

November 22, 2006

Donna L. Drogos, P.E. Local Oversight Program Manager ALAMEDA COUNTY ENVIRONMENTAL HEALTH 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502-6577

Clayton Project No. 33106-006824.00

Subject: Updated Environmental Summary Broadway between 2nd and 3rd Streets Oakland, California

Dear Ms. Drogos:

Clayton Group Services, Inc., *A Bureau Veritas Company*, (Clayton) is pleased to present our updated environmental summary report for the above-referenced Site. The enclosed report summarizes Site data for the purpose of obtaining a "No Further Action" letter from Alameda County Environmental Health (ACEH). Clayton will upload this report along with supporting documents to ACEH's ftp website.

We hope this summary helps you better understand environmental conditions at the Site. If you have any questions, please contact us.

Sincerely,

John D. Glover, P.E. Project Engineer Environmental Services 925.426.2662 john.glover@us.bureauveritas.com

JAR/jdg

Jon A. Rosso, P.E.

Director Environmental Services 925.426.2676 jon.rosso@us.bureauveritas.com

Enclosure

Clayton Group Services, Inc.

A Bureau Veritas Company 6920 Koll Center Parkway, Suite 216 Pleasanton, California 94566 Main: (925) 426-2600 Fax: (925) 426-0106 www.us.bureauveritas.com

Updated Environmental Summary

Broadway between 2nd and 3rd Streets Oakland, California

Clayton Project No. 33106-006824.00 November 22, 2006

Prepared by: CLAYTON GROUP SERVICES, INC. A Bureau Veritas Company 6920 Koll Center Parkway Suite 216 Pleasanton, California 925.426.2600

For the benefit of business and people

Section

<u>Page</u>

1.0		1
2.0	SITE DESCRIPTION	1
2.1	LOCATION	1
2.2	HISTORY	1
2.3	PRESENT AND PLANNED USE	2
2.4	PHYSICAL SETTING	2
3.0	FINDINGS	2
3.1	SOIL	3
3.2	GROUNDWATER	4
4.0	CONCLUSION	4

<u>Figures</u>

- 1 Site Location
- 2 Site Parcel Map
- 3 Data Locations
- 4 Data Locations Remaining After Excavation

<u>Tables</u>

- 1 Soil Data Petroleum Hydrocarbons
- 2 Soil Data Metals
- 3 Groundwater Data Halogenated Volatile Organic Compounds

Appendices

- A Excerpts from 1998 Soil and Groundwater Report
- B Excerpts from 2006 Subsurface Soil Report
- C Excerpts from 2006 Supplemental Soil Data
- D Excerpts from 2005 Geotechnical Report
- E 2006 GeoCheck[®] Well Search

1.0 INTRODUCTION

Clayton Group Services, Inc., *A Bureau Veritas Company*, (Clayton) is pleased to present this updated environmental summary (Summary) for property located on Broadway between 2nd and 3rd Streets in Oakland, Alameda County, California (Site). The objective of this Summary is to inform Alameda County Environmental Health (ACEH) about environmental conditions at the Site and request a "No Further Action Letter." Clayton prepared this Summary from the following information sources, which are assumed to be accurate¹:

- Soil and Groundwater Sampling Report; June 1, 1998; Ceres (Appendix A)
- Phase I Environmental Site Assessment; August 9, 2000; Ceres
- Phase I Environmental Site Assessments for the Evaluation of Potentially Hazardous Materials; September 30, 2004 and December 7, 2005; AquaTerra
- Subsurface Soil Sampling Final Report; April 3, 2006; Advantage (Appendix B)
- Supplemental soil data; August-October 2006; Advantage (Appendix C)
- Preliminary Geotechnical Investigation; August 15, 2005; LGC (Appendix D)
- Development plans; 2006; Perkins + Will
- GeoCheck[®] well survey; November 16, 2006; EDR (Appendix E)

2.0 SITE DESCRIPTION

2.1 LOCATION

The approximately 0.8-acre Site consists of five Alameda County Assessor's Parcel Numbers (APNs): Book 001; Page 0141; Parcels 011, 002-01, 005-01, 003, and 006. Site boundaries are: Broadway to the northwest; 3rd Street to the northeast; 2nd Street to the southwest; and Parcels 007, 008, and 009 to the southeast. The Site location is depicted on Figure 1. A Site parcel map is included as Figure 2.

2.2 HISTORY

The Site has been developed since at least 1889. Site uses have included a boarding house, cold storage, Empire Foundry (with an earthen floor, a machine shop, a pattern shop, and flask storage), a livery, a wholesale meat stores, other commercial stores, restaurants, offices, and automobile parking. The foundry appears to have operated on the southern portions of the Site for about 50 years during the early-to-mid 1900s.

¹ Clayton makes no warranty, express or implied, regarding the quality of information from these sources.

2.3 PRESENT AND PLANNED USE

Former structures were razed and the Site has been prepared for construction. The Site is being redeveloped with a multi-family residential, high-rise, zero lot line building. Construction plans for the new building show 500 subsurface pile foundations throughout the Site, a reinforced concrete mat foundation covering the entire Site, and residential units over five levels of aboveground parking. Site preparation involves scraping the top foot of soil across the Site as well as excavating pile foundations, associated subgrade connecting beams, and utility trenches to depths ranging from 1.5 to 7.0 feet below scraped ground surface. About 2,650 in-place cubic yards of soil will be excavated, and much of this has been and will be removed from the Site.

2.4 PHYSICAL SETTING

The Site is situated in an urban setting. Site elevation ranges from about 10 to 15 feet above mean sea level (amsl). The Site surface is relatively flat with a gentle downward slope to the southwest. The nearest surface water body is Oakland Inner Harbor located approximately 750 feet to the southwest.

Data from 10 geotechnical borings advanced to depths ranging from about 30 to 100 feet below ground surface (bgs) shows the presence of non-native fill material across much of the Site at depths ranging from 2 to 10 feet bgs. Sands and silts comprise most of the upper 50 feet. Silty clays comprise most of the lower 50 feet.

The depth to first encountered groundwater beneath the Site has ranged from 5 to 30 feet bgs with stabilization at about 8 feet bgs. Based on local topography, the groundwater flow direction is inferred to be southwesterly towards Oakland Inner Harbor, which connects to San Francisco Bay. However, groundwater flow under the subject property may be influenced by zones of higher or lower permeability, or by nearby pumping or recharge.

A search for federal and state registered wells in the vicinity of the Site shows no production wells located within 2,000 feet of the Site. A number of monitor wells are located in the general vicinity, and a production well is located about ½-mile north.

3.0 FINDINGS

From March through October 2006, 38 soil (21 composite and 17 discrete) samples and 4 grab groundwater samples from the Site have been analyzed. These samples were collected from 21 borings and from eight soil stockpiles originating from Site redevelopment. Sampled areas include the former foundry. Data locations are depicted on Figure 3; data locations remaining after excavation are shown on Figure 4.

3.1 SOIL

The 38 soil samples were collected at depths ranging from 1.0 to 7.0 feet bgs. Soil samples were analyzed for one or more of the following constituents (Tables 1-2):

- Total volatile hydrocarbons (TVH) gasoline, benzene, toluene, ethylbenzene, and xylenes – (7 tests)
- Total extractable hydrocarbons (TEH) diesel and oil (9 tests)
- California Assessment Manual 17 total metals (15 tests with 21 additional tests for lead only)
- Extractable metals via state Waste Extraction Test (WET) or federal Toxic Characteristic Leaching Procedure (TCLP) (29 tests between the two methods)

Review of the gathered data shows no detections of TVH in soil. Detected concentrations of TEH ranged from 4.2 to 23 milligrams per kilogram (mg/kg) or parts per million (ppm) for diesel and from 1.3 to 160 ppm for oil; these concentrations are below the most stringent Environmental Screening Levels² (ESLs) established by the California Regional Water Quality Control Board (RWQCB).

With three exceptions, total metals concentrations are also below the ESLs. <u>Antimony</u> was detected at 16 ppm in only one of the 15 tested samples (14); the ESL for antimony is 6.1 ppm. <u>Arsenic</u> was detected at concentrations ranging from 5.9 to 15 ppm in six of 15 tested samples (SB-1 through -4, 14, and 15); the ESL for arsenic is 5.5 ppm. <u>Lead</u> was detected at concentrations ranging from 150 to 970 ppm in eight of the 37 tested samples (7, 9, 13, 14, 15, 16, 28, and 29); the ESL for lead is 150 ppm.

As part of the ongoing soil disposal process, extractable lead has been detected at concentrations ranging from 5.5 to 35 milligrams per liter (mg/L) or ppm in one soil and six stockpile samples (14, 15, 16, 21, 22, 28, and 39) analyzed using the WET. In addition, one stockpile sample (29) analyzed using the TCLP contained 9.8 ppm of lead. Concentrations of extractable lead at 5.0 ppm or greater exceed state (WET) or federal (TCLP) hazardous waste criteria.

Much of the data describes soil that has been or will be removed from the Site during excavation. Soil data remaining after excavation includes data from samples 1-6, 12, 17-19, and 27-28. Of these, only one sample (27) contains total lead at a concentration at or above the ESL; sample 27 has 150 ppm of total lead.

² ESLs for shallow soil (≤ 3 meters bgs) in a residential land use scenario where potentially impacted groundwater is a current or potential drinking water resource

3.2 GROUNDWATER

The four grab groundwater samples were collected from direct-push borings located within the former foundry. These samples were analyzed for halogenated volatile organic compounds (HVOCs). No HVOCs were detected in groundwater beneath the Site (Table 3). This data will remain after excavation.

4.0 <u>CONCLUSION</u>

Environmentally suspect Site uses include the former foundry. Soil and grab groundwater data has been gathered throughout the Site as well as from this historical use area. These data demonstrate that historical uses have not significantly contaminated the Site. No HVOCs were found in groundwater, and no TVHs were found in soil. In addition, TEH concentrations in soil are below ESLs, and most total metals concentrations are also below ESLs.

Site soil has contained concentrations of total antimony, arsenic, and lead that exceed ESLs. The levels of antimony and arsenic are also within typical background ranges for the Site location. The levels of lead are outside background ranges, and are probably related to anthropogenic processes. The potential for lead in excavated soil will necessitate testing to determine appropriate disposal methods.

The extent of metals in soil at the Site appears limited. Consider that elevated concentrations were found in only eight of the 21 boring locations and in six of the excavated stockpiles. In addition, Site uses appear disassociated with the metals data since some data points are within the former foundry (a potential source), but other data points are not. Moreover, sample depths ranged from 1.0 to 7.0 feet bgs, which is within the zone of non-native fill material – material that frequently contains elevated concentrations of metals. The non-uniform distribution of metals within an identified non-native fill zone strongly suggests that metals in Site soil are related to the fill, which is ubiquitous around Oakland and San Francisco Bay.

Regardless of the source, the presence of elevated concentrations of some metals in soil should not present a significant risk to human health and the environment for the following reasons:

 Ongoing redevelopment activities will result in the removal of substantial volumes of Site soil within the upper 10 feet bgs. Construction plans require scraping the top foot of soil across the Site as well as excavating 500 pile foundations, associated subgrade connecting beams, and utility trenches – this work is currently underway. Such activities will result in less metals remaining on the Site after construction. To illustrate, sampled stockpiles contained six of the 10 samples with elevated concentrations of lead, and only one of these will remain after excavation.

- Future residents will have no contact with Site soil since the entire ground surface will be completely covered with reinforced concrete.
- Metals are relatively stable in soil, which minimizes risks associated with contaminant migration.
- Shallow groundwater beneath the Site has little to no beneficial use particularly given the urban setting, the ready availability of municipal water sources, and the likelihood of brackish tidal influx.
- Subsurface conditions in conjunction with the zero lot line construction and with the location of residential units over five levels of aboveground parking largely eliminate vapor intrusion concerns.

Based on the environmental work summarized in this report and the ongoing redevelopment activities, additional Site assessment is not warranted (beyond characterizing excavated soil for disposal purposes). Clayton requests that ACEH formally determine that "No Further Action" is required at the Site.

This report prepared by:

John D. Glover, P.E. Ploject Engineer Environmental Services

This report reviewed by:

Jon A. Rosso, P.E. Director Environmental Services

November 22, 2006 Clayton Project No. 33106-006824.00

FIGURES

Δ

LEGEND: Site Boundary Pile Cap Excavation

Elevator Pit Excavation

Utilities Excavation

1998 Soil and Groundwater Data

March-October 2006 Soil Data

DATA LOCATIONS	Figure	SAU VERI
3ROADWAY BETWEEN 2nd AND 3rd STREETS DAKLAND, CALIFORNIA	3	
Project No. 33106-006824.00	11/21/06 SITE1106.DWG	BUREAU VERITAS

Δ

LEGEND: Site Boundary Pile Cap Excavation

Elevator Pit Excavation

Utilities Excavation

1998 Groundwater Data

March-October 2006 Soil Data

DATA LOCATIONS REMAINING AFTER EXCAVATION

BROADWAY BETWEEN 2nd AND 3rd STREETS OAKLAND, CALIFORNIA

Project No. 33106-006824.00

Figure

4 11/21/06 SITE1106.DWG

TABLES

Sample	Date	Depth	TVH-g	В	Т	E	Х	TEH-d	TEH-mo
ID	(m/d/y)	(ft bgs)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
1	3/10/2006	2.5	<1.0	<0.005	<0.005	<0.005	<0.01	<1.0	<1.0
2	3/10/2006	6.0	<1.0	<0.005	<0.005	<0.005	<0.01	<1.0	<1.0
3	3/10/2006	2.5	<1.0	<0.005	<0.005	<0.005	<0.01	<1.0	<1.0
4	3/10/2006	6.0	<1.0	<0.005	<0.005	<0.005	<0.01	<1.0	6.7
5	3/10/2006	2.5	<1.0	<0.005	<0.005	<0.005	<0.01	<1.0	1.3
6	3/10/2006	6.0	<1.0	<0.005	<0.005	<0.005	<0.01	<1.0	6.0
7	3/10/2006	2.5	<1.0	<0.005	<0.005	<0.005	<0.01	<1.0	160
8	3/10/2006	6.0	<1.0	<0.005	<0.005	<0.005	<0.01	<1.0	<1.0
14	9/5/2006	Pile	_	—	—	—	—	23	140
15	9/5/2006	Pile	_	_	_	_	_	4.2	27
T	ier 1: ESL _s		100	0.044	2.9	3.3	2.3	100	500

TABLE 1Soil Data -- Petroleum HydrocarbonsBroadway between 2nd and 3rd Streets, Oakland, California

Notes:

m/d/y = month/day year; ft bgs = feet below ground surface; ppm = parts per million or milligrams per kilogram

TVH-g = Total volatile hydrocarbons as gasoline; BTEX = TVH as benzene, toluene, ethylbenzene, xylenes

TEH-d = Total extractable hydrocarbons as diesel; TEH-mo = TEH as motor oil

Pile = Sample collected from soil stockpile

Tier 1: ESLs = California Regional Water Quality Control Board (RWQCB) Environmental Screening Levels for shallow soil (≤ 3 meters bgs) residential land use where potentially impacted groundwater is a current or potential drinking water resource

Bold Sample Information = Data points remaining after excavation

TABLE 2Soil Data -- MetalsBroadway between 2nd and 3rd Streets, Oakland, California

Sample	Date	Depth	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
ID	(m/d/y)	(ft bgs)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
SB-1	5/13/1998	1.0	<2.5	15	67	<0.5	<0.5	47	8.7	30	17	0.17	<2.0	74	<2.5	<1.0	<0.5	36	44
SB-2	5/13/1998	1.0	<2.5	13	510	0.77	<0.5	24	5.9	49	110	1.5	<2.0	17	<2.5	<1.0	<0.5	37	44
		STLC	_	_	6.9	—		—			4.7	<0.06	—	—			—	—	
SB-3	5/13/1998	1.0	<2.5	9.0	43	<0.5	<0.5	29	3.5	5.4	4.1	<0.06	<2.0	15	<2.5	<1.0	<0.5	20	17
SB-4	5/13/1998	1.0	<2.5	8.5	47	<0.5	<0.5	35	3.5	8.5	30	<0.06	<2.0	26	<2.5	<1.0	<0.5	23	33
1	3/10/2006	2.5	<2.5	1.0	56	<0.5	<0.5	33	4.0	8.6	45	0.72	<1.0	17	<1.0	<0.5	<1.0	22	42
17	9/7/2006	STLC	—	—	—	—	—	—	—	—	2.3	—	—	—	—	_	—	—	_
		TCLP	—	—	—	—	—	—	—	—	<0.2	—	—	—	—	_	—	—	_
2	3/10/2006	6.0	<2.5	1.2	36	<0.5	<0.5	38	5.4	5.2	<2.5	<0.1	<1.0	27	<1.0	<0.5	<1.0	27	17
3	3/10/2006	2.5	<2.5	<1.0	43	<0.5	<0.5	30	3.1	3.8	<2.5	<0.1	<1.0	16	<1.0	<0.5	<1.0	21	13
4	3/10/2006	6.0	<2.5	<1.0	53	<0.5	<0.5	51	4.5	4.7	<2.5	<0.1	<1.0	27	<1.0	<0.5	<1.0	32	17
5	3/10/2006	2.5	<2.5	1.0	55	<0.5	<0.5	33	3.9	4.7	<2.5	<0.1	<1.0	17	<1.0	<0.5	<1.0	22	15
6	3/10/2006	6.0	<2.5	<1.0	27	<0.5	<0.5	33	1.7	2.4	<2.5	<0.1	<1.0	13	<1.0	<0.5	<1.0	23	9.2
7	3/10/2006	2.5	<2.5	3.8	280	<0.5	0.96	19	3.5	57	660	0.21	1.7	24	<1.0	<0.5	<1.0	15	420
8	3/10/2006	6.0	<2.5	<1.0	33	<0.5	<0.5	38	3.0	4.3	<2.5	<0.1	<1.0	19	<1.0	<0.5	<1.0	23	13
9	8/22/2006	3.0		_	_		_	_	_	—	970	—		_	_	_	_	_	
10	8/22/2006	3.0		_	_		_	_	_	_	<5.0	_		_	_	_	_	_	
11	8/22/2006	3.0		_	_	_		_	_	_	5.3	—	—	_			_	_	
12	8/22/2006	3.0	—	—	—	—	_	—	—	—	84	—	—	—	—	_	—	—	—
13	8/22/2006	3.0		—	—		—			—	380	—	_		—		—	—	
14	9/5/2006	Pile	16	5.9	190	<0.5	1.2	43	6.9	110	520	2.4	2.0	39	<0.5	<0.5	<0.5	36	310
		STLC	0.13	<0.1	4.7	<0.1	0.055	0.21	0.21	2.3	19	<0.01	0.13	0.37	<0.1	<0.1	<0.1	0.28	8.3
		TCLP	<0.1	<0.1	<1.0	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.0
15	9/5/2006	Pile	5.6	9.1	160	<0.5	1.1	83	6.8	98	480	1.0	1.7	47	<0.5	<0.5	<0.5	33	510
		STLC	0.24	<0.1	4.6	<0.1	<0.05	0.53	0.17	1.7	16	<0.01	<0.1	0.41	<0.1	<0.1	<0.1	0.25	6.1
		TCLP	<0.1	<0.1	<1.0	<0.1	<0.05	<0.1	<0.1	<0.1	0.47	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	2.3
16	9/7/2006	Pile	1.3	3.8	250	<0.5	0.43	37	5.2	33	240	1.6	0.54	27	<0.5	<0.5	<0.5	28	140
		STLC	0.19	<0.1	4.4	<0.1	<0.05	0.13	0.19	0.68	10	<0.01	<0.1	0.18	<0.1	<0.1	<0.1	0.22	4.1
		TCLP	<0.1	<0.1	<1.0	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.0
18	8/26/2006	7.0	—	—	—	—	_	—	_	—	<5.0	—		—	_	_	—	—	_
19	8/26/2006	7.0		—	—	_	—	—	_	_	<5.0	—	_	—	—		—	—	—
20	8/26/2006	Pile	—	—	—	—		—	_	—	44	—	—	—			—	—	
		STLC	0.18	<0.1	3.3	<0.1	<0.05	<0.1	0.1	0.6	2.5	<0.01	<0.1	0.21	<0.1	<0.1	<0.1	0.17	4.3
		TCLP	<0.1	<0.1	<1.0	<0.1	<0.05	<0.1	<0.1	<0.1	1.6	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.0
21	8/26/2006	Pile	—	_	_		—	—	_	—	70	-	—		—		—	—	_
		STLC	0.11	0.5	7.1	<0.1	<0.05	0.57	0.34	1.2	5.5	<0.01	<0.1	1.0	<0.1	<0.1	<0.1	1.3	6.6
		TCLP	<0.1	<0.1	<1.0	<0.1	<0.05	<0.1	<0.1	<0.1	<0.1	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.0
22	9/27/2006	Pile	—	_	—	—	—	—	_	—	110	-	—	—	—		—	—	
		STLC	—	—	—	—	—	—	—	—	6.8	—	—	—	—		—	—	—
		TCLP		_	—	—	_	_	_		<0.5	_		_		_	_	—	

TABLE 2 Soil Data -- Metals Broadway between 2nd and 3rd Streets, Oakland, California

Sample	Date	Depth	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
ID	(m/d/y)	(ft bgs)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
23	10/2/2006	3.0	_	_	_	_	_	_	_	_	13				_	_	_	_	
24	10/2/2006	6.5	_	—		—	—			—	<5.0		—	_	—	—	—	—	
25	10/2/2006	3.0		—	_	—	—	_	_	—	<5.0	—	—	_	—	—	—	—	
26	10/2/2006	6.5	_	_	_	—	—		_	_	<5.0	_		_	—	_	—	—	
27	10/2/2006	7.0	_	_	_	_	_	_	_	_	<5.0	_	_	_	_	_	_	_	
28	10/2/2006	7.0	—	—	_	—	—	—	—	—	150	—	_	—	—	—	—	—	—
		STLC	—	—	—	—	—	—	—	—	5.9	—	—	—	—	—	—	—	—
		TCLP	_	—	—	—	—			—	<0.2	—	—	—	—	—	—	—	
29	10/2/2006	Pile	—	—	—	—	—	—	—	—	610	—	—	—	—	—	—	—	—
		STLC	—	—	—	—	—	—	—	—	35	-	—	—	—	—	—	—	_
		TCLP	_			_	_	_		—	9.8	-	—		_	_	_	—	
30	10/12/2006	3.0	—	—		—	—	—	—	—	<5.0	—	—	—	—	—	—	—	_
		STLC	—	—	—	—	—	—	_	—	<0.2	—	—	_	—	—	—	—	
		TCLP	—	—	—	—	—	—	_	—	<0.2	—	—	_	—	—	—	—	
31	10/12/2006	6.5	—	—	—	—	—	—	_	—	<5.0	—	—	_	—	—	—	—	
		STLC	—	—	—	—	—		—	—	<0.2	—	_	—	—	—	—	—	—
		TCLP		—	_	—	—		_	—	<0.2	—	_	—	—	—	—	—	
32	10/12/2006	3.0	—	—		—	—	_	_		<5.0	—	—	—	—	—	—	—	—
		STLC	—	—		—	—		—		<0.2	—	—	—	—	—	—	—	
		TCLP	—	—	—	—	—		—	—	<0.2	—	_	—	—	—	—	—	—
33	10/12/2006	6.5	—	—	—	—	—	_	—	—	6.6	—	—	—	—	—	—	—	—
		STLC	—	—	—	—	—	_	—	—	<0.2	—	—	—	—	—	—	—	—
		TCLP	—	_		—	—				<0.2			—	—	_	—	_	
34	10/14/2006	Pile	—	—	—	—	—		—	—	84.0	—	_	—	—	—	—	—	—
		STLC	—	—	—	—	—	_	—	—	3.5	—	—	—	—	—	—	—	—
		TCLP							_		<0.2		—						
	Her 1: ESL _s		6.1	5.5	750	4.0	1.7	58	10	230	150	3.7	4.0	150	10	20	1.0	110	600
CA Ha	az. Waste (TT	LC)	500	500	10,000	75	100	2,500	8,000	2,500	1,000	20	3,500	2,000	100	500	700	2,400	5,000
CA Ha	az. Waste (ST	LC)	15	5.0	100	0.75	1.0	5.0	80	25	5.0	0.2	350	20	1.0	5.0	7.0	24	250
Federal	Haz. Waste (TCLP)	NE	5.0	100	NE	1.0	5.0	NE	NE	5.0	0.2	NE	NE	1.0	5.0	NE	NE	NE

Notes:

m/d/y = month/day year; ft bgs = feet below ground surface; ppm = parts per million, or milligrams per kilogram, or milligrams per liter (for STLC and TCLP data only)

TVH-g = Total volatile hydrocarbons as gasoline; BTEX = TVH as benzene, toluene, ethylbenzene, xylenes; TEH-d = Total extractable hydrocarbons as diesel; TEH-mo = TEH as motor oil Pile = Sample collected from soil stockpile

STLC = Analysis using California Waste Extraction Test for comparison with Soluble Threshold Limit Concentration; TCLP = Analysis using federal Toxicity Characteristic Leaching Procedure Tier 1: ESLs = California Regional Water Quality Control Board (RWQCB) Environmental Screening Levels for shallow soil (< 3 meters bgs) residential land use where potentially impacted groundwater

is a current or potential drinking water resource

CA Haz. Waste TTLC = Total Threshold Limit Concentration for state hazardous waste determination; STLC for same; TCLP for federal hazardous waste determination; NE = Not established **Bold Sample Information** = Data points remaining after excavation

Sample	Date	Chloro metha nes	Bromo form	Bromo metha ne	Carbon tetra chloride	Chloro benzene s	Chloro ethanes	Ethenes	Chloro form	Fluoro metha nes	1,2- dichloro propane	Chloro propenes	Vinyl chloride	Selenium
ID	(m/d/y)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
SB-1	5/13/1998	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.5
SB-2	5/13/1998	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.5
SB-3	5/13/1998	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.5
SB-4	5/13/1998	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<2.5
Tier	1: ESL _s	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	10

TABLE 3 Groundwater Data -- Halogenated Volatile Organic Compounds (HVOCs) Broadway between 2nd and 3rd Streets, Oakland, California

Note:

m/d/y = month/day year; ft bgs = feet below ground surface; ppb = parts per billion or micrograms per liter

Chloromethanes = bromodichloromethane, chloromethane, dibromochloromethane, methylene chloride (dichloromethane)

Chlorobenzenes = chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene

Chloroethanes = chloroethane, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane

Ethenes = 2-chloroethyl vinyl ether, 1,1-dichloroethene, c1,2-dichloroethene, t1,2-dichloroethene, tetrachloroethene, trichloroethene

Fluoromethanes = dichlorodifluoromethane, trichlorofluoromethane

Chloropropenes = c1,3-dichloropropene, t1,3-dichloropropene

Tier 1: ESLs = California Regional Water Quality Control Board (RWQCB) Environmental Screening Levels for shallow soil (< 3 meters bgs)

residential land use where potentially impacted groundwater is a current or potential drinking water resource

NR = Not relevant because compounds not detected

APPENDIX A

EXCERPTS FROM 1998 SOIL AND GROUNDWATER REPORT

5040 Commercial Circle, Suite F Concord, CA 94520 (510) 825-4466 / fax (510) 825-4441

June 1, 1998 Project CA260-1

CWR Associates LLC % Ms. Judith Barrafi CONSTRUCTA, INC 49 Stevenson San Francisco, CA 94105

Soil and Groundwater Sampling Report Commercial Property 210 Broadway Oakland, California

Dear Ms. Barrall:

On May 13, 1998, CERES Associates (CERES) conducted soil and groundwater sampling at the commercial property located at 210 Broadway in Oakland, California (Property)(see Figure 1 in Appendix A). The sampling was conducted to assess whether or not subsurface soil and groundwater beneath the Property has been affected by the operations of the former Empire Foundry facility which was located on the Property for about 50 years.

SCOPE OF WORK

CERES conducted the following scope of work on May 13, 1998, to assess soil and groundwater quality conditions beneath the Property:

- Obtain drilling permit from the Alameda County Department of Public Works and outline the proposed sample areas for underground services alert (USA);
- Install four (4) Geoprobe borings and collect soil and grab groundwater samples for laboratory analysis; and
- Prepare Soil and Groundwater Sampling Report.

ASSESSMENT ACTIVITIES

Mobilization for field investigation activities included: notification of Underground Services Alert (USA) regarding field operations at the Property; soil boring permit acquisition from the Alameda County Public Works Agency; preparation of a site specific health and safety plan; and scheduling the field activities with the appropriate subcontractors and Alameda Public Works Agency officials. A copy of the drilling permit is provided in Appendix B.

SAMPLE METHODOLO

Soil and groundwater samples were collected using Geoprobe sampling equipment provided by Vironex, Inc. The Geoprobe sampler utilizes direct push technology to collect soil and groundwater samples from specific subsurface depths without generating unnecessary soil cuttings. The Geoprobe sampling system consists of a series of 1.5-inch diameter hollow stainless steel rods which are hydraulically driven into the ground using stainless steel drive rods and a truck-mounted pneumatic hammer. Soil samples are collected by driving a 2-foot long stainless steel sample sleeve attached to the end of the steel rods into soil at a specified sample depth. Soil samples are then collected in a Teflon sample tube installed inside the sample sleeve. After the rod assembly has been hydraulically extended to the target sample depth, the sample sleeve is retrieved to ground surface and the sample tube containing soil from the appropriate sample interval is capped with Teflon-lined plastic end caps, placed in a ziploc bag and stored in a chest cooled with ice. Excess soil from each sample interval was used for lithologic description and field screening purposes.

Excess soil from each sample interval was field screened for the presence of volatile organic compounds (VOCs) using a Mini Rae photoionization detector (PID). Field screening was conducted by placing soil in a plastic ziploc bag and monitoring the atmosphere inside the bag with the PID. The PID readings were digitally displayed on the PID in parts per million (ppm) and recorded on the soil boring logs provided in Appendix C.

Groundwater samples were collected using Hydropunch sampling equipment or else a temporary ³/₄inch diameter PVC well screen and ¹/₄-inch diameter polyethylene tubing fitted with a check valve at the bottom of the hose. The Hydropunch sampler and temporary well casing were used to create a conduit between ground surface and the first water bearing zone, and the ¹/₄-inch tubing and check valve assembly was used to manually retrieve groundwater samples to ground surface.

After the soil borings had been completed each borehole was backfilled to ground surface with Portland cement.

SAMPLE LOCATIONS

Soil borings SB-1 through SB-4 were placed within the parking lot area of the Property. As Figure 2 shows, the present parking lot area covers most of the operations area once occupied by the former Empire Foundry plant. Soil borings SB-1 through SB-4 were spatially placed throughout the parking lot area to provide a representative profile of subsurface soil and groundwater quality conditions beneath the area of the Property most likely to have been affected by operations conducted at the former foundry. SB-1 and SB-2 were placed within an area identified on a 1912 Sanborn Map (see Appendix B) as consisting of an earth floor, and SB-3 and SB-4 were placed along the north and south portions of the Property to assess soil and groundwater quality conditions across the width of the Property, as well as beneath different areas of the former foundry plant.

Soil samples were collected from each soil boring at sample depths between ground surface and 2 feet below ground surface (bgs), and 4 to 6 feet bgs. Soil samples were collected at 1-foot bgs for the purpose of assessing whether or not near surface soils have been impacted by heavy metals derived from the operations of the former foundry. This potential problem was of primary concern within the former foundry building identified as having an earth floor. The soil samples collected between 4 and

1

6 feet bgs at each sample ition were obtained for the purpose of filing the vertical extent of heavy metals in soil if the near surface soil samples indicated that elevated metals concentrations were present in shallower depth soils.

Once the 4 to 6-foot bgs sample interval was collected from each boring the boreholes were extended down to groundwater for the purpose of assessing whether or not groundwater beneath the Property has been adversely affected by chlorinated solvents and metals (if need be). Chlorinated solvents were not analyzed from the overlying soil samples because these compounds would have likely volatilized in near surficial soils over the past 30 years, and if these compounds were present in soils overlying groundwater, then groundwater quality would be the primary concern. Extra groundwater samples were collected from soil borings SB-1, SB-2 and SB-4 for archiving purposes (low groundwater yield at SB-3 prevented the collection of an additional groundwater sample at this location). The archived samples were obtained for potential dissolved metals analyses should soil samples collected from each boring location indicate that significant metals concentrations were present in overlying soils.

SAMPLE ANALYSIS

Soil and groundwater samples collected for laboratory analysis from SB-1 through SB-4 were submitted under chain-of-custody protocol to McCambell Analytical Laboratory, a State of California-certified laboratory located in Pacheco, California. The 1-foot soil samples were analyzed for California assessment manual metals (known as CAM metals) using United States Environmental Protection Agency (U.S. EPA) 6010 and 7000 Series, and the 5-foot soil samples were submitted for archiving. The groundwater samples from SB-1 through SB-4 were analyzed for halogenated volatile organic compounds (HVOCs) using U.S. EPA Method 601, and the additional groundwater samples submitted from SB-1, SB-2 and SB-4 were archived pending the analytical results of CAM metals in overlying soils.

LITHOLOGIC CONDITIONS

Soil sample intervals were from 0 to 2 feet bgs and 4 to 6 feet bgs. Soil below 6 feet bgs was not collected for laboratory analysis, visual inspection or field screening purposes during this investigation. Each soil boring was extended beyond 6 feet bgs to depths ranging from 16 to 30 feet bgs for groundwater sampling purposes only.

Soil between ground surface and 6 feet bgs consisted of sandy fill soil and silty sand. The sandy fill was observed in the 0 to 2-foot sample intervals in all four soil borings, however debris such as sheetmetal and brick fragments, as well as charred wood and discolored (black) soil was observed in the near surface soil samples collected from SB-1 and SB-2 which were situated in the earth floor area of the former foundry building. Yellowish brown silty sand was encountered in the 4 to 6-foot sample intervals in all four soil borings. Distinguishable contaminant odors were not observed in soil cuttings generated during sample collection during this investigation.

Groundwater was encountered between 14 and 30 feet bgs in soil borings SB-1 through SB-4, and it rose to within 8 feet of ground surface in SB-4 and 11 feet bgs in the SB-3, suggesting that confined groundwater conditions exist beneath the Property.

A copy of the soil boring logs for SB-1 through SB-4 are provided in Appendix C.

CERES Associates CWR Associates LLC (Oakland) ٠

ANALYTICAL LABOR ORY RESULTS

Grab groundwater sample results for soil borings SB-1 through SB-4 were reported as below laboratory method detection limit concentrations for HVOCs. The 1-foot soil samples analyzed from SB-1, SB-3 and SB-4 were reported to contain various metals concentrations, however CAM 17 metals from these three soil borings were not reported at concentrations which exceeded anticipated background concentrations (i.e., naturally occurring concentrations). Additionally, CAM 17 metals concentrations reported in the 1-foot soil samples collected from SB-1, SB-3 and SB-4 were well below Title 22 total threshold limit concentrations (TTLCs), as well as within 5 times the soluble threshold limit concentrations (STLCs) often used to differentiate between Class I hazardous and Class II non-hazardous wastes.

CAM 17 metals concentrations reported in the 1-foot soil sample analyzed from SB-2 were reported as below TTLCs for all 17 metals. However, mercury (Hg), lead (Pb) and Barium (Ba) concentrations from this sample were reported at concentrations which exceeded their respective STLCs by more than a factor of 5. As a result, CERES requested the laboratory to run a STLC analysis for Ba, Pb, and Hg on the SB-2 soil sample. The results indicated that these three elements were not present at concentrations which exceeded Title 22 STLCs.

Analytical laboratory results of the 1-foot soil samples analyzed from SB-1 through SB-4, as well as the corresponding Title 22 TTLCs and STLCs are tabulated in Table 1 below, and copies of the analytical laboratory data sheets are provided in Appendix D.

Table 1

Sample	L					A	nalytica	l Laborato	ry Results	for CAM	17 Metals	(ppm)		<u> </u>			
Location	Sb	As	Ba	Be	Ca	Cr	C.	Cu	РЬ	Hg	Мо	Ni	Se	Ag	П	v	Za
SB-1	ND	15	67	ND	ND	47	8.7	30	. 17	0.17	ND	74	ND	ND	ND	36	44
SB-2	ND	13	510	0.77	ND	24	5.9	49	110	1.5	ND	17	ND	ND	ND	37	44
SB-2*	NA	NA	6.9	NA	NA	NA	NA	NA	4.7	ND	NA	NA	NA	NA	NA	NA	NA
SB-3	ND	9.0	43	ND	ND	29	3.5	5.4	4.1	ND	ND	15	ND	ND	ND	20	17
SB-4	ND	8.5	47	ND	ND	35	3.5	8.5	30	ND	ND	26	ND	ND	ND	23	·33
TILC	- 500	500	10,000	75	100	2,500	800	2,500	1,000	20	3,500	2,000	100	100	700	2,400	5,000
STLC	15	5.0	100	0.75	1.0	560	80	25	5.0	0.2	350	20	1.0	5	7.0	24	250

CAM 17 Analytical Laboratory Results

* STLC concentration

Bold type indicates metal concentration was reported at a concentration which exceeded the Title 22 STLC by more than a factor of 5.

CONCLUSIONS AND RECOMMENDATIONS

Four soil borings were installed at the Property in areas which appeared likely to detect subsurface contamination based on the past site use of the Property. Field observations and analytical laboratory results indicated that VOCs were not present at detectable concentrations in soil or groundwater beneath the Property, and CAM metals concentrations were within Title 22 hazardous waste

:

guidelines. Therefore, base the results of this investigation CERE bes not recommend further work at this time.

LIMITATIONS

The conclusions and recommendations presented in this report are limited by the scope of work conducted for this assessment. Much of the information on which the conclusions and recommendations of this report are based, comes from data provided by others. CERES is not responsible for the accuracy or completeness of this information. Inaccurate data provided by others, as well as information that was not found or made available to CERES, may result in a modification of the conclusions presented in this report.

It is possible unpermitted, undocumented or concealed improvements or alterations to the Property could exist beyond what was found during assessment activities. Variations in Property specific soil and groundwater conditions are probable beyond what field characterization can record. Changes in the conditions found on the Property could occur at some time in the future due to variations in environmental and physical conditions.

In today's technology, no amount of assessment can ascertain that the Property is completely free of environmental concern.

Any geologic and hydrogeologic data are for drawing conclusions, by CERES, within the context and timing of this report only.

This report was prepared for the sole use and benefit of CWR Associates LLC and CONSTRUCTA, INC. This report is not a legal opinion and does not offer warranties or guarantees.

If you have any questions regarding this report, please give me a call at (925) 825-4466.

Sincerely,

CERES

John Love, RG 6315 Project Geologist

Exp. w 11-30-48

 $= \Phi_{ij} (I_{ij}) = - \phi_{ij} (I_{ij})$ $V_{1} = V_{1}$ iel iechi i. 01.3 M

LERES ASSOCIATES, INC	NO. 233 DOE
· · · ·	
ALAMEDA COUNTY	Y PUBLIC WORKS AGENCY
PUBLIC PUBLIC WORKS WORKS WORKS WORKS WORKS WORKS WORKS WORKS WORKS WORKS WORKS WORKS WORKS WORKS WORKS WORKS WORKS WATER BESOURCES SEC SI TURNEE COURT, BUITS JI WATER DESOURCES SEC	TJON 99, XAYWARD, CA 34545-2631 2A6 GODPREY 9AX (339) (70-5262 9 KAN
DRILLING FEPM	TT ABBI IC ITTON
	AT THE DUCKTION
FOR APPLICANT TO COMPLETE	FOR OFFICE LEE
LOCATION OF PROJECT 210 Browling Har - Decen	9611210 -
11-3'- St. Oakbard CA J	PERMITNUNBER JOWEIJO
	APN
California Countinante Sauce	
$\frac{1}{2} \frac{1}{2} \frac{1}$	PERMIT CONDITIONS
	Carled Permis Resurrences Apply
VENT CLIR Ashranas 110	(A) GENERAL
Address 49 Stevenson St. Phase (415) 541-9950	1. A permit application should be reasonined as or to
City Son Francisco Zip 94105	arrive at the ACPWA affice from days prior to
APPLICANT	(1) Submit to ACTWA protein 80 days a fur campletion of
Non CERES Associates	pertitioned work the prigmal Department of Water
Advien 50 42 6	Resources Water Well Drivers Report or equivalent for
Chy Concord Circle JE Prome (935) 825-4466	Crostinical project.
49 _ 79320	Perone is word if project nut begun willing, 50 days of
Well Commence	ADDISVEL date.
Cathodic Promonon D General Investigation	I. Minimum surface scal thickness is not usbes of
Water Supply D Continuetion	criment front blacos by active
Well Destruction	2. Minimum seel depth is 50 feet for municipal and
OROSED WATTE STIRM STATE	wells uplass a letert drath is terrielle and
	C. GROUNDWATER MONITORING WELLS
Municipal D Inigation C	including fiezometers
	I. Minimum surface seat success is two saches of
DEILLING METEOD:	7. Nimmum 1221 60201 for montarity wells a the
Mud Rotary U Ad Rotary D Auger	Maximum depin precheable or 20 feet
Cipic D Other D Geoprope	U GLOTECHNICAL
DRILLER'S LICENSE NO. CS7 70.5927 (Uironex)	Descent of a work was compared conjuge or heavy
WELL PROJECTS.	States at the bar at suspecting states and the second
Onli Noie Dunter in Manual	E. CATHODIC
Lasing Dismour In. Depil p.	Fill but above sands some with construct presed by tremis.
R. Number	See Albert
GEOTECHNICLI, PROJECTS	C. SPECIAL CONDITIONS
Hale Disamon 4 Maringa	
List in Droot 15 R	
ESTINATED STARTING DATE 5/10/98	
SAMATED COMPLETION DATE SAME	1788 AVED / 11/98
	2.VIE
i have by agree is comply with all requirements of this permit and Atomotic County Ordinance No. 72 68.	

_ DATE 5/6/98 APPLICANT'S SIGNATURE_

p.02

١,

5.5

.

8788-288-012 CALITYO FISW DUBATIVA 955:10 88-80-444

CERES ASSOCIATES

Logged by: John Love RG 6315

HOLE NO. PRO SB-1 Cor	JECT NAME: mnercial Propert	ÿ	PR 210	OJECT ADDRESS:) Broadway, Oakland . CA	DATE: May 13, 1998	SHEET 1 OF 1
Soil Boring E Completion Details 🗮	Sampler Interval	PID Restling	uscs	LOG OF MA	TERIAL	
	0' to 2'	0		 (0' -1')Asphalt and base material. (1'-2') Silty Sand fill, dark brown: some grav brick fragments and sheetmetal debris: some soil and wood ; no odor. moist. 	el. black	
3- L5° Dia Borehole 5-	4° to 6	0.8	SM	(4'-6') Silty Sand: Yellowish brown (10YR ; firm; poorly graded, fine sand: moist: no odo	5/6); r.	
6 - 7 - 8 -	'					- - - -
9 - 10- 11-	Hydropunch well screen			· · ·		
12- 13- ¥ 14-						
TD 16						
17- 18- 19-				, . ,		
20- 21- 22-						
23- 24-						
25- 26- 27-				`` .		
28- 29-						
30- 31- 32-						
33-						

CERES ASSOCIATES

Logged by: John Love RG 6315

CERES ASSOCIATES

Logged by: John Love RG 6315

CERES ASSOCIA I ES

Logged by: John Love RG 6315

HOLE NO.	PRO	DJECT NAME:		PR	OJECT ADDRESS:	i 1	DATE:	SHEET 1
SB-4	Co	mmercial Propert	<u>у</u>	210) Broadway, Oakland CA		May 13, 1998	OF 1
Soil Boring Completion Details	111130	Sampler Interval	P(I) Reading	uscs	LOG OF M-	ATERI	AL	
Concrete	-	0110 7			(0' -1')Asphalt and base material.		•	
		0.02	0		(1'-2') Silh. Sand fill. dark brown: some gra	vel:		
	2 - 2	2						
1.5" Dia.	3 - 1	•••						
Borchole	4 -	WAA						
	5_3	4" to 6	0	SM	(4'-6') Silty Sand: Yellowish brown (10YR	5/6);		· · ·
	6 -	Ś			mill, poorly graded, the sand, most, no od	or.		-
	7							· · · ·
X	8-			-				-
Sampled	0							
GW Depth								_
	1	Hydropunch	.					_
		12 to 16	İ					
	12-				· · · · ·			
	13-							
\mathbf{Y}	14_							-
Estimated First GW	15-		ļ					
	16-							
1	- 17-;							_
1	8-1							-
1	1_0				, ,			-
	20-1				,			
								-1
	7							
2	5							-1
2	4-							
2	:5-]							-1
2	6							1
2'	7-				-			1
2	7 8-j						-	1
2	ا و							-
TD 307 2	- 	1						-
	,							-1
	יי רי איני	emp. 3:4"well reen installed		Ì				-1
3	רי ר	0 to 30 feet bys.	!					-
3	, 3			1				

Ceres Associates	Client Project ID: #CA260.1	Date Sampled: 05/13/98		
5040 Commercial Circle, Ste F		Date Received: 05/14/98		
Concord, CA 94520	Client Contact: John Love	Date Extracted: 05/15/98		
	Client P.O:	Date Analyzed: 05/15/98		

.

Volatile Halocarbons

Lab ID	89236	89239	89242	89245
Client ID	SB-1	SB-2	SB-3	SB-4
Matrix	W	W	W	W
Compound		Conce	entration	
Bromodichloromethane	ND	ND	ND	ND
Bromoform ^(b)	ND	ND	ND	ND
Bromomethane	ND ,	ND	ND	ND
Carbon Tetrachloride ^(c)	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND
2-Chloroethyl Vinyl Ether ^{id)}	ND	ND	DND	ND
Chloroform (*)	ND	ND	- ND	ND
Chloromethane	ND .	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND
1.2-Dichlorobenzene	ND	ND	ND	ND
1,3-Dichlorobenzene	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND
Dichlorodifluoromethane	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	
1,2-Dichloroethane	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND
cis 1,2-Dichloroethene	ND	ND	ND	ND
trans 1,2-Dichloroethene	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND
cis 1,3-Dichloropropene	ND	ND	ND	ND
trans 1,3-Dichloropropene	ND	ND	ND	ND
Methylene Chloride ⁽¹⁾	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND
Tetrachloroethene	ND	ND	ND	ND
1,1,1-Trichloroethane	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND
Trichloroethene	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND	ND
Vinyl Chloride ¹⁹	ND	ND	ND	ND
% Recovery Surrogate	101	100	103	103
Comments	i	i	i	

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil and sludge samples in ug/kg, wipe samples in ug/wipe

Reporting limit unless otherwise stated: water/TCLP/SPLP extracts. ND<0.5ug/L; soils and sludges, ND<5ug/kg; wipes, ND<0.2ug/wipe

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

(b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~ 5 vol. % sediment; (j) sample diluted due to high organic content.

DHS Certification No. 1644

Edward Hamilton, Lab Director

Ceres Associates	Client	Project ID: #	CA260-1		Da	te Sample	d: 05/13/98	3		
5040 Commercial Circle, Ste F	;				Da	te Receive	ed: 05/14/9	8		
Concord, CA 94520	Client (Contact: Joh	h Love		Da	te Extracte	ed: 05/14/9	8		
	Client I	P.O:			Da	Date Analyzed: 05/14-05/15/98				
		CAM / CC	R 17 Metals	*		· · · · · · · · · · · · · · · · · · ·	·			
EPA methods 6010/200.7; 7470/7471/	/245.1/245.5 (H	g); 7060/206.2	(As): 7740/270).2 (Se); 784	1/27	9.2 (TI); 239	2 (Pb, water	matrix)		
Lab ID	89234	89237	· 89240	89243	3		Reporting I in	nit		
Client ID	SB-1	SB-2	SB-3	SB-4		•				
Matrix	S	S	S	S		S	w	STLC,		
Extraction ^o	TTLC	TTLC	TTLC	TTLC		TTLC	TTLC	TCLP		
Compound		Concer	stration*			mg/kg	mg/L	mg/L		
Antimony (Sb)	ND	ND	ND	ND		2.5	0.05	0.05		
Arsenic (As)	15	13	9.0	8.5 <u>.</u>		2.5	0.005	0.25		
Barium (Ba)	67	510	43	47		1.0	0.05	0.05		
Beryllium (Be)	ND	0.77	ND	ND		0.5	0.004	0.01		
Cadmium (Cd)	ND	ND	ND	ND	ND		0.005	0.01		
Chromium (Cr)	47	24	29	35		0.5	0.005	0.05		
Cobalt (Co)	8.7	5.9	3.5	3.5		2.0	0.05	0.05		
Copper (Cu)	30	49	.5.4	8.5		2.0	0.05	0.05		
Lead (Pb)	17	110	4.1	30		3.0	0.005	0.2		
Mercury (Hg)	0.17	1.5.	ND	ND		0.06	0.0008	0.0008		
Molybdenum (Mo)	ND	ND	ND	ND		2.0	0.05	0.05		
Nickel (Ni)	74	17	15	26		2.0	0.05	0.05		
Selenium (Se)	ND	ND	ND	ND		2.5	0.005	0.25		
Silver (Ag)	ND	ND	ND	ND		1.0	0.01	0.05		
Thallium (Tl)	ND	ND	ND	ND		0.5	0.001	0.5		
Vanadium (V)	36	37	20	23		2.0	0.05	0.05		
Zinc (Zn)	44	44	17	33		1.0	0.05	0.05		
% Recovery Surrogate	103	106	108	105		d				
Comments										

* water samples are reported in mg/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in mg/L ND means not detected above the reporting limit; N/A means surrogate not applicable to this analysis

* EPA extraction methods 1311(TCLP), 3010/3020(water, TTLC), 3040(organic matrices, TTLC), 3050(solids, TTLC); STLC - CA Title 22

" surrogate diluted out of range

* reporting limit raised due to matrix interference

i) liquid sample that contains greater than ~2 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations.

DHS Certification No. 1644

MCCAMPBELL ANALYTICAL INC.

Ceres Associates	Client I	Client Project ID: #CA260-1				Date Sampled: 05/13/98				
5040 Commercial Circle Stel	r Chefit I		rCA200-1		Date Receiv	ed: 05/14/9	8			
Concord CA 94520	Client C	Contact: Joh	n Love		Date Extract	Date Extracted: 05/26-05/28/98				
	Client P	.0:	· · · · · · · · · · · · · · · · · · ·	·	Date Analym	-d. 05/20/0				
		CAM / CC	R 17 Metals	<u> </u>			•			
EPA methods 6010/200.7; 7470/7471/	245.1/245.5 (Hg); 7060/206.2 (As); 7740/270.2	(Se); 7841/	279.2 (TI); 239.1	2 (Pb, water m	atrix)			
Lab ID	89237					Reporting Lir	nit			
Client ID	SB-2@1'	ļ								
Matrix	S .				S	W.	STLC.			
Extraction®	STLC				TTLC	TILC	TCLP			
Compound		Сопсел	tration*	mg/kg	mg/L	mg/L				
Antimony (Sb)					2.5	0.05	0.05			
Arsenic (As)		i			2.5	0.005	0.25			
Barium (Ba)	6.9				1.0	0.05	0.05			
Beryllium (Be)					0.5	0.004	0.01			
Cadmium (Cd)	-				0.5	0.005	0.01			
Chromium (Cr)		;;;;			0.5	0.005	0.05			
Cobalt (Co)	-				2.0	0.05	0.05			
Copper (Cu)		,			2.0	0.05	0.05			
Lead (Pb)	4.7				3.0	0.005	0.2			
Mercury (Hg)	ND				0.06	0.0008	0.0008			
Molybdenum (Mo)	_ <u>_</u>				2.0	0.05	0.05			
Nickel (Ni)	-				2.0	0.05	0.05			
Selenium (Se)	- 1			······	2.5	0.005	0.25			
Silver (Ag)					1.0	0.01	0.05			
hallium (TI)	_			<u> </u>	0.5	0.001	0.5			
/anadium (V)					2.0	0.05	0.05			
Linc (Zn)				<u> </u>	1.0	0.05	0.05			
6 Recovery Surrogate					¹					
omments					-					

ting limit, N/A means surrogate not applicable to this analysis

* EPA extraction methods 1311(TCLP), 3010/3020(water, TTLC), 3040(organic matrices, TTLC), 3050(solids, TTLC); STLC - CA Title 22

" surrogate diluted out of range

* reporting limit raised due to matrix interference

i) liquid sample that contains greater than -2 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations.

_Edward Hamilton, Lab Director 11

APPENDIX B

EXCERPTS FROM 2006 SUBSURFACE SOIL REPORT

SUBSURFACE SOIL SAMPLING FINAL REPORT

PPD 222 Broadway-LLC

210 Broadway Street Oakland, CA 94601

Date of Sampling/Inspection March 10, 2006

PREPARED FOR:

PPD 222 Broadway-LLC

3993 Howard Hughes Parkway Las Vegas, NV 89109 At the request of the PPD 222 Broadway-LLC, Advantage Environmental and Safety Services, Inc. has prepared this Report of Findings (ROF). The purpose of this ROF is to characterize the soil and to provide recommendations as to the disposition of any contaminants found as a result of that sampling. The results of soil sampling activities performed on March 10, 2006 indicate that the lead content in the soil at the northeast corner of the property exceed the limits set by the Regional Water Quality Control Board (RWQCB). This may be caused by someone burying construction materials in this area of the site.

BACKGROUND

The sampling site is located at 210 Broadway (between 2nd Street, Broadway, 3rd Street, & Franklin Street) in Oakland, California. Currently, this site has two buildings on it that are vacant. The building at the corner of 2nd and Broadway, vacant Chinese restaurant, is a two-story wood structure with a brick and wood façade. The other building, 220 Broadway, is a two-story brick building and was at one time a restaurant. The rest of the site was a pay and park lot.

Advantage Environmental and Safety Services, Inc. was contracted to collect sub-surface soil samples at 210 Broadway Street in the pay-and-park lot in Oakland. As part of our contract we were to collect samples to a depth of six feet at four locations at the site.

To my knowledge there are no previous soils investigations or reports available for this property.

FINDINGS

This soil investigation was conducted on March 10, 2006. A total of eight samples were collected from four sample locations. The subsurface soil samples were collected at two feet and at six feet.

The sub surface soil samples were collected using a hydraulic truck that pushes the sampling core into the ground. The trucks sampling probe is a steel tube, two inches in diameter by four feet long. As each sampling section was made available, a six to eight inch section of the sampling core was cut off, Teflon taped, capped, and labeled. The tool used to cut the sample tubes was cleaned after each cutting.

The soil samples were submitted under chain of custody to California Laboratory Services (CLS Labs), a California state-certified laboratory. Analysis of soil samples included CAM-17 EPA Method 6000/7000, TPG (Gasoline/BTEX) using GC PID/FID, and TPH Extractables (Diesel/Oil) EPA Method 8015M. Table 1 (Appendix A) contains RWQCB soil remediation levels as well as the laboratory's analytical results. Lead was detected in concentrations above the allowable limits set by the RWQCB in the northeast corner of the property. Our hypothesis is that the lead is from a previous structure or construction that was buried in that corner of the site. Based on this sampling data this corner of the site is considered to be lead contaminated. At this point there are two options: 1). Perform additional sampling to determine exact scope/size of the contamination; or 2) Once the excavation has begun we can visually determine the size and scope of the debris.

The analytical results indicated the presence of several other heavy metals, however, none of the results exceed the limits set by the RWQCB (except lead). The Laboratory Data Reports are included in Appendix B.

Table 2 (Appendix A) represents the RWQCB soil remediation levels for TPH-Gasoline/BTEX. Within that method the laboratory analyzes for Benzene, Toluene, Xylene, Ethylbenzene, and Gasoline. The analytical reports indicate none detected for these analytes. The Laboratory Data Reports are included in Appendix B.

Table 3 (Appendix A) represents the RWQCB soil remediation levels for TPH extractables for diesel and motor oil. The laboratory detected oil in two of the samples. The concentration of the oil in the samples is less than the limits set by RWQCB for these analytes. The Laboratory Data Reports are included in Appendix B.

CONCLUSIONS/RECOMMENDATIONS

Based on analytical results from this soil investigation the following recommendations are made:

- The exact extent of the lead in soil contamination should be determined before the contractor starts the soil excavation. This will provide a boundry from the soil remediation.
- Once the asphalt on the parking lot has been scraped and the structures have been demolished additional soil samples may be necessary should contamination become apparent.

All other heavy metals, TPG for Gasoline/BTEX, and TPH Extractables Diesel/Oil are all below the limits established by RWQCB.

This inspection was limited to specific areas and items tested. Every attempt was made to discover all materials that may be affected. Materials hidden within subsurface, in areas not included as part of this inspection or in areas that are not readily accessible to the inspector were not inspected or sampled. This report is limited to the materials analyzed.

Kristofer McGlothlin Certified Asbestos Consultant: 92-0324 Department Of Health Services: 1141 Date

Appendix A Analytical Data Tables

Subsurface Soil Sampling Final Report 210 Broadway Street, Oakland April 3, 2006 Page 5 of 10

CHEMICAL PARAMETER	Final ESL	#1 NW Side - 2.5'	#2 NW Side - 6'	#3 NE Side - 2.5'	#4 NE Side - 6'	#5 Middle - 2.5'	#6 Middle - 6'	#7 N Side - 2.5'	#8 N Side - 6'
Arsenic	5.50	1	1.2	ND	ND	1	ND	3.8	ND
Selenium	10.00	ND	ND	ND	ND	ND	ND	ND	ND
Thallium	1.00	ND	ND	ND	ND	ND	ND	ND	ND
Antimony	6.09	ND	ND	ND	ND	ND	ND	ND	ND
Barium	750.00	56	36	43	53	55	27	280	33
Beryllium	4.00	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	1.67	ND	ND	ND	ND	ND	ND	ND	ND
Chromium III	58.00	33	38	30	51	33	33	3.5	38
Copper	225.00	8.6	5.2	3.8	4.7	4.7	2.4	57	4.3
Lead	150.00	45	ND	ND	ND	ND	ND	660	ND
Molybdenum	40.00	ND	ND	ND	ND	ND	ND	1.7	ND
Nickel	150.00	17	27	16	27	17	13	24	19
Silver	20.00	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	200.00	22	27	21	32	22	23	15	23
Zinc	600.00	42	17	13	17	15	9.2	420	13
Mercury	3.67	0.72	ND	ND	ND	ND	ND	0.21	ND

TABLE 1SOIL SAMPLE ANALYTICAL RESULTS

The lab detected lead concentrations above the allowable limits in the northeast corner of the property. This area warrants further investigation and proper handling for the soil.

All sample results are reports in mg/kg.

CHEMICAL PARAMETER	Final ESL	#1 NW Side - 2.5'	#2 NW Side - 6'	#3 NE Side - 2.5'	#4 NE Side - 6'	#5 Middle - 2.5'	#6 Middle - 6'	#7 N Side - 2.5'	#8 N Side - 6'		
Benzene	.044	ND	ND	ND	ND	ND	ND	ND	ND		
Toluene	2.857	ND	ND	ND	ND	ND	ND	ND	ND		
Ethylbenzene	3.275	ND	ND	ND	ND	ND	ND	ND	ND		
Xylenes (total)	2.262	ND	ND	ND	ND	ND	ND	ND	ND		
Gasoline	100	ND	ND	ND	ND	ND	ND	ND	ND		

Table 2 TPH Gasoline/BTEX

Table 3TPH Extractables (Diesel/Oil)

CHEMICAL PARAMETER	Final ESL	#1 NW Side - 2.5'	#2 NW Side - 6'	#3 NE Side - 2.5'	#4 NE Side - 6'	#5 Middle - 2.5'	#6 Middle - 6'	#7 N Side - 2.5'	#8 N Side - 6'
Diesel	100	ND	ND	ND	ND	ND	ND	ND	ND
Motor Oil	500	ND	ND	ND	6.7	1.3	6	160	ND

Appendix B Sample Location Map

Subsurface Soil Sampling Final Report 210 Broadway Street, Oakland April 3, 2006, Page 1 of 3

Appendix C Laboratory Reports

Page 1 of 19

AL	ANTAGE environmental and	safety services, inc.	CPCC	5416	2	
Client: A	Wr. Kris McGlothlin ADVANTAGE Environmental 55621 Beeching Lane	Samples Collected By: Kris McGlothlin CAC #: 92-0324 DHS #: 1-1141	Phone #:	(510)	507-6946	
LAB - TAT	CLS – 5 day	Fax Results To Kris McGlothlin	Fax Number: kris_mcglothlin@sbcglobal.net			
Project N	06-3220	Project: 210 Broadway, Oakland, CA				
Sample #	Sample Location	Item Sampled	3	Sample	Sample	Type of Anglysis
1	Northwest side	2.5 feet		Bulk	3-10-06	Anonyais
2	Northwest side	6 feet	-	Bulk	3-10-06	
3	Northeast side	2.5 feet		Bulk	3-10-06	
4	Northeast side	6 feet		Bulk	3-10-06	
5	Middle of lot	2.5 feet		Builk	3-10-06	
7	North side of lot	2.5 feet		Bulk	3-10-06	
8	North side of lot	6 feet		Bulk	3-10-06	
	Run samples for	CAM-17 Metab TPG (Gasoline/BTEX) TPH Extractables (Diesel/Oil)				
						-
			1		1	
Relinquished (by Collector: 1 00 1		Date 3	-10-0	6 Time	5: organ

CA DOHS ELAP Accreditation/Registration Number 1233

Fax: 916-638-4510

Page 3 of 19

03/22/06 07:17

ADVANTAGE Environmental and Safety Services,	Project: 210 Broadway, Oakla	nd, CA
35621 Beeching Lane	Project Number: 06-3220	CLS Work Order #: CPC0462
Fremont, CA 94536	Project Manager: Mr. Kris McGlothlin	COC #:

CAM 17 Metals

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
#2 Northwest Side (6 ft) (CPC0462-02) Soil	Sampled:	03/10/06 00:	00 Rece	eived: 03/1	3/06 15:20	1			
Mercury	ND	0.10	mg/kg	1	CP01942	03/15/06	03/15/06	EPA 7471A	
#3 Northeast Side (2.5 ft) (CPC0462-03) Soil	Sampled	: 03/10/06 00):00 Re	ceived: 03/	13/06 15:2	0			
Arsenic	ND	1.0	mg/kg	4	CP02018	03/17/06	03/20/06	EPA 7000	
Selenium	ND	1.0		"	"	"	"	"	
Thallium	ND	1.0		"	"	"	"	"	
Antimony	ND	2.5		1	CP02019	03/17/06	03/17/06	EPA 6010B	
Barium	43	1.0		"	"	"	"	"	
Beryllium	ND	0.50	"	"	"	"	"	"	
Cadmium	ND	0.50		"	"	"	"	"	
Cobalt	3.1	1.0		"	"	"	"	"	
Chromium	30	1.0		"	"	"	"	"	
Copper	3.8	1.0		"	"	"	"	"	
Lead	ND	2.5	"	"	"	"	"	"	
Molybdenum	ND	1.0		"	"	"	"	"	
Nickel	16	1.0		"	"	"	"	"	
Silver	ND	0.50		"	"	"	"	"	
Vanadium	21	1.0		"	"	"	"	"	
Zinc	13	1.0		"	"	"	"	"	
Mercury	ND	0.10		"	CP01942	03/15/06	03/15/06	EPA 7471A	
#4 Northeast Side (6 ft) (CPC0462-04) Soil	Sampled:	03/10/06 00:0	0 Rece	ived: 03/13	3/06 15:20				
Arsenic	ND	1.0	mg/kg	4	CP02018	03/17/06	03/20/06	EPA 7000	
Selenium	ND	1.0	"	"	"	"	"	"	
Thallium	ND	1.0	"	"	"	"	"	"	
Antimony	ND	2.5	"	1	CP02019	03/17/06	03/17/06	EPA 6010B	
Barium	53	1.0	"	"	"	"	"	"	
Beryllium	ND	0.50	"	"	"	"	"	"	
Cadmium	ND	0.50	"	"	"	"	"	"	
Cobalt	4.5	1.0	"	"	"	"	"	"	
Chromium	51	1.0		"	"	"	"	"	
Copper	4.7	1.0		"	"	"	"	"	
Lead	ND	2.5	"	"	"	"	"	"	
Molybdenum	ND	1.0		"	"	"	"	"	
Nickel	27	1.0	"	"	"	"	"	"	

Page 4 of 19

03/22/06 07:17

ADVANTAGE Environmental and Safety Services,	Project:	210 Broadway, Oakland,	CA
35621 Beeching Lane	Project Number:	06-3220	CLS Work Order #: CPC0462
Fremont, CA 94536	Project Manager:	Mr. Kris McGlothlin	COC #:

CAM 17 Metals

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
#4 Northeast Side (6 ft) (CPC0462-04) Soil	Sampled	: 03/10/06 00:	00 Rece	ived: 03/13	8/06 15:20				
Silver	ND	0.50	mg/kg	1	CP02019	03/17/06	03/17/06	EPA 6010B	
Vanadium	32	1.0	"	"	"	"	"	"	
Zinc	17	1.0	"	"	"	"		"	
Mercury	ND	0.10	"	"	CP01942	03/15/06	03/15/06	EPA 7471A	
#5 Middle of Lot (2.5 ft) (CPC0462-05) Soil	l Samplee	d: 03/10/06 00	:00 Rec	eived: 03/1	3/06 15:20)			
Arsenic	1.0	1.0	mg/kg	4	CP02018	03/17/06	03/20/06	EPA 7000	
Selenium	ND	1.0	"	"	"	"	"	"	
Thallium	ND	1.0	"	"	"	"	"	"	
Antimony	ND	2.5	"	1	CP02019	03/17/06	03/17/06	EPA 6010B	
Barium	55	1.0	"	"	"	"	"	"	
Beryllium	ND	0.50	"	"	"	"		"	
Cadmium	ND	0.50	"	"	"	"		"	
Cobalt	3.9	1.0	"	"	"	"		"	
Chromium	33	1.0	"	"	"	"	"	"	
Copper	4.7	1.0	"	"	"	"	"	"	
Lead	ND	2.5	"	"		"		"	
Molybdenum	ND	1.0	"	"	"	"		"	
Nickel	17	1.0	"	"		"		"	
Silver	ND	0.50	"	"	"	"	"	"	
Vanadium	22	1.0	"	"	"	"	"	"	
Zinc	15	1.0	"	"	"	"		"	
Mercury	ND	0.10	"	"	CP01942	03/15/06	03/15/06	EPA 7471A	
#6 Middle of Lot (6 ft) (CPC0462-06) Soil	Sampled:	03/10/06 00:0	0 Receiv	ved: 03/13/	06 15:20				
Arsenic	ND	1.0	mg/kg	4	CP02018	03/17/06	03/20/06	EPA 7000	
Selenium	ND	1.0	"	"	"	"		"	
Thallium	ND	1.0	"	"	"	"		"	
Antimony	ND	2.5	"	1	CP02019	03/17/06	03/17/06	EPA 6010B	
Barium	27	1.0	"	"	"	"		"	
Beryllium	ND	0.50	"	"	"	"	"	"	
Cadmium	ND	0.50	"	"	"	"	"	"	
Cobalt	1.7	1.0	"	"	"	"	"	"	
Chromium	33	1.0	"	"	"	"	"	"	
Copper	2.4	1.0	"	"	"	"		"	

Page 5 of 19

03/22/06 07:17

ADVANTAGE Environmental and Safety Services,	Project: 210 Broadway, Oak	land, CA
35621 Beeching Lane	Project Number: 06-3220	CLS Work Order #: CPC0462
Fremont, CA 94536	Project Manager: Mr. Kris McGlothlin	COC #:

CAM 17 Metals

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
#6 Middle of Lot (6 ft) (CPC0462-06) Soil	Sampled:	03/10/06 00:00) Recei	ved: 03/13/	/06 15:20				
Lead	ND	2.5	mg/kg	1	CP02019	03/17/06	03/17/06	EPA 6010B	
Molybdenum	ND	1.0	"	"	"	"	"	"	
Nickel	13	1.0	"	"	"	"	"	"	
Silver	ND	0.50	"	"	"	"		"	
Vanadium	23	1.0	"	"	"	"		"	
Zinc	9.2	1.0	"	"	"	"		"	
Mercury	ND	0.10		"	CP01942	03/15/06	03/15/06	EPA 7471A	
#7 North Side of Lot (2.5 ft) (CPC0462-07)	Soil Sam	pled: 03/10/06	00:00	Received:	03/13/06 1	5:20			
Arsenic	3.8	1.0	mg/kg	4	CP02018	03/17/06	03/20/06	EPA 7000	
Selenium	ND	1.0	"	"	"	"		"	
Thallium	ND	1.0	"	"	"	"		"	
Antimony	ND	2.5	"	1	CP02019	03/17/06	03/17/06	EPA 6010B	
Barium	280	1.0	"	"	"	"		"	
Beryllium	ND	0.50	"	"	"	"		"	
Cadmium	0.96	0.50	"	"	"	"		"	
Cobalt	3.5	1.0	"	"	"	"		"	
Chromium	19	1.0	"	"	"	"		"	
Copper	57	1.0	"	"	"	"		"	
Lead	660	2.5	"	"	"	"		"	
Molybdenum	1.7	1.0	"	"	"	"		"	
Nickel	24	1.0	"	"	"	"		"	
Silver	ND	0.50		"	"	"	"	"	
Vanadium	15	1.0		"	"	"	"	"	
Zinc	420	1.0		"	"	"	"	"	
Mercury	0.21	0.10		"	CP01942	03/15/06	03/15/06	EPA 7471A	

Page 6 of 19

03/22/06 07:17

ADVANTAGE Environmental and Safety Services,	Project: 210 Broadway	y, Oakland, CA
35621 Beeching Lane	Project Number: 06-3220	CLS Work Order #: CPC0462
Fremont, CA 94536	Project Manager: Mr. Kris McGlo	thlin COC #:

CAM 17 Metals

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
#8 North Side of Lot (6 ft) (CPC0462-08) Soil	Sampl	ed: 03/10/06 0	0:00 R	eceived: 03	3/13/06 15:	20			
Arsenic	ND	1.0	mg/kg	4	CP02018	03/17/06	03/20/06	EPA 7000	
Selenium	ND	1.0	"	"	"	"		"	
Thallium	ND	1.0	"	"	"	"		"	
Antimony	ND	2.5	"	1	CP02019	03/17/06	03/17/06	EPA 6010B	
Barium	33	1.0	"	"	"	"		"	
Beryllium	ND	0.50	"	"	"	"		"	
Cadmium	ND	0.50	"	"	"	"		"	
Cobalt	3.0	1.0	"	"	"	"		"	
Chromium	38	1.0	"	"	"	"		"	
Copper	4.3	1.0	"	"	"	"		"	
Lead	ND	2.5	"	"	"	"		"	
Molybdenum	ND	1.0	"	"	"	"		"	
Nickel	19	1.0	"	"	"	"		"	
Silver	ND	0.50	"	"	"	"	"	"	
Vanadium	23	1.0	"	"	"	"		"	
Zinc	13	1.0	"	"	"	"	"	"	
Mercury	ND	0.10	"	"	CP01942	03/15/06	03/15/06	EPA 7471A	

Page 2 of 19

03/22/06 07:17

ADVANTAGE Environmental and Safety Services,	Project:	210 Broadway, Oakland,	CA
35621 Beeching Lane	Project Number:	06-3220	CLS Work Order #: CPC0462
Fremont, CA 94536	Project Manager:	Mr. Kris McGlothlin	COC #:

CAM 17 Metals

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
#1 Northwest Side (2.5 ft) (CPC0462-01) Soil	Sample	d: 03/10/06 0	0:00 Re	ceived: 03	/13/06 15:2	20			
Arsenic	1.0	1.0	mg/kg	4	CP02018	03/17/06	03/20/06	EPA 7000	
Selenium	ND	1.0	"	"	"	"	"	"	
Thallium	ND	1.0	"	"	"	"	"	"	
Antimony	ND	2.5	"	1	CP02019	03/17/06	03/17/06	EPA 6010B	
Barium	56	1.0	"	"	"	"	"	"	
Beryllium	ND	0.50	"	"	"	"	"	"	
Cadmium	ND	0.50	"	"	"	"	"	"	
Cobalt	4.0	1.0	"	"	"	"	"	"	
Chromium	33	1.0	"	"	"	"	"	"	
Copper	8.6	1.0	"	"	"	"	"	"	
Lead	45	2.5	"	"	"	"	"	"	
Molybdenum	ND	1.0	"	"	"	"	"	"	
Nickel	17	1.0	"	"	"	"	"	"	
Silver	ND	0.50	"	"	"	"	"	"	
Vanadium	22	1.0	"	"	"	"	"	"	
Zinc	42	1.0	"	"	"	"	"	"	
Mercury	0.72	0.10	"	"	CP01942	03/15/06	03/15/06	EPA 7471A	
#2 Northwest Side (6 ft) (CPC0462-02) Soil	Sampled	: 03/10/06 00:	00 Rece	eived: 03/1	3/06 15:20	1			
Arsenic	1.2	1.0	mg/kg	4	CP02018	03/17/06	03/20/06	EPA 7000	
Selenium	ND	1.0	"	"	"	"	"	"	
Thallium	ND	1.0	"	"	"	"	"	"	
Antimony	ND	2.5	"	1	CP02019	03/17/06	03/17/06	EPA 6010B	
Barium	36	1.0	"	"	"	"	"	"	
Beryllium	ND	0.50	"	"	"	"	"	"	
Cadmium	ND	0.50	"	"	"	"	"	"	
Cobalt	5.4	1.0	"	"	"	"	"	"	
Chromium	38	1.0	"	"	"	"	"	"	
Copper	5.2	1.0	"	"	"	"	"	"	
Lead	ND	2.5	"	"	"	"	"	"	
Molybdenum	ND	1.0	"	"	"	"	"	"	
Nickel	27	1.0	"	"	"	"	"	"	
Silver	ND	0.50	"	"	"		"	"	
Vanadium	27	1.0	"	"	"	"	"	"	
Zinc	17	1.0	"	"	"		"	"	

$C \text{ALIFORNIA} \ L \text{ABORATORY} \ S \text{ERVICES}$

Page 7 of 19		03/22/06 07:17
ADVANTAGE Environmental and Safety Services,	Project: 210 Broadway, Oakland	l, CA
35621 Beeching Lane	Project Number: 06-3220	CLS Work Order #: CPC0462
Fremont, CA 94536	Project Manager: Mr. Kris McGlothlin	COC #:

Extractable Petroleum Hydrocarbons by EPA Method 8015M

Analyta	Popult	Reporting	Unite	Dilution	Patah	Droparad	Analyzed	Mathad	Notes
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzeu	Method	INOLES
#1 Northwest Side (2.5 ft) (CPC0462-01) Soil	Sampl	ed: 03/10/06 0	0:00 R	eceived: 03	/13/06 15:2	20			
Diesel	ND	1.0	mg/kg	1	CP01912	03/14/06	03/15/06	EPA 8015M	
Motor Oil	ND	1.0	"	"		"	"	"	
#2 Northwest Side (6 ft) (CPC0462-02) Soil	Sampled	l: 03/10/06 00:	:00 Rec	eived: 03/1	3/06 15:20)			
Diesel	ND	1.0	mg/kg	1	CP01912	03/14/06	03/15/06	EPA 8015M	
Motor Oil	ND	1.0	"	"		"	"	"	
#3 Northeast Side (2.5 ft) (CPC0462-03) Soil	Sample	ed: 03/10/06 00	0:00 Re	ceived: 03/	13/06 15:2	0			
Diesel	ND	1.0	mg/kg	1	CP02027	03/17/06	03/21/06	EPA 8015M	
Motor Oil	ND	1.0	"	"		"	"	"	
#4 Northeast Side (6 ft) (CPC0462-04) Soil	Sampled	: 03/10/06 00:	00 Rece	eived: 03/13	3/06 15:20				
Diesel	ND	1.0	mg/kg	1	CP02027	03/17/06	03/21/06	EPA 8015M	
Motor Oil	6.7	1.0	"			"	"	"	D-MOT
#5 Middle of Lot (2.5 ft) (CPC0462-05) Soil	Sampleo	d: 03/10/06 00	:00 Rec	eived: 03/1	3/06 15:20)			
Diesel	ND	1.0	mg/kg	1	CP02027	03/17/06	03/21/06	EPA 8015M	
Motor Oil	1.3	1.0	"	"		"	"	"	D-MOT
#6 Middle of Lot (6 ft) (CPC0462-06) Soil 5	Sampled:	03/10/06 00:0	0 Recei	ved: 03/13/	/06 15:20				
Diesel	ND	1.0	mg/kg	1	CP02027	03/17/06	03/21/06	EPA 8015M	
Motor Oil	6.0	1.0	"	"		"	"	"	D-MOT
#7 North Side of Lot (2.5 ft) (CPC0462-07) S	oil Sam	pled: 03/10/06	5 00:00	Received:	03/13/06 1	5:20			
Diesel	ND	1.0	mg/kg	1	CP02027	03/17/06	03/21/06	EPA 8015M	
Motor Oil	160	5.0	"	5		"	"	"	

$C \text{ALIFORNIA} \ L \text{ABORATORY} \ S \text{ERVICES}$

Page 8 of 19		03/22/06 07:17
ADVANTAGE Environmental and Safety Services,	Project: 210 Broadway, Oakland,	, CA
35621 Beeching Lane	Project Number: 06-3220	CLS Work Order #: CPC0462
Fremont, CA 94536	Project Manager: Mr. Kris McGlothlin	COC #:

Extractable Petroleum Hydrocarbons by EPA Method 8015M

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
#8 North Side of Lot (6 ft) (CPC0462-08) Soil Sampled: 03/10/06 00:00 Received: 03/13/06 15:20									
Diesel Motor Oil	ND ND	1.0 1.0	mg/kg "	1	CP02027 "	03/17/06	03/21/06	EPA 8015M "	

Page 9 of 19

03/22/06 07:17

ADVANTAGE Environmental and Safety Services, 35621 Beeching Lane Fremont, CA 94536 Project:210 Broadway, Oakland, CAProject Number:06-3220CLS Work Order #: CPC0462Project Manager:Mr. Kris McGlothlinCOC #:

Gas/BTEX by GC PID/FID

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
#1 Northwest Side (2.5 ft) (CPC0462-01) Soil	Sampl	ed: 03/10/06 0	0:00 Re	ceived: 03	/13/06 15::	20			
Gasoline	ND	1000	µg/kg	1	CP01976	03/14/06	03/16/06	8015M/8021B	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"		"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Xylenes (total)	ND	10	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (Gas)		88.7 %	65-	135	"	"	"	"	
#2 Northwest Side (6 ft) (CPC0462-02) Soil	Sampled	l: 03/10/06 00:	00 Rece	eived: 03/1	3/06 15:20	1			
Gasoline	ND	1000	µg/kg	1	CP01976	03/14/06	03/16/06	8015M/8021B	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"		"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Xylenes (total)	ND	10	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (Gas)		88.6 %	65-	135	"	"	"	"	
#3 Northeast Side (2.5 ft) (CPC0462-03) Soil	Sample	ed: 03/10/06 00):00 Re	ceived: 03/	13/06 15:2	0			
Gasoline	ND	1000	µg/kg	1	CP01976	03/14/06	03/16/06	8015M/8021B	
Benzene	ND	5.0	"	"		"	"	"	
Toluene	ND	5.0	"	"		"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Xylenes (total)	ND	10	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (Gas)		89.8 %	65-	135	"	"	"	"	
#4 Northeast Side (6 ft) (CPC0462-04) Soil	Sampled	: 03/10/06 00:	00 Rece	ived: 03/13	8/06 15:20				
Gasoline	ND	1000	µg/kg	1	CP02046	03/15/06	03/15/06	8015M/8021B	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Xylenes (total)	ND	10	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (Gas)		91.1 %	65-	135	"	"	"	"	

Page 10 of 19

03/22/06 07:17

ADVANTAGE Environmental and Safety Services, 35621 Beeching Lane Fremont, CA 94536 Project:210 Broadway, Oakland, CAProject Number:06-3220CLS Work Order #: CPC0462Project Manager:Mr. Kris McGlothlinCOC #:

Gas/BTEX by GC PID/FID

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
#5 Middle of Lot (2.5 ft) (CPC0462-05) Soil	Sampleo	l: 03/10/06 00:	00 Rec	eived: 03/1	3/06 15:20)			
Gasoline	ND	1000	µg/kg	1	CP02046	03/15/06	03/15/06	8015M/8021B	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Xylenes (total)	ND	10	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (Gas)		90.5 %	65-	-135	"	"	"	"	
#6 Middle of Lot (6 ft) (CPC0462-06) Soil	Sampled:	03/10/06 00:0	0 Recei	ved: 03/13/	06 15:20				
Gasoline	ND	1000	µg/kg	1	CP02046	03/15/06	03/15/06	8015M/8021B	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Xylenes (total)	ND	10	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (Gas)		88.8 %	65-	-135	"	"	"	"	
#7 North Side of Lot (2.5 ft) (CPC0462-07) S	oil Sam	pled: 03/10/06	00:00	Received: (03/13/06 1	5:20			
Gasoline	ND	1000	µg/kg	1	CP02046	03/15/06	03/15/06	8015M/8021B	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"		"	
Xylenes (total)	ND	10	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (Gas)		84.4 %	65-	-135	"	"	"	"	
#8 North Side of Lot (6 ft) (CPC0462-08) So	il Samp	led: 03/10/06 0	0:00 R	eceived: 03	/13/06 15:	20			
Gasoline	ND	1000	µg/kg	1	CP02046	03/15/06	03/15/06	8015M/8021B	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
Xylenes (total)	ND	10	"	"	"	"	"	"	
Surrogate: o-Chlorotoluene (Gas)		86.8 %	65-	-135	"	"	"	"	

APPENDIX C

EXCERPTS FROM 2006 SUPPLEMENTAL SOIL DATA

0608475

RUSH

environmental and safety services, inc.

ADVANTA 35621 Be Fremont,	AGE Environmental eching Lane CA 94536	Kris McC CAC #:	Glothlin 92-0324 DHS #: I-1141		(510) 507-6946		
B - TAT:		Fax Res	ults To	F	ax Number:		
		Kris Mc(Glothlin		kris_mcglot	hlin@sbcglobal.net	
oject Number:		Project:					
	06-3220	210 Bro	adway, Oakland, CA				
Sample #	Sample Locatio	on	ltem Sampled	Samp type	le Sample Date	Type of Analysis	
9	Northeast side of lot		Soil – 3' deep	Soil	8-22-06	See below	
10	Northeast side of lot		Soil – 3' deep	Soil	8-22-06	See below	
11	Northeast side of lot		Soil – 3' deep	Soil	8-22-06	See below	
12	Northeast side of lot		Soil – 3' deep	Soil	8-22-06	See below	
13	Northeast side of lot		Soil – 3' deep	Soil	8-22-06	See below	
			THOLEER				
			HLC-Ledd				
	1		1				
-							
					- Andrewski -		
	1				-		
			Contraction of the Contract of the	-	-		
				-			
14.1							
108							
			14 Ac 4		31		
	1	1			1000		
	ICE/P GOOD CONDITION	ADI	POPPIATE				
	HEAD SPACE ADSENT	CO	VTAINERS				
	DECHLORINATED IN LAB	0&G I MI	ESERVED IN LAB				
	PRESERVATION						
				181			
Relinquished by	Collector:	-		Date	122/1, Time	05 mm	
	AN	- And			and to	simple	
Received by LO		~		Date	what Time	6	
16	AL	T		0/0	440 4		
1	AT	19	Ve	Ral	01,7	N	
10	all		20	X			
	pec. The	VIA	00	5/201	100 7:15	6m	

When Ouality Counts"			2.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
Advantage E	nvironmental	Client Project ID: #06-3220; 210		20; 210	Date Sampled: 08/22/06				
35621 Beeching Lane		Broadway, Oakland, CA				Date Received: 08/22/	06		
Fremont, CA	94536	Client Co	ntact: Kr	is McO	Glothlin	Date Extracted: 08/22	/06		
		Client P.C).:			Date Analyzed: 08/23/	/06		
			Lead b	y ICP	*				
Extraction method:	SW3050B		Analytical me	ethods:	6010C	Wo	rk Order:	0608475	
Lab ID	Client ID	Matrix	Extracti	on		Lead	DF	% SS	
0608475-001A	9	S	TTLC	2		970	1	113	
0608475-002A	10	S	TTLC	2		ND	1	119	
0608475-003A	11	S	TTLC	2		5.3	1	127	
0608475-004A	12	S	TTLC	2		84	1	116	
0608475-005A	13	S	TTLC	2		380	1	115	

Reporting Limit for DF =1;	W	TTLC	NA	μg/L
above the reporting limit	S	TTLC	5.0	mg/Kg

*water samples are reported in $\mu g/L$, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, filter samples in $\mu g/filter$.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

environmental and safety services, inc.

Client: Mr. Kris McGlothlin ADVANTAGE Environmental 35621 Beeching Lane Fremont, CA 94536	Samples Collected By: Kris McGlothlin CAC #: 92-0324 DHS #: I-1141	Phone #: (510) 507-6946
LAB - TAT:	🖌 Fax Results To	Fax Number:
McCampbell – 24 hour	Kris McGlothlin	kris_mcglothlin@sbcglobal.net
Project Number: 06-3220	Project: 210 Broadway, Oakland, CA	9

Sample #	Sample Location	ltem	Sampled	Sample type	Sample Date	Type of Analysis
14	Top 2" stock pile	Soil		Soil	9-5-06	See belov
	TTLC – CAM 17 ~ STLC – CAM 17 TCLP – CAM 17 TPH – Diesel/Oil extractables					
	100 Sec. 10 Sec.	<u></u>				1.00
15	Debris pile	Soil		Soil	9-5-06	See belov
	TTLC – CAM 17 STLC – CAM 17 TCLP – CAM 17 TPH – Diesel/Oil extractables					
		72 ho	ur TAT			
					and the second second	1. A.
		12		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
ta da sera a sera a sera da se						
an a				4		
		12 A				
		2				
					e.	
				1. 1.		
an a			n na chuir an th			
	ICE/tº			AND COMPA	and the second	a straight
	HEAD SPACE AI DECHLORINATI	ON SENT D IN LAB	APPROPRI — CONTAINE PRESERVE	ATE RS		
	PRESERVATION	VOAS 0	G METALS	OTHER		
Relinquished by	Collector:			Date 9/57	Inter Time	100m
eceived by La	b:		(. Date	Time 3	45
Þ	meet		3	9/\$/06	51	5

McCampbell An "When Ouality"	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
Advantage Environmental		Client Pr	oject ID: 🗄	#06-3220 Date Sampled:			09/05/06		
			-			Date Received: 09/05/06			
35621 Beeching Lane	Ī	Client Co	ontact: Ki	ris McGlothlin Date Extracted: 09/05/06					
Fremont, CA 94536	Ī	Client P.0	D.:			Date Analyzed:	09/07/06		
		С	AM / CCR	17 Me	tals*				
Lab ID	060906	52-001A	0609062-	002A			Reporting Lin	mit for $DF = 1$;	
Client ID		14	15				ND means above the re	not detected	
Matrix		S	S				s	W	
Extraction Type	ΤΊ	TLC	TTL	С			mg/Kg	mg/L	
Analytical Method: 6020A		ICP-N Extr	IS Metals,	Conce	ntration*		Work Order:	0609062	
Dilution Factor		1	1				1	1	
Antimony		16	5.6				0.5	NA	
Arsenic	4	5.9	9.1				0.5	NA	
Barium	1	90	160				5.0	NA	
Bervllium	 N	JD JD	ND				0.5	NA	
Cadmium	1	2	11				0.25	NA	
Chromium		43	83				0.5	NA	
Cobalt	6	5.9	6.8				0.5	NA	
Copper	1	10	98				0.5	NA	
Lead	5	20	480				0.5	NA	
Mercury	2	2.4	1.0				0.05	NA	
Molvbdenum	2	2.0	1.7				0.5	NA	
Nickel		39	47				0.5	NA	
Selenium	Ν	١D	ND				0.5	NA	
Silver	Ν	١D	ND				0.5	NA	
Thallium	Ν	ND	ND				0.5	NA	
Vanadium		36	33				0.5	NA	
Zinc	3	10	510				5.0	NA	
%SS:	1	01	100						
Comments									
 *water samples are reported in µg/L, prod mg/L, soil/sludge/solid samples in mg/kg, # means surrogate diluted out of range; N 	uct/oil/no wipe sam	on-aqueous ples in µg/v not detect	liquid samp wipe, filter s ed above the	oles and amples i e reporti	all TCLP / STLC / n μg/filter. ng limit; N/A mear	DISTLC / SPLP ext	racts are repo	orted in	
instrument.									

McCampbell An	<u>c.</u>		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: main 277-252-9262 Fax: 92:	94565-1701 @mccampbell.c 5-252-9269	com		
Advantage Environmental		Client Pro	oject ID: 4	#06-3220 Date Sampled: 09/05/06				
					Date Received:	09/05/06		
35621 Beeching Lane		Client Co	ontact: Kr	is McG	lothlin	Date Extracted:	09/05/06-0	9/07/06
Fremont, CA 94536) ·			Date Analyzed:	09/07/06	
				17 Ma	tola*	Dute I mary Zeu.		
		<u> </u>		17 Me		1		
Lab ID	0609062	2-001A	0609062-	002A			Reporting Lir	nit for $DF = 1$;
Client ID	1	4	15				ND means i above the re	not detected
Matrix	5	5	S				S	W
Extraction Type	ST	LC	STL	C			mg/L	mg/L
		ICP-M	IS Metals,	Conce	ntration*			
Analytical Method: 6020A		Extra	action Method	: CA Titl	e 22	•	Work Order:	0609062
Dilution Factor	1	l	1				1	1
Antimony	0.	13	0.24				0.1	NA
Arsenic	N	D	ND				0.1	NA
Barium	4.	.7	4.6				1.0	NA
Beryllium	N	D	ND				0.1	NA
Cadmium	0.0)55	ND				0.05	NA
Chromium	0.2	21	0.53				0.1	NA
Cobalt	0.2	21	0.17				0.1	NA
Copper	2.	.3	1.7				0.1	NA
Lead	1	9	16				0.1	NA
Mercury	N	D	ND				0.01	NA
Molybdenum	0.	13	ND				0.1	NA
Nickel	0.3	37	0.41				0.1	NA
Selenium	N	D	ND				0.1	NA
Silver	N	D	ND				0.1	NA
Thallium	N	D	ND				0.1	NA
Vanadium	0.2	28	0.25				0.1	NA
Zinc	8.	.3	6.1				1.0	NA
%SS:	N/	/A	N/A					
[]						1	T	
Comments							<u> </u>	
<pre>*water samples are reported in µg/L, prod mg/L, soil/sludge/solid samples in mg/kg, # means surrogate diluted out of range; N instrument</pre>	uct/oil/nor wipe samp D means	n-aqueous les in µg/v not detecte	liquid samp vipe, filter s ed above the	les and amples i e reporti	all TCLP / STLC / n µg/filter. ng limit; N/A mean	DISTLC / SPLP extra ns not applicable to t	acts are repo his sample o	rted in r

When Ouality Counts"					1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: main 277-252-9262 Fax: 92:	94565-1701 @mccampbell.c 5-252-9269	com
Advantage Environmental		Client Pr	oject ID: 🗄	#06-3220 Date Sampled: 09/05/06				
					Date Received: 09/05/06			
35621 Beeching Lane		Client Co	ontact: Ki	is McG	lothlin	Date Extracted:	09/05/06-0	9/06/06
Fremont, CA 94536 Client P.O.:						Date Analyzed:	09/07/06	
		С	AM / CCR	17 Me	tals*			
Lab ID	06090	62-001A	0609062-	-002A			Reporting Lir	nit for DF =1;
Client ID		14	15				ND means i above the re	not detected porting limit
Matrix		S	S				s	W
Extraction Type	T	CLP	TCL	Р			mg/L	mg/L
Analytical Method: 6020A		ICP-N Extr	IS Metals, action Method	Conce	ntration*	·	Work Order:	0609062
Dilution Factor		1	1				1	1
Antimony]	ND	ND				0.1	NA
Arsenic	I	ND	ND				0.1	NA
Barium	I	ND	ND				1.0	NA
Bervllium	I	ND	ND				0.1	NA
Cadmium	I	ND	ND				0.05	NA
Chromium	I	ND	ND				0.1	NA
Cobalt	I	ND	ND				0.1	NA
Copper	I	ND	ND				0.1	NA
Lead	I	ND	0.47	7			0.1	NA
Mercury	I	ND	ND				0.01	NA
Molybdenum	I	ND	ND				0.1	NA
Nickel	I	ND	ND				0.1	NA
Selenium	I	ND	ND				0.1	NA
Silver]	ND	ND				0.1	NA
Thallium	I	ND	ND				0.1	NA
Vanadium	I	ND	ND				0.1	NA
Zinc	I	ND	2.3				1.0	NA
%SS:	1	N/A	N/A					
Comments								
*water samples are reported in µg/L, prod mg/L, soil/sludge/solid samples in mg/kg, v # means surrogate diluted out of range; N instrument.	uct/oil/n wipe sam D means	on-aqueous ples in µg/v s not detect	liquid samp wipe, filter s ed above the	oles and amples i e reporti	all TCLP / STLC / n µg/filter. ng limit; N/A mean	DISTLC / SPLP extr	acts are repo	rted in r

	Campbell Analyti	cal, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
Advantage Env	vironmental	Client Project ID:	Date Sampled: 09/	05/06			
35621 Beeching Lane				Date Received: 09/	05/06		
Fremont, CA 94	4536	Client Contact: K	ris McGlothlin	Date Extracted: 09/	05/06		
		Client P.O.:		Date Analyzed: 09/	07/06		
Diesel (C10-23) and Oil (C18+) Range Extra Extraction method: SW3550C Analytical meth			ctable Hydrocarbons as ods: SW8015C	Diesel and Motor Oil* Wor	k Order: 06	509062	
Lab ID	Client ID	I I Ind Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil* Analytical methods: SW8015C Work Order: 0609062 Matrix TPH(d) TPH(mo) DF % 5 S 23,g,b 140 5 93 S 4.2,g,b 27 1 95 Image: SW8015C Image: S				% SS	
0609062-001A	14	S	23,g,b	140	5	93	
0609062-002A	15	S	4.2,g,b	27	1	99	
Rep	orting Limit for DF =1;	W	NA	NA	ug	/L	
ab	ove the reporting limit	S	1.0	5.0	mg	/Kg	

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

alss oboq131 TAGE

environmental and safety services, inc.

Client: Mr. Kris McGlothlin ADVANTAGE Environmental 35621 Beeching Lane Fremont, CA 94536	Samples Collected By: Kris McGlothlin CAC #: 92-0324 DHS #: I-1141	Phone #: (510) 507-6946
LAB - TAT:	Fax Results To	Fax Number:
McCampbell – 24 hour	Kris McGlothlin	kris_mcglothlin@sbcglobal.net
Project Number:	Project:	
06-3220	210 Broadway, Oakland, CA	

Sample #	Sample Location	Item Sampled	Sample type	Sam Da	ple te	Type of Analysis	
16	Clean fill stock pile	5 point composite	Soil	9-7-	06	See below	
	TTLC – CAM 17 STLC – CAM 17 TCLP – CAM 17	1					
17	Re-sample #1 (3/10/06)	4 point composite	Soil	9-7-	-06	See below	
	STLC – Lead TCLP – Lead				<u>k</u>		
	r	TO LOUR TAP			~		
		12 hour lAr					
	5						
	4			3			
,			~				
						-	
				A			
ICE/f°	N/		1 				
GOOD C HEAD SI	ONDITION APPROPRIATI	B	2				
DECHLC	VOAS O&G METALS OT	IN LAB					
PRESER							
Relinquished b	y Collector:		Date 4/-	7.106	Time	2:30pm	
Received by L	ab: 10 Val	$\overline{)}$	Date	11/2	Time	5' 40/20	
When Ouality	<u>C.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
--	--	---	---------------------------------------	---	-------------------	---	----------------
Advantage Environmental	Client Pro	ject ID: #	#06-322	20	Date Sampled:	09/07/06	
		-	Date Received:			09/07/06	
35621 Beeching Lane	Client Co	ontact: Kr	is McG	lothlin	Date Extracted:	09/07/06	
Fremont, CA 94536	Client P.C).:			Date Analyzed:	09/08/06	
	CA	AM / CCR	17 Met	tals*			
L ah ID	0609131-0014					Deporting Lie	mit for DE -1.
Client ID	16					Reporting Limit fo ND means not de above the reportin	
Matrix	S					S	W
Extraction Type	TTLC					mg/Kg	mg/L
Analytical Method: 6020A	ICP-M	IS Metals,	Concer	ntration*		Work Order:	0609131
Dilution Factor	1	enon menou				1	1
Antimony	1.3					0.5	NA
Arsenic	3.8					0.5	NA
Barium	250					5.0	NA
Beryllium	ND					0.5	NA
Cadmium	0.43					0.25	NA
Chromium	37					0.5	NA
Cobalt	5.2					0.5	NA
Copper	33					0.5	NA
Lead	240					0.5	NA
Mercury	1.6					0.05	NA
Molybdenum	0.54					0.5	NA
Nickel	27					0.5	NA
Selenium	ND					0.5	NA
Silver	ND					0.5	NA
Thallium	ND					0.5	NA
Vanadium	28					0.5	NA
Zinc	140					5.0	NA
%SS:	98						
Comments						T	
<pre>*water samples are reported in µg/L, prod mg/L, soil/sludge/solid samples in mg/kg, v # means surrogate diluted out of range; N</pre>	uct/oil/non-aqueous wipe samples in µg/w D means not detecte	liquid samp vipe, filter set d above the	oles and a amples in e reportin	all TCLP / STLC / n μg/filter. ng limit; N/A meai	DISTLC / SPLP ext	racts are repo	orted in r
instrument.							

McCampbell An	When Ouality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
Advantage Environmental		Client Pro	oject ID:	#06-322	20	Date Sampled:	09/07/06			
				Date Received: 09/07/06						
35621 Beeching Lane		Client Co	ontact: Ki	ris McGlothlin Date Extracted: 09/07/06-			09/07/06-0	9/09/06		
Fremont, CA 94536	-	Client P.0	D.:			Date Analyzed	09/11/06-0	9/12/06		
		C	AM / CCR	17 Me	tals*	I				
Lab ID	060913	31-001A					Reporting Lit	nit for DE -1:		
Client ID	00071	16					ND means r above the re	not detected porting limit		
Matrix		S					s	W		
Extraction Type	ST	TLC					mg/L	mg/L		
		ICP-N	IS Metals,	Concer	ntration*		-			
Analytical Method: 6020A		Extra	action Method	: CA Titl	le 22	-	Work Order:	0609131		
Dilution Factor		1					1	1		
Antimony	0	.19					0.1	NA		
Arsenic	١	ND					0.1	NA		
Barium	4	1.4					1.0	NA		
Beryllium	١	ND					0.1	NA		
Cadmium	١	ND					0.05	NA		
Chromium	0	.13					0.1	NA		
Cobalt	0	.19					0.1	NA		
Copper	0	.68					0.1	NA		
Lead		10					0.1	NA		
Mercury	1	ND					0.01	NA		
Molybdenum	1	ND					0.1	NA		
Nickel	0	.18					0.1	NA		
Selenium	1	ND					0.1	NA		
Silver	1	ND					0.1	NA		
Thallium	1	ND					0.1	NA		
Vanadium	0	.22					0.1	NA		
Zinc	2	4.1					1.0	NA		
%SS:	N	V/A								
Comments							<u> </u>			
*water samples are reported in µg/L, produced mg/L, soil/sludge/solid samples in mg/kg, v	uct/oil/no wipe sam	on-aqueous ples in μg/v	liquid samp vipe, filter s	oles and amples in	all TCLP / STLC / n µg/filter.	DISTLC / SPLP ext	racts are repo	rted in		
# means surrogate diluted out of range; N instrument.	D means	not detecte	ed above the	e reporti	ng limit; N/A mea	ns not applicable to t	this sample of	r		

When Ouality Counts"			1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
Advantage Environmental	Client Pr	roject ID:	#06-322	20	Date Sampled:	09/07/06		
		5			Date Received:	09/07/06		
35621 Beeching Lane	Client C	Contact: Ki	ris McG	lothlin	Date Extracted:	09/07/06-0	9/08/06	
Fremont, CA 94536	Client P.	.0.:			Date Analyzed	09/09/06		
	(CAM / CCR	R 17 Me	tals*				
	0.00121.0014					1		
Client ID	16					Reporting Lir ND means r above the re	nit for DF =1; not detected porting limit	
Matrix	S					s	W	
Extraction Type	TCLP					mg/L	mg/L	
	ICP-I	MS Metals.	Conce	ntration*		<u></u>		
Analytical Method: 6020A	Extr	raction Method	l: SW131	1		Work Order:	0609131	
Dilution Factor	1					1	1	
Antimony	ND					0.1	NA	
Arsenic	ND					0.1	NA	
Barium	ND					1.0	NA	
Beryllium	ND					0.1	NA	
Cadmium	ND					0.05	NA	
Chromium	ND					0.1	NA	
Cobalt	ND					0.1	NA	
Copper	ND					0.1	NA	
Lead	ND					0.1	NA	
Mercury	ND					0.01	NA	
Molybdenum	ND					0.1	NA	
Nickel	ND					0.1	NA	
Selenium	ND					0.1	NA	
Silver	ND					0.1	NA	
Thallium	ND					0.1	NA	
Vanadium	ND					0.1	NA	
Zinc	ND					1.0	NA	
%SS:	N/A							
Comments						T		
*water samples are reported in µg/L, prod mg/L, soil/sludge/solid samples in mg/kg, v # means surrogate diluted out of range; N instrument.	uct/oil/non-aqueous wipe samples in μg/ D means not detect	s liquid samp wipe, filter s ted above the	ples and amples in e reporti	all TCLP / STLC / n µg/filter. ng limit; N/A mean	DISTLC / SPLP extr	acts are repo	rted in r	

When Ouality Counts"					1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA 9456 bbell.com E-mail: main@mcc: 877-252-9262 Fax: 925-252-	5-1701 ampbell.com 9269		
Advantage E	nvironmental	Client Pro	oject ID: #	#06-32	220	Date Sampled: 09/0	7/06		
35621 Beechi	ng Lane					Date Received: 09/07/06			
Fremont, CA	94536	Client Co	ontact: Kr	is Mc	Glothlin	Date Extracted: 09/0	07/06-09/0	9/06	
		Client P.C).:			Date Analyzed: 09/1	1/06		
			Lead by	y ICP	*				
Extraction method:	CA Title 22		Analytical m	ethods:	SW6010C	Work	Order: 06	09131	
Lab ID	Client ID	Matrix	Extracti	on		Lead	DF	% SS	
0609131-002A	17	S	STLC			2.3	1	N/A	
							_		
							_		

Reporting Limit for $DF = 1$;	W	TTLC	NA	μg/L
above the reporting limit	S	STLC	0.2	mg/L

*water samples are reported in μ g/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

When Ouality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
Advantage E	nvironmental	Client Pro	oject ID: #	406-32	220	Date Sampled: 09/07	7/06		
35621 Beechi	ng Lane			Date Received: 09/07/06					
Fremont. CA	94536	Client Co	ontact: Kr	is Mc	Glothlin	Date Extracted: 09/07/06-09/08/06			
		Client P.C).:			Date Analyzed: 09/08	8/06		
			Lead by	V ICP	*				
Extraction method: SW1311 Analytica				ethods:	SW6010C	Work	Order: 060	09131	
Lab ID	Client ID	Matrix	Extracti	on		Lead	DF	% SS	
0609131-002A	17	S	TCLP			ND	1	N/A	

Reporting Limit for DF =1;	W	TTLC	NA	μg/L
above the reporting limit	S	TCLP	0.2	mg/L

*water samples are reported in $\mu g/L$, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/$ wipe, filter samples in $\mu g/$ filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

Client: Mr. Kris McGlothlin ADVANTAGE Environmento 35621 Beeching Lane Fremont, CA 94536	Samples Collected By: Kris McGlothlin CAC #: 92-0324 DHS #: I-1141	Phone #: (510) 507-6946
LAB - TAT:	Fax Results To	Fax Number:
McCampbell	Kris McGlothlin	kris_mcglothlin@sbcglobal.net
Project Number:	Project:	
06-3296	210 Broadway, Oakland, CA	

Sample #	Sample L	cation	Item Sampled	Sample type	Sample Date	Type of Analysis
18	Bottom of excave	tion (#9)	4 point composite	Soil	9-26-06	See below
	TTLC – Lead	μα ¹	Same Day			
19	Bottom of Excave	tion (#13)	4 point composite	Soil	9-26-06	See below
	TTLC – Lead	/w.	Same Day			
20	Stockpile from 302	80 Excavation	4 point composite	Soil	9-26-06	See below
	TTLC – Lead – San STLC – CAM 17 TCLP – CAM 17	e Day	72 hour TAT			
21	Top fill around exc	avation	4 point composite	Soil	9-26-06	See below
	TTLC – Lead – San STLC – CAM 17 TCLP – CAM 17	e Day	72 hour TAT			
Relinquished	by Collector	ris megg	the_	Date 9-26	-76 Time G	1:10 am
Received by	Lab.		>	Dateg-2	Ime B	:06

35621 Beeching Lane • Fremont • CA • 94536 • (510) 507-6946 Consulting • Safety • Asbestos/Lead Inspections • Microbial • Sample Analysis • Air Monitoring

When Ouality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269				
Advantage E	nvironmental	Client Pro	ject ID: #	\$06-3296	5	Date Sampled: 09/20	6/06	
35621 Beechi	ng Lane			Date Received: 09/26/06				
Fremont CA	94536	Client Co	ontact: Kr	is McGlo	othlin	Date Extracted: 09/26/06		
	71000	Client P.C	Date Analyzed 09/2					
			Lead by	y ICP*				
Extraction method	SW3050B		Analytical m	ethods 601	10C	Work	Order: 06	09538
Lab ID	Client ID	Matrix	Extracti	on		Lead	DF	% SS
0609538-001A	18	S	TTLC	2		ND	1	105
0609538-002A	19	S	TTLC	2		ND	1	104
0609538-003A	20	S	TTLC	2		44	1	102
0609538-004A	21	S	TTLC	2		70	1	103

Reporting Limit for DF =1;	W	TTLC	NA	µg/L
above the reporting limit	S	TTLC	5.0	mg/Kg

*water samples are reported in μ g/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

When Ouality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
Advantage Environmental	counts	Client Pr	oiect ID· i	#06-329	96	Date Sampled:	09/26/06		
Advantage Environmental		Chemin	oject ID.						
35621 Beeching Lane	_			Date Received: 09/20/06					
	Client Contact: Kris N			is McG	lothlin	Date Extracted:	09/26/06-0	9/28/06	
Fremont, CA 94536		Client P.	0.:			Date Analyzed	09/28/06-0	9/30/06	
		С	AM / CCR	17 Me	tals*				
Lab ID	Lab ID 0609538-003A 0609538-004A Reporting Limit for DF =						nit for DF =1;		
Client ID	2	20	21				ND means n above the re	not detected porting limit	
Matrix	:	S	S				s	W	
Extraction Type	ST	LC	STL	2			mg/L	mg/L	
		ICP-M	IS Metals.	Conce	ntration*	1		<u>L</u>	
Analytical Method: 6020A		Extra	action Method	: CA Tit	le 22		Work Order:	0609538	
Dilution Factor		1	1				1	1	
Antimony	0.	18	0.11				0.1	NA	
Arsenic	N	D	0.50)			0.1	NA	
Barium	3	.3	7.1				1.0	NA	
Beryllium	N	D	ND				0.1	NA	
Cadmium	Ν	D	ND				0.05	NA	
Chromium	Ν	D	0.57				0.1	NA	
Cobalt	0.	10	0.34				0.1	NA	
Copper	0.	60	1.2				0.1	NA	
Lead	2	.5	5.5				0.1	NA	
Mercury	Ν	D	ND				0.01	NA	
Molybdenum	Ν	D	ND				0.1	NA	
Nickel	0.	21	1.0				0.1	NA	
Selenium	Ν	D	ND				0.1	NA	
Silver	Ν	D	ND				0.1	NA	
Thallium	Ν	D	ND				0.1	NA	
Vanadium	0.	17	1.3				0.1	NA	
Zinc	4	.3	6.6				1.0	NA	
%SS:	N	/A	N/A						
						-			
Comments									
*water samples are reported in µg/L, prod mg/L, soil/sludge/solid samples in mg/kg, v # means surrogate diluted out of range; N instrument	uct/oil/no wipe samp D means	n-aqueous bles in µg/v not detecte	liquid samp wipe, filter s ed above the	les and amples i e reporti	all TCLP / STLC / n µg/filter. ng limit; N/A mear	DISTLC / SPLP extrasts not applicable to t	acts are repo	rted in r	

McCampbell Analytical, Inc. "When Quality Counts"					1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: mair 877-252-9262 Fax: 92	 94565-1701 1@mccampbell.c 5-252-9269 	com	
Advantage Environmental	C	lient Pro	ject ID: #	06-329	96	Date Sampled:	09/26/06		
25(2) Deceling Long				Date Received: 09/26/06					
55621 Beeching Lane	C	Client Co	ntact: Kri	s McG	lothlin	Date Extracted:	09/26/06-0	9/27/06	
Fremont, CA 94536	C	Client P.O).:			Date Analyzed:	09/28/06		
		CA	AM / CCR	17 Me	tals*				
Lab ID	0609538	-003A	0609538-	004A			Reporting Lir	nit for DF =1;	
Client ID	20)	21				ND means i above the re	not detected porting limit	
Matrix	S		S				s	W	
Extraction Type	TCL	Р	TCLF	,			mg/L	mg/L	
Analytical Method: 6020A		ICP-M Extrac	S Metals, ction Method:	Concer SW131	ntration*		Work Order:	0609538	
Dilution Factor	1		1				1	1	
Antimony	NE)	ND				0.1	NA	
Arsenic	NE)	ND				0.1	NA	
Barium	ND)	ND				1.0	NA	
Beryllium	NE)	ND				0.1	NA	
Cadmium	NE)	ND				0.05	NA	
Chromium	ND)	ND				0.1	NA	
Cobalt	NE)	ND				0.1	NA	
Copper	NE)	ND				0.1	NA	
Lead	1.6	<u>ó</u>	ND				0.1	NA	
Mercury	NE)	ND				0.01	NA	
Molybdenum	ND)	ND				0.1	NA	
Nickel	NE)	ND				0.1	NA	
Selenium	NE)	ND				0.1	NA	
Silver	NE)	ND				0.1	NA	
Thallium	NE)	ND				0.1	NA	
Vanadium	NE)	ND				0.1	NA	
Zinc	NE)	ND				1.0	NA	
%SS:	N/A	4	N/A						
Comments							Τ		
*water samples are reported in µg/L, prod mg/L, soil/sludge/solid samples in mg/kg, v # means surrogate diluted out of range; N instrument.	uct/oil/non- wipe sample D means n	-aqueous l es in μg/w ot detected	liquid samp vipe, filter sa d above the	es and mples in reporti	all TCLP / STLC / n µg/filter. ng limit; N/A mear	DISTLC / SPLP ext	racts are repo	rted in r	

ADVANTAGE Environmental and Safety Services	Project: 21	10 Broadway, Oakland, CA	
35621 Beeching Lane	Project Number: 06	6-3296	CLS Work Order#: CPI0883
Fremont, CA 94536	Project Manager: M	Ir. Kris McGlothli	COC #: None

DRAFT: Metals by EPA 6000/7000 Series Methods

Analyte	Result	Reporting Limit	Units	Dilutio	n Batch	Prepared	Analyzed	Method	Notes
DRAFT: Clean Fill From Footing #22 (C	CPI0883-01) Soil	Sampled	: 09/27/0	6 00:00	Received: 0	9/28/06 09:	:05		
Lead	110	2.5	mg/kg	1	CP07482	09/28/06	09/28/06	EPA 6010B	

$C{}_{\text{ALIFORNIA}} L{}_{\text{ABORATORY}} S{}_{\text{ERVICES}}$

Page	2 of	6
------	------	---

10/03/06 16:21

ADVANTAGE Environmental and Safety Services	Project:	210 Broadway, Oakland,	CA
35621 Beeching Lane	Project Number:	06-3296	CLS Work Order #: CPI0922
Fremont, CA 94536	Project Manager:	Mr. Kris McGlothlin	COC #: None

STLC (WET) Metals by 6000/7000 Series Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Clean Fill From Footing #22 (CPI0922-01) S	Soil Samp	led: 09/27/06	00:00	Received: (9/29/06 1	0:34			
Lead	6.8	0.50	mg/L	1	CP07599	10/03/06	10/03/06	EPA 6010B	

CA DOHS ELAP Accreditation/Registration Number 1233

CALIFORNIA **L**ABORATORY **S**ERVICES

Page 3 of 6		10/03/06 16:21
ADVANTAGE Environmental and Safety Services	Project: 210 Broadway, Oakland	d, CA
35621 Beeching Lane	Project Number: 06-3296	CLS Work Order #: CPI0922
Fremont, CA 94536	Project Manager: Mr. Kris McGlothlin	COC #: None

TCLP Metals by 6000/7000 Series Methods

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Clean Fill From Footing #22 (CPI0922-	01) Soil Sampl	ed: 09/27/06	5 00:00	Received: ()9/29/06 1	0:34			
Lead	ND	0.50	mg/L	1	CP07567	10/02/06	10/02/06	EPA 6010B	

CA DOHS ELAP Accreditation/Registration Number 1233

AESS ADVANTAGE environmental and safety services, inc

Client: Mr. Kris McGlothlin ADVANTAGE Environmental 35621 Beeching Lane Eremont CA 94536	Samples Collected By: Kris McGlothlin CAC #: 92-0324 DHS #: 1-1141	Phone #: (510) 507-6946		
LAB - TAT:	Fax Results To Kris McGlothlin	Fax Number: kris_mcglothlin@sbcglobal.net		
Project Number: 06-3296	Project: 222 Broadway, Oakland, CA			

Óbioogo RUSH

Sample	Sample Location	Item Sampled	Sample type	Sample Date	Analysis	
	Footing - G9.2 - 3'	4 point composite	Soil	10-2-06	See below	
20	TTLC - Lead - Same Day STLC - Lead TCLP - Lead	72 hour TAT				
0.4	$F_{00} = (-9.2 - 6.5)^{2}$	4 point composite	Soil	10-2-06	See below	
24	TTLC - Lead - Same Day STLC - Lead TCLP - Lead	72 hour TAT				
	Exacting $- E^{2} = 3^{2}$	4 point composite	Soil	10-2-06	See below	
25	TTLC - Lead - Same Day STLC - Lead TCLP - Lead	72 hour TAT				
24	E_{0}	4 point composite	Soil	10-2-06	See below	
20	TTLC - Lead - Same Day STLC - Lead TCLP - Lead	72 hour TAT				
27	Example 2 – $7'$	4 point composite	Soil	10-2-06	See belo	
	TTLC - Lead - Same Day STLC - Lead TCLP - Lead	72 hour TAT				
28	Ecoting - H4 - 7'	4 point composite	Soil	10-2-06	See belo	
20	TTLC – Lead – Same Day STLC – Lead TCLP – Lead	72 hour TAT				
29	Stockpile SE side of site	4 point composite	Soil	10-2-06	See belo	
	TTLC – Lead – Same Day STLC – Lead TCLP – Lead	72 hour TAT	•			
Relinguist	ned by Collector:		Date 9	D/y/06 Time	6:30pm	
Received	d by Lab:		Data	706 Time	1:55	

35621 Beeching Lane • Fremont • CA • 94536 • (510) 507-6946 Safety • Asbestos/Lead Inspections • Microbial • Sample Analysis • Air Monitoring

McCampbell Analytical, Inc. "When Ouality Counts"					1534 Willow P Web: www.mccamp Telephone: 8	ass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccar 77-252-9262 Fax: 925-252-92	1701 npbell.com 269	
Advantage Env	vironmental	Client Pro	oject ID: #	: #06-3296; 222 Date Sampled: 10/02/06				
35621 Beeching	g Lane	Dioadway	y, Oakianu	, CA	/06			
Fremont, CA 94	1536	Client Co	ontact: Kr	is Mc0	Glothlin	Date Extracted: 10/04	/06	
,		Client P.C).:	Date Analyzed 10/05/06				
			Lead by	∕ ICP∛	k			
Extraction method S	W3050B		Analytical me	thods	6010C	Work C	Order: 06	10090
Lab ID	Client ID	Matrix	Extracti	on		Lead	DF	% SS
0610090-001A	23	S	TTLC	2		13	1	106
0610090-002A	24	S	TTLC	2		ND	1	105
0610090-003A	25	S	TTLC	2		ND	1	103
0610090-004A	26	S	TTLC	2		ND	1	104
0610090-005A	27	S	TTLC	2		ND	1	105
0610090-006A	28	S	TTLC	2		150	1	103
0610090-007A	29	S	TTLC	2		610	1	100
							<u> </u>	

Reporting Limit for DF =1;	W	TTLC	NA	μg/L
above the reporting limit	S	TTLC	5.0	mg/Kg

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

	Ccampbell Analytic	cal, Inc	2.		1534 Willow F Web: www.mccamp Telephone: 8	ass Road, Pittsburg, CA 9456 bell.com E-mail: main@mcc 77-252-9262 Fax: 925-252	55-1701 ampbell.com 9269	
Advantage E	nvironmental	Client Pro	ject ID:	#06-32	296; 222	Date Sampled: 10/0)2/06	
35621 Beechi	ing Lane	Bloadway, Oakian				Date Received: 10/0	04/06	
Fremont, CA	94536	Client Co	ntact: K	ris Mc	Glothlin	Date Extracted: 10/04/06-10/06/06		
	Client P.O.:			Date Analyzed: 10/09/06				
			Lead b	y ICP	*			
Extraction method:	CA Title 22		Analytical m	ethods:	SW6010C	World	Corder: 06	10090
Lab ID	Client ID	Matrix	Extract	ion		Lead	DF	% SS
0610090-006A	28	S	STL	C	5.9		1	N/A
0610090-007A	29	S	STL	2	35		1	N/A

Reporting Limit for DF =1;	W	TTLC	NA	μg/L
ND means not detected at or	S	STI C	0.2	ma/I
above the reporting limit	5	SILC	0.2	mg/L

*water samples are reported in $\mu g/L$, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, filter samples in $\mu g/filter$.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

	CCampbell Analyt "When Ouality Counts"	ical, Inc	2.		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA 94565 bbell.com E-mail: main@mccai 877-252-9262 Fax: 925-252-9	-1701 npbell.com 269	
Advantage E	nvironmental	Client Pro	ject ID: #	t ID: #06-3296; 222 Date Sampled: 10/02/0		/06		
35621 Beechi	ng Lane	Бгоайway		i, CA		Date Received: 10/04/06		
Fremont, CA	94536	Client Co	ntact: Kı	is Mc	Glothlin	Date Extracted: 10/04	/06-10/0	5/06
		Client P.C).:			Date Analyzed: 10/05	5/06	
			Lead by	y ICP	*			
Extraction method:	SW1311		Analytical m	ethods:	SW6010C	Work	Order: 061	0090
Lab ID	Client ID	Matrix	Extract	ion		Lead	DF	% SS
0610090-006A	28	S	TCLI	•		ND	1	N/A
0610090-007A	29	S	TCLI	,		9.8	1	N/A

Reporting Limit for DF =1;	W	TTLC	NA	μg/L
above the reporting limit	S	TCLP	0.2	mg/L

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

 GOOD CONDITION
 APPECERINTE

 HEAD SPACE ABSENT
 CONTAINERS

 DECHLORINATED IN LAB
 PRESERVED IN LAP

 PRESERVATION
 O&G

 METALS
 OHPR

Client: Mr. Kris McGlothlin ADVANTAGE Environmental 35621 Beeching Lane Fremont, CA 94536	Samples Collected By: Kris McGlothlin CAC #: 92-0324 DHS #: 1-1141	Phone #: (510) 507-6946
LAB - TAT:	Fax Results To	Fax Number:
See Below	Kris McGlothlin	kris_mcglothlin@sbcglobal.net
Project Number:	Project:	
06-3296	222 Broadway, Oakland, CA	

ICE t^e U

Sample Sample Location		Item Sampled	Sample type	Sample Date	Type of Analysis
30	Footing – B.5/3.5 – 3' SE Corner	4 point composite	Soil	10-12-06	See below
	TTLC - Lead - 24 Hour STLC - Lead TCLP - Lead	72 hour TAT			
31	Footing – B.5/3.5 – 6.5' SE Corner	4 point composite	Soil	10-12-06	See below
	TTLC – Lead – 24 Hour STLC – Lead TCLP – Lead	72 hour TAT			
32	Footing $= C/2.5 = 3'$ SE Corner	4 point composite	Soil	10-12-06	See below
02	TTLC - Lead - 24 Hour STLC - Lead TCLP - Lead	72 hour TAT			
33	Footing – C/2.5 – 6.5' SE Corner	4 point composite	Soil	10-12-06	See below
1.00	TTLC - Lead - 24 Hour STLC - Lead TCLP - Lead	72 hour TAT			
Relinquished	d by Collector:		Date 10/12	Time .	3:30 ри
Received b	y Lab: Declu Vem		Date 10/1	2 Time	15:30

	CCampbell Analyti "When Ouality Counts"	cal, Inc	2.		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccan 877-252-9262 Fax: 925-252-92	1701 npbell.com 69	
Advantage E	nvironmental	Client Pro Broadway	ject ID: =	#06-3296; 222 Date Sampled: 10/12/06				
35621 Beechi	ng Lane		,			Date Received: 10/12	/06	
Fremont, CA 94536			ntact: Ki	ris Mc	Glothlin	Date Extracted: 10/12	/06	
		Client P.C).:			Date Analyzed 10/13	/06	
			Lead b	y ICP	*			
Extraction method	SW3050B		Analytical m	ethods	6010C	Work C	rder: 06	10279
Lab ID	Client ID	Matrix	Extract	ion		Lead	DF	% SS
0610279-001A	#30	S	TTL	С		ND	1	106
0610279-002A	#31	S	TTL	2		ND	1	108
0610279-003A	#32	S	TTL	2		ND	1	109
0610279-004A	#33	S	TTL	2		6.6	1	106
-								

Reporting Limit for DF =1;	W	TTLC	NA	μg/L
above the reporting limit	S	TTLC	5.0	mg/Kg

*water samples are reported in $\mu g/L$, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, filter samples in $\mu g/filter$.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

	CCampbell Analyti "When Ouality Counts"	cal, Inc	2.		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccam 877-252-9262 Fax: 925-252-92	1701 pbell.com 69	
Advantage E	nvironmental	Client Pro	ject ID: #	#06-3296; 222 Date Sampled: 10/12/06				
35621 Beechi	ng Lane	Dioauway	, Oakiant	Date Received: 10/12/06				
Fremont, CA 94536			ntact: Kı	is Mo	Glothlin	Date Extracted: 10/12	/06-10/1	4/06
		Client P.O.:				Date Analyzed: 10/16	/06	
			Lead by	y ICP	к;			
Extraction method:	CA Title 22		Analytical m	ethods:	SW6010C	Work C	rder: 061	0279
Lab ID	Client ID	Matrix	Extract	ion		Lead	DF	% SS
0610279-001A	#30	S	STLC	2		ND	1	N/A
0610279-002A	#31	S	STLC	2		ND	1	N/A
0610279-003A	#32	S	STLC	2		ND	1	N/A
0610279-004A	#33	S	STLC	2		ND	1	N/A

Reporting Limit for DF =1;	W	TTLC	NA	μg/L
above the reporting limit	S	STLC	0.2	mg/L

*water samples are reported in $\mu g/L$, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, filter samples in $\mu g/filter$.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

	CCampbell Analyti "When Ouality Counts"	cal, Inc	2.		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccan 877-252-9262 Fax: 925-252-92	1701 npbell.com 69	
Advantage E	nvironmental	Client Pro	ject ID: #	#06-3296; 222 Date Sampled: 10/12/06			/06	
35621 Beechi	ng Lane	Dioddwdy	, Oakian	i Cu		Date Received: 10/12	/06	
Fremont CA 94536			ontact: Ki	is Mc	Glothlin	Date Extracted: 10/12	/06-10/1	3/06
Tremont, CTT	1850	Client P.C).:			Date Analyzed 10/16	/06	
			Lead by	y ICP	*			
Extraction method	SW1311		Analytical m	ethods	SW6010C	Work O	rder: 06	10279
Lab ID	Client ID	Matrix	Extract	ion		Lead	DF	% SS
0610279-001A	#30	S	TCLI	•		ND	1	N/A
0610279-002A	#31	S	TCLF	•		ND	1	N/A
0610279-003A	#32	S	TCLI	,		ND	1	N/A
0610279-004A	#33	S	TCLF	•		ND	1	N/A

Reporting Limit for DF =1;	W	TTLC	NA	µg/L
above the reporting limit	S	TCLP	0.2	mg/L

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

APRIS OLO10356

environmental and safety services, inc.

Client: Mr. Kris McGlothlin ADVANTAGE Environmental 35621 Beeching Lane Fremont, CA 94536	Samples Collected By: Kris McGlothlin CAC #: 92-0324 DHS #: I-1141	Phone #: (510) 507-6946
LAB - TAT:	≈Fax Results To	Fax Number:
See Below	Kris McGlothlin	kris_mcglothlin@sbcglobal.net
Project Number:	Project:	
06-3296	222 Broadway, Oakland, CA	

Sample #	Sample Location	Item Sampled Samplet		Sample Date	Type of Analysis
34	Pile cap – N Middle stock pile	4 point composite	Soil	10-14-06	See below
	TTLC - Lead - 24 Hour STLC - Lead TCLP - Lead	72 hour TAT			
			*		
					e.
¢ '	0,				
ICE/t° 0 -0					
HEAD SPAC	APPROPRIATE		7		
DECILOR	VOAS 0&G METALS OTHER	(Transmission)			
PRESERVA	TION				
Relinquished	by Collector:	l	Date 10/14/	Time	our
Received by	Lab: Mal Jall		Date		OUM

When Ouality Counts"					1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA 94565 bell.com E-mail: main@mccar 877-252-9262 Fax: 925-252-9	-1701 npbell.com 269	
Advantage E	nvironmental	Client Pro	oject ID: #	#06-3296 Date Sampled: 10/14/06				
35621 Beechi	ng Lane					Date Received: 10/17	7/06	
Fremont, CA	94536	Client Co	ontact: Kr	is Mc	Glothlin	Date Extracted: 10/17	7/06	
	1000	Client P.C).:			Date Analyzed 10/18	8/06	
			Lead by	y ICP [®]	*			
Extraction method	SW3050B		Analytical me	ethods	6010C	Work 0	Order: 06	10356
Lab ID	Client ID	Matrix	Extracti	on		Lead	DF	% SS
0610356-001A	34	S	TTLC	2		84	1	104

Reporting Limit for DF =1;	W	TTLC	NA	μg/L
above the reporting limit	S	TTLC	5.0	mg/Kg

*water samples are reported in μ g/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

When Ouality Counts"					1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA 94565 bbell.com E-mail: main@mccar 877-252-9262 Fax: 925-252-92	-1701 npbell.com 269	
Advantage E	nvironmental	Client Pro	oject ID: #	#06-3296 Date Sampled: 10/14/06				
35621 Beechi					Date Received: 10/17	//06		
Fremont, CA	94536	Client Co	ontact: Kr	is Mc	Glothlin	Date Extracted: 10/17	//06-10/1	9/06
		Client P.C	D.:			Date Analyzed 10/19	9/06	
			Lead by	y ICP	*			
Extraction method	CA Title 22		Analytical m	ethods	SW6010C	Work C	Drder: 06	10356
Lab ID	Client ID	Matrix	Extracti	on		Lead	DF	% SS
0610356-001A	34	S	STLC	2		3.5	1	N/A

Reporting Limit for DF $=1$;	W	TTLC	NA	μg/L
above the reporting limit	S	STLC	0.2	mg/L

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

When Ouality Counts"					1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccar 877-252-9262 Fax: 925-252-92	1701 npbell.com 269	
Advantage E	nvironmental	Client Pro	oject ID: #	#06-3296 Date Sampled: 10/14/06				
35621 Beechi	ng Lane					Date Received: 10/17	/06	
Fremont. CA	94536	Client Co	ontact: Kr	is Mc	Glothlin	Date Extracted: 10/17	//06-10/1	8/06
		Client P.C).:			Date Analyzed: 10/18	6/06	
			Lead by	V ICP	*			
Extraction method:	SW1311		Analytical me	ethods:	SW6010C	Work (Drder: 061	10356
Lab ID	Client ID	Matrix	Extracti	on		Lead	DF	% SS
0610356-001A	34	S	TCLP			ND	1	N/A

Reporting Limit for DF $=1$;	W	TTLC	NA	µg/L
above the reporting limit	S	TCLP	0.2	mg/L

*water samples are reported in $\mu g/L$, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, filter samples in $\mu g/filter$.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

APPENDIX D

EXCERPTS FROM 2005 GEOTECHNICAL REPORT

Preliminary Geotechnical Foundation Investigation for 222 Broadway, City Block Bounded By 2nd and 3rd Streets, Broadway and Franklin Street, Oakland, California

Dated: August 15, 2005

Project No. 041084-01

Prepared For:

MOLASKY PACIFIC, LLC 3993 Howard Hughes Parkway Las Vegas, NV 89109

Lawson & Associates Geotechnical Consulting, Inc.

August 15, 2005

Project No. 041084-01

Mr. Kenn Wynn Molasky Pacific, LLC 3993 Howard Hughes Parkway Las Vegas, NV 89109

Subject:

Preliminary Geotechnical Foundation Investigation for 222 Broadway, City Block Bounded By 2nd and 3rd Streets, Broadway and Franklin Street, Oakland, California

In accordance with your request, Lawson & Associates Geotechnical Consulting, Inc. (LGC) has performed a preliminary geotechnical foundation investigation for the proposed 222 Broadway project located in Oakland, California. The purpose of our investigation was to evaluate the existing onsite geotechnical conditions and review the readily available geotechnical and geologic reports and maps pertinent to the site. This report presents the results of our subsurface investigation and geotechnical analysis and provides a summary of our conclusions and preliminary recommendations relative to the proposed redevelopment of the site.

If you should have any questions regarding this report, please do not hesitate to contact our office. We appreciate this opportunity to be of service.

Sincerely,

TABLE OF CONTENTS

<u>Section</u>

1.0	INTRODUCTION								
	1.1	Purpose and Scope of Services							
	1.2	Project Description							
	1.3	Site Conditions							
	1.4	Background							
	1.5	Subsurface Investigation							
	1.6	Laboratory Testing							
2.0	CEOT								
2.0		Designal Coolegy							
	2.1	Kegional Geology / Site Smarific Cools of the cool /							
	2.2	Site-Specific Geology							
		2.2.1 Artificial Fill – Undocumented							
		2.2.2 Temescal Formation							
		2.2.3 San Antonio Formation							
	• •	2.2.4 Alameda Formation							
	2.3	Geologic Structure							
	2.4	Landslides							
	2.5	Ground Water							
	2.6	Faulting							
		2.6.1 Lurching and Shallow Ground Rupture							
		2.6.2 Liquefaction and Dynamic Settlement10							
		2.6.3 Lateral Spreading10							
		2.6.4 Tsunamis and Seiches							
	2.7	Seismicity11							
	2.8	U.B.C. Seismic Parameters							
	2.9	Corrosion Potential							
3.0	CONO	CLUSIONS							
4.0	RECC	DMMENDATIONS							
	4.1	Site Earthwork							
		4.1.1 Site Preparation14							
		4.1.2 Removal and Recompaction							
		4.1.3 Trench Backfill and Compaction							
	4.2	Preliminary Foundation Recommendations							
		4.2.1 Drilled Pile Foundations							
		4.2.2 Driven Piles - Construction16							
		4.2.3 Pile Indicator Program							
		4.2.4 Alternative Pile Systems17							
		4.2.5 Building Slab on Grade							
	4.3	Soil Bearing							
	4.4	Lateral Earth Pressures							
	4.5	Utility Lines							
	4.6	Temporary Excavation Stability							

	4.7	Preconstruction and Construction Monitoring	20
	4.8	Preliminary Pavement Sections	20
	4.9	Corrosivity to Concrete and Metal	21
	4.10	Nonstructural Concrete Flatwork	21
	4.11	Construction Observation and Testing	22
	4.12	Geotechnical Plan Review	22
5.0	LIMI	TATIONS	23

List of Illustrations, Tables, & Appendices

<u>Figures</u>

- Figure 1 Site Location Map (Page 6)
- Figure 2 Boring Location Map (Rear of Text)
- Figure 3A Ultimate Lateral Load Capacities of 14" Square Driven Piles For ¼" Deflection/Fixed Head Condition (Rear of Text)
- Figure 3B Ultimate Lateral Load Capacities of 14" Square Driven Piles For ¼" Deflection/Free Head Condition (Rear of Text)

<u>Tables</u>

- Table 1 Lateral Earth Pressures (Page 19)
- Table 2 –
 Provisional Recommendations for Nonstructural Concrete Flatwork (Page 22)

<u>Appendices</u>

Appendix A – References Appendix B – Boring and CPT Logs Appendix C – Laboratory Test Results Appendix D – Seismic Analyses

1.0 INTRODUCTION

1.1 <u>Purpose and Scope of Services</u>

This report presents the results of our preliminary geotechnical investigation for the proposed development of 222 Broadway in Oakland, California (see Site Location Map, Figure 1). The purpose of our investigation was to evaluate the pertinent geotechnical conditions at the site and to provide preliminary geotechnical recommendations and foundation design criteria relative to the proposed redevelopment of the site. Our recommendations included herein are based on the proposed structure depicted on the preliminary plan provided by the project architect, Perkins and Will Architects, Inc. (2005).

Our scope of services included:

- Review of pertinent readily available geotechnical reports and geologic maps (Appendix A);
- Reconnaissance level geologic mapping of the site;
- Excavation, sampling, and logging of two small-diameter hollow stem borings (LGC-1 and LGC-2), two small-diameter mud-rotary borings (LGC-2B and LGC-3) and three CPT soundings (CPT-1 through CPT-3). The excavations were sampled and logged under the supervision of an experienced geologist from our firm. The borings were excavated to evaluate the general characteristics of the subsurface geologic conditions including estimated depth to ground water, and to obtain representative soil samples. Logs of the borings and the CPT soundings are presented in Appendix B and their approximate locations are depicted on the Boring Location Map, Figure 2;
- Laboratory testing of representative samples obtained during our subsurface investigation (Appendix C);
- Preparation of a geotechnical map depicting the interpreted geologic conditions on the site;
- Geotechnical analysis of the data reviewed/obtained;
- Preparation of this report presenting our findings, conclusions and preliminary recommendations with respect to the proposed site development.

1.2 <u>Project Description</u>

The site is located within the city block bounded by 3rd Street to the north, 2nd Street to the south, Broadway on the west and Franklin Street on the east. Based on our review of the preliminary project plans prepared by the project architect (Perkins and Will, 2005), the proposed redevelopment will be located along Broadway and will be adjacent to an existing building located along Franklin Street that will remain in place. The proposed redevelopment is an approximately 175 feet high "L" shaped building tower located above a 5-level parking podium from grade. The proposed redevelopment is anticipated to include approximately 134 residential units, 11,000 square feet of retail, and 268 parking spaces (Perkins and Will, 2005). It is our understanding that the two existing structures located along Broadway Street at the corners of 3rd and 2nd Street, respectively, will be removed prior to construction.

At least in the case of the structure in the northwest corner of the site, we understand an existing basement will need to be removed and appropriately abandoned as well. It is not known by this office if the other structure to be removed or the structure on the eastern portion of the block that is to remain inplace have existing basements.

1.3 Site Conditions

The site of the proposed structure is currently occupied by a parking lot and two existing structures located along Broadway Street at the corners of 3^{rd} and 2^{nd} Street, respectively. Topographically, the site is essentially flat at an elevation of approximately 10 feet above mean sea level (MSL).

1.4 <u>Background</u>

A previous preliminary geotechnical evaluation was performed for conceptual development of the site by Lowney (2001). The evaluation was based on a review of geotechnical reports for similar sites in the vicinity of the subject site. Lowney performed three Cone Penetration Test (CPT) soundings to depths of approximately 33 to 43 feet below existing ground surface. The CPTs were advanced until refusal, likely due to a layer of very dense sand.

Based on available regional geotechnical information, a subsequent due diligence review was performed by LGC (2004). The referenced reports concluded that the subject site was suitable for development.

The city block is currently occupied by existing structures on the north and south ends of the block. The majority of the site of the proposed development is occupied by an asphalt parking lot with structures in the southwestern and northwestern corners. We understand both commercial and retail structures have occupied the site in the past. It should be anticipated that remnants (buried foundations, utilities, basements, storage tanks, etc.) may be encountered during site development.

We understand the existing structure in the eastern portion of the block along Franklin Street is to remain in place. The proposed structure will be located adjacent to the building and will need to be protected in place during construction.

1.5 <u>Subsurface Investigation</u>

Our subsurface investigation consisted of the excavation of four small-diameter hollow stem auger borings, ranging in depth from approximately 55 to 101.5 feet below existing ground surface and three CPT soundings. Hollow stem borings LGC-1 and LGC-2 were terminated at approximate depths of 55 feet below existing ground surface due to plugging of the auger. Mud-rotary borings LGC-2B and LGC-3 were drilled to approximate depths of 100 feet below existing ground surface. The CPTs were terminated (practical refusal) at depths ranging from approximately 40 to 45 feet below existing ground surface due to a very dense sand layer. During excavation, the borings were sampled and logged from the surface under the supervision of an experienced geologist from our firm to evaluate the general characteristics of the onsite soils. The hollow stem borings were geotechnically logged and sampled using California Ring Samples (Ring) and Standard Penetration Test (SPT) samplers at selected intervals. The SPT and ring samples were driven using a 140-pound hammer freely falling for 30 inches with a total penetration of 18 inches, and blow counts were noted for each 6 inches of penetration. In addition, bulk samples were collected at various depths from each of the borings.

CPT soundings have the advantage of providing a near continuous interpretation of subsurface conditions compared to exploratory small-diameter borings where samples are typically obtained at intervals of 5 feet. For analytical review, CPTs allow for easy correlation of layers across a site, which can be instrumental in estimating potential liquefaction. CPT data is also useful for liquefaction analysis when the data is compared to laboratory test results of samples obtained from a site. The disadvantage of CPTs compared to small-diameter borings is that samples are generally not obtained for visual classification or laboratory testing. CPTs also have the disadvantage of not being able to penetrate through gravels or bedrock as compared to auger borings.

In general, our boring and CPT logs indicated that the upper approximately 25 to 30 feet below existing ground surface consists primarily of loose to medium dense sands and silty sands with isolated layers of sandy silt, silt, and clayey silt. From a depth of approximately 30 to 55 feet below existing ground surface a layer of dense to very dense sands and silty sands were encountered followed by medium stiff to very stiff fine-grained silty clays to the maximum drilled depth of approximately 101.5 feet below existing ground surface. Soil descriptions are presented in the boring logs in Appendix B. CPT sounding logs are also presented in Appendix B. The approximate locations of the borings and soundings are shown on our Boring Location Map, Figure 2. In accordance with requirements of Alameda County, the borings were completely backfilled with slurry, capped with approximately 2 feet of concrete, and asphalt cold patch placed at the surface. The CPT soundings were completely grouted to the surface. Please note that some settlement of the grout may occur over time and they should be topped off if needed.

1.6 Laboratory Testing

Representative bulk and driven (relatively undisturbed) samples were retained for laboratory testing. Laboratory testing included in-situ moisture content and in-situ density, maximum dry density and optimum moisture content, expansion potential, gradation, Atterberg Limits, direct shear, and corrosion potential.

Dry density values ranged from approximately 70.1 pounds per cubic foot (pcf) to 117.9 pcf, with an average of 109.9 pcf. Field moisture contents ranged from approximately 7.1 percent to 50.3 percent, with an average of 18.2 percent. Total (moist) density values ranged from approximately 105.4 pcf to 134.8 pcf, with an average of 129.2 pcf. The degree of saturation ranged from approximately 34 percent to 100 percent, with an average of 88 percent.

Seven sieves and four percent passing the No. 200 sieve tests were performed from various selected samples. Results were percents passing the No. 200 sieve (fines content) ranging from approximately 13 to 63 percent. Results indicated that nine of the 11 tested samples would be classified as "coarse-grained" according to the Unified Soils Classification System (USCS). A hydrometer analysis was performed on two of the samples and indicated approximately 30 to 42 percent clay (defined as 0.005 mm) for the tested samples.

Three Atterberg Limit tests were performed from various selected samples. Plasticity Index results ranged from approximately "Non Plastic" to 18. This corresponds to a USCS classification for the fines of low-plasticity clay (CL) for the plastic sample.

The results of expansion potential testing indicated expansion indices of zero, "Very Low" (1997 Uniform Building Code (U.B.C.)/2001 California Building Code (C.B.C.) EI less than 20).

A laboratory compaction (maximum dry density and optimum moisture content) test was performed from a bulk sample obtained from LGC-2. The result was a maximum dry density of 114.0 pcf with an optimum moisture content of 9.0 percent.

Three consolidation tests were performed on driven samples from various depths. Plots are provided in Appendix C.

Four direct shear tests were performed on samples obtained from various depths. The plots are provided in Appendix C.

A discussion of the tests performed and a summary of the results are presented in Appendix C. The moisture and density test results are presented on the boring logs in Appendix B. Results of corrosion suite are reported in Section 2.9.

2.0 GEOTECHNICAL CONDITIONS

2.1 <u>Regional Geology</u>

The subject site is located along the eastern margin of San Francisco Bay within the Coast Ranges Geomorphologic Province of California. The north- to northwest-trending Coast Ranges, which defines the Province, is traversed by numerous faults of the San Andreas Fault system. The dominant geologic processes that have shaped the San Francisco Bay Area region are the active faulting along the San Andreas, Hayward, and other faults: uplift and erosion of the East Bay and peninsular hills; and subsidence of the San Francisco Bay basin. The San Francisco Bay is thought to have formed as a pull-apart basin in response to local crustal subsidence between the San Andreas and Hayward faults that has been continuously subsiding since late Quaternary time (the past 700,000 years).

Based on our review of the State of California Seismic Hazard Zones Oakland West Quadrangle (CDMG, 2003) and City of Oakland Safety Element (2004), a zone of potential liquefaction is depicted south of the site. The depicted zone of potential liquefaction is as close as approximately 350 feet to the south side of the site. Based on our review of the City of Oakland Safety Element (2004), the site is not located within any designated Flooding Hazard Zones.

2.2 <u>Site-Specific Geology</u>

Based on the results of our subsurface investigation and research, the site is underlain by undocumented fill material underlain by a relatively young (less than approximately 1 million years old) sedimentary sequence above Franciscan Formation basement. The sedimentary units extend a total of approximately 500 feet below the site and include: the Temescal Formation, San Antonio Formation, and the Alameda Formation. A brief description of these geologic units is presented below (from youngest to oldest). Based on the regional geology, the approximate depths that these units are expected to underlie the site are provided below, the units are not, however, differentiated on the boring logs (Appendix B). Formational types and differences are only approximated based on our limited sampling of the subsurface soils and review of regional geologic maps, therefore, the underlying formations are not differentiated from the Temescal Formation on the boring logs. When reviewing the data presented herein, one should focus on actual material types encountered rather than formation names, as many of the materials encountered within each of the formations can be varied.

2.2.1 <u>Artificial Fill – Undocumented</u>

Below the asphalt and base of the existing parking lot, up to approximately 5 to 10 vertical feet of undocumented artificial fill was encountered in borings LGC-1 through LGC-3. These materials are considered unsuitable for the support of structures not supported on a deep foundation system or additional compacted fill and should be removed as part of the planned grading. Due to the lack of data between borings, the lateral and vertical limits of the fill cannot accurately be determined at this time, but it would appear that an approximately 10 foot thickness of loose material believed to be undocumented fill may extend across a third or more of the site and in areas could be deeper.

2.2.2 <u>Temescal Formation</u>

The Temescal Formation was deposited as alluvial terrace deposits in incised alluvial channels. The alluvial material consists of silt and clay and is generally finer grained than the underlying San Antonio Formation, however it can have intermittent sandy and gravelly lenses.

2.2.3 San Antonio Formation

The San Antonio Formation stratigraphically underlies the Temescal Formation and is approximated to underlie the site a depth of approximately 30 feet below site grades. The San Antonio Formation consists of a sequence of estuarine and alluvial sediments. These materials typically consist of dense silty sand and sandy silt lenses. Intermittent dense gravel layers are also encountered within this material.

2.2.4 <u>Alameda Formation</u>

The Alameda Formation stratigraphically underlies the San Antonio Formation and is expected to underlie the site at a depth of approximately 60 feet below the surface. The Alameda Formation extends to depths on the order of 500 feet in the area where it overlies Franciscan Formation basement material. The Alameda Formation is a complex mixture of lower non-marine alluvial fan, fluvial (streams and floodplains) and lacustrine (lake) deposits, and an upper marine green-gray clay unit.

2.3 <u>Geologic Structure</u>

Locally, the geologic units below the site typically dip at low angles to the west. The units within the formations are typically moderately to thinly bedded, lenticular and interfinger with the other.

No faults have been mapped on the site.

2.4 Landslides

No landslides have been identified on the site.

2.5 <u>Ground Water</u>

Ground water was encountered during our investigation at depths ranging from approximately 10 to 15 feet below existing ground surface. Lowney's preliminary investigation encountered ground water at depths on the order of 15 to 18 feet below existing ground surface and reported previous environmental borings encountering ground water at depths ranging from approximately 8 to 14 feet below ground

surface (Lowney, 2001). The historic high ground water table for the site is approximately 5 feet below existing grade (CDMG, 2003).

Local zones of perched ground water may be encountered during or develop after site construction, within the near-surface deposits, due to localized water conditions potentially influenced by landscaping water and rainfall volume.

2.6 Faulting

California is located on the boundary between the Pacific and North American Lithospheric Plates. The average motion along this boundary is on the order of 50-mm/yr in a right-lateral sense. The majority of the motion is expressed at the surface along the northwest trending San Andreas Fault Zone, the major faults of which in the area include the San Andreas, Hayward, Calaveras, and Concord faults.

Prompted by damaging earthquakes in Northern and Southern California, State legislation and policies concerning the classification and land-use criteria associated with faults have been developed. Their purpose was to prevent the construction of urban developments across the trace of active faults. The result is the Alquist-Priolo Earthquake Fault Zoning Act, which was most recently revised in 1997 (Hart, 1997). According to the State Geologist, an active fault is defined as one, which has had surface displacement within the Holocene Epoch (roughly the last 11,000 years). A potentially active fault is defined as any fault, which has had surface displacement during Quaternary time (last 1,600,000 years), but not within the Holocene. Earthquake Fault Zones have been delineated along the traces of active faults within California. Where developments for human occupation are proposed within these zones, the state requires detailed fault investigations be performed so that engineering geologists can mitigate the hazards associated with active faulting by identifying the location of active faults and allowing for a setback from the zone of previous ground rupture.

While the subject site is not located within an Alquist-Priolo Earthquake Fault Zone and there are no known active or potentially active faults onsite, the site is, however, located approximately 6.6 kilometers from the Hayward Fault. The possibility of damage due to ground rupture is considered low since active faults are not known to cross the site.

Secondary effects of seismic shaking resulting from large earthquakes on the major faults in the Northern California region, which may affect the site include ground lurching and shallow ground rupture, soil liquefaction, dynamic settlement, seiches and tsunamis. These secondary effects of seismic shaking are a possibility throughout the Northern California region and are dependent on the distance between the site and causative fault and the onsite geology. The major active faults that could produce these secondary effects include the San Andreas, Hayward, Calaveras, and Concord faults. A discussion of these secondary effects is provided in the following sections.

2.6.1 Lurching and Shallow Ground Rupture

Soil lurching refers to the rolling motion on the ground surface by the passage of seismic surface waves. Effects of this nature are not likely to be significant where the thickness of soft sediments does not vary appreciably under structures.
Ground rupture due to active faulting is not likely to occur on site due to the absence of known active fault traces. Minor cracking of near-surface soils due to shaking from distant seismic events is not considered a significant hazard, although it is a possibility at any site, and is often associated with ridgelines.

2.6.2 Liquefaction and Dynamic Settlement

Liquefaction and liquefaction-induced dynamic settlement of soils can be caused by strong vibratory motion due to earthquakes. Liquefaction is typified by a buildup of pore-water pressure in the affected soil layer to a point where a total loss of shear strength occurs, causing the soil to behave as a liquid. Liquefaction primarily occurs in loose, saturated, granular soils while cohesive soils such as silty clays and clays are generally not considered susceptible to soil liquefaction. The effect of liquefaction may be manifested at the ground surface by rapid settlement and/or sand boils.

While the site is <u>not</u> located in a California Seismic Hazard zone for liquefaction nor is it located within a Potential Liquefaction Area of the City of Oakland Safety Element, it is located within approximately 350 feet of both (CDMG, 2003, City of Oakland, 2004). However, based on the design earthquake some sand layers in the upper approximately 30 feet are susceptible to liquefaction-induced settlement (dynamic settlement). Analyses based on the design earthquake Peak Ground Horizontal Acceleration (PGHA - 10 percent probability of exceedance in 50 years) was performed for the site based on our subsurface investigation and the historically high ground water level of 5 feet below existing ground surface. Seismically induced settlements were estimated by the procedure outlined by Tokimatsu and Seed (1987). The results of the analysis for the upper 50 feet indicate total seismic settlements below the site on the order of approximately 2 ½ inches occurring in the upper approximately 30 feet. Differential seismic settlement can be estimated as ½ of the total estimated settlement.

2.6.3 Lateral Spreading

Lateral spreading is a type of liquefaction induced ground failure associated with the lateral displacement of surficial blocks of sediment resulting from liquefaction in a subsurface layer. Once liquefaction transforms the subsurface layer into a fluid mass, gravity plus the earthquake inertial forces may cause the mass to move downslope towards a free face (such as a river channel or an embankment). Lateral spreading may cause large horizontal displacements and such movement typically damages pipelines, utilities, bridges, and structures. A procedure outlined by Youd, et al. requiring the design earthquake magnitude and corresponding fault distance is typically used to estimate lateral displacements.

Based on the relatively level nature of the site and the absence of a free face (slope embankment), the potential for lateral spreading is considered low.

2.6.4 <u>Tsunamis and Seiches</u>

Based on the distance of the site from the San Francisco Bay and the Pacific Ocean, the possibility of tsunamis and/or seiches affecting the site is considered to be low. The site is not located within a Tsunami RunUp Zone as designated in the City of Oakland Safety Element (2004).

2.7 <u>Seismicity</u>

The principal seismic hazard, which could impact the site, is strong ground shaking resulting from an earthquake occurring along any of the several active and potentially active faults in Northern California. We have performed a site-specific probabilistic ground motion analysis using FRISKSP (Blake, 2000) computer program. The probabilistic analysis was performed using attenuation equations published by Boore et al., 1997; Bozorgnia et al, 1999; Sadigh et al., 1997; and Campbell and Bozorgnia, 1997. The probabilistic analysis indicates that the average peak horizontal ground acceleration (PHGA) corresponding to 10 percent probability of exceedance in 50 and 100 years are 0.53g and 0.63g, respectively. These values were obtained by averaging the results of the above-referenced attenuation equations. The magnitude weighted PHGA (used for liquefaction analyses) is calculated to be 0.38g for a moment magnitude of 7.5 using Idriss' magnitude-weighting factor (1998).

Site seismic horizontal response spectrums based on attenuation relationship of Sadigh were prepared for average return periods of 475 years (10 percent probability of exceedance in 50 years) and 949 years (10 percent probability of exceedance in 100 years) and at damping ratios of 5, 7, and 10 percent. The response spectra from the 1997 U.B.C./2001 C.B.C. is also provided.

The seismic horizontal response spectrums and the results of our analysis are presented in Appendix D.

2.8 <u>U.B.C. Seismic Parameters</u>

The following are the seismic soil parameters per the 1997 U.B.C., and the 2001 C.B.C. (Section 1636):

Soil Profile Type $= S_D$ Seismic Zone = 4Seismic Source Type = ANear Source Factor, Na = 1.14Near Source Factor, Nv = 1.47

Refer to Appendix D.

2.9 <u>Corrosion Potential</u>

A corrosion suite (pH, resistivity, soluble sulfate, and chloride content) was performed on a sample obtained from LGC-1 to estimate the corrosion potential of onsite soils. The resistivity tests resulted in a minimum resistivity value of 13,480, pH value of 5.8, and chloride content of 43 ppm. The result of the soluble sulfate content test was less than 0.10 percent ("negligible" per 1997 U.B.C/2001 C.B.C. Table 19-A-4). Caltrans defines a corrosive area where any of the following conditions exist: the soil contains more than 500 ppm of chlorides, more than 2,000 ppm (0.2 percent) of sulfates, or a pH of 5.5 or less.

3.0 <u>CONCLUSIONS</u>

Based on the results of our subsurface investigation and our understanding of the proposed development, it is our opinion that the proposed development is feasible from a geotechnical standpoint, provided the recommendations contained in the following sections are incorporated during site construction and earthwork. A summary of our geotechnical conclusions follows:

- Based on our investigation and review of pertinent geologic maps and reports, the majority of the site is underlain by undocumented artificial fill materials, which are in-turn underlain by Temescal Formation materials.
- Ground water was encountered during our recent investigation at depths between approximately 10 and 15 feet below existing grades. The historic high ground water level is approximately 5 feet below existing ground surface.
- Active or potentially active faults are not known to exist on the site. The nearest known active fault to the site is the Hayward fault located approximately 6.6 kilometers from the site.
- The proposed development will likely be subjected to strong seismic ground shaking during its design life. The estimated peak horizontal ground acceleration with a 10 percent of probability of exceedance in 50 and 100 years is 0.53g and 0.63, respectively.
- The site is not located within a Seismic Hazard Zone for liquefaction. However, based on the results of our analysis, sand layers located in upper approximately 30 feet below existing ground surface have the potential for liquefaction during the design earthquake. Liquefaction analysis was performed for the historic high ground-water depth of approximately 5 feet below existing grades. Total seismic settlements are estimated to be on the order of 2 ½ inches.
- Based on laboratory test results, the onsite soils are anticipated to have very low to low potential for expansion. However, this should be confirmed at the completion of site earthwork.
- Based on laboratory test results, the onsite soils have a negligible potential for sulfate attack on normal concrete. However, this should be confirmed at the completion of site excavation.

4.0 <u>RECOMMENDATIONS</u>

The following recommendations are to be considered preliminary, and should be confirmed upon completion of site plans, grading, and earthwork operations. In addition, they should be considered minimal from a geotechnical viewpoint, as there may be more restrictive requirements from the architect, structural engineer, building codes, governing agencies, or the owner.

It should be noted that the following geotechnical recommendations are intended to provide the owner with sufficient information to develop the site in general accordance with the 2001 C.B.C. requirements. With regard to the potential occurrence of potentially catastrophic geotechnical hazards such as fault rupture, earthquake-induced landslides, liquefaction, etc., the following geotechnical recommendations should provide adequate protection for the proposed development to the extent required to reduce seismic risk to an "acceptable level". The "acceptable level" of risk is defined by the California Code of Regulations as "that level that provides reasonable protection of the public safety, though it does not necessarily ensure continued structural integrity and functionality of the project" [Section 3721(a)]. Therefore, repair and remedial work of the proposed structures may be required after a significant seismic event. With regards to the potential for less significant geologic hazards to the proposed development, the recommendations contained herein are intended as a reasonable mitigation against the potential damaging effects of these phenomena such as expansive soils, fill settlement, ground water seepage, etc. It should be understood, however, that our recommendations are intended to maintain the structural integrity of the proposed development and structures given the site geotechnical conditions, but cannot preclude the potential for some cosmetic distress or nuisance issues to develop as a result of the site geotechnical conditions.

4.1 <u>Site Earthwork</u>

We anticipate that earthwork at the site will consist of demolition of the existing structures on the site, pile driving, foundation construction, utility construction, and paving of the entrance drives. We recommend that earthwork onsite be performed in accordance with the following recommendations and the City of Oakland Requirements. In case of conflict, the following recommendations shall supersede all previous recommendations. The following recommendations should be considered preliminary and may be revised based on the actual conditions exposed during construction. If necessary, revisions will be provided based on encountered conditions.

4.1.1 <u>Site Preparation</u>

During preparation for the building footprint of the proposed structure, debris should be removed and properly disposed of offsite. Holes resulting from the removal of buried obstructions should be replaced with suitable compacted fill material (also see section 4.1.2).

4.1.2 <u>Removal and Recompaction</u>

Based on our review of the preliminary site plan, the proposed building footprint will include the entire site with the exception of a perimeter sidewalk and associated driveway approaches.

Building (Non-Structural) Slab on Grade: Undocumented fill soils should be completely removed to competent formational material and replaced with fill compacted to a minimum of 90 percent relative compaction (based on American Society for Testing and Materials [ASTM] Test Method D1557). The envelope for removals should extend a minimum distance of 5 horizontal feet beyond the edges of proposed improvement footprint. Based on our preliminary investigation, it is anticipated that removal depths ranging from approximately 5 to 10 feet across the site will be required. In lieu of performing removals for the proposed building slab, a structural slab designed to completely span between pile caps and grade beams may be constructed. Refer to Section 4.2.5.

<u>Sidewalk and Driveway Approaches</u>: The subgrade for the proposed sidewalk and driveway approaches should be overexcavated a minimum depth of 1 foot and recompacted to a minimum of 90 percent relative compaction.

Local conditions may be encountered which could require additional overexcavation. The actual depths and lateral extents of grading should be determined by the geotechnical consultant, based on the subsurface conditions encountered during grading. It should be noted that removal excavations may encounter ground water and placement of an approximately 8-inch thick layer of ³/₄-inch gravel (or alternative acceptable procedure) may be required in order to obtain an adequate subgrade prior to fill placement.

From a geotechnical perspective, the onsite soils are generally suitable for use as compacted fill, provided they are screened of organic materials, construction debris, and have a maximum diameter of 8 inches. Areas prepared to receive structural fill and/or other surface improvements should be scarified, brought to at least optimum-moisture content, and recompacted to at least 90 percent relative compaction (based on ASTM Test Method D1557). The optimum lift thickness to produce a uniformly compacted fill will depend on the type and size of compaction equipment used. In general, granular fill should be placed in uniform lifts not exceeding 8 inches in compacted thickness. Generally, placement and compaction of fill should be performed in accordance with local grading ordinances under the observation and testing of the geotechnical consultant. Oversized material (material larger than 8 inches in maximum dimension) should not be used.

4.1.3 Trench Backfill and Compaction

The onsite soils may generally be suitable as trench backfill provided the soils are screened of rocks and other material greater than 6 inches in diameter and organic matter. If trenches are shallow or the use of conventional equipment may result in damage to the utilities, a clean sand having a sand equivalent (SE) of 30 or greater (per Caltrans Test Method 217) or pea gravel may be used to bed and shade the pipes. Subsequent trench backfill should be compacted in uniform lifts (generally not exceeding 12 inches) to at least 90 percent relative compaction (per ASTM Test Method D1557). A representative from LGC should observe and test the backfill to verify compliance with the project specifications.

4.2 <u>Preliminary Foundation Recommendations</u>

Based on our field investigation, laboratory testing, and analyses, we recommend that the proposed tower be placed on a deep foundation system. The deep foundation may consist of 14-inch square precast concrete driven piles. Driven piles would be preferable to drilled piers due to the shallow ground water present at the site which may necessitate utilization of drilling polymers or casing during construction to reduce the potential for caving.

4.2.1 Driven Pile Foundations

An allowable axial compressive capacity of 200 kips may be used for 14-inch square concrete piles driven a minimum of 5 feet into the dense sand layer located approximately 30 to 35 feet below existing ground surface. For preliminary planning purposes, pile lengths on the order of 40 feet may be assumed. This allowable compressive capacity is primarily based on end-bearing and has been reduced due to potential downdrag (estimated at approximately 70 kips) due to site liquefaction potential. An allowable uplift axial capacity of 75 kips may be used in the design. These allowable pile capacities values are based on a factor of safety of 2.0.

It should be noted that the provided pile capacities are based on soil strengths alone. The actual capacities may be limited to lesser values by the strength of the pile materials and connections. For seismic or other short-term loading, the provided capacities may be increased by one-third. Piles should be spaced at a minimum on-center spacing of three times the pile width.

Lateral load analysis was conducted for a pile top deflection of ¹/₄ inch for both fixed and free head conditions for a 14-inch square driven pile. The profiles of deflection, shear force, and maximum induced bending moment along the length of the piles are presented in Figure 3A (Fixed Head) and Figure 3B (Free Head). It should be noted that the provided curves are ultimate values and therefore do not include a factor of safety.

The total and differential static settlement of the piles is estimated to be on the order of $\frac{1}{2}$ and $\frac{1}{4}$ inch, respectively. The foundation plan should be reviewed to confirm anticipated differential settlements.

4.2.2 <u>Driven Piles – Construction</u>

Due to the dense to very dense nature of the sand layer, the contractor should anticipate difficult driving conditions below a depth of approximately 30 feet below grade, isolated dense cobble and/or sand lenses may also occur above this depth. Predrilling to within 1 to 2 feet of the required embedment depth may be required for installation of the driven piles. Caving may be encountered during predrilling within the upper 30 feet of the subsurface materials. The depth of the very dense sand layer is anticipated to vary across the site resulting in varying pile lengths.

Any pre-drilling should be performed with an auger that has a cross-sectional area not exceeding 80 percent of the cross-section area of the pile. Pile driving should not be terminated until blow counts are greater than the minimum required in order to achieve the required allowable pile loads. Refusal is typically defined as the driving resistance corresponding to three times the required blow counts. Final driving criteria should be developed using wave equation analysis incorporating the results of the pile indicator program outlined below. A representative from LGC should be onsite full-time during pile driving operations.

4.2.3 <u>Pile Indicator Program</u>

Prior to production of foundation piles, we recommend that an indicator pile-driving program be performed to verify pile lengths and to evaluate the efficiency of the pile driving system. The program should be determined and coordinated through cooperation between LGC and a qualified local contractor. The exact locations and number of the indicator piles should be determined after the final layout and design loads have been established. Dynamic measurements during the indicator pile program using a Pile Driving Analyzer (PDA) is recommended for all indicator piles in order to evaluate blowcounts and refusal criteria required to obtain design capacities. The indicator pile-driving program should be observed and monitored by LGC. Prior to implementation, the geotechnical consultant should be provided with information on pile size and pile-driving equipment to develop pile-driving criteria. A vibration specialist should review the proposed pile-driving program and provide recommendations regarding potential vibration and its impact on adjacent structures.

4.2.4 <u>Alternative Pile Systems</u>

It is our understanding that "screwed-in" steel pipe piles filled with structural concrete typically referred to as full displacement piles (FDPs) are being considered as an alternative to driven piles. If FDPs are selected as an acceptable alternative, load testing in compression and tension should be performed prior to construction to establish pile capacities. The program should be determined and coordinated through cooperation between LGC and an experienced specialty contractor. LGC should perform full time observation during load testing operations. At the completion of load testing, LGC will provide axial and lateral capacities for the FDPs in a supplemental report.

4.2.5 <u>Building Slab on Grade</u>

The building slab may either be structural slab or a slab on grade provided that earthwork removals outlined in Section 4.1.2 are properly implemented. A structural slab should be designed to completely span between pile caps and grade beams assuming no support of underlying subgrade soils. In addition to not requiring earthwork removals within the building slab footprint, consideration should be given to providing a structural slab in order to minimize the potential for cracking following a moderate to large earthquake due to site liquefaction potential. Cracking and differential settlement of slabs on grade (non-structural slabs) and subsequent required repairs should be anticipated following a moderate to large earthquake.

Interior floor slabs with moisture sensitive floor coverings should be underlain by a moisture/vapor retarder to help reduce the upward migration of moisture from the underlying subgrade soils. The moisture/vapor retarder product used should meet the performance standards of an ASTM E 1745 Class A material, and be properly installed in accordance with ACI publication 302. It is the responsibility of the contractor to ensure that the moisture/vapor retarder systems are properly placed in accordance with the project plans and specifications, and that the moisture/vapor retarder materials are free of tears and punctures prior to concrete placement. Additional moisture reduction and/or prevention measures may be needed, depending on the performance requirements of future interior floor coverings.

Recommendations are traditionally included with geotechnical foundation recommendations for sand layers placed below slabs and above/below vapor retarders for the purpose of protecting the retarder and to assist in concrete curing. Sand layer requirements are the purview of the foundation engineer/structural engineer. We have provided recommendations that we consider to be a minimum from a geotechnical perspective

4.3 Soil Bearing

At-grade minor improvements on compacted fill material after recommended removals, such as small lightweight structures, retaining walls, trash enclosures, etc. may be supported on spread footings. An allowable soil bearing pressure of 2,000 pounds per square foot (psf) may be used for the design of footings having a minimum width 12 inches and minimum embedment of 24 inches into compacted fill (measured from the lowest adjacent ground surface). This value may be increased by 300 psf for each additional foot of embedment and 100 psf for each additional foot of foundation width to a maximum value of 3,000 psf. Footings should be a minimum of 2 feet below lowest adjacent grade. These allowable bearing pressures are applicable for level (ground slope equal to or flatter than 5H:1V) conditions only.

Bearing values indicated above are for total dead loads and frequently applied live loads. The above vertical bearing may be increased by one-third for short durations of loading which will include the effect of wind or seismic forces.

4.4 Lateral Earth Pressures

At this time, no subterranean structures or retaining walls are planned for the proposed development. However, the following preliminary recommendations are provided in the event retaining walls are chosen for the project.

Lateral earth pressures are provided as equivalent fluid unit weights, in psf/ft of depth or pcf. These values do not contain an appreciable factor of safety, so the civil and/or structural engineer should apply the applicable factors of safety and/or load factors during design. A soil unit weight of 125 pcf may be assumed for calculating the actual weight of soil over the wall footing.

Retaining wall structures should be provided with adequate backfill drainage and waterproofing to reduce the potential for ground water seepage below the ground-water table as well as nuisance water issues that may develop above the ground water table. Backfill drainage typically consists of vertical

Geotechnical Boring Log LGC-1 Date: 02/28/05 Drilling Company: Gregg														
Date:	Date: 02/28/05 Drilling Company: Gregg													
Proje	Project Name: 222 BroadwayType of Rig: Hollow StemProject Number: 041084-01Drop: 30"Hole Diameter: 8"Elevation of Tap of Hole: 10' MSIDrive Weight: 140 pounds													
Proje	ct Nu	mbe	er: 04	1084-	01	01		Drop: 30" Hole Diameter:	8					
Lieva		DT TC		loie:		SL tion N	lan	Page: 1	of 2					
nule	LUCa		366		LUCA		nap							
)er		Cf)		_							
Ð		g	mt	1	V (F	(%)	oqt	Батріец Бу. Кімі	st					
) u	(f)	; Lc	Ĩ	uno	Isit	e (Syn		Te					
atic	th (hic	ple	Ŭ	Der	stur	S		e o					
ev	epi	irat	am	No	2	lois	SC	DECODIDION	yp(
Ш		0	S			2		DESCRIPTION	F					
10	0_			-				Undocumented Fill						
				-										
	-		B-1	I			SP-SM	@2'- Fine Sand: brown, moist, slightly silty	EI CR					
5—	5 —		R-1	1	107.8	7.1		@5'- Fine Sand: brown, moist, loose	CN					
	-		Ľ.	3										
	1			1										
	1													
0_	10		CDT_2					Temescal Formation						
	-		571-2	6 10				silty.						
				12										
			1.15	-										
		-												
-5	15 —		R-3	4	114.9	15.0	SM	@15'- Silty Fine Sand: brown to gray brown, very moist						
	3			6				Cover, loose						
	1							cround watch chebunicies at approximately to rect						
	4													
-10-	20 —		SPT-4	5				@20'- Silty Fine Sand: gray brown, with orange mottling,	SA					
	-			X 7				wet, medium dense						
	-		1111											
	1		19.12											
-15	- 25		DE					@25'- Silty Fine Sand: gray brown and grange brown						
-10	- 20		K-3	5	114.6	16.9		very moist to wet, slightly to medium dense.	DS					
	-			9										
	-			_										
	-			-										
-20	30 —													
LA	WSON	AND	ASSOC	ATES	THIS	SUMMAR	Y APPLIES O THIS BORIN	ONLY AT THE SAMPLE TYPES: TEST TYPES: G AND AT THE TIME OF B BULK SAMPLE DS DIRECT SHEAR DIRECT SHEAR DD MAXIMUM DENSITY	,					
GEOTE	CHNIC	ALC	ONSUL	TING, IN	IC. DRIL DIFF	ER AT OT	BSURFACE C	CONDITIONS MAY G GRAB SAMPLE SA SIEVE ANALYSIS ONS AND MAY SPT STANDARD PENETRATION S&H SIEVE AND HYDRO	METER					
	OF TIME, THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS													
				7	ENC	OUNTERE	D.	AL ATTERBERG LIMIT CO COLLAPSE/SWELL RV R-VALUE	3					

					G	eot	echi	nical	Boring Log LGC-1	
Date:	02/2	8/05							Drilling Company: Gregg	
Proje	ct Na	me:	222	Bro	badwa	ay			Type of Rig: Hollow Stem	
Proje	ct Nu	mbe	er: 04	10	84-01				Drop: 30" Hole Diameter:	8"
Eleva	tion of	of To	op of	Ho	le: 10	MS	L Lion N	lan	Drive weight: 140 pounds	of 2
Hole	Loca	tion:	See			.oca		ар	Faye. 2	012
			er		1-	G		_	Logged By: RM	
æ		0	qu		-	d) /	(0)	oq	Sampled By: RM	st
n (f	0	Lo	N		In	sity	6) e	ym		Te
atio	h (f	hic	<u>e</u>		ů)en	ture	S		of
eva	sptl	rap	E I		MO	7	oist	SC		/pe
Ē	ð	Ū	ŝ		ā	Ā	Ň	ň	DESCRIPTION	F
-20	30 _		SPT-6	М	8 21			SM	@30'- Silty Fine Sand: gray brown, wet, dense	SA
	-			Ħ	27					
				П						
-25	35 —		R-7B		22 1	112.0	16.3		@35'- Silty Fine to Medium Sand: gray brown, wet, very	
	-				44				dense	
	-			Ħ٥	50/5"					
	-			H						
-30-	40		CDT 0	E					@40' Fine Sand: brownish grov wat your danse	
-30-	40		591-8	X	11 30				@40 - Fine Sand: brownish gray, wet, very dense	
	- 1			Ĥ	32					
	-			Н						
0.5	-			H			1.2.2.			
-35—	45 —		R-9	5	38 50/3"	113.7	18.6		@45'- Fine Sand slightly silty: gray brown, wet, very dense	
	-	0		H						
	-		Ú.	Н						
-40	50 —	-	SPT-10	M	16				@50'- Fine to Medium Sand: gray, wet, very dense;	
				Δ5	50/4"				slightly slity	
	1									
	-			4						
-45-	55 —		R-11		50/4"				@55'- No recovery: auger plugged.	
	-			H	-	-				
	1		—		-				Total depth: 55.3' Ground Water encountered at approximately 15'	
									Backfilled with grout	
-50—	60 —		11			- 1	1.00			
	WSON	AND	ASSOC		ES	THIS	SUMMAR		ONLY AT THE SAMPLE TYPES: TEST TYPES: LO AND AT THE THE OF B BUILS SAMPLE DS DIRECT SHEAR	
GEOTE	CHNIC	CALC	ONSUL	TIN	G, INC.	DRILL	LING. SUB	SURFACE	CONDITIONS MAY G GRAB SAMPLE SA SIEVE ANALYSIS	WETER
						CHAN OF T	NGE AT TH	IIS LOCATIO	ON WITH THE PASSAGE TEST SAMPLE EI EXPANSION INDEX SENTED IS A EI EXPANSION INDEX	NEICK
			10			SIMP		N OF THE A D.	ACTUAL CONDITIONS CR CORROSION AL ATTERBERG LIMITS CO COLLAPSE/SWELL	
			~						RV R-VALUE	

			G	eot	echn	ical	Bori	ng Log Borehole LGC-2						
Date:	Date: 02/28/05 Drilling Company: Gregg Project Name: 222 Broadway Type of Rig: Hollow Stem Auger													
Proje	ct Na	me:	222 B	road	way			Type of Rig: Hollow Stem Auger						
Proje	ct Nu	mbe	er: 041	084-0)1			Drop: 30" Hole Diameter:	8"					
Eleva	tion	of To	op of H	lole:	12' MS	<u>SL</u>		Drive Weight: 140 pounds						
Hole	Locat	tion:	Seet	Soring	g Loca	tion	-	Page: 1	or z					
Iviap			ក		ନ			Logged By: RM						
		-	qu		đ		loc	Sampled By: RM	.					
E	_	°,		pt 1	lity	%)	JE (es					
ior	(Ħ)	0	e	0	Sua	lle	S		of					
val	pth	hde	du	3	Q	istu	CS		e					
Ш	Del	5 U	Sai	Bell	L C	Mo	ns	DESCRIPTION	Tyk					
12	0		1.595											
								@0' - Asphalt Concrete						
	-		B-1	T I					EI					
	-			1										
_	-						1.2.2							
(-	5-		SPT-1				SM	@5' Slity Fine Sand: light brown, very moist, loose						
				2										
	1 1													
	-					· · · · ·		Temperal Fermation						
2-	10 —		R-2	9	117.9	11.5		@10' Silty Fine Sand: mottled gray with brown very moist						
	-			18		- A 30701		to wet, medium dense						
	-	<u> </u>		20				Ground water encountered at 12'						
	-	-		-										
	-			-										
-3—	15 —		SPT-3	4				@15' Silty Fine Sand: mottled gray with orange brown,						
	-			5				loose; slightly clayey						
	-													
				-										
									1					
-8	20		R-4	10 13	113.0	18.7		werv moist medium dense	DS					
				10										
	1 2													
-13—	25 —	11	SPT-5	2				@25' Silty Fine Sand: gray brown, wet, medium dense;						
	-			5				slightly clayey						
	-			7 '										
	-			-										
	1.0													
-18—	30 —													
LA	WSON	AND	ASSOCI	ATES	THIS	SUMMAR	Y APPLIES (THIS BORIN	DNLY AT THE SAMPLE TYPES: TEST TYPES: G AND AT THE TIME OF B BULK SAMPLE DS DIRECT SHEAR						
GEOTE	CHNIC	ALC	ONSULT	TING, IN	IC. DRIL	LING. SUB	SURFACE (CONDITIONS MAY RING SAMPLE MD MAXIMUM DENSITY G GRAB SAMPLE SA SIEVE ANALYSIS ONS AND MAY SEVE AND HYDRO	METER					
	CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A OF TIME. THE DATA PRESENTED IS A CONSOLIDATION CONSOLIDATION CONSOLIDATION													
				2	ENC	OUNTERE	D. OF THE A	AL ATTERBERG LIMIT CO COLLAPSE/SWELL	6					
			and the second s					RV R-VALUE						

							14		
			(Geote	echn	ical	Bor	ing Log Borehole LGC-2	
Date:	: 02/28	8/05						Drilling Company: Gregg	
Proje	ct Na	me:	222 E	Broadv	vay			Type of Rig: Hollow Stem Auger	
Proje	ct Nu	mbe	er: 04	184-01				Drop: 30" Hole Diameter:	8"
Eleva	ation of	OT I C	op or	Hole:				Drive Weight: 140 pounds	-1-1
Hole	Loca	uon:	See	Geored	chnica	u wap	<u></u>	Page: 2	012
			er		cf)			Logged By: RM	
t)		0	d m		d) ,	()	lod	Sampled By: RM	st
n (f	()	Lo	N	n l	sity	(%)	ym		Te
itio	€)	nic	le	ပီ	len	nre	S		of
eve	pth	apl	E E	N	Z Z	oist	ő		be
Ĕ	ď	Q	Sa	Ē	D	Ŭ	ŝñ	DESCRIPTION	Ty
-18	30 _		R-6	35 50/ 5"	114.7	15.9	SM	@30' Silty Fine Sand: gray brown, wet, very dense	
	_								
	_			-					100
-23—	35 —		R-7	17 28	113.0	16.1		@35' Silty Fine Sand: gray brown, wet, dense	DS
	-			28					
	1								
-28—	40 —		R-8	16				@40' Silty Fine Sand: gray, with orange brown mottling,	
	1			33				very moist to wet, dense	
	-			-					
-33—	- 45 —		SPT-9					@45' Silty Fine Sand: gray, wet, dense	
	-			16 27				Geo only i mo cana. gray, wel, achoc	
	_								
	-			-					
-38—	50 —		R-10	17 50/5"				@50' Silty Fine Sand: gray, moist, very dense	
				-					
	_								
-43	55 —		SPT-11	26 25				@55 No recovery; auger plugged	
			1	/ 17	-			Tatal double 551	
	<u>-</u>			-				Ground Water @ approximately 15' - 20'	
	60							Backfilled with grout.	21
	00-				тнія	SUMMARY	APPLIES	ONLY AT THE SAMPI F TYPES: TEST TYPES	
LA	WSON .	AND	ASSOC	IATES	C. DRIL	ATION OF T	HIS BORIN	NG AND AT THE TIME OF B BULK SAMPLE DS DIRECT SHEAR CONDITIONS MAY R RING SAMPLE MD MAXIMUM DENSITY	
					DIFFI	ER AT OTH NGE AT TH	ER LOCAT	IONS AND MAY SPT STANDARD PENETRATION S&H SIEVE ANALVSIS ON WITH THE PASSAGE TEST SAMPLE EI EXPANSION INDEX	METER
		6	10		OF T SIMP	IME. THE I	N OF THE	ACTUAL CONDITIONS CN CONSOLIDATION CTUAL CONDITIONS CR CORROSION AL ATTERBERG LIMITS	
		N	1		ENG	JUNIEREL		CO COLLAPSE/SWELL RV R-VALUE	

	-224 mil - 4-54	i ya ka d _{al} gan An	995-185-		Geo	ote	chn	ical	Boring Log LGC-2B	
Date:	03/0	2/05							Drilling Company: Gregg	
Proje	ct Na	me:	222 B	road	lway				Type of Rig: Mud Rotary	
Proje	ct Nu	mbe	er: 04	1084	-01		_		Drop: 30" Hole Diameter:	8"
Eleva	tion	of To	p of h	lole	12'	MS	L	-	Drive Weight: 140 pounds	- 5 4
Hole	Locat	tion:	See E	Borir	ig Lo	ocat	ion Iv	lap	Page: 1	01 4
			Ŀ		6				Logged By: RM	
0		-	nb		4	5	()	lod	Sampled By: RM	ы.
) (ft	~	Γο	Nur	unt	1 i	SIL	%)	уm		Te
tior	i (ft	jic	e	8			nre	S		of
eve	pth	apt	du	1		2	ist	SS		be
Ē	De	Ð	Sa	B		5	M	ns	DESCRIPTION	$\overline{\mathbf{y}}$
12'	0			1	-			-	Undocumented Fill	
									@0' - Asphalt Concrete	
	3									
	1			_						
7'—	5 —			4						
	-			-						
	+	-								
	-			-						
	1.1			-					Temescal Formation	
2'—	10 —			-						
	1	V		1						
		Ŧ							Ground water encountered at approximately 12 feet	
-3'	15 —		P -1		114	53	15.0	SW	@ 15'- Silty Fine Sand: brown wet medium dense	CN
	-		N-1	13			10.0	SIVI		27%
	_			13						Fines
	-			_						
				-						
-8'—	20 —	-	SPT-2	5					@ 20'- Silty Fine Sand: brown, wet, medium dense	27%
	-			X 9						1 1165
	-			- °						
			1							
10	-									
-13'—	25 —	1	SPT-3	$\sqrt{\frac{2}{2}}$					@ 25'- Silty Fine Sand: brown with gray mottling, wet,	SA
				3						
					-					
	_				-					
-18'—	30 —	1		-						
	WEON		48800	ATES	-	THIS S	SUMMAR	Y APPLIES C	DNLY AT THE SAMPLE TYPES: TEST TYPES:	101 13 - 2045 - 201 270
GEOTE	ECHNIC	AND ALC	ONSUL	FING,	INC.	DRILLI	TION OF T	THIS BORIN SURFACE C	G AND AT THE TIME OF B BULK SAMPLE DS DIRECT SHEAR CONDITIONS MAY R RING SAMPLE MD MAXIMUM DENSITY G GRAB SAMPLE SA SIEVE ANALYSIS	
						CHAN	GE AT TH	IER LOCATION	ONS AND MAY SPT STANDARD PENETRATION S&H SIEVE AND HYDRO ON WITH THE PASSAGE TEST SAMPLE EI EXPANSION INDEX ENTED IS A CONSCILIDATION	METER
		C	TO			SIMPL	IFICATIO	N OF THE A	CTUAL CONDITIONS CR CORROSION AL ATTERBERG LIMITS	3
			~						CO COLLAPSE/SWELL RV R-VALUE	

					G	eote	echn	ical	Boring Log LGC-2B					
Date:	03/0	2/05	5						Drilling Company: Gregg					
Proje	ct Na	me:	222	Br	oadv	vay			Type of Rig: Mud Rotary					
Proje	Project Number: 041084-01 Drop: 30" Hole Diameter: 8" Elevation of Top of Hole: 12' MSL Drive Weight: 140 pounds Page: 2 of 4 Hole Location: See Boring Location Map Page: 2 of 4													
Eleva	tion d	of I (op ot	H	ole:	12' IVIS	SL Hon M	lan	Drive weight: 140 pounds	-6 4				
поје	Local		See		oring	Loca		пар	Page: 2	or 4				
on (ft)	(ft)	c Log	e Number		ount	nsity (pcf)	e (%)	Symbol	Logged By: RM Sampled By: RM	f Test				
'ati	th	phi	d		0 >	De	stur	S		ю Ф				
<u>lev</u>	Jep	Bra	Sam		Slov	J _T	Aois	JSC	DECODIDITION	yp				
10		0	0	\bigcup	ш 5		2	ر	DESCRIPTION	F				
-18	30 _ - -		SPT-4	X	12 19			SM	@ 30'- Silty Fine Sand: gray brown to orange brown, wet, dense	SA				
-23'—			SPT-5	X	13 20 25				@ 35'- Silty Fine Sand: gray to brown gray, wet, dense					
-28'—	- 40 — -		SPT-6	X	11 15 16				@ 40'- Silty Fine Sand: gray brown, wet, dense	SA				
-33'—	- 45 — -		SPT-7	X	18 24 29				@ 45'- Silty Fine to Medium Sand: gray brown to brown, wet, very dense					
-38'—	- 50 — -		SPT-8	X	5 8 9			CL	@ 50'- Fine Sand to Lean Clay: gray with some brown mottling, wet, medium dense	S&H AL				
-43'—	- 55 — -		R-9		6 7 7	108.7	17.2	SM	@ 55'- Silty Fine Sand: gray brown, wet, loose; possibly disturbed					
-48'—	60 —													
LA GEOTE			ASSOC ONSUL		TES NG, IN	C. DRILI DIFFI CHAIN OF TI SIMP ENCO	SUMMARY ATION OF T LING. SUB ER AT OTH NGE AT TH IME. THE D LIFICATION DUNTERED	APPLIES O THIS BORING SURFACE C IER LOCATIO IS LOCATIO DATA PRESE N OF THE AC	INLY AT THE SAMPLE TYPES: TEST TYPES: 3 AND AT THE TIME OF SONDITIONS MAY R RING SAMPLE DS DIRECT SHEAR DONDITIONS MAY G GRAB SAMPLE SA SIEVE ANALYSIS DNS AND MAY SFT STANDARD PENETRATION S&H SIEVE AND HYDRON N WITH THE PASSAGE ENTED IS A CTUAL CONDITIONS CTUAL CONDITIONS ALL ATTERBERG LIMITS CO COLLAPSE/SWELL RV R-VALUE	IETER				

					G	eote	chn	ical	Boring Log LGC-2B	
Date	03/0	2/05	5						Drilling Company: Gregg	
Proje	ct Na	me:	222 E	Bro	oadv	vay			Type of Rig: Mud Rotary	
Proje	ct Nu	mbe	ər: 04	1	084-0	101 MA	01		Drop: 30" Hole Diameter:	8"
LIEVa	tion d	OT TO			ole:		SL tion N	Ian	Drive weight: 140 pounds	of A
TUIC	LUGa		366		Jing	LUGa		hap	Fage.v	014
Elevation (ft)	Depth (ft)	Graphic Log	Sample Number		Blow Count	Dry Density (pcf)	Moisture (%)	USCS Symbol	DESCRIPTION	Type of Test
-48'	60 _		SPT-10	X	12 11 9			SM	@ 60'- Silty Fine Sand: medium to dark gray, wet, medium dense; with trace clay	
-53'—	65 —		R-11		6 10 13	110.3	18.1	SC	@ 65'- Silty Clayey Fine Sand: fine, gray brown, wet, medium dense to stiff	CN
-58'—	- 70 — - -		SPT-12	X	4 5 7			CL	@ 70'- Silty Clay to Clayey Silt: gray with minor brown mottling, very moist, firm; slightly sandy. Top has more clay, stiff.	S&H AL
-63'—	- 75 — - -		SPT-13		5 8 10				@ 75'- Silty Clay: gray to blue gray with brown mottling, moist, very stiff	
-68'—	- 80 — - -		R-14		9 12 14	107.3	20.0		@ 80'- Sandy Clay to Clay: mottled light to medium green gray, moist, very stiff	
-73'—	- 85 — - - -		SPT-15	X	2 4 6				@ 85'- Silty Clay: greenish gray with minor brown mottling, moist, stiff.	
-78'—	90 —									
LA GEOTE		AND AL CO	ASSOC ONSUL		TES NG, INC	C. DRILL DIFFI CHAT OF TI SIMP ENCO	SUMMARY ATION OF T LING. SUB ER AT OTH NGE AT TH IME. THE D LIFICATION DUNTERED	APPLIES O THIS BORING SURFACE C ER LOCATIO IS LOCATIO DATA PRESE N OF THE AC	NLY AT THE SAMPLE TYPES: TEST TYPES: G AND AT THE TIME OF B BULK SAMPLE DS DIRECT SHEAR ONDITIONS MAY R RING SAMPLE MD MAXIMUM DENSITY ONS AND MAY G GRAB SAMPLE SA SIEVE ANALYSIS ONS AND MAY SPT STANDARD PENETRATION S&H SIEVE AND HYDRON N WITH THE PASSAGE TEST SAMPLE EI EXPANSION INDEX ENTED IS A CN CONSOLIDATION CTUAL CONDITIONS AL ATTERBERG LIMITS CO COLLAPSE/SWELL RV R-VALUE	1ETER

				Ģ	Seote	echn	ical	Boring Log LGC-2B	
Date	: 03/0	2/05	i					Drilling Company: Gregg	
Proje	ect Na	me:	222 B	roadv	way			Type of Rig: Mud Rotary	
Proje	ect Nu	mbe	er: 041	084-	01			Drop: 30" Hole Diameter:	8"
Eleva	ation	of To	op of H	lole:	12' MS	<u>SL</u>		Drive Weight: 140 pounds	
Hole	Locat	tion	See B	oring	J Loca	tion N	lap	Page: 4	of 4
	1 4		5	-	£			Logged By: RM	
			- de		d)		lo	Sampled By: RM	
(Ħ		0	In	III	Į	%)	mt		est
ion	(Ħ)	0	e	Sol	Sus	e	Sy		f T
vat	oth	hd	du	N	Ď	stu	SS		e
Ele	Dep	Gra	Sar	Blo	Dry	Moi	nSı	DESCRIPTION	Typ
-78'	90		R-16	4	70.1	50.3	CL	@ 90'- Silty Clay to Clay: gray green, moist, stiff.	
				8					
-83'—	95 —		SPT-17	2				@ 95'- Clay to Silty Clay: medium to dark gray, moist.	
	-		L Z	4				medium stiff	
	_			1					
1	-		-		125.1				
-88'—	100		R-18	10 17 24	113.9	16.7		@ 100'- Silty Clay to Clayey Silt: gray green, moist, very stiff; with fine sand	
								Ground Water encountered at approximately 12' Backfilled with grout	
_									
LA	WSON	AND	ASSOCIA	TES	THIS		APPLIES O	NLY AT THE SAMPLE TYPES: TEST TYPES: 3 AND AT THE TIME OF B BULK SAMPLE DIS DIFFORT SHEAP	
GEOTE				ING, IN	C. DRIL DIFF CHAI OF T SIMP ENCO	LING. SUBS ER AT OTH NGE AT TH IME. THE D LIFICATION OUNTERED	SURFACE C ER LOCATIO IS LOCATIO DATA PRESE OF THE AC	ONDITIONS MAY ONDITIONS MAY SONDITIONS MAY SPT STANDARD PENETRATION N WITH THE PASSAGE CTUAL CONDITIONS CTUAL CONDITIONS	IETER

Geotechnical Boring Log LGC-3 Date: 03/01/05												
Date: 03/01/05 Drilling Company: Gregg Project Name: 222 Broadway Type of Rig: Mud Rotary												
Project Name: 222 BroadwayType of Rig: Mud RotaryProject Number: 041084-01Drop: 30"Hole Diameter: 8Elevation of Top of Hole: 0' MSIDrive Weight: 140 nounder												
Proje	ct Nu	mbe	er: 04	1084	01		_	Drop: 30" Hole Diameter:	8"			
LIEVa		OT IC		Hole:	9. 100	-	Man	Drive weight: 140 pounds	E A			
поје	LUUa		366				viap		014			
			Der 1		cf)		_					
ft)		D	mt	₊ _	V (F	(9)	oqu	Sampled By: RIVI	st			
) u	ff)	Lo	Я	l n	Isit	0)) Mu		Te			
atic	h (i	hic	ple	Ŭ	Der	tur	S		of			
lev	ept	rap	am	No	2	lois	sc		ype			
ш		0	S	m		2		DESCRIPTION	H			
9'	0_			H				Undocumented Fill	-			
	-			H								
				Н								
	12			Η								
4'—	5-		R-1	2	114.5	15.4	SM	@ 5'- Silty Fine Sand: gray with orange brown, moist,				
	1			7								
	_											
6 G.	-	_		4				Temescal Formation				
-1'—	10 —	<u> </u>	SPT-2	7				@ 10'- Silty Fine Sand: orange to gray brown, wet,	17%			
								medium dense	Fines			
	-			H				Ground water was encontered at approximately 10'				
-6'	15 —		R-3	15	1187	14.7		@ 15'- Silty Fine Sand: orange brown to gray wet	De			
	-		1.50	13	110.7	14.7		medium dense	05			
	-			10								
	-			-								
	1			-								
-11'—	20 —		SPT-4	$\sqrt{\frac{4}{7}}$				@ 20'- Silty Fine Sand: gray brown, wet, medium dense	16% Fines			
				10					1 1165			
	_											
-16'—	25 —		R-5	4				@ 25'- No Recovery				
	-			5								
	-											
21'_	30											
-21-	30 -	_		1		SUMMAD	VADDUESO					
LA	WSON /		ASSOC	IATES	LOC.	ATION OF	THIS BORING	SAND AT THE TIME OF B BULK SAMPLE DS DIRECT SHEAR ONDITIONS MAY R RING SAMPLE MD MAXIMUM DENSITY				
01010				,	DIFF	ER AT OTH	HER LOCATIO	DNS AND MAY G GRAB SAMPLE SA SIEVE ANALYSIS SPT STANDARD PENETRATION S&H SIEVE AND HYDROME N WITH THE PASSAGE TEST SAMPLE EI EXPANSION INDEX	TER			
	OF TIME. THE DATA PRESENTED IS A CN CONSOLIDATION SIMPLIFICATION OF THE ACTUAL CONDITIONS CR CORPOSION AL ATTERBERG LIMITS											
		Ne	~		ENC	UNITENEL		CO COLLAPSE/SWELL RV R-VALUE				

					G	eot	ech	nical	Boring Log LGC-3	NIL .
Date	: 03/0	1/05	5						Drilling Company: Gregg	
Proje	ect Na	me:	222 E	Bro	oadw	ay			Type of Rig: Mud Rotary	
Proje	ect Nu	mbe	er: 04	11	084-0	1	_		Drop: 30" Hole Diameter: 8	B"
Eleva	ation of	DT I	op or		DIE: 9	MSL	- 41 a.m		Drive weight: 140 pounds	E A
Man	LUCA		. See		Sring	Loca	lion		Page: 2 o	14
map			e			cf)		1.15	Logged By: RM	
Ê		σ	d m			d) /	()	poq	Sampled By: RM	st
u u	f)	Lo	N		n	sit	0)	yn		Te
atic	h (I	hic	ple		ŭ	Der	ture	S		of
eva	ept	rap	am		NO	Z Z	ois	SC		/be
Ξ	Ω	G	S.		B	D	Σ) D	DESCRIPTION	F
-21'	30 _		SPT-6	M	7			SM	@ 30'- Silty Fine Sand: gray with orange brown, wet,	
	-	2	计工程	Ħ	18				medium dense to dense	
	-			Н						
				Н						
-26'—	35 —		R-7		19				@ 35'- Silty Fine to Medium Sand: gray brown, wet,	
	-				33				dense	
				Π						
-31'—	40 —		SPT-8		10				@ 40'- Silty Fine to Medium Sand: gray brown wet yery	
	-		0.10	X	21				dense	
	-			Ħ	33					
	-			Н						
	-			Н						
-36'—	45 —		R-9		31	113.3	18.1		@ 45'- Silty Fine to Medium Sand: brownish gray, moist	
	-				49 42				to wet, very dense	
	2				-					
-41'—	50 —		SPT-10	Ц	12				@ 50'- Silty Fine Sand: gray wet very dense	
1111	-			X	26					
	-		1.1.1	H	39					
	-			-						
-46'—	55 -		R-11		24	113.7	18.1		@ 55'- Silty Fine to Medium Sand: gray, wet, very dense	
	5	$ \mathbf{b} _{1}$			50/5"					
	_									
	4									
-51'—	60 —			-						
LA	WSON	AND	ASSOC	A	TES	THIS		APPLIES O	I NLY AT THE SAMPLE TYPES: TEST TYPES: 2 AND AT THE TIME OF B BUILK SAMPLE DE DE DEST SUISAD	-
GEOTE	CHNIC	AL CO	ONSUL	TIN	IG, INC	DRILL	ING. SUB	SURFACE CI	ONDITIONS MAY R RING SAMPLE DS DIRECT SHEAR GRAB SAMPLE MD MAXIMUM DENSITY DNS AND MAY G GRAB SAMPLE SA SIEVE ANALYSIS	
		-				CHAN OF TI	IGE AT TH ME. THE D	IS LOCATION	N WITH THE PASSAGE SPI STANDARD PENETRATION S&H SIEVE AND HYDROMET TEST SAMPLE EI EXPANSION INDEX ENTED IS A CN CONSOLIDATION	ER
			10	2		SIMPL		N OF THE AC	CTUAL CONDITIONS CR CORROSION AL ATTERBERG UNITS CO COLLARS (SUMEL)	
									RV R-VALUE	

					(Geot	ech	nical	Boring Log LGC-3	
Date:	03/0	1/05	5						Drilling Company: Gregg	
Proje	ct Na	me:	222 E	3r	oadv	vay			Type of Rig: Mud Rotary	
Proje	ct Nu	mbe	er: 04	11	084-0	01			Drop: 30" Hole Diameter:	8"
Eleva	tion o	of To	op of	H	ole:	9' MS	L		Drive Weight: 140 pounds	
Hole	Locat	tion	See	B	oring	y Loca	tion	Мар	Page: 3	of 4
			5			£			Logged By: RM	
			qu		1	d		lo	Sampled By: RM	-
E)	1.20	6	In		III	<u>1</u>	%)	a de		es
lon	(ft)	0	e e		Sol	Sus	e	Sy		fT
vat	oth	hd	ldu		N	ă	stu	SS		e
le l	Jep	Gra	Sar		Slo	Jr V	Voi	JS(DESCRIPTION	Γyp
E41		0			5		~			
-51	60 _		SPT-12	X	9	1.1		CL	@ 60'- Silty Clay with trace of Sand: medium gray, very	
	-			Ħ	11					
	-			Н		11				
	-			Н						
-56'—	65 —		R-13		7	111.7	17.6		@ 65'- Silty Clay: medium to dark gray with minor brown	
	-				16				mottling, moist, very stiff	
	-			Н	24					
	-			Н						
1.	1			Н						
-61'—	70 —		SPT-14	М	6				@ 70'- No Recovery	
				Д	8 11					
	-			Н						
	1			П						
001	75		-				1000			
-00 -	/5-	10.1	R-15		8	109.1	20.4	\rightarrow	@ 75'- Silty Clay: medium to dark gray, moist, stim	
			1		13					
-71'-	80 -		SPT-16					SCICI	@ 80'- Clavey Fine Sand to Sandy Clay: gray, very	
	-		3-1-10	M	8			SC/CL	moist to wet, medium dense to stiff	
	_			A	10					
	_			4						
	-			Н						
-76'—	85 —		R-17		5	1 4- 6	1	CL	@ 85'- Silty Clay: medium to dark gray with greenish	
	-				6				gray mottling, moist, stiff; minor orange brown mottling	
	-			F	9					
	4			Н						
	-			Н						
-81'—	90 —			Н						
LA	WSON	AND	ASSOC	A	TES	THIS	SUMMAR	Y APPLIES O	INLY AT THE SAMPLE TYPES: TEST TYPES: G AND AT THE TIME OF B BULK SAMPLE DS DIRECT SHEAR	
GEOTE	CHNIC	ALC	ONSUL	TI	NG, IN	C. DRIL	LING. SUE	SURFACE C	ONDITIONS MAY R RING SAMPLE MD MAXIMUM DENSITY G GRAB SAMPLE SA SIEVE ANALYSIS ONS AND MAY STATUDAD PERFERENTIAL	VETED
				1		CHAI OF T	NGE AT TH	IS LOCATIO	N WITH THE PASSAGE TEST SAMPLE EI EXPANSION INDEX ENTED IS A CONSOLIDATION	WEIER
			10	3		SIMP	UFICATIO	N OF THE AC	CTUAL CONDITIONS CR CORROSION AL ATTERBERG LIMITS	
		N	A-			-			RV R-VALUE	

					(Geot	echi	nical	Boring Log LGC-3	
Date:	03/0	1/05	5						Drilling Company: Gregg	
Proje	ct Na	me:	222 E	Bre	oadw	vay			Type of Rig: Mud Rotary	
Proje	ct Nu	mbe	er: 04	10	084-0	01			Drop: 30" Hole Diameter:	8"
Eleva	tion d	of Ic	op ot	H	ole:	9. 1412	-	Man	Drive weight: 140 pounds	of A
HUIE	LUCa		See	Du	oring	LUCa	tion	Map		
			er			(cf)		_	Logged By: KM	
(f		0	d m			(p	(9)	poq	Sampled By: RM	st
l) u	(f	Lo	NZ		nn	Isit	e) e	ул Л		Чe
atio	h (f	hic	ple		Ŭ	Jer	ture	S		of
eva	ept	rap	am		No	2 Z	ois	SC		vpe
Ш	Ď	G	ŝ			ā	N	Ő	DESCRIPTION	F'
-81'	90 _		SPT-18	M	1 3 2			CL	@ 90'- Silty Clay to Clay: medium to dark gray, moist, medim stiff	
					-					
	1		12.53	Η						
-86'—	95 —		R-19		3				@ 95'- Clay to Silty Clay: medium to dark gray, moist,	
					6					
	-			Н						
-91'—	-		SPT-20	Ħ	6				@ 100'- No Recovery	
	-		01 1 20	M	9 12					
									Total depth: 101.5' Ground water encoutered at approximately 10 feet	
	_			H					Backfilled with grout	
-				Η						
	_									
	-			Н						
	-			Н						
-				Н						
				Π						
				Ц						
-				Н						
	6 -			Н						
	1			Н						
	-			Η						
	MOON		49900		TEQ	THIS	SUMMARY	APPLIES O	NLY AT THE SAMPLE TYPES; TEST TYPES;	
GEOTE	CHNIC	AL C	ONSUL	TIN	NG, IN	C. DRILL	LING. SUB	HIS BORING	G AND AT THE TIME OF BULK SAMPLE DS DIRECT SHEAR ONDITIONS MAY RING SAMPLE MD MAXIMUM DENSITY DNS AND MAY G GRAB SAMPLE SA SIEVE ANALYSIS	
	Π	(C	C			OF T SIMP ENCO	IME. THE I	DATA PRESE N OF THE AC	IN WITH THE PASSAGE SPT STANDARD PENETRATION S&H SIEVE AND HYDRON N WITH THE PASSAGE TEST SAMPLE EI EXPANSION INDEX ENTED IS A CN CONSOLIDATION CTUAL CONDITIONS AL ATTERERG LIMITS CO COLLAPSE/SWELL	METER
		-							RV R-VALUE	

1

1 1

11

TE

11

- -

1

11 1

From Lowney, 2001

. . .

APPENDIX A FIELD INVESTIGATION

The field investigation consisted of a surface reconnaissance and a subsurface exploration program using a truck-mounted, Cone Penetration Test (CPT) equipment. Three CPTs were performed on February 15, 2001, to a maximum depth of 43 feet. The approximate locations of the exploratory CPTs are shown on the Site Plan, Figure 2. The CPTs were performed in accordance with method ASTM D3441-86, by hydraulically pushing an instrumented probe into the ground. The probe utilized was an electronic friction-cone penetrometer that consisted of a 1.40-inch-diameter shaft with a conical tip that projects an area of 1.55 square inches. The cone is pushed continuously with a rate of penetration of 2 to 4 feet per minute.

The CPT cone measures tip resistance, sleeve friction, pore water pressure, and probe inclination at approximately 2-inch intervals. The data from the CPT probe was interpreted and a graphically representation of tip resistances, friction ratio (sleeve friction/tip resistance), equivalent penetration resistance, and estimated soil type is presented on the logs. The logs of the CPTs, as well as a key to the classification of the soil, are included as part of this appendix.

The locations of CPTs were approximately determined by tape measurement from existing site boundaries. Elevations of the CPTs were not determined. The locations of the CPTs should be considered accurate only to the degree implied by the method used.

The attached CPT logs and related information depict subsurface conditions only at the locations indicated and at the particular date designated on the logs. Subsurface conditions at other locations may differ from conditions occurring at these CPT locations. The passage of time may result in altered subsurface conditions due to environmental changes. In addition, any stratification lines on the logs represent the approximate boundary between soil types and the transition may be gradual.

ASSOCIATES

A−1 13/15

Operator: TIM d'ARCY

CPT Date/Time: 02-15-01 12:06

DAVID S

APPENDIX E

2006 GEOCHECK[®] – WELL SEARCH

The EDR Radius Map with GeoCheck[®]

Broadway/3rd Street Broadway/3rd Street Oakland, CA 94607

Inquiry Number: 01800014.1r

November 17, 2006

The Standard in Environmental Risk Management Information

EDR[®] Environmental

Data Resources Inc

440 Wheelers Farms Road Milford, Connecticut 06461

Nationwide Customer Service

 Telephone:
 1-800-352-0050

 Fax:
 1-800-231-6802

 Internet:
 www.edrnet.com

GEOCHECK ®- PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

BROADWAY/3RD STREET BROADWAY/3RD STREET OAKLAND, CA 94607

TARGET PROPERTY COORDINATES

Latitude (North):	37.79620 - 37° 47' 46.3"
Longitude (West):	122.276 - 122° 16' 33.6"
Universal Tranverse Mercator:	Zone 10
UTM X (Meters):	563742.8
UTM Y (Meters):	4183245.0
Elevation:	16 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map:	37122-G3 OAKLAND WEST, CA
Most Recent Revision:	1980

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

Assessment of the impact of contaminant migration generally has two principle investigative components:

- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).

TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General SW

Elevation (ft) N 37 ų 26 20 16 5 1 North South TΡ Elevation (ft) N N 19 ≌ West East TP 1/2 0 Target Property Elevation: 16 ft.

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

2

25

1 Miles

GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Target Property County ALAMEDA, CA	FEMA Flood <u>Electronic Data</u> YES - refer to the Overview Map and Detail Map
Flood Plain Panel at Target Property:	0650480015B
Additional Panels in search area:	0600020005B
NATIONAL WETLAND INVENTORY	NW/ Electronic
NWI Quad at Target Property OAKLAND WEST	<u>Data Coverage</u> YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Site-Specific Hydrogeological Data*:

Search Radius:	1.25 miles
Location Relative to TP:	1/2 - 1 Mile SSW
Site Name:	Naval Supply Center, Alameda Annex & Facility
Site EPA ID Number:	CA1170090012
Groundwater Flow Direction:	Southeast
Measured Depth to Water:	5 feet.
Hydraulic Connection:	Information is not available about the hydraulic connection between aquifer(s) underlying the site.
Sole Source Aquifer:	No information about a sole source aquifer is available
Data Quality:	Information based on site-specific subsurface investigations is documented in the CERCLIS investigation report(s)

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

MAP ID

LOCATION FROM TP 0 - 1/8 Mile East GENERAL DIRECTION GROUNDWATER FLOW

GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

	LOCATION	GENERAL DIRECTION
MAP ID	FROM TP	GROUNDWATER FLOW
2	1/8 - 1/4 Mile WSW	SE
A3	1/4 - 1/2 Mile ENE	NW
A4	1/4 - 1/2 Mile ENE	NW
A5	1/4 - 1/2 Mile NE	Varies
B6	1/4 - 1/2 Mile ENE	Varies
B7	1/4 - 1/2 Mile ENE	Ν
8	1/4 - 1/2 Mile East	Not Reported
C9	1/4 - 1/2 Mile South	Varies
C10	1/4 - 1/2 Mile South	N, E
11	1/4 - 1/2 Mile ESE	SE
C12	1/4 - 1/2 Mile South	Ν
C13	1/4 - 1/2 Mile South	Varies
14	1/2 - 1 Mile North	S
16	1/2 - 1 Mile East	NW
D17	1/2 - 1 Mile NE	NE
D18	1/2 - 1 Mile NE	NE
19	1/2 - 1 Mile North	E
20	1/2 - 1 Mile NE	W
E21	1/2 - 1 Mile ENE	Ν
E22	1/2 - 1 Mile ENE	W
F23	1/2 - 1 Mile NNE	N, S
24	1/2 - 1 Mile WNW	Ν
F25	1/2 - 1 Mile NNE	SW
F26	1/2 - 1 Mile NNE	SW
G27	1/2 - 1 Mile NW	S
G28	1/2 - 1 Mile NW	SE,S,Varies
G29	1/2 - 1 Mile NW	SE,S,Varies
H30	1/2 - 1 Mile NE	NE
H31	1/2 - 1 Mile NE	E
132	1/2 - 1 Mile NNE	NE
133	1/2 - 1 Mile NNE	NE, E, SE
134	1/2 - 1 Mile NNE	NE
J35	1/2 - 1 Mile WNW	SW
J36	1/2 - 1 Mile WNW	SW
37	1/2 - 1 Mile South	NE,NW,Varies
K38	1/2 - 1 Mile ESE	SW
39	1/2 - 1 Mile NNE	NNE,SE,S,SW
K40	1/2 - 1 Mile ESE	SE

For additional site information, refer to Physical Setting Source Map Findings.
GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Era:	Cenozoic	Category:	Stratifed Sequence
System:	Quaternary	0,	
Series:	Quaternary		
Code:	Q (decoded above as Era, System &	Series)	

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

SITE NAME: Broadway/3rd Street	CLIENT: Clayton Group Services
ADDRESS: Broadway/3rd Street	CONTACT: John D. Glover
Oakland CA 94607	INQUIRY #: 01800014.1r
LAT/LONG: 37.7962 / 122.2760	DATE: November 17, 2006 6:16 pm
	Copyright © 2006 EDB, Inc. © 2006 Tele Atlas Bel, 07/2005.

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. The following information is based on Soil Conservation Service SSURGO data.

Soil Map ID: 1			
Soil Component Name:	BAYWOOD		
Soil Surface Texture:	loamy sand		
Hydrologic Group:	Class A - High infiltration rates. Soils are deep, well drained to excessively drained sands and gravels.		
Soil Drainage Class:	Somewhat excessive. Soils have high hydraulic conductivity and low water holding capacity. Depth to water table is more than 6 feet.		
Hydric Status: Soil does not meet the requirements for a hydric soil.			
Corrosion Potential - Uncoated Steel:	MODERATE		
Depth to Bedrock Min:	> 0 inches		
Depth to Bedrock Max:	> 0 inches		

	Soil Layer Information						
	Bou	indary		Classi	fication		
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	Permeability Rate (in/hr)	Soil Reaction (pH)
1	0 inches	16 inches	loamy sand	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 20.00 Min: 6.00	Max: 7.30 Min: 5.10
2	16 inches	60 inches	loamy sand	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Sands, Sands with fines, Silty Sand.	Max: 20.00 Min: 6.00	Max: 7.30 Min: 5.10

Soil Map ID: 2

Soil Component Name:	URBAN LAND	
Soil Surface Texture:	Not reported	
Hydrologic Group:	Class A - High infiltration rates. Soils are deep, well drained to excessively drained sands and gravels.	
Soil Drainage Class:	Somewhat excessive. Soils have high hydraulic conductivity and low water holding capacity. Depth to water table is more than 6 feet.	
Hydric Status: Soil does not meet the requirements for a hydric soil.		
Corrosion Potential - Uncoated Steel:	Not Reported	
Depth to Bedrock Min:	> 0 inches	
Depth to Bedrock Max:	> 0 inches	
No Layer Information available.		

Soil Map ID: 3

Soil Component Name:	WATER		
Soil Surface Texture:	Not reported		
Hydrologic Group:	Class A - High infiltration rates. Soils are deep, well drained to excessively drained sands and gravels.		
Soil Drainage Class:	Somewhat excessive. Soils have high hydraulic conductivity and low water holding capacity. Depth to water table is more than 6 feet.		
Hydric Status: Soil does not meet the requirements for a hydric soil.			
Corrosion Potential - Uncoated Steel:	Not Reported		
Depth to Bedrock Min:	> 0 inches		
Depth to Bedrock Max:	> 0 inches		
No Layer Information available.			

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE	SEARCH DISTANCE (miles)
Federal USGS	1.000
Federal FRDS PWS	Nearest PWS within 1 mile
State Database	1.000

FEDERAL USGS WELL INFORMATION

		LOCATION
MAP ID	WELL ID	FROM TP
No Wells Found		

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

		LOCATION
MAP ID	WELL ID	FROM TP
15	CA2400009	1/2 - 1 Mile NNE

Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION

		LOCATION
MAP ID	WELL ID	FROM TP
No Wells Found		

PHYSICAL SETTING SOURCE MAP - 01800014.1r

SITE NAME:Broadway/3rd StreetCLIENT:Clayton Group ServicesADDRESS:Broadway/3rd StreetCONTACT:John D. GloverOakland CA 94607INQUIRY #:01800014.1rLAT/LONG:37.7962 / 122.2760DATE:November 17, 2006 6:16 pm	CLIENT: Clayton Group Services CONTACT: John D. Glover INQUIRY #: 01800014.1r DATE: November 17, 2006 6:16 pm
---	--

Map ID Direction Distance Elevation			Database	EDR ID Number
1 East 0 - 1/8 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-0421 SW Not Reported Not Reported 7 10/28/1996	AQUIFLOW	63810
2 WSW 1/8 - 1/4 Mile Lower	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-1793 SE 5.00 5.30 Not Reported 03/12/1997	AQUIFLOW	55831
A3 ENE 1/4 - 1/2 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-2307 NW Not Reported Not Reported 7.50 09/23/1994	AQUIFLOW	51869
A4 ENE 1/4 - 1/2 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-2307 NW Not Reported Not Reported 12 ft 03/15/1995	AQUIFLOW	51870
A5 NE 1/4 - 1/2 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-1611 Varies Not Reported Not Reported 156 09/19/1997	AQUIFLOW	51534
B6 ENE 1/4 - 1/2 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-0582 Varies Not Reported Not Reported 18 02/05/1996	AQUIFLOW	64079
B7 ENE 1/4 - 1/2 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-1244 N Not Reported Not Reported Not Reported 12/20/1994	AQUIFLOW	64075

Map ID Direction Distance			Detebase	
8 East 1/4 - 1/2 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-2300 Not Reported Not Reported Not Reported 2-3 10/23/1996	AQUIFLOW	55761
C9 South 1/4 - 1/2 Mile Lower	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-2225 Varies 4.0 5.0 Not Reported 03/27/1997	AQUIFLOW	52497
C10 South 1/4 - 1/2 Mile Lower	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-2225 N, E Not Reported Not Reported 5 03/27/1997	AQUIFLOW	64623
11 ESE 1/4 - 1/2 Mile Lower	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-1151 SE Not Reported Not Reported 5-16 04/13/1997	AQUIFLOW	63663
C12 South 1/4 - 1/2 Mile Lower	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-1760 N Not Reported Not Reported 10 12/05/1988	AQUIFLOW	67877
C13 South 1/4 - 1/2 Mile Lower	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-2225 Varies Not Reported Not Reported 2 12/05/1996	AQUIFLOW	52496
14 North 1/2 - 1 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-0233 S Not Reported Not Reported 10 09/02/1987	AQUIFLOW	55975

Map ID Direction Distance					
Elevation				Database	EDR ID Number
15 NNE 1/2 - 1 Mile Higher				FRDS PW	S CA2400009
PWS ID: Date Initiated: PWS Name:	CA2400009 Not Reported GARDEN VILLAGE A ATWATER, CA 9530	PWS Status: Date Deactivated: PTS 1	Not Reported Not Reported		
Addressee / Facility:	System Owner/Respo CALIFORNIA PROPE P O BOX 56 WALNUT CREEK, C	onsible Party ERTY MANAGEMEN A 94596	IT		
Facility Latitude: City Served:	37 48 15 Not Reported		Facility Longitude:	122 16 10	
Treatment Class:	Untreated		Population:	100	
PWS currently has or had	major violation(s) or enf	orcement:	Yes		
VIOLATIONS INFORMATION	1:				
Violation ID: Vio. beginning Date: Num required Samples: Analysis Result: Analysis Method: Violation Type: Contaminant: Vio. Awareness Date:	9300002 11/01/92 Not Reported Not Reported Monitoring, Routine M COLIFORM (TCR) 123092	Source ID: Vio. end Date: Number of Sample Maximum Contam lajor (TCR)	Not Reported 11/30/92 s Taken: inant Level:	PWS Phone: Vio. Period: Not Reported Not Reported	Not Reported 001 Months
Violation ID: Vio. beginning Date: Num required Samples: Analysis Result: Analysis Method: Violation Type: Contaminant: Vio. Awareness Date:	9300001 01/01/93 Not Reported Not Reported Not Reported Monitoring, Routine M COLIFORM (TCR) 030293	Source ID: Vio. end Date: Number of Sample Maximum Contam lajor (TCR)	Not Reported 01/31/93 s Taken: inant Level:	PWS Phone: Vio. Period: Not Reported Not Reported	Not Reported 001 Months
ENFORCEMENT INFORMAT	TON:				
System Name: Violation Type: Contaminant: Compliance Period: Violation ID: Enforcement Date:	COTTAGES, THE Initial Tap Sampling fo LEAD & COPPER RL 7/1/1993 0:00:00 - 12 95V0001 12/31/2003 0:00:00	or Pb and Cu JLE /31/2003 0:00:00	Enf. Action:	Fed Compliance A	chieved
System Name: Violation Type: Contaminant: Compliance Period: Violation ID:	GARDEN VILLAGE A Initial Tap Sampling for LEAD & COPPER RL 1993-07-01 - 2015-12 95V0001	PTS or Pb and Cu JLE 2-31			
Enforcement Date:	Not Reported		Enf. Action:	Not Reported	

ENFORCEMENT INFORMATION:

System Name: Violation Type: Contaminant: Compliance Period: Violation ID: Enforcement Date:		GARDEN VIL Initial Tap Sa LEAD & COP 1993-07-01 - 95V0001 Not Reported	LAGE APTS mpling for Pb and Cu PER RULE 2015-12-31	Enf. Action:	Not Reported	
System Na Violation Ty Contaminat Compliance Violation ID Enforcemen	me: /pe: ht: e Period: ht Date:	THE COTTAG Initial Tap Sa LEAD & COP 1993-07-01 - 95V0001 Not Reported	GES mpling for Pb and Cu PER RULE 2015-12-31	Enf. Action:	Not Reported	
CONTACT IN	FORMATION	:				
Name: Contact:		COTTAGES, Brent Cronk-F	THE EHS III	Population: Phone:	100 2093811095	
Address:		777 West 22r Merced, CA 9	777 West 22nd Street Merced, CA 94508			
16 East 1/2 - 1 Mile Higher	Site ID: Groundwa Shallow W Deep Wate Average W Date:	ter Flow: 'ater Depth: er Depth: /ater Depth:	01-0880 NW Not Reported Not Reported 8 01/01/1996		AQUIFLOW	65392
D17 NE 1/2 - 1 Mile Higher	Site ID: Groundwa Shallow W Deep Wate Average W Date:	ter Flow: 'ater Depth: er Depth: /ater Depth:	01-0355 NE 2.5 9.5 Not Reported 12/05/1990		AQUIFLOW	52380
D18 NE 1/2 - 1 Mile Higher	Site ID: Groundwa Shallow W Deep Wate Average W Date:	ter Flow: /ater Depth: er Depth: /ater Depth:	01-0355 NE 9.5 20.5 Not Reported 08/10/1999		AQUIFLOW	52381
19 North 1/2 - 1 Mile Higher	Site ID: Groundwa Shallow W Deep Wate Average W Date:	ter Flow: /ater Depth: er Depth: /ater Depth:	01-2232 E Not Reported Not Reported 120 01/07/1987		AQUIFLOW	51544

Map ID Direction Distance Elevation			Database	EDR ID Number
20 NE 1/2 - 1 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-2039 W Not Reported Not Reported Not Reported 11/15/1991	AQUIFLOW	64077
E21 ENE 1/2 - 1 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-0055 N Not Reported Not Reported 3 03/03/1989	AQUIFLOW	55915
E22 ENE 1/2 - 1 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-0055 W Not Reported Not Reported 6 08/26/1996	AQUIFLOW	55914
F23 NNE 1/2 - 1 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-1921 N, S Not Reported Not Reported 11 05/26/1994	AQUIFLOW	55882
24 WNW 1/2 - 1 Mile Lower	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-0086 N Not Reported Not Reported 10 03/09/1990	AQUIFLOW	63819
F25 NNE 1/2 - 1 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-1705 SW Not Reported Not Reported 8.5 04/02/1996	AQUIFLOW	55893
F26 NNE 1/2 - 1 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-1705 SW 5.6 8.5 Not Reported 01/28/1991	AQUIFLOW	55892

Map ID Direction Distance Elevation			Database	EDR ID Number
G27 NW 1/2 - 1 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-2322 S Not Reported Not Reported 15 03/05/1997	AQUIFLOW	55794
G28 NW 1/2 - 1 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-2322 SE,S,Varies Not Reported Not Reported 8 01/17/1997	AQUIFLOW	55793
G29 NW 1/2 - 1 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-2322 SE,S,Varies Not Reported Not Reported 5 09/26/1992	AQUIFLOW	55795
H30 NE 1/2 - 1 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-0331 NE 3.0 13.0 Not Reported 01/27/1988	AQUIFLOW	52390
H31 NE 1/2 - 1 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-0331 E 16.00 20.17 Not Reported 06/10/1999	AQUIFLOW	52389
I32 NNE 1/2 - 1 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-0151 NE Not Reported Not Reported 2 08/23/1995	AQUIFLOW	55931
I33 NNE 1/2 - 1 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-0151 NE, E, SE 0.041 0.007 Not Reported 06/29/1998	AQUIFLOW	55932

Map ID Direction Distance Elevation			Database	EDR ID Number
I34 NNE 1/2 - 1 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-0151 NE Not Reported Not Reported 15 06/28/1995	AQUIFLOW	55930
J35 WNW 1/2 - 1 Mile Lower	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-2143 SW Not Reported Not Reported 10 05/21/1990	AQUIFLOW	55985
J36 WNW 1/2 - 1 Mile Lower	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-2143 SW Not Reported Not Reported 8 06/20/1990	AQUIFLOW	55984
37 South 1/2 - 1 Mile Lower	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-1639 NE,NW,Varies 1 5.75 Not Reported 12/1993	AQUIFLOW	50078
K38 ESE 1/2 - 1 Mile Lower	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-1194 SW 4.5 5.5 Not Reported 12/09/1991	AQUIFLOW	63891
39 NNE 1/2 - 1 Mile Higher	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-1168 NNE,SE,S,SW 4.3 9.0 Not Reported 03/06/1991	AQUIFLOW	55829
K40 ESE 1/2 - 1 Mile Lower	Site ID: Groundwater Flow: Shallow Water Depth: Deep Water Depth: Average Water Depth: Date:	01-1066 SE Not Reported Not Reported Not Reported 09/20/1988	AQUIFLOW	67424

AREA RADON INFORMATION

State Database: CA Radon

Radon Test Results

Zip	Total Sites	> 4 Pci/L	Pct. > 4 Pci/L
94607	3	0	0.00

Federal EPA Radon Zone for ALAMEDA County: 2

```
Note: Zone 1 indoor average level > 4 pCi/L.
```

: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L. : Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for ALAMEDA COUNTY, CA

Number of sites tested: 49

Area	Average Activity	% <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L
Living Area - 1st Floor Living Area - 2nd Floor	0.776 pCi/L -0.400 pCi/L	100% 100%	0% 0%	0% 0%
Basement	1.338 pCi/L	100%	0%	0%

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

HYDROLOGIC INFORMATION

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 1999 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002 and 2005 from the U.S. Fish and Wildlife Service.

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Services

The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Services (NRCS)

Telephone: 800-672-5559

SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Services, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.

LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS)

This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

STATE RECORDS

California Drinking Water Quality Database

Source: Department of Health Services

Telephone: 916-324-2319

The database includes all drinking water compliance and special studies monitoring for the state of California since 1984. It consists of over 3,200,000 individual analyses along with well and water system information.

OTHER STATE DATABASE INFORMATION

California Oil and Gas Well Locations

Source: Department of Conservation Telephone: 916-323-1779

RADON

State Database: CA Radon

Source: Department of Health Services Telephone: 916-324-2208 Radon Database for California

Area Radon Information

Source: USGS Telephone: 703-356-4020 The National Radon Database has been developed by the U.S. Environmental Protection Agency (USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones

Source: EPA Telephone: 703-356-4020 Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor radon levels.

OTHER

Airport Landing Facilities: Private and public use landing facilities Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater Source: Department of Commerce, National Oceanic and Atmospheric Administration

California Earthquake Fault Lines: The fault lines displayed on EDR's Topographic map are digitized quaternary fault lines, prepared in 1975 by the United State Geological Survey. Additional information (also from 1975) regarding activity at specific fault lines comes from California's Preliminary Fault Activity Map prepared by the California Division of Mines and Geology.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

STREET AND ADDRESS INFORMATION

© 2006 Tele Atlas North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.