47-149 1.00 20 1,1-Dichlorothene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichlorothene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichlorothene 8.60 8.42 10 86 84 46-151 2.07 20 1,1-Dichlorothene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichlorothene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichlorothene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichlorothene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichlorothene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichlorothene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichlorothene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichlorothene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichlorothene 8.83 8.66 10 88 87 54-155 1.94 20 1,1-Dichlorothene 8.86 8.77 10 89 88 49-150 1.07 20 1,1-Dichlorothene 8.86 8.77 10 89 88 49-150 1.07 20 1,1-Dichlorothene 8.86 8.77 10 89 88 49-150 1.07 20 1,1-Dichlorothene 8.86 8.77 10 89 88 49-150 1.07 20 1,1-Dichlorothene 8.86 8.77 10 89 88 49-150 1.07 20 1,1-Dichlorothene 8.86 8.77 10 89 88 49-150 1.07 20 1,1-Dichlorothene 8.86 8.77 10 89 88 49-150 1.07 20 1,1-Dichlorothene 8.86 8.77 10 89 88 49-150 1.07 20 1,1-Dichlorothene 8.86 8.77 10 89 88 49-150 1.07 20 1,1-Dichlorothene 8.86 8.77 10 89 88 49-150 1.07 20 1,1-Dichlorothene 8.86 8.77 10 89 88 49-150 1.07 20 1,1-Dichlorothene 8.86 8.77 10 89 88 49-150 1.07 20 1,1-Dichlorothene 8.86 8.77 10 89 88 49-150 1.07 20 1,1-Dichlorothene 8.86 8.77 10 89 88 49-150 1.07 20 1,1-Dichlorothene 8.86 8.77 10 89 88 49-15	Chloromethane	9.67	9.87	10	97	99	41-132	2.06	20
Dibromochloromethane 8.38 8.36 10 84 84 49-156 0 20 1,2-Dibromo-3-chloropropane 3.75 3.58 4 94 90 46-149 4.56 20 1,2-Dibromoethane (EDB) 9.04 8.91 10 90 89 44-155 1.49 20 Dibromomethane 9.17 8.93 10 92 89 50-157 2.68 20 1,2-Dichlorobenzene 8.54 8.42 10 85 84 48-156 1.41 20 1,3-Dichlorobenzene 9.30 9.28 10 93 93 49-159 0 20 1,4-Dichlorobenzene 8.58 8.54 10 86 85 51-151 0.482 20 Dichlorodifluoromethane 9.24 9.27 10 92 93 61-117 0.301 20 1,1-Dichloroethane (1,2-DCA) 9.05 8.97 10 91 90 66-125 0.895 20 1,1-Dichloroethane 8.32 8.24 10 83 82 47-149 1.00 20 1,1-Dichloroethane 8.83 8.66 10 88 87 54-155 1.94 20 1,2-Dichloroethane 8.83 8.66 10 88 87 54-155 1.94 20 1,2-Dichloropopane 8.82 8.72 10 88 87 54-155 1.94 20 1,2-Dichloropopane 8.82 8.72 10 88 87 54-153 1.25 20 1,3-Dichloropopane 8.86 8.77 10 89 88 49-150 1.07 20 2,2-Dichloropopane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropopane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropopane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropopane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropopane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropopane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropopane 8.86 8.58 10 86 86 54-150 0 20	2-Chlorotoluene	8.95	9.15	10	90	91	50-155	2.15	20
1,2-Dibromo-3-chloropropane 3.75 3.58 4 94 90 46-149 4.56 20 1,2-Dibromoethane (EDB) 9.04 8.91 10 90 89 44-155 1.49 20 Dibromomethane 9.17 8.93 10 92 89 50-157 2.68 20 1,2-Dichlorobenzene 8.54 8.42 10 85 84 48-156 1.41 20 1,3-Dichlorobenzene 9.30 9.28 10 93 93 49-159 0 20 1,4-Dichlorobenzene 8.58 8.54 10 86 85 51-151 0.482 20 Dichlorodiffluoromethane 9.24 9.27 10 86 85 51-151 0.482 20 1,1-Dichloroethane 8.80 8.67 10 88 87 53-153 1.47 20 1,2-Dichloroethane (1,2-DCA) 9.05 8.97 10 91 90 66-125 0.895 20 1,1-Dichloroethene 8.32 8.24 10 83 82	4-Chlorotoluene	8.23	8.38	10	82	84	53-153	1.75	20
1,2-Dibromoethane (EDB) 9.04 8.91 10 90 89 44-155 1.49 20 Dibromomethane 9.17 8.93 10 92 89 50-157 2.68 20 1,2-Dichlorobenzene 8.54 8.42 10 85 84 48-156 1.41 20 1,3-Dichlorobenzene 9.30 9.28 10 93 93 49-159 0 20 1,4-Dichlorobenzene 8.58 8.54 10 86 85 51-151 0.482 20 Dichlorodifluoromethane 9.24 9.27 10 92 93 61-117 0.301 20 1,1-Dichloroethane 8.80 8.67 10 88 87 53-153 1.47 20 1,2-Dichloroethane (1,2-DCA) 9.05 8.97 10 91 90 66-125 0.895 20 1,1-Dichloroethene 8.32 8.24 10 83 82 47-149 1.00 20 Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 Dichloroethene 8.60 8.42 10 86 84 46-151 2.07 20 1,2-Dichloropropane 8.82 8.72 10 88 87 54-155 1.94 20 Dichloropropane 8.86 8.77 10 89 88 87 54-153 1.25 20 1,3-Dichloropropane 8.86 8.77 10 89 88 49-150 1.07 20 2,2-Dichloropropane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropropane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropropane 8.88 8.73 10 89 87 74-147 1.76 20	Dibromochloromethane	8.38	8.36	10	84	84	49-156	0	20
Dibromomethane 9.17 8.93 10 92 89 50-157 2.68 20 1,2-Dichlorobenzene 8.54 8.42 10 85 84 48-156 1.41 20 1,3-Dichlorobenzene 9.30 9.28 10 93 93 49-159 0 20 1,4-Dichlorobenzene 8.58 8.54 10 86 85 51-151 0.482 20 Dichlorodifluoromethane 9.24 9.27 10 92 93 61-117 0.301 20 1,1-Dichloroethane 8.80 8.67 10 88 87 53-153 1.47 20 1,2-Dichloroethane (1,2-DCA) 9.05 8.97 10 91 90 66-125 0.895 20 1,1-Dichloroethene 8.32 8.24 10 83 82 47-149 1.00 20 cis-1,2-Dichloroethene 8.60 8.42 10 86 84 46-151 2.07 20 1,2-Dichloropropane 8.82 8.72 10 88 87 54-15	1,2-Dibromo-3-chloropropane	3.75	3.58	4	94	90	46-149	4.56	20
1,2-Dichlorobenzene 8.54 8.42 10 85 84 48-156 1.41 20 1,3-Dichlorobenzene 9.30 9.28 10 93 93 49-159 0 20 1,4-Dichlorobenzene 8.58 8.54 10 86 85 51-151 0.482 20 Dichlorodifluoromethane 9.24 9.27 10 92 93 61-117 0.301 20 1,1-Dichloroethane 8.80 8.67 10 88 87 53-153 1.47 20 1,2-Dichloroethane (1,2-DCA) 9.05 8.97 10 91 90 66-125 0.895 20 1,1-Dichloroethane 8.32 8.24 10 83 82 47-149 1.00 20 1,1-Dichloroethane 8.83 8.66 10 88 87 54-155 1.94 20 1,2-Dichloroethane 8.60 8.42 10 86 84 46-151 2.07 20 1,2-Dichloropropane 8.82 8.72 10 88 87 54-155 1.94 20 1,2-Dichloropropane 8.82 8.72 10 88 87 54-153 1.25 20 1,3-Dichloropropane 8.86 8.77 10 89 88 49-150 1.07 20 2,2-Dichloropropane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropropane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropropane 8.86 8.73 10 86 86 54-150 0 20	1,2-Dibromoethane (EDB)	9.04	8.91	10	90	89	44-155	1.49	20
1,3-Dichlorobenzene 9.30 9.28 10 93 93 49-159 0 20 1,4-Dichlorobenzene 8.58 8.54 10 86 85 51-151 0.482 20 Dichlorodifluoromethane 9.24 9.27 10 92 93 61-117 0.301 20 1,1-Dichloroethane 8.80 8.67 10 88 87 53-153 1.47 20 1,2-Dichloroethane (1,2-DCA) 9.05 8.97 10 91 90 66-125 0.895 20 1,1-Dichloroethene 8.32 8.24 10 83 82 47-149 1.00 20 1,1-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 1,2-Dichloroethene 8.60 8.42 10 86 84 46-151 2.07 20 1,2-Dichloropropane 8.82 8.72 10 88 87 54-155 1.94 20 1,3-Dichloropropane 8.86 8.77 10 89 88 49-150 1.07 20 1,3-Dichloropropane 8.86 8.77 10 89 88 49-150 1.07 20 1,3-Dichloropropane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropropane 8.64 8.58 10 86 86 54-150 0 20 1,1-Dichloropropane 8.64 8.58 10	Dibromomethane	9.17	8.93	10	92	89	50-157	2.68	20
1,4-Dichlorobenzene 8.58 8.54 10 86 85 51-151 0.482 20 Dichlorodifluoromethane 9.24 9.27 10 92 93 61-117 0.301 20 1,1-Dichloroethane 8.80 8.67 10 88 87 53-153 1.47 20 1,2-Dichloroethane (1,2-DCA) 9.05 8.97 10 91 90 66-125 0.895 20 1,1-Dichloroethene 8.32 8.24 10 83 82 47-149 1.00 20 1,1-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 1,2-Dichloroethene 8.60 8.42 10 86 84 46-151 2.07 20 1,2-Dichloropropane 8.82 8.72 10 88 87 54-153 1.25 20 1,3-Dichloropropane 8.86 8.77 10 89 88 49-150 1.07 20 1,3-Dichloropropane 8.86 8.77 10 89 88 49-150 1.07 20 1,2-Dichloropropane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropropane 8.64 8.58 10 86 86 54-150 0 20	1,2-Dichlorobenzene	8.54	8.42	10	85	84	48-156	1.41	20
Dichlorodifluoromethane 9.24 9.27 10 92 93 61-117 0.301 20 1,1-Dichloroethane 8.80 8.67 10 88 87 53-153 1.47 20 1,2-Dichloroethane (1,2-DCA) 9.05 8.97 10 91 90 66-125 0.895 20 1,1-Dichloroethene 8.32 8.24 10 83 82 47-149 1.00 20 cis-1,2-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 trans-1,2-Dichloroethene 8.60 8.42 10 86 84 46-151 2.07 20 1,2-Dichloropropane 8.82 8.72 10 88 87 54-153 1.25 20 1,3-Dichloropropane 8.86 8.77 10 89 88 49-150 1.07 20 2,2-Dichloropropane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropropane 8.64 8.58 10 86 86	1,3-Dichlorobenzene	9.30	9.28	10	93	93	49-159	0	20
1,1-Dichloroethane 8.80 8.67 10 88 87 53-153 1.47 20 1,2-Dichloroethane (1,2-DCA) 9.05 8.97 10 91 90 66-125 0.895 20 1,1-Dichloroethene 8.32 8.24 10 83 82 47-149 1.00 20 cis-1,2-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 trans-1,2-Dichloroethene 8.60 8.42 10 86 84 46-151 2.07 20 1,2-Dichloropropane 8.82 8.72 10 88 87 54-153 1.25 20 1,3-Dichloropropane 8.86 8.77 10 89 88 49-150 1.07 20 2,2-Dichloropropane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropropene 8.64 8.58 10 86 86 54-150 0 20	1,4-Dichlorobenzene	8.58	8.54	10	86	85	51-151	0.482	20
1,2-Dichloroethane (1,2-DCA) 9.05 8.97 10 91 90 66-125 0.895 20 1,1-Dichloroethene 8.32 8.24 10 83 82 47-149 1.00 20 cis-1,2-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 trans-1,2-Dichloroethene 8.60 8.42 10 86 84 46-151 2.07 20 1,2-Dichloropropane 8.82 8.72 10 88 87 54-153 1.25 20 1,3-Dichloropropane 8.86 8.77 10 89 88 49-150 1.07 20 2,2-Dichloropropane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropropene 8.64 8.58 10 86 86 54-150 0 20	Dichlorodifluoromethane	9.24	9.27	10	92	93	61-117	0.301	20
1,1-Dichloroethene 8.32 8.24 10 83 82 47-149 1.00 20 cis-1,2-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 trans-1,2-Dichloroethene 8.60 8.42 10 86 84 46-151 2.07 20 1,2-Dichloropropane 8.82 8.72 10 88 87 54-153 1.25 20 1,3-Dichloropropane 8.86 8.77 10 89 88 49-150 1.07 20 2,2-Dichloropropane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropropene 8.64 8.58 10 86 86 54-150 0 20	1,1-Dichloroethane	8.80	8.67	10	88	87	53-153	1.47	20
cis-1,2-Dichloroethene 8.83 8.66 10 88 87 54-155 1.94 20 cirans-1,2-Dichloroethene 8.60 8.42 10 86 84 46-151 2.07 20 1,2-Dichloropropane 8.82 8.72 10 88 87 54-153 1.25 20 1,3-Dichloropropane 8.86 8.77 10 89 88 49-150 1.07 20 2,2-Dichloropropane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropropene 8.64 8.58 10 86 86 54-150 0 20	1,2-Dichloroethane (1,2-DCA)	9.05	8.97	10	91	90	66-125	0.895	20
trans-1,2-Dichloroethene 8.60 8.42 10 86 84 46-151 2.07 20 1,2-Dichloropropane 8.82 8.72 10 88 87 54-153 1.25 20 1,3-Dichloropropane 8.86 8.77 10 89 88 49-150 1.07 20 2,2-Dichloropropane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropropene 8.64 8.58 10 86 86 54-150 0 20	1,1-Dichloroethene	8.32	8.24	10	83	82	47-149	1.00	20
1,2-Dichloropropane 8.82 8.72 10 88 87 54-153 1.25 20 1,3-Dichloropropane 8.86 8.77 10 89 88 49-150 1.07 20 2,2-Dichloropropane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropropene 8.64 8.58 10 86 86 54-150 0 20	cis-1,2-Dichloroethene	8.83	8.66	10	88	87	54-155	1.94	20
1,3-Dichloropropane 8.86 8.77 10 89 88 49-150 1.07 20 2,2-Dichloropropane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropropene 8.64 8.58 10 86 86 54-150 0 20	trans-1,2-Dichloroethene	8.60	8.42	10	86	84	46-151	2.07	20
2,2-Dichloropropane 8.88 8.73 10 89 87 74-147 1.76 20 1,1-Dichloropropene 8.64 8.58 10 86 86 54-150 0 20	1,2-Dichloropropane	8.82	8.72	10	88	87	54-153	1.25	20
1,1-Dichloropropene 8.64 8.58 10 86 86 54-150 0 20	1,3-Dichloropropane	8.86	8.77	10	89	88	49-150	1.07	20
	2,2-Dichloropropane	8.88	8.73	10	89	87	74-147	1.76	20
	1,1-Dichloropropene	8.64	8.58	10	86	86	54-150	0	20
	cis-1,3-Dichloropropene	8.67	8.61	10	87	86		0.625	20

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

 Client:
 West & Associates
 WorkOrder:
 1707274

 Date Prepared:
 7/14/17
 BatchID:
 142057

 Date Analyzed:
 7/14/17
 Extraction Method:
 SW5030B

Instrument:GC18Analytical Method:SW8260BMatrix:WaterUnit:µg/L

Project: Automasters; 6200 Shattuck Ave., Oakland, CA Sample ID: MB/LCS/LCSD-142057

QC Summary Report for SW8260B

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
trans-1,3-Dichloropropene	9.10	9.02	10	91	90	74-131	0.822	20
Diisopropyl ether (DIPE)	8.84	8.72	10	88	87	57-136	1.37	20
Ethylbenzene	8.54	8.42	10	85	84	60-152	1.32	20
Ethyl tert-butyl ether (ETBE)	9.28	9.08	10	93	91	55-137	2.11	20
Freon 113	8.46	8.30	10	85	83	47-138	1.96	20
Hexachlorobutadiene	8.34	8.34	10	83	83	66-160	0	20
Hexachloroethane	7.62	7.62	10	76	76	75-130	0	20
2-Hexanone	9.42	9.15	10	94	92	70-115	2.92	20
Isopropylbenzene	8.47	8.65	10	85	86	59-156	2.09	20
4-Isopropyl toluene	8.44	8.56	10	84	86	75-138	1.39	20
Methyl-t-butyl ether (MTBE)	9.27	8.99	10	93	90	53-139	3.07	20
Methylene chloride	7.99	7.85	10	80	79	66-127	1.80	20
4-Methyl-2-pentanone (MIBK)	9.26	8.93	10	93	89	42-153	3.60	20
Naphthalene	9.07	8.40	10	91	84	66-127	7.70	20
n-Propyl benzene	8.83	9.19	10	88	92	54-155	4.04	20
Styrene	8.77	8.70	10	88	87	51-152	0.883	20
1,1,1,2-Tetrachloroethane	8.82	8.83	10	88	88	58-159	0	20
1,1,2,2-Tetrachloroethane	9.19	8.94	10	92	89	51-150	2.68	20
Tetrachloroethene	8.22	8.17	10	82	82	55-145	0	20
Toluene	8.42	8.41	10	84	84	52-137	0	20
1,2,3-Trichlorobenzene	8.57	7.87	10	86	79	70-136	8.46	20
1,2,4-Trichlorobenzene	8.55	8.21	10	85	82	74-137	4.02	20
1,1,1-Trichloroethane	8.73	8.64	10	87	86	57-156	1.09	20
1,1,2-Trichloroethane	8.87	8.80	10	89	88	51-150	0.845	20
Trichloroethene	8.58	8.43	10	86	84	43-157	1.73	20
Trichlorofluoromethane	8.46	8.42	10	85	84	50-147	0.468	20
1,2,3-Trichloropropane	9.36	9.16	10	94	92	41-152	2.17	20
1,2,4-Trimethylbenzene	8.59	8.62	10	86	86	57-157	0	20
1,3,5-Trimethylbenzene	8.44	8.56	10	84	86	56-159	1.40	20
Vinyl Chloride	10.0	10.1	10	100	101	42-137	1.05	20
Xylenes, Total	25.8	25.8	30	86	86	70-130	0	20
Surrogate Recovery								
Dibromofluoromethane	24.2	24.4	25	97	98	70-130	0.739	20
Toluene-d8	23.1	23.2	25	92	93	70-130	0.467	20
4-BFB	2.16	2.20	2.5	86	88	70-130	1.92	20

Instrument:

GC3

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Method: SW8021B/8015Bm

Quality Control Report

 Client:
 West & Associates
 WorkOrder:
 1707274

 Date Prepared:
 7/11/17
 BatchID:
 141849

Date Analyzed: 7/11/17 **Extraction Method:** SW5030B

Matrix: Water Unit: μg/L

Project: Automasters; 6200 Shattuck Ave., Oakland, CA Sample ID: MB/LCS-141849

1707258-008AMS/MSD

QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	57.7	40	60	-	96	78-116
MTBE	ND	7.98	5.0	10	-	80	72-122
Benzene	ND	8.81	0.50	10	-	88	81-123
Toluene	ND	9.29	0.50	10	-	93	83-129
Ethylbenzene	ND	9.82	0.50	10	-	98	88-126
Xylenes	ND	30.6	1.5	30	=	102	87-131
Surrogate Recovery							
aaa-TFT	9.978	9.85		10	100	99	89-116

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	56.1	57.1	60	ND	93	95	63-133	1.77	20
MTBE	8.53	8.56	10	ND	85	86	69-122	0.334	20
Benzene	8.50	8.45	10	ND	85	84	84-125	0.621	20
Toluene	9.02	9.03	10	ND	90	90	87-131	0	20
Ethylbenzene	9.42	9.47	10	ND	94	95	92-126	0.503	20
Xylenes	29.3	29.5	30	ND	98	98	88-132	0	20
Surrogate Recovery									
aaa-TFT	9.48	9.52	10		95	95	90-117	0	20

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client:West & AssociatesWorkOrder:1707274Date Prepared:7/10/17BatchID:141736Date Analyzed:7/10/17Extraction Method:SW3510CInstrument:GC39AAnalytical Method:SW8015B

 $\begin{tabular}{lll} \textbf{Matrix:} & Water & \textbf{Unit:} & \mu g/L \\ \end{tabular}$

Project: Automasters; 6200 Shattuck Ave., Oakland, CA Sample ID: MB/LCS/LCSD-141736

		•							
Analyte	MB Result			RL	SPK Val		B SS REC		IB SS imits
TPH-Diesel (C10-C23)	ND			50	-	-		-	
TPH-Motor Oil (C18-C36)	ND			250	-	-		-	
Surrogate Recovery									
C9	641.8				625	10	3	7	9-111
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
TPH-Diesel (C10-C23)	1080	1110	1000		108	111	88-134	2.76	30
Surrogate Recovery									
C9	576	658	625		92	105	79-111	13.3	30

McCampbell Analytical, Inc.

FAX: (707) 447-0631

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

(707) 451-1360

CHAIN-OF-CUSTODY RECORD

1 of 1

WorkOrder: 1707274 ClientCode: WAA

─ WaterTrax	WriteOn	✓ EDF	Excel	■EQuIS	✓ Email	HardCopy	ThirdParty	☐J-flag
-------------	---------	--------------	-------	--------	----------------	----------	------------	---------

Report to: Requested TAT: 5 days;

Bruce Jacobsen Email: bjacobsen@astound.net; dganzer@westen cc/3rd Party: West & Associates

Oakland, CA

Accounts Payable West & Associates

Date Received: 07/10/2017 630 Eubanks Ct, Unit #G PO: 630 Eubanks Ct, Unit #G ProjectNo: Automasters; 6200 Shattuck Ave., Vacaville, CA 95688 Vacaville, CA 95688 Date Logged: 07/10/2017

Requested Tests (See legend below) Lab ID 2 3 4 10 12 Client ID Matrix Collection Date Hold 11 1707274-001 MW-101 Water 7/6/2017 16:00 В Α В Α 1707274-002 В MW-102 Water 7/6/2017 16:37 Α Α В 1707274-003 MW-103 Water 7/6/2017 17:27 Α Α

Test Legend:

1 8260B_W	2	G-MBTEX_W	3	PREDF REPORT	4
5	6		7		8
9	10		11		12

TPH(DMO) W

Prepared by: Agustina Venegas

The following SampIDs: 001A, 002A, 003A contain testgroup Multi Range_W.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	WEST & ASSOCIATES	Project:	Automasters; 6200 Shattuck Ave., Oakland, CA	Work Order: 1707274
--------------	-------------------	----------	--	----------------------------

Client Contact: Bruce Jacobsen

QC Level: LEVEL 2

Contact's Email: bjacobsen@astound.net; dganzer@westengineers.com

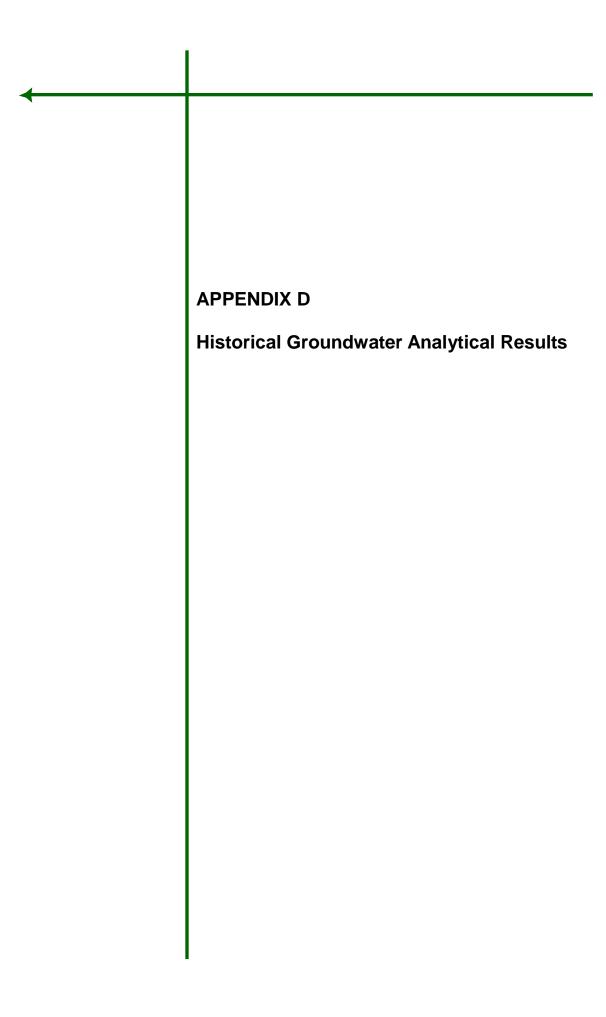
Comments:

Date Logged: 7/10/2017

		WaterTrax	WriteOn ✓EDF	Excel	FaxEmail	HardC	opyThirdPart	у 🗀	J-flag	
Lab ID	Client ID	Matrix	Test Name	Containers /Composite		De- chlorinated	Collection Date & Time	TAT	Sediment I Content	Hold SubOut
1707274-001A	MW-101	Water	Multi-Range TPH(g,d,mo) by EPA 8015Bm	3	2 VOAs w/HCL + 2-aVOAs (multi-range)		7/6/2017 16:00	5 days	Present	
1707274-001B	MW-101	Water	SW8260B (VOCs)	1	VOA w/ HCl		7/6/2017 16:00	5 days	Present	
1707274-002A	MW-102	Water	Multi-Range TPH(g,d,mo) by EPA 8015Bm	3	2 VOAs w/HCL + 2-aVOAs (multi-range)		7/6/2017 16:37	5 days	Present	
1707274-002B	MW-102	Water	SW8260B (VOCs)	1	VOA w/ HCl		7/6/2017 16:37	5 days	Present	
1707274-003A	MW-103	Water	Multi-Range TPH(g,d,mo) by EPA 8015Bm	3	2 VOAs w/HCL + 2-aVOAs (multi-range)		7/6/2017 17:27	5 days	Present	
1707274-003B	MW-103	Water	SW8260B (VOCs)	1	VOA w/ HCl		7/6/2017 17:27	5 days	Present	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.


1707274

		all hand a city has been					+	1	<u>_</u>	_	_		Ļ	+		-					-				-	-		,			•			
McCAMPBELL ANALYTICAL, INC.											CHAIN OF CUSTODY RECORD																							
1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701										-	T	UR	NA	AR													1			\boxtimes				
Website: www.mccampbell.com Email: main@mccampbell.com										1														HR		48 1		7	2 HR	5 DAY				
Telephone: (877) 252-9262 Fax: (925) 252-9269								1	GeoTracker EDF 🔼 PDF 🖵 Excel 🖵 Write On (DW) 🖵																									
D													+	-								_		-	mp	le is	effl	luen	ıt aı	-	-	The Real Property lies	s required	_
Report To: Bruce Jacobsen Bill To: W&A Company: West & Associates Engineers								+		~				A	nal	ysis	Rec	ues	t	_	_			_	1	Othe	r	Commen	ts					
630 Eubanks Ct			ers		1.1					-			\dashv	E	MC	(F)					ıers												Filter	
030 Eubanks Ct	, #G, Vacavi	ile, CA	т.	Moi	bja il: del	cobs							+	8015) / MTBE	TP H. MO	E/B&					ngei												Samples	
Tele: (707)45	1-1360				(707				eng	ine	ers.	COH	4	(2)	广	520					3 / Cc						020)	120)					for Meta	s
Project #:			F	rojec	t Nai	ne:	Au	to v	N /1	<1	-0 W	~	٦	80	+	64/5	18.1)	OCs)	8021	_	clor		ides)			As)	9/01	9/0					analysis:	
Project Location:	6200	Shatt	uck	Ave		0	aK	and	10	A			٦	8021	10	e (16	ns (4	(HV	205 /	ides	; Arc	(\$	rbic	•	(s)	/PN	/ 601	/ 601	50)				Yes / No	
Project Location: Sampler Signatur	e: Bri	uce C	arol	Me	-		,,,		-					12 / 8	2	reas	arbo	3021	PA (Pesti	NLY	icide	21 He	OCs	VOC	AHs	8.003	8.00	09/					
			PLING		1		MAT			M	ETI	HOD	٦	Gas (602 /	+	8 6	droc	10/8	/Y (F	(CI)	,s O	Pest	idic (O (V	S) 02	10 (P	.77.	7/2	6010					
	I OCUMION.			l's	iner	<u> </u>		T		PR	ESE	RVE	D	as Gs	8015	n Oil	n Hy	08/1	ONI	8081	PCB	S.	(Ac	1/82	1 82	/ 83]	(200	(200	/8.0					
SAMPLE ID	LOCATION/ Field Point			# Containers	Type Containers								1	PH	TPH as Diesel (8015) + TP -	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)					
	Name	Date	Time	nt.	ပို	er		Sludge	er			03	-	8.1	ıs Di	Petro	Petro	902.2	E / B	9/509	/80	/ 203	15/	24.2	25.2	8270	17 M	5 M	200.					
				Ü	[yb	Water	Soil	il in	Other	ICE	HCL	HNO3	Other	BTEX &	. Hd	otal	otal	PA :	ILB	PA (PA (PA &	PA 5	PA 6	PA S	PA	AM	LUFT	ead (
	AA	,	0120	-	_	\vdash	02	4 02	_	_	_	-	4	_	-	-	-	E	-	ы	ы	ы	E	Ξ	Ξ	E	0	1	12	-	_	_		_
	MM-101		400 PM		VOA	1		_		_	2/		1		/									~						L				
MW-102	MW-102	it	437	4	W	V					11				~									-										
MW-103	MW-103	31	527	4	11	1				~	• •													~										
A. 1																																		
													T																					
												1	1			7	7		7												\vdash			\exists
						\Box		\top	\neg		1	+	\dagger	_			_												\vdash	\vdash				\dashv
				\vdash	<u> </u>		+	+			+	+	+	+	-	+	+												\vdash	\vdash	-			-
			<u> </u>	-	-	\vdash	-	+	-		+	+	+	-	-	+	+	-	\dashv	-						-		_	-	\vdash	-			\dashv
				-	-	\vdash	-	-	-	\vdash	-	+	+	-	-	-	+	-	-										-	-	-			_
				_	-	\vdash	+	-	-		_	+	+	_	_	_	_		_										_	_				_
					_	\sqcup	_	_				_	1																					
													T																					
Relinquished By:	0	Date:	Time:	Rece	ived B	y:							T	ICE	/t°_	11	2	W	2									CON	имі	ENTS	š:			
Bruce Jac	obse-	7/0/17	1419	>		1								GO(OD C AD S	PAC	DITI E AI	ON_	NT	_														
Relinquished By:		Date:	Time:	Rece	ived B	y:								DEC	CHL	ORI	NAT	ED I	N L															
														APPROPRIATE CONTAINERS PRESERVED IN LAB																				
Relinquished By:		Date:	Time:	Rece	ived B	y:														_	-			~										
							VOAS O&G METALS OTHER PRESERVATION pH<2																											

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

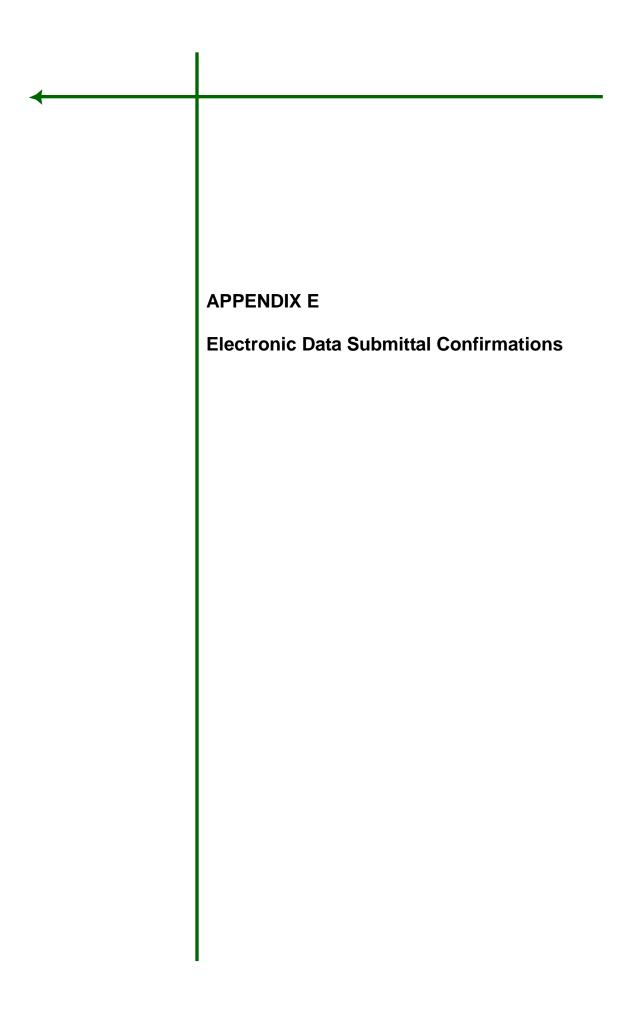
Sample Receipt Checklist

Client Name: West & Associates			Date and Time Received:	7/10/2017 14:19
Project Name: Automasters; 6200 Shattuck Ave., Oakland, CA			Date Logged: Received by:	7/10/2017 Jena Alfaro
WorkOrder №: 1707274 Matrix: Water Carrier: Client Drop-In			Logged by:	Agustina Venegas
Chain of C	ustody	/ (COC) Infor	mation	
Chain of custody present?	Yes	<u>√</u>	No 🗆	
	Yes	✓	No 🗆	
Chain of custody signed when relinquished and received?		✓	No 🗆	
Chain of custody agrees with sample labels?	Yes			
Sample IDs noted by Client on COC?	Yes	✓	No 🗆	
Date and Time of collection noted by Client on COC?	Yes	✓	No 🗆	
Sampler's name noted on COC?	Yes	✓	No 🗆	
Sampl	e Rece	eipt Informati	<u>on</u>	
Custody seals intact on shipping container/cooler?	Yes		No 🗌	NA 🗹
Shipping container/cooler in good condition?	Yes	✓	No 🗆	
Samples in proper containers/bottles?	Yes	✓	No 🗌	
Sample containers intact?	Yes	✓	No 🗆	
Sufficient sample volume for indicated test?	Yes	•	No 🗆	
Sample Preservation	on and	Hold Time (I	HT) Information	
All samples received within holding time?	Yes	✓	No 🗌	NA 🗌
Sample/Temp Blank temperature		Temp: 7.2	2°C	NA 🗌
Water - VOA vials have zero headspace / no bubbles?	Yes	✓	No 🗌	NA 🗌
Sample labels checked for correct preservation?	Yes	✓	No 🗌	
pH acceptable upon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗆	NA 🗹
Samples Received on Ice?	Yes	✓	No 🗌	
(Ice Type	e: WE	T/BLU)		
<u>UCMR Samples:</u> Total Chlorine tested and acceptable upon receipt for EPA 522?	Yes		No 🗌	NA 🗹
Free Chlorine tested and acceptable upon receipt for EPA 218.7, 300.1, 537, 539?	Yes		No 🗌	NA 🗹
	<u> </u>		=======	=======

HISTORICAL GROUNDWATER RESULTS Automasters

(All values in micrograms per liter, i.e. ug/l or ppb)

Sample ID	Date	Depth to Groundwater (ft)	Groundwater Elevation (ft)	TPH-g	Benzene	Toluene	Ethyl Benzene	Xylenes	MtBE	Naphthalene	TPH-d	TPH-mo
	12/31/15	3.70	125.14	18,000	1,000	64	320	1,800	<200	210	5,100	<250
	06/30/16	5.35	123.49	14,000	980	<50	780	1,000	<50	210	3,000	<250
MW-101 TOC = 128.84 ft	10/04/16	6.17	122.67	15,000	990	<50	890	1,400	<5	190	3,900	<250
	1/6/17	3.53	125.31	17,000	900	35	680	1,100	<5	190	6,200	<250
	3/22/17	3.2	125.64	17,000	810	<25	600	810	<25	160	3,300	<250
	7/6/17	5.49	123.35	17,000	860	<25	650	960	<25	130	4,800	5,200
	12/31/15	5.20	125.15	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<250
	06/30/16	6.90	123.45	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<250
MW-102	10/04/16	7.51	122.84	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<250
TOC = 130.35 ft	1/6/17	4.68	125.67	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<250
	3/22/17	4.56	125.79	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<30	<250
	7/6/17	6.53	123.82	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<50	<250
	12/31/15	5.10	124.93	4,700	110	11	140	430	<5	78	1,400	<250
	06/30/16	6.56	123.47	3,200	70	6.7	160	150	<5	47	750	<250
MW-103	10/04/16	7.37	122.76	6,400	160	16	340	320	<5	69	1,300	<250
TOC = 130.03 ft	1/6/17	4.51	125.52	5,800	97	10	220	310	<5	47	1,100	<250
	3/22/17	3.26	125.77	3,600	110	12	230	270	<5	54	840	<250
	7/6/17	6.31	123.72	2,900	46	<5	100	73	<5	20	970	<250


No free product has been encountered in any of the wells during these six monitoring events.

HISTORICAL VOC GROUNDWATER RESULTS Automasters

(All values in micrograms per liter, i.e. ug/l or ppb)

Sample ID	Date	Depth to Groundwater (ft)	Groundwater Elevation (ft)	N-Butyl Benzene	Isopropyl Benzene	4-Isopropyl Toluene	N-Propyl Benzene	1,2,4-Trimethyl Benzene	1,3,5-Trimethyl Benzene
	12/31/15	3.70	125.14	<50	<50	<50	<50	770	160
	06/30/16	5.35	123.49	<50	58	<50	160	620	150
MW-101	10/04/16	6.17	122.67	<50	71	<50	150	780	150
TOC = 128.84 ft	1/6/17	3.53	125.31	55	64	<25	150	850	160
	3/22/17	3.2	125.64	26	40	<25	98	680	92
	7/6/17	5.49	123.35	35	69	<25	150	810	130
	12/31/15	5.20	125.15	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	06/30/16	6.90	123.45	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-102	10/04/16	7.51	122.84	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
TOC = 130.35 ft	1/6/17	4.68	125.67	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	3/22/17	4.56	125.79	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	7/6/17	6.53	123.82	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	12/31/15	5.10	124.93	<10	10	15	12	150	58
	06/30/16	6.56	123.47	9	19	<5	47	130	10
MW-103	10/04/16	7.37	122.76	18	35	<12	81	310	28
TOC = 130.03 ft	1/6/17	4.51	125.52	22	25	<5.0	64	260	35
	3/22/17	3.26	125.77	20	33	<5.0	77	230	35
	7/6/17	6.31	123.72	16	21	<5	49	86	11

No free product has been encountered in any of the wells during these six monitoring events.

