

270 Vintage Drive Turlock, CA 95382 P: 209.664.1035 F: 209.664.1040

FIRST QUARTER 2018 GROUNDWATER MONITORING REPORT

SHORE ACRES GAS 403 EAST 12TH STREET OAKLAND, CALIFORNIA

Prepared for: Rashid Ghafoor

ECG Project Number: GHA.19009 Alameda County Fuel Leak Case No. RO0002931

June 6, 2018

ASCHAR S. SGOURAKIS Mo. 7194

Drew Van Allen Senior Project Manager

Den V. LM

Michael S. Sgourakis Principal Geologist CA P.G. No. 7194

Mul S Sylh

TABLE OF CONTENTS

TABLE OF CONTENTS	
Introduction	3
Limitations	
Site Description and Hydrogeologic Conditions	3
Site Description	3
Hydrogeologic Conditions	
Project Background	4
Investigations	4
Risk Assessments	4
Corrective Actions	4
First Quarter 2018 Monitoring Event	5
Work Performed and Proposed	5
Work Performed First Quarter 2018	5
Work Scheduled for Second Quarter 2018	5
Discussion of Recent Monitoring Activities	5
Discussion of Recent Remediation Activities	6
Results and Conclusions	6
Recomendations	6
Pi-mus s	
Viennos	

Figures

Figure 1: Site Location Map

Figure 2: Site Map

Figure 3: Potentiometric Surface Map

Figure 4: Rose Diagram

Figure 5: TPHg in Groundwater Isoconcentration Map
Figure 6: Benzene in Groundwater Isoconcentration Map
Figure 7: MTBE in Groundwater Isoconcentration Map

First Quarter 2018 Groundwater Monitoring Report Shore Acres Gas 403 East 12th Street, Oakland, California

Tables

Table 1: Well Construction Details Table 2a: Historical Soil Analytical Data, TPH and BTEX Table 2b: Historical Soil Analytical Data, Oxygenates and Lead Scavengers Grab Groundwater Sample Results, TPH and BTEX Table 3a: Grab Groundwater Sample Results, Oxygenates and Lead Scavengers Table 3b: Table 4a: Monitoring Well Data, Water Level, TPH, and BTEX Monitoring Well Data, Oxygenates and Lead Scavengers Table 4b: Soil Vapor Extraction System Performance Calculations Table 5a: Table 5b: Soil Vapor Extraction Destruction Efficiency and Emission Calculations Table 5c: Groundwater Treatment System Performance Data

Appendices

Appendix A: Standard Operating Procedures Appendix B: Laboratory Analytical Reports

Appendix C: Field Notes
Appendix D: Hydrographs

INTRODUCTION

Environmental Compliance Group (ECG) has been authorized by Mr. Rashid Ghafoor to provide this report for the site.

This report describes activities conducted during First Quarter 2018 groundwater monitoring event. Site information is as follows:

Site Location: 403 East 12th Street

Oakland, California

Geotracker Global ID: T0600174667

LIMITATIONS

This report has been prepared for use by Rashid Ghafoor and the relevant regulatory agencies. The conclusions in this report are professional opinions based on the data presented in this report. This report was prepared in general accordance with hydrogeologic and engineering methods and standards. No other warranties are made as to the findings or conclusions presented in this report. The work described in this report was performed under the direct supervision of the professional geologist whose signature and State of California registration are shown above.

SITE DESCRIPTION AND HYDROGEOLOGIC CONDITIONS

SITE DESCRIPTION

The site occupies a parcel on the southeast corner of 4th Avenue and East 12th Street in Oakland, Alameda County, California (Figure 1). The site is situated in a commercial and residential area in central Oakland and is currently vacant. The site was historically used as a gasoline station. The area of interest at the site is the former location of three underground storage tanks (USTs) and fuel dispensers where impacted soil and groundwater was first identified in 2006. A detailed site plan is shown on Figure 2.

HYDROGEOLOGIC CONDITIONS

The site is underlain by Quaternary-age dune sand deposits referred to as the Merritt Sand. The Merritt Sand is typically described as loose, well-sorted fine- to medium-grained sand with a large silt component. The sand is reported to reach a maximum depth of 50-feet bgs in the area.

Based on boring logs from the advancement of 11 soil borings and the installation of six monitoring wells and four extraction wells, the stratigraphy of the site and vicinity consists of silt to approximately 30-feet bgs with discontinuous thin intervals of sandy silt and clayey sand present in the area.

First Quarter 2018 Groundwater Monitoring Report Shore Acres Gas 403 East 12th Street, Oakland, California

Depth to groundwater is shallow, ranging between 8- to 14-feet bgs. The groundwater flow direction appears to be generally toward the southeast.

PROJECT BACKGROUND

INVESTIGATIONS

In July 2006, Geofon Incorporated (Geofon) advanced soil borings GP-1 and GP-2 and collected and analyzed soil samples. Results are detailed in Geofon's report entitled *Summary of Phase II Assessment Activities*, dated July 25, 2006.

In August 2009, Wright Environmental Services, Inc. (Wright) removed three USTs, associated fuel dispensers, and all associated piping. Results are detailed in Wright's *Closure Report for Three Underground Storage Tanks*, dated September 2009.

In April 2010, Apex Envirotech, Inc. (Apex) advanced nine soil borings to evaluate the lateral extent of impacted soil and groundwater. Results are documented in Apex's *Subsurface Investigation Results Report* dated June 23, 2010.

In June 2011, ECG supervised the installation of six groundwater monitoring wells (MW-1 through MW-6) and two extraction wells (EW-1 and EW-2). Results are documented in ECG's *Off-Site Investigation and Dual Phase Pilot Test Results with Fourth Quarter 2011 Monitoring Report*, dated January 26, 2012.

RISK ASSESSMENTS

In January 2011, ECG conducted a preferential pathway study for the site. Results are detailed in ECG's *Site Assessment and Soil Vapor Extraction Pilot Test Workplan*, dated February 9, 2011.

In January 2011, ECG conducted a sensitive receptor survey for the site. Results are detailed in ECG's *Site Assessment and Soil Vapor Extraction Pilot Test Workplan*, dated February 9, 2011.

A soil vapor survey has not been completed for the site.

CORRECTIVE ACTIONS

In June 2011, ECG supervised the installation of six groundwater monitoring wells (MW-1 through MW-6) and two extraction wells (EW-1 and EW-2). ECG also performed a 5-day dual phase extraction (DPE) test in June 2011. Results are documented in ECG's *Off-Site Investigation and Dual Phase Pilot Test Results with Fourth Quarter 2011 Monitoring Report*, dated January 26, 2012.

In May 2013, ECG supervised the installation of two extraction wells (EW-3 and EW-4). In September 2013, ECG installed the subsurface piping network from the remediation wells to the remediation compound and the subsurface conduit required by PG&E to install the electrical service required to operate the remediation compound.

In April 2014, the dual phase extraction system began operation. The DPE system includes a 25-horsepower liquid-ring blower capable of up to 400 standardized cubic feet per minute (scfm) flowrate, thermal/catalytic oxidizer, a conveyance piping network, and four individual extraction wells. The blower extracts vapors and groundwater from each extraction wells and through the conveyance piping where the impacted vapor is destroyed in the thermal/catalytic oxidizer prior to

First Quarter 2018 Groundwater Monitoring Report Shore Acres Gas 403 East 12th Street, Oakland, California

discharge to the atmosphere and the groundwater is treated with an air stripper and granular activated carbon prior to discharge to the municipal sewer system.

The remediation system was started on April 30, 2014 and shut down on June 27, 2014 due to carbon change out requirements. The system was restarted on August 15, 2014. The remediation system was shut down on February 18, 2015 due to complaints from neighbors regarding the propane tank onsite providing supplemental fuel to the remediation equipment. ECG supervised the installation of natural gas provided by PG&E to the site and the system was restarted on August 11, 2015. The system was shut down on December 16, 2015 due to contaminant breakthrough of the first carbon vessel and scheduled carbon change out. The system was restarted January 21, 2016 and shut down on April 11, 2016 due to decreasing contaminant extraction rates and pending regulatory review of ECG's Fourth Quarter 2015 Monitoring and Remediation System Evaluation Report, dated August 1, 2016.

The DPE system is operated under Bay Area Air Quality Management District (BAAQMD) permit number 25354 and East Bay Municipal Utility District (EBMUD) Discharge Permit No. 68508758. The DPE system has removed approximately 8,434 pounds of TPHg, 39 pounds of benzene, and 2. pounds of MTBE from the subsurface.

FIRST QUARTER 2018 MONITORING EVENT

WORK PERFORMED AND PROPOSED

The following is a summary of work performed during the first quarter 2018 and work proposed for next quarter at the site.

WORK PERFORMED FIRST QUARTER 2018

- 1. The first quarter 2018 groundwater monitoring event was performed on March 30, 2018. WORK SCHEDULED FOR SECOND QUARTER 2018
- 1. Prepare and finalize first quarter 2018 monitoring report.
- 2. Prepare the Data Gap Investigation Work Plan and Site Conceptual Model requested by Alameda County in their correspondence dated August 11, 2017.

DISCUSSION OF RECENT MONITORING ACTIVITIES

ECG performed the first quarter 2018 groundwater monitoring and sampling event at the site on March 30, 2018. Gauging, development, purging, and sampling were conducted in accordance with ECG's SOPs included in Appendix A. The collected groundwater samples were submitted to CAL Labs located in Ceres, California for laboratory analysis under COC protocols (Appendix B).

The following is a summary of the current status of the groundwater monitoring program at the site:

Current Phase of Project: Post Remediation Groundwater Sampling Schedule: Semi-Annual

Wells MW-1 through MW-6, EW-1 through

EW-4

Analysis: TPHg by EPA Method 8015M, BTEX, 5

oxygenates, and 2 lead scavengers by EPA

Method 8260B

First Quarter 2018 Groundwater Monitoring Report Shore Acres Gas 403 East 12th Street, Oakland, California

Is Free Product Present On-Site: No

The following is a summary of recent field and analytical data:

Average Depth to Groundwater 9.14-feet below ground surface (bgs)
Average Groundwater Elevation 22.07 -feet above mean sea level

Groundwater Gradient Direction Southeast Groundwater Gradient 0.010

TPHg Detected Range 1,200 ug/L (MW-3) to 45,000 ug/L (MW-1)
Benzene Detected Range 13 ug/L (EW-3) to 920 ug/L (MW-1)
MTBE Detected 10 ug/L (MW-2) to 170 (MW-1)

Groundwater well MW-5 was inaccessible due to site activities. Laboratory analytical reports and COCs are provided in Appendix B. Field notes are located in Appendix C. Summaries of groundwater monitoring and analytical data are presented in Tables 4a.

DISCUSSION OF RECENT REMEDIATION ACTIVITIES

The remediation system was shut down April 11, 2016 due to decreasing contaminant extraction rates and pending regulatory review of remediation system evaluation report. Summaries of remediation system operating parameters and analytical data are presented in Tables 5a, 5b, and 5c.

RESULTS AND CONCLUSIONS

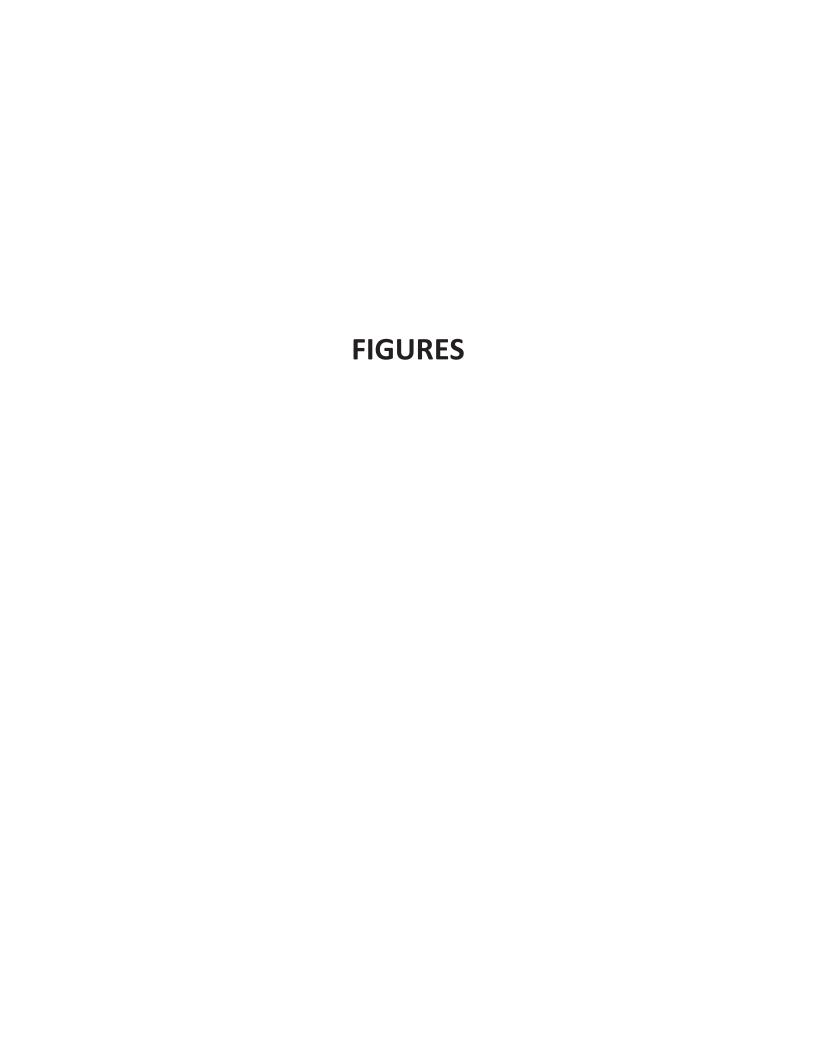
Water levels and the gradient data were consistent with historical data. Tables 2a, 2b, 3a, 3b, 4a, and 4b tabulate the analytical data for soil and monitoring well sampling data. ECG will keep the remediation system shut down pending regulatory review of the Data Gap Investigation Work Plan and Site Conceptual Model. The next groundwater monitoring event will be in third quarter 2018.

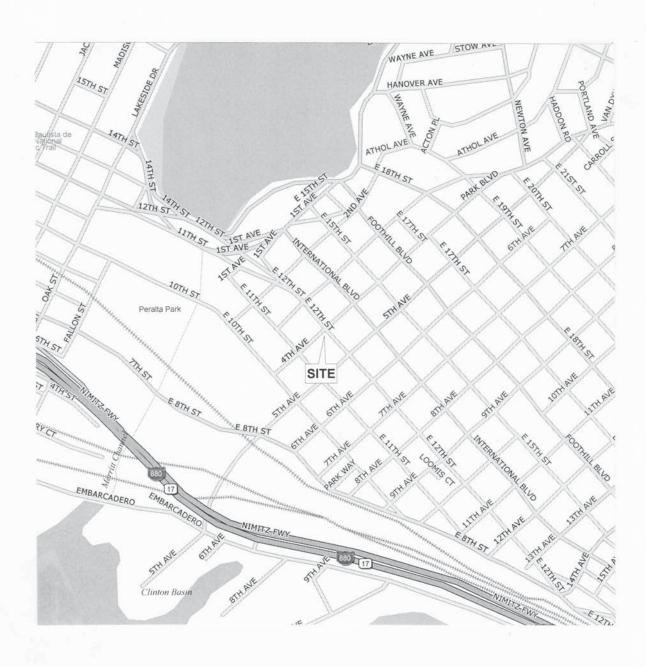
RECOMENDATIONS

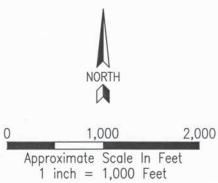
Water levels and the gradient data were consistent with historical data. Tables 2a, 2b, 3a, 3b, 4a, and 4b tabulate the analytical data for soil and monitoring well sampling data.

ECG prepared 16 hydrographs comparing groundwater elevations verses time verses concentrations in groundwater of benzene and ethylbenzene. In addition, remediation system operation dates are shown on the graphs.

The graphs show the presence of a secondary source of benzene is present in shallow soil both before and after remediation at all site monitoring wells with the exception of well MW-3. DPE appears to have removed most of the secondary source at well MW-3.


The graphs show the presence of a secondary source of ethylbenzene is also present in shallow soil both before and after remediation at most site monitoring wells with the exception of wells MW-3 and MW-4. DPE appears to have removed most of the secondary source of ethylbenzene at wells MW-3 and MW-4.

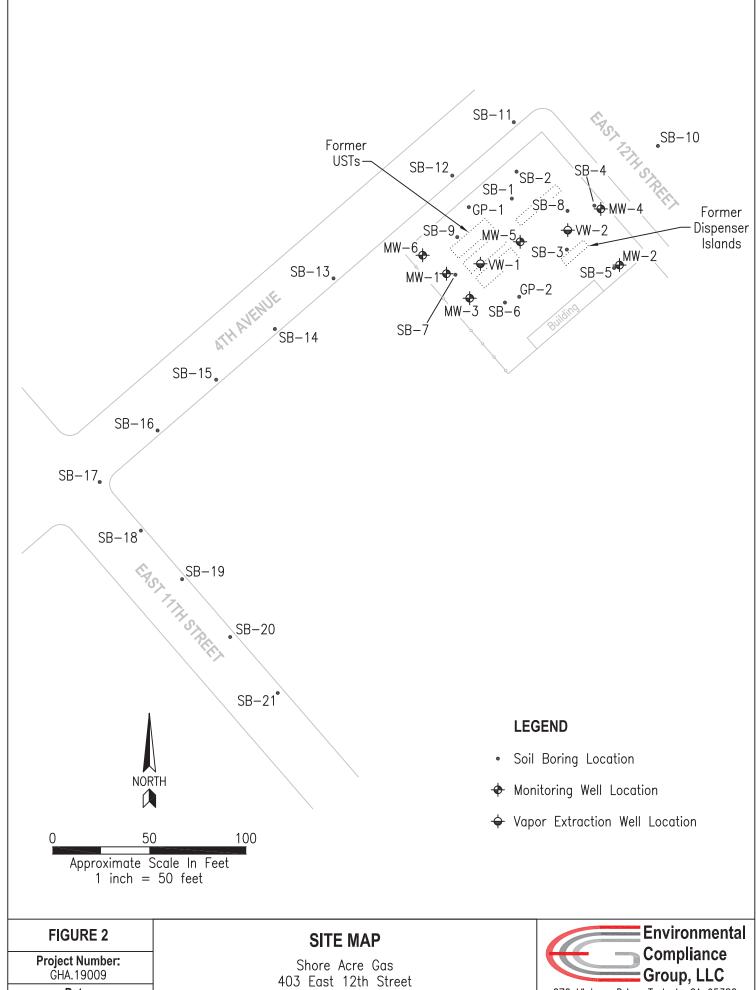

The graphs at the extraction wells EW-1 and EW-2 are unclear regarding groundwater concentration trends verses time. But the graphs at all site wells with the exception of well MW-1


First Quarter 2018 Groundwater Monitoring Report Shore Acres Gas 403 East $12^{\rm th}$ Street, Oakland, California

clearly show a reduction in concentrations over time. The operation of the remediation system showed a positive effect overall at the site.

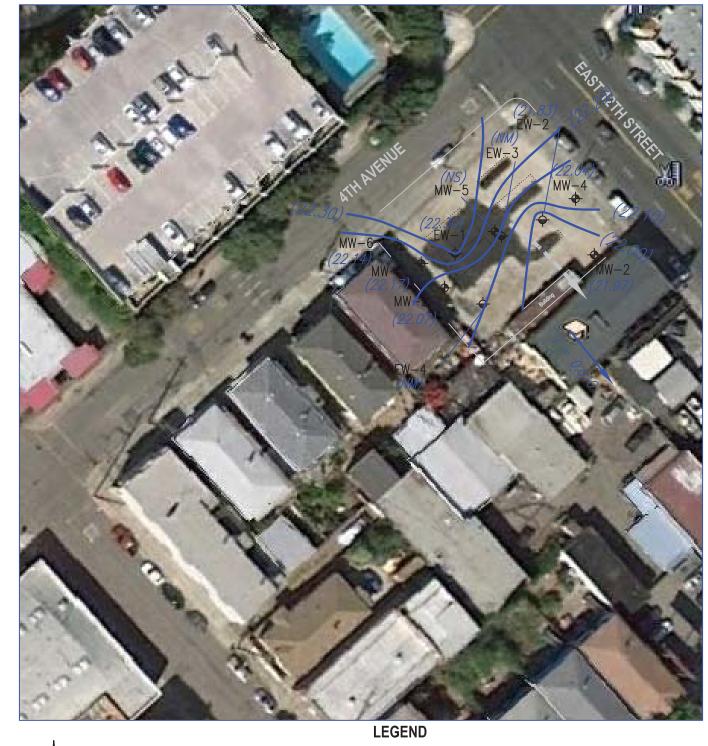
However, concentrations remain elevated at all site wells. ECG recommends performing the limited excavation as outlined in our *Data Gap Investigation Workplan and Site Conceptual Model*, dated April 4, 2018 report.

FIGURE 1


Project Number: GHA.19009

Date: February 9, 2011

SITE LOCATION MAP


Shore Acre Gas 403 East 12th Street Oakland, California

Date: January 4, 2012 Oakland, California

♦ Monitoring Well Location

♦ Vapor Extraction Well Location

(22.04) Elevation Of Groundwater Measured In Feet Above Mean Sea Level

Approximate Scale In Feet
1 inch = 50 feet

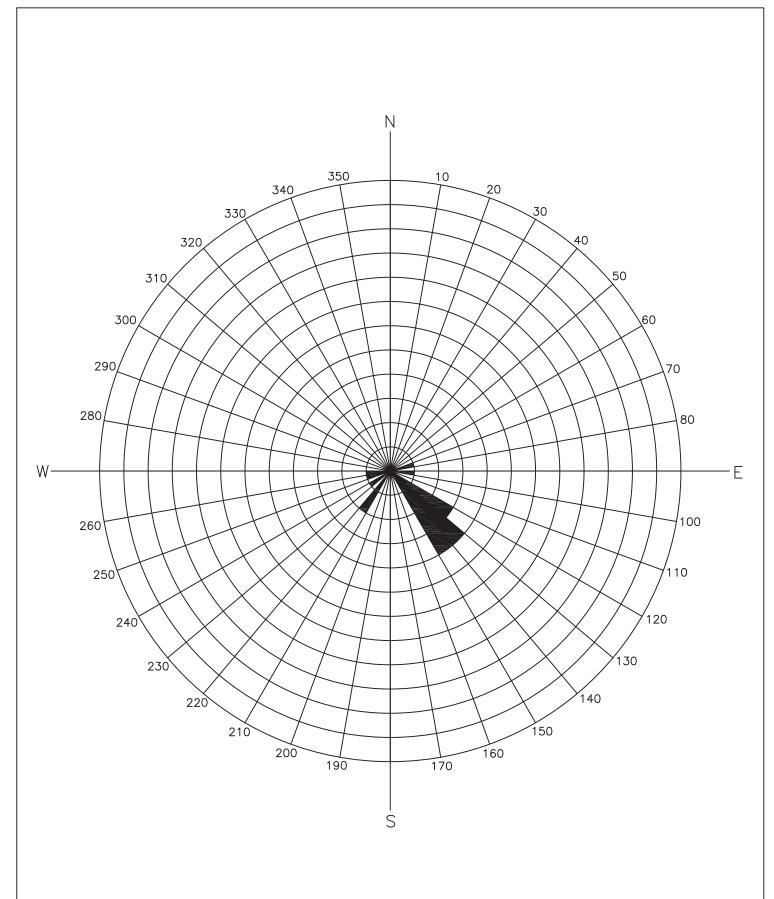
Lines Of Equipotential Measured In Feet Above Mean Sea Level (Dashed Where Inferred)

Flow Lines

General Gradient

(NM) Not Measured

FIGURE 3

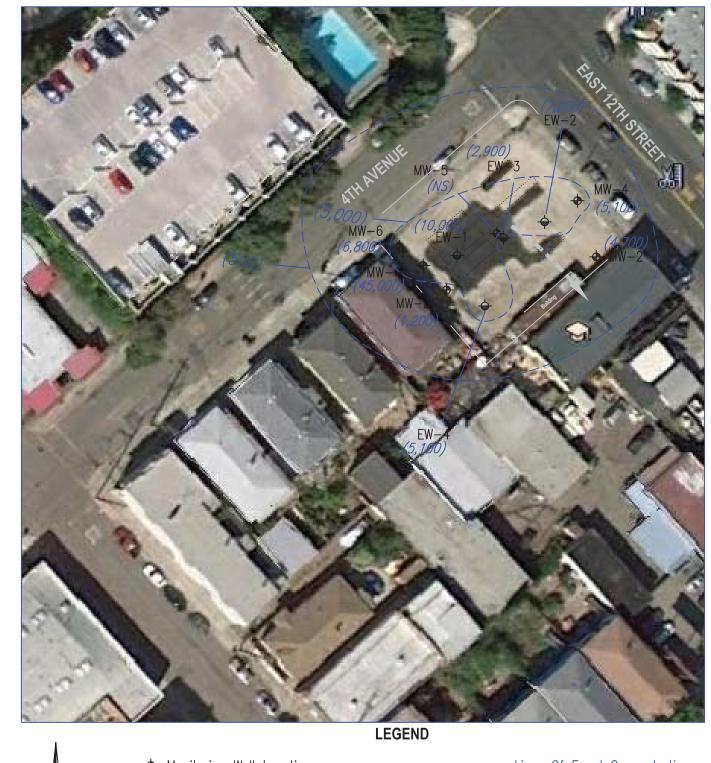

Project Number: GHA.19009

Date: May 31, 2018

POTENTIOMETRIC SURFACE MAP MARCH 30, 2018

Shore Acre Gas 403 East 12th Street Oakland, California

Thru 1st Quarter 2018


FIGURE 4

Project Number: GHA.19009

Date: May 31, 2018

ROSE DIAGRAM

NORTH

♦ Monitoring Well Location

Vapor Extraction Well Location

(5,100)

100

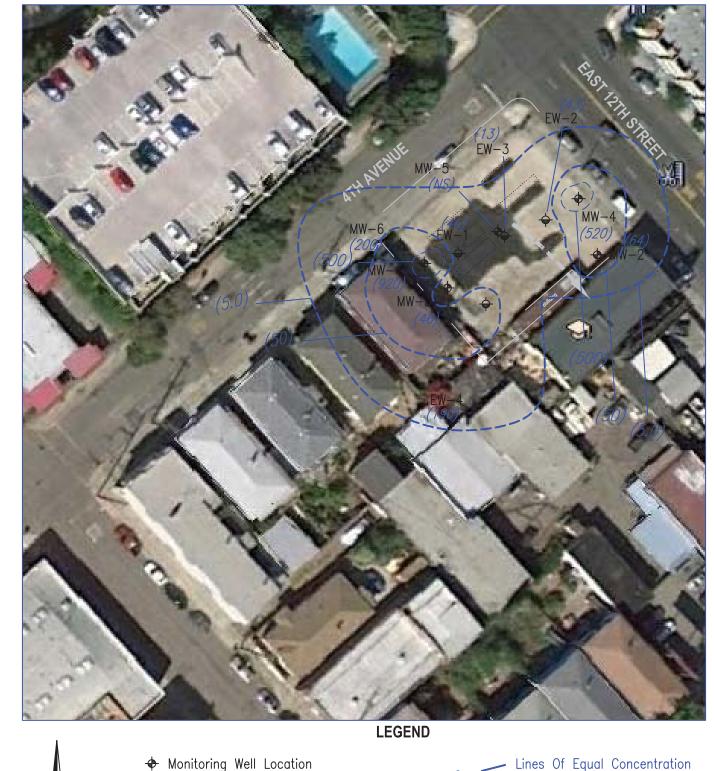
Concentration of TPHg In Groundwater Measured In ug/L

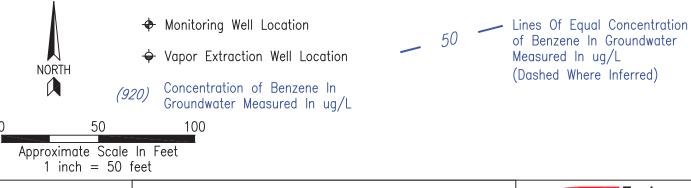
Lines Of Equal Concentration of TPHg In Groundwater Measured In ug/L (Dashed Where Inferred)

5,000

Approximate Scale In Feet 1 inch = 50 feet

50

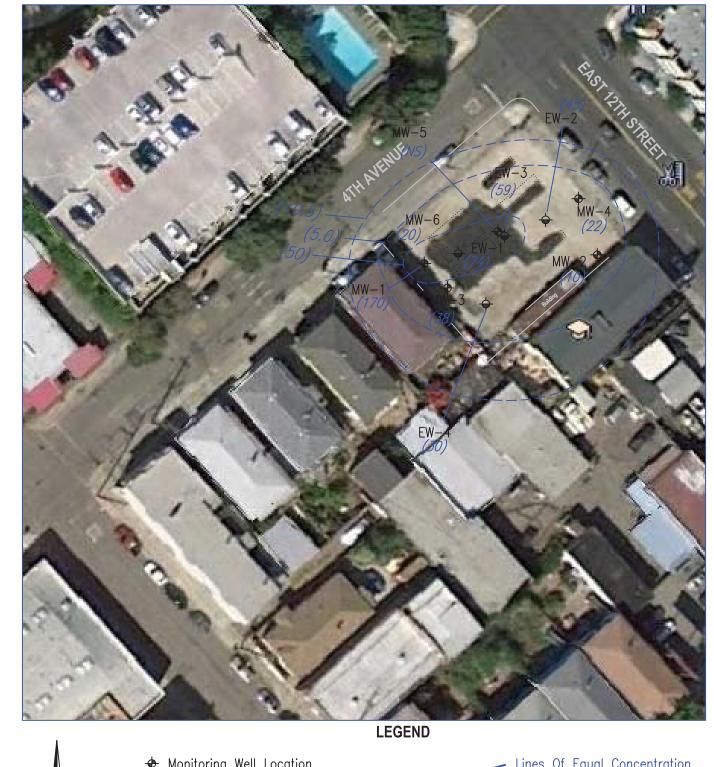

FIGURE 5

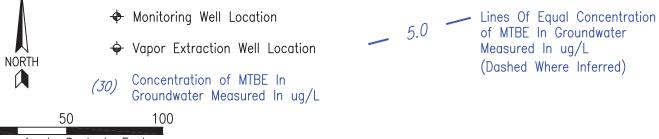

Project Number: GHA.19009

Date: May 31, 2018

TPHg IN GROUNDWATER ISOCONCENTRATION MAP MARCH 31, 2018

FIGURE 6


Project Number: GHA.19009

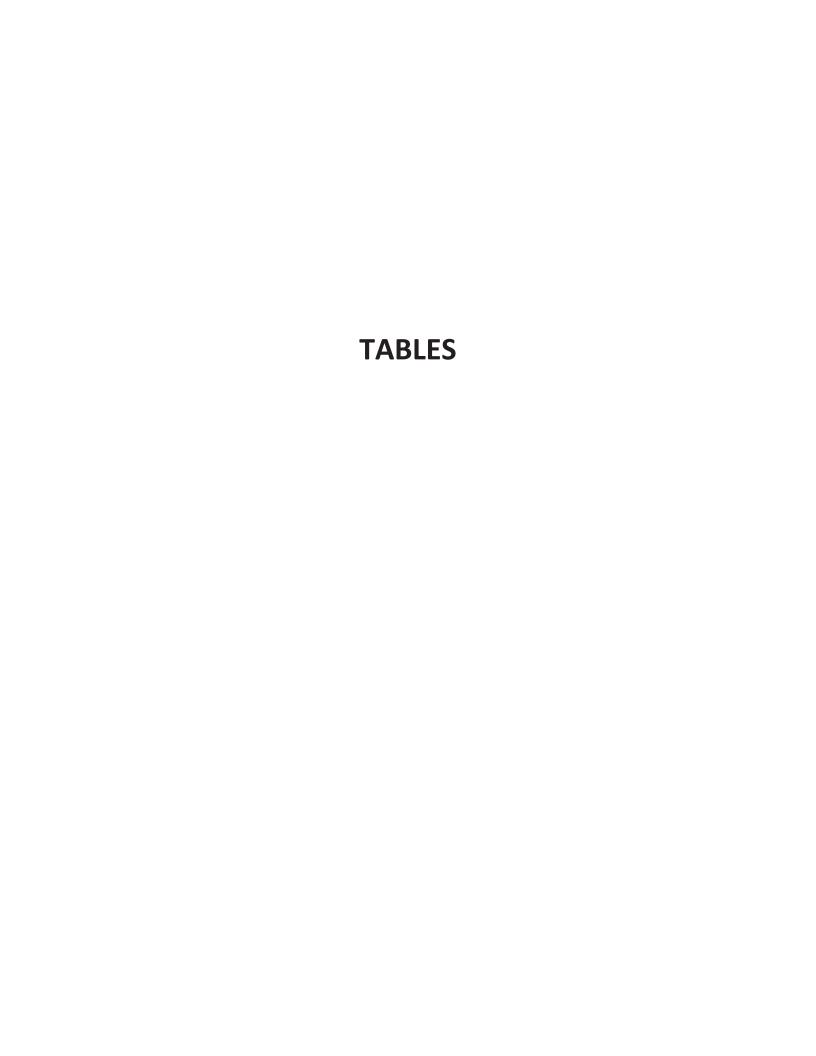

Date: May 31, 2018

BENZENE IN GROUNDWATER ISOCONCENTRATION MAP MARCH 30, 2018

Shore Acre Gas 403 East 12th Street Oakland, California

Approximate Scale In Feet 1 inch = 50 feet

FIGURE 7


Project Number: GHA.19009

Date: May 31, 2018

MTBE IN GROUNDWATER ISOCONCENTRATION MAP MARCH 30, 2018

Shore Acre Gas 403 East 12th Street Oakland, California

Table 1 Well Construction Details

Shore Acres Gas 403 East 12th Street Oakland, California

Well ID	Date Installed	TOC Elevation (ft amsl)	Well Depth (ft bgs)	Casing Diameter (inches)	Casing Material	Screen/ Filter	Screen Interval (ft bgs)
Monitoring	Wells						
MW-1		30.81	20	2	PVC	0.020/#3	10-20
MW-2		31.29	20	2	PVC	0.020/#3	10-20
MW-3	luno 2011	31.30	18	2	PVC	0.020/#3	8-18
MW-4	June 2011	31.21	19	2	PVC	0.020/#3	9-19
MW-5		31.35	20	2	PVC	0.020/#3	10-20
MW-6		30.79	20	2	PVC	0.020/#3	10-20
Dual Phase	Extraction We	ells					
EW-1	June 2011	31.46	20	4	PVC	0.020/#3	5-20
EW-2	Julie 2011	31.43	20	4	PVC	0.020/#3	5-20
EW-3	May 2013	gap did Mil	20	6	PVC	0.020/#3	5-20
EW-4	IVIAY ZUIS		20	6	PVC	0.020/#3	5-20

Notes:

TOC - denotes top of casing

ft - denotes feet

amsl - denotes above mean sea level

bgs - denotes below ground surface

PVC - denotes polyvinyl chloride

Table 2a Historical Soil Analytical Data TPH and BTEX

Boring ID	Sample	Collection	TPHd	TPHg	Benzene	Toluene	Ethyl-	Total
	Depth	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	benzene	xylenes
	(feet)		(0, 0,		, 0, 0,		(mg/kg)	(mg/kg)
UST Removal Sam								
SS-D1	2		1,800*	3,000	<0.25	0.34	39	180
SS-D2	2	1 1	900*	2,400	<0.25	<0.25	36	120
SS-D3	2	1 1	460*	1,000	<0.15	<0.15	12	14
SS-D4	2	1	540*	640	<0.090	1.0	6.1	51
SS-D5	2	1	320	140	<0.025	<0.025	1.3	3.2
SS-D6	2.0	1	320*	260	<0.025	0.054	1.0	8.0
SS-J1	2.0	1	39*	160	<0.025	<0.025	0.71	0.94
SS-Isle	4.0	August	560*	100	<0.025	<0.025	0.30	0.084
SS-7	18.0	2009	310*	1,600	6.9	76	39	200
Tank 1-SS-1	14.0	1	830*	2,500	4.2	100	69	360
Tank 1-SS-2	14.0	1	62*	480	1.8	5.3	14	62
Tank 2-SS-1	14.0	1	120*	290	0.37	2.4	6.3	31
Tank 2-SS-2	14.0	1	330*	80	0.074	0.051	1.2	5.8
Tank 3-SS-1	14.0	1 1	480*	2,100	2.4	41	62	320
Tank 3-SS-2	14.0	1	75*	130	0.23	0.26	3.1	15
Soil Borings								
GP-1-15.5	15.5		13.0	18.0	0.63	0.052	0.69	0.13
GP-1-18.0	18.0	1	<1.0	<1.0	0.0056	0.0082	<0.005	0.019
GP-2-12.0	12.0	July 2006	600	3,600	17	180	98	440
GP-2-20.0	20.0	1	79	1,100	3.2	41	25	130
SB-1-9.5	9.5			1,600	5.1	43	30	180
SB-1-24.5	24.5	1		<1.0	<0.005	<0.005	<0.005	<0.010
SB-1-29.5	29.5	1 1		<1.0	<0.005	<0.005	<0.005	<0.010
SB-2-9.5	9.5	1		2.2	0.26	<0.010	0.066	<0.020
SB-2-24.5	24.5	1		<1.0	<0.005	<0.005	<0.005	<0.010
SB-2-29.5	29.5	1		<1.0	<0.005	<0.005	<0.005	<0.010
SB-3-14.5	14.5	1		17	17	100	42	240
SB-3-24.5	24.5	1		<1.0	<0.005	0.005	<0.005	0.013
SB-3-29.5	29.5	1		<1.0	<0.005	<0.005	<0.005	<0.010
SB-4-14.5	14.5	1	W 25.00	1,700	13	79	28	170
SB-4-19.5	19.5	April 2010		<1.0	<0.005	0.009	<0.005	0.026
SB-4-29.5	29.5	1		<1.0	<0.005	<0.005	<0.005	<0.010
SB-5-14.5	14.5]		470	<0.20	0.45	6.2	37
SB-5-24.5	24.5] .		<1.0	<0.005	<0.005	<0.005	<0.010
SB-5-29.5	29.5]		<1.0	<0.005	<0.005	<0.005	<0.010
SB-6-9.5	9.5]		6,100	21	170	95	580
SB-6-29.5	29.5]		<1.0	<0.005	<0.005	<0.005	<0.010
SB-6-32	32.0] i	~~~	<1.0	<0.005	<0.005	<0.005	<0.010
SB-7-9.5	9.5]		4,000	12	46	55	360
SB-7-29.5	29.5]		<1.0	<0.005	<0.005	<0.005	<0.010
SB-7-32	32.0]		<1.0	<0.005	<0.005	<0.005	<0.010

Table 2a **Historical Soil Analytical Data TPH and BTEX**

Shore Acres Gas 403 East 12th Street Oakland, California

Boring ID	Sample Depth	Collection Date	TPHd (mg/kg)	TPHg (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene	Total xylenes
	(feet)						(mg/kg)	(mg/kg)
SB-8-9.5	9.5			2,500	16	110	63	370
SB-8-24.5	24.5			<1.0	<0.005	<0.005	<0.005	<0.010
SB-8-29.5	29.5	April 2010		<1.0	<0.005	<0.005	<0.005	<0.010
SB-9-14.5	14.5			390	3.0	3.0	9.1	41
SB-9-29.5	29.5]		<1.0	<0.005	<0.005	<0.005	<0.010
SB-9-32	32.0			<1.0	<0.005	<0.005	<0.005	<0.010
Groundwater Well	S							
MW-1-5	5] [<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-1-15	15]	<5.0	18	0.55	<0.050	0.87	1.2
MW-1-20	20] [<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-2-5	5]	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-2-10	10		<5.0	69	<0.005	<0.005	<0.005	<0.010
MW-2-15	15		<5.0	50	<0.050	0.48	3.1	19
MW-2-20	20] [<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-3-5	5] [<5.0	<1.0	<0.010	<0.010	<0.010	<0.020
MW-3-10	10] [<15	840	3.4	33	20	140
MW-3-15	15		<5.0	380	3.0	4.5	7.3	41
MW-3-20	20		<5.0	<1.0	0.019	<0.005	0.006	<0.010
MW-4-5	5		<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-4-10	10		<15	420	1.7	2.6	9.2	51
MW-4-15	15] [<5.0	3.1	0.036	0.20	0.15	0.95
MW-4-20	20		<5.0	<1.0	0.007	0.017	0.010	0.039
MW-5-5	5	June 2011	<5.0	76	<0.10	<0.10	1.3	0.76
MW-5-10	10]	<15	3,200	4.6	6.5	72	410
MW-5-15	15]	<5.0	600	1.3	13	15	110
MW-6-5	5	1 1	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-6-10	10]	<5.0	5.1	0.015	<0.010	3.4	1.0
MW-6-15	15	1 1	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-6-20	20	1 1	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
EW-1-5	5	1	<5.0	34	<0.005	<0.005	0.16	0.31
EW-1-10	10	1 1	<15	85	<0.10	<0.10	2.2	0.89
EW-1-15	15		<15	420	2.1	4.1	9.4	55
EW-1-20	20		<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
EW-2-5	5		<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
EW-2-10	10		<5.0	130	<0.10	<0.10	2.9	15
EW-2-15	15	1 1	<15	5,500	29	430	120	910
EW-2-20	20	1 1	<5.0	<1.0	0.14	0.054	0.025	0.14
		1 1						

Notes:

TPHd - denotes total petroleum hydrocarbons as diesel
TPHg - denotes total petroleum hydrocarbons as gasoline
mg/kg - denotes milligrams per kilogram
< - denotes less than the detection limit

--- denotes no data

GHA.19009 Page 2 of 2

Table 2b Historical Soil Analytical Data Oxygenates and Lead Scavengers

Shore Acres Gas 403 East 12th Street Oakland, California

Boring ID	Sample	Collection	DIPE	ETBE	MTBE	TAME	ТВА	1,2-DCA	EDB
	Depth	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	(feet)								
UST Removal San	nples								
SS-D1	2		<0.25	<0.25	<0.25	<0.25	<1.5		
SS-D2	2	1	<0.25	<0.25	<0.25	<0.25	<1.5		
SS-D3	2	1	<0.15	<0.15	<0.15	<0.15	<0.70		
SS-D4	2	1	<0.090	<0.090	<0.090	<0.090	<0.50		
SS-D5	2	1	<0.025	<0.025	<0.025	<0.025	<0.15		
SS-D6	2]	<0.025	<0.025	<0.025	<0.025	<0.15		
SS-J1	2	1	<0.025	<0.025	<0.025	<0.025	<0.15		
SS-Isle	4	August 2009	<0.025	<0.025	<0.025	<0.025	<0.15		
SS-7	18	20,09	<0.25	<0.25	<0.25	<0.25	<1.5	<0.25	<0.25
Tank 1-SS-1	14		<0.50	<0.50	<0.50	<0.50	<2.5	<0.50	<0.50
Tank 1-SS-2	14]	<0.040	<0.040	0.37	<0.040	0.51	<0.040	<0.040
Tank 2-SS-1	14] i	<0.050	<0.050	0.18	<0.050	0.35	<0.050	<0.050
Tank 2-SS-2	14]	<0.025	<0.025	0.090	<0.025	0.16	<0.025	<0.025
Tank 3-SS-1	14]	<0.50	<0.50	<0.50	<0.50	<2.5	<0.50	<0.50
Tank 3-SS-2	14]	<0.025	<0.025	0.19	<0.025	0.15	<0.025	<0.025
Soil Borings									
GP-1-15.5	15.5		<0.005	<0.005	0.029	<0.005	0.27		
GP-1-18.0	18.0	July 2006	<0.005	<0.005	0.54	<0.005	0.33		
GP-2-12.0	12.0	July 2006	<0.50	<0.50	<0.50	<0.50	<2.5		
GP-2-20.0	20.0] .	<0.025	<0.025	0.041	<0.025	<0.15		
SB-1-9.5	9.5		<0.80	<0.80	<0.80	<0.80	<8.0	<0.80	<0.80
SB-1-24.5	24.5]	<0.005	<0.005	0.11	<0.005	<0.050	<0.005	<0.005
SB-1-29.5	29.5]	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-2-9.5	9.5]	<0.010	<0.010	<0.010	<0.010	<0.10	<0.010	<0.010
SB-2-24.5	24.5]	<0.005	<0.005	0.053	<0.005	<0.050	<0.005	<0.005
SB-2-29.5	29.5]	<0.005 `	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-3-14.5	14.5]	<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0
SB-3-24.5	24.5		<0.005	<0.005	0.10	<0.005	<0.050	<0.005	<0.005
SB-3-29.5	29.5]	<0.005	<0.005	0.010	<0.005	<0.050	<0.005	<0.005
SB-4-14.5	14.5]	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0
SB-4-19.5	19.5	April 2010	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-4-29.5	29.5]	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-5-14.5	14.5]	<0.20	<0.20	<0.20	<0.20	<2.0	<0.20	<0.20
SB-5-24.5	24.5]	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-5-29.5	29.5]	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-6-9.5	9.5]	<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0
SB-6-29.5	29.5	E	<0.005	<0.005	0.20	<0.005	<0.050	<0.005	<0.005
SB-6-32	32.0]	<0.005	<0.005	0.18	<0.005	<0.050	<0.005	<0.005
SB-7-9.5	9.5]	<1.0	<1.0	4.0	<1.0	<10	<1.0	<1.0
SB-7-29.5	29.5]	<0.005	<0.005	0.18	<0.005	<0.050	<0.005	<0.005
SB-7-32	32.0]	<0.005	<0.005	0.11	<0.005	<0.050	<0.005	<0.005

Page 1 of 2

GHA.19009

Table 2b Historical Soil Analytical Data Oxygenates and Lead Scavengers

Shore Acres Gas 403 East 12th Street Oakland, California

Boring ID	Sample	Collection	DIPE	ETBE	MTBE	TAME	ТВА	1,2-DCA	EDB
	Depth	Date	(mg/kg)						
	(feet)								
SB-8-9.5	9.5		<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0
SB-8-24.5	24.5]	<0.005	<0.005	0.033	<0.005	<0.050	<0.005	<0.005
SB-8-29.5	29.5	April 2010	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-9-14.5	14.5	April 2010	<0.20	<0.20	5.5	<0.20	<2.0	<0.20	<0.20
SB-9-29.5	29.5		<0.005	<0.005	0.090	<0.005	0.15	<0.005	<0.005
SB-9-32	32.0		<0.005	<0.005	0.11	<0.005	<0.050	<0.005	<0.005
Groundwater Wel	ls							1	
MW-1-5	5		<0.005	<0.005	0.35	<0.005	0.093	<0.005	<0.005
MW-1-15	15		<0.050	<0.050	1.1	<0.050	<0.50	<0.050	<0.050
MW-1-20	20		<0.005	<0.005	0.31	<0.005	0.58	<0.005	<0.005
MW-2-5	5		<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
MW-2-10	10		<0.050	<0.050	<0.050	<0.050	<0.50	<0.050	<0.050
MW-2-15	1 5		<0.050	<0.050	<0.050	<0.050	<0.50	<0.050	<0.050
MW-2-20	20		<0.005	<0.005	0.006	<0.005	<0.050	<0.005	<0.005
MW-3-5	5		<0.010	<0.010	1.5	<0.010	0.37	<0.010	<0.010
MW-3-10	10		<0.80	<0.80	1.3	<0.80	<8.0	<0.80	<0.80
MW-3-15	15	ĺ	<0.20	<0.20	3.0	<0.20	<2.0	<0.20	<0.20
MW-3-20	20		<0.005	<0.005	0.036	<0.005	0.16	<0.005	<0.005
MW-4-5	5		<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
MW-4-10	10		<0.40	<0.40	<0.40	<0.40	<4.0	<0.40	<0.40
MW-4-15	15	[<0.010	< 0.010	<0.010	<0.010	<0.10	<0.010	<0.010
MW-4-20	20	June 2011	<0.005	<0.005	<0.005	<0.005	<0.050	< 0.005	<0.005
MW-5-5	5	Julie 2011	<0.10	<0.10	<0.10	<0.10	<1.0	<0.10	<0.10
MW-5-10	10		<4.0	<4.0	<4.0	<4.0	<40	<4.0	<4.0
MW-S-15	15		<0.40	<0.40	<0.40	<0.40	<4.0	<0.40	<0.40
MW-6-5	5		<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
MW-6-10	10		<0.010	<0.010	<0.010	<0.010	<0.10	<0.010	<0.010
MW-6-15	15		<0.005	<0.005	0.026	<0.005	0.088	<0.005	<0.005
MW-6-20	20		<0.005	<0.005	0.010	<0.005	0.37	<0.005	<0.005
EW-1-5	5		<0.050	<0.050	<0.050	<0.050	<0.50	<0.050	<0.050
EW-1-10	10		<0.10	<0.10	<0.10	<0.10	<1.0	<0.10	<0.10
EW-1-15	15		<0.40	<0.40	0.59	<0.40	<4.0	<0.40	<0.40
EW-1-20	20		<0.005	<0.005	0.009	<0.005	0.16	<0.005	<0.005
EW-2-5	5	[<0.005	<0.005	0.25	<0.005	0.14	<0.005	<0.005
EW-2-10	10	[<0.10	<0.10	0.33	<0.10	<1.0	<0.10	<0.10
EW-2-15	15	[<4.0	<4.0	<4.0	<4.0	<40	<4.0	<4.0
EW-2-20	20	[<0.005	<0.005	0.008	<0.005	0.26	<0.005	<0.005

Notes:

mg/kg - denotes milligrams per kilogram MTBE - denotes methyl tertiary butyl ether

< - denotes less than the detection limi DIPE - denotes di-isopropyl ether

--- - denotes not analyzed/applicable ETBE - denotes ethyl tertiary butyl ether

DCA - denotes dichloroethane TAME - denotes tertiary amyl ether

EDB - denotes ethylene dibromide TBA - denotes tertiary butyl alcohol

Table 3a Grab Groundwater Sample Results TPH and BTEX

Shore Acres Gas 403 East 12th Street Oakland, California

Sample ID	Collection					Ethyl-	Total
	Date	TPHd	TPHg	Benzene	Toluene	benzene	Xylenes
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Excavation		***************************************					
	August						
Pit Sample 1	2009	21,000	21,000	3,800	1,000	1,200	3,700
Direct Push Gra	b Groundwa	ter Sample	es				
SB-1			60	2.9	6.7	2.1	9.7
SB-2			<50	<0.5	<0.5	<0.5	<1.0
SB-3			170	1.5	11	4.8	27
SB-4			6,500	78	440	190	960
SB-5	April 2010		<50	<0.5	<0.5	<0.5	<1.0
SB-6			440	<20	<20	<20	<40
SB-7		·	270	<12	<12	<12	<25
SB-8			<50	0.6	1.3	0.6	3.3
SB-9			<50	<10	<10	<10	<20
SB-10			<50	<0.5	<0.5	<0.5	<1.0
SB-11			2,300	83	1.9	140	43
SB-12			4,700	620	290	84	400
SB-13			400	51	2.4	4.2	9.7
SB-14	December		<50	1.7	Z	2.1	<1.0
SB-15	2011	~~~	320	32	р	33	25
SB-16	2011		4,800	1,600	10	49	<20
SB-17	- 		990	290	7.2	27	4.3
SB-18			560	8.7	4.9	23	83
SB-19			260	7.1	<0.5	16	7.0
SB-21			<50	<0.5	<0.5	<0.5	<1.0

Notes:

TPHd - denotes total petroleum hydrocarbons as diesels

TPHg - denotes total petroleum hydrocarbons as gasoline

ug/L - denotes micrograms per liter

< - denotes less than the detection limit

--- - denotes not analyzed/applicable

Page 1 of 1 GHA.19009

Table 3b Grab Groundwater Sample Results Oxygenates and Lead Scavengers

Shore Acres Gas 403 East 12th Street Oakland, California

Sample ID	Collection	DIPE	ETBE	MTBE	TAME	ТВА	1,2-DCA	EDB
	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
		<u>.</u>				, 5		(0.)
Excavation							<u>' </u>	
	February	<10	<10	15,000	39	17,000	<10	<10
Water	2000							
Direct Push Gra	b Groundwa	ter Sampl	es			•		
SB-1		<0.5	<0.5	14	<0.5	<5.0	<0.5	<0.5
SB-2] [<0.5	<0.5	45	<0.5	<5.0	<0.5	<0.5
SB-3] [<0.5	<0.5	110	<0.5	32	<0.5	<0.5
SB-4		<5.0	<5.0	<5.0	<5.0	<50	<5.0	<5.0
SB-5	April 2010	<0.5	<0.5	0.6	<0.5	<5.0	<0.5	<0.5
SB-6		<20	<20	4,000	<20	<200	<20	<20
SB-7] [<12	<12	2,500	<12	<120	<12	<12
SB-8		<0.5	<0.5	26	<0.5	98	<0.5	<0.5
SB-9		<10	<10	1,800	<10	5,300	<10	<10
SB-10		<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
SB-11		<1.0	<1.0	22	<1.0	140	<1.0	<1.0
SB-12		<5.0	<5.0	100	<5.0	550	<5.0	<5.0
SB-13		<2.0	<2.0	39	<2.0	3,900	<2.0	<2.0
SB-14	December -	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
SB-15	2011	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
SB-16		<10	<10	<10	<10	<100	<10	<10
SB-17		<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0
SB-18		<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
SB-19		<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
SB-21		<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5

Notes:

ug/L - denotes micrograms per liter

< - denotes less than the detection limit

DCA - denotes dichloroethane

EDB - denotes ethylene dibromide

MTBE - denotes methyl tertiary butyl ether

DIPE - denotes di-isopropyl ether

ETBE - denotes ethyl tertiary butyl ether

TAME - denotes tertiary amyl ether

TBA - denotes tertiary butyl alcohol

Page 1 of 1 GHA.19009

Well ID TOC	Date Measured	Depth to Groundwater	Groundwater Elevation	TPHd	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes
Monitoring) Melle	(ft bgs)	(ft amsl)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-1	6/23/2011	10.46	20.35	<250	23,000	4,500	820	1,700	3,800
19199-7	9/22/2011	12.13	18.68	<50	21,000	4,000	1,500	980	3,000
	12/11/2011	11.69	19.12		23,000	2,900	1,000	720	
	3/30/2012	11.03	13.12		Inaccessible		1,000	720	3,000
	6/1/2012	11.04	19.77		40,000	4,100	800	2,700	6,100
	9/14/2012	12.96	17.85	<100	20,000	2,700	160	830	
	3/27/2013	8.57	22.24	<50	15,000		150	400	2,600 830
	5/20/2013	8.57	22.24	<100	22,000	1,700 2,800	870	560	
	9/4/2013	9.29	21.52	<250	12,000		130	190	2,000 370
	12/6/2013	9.11	21.70	<120	15,000	2,900 3,000	780	580	
	6/27/2014	8.92	21.89	<120	15,000	2,500	280	2,400	2,400
	9/19/2014	10.98	19.83		11,000	530	190	460	2,400 950
	12/15/2014	7.66	23.15		11,000	1,100	140	310	420
	3/31/2015	8.81	22.00		38,000		230		
	9/18/2015	12.23	18.58			1,200 890	38	810 240	2,600 360
	12/16/2015	12.02	18.79		7,600	580	16		
	3/22/2016	10.48	20.33		8,900	690	66	110 540	110
	9/23/2016	9.01	21.80		18,000 20,000	1,400	90		1,900
	3/28/2017	8.73	22.08		47,000	1,600	270	1,100	4,500
	9/28/2017	11.50	19.31			660	270	3,600	9,000
	3/30/2018	8.64			22,000			700	1,600
	3/30/2018	8.04	22.17		45,000	920	110	3,100	10,000
MW-2	6/23/2011	10.70	20.59	<250	13,000	1,000	160	370	1,600
	9/22/2011	12.42	18.87	<50	12,000	300	130	470	1,400
	12/11/2011	11.98	19.31		8,300	170	120	450	1,500
	3/30/2012	8.55	22.74	<250	17,000	850	700	710	2,900
	6/1/2012	11.26	20.03		5,300	830	260	630	1,700
	9/14/2012	13.11	18.18	<50	10,000	260	190	600	1,900
	3/27/2013	9.43	21.86	<50	12,000	440	98	320	810
	5/20/2013	9.41	21.88	<100	6,600	300	74	190	500
	9/4/2013	10.11	21.18	<100	5,300	300	50	180	280
	12/6/2013	9.93	21.36	<50	4,300	280	39	140	160
	6/27/2014	9.93	21.36	<50	1,300	200	22	85	160
	9/19/2014	12.49	18.80		990	42	12	97	110
	12/15/2014	8.65	22.64	7	85	14	3.3	5.2	13
	3/31/2015	9.83	21.46						1.5
	9/18/2015	12.45	18.84		1,300	29	8.9	44	120
	12/16/2015	12.57	18.72	~==	880	8.2	2.9	16	30
	3/22/2016	11.11	20.18		900	7.3	2.4	3.7	16
	9/23/2016	9.90	21.39		570	10	2.9	13	37
	3/28/2017	9.42	21.87	755	3,000	120	6.2	39	64
	9/28/2017	12.10	19.19		2,100	11	2.5	16	43
	3/30/2018	9.32	21.97		4,700	64	8.6	82	140
	-,,,		/		-1,700		V.V		470

Well ID	Date Measured	Depth to Groundwater	Groundwater Elevation	TPHd	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes
TOC		(ft bgs)	(ft amsl)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-3	6/23/2011	10.79	20.51	<250	55,000	15,000	3,600	2,000	4,300
	9/22/2011	12.60	18.70	<250	77,000	15,000	3,900	1,700	4,900
	12/11/2011	12.13	19.17		64,000	12,000	3,100	1,600	4,500
	3/30/2012	7.90	23.40	<120	100,000	17,000	10,000	2,000	8,400
	6/1/2012	11.47	19.83		83,000	15,000	6,000	2,900	10,000
	9/14/2012	13.42	17.88	<200	69,000	10,000	1,500	1,800	5,900
	3/27/2013	9.15	22.15	<200	63,000	7,100	2,100	1,900	7,700
	5/20/2013	9.16	22.14	<250	80,000	9,700	2,900	2,400	8,600
	9/4/2013	9.87	21.43	<250	47,000	7,200	470	1,200	5,000
	12/6/2013	9.69	21.61	<50	19,000	5,600	240	520	1,600
	6/27/2014	9.49	21.81	<50	12,000	5,800	240	860	760
	9/19/2014	11.62	19.68		9,500	610	160	220	400
	12/15/2014	8.10	23.20		1,300	260	69	39	120
	3/31/2015	9.37	21.93		13,000	1,300	270	230	700
	9/18/2015	13.13	18.17		8,300	1,000	150	150	440
	12/16/2015	13.09	18.21		11,000	1,100	130	290	350
	3/22/2016	11.39	19.91	***	1,500	230	23	14	53
	9/23/2016	9.57	21.73	***	4,200	640	51	58	140
	3/28/2017	9.20	22.10		1,200	47	20	11	67
	9/28/2017	11.91	19.39		3,400	97	56	84	190
	3/30/2018	9.23	22.07		1,200	46	31	20	150
	6 (0.0 (0.0)	40.00							
MW-4	6/23/2011	10.62	20.59	<250	47,000	3,500	7,100	2,300	11,000
	9/22/2011	12.25	18.96	<250	46,000	2,000	2,400	1,100	5,300
	12/11/2011	11.89	19.32		46,000	2,100	3,400	1,800	7,000
	3/30/2012	8.51	22.70	<250	60,000	6,800	8,200	1,200	5,700
	6/1/2012	11.14	20.07		72,000	9,700	8,500	2,300	9,000
	9/14/2012	12.97	18.24	<50	15,000	940	880	450	1,700
	3/27/2013	9.05	22.16	<50	25,000	1,800	2,200	660	2,500
	5/20/2013	9.03	22.18	<250	18,000	1,600	1,700	470	1,900
	9/4/2013	9.68	21.53	<50	15,000	510	410	260	820
	12/6/2013	9.54	21.67	<50	9,600	630	650	240	970
	6/27/2014	9.58	21.63	<50	3,300	550	2,900	200	420
	9/19/2014	11.61 8.45	19.60		2,100 720	110	54	92	210
	12/15/2014	9.46	22.76		720	58	32	29	33
	3/31/2015 9/18/2015	12.03	21.75		17.000	120	22	70	200
	12/16/2015	12.03	19.18 18.80		17,000	130	33 44	70 88	200
	3/22/2016	11.22	19.99		8,200	160 88			130
					1,900		71	43	91
	9/23/2016	9.45	21.76	***	2,700	520 700	85	54	120
	3/28/2017	9.22	21.99		4,500	700	56	140	300
	9/28/2017 3/30/2018	11.88 9.17	19.33 22.04		7,100 5,100	250	29	220	310
	3/30/2018	3.1/	22.04		5,100	520	25	70	110

Well ID	Date Measured	Depth to Groundwater	Groundwater Elevation	TPHd	ТРН	Benzene	Toluene	Ethyl- benzene	Total Xylenes			
TOC		(ft bgs)	(ft amsl)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)			
MW-5	6/23/2011	10.12	21.23	<250	130,000	7,100	25,000	13,000	94,000			
	9/22/2011	12.53	18.82	<250	120,000	6,900	7,600	3,800	17,000			
	12/11/2011	12.09	19.26		110,000	7,800	14,000	4,200	20,000			
	3/30/2012	8.06	23.29				ot sampled					
	6/1/2012	11.38	19.97				ot sampled					
	9/14/2012	13.61 9.21	17.74 22.14				- not sample					
	3/27/2013 5/20/2013	9.21	22.14				 not sample not sample 					
	9/4/2013	9.70	21.65	<u> </u>	······		- not sample					
	12/6/2013	9.67	21.68	<250	81,000	10,000	13,000	5,500	21,000			
	6/27/2014	9.51	21.84	~230		·	- not sample		21,000			
	9/19/2014	12.91	18.44		56,000	1,000	270	1,000	4,100			
	12/15/2014		10.117		13,000	840	530	450	1,700			
	3/31/2015	9.36	21.99		34,000	1,100	570	500	2,000			
	9/18/2015				9,800	290	23	140	270			
	12/16/2015		444		6,100	220	5.8	92	35			
	3/22/2016	12.26	19.09		6,300	320	58	190	480			
	9/23/2016				10,000	350	48	230	930			
	3/28/2017				9,700	310	68	580	1,200			
	9/28/2017	11.97	19.38		7,500	140	16	140	370			
	3/30/2018				Inaccessibl	e						
MW-6	6/23/2011	10.43	20.36	<250	11,000	2,400	120	480	840			
	9/22/2011	12.10	18.69	<50	15,000	1,500	270	880	2,500			
	12/11/2011	11.69	19.10		13,000	660	190	610	1,500			
	3/30/2012	7.50	23.29	<250	9,500	1,200	160	250	520			
	6/1/2012	11.04	19.75		23,000	2,200	220	1,300	3,000			
	9/14/2012	12.96	17.83	<50	14,000	1,000	86	420	1,200			
	3/27/2013					Inacc	essible					
	5/20/2013			-		Inacc	essible					
	9/4/2013	9.19	21.60	<100	9,500	1,400	120	1,400	1,600			
	12/6/2013	9.03	21.76	<100	14,000	1,200	24	1,400	810			
	6/27/2014	8.80	21.99	<100	9,800	1,200	75	2,800	530			
	9/19/2014	10.68	20.11		6,500	240	21	490	110			
	12/15/2014	7.62	23.17		4,700	520	25	110	43			
	3/31/2015	8.75	22.04		10,000	330	12	80	73			
-	9/18/2015	11.61	19.18		7,000	430	24	120	110			
	12/16/2015	11.58	19.21		8,200	460	12	17	26			
	3/22/2016	10.10	20.69		5,900	380	15	87	83			
	9/23/2016	8.90	21.89		7,700	170	<5.0	8.0	<10			
	3/28/2017	8.70	22.09	-7-	8,100	190	11	100	130			
	9/28/2017	11.35	19.44		6,100	210	17	27	48			
	3/30/2018	8.65	22.14		6,800	200	12	29	46			

Shore Acres Gas 403 East 12th Street Oakland, California

Well ID TOC	Date Measured	Depth to Groundwater (ft bgs)	Groundwater Elevation (ft amsi)	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl- benzene (ug/L)	Total Xylenes (ug/L)
DPE Wells									
EW-1	6/28/2011				20,000	2,000	490	1,000	2,400
	9/22/2011	12.55	18.71	<120	39,000	3,900	610	1,400	4,600
	12/11/2011	12.09	19.17		27,000	2,600	270	1,400	4,400
	3/30/2012	8.06	23.20	<120	21,000	3,100	160	910	2,300
	6/1/2012	11.42	19.84		21,000	2,800	100	1,200	3,100
	9/14/2012	13.37	17.89	<50	22,000	1,900	50	1,000	2,600
	3/27/2013	9.06	22.20	<50	15,000	630	36	360	590
	5/20/2013	9.06	22.20	<100	11,000	600	28	210	350
	9/4/2013	9.77	21.49	<50	9,300	610	19	170	250
	12/6/2013	9.63	21.83	<100	11,000	740	17	260	340
	6/27/2014	9.55	21.91	<100	12,000	1,400	210	1,900	2,400
	9/19/2014	12.41	19.05		28,000	1,000	450	1,400	3,900
	12/15/2014	8.20	23.26		4,000	560	29	150	150
	3/31/2015	9.30	22.16						
	9/18/2015	13.25	18.21		6,900	370	5.5	190	210
,	12/16/2015	13.22	18.24		6,000	250	3.3	31	31
	3/22/2016	11.54	19.92		3,900	200	<5.0	46	33
	9/23/2016	9.51	21.95		6,200	130	<5.0	35	24
	3/28/2017	9.24	22.22		9,000	210	3.2	55	95
	9/28/2017	11.93	19.53		8,200	66	2.3	49	28
	3/30/2018	9.16	22.30		10,000	46	<2.0	32	29
EW-2	6/28/2011				33,000	3,100	2,000	790	3,500
	9/22/2011	12.50	18.90	<250	66,000	2,400	4,500	2,000	11,000
	12/11/2011	12.12	19.28		70,000	2,800	6,900	2,700	13,000
	3/30/2012	8.48	22.92	<250	57,000	5,800	5,500	1,200	5,400
	6/1/2012	11.40	20.00		82,000	8,800	8,600	3,300	13,000
	9/14/2012	13.27	18.13	<100	32,000	2,600	2,400	1,000	4,500
	3/27/2013	9.24	22.16	<100	18,000	940	790	390	1,700
	5/20/2013	9.21	22.19	<50	10,000	540	430	220	790
	9/4/2013	9.88	21.52	<250	10,000	680	580	480	1,700
	12/6/2013	9.96	21.47	<50	13,000	620	380	350	1,600
	6/27/2014	9.85	21.58	<50	27,000	3,200	5,600	1,200	8,000
	9/19/2014	16.80	14.63		18,000	690	1,300	360	2,400
	12/15/2014 3/31/2015	8.73 9.90	22.70		11,000	510	500	160	1,100
			21.53		16,000	1 400	2,400		3 400
	9/18/2015 12/16/2015	15.10 16.57	16.33 14.86	***	16,000	1,400		520 400	3,400
	3/22/2016	16.56	14.85		29,000	1,400 820	3,300 2,100	420	2,500
	9/23/2016	9.82	21.61			37	38	29	2,800 170
	3/28/2017	9.54	21.89		6,500 7,100	64	33	51	260
	9/28/2017	12.30	19.13		7,100 1,900	8.8		23	79
	3/30/2018						15 15		
	3/30/4018	9.60	21.83		7,200	43	15	50	310

DIC.14244

Shore Acres Gas 403 East 12th Street Oakland, California

Well ID TOC	Date Measured	Depth to Groundwater (ft bgs)	Groundwater Elevation (ft amsl)	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl- benzene (ug/L)	Total Xylenes (ug/L)
EW-3	5/20/2013	8.82		<50	1,300	430	540	280	1,000
	9/4/2013	9.49		<100	9,800	480	220	560	1,800
	12/6/2013	10.05		<50	10,000	810	580	260	1,100
	6/27/2014	9.90		<50	27,000	4,300	4,300	1,200	7,900
	9/19/2014	13.00			15,000	670	650	530	2,400
	12/15/2014	8.20			26,000	1,200	1,100	350	2,000
	3/31/2015	9.31			8,000	170	18	130	560
	9/18/2015	13.98		-	12,000	340	110	180	1,900
	12/16/2015	14.31		***	11,000	360	75	110	920
	3/22/2016	12.63			5,700	120	6.7	90	170
	9/23/2016	9.46			2,800	26	2.2	60	61
	3/28/2017	9.21			4,100	150	3.9	41	32
	9/28/2017	11.87			3,600	18	5.4	25	46
	3/30/2018	9.15			2,900	13	2.2	9.6	27
EW-4	5/20/2013	9.12		<50	8,100	720	160	94	430
	9/4/2013	9.85	77.7	z	11,000	990	580	310	1,200
	12/6/2013	9.62		w	4,400	150	170	140	670
	6/27/2014	9.47		<50	8,400	1,500	940	540	2,100
	9/19/2014	12.48	***		9,000	680	1,600	450	3,000
	12/15/2014	8.50			7,700	570	170	320	1,000
	3/31/2015	9.78		-4-	23,000	1,000	1,200	420	1,700
	9/18/2015	15.45			7,200	860	62	55	130
	12/16/2015	16.08			5,200	1,200	35	40	81
	3/22/2016	16.74			7,400	920	83	120	350
	9/23/2016	9.95			8,200	350	27	70	670
	3/28/2017	9.50			10,000	460	12	190	690
	9/28/2017	12.22			8,000	89	6.3	100	410
	3/30/2018	9.36			5,100	190	10	76	250

Notes:

TOC - denotes top of casing elevation

TPHg - denotes total petroleum hydrocarbons as gasoline

TPHd - denotes total petroleum hydrocarbons as diesel

ft bgs - denotes feet below top of casing ft amsl - denotes feet above mean sea level

ug/L - denotes micrograms per liter

< - denotes less than the detection limit

--- - denotes not available/applicable

FLH - denotes floating liquid hydrocarbons

* - denotes less than six inches of water and considered dry

Page 5 of 5 DIC.14244

Well	Date	DIPE	ETBE	MTBE	TAME	ТВА	1,2-DCA	EDB
Δi	Measured	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
TOC								
Monitoring	Wells							
MW-1	6/23/2011	<25	<25	3,000	<25	3,900	<25	<25
	9/22/2011	<50	<50	2,600	<50	2,500	<50	<50
	12/11/2011	<20	<20	1,800	<20	1,600	<20	<20
	3/30/2012				Inaccessible	2	T	
	6/1/2012	<20	<20	2,800	<20	1,300	<20	<20
	9/14/2012	<10	<10	2,200	<10	1,600	<10	<10
	3/27/2013	<0.5	<0.5	590	<0.5	350	<0.5	<0.5
	5/20/2013	<10	<10	1,100	<10	620	<10	<10
	9/4/2013	<10	<10	240	<10	<100	<10	<10
-	12/6/2013	<5.0	<5.0	350	<50	<100	<5.0	<5.0
	6/27/2014	<10	<10	97	<10	<100	<10	<10
	9/19/2014	<10	<10	150	<10	<100	<10	<10
	12/15/2014	<0.5	<0.5	310	<0.5	98	<0.5	<0.5
	3/31/2015	<5.0	<5.0	330	<5.0	<50	<5.0	<5.0
	9/18/2015	<5.0	<5.0	150	<5.0	<50	<5.0	<5.0
	12/16/2015	<5.0	<5.0	. 57	<5.0	<50	<5.0	<5.0
	3/22/2016	<50	<50	<50	<50	<500	<50	<50
	9/23/2016	<0.5	<0.5	250	<0.5	250	<0.5	<0.5
	3/28/2017	<20	<20	340	<20	470	<20	<20
	9/28/2017	<10	<10	130	<10	290	<10	<10
	3/30/2018	<20	<20	170	<20	400	<20	<20
MW-2	6/23/2011	<10	<10	240	<10	640	<10	<10
	9/22/2011	<5.0	<5.0	110	<5.0	260	<5.0	<5.0
	12/11/2011	<2.5	<2.5	45	<2.5	110	<2.5	<2.5
	3/30/2012	<5.0	<5.0	140	<5.0	490	<5.0	<5.0
	6/1/2012	<5.0	<5.0	180	<5.0	490	<5.0	<5.0
	9/14/2012	<5.0	<5.0	65	<5.0	190	<5.0	<5.0
	3/27/2013	<0.5	<0.5	120	<0.5	930	<0.5	<0.5
	5/20/2013	<2.5	<2.5	120	<2.5	1,800	<2.5	<2.5
	9/4/2013	<5.0	<5.0	100	<5.0	780	<5.0	<5.0
	12/6/2013	<5.0	<5.0	63	<5.0	230	<5.0	<5.0
	6/27/2014	<5.0	<5.0	21	<5.0	<50	<5.0	<5.0
	9/19/2014	<5.0	<5.0	16	<5.0	<50	<5.0	<5.0
	12/15/2014	<0.5	<0.5	7.3	<0.5	23	<0.5	<0.5
	3/31/2015							
	9/18/2015	<0.5	<0.5	4.1	<0.5	<5.0	<0.5	<0.5
	12/16/2015	<0.5	<0.5	1.0	<0.5	<5.0	<0.5	<0.5
	3/22/2016	<0.5	<0.5	<0.5	<0.5	3.7	<0.5	<0.5
	9/23/2016	<0.5	<0.5	5.3	<0.5	<5.0	<0.5	<0.5
	3/28/2017	<0.5	<0.5	10	<0.5	<5.0	<0.5	<0.5
	9/28/2017	<1.0	<1.0	3.0	<1.0	<10	<1.0	<1.0
	3/30/2018	<1.0	<1.0	10	<1.0	<10	<1.0	<1.0
	[;						l

Well	Date	DIPE	ETBE	MTBE	TAME	ТВА	1,2-DCA	EDB
ID	Measured	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
TOC						1		
MW-3	6/23/2011	<100	<100	8,200	<100	6,400	<100	<100
	9/22/2011	<100	<100	11,000	<100	2,800	<100	<100
	12/11/2011	<100	<100	7,400	<100	1,800	<100	<100
	3/30/2012	<100	<100	13,000	<100	<1,000	<100	<100
	6/1/2012	<50	<50	12,000	<50	<500	<50	<50
	9/14/2012	<50	<50	9,400	<50	<500	<50	<50
	3/27/2013	<0.5	<0.5	7,900	<0.5	3,800	<0.5	<0.5
	5/20/2013	<25	<25	10,000	<25	5,000	<25	<25
	9/4/2013	<25	<25	5,300	<25	2,100	<25	<25
	12/6/2013	<25	<25	1,400	<25	640	<25	<25
	6/27/2014	<25	<25	520	<25	260	<25	<25
	9/19/2014	<25	<25	390	<25	370	<25	<25
	12/15/2014	<0.5	<0.5	110	<0.5	140	<0.5	<0.5
	3/31/2015	<5.0	<5.0	980	<5.0	610	<5.0	<5.0
	9/18/2015	<5.0	<5.0	410	<5.0	410	<5.0	<5.0
	12/16/2015	<5.0	<5.0	290	<5.0	<50 F6	<5.0	<5.0
	3/22/2016 9/23/2016	<5.0 <5.0	<5.0 <5.0	71 380	<5.0 <5.0	56 <50	<5.0 <5.0	<5.0 <5.0
	3/28/2017	<5.0	<5.0	19		95	<5.0 <5.0	<5.0
	9/28/2017	<1.0	<1.0	110	<5.0 <1.0	79	<1.0	<1.0
	3/30/2018	<0.5	<0.5	38	<0.5	49	<0.5	<0.5
	3/30/2018	\0.5	V0.5	30	V0.5	43	V0.3	<u> </u>
MW-4	6/23/2011	<50	<50	<50	<50	<500	<50	<50
	9/22/2011	<25	<25	<25	<25	<250	<25	<25
	12/11/2011	<25	<25	<25	<25	<250	<25	<25
:	3/30/2012	<50	<50	56	<50	<500	<50	<50
	6/1/2012	<50	<50	180	<50	<500	<50	<50
	9/14/2012	<20	<20	<20	<20	<200	<20	<20
	3/27/2013	<0.5	<0.5	77	<0.5	450	<0.5	<0.5
	5/20/2013	<10	<10	61	<10	360	<10	<10
	9/4/2013	<2.5	<2.5	17	<2.5	64	<2.5	<2.5
	12/6/2013	<2.5	<2.5	6.6	<2.5	<25	<2.5	<2.5
	6/27/2014	<2.5	<2.5	<2.5	<2.5	<25	<2.5	<2.5
	9/19/2014	<2.5	<2.5	<2.5	<2.5	<25	<2.5	<2.5
	12/15/2014	<0.5	<0.5	<0.5	<0.5	13	<0.5	<0.5
	3/31/2015							
	9/18/2015	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0
	12/16/2015	<5.0	<5.0	<5.0	<5.0	<50	<5.0	<5.0
	3/22/2016	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0
	9/23/2016	<5.0	<5.0	8.0	<5.0	<50	<5.0	<5.0
	3/28/2017	<5.0	<5.0	12	<5.0	<50	<5.0	<5.0
	9/28/2017	<2.0	<2.0	25	<2.0	<20	<2.0	<2.0
	3/30/2018	<2.0	<2.0	22	<2.0	<20	<2.0	<2.0

Well	Date	DIPE	ETBE	MTBE	TAME	ТВА	1,2-DCA	EDB
ΙĐ	Measured	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
тос								
MW-5	6/23/2011	<120	<120	440	<120	<1,200	<120	<120
	9/22/2011	<50	<50	670	<50	1,500	<50	<50
	12/11/2011	<120	<120	690	<120	1,600	<120	<120
	3/30/2012			She	en - not sam	pled		
	6/1/2012			She	en - not sam	pled		
	9/14/2012			Free pr	odúct - not :	sampled		
	3/27/2013			Free pr	oduct - not :	sampled		
	5/20/2013			Free pr	oduct - not :	sampled		
	9/4/2013		r	Free pr	oduct - not :	sampled	<u>r </u>	
	12/6/2013	<25	<25	270	<25	<250	<25	<25
	6/27/2014			Free pr	oduct - not :	sampled		
	9/19/2014	<25	<25	75	<25	<250	<25	<25
	12/15/2014	<0.5	<0.5	370	<0.5	340	<0.5	<0.5
	3/31/2015	<5.0	<5.0	71	<5.0	280	<5.0	<5.0
	9/18/2015	<5.0	<5.0	15	<5.0	<50	<5.0	<5.0
	12/16/2015	<5.0	<5.0	17	<5.0	<50	<5.0	<5.0
	3/22/2016	<5.0	<5.0	26	<5.0	110	<5.0	<5.0
	9/23/2016	<5.0	<5.0	38	<5.0	<50	<5.0	<5.0
	3/28/2017	<0.5	<0.5	27	<0.5	<5.0	<0.5	<0.5
	9/28/2017	<2.0	<2.0	27	<2.0	<20	<2.0	<2.0
	3/30/2018				Inaccessible	2	·	· · · · · · · · · · · · · · · · · · ·
MW-6	6/23/2011	<25	<25	1,100	<25	4,000	<25	<25
	9/22/2011	<12	<12	600	<12	2,800	<12	<12
	12/11/2011	<10	<10	290	<10	1,300	<10	<10
	3/30/2012	<10	<10	990	<10	3,500	<10	<10
	6/1/2012	<10	<10	1,400	<10	2,200	<10	<10
	9/14/2012	<10	<10	580	<10	2,000	<10	<10
	3/27/2013				Inaccessible	2		
	5/20/2013				Inaccessible	<u> </u>	T	1
	9/4/2013	<5.0	<5.0	29	<5.0	140	<5.0	<5.0
	12/6/2013	<2.5	<2.5	12	<2.5	<25	<2.5	<2.5
	6/27/2014	<2.5	<2.5	4.9	<2.5	<25	<2.5	<2.5
	9/19/2014	<2.5	<2.5	7.1	<2.5	<25	<2.5	<2.5
	12/15/2014	<0.5	<0.5	33	<0.5	88	<0.5	<0.5
	3/31/2015	<5.0	<5.0	12	<5.0	<50	<5.0	<5.0
	9/18/2015	<2.5	<2.5	9.6	<2.5	<25	<2.5	<2.5
	12/16/2015	<5.0	<5.0	10	<5.0	<50	<5.0	<5.0
	3/22/2016	<5.0	<5.0	8.7	<5.0	28	<5.0	<5.0
	9/23/2016	<5.0	<5.0	<5.0	<5.0	<50	<5.0	<5.0
	3/28/2017	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
	9/28/2017	<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0
	3/30/2018	<2.0	<2.0	20	<2.0	<20	<2.0	<2.0

Well	Date	DIPE	ETBE	MTBE	TAME	TBA	1,2-DCA	EDB
ID	Measured	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
TOC					<u> </u>	<u> </u>	<u> </u>	
DPE Wells	1		<u> </u>	<u> </u>		1		
EW-1	6/28/2011	<25	<25	1,500	<25	5,300	<25	<25
	9/22/2011	<50	<50	640	<50	1,800	<50	<50
	12/11/2011	<25	<25	490	<25	1,000	<25	<25
	3/30/2012	<20	<20	370	<20	1,100	<20	<20
	6/1/2012	<25	<25	500	<25	1,700	<25	<25
	9/14/2012	<10	<10	370	<10	1,400	<10	<10
	3/27/2013	<0.5	<0.5	270	<0.5	560	<0.5	<0.5
	5/20/2013	<5.0	<5.0	250	<5.0	560	<5.0	<5.0
	9/4/2013	<2.5	<2.5	220	<2.5	5 9 0	<2.5	<2.5
	12/6/2013	<2.5	<2.5	130	<2.5	270	<2.5	<2.5
	6/27/2014	<10	<10	40	<10	<100	<10	<10
	9/19/2014	<20	<20	300	<20	<200	<20	<20
	12/15/2014	<0.5	<0.5	170	<0.5	110	<0.5	<0.5
	3/31/2015							
	9/18/2015	<2.5	<2.5	100	<2.5	<25	<2.5	<2.5
	12/16/2015	<5.0	<5.0	24	<5.0	<50	<5.0	<5.0
	3/22/2016	<5.0	<5.0	40	<5.0	46	<5.0	<5.0
	9/23/2016	<5.0	<5.0	78	<5.0	<50	<5.0	<5.0
	3/28/2017	<0.5	<0.5	90	<0.5	<5.0	<0.5	<0.5
	9/28/2017	<2.0	<2.0	42	<2.0	<20	<2.0	<2.0
	3/30/2018	<2.0	<2.0	74	<2.0	<20	<2.0	<2.0
EW-2	6/28/2011	<25	<25	670	<25	4,100	<25	<25
	9/22/2011	<50	<50	740	<50	1,600	<50	<50
	12/11/2011	<50	<50	540	<50	880	<50	<50
	3/30/2012	<50	<50	1,800	<50	2,800	<50	<50
	6/1/2012	<50	<50	2,600	<50	3,300	<50	<50
<u>`</u>	9/14/2012	<20	<20	1,100	<20	2,400	<20	<20
	3/27/2013	<0.5	<0.5	360	<0.5	1,800	<0.5	<0.5
	5/20/2013	<2.5	<2.5	390	<2.5	2,600	<2.5	<2.5
	9/4/2013	<5.0	<5.0	460	<5.0	1,400	<5.0	<5.0
	12/6/2013	<10	<10	210	<10	560	<10	<10
	6/27/2014	<10	<10	110	<10	<100	<10	<10
	9/19/2014	<25	<25	96	<25	<250	<25	<25
	12/15/2014	<0.5	<0.5	94	<0.5	66	<0.5	<0.5
	3/31/2015			***				
	9/18/2015	<10	<10	50	<10	<100	<10	<10
	12/16/2015	<50	<50	58	<50	<500	<50	<50
	3/22/2016	<250	<250	<250	<250	<1,000	<250	<250
	9/23/2016	<5.0	<5.0	26	<5.0	<50	<5.0	<5.0
	3/28/2017	<0.5	<0.5	59	<0.5	<5.0	<0.5	<0.5
	9/28/2017	<2.0	<2.0	18	<2.0	65	<2.0	<2.0
	3/30/2018	<2.0	<2.0	45	<2.0	210	<2.0	<2.0
				·			T	<u> </u>

Shore Acres Gas 403 East 12th Street Oakland, California

Well	Date	DIPE	ETBE	MTBE	TAME	ТВА	1,2-DCA	EDB
ID	Measured	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
тос								
EW-3	5/20/2013	<2.5	<2.5	140	<2.5	1,100	<2.5	<2.5
	9/4/2013	<2.5	<2.5	120	<2.5	650	<2.5	<2.5
	12/6/2013	<2.5	<2.5	96	<2.5	690	<2.5	<2.5
	6/27/2014	<5.0	<5.0	150	<5.0	360	<5.0	<5.0
	9/19/2014	<25	<25	75	<25	<250	<25	<25
	12/15/2014	<0.5	<0.5	160	<0.5	700	<0.5	<0.5
	3/31/2015	<5.0	<5.0	38	<5.0	68	<5.0	<5.0
	9/18/2015	<5.0	<5.0	120	<5.0	<50	<5.0	<5.0
	12/16/2015	<5.0	<5.0	81	<5.0	<50	<5.0	<5.0
	3/22/2016	<2.5	<2.5	33	<2.5	84	<2.5	<2.5
	9/23/2016	<0.5	<0.5	32	<0.5	34	<0.5	<0.5
	3/28/2017	<0.5	<0.5	51	<0.5	130	<0.5	<0.5
	9/28/2017	<2.0	<2.0	35	<2.0	100	<2.0	<2.0
	3/30/2018	<1.0	<1.0	59	<1.0	170	<1.0	<1.0
EW-4	5/20/2013	<5.0	<5.0	480	<5.0	1,900	<5.0	<5.0
	9/4/2013	<5.0	<5.0	220	<5.0	1,300	<5.0	<5.0
	12/6/2013	<5.0	<5.0	58	<5.0	430	<5.0	<5.0
	6/27/2014	<2.5	<2.5	82	<2.5	65	<2.5	<2.5
	9/19/2014	<20	<20	120	<20	520	<20	<20
	12/15/2014	<0.5	<0.5	100	<0.5	110	<0.5	<0.5
	3/31/2015	<5.0	<5.0	140	<5.0	310	<5.0	<5.0
	9/18/2015	<5.0	<5.0	140	<5.0	420	<5.0	<5.0
	12/16/2015	<5.0	<5.0	87	<5.0	390	<5.0	<5.0
	3/22/2016	<25	<25	81	<25	250	<25	<25
	9/23/2016	<5.0	<5.0	150	<5.0	180	<5.0	<5.0
	3/28/2017	<0.5	<0.5	61	<0.5	270	<0.5	<0.5
	9/28/2017	<2.0	<2.0	46	<2.0	170	<2.0	<2.0
	3/30/2018	<2.0	<2.0	30	<2.0	200	<2.0	<2.0

Notes:

ug/L - denotes micrograms per liter

< - denotes less than the detection limit

DCA - denotes dichloroethane

EDB - denotes ethylene dibromide MT8E - denotes methyl tertiary butyl ether DIPE - denotes di-isopropyl ether

ETBE - denotes ethyl tertiary butyl ether

TAME - denotes tertiary amyl ether

TBA - denotes tertiary butyl alcohol

--- - denotes no data available

Page 5 of S DIC.14244

Soil Vapor Extraction System Performance Calculations 403 East 12th Street Shore Acres Gas Table 5a

Oakland, California

		- tuelling	Influer	Influent Sample Results	Results	Extrac	Extraction Rates (lb/day)	lb/day)	Cumula	Cumulative Extraction (lb)	ion (lb)
Date	Meter* (hours)	Flow Rate (scfm)	TPHg (ppmv)	Benzene (ppmv)	MTBE (ppmv)	TPHg (lb/day)	Benzene (lb/day)	MTBE (lb/day)	(al)	Benzene (lb)	MTBE (lb)
05/27/14	590.3	106.0	2,500	14	0.73	112	0.5	0.0	2,745	11.4	0.7
06/17/14	961.5	125.0	40	1.4	0.18	2.1	0.05	0.0	2,778	12.3	0.8
06/27/14	988.2				Unit sh	It down for (Unit shut down for Carbon Change Out	nge Out			
08/15/14	988.2					Resta	Restart Unit				
08/19/14	992.6	125.0	33	0.79	0.13	1.7	0.03	0.0	2,780	12.3	0.8
09/25/14	1,535.7	163.0	2,100	15	< 0.1	144	0.77	0.0	6,042	29.7	6.0
10/28/14	1,750.4	146.0	130	2.4	0.44	8.0	0.11	0.0	6,114	30.6	1.1
12/09/14	2,142.4	154.0	610	2.6	0.23	40	0.13	0.0	6,760	32.7	1.3
02/18/15	2,708.3			Sy	stem shut c	lown, propa	System shut down, propane tank removed from site	oved from s	ite		
08/11/15	2,708.9					System	System restarted				
08/25/15	2,864.4	125.0	344	2.7	< 0.1	18	0.11	0.0	7,305	32.6	1.3
09/29/15	3,428.0	128.0	91	1.4	< 0.1	5	90.0	0.0	7,420	33.9	1.4
10/26/15	3,742.1	122.0	225	0.97	< 0.1	12	0.04	0.0	7,571	34.4	1.5
11/23/15	4,175.9	150.0	407	1.2	< 0.1	26	90.0	0.0	8,036	35.4	1.6
12/16/15	4,613.3	148.0	102	0.84	< 0.1	6	0.04	0.0	8,152	36.1	1.6
12/16/15	4,613.3				Unit sh	Unit shut down for (Carbon Change Out	nge Out			
01/27/16	4,761.0	146.0	23	0.73	< 0.1	1.4	0.03	0.0	8,161	36.1	1.6
03/21/16	5,797.5	138.0	20	0.86	< 0.1	1.2	0.04	0.0	8,211	37.7	1.8
04/11/16	6,279.7	135.0	43	0.86	< 0.1	2.4	0.04	0.0	8,260	38.4	1.9

MW_{MTBE} = Molecular Weight of Methyl tert-butyl ether = 88.15 MW_{Benzene} = Molecular Weight of Benzene = 78.11 MW TPH9 = Molecular Weight of TPHg = 105

ppmv = parts per million by volume = ft^3 / 1x10 6 ft³ scfm = standard cubic feet per minute lb/day = pounds per day min = minutes $\mathrm{ft}^3 = \mathrm{cubic} \ \mathrm{feet}$

69.4

days of operation during quarter

NA = not analyzed NS = not sampled

NC = not calculated

Extraction rate = (flow rate(ft²/min) x concentration (ft³ / 1x10⁶ ft³) x MW_{TPHg}(lb/lb-mol) x 1440 min/day)/(359 ft³/lb-mol*)

* - Hour meter readings does not match field data sheets because hour meter was 5472.6 when unit was started.

Table 5b

Soil Vapor Extraction System Destruction Efficiency and Emission Calculations

403 East 12th Street Oakland, California Shore Acres Gas

	Stack	Stack Sal	Stack Sample Results (ppmv)	ts (ppmv)	Emissi	Emission Rates (lb/day)	lb/day)	Destruc	Destruction Efficiency (%)	ncy (%)
Date	Flow Rate (scfm)	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE	ТРН	Benzene	MTBE
05/27/14	106.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.004	100.0	100.0	100.0
06/17/14	125.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.004	100.0	100.0	100.0
08/19/14	125.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.004	100.0	100.0	100.0
09/25/14	163.0	< 5.0	< 0.050	< 0.10	< 0.3	< 0.003	> 0.006	100.0	100.0	100.0
10/28/14	146.0	< 5.0	< 0.050	< 0.10	< 0.3	< 0.002	< 0.005	100.0	100.0	100.0
12/09/14	154.0	< 5.0	< 0.050	< 0.10	e'0 >	< 0.002	< 0.005	100.0	100.0	100.0
02/18/15	154.0			System st	nutdown and	System shutdown and propane tank removed from site	ank removed	i from site		
08/11/15	121.0				S	System restart	t			
08/25/15	125.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.004	100.0	100.0	100.0
10/26/15	122.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	> 0.004	100.0	100.0	100.0
11/23/15	150.0	< 5.0	< 0.050	< 0.10	< 0.3	< 0.002	< 0.005	100.0	100.0	100.0
12/16/15	148.0	< 5.0	< 0.050	< 0.10	< 0.3	< 0.002	< 0.005	100.0	100.0	100.0
12/16/15				System sh	nutdown and	System shutdown and propane tank removed from site	ank removed	from site		
01/27/16	146.0	< 5.0	< 0.050	< 0.10	< 0.3	< 0.002	< 0.005	100.0	100.0	100.0
03/21/16	138.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.005	100.0	100.0	100.0
04/11/16	135.0	< 5.0	< 0.050	< 0.10	< 0.2	< 0.002	< 0.005	100.0	100.0	100.0
			**						-	

Note: "<" indicates analytical method detection limit; method detection limits are used as stack concentrations to estimate emission rates. Destruction efficiency is assumed to be 100%.

Sample Calculations

Emission rate = flow rate(\Re^3 /min) x concentration (\Re^3 / 1x10⁶ \Re^3) x MW (ib/lb-mole)/359 (\Re^3 lb-mole*) x 1440 min/day

Destruction Efficiency = [(Extraction rate - Emission rate)/Extraction rate] x 100%

Stack flow = Catox Influent + Natural Gas flow rate

ppmv = parts per million by volume = ft^3 / 1x10⁶ ft^3

lb/day = pounds per day NS = not sampled

scfm = standard cubic feet per minute

NA = Not applicable

min = minutes ft³ = cubic feet

Groundwater Treatment System Performance Data 403 East 12th Street Oakland, California Shore Acres Gas Table Sc

	TOTAL	AVG. PERIOD	Influent	Influent Water Analytical	al Results	Estir	Estimated Removal Rates	Rates	Estima	Estimated Removal (Period)	Period	Estimate	Estimated Removal (Cumulativa)	mulatival
DATE	FLOW	FLOW RATE	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE	TPHG	Benzene	MTBE	ТРНа	Renzene	MTRE
	(gallons)	(gallons/min)	(ng/L)	(ng/L)	(ng/L)	(Ib/day)	(lb/day)	(lb/day)	(spunod)	(spunod)	(spunod)	(spunod)	(spunod)	(spunoa)
04/30/14	189,810						Name of the last o	Unit Start Up	100					(auto-14)
96/27/14	358,850	2.02	18,600	2,600	96	0.45	0.063	0.002	26.21	3.66	0.13	28.21	366	0.13
38/19/14	360,060						Unit Stut Do	Unit Stut Down for Carbon Change Out	Change Out					2
39/25/14	463,050	1.93	17,500	760	148	0.41	0.018	0.003	15.03	0.65	0.13	41.24	4.32	0.26
12/15/14	613,230	1.29	12,175	710	131	0.19	0.011	0.002	15.24	0.89	0.16	56.48	5.21	0.43
02/18/15	766,392	1.64	15,500	585	88	0:30	0.011	0.002	19.79	0.75	0.11	76.27	5.95	0.54
02/18/15	766,392					Unit	Stut Down for C	Unit Stut Down for Change from Propane to Natural Gas	opane to Natura	al Gas				
38/11/15	766,392							Unit Restarted						
39/18/15	849,579	1.52	10,525	743	103	0.19	0.014	0.002	40.72	2.87	0.40	117.00	8.83	0.94
12/16/15	1,082,639	1.82	12,800	803	63	0.28	0.018	0.001	35.49	2.23	0.17	152.49	11.05	1.11
12/16/15	1,082,639						Unit Stut Do	Unit Stut Down for Carbon Change Out	Change Out					
01/21/16	1,082,639							Unit Restarted						
3/22/16	1,239,526	1.79	9,750	515	52	0.21	0.011	0.001	20.28	1.07	0.11	172.77	12.13	1.22
04/11/16	1,340,425						Unit Stut Do	Unit Stut Down for Rebound Monitoring	d Monitoring					

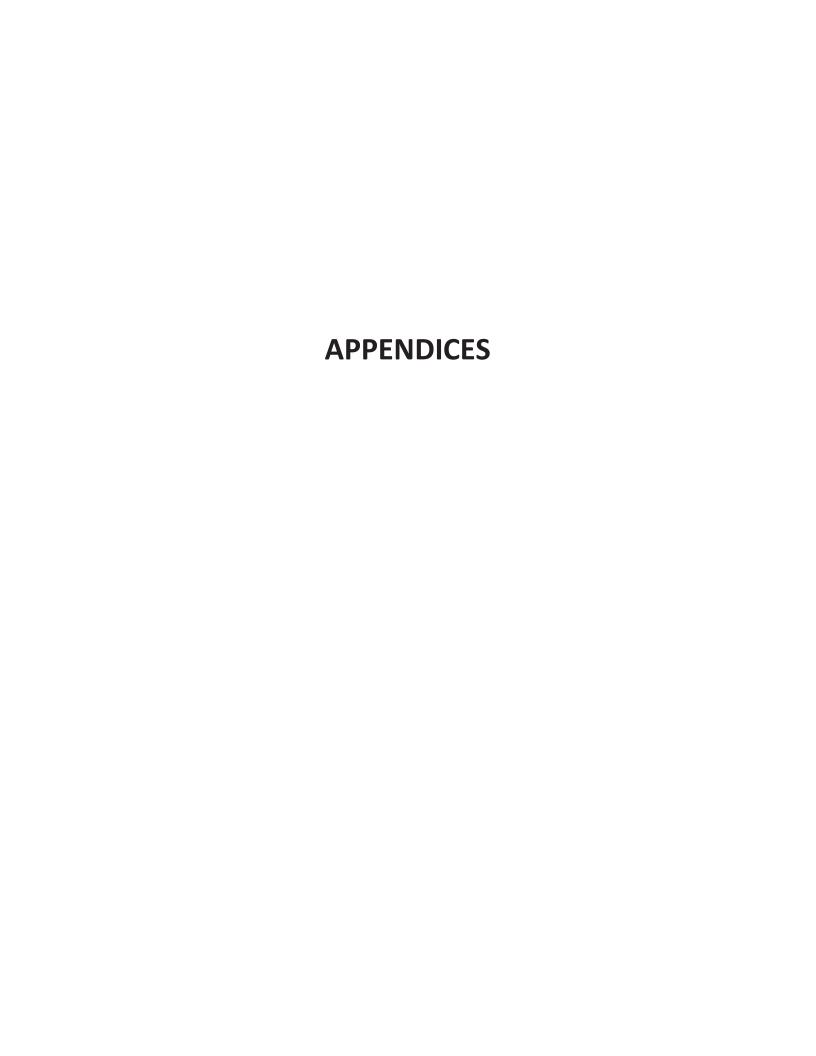
156,887 total gallons pumped during current reporting period 2615 average gallons per day during current reporting period 1.8 average gallons per minute during current reporting period

0.11

1.07

20.28

Notes:


Influent concentrations are an average of extraction wells EW-1 through EW-4 Groundwater flow meter was 189,910 when unit was started up Sample Calculations:

Extraction/ disposal rate = flow rate(gallons/min) * concentration (ug/L) * 3.785 L/gallon *lb/454,000,000 ug * 1440 min/day

NC - Not calculated NS - Not Sampled --- - Not Analyzed

MTBE - Methyl tertiary butyl ether TPHg - Total Petroleum Hydrocarbons as gasoline TBA -Tertiary butyl ether

lb/day - pounds per day ug/L - micrograms per liter

ENVIRONMENTAL COMPLIANCE GROUP, LLC STANDARD OPERATING AND SAFETY AND LOSS CONTROL PROCEDURES

1.0 SOIL BORING/DRILLING SAMPLE COLLECTION AND CLASSIFICATION PROCEDURES

ECG will prepare a site-specific Health and Safety Plan as required by the Occupational Health and Safety Administration (OSHA) Standard "Hazardous Waste Operations and Emergency Response" guidelines (29 CFR.1910.120). The document will be reviewed and signed by all ECG personnel and subcontractors prior to performing work at the site.

Prior to conducting and subsurface work at the site, Underground Services Alert (USA) will be contacted to delineate subsurface utilities near the site with surface markings. In addition, the first five feet of every location will be hand cleared to a diameter larger than the diameter of the auger or probe as a further precaution against damaging underground utilities. Sites that are currently operated as gas stations will be cleared with a private utility locator prior to drilling activities.

Soil samples to be submitted for chemical analyses are collected into brass or stainless steel tubes. The tubes are placed in an 18-inch long split-barrel sampler. The split-barrel sampler is driven its entire length hydraulically or by 140-pound drop hammer. The split-barrel sampler is removed from the borehole and the tubes are removed. When the tubes are removed from the split-barrel sampler, the tubes are trimmed and capped with Teflon sheets and plastic caps or the soil is removed from the tubes and placed in other appropriate sample containers. The samples are sealed, labeled, and placed in ice under chain-of-custody to be delivered to the analytical laboratory. All samples will be kept refrigerated until their delivery to the analytical laboratory.

One soil sample collected from each split-barrel sampler is field screened with a photoionization detector (PID), flame ionization detector (FID), or other equivalent field screening meter. The soil sample is sealed in a plastic bag or other appropriate container to allow volatilization of volatile organic compounds (VOCs). The field meter is used to measure the VOC concentration in the container's headspace and is recorded on the boring logs at the appropriate depth interval.

Other soil samples collected from each split-barrel sampler are inspected and documented to identify the soil stratigraphy beneath the site and classify the soil types according to the United Soil Classification System. The soil types are recorded on boring logs with the appropriate depth interval and any pertinent field observations. Drilling and sampling equipment are steam cleaned or washed in solution and rinsed in deionized water prior to use, between sample collections and boreholes and after use.

2.0 SOIL EXCAVATION SAMPLE COLLECTION AND CLASSIFICATION PROCEDURES

Soil samples to be submitted for chemical analyses are collected into brass or stainless steel tubes or other appropriate containers. The samples are sealed, labeled, and placed in ice under chain-of-custody (COC) to be delivered to the analytical laboratory. All samples will be kept refrigerated until their delivery to the analytical laboratory.

Select soil samples are placed into a sealed plastic bag or other appropriate container and field screened using a PID, FID, or equivalent meter. Other soil samples collected are inspected and documented to identify the soil stratigraphy beneath the site and classify the soil types according to the United Soil Classification System. The soil types are recorded field notes with the appropriate depth interval and any pertinent field observations. Sampling equipment are steam cleaned or washed in solution and rinsed in deionized water prior to use, between sample collections, and after use. Soil cuttings and rinseate water are temporarily stored onsite pending laboratory analytical results and proper transport and disposal.

3.0 SAMPLE IDENTIFICATION AND COC PROCEDURES

Sample containers are labeled with job number, job name, sample collection time and date, sample collection point, and analyses requested. Sampling method, sampler's name, and any pertinent field observations are recorded on boring logs or excavation field notes. COC forms track the possession of the sample from the time of its collection until the time of its delivery to the analytical laboratory. During sample transfers, the person with custody of the samples will relinquish them to the next person by signing the COC and documenting the time and date. The analytical laboratory Quality Control/Quality Assurance (QA/QC) staff will document the receipt of the samples and confirm the analyses requested on the COC matches the sample containers and preservative used, if any. The analytical laboratory will assign unique log numbers for identification during the analyses and reporting. The log numbers will be added to the COC form and maintained in a log book maintained by the analytical laboratory.

4.0 ANALYTICAL LABORATORY QA/QC PROCEDURES

The analytical laboratory analyzes spikes, replicates, blanks, spiked blanks, and certified reference materials to verify analytical methods and results. The analytical laboratory QA/QC also includes:

Routine instrument calibration,

Complying with state and federal laboratory accreditation and certification programs,

Participation in U.S. EPA performance evaluation studies,

Standard operating procedures, and

Multiple review of raw data and client reports

5.0 HOLLOW STEM AUGER WELL INSTALLATION

Boreholes for wells are often drilled with a truck-mounted hollow stem auger drill rig. The borehole diameter is at least 4 inches wider than the outside diameter of the well casing. Soil samples are collected and screened as described in **Section 1.0** and decontamination procedures are also the same as described in **Section 1.0**.

Wells are cased with both blank and factory-perforated Schedule 40 PVC. The factory perforations are typically 0.020 inches wide by 1.5 inch long slots, with 42 slots per foot. A PVC cap is typically installed at the bottom of the casing with stainless steel screws. No solvents or cements are used in the construction of the wells. Well stabilizers or centering devices may be installed around the casing to ensure the filter material and grout in the annulus are evenly distributed. The casing is purchased pre-cleaned or steam cleaned and washed prior to installation in the borehole.

The casing is set inside the augers and sand, gravel, or other filter material is poured into the annulus to fill the borehole from the bottom to approximately 1-2 feet above the perforations. A two foot thick bentonite plug is placed above the filter material to prevent the grout from filling the filter pack. Neat cement or sand-cement grout is poured into the annulus from the top of the bentonite plug to the surface. For wells located in parking lots or driveways, or roads, a traffic rated well box is installed around the well. For wells located in landscaped areas or fields, a stovepipe well protection device is installed around the well. Soil cuttings and rinseate water are temporarily stored onsite pending laboratory analytical results and proper transport and disposal.

6.0 MUD AND AIR ROTARY WELL INSTALLATION

Boreholes for wells can also be drilled with a truck-mounted air rotary or mud rotary drill rig. Air or mud can be used as a drill fluid to fill the borehole and prevent the borehole from caving in and remove drill cuttings. Mud or air can be chosen depending on the subsurface conditions. Soil samples are collected and screened as described in **Section 1.0** and decontamination procedures are also the same as described in **Section 1.0**.

Wells are cased with both blank and factory-perforated Schedule 40 PVC. The factory perforations are typically 0.020 inches wide by 1.5 inch long slots, with 42 slots per foot. A PVC cap is typically installed at the bottom of the casing with stainless steel screws. No solvents or cements are used in the construction of the wells. Well stabilizers or centering devices may be installed around the casing to ensure the filter material and grout in the annulus are evenly distributed. The casing is purchased pre-cleaned or steam cleaned and washed prior to installation in the borehole. Soil cuttings and drilling fluids are temporarily stored onsite pending laboratory analytical results and proper transport and disposal.

The casing is set inside the augers and sand, gravel, or other filter material is poured into the annulus to fill the borehole from the bottom to approximately 1-2 feet above the perforations. A two foot thick bentonite plug is placed above the filter material to prevent the grout from filling the filter pack. Neat cement or sand-cement grout is poured into the annulus from the top of the bentonite plug to the surface. For wells located in parking lots or driveways, or roads, a traffic rated well box is installed around the well. For wells located in landscaped areas or fields, a stovepipe well protection device is installed around the well. Soil cuttings and rinseate water are temporarily stored onsite pending laboratory analytical results and proper transport and disposal.

7.0 WELL DEVELOPMENT

After well installation, the wells are developed to remove residual drilling materials from the annulus and to improve well production by fine materials from the filter pack. Possible well development methods include pumping, surging, bailing, jetting, flushing, and air lifting. Development water is temporarily stored onsite pending laboratory analytical results and proper transport and disposal. Development equipment are steam cleaned or washed in solution and rinsed in deionized water prior to use, between sample collections and after use. After well development the wells are typically allowed to stabilize for at least 24 hours prior to purging and sampling.

8.0 LIQUID LEVEL MEASUREMENTS

Liquid level measurements are made with a water level meter and/or interface probe and disposable bailers. The probe tip attached to a measuring tape is lowered into the well and into the groundwater when a beeping tone indicates the probe is in the groundwater. The probe and measuring tape (graduated to hundredths of a foot) are slowly raised until the beeping stops and the depth to water measurement is recorded. If the meter makes a steady tone, this indicates the presence of floating liquid hydrocarbons (FLH) and the probe and measuring tape are raised until the steady tone stops and the depth to the FLH is measured. Once depth to water and depth to FLH (if present) has been recorded, the probe and measuring tape are lowered to the bottom of the well where the total depth of the well is measured. The depth to water, depth to FLH, and depth to bottom are measured again to confirm the results.

If FLH is encountered in the well, a disposable bailer is lowered into the well and brought back to the surface to confirm the thickness/presence of FLH. To minimize potential for cross contamination between wells, all measurements are done from cleanest to dirtiest well. Prior to beginning liquid level measurements, in between measurements in all wells, and at the completion of liquid level measurements, the water level probe and measuring tape is cleaned with solution (Alconox, Simple Green, or equivalent) and rinsed with deionized water.

9.0 WELL PURGING AND SAMPLING

Each well is typically purged of at least three well casing volumes of groundwater prior to collecting a groundwater sample. Purging can continue beyond three well casing volumes if field parameters including pH, temperature, electrical conductivity are not stabilizing during the purging process. If the well is purged dry before the three well casing volumes has been purged, the well is typically allowed to recharge to 80 percent of its initial water level before a groundwater sample is collected.

Purging equipment can include submersible pumps, PVC purging bailers, disposable bailers, air lift pumps, or pneumatic pumps. Prior to beginning well purging, in between each well purging, and at the completion of purging activities, all non-dedicated purging equipment is cleaned with solution (Alconox, Simple Green, or equivalent) and rinsed with deionized water.

Once the well has been purged, it will be sampled with a disposable bailer, PVC bailer, stainless steel bailer, or through a low flow groundwater pump. The groundwater sample is transferred from the bottom of the bailer to reduce volatilization to the appropriate sample container. The sample containers are specified by the analytical laboratory depending on the analyses requested. Sample containers typically include volatile organic compound (VOA) vials with septa of Teflon like materials. The groundwater sample is collected into the VOAs to minimize air bubbles and once the cap has been placed on the VOA, the VOA is tipped upside down to see if air bubbles are present in the VOA. Typically a duplicate VOA is collected from each well to be analyzed by the analytical laboratory, if warranted, to verify results.

Sample containers are labeled as described in **Section 3.0** and placed immediately in an ice chest and kept refrigerated until its delivery to the analytical laboratory. A trip blank may also be prepared by the analytical laboratory to travel with the ice chest during transport to the laboratory. Field blanks from equipment that has been decontaminated may be collected in between use in different wells to verify the decontamination procedure is effective. To minimize potential for cross contamination between wells, all wells are purged and sampled from cleanest to dirtiest well.

10.0 TEDLAR BAG SOIL VAPOR SAMPLING

Sampling equipment to collect Tedlar bag soil vapor samples includes an air pump, a Tedlar bag which can range in size from 1 to 10 liters, and 3/16-inch diameter polyethylene tubing. The air pump should be equipped with 3/16-inch hose barbs for the polyethylene tubing to attach to. The Tedlar bag must be equipped with a valve for filling and sealing the bag.

When soil vapor samples are collected from remediation equipment, the sample collection port on the remediation equipment is typically fitted with a 3/16-inch hose barb. Prior to collecting soil vapor samples from remediation equipment, air flow, temperature, and pressure or vacuum of the sampling point/remediation equipment are recorded. One end of the polyethylene tubing is connected to the sample collection port and one end is connected to the influent of the air pump, creating an air tight seal. The air pump is turned on and soil vapor from the sample collection port is pumped through the air pump for at least one minute. The air pump is turned off and one end of another piece of polyethylene tubing is connected to the effluent of the air pump and one end is connected to the valve on the Tedlar bag. The valve is opened and the air pump is turned on filling the Tedlar bag with the soil vapor sample until the bag has reached 75% capacity, when the valve on the Tedlar bag is closed and the air pump is turned off.

Tedlar bags are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory. After each soil vapor sample collection, the air pump is turned on for five minutes to allow ambient air to clear the air pump and polyethylene tubing.

11.0 SUMMA CANISTER SOIL VAPOR SAMPLING

Sampling equipment to collect Summa canister soil vapor samples includes a sterilized Summa stainless steel canister under vacuum, ½-inch diameter polyethylene tubing, and a laboratory calibrated flow meter, if required.

When soil vapor samples are collected from remediation equipment, the sample collection port on the remediation equipment is typically fitted with brass connection with silicone septa that has been threaded into a tapped hole on the piping network. Prior to collecting soil vapor samples from remediation equipment, air flow, temperature, and pressure or vacuum of the sampling point/remediation equipment are recorded. One end of the polyethylene tubing is connected to the brass sample collection port and one end is connected to the canister valve or flow meter, creating an air tight seal. Prior to collecting the soil vapor sample, the valve on the Summa canister is opened to verify the Summa canister has the required vacuum which is recorded. Three well volumes of vapor will be purged at a rate less than 200 milliliters per minute (ml/min.), including sand pack pore volume from each soil vapor probe prior to sample collection. The sample valve or flow meter is opened and the soil vapor sample is collected into the Summa canister and the sample valve is closed and the final vacuum reading (typically greater than 5 inches per square inch) on the Summa canister is recorded.

Per the DTSC *Vapor Intrusion Guidance*, October 2011 and the DTSC Advisory – *Active Soil Gas Investigations*, dated July 2015, high quality soil gas data collection is driven by project-specific data quality objectives (DQOs) and can be enhanced by using a shroud and a gaseous tracer compound. This method of leak detection ensures that soil gas wells are properly constructed and the sample train components do not leak. Most gaseous tracer compounds do not affect target analyte measurements nor does their detection require sample dilution. Also, gaseous leak tracer compounds allow a quantitative determination of a leak either in the sampling train or from ambient air intrusion down the borehole.

The shroud will be designed to contain the entire sampling train and the soil gas well annulus. The sampling train will be constructed of material that does not react with the sample analytes and will not off gas or adsorb volatile compounds. The sampling equipment will be clean and shut-in tested prior to use. The gaseous leak tracer compound (helium at 20%) concentration inside the shroud will be monitored during purging and sampling to verify initial concentrations. A helium detector will be used to monitor tracer gas concentrations and will be recorded on field logs.

Summa canisters are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory.

12.0 SYRINGE SOIL VAPOR SAMPLING

Sampling equipment to collect syringe soil vapor samples includes a sterilized, 100 cubic centimeter, gas tight syringe and silicone septa.

When soil vapor samples are collected from remediation equipment, the sample collection port on the remediation equipment is typically fitted with brass connection with silicone septa that has been threaded into a tapped hole on the piping network. Prior to collecting soil vapor samples from remediation equipment, air flow, temperature, and pressure or vacuum of the sampling point/remediation equipment are recorded. The syringe is inserted into the silicone septa and the plunger is purged or pumped at least three times. The sample is collected the fourth time the syringe plunger is extracted and the syringe is removed from the sample collection port and the needle on the syringe is capped with a rubber stopper.

Syringes are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory.

13.0 TEMPORARY SAMPLING POINTS

A temporary borehole is advanced using either a slam bar or a direct push drill rig. In the case of the slam bar, once the borehole has been created, a temporary soil vapor probe is inserted into the borehole and advanced with a slide hammer or other physical force two additional feet. A bentonite seal is then placed in the borehole above the soil vapor probe to create an air tight seal and prevent ambient air from entering the sample collection space. In the case of the direct push drill rig, the sampling rod is advanced to the desired depth with a 6-inch retractable vapor screen at the tip. The sample screen on the 6-inch vapor screen is removed and a bentonite seal is then placed in the borehole above the soil vapor probe to create an air tight seal and prevent ambient air from entering the sample collection space.

Once the bentonite seal has set, at least one hour, the soil vapor survey samples are collected into Tedlar bags as described in **Section 10.0** or Suma canisters as described in **Section 11.0**. Samples are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory. After each soil vapor sample collection, the air pump is turned on for five minutes to allow ambient air to clear the air pump and polyethylene tubing.

14.0 REPEATABLE SAMPLING POINTS

A borehole is advanced using either a hand auger or a drill rig. A 6-inch slotted probe with caps on both ends is placed in the borehole. A Swagelok fitting is attached to one end cap and 3/16-inch diameter Nylon tubing is attached to the Swagelok fitting. A one foot sand pack is placed around the probe and the remainder of the borehole is sealed with a layer of dry bentonite powder, followed by a layer of bentonite chips, and an additional layer of dry bentonite powder. A well box is placed on the surface of the repeatable sampling point and the excess Nylon tubing is placed inside the well box.

Soil vapor survey samples will be collected at least one week after probe installation. In addition, soil vapor survey samples will only be collected after five consecutive precipitation free days and after any onsite irrigation has been suspended.

The soil vapor survey samples are collected into Tedlar bags as described in **Section 10.0** or Summa canisters as described in **Section 11.0**. Tedlar bags or Summa canisters are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory. After each soil vapor sample collection, the air pump is turned on for five minutes to allow ambient air to clear the air pump and polyethylene tubing.

California Ag & Environmental Labs

05 April 2018

Mike Sgourakis Environmental Compliance Group, LLC 270 Vintage Drive Turlock, CA 95382

RE: Shore Acres Gas

Enclosed are the results for sample(s) received on 04/02/18 13:15 by California Ag & Environmental Laboratories. The sample(s) were analyzed according to instructions in accompanying chain-of-custody. Results are summarized on the following pages.

Please see quality control report for a summary of QC data pertaining to this project.

The sample(s) will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Sample(s) may be archived by prior arrangement.

Thank you for the opportunity to service the needs of your company.

Sincerely,

Hiram Cueto Lab Manager

Argon Analytical Services, Inc. CHAIN OF CUSTODY

	Pro	Project Information:	tion:			Report To:			Samples Submitted To:
Project No.	CHA 10000				Concultant.		(Camples Capillited 10:
Project Title:	Shore Acres Gas	s .			Address:	Environmental Compliance Group, LLC 270 Vintage Drive	p, LLC	Laboratory: Address:	Argon Labs 2905 Railroad Avenue
Location:	403 East 12th Street Oakland, CA	treet			Contact:	Turlock, CA 95382 Mike Soomakis		Contact	Ceres, CA 95307
Sampler's Name:	320	2 Vas	*(*		Phone:	916.600.4580		Phone:	(209) 581-9280
Sampler's Signature:	;; ;;	_				Bill To:		Date Results Required:	
	A	3	5		Client: Address:	Environmental Compliance Group, LLC 270 Vintage Drive Turlock: CA	ice Group, LLC	Date Report Required:	pq;
		TURN AROUND TIME	1000				ANALYSIS		
RUSH	24 Hour	48 Hour	Standard (5 days)	Special (10-14 days)	TPHg and TPHd by EPA Method 8015M 1,2-DCA, EDB by EPA Method 8260B				DF Reports
Sample ID.	Date.	Time	# Containers	Matrix	1				Preservative
MW-1	33016	1201	2	200	×				X
MW-2		0838	_		-				
MW-3		5							
MW-4		2835							
MAY-5	1							7.0	
MW-6		90							
EW-1		1101						7.0	
EW-2		0915							
EW-3		5850			/				
EW-4	>	0611	>	→	>				0
				ā					
Relinguished By:	7		9][2][8	Pim:	Received By:	p back	Date: Ti	Time: 13:15	SPECIAL INSTRUCTIONS: Global ID#
Relinquished By:			Date:	Time:	Received By:	-	Date: Ti	Time:	T0600174667
Relinquished By:			Date:	Time:	Received By:	-	Date: Ti	Time:	

California Ag & Env Laboratory Sample Receipt Checklist

Client Name:	Environmental	Comp	liance G	roup				Date	& Time R	eceived:	04	4/02/18		13:15
Project Name:	Shore Acres Ga	as						Clier	nt Project	Number:		GHA.	1900	9
Received By:	HC			Mat	rix:	Water	✓	Soil			Slud	ge		
Sample Carrier:	Client	Lab	oratory		Fed Ex		UPS		Other					
CAL Labs Project N	lumber:	<u>U80</u>	<u>4001</u>											
Shipper Container in g	good condition?					Sample	s receive	d in prop	er containe	ers?	Yes	✓.	No	
	N/A	Yes	V	No		Sample	s receive	d intact?			Yes	V	No	
Samples received und	der refrigeration?	Yes	V	No		Sufficie	nt sample	volume	for reques	ted tests?	Yes	✓	No	
Chain of custody pres	ent?	Yes	✓	No		Sample	s receive	d within I	holding tim	e?	Yes	√	No	
Chain of Custody sign	ned by all parties?	Yes	V	No		Do sam	ples conta	ain prope	er preserva N/A	ative?	Yes	✓	No	
Chain of Custody mat	ches all sample la	bels?				Do VOA	vials conta	ain zero h	eadspace?					
		Yes	V	No				(None s	submitted	□)	Yes	V	No	
	ANY "N	lo" RE	SPONSE	MUST	BE DETA	AILED IN	THE COI	MMENTS	S SECTION	N BELOW	I			
Date Client Contact	ed:			_	Per	rson Co	ntacted:						***	
Contacted By:					Subject:									_
Comments:														
												4		
Action Taken:														
			- — — A		NAL TES	T(S) REC	WEST/C	OTHER						
Contacted By:					_	Da	nte:				Time	e:		
Call Received By: _					-									
Comments:														

California Ag & Env Labs Inc. 2905 Railroad Ave. Ceres, CA 95307 (209) 581-9280 Fax (209) 581-9282

Environmental Compliance Group, LLC Project Number: GHA.19009

270 Vintage DriveProject Name: Shore Acres GasWork Order No.:Turlock, CA95382Project Manager: Mike SgourakisU804001

ANALYTICAL REPORT FOR SAMPLES

	Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	
Ī	MW-1	U804001-01	Water	03/30/18 10:21	04/02/18 13:15	
	MW-2	U804001-02	Water	03/30/18 08:38	04/02/18 13:15	
	MW-3	U804001-03	Water	03/30/18 11:04	04/02/18 13:15	
	MW-4	U804001-04	Water	03/30/18 08:52	04/02/18 13:15	
	MW-6	U804001-05	Water	03/30/18 10:06	04/02/18 13:15	
	EW-1	U804001-06	Water	03/30/18 10:41	04/02/18 13:15	
	EW-2	U804001-07	Water	03/30/18 09:15	04/02/18 13:15	
	EW-3	U804001-08	Water	03/30/18 09:50	04/02/18 13:15	
	EW-4	U804001-09	Water	03/30/18 11:30	04/02/18 13:15	

California Ag & Env Labs Inc. 2905 Railroad Ave. Ceres, CA 95307 (209) 581-9280 Fax (209) 581-9282

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009

Project Name: Shore Acres Gas

Work Order No.:

Project Manager: Mike Sgourakis U804001

Total Petroleum Hydrocarbons @ Gasoline

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
				Dilution	Amaryzea	Wictiou	110103
MW-1 (U804001-01) Water Sampled: 30-N	Mar-18 10:21 Rece	eived: 02-Apr	-18 13:15				
Total Petroleum Hydrocarbons @ Gasoline	45000	50	ug/L	1	04-Apr-18	8015M	
Surr. Rec.:		91 %			"	"	
MW-2 (U804001-02) Water Sampled: 30-N	Mar-18 08:38 Rece	ived: 02-Apr	-18 13:15				
Total Petroleum Hydrocarbons @ Gasoline	4700	2000	ug/L	40	04-Apr-18	8015M	
Surr. Rec.:		87 %			n .	"	
MW-3 (U804001-03) Water Sampled: 30-N	Mar-18 11:04 Rece	ived: 02-Apr	-18 13:15				
Total Petroleum Hydrocarbons @ Gasoline	1200	100	ug/L	2	04-Apr-18	8015M	
Surr. Rec.:		95 %			n .	"	
MW-4 (U804001-04) Water Sampled: 30-N	Mar-18 08:52 Rece	ived: 02-Apr	-18 13:15				
Total Petroleum Hydrocarbons @ Gasoline	5100	50	ug/L	1	04-Apr-18	8015M	
Surr. Rec.:		94 %			II .	"	
MW-6 (U804001-05) Water Sampled: 30-N	Mar-18 10:06 Rece	ived: 02-Apr	-18 13:15				
Total Petroleum Hydrocarbons @ Gasoline	6800	100	ug/L	2	04-Apr-18	8015M	
Surr. Rec.:		98 %			n .	"	
EW-1 (U804001-06) Water Sampled: 30-M	Iar-18 10:41 Recei	ved: 02-Apr-	18 13:15				
Total Petroleum Hydrocarbons @ Gasoline	10000	200	ug/L	4	04-Apr-18	8015M	
Surr. Rec.:		90 %			n .	"	
EW-2 (U804001-07) Water Sampled: 30-M	Iar-18 09:15 Recei	ved: 02-Apr-	18 13:15				
Total Petroleum Hydrocarbons @ Gasoline	7200	200	ug/L	4	04-Apr-18	8015M	
Surr. Rec.:		94 %			"	"	

Approved By

2905 Railroad Ave. Ceres, CA 95307 (209) 581-9280 Fax (209) 581-9282

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009

Project Name: Shore Acres Gas

Work Order No.:

U804001

Project Manager: Mike Sgourakis Total Petroleum Hydrocarbons @ Gasoline

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
EW-3 (U804001-08) Water Sampled: 30-	Mar-18 09:50 Receiv	ed: 02-Apr-	18 13:15				
Total Petroleum Hydrocarbons @ Gasoline	2900	200	ug/L	4	04-Apr-18	8015M	
Surr. Rec.:		85 %			"	"	
EW-4 (U804001-09) Water Sampled: 30-N	Mar-18 11:30 Receiv	ed: 02-Apr-	18 13:15				
Total Petroleum Hydrocarbons @ Gasoline	5100	100	ug/L	2	04-Apr-18	8015M	
Surr. Rec.:		88 %			"	"	

2905 Railroad Ave. Ceres, CA 95307 (209) 581-9280 Fax (209) 581-9282

Environmental Compliance Group, LLC

Project Number: GHA.19009 270 Vintage Drive Project Name: Shore Acres Gas

Work Order No.: Turlock, CA 95382 U804001 Project Manager: Mike Sgourakis

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
MW-1 (U804001-01) Water Sample	d: 30-Mar-18 10:21 Rece	ived: 02-Apr-	18 13:15				
Benzene	920	20	ug/L	40	04-Apr-18	8260B	
Toluene	110	20	"	"	"	"	
Xylenes, total	10000	40	"	"	"	"	
Ethylbenzene	3100	20	"	"	"	"	
t-Butanol	400	200	"	"	"	"	
Methyl tert-Butyl Ether	170	20	"	"	"	"	
Di-Isopropyl Ether	ND	20	"	"	"	"	
Ethyl tert-Butyl Ether	ND	20	"	"	"	"	
tert-Amyl Methyl Ether	ND	20	"	II .	"	"	
1,2-Dichloroethane	ND	20	"	11	"	"	
1,2-Dibromoethane (EDB)	ND	20	"	"	"	"	
Surr. Rec.:		85 %			ïi .	"	
MW-2 (U804001-02) Water Sample	d: 30-Mar-18 08:38 Rece	ived: 02-Apr-	18 13:15				
Benzene	64	1.0	ug/L	2	04-Apr-18	8260B	
Toluene	8.6	1.0	"	"	"	"	
Xylenes, total	140	2.0	"	"	"	"	
Ethylbenzene	82	1.0	"	"	"	"	
t-Butanol	ND	10	"	II .	"	"	
Methyl tert-Butyl Ether	10	1.0	"	m .	"	"	
Di-Isopropyl Ether	ND	1.0	"	"	"	"	
Ethyl tert-Butyl Ether	ND	1.0	"	"	"	"	
tert-Amyl Methyl Ether	ND	1.0	"	m .	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	
Surr. Rec.:		91 %			"	"	

Approved By

2905 Railroad Ave. Ceres, CA 95307 (209) 581-9280 Fax (209) 581-9282

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009

Project Name: Shore Acres Gas

Work Order No.: U804001

Project Manager: Mike Sgourakis

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
MW-3 (U804001-03) Water Sampled:	30-Mar-18 11:04 Rece	ived: 02-Apr-	18 13:15				
Benzene	46	0.5	ug/L	1	04-Apr-18	8260B	
Toluene	31	0.5	"	"	"	"	
Xylenes, total	150	1.0	"	"	"	"	
Ethylbenzene	20	0.5	"	"	"	"	
t-Butanol	49	5.0	"	II .	"	"	
Methyl tert-Butyl Ether	38	0.5	"	"	"	"	
Di-Isopropyl Ether	ND	0.5	"	"	"	"	
Ethyl tert-Butyl Ether	ND	0.5	"	"	"	"	
tert-Amyl Methyl Ether	ND	0.5	"	"	"	"	
1,2-Dichloroethane	ND	0.5	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.5	"	"	"	"	
Surr. Rec.:		92 %			"	"	
MW-4 (U804001-04) Water Sampled:	30-Mar-18 08:52 Rece	ived: 02-Apr-	-18 13:15				
Benzene	520	2.0	ug/L	4	04-Apr-18	8260B	
Toluene	25	2.0	"	II .	"	"	
Xylenes, total	110	4.0	"	"	"	"	
Ethylbenzene	70	2.0	"	"	"	"	
t-Butanol	ND	20	"	"	"	"	
Methyl tert-Butyl Ether	22	2.0	"	"	"	"	
Di-Isopropyl Ether	ND	2.0	"	"	"	"	
Ethyl tert-Butyl Ether	ND	2.0	"	"	"	"	
tert-Amyl Methyl Ether	ND	2.0	"	"	"	"	
1,2-Dichloroethane	ND	2.0	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	2.0	"	"	"	"	
Surr. Rec.:		86 %			"	"	

Approved By

2905 Railroad Ave. Ceres, CA 95307 (209) 581-9280 Fax (209) 581-9282

Environmental Compliance Group, LLC

Project Number: GHA.19009 Project Name: Shore Acres Gas

270 Vintage Drive Work Order No.: Turlock, CA 95382 U804001 Project Manager: Mike Sgourakis

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
MW-6 (U804001-05) Water Sample	d: 30-Mar-18 10:06 Rece	ived: 02-Apr-	-18 13:15				
Benzene	200	2.0	ug/L	4	04-Apr-18	8260B	
Toluene	12	2.0	"	"	"	"	
Xylenes, total	46	4.0	"	"	"	"	
Ethylbenzene	29	2.0	"	"	"	"	
t-Butanol	ND	20	"	"	"	"	
Methyl tert-Butyl Ether	20	2.0	"	"	"	"	
Di-Isopropyl Ether	ND	2.0	"	"	II .	"	
Ethyl tert-Butyl Ether	ND	2.0	"	"	II .	"	
tert-Amyl Methyl Ether	ND	2.0	"	"	II .	"	
1,2-Dichloroethane	ND	2.0	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	2.0	"	"	"	"	
Surr. Rec.:		85 %			"	"	
EW-1 (U804001-06) Water Sampled	l: 30-Mar-18 10:41 Recei	ved: 02-Apr-	18 13:15				
Benzene	46	2.0	ug/L	4	04-Apr-18	8260B	
Toluene	ND	2.0	"	"	II .	"	
Xylenes, total	29	4.0	"	"	II .	"	
Ethylbenzene	32	2.0	"	"	II .	"	
t-Butanol	ND	20	"	"	"	"	
Methyl tert-Butyl Ether	74	2.0	"	"	"	"	
Di-Isopropyl Ether	ND	2.0	"	"	n .	"	
Ethyl tert-Butyl Ether	ND	2.0	"	"	"	"	
tert-Amyl Methyl Ether	ND	2.0	"	"	"	"	
1,2-Dichloroethane	ND	2.0	"	"	n n	"	
1,2-Dibromoethane (EDB)	ND	2.0	"	"	"	"	
Surr. Rec.:		89 %			"	"	

Approved By

2905 Railroad Ave. Ceres, CA 95307 (209) 581-9280 Fax (209) 581-9282

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009

Project Name: Shore Acres Gas

Work Order No.:

Project Manager: Mike Sgourakis U804001

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
EW-2 (U804001-07) Water Sampled	: 30-Mar-18 09:15 Receiv	ed: 02-Apr-	18 13:15				
Benzene	43	2.0	ug/L	4	04-Apr-18	8260B	
Toluene	15	2.0	"	"	"	"	
Xylenes, total	310	4.0	"	"	"	"	
Ethylbenzene	50	2.0	"	"	"	"	
t-Butanol	210	20	"	"	"	"	
Methyl tert-Butyl Ether	45	2.0	"	"	"	"	
Di-Isopropyl Ether	ND	2.0	"	"	"	"	
Ethyl tert-Butyl Ether	ND	2.0	"	"	"	"	
tert-Amyl Methyl Ether	ND	2.0	"	"	"	"	
1,2-Dichloroethane	ND	2.0	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	2.0	"	"	"	"	
Surr. Rec.:		108 %			"	"	
EW-3 (U804001-08) Water Sampled	: 30-Mar-18 09:50 Receiv	ed: 02-Apr-	18 13:15				
Benzene	13	1.0	ug/L	2	04-Apr-18	8260B	
Toluene	2.2	1.0	"	"	"	"	
Xylenes, total	27	2.0	"	"	"	"	
Ethylbenzene	9.6	1.0	"	"	"	"	
t-Butanol	170	10	"	"	"	"	
Methyl tert-Butyl Ether	59	1.0	"	"	"	"	
Di-Isopropyl Ether	ND	1.0	"	"	"	"	
Ethyl tert-Butyl Ether	ND	1.0	"	"	"	"	
tert-Amyl Methyl Ether	ND	1.0	"	"	"	"	
	ND	1.0	"	"	"	"	
1,2-Dichloroethane	ND	1.0					

Surr. Rec.:

87 %

Approved By

2905 Railroad Ave. Ceres, CA 95307 (209) 581-9280 Fax (209) 581-9282

Environmental Compliance Group, LLC

Project Number: GHA.19009

270 Vintage Drive Turlock, CA 95382 Project Name: Shore Acres Gas

Work Order No.:

Project Manager: Mike Sgourakis

U804001

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	An	alyzed	Method	Notes
EW-4 (U804001-09) Water	Sampled: 30-Mar-18 11:30 R	eceived: 02-Apr-	18 13:15					
Benzene	190	2.0	ug/L	4	04-2	Apr-18	8260B	
Toluene	10	2.0	"	"		"	"	
Xylenes, total	250	4.0	"	"		"	"	
Ethylbenzene	76	2.0	"	"		"	"	
t-Butanol	200	20	"	"		"	"	
Methyl tert-Butyl Ether	30	2.0	"	"		"	"	
Di-Isopropyl Ether	ND	2.0	"	"		"	"	
Ethyl tert-Butyl Ether	ND	2.0	"	"		"	"	
tert-Amyl Methyl Ether	ND	2.0	"	"		"	"	
1,2-Dichloroethane	ND	2.0	"	"		"	"	
1,2-Dibromoethane (EDB)	ND	2.0	"	"		"	"	

Surr. Rec.:

91 %

2905 Railroad Ave. Ceres, CA 95307 (209) 581-9280 Fax (209) 581-9282

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009
Project Name: Shore Acres Gas

Project Manager: Mike Sgourakis

Work Order No.:

U804001

Total Petroleum Hydrocarbons @ Gasoline - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch U800117 - EPA 5030B										
Blank (U800117-BLK1)				Prepared &	Analyzed	: 04/04/18				
Surrogate: a,a,a-Trifluorotoluene	53.5		ug/L	50		107	70-130			
Total Petroleum Hydrocarbons @ Gasoline	ND	50	"							
LCS (U800117-BS1)				Prepared &	Analyzed	04/04/18				
Total Petroleum Hydrocarbons @ Gasoline	1060		ug/L	1000		106	80-120			
Matrix Spike (U800117-MS1)	Sour	ce: U803029-	-02	Prepared &	Analyzed	04/04/18				
Total Petroleum Hydrocarbons @ Gasoline	890		ug/L	1000	ND	89	70-130			
Matrix Spike Dup (U800117-MSD1)	Sour	ce: U803029-	-02	Prepared &	Analyzed	04/04/18				
Total Petroleum Hydrocarbons @ Gasoline	930		ug/L	1000	ND	93	70-130	4	20	

2905 Railroad Ave. Ceres, CA 95307 (209) 581-9280 Fax (209) 581-9282

Environmental Compliance Group, LLC

Project Number: GHA.19009

270 Vintage Drive

Project Name: Shore Acres Gas

Work Order No.:

Turlock, CA 95382

Project Manager: Mike Sgourakis

U804001

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch U800118 - EPA 5030B										
Blank (U800118-BLK1)		Prepared & Analyzed: 04/04/18								
Surrogate: Fluorobenzene	47.0		ug/L	50		94	70-130			
Benzene	ND	0.5	"							
Toluene	ND	0.5	"							
Xylenes, total	ND	1.0	"							
Ethylbenzene	ND	0.5	"							
t-Butanol	ND	5.0	"							
Methyl tert-Butyl Ether	ND	0.5	"							
Di-Isopropyl Ether	ND	0.5	"							
Ethyl tert-Butyl Ether	ND	0.5	"							
tert-Amyl Methyl Ether	ND	0.5	"							
1,2-Dichloroethane	ND	0.5	"							
1,2-Dibromoethane (EDB)	ND	0.5	"							
LCS (U800118-BS1)				Prepared &	Analyzed:	04/04/18				
Toluene	28.0		ug/L	25		112	80-120			
Matrix Spike (U800118-MS1)	Sou	ırce: U803029-	02	Prepared &	Analyzed:	04/04/18				
1,2-Dibromoethane (EDB)	24.2		ug/L	25	ND	97	70-130			
Matrix Spike Dup (U800118-MSD1)	Sou	ırce: U803029-	02	Prepared &	Analyzed:	04/04/18				

ug/L

25

ND

91

70-130

1,2-Dibromoethane (EDB)

22.8

20

California Ag & Env Labs Inc. 2905 Railroad Ave. Ceres, CA 95307 (209) 581-9280 Fax (209) 581-9282

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009
Project Name: Shore Acres Gas

Project Manager: Mike Sgourakis

Work Order No.:

U804001

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

GROUNDWATER LEVEL DATA FORM

PROJECT NAME:

Shore Acres Gas

PROJECT NUMBER:

GHA.19009

PROJECT MANAGER: MSS SITE ADDRESS:

403 East 12th Street, Oakland, Ca

TASK NUMBER:

WELL ID	TIME	DEPTH TO BOTTOM	DEPTH TO WATER	DEPTH TO PRODUCT	PRODUCT THICKNESS	PRODUCT THICKNESS X 0.8	COMMENTS
M _V V-1	:	1996	8,64	•			
MW-2		19.91	9.32	Y	•		
MW-3		17.84	9.32			1.	
MW-4,		18.79	4.17				
MW-5					•		inoccisible
MW-6		19.89	જ,65			•	
EW-1		19.64	9.16		**	£ * .	
EW-2		19.97	9.60				
EW-3		19.87	9-15		;		200 m
EW-4		1226	G.6H 98	•			
	,	1995	9.36				
		,				, j	
					,		
				Alter of the second	·		
				7	s - t		W mare
•							
2.4	,			\$ 100 mg	100		
	·	Arto "	·				
					*		

FIELD TECHNICIAN:	Dut,	
DATE:	<u> </u>	

PROJECT N PROJECT N SITE ADDR	IANAGER:	Shore Acres MSS 403 East 12t	Gas h Street, Oakla	and, Ca	PROJECT NU TASK NUMBE		GHA.19009
	WELL ID:	MW- (400		TYPE O	F WELL:	Monitoring
WATER CO	LUMN DATA: Well De Water Co	TER:					
PURGE VOI	_UME CALCU		ultiplier x No. \	/olumes = I	Purge Volume		
	しいて ter Column Le	x ngth	O.(7 Multiplier	. x	3 No. Volumes	=	Purge Volume
MULTIPLIE		Schedule 40 f 2-inch: 4-inch: 6-inch:	0.17	Linear Foot	Based on Casi	ng Diame	ter:
PURGE ME	Disp	osable Bailer PVC Bailer ersible Pump Other		SAMPLE I		ible Bailer Pump: Other:	
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS
1014 1017 0501 1501	ک بر د	7.17 7.21 7.18	18.6 18.7 18.1	786 1.78 780			Samp
(SO							
FIELD 1	ECHNICIAN: DATE:		A (10)	1	- -		

PROJECT N PROJECT N SITE ADDRI	ANAGER:	Shore Acres MSS 403 East 12th	Gas n Street, Oakla	and, Ca	PROJECT NU TASK NUMBE		GHA.19009
	WELL ID:	MW ~	2		TYPE (OF WELL:	Monitoring
	LUMN DATA: Well De _l Water Col	Total Depth: oth to Water: umn Length:	(feet) (9,9/ (0.32 (0.59		WELL DIAME 2-inch: _ 4-inch: _ 6-inch: _		• ·
FORGE VOL			ultiplier x No. \	/olumes = {	Purge Volume		
Wat	er Column Le	x ngth	のパラ Multiplier	×	No. Volumes	=	S ,S Purge Volume
MULTIPLIER		Schedule 40 F 2-inch: 4-inch: 6-inch:	0.17	Linear Foot	Based on Cas	ing Diame	ter:
PURGE MET	Dispe	osable Bailer PVC Bailer ersible Pump Other		SAMPLE I		able Bailer Pump: Other:	
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS
377	1-5	7,27	18-1	797			
CH32	35	7.33 7.77	17.9	791 804			
CH32 CH36 CH38	5.5	7.2	1+,7	804			south
(CO)(C)							Seur
			(
L		<u> </u>	V 12	<u> </u>	<u> </u>		1

PROJECT N PROJECT N SITE ADDR	/IANAGER:	Shore Acres MSS 403 East 12t	Gas h Street, Oakl	and, Ca	PROJECT NU TASK NUMBE		GHA.19009
	WEŁL ID:	<u>~</u>	-3		TYPE C	F WELL:	Monitoring
WATER CO	. De	Total Depth: pth to Water: lumn Length:	9.23	- , -	WELL DIAME 2-inch: _ 4-inch: _ 6-inch: _	V	- - -
PURGE VO	L <mark>UME CALC</mark> U Water Colum		ultiplier x No.	Volumes = I	Purge Volume		
Wa	8 (6) ter Column Le	x ngth	O.(7 Multiplier	_ ×	No. Volumes	=	4-S Purge Volume
MULTIPLIE		Schedule 40 2-inch: 4-inch: 6-inch:	0.17 0.65	Linear Foot	Based on Casi	ng Diame	ter:
PURGE ME	Disp	osable Bailer PVC Bailer ersible Pump Other		SAMPLE II		able Bailer Pump: Other:	
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS
1056	1-5	6.%	17.9	745			
1659 1602	3 4-5	6.94	13.7	801			
1100 1107	4-3	ا (ارما	17,6	70		•	saw
W 1							244
			<u> </u>				
	L	<u> </u>		<u> </u>	<u> </u>		<u> </u>

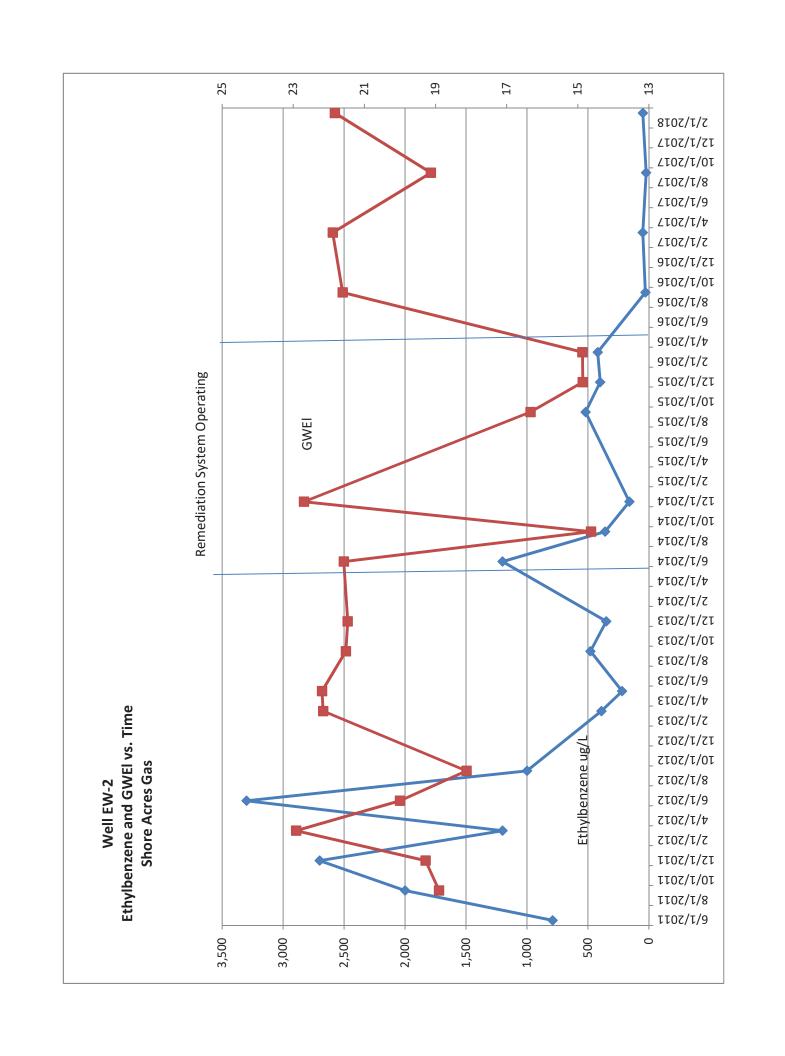
PROJECT PROJECT SITE ADDR	MANAGER:	Shore Acres MSS 403 East 12	Gas th Street, Oakl	and, Ca	PROJECT NU TASK NUMBI		GHA.19009
	WELL ID:	_ MW -	4	76	TYPE (OF WELL:	Monitoring
WATER CO	De	Total Depth: pth to Water: lumn Length:	9-17	-	WELL DIAME 2-inch: _ 4-inch: _ 6-inch: _		- - -
PURGE VO	LUME CALCU Water Colum		ultiplier x No.	Volumes =	Purge Volume		
Wa	9.67 ater Column Le	_ x ngth	0.(7 Multiplier	_ x	No. Volumes	=	Purge Volume
MULTIPLIE		Schedule 40 2-inch: 4-inch: 6-inch:	0.17 0.65	Linear Foot	Based on Cas	ing Diame	ter:
PURGE ME	THOD:			SAMPLE	METHOD:		,
PURGE ME	Disp	osable Bailer PVC Bailer ersible Pump Other		SAMPLE I - - -		able Baile Pump Other	
PURGE ME	Oisp Subme VOLUME PURGED	PVC Bailer ersible Pump		COND. (uS/cm)		Pump	:
	VOLUME PURGED (gal)	PVC Bailer ersible Pump Other pH	TEMP. (°C)	COND.	Disposa	Pump Other	
TIME	VOLUME PURGED (gal)	PVC Bailer ersible Pump Other pH	TEMP. (°C)	COND.	Disposa	Pump Other	
TIME	VOLUME PURGED (gal)	PVC Bailer ersible Pump Other pH	TEMP.	COND.	Disposa	Pump Other	
TIME	VOLUME PURGED (gal)	PVC Bailer ersible Pump Other pH	TEMP. (°C)	COND.	Disposa	Pump Other	COMMENTS
TIME	VOLUME PURGED (gal)	PVC Bailer ersible Pump Other pH	TEMP. (°C)	COND.	Disposa	Pump Other	COMMENTS

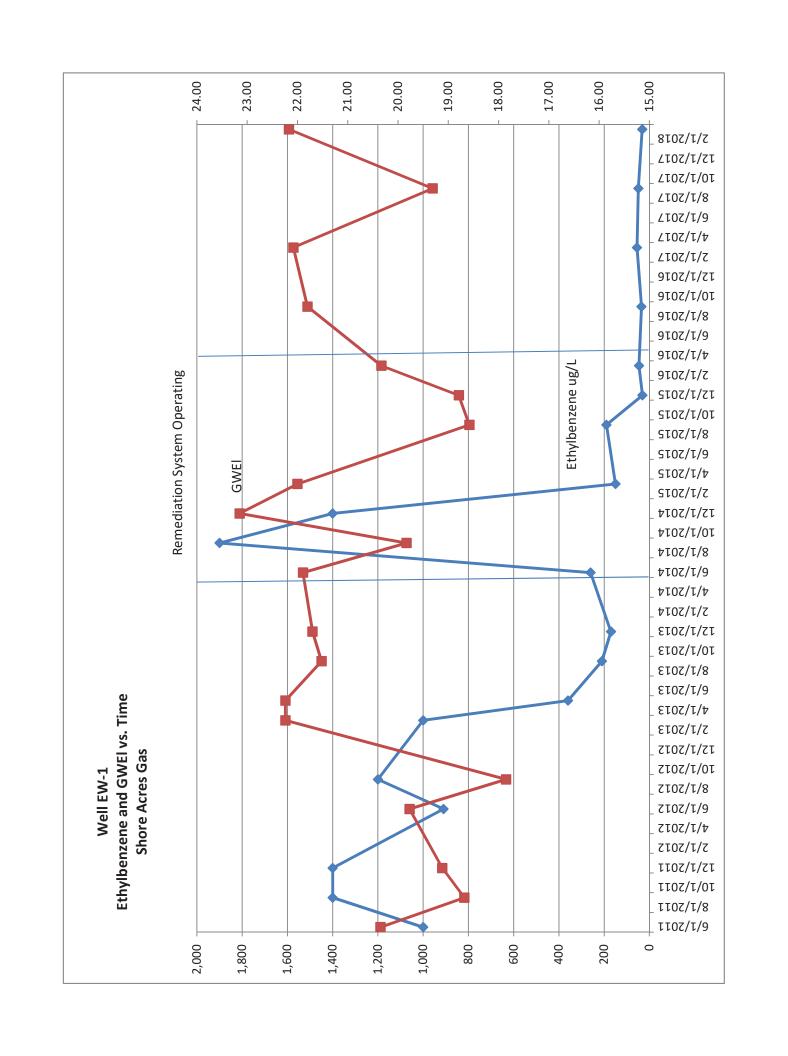
PROJECT N		Shore Acres MSS	Gas		PROJECT NUTASK NUMBI	GHA.19009			
SITE ADDR			h Street, Oakla	and. Ca	TASK NONIDI	EIX.			
	WELL ID:	MW-	,	•	TYPE	Monitoring			
	De Water Co	(feet) (9.89 8.65 11.24	WELL DIAMETER: 2-inch: 4-inch: 6-inch:						
PURGE VOI	LUME CALCU Water Colum		ultiplier x No. \	Volumes = I	⊃urge Volume				
	(1,24	. X .	0.17 Million	. ×	No Volumos	=	- Duras Valums		
Water Column Length × Multiplier × No. Volumes = Purge Volume MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5									
PURGE MET	Disp	osable Bailer PVC Bailer ersible Pump Other		SAMPLE METHOD: Disposable Bailer Pump: Other:					
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS		
BEER	2	12	17.9	717					
1001	7	418	पुत्र	719					
1007	6	7-19	17.5	725			South		
1000							JACK THE STATE OF		
	AUG. 42								
			·						
				_					

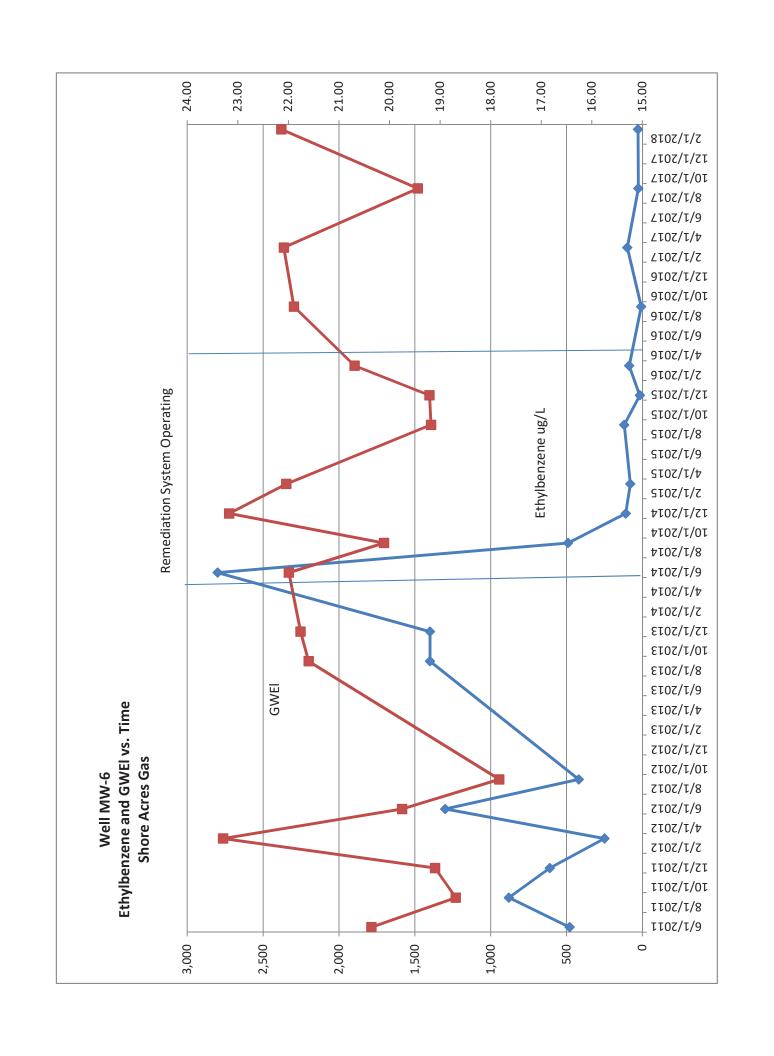
FIELD TECHNICIAN: _____

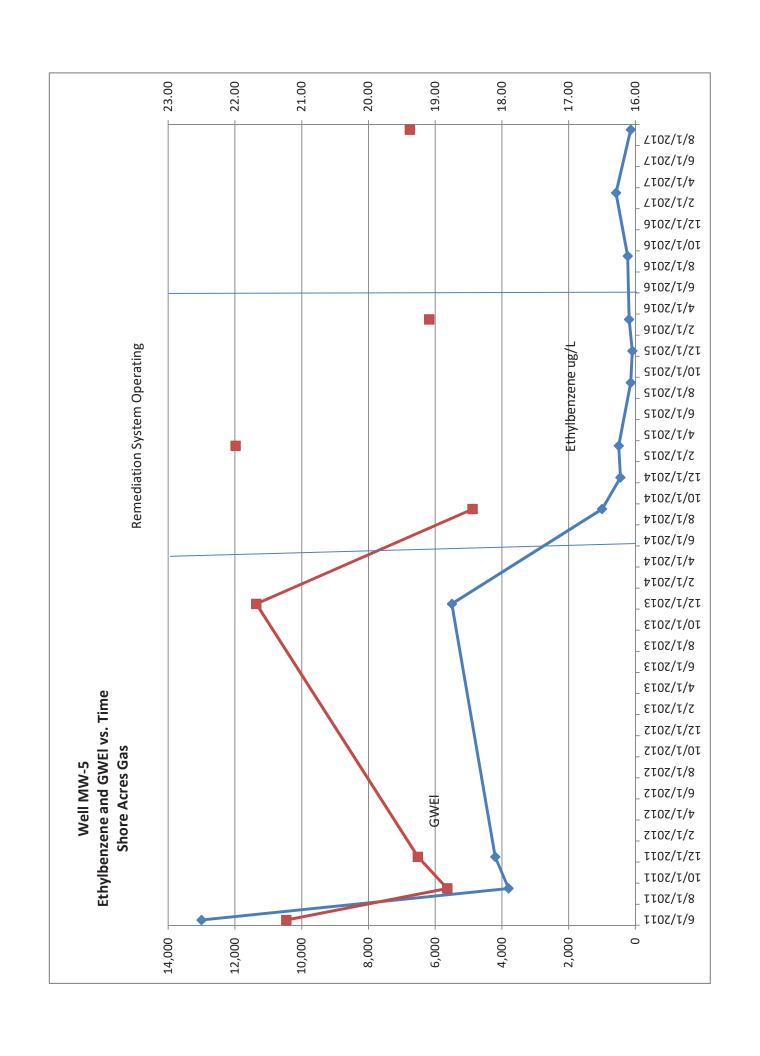
PROJECT N		Shore Acres	Gas		PROJECT N		GHA.19009
PROJECT N		MSS		.	TASK NUMB	ER:	
SITE ADDR	ESS:	403 East 12t	h Street, Oakl	and, Ca			
	WELL ID:	fu-l		-	TYPE	OF WELL:	Monitoring
WATER CO	De	Total Depth: pth to Water: lumn Length:	9,16	- -	WELL DIAMI 2-inch: 4-inch: 6-inch:		- - -
PURGE VOI	L UME CALC U Water Colum		ultiplier x No.	Volumes =	Purge Volume	•	
Wa	ter Column Le	_ x ngth	Multiplier	×	No. Volumes	. =	Purge Volume
MULTIPLIE	R DATA:			1.			
		Schedule 40 l	PVC; Gallons/	Linear Foot	Based on Cas	sing Diame	ter:
	•	2-inch:				Ū	
		4-inch:	0.65				
		6-inch:	1.5				
PURGE ME	THOD:			SAMPLE	METHOD:		
I ORGE ME		osable Bailer	`	SAWFLE		sable Bailer	/
	Stop	PVC Bailer		**	ырос	Pump:	
	Subme	ersible Pump		-		Other	
		Other		-			**************************************
	VOLUME		TEMP.	COND.		ORP	
TIME	PURGED	pН	(°C)	(uS/cm)	DO (mg/i)	(mV)	COMMENTS
10.25	(gal)	7,27		अप		<u> </u>	
(033	14	7.29	19.0	685			
1079	Ži	433	18.1	C23			
الما					1		Santa

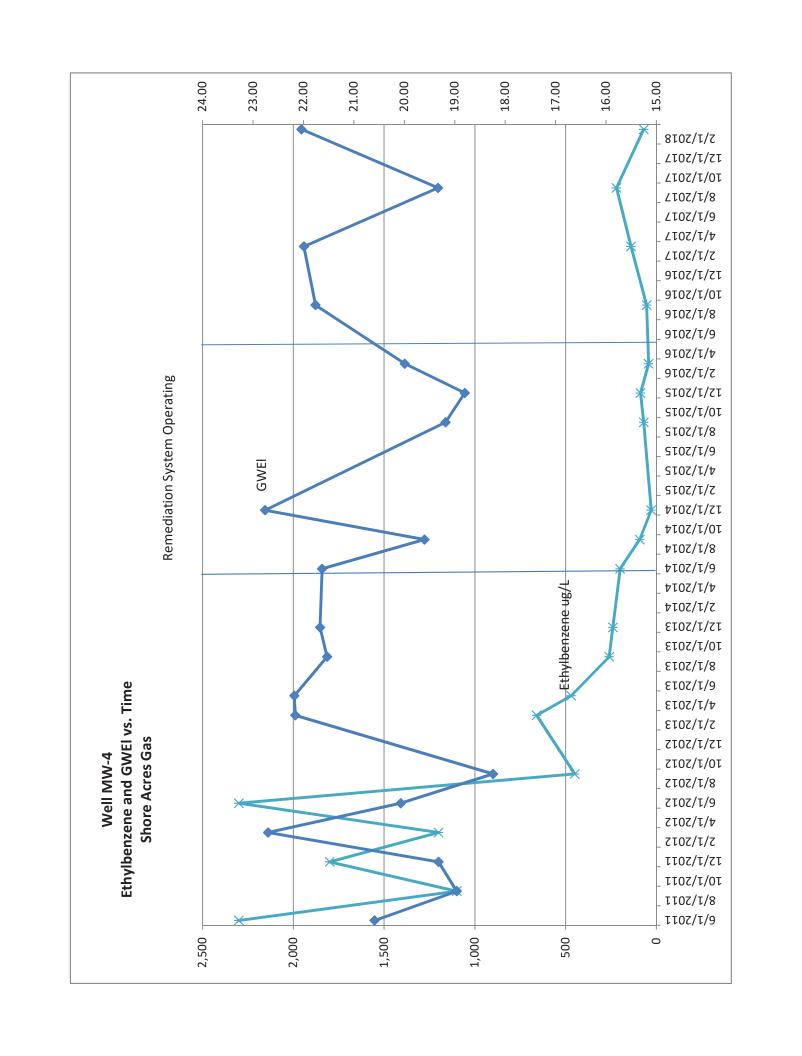
FIELD	TECHNICIAN:	AUX-	
	DATE:	अ)व्हार	


PROJECT N PROJECT N SITE ADDR	MANAGER:	Shore Acres MSS 403 East 12t	Gas h Street, Oakl	and, Ca	PROJECT NU TASK NUMBE		GHA.19009
	WELL ID:	EW-2			TYPE C	F WELL:	Monitoring
WATER CO							
PURGE VO	LUME CALCU Water Colum		ultiplier x No. \	Volumes = I	Purge Volume		
Wa	ter Column Le	_ x ngth	ტ /65 Multiplier	. ×	No. Volumes	=	Purge Volume
MULTIPLIE		Schedule 40 l 2-inch: 4-inch: 6-inch:	0.17 0.65	Linear Foot	Based on Casi	ng Diame	er:
PURGE ME	Disp	osable Bailer PVC Bailer ersible Pump Other		SAMPLE I		able Bailer Pump: Other:	
PURGE ME	Disp Subme VOLUME PURGED	PVC Bailer ersible Pump		COND.		Pump:	
TIME	VOLUME PURGED (gal)	PVC Bailer ersible Pump Other pH	TEMP. (°C)	COND. (uS/cm)	Disposa	Pump: Other:	
TIME	Disp Subme VOLUME PURGED	PVC Bailer ersible Pump Other pH	TEMP.	COND.	Disposa	Pump: Other:	
TIME	VOLUME PURGED (gal) 7	PVC Bailer ersible Pump Other pH	TEMP. (°C)	COND. (uS/cm)	Disposa	Pump: Other:	COMMENTS


PROJECT N PROJECT N SITE ADDR	MANAGER:	Shore Acres MSS 403 East 12t	Gas h Street, Oakl	and, Ca	PROJECT NU TASK NUMB		GHA.19009			
	WELL ID:	Ful-3		-	TYPE OF WELL: Monitoring					
WATER CO	LUMN DATA: Well De Water Co	Total Depth: pth to Water: lumn Length:	(feet) (9.87 9.15 10 92	• •	WELL DIAME 2-inch: 4-inch: 6-inch:		• •			
PURGE VOLUME CALCULATION: Water Column Length x Multiplier x No. Volumes = Purge Volume										
Water Column Length x Multiplier x No. Volumes = Purge Volume US X 3 = 48 Water Column Length X Multiplier X No. Volumes = Purge Volumes										
MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5										
PURGE ME	Disp	osable Bailer PVC Bailer ersible Pump Other		SAMPLE METHOD: Disposable Bailer Pump: Other:						
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS			
0928	16	7,21	1.61	879						
0918 0948 080	32 48	7.21	1811 176	968 89.1						
1500	70	7/7	17/2	لـتقــ			Sayle			
J()-										
	;			· · · · · · · · · · · · · · · · · · ·						


FIELD TECHNICIAN:


DATE:


PROJECT NAME: PROJECT MANAGER: SITE ADDRESS: Shore Acres Gas MSS 403 East 12th Street, Oakland, C			and, Ca	PROJECT NUMBER: TASK NUMBER:		GHA.19009		
WELL ID: EW 4					TYPE OF WELL: Monitoring			
WATER COLUMN DATA: Well Total Depth: Depth to Water: Water Column Length:				- 	WELL DIAMETER: 2-inch: 4-inch: 6-inch:			
PURGE VOLUME CALCULATION: Water Column Length x Multiplier x No. Volumes = Purge Volume								
959 x 1.5 Water Column Length Multiplier				No. Volumes	=	43 Purge Volume		
MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5								
PURGE METHOD: Disposable Bailer PVC Bailer Submersible Pump Other					Disposable Bailer Pump: Other:			
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS	
1115	15	7.13	187	991				
1120	30 43	7.06	18.7	846 846			Sawla	
			·····				. 1	
Prince de malenda de la colonida de							<u>*</u>	
FIELD	FECHNICIAN: DATE:		10					

