RECEIVED

By Alameda County Environmental Health at 3:49 pm, Jan 13, 2014

January 8, 2014

Ms. Donna Drogos Alameda County Environmental Health 1131 Harbor Parkway, Suite 250 Oakland, CA 94502-6577

Subject:

Third Quarter 2013 Groundwater Monitoring Report

Shore Acres Gas

403 East 12th Street, Oakland, Alameda County, California

RO #0002931 ECG # GHA.19009

Dear Ms. Drogos:

Enclosed please find a copy of the December 15, 2013 *Third Quarter 2013 Groundwater Monitoring Report* for the above referenced site prepared by our consultant Environmental Compliance Group, LLC.

I declare, under penalty and perjury, that the information and/or recommendations contained in this report are true and correct to the best of my knowledge.

Respectfully,

Rashid Ghafoor

270 Vintage Drive Turlock, CA 95382 P: 209.664.1035 F: 209.664.1040

THIRD QUARTER 2013 GROUNDWATER MONITORING REPORT

SHORE ACRES GAS 403 EAST 12TH STREET OAKLAND, CALIFORNIA

Prepared for: Rashid Ghafoor

ECG Project Number: GHA.19009 Alameda County Fuel Leak Case No. RO0002931

December 15, 2013

MICHAEL

SGOURAKIS

ANO. 7184

CALSTON

Drew Van Allen Senior Project Manager Michael S. Sgourakis Principal Geologist CA P.G. No. 7194

Mul S Syl

TABLE OF CONTENTS

Introduction	2
Limitations	2
Site Description and H	Hydrogeologic Conditions2
Site Description	2
Hydrogeologic Cond	ditions2
Cleanup Criteria	3
Project Background	3
Investigations	3
Risk Assessments	3
Corrective Actions	4
Third Quarter 2013 M	Ionitoring Event4
	ns5
Figures	
Figure 1:	Site Location Map
Figure 2:	Site Map
Figure 3:	Potentiometric Surface Map
Figure 4:	TPHg in Groundwater Isoconcentration Map
Figure 5:	Benzene in Groundwater Isoconcentration Map
Figure 6:	MTBE in Groundwater Isoconcentration Map
Tables	
Table 1:	Well Construction Details
Table 2a:	Historical Soil Analytical Data, TPH and BTEX
Table 2b:	Historical Soil Analytical Data, Oxygenates and Lead Scavengers
Table 3a:	Grab Groundwater Sample Results, TPH and BTEX
Table 3b:	Grab Groundwater Sample Results, Oxygenates and Lead Scavengers
Table 4a:	Monitoring Well Data, Water Level, TPH, and BTEX
Table 4b:	Monitoring Well Data, Oxygenates and Lead Scavengers
Appendices	
Appendix A:	Standard Operating Procedures
Appendix B:	Laboratory Analytical Reports
Appendix C:	Field Notes

INTRODUCTION

Environmental Compliance Group (ECG) has been authorized by Mr. Rashid Ghafoor to provide this interim results report for the site.

This report describes activities conducted during Third Quarter 2013 groundwater monitoring event. Site information is as follows:

Site Location:

403 East 12th Street

Oakland, California

Geotracker Global ID:

T0600174667

LIMITATIONS

This report has been prepared for use by Rashid Ghafoor and the relevant regulatory agencies. The conclusions in this report are professional opinions based on the data presented in this report. This report was prepared in general accordance with hydrogeologic and engineering methods and standards. No other warranties are made as to the findings or conclusions presented in this report. The work described in this report was performed under the direct supervision of the professional geologist whose signature and State of California registration are shown above.

SITE DESCRIPTION AND HYDROGEOLOGIC CONDITIONS

SITE DESCRIPTION

The site occupies a parcel on the southeast corner of 4th Avenue and East 12th Street in Oakland, Alameda County, California (Figure 1). The site is situated in a commercial and residential area in central Oakland and is currently vacant. The site was historically used as a gasoline station. The area of interest at the site is the former location of three underground storage tanks (USTs) and fuel dispensers where impacted soil and groundwater was first identified in 2006. A detailed site plan is shown on Figure 2.

HYDROGEOLOGIC CONDITIONS

The site is underlain by Quaternary-age dune sand deposits referred to as the Merritt Sand. The Merritt Sand is typically described as loose, well-sorted fine- to medium-grained sand with a large silt component. The sand is reported to reach a maximum depth of 50-feet bgs in the area.

Based on boring logs from the advancement of 11 soil borings and the installation of six monitoring wells and four extraction wells, the stratigraphy of the site and vicinity consists of silt to approximately 30-feet bgs with discontinuous thin intervals of sandy silt and clayey sand present in the area.

Depth to groundwater is shallow, ranging between 10- to 14-feet bgs. The groundwater flow direction appears to be generally toward the south or southwest.

CLEANUP CRITERIA

It is prudent to establish cleanup goals for soil and groundwater based upon reaching the residential Environmental Screening Levels (ESLs) established by Region II for sites with shallow soil where groundwater is not a current or potential drinking water source. The primary constituents of concern relative to the site appear to be total petroleum hydrocarbons as diesel (TPHd) and gasoline (TPHg) benzene, toluene, ethylbenzene, and xylenes (BTEX), methyl tertiary butyl ether (MTBE), and tertiary butyl alcohol (TBA). Accordingly, the following cleanup goals are proposed:

Constituent	Soil (mg/kg)	Groundwater (ug/L)
TPHd	100	210
TPHg	100	210
Benzene	0.12	46
Toluene	9.3	130
Ethylbenzene	2.3	43
Xylenes	11	100
MTBE	8.4	1,800
TBA	100	18,000

PROJECT BACKGROUND

INVESTIGATIONS

In July 2006, Geofon Incorporated (Geofon) advanced soil borings GP-1 and GP-2 and collected and analyzed soil samples. Results are detailed in Geofon's report entitled *Summary of Phase II Assessment Activities*, dated July 25, 2006.

In August 2009, Wright Environmental Services, Inc. (Wright) removed three USTs, associated fuel dispensers, and all associated piping. Results are detailed in Wright's *Closure Report for Three Underground Storage Tanks*, dated September 2009.

In April 2010, Apex Envirotech, Inc. (Apex) advanced nine soil borings to evaluate the lateral extent of impacted soil and groundwater. Results are documented in Apex's *Subsurface Investigation Results Report* dated June 23, 2010.

In June 2011, ECG supervised the installation of six groundwater monitoring wells (MW-1 through MW-6) and two extraction wells (EW-1 and EW-2). Results are documented in ECG's *Off-Site Investigation and Dual Phase Pilot Test Results with Fourth Quarter 2011 Monitoring Report*, dated January 26, 2012.

RISK ASSESSMENTS

In January 2011, ECG conducted a preferential pathway study for the site. Results are detailed in ECG's Site Assessment and Soil Vapor Extraction Pilot Test Workplan, dated February 9, 2011.

Third Quarter 2013 Groundwater Monitoring Report Shore Acres Gas 403 East 12th Street, Oakland, California

In January 2011, ECG conducted a sensitive receptor survey for the site. Results are detailed in ECG's Site Assessment and Soil Vapor Extraction Pilot Test Workplan, dated February 9, 2011.

A soil vapor survey has not been completed for the site.

CORRECTIVE ACTIONS

In June 2011, ECG supervised the installation of six groundwater monitoring wells (MW-1 through MW-6) and two extraction wells (EW-1 and EW-2). ECG also performed a 5-day dual phase extraction (DPE) test in June 2011. Results are documented in ECG's Off-Site Investigation and Dual Phase Pilot Test Results with Fourth Quarter 2011 Monitoring Report, dated January 26, 2012.

In May 2013, ECG supervised the installation of two extraction wells (EW-3 and EW-4). In September 2013, ECG installed the subsurface piping network from the remediation wells to the remediation compound and the subsurface conduit required by PG&E to install the electrical service required to operate the remediation compound. Results will be detailed in a separate report.

THIRD QUARTER 2013 MONITORING EVENT

ECG performed the third quarter 2013 groundwater monitoring and sampling event at the site on September 4, 2013. Gauging, development, purging, and sampling were conducted in accordance with ECG's SOPs included in Appendix A. The collected groundwater samples were submitted to Argon Analytical Services, Inc. located in Ceres, California for laboratory analysis under COC protocols (Appendix B).

The following is a summary of the current status of the groundwater monitoring program at the site:

Current Phase of Project:

Remediation Ouarterly

Groundwater Sampling Schedule:

Wells MW-1 through MW-6, EW-1 through

FW-4

Analysis:

TPHg and TPHd by EPA Method 8015M,

BTEX, 5 oxygenates, and 2 lead scavengers by

EPA Method 8260B

Is Free Product Present On-Site:

Nο

The following is a summary of recent field and analytical data:

Average Depth to Groundwater

9.84-feet below ground surface (bgs) 21.47 -feet above mean sea level

Average Groundwater Elevation Groundwater Gradient Direction

South southeast

Groundwater Gradient

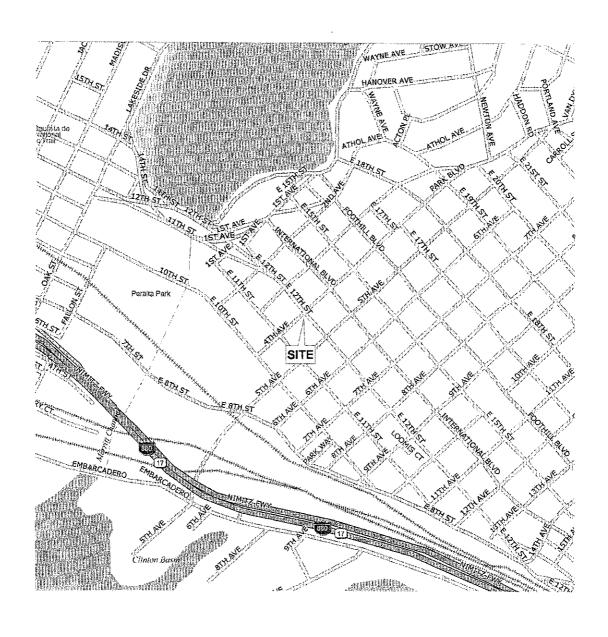
0.0091 feet/foot

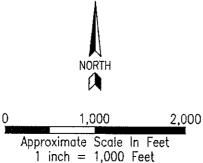
TPHg Detected Range

5,300 ug/L (MW-2) to 47,000 ug/L (MW-3) 300 ug/L (MW-2) to 7,200 ug/L (MW-3)

Benzene Detected Range

17 ug/L (MW-4) to 5,300 (MW-3)

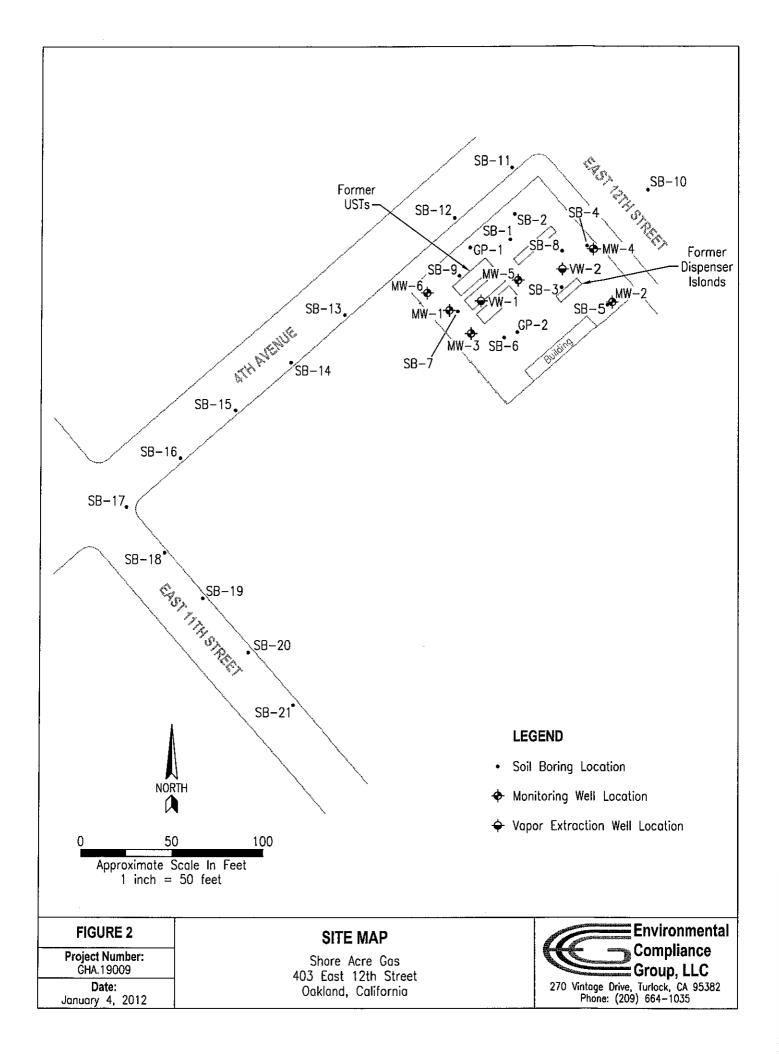

MTBE Detected

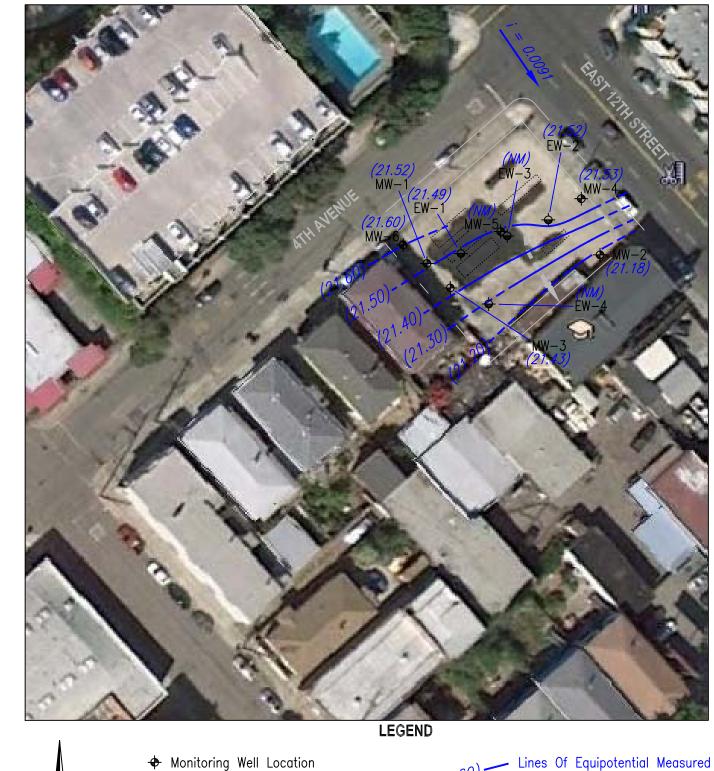

Third Quarter 2013 Groundwater Monitoring Report Shore Acres Gas 403 East 12th Street, Oakland, California

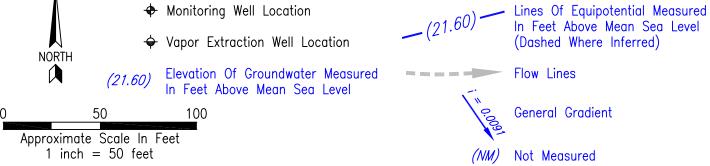
Groundwater samples were not collected from well MW-5 due to the presence of free product. Laboratory analytical reports and COCs are provided in Appendix B. Field notes are located in Appendix C. Summaries of groundwater monitoring and analytical data are presented in Tables 4a.

RESULTS AND CONCLUSIONS

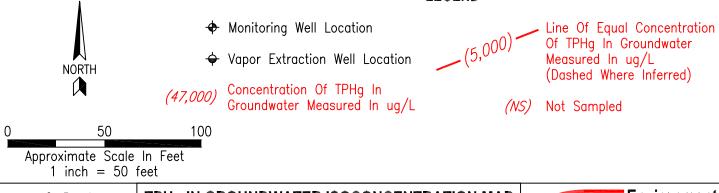
ECG recommends discontinuing analyses for TPHd. ECG is implementing the installation of the remediation system approved by Alameda County in correspondence dated February 7, 2013. In May 2013, ECG supervised the installation of two extraction wells (EW-3 and EW-4). In September 2013, ECG installed the subsurface piping network from the remediation wells to the remediation compound and the subsurface conduit required by PG&E to install the electrical service required to operate the remediation compound. An Authority to Construct Application was submitted to the Bay Area Air Quality Management District on April 19, 2013. Remediation system installation results will be detailed in a separate report.




Project Number: GHA.19009

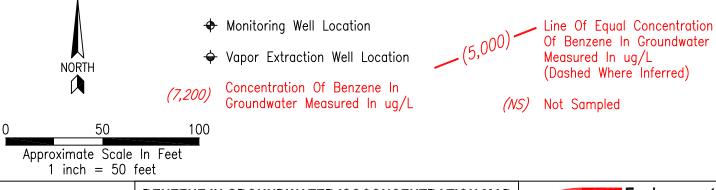

Date: February 9, 2011

SITE LOCATION MAP


Project Number: GHA.19009

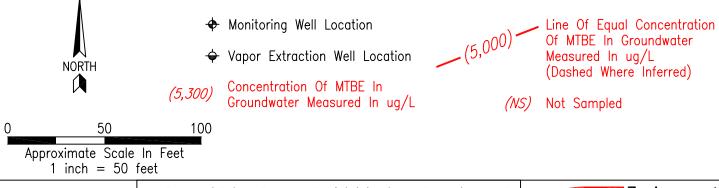
Date: December 16, 2013

POTENTIOMETRIC SURFACE MAP SEPTEMBER 4, 2013


Project Number: GHA.19009

Date: December 16, 2013

TPHg IN GROUNDWATER ISOCONCENTRATION MAP SEPTEMBER 4, 2013


Project Number: GHA.19009

Date: December 16, 2013

BENZENE IN GROUNDWATER ISOCONCENTRATION MAP SEPTEMBER 4, 2013

Project Number: GHA.19009

Date: December 16, 2013

MTBE IN GROUNDWATER ISOCONCENTRATION MAP SEPTEMBER 4, 2013

Shore Acre Gas 403 East 12th Street Oakland, California

270 Vintage Drive, Turlock, CA 95382 Phone: (209) 664-1035

TABLES

Table 1 Well Construction Details

Shore Acres Gas 403 East 12th Street Oakland, California

Well ID	Date Installed	TOC Elevation (ft amsl)	Well Depth (ft bgs)	Casing Diameter (inches)	Casing Material	Screen/ Filter	Screen Interval (ft bgs)		
Monitoring Wells									
MW-1		30.81	20	2	PVC	0.020/#3	10-20		
MW-2		31.29	20	2	PVC	0.020/#3	10-20		
MW-3	. 2011	31.30	18	2	PVC	0.020/#3	8-18		
MW-4	June 2011	31.21	19	2	PVC	0.020/#3	9-19		
MW-5		31.35	20	2	PVC	0.020/#3	10-20		
MW-6		30.79	20	2	PVC	0.020/#3	10-20		
Dual Phase	Extraction We	ells							
EW-1	1 2011	31.26	20	4	PVC	0.020/#3	5-20		
EW-2	June 2011	31.40	20	4	PVC	0.020/#3	5-20		
EW-3	N42012		20	6	PVC	0.020/#3	5-20		
EW-4	May 2012		20	6	PVC	0.020/#3	5-20		

Notes:

TOC - denotes top of casing

ft - denotes feet

amsl - denotes above mean sea level

bgs - denotes below ground surface

PVC - denotes polyvinyl chloride

Page 1 of 1 DIC.14244

Table 2a Historical Soil Analytical Data TPH and BTEX

Boring ID	Sample	Collection	TPHd	TPHg	Benzene	Toluene	Ethyl-	Total
	Depth	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	benzene	xylenes
	(feet)						(mg/kg)	(mg/kg)
UST Removal San	nples							400
SS-D1	2		1,800*	3,000	<0.25	0.34	39	180
SS-D2	2] [900*	2,400	<0.25	<0.25	36	120
SS-D3	2] [460*	1,000	<0.15	<0.15	12	14
SS-D4	2	1 [540*	640	<0.090	1.0	6.1	51
SS-D5	2] [320	140	<0.025	<0.025	1.3	3.2
SS-D6	2.0		320*	260	<0.025	0.054	1.0	8.0
SS-J1	2.0	Avenet	39*	160	<0.025	<0.025	0.71	0.94
SS-Isle	4.0	August	560*	100	<0.025	<0.025	0.30	0.084
SS-7	18.0	2009	310*	1,600	6.9	76	39	200
Tank 1-SS-1	14.0] [830*	2,500	4.2	100	69	360
Tank 1-SS-2	14.0] [62*	480	1.8	5.3	14	62
Tank 2-SS-1	14.0]	120*	290	0.37	2.4	6.3	31
Tank 2-SS-2	14.0	1	330*	80	0.074	0.051	1.2	5.8
Tank 3-SS-1	14.0	1 [480*	2,100	2.4	41	62	320
Tank 3-SS-2	14.0	1	75*	130	0.23	0.26	3.1	15
Soil Borings		<u> </u>						
GP-1-15.5	15.5		13.0	18.0	0.63	0.052	0.69	0.13
GP-1-18.0	18.0	1	<1.0	<1.0	0.0056	0.0082	<0.005	0.019
GP-2-12.0	12.0	July 2006	600	3,600	17	180	98	440
GP-2-20.0	20.0	1	79	1,100	3.2	41	25	130
SB-1-9.5	9.5			1,600	5.1	43	30	180
SB-1-24.5	24.5			<1.0	<0.005	<0.005	<0.005	<0.010
SB-1-29.5	29.5	7 '		<1.0	<0.005	<0.005	<0.005	<0.010
SB-2-9.5	9.5			2.2	0.26	<0.010	0.066	<0.020
SB-2-24.5	24.5	1		<1.0	<0.005	<0.005	<0.005	<0.010
SB-2-29.5	29.5	7		<1.0	<0.005	<0.005	<0.005	<0.010
SB-3-14.5	14.5	1		17	17	100	42	240
SB-3-24.5	24.5	7		<1.0	<0.005	0.005	<0.005	0.013
SB-3-29.5	29.5	7		<1.0	<0.005	<0.005	<0.005	<0.010
SB-4-14.5	14.5	7		1,700	13	79	28	170
SB-4-19.5	19.5	April 2010		<1.0	<0.005	0.009	<0.005	0.026
SB-4-29.5	29.5	1	=00	<1.0	<0.005	<0.005	<0.005	<0.010
SB-5-14.5	14.5	7		470	<0.20	0.45	6.2	37
SB-5-24.5	24.5	7	==-	<1.0	<0.005	<0.005	<0.005	<0.010
SB-5-29.5	29.5	7		<1.0	<0.005	<0.005	<0.005	<0.010
SB-6-9.5	9.5	7		6,100	21_	170	95	580
SB-6-29.5	29.5	┑		<1.0	<0.005	<0.005	<0.005	<0.010
SB-6-32	32.0	7		<1.0	<0.005	<0.005	<0.005	<0.010
SB-7-9.5	9.5	=		4,000	12	46	55	360
SB-7-29.5	29.5	7		<1.0	<0.005	<0.005	<0.005	<0.010
SB-7-32	32.0	┪		<1.0	<0.005	<0.005	<0.005	<0.010

Table 2a Historical Soil Analytical Data **TPH and BTEX**

Shore Acres Gas 403 East 12th Street Oakland, California

Boring ID	Sample	Collection	TPHd	TPHg	Benzene	Toluene	Ethyl-	Total
Doring 15	Depth	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	benzene	xylenes
	(feet)		(***0,**0,**				(mg/kg)	(mg/kg)
SB-8-9.5	9.5			2,500	16	110	63	370
SB-8-24.5	24.5	ľ		<1.0	<0.005	<0.005	<0.005	<0.010
SB-8-29.5	29.5			<1.0	<0.005	<0.005	<0.005	<0.010
SB-9-14.5	14.5	April 2010		390	3.0	3.0	9.1	41
SB-9-29.5	29.5	ľ		<1.0	<0.005	<0.005	<0.005	<0.010
SB-9-32	32.0			<1.0	<0.005	<0.005	<0.005	<0.010
Groundwater Well								
MW-1-5	5		<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-1-15	15		<5.0	18	0.55	<0.050	0.87	1.2
MW-1-20	20	1	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-2-5	5	1	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-2-10	10		<5.0	69	<0.005	<0.005	<0.005	<0.010
MW-2-15	15		<5.0	50	<0.050	0.48	3.1	19
MW-2-20	20	1	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-3-5	5	1	<5.0	<1.0	<0.010	<0.010	<0.010	<0.020
MW-3-10	10	•	<15	840	3.4	33	20	140
MW-3-15	15		<5.0	380	3.0	4.5	7.3	41
MW-3-20	20	1	<5.0	<1.0	0.019	<0.005	0.006	<0.010
MW-4-5	5	1 '	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-4-10	10	1	<15	420	1.7	2.6	9.2	51
MW-4-15	15	1	<5.0	3.1	0.036	0.20	0.15	0.95
MW-4-20	20	2011	<5.0	<1.0	0.007	0.017	0.010	0.039
MW-5-5	5	June 2011	<5.0	76	<0.10	<0.10	1.3	0.76
MW-5-10	10	1	<15	3,200	4.6	6.5	72	410
MW-5-15	15	1	<5.0	600	1.3	13	15	110
MW-6-5	5	1	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-6-10	10	1	<5.0	5.1	0.015	<0.010	3.4	1.0
MW-6-15	15	1	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
MW-6-20	20	1	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
VW-1-5	5	1	<5.0	34	<0.005	<0.005	0.16	0.31
VW-1-10	10	1	<15	85	<0.10	<0.10	2.2	0.89
VW-1-15	15	7	<15	420	2.1	4.1	9.4	55
VW-1-20	20	7	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
VW-2-5	5	7	<5.0	<1.0	<0.005	<0.005	<0.005	<0.010
VW-2-10	10	1	<5.0	130	<0.10	<0.10	2.9	15
VW-2-15	15	7	<15	5,500	29	430	120	910
VW-2-20	20	1	<5.0	<1.0	0.14	0.054	0.025	0.14
	1	7						

Notes:

TPHd - denotes total petroleum hydrocarbons as diesel
TPHg - denotes total petroleum hydrocarbons as gasoline
mg/kg - denotes milligrams per kilogram
< - denotes less than the detection limit

--- denotes no data

GHA.19009

Table 2b Historical Soil Analytical Data Oxygenates and Lead Scavengers

Shore Acres Gas 403 East 12th Street Oakland, California

Boring ID	Sample	Collection	DIPE	ETBE	MTBE	TAME	ТВА	1,2-DCA	EDB
Bornig ID	Depth	Date	(mg/kg)						
	(feet)		(6, .6,	(8,6,	(0, 0,				
UST Removal San		<u> </u>	·						
SS-D1	2		<0.25	<0.25	<0.25	<0.25	<1.5		
SS-D2	2	1	<0.25	<0.25	<0.25	<0.25	<1.5		
SS-D3	2	†	<0.15	<0.15	<0.15	<0.15	<0.70		
SS-D4	2	†	<0.090	<0.090	<0.090	<0.090	<0.50		
SS-D5	2	1	<0.025	<0.025	<0.025	<0.025	<0.15		
SS-D6	2	7	<0.025	<0.025	<0.025	<0.025	<0.15		
SS-J1	2	- 	<0.025	<0.025	<0.025	<0.025	<0.15		
SS-Isle	4	August	<0.025	<0.025	<0.025	<0.025	<0.15		
SS-7	18	2009	<0.25	<0.25	<0.25	<0.25	<1.5	<0.25	<0.25
Tank 1-SS-1	14	-	<0.50	<0.50	<0.50	<0.50	<2.5	<0.50	<0.50
Tank 1-35-1	14	1 1	<0.040	<0.040	0.37	<0.040	0.51	<0.040	<0.040
Tank 2-SS-1	14	1	<0.050	<0.050	0.18	<0.050	0.35	<0.050	<0.050
Tank 2-33-1	14	1	<0.025	<0.025	0.090	<0.025	0.16	<0.025	<0.025
Tank 3-SS-1	14	1	<0.50	<0.50	<0.50	<0.50	<2.5	<0.50	<0.50
Tank 3-55-2	14	-	<0.025	<0.025	0.19	<0.025	0.15	<0.025	<0.025
Soil Borings			101020						
GP-1-15.5	15.5		<0.005	<0.005	0.029	<0.005	0.27		
GP-1-13.0	18.0	-	<0.005	<0.005	0.54	<0.005	0.33		
GP-2-12.0	12.0	July 2006	<0.50	<0.50	<0.50	<0.50	<2.5		
GP-2-12.0 GP-2-20.0	20.0	-	<0.025	<0.025	0.041	<0.025	<0.15		
SB-1-9.5	9.5		<0.80	<0.80	<0.80	<0.80	<8.0	<0.80	<0.80
SB-1-24.5	24.5	-	<0.005	<0.005	0.11	<0.005	<0.050	<0.005	<0.005
SB-1-29.5	29.5	-	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-2-9.5	9.5	-	<0.010	<0.010	<0.010	<0.010	<0.10	<0.010	<0.010
SB-2-24.5	24.5	i	<0.005	<0.005	0.053	<0.005	<0.050	<0.005	<0.005
SB-2-29.5	29.5	╣	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-3-14.5	14.5	-	<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0
SB-3-24.5	24.5	╡	<0.005	<0.005	0.10	<0.005	<0.050	<0.005	<0.005
SB-3-29.5	29.5		<0.005	<0.005	0.010	<0.005	<0.050	<0.005	<0.005
SB-4-14.5	14.5	1	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0
	19.5	April 2010	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-4-19.5 SB-4-29.5	29.5	- Sprii 2010	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
<u> </u>	14.5	-	<0.20	<0.20	<0.20	<0.20	<2.0	<0.20	<0.20
SB-5-14.5	24.5	=	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-5-24.5	29.5	┪	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-5-29.5	9.5	-	<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0
SB-6-9.5	29.5	-	<0.005	<0.005	0.20	<0.005	<0.050	<0.005	<0.005
SB-6-29.5		-	<0.005	<0.005	0.18	<0.005	<0.050	<0.005	<0.005
SB-6-32	32.0		<1.0	<1.0	4.0	<1.0	<10	<1.0	<1.0
SB-7-9.5	9.5	-	<0.005	<0.005	0.18	<0.005	<0.050	<0.005	<0.005
SB-7-29.5 SB-7-32	29.5 32.0		<0.005	<0.005	0.11	<0.005	<0.050	<0.005	<0.005

Page 1 of 2 GHA.19009

Table 2b Historical Soil Analytical Data Oxygenates and Lead Scavengers

Shore Acres Gas 403 East 12th Street Oakland, California

Boring ID	Sample	Collection	DIPE	ETBE	MTBE	TAME	TBA	1,2-DCA	EDB
551	Depth	Date	(mg/kg)						
	(feet)								
SB-8-9.5	9.5		<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0
SB-8-24.5	24.5]	<0.005	<0.005	0.033	<0.005	<0.050	<0.005	<0.005
SB-8-29.5	29.5	A 1 2010	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
SB-9-14.5	14.5	April 2010	<0.20	<0.20	5.5	<0.20	<2.0	<0.20	<0.20
SB-9-29.5	29.5	1	<0.005	<0.005	0.090	<0.005	0.15	<0.005	<0.005
SB-9-32	32.0]	<0.005	<0.005	0.11	<0.005	<0.050	<0.005	<0.005
Groundwater Well	s								
MW-1-5	5		<0.005	<0.005	0.35	<0.005	0.093	<0.005	<0.005
MW-1-15	15] [<0.050	<0.050	1.1	<0.050	<0.50	<0.050	<0.050
MW-1-20	20	1	<0.005	<0.005	0.31	<0.005	0.58	<0.005	<0.005
MW-2-5	5		<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
MW-2-10	10	1	<0.050	<0.050	<0.050	<0.050	<0.50	<0.050	<0.050
MW-2-15	15	1	<0.050	<0.050	<0.050	<0.050	<0.50	<0.050	<0.050
MW-2-20	20		<0.005	<0.005	0.006	<0.005	<0.050	<0.005	<0.005
MW-3-5	5		<0.010	<0.010	1.5	<0.010	0.37	<0.010	<0.010
MW-3-10	10		<0.80	<0.80	1.3	<0.80	<8.0	<0.80	<0.80
MW-3-15	15		<0.20	<0.20	3.0	<0.20	<2.0	<0.20	<0.20
MW-3-20	20		<0.005	<0.005	0.036	<0.005	0.16	<0.005	<0.005
MW-4-5	5	1	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
MW-4-10	10]	<0.40	<0.40	<0.40	<0.40	<4.0	<0.40	<0.40
MW-4-15	15		<0.010	<0.010	<0.010	<0.010	<0.10	<0.010	<0.010
MW-4-20	20	lum = 2011	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
MW-5-5	5	June 2011	<0.10	<0.10	<0.10	<0.10	<1.0	<0.10	<0.10
MW-5-10	10	1	<4.0	<4.0	<4.0	<4.0	<40_	<4.0	<4.0
MW-5-15	15	1	<0.40	<0.40	<0.40	<0.40	<4.0	<0.40	<0.40
MW-6-5	5		<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
MW-6-10	10		<0.010	<0.010	<0.010	<0.010	<0.10	<0.010	<0.010
MW-6-15	15		<0.005	<0.005	0.026	<0.005	0.088	<0.005	<0.005
MW-6-20	20		<0.005	<0.005	0.010	<0.005	0.37	<0.005	<0.005
VW-1-5	5		<0.050	<0.050	<0.050	<0.050	<0.50	<0.050	<0.050
VW-1-10	10		<0.10	<0.10	<0.10	<0.10	<1.0	<0.10	<0.10
VW-1-15	15		<0.40	<0.40	0.59	<0.40	<4.0	<0.40	<0.40
VW-1-20	20		<0.005	<0.005	0.009	<0.005	0.16	<0.005	<0.005
VW-2-5	5		<0.005	<0.005	0.25	<0.005	0.14	<0.005	<0.005
VW-2-10	10		<0.10	<0.10	0.33	<0.10	<1.0	<0.10	<0.10
VW-2-15	15	7	<4.0	<4.0	<4.0	<4.0	<40	<4.0	<4.0
VW-2-20	20	7	<0.005	<0.005	0.008	<0.005	0.26	<0.005	<0.005
		_					<u></u>		<u> </u>

Notes:

mg/kg - denotes milligrams per kilogram MTBE - denotes methyl tertiary butyl ether

< - denotes less than the detection limi DIPE - denotes di-isopropyl ether

--- - denotes not analyzed/applicable ETBE - denotes ethyl tertiary butyl ether

DCA - denotes dichloroethane

TAME - denotes tertiary amyl ether

EDB - denotes ethylene dibromide TBA - denotes tertiary butyl alcohol

Table 3a Grab Groundwater Sample Results TPH and BTEX

Shore Acres Gas 403 East 12th Street Oakland, California

Sample ID	Collection					Ethyl-	Total
	Date	TPHd	TPHg	Benzene	Toluene	benzene	Xylenes
	ger	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Excavation							
	August				•		
Pit Sample 1	2009	21,000	21,000	3,800	1,000	1,200	3,700
Direct Push Gra	b Groundwa	ter Sample	es			••	
SB-1			60	2.9	6.7	2.1	9.7
SB-2			<50	<0.5	<0.5	<0.5	<1.0
SB-3			170	1.5	11	4.8	27
SB-4			6,500	78	440	190	960
SB-5	April 2010		<50	<0.5	<0.5	<0.5	<1.0
SB-6			440	<20	<20	<20	<40
SB-7			270	<12	<12	<12	<25
SB-8			<50	0.6	1.3	0.6	3.3
SB-9			<50	<10	<10	<10	<20
SB-10			<50	<0.5	<0.5	<0.5	<1.0
SB-11			2,300	83	1.9	140	43
SB-12			4,700	620	290	84	400
SB-13			400	51	2.4	4.2	9.7
SB-14	<u></u>		<50	1.7	<0.5	2.1	<1.0
SB-15	December 2011		320	32	0.7	33	25
SB-16	2011		4,800	1,600	10	49	<20
SB-17	1		990	290	7.2	27	4.3
SB-18	1		560	8.7	4.9	23	83
SB-19			260	7.1	<0.5	16	7.0
SB-21	1		<50	<0.5	<0.5	<0.5	<1.0
					<u> </u>		

Notes:

TPHd - denotes total petroleum hydrocarbons as diesel

TPHg - denotes total petroleum hydrocarbons as gasoline

ug/L - denotes micrograms per liter

< - denotes less than the detection limit

--- - denotes not analyzed/applicable

Table 3b Grab Groundwater Sample Results Oxygenates and Lead Scavengers

Shore Acres Gas 403 East 12th Street Oakland, California

Sample ID	Collection	DIPE	ETBE	MTBE	TAME	TBA	1,2-DCA	EDB
•	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Excavation	•							
	February	<10	<10	15,000	39	17,000	<10	<10
Water	2000							
Direct Push Gra	b Groundwa	ter Sampl	es					
SB-1		<0.5	<0.5	14	<0.5	<5.0	<0.5	<0.5
SB-2] [<0.5	<0.5	45	<0.5	<5.0	<0.5	<0.5
SB-3] [<0.5	<0.5	110	<0.5	32	<0.5	<0.5
SB-4	1 [<5.0	<5.0	<5.0	<5.0	<50	<5.0	<5.0
SB-5	April 2010	<0.5	<0.5	0.6	<0.5	<5.0	<0.5	<0.5
SB-6] [<20	<20	4,000	<20	<200	<20	<20
SB-7	1	<12	<12	2,500	<12	<120	<12	<12
SB-8	Ĭ	<0.5	<0.5	26	<0.5	98	<0.5	<0.5
SB-9	1	<10	<10	1,800	<10	5,300	<10	<10
SB-10		<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
SB-11]	<1.0	<1.0	22	<1.0	140	<1.0	<1.0
SB-12	1	<5.0	<5.0	100	<5.0	550	<5.0	<5.0
SB-13	1	<2.0	<2.0	39	<2.0	3,900	<2.0	<2.0
SB-14] December	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
SB-15		<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
SB-16	2011	<10	<10	<10	<10	<100	<10	<10
SB-17]	<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0
SB-18		<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
SB-19		<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
SB-21		<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5

Page 1 of 1

Notes:

ug/L - denotes micrograms per liter

< - denotes less than the detection limit

DCA - denotes dichloroethane

EDB - denotes ethylene dibromide

MTBE - denotes methyl tertiary butyl ether

DIPE - denotes di-isopropyl ether

ETBE - denotes ethyl tertiary butyl ether

TAME - denotes tertiary amyl ether

TBA - denotes tertiary butyl alcohol

GHA.19009

Table 4a Monitoring Well Data Water Level, TPH, and BTEX

Shore Acres Gas 403 East 12th Street Oakland, California

				and, Califor	1			Ethyl-	Total
Well	Date	Depth to	Groundwater Elevation	TPHd	TPHg	Benzene	Toluene	benzene	Xylenes
ID TOC	Measured	Groundwater (ft bgs)	(ft amsl)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Monitoring	Wolls	(16 063)	(12 4333)	(46/-/	(-8/-/	\ 8i -i	1 0, 1	<u> </u>	
MW-1	6/23/2011	10.46	20.35	<250	23,000	4,500	820	1,700	3,800
IAIAA-T	9/22/2011	12.13	18.68	<50	21,000	4,000	1,500	980	3,000
		11.69	19.12		23,000	2,900	1,000	720	3,000
	12/11/2011	11.05	13.12		Inaccessible				
	3/30/2012	11.04	19.77		40,000	4,100	800	2,700	6,100
	6/1/2012	11.04	17.85	<100	20,000	2,700	160	830	2,600
	9/14/2012	12.96		<50	15,000	1,700	150	400	830
	3/27/2013	8.57	22.24	<100	22,000	2,800	870	560	2,000
	5/20/2013	8.57	22.24				130	190	370
	9/4/2013	9.29	21.52	<250	12,000	2,900	130	130	3.0
	- 12 - 12 - 1	10.70	20.50	-250	12.000	1.000	160	370	1,600
MW-2	6/23/2011	10.70	20.59	<250	13,000	1,000	130	470	1,400
	9/22/2011	12.42	18.87	<50	12,000	300	120	450	1,500
	12/11/2011	11.98	19.31		8,300	170	- "	 	2,900
	3/30/2012	8.55	22.74	<250	17,000	850	700	710	
	6/1/2012	11.26	20.03		5,300	830	260	630	1,700
	9/14/2012	13.11	18.18	<50	10,000	260	190	600	1,900_
· · · · ·	3/27/2013	9.43	21.86	<50	12,000	440	98	320	810
	5/20/2013	9.41	21.88	<100	6,600	300	74	190	500
	9/4/2013	10.11	21.18	<100	5,300	300	50	180	280
MW-3	6/23/2011	10.79	20.51	<250	55,000	15,000	3,600	2,000	4,300
	9/22/2011	12.60	18.70	<250	77,000	15,000	3,900	1,700	4,900
	12/11/2011	12.13	19.17		64,000	12,000	3,100	1,600	4,500
	3/30/2012	7.90	23.40	<120	100,000	17,000	10,000	2,000	8,400
	6/1/2012	11.47	19.83		83,000	15,000	6,000	2,900	10,000
	9/14/2012	13.42	17.88	<200	69,000	10,000	1,500	1,800	5,900
	3/27/2013	9.15	22.15	<200	63,000	7,100	2,100	1,900	7,700
	5/20/2013	9.16	22.14	<250	80,000	9,700	2,900	2,400	8,600
	9/4/2013	9.87	21.43	<250	47,000	7,200	470	1,200	5,000
	37.72023	0.07							
MW-4	6/23/2011	10.62	20.59	<250	47,000	3,500	7,100	2,300	11,000
	9/22/2011	12.25	18.96	<250	46,000	2,000	2,400	1,100	5,300
	12/11/2011	11.89	19.32		46,000	2,100	3,400	1,800	7,000
	3/30/2012	8.51	22.70	<250	60,000	6,800	8,200	1,200	5,700
	6/1/2012	11.14	20.07		72,000	9,700	8,500	2,300	9,000
	9/14/2012	12.97	18.24	<50	15,000	940	880	450	1,700
	3/27/2013	9.05	22.16	<50	25,000	1,800	2,200	660	2,500
	5/20/2013	9.03	22.18	<250	18,000	1,600	1,700	470	1,900
	9/4/2013	9.68	21.53	<50	15,000	510	410	260	820
	31*412013	3.00	21.33	1.50		1			<u> </u>

DIC.14244

Table 4a Monitoring Well Data Water Level, TPH, and BTEX

Shore Acres Gas 403 East 12th Street Oakland, California

Well	Date	Depth to	Groundwater	and, Califor				Ethyl-	Total
ID	Measured	Groundwater	Elevation	TPHd	TPHg	Benzene	Toluene	benzene	Xylenes
тос		(ft bgs)	(ft amsi)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-5	6/23/2011	10.12	21.23	<250	130,000	7,100	25,000	13,000	94,000
	9/22/2011	12.53	18.82	<250	120,000	6,900	7,600	3,800	17,000
	12/11/2011	12.09	19.26		110,000	7,800	14,000	4,200	20,000
	3/30/2012	8.06	23.29		<u> </u>	Sheen - no	ot sampled		
	6/1/2012	11.38	19.97			Sheen - no	ot sampled		
	9/14/2012	13.61	17.74		Fi	ree product	- not sample	ed	
	3/27/2013	9.21	22.14		F	ree product	- not sample	ed	
	5/20/2013	9.17	22.18		F	ree product	- not sample	ed	
	9/4/2013	9.70	21.65		F	ree product	- not sample	ed	
MW-6	6/23/2011	10.43	20.36	<250	11,000	2,400	120	480	840
	9/22/2011	12.10	18.69	<50	15,000	1,500	270	880	2,500
	12/11/2011	11.69	19.10		13,000	660	190	610	1,500
	3/30/2012	7.50	23.29	<250	9,500	1,200	160	250	520
	6/1/2012	11.04	19.75		23,000	2,200	220	1,300	3,000
	9/14/2012	12.96	17.83	<50	14,000	1,000	86	420	1,200
	3/27/2013					Inacc	essible		
	5/20/2013					Inacc	essible		
	9/4/2013	9.19	21.60	<100	9,500	1,400	120	1,400	1,600
									·-·
DPE Wells								 	
EW-1	6/28/2011				20,000	2,000	490	1,000	2,400
	9/22/2011	12.55	18.71	<120	39,000	3,900	610	1,400	4,600
	12/11/2011	12.09	19.17		27,000	2,600	270	1,400	4,400
	3/30/2012	8.06	23.20	<120	21,000	3,100	160	910	2,300
	6/1/2012	11.42	19.84		21,000	2,800	100	1,200	3,100
	9/14/2012	13.37	17.89	<50	22,000	1,900	50	1,000	2,600
	3/27/2013	9.06	22.20	<50	15,000	630	36	360	590
	5/20/2013	9.06	22.20	<100	11,000	600	28	210	350
	9/4/2013	9.77	21.49	<50	9,300	610	19	170	250
						<u> </u>	<u> </u>		-
EW-2	6/28/2011				33,000	3,100	2,000	790	3,500
	9/22/2011	12.50	18.90	<250	66,000	2,400	4,500	2,000	11,000
	12/11/2011	12.12	19.28		70,000	2,800	6,900	2,700	13,000
	3/30/2012	8.48	22.92	<250	57,000	5,800	5,500	1,200	5,400
	6/1/2012	11.40	20.00		82,000	8,800	8,600	3,300	13,000
	9/14/2012	13.27	18.13	<100	32,000	2,600	2,400	1,000	4,500
<u> </u>	3/27/2013	9.24	22.16	<100	18,000	940	790	390	1,700
	5/20/2013	9.21	22.19	<50	10,000	540	430	220	790
	9/4/2013	9.88	21.52	<250	10,000	680	580	480	1,700
			<u> </u>			<u> </u>	<u> </u>		ļ

Page 2 of 3 DIC.14244

Table 4a Monitoring Well Data Water Level, TPH, and BTEX

Shore Acres Gas 403 East 12th Street Oakland, California

Well ID TOC	Date Measured	Depth to Groundwater (ft bgs)	Groundwater Elevation (ft amsl)	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl- benzene (ug/L)	Total Xylenes (ug/L)
EW-3	5/20/2013	8.82		<50	1,300	430	540	280	1,000
	9/4/2013	9.49		<100	9,800	480	220	560	1,800
EW-4	5/20/2013	9.12		<50	8,100	720	160	94	430
	9/4/2013	9.85	nne	<250	11,000	990	580	310	1,200

Notes:

TOC - denotes top of casing elevation

TPHg - denotes total petroleum hydrocarbons as gasoline

TPHd - denotes total petroleum hydrocarbons as diesel

ft bgs - denotes feet below top of casing

ft amsi - denotes feet above mean sea level

ug/L - denotes micrograms per liter

< - denotes less than the detection limit

--- - denotes not available/applicable

FLH - denotes floating liquid hydrocarbons

* - denotes less than six inches of water and considered dry

Page 3 of 3 DIC.14244

Table 4b Monitoring Well Data Oxygenates and Lead Scavengers

Well	Date	DIPE	ETBE	МТВЕ	TAME	ТВА	1,2-DCA	EDB	
ID	Measured	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
тос									
Monitoring	Wells			1			· · · · · · · · · · · · · · · · · · ·		
MW-1	6/23/2011	<25	<25	3,000	<25	3,900	<25	<25	
•	9/22/2011	<50	<50	2,600	<50	2,500	<50	<50	
	12/11/2011	<20	<20	1,800	<20	1, 6 00	<20	<20	
	3/30/2012				Inaccessible	2			
	6/1/2012	<20	<20	2,800	<20	1,300	<20	<20	
	9/14/2012	<10	<10	2,200	<10	1,600	<10	<10	
	3/27/2013	<0.5	<0.5	590	<0.5	350	<0.5	<0.5	
	5/20/2013	<10	<10	1,100	<10	620	<10	<10	
	9/4/2013	<10	<10	240	<10	<100	<10	<10	
MW-2	6/23/2011	<10	<10	240	<10	640	<10	<10	
	9/22/2011	<5.0	<5.0	110	<5.0	260	<5.0	<5.0	
	12/11/2011	<2.5	<2.5	45	<2.5	110	<2.5	<2.5	
	3/30/2012	<5.0	<5.0	140	<5.0	490	<5.0	<5.0	
	6/1/2012	<5.0	<5.0	180	<5.0	490	<5.0	<5.0	
	9/14/2012	<5.0	<5.0	65	<5.0	190	<5.0	<5.0	
	3/27/2013	<0.5	<0.5	120	<0.5	930	<0.5	<0.5	
	5/20/2013	<2.5	<2.5	120	<2.5	1,800	<2.5	<2.5	
	9/4/2013	<5.0	<5.0	100	<5.0	780	<5.0	<5.0	
MW-3	6/23/2011	<100	<100	8,200	<100	6,400	<100	<100	
	9/22/2011	<100	<100	11,000	<100	2,800	<100	<100	
	12/11/2011	<100	<100	7,400	<100	1,800	<100	<100	
	3/30/2012	<100	<100	13,000	<100	<1,000	<100	<100	
	6/1/2012	<50	<50	12,000	<50	<500	<50	<50	
	9/14/2012	<50	<50	9,400	<50	<500	<50	<50	
	3/27/2013	<0.5	<0.5	7,900	<0.5	3,800	<0.5	<0.5	
"	5/20/2013	<25	<25	10,000	<25	5,000	<25	<25	
	9/4/2013	<25	<25	5,300	<25	2,100	<25	<25	
MW-4	6/23/2011	<50	<50	<50	<50	<500	<50	<50	
	9/22/2011	<25	<25	<25	<25	<250	<25	<25	
	12/11/2011	<25	<25	<25	<25	<250	<25	<25	
	3/30/2012	<50	<50	56	<50	<500	<50	<50	
	6/1/2012	<50	<50	180	<50	<500	<50	<50	
	9/14/2012	<20	<20	<20	<20	<200	<20	<20	
	3/27/2013	<0.5	<0.5	77	<0.5	450	<0.5	<0.5	
	5/20/2013	<10.5	<10	61	<10	360	<10	<10	
	9/4/2013	<2.5	<2.5	17	<2.5	64	<2.5	<2.5	
	3, 1, 2013	-2.0	-41-			 	 	<u> </u>	

Table 4b Monitoring Well Data Oxygenates and Lead Scavengers

Shore Acres Gas 403 East 12th Street Oakland, California

	DIPE	ETBE	MTBE	TAME	TBA	1,2-DCA	EDB						
Measured	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)						
6/23/2011	<120	<120	440	<120	<1,200	<120	<120						
9/22/2011	<50	<50	670	<50	1,500	<50	<50						
12/11/2011	<120	<120	690	<120	1,600	<120	<120						
3/30/2012			She	en - not sam	pled								
6/1/2012			She	en - not sam	pled								
9/14/2012			Free pr	oduct - not :	sampled								
3/27/2013			Free pr	oduct - not :	sampled								
			Free pr	oduct - not :	sampled								
9/4/2013	Free product - not sampled												
6/23/2011	<25	<25	1,100	<25	4,000	<25	<25						
		<12			<u> </u>	<12	<12						
							<10						
3/30/2012 <10						<10	<10						
						<10	<10						
						<10	<10						
	Inaccessible												
	Inaccessible												
	<5.0	<5.0	29	T		<5.0	<5.0						
3, ,,2022													
					· <u>-</u>		·						
6/28/2011	<25	<25	1.500	<25	5,300	<25	<25						
						<50	<50						
			490	<25		<25	<25						
				<20		<20	<20						
				<25	1,700	<25	<25						
				<10	1,400	<10	<10						
							<0.5						
					<u> </u>	<5.0	<5.0						
					· · · · · · · · · · · · · · · · · · ·	<2.5	<2.5						
-, ,,													
6/28/2011	<25	<25	670	<25	4,100	<25	<25						
		<50	740	<50	1,600	<50	<50						
		<50	540	<50		<50	<50						
		_		<50		<50	<50						
			2,600	<50		<50	<50						
			i '	<20		<20	<20						
			T		—		<0.5						
			 		T	<u> </u>	<2.5						
			<u> </u>				<5.0						
	9/22/2011 12/11/2011 3/30/2012 6/1/2012 9/14/2012 3/27/2013 5/20/2013 9/4/2013 6/23/2011 9/22/2011 12/11/2011	9/22/2011 <50	9/22/2011 <50	9/22/2011 <50 <50 670 12/11/2011 <120 <120 690 3/30/2012 Shee 6/1/2012 Shee 9/14/2012 Free pr 3/27/2013 Free pr 5/20/2013 Free pr 6/23/2011 <25 <25 1,100 9/22/2011 <12 <12 600 12/11/2011 <10 <10 290 3/30/2012 <10 <10 990 6/1/2012 <10 <10 580 3/27/2013 Shee 6/28/2011 <25 <25 1,500 9/14/2012 <10 <10 580 3/27/2013 Shee 6/28/2011 <25 <25 1,500 9/22/2011 <10 <10 580 3/27/2013 Shee 6/28/2011 <25 <25 1,500 9/22/2011 <50 <50 640 12/11/2011 <25 <25 490 3/30/2012 <20 <20 370 6/1/2012 <25 <25 500 9/14/2012 <10 <10 370 3/27/2013 <5.0 <5.0 250 9/4/2013 <2.5 <2.5 <2.5 9/4/2013 <2.5 <2.5 <2.5 9/4/2013 <2.5 <2.5 <2.5 9/4/2013 <5.0 <5.0 <2.5 9/14/2012 <10 <10 370 3/27/2013 <5.0 <5.0 <2.5 9/4/2013 <2.5 <2.5 <2.5 9/4/2013 <2.5 <2.5 <2.5 9/4/2013 <2.5 <2.5 <2.5 9/4/2013 <2.5 <2.5 <2.5 9/4/2013 <2.5 <2.5 <2.5 9/4/2013 <2.5 <2.5 <2.5 9/4/2013 <2.5 <2.5 <2.5 9/14/2012 <50 <50 <50 1,800 6/1/2012 <50 <50 <50 <50 9/14/2012 <20 <20 <20 <20 1,100 3/27/2013 <0.5 <0.5 <0.5 5/20/2013 <2.5 <2.5 <2.5 <0.5 5/20/2013 <2.5 <2.5 <2.5 <2.5 5/20/2013 <2.5 <2.5 <2.5 <2.5 5/20/2013 <2.5 <2.5 <2.5 <2.5 5/20/2013 <2.5 <2.5 <2.5 <2.5 5/20/2013 <2.5 <2.5 <2.5 <2.5 5/20/2013 <2.5 <2.5 <2.5 <2.5 5/20/2013 <2.5 <2.5 <2.5 <2.5 5/20/2013 <2.5 <2.5 <2.5 <2.5 5/20/2013 <2.5 <2.5 <2.5 <2.5 5/20/2013 <2.5 <2.5 <2.5 <2.5 5/20/2013 <2.5 <2.5 <2.5 <2.5 5/20/2013 <2.5 <2.5 <2.5 <2.5 5/20/2013 <2.5 <2.5 <2.5 <2.5 5/20/2013 <2.5 <2.5 <2.5 <2.5 5/20/2013 <2.5 <2.5 <2.5 <2.5 5/20	9/22/2011 <50 <50 670 <50 12/11/2011 <120 <120 690 <120 3/30/2012 Sheen - not sam 9/14/2012 Sheen - not sam 9/14/2012 Sheen - not sam 9/14/2013 Free product - not 5/20/2013 Free product - not 9/4/2013 Free product - not 6/23/2011 <25 <25 1,100 <25 9/22/2011 <12 <12 600 <12 12/11/2011 <10 <10 290 <10 3/30/2012 <10 <10 990 <10 6/1/2012 <10 <10 580 <10 9/14/2012 <10 <10 580 <10 9/14/2013 Sheen - not sam 6/23/2011 <25 <25 1,100 <25 9/22/2011 <12 <12 600 <12 12/11/2011 <10 <10 290 <10 3/30/2012 <10 <10 580 <10 9/14/2012 <10 <10 580 <10 9/14/2013 <5.0 <5.0 29 <5.0 6/28/2011 <25 <25 1,500 <25 9/22/2011 <50 <50 640 <50 12/11/2011 <25 <25 490 <25 3/30/2012 <20 <20 370 <20 6/1/2012 <25 <25 500 <25 9/14/2012 <10 <10 370 <10 3/27/2013 <5.0 <5.0 250 <5.0 9/14/2013 <2.5 <2.5 500 <25 9/14/2013 <2.5 <2.5 500 <25 9/22/2011 <50 <50 540 <50 9/14/2013 <2.5 <2.5 500 <25 9/22/2011 <50 <50 540 <50 9/14/2012 <50 <50 540 <50 12/11/2011 <50 <50 540 <50 9/14/2012 <50 <50 1,800 <50 9/14/2012 <20 <20 1,100 <20 3/27/2013 <2.5 <2.5 390 <2.5 5/20/2013 <2.5 <2.5 390 <2.5 5/20/2013 <2.5 <2.5 390 <2.5 5/20/2013 <2.5 <2.5 390 <2.5 5/20/2013 <2.5 <2.5 390 <2.5	9/22/2011 <50	9/22/2011 <50 <50 670 <50 1,500 <50 12/11/2011 <120 <120 690 <120 1,600 <120 3/30/2012 Sheen - not sampled 6/1/2012 Sheen - not sampled 9/14/2012 Free product - not sampled 3/27/2013 Free product - not sampled 5/20/2013 Free product - not sampled 5/20/2013 Free product - not sampled 6/23/2011 <25 <25 1,100 <25 4,000 <25 9/22/2011 <12 <12 600 <12 2,800 <12 12/11/2011 <10 <10 290 <10 1,300 <10 3/30/2012 <10 <10 990 <10 3,500 <10 6/1/2012 <10 <10 580 <10 2,000 <10 3/27/2013 Inaccessible 5/20/2013 Sheen - not sampled 6/28/2011 <25 <25 1,500 <25 5,300 <25 9/22/2011 <10 <10 580 <10 2,000 <10 3/27/2013 Sheen - not sampled 6/28/2011 <25 <25 1,500 <25 5,300 <25 9/22/2011 <10 <10 580 <10 2,000 <10 3/27/2013 Sheen - not sampled 6/28/2011 <25 <25 1,500 <25 5,300 <25 9/22/2011 <50 <50 640 <50 1,800 <50 12/11/2011 <25 <25 490 <25 1,000 <25 3/30/2012 <20 <20 370 <20 1,100 <20 9/14/2012 <10 <10 370 <10 1,400 <10 3/27/2013 <5.0 <5.0 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 6/1/2012 <25 <25 500 <25 1,700 <25 9/14/2013 <5.0 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 9/14/2013 <5.0 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 9/14/2013 <5.0 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50						

Page 2 of 3 DIC.14244

Table 4b Monitoring Well Data Oxygenates and Lead Scavengers

Shore Acres Gas 403 East 12th Street Oakland, California

Well ID TOC	Date Measured	Date DIPE		MTBE (ug/L)	TAME (ug/L)	TBA (ug/L)	1,2-DCA (ug/L)	EDB (ug/L)	
EW-3	5/20/2013	<2.5	<2.5	140	<2.5	1,100	<2.5	<2.5	
	9/4/2013	<2.5	<2.5	120	<2.5	650	<2.5	<2.5	
EW-4	5/20/2013	<5.0	<5.0	480	<5.0	1,900	<5.0	<5.0	
	9/4/2013	<5.0	<5.0	220	<5.0	1,300	<5.0	<5.0	

Notes:

ug/L - denotes micrograms per liter

< - denotes less than the detection limit

DCA - denotes dichloroethane

EDB - denotes ethylene dibromide

MTBE - denotes methyl tertiary butyl ether

DIPE - denotes di-isopropyl ether

ETBE - denotes ethyl tertiary butyl ether

TAME - denotes tertiary amyl ether

TBA - denotes tertiary butyl alcohol

--- - denotes no data available

Page 3 of 3 DIC.14244

APPENDICES

ENVIRONMENTAL COMPLIANCE GROUP, LLC STANDARD OPERATING AND SAFETY AND LOSS CONTROL PROCEDURES

1.0 SOIL BORING/DRILLING SAMPLE COLLECTION AND CLASSIFICATION PROCEDURES

ECG will prepare a site-specific Health and Safety Plan as required by the Occupational Health and Safety Administration (OSHA) Standard "Hazardous Waste Operations and Emergency Response" guidelines (29 CFR.1910.120). The document will be reviewed and signed by all ECG personnel and subcontractors prior to performing work at the site.

Prior to conducting and subsurface work at the site, Underground Services Alert (USA) will be contacted to delineate subsurface utilities near the site with surface markings. In addition, the first five feet of every location will be hand cleared to a diameter larger than the diameter of the auger or probe as a further precaution against damaging underground utilities. Sites that are currently operated as gas stations will be cleared with a private utility locator prior to drilling activities.

Soil samples to be submitted for chemical analyses are collected into brass or stainless steel tubes. The tubes are placed in an 18-inch long split-barrel sampler. The split-barrel sampler is driven its entire length hydraulically or by 140-pound drop hammer. The split-barrel sampler is removed from the borehole and the tubes are removed. When the tubes are removed from the split-barrel sampler, the tubes are trimmed and capped with Teflon sheets and plastic caps or the soil is removed from the tubes and placed in other appropriate sample containers. The samples are sealed, labeled, and placed in ice under chain-of-custody to be delivered to the analytical laboratory. All samples will be kept refrigerated until their delivery to the analytical laboratory.

One soil sample collected from each split-barrel sampler is field screened with a photoionization detector (PID), flame ionization detector (FID), or other equivalent field screening meter. The soil sample is sealed in a plastic bag or other appropriate container to allow volatilization of volatile organic compounds (VOCs). The field meter is used to measure the VOC concentration in the container's headspace and is recorded on the boring logs at the appropriate depth interval.

Other soil samples collected from each split-barrel sampler are inspected and documented to identify the soil stratigraphy beneath the site and classify the soil types according to the United Soil Classification System. The soil types are recorded on boring logs with the appropriate depth interval and any pertinent field observations. Drilling and sampling equipment are steam cleaned or washed in solution and rinsed in deionized water prior to use, between sample collections and boreholes and after use.

2.0 SOIL EXCAVATION SAMPLE COLLECTION AND CLASSIFICATION PROCEDURES

Soil samples to be submitted for chemical analyses are collected into brass or stainless steel tubes or other appropriate containers. The samples are sealed, labeled, and placed in ice under chain-of-custody (COC) to be delivered to the analytical laboratory. All samples will be kept refrigerated until their delivery to the analytical laboratory.

Select soil samples are placed into a sealed plastic bag or other appropriate container and field screened using a PID, FID, or equivalent meter. Other soil samples collected are inspected and documented to identify the soil stratigraphy beneath the site and classify the soil types according to the United Soil Classification System. The soil types are recorded field notes with the appropriate depth interval and any pertinent field observations. Sampling equipment are steam cleaned or washed in solution and rinsed in deionized water prior to use, between sample collections, and after use. Soil cuttings and rinseate water are temporarily stored onsite pending laboratory analytical results and proper transport and disposal.

3.0 SAMPLE IDENTIFICATION AND COC PROCEDURES

Sample containers are labeled with job number, job name, sample collection time and date, sample collection point, and analyses requested. Sampling method, sampler's name, and any pertinent field observations are recorded on boring logs or excavation field notes. COC forms track the possession of the sample from the time of its collection until the time of its delivery to the analytical laboratory. During sample transfers, the person with custody of the samples will relinquish them to the next person by signing the COC and documenting the time and date. The analytical laboratory Quality Control/Quality Assurance (QA/QC) staff will document the receipt of the samples and confirm the analyses requested on the COC matches the sample containers and preservative used, if any. The analytical laboratory will assign unique log numbers for identification during the analyses and reporting. The log numbers will be added to the COC form and maintained in a log book maintained by the analytical laboratory.

4.0 ANALYTICAL LABORATORY QA/QC PROCEDURES

The analytical laboratory analyzes spikes, replicates, blanks, spiked blanks, and certified reference materials to verify analytical methods and results. The analytical laboratory QA/QC also includes:

Routine instrument calibration,

Complying with state and federal laboratory accreditation and certification programs,

Participation in U.S. EPA performance evaluation studies,

Standard operating procedures, and

Multiple review of raw data and client reports

5.0 HOLLOW STEM AUGER WELL INSTALLATION

Boreholes for wells are often drilled with a truck-mounted hollow stem auger drill rig. The borehole diameter is at least 4 inches wider than the outside diameter of the well casing. Soil samples are collected and screened as described in **Section 1.0** and decontamination procedures are also the same as described in **Section 1.0**.

Wells are cased with both blank and factory-perforated Schedule 40 PVC. The factory perforations are typically 0.020 inches wide by 1.5 inch long slots, with 42 slots per foot. A PVC cap is typically installed at the bottom of the casing with stainless steel screws. No solvents or cements are used in the construction of the wells. Well stabilizers or centering devices may be installed around the casing to ensure the filter material and grout in the annulus are evenly distributed. The casing is purchased pre-cleaned or steam cleaned and washed prior to installation in the borehole.

The casing is set inside the augers and sand, gravel, or other filter material is poured into the annulus to fill the borehole from the bottom to approximately 1-2 feet above the perforations. A two foot thick bentonite plug is placed above the filter material to prevent the grout from filling the filter pack. Neat cement or sand-cement grout is poured into the annulus from the top of the bentonite plug to the surface. For wells located in parking lots or driveways, or roads, a traffic rated well box is installed around the well. For wells located in landscaped areas or fields, a stovepipe well protection device is installed around the well. Soil cuttings and rinseate water are temporarily stored onsite pending laboratory analytical results and proper transport and disposal.

6.0 MUD AND AIR ROTARY WELL INSTALLATION

Boreholes for wells can also be drilled with a truck-mounted air rotary or mud rotary drill rig. Air or mud can be used as a drill fluid to fill the borehole and prevent the borehole from caving in and remove drill cuttings. Mud or air can be chosen depending on the subsurface conditions. Soil samples are collected and screened as described in **Section 1.0** and decontamination procedures are also the same as described in **Section 1.0**.

Wells are cased with both blank and factory-perforated Schedule 40 PVC. The factory perforations are typically 0.020 inches wide by 1.5 inch long slots, with 42 slots per foot. A PVC cap is typically installed at the bottom of the casing with stainless steel screws. No solvents or cements are used in the construction of the wells. Well stabilizers or centering devices may be installed around the casing to ensure the filter material and grout in the annulus are evenly distributed. The casing is purchased pre-cleaned or steam cleaned and washed prior to installation in the borehole. Soil cuttings and drilling fluids are temporarily stored onsite pending laboratory analytical results and proper transport and disposal.

The casing is set inside the augers and sand, gravel, or other filter material is poured into the annulus to fill the borehole from the bottom to approximately 1-2 feet above the perforations. A two foot thick bentonite plug is placed above the filter material to prevent the grout from filling the filter pack. Neat cement or sand-cement grout is poured into the annulus from the top of the bentonite plug to the surface. For wells located in parking lots or driveways, or roads, a traffic rated well box is installed around the well. For wells located in landscaped areas or fields, a stovepipe well protection device is installed around the well. Soil cuttings and rinseate water are temporarily stored onsite pending laboratory analytical results and proper transport and disposal.

7.0 WELL DEVELOPMENT

After well installation, the wells are developed to remove residual drilling materials from the annulus and to improve well production by fine materials from the filter pack. Possible well development methods include pumping, surging, bailing, jetting, flushing, and air lifting. Development water is temporarily stored onsite pending laboratory analytical results and proper transport and disposal. Development equipment are steam cleaned or washed in solution and rinsed in deionized water prior to use, between sample collections and after use. After well development the wells are typically allowed to stabilize for at least 24 hours prior to purging and sampling.

8.0 LIQUID LEVEL MEASUREMENTS

Liquid level measurements are made with a water level meter and/or interface probe and disposable bailers. The probe tip attached to a measuring tape is lowered into the well and into the groundwater when a beeping tone indicates the probe is in the groundwater. The probe and measuring tape (graduated to hundredths of a foot) are slowly raised until the beeping stops and the depth to water measurement is recorded. If the meter makes a steady tone, this indicates the presence of floating liquid hydrocarbons (FLH) and the probe and measuring tape are raised until the steady tone stops and the depth to the FLH is measured. Once depth to water and depth to FLH (if present) has been recorded, the probe and measuring tape are lowered to the bottom of the well where the total depth of the well is measured. The depth to water, depth to FLH, and depth to bottom are measured again to confirm the results.

If FLH is encountered in the well, a disposable bailer is lowered into the well and brought back to the surface to confirm the thickness/presence of FLH. To minimize potential for cross contamination between wells, all measurements are done from cleanest to dirtiest well. Prior to beginning liquid level measurements, in between measurements in all wells, and at the completion of liquid level measurements, the water level probe and measuring tape is cleaned with solution (Alconox, Simple Green, or equivalent) and rinsed with deionized water.

9.0 WELL PURGING AND SAMPLING

Each well is typically purged of at least three well casing volumes of groundwater prior to collecting a groundwater sample. Purging can continue beyond three well casing volumes if field parameters including pH, temperature, electrical conductivity are not stabilizing during the purging process. If the well is purged dry before the three well casing volumes has been purged, the well is typically allowed to recharge to 80 percent of its initial water level before a groundwater sample is collected.

Purging equipment can include submersible pumps, PVC purging bailers, disposable bailers, air lift pumps, or pneumatic pumps. Prior to beginning well purging, in between each well purging, and at the completion of purging activities, all non-dedicated purging equipment is cleaned with solution (Alconox, Simple Green, or equivalent) and rinsed with deionized water.

Once the well has been purged, it will be sampled with a disposable bailer, PVC bailer, stainless steel bailer, or through a low flow groundwater pump. The groundwater sample is transferred from the bottom of the bailer to reduce volatilization to the appropriate sample container. The sample containers are specified by the analytical laboratory depending on the analyses requested. Sample containers typically include volatile organic compound (VOA) vials with septa of Teflon like materials. The groundwater sample is collected into the VOAs to minimize air bubbles and once the cap has been placed on the VOA, the VOA is tipped upside down to see if air bubbles are present in the VOA. Typically a duplicate VOA is collected from each well to be analyzed by the analytical laboratory, if warranted, to verify results.

Sample containers are labeled as described in **Section 3.0** and placed immediately in an ice chest and kept refrigerated until its delivery to the analytical laboratory. A trip blank may also be prepared by the analytical laboratory to travel with the ice chest during transport to the laboratory. Field blanks from equipment that has been decontaminated may be collected in between use in different wells to verify the decontamination procedure is effective. To minimize potential for cross contamination between wells, all wells are purged and sampled from cleanest to dirtiest well.

10.0 TEDLAR BAG SOIL VAPOR SAMPLING

Sampling equipment to collect Tedlar bag soil vapor samples includes an air pump, a Tedlar bag which can range in size from 1 to 10 liters, and 3/16-inch diameter polyethylene tubing. The air pump should be equipped with 3/16-inch hose barbs for the polyethylene tubing to attach to. The Tedlar bag must be equipped with a valve for filling and sealing the bag.

When soil vapor samples are collected from remediation equipment, the sample collection port on the remediation equipment is typically fitted with a 3/16-inch hose barb. Prior to collecting soil vapor samples from remediation equipment, air flow, temperature, and pressure or vacuum of the sampling point/remediation equipment are recorded. One end of the polyethylene tubing is connected to the sample collection port and one end is connected to the influent of the air pump, creating an air tight seal. The air pump is turned on and soil vapor from the sample collection port is pumped through the air pump for at least one minute. The air pump is turned off and one end of another piece of polyethylene tubing is connected to the effluent of the air pump and one end is connected to the valve on the Tedlar bag. The valve is opened and the air pump is turned on filling the Tedlar bag with the soil vapor sample until the bag has reached 75% capacity, when the valve on the Tedlar bag is closed and the air pump is turned off.

Tedlar bags are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory. After each soil vapor sample collection, the air pump is turned on for five minutes to allow ambient air to clear the air pump and polyethylene tubing.

11.0 SUMMA CANISTER SOIL VAPOR SAMPLING

Sampling equipment to collect Summa canister soil vapor samples includes a sterilized Summa stainless steel canister under vacuum, $\frac{1}{4}$ -inch diameter polyethylene tubing, and a laboratory calibrated flow meter, if required.

When soil vapor samples are collected from remediation equipment, the sample collection port on the remediation equipment is typically fitted with brass connection with silicone septa that has been threaded into a tapped hole on the piping network. Prior to collecting soil vapor samples from remediation equipment, air flow, temperature, and pressure or vacuum of the sampling point/remediation equipment are recorded. One end of the polyethylene tubing is connected to the brass sample collection port and one end is connected to the canister valve or flow meter, creating an air tight seal. Prior to collecting the soil vapor sample, the valve on the Summa canister is opened to verify the Summa canister has the required vacuum which is recorded. Three well volumes of vapor will be purged at a rate less than 200 milliliters per minute (ml/min.), including sand pack pore volume from each soil vapor probe prior to sample collection. The sample valve or flow meter is opened and the soil vapor sample is collected into the Summa canister and the sample valve is closed and the final vacuum reading (typically greater than 5 inches per square inch) on the Summa canister is recorded.

Per the DTSC Advisory Active Soil Gas Investigations, April 2012, high quality soil gas data collection is driven by project-specific data quality objectives (DQOs) and can be enhanced by using a shroud and a gaseous tracer compound. This method of leak detection ensures that soil gas wells are properly constructed and the sample train components do not leak. Most gaseous tracer compounds do not affect target analyte measurements nor does their detection require sample dilution. Also, gaseous leak tracer compounds allow a quantitative determination of a leak either in the sampling train or from ambient air intrusion down the borehole.

The shroud will be designed to contain the entire sampling train and the soil gas well annulus. The sampling train will be constructed of material that does not react with the sample analytes and will not off gas or adsorb volatile compounds. The sampling equipment will be clean and shut-in tested prior to use. The gaseous leak tracer compound (isobutylene 100 ppm) concentration inside the shroud will be monitored frequently to verify initial concentrations. A photoionization detector will be used to monitor tracer gas concentrations.

Summa canisters are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory.

12.0 SYRINGE SOIL VAPOR SAMPLING

Sampling equipment to collect syringe soil vapor samples includes a sterilized, 100 cubic centimeter, gas tight syringe and silicone septa.

When soil vapor samples are collected from remediation equipment, the sample collection port on the remediation equipment is typically fitted with brass connection with silicone septa that has been threaded into a tapped hole on the piping network. Prior to collecting soil vapor samples from remediation equipment, air flow, temperature, and pressure or vacuum of the sampling point/remediation equipment are recorded. The syringe is inserted into the silicone septa and the plunger is purged or pumped at least three times. The sample is collected the fourth time the syringe plunger is extracted and the syringe is removed from the sample collection port and the needle on the syringe is capped with a rubber stopper.

Syringes are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory.

13.0 TEMPORARY SAMPLING POINTS

A temporary borehole is advanced using either a slam bar or a direct push drill rig. In the case of the slam bar, once the borehole has been created, a temporary soil vapor probe is inserted into the borehole and advanced with a slide hammer or other physical force two additional feet. A bentonite seal is then placed in the borehole above the soil vapor probe to create an air tight seal and prevent ambient air from entering the sample collection space. In the case of the direct push drill rig, the sampling rod is advanced to the desired depth with a 6-inch retractable vapor screen at the tip. The sample screen on the 6-inch vapor screen is removed and a bentonite seal is then placed in the borehole above the soil vapor probe to create an air tight seal and prevent ambient air from entering the sample collection space.

Once the bentonite seal has set, at least one hour, the soil vapor survey samples are collected into Tedlar bags as described in **Section 10.0** or Suma canisters as described in **Section 11.0**. Samples are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory. After each soil vapor sample collection, the air pump is turned on for five minutes to allow ambient air to clear the air pump and polyethylene tubing.

14.0 REPEATABLE SAMPLING POINTS

A borehole is advanced using either a hand auger or a drill rig. A 6-inch slotted probe with caps on both ends is placed in the borehole. A Swagelok fitting is attached to one end cap and 3/16-inch diameter Nylon tubing is attached to the Swagelok fitting. A one foot sand pack is placed around the probe and the remainder of the borehole is sealed with a layer of dry bentonite powder, followed by a layer of bentonite chips, and an additional layer of dry bentonite powder. A well box is placed on the surface of the repeatable sampling point and the excess Nylon tubing is placed inside the well box.

Soil vapor survey samples will be collected at least one week after probe installation. In addition, soil vapor survey samples will only be collected after five consecutive precipitation free days and after any onsite irrigation has been suspended.

The soil vapor survey samples are collected into Tedlar bags as described in **Section 10.0** or Summa canisters as described in **Section 11.0**. Tedlar bags or Summa canisters are labeled as described in **Section 3.0** and placed immediately in an empty ice chest and kept dry and unrefrigerated until its delivery to the analytical laboratory. After each soil vapor sample collection, the air pump is turned on for five minutes to allow ambient air to clear the air pump and polyethylene tubing.

1

argon laboratories

17 September 2013

Mike Sgourakis Environmental Compliance Group, LLC 270 Vintage Drive Turlock, CA 95382

RE: Shore Acres Gas Project Data

Enclosed are the results for sample(s) received on 09/04/13 15:02 by Argon Laboratories. The sample(s) were analyzed according to instructions in accompanying chain-of-custody. Results are summarized on the following pages.

Please see quality control report for a summary of QC data pertaining to this project.

The sample(s) will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Sample(s) may be archived by prior arrangement.

Thank you for the opportunity to service the needs of your company.

Sincerely,

Hiram Cueto Lab Manager

Argon Analytical Services, Inc. CHAIN OF CUSTODY

Project Title: Shc Location: 403 Oal Sampler's Name: (print) Sampler's Signature:	HA. 19009 hore Acres Gi 33 East 12th S akland, CA			Special (10.14 days)	Consult Address Contact Phone: Fax: Client: Address	s: t: s:	270 Vint Turlock, Mike Sg 916.600 209.664	nental Co age Drive CA 9538 ourakis .4580 .1040 Environn 270 Vinta	Bill To: mental Co	Group, I			Conta Phon Fax: Date F	ict:		Argon Labs 2905 Railroad Avenue Ceres, CA 95307 (209) 581-9280 (209) 581-9282			
Project Title: Sho Location: 403 Oal Sampler's Name: (print) Sampler's Signature:	nore Acres Ga 33 East 12th S akland, CA TU	Street	Standard		Address Contact Phone: Fax: Client: Address	s: t: s:	270 Vint Turlock, Mike Sg 916.600 209.664	age Drive CA 9538 ourakis 4580 .1040 Environs 270 Vinta	Billi To: mental Co	mpllance			Conta Phon Fax: Date F	ict: e:		Ceres, CA 95307 (209) 581-9280	_		
Oal Sampler's Name: (print) Sampler's Signature:	akland, CA	RN AROUND TI	Standard		Phone: Fax: Client: Addres	5:	Mike Sg 916.600 209.664	ourakis 4580 1040 Environn 270 Vinta	Bill To: mental Co tage Drive		Groun		Phon Fax: Date F	e:		(209) 581-9280			
Sampler's Name: (print) Sampler's Signature:	nu		Standard		Phone: Fax: Client: Addres	5:	916.600 209.664	4560 1040 Environs 270 Vinta	mental Co lage Drive		Groun		Phon Fax: Date F	e:					
(print) Sampler's Signature:			Standard		Fax: Client: Addres	s:	209.664	1040 Environn 270 Vinta	mental Co lage Drive		Group I	^	Fax: Date F						
Sampler's Signature:			Standard		Client: Addres			Environn 270 Vinta	mental Co lage Drive		Group	^		tesuits Req	uired:				
			Standard		Addres			270 Vinta	age Drive		Group 1	^							
RUSH			Standard		Addres			270 Vinta	age Drive		Groun 1								
RUSH 2			Standard								Gloup, L	Date F	Date Report Required:						
RUSH			Standard					Address: 270 Vintage Drive Turlock, CA ANALYSIS											
RUSH			Standard		1														
						≪				T				1					
					کاق	BTEX, 5 oxygenates, 1,2-DCA, EDB by EPA Method 8260B				- 1		Ì		1					
		L			TPHg and TPHd by EPA Method 8015M	1 E E B				- 1	1			1					
1				سک ا	ਫ਼ਵੀ	26.03				- 1				1	Stro				
i					eth and	2 4 8		[- 1	- 1		I		§				
					윤호	IX 호 함		ļ		- 1			ļ		EDF Reports				
					<u> </u>	무수를					-					COMMENTS			
Sample ID.	Date	Time	# Containers	Matrix										1		Preservative			
MW-1 9	1/4/12	1210	l	refer	<u> </u>	8													
MW-2	1	০৭১১	120																
MW-3		CEESTS.	10																
MW-4		<i>0</i> 930			Ш														
MW-6		1225													-				
EW-1					$\sqcup \bot$	$oxed{oxed}$								-	ļ <u>.</u>				
EW-2	_					∐.								-	ļ <u>-</u>				
EW-3	<u> </u>	1120			₩	<u> </u>									 				
EW-4	J	1225	 	J	u	V									<u> </u>				
	~					l A					Ì		_ _	Ш.					
				<u> </u>			/												
Relibationed By: /	1 ///		Date:	Time:7	Receive	a By: //		$\overline{\mathcal{L}}$	11		Date: ,	Tja		_	SPECIA	L INSTRUCTIONS:			
Reinflaulshed By: \ A 30Z		(Auch Office				Date: Time: SPEC			1	Global ID#									
Relinquished By:			Date:	Time:	Racelved By:						Date:	Tìr	Time:			T0600174667			
Relinquished By:			Date:	Time:	Receive	Received By:				Date: Time:				1					

Argon Laboratories Sample Receipt Checklist

Client Name:	Environmental	Comp	liance G	rot				Dat	te & Ti	me Re	eceived:	09	9/04/13	1	5:02
Project Name:	Shore Acres Ga	as						_ Cli	ent Pro	oject N	lumber:		GH/	1.19009)
Received By:	AH			Matr	ix:	Water	· 🔽	Soil]		Slud	ge		
Sample Carrier:	Client 🔽	Lab	oratory		Fed Ex		UPS	s · 🗆] (Other					
Argon Labs Project	Number:	<u>N30</u>	9 <u>004</u>												
Shipper Container in	good condition?					Sample	es receive	ed in pr	roper co	ontaine	ers?	Yes	V	No	
	N/A	Yes	V	No		Sample	es receive	ed intac	ct?			Yes	V	No	
Samples received un	der refrigeration?	Yes	V	No		Sufficie	ent sampl	e volun	ne for r	equest	ted tests?	Yes	V	No	
Chain of custody pres	sent?	Yes	[]	No		Sampl	es receive	ed withi	in holdi	ing time	e?	Yes	\checkmark	No	
Chain of Custody sign	ned by all parties?	Yes	V	No		Do sar	mples con	itain pro		eserva N/A	tive?	Yes	V	No	
Chain of Custody mat	tches all sample la	bels?				Do VO	A vials con	tain zer	o heads	pace?					
		Yes	y	No				(Non	ne subn	nitted	□)	Yes	V	No	
	ANY "I	No" R	ESPONSI	E MUST	BE DETA	AILED II	N THE CO	OMME!	NTS SE	ECTIOI	N BELOV	v	-		
Date Client Contac	ted:				Pe	rson C	ontacted	: <u> </u>							
Contacted By:					Subject	:		.,,,,							
Comments:												<u>-</u>			
							~~								
Action Taken:	· · · · · · · · · · · · · · · · · · ·											•			
				ADDITIC	NAL TES	T(S) RI	EQUEST	OTHE	ER						
Contacted By:						Ι	Date:					Tim	ne:		
Call Received By:															
Comments:								12							•
															1
			····												

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009

Project Name: Shore Acres Gas Project Manager: Mike Sgourakis Work Order No.: N309004

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-I	N309004-01	Water	09/04/13 12:10	09/04/13 15:02
MW-2	N309004-02	Water	09/04/13 09:55	09/04/13 15:02
MW-3	N309004-03	Water	09/04/13 11:20	09/04/13 15:02
MW-4	N309004-04	Water	09/04/13 09:50	09/04/13 15:02
MW-6	N309004-05	Water	09/04/13 11:25	09/04/13 15:02
EW-1	N309004-06	Water	09/04/13 10:35	09/04/[3 15:02
EW-2	N309004-07	Water	09/04/13 10:40	09/04/13 15:02
EW-3	N309004-08	Water	09/04/13 11:50	09/04/13 15:02
EW-4	N309004-09	Water	09/04/13 12:25	09/04/13 15:02

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009
Project Name: Shore Acres Gas
Project Manager: Mike Sgourakis

Work Order No.: N309004

Total Petroleum Hydrocarbons @ Diesel

							
Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
MW-1 (N309004-01) Water	Sampled: 04-Sep-13 12:10 Receiv	ed: 04-Sep-1	3 15:02				
Diesel	ND	250	ug/L	5	06-Sep-13	EPA 8015Mod	
Surr. Rec.:		117%			п	H	
MW-2 (N309004-02) Water	Sampled: 04-Sep-13 09:55 Receiv	/ed: 04-Sep-1	3 15:02				
Diesel	ND	100	ug/L	2	06-Sep-13	EPA 8015Mod	
Surr. Rec.:		104 %			и	n	
MW-3 (N309004-03) Water	Sampled: 04-Sep-13 11:20 Receiv	ved: 04-Sep-1	3 15:02				
Diesel	ND	250	ug/L	5	06-Sep-13	EPA 8015Mod	
Surr. Rec.:		106 %			#	ı	
MW-4 (N309004-04) Water	Sampled: 04-Sep-13 09:50 Received	ved: 04-Sep-1	3 15:02	_			· · · · · · · · · · · · · · · · · · ·
Diesel	ND	50	ug/L	1	06-Sep-13	EPA 8015Mod	
Surr, Rec.:		108 %			"	n	
MW-6 (N309004-05) Water	Sampled: 04-Sep-13 11:25 Receive	ved: 04-Sep-1	3 15:02				
Diesel	ND	100	ug/L	2	06-Sep-13	EPA 8015Mod	
Surr. Rec.:		98 %			n	**	
	Sampled: 04-Sep-13 10:35 Receiv	ed: 04-Sep-1	3 15:02				
Diesel	ND	50	ug/L	1	06-Sep-13	EPA 8015Mod	
Surr, Rec.:		102 %			st	н	
	Sampled: 04-Sep-13 10:40 Receiv	/ed: 04-Sep-1	3 15:02				
Diesel	ND	250	ug/L	5	06-Sep-13	EPA 8015Mod	
Surr. Rec.:		107 %			"	п	

Approved By

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009

Project Name: Shore Acres Gas Project Manager:Mike Sgourakis Work Order No.: N309004

Total Petroleum Hydrocarbons @ Diesel

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
EW-3 (N309004-08) Water Sampl	ed: 04-Sep-13 11:50 Recei	ved: 04-Sep-1	3 15:02				
Diesel	ND	100	ug/L	2	06-Sep-13	EPA 8015Mod	
Surr. Rec.:		96 %			z#	"	
EW-4 (N309004-09) Water Sampl	ed: 04-Sep-13 12:25 Recei	ved: 04-Sep-1	3 15:02				
Diesel	ND	250	ug/L	5	06 - Sep-13	EPA 8015Mod	
Surr. Rec.:		106 %			· · ·	и	

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009
Project Name: Shore Acres Gas
Project Manager: Mike Sgourakis

Work Order No.: N309004

Total Petroleum Hydrocarbons @ Gasoline

	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
MW-1 (N309004-01) Water Sampled: 04-S	Sep-13 12:10 Receiv	ed: 04-Sep-1	3 15:02				
Total Petroleum Hydrocarbons @ Gasoline	12000	1000	ug/L	20	10-Sep-13	8015M	
Surr. Rec.:		96 %			u	#	
MW-2 (N309004-02) Water Sampled: 04-S	Sep-13 09:55 Receiv	/ed: 04-Sep-1	3 15:02				
Total Petroleum Hydrocarbons @ Gasoline	5300	50	ug/L	1	10-Sep-13	8015M	
Surr. Rec.:		92 %			·	n	
MW-3 (N309004-03) Water Sampled: 04-S	Sep-13 11:20 Receiv	ved: 04-Sep-1	13 15:02				
Total Petroleum Hydrocarbons @ Gasoline	47000	2500	ug/L	, 50	10-Sep-13	8015M	
Surr. Rec.:		102 %			ı	"	
MW-4 (N309004-04) Water Sampled: 04-5	Sep-13 09:50 Receiv	ved: 04-Sep-1	13 15:02				
Total Petroleum Hydrocarbons @ Gasoline	15000	620	ug/L	12.5	10-Sep-13	8015M	
Surr. Rec.:		108 %			"	н	
MW-6 (N309004-05) Water Sampled: 04-5	Sep-13 11:25 Recei	ved: 04-Sep-	13 15:02				
Total Petroleum Hydrocarbons @ Gasoline	9500	500	ug/L	10	10-Sep-13	8015M	
Surr. Rec.:		106 %			n	"	
EW-1 (N309004-06) Water Sampled: 04-S	ep-13 10:35 Receiv	ed: 04-Sep-1	3 15:02				
Total Petroleum Hydrocarbons @ Gasoline	9300	500	ug/L	10	10-Sep-13	8015M	
Surr. Rec.:		105 %			ır.	n	
EW-2 (N309004-07) Water Sampled: 04-S	Sep-13 10:40 Receiv	ed: 04-Sep-1	3 15:02				
Total Petroleum Hydrocarbons @ Gasoline	10000	500	ug/L	10	10-Sep-13	8015M	
Surr. Rec.:		108 %			"	n	

Approved By

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA,19009

Project Name: Shore Acres Gas Project Manager: Mike Sgourakis Work Order No.: N309004

Total Petroleum Hydrocarbons @ Gasoline

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
EW-3 (N309004-08) Water Sampled: 04-5	Sep-13 11:50 Receiv	ed: 04-Sep-1	3 15:02				
Total Petroleum Hydrocarbons @ Gasoline	9800	500	ug/L	10	10-Sep-13	8015M	
Surr. Rec.:	Sep-13 12:25 Receiv	99 %	3 15:02		ν	"	
EW-4 (N309004-09) Water Sampled: 04-	Sep-13 12:25 Receiv	ец. 04-5ср-1	7 13.02				
Total Petroleum Hydrocarbons @ Gasoline	11000	250	ug/L	5	10-Sep-13	8015M	
Surr. Rec.:		105 %			"	n	

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009
Project Name: Shore Acres Gas

Project Manager: Mike Sgourakis

Work Order No.: N309004

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
MW-1 (N309004-01) Water	Sampled: 04-Sep-13 12:10 Reco	eived: 04-Sep-1	3 15:02				
Benzene	2900	10	ug/L	20	09-Sep-13	8260B	
Toluene	130	10	u	11	u u	**	
Xylenes, total	370	20	n	n	(I	н	
Ethylbenzene	190	10	11		Ħ	H	
t-Butanol	ND	100	"	11	īī	17	
Methyl tert-Butyl Ether	240	10	11	†	11	11	
Di-Isopropyl Ether	ND	10	**	II	n	н	
Ethyl tert-Butyl Ether	ND	10	и	п	п	17	
tert-Amyl Methyl Ether	ND	10	u	ч	R	"	
1,2-Dichloroethane	ND	10	Ħ	p	n	п	
1,2-Dibromoethane (EDB)	ND	10	"		ii	и	
Surr. Rec.:		86 %			"	u	
	Sampled: 04-Sep-13 09:55 Rec	eived: 04-Sep-	13 15:02				
Benzene	300	5.0	ug/L	10	09-Sep-13	8260B	
Toluene	50	5.0	u	n	"	"	
Xylenes, total	280	10	Ħ	п	tt	ч	
Ethylbenzene	180	5.0		ч	Ħ	**	
t-Butanol	780	50		**	II	n	
		5.0	11	1	#	II .	
	100	5.0			"		
Methyl tert-Butyl Ether	100 ND	5.0	"	u		"	
Methyl tert-Butyl Ether Di-Isopropyl Ether			17 U	u 11	u	"	
Methyl tert-Butyl Ether Di-Isopropyl Ether Ethyl tert-Butyl Ether	ND	5.0			u #	4 D	
Methyl tert-Butyl Ether Di-Isopropyl Ether	ND ND	5.0 5.0	U	"	и ч п	4 11 11	

Surr. Rec.:

89 %

Approved By

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009

Project Name: Shore Acres Gas Project Manager: Mike Sgourakis Work Order No.: N309004

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
MW-3 (N309004-03) Water Sampled:	04-Sep-13 11:20 Receiv	ved: 04-Sep-1	3 15:02		<u> </u>		·
Benzene	7200	25	ug/L	50	09-Sep-13	8260B	
Foluene	470	25	ш	II	11	11	
Xylenes, total	5000	50	17	u	Ŋ.	п	
Ethylhenzene	1200	25	н	11	u u	Ņ	
t-Butanol	2100	250	н	n	n	11	
Methyl tert-Butyl Ether	5300	25	**	II .	ч	"	
Di-Isopropyl Ether	ND	25	19	и	···	"	
Ethyl tert-Butyl Ether	ND	25	н	Ħ	n	н	
tert-Amyl Methyl Ether	ND	25		и	II	**	
1,2-Dichloroethane	ND	25	11	"	11	"	
1,2-Dibromoethane (EDB)	ND	25	"	**		"	
Comp. Dag.		91%			"	"	
Surr. Rec.:							
Surf. Rec.: MW-4 (N309004-04) Water Sampled:	: 04-Sep-13 09:50 Recei	ved: 04-Sep-1	3 15:02				-
	: 04-Sep-13 09:50 Recei	ved: 04-Sep-1	13 15:02 ug/L	5	09-Sep-13	8260B	
MW-4 (N309004-04) Water Sampled:				5	"	**	•
MW-4 (N309004-04) Water Sampled: Benzene Toluene	510	2.5	ug/L	5 "	09-Sep-13	11	
MW-4 (N309004-04) Water Sampled: Benzene Toluene Xylenes, total	510 410	2.5 2.5	ug/L	5 "	"	**	*
MW-4 (N309004-04) Water Sampled: Benzene Toluene	510 410 820	2.5 2.5 5.0	ug/L "	u «	"	11	
MW-4 (N309004-04) Water Sampled: Benzene Toluene Xylenes, total Ethylbenzene t-Butanol	510 410 820 260	2.5 2.5 5.0 2.5	ug/L " "	11 14	" "	u 11	•
MW-4 (N309004-04) Water Sampled: Benzene Toluene Xylenes, total Ethylbenzene t-Butanol Methyl tert-Butyl Ether	510 410 820 260 64	2.5 2.5 5.0 2.5 25	ug/L " " "		" "	17 11 14	
MW-4 (N309004-04) Water Sampled: Benzene Toluene Xylenes, total Ethylbenzene t-Butanol Methyl tert-Butyl Ether Di-Isopropyl Ether	510 410 820 260 64 17	2.5 2.5 5.0 2.5 25 25	ug/L " " " "	0 0 10 11	17 14 14 16 16	n n u	
MW-4 (N309004-04) Water Sampled: Benzene Toluene Xylenes, total Ethylbenzene t-Butanol Methyl tert-Butyl Ether Di-Isopropyl Ether Ethyl tert-Butyl Ether	510 410 820 260 64 17 ND	2.5 2.5 5.0 2.5 25 2.5 2.5	ug/L " " " "	10 10 11 11	17 14 14 16 16	n n u	
MW-4 (N309004-04) Water Sampled: Benzene Toluene Xylenes, total Ethylbenzene t-Butanol Methyl tert-Butyl Ether Di-Isopropyl Ether	510 410 820 260 64 17 ND	2.5 2.5 5.0 2.5 25 2.5 2.5 2.5	ug/L " " " " "	12 12 14 15	17 14 14 16 16	n n u	

Surr. Rec.:

89 %

Approved By

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009
Project Name: Shore Acres Gas

Project Manager: Mike Sgourakis

Work Order No.: N309004

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
4W-6 (N309004-05) Water	Sampled: 04-Sep-13 11:25 Recei	ived: 04-Sep-1	3 15:02			<u> </u>	
Benzene	1400	5.0	ug/L	10	09-Sep-13	8260B	
Coluene	120	5.0	IT	H	"		
Kylenes, total	1600	10	u	И	,,		
Kylenes, total Ethylbenzene	1400	5.0	"	u	"	"	
•	140	50	11	H	II		
-Butanol	29	5.0		я	#		
Methyl tert-Butyl Ether	ND	5.0	ıŧ	и	u	u	
Di-Isopropyl Ether	ND	5.0	u	r	II .	17	
Ethyl tert-Butyl Ether	ND	5.0		ч	H	u	
ert-Amyl Methyl Ether	ND	5.0	**	H	tt	n .	
1,2-Dichloroethane	ND ND	5.0		11	ii.	11	
1,2-Dibromoethane (EDB)	ND ND				"	п	
Surr. Rec.:		86 %					
EW 1 /N300004-06) Water	Sampled: 04-Sep-13 10:35 Rece	ived: 04-Sep-1	3 15:02				
	Sampled: 04-Sep-13 10:35 Rece			5	09-Sep-13	8260B	
Benzene	610	2.5	3 15:02 ug/L	5	09-Sep-13	8260B	
Benzene Toluene	610 19	2.5 2.5	ug/L	5	•	8260B "	
Benzene Toluene Xylenes, total	610 19 250	2.5 2.5 5.0	ug/L	*	u	8260B "	
Benzene Toluene	610 19 250 170	2.5 2.5 5.0 2.5	ug/L «	17	u	8260B	
Benzene Toluene Xylenes, total	610 19 250 170 590	2.5 2.5 5.0 2.5 25	ug/L « "	D 11	u	8260B	
Benzene Toluene Xylenes, total Ethylbenzene t-Butanol Methyl tert-Butyl Ether	610 19 250 170 590 220	2.5 2.5 5.0 2.5 25 2.5	ug/L « ») (1) (1)	u	17 18	
Benzene Toluene Xylenes, total Ethylbenzene t-Butanol Methyl tert-Butyl Ether Di-Isopropyi Ether	610 19 250 170 590 220 ND	2.5 2.5 5.0 2.5 25 2.5 2.5	ug/L « « « «	11 11 17	u	17 18	
Benzene Toluene Xylenes, total Ethylbenzene t-Butanol Methyl tert-Butyl Ether	610 19 250 170 590 220 ND	2.5 2.5 5.0 2.5 25 2.5 2.5 2.5	ug/L « " " "	11 11 17 19 11	u	17 11 11 17	
Benzene Toluene Xylenes, total Ethylbenzene t-Butanol Methyl tert-Butyl Ether Di-Isopropyi Ether	610 19 250 170 590 220 ND ND ND	2.5 2.5 5.0 2.5 25 2.5 2.5 2.5 2.5 2.5	ug/L u u u u u u u u	11 11 12 14 11	u	11 15 14 17 17 18 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	
Benzene Toluene Xylenes, total Ethylbenzene t-Butanol Methyl tert-Butyl Ether Di-Isopropyi Ether Ethyl tert-Butyl Ether	610 19 250 170 590 220 ND	2.5 2.5 5.0 2.5 25 2.5 2.5 2.5	ug/L « " " "	11 11 17 19 11	11 12 14 14 18	17 18 18 17 17 18 19 19 11	

Surr. Rec.:

Approved By

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA,19009

Project Name: Shore Acres Gas Project Manager: Mike Sgourakis Work Order No.: N309004

Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
EW-2 (N309004-07) Water	Sampled: 04-Sep-13 10:40 Recei	ved: 04-Sep-13	3 15:02				
Benzene	680	5.0	ug/L	10	09-Sep-13	8260B	
Toluene	580	5.0	u	II .	u u	1)	
Xylenes, total	1700	10	If	ij	ч	II	
Ethylbenzene	480	5.0	"	*	ii .	"	
t-Butanol	1400	50		n	II .	H	
Methyl tert-Butyl Ether	460	5.0		н	"	"	
Di-Isopropyl Ether	ND	5.0	11	4	Ħ	u .	
Ethyl tert-Butyl Ether	ND	5.0	H .	11	II .	Tr.	
tert-Amyl Methyl Ether	ND	5.0	n	n	u	17	
1,2-Dichloroethane	ND	5.0	п	н	if	n	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	n	u	
Surr. Rec.:		92 %				"	
	Sampled: 04-Sep-13 11:50 Rece	ived: 04-Sep-1	3 15:02				
Benzene	480	2.5	ug/L	5	09-Sep-13	8260B	
Toluene	220	2.5	1+	,	11	11	
		,					
Xvienes, total	1800	5.0	,,	u u	1)	11	
Xylenes, total Ethylbenzene	1800 560		n		D U	" II	
Ethylbenzene		5.0			1) 11		
Ethylbenzene t-Butanol	560	5.0 2.5	a	II e	n u n	u u	
Ethylbenzene t-Butanol Methyl tert-Butyl Ether	560 650	5.0 2.5 25	a	II e	n u n n	u u	
Ethylbenzene t-Butanol Methyl tert-Butyl Ether Di-Isopropyl Ether	560 650 120	5.0 2.5 25 2.5	a u	II e	n 11 17 11 11	11 11	
Ethylbenzene t-Butanol Methyl tert-Butyl Ether Di-Isopropyl Ether Ethyl tert-Butyl Ether	560 650 120 ND	5.0 2.5 25 2.5 2.5	11 11 17	•	0. 17 11	11 11	
Ethylbenzene t-Butanol Methyl tert-Butyl Ether Di-Isopropyl Ether Ethyl tert-Butyl Ether tert-Amyl Methyl Ether	560 650 120 ND ND	5.0 2.5 25 2.5 2.5 2.5	11 17 19		0 17 17 10	11 11 17	
Ethylbenzene t-Butanol Methyl tert-Butyl Ether Di-Isopropyl Ether Ethyl tert-Butyl Ether	560 650 120 ND ND ND	5.0 2.5 25 2.5 2.5 2.5 2.5 2.5	11 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18		0 10 77 0 11	11 11 11	

Approved By

Surr. Rec.:

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009
Project Name: Shore Acres Gas
Project Manager:Mike Sgourakis

Work Order No.: N309004

Volatile Organic Compounds by EPA Method 8260B

Analyte	Resuit	Reporting Limit	Units	Dilution	Analyzed	Method	Notes
EW-4 (N309004-09) Water Sampled:	04-Sep-13 12:25 Receiv	ed: 04-Sep-1.	3 15:02				
Benzene	990	5.0	ug/L	10	09-Sep-13	8260B	
Toluene	580	5.0	u	#	#	"	
Xylenes, total	1200	10	11	n	H .	**	
Ethylbenzene	310	5.0	Ħ	и	II	н	
t-Butanol	1300	50	**	u	Ū	μ	
Methyl tert-Butyl Ether	220	5.0		"	17	II .	
Di-Isopropyl Ether	ND	5,0		11	n	"((
Ethyl tert-Butyl Ether	ND	5.0	a	n	н	11	
tert-Amyl Methyl Ether	ND	5.0	11	п	"	77	
1,2-Dichloroethane	ND	5.0	11	ď	11	n	
1,2-Dibromoethane (EDB)	ND	5.0	"	**	n	п	

Surr. Rec.:

87 %

ETISTOTI | **laboratories** 2905 Railroad Ave. Ceres, CA 95307 (209)581-9280 Fax (209)581-9282

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009

Project Name: Shore Acres Gas Project Manager: Mike Sgourakis Work Order No.: N309004

Total Petroleum Hydrocarbons @ Diesel - Quality Control

Argon Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch N301071 - EPA 3510C				-						
Blank (N301071-BLK1)				Prepared &	k Analyzed	09/06/13				
Surrogate: p-Terphenyl	103		ug/L	100		103	70-130			
Diesel	ND	50	**							
LCS (N301071-BS1)				Prepared &	& Analyzed	09/06/13				
Diesel	204		ug/L	200		102	80-120			
LCS Dup (N301071-BSD1)				Prepared &	& Analyzed	09/06/13				
Diesel	205	•	ug/L	200		102	80-120	0.5	20	
Matrix Spike (N301071-MS1)	Sot	rce: N309008	-07	Prepared &	& Analyzed	: 09/06/13				
Diesel	200		ug/L	200	ND	100	70-130			
Matrix Spike Dup (N301071-MSD1)	Sou	ırce: N309008	-07	Prepared &	& Analyzed	: 09/06/13				
Diesel	197		ug/L	200	ND	98	70-130	2	20	

Approved By

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009

Project Name: Shore Acres Gas Project Manager: Mike Sgourakis

Work Order No.: N309004

Total Petroleum Hydrocarbons @ Gasoline - Quality Control

Argon Laboratories

		Reporting		Spike	Source	*/750	%REC	D D D	RPD	Natas
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch N301057 - EPA 5030B										
Blank (N301057-BLK1)				Prepared &	Analyzed	09/10/13				
Surrogate: a,a,a-Trifluorotoluene	53.5		ug/L	50		107	70-130			
Total Petroleum Hydrocarbons @ Gasoline	ND	50	Ħ							
LCS (N301057-BS1)				Prepared &	k Analyzed	: 09/10/13				
Total Petroleum Hydrocarbons @ Gasoline	1060		ug/L	1000		106	80-120			
LCS Dup (N301057-BSD1)				Prepared &	k Analyzed	: 09/10/13				
Total Petroleum Hydrocarbons @ Gasoline	1050		ug/L	1000		105	80-120	0.9	20	
Matrix Spike (N301057-MS1)	Son	ırce: N309016	-06	Prepared &	& Analyzed	: 09/10/13				
Total Petroleum Hydrocarbons @ Gasoline	1080		ug/L	1000	ND	108	70-130			
Matrix Spike Dup (N301057-MSD1)	Sou	ırce: N309016	-06	Prepared &	& Analyzed	: 09/10/13				
Total Petroleum Hydrocarbons @ Gasoline	1100		ug/L	1000	ND	110	70-130	2	20	

Approved By

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009 Project Name: Shore Acres Gas

Project Manager; Mike Sgourakis

Work Order No.: N309004

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Argon Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch N301073 - EPA 5030B										
Blank (N301073-BLK1)										
Surrogate: Fluorobenzene	53.0		ug/L	50		106	70-130			
Benzene	ND	0.5								
Toluene	ND	0.5	u							
Xylenes, total	ND	1.0	11							
Ethylbenzene	ND	0.5	"							
t-Butanol	ND	5.0								
Methyl tert-Butyl Ether	ND	0.5	u							
Di-Isopropyl Ether	ND	0.5	4							
Ethyl tert-Butyl Ether	ND	0.5	H							
tert-Amyl Methyl Ether	ND	0.5	"							
1,2-Dichloroethane	ND	0.5	u							
1,2-Dibromoethane (EDB)	ND	0,5	11							
LCS (N301073-BS1)				Prepared &	& Analyzed	: 09/09/13				
Ethylbenzene	25.9	····	ug/L	25		104	80-120			
LCS Dup (N301073-BSD1)				Prepared &	& Analyzed	1: 09/09/13				
Ethylbenzene	26.8		ug/L	25	-	107	80-120	3	20	
Matrix Spike (N301073-MS1)	Sou	ırce: N309008	-08	Prepared &	& Analyzed	1: 09/09/13				
t-Butanol	110		ug/L	120	ND	92	70-130			
Matrix Spike Dup (N301073-MSD1)	Sou	arce: N309008	-08	Prepared &	& Analyzec	1: 09/09/13				
t-Butanol	120		ug/L	120	ND	100	70-130	9	20	

Approved By

Environmental Compliance Group, LLC

270 Vintage Drive Turlock, CA 95382 Project Number: GHA.19009

Project Name: Shore Acres Gas Project Manager:Mike Sgourakis Work Order No.: N309004

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

GROUNDWATER LEVEL DATA FORM

PROJECT NAME: Shore PROJECT MANAGER: MSS

Shore Acres

PROJECT NUMBER: TASK NUMBER:

GHA.19009

SITE ADDRESS:

403 East 12th Street, Oakland

WELL ID	TIME	DEPTH TO BOTTOM	DEPTH TO WATER	DEPTH TO PRODUCT	PRODUCT THICKNESS	PRODUCT THICKNESS X 0.8	COMMENTS
MW-1	0908	19.87	9.29				
MW-2	0902	20.02	10.11				
MW-3	0909	the or	9.88				
MW-4	0904	18.70	9,68				
MW-5	0916	18.42	9.70				12 free pradu
MW-6	0907	19,91	1.19		,		
EW-1	0913	19.72	9.77				
EW-2	0905	19.61	9.88				
EW-3	0914	19.60	9,49				
EW-4	09(1	19.55	9.85		<u></u>		
.0							
							,
			1				

FIELD TECHNICIAN:

DATE:

1417

PROJECT NAME: PROJECT MANAGER: SITE ADDRESS:	JECT MANAGER: MSS					GHA.19009			
WELL IC	: Mrt			TYPE OF WELL: Monitoring					
D Water C	II Total Depth: _epth to Water: _olumn Length: _	(feet) 9.87 4.2 4 9.5 8	,	WELL DIAME 2-inch: 4-inch: 6-inch:	<u> </u>	- - -			
PURGE VOLUME CALC Water Colum Water Column L	mn Length x Mu x	ultiplier x No. V 0 -() Multiplier	x	Purge Volume 3 No. Volumes	=	Purge Volume			
MULTIPLIER DATA: Multiplier fo	r Schedule 40 F 2-inch: 4-inch: 6-inch:	PVC; Gallons/L 0.17 0.65 1.5	inear Foot	Based on Cas	sing Diame	ter:			
	posable Bailer PVC Bailer nersible Pump Other		SAMPLE N		able Baile Pump Other				
VOLUME TIME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS			
1055 3.0 12:20 4.0 12:55 60	7.06 7.06 7.06	205 202 202 Jaz	\$73 \$67						

FIELD TECHNICIAN:	1495	1/12	
DATE:		عابران	

PROJECT N PROJECT M SITE ADDRE	ANAGER:	Shore Acres MSS 403 East 12th	n Street, Oakla		PROJECT NU TASK NUMBE	GHA.19009				
	Monitoring									
WATER COLUMN DATA: Well Total Depth: 20.02 Depth to Water: 4-inch: 4-inch: 6-inch: 6-inch:										
PURGE VOLUME CALCULATION: Water Column Length x Multiplier x No. Volumes = Purge Volume										
Wat	9,91 er Column Le		O.17 Multiplier	. × .	No. Volumes	=	S Purge Volume			
MULTIPLIE	R DATA: Multiplier for S	Schedule 40 F 2-inch: 4-inch: 6-inch:	0.17 0.65	Linear Foot	Based on Casi	ng Diame	ter:			
PURGE ME	Disp	PVC Bailer			/IETHOD: Disposa	able Baile Pump Other				
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS			
0930	2	687	Alo	2540						
0540	4	6-58	20.9	1120						
0550	<u> </u>	6.98	21.2	1119						
0955							suple			
							<i>;</i>			
		·	,	 -						
<u></u>										
FIELD 1	FECHNICIAN: DATE:		1.2							

DJECT NAME: Shore Acres DJECT MANAGER: MSS E ADDRESS: 403 East 12th Street, Oaklan					PROJECT NUMBER: TASK NUMBER: nd				
D: MW-	3		હો	TYPE O	F WELL:	Monitoring			
ell Total Depth: Depth to Water:	9.49	,		2-inch: _ 4-inch: _		_			
mn Length x Mu				3_	=	S. 5 Purge Volume			
2-inch:	0.17	inear Foot.	Based	I on Casi	ng Diame	ter:			
PVC Bailer mersible Pump		SAMPLE N	AETH(OD: Disposa	able Bailei Pump Other				
	TEMP.	COND. (uS/cm)	DO	(mg/l)	ORP (mV)	COMMENTS			
6.87	19.6 19.8 21.0	1242 1242				sup ()			
	MSS 403 East 12th A: ell Total Depth: Depth to Water: Column Length: X Length A: Cr Schedule 40 F 2-inch: 4-inch: 6-inch: Sposable Bailer PVC Bailer PVC Bailer mersible Pump Other pH	MSS 403 East 12th Street, Oakla A: cell Total Depth: Depth to Water: Column Length: CULATION: Imm Length x Multiplier x No. V Length X Length Multiplier Or Schedule 40 PVC; Gallons/L 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5 Sposable Bailer PVC Bailer Other TEMP. Other TEMP. O'C)	MSS 403 East 12th Street, Oakland A: cell Total Depth: Depth to Water: Column Length: CULATION: Imm Length x Multiplier x No. Volumes = F X Length Multiplier Or Schedule 40 PVC; Gallons/Linear Foot 2-inch: 4-inch: 0.65 6-inch: 1.5 SAMPLE No. SPOSABLE No. SPOSABLE PUMP Other TEMP. COND. (uS/cm)	MSS 403 East 12th Street, Oakland A: cell Total Depth: Depth to Water: Column Length: Depth x Multiplier x No. Volumes = Purge X Length Multiplier X No. V Depth to Water: Column Length x Multiplier x No. Volumes = Purge X Length X No. V Depth to Water: Column Length: Depth to Water: Depth to W	TASK NUMBE MSS 403 East 12th Street, Oakland	TASK NUMBER: MSS 403 East 12th Street, Oakland			

FIELD TECHNICIAN: _ DATE: _

PROJECT N PROJECT N SITE ADDRI	IANAGER:	Shore Acres MSS 403 East 12th	n Street, Oakla		PROJECT NU TASK NUMBE		GHA.19009
	WELL ID:	-WM-	<u> </u>		TYPE C)F WELL:	Monitoring
WATER CO	De	Total Depth: _ pth to Water: _ lumn Length: _	960		WELL DIAME 2-inch: _ 4-inch: _ 6-inch: _	TER:	<u>-</u> - -
PURGE VOI	_UME CALCU Water Colum		ıltiplier x No. \	/olumes = F	Purge Volume		
Wat	9,07 er Column Le	x ngth	⊘,(} Multiplier	×	No. Volumes	=	Purge Volume
MULTIPLIEI		Schedule 40 F 2-inch: 4-inch: 6-inch:	0.17	Linear Foot	Based on Cas	ing Diame	oter:
PURGE ME	Disp	osable Bailer PVC Bailer ersible Pump Other	***	SAMPLE N		Pump	r
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS
0935	2.0	7,02	22.9	878			
0940 6445 0950	4.0	7.00	72.6	9677			
0950	60	1.50	62.6	770		· - ,	
0130			<u></u>	·			
					<u>-</u>	· · · · · · · · · · · · · · · · · · ·	
			<u>.</u>				
		<u> </u>		<u></u>		<u> </u>	
					•		

FIELD TECHNICIAN: _____

PROJECT NA PROJECT MA SITE ADDRES	NAGER:	Shore Acres MSS 403 East 12th	n Street, Oakla		PROJECT NUMB	GHA.19009					
	WELL ID:	mm-6			TYPE (OF WELL:	Monitoring				
WATER COLU	Well Dej	Total Depth: oth to Water: umn Length:	9.19		WELL DIAME 2-inch: 4-inch: 6-inch:						
PURGE VOLU			ultiplier x No. \	/olumes = f	Purae Volume						
(<	Column Le	x	O. F Multiplier	x	3 No. Volumes	=	S, F Purge Volume				
	MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5										
PURGE METH	Dispo	osable Bailer PVC Bailer ersible Pump Other		SAMPLE I		able Bailer Pump: Other:					
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS				
1109		7.19	2)-0	634							
11.75		7.21	20.8	641							
11:20		7.20	20-3	627			19m/le				
	····										

FIELD TECHNICIAN:

PROJECT N PROJECT N SITE ADDRI	IANAGER:	Shore Acres MSS 403 East 12t	h Street, Oakl	- and	PROJECT NU TASK NUMBE		GHA.19009
	WELL ID:	Ewi	41	-	TYPE C	OF WELL:	Monitoring
WATER CO	De	: I Total Depth: epth to Water: olumn Length:	9.88	3 chai	WELL DIAME 2-inch: 4-inch: 6-inch:		- - -
	LUME CALCU		ułtiplier x No.	Volumes =	Purge Volume		
	9,73 er Column Le	_ x	<u>6</u> 65 Multiplier		No. Volumes	=	Purge Volume
MULTIPLIER	R DATA:						
	Multiplier for	Schedule 40 2-inch: 4-inch: 6-inch:	0.17 0.65	Linear Foot	Based on Casi	ing Diame	ter:
PURGE MET	ГНОD:			SAMPLE	METHOD:		
	Disp	osable Bailer PVC Bailer	<u> </u>	ر	Disposa	able Bailer Pump:	
	Subm	ersible Pump		-			· · · · · · · · · · · · · · · · · · ·
		-		_		Other:	
•		Other		- -		Other:	
TIME	VOLUME PURGED (gal)	-		COND. (uS/cm)	DO (mg/l)	Other: ORP (mV)	
(0:14	PURGED	Other	TEMP.		DO (mg/l)	ORP	
	PURGED (gal)	Other	TEMP.	(uS/cm)	DO (mg/l)	ORP	
(0:14	PURGED (gal)	Other	TEMP.	(uS/cm)	DO (mg/l)	ORP	
(0:14	PURGED (gal)	Other	TEMP. (°C)	(uS/cm)	DO (mg/l)	ORP	COMMENTS
(0:14	PURGED (gal)	Other	TEMP. (°C)	(uS/cm)	DO (mg/l)	ORP	COMMENTS
(0:14	PURGED (gal)	Other	TEMP. (°C)	(uS/cm)	DO (mg/l)	ORP	COMMENTS
(0:14	PURGED (gal)	Other	TEMP. (°C)	(uS/cm)	DO (mg/l)	ORP	COMMENTS
(0:14	PURGED (gal)	Other	TEMP. (°C)	(uS/cm)	DO (mg/l)	ORP	COMMENTS

PROJECT N PROJECT N SITE ADDR	/IANAGER:	Shore Acres MSS 403 East 12t	h Street, Oakl	and	PROJECT NU TASK NUMBE		GHA.19009
	WELL ID:	EW-Z			TYPE (OF WELL:	Monitoring
WATER CO	De	Total Depth: pth to Water: lumn Length:	19-72 9-7-7 9-7-7 9-7-7	Shan	WELL DIAME 2-inch: 4-inch: 6-inch:		
PURGE VO	LUME CALCU		itiplier v No. 1	Volumes =	Curge Volume		
Wa	9-95 ter Column Le	×	Multiplier	×	No. Volumes	= •;	2.0 Purge Volume
MULTIPLIE		Schedule 40 F 2-inch: 4-inch: 6-inch:	PVC; Gallons/I 0.17 0.65 1.5	Linear Foot	Based on Cas	ing Diame	ter:
PURGE ME	Disp	osable Bailer PVC Bailer ersible Pump Other		SAMPLE I		able Bailer Pump: Other:	
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS
1016	6.75	6.82	77.5	1020			
037 037 040	14	6.47	22.0	1047			Jawpl
<u> </u>		<u> </u>					
		No.					
EIEI D 1	TECHNICIAN:	/	W- (• • • • • • • • • • • • • • • • • • •		

PROJECT N PROJECT M SITE ADDRE	ANAGER:	Shore Acres MSS 403 East 12th	n Street, Oakla	PROJECT NU TASK NUMBE		GHA.19009				
	Monitoring									
WATER COI	- - -									
	er Column Le	x	ultiplier x No. V	X	No. Volumes	=	Purge Volume			
MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5										
PURGE MET	Disp	osable Bailer PVC Bailer ersible Pump Other		SAMPLE I		able Bailei Pump Other				
TIME	VOLUME PURGED (gal)	рН	TEMP.	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS			
	13 3 3 4 5	6.87	27.6	1022			Squp			
		. ***	**************************************	:						

PROJECT NA PROJECT MA SITE ADDRE	ANAGER:	Shore Acres MSS 403 East 12t	h Street, Oakla	and	PROJECT NU TASK NUMB		GHA.19009	
	WELL ID:	EW-4			TYPE	OF WELL:	Monitoring	
WATER COL	De _l Water Col	(7.55 9.85 9.70	WELL DIAMETER: 2-inch: 4-inch: 6-inch:					
PURGE VOLUME CALCULATION: Water Column Length x Multiplier x No. Volumes = Purge Volume								
	9.10 er Column Le	x	(_> Multiplier	×	No. Volumes	=	Purge Volume	
MULTIPLIER DATA: Multiplier for Schedule 40 PVC; Gallons/Linear Foot Based on Casing Diameter: 2-inch: 0.17 4-inch: 0.65 6-inch: 1.5								
PURGE MET	HOD: Dispa		SAMPLE METHOD: Disposable Bailer Pump: Other:					
TIME	VOLUME PURGED (gal)	рН	TEMP. (°C)	COND. (uS/cm)	DO (mg/l)	ORP (mV)	COMMENTS	
1218	15	6.82	20.1	1284				
122L	13	683	<u> </u>	1292				
ius	7			7 5-270			SILVAN	
		. (3						
				:				
		<u></u>					10 10 10 10 10 10 10 10 10 10 10 10 10 1	

FIELD TECHNICIAN:	NA 1	•
DATE:	9 4	17
_	10.	11/