By Alameda County Environmental Health at 2:08 pm, Nov 05, 2013

1.1

Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

SUBJECT: Perjury Statement

To Whom It May Concern:

I declare, under penalty of perjury, that the information and/or recommendations contained in the requested attached reports in your letter dated August 8, 2011 are true and correct to the best of my knowledge.

Signed: June langer aller JANE A. ALLEN

November 5, 2013	San Francisco HQ
	Atlanta
Site Status Update and Case Closure Request	Chicago
	Costa Mesa
Property Identification: 325 Martin Luther King Jr. Way Oakland, California	Dallas
AEI Project No. 277915 ACEH Site: RO0002930	Denver
Prepared for: Jane Allen	Los Angeles
2 Lone Tree Avenue Mill Valley, CA 94941	Miami
Prepared by: AEI Consultants	New York
Walnut Creek, CA 94597 (925) 746-6000	Phoenix
	Portland
	San Jose
National Presence	

Regional Focus

Local Solutions

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SITE DESCRIPTION AND HISTORY	1
2.1 Tank Closure	1
2.2 2005 AEI Investigation	1
2.4 2006 Ceres Investigation	Z
2.5 2006 LRM Consulting Workplan	2
2.6 2007 AEI Investigation	2
2.7 Soil Vapor Probe Installation	3
2.7.1 Subslab Vapor Probe Construction - 2008	3
2.7.2 Soil Vapor Probe Construction - 2008	3
2.7.3 Soil Vapor Sampling - 2008	4
2.8 Unemical Oxidation Pilot Test	4 E
2.9 Hydrogen Peroxide Infusion	Э Б
2.10 Installation of Infusion Wells IW-4 and IW-5	5
2.12 Second Hydrogen Peroxide Infusion	6
2.13 Second and Third Quarter 2012 performance monitoring	6
2.14 Fourth Quarter 2012 And First Quarter 2013 performance monitoring	7
2.14.1 October 24, 2012	7
2.14.2 November 20, 2012	7
2.14.3 January 8, 2012	7
3.0 Installation of Shallow Soil Vapor probe VS-5 - 2013	8
4.0 THIRD QUARTER 2013 GROUNDWATER MONITORING EVENT	9
4.1 Summary of Groundwater Sampling Activities	9
4.2 Analytical Results	10
5.0 SUMMARY	.10
6.0 RECOMMENDATIONS	.11
7.0 REPORT LIMITATIONS AND SIGNATURES	.11

FIGURES

FIGURE 1	SITE LOCATION MAP
FIGURE 2	SITE PLAN
FIGURE 3	Detailed Site Plan
FIGURE 4	GROUNDWATER GRADIENT – 7/03/2013
FIGURE 5	GROUNDWATER ANALYTICAL DATA – 7/03/2013
FIGURE 6	GROUNDWATER GRADIENT – 7/03/2013
FIGURE 7	TPH-G ISOCONCENTRATION MAP – 7/03/2013
FIGURE 8	DO Concentration Map – 7/03/2013

TABLES

TABLE 1	Well Construction Details
TABLE 2	GROUNDWATER ELEVATION DATA
TABLE 3	GROUNDWATER ANALYTICAL DATA – TPH + MBTEX
TABLE 4	GROUNDWATER ANALYTICAL DATA – FUEL ADDITIVES
TABLE 5	

APPENDICES

Appendix A	Soil Vapor Point Permits
APPENDIX B	VAPOR POINT LOGS
APPENDIX C	LABORATORY ANALYTICAL AND CHAIN OF CUSTODY DOCUMENTATION
Appendix D	LTCP CHECKLIST

Environmental & Engineering Services

Tel: 925.746.6000 Fax: 925.746.6099

1.0 INTRODUCTION

AEI Consultants (AEI) has prepared this report to document the performance of the hydrogen peroxide infusion program since the Third Quarter 2012 groundwater monitoring event. The report summarizes the 2008 installation and sampling of soil vapor sampling points VS-1 through VS-4 and 2013 installation of soil vapor point VS-5, performance monitoring of selected wells in October and November 2012, January and April of 2013, and a groundwater monitoring event conducted on July 3, 2013 at the above referenced site (Figure 1, Site Location Map). The infusion program and groundwater monitoring are being performed in accordance with the requirements of the Alameda County Environmental Health (ACEH).

2.0 SITE DESCRIPTION AND HISTORY

The subject property is located on the northwestern corner of the intersection of Martin Luther King Jr. Way and 4th Street in a mixed commercial and industrial area of Oakland. The property measures approximately 100 feet along Martin Luther King and approximately 150 feet along 4th Street with the property building covering essentially 100% of the site. The building is currently vacant, but was previously occupied by Pucci Enterprises as warehouse space and cold storage freezers.

A Phase I Environmental Site Assessment (ESA) of the property dated November 1, 1993 identified a 10,000-gallon former gasoline underground storage tank (UST) abandoned in place below the northeast corner of the building. The gasoline UST was used to provide fuel for the Pucci Enterprises truck fleet.

2.1 Tank Closure

On October 20, 1993, the tank was abandoned in place by pumping remaining sludge out of the tank, steam cleaning the tank, and filling the tank with concrete slurry. At the time of the UST closure, it was believed that the tank could not be removed because of its proximity to the footing of the 671 4th Street building. The available records contain no documentation of sampling around the tank at the time of the tank closure. After tank closure, the eastern portion of the building (325 Martin Luther King) was constructed.

2.2 2005 AEI Investigation

In May 2005, AEI performed a Phase II Subsurface Investigation. Soil borings SB-1 and SB-3 encountered refusal at a depth of 4 feet below the ground surface (bgs), at the top of the concrete filled UST. Soil borings SB-2 and SB-4 were advanced into the groundwater. Total Petroleum Hydrocarbons as gasoline (TPH-g), as diesel (TPH-d), and benzene were reported in groundwater from boring SB-2 at concentrations up to 780 micrograms per liter (μ g/L), 420 μ g/L, and 53 μ g/L, respectively.

2.3 2005 Terra Firma Investigation

In September 2005, Terra Firma collected groundwater samples from four (4) soil borings (labeled 50901-1 to 50901-4). Analysis of the groundwater samples reported the highest concentrations of hydrocarbons in soil boring 50901-3 to the south of the UST, where TPH-g, TPH-d, and benzene were reported at concentrations of 20,000 μ g/L, 3600 μ g/L, and 990 μ g/L, respectively.

2.4 2006 Ceres Investigation

In June 2006, Ceres Associates (Ceres) advanced five soil borings (SB5 through SB9). The highest concentrations of hydrocarbons in the soil were reported in boring SB-7 (located southeast of the UST) where TPH-g, TPH-d, and benzene were reported in sample SB-7-10 at concentrations of 20,000 mg/kg, 3,300 mg/kg, 200 milligrams per kilogram (mg/kg), respectively. Analysis of groundwater samples from SB7 reported TPH-g, TPH-d, and benzene at concentrations of 110,000 μ g/l, 110,000 μ g/l, and 3,300 μ g/l, respectively. Concentrations of TPH-g in the other soil borings ranged from ND <50 μ g/l (SB5-GW) to 610 μ g/l (SB8-GW).

2.5 2006 LRM Consulting Workplan

LRM Consulting prepared release notification documentation and a workplan for the ACEH in August 2006. The workplan included additional file and data base research into possible additional source locations (dispenser, piping, offsite releases, etc) and installing three (3) 2-inch diameter monitoring wells a screened interval of 5 to 20 feet bgs.

2.6 2007 AEI Investigation

Following ACEH comments relating to the work plan and previous investigations, AEI was retained to prepare a comprehensive workplan. The *Site Characterization Workplan*, dated March 31, 2007, outlined the scope of work for installation of 12 additional soil borings and three groundwater monitoring wells to further characterize the release.

In May of 2007, AEI performed a soil and groundwater investigation which included the drilling of additional twelve (12) soil borings at the property. Significant concentrations of TPH-g, TPH-d, and benzene in the soil were reported only in monitoring well MW-3 (MW-3-10), located down gradient of abandoned UST, at concentrations of 1,500 mg/kg, 240 mg/kg, and 6.0 mg/kg, respectively. Low concentrations (<210 μ g/l) of TPH were reported down gradient of the abandoned UST in soil boring SB-10, SB-12, SB-13, SB-16, SB-17, SB-18, and SB-19.

Data from these investigations shows that the dissolved hydrocarbon plume is limited to the eastern most portion of 325 Martin Luther King Jr. Way, immediately down gradient of the abandoned in place UST. On August 10, 2007, AEI installed three (3) groundwater monitoring wells (MW-1 thru MW-3) down gradient of the abandoned in place UST. Significant concentrations of TPH-g, TPH-d and benzene were reported only in well MW-3 at concentrations of 24,000 µg/l, 1,200 µg/l, and 2,600 µg/l, respectively.

Site maps showing the locations of soil borings advanced and monitoring wells installed by AEI and well construction details are contained in AEI's *Soil and Groundwater Investigation Report*, dated September 21, 2007.

2.7 Soil Vapor Probe Installation

As requested by the ACEH, to evaluate potential soil vapor intrusion to within the building, four twinned (implants at subslab and 5 feet bgs) permanent vapor sampling probes were installed on June 4, 2008. The summary of installation and sampling activities was inadvertently omitted from earlier reports. The locations of the permanent subslab and soil vapor probe locations are presented on Figures 2 and 3. Copies of the drilling permits are attached in Appendix A.

2.7.1 Subslab Vapor Probe Construction - 2008

On June 4, 2008, AEI installed four (4) permanent subslab vapor probes (VS-1-Subslab through VS-4-Subslab).

In each location, a 1.5-inch diameter hole was cored through the concrete slab using a large rotary hammer drill equipped with a carbide-tipped concrete coring bit. The permanent subslab vapor probes were constructed out of stainless steel male and female Swagelok connectors and short (4 to 6 inch long) sections of 0.035-inch type 316 stainless steel tubing. The probes were constructed so that the stainless steel tubing extended 1 to 2-inches below the bottom of the slab. After the probe was inserted, 2/16 Monterey sand was placed around the probe tip followed by a 1-inch layer of granular bentonite. The bentonite was hydrated to form a seal and holdback the grout. The remaining space was filled to approximately 0.5-inches below the top of the slab using a fast-drying Portland Type I/II cement grout with a 1.5-inch removable cap at the surface.

2.7.2 Soil Vapor Probe Construction - 2008

On June 4, 2008, AEI installed four (4) permanent soil vapor probes (VS-1 through VS-4) using hand-held direct push equipment producing 1.25-inch boreholes immediately adjacent to the permanent subslab vapor probes.

In each location, a 3" inch hole was cored through the concrete foundation. 1.25-inch rods were advanced to the target depth of 5.5 feet bgs and removed. The soil vapor probes were constructed using the open borehole method. Each of the soil gas probes were constructed using a 3-inch long stainless steel implant with 0.0057-inch mesh openings threaded into an expendable anchor point, a precut section of 0.035-inch type 316 stainless steel tubing stainless steel tubing, and 0.25-inch male and female Swagelok tubing connectors and plugs. The soil vapor implants were centered at a depth of approximately 5 feet bgs within a sand pack consisting of approximately 12-inches of fine-grained (#2/16) Monterey sand. The remainder of the borehole above the sand pack was sealed to a depth of approximately 0.5-inches below the top of the slab using a fast-drying Portland Type I/II cement grout. Copies of the soil vapor logs are included in Appendix B, Boring Logs.

November 5, 2013 AEI Project # 277915 *Page 4 of 12*

2.7.3 Soil Vapor Sampling - 2008

On June 28 and September 21, 2008 soil vapor points VS-1 Subslab – VS-4 subslab and VS-1 – VS-4 were sampled. A laboratory sampling manifold was attached to the each sampling probe and then a 1-liter sampling bottle and a 6 liter purge canister were attached to the manifold. A vacuum tightness test was performed using the purge canister to place a vacuum on the sampling train. The pressure was noted and observed for changes for one-minute. No changes were noted, indicating that the sampling trains were free of leaks. A leak check was performed by applying isopropyl alcohol to a paper towel which was placed around the floor penetration and the connection between the manifold and top of the sampling probe. The vapor point was purged for one minute using the 6-liter laboratory supplied purge canister, and a sample was collected through a laboratory-supplied regulator.

The soil gas samples were collected in 1-liter summa canisters. Each canister was individually checked, tested and certified by the laboratory for air tightness and proper vacuum prior to shipping. Prior to sampling, a vacuum gauge was used to measure and record the initial summa canister vacuum pressure. Once sampling was complete, each summa canister was sealed with a slight vacuum.

The subslab and soil vapor samples were analyzed for TPH-g, methyl tertiary butyl ether, benzene, toluene, ethylbenzene, xylenes (MBTEX), and 1,2-dobromoethane (EDB).

No TPH-g, MBTEX, or EDB were reported at or above standard reporting limits in either the subslab or soil vapor probe samples collected in 2008. The results of the vapor sampling are summarized on Table 5.

2.8 Chemical Oxidation Pilot Test

A *Corrective Action Pilot Test Workplan*, dated April 7, 2008, was prepared for the ACEH. The workplan proposed five injection points around monitoring well MW-3 using a RegenOx[™] solution. The workplan was approved by the ACEH in a letter dated May 13, 2008. On July 17 and 18, 2008, 720 lbs. of RegenOx[™] was injected in five locations (IP-1 through IP-5) at spacing approximately five feet away from well MW-3.

Following the pilot test, groundwater samples collected from well MW-3 on August 4, 2008 reported an increase in TPH-g from pre-pilot concentration from 20,000 μ g/L to 110,000 μ g/L. Follow up sampling on August 20, 2008 reported TPH-g at a concentration of 120,000 μ g/L. This increase was the result of release of hydrocarbons adsorbed to clay, silt and sand grains in the smear zone (between 9 - 11 feet bgs).

This significant increase in TPH-g concentration indicated that the residual source area around the abandoned in place UST is significantly greater than had been anticipated and that several rounds of injection would be required to remediate the site. Based on the relative high cost of multiple direct push infusions using RegenOxTM, installation of permanent injection points and alternate remedial approaches were evaluated. AEI determined that H₂O₂ infusion through permanently installed wells was a lower cost approach to remediation. A *Hydrogen Peroxide*

Infusion Pilot Test Workplan, dated August 12, 2009, was completed for the site and approved in a letter from the ACEH dated August 21, 2009.

2.9 Hydrogen Peroxide Infusion

In December of 2009, a 2,400 gallon poly tank was placed on the site and manifolded to wells IW-1, IW-2 and IW-3. Between December 29, 2009, and January 29, 2010, 8,000 gallons of 0.5% H²O² was infused primarily into injection wells IW-2 and IW-3.

On February 8 and 24, 2010 following the infusion of 8,000 gallons of $0.5\% \text{ H}^2\text{O}^2$ solution, wells MW-3, IW-2, and IW-3 were sampled to determine the effects of the H²O² infusion. TPH-g in MW-3 decreased from 59,000 µg/L on October 30, 2009 to 16,000 µg/L on February 24, 2010. TPH-g in IW-2 decreased from 15,000 µg/L on October 30, 2009 to 3,500 µg/L on February 24, 2010. IW-3 decreased from 77,000 µg/L on November 23, 2009 to 36,000 µg/L on February 24, 2010.

Between March 16, 2010 and May 12, 2010, an additional 9,400 gallons of 0.5% H²O² were infused into wells IW-2 and IW-3. Between May 24, 2010 and June 29, 2010, 4,900 gallons of 1.25% H²O² were infused primarily into well IW-3.

Progress monitoring sampling was performed on May 24, July 19, and August 5, 2010. The results of the progress sampling through July 19, 2010 is summarized in Table 3 and in the *Hydrogen Peroxide Infusion Report* dated July 30, 2010. Results from the August 5, 2010 sampling event reported TPH-g in wells MW-3, and IW-1 at concentrations of 350 μ g/L and 4,300 μ g/L, respectively.

The third quarter 2010 monitoring event on September 9, 2010 reported TPH-g in wells MW-3, and IW-1 at concentrations of 1,200 μ g/L and 22,000 μ g/L, respectively.

Following the Third Quarter 2010 semi-annual monitoring event on September 9, 2010 hydrogen peroxide infusion into well IW-3 was resumed. Between September 21, 2010 and December 29, 2010 an additional 18,000 gallons of 0.5 % hydrogen peroxide was infused in well IW-3.

2.10 Post Infusion Monitoring

The regularly scheduled First Quarter 2011 semiannual monitoring event was performed on March 24, 2011. No TPH-g or BTEX was reported in wells MW-1, MW-2, IW-1, or IW-2 at or below standard laboratory reporting limits.

TPH-g was reported in wells MW-3 and IW-3 at concentrations of 140 μ g/L and 390 μ g/L respectively.

The second semiannual monitoring event was performed on August 9, 2011. No TPH-g or BTEX was reported in wells MW-1, MW-2, IW-1, or IW-2 at or below standard laboratory reporting limits.

TPH-g and benzene concentrations in well MW-3 increased from concentrations of 590 μ g/L and 38 μ g/L, respectively on August 9, 2011 to 4,900 μ g/L and 1,400 μ g/L, respectively on December 14, 2011. The concentration of TPH-d increased from 200 μ g/L to 1,000 μ g/L.

TPH-g concentration in well IW-3 increased from 9,600 μ g/L on August 9, 2011 to 36,000 μ g/L and on December 14, 2011. Benzene concentration in well IW-2 increased from 2,400 μ g/L on August 9, 2011 to 4,600 μ g/L and on December 14, 2011.

2.11 Installation of Infusion Wells IW-4 and IW-5

On November 29, 2011, AEI installed two addition infusion wells (IW-4 and IW-5) on the northeast side of the abandoned in place UST. The locations of the wells are shown on Figure 2. Well completion details are summarized on Table 1.

During the December 14, 2011 groundwater monitoring event TPH-g and benzene concentrations in IW-4 were reported at concentrations of 95,000 μ g/L and 13,000 μ g/L, respectively. TPH-g and benzene concentrations in IW-5 were reported at concentrations of 250 μ g/L and 11 μ g/L, respectively.

AEI recommended additional H^2O^2 infusion following the recent installation of additional up gradient infusion wells (IW-4, IW-5).

2.12 Second Hydrogen Peroxide Infusion

Infusion into well IW-4 was initiated on January 12, 2012. In January 2012, a 2400 gallon poly tank was placed on the site and manifolded directly to wells IW-3, IW-4, and IW-5. Between January 2012, and May 2012, approximately 12,000 gallons of $1\% H^2O^2$ was infused into the wells, primarily into injection well IW-4. After the first week of infusion, only well IW-4 was directly manifolded to the tank and casings of wells IW-1, IW-2, IW-3, and IW-5 were filled with H^2O^2 during the weekly system checks. Average infusion is estimated to have been 0.1 gallon per minute.

2.13 Second and Third Quarter 2012 performance monitoring

On July 27, August 27, and September 21, 2012, monitoring wells MW-3, IW-3 and IW-4 were gauged and sampled, as part of performance monitoring of the hydrogen peroxide infusion program.

TPH-g increased in MW-3 from a concentration of 51 μ g/L in July to a concentration of 91 μ g/L in September, 2012.

TPH-g increased in IW-3 from a concentration of 1,100 μ g/L in July to a concentration of 4,300 μ g/L in September, 2012.

TPH-g increased in IW-4 from a concentration of 2,900 μ g/L in July to a concentration of 4,500 μ g/L in September, 2012.

The complete results of the September 2012 quarterly monitoring event are summarized in Table 3.

2.14 Fourth Quarter 2012 And First Quarter 2013 performance monitoring

Monitoring of wells MW-3, IW-3, and IW-4 were sampled on October 24, November 20, 2013, and January 8, 2013 as part of performance monitoring of the hydrogen peroxide infusion program.

2.14.1 October 24, 2012

TPH-g and MBTEX concentrations in well MW-3 increased to concentrations of 510 μ g/L, 32 μ g/L, 100 μ g/L, 3.2 μ g/L, 3.7 μ g/L, and 10 μ g/L, respectively.

TPH-g and MBTEX concentrations in well IW-3 increased to concentrations of 4,400 μ g/L 51 μ g/L, 540 μ g/L, 880 μ g/L, 26 μ g/L, 730 μ g/L, respectively.

TPH-g and MBTEX concentrations in well IW-4 increased to concentrations of 21,000 μ g/L ND<250 μ g/L, 2,000 μ g/L, 4,000 μ g/L, 350 μ g/L, and 2,100 μ g/L, respectively.

The results of the October 24, 2012 progress monitoring event are summarized in Table.

2.14.2 November 20, 2012

TPH-g and MBTEX concentrations in well MW-3 increased to concentrations of 850 μ g/L, 9.2 μ g/L, 290 μ g/L, 8.2 μ g/L, 8.2 μ g/L, and 23 μ g/L, respectively.

TPH-g and MBTEX concentrations in well IW-3 increased to concentrations of 6,400 μ g/L <50 μ g/L, 550 μ g/L, 1,000 μ g/L, 34 μ g/L, 940 μ g/L, respectively.

TPH-g and MBTEX concentrations in well IW-4 decreased to concentrations of 8,700 μ g/L ND<100 μ g/L, 850 μ g/L, 1,900 μ g/L, 140 μ g/L, and 910 μ g/L, respectively.

The results of the November 20, 2012 progress monitoring event are summarized in Table 3.

2.14.3 January 8, 2013

TPH-g and MBTEX concentrations in well MW-3 decreased to concentrations of 390 μ g/L, <5.0 μ g/L, 24 μ g/L, 1.5 μ g/L, <5.0 μ g/L, and 17 μ g/L, respectively.

TPH-g and MBTEX concentrations in well IW-3 increased to concentrations of 13,000 μ g/L <250 μ g/L, 580 μ g/L, 1,100 μ g/L, 81 μ g/L, 660 μ g/L, respectively.

TPH-g and MBTEX concentrations in well IW-4 decreased to concentrations of 6,500 μ g/L ND<90 μ g/L, 580 μ g/L, 1,100 μ g/L, 81 μ g/L, and 660 μ g/L, respectively.

November 5, 2013 AEI Project # 277915 *Page 8 of 12*

The results of the January 8, 2013 progress monitoring event are summarized in Table 3 and Figure 8.

3.0 ACTIVITIES SINCE JANUARY, 2013 PERFORMANCE MONITORING

3.1 April 4, 2013 Performance Monitoring

On April 4, 2013, a performance monitoring event was performed which included groundwater monitoring wells MW-3, IW-3, and IW-4.

Prior to purging and sampling the wells, the well caps were removed from each well. After allowing a minimum of 15 minutes for the water level in each well to reach equilibrium with atmospheric pressure, the depth to water in each well was measured with an electronic meter to a precision of \pm 0.01 feet. Each well was then purged with a peristaltic pump with the bottom of the drop tube placed at approximately 10 feet bgs under a low flow protocol. Each well was purged until the groundwater parameters of temperature, pH, conductivity, dissolved oxygen (DO), oxygen reduction potential (ORP) and visual clarity stabilized.

Each water sample was collected into hydrochloric acid (HCI) preserved one liter amber bottle and three (3) 40-milliliter (ml) volatile organic analysis vials (VOAs) using the peristaltic pump. All samples were labeled with at minimum, project number, sample number, time, date, and sampler's name.

The samples were entered on a chain-of-custody form and placed on water ice in a pre-cooled ice chest pending same day transportation under chain of custody protocols to McCampbell Analytical, Inc. of Pittsburg, California (Department of Health Services Certification # 1644). The samples were analyzed for TPH-g and MBTEX using methods SW8021B/8015Bm.

3.2 Installation of Shallow Soil Vapor probe VS-5 – 2013

On June 26, 2013, AEI installed shallow soil vapor probe VS-5 under ACPWA well permit W2013-0432 and under the oversight of Steve Miller. A 4-inch hole was cored through the concrete foundation. The boring was advanced using a 3.5-inch diameter hand auger. After reaching the target depth of 5.5 feet bgs, the soil vapor probe was constructed using the open borehole method. The soil gas probe was constructed using a 3-inch long stainless steel implant with 0.0057-inch mesh openings threaded into an expendable anchor point, a precut section of 0.035inch type 316 stainless steel tubing stainless steel tubing, and 0.25-inch male and female Swagelok tubing connectors and plugs. The soil vapor implants were centered at a depth of approximately 5-feet bgs within a sand pack consisting of approximately 12-inches of fine-grained (#2/16) Monterey sand. The remainder of the borehole above the sand pack was sealed to a depth of approximately 12-inches bgs with hydrated bentonite chips. The remaining space was filled to approximately 0.5-inches below the top of the slab using a fast-drying Portland Type I/II cement grout.

3.3 Third Quarter 2013 Monitoring Event

3.3.1 Summary of Groundwater Sampling Activities

On July 3, 2013, a monitoring event was performed which included all groundwater monitoring wells (MW-1 though MW-3) and infusion wells IW-1 through IW-5) at the site.

Prior to purging and sampling the wells, the well caps were removed from each well. After allowing a minimum of 15 minutes for the water level in each well to reach equilibrium with atmospheric pressure, the depth to water in each well was measured with an electronic meter to a precision of \pm 0.01 feet. Each well was then purged with a peristaltic pump with the bottom of the drop tube placed at approximately 10 feet bgs under a low flow protocol. Each well was purged until the groundwater parameters of temperature, pH, conductivity, dissolved oxygen (DO), oxygen reduction potential (ORP) and visual clarity stabilized.

Each water sample was collected into hydrochloric acid (HCl) preserved one liter amber bottle and three (3) 40-milliliter (ml) volatile organic analysis vials (VOAs) using the peristaltic pump. All samples were labeled with at minimum, project number, sample number, time, date, and sampler's name.

The samples were entered on a chain-of-custody form and placed on water ice in a pre-cooled ice chest pending same day transportation under chain of custody protocols to McCampbell Analytical, Inc. of Pittsburg, California (Department of Health Services Certification # 1644). The samples were analyzed for TPH-g and MBTEX using methods SW8021B/8015Bm, for TPH-d by method SW8015B, and for fuel oxygenates and lead scavengers by method SW8260B.

3.3.2 Summary of Soil Vapor Sampling Activities

On July 3, 2013 soil vapor points (5 feet bgs) VS-1 – VS-5 were sampled. A laboratory sampling manifold was attached to the each sampling probe and then a 1-liter sampling bottle and a 6 liter purge canister were attached to the manifold. A vacuum tightness test was performed using the purge canister to place a vacuum on the sampling train. The pressure was noted and observed for changes for one-minute. No changes were noted, indicating that the sampling trains were free of leaks. A leak check was performed by applying isopropyl alcohol to a paper towel which was placed around the floor penetration and the connection between the manifold and top of the sampling probe. The vapor point was purged for one minute using the 6-liter laboratory supplied purge canister, and a sample was collected through a laboratory-supplied regulator.

The soil gas samples were collected in 1-liter summa canisters. Each canister was individually checked, tested and certified by the laboratory for air tightness and proper vacuum prior to shipping. Prior to sampling, a vacuum gauge was used to measure and record the initial summa canister vacuum pressure. Once sampling was complete, each summa canister was sealed with a slight vacuum.

The soil vapor samples were analyzed for TPH-g and VOCs by method TO15. No TPH-g or VOCs were reported in samples VS-1, VS-3, or VS-5. Ethylbenzene and xylenes were reported

November 5, 2013 AEI Project # 277915 *Page 10 of 12*

in the vapor sample from VS-2 at concentrations of 45 μ g/M³ and 290 respectively. 1,2-dichloroethane was reported in the vapor sample from VS-4 at a concentration of 20 μ g/M³. The results of the vapor sampling are summarized on Table 5.

4.2 Analytical Results

4.2.1 April 3, 2013 Performance Monitoring

TPH-g and MBTEX concentrations in well MW-3 increased to concentrations of 6,400 μ g/L, <150 μ g/L, 2400 μ g/L, 37 μ g/L, 120 μ g/L, and 92 μ g/L, respectively.

TPH-g and MBTEX concentrations in well IW-3 increased to concentrations of 16,000 μ g/L <500 μ g/L, 2,700 μ g/L, 1,100 μ g/L, 200 μ g/L, and 2,100 μ g/L, respectively.

TPH-g and MBTEX concentrations in well IW-4 decreased to concentrations of 16,000 μ g/L ND<500 μ g/L, 1,900 μ g/L, 2,300 μ g/L, 240 μ g/L, and 1,660 μ g/L, respectively.

The results of the April 3, 2013 progress monitoring event are summarized in Table 3.

4.2.2 Third Quarter 2013 Monitoring Event

No TPH-g, TPH-d, BTEX were reported in the groundwater samples from wells MW-1, MW-2, IW-1, or IW-5 at or above standard laboratory reporting limits.

TPH-g and ethylbenzene concentrations in well MW-3 increased to concentrations of 7,100 μ g/L and 170 μ g/L, respectively. Benzene, toluene and xylenes concentrations decreased slightly to 2,200 μ g/L, 35 μ g/L, 72 μ g/L, respectively.

TPH-g and MBTEX concentrations in well IW-2 increased to concentrations of 3,200 μ g/L <25 μ g/L, 59 μ g/L, 6.0 μ g/L, 55 μ g/L, 360 μ g/L, respectively.

TPH-g and MBTEX concentrations in well IW-3 increased to concentrations of 24,000 μ g/L <500 μ g/L, 3,200 μ g/L, 2,500 μ g/L, 230 μ g/L, 3,300 μ g/L, respectively.

TPH-g and MBTEX concentrations in well IW-4 decreased to concentrations of 38,000 μ g/L ND<500 μ g/L, 4,700 μ g/L, 7,000 μ g/L, 620 μ g/L, and 1,660 μ g/L, respectively.

5.0 SUMMARY

Hydrocarbon concentrations in wells MW-3, IW-2, IW-3, and IW-4 have rebounded following the last infusion event. Current concentrations are one third or less than their original concentrations indicating a significant reduction in the source area concentration. It appears that some residual hydrocarbons source is present up gradient of well IW-4 and down gradient of borings SB-10 and SB-10.

Current dissolved Oxygen concentrations (DO) range from 1.65 mg/l in MW-1, MW-2, and IW-2, down gradient of the former UST to 2.37 mg/l in well MW-5. Historically DO concentrations up

November 5, 2013 AEI Project # 277915 *Page 11 of 12*

gradient well IW-1 have been around 2.0 mg/L indicating that oxygen concentrations in the groundwater are high enough to sustain natural biodegradation of hydrocarbons in the groundwater. It is expected that current concentrations of DO in groundwater moving onto the site will allow natural bio-attenuation to reduce hydrocarbon concentrations to target levels.

The results of groundwater monitoring are summarized in Tables 2 through Table 4. The results of soil vapor sampling are shown on Table 5.

For the reasons listed below, AEI believes the hydrocarbon concentrations at the site have reached the point where the site should be considered for site closure under the current low risk closure guidelines:

- No free product is present at the site.
- Hydrocarbon concentrations in the groundwater have been reduced to the point where natural attenuation can continue to reduce hydrocarbon concentrations to target concentrations.
- Concentrations of volatile organic compounds (VOCs) are below regional water quality control board (RWQCB) commercial/industrial ESLs for evaluation of potential vapor intrusions from groundwater to indoor air.

6.0 LTCP CHECKLIST

AEI has reviewed the data from the site with regard to the low threat closure policy checklist. The summary of the review is attached as Appendix G. Based on the criteria outlined in the LTCP, the site meets the criteria for closure and AEI requests that the site be granted closure.

7.0 REPORT LIMITATIONS AND SIGNATURES

This report presents a summary of work completed by AEI, including observations and descriptions of site conditions. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide requested information, but it cannot be assumed that they are entirely representative of all areas not sampled. All conclusions and recommendations are based on these analyses and observations. Conclusions beyond those stated and reported herein should not be inferred from this document.

November 5, 2013 AEI Project # 277915 *Page 12 of 12*

These services were performed in accordance with generally accepted practices in the environmental engineering and construction field that existed at the time and location of the work. If you have any questions regarding this report, we can be reached at (925) 746-6000.

Sincerely, AEI Consultants

Adrian M. Angel, GIT Project Geologist

lon,

Robert F. Flory, PG Senior Geologist

ROBERT F. FLORY ſP. 21-STATEOF

Distribution:

Jane and Kimball Allen 2 Lone Tree Way Mill Valley, CA 94549

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502 electronic

2 hard copies

GeoTracker

electronic

FIGURES

TABLES

Table 1 - Well Construction Details

Allen Project, 325 Martin Luther King Jr. Way, Oakland, CA

Well ID	Date	Top of	Well	Well	Slotted	Slot	Sand	Sand	Bentonite	Grout
	Installed	Casing	Box	Depth	Casing	Size	Interval	Size	Interval	Interval
		Elevation	Elevation							
		(ft amsl)	(ft amsl)	(ft)	(ft)	(in)	(ft)		(ft)	(ft)
MW-1	08/10/07	14.87*	15.34	18	8 - 18	0.010	7 - 18	# 2/12	7 - 8	0.75 - 7
MW-2	08/10/07	15.27	15.52	17	7 - 17	0.010	6 - 17	# 2/12	6 - 7	0.75 - 6
MW-3	08/10/07	15.11*	15.57	18	8 - 18	0.010	7 - 18	# 2/12	7 - 8	0.75 - 7
IW-1	10/13/09	15.20**	15.61	15	5 - 15	0.010	4 - 15	2/12	3 - 4	0.5 - 3
IW-2	10/13/09	15.04**	15.63	15	5 - 15	0.010	4 - 15	2/12	3 - 4	0.5 - 3
IW-3	10/13/09	15.29**	15.60	15	5 - 15	0.010	4 - 15	2/12	3 - 4	0.5 - 3
IW-4	12/01/11	14.74	15.66	15	5 - 15	0.010	4 - 15	2/12	3 - 4	1 - 3
IW-5	12/01/11	14.54	15.64	15	5 - 15	0.010	4 - 15	2/12	3 - 4	0.5 - 3

Notes:

ft amsl = feet above mean sea level

 14.87^* = Casing elevation changes, 02/09/2010

15.29** = Casing elevation changes, 12/06/2012

Table 2 - Groundwater Elevation Data

Well ID (Screen Interval)	Date Collected	Well Elevation <i>(ft amsl)</i>	Depth to Water <i>(ft)</i>	Groundwater Elevation <i>(ft amsl)</i>	Elevation Change <i>(ft)</i>
MW-1	8/21/2007	14.92	8.38	6.54	
(8 - 18)	11/21/2007	14.92	8.37	6.55	0.01
. ,	2/26/2008	14.92	7.98	6.94	0.39
	6/18/2008	14.92	8.41	6.51	-0.43
	9/19/2008	14.92	8.56	6.36	-0.15
	12/29/2008	14.92	8.66	6.26	-0.10
	3/17/2009	14.92	7.84	7.08	0.82
	6/15/2009	14.92	8.31	6.61	-0.47
	9/18/2009	14.92	8.59	6.33	-0.28
	3/16/2010*	14.87	7.80	7.07	
	9/9/2010	14.87	8.75	6.12	-0.95
	3/24/2011	14.87	7.66	7.21	1.09
	12/14/2011	14.87	8.85	6.02	-1.19
	6/28/2012	14.87	8.41	6.46	0.44
	9/21/2012	14.87	8.72	6.15	-0.31
	7/3/2013	14.87	8.69	6.18	0.03
MW-2	8/21/2007	15.27	8.78	6.49	
(7 - 17)	11/21/2007	15.27	8.72	6.55	0.06
	2/26/2008	15.27	8.37	6.90	0.35
	6/18/2008	15.27	8.82	6.45	-0.45
	9/19/2008	15.27	8.92	6.35	-0.10
	12/29/2008	15.27	8.87	6.40	0.05
	3/17/2009	15.27	8.27	7.00	0.60
	6/15/2009	15.27	8.71	6.56	-0.44
	9/18/2009	15.27	8.98	6.29	-0.27
	3/16/2010	15.27	8.19	7.08	0.79
	9/9/2010	15.27	9.04	6.23	-0.85
	3/24/2011	15.27	7.89	7.38	1.15
	12/14/2011	15.27	9.17	6.10	-1.28
	6/28/2012	15.27	8.80	6.47	0.37
	9/21/2012	15.27	9.02	6.25	-0.22
	7/3/2013	15.27	8.98	6.29	0.04
MW-3	8/21/2007	15.26	8.59	6.67	
(8 - 18)	11/21/2007	15.26	8.55	6.71	0.04
	2/26/2008	15.26	8.11	7.15	0.44
	6/18/2008	15.26	8.62	6.64	-0.51
	8/4/2008	15.26	8.65	6.61	-0.03
	8/20/2008	15.26	8.68	6.58	-0.03
	9/19/2008	15.26	8.74	6.52	-0.06
	12/29/2008	15.26	8.67	6.59	0.07
	3/17/2009	15.26	7.96	7.30	0.71
	6/15/2009	15.26	8.47	6.79	-0.51
	9/18/2009	15.26	8.78	6.48	-0.31
	10/30/2009	15.26	8.62	6.64	-0.15
	3/16/2010	15.11	7.57	7.54	
	//19/2010	15.11	8.53	6.58	-0.96

Allen Project, 325 Martin Luther King Jr. Way, Oakland, CA

Table 2 - Groundwater Elevation Data

Well ID (Screen Interval)	Date Collected	Well Elevation <i>(ft amsl)</i>	Depth to Water <i>(ft)</i>	Groundwater Elevation <i>(ft amsl)</i>	Elevation Change <i>(ft)</i>
MW-3 continued	9/9/2010 3/24/2011 12/14/2011 6/28/2012 9/21/2012 7/3/2013***	15.11 15.11 15.11 15.11 15.11 15.11	8.73 7.35 8.78 8.41 8.61 8.55	6.38 7.76 6.33 6.79 6.59 6.65	-0.20 1.38 -1.43 0.37 -0.20 0.06
IW-1 (5-15)	10/30/2009 3/16/2010 9/9/2010 3/24/2011 12/14/2011 6/28/2012 9/21/2012 7/3/2013	15.23 15.23 15.23 15.23 15.20** 15.20 15.20 15.20	8.53 7.68 8.72 7.36 8.85 8.41 8.66 8.63	6.70 7.55 6.51 7.87 6.35 6.79 6.54 6.57	0.85 -1.04 1.36 -1.49 0.44 -0.25 0.03
IW-2 (5-15)	10/30/2009 3/16/2010 7/19/2010 9/9/2010 3/24/2011 12/14/2011 6/28/2012 9/21/2012 7/3/2013	15.06 15.06 15.06 15.06 15.04** 15.29 15.29 15.29	8.37 7.57 8.29 8.62 7.26 8.72 8.45 8.54 8.54	6.69 7.49 6.77 6.44 7.80 6.32 6.84 6.75 6.80	0.80 -0.72 -0.33 1.36 -1.46 0.27 -0.09 0.05
IW-3 (5-15)	10/30/2009 3/16/2010 7/19/2010 3/24/2011 12/14/2011 6/28/2012 9/21/2012 7/3/2013	15.30 15.30 15.30 15.30 15.29** 15.29 15.29 15.29	8.68 7.82 8.51 8.83 7.44 8.91 8.45 8.75 8.68	6.62 7.48 6.79 6.47 7.86 6.38 6.84 6.54 6.61	0.86 -0.69 -0.32 1.39 -1.47 0.46 -0.30 0.07
IW-4 (5-15)	12/14/2011 6/28/2012 9/21/2012 7/3/2013	14.74 14.74 14.74 14.74	8.38 7.92 8.22 8.13	6.36 6.82 6.52 6.61	0.46 -0.30 0.09
IW-5 (5-15)	12/14/2011 6/28/2012 9/21/2012 7/3/2013	14.54 14.54 14.54 14.54	8.18 7.72 8.01 7.83	6.36 6.82 6.53 6.71	0.46 -0.29 0.18

Allen Project, 325 Martin Luther King Jr. Way, Oakland, CA

Notes

14.87* = Casing elevation changes, 02/09/10

15.29** = Casing elevation changes, 12/14/2011

*** = Data from full monitoring events only

Event # Date Average Water Change from Flow Direction Table Elevation **Previous Episode** (gradient) (ft amsl) (ft) (ft/ft) S (0.003) 1 8/21/2007 6.57 NA 2 S (0.005) 11/21/2007 6.60 0.04 3 2/26/2008 7.00 0.39 S (0.005) 4 SSE (0.004) 6/18/2008 6.53 -0.46 5 S (0.003) 9/19/2008 6.41 -0.12 6 12/29/2008 6.42 0.01 SSW (0.005) 7 SW (0.006) 3/17/2009 7.13 0.71 8 SW 0.004) 6/15/2009 6.65 -0.47 9 SW (0.006) 9/18/2009 6.37 -0.29 10** SW (0.006) 3/16/2010 7.24 ----SW (0.005) 11 9/9/2010 6.36 ----12 3/24/2011 7.65 SW (0.009) 1.29 13 12/14/2011 6.28 SW (0.009) -1.37 SW (0.002) 6.73 14 6/28/2012 0.45 15 9/21/2012 6.48 -0.24 SW (0.002) SW (0.006) 16 7/3/2013 6.55 0.07

Table 2A - Groundwater Elevation Data Allen Project, 325 Martin Luther King Jr. Way, Oakland, CA

ft amsl = feet above mean sea level

All water level depths are measured from the top of casing

** Average calculated for all wells with 2/9/10 re-survey elevations

*** Average calculated for all wells with 12/14/2011 re-survey elevations

Sample	Date	Depth to	TPHg	TPHd	MTBE	Benzene	Toluene	Ethyl	Xylenes
ID		water	Matha	1 0015		N /	othod 0001		
		-	wethou	1 8015				D	
						~9 [,] -			
MW-1	8/21/2007	8.38	<50	<50	15	<0.5	<0.5	<0.5	<0.5
	11/21/2007	8.37	<50	<50	12	<0.5	<0.5	<0.5	<0.5
	2/26/2008	7.98	<50	<50	-	<0.5	<0.5	<0.5	<0.5
	6/18/2008	8.41	<50	<50	-	<0.5	<0.5	<0.5	<0.5
	9/19/2008	8.56	<50	<50	-	<0.5	<0.5	<0.5	<0.5
	12/29/2008	8.66	<50	<50	-	< 0.5	< 0.5	< 0.5	< 0.5
	3/1//2009	7.84	<50	<50	-	<0.5	<0.5	< 0.5	< 0.5
	6/15/2009	8.31	<50	<50	-	<0.5	< 0.5	< 0.5	< 0.5
	9/18/2009	8.59	<50	<50	-	< 0.5	< 0.5	< 0.5	< 0.5
	3/16/2010	7.80	<50	-	-	<0.5	< 0.5	< 0.5	< 0.5
	9/9/2010	1.15	<50	-	< 5.0	<0.5	< 0.5	<0.5	< 0.5
	3/24/2011	7.66	<50	-	< 5.0	<0.5	< 0.5	<0.5	< 0.5
	12/14/2011	8.85	<50	-	< 5.0	<0.5	<0.5	<0.5	<0.5
	0/28/2012	8.41	<50	-	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	9/21/2012	8.72	<50	-	< 5.0	<0.5	<0.5	<0.5	<0.5
	//3/2013	8.69	<50	-	<5.0	<0.5	<0.5	<0.5	<0.5
MW-2	8/21/2007	8.78	<50	<50	<5.0	<0.5	<0.5	<0.5	<0.5
	11/21/2007	8.72	<50	<50	<5.0	<0.5	<0.5	<0.5	<0.5
	2/26/2008	8.37	<50	<50	-	<0.5	<0.5	<0.5	<0.5
	6/18/2008	53.00	<50	<50	-	<0.5	<0.5	<0.5	<0.5
	9/19/2008	8.92	<50	<50	-	<0.5	<0.5	<0.5	<0.5
	12/29/2008	8.87	<50	<50	-	<0.5	<0.5	<0.5	<0.5
	3/17/2009	8.27	<50	<50	-	<0.5	<0.5	<0.5	<0.5
	6/15/2009	8.71	<50	<50	-	<0.5	<0.5	<0.5	<0.5
	9/18/2009	8.98	<50	<50	-	<0.5	<0.5	<0.5	<0.5
	3/16/2010	8.19	<50	-	-	<0.5	<0.5	<0.5	<0.5
	9/9/2010	9.04	<50	-	<5.0	<0.5	<0.5	<0.5	<0.5
	3/24/2011	7.89	<50	-	<5.0	<0.5	<0.5	<0.5	<0.5
	12/14/2011	9.17	<50	-	<5.0	< 0.5	< 0.5	< 0.5	< 0.5
	6/28/2012	8.80	<50	-	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	9/21/2012	9.02	<50	-	< 5.0	<0.5	< 0.5	< 0.5	< 0.5
	7/3/2013	8.98	<50	-	<5.0	<0.5	<0.5	<0.5	<0.5
MW-3	8/21/2007	8.59	24,000	2,100	<180	2,600	3,500	450	2,400
	11/21/2007	8.55	36,000	3,800	<500	4,900	1,200	230	2,700
	2/26/2008	8.11	31,000	5,400	-	4,200	1,900	590	2,200
	6/18/2008	8.62	20,000	3,000	-	2,900	1,100	390	990
	8/4/2008	8.65	110,000	27,000	-	5,900	9,000	76	8,100
	8/20/2008	8.68	120,000	6,500	-	8,900	18,000	930	12,000
	9/19/2008	8.74	64,000	4,500	-	6,200	9,200	660	6,600
	12/29/2008	8.67	130,000	7,900	-	11,000	19,000	1,800	11,000
	3/17/2009	7.96	83,000	8,000	-	7,400	10,000	1,100	8,500
	6/15/2009	8.47	67,000	21,000	-	11,000	9,100	1,200	6,80
	9/18/2009	8.78	58,000	16,000	-	11,000	7,000	1,400	4,700

Sample	Date	Depth to Water	TPHg	TPHd	MTBE	Benzene	Toluene	Ethyl	Xylenes
ID		Water	Metho	1 8015		M	ethod 8021	IR	
			Wietho	0015		μg/L			
M\\/_3	10/30/2009	6.64	50 000	_	_	10 000	7 100	1 200	3 000
continued	2/8/2010	7 74	13 000		- 50	840	1 500	1,200	1 700
continueu	2/0/2010	8.03	16,000		< 50	1 200	1,300	200	1,700
	3/16/2010	7 75	34 000	-	< 250	3,000	4 100	580	4 100
	4/15/2010	-	-	_	-	-	-	-	-
	5/24/2010	_	11.000	-	<250	910	1.600	120	2.400
	7/19/2010	8 33	270	_	< 5.0	27	2.9	<0.5	1.8
	8/5/2010	8 35	350	_	< 5.0	2.7 15	63	<0.5 A	4.0
	9/9/2010	8.67	1 200	360	< 5.0	57	83	- 18	160
	12/20/2010	0.07	130	-	< 5.0	0.79	1.2	<0.5	3 1
	2/7/2010	_	< 50	-	< 5.0	23	1.2	<0.5	6.4
	3/24/2011	7 35	140	< 50	< 5.0	2.3 4.9	6.7	0.6	19
	8/9/2011	-	590	200	< 5.0	38	23	< 0.5	60
	12/14/2011	8 78	4 900	1 000	<120	1 400	28	54	250
	6/28/2012	8.30	< 50	-	< 5.0	< 0.5	< 0.5	< 0.5	0.86
	7/27/2012	8.48	<50	-	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	8/27/2012	8.59	51	<50	< 5.0	2.4	< 0.5	< 0.5	4.9
	9/21/2012	8.61	<50	<50	<5.0	<0.5	< 0.5	<0.5	< 0.5
	10/24/2012	-	510	-	32	100	3.2	3.7	10
	11/20/2012	-	850	-	9.2	290	8.2	11.0	23
	1/8/2013	-	390	-	<5.0	24	1.5	<5.0	17
	4/3/2013	-	6,400	-	<150	2400	37	120	92
	7/3/2013	8.55	7,100	-	ND<180	2,200	35	170	72
IW-1	10/30/2009	8.53	<50	-	<5.0	<0.5	<0.5	<0.5	< 0.5
	3/16/2010	7.68	<50	<50	<5.0	<0.5	<0.5	<0.5	<0.5
	9/9/2010	8.73	<50	-	<5.0	<0.5	<0.5	<0.5	<0.5
	3/24/2011	7.36	<50	-	<5.0	<0.5	<0.5	<0.5	<0.5
	12/14/2011	8.85	<50	-	<5.0	<0.5	<0.5	<0.5	<0.5
	6/28/2012	8.41	<50	-	<5.0	<0.5	<0.5	<0.5	<0.5
	9/21/2012	8.66	<50	-	<5.0	<0.5	<0.5	<0.5	<0.5
	7/3/2013	8.63	<50	-	<5.0	<0.5	<0.5	<0.5	<0.5
IW-2	10/30/2009	8.37	15,000	-	-	1,100	2,100	630	2,400
	2/8/2010	7.70	630	-	<5.0	4.4	17	3.7	78
	2/24/2010	-	3,500	-	<50	22	220	57	590
	3/16/2010	7.57	20,000	-	<100	320	2,100	450	4,000
	4/15/2010	-	-	-	-	-	-	-	-
	5/24/2010	-	190	-	<5.0	0.82	6.9	1.0	20
	7/19/2010	8.29	600	-	<5.0	5.8	43	5.3	110
	8/5/2010	8.39	340	-	<5.0	1.8	14	2.7	74
	9/9/2010	8.62	5,100	660	-	59	330	57.0	1,100
	12/29/2010	-	<50	-	<5.0	<0.5	<0.5	<0.5	0.62

Sample ID	Date	Depth to Water	TPHg	TPHd	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes
			Metho	d 8015		М	ethod 8021	В	
						μg/L			
1\\/_2	2/7/2011		~50	~50	~5.0	<0.5	<0 5	<0.5	0.08
continued	3/2//2011	7 26	< 50	< 50	< 5.0	< 0.5	< 0.5	< 0.5	<0.50
continucu	8/9/2011	-	1 700	- 50	< 10	<0.5 40	25	<0.5 1 9	270
	12/14/2011	8 72	2 900	710	< 50	110	59	29	430
	6/28/2012	8.28	< 50	-	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	9/21/2012	8.54	91	< 50	< 5.0	0.89	< 0.5	< 0.5	7.5
	7/3/2013	8.49	3,200	-	<25	59	6.0	55	360
	10/20/2020	0 (0	(1.000		1 000	10.000	14.000	1 400	0.000
100-3	10/30/2009	8.68	61,000	-	<1,000	10,000	14,000	1,400	9,800
	11/3/2009	8.00	64,000 77,000	-	< 150	4,000	7,500	1,100	1,100
	11/23/2009	-	10,000	-	<230	0,700	010	430	11,000
	2/8/2010	1.14	18,000	-	<50	790	910	38	2,600
	2/24/2010	- 7 90	30,000	-	< 200	2,400	4,300	520 650	5 400
	3/10/2010 4/15/2010	7.02	44,000	-	< 500	3,200	0,000	050	5,400
	5/24/2010	_	4 300	-	< 60	170	430	19	680
	7/10/2010	9 51	1,000		<50	100	450	28	440
	8/5/2010	0.51 8 56	4,100 5,400	-	< 50	360	780	20 62	720
	9/9/2010	8.83	22 000	3 230	< 50	1 800	3 900	310	3 300
	12/29/2010	-	< 50	5,250	< 5.0	<0.5	<05	<05	<05
	2/7/2011	_	2 700	870	< 50	180	330	18	360
	3/24/2011	7.44	390	290	< 5.0	3.7	7.4	2.4	53
	8/9/2011	-	9,600	800	<250	2400	940	150	1,300
	12/14/2011	8.91	36,000	4,200	<450	4,600	2,700	300	4,000
	3/27/2012	-	390	-	<5.0	8.8	11	1.3	58
	6/28/2012	8.45	91	-	<5.0	1.1	1.6	<0.5	3.7
	7/27/2012	8.6	<50	-	<5.0	<0.5	<0.5	<0.5	<0.5
	8/27/2012	8.72	1,100	-	<45	100	160	5.1	150
	9/21/2012	8.75	4,300	360	<50	460	580	32	560
	10/24/2012	-	4,400	-	51	540	880	26	730
	11/20/2012	-	6,400	-	<50	550	1000	34	940
	1/8/2013	-	13,000	-	<250	580	1100	81	660
	4/3/2013	-	16,000		<500	2,700	1,100	200	2,100
	7/3/2013	8.68	24,000	-	<500	3,200	2,500	230	3,600

Sample ID	Date	Depth to Water	TPHg	TPHd	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	
			Method 8015			Method 8021B				
						μg/L				
IW-4	12/14/2011	8.38	95,000	5,600	<1,000	13,000	13,000	1,200	7,400	
	3/27/2012	-	1,700	-	<5.0	64	150	29	160	
	6/28/2012	7.92	1,400	-	<5.0	49	190	29	140	
	7/27/2012	8.03	270	-	<5.0	2.0	4.3	1.5	3.4	
	8/27/2012	8.16	2,900		<50	230	520	46	260	
	9/21/2012	8.22	4,500	150	<50	350	820	64	370	
	10/24/2012	-	21,000	-	ND<250	2,000	4,000	350	2,100	
	11/20/2012	-	8,700	-	<100	850	1,900	140	910	
	1/8/2013	-	6,500	-	<90	580	1,100	81	660	
	4/3/2013	-	16,000		<500	1,900	2,300	240	1,600	
	7/3/2013	8.13	38,000	-	<500	4,700	7,000	620	3,300	
IW-5	12/14/2011	8.18	250	190	<5.0	11	0.56	<0.5	8.0	
	6/28/2012	7.72	<50	-	<5.0	<0.5	<0.5	<0.5	<0.5	
	9/21/2012	8.01	<50	<50	<5.0	<0.5	<0.5	<0.5	<0.5	
	7/3/2013	7.83	<50	-	<5.0	<0.5	<0.5	<0.5	<0.5	
GW ESL (ND	W) Gross Conta	amination	2,500	2,500	1,800	2,000	400	300	5,300	
GW ESL (ND	W) Aquatic Hat	pitat	210	210	1,800	46	130	43	100	

Notes:

TPHg = total petroleum hydrocarbons as gasoline (C6-C12)

TPHd = total petroleum hydrocarbons as diesel (C10-C23)

Benzene, toluene, ethylbenzene, and xylenes using EPA Method 8021B

MTBE = methyl-tertiary butyl ether

mg/L= micrograms per liter

ND < 50 = non detect at respective reporting limit

Allen Project, 325 Martin Luther King Jr. Way, Oakland, CA									
Sample	Date	TAME	TBA	EDB	1,2-DCA	DIPE	ETBE	MTBE	
ID					mg/L				
MW-1	08/21/07	<0.5	<5.0	<0.5	5.2	<0.5	<0.5	18	
	11/21/07	-	-	-	-	-	-	-	
	02/26/08	-	-	<0.5	6.9	-	-	16	
	06/18/08	-	-	<0.5	5.4	-	-	15	
	09/19/08	-	-	<0.5	6.8	-	-	4.2	
	12/29/08	-	-	<0.5	6.8	-	-	0.62	
	03/17/09	-	-	<0.5	4.6	-	-	11	
	06/15/09	-	-	<0.5	5.8	-	-	8.1	
	09/18/09	-	-	<0.5	5.2	-	-	0.7	
	03/24/11	<0.5	<2.0	<0.5	9.3	<0.5	<0.5	1.9	
	06/28/12	<0.5	<2.0	<0.5	7.0	< 0.5	<0.5	0.73	
	09/21/12	<0.5	<2.0	<0.5	13	< 0.5	<0.5	1.2	
	07/03/13	<0.5	4.5	<0.5	21	<0.5	<0.5	0.78	
M\\/_2	08/21/07	< 0.5	~5.0	<0.5	<0.5	< 0.5	<0.5	<05	
10100 2	11/21/07		< 3.0	-		-	<0.5		
	02/26/08	_	_	~0.5	~0.5	_	_	~0.5	
	02/20/00	-	-	< 0.5	< 0.5	-	-	< 0.5	
	00/10/00	-	-	< 0.5	< 0.5	-	-	< 0.5	
	12/20/00	-	-	< 0.5	< 0.5	-	-	< 0.5	
	12/29/00	-	-	< 0.5	<0.5	-	-	< 0.5	
	03/17/09	-	-	< 0.5	<0.5	-	-	<0.5	
	00/15/09	-	-	< 0.5	<0.5	-	-	<0.5	
	09/18/09	-	-	< 0.5	<0.5	-	-	< 0.5	
	03/24/11	<0.5	<2.0	< 0.5	< 0.5	<0.5	<0.5	< 0.5	
	06/28/12	<0.5	<2.0	< 0.5	< 0.5	<0.5	<0.5	< 0.5	
	09/21/12	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	07/03/13	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	
MW-3	08/21/07	<5.0	<50	34	140	<5.0	<5.0	<5.0	
	11/21/07	-	-	-	-	-	-	-	
	02/26/08	-	-	31	220	-	-	<12	
	06/18/08	-	-	21	190	-	-	<5.0	
	08/04/08	-	-	220	410	-	-	<50	
	08/20/08	-	-	330	410	-	-	<50	
	09/19/08	-	-	160	320	-	-	<17	
	12/29/08	-	-	200	440	-	-	<50	
	03/17/09	-	-	98	370	-	-	<25	
	06/15/09	-	-	87	490	-	-	<50	
	09/18/09	-	-	110	500	-	-	<17	
	10/30/09	-	-	96	470	-	-	<50	
	02/08/10	-	-	42	42	-	-	<50	
	03/16/10	<25	430	110	130	<25	<25	<25	
	03/24/11	<0.5	10	2.2	0.61	<5.0	<5.0	<5.0	
	06/28/12	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	
	09/21/12	<0.5	<2.0	1.1	4.4	<0.5	<0.5	<0.5	
	07/03/13	<5.0	<20	<5.0	120	<5.0	<5.0	<5.0	

Table 4 - Groundwater Analytical Data - Fuel Additives

Allen Project, 325 Martin Luther King Jr. Way, Oakland, CA									
Sample	Date	TAME	TBA	EDB	1,2-DCA	DIPE	ETBE	MTBE	
ID					mg/L				
IW-1	10/30/09	-	-	<0.5	<0.5	-	-	<0.5	
	03/16/10	< 0.5	<2.0	<0.5	<0.5	< 0.5	<0.5	<0.5	
	03/24/11	< 0.5	<2.0	<0.5	<0.5	< 0.5	<0.5	<0.5	
	06/28/12	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	
	09/21/12	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	
	07/03/13	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5	
IW-2	10/30/09	-	-	13	51	-	-	<10	
	02/08/10	-	-	5.1	3.9	-	-		
	03/16/10	<10	70	20	15	<10	<10	<10	
	03/24/11	< 0.5	5.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	06/28/12	< 0.5	2.5	1.3	< 0.5	< 0.5	< 0.5	< 0.5	
	09/21/12	<1.7	33	<1.7	29	<1.7	<1.7	<1.7	
IW-3	10/30/09	-	-	220	480	-	-	<10	
	02/08/10	-	-	94	82	-	-		
	03/16/10	<25	120	230	220	<25	<25	<25	
	03/24/11	<0.5	47	22	13	<0.5	<0.5	<0.5	
	03/27/12	<0.5	13	8.2	4.5	<0.5	<0.5	<0.5	
	06/28/12	< 0.5	4.2	2.4	1.5	<0.5	<0.5	<0.5	
	09/21/12	<2.5	52	2.4	51	<2.5	<2.5	<2.5	
	07/03/13	<5.0	<20	31	170	<5.0	<5.0	<5.0	
IW-4	03/27/12	<0.5	9.7	8.4	4.0	<0.5	<0.5	<0.5	
	06/28/12	<0.5	4.7	2.3	0.62	<0.5	<0.5	< 0.5	
	09/21/12	<1.2	19	48	30	<1.2	<1.2	<1.2	
	07/03/13	<5.0	<20	87	150	<5.0	<5.0	<5.0	
IW-5	06/28/12	<0.5	2.0	<0.5	<0.5	<0.5	<0.5	<0.5	
	09/21/12	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	< 0.5	
	07/03/13	<0.5	<2.0	<0.5	1.5	<0.5	<0.5	<0.5	
GW ESL (NDW	V) GC	-	54,000	50,000	50,000	-	-	1,800	
GW ESL (NDW	V) AH	-	18,000	150	200	-	-	1,800	
DW - Ceiling \	/alue	-	50,000	50,000	50,000	-	-	5	
DW -VI		-	use soil gas	150	150	-	-	24,000	
DW Toxicity		-	12	0.05	0.5	-	-	13	

 Table 4 - Groundwater Analytical Data - Fuel Additives

Allen Project, 325 Martin Luther King Jr. Way, Oakland, CA

Notes:TAME - tert-amyl methyl ethermg/L= micrograms per literTBA - tert-butyl alcoholND<50 = non detect at respective reporting DIPE - diisopropyl ether</td>MTBE - methyl tertiary butyl etherETBE - ethyl tert-butyl ether

TABLE 5: SOIL GAS SAMPLE ANALYTICAL DATAAllen Project, 325 Martin Luther King Jr. Way, Oakland, CA

Probe/	Date	Sample	TPH-g	Benzene	EDB	1,2-DCA	Ethyl	MTBE	Toluene	Xylenes	Isopropyl
Sample	Collected	Depth			-		benzene				Alcohol**
ID		(ft bgs)					µg/m	3			
			T03/T015				Met	hod TO-1	5		
VS-1	7/14/2008	Subslab	<1800	<6.5	<16	NA	<8.8	<7.3	<7.7	<27	ND
	8/4/2008	Subslab	<1800	<6.5	<16	NA	<8.8	<7.3	<7.7	<27	ND
VS-1	7/14/2008	5	<1800	<6.5	<16	NA	<8.8	<7.3	<7.7	<27	ND
	8/4/2008	5	<1800	<6.5	<16	NA	<8.8	<7.3	<7.7	<27	ND
	7/3/2013	5	<1800	<6.5	<16	<8.2	<8.8	<7.3	<7.7	<27	ND
VS-2	7/14/2008	Subslab	<1800	<6.5	<16	NA	<8.8	<7.3	<7.7	<27	ND
	8/4/2008	Subslab	<1800	<6.5	<16	NA	<8.8	<7.3	<7.7	<27	ND
VS-2	7/14/2008	5	<1800	<6.5	<16	NA	<8.8	<7.3	<7.7	<27	ND
	8/4/2008	5	<1800	<6.5	<16	NA	<8.8	<7.3	<7.7	<27	ND
	7/3/2013	5	<1800	<6.5	<16	<8.2	45	<7.3	<7.7	290	ND
VS 2	7/1//2008	Subclab	~1800	~65	~16	ΝΛ	~ 9 9	~73	~77	~ 77	
v 3-3	8/4/2008	Subslab	<1800	< 6.5	<16	NΔ	< 8.8	<7.3	~77	~27	
	0/4/2000	Jubsidb	<1000	<0.5	<10		<0.0	<7.5	./</td <td>~27</td> <td></td>	~27	
VS-3	7/14/2008	5	<1800	<6.5	<16	NA	<8.8	<7.3	<7.7	<27	ND
	8/4/2008	5	<1800	<6.5	<16	NA	<8.8	<7.3	<7.7	<27	ND
	7/3/2013	5	<1800	<6.5	<16	<8.2	<8.8	<7.3	<7.7	<27	ND
VS-4	7/14/2008	Subslab	< 1800	< 6 5	< 16	NΔ	< 8.8	<73	<77	< 27	ND
10 4	8/4/2008	Subslab	<1800	< 6.5	<16	NA	< 8.8	<7.3	<7.7	<27	ND
	0, 1, 2000	0000000								/	
VS-4	7/14/2008	5	<1800	<6.5	<16	NA	<8.8	<7.3	<7.7	<27	ND
	8/4/2008	5	<1800	<6.5	<16	NA	<8.8	<7.3	<7.7	<27	ND
	7/3/2013	5	<1800	<6.5	<16	20	<8.8	<7.3	<7.7	<27	ND
VS-5	7/3/2013	5	<1800	<6.5	<16	<8.2	<8.8	<7.3	<7.7	<27	ND
ESLs			1,200,000	42	170	580	4,900	49,000	1,300,000	440,000	

Notes:

BOLD = value above reporting limit.

BOLD RED = value exceed ESL

Isopropyl alcohol (2-Propanol) is the tracer/leak check compound

* = Isopropyl Alchohol reporting limit 7/14/2008, 8/4/2008 ND<10 μ g/L, 7/03/2013 ND<50 mg/m³

ft bgs = feet below ground surface

 μ g/m3 = micrograms per cubic meter

TPH-g = total petroleum hydrocarbons as gasoline, 7/14/2008, 8/4/2008 by T03, 7/03/2013 by T015

MTBE = methyl tertiary-butyl ether

EDB = 1,2-Dibromoethane

1,2-DCA = 1,2-dichloroethane

ESLs = SF Bay RWQCB Environmental Screening Levels for shallow soil gas, commercial/industrial land use, Table E-2, May 2013
APPENDIX A

Drilling Permits

PUBLIC	399 Elmhurst Street Hayward, CA 94544-13 Telephone: (510)670-6633 Fax:(95 510)782-1939				
Application Approved	on: 05/28/2008 By jamesy	Permit Numbers: W2008-0302 to W2008-0305 Permits Valid from 06/11/2008 to 06/11/2008				
Application Id:	1212000325230	City of Project Site:Oakland				
Site Location: Project Start Date:	06/11/2008 06/11/2008	Completion Date:06/11/2008				
Scheduled Inspection:	06/11/2008 at 2:00 PM (Contact your inspector	spector, Vicky Hamlin at (510) 670-5443, to confirm.)				
Applicant:	AEI Consultants - Adrian Angel 3880 South Bascom Avenue #112 San Jose	CA 95124	Phone: 408-559-7600			
Property Owner:	Kimball and Jane Allen 2 Lone Tree Avenue, Mill Valley, CA 94941	011 00124	Phone: 415-383-2689			
Client: Contact:	** same as Property Owner ** Adrian Angel		Phone: 408-559-7600 Cell: 831-331-3547			

Receipt Number: WR2008-0183	Total Due: Total Amount Paid:	\$1200.00 \$1200.00
Payer Name : Peter McIntyre	Paid By: VISA	PAID IN FULL

Works Requesting Permits:

Specifications

Well Construction-Vapor Monitoring Well-Vapor Monitoring Well - 4 Wells Driller: Environmental Control Associates (ECA) - Lic #: 695970 - Method: DP

Work Total: \$1200.00

Specification	15						
Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2008- 0302	05/28/2008	09/09/2008	VS-1	2.75 in.	0.75 in.	4.00 ft	5.50 ft
W2008- 0303	05/28/2008	09/09/2008	VS-2	2.75 in.	0.75 in.	4.00 ft	5.50 ft
W2008- 0304	05/28/2008	09/09/2008	VS-3	2.75 in.	0.75 in.	4.00 ft	5.50 ft
W2008- 0305	05/28/2008	09/09/2008	VS-4	2.75 in.	0.75 in.	4.00 ft	5.50 ft

Specific Work Permit Conditions

1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.

2. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

3. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.

4. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours

prior to drilling.

5. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

6. Minimum surface seal thickness is two inches of cement grout placed by tremie

7. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.

8. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Well Con	nstruction-Vap	or Monito	ring Well-Va	apor Monito	oring Well	- 0 Wells		
Driller: Er	nvironmental	Control As	sociates (E	ECA) - Lic #	t: 695970 ·	- Method: DF	C	Work Total: ** \$0.00
						** Ca	ncelled Work.	Total amount adjusted. **
Specificati	ions							
Permit #	Issued Date	Expire Date	Owner Well	Hole Diam.	Casing	Seal Depth	Max. Depth	
			ld		Diam.			
* Cancelled	d *		VS-2	2.75 in.	0.75 in.	4.00 ft	5.50 ft	
Well Con	nstruction-Vap	or Monitor	ing Well-Va	apor Monito	oring Well	- 0 Wells		
Driller: Er	nvironmental	Control As	sociates (E	ECA) - Lic #	: 695970 ·	- Method: DF	C	Work Total: ** \$0.00
						** Ca	ncelled Work.	Total amount adjusted. **
Specificati	ions							
Permit #	Issued Date	Expire Date	Owner Well	Hole Diam.	Casing	Seal Depth	Max. Depth	
			ld		Diam.			
* Cancelled	d *		VS-3	2.75 in.	0.75 in.	4.00 ft	5.50 ft	
Well Con	nstruction-Vap	or Monitor	ing Well-Va	apor Monito	oring Well	- 0 Wells		
Driller: Er	nvironmental	Control As	sociates (E	ECA) - Lic #	: 695970 ·	- Method: DF	C	Work Total: ** \$0.00
						** Ca	incelled Work.	Total amount adjusted. **
Specificati	ions							
Permit #	Issued Date	Expire Date	Owner Well	Hole Diam.	Casing	Seal Depth	Max. Depth	
			ld		Diam.			
* Cancelled	d *		VS-4	2.75 in.	0.75 in.	4.00 ft	5.50 ft	

PUBLIC	399 Elmhurst Street Hayward, CA 94544-1399 Telephone: (510)670-6633 Fax:(51	5 0)782-1939			
Application Approved	l on: 06/11/2013 By jamesy	Permit Numbers: W2013-04 Permits Valid from 06/19/2013 to 06/19/20	32 13		
Application Id: Site Location:	1370468342383 325 Martin Luther King Jr. Way	City of Project Site:Oakland			
Project Start Date: Assigned Inspector:	Oakland, CA 06/19/2013 Contact Steve Miller at (510) 670-5517 or stevem	Completion Date:06/19/2013 em@acpwa.org			
Applicant:	AEI Consultants - Robert Flory	Phone: 925-746-6000 x1122			
Property Owner:	2500 Camino Diablo, Walnut Creek, CA 94597 Jane Allen	Phone:			
Client: Contact:	** same as Property Owner ** Robert Flory	Phone: 925-746-6000 x1122 Cell: 925-457-7517			
	Receipt Number: WR2013-0207	Total Due: \$265.0	00 00		

Payer Name : Robert F. Flory Paid By: MC

Works Requesting Permits:

Well Construction-Vapor monitoring well-Vapor monitoring well - 1 Wells Driller: Environmental Control Associates - Lic #: 695970 - Method: Hand

Work Total: \$265.00

PAID IN FULL

Specifications

Permit #	Issued Date	Expire Date	Owner Well	Hole Diam.	Casing	Seal Depth	Max. Depth
			ld		Diam.		
W2013-	06/11/2013	09/17/2013	VS-5	2.25 in.	0.25 in.	4.00 ft	5.50 ft
0432							

Specific Work Permit Conditions

1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.

2. Compliance with the above well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate state reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days, including permit number and site map.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

5. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

6. No changes in construction procedures or well type shall change, as described on this permit application. This permit may be voided if it contains incorrect information.

7. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.

8. Applicant shall contact Steve Miller for an inspection time at (510) 670-5517 or email to stevem@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

9. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

11. Vapor monitoring wells above water level constructed with tubing maybe be backfilled with pancake-batter consistency bentonite. Minimum surface seal thickness is two inches of cement grout around well box.

Vapor monitoring wells above water level constructed with pvc pipe shall have a minimum seal depth (Neat Cement Seal) of 2 feet below ground surface (BGS). Minimum surface seal thickness is two inches of cement grout around well box. All other conditions for monitoring well construction shall apply.

APPENDIX B

Vapor Point Boring Logs

Log of Boring VS-1

Date(s) Drilled June 4, 2008	Logged By Adrian Angel	Checked By Robert Flory		
Drilling Method Solid Stem Auger	Drill Bit Size/Type 1.5 inch	Total Depth of Borehole 5.5 feet bgs		
Drill Rig Type rotohammer	Drilling Contractor AEI Consultants	Approximate Surface Elevation		
Groundwater Level and Date Measured Not Encountered ATD	Sampling Method(s) None	Hammer Data		
Borehole Backfill	Location			

Elevation (feet)	, Depth (feet)	Sample Type	Sample Number	Sampling Resistance, blows/ft	Relative Consistency	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	Well Log	REMARKS AND OTHER TESTS
	Ů							Concrete		⊗ ₩	 0.25-inch male swagelock fitting with 0.25-inch swagekock cap
LSGWT (277915). Claktand - AA(G). GWM Events + Reports/2013/VS well. logs/VS wells. hgs. [2-Horing Log. (2 Jab), tpi]						SM		Clayey Silty Sand, dark brown, moderately firm, dry			 Neat cement grout 0.25-inch ID stainless steel tubing Hydrated bentonite chips 2/12 Monterey Sand 3-inch long stainless steel 0.0057-inch mesh implant

Log of Boring VS-2

Date(s) Drilled June 4, 2008	Logged By Adrian Angel	Checked By Robert Flory		
Drilling Method Solid Stem Auger	Drill Bit Size/Type 1.5 inch	Total Depth of Borehole 5.5 feet bgs		
Drill Rig Type rotohammer	Drilling Contractor AEI Consultants	Approximate Surface Elevation		
Groundwater Level and Date Measured Not Encountered ATD	Sampling Method(s) None	Hammer Data		
Borehole Backfill	Location			

Elevation (feet)	 Depth (feet) 	Sample Type	Sample Number	Sampling Resistance, blows/ft	Relative Consistency	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	Well Log	REMARKS AND OTHER TESTS
						SM		Clayey Silty Sand, dark brown, moderately firm, dry			 0.25-inch male swagelock fitting with 0.25-inch swagekock cap Neat cement grout 0.25-inch ID stainless steel tubing Hydrated bentonite chips 2/12 Monterey Sand 3-inch long stainless steel 0.0057-inch mesh implant
1											

Log of Boring VS-3

Date(s) Drilled June 4, 2008	Logged By Adrian Angel	Checked By Robert Flory		
Drilling Method Solid Stem Auger	Drill Bit Size/Type 1.5 inch Total Depth of Borehole 5.5 feet bgs			
Drill Rig Type rotohammer	Drilling Contractor AEI Consultants	Approximate Surface Elevation		
Groundwater Level and Date Measured Not Encountered ATD	Sampling Method(s) None	Hammer Data		
Borehole Backfill	Location			

Elevation (feet)	, Depth (feet)	Sample Type	Sample Number	Sampling Resistance, blows/ft	Relative Consistency	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	Well Log	REMARKS AND OTHER TESTS
len SGWI (277815) Oakland - AAV(G) GWM Events + Reports/2013/VS well logs/VS wells bgs.[2:Boung Log (2 lab).tpl]	5					SM		Silty Sand, medium brown, poorly graded, very slightly moist			 0.25-inch swagekock cap Neat cement grout 0.25-inch ID stainless steel tubing 0.25-inch ID stainless steel tubing Hydrated bentonite chips 2/12 Monterey Sand 3-inch long stainless steel 0.0057-inch mesh implant
N.X.											

Log of Boring SV-4

Date(s) Drilled June 4, 2008	Logged By Adrian Angel	Checked By Robert Flory				
Drilling Method Solid Stem Auger	Drill Bit Size/Type 1.5 inch	Total Depth of Borehole 5.5 feet bgs				
Drill Rig Type rotohammer	Drilling Contractor AEI Consultants	Approximate Surface Elevation				
Groundwater Level and Date Measured Not Encountered ATD	Sampling Method(s) None	Hammer Data				
Borehole Backfill	Location					

Elevation (feet)	 Depth (feet) 	Sample Type	Sample Number	Sampling Resistance, blows/ft	Relative Consistency	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	Well Log	REMARKS AND OTHER TESTS
	Ū							Concrete		⊗+⊗	0.25-inch male swagelock fitting with
1 StaWI (277915). Dakland - AA(G) GiWM Events + Reports/2013/VS well logs/VS wells.ngs.(2-Horing Log. (2-Horing Log	5					SM		Silty Sand, light brown, clayey, silt - fine grained, subrounded, medium dense			• Neat cement grout • Neat cement grout • 0.25-inch ID stainless steel tubing • Hydrated bentonite chips • 2/12 Monterey Sand • 3-inch long stainless steel 0.0057-inch mesh implant

Log of Boring VS-5

Date(s) Drilled July 2, 2013	Logged By John Sigg	Checked By Robert Flory				
Drilling Method Bucket Auger	Drill Bit Size/Type 3.5 inch	Total Depth of Borehole 5.5 feet bgs				
Drill Rig Type Hand Auger	Drilling Contractor AEI Consultants	Approximate Surface Elevation				
Groundwater Level and Date Measured Not Encountered ATD	Sampling Method(s) None	Hammer Data				
Borehole Backfill	Location					

SM Silly Sand, light brown, clayey, sill - fine grained, subrounded, medium dense 0.25-inch male swagelock fitting with 0.25-inch swagekock cap SM Silly Sand, light brown, clayey, sill - fine grained, subrounded, medium dense 0.25-inch ID stainless steel tubing Neat cement grout Neat cement grout Neat cement grout Silly Sand, light brown, clayey, sill - fine 0.25-inch ID stainless steel tubing Neat cement grout Neat cement grout Silly Sand, solution of Boring at 5.5 feet bgs 2/12 Monterey Sand Sand Bottom of Boring at 5.5 feet bgs Neat cement grout	Elevation (feet)	, Depth (feet)	Sample Type	Sample Number	Sampling Resistance, blows/ft	Relative Consistency	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	Well Log	REMARKS AND OTHER TESTS
	Allen ScaWI (277915). Dakland - AAN(G) GIVM Events + Keportsvitri XIVS well logsiVS wells bgs (2-tsoring Log (2 lab), tpi)						SM		Silty Sand, light brown, clayey, silt - fine grained, subrounded, medium dense			 0.25-inch male swagelock fitting with 0.25-inch swagekock cap 0.25-inch ID stainless steel tubing Neat cement grout Hydrated bentonite chips 2/12 Monterey Sand 3-inch long stainless steel 0.0057-inch mesh implant

APPENDIX C

2008 Soil Vapor Sampling

McCampbell An "When Ouality"	nalytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
AEI Consultants	Client Project ID: #27791	5; Allen	Date Sampled:	07/14/08			
2500 Camino Diablo, Ste. #200			Date Received:	07/16/08			
Walnut Creek, CA 94597	Client Contact: Adrian A	ngel	Date Reported:	07/22/08			
	Client P.O.:		Date Completed:	07/22/08			

WorkOrder: 0807382

July 23, 2008

Dear Adrian:

Enclosed within are:

- 1) The results of the **9** analyzed samples from your project: **#277915; Allen,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

McCA Telephone: (925)	MPBEI 1534 Pittsb www.m 252-9262	Willow I urg, CA 9 uin@mcci	ALYTICAL INC Pass Road 94565-1701 ampbell.com Fax: (92:	CHAIN OF CUSTODY RECORD TURN AROUND TIME RUSH 24 HR 48 HR 72 HR 5 DAY EDF Required? Coett (Normal) No Write On (DW) No										
Report To: Adrian A	ngel		Bill To: Sa Ma	P	Lob Use Only									
Company: AEI Cov	sulta	nts						P	ressurizatio	on Gas				
2500 Camino	Diab	0		1	Pressur	ized By	Date							
Walnut Creek, UA 94597 E-Mail: gangel @aeiconsultante									N2	He				
Tele: (925) 283-6000 Fax: (925)9283-612)									3. (¹⁹⁴)					
Project #: 277915 Project Name: Allen														
Project Location: 325	Martin	(uller	King Tre War	Dakland A										
Sampler Signature:		1	Finds, way	Unic invert of 1	Notes: plate	abre all and sh	s for		(MARY \$10) 2023					
Field Sample ID	Collection				OTPH-9 55 TO-	nol t ethylene dib	romide l	- TO-1	5*	-				
(Location)			Canister SN#	Sampler Kit SN#	×		C	anister Pro	hister Pressure/Vacuur					
	Date Tin				Anatysis	Requested (Prokow	Initial	Final	Receipt	Final (psi)				
VS-1-Deep	7/11/08	2:00			TPH-9 by TO-3	3, MBTEX+2-programo + e	-30	-5		PAN				
VS-2-Deep	ľ	2:408				by TD-15	-30	-5		Strangert, Hit				
VS-3-Deep		1:008					-30	-5						
VS-3-Deep-Pup		1.30P					-30	-2	語のない					
VS-4-Deep		3:008					- 30	-5		El a 20 carta				
VS-1-Shallow		12:00												
VS-2-Shallow		12:359								Parsin 1				
15-3-Shallow		3:25P							ST. O.L.					
K-4- Shallow	Y	4:101			4	/	-							
P. H. 11 19	-								1983年代1月1日年代 1月1日日 - 1月1日日 1月1日日 - 1月1日日	and the second				
Reinquisbed By:	Date:	3:00	Received By:	Vall	Temp (°C) : Work Order #:									
Relinquished By:	Date:	Time:	Received By?		Custody Seals Intact?: Yes No None									
Relinquished By:	Date:	Time:	Received By:		Shipped Via:	Custody Seals Intact7: Yes No None None Shipped Via:								

0. 9272

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 25	g, CA 94565-1701 2-9262					Work	Order	0807	382	(Client	Code: A	AEL				
			WriteOn	EDF	Γ	Excel		Fax		🖌 Email		Har	dCopy	🗌 Thi	rdParty	☐ J.	-flag
Report to:							Bill to:						Req	juested	TAT:	5	days
Adrian Angel AEI Consulta 2500 Camino Walnut Creel (408) 559-760	nts o Diablo, Ste. #200 k, CA 94597 0 FAX (408) 559-7601	Email: cc: PO: ProjectNo:	aangel@aeic #277915; Alle	onsultants.com n			De AE 25 Wa dm	nise M I Cons 00 Can alnut Cr nockel@	ockel ultants nino Dia reek, Ca 2aeico	ablo, St A 94593 nsultan	te. #20 7 ts.com	10 1	Dat Dat	te Rece te Prin	vived: ted:	07/16/ 07/16/	/2008 /2008
									Req	uested	Tests	(See le	gend b	pelow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0807382-001	VS-1-Deep		Soil Vapor	7/14/2008 14:00		А	А										
0807382-002	VS-2-Deep		Soil Vapor	7/14/2008 14:40			А										
0807382-003	VS-3-Deep		Soil Vapor	7/14/2008 13:00			Α										
0807382-004	VS-3-Deep-Dup	1	Soil Vapor	7/14/2008 13:30			А										
0807382-005	VS-4-Deep		Soil Vapor	7/14/2008 15:00			А										
0807382-006	VS-1-Shallow		Soil Vapor	7/14/2008 12:00			А										
0807382-007	VS-2-Shallow		Soil Vapor	7/14/2008 12:35			А										
0807382-008	VS-3-Shallow		Soil Vapor	7/14/2008 15:25			А										

Test Legend:

0807382-009

1	PREDF REPORT	2	TO
6		7	
11		12	

TO3_SOILGAS	

Soil Vapor

3	
8	

7/14/2008 16:10

А

4	
9	

5		 			
10		 			

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A contain testgroup.

VS-4-Shallow

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Melissa Valles

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date an	d Time Received:	07/16/08 3	:50:49 PM
Project Name:	#277915; Allen				Checkli	ist completed and r	eviewed by:	Melissa Valles
WorkOrder N°:	0807382	Matrix Soil Vapor			Carrier:	Client Drop-In		
		<u>Chain</u>	of Cu	stody (COC	:) Informat	ion		
Chain of custody	/ present?		Yes	\checkmark	No 🗆			
Chain of custody	v signed when relinqu	ished and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample	labels?	Yes		No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by C	lient on COC?	Yes	\checkmark	No 🗆			
Sampler's name	noted on COC?		Yes	\checkmark	No 🗆			
		S	ample	Receipt In	ormation			
Custody seals in	tact on shipping conta	ainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good cond	dition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes		No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes		No 🗌			
		Sample Prese	rvatio	n and Hold	Time (HT)	Information		
All samples rece	ived within holding tim	ne?	Yes		No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ice / no bubbles?	Yes			No VOA vials subm	itted 🗹	
Sample labels cl	necked for correct pre	servation?	Yes		No 🗌			
TTLC Metal - pH	acceptable upon rece	ipt (pH<2)?	Yes		No 🗆		NA 🗹	

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbell Analyti	cal, Inc.	We	1534 Willow P b: www.mccampl Telephone: 8	ass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccam 77-252-9262 Fax: 925-252-92	1701 pbell.com 69				
AEI Cons	sultants	Client Project ID:	#277915; Al	len	Date Sampled: 07/14	/08				
2500 Cam	ino Diablo, Ste. #200				Date Received: 07/16	/08				
	· · · · · · · · · · · · · · · · · · ·	Client Contact:	Adrian Angel		Date Extracted: 07/18/08-07/23/08					
Walnut C	reek, CA 94597	Client P.O.:	Date Analyzed 07/18/08-07/23/08							
Extraction met	hod TO15	Leak Chec Analytica	k Compound [*] 1 methods TO15	ķ	Work O	rder: 080	07382			
Lab ID	Client ID	Matrix	Initial Pressure	Final Pressur	e Isopropyl Alcohol	DF	% SS			
001A	VS-1-Deep	SoilVapor	11.83	23.6	ND	1	N/A			
002A	VS-2-Deep	SoilVapor	12.12	24.18	ND	1	N/A			
003A	VS-3-Deep	SoilVapor	12.75	25.38	ND	1	N/A			
004A	VS-3-Deep-Dup	SoilVapor	12.52	25.04	ND	1	N/A			
005A	VS-4-Deep	SoilVapor	11.96	23.83	ND	1	N/A			
006A	VS-1-Shallow	SoilVapor	11.86	23.72	ND	1	N/A			
007A	VS-2-Shallow	SoilVapor	11.76	23.46	ND	1	N/A			
008A	VS-3-Shallow	SoilVapor	11.51	23.02	ND	1	N/A			
009A	VS-4-Shallow	SoilVapor	11.65	23.2	ND	1	N/A			
	Reporting Limit for DF =1;	W	psia	psia	NA	N	A			
	ND means not detected at or above the reporting limit	SoilVapor	psia	psia	10	με	g/L			

* leak check compound is reported in $\mu g/L$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

The IPA reference is:

DTSC, Advisory-Active Soil Gas Investigations, January 28, 2003, page 10, section 2.4.2

"Tracer compounds, such as ...isopropanol..., may be used as leak check compounds, if a detection limit of 10 ug/L or less can be achieved." This implies that 10ug/L is the cut off definition for a leak, which equals 10,000 ug/m3. The other low IPA hits may be due to extremely small leaks or may be naturally occuring in soil gas, particularly at biologically active sites.

DHS ELAP Certification 1644

McCampbell An "When Ouality	nalyti _{Counts"}	cal, Ind	<u>C.</u>		1534 Willow P Web: www.mccamp Telephone: 8	ass Road, Pittsburg, CA bell.com E-mail: main 77-252-9262 Fax: 925	94565-1701 @mccampbell.co 5-252-9269	om	
AEI Consultants		Client Pro	oject ID:	#27791	5; Allen	Date Sampled:	07/14/08		
2500 Carrier D'111, Str. #200						Date Received:	07/16/08		
2500 Camino Diabio, Ste. #200		Client Co	ontact: A	drian A	ngel	Date Extracted:	07/18/08-0	7/23/08	
Walnut Creek, CA 94597		Client P.C	D.:			Date Analyzed	07/18/08-07/23/08		
		Volatile O	rganic Co	mpour	nds in ug/m ^{3*}				
Extraction Method: TO15		Analy	ytical Method	1: TO15	ιας τη μ β τη		Work Order:	0807382	
Lab ID	08073	82-001A	0807382	-002A	0807382-003A	0807382-004A			
Client ID	VS-	1-Deep	VS-2-D	Deep	VS-3-Deep	VS-3-Deep-Dup			
Matrix	Soil	Vapor	Soil Va	apor	Soil Vapor	Soil Vapor	Reporting DF	Limit for =1	
Initial Pressure (psia)	1.83	12.1	2	12.75	12.52	and Pressu (Final/In	itial) = 2		
Final Pressure (psia)	Final Pressure (psia) 23.6		24.1	8	25.38	25.04			
DF		1	1		1	1	SoilVapor	W	
Compound		Concentration			entration		μg/m³	ug/L	
Benzene		ND NI			ND	ND	6.5	NA	
1,2-Dibromoethane (EDB)		ND	ND		ND	ND	16	NA	
Ethylbenzene		ND	ND		ND	ND	8.8	NA	
Methyl-t-butyl ether (MTBE)		ND	ND		ND	ND	7.3	NA	
Toluene		ND	ND		ND	ND	7.7	NA	
Xylenes		ND	ND		ND	ND	27	NA	
		Surro	ogate Rec	overies	s (%)				
%SS1:		91	92		92	92			
%SS2:		100	101		102	102			
%SS3:		91	93		92	93			
Comments									
Comments vapor samples are reported in µg/m³. ID means not detected above the reporting limit; N/A means analyte not applicable to this analysis.									

Angela Rydelius, Lab Manager

McCampbell An "When Ouality	nalyti _{Counts"}	cal, Inc	2.		1534 Willow P Web: www.mccamp Telephone: 8	ass Road, Pittsburg, CA bell.com E-mail: main 77-252-9262 Fax: 92:	94565-1701 @mccampbell.c 5-252-9269	om	
AEI Consultants		Client Pro	ject ID:	#27791	5; Allen	Date Sampled:	07/14/08		
2500 Constant D'111, Str. #200						Date Received:	07/16/08		
2500 Camino Diabio, Ste. #200		Client Co	ntact: A	drian A	ngel	Date Extracted:	07/18/08-0	7/23/08	
Walnut Creek, CA 94597		Client P.C).:			Date Analyzed	07/18/08-07/23/08		
	,	Volatile Or	rganic Co	mpour	ds in µg/m ^{3*}				
Extraction Method: TO15		Analy	tical Method	1: TO15	м» ш µg/ш		Work Order:	0807382	
Lab ID	08073	82-005A	0807382	-006A	0807382-007A	0807382-008A			
Client ID	VS-	4-Deep	VS-1-Sh	allow	VS-2-Shallow	VS-3-Shallow			
Matrix	Soil	Vapor	Soil Va	apor	Soil Vapor	Soil Vapor	Reporting DF	=1	
Initial Pressure (psia)	1.96	11.8	6	11.76	11.51	(Final/In	itial) = 2		
Final Pressure (psia)	Final Pressure (psia) 23.83		23.7	2	23.46	23.02			
DF	1	1	1		1	SoilVapor	W		
Compound		Concentration					μg/m³	ug/L	
Benzene	1	ND ND			ND	ND	6.5	NA	
1,2-Dibromoethane (EDB)		ND	ND		ND	ND	16	NA	
Ethylbenzene]	ND	ND		ND	ND	8.8	NA	
Methyl-t-butyl ether (MTBE)]	ND	ND		ND	ND	7.3	NA	
Toluene	1	ND	ND		ND	ND	7.7	NA	
Xylenes		ND	ND		ND	ND	27	NA	
		Surro	gate Rec	overies	s (%)				
%SS1:		92	100)	94	94			
%SS2:		102	106	5	102	102			
%SS3:		93	99		94	94			
Comments									
Comments vapor samples are reported in µg/m³. VD means not detected above the reporting limit; N/A means analyte not applicable to this analysis.									

Angela Rydelius, Lab Manager

McCampbell Ar	nalyti _{Counts"}	<u>cal, Inc.</u>	2		1534 Willow F Web: www.mccamp Telephone: 8	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
AEI Consultants		Client Proje	ect ID: i	#27791	5; Allen	Date Sampled:	07/14/08					
2500 G						Date Received:	07/16/08					
2500 Camino Diablo, Ste. #200		Client Con	tact: Ad	lrian A	ngel	Date Extracted:	07/18/08-0	7/23/08				
Walnut Creek, CA 94597		Client P.O.:	:		Date Analyzed 07/18/08-07/23/08							
		Volatile Org	anic Co	mnour								
Extraction Method: TO15		Analytic	cal Method	: TO15	ius in µg/m		Work Order:	0807382				
Lab ID	08073	82-009A										
Client ID	VS-4	Shallow					-					
Matrix So		Vapor					- Reporting DF	Limit for =1				
Initial Pressure (psia)	1	1.65					and Press	ure Ratio itial) = 2				
Final Pressure (psia)		3.2					-	itiui) – 2				
	Final Pressure (psia) 2											
DF		1					SoilVapor	W				
Compound												
Compound				Conce	entration	-	µg/m³	ug/L				
Compound Benzene		ND		Conce	entration		μg/m ³ 6.5	ug/L NA				
Compound Benzene 1,2-Dibromoethane (EDB)		ND ND		Conce	entration		μg/m ³ 6.5 16	ug/L NA NA				
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene		ND ND ND		Conce	entration		μg/m ³ 6.5 16 8.8	ug/L NA NA NA				
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE)		ND ND ND ND ND ND		Conce	entration		μg/m ³ 6.5 16 8.8 7.3	ug/L NA NA NA NA				
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene		ND ND ND ND ND ND ND ND		Conce	entration		μg/m ³ 6.5 16 8.8 7.3 7.7	ug/L NA NA NA NA				
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes		ND N		Conce	entration		μg/m³ 6.5 16 8.8 7.3 7.7 27	ug/L NA NA NA NA NA				
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes		ND Surrog	ate Reco	Conce	entration		μg/m³ 6.5 16 8.8 7.3 7.7 27	ug/L NA NA NA NA NA				
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1:		ND ND ND ND ND Surrog 100	ate Reco	Conce	entration		μg/m ³ 6.5 16 8.8 7.3 7.7 27	ug/L NA NA NA NA NA				
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2:		ND ND ND ND ND Surrog 100	ate Reco	Conce	entration		μg/m ³ 6.5 16 8.8 7.3 7.7 27	ug/L NA NA NA NA NA				
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3:		ND 100 100 100 100 100 100 100 100 100 10	ate Reco	Conce	entration		μg/m ³ 6.5 16 8.8 7.3 7.7 27	ug/L NA NA NA NA NA				
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments		ND 100 100 100 100 100 100 100 100 100 10	ate Reco	Conce	entration		μg/m ³ 6.5 16 8.8 7.3 7.7 27	ug/L NA NA NA NA NA				
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments *vapor samples are reported in µg/m ³ .		ND ND ND ND ND ND ND ND 100 100 100 100 100 100 100 100 100 10	ate Reco	Conce	entration		μg/m ³ 6.5 16 8.8 7.3 7.7 27	ug/L NA NA NA NA NA				
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments *vapor samples are reported in µg/m ³ . ND means not detected above the reporti	ng limit;	ND ND ND ND ND ND ND ND 100 108 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ate Reco	Conce overies	entration	S.	μg/m ³ 6.5 16 8.8 7.3 7.7 27 	ug/L NA NA NA NA				

McCampbell Ar	nalyti _{Counts"}	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
AEI Consultants		Client Pr	oject ID:	#27791	5; Allen	Date Sampled:	07/14/08		
2500 C . D: 11 C						Date Received:	07/16/08		
2500 Camino Diablo, Ste. #200		Client Co	ontact: A	drian A	ngel	Date Extracted: 07/18/08-07/23/08			
Walnut Creek, CA 94597		Client P.0	D.:		-	Date Analyzed	Date Analyzed 07/18/08-07/23/08		
		Volatile C)rganic Co	mnou	nds in nL/L*				
Extraction Method: TO15 Analytical Method: TO15 Work									
Lab ID	08073	82-001A	0807382	-002A	0807382-003A	0807382-004A			
Client ID	VS-	1-Deep	VS-2-D	Deep	VS-3-Deep	VS-3-Deep-Dup			
Matrix	Soil	Vapor	Soil Va	apor	Soil Vapor	Soil Vapor	Reporting	Limit for =1	
Initial Pressure (psia)	1	1.83	12.1	2	12.75	12.52	(Final/In	itial) = 2	
Final Pressure (psia)	Final Pressure (psia)23.6		24.1	8	25.38	25.04			
DF		1	1		1	1	SoilVapor	W	
				~					
Compound				Conce	entration		nL/L	ug/L	
Benzene		ND	ND	Conce	entration ND	ND	nL/L 2.0	ug/L NA	
Compound Benzene 1,2-Dibromoethane (EDB)		ND	ND	Conce	ntration ND ND	ND ND	nL/L 2.0 2.0	ug/L NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene		ND ND ND	ND ND ND	Conce	ntration ND ND ND	ND ND ND	nL/L 2.0 2.0 2.0	ug/L NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE)		ND ND ND ND	ND ND ND		ntration ND ND ND ND	ND ND ND ND	nL/L 2.0 2.0 2.0 2.0 2.0	ug/L NA NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene		ND ND ND ND ND	ND ND ND ND		entration ND ND ND ND ND	ND ND ND ND ND	nL/L 2.0 2.0 2.0 2.0 2.0 2.0	ug/L NA NA NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes		ND ND ND ND ND ND	ND ND ND ND ND		ntration ND ND ND ND ND ND	ND ND ND ND ND ND	nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes		ND ND ND ND ND Surre	ND ND ND ND ND	overies	ND ND ND ND ND ND ND S (%)	ND ND ND ND ND ND	nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1:		ND ND ND ND ND Surre	ND ND ND ND ND Ogate Rec	overies	entration ND ND ND ND ND ND S (%)	ND ND ND ND ND ND	nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2:		ND ND ND ND ND 91 100	ND ND ND ND Ogate Rec 92	overies	ND ND ND ND ND ND S (%) 92 102	ND ND ND ND ND ND 92 102	nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3:		ND ND ND ND ND 91 100 91	ND ND ND ND 0gate Rec 92 101 93	overies	ND ND ND ND ND ND S (%) 92 102 92	ND ND ND ND ND 92 102 93	nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments		ND ND ND ND ND 91 100 91	ND ND ND ND 0gate Rec 92 101 93	overies	ND ND ND ND ND ND S(%) 92 102 92	ND ND ND ND ND 92 102 93	nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments *vapor samples are reported in nL/L.		ND ND ND ND 91 100	ND ND ND ND 0gate Rec 92 101 93	overies	ND ND ND ND ND ND S (%)	ND ND ND ND ND 92 102 93	nL/L 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments *vapor samples are reported in nL/L. ND means not detected above the reporti	ng limit;	ND ND ND ND 91 100 91	ND ND ND ND Ogate Rec 92 101 93	t applica	entration ND ND ND ND ND ND S (%)	ND ND ND ND ND ND 92 102 93	nL/L 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA	

McCampbell Ar	nalyti _{Counts"}	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
AEI Consultants		Client Pr	oject ID:	#27791	5; Allen	Date Sampled:	07/14/08			
2500 Carrier D'11, 84, #200						Date Received:	07/16/08			
2500 Camino Diablo, Ste. #200		Client Co	ontact: A	drian A	ngel	Date Extracted: 07/18/08-07/23/08				
Walnut Creek, CA 94597		Client P.0	D.:			Date Analyzed	07/18/08-0	7/23/08		
		Volatile C)rganic Co	mnou	nds in nL/L*					
Extraction Method: TO15		Anal	ytical Method	1: TO15			Work Order:	0807382		
Lab ID	08073	82-005A	0807382	-006A	0807382-007A	0807382-008A				
Client ID	VS-	4-Deep	VS-1-Sh	allow	VS-2-Shallow	VS-3-Shallow		T • • • •		
Matrix	Soil	Vapor	Soil Va	apor	Soil Vapor	Soil Vapor	DF	=1		
Initial Pressure (psia)	1.96	11.8	6	11.76	11.51	(Final/In	itial) = 2			
Final Pressure (psia)	2	23.83		2	23.46	23.02				
DF		1	1		1	1	SoilVapor	W		
Compound				Conce		nL/L	ug/L			
Benzene]	ND	ND)	ND	ND	2.0	NA		
Benzene 1,2-Dibromoethane (EDB)]	ND ND	ND ND)	ND ND	ND ND	2.0 2.0	NA NA		
Benzene 1,2-Dibromoethane (EDB) Ethylbenzene		ND ND ND	ND ND ND)))	ND ND ND	ND ND ND	2.0 2.0 2.0	NA NA NA		
Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE)		ND ND ND ND	ND ND ND	, , ,	ND ND ND ND	ND ND ND ND	2.0 2.0 2.0 2.0	NA NA NA NA		
Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene		ND ND ND ND	ND ND ND ND	, , , ,	ND ND ND ND ND	ND ND ND ND ND	2.0 2.0 2.0 2.0 2.0 2.0	NA NA NA NA		
Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes		ND ND ND ND ND	ND ND ND ND ND	• • • •	ND ND ND ND ND ND	ND ND ND ND ND ND	2.0 2.0 2.0 2.0 2.0 6.0	NA NA NA NA NA		
Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes		ND ND ND ND ND Surre	ND ND ND ND ND	overies	ND ND ND ND ND S (%)	ND ND ND ND ND ND	2.0 2.0 2.0 2.0 2.0 6.0	NA NA NA NA NA		
Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1:		ND ND ND ND ND Surre	ND ND ND ND ND ND ND	overies	ND ND ND ND ND S (%)	ND ND ND ND ND ND 94	2.0 2.0 2.0 2.0 2.0 6.0	NA NA NA NA NA		
Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2:		ND ND ND ND ND 92 102	ND ND ND ND ND Ogate Rec 100	overies	ND ND ND ND ND S(%)	ND ND ND ND ND ND 94 102	2.0 2.0 2.0 2.0 2.0 6.0	NA NA NA NA NA		
Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3:		ND ND ND ND 92 102 93	ND ND ND ND ND Ogate Rec 100 106 99	o overie 0	ND ND ND ND ND S (%) 94 102 94	ND ND ND ND ND ND 94 102 94	2.0 2.0 2.0 2.0 2.0 6.0	NA NA NA NA NA		
Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments		ND ND ND ND ND 92 102 93	ND ND ND ND ND Ogate Rec 100 100 99	overie:	ND ND ND ND ND S (%) 94 102 94	ND ND ND ND ND ND 94 102 94	2.0 2.0 2.0 2.0 6.0	NA NA NA NA		

McCampbell Ar	nalyti _{Counts"}	<u>cal, Inc.</u>		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
AEI Consultants		Client Project I	D: #27791	5; Allen	Date Sampled:	07/14/08			
					Date Received:	07/16/08			
2500 Camino Diablo, Ste. #200		Client Contact	: Adrian A	ngel	Date Extracted:	07/18/08-0	7/23/08		
Walnut Creek, CA 94597		Client P O ·		Date Analyzed 07/18/08 07/23/08					
			Common	07/10/00 0	1123/00				
Extraction Method: TO15		Analytical M	fethod: TO15	IUS III IIL/L [*]		Work Order:	0807382		
Lab ID	08073	82-009A							
Client ID	VS-4-	Shallow							
Matrix	Soil	Vapor				Reporting DF	Limit for =1		
Initial Pressure (psia)	1	1.65				and Press	ure Ratio		
Final Pressure (psia)		2.2				(1/11/11)	(11a1) = 2		
		.3.2							
DF		1				SoilVapor	W		
Compound									
Compound			Conce	entration		nL/L	ug/L		
Compound Benzene	1	ND	Conce	entration		nL/L 2.0	ug/L NA		
Compound Benzene 1,2-Dibromoethane (EDB)	1	ND D	Conce	entration		nL/L 2.0 2.0	ug/L NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene	1	ND ND ND	Conce	entration		nL/L 2.0 2.0 2.0	ug/L NA NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE)		ND ND ND ND ND	Conce	entration		nL/L 2.0 2.0 2.0 2.0 2.0	ug/L NA NA NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene		ND N	Conce			nL/L 2.0 2.0 2.0 2.0 2.0 2.0	ug/L NA NA NA NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes		ND N	Conce			nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes		ND Surrogate	Conco	entration		nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1:		ND N	Conce	entration		nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2:		ND	Conce	entration		nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3:		ND	Conce	entration		nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments		ND	Conce	entration		nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments *vapor samples are reported in nL/L.		ND	Conce	entration		nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments *vapor samples are reported in nL/L. ND means not detected above the reporti	ng limit;	ND	Conce Recoveries te not applica	entration	S.	nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA		

	McCampbell Analyti	ical, Inc.	We	1534 Willow Pa b: www.mccampbo Telephone: 87	ss Road, Pittsburg, CA 94565- ell.com E-mail: main@mccam 7-252-9262 Fax: 925-252-92	1701 npbell.com 69			
AEI Consul	ltants	Client Project ID:	#277915; Al	len	Date Sampled: 07/14	/08			
2500 Camin	o Diablo. Ste #200			-	Date Received: 07/16	/08			
2500 Camin	0 Diabio, Stc. #200	Client Contact: A	Adrian Angel		Date Extracted: 07/21/	/08			
Walnut Cree	ek, CA 94597	Client P.O.:	Date Analyzed 07/21/08						
	Gasoline Range	(C6-C12) Volatile	le Hydrocarbons as Gasoline in μg/m³*						
Extraction method	d TO3	Analytical	methods TO3		Work O	rder: 08	07382		
Lab ID	Client ID	Matrix I	nitial Pressure	Final Pressure	TPH(g)	DF	% SS		
001A	VS-1-Deep	SoilVapor	11.83	23.6	ND	1	N/A		
002A	VS-2-Deep	SoilVapor	12.12	24.18	ND	1	N/A		
003A	VS-3-Deep	SoilVapor	12.75	25.38	ND	1	N/A		
004A	VS-3-Deep-Dup	SoilVapor	12.52	25.04	ND	1	N/A		
005A	VS-4-Deep	SoilVapor	11.96	23.83	ND	1	N/A		
006A	VS-1-Shallow	SoilVapor	11.86	23.72	ND	1	N/A		
007A	VS-2-Shallow	SoilVapor	11.76	23.46	ND	1	N/A		
008A	VS-3-Shallow	SoilVapor	11.51	23.02	ND	1	N/A		
009A	VS-4-Shallow	SoilVapor	11.65	23.2	ND	1	N/A		
R	Reporting Limit for DF =1;	W	psia	psia	NA	N	JA		
N	D means not detected at or above the reporting limit	SoilVapor	psia psia 1800 µg/m ³						
*soil vapor san ND means not	nples are reported in μg/m ³ . detected above the reporting limit;	; N/A means analyte n	not applicable to	o this analysis.					

surrogate diluted out of range or surrogate coelutes with another peak.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

	McCampbell Analyti	cal, Inc.	We	1534 Willow Par b: www.mccampbe Telephone: 87	ss Road, Pittsburg, CA 94565- ell.com E-mail: main@mccam 7-252-9262 Fax: 925-252-92	1701 1pbell.com 69				
AEI Consu	ultants	Client Project ID:	#277915; Al	len	Date Sampled: 07/14	/08				
2500 Cami	no Diablo Ste #200				Date Received: 07/16	/08				
2500 Cam	no Diabio, Stc. #200	Client Contact:	Adrian Angel		Date Extracted: 07/21/08					
Walnut Cre	eek, CA 94597	Client P.O.:	Date Analyzed 07/21/08							
	Gasoline Range	(C6-C12) Volatile	le Hydrocarbons as Gasoline in nL/L*							
Extraction meth	od TO3	Analytical	methods TO3		Work O	rder: 08	07382			
Lab ID	Client ID	Matrix	Initial Pressure	Final Pressure	e TPH(g)	DF	% SS			
001A	VS-1-Deep	SoilVapor	11.83	23.6	ND	1	N/A			
002A	VS-2-Deep	SoilVapor	12.12	24.18	ND	1	N/A			
003A	VS-3-Deep	SoilVapor	12.75	25.38	ND	1	N/A			
004A	VS-3-Deep-Dup	SoilVapor	12.52	25.04	ND	1	N/A			
005A	VS-4-Deep	SoilVapor	11.96	23.83	ND	1	N/A			
006A	VS-1-Shallow	SoilVapor	11.86	23.72	ND	1	N/A			
007A	VS-2-Shallow	SoilVapor	11.76	23.46	ND	1	N/A			
008A	VS-3-Shallow	SoilVapor	11.51	23.02	ND	1	N/A			
009A	VS-4-Shallow	SoilVapor	11.65	23.2	ND	1	N/A			
	Reporting Limit for DF =1;	W	psia	psia	NA	N	JA			
	ND means not detected at or above the reporting limit	SoilVapor	psia psia 500 nL/L							
*soil vapor s	amples are reported in nL/L.	N/A means analyte	not applicable to	o this analysis.						

surrogate diluted out of range or surrogate coelutes with another peak.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

McCampbell An "When Ouality	nalytical, Inc.	1534 Will Web: www.mc Telepho	ow Pass Road, Pittsburg, campbell.com E-mail: m one: 877-252-9262 Fax:	CA 94565-1701 aain@mccampbell.com 925-252-9269
AEI Consultants	Client Project ID: #27030	8; Allen	Date Sampled:	08/04/08
2500 Camino Diablo, Ste. #200			Date Received:	08/06/08
Walnut Creek, CA 94597	Client Contact: Adrian A	ngel	Date Reported:	08/14/08
	Client P.O.:		Date Completed:	08/14/08

WorkOrder: 0808156

August 14, 2008

Dear Adrian:

Enclosed within are:

- 1) The results of the 9 analyzed samples from your project: **#270308; Allen,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

0808156

MeCAN Telephone: (925) 25 Report To: Advian A Company: AET Ca Datut Cree Tele: (925) 273-660 Basiant #	McCAMPBELL ANALYTICAL INC. 1534 Willow Pass Road Pittsburg, CA 94565-1701 www.main@mccampbell.com Telephone: (925) 252-9262. Fax: (925) 252-9269 Report To: Advian Angel Bill To: Came Company: AET Consultants 2500 Camino Diablo Walnut Creek, CA E-Mail: angel Cacicus n/bank. Fele: (925) 273-6600 Fax: (925) 283-6/21 Project Name: Allen Project Location: 325 MCK Dalland CA Sampler Signature:					CHA OUND TI d. Coeff (N	IN OF ME ormal)		ODY R 24 HR rite On (D' Only Date	ECOR 48 HR W) No	D 72 HR 51 <i>POX Plan</i> 66901112301	AY Je in CAN
Project #: 270368	Project Location: 275 MIN Dalland CA									And Long		
Sampler Signatures	MC	KO	alland CF.		Notes:	探波的		勝 筆[]]				
Field Sample ID (Location)	Colle	ction	Canister SN#	Sampler Kit SN#	Analysis Re	equested	Indoor	Soil	Ca	nister Pre	ssure/Vacu	um Final
	Date	Time					Air	Gas	Initial	rinal	Receipt	(psi)
VS-1-Shallow-Dup	8/4/08	1:000			TPH-9 (+03)-	+ MBTEX			-30	-5	and the second sec	
15-1-Shallow		12:458			+ Isopropyla	1 colto ((70 15)	ch I		-30	-5.		
VS-2-Shallow		11:107			for all cani	Sters ted	6 8/6/0	0	-30	->	A CONTRACTOR	
V2-5-Shalle		1.151									100 A 49 31	2.14 (1.14) 2.14 (1.14)
15-1-Dee10		1.45%										
B-2-Deep		10:3014										A CONTRACTOR
VS-3-Deep		3:38										1
VS-Y-Deep		2:308			·		1. t					1. 19 19 19 19 19 19 19
Relinquished By:	Date: 8/6/87	Time: 2:38P	Received By: Denke	ate	Temp (°C) :	Na	Work Order	#:	80815	6	Instance of Control (1994)	
Relinquished By: Eluk Cast	Elinquished By: Date: Time: Received By: Such Cast 9/48 1640				Condition: Custody Seals	Intact?: Yes	s No	>	None			
Relinquished By:	the Cont 1408 1640 Me Valle elinquished By: Date: Time: Received By:											

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, C (925) 252-9	CA 94565-1701 9262					Work	Order:	0808	156	0	ClientCo	de: AE	L				
			WriteOn	EDF		Excel	[Fax		🖌 Email	[HardC	ору	Thir	dParty	🗌 J-	flag
Report to:		Emoil:	aangal@aaia	angultanta gam			Bill to:	nico M	ookol				Req	uested	TAT:	5 0	days
ACTIAITAIIgei AEI Consultants 2500 Camino E Walnut Creek, ((408) 559-7600	s Diablo, Ste. #200 CA 94597 FAX (408) 559-7601	PO: PO: ProjectNo	: #270308; Alle	n			AE 250 Wa dm	I Consi 00 Can alnut Cr	ultants nino Di reek, C 2aeico	ablo, Sto A 94597 nsultant	e. #200 7 ts.com		Dat Dat	e Recei e Print	ived: ted:	08/06/ 08/06/	2008 2008
									Rec	uested	Tests (See lege	end b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0808156-001	VS-1-Shallow-D	up	Soil Vapor	8/4/2008 13:00		А	А										
0808156-002	VS-1-Shallow		Soil Vapor	8/4/2008 12:45			А										
0808156-003	VS-2-Shallow		Soil Vapor	8/4/2008 11:10			А										
0808156-004	VS-3-Shallow		Soil Vapor	8/4/2008 15:15			А										
0808156-005	VS-4-Shallow		Soil Vapor	8/4/2008 14:10			А										
0808156-006	VS-1-Deep		Soil Vapor	8/4/2008 13:45			А										
0808156-007	VS-2-Deep		Soil Vapor	8/4/2008 10:30			А										

А

А

8/4/2008 15:30

8/4/2008 14:30

Test Legend:

0808156-008

0808156-009

1	PREDF REPORT		2	TO3
6			7	
11		1	2	

SOILGAS	3	
	8	

Soil Vapor

Soil Vapor

_
1
1

4	
9	

5				
10				

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A contain testgroup.

VS-3-Deep

VS-4-Deep

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Melissa Valles

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants					Date a	and Time Received	d: 8/6/08 5:5	2:24 PM
Project Name:	#270308; Allen					Checl	klist completed ar	d reviewed by:	Melissa Valles
WorkOrder N°:	0808156	Matrix	<u>Soil Vapor</u>			Carrie	er: <u>Derik Carta</u>	n (MAI Courier)	
			<u>Chain</u>	of Cu	stody (COC	c) Informa	ation		
Chain of custody	v present?			Yes	\checkmark	No 🗆			
Chain of custody	v signed when relinqui	shed and	I received?	Yes		No 🗆			
Chain of custody	agrees with sample l	abels?		Yes		No 🗌			
Sample IDs noted	by Client on COC?			Yes	\checkmark	No 🗆			
Date and Time of	collection noted by Cli	ent on CC	CC?	Yes		No 🗆			
Sampler's name	noted on COC?			Yes		No 🗆			
			<u>S:</u>	ample	Receipt Inf	formation	<u>1</u>		
Custody seals in	tact on shipping conta	iner/coole	er?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good cond	ition?		Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?			Yes		No 🗆			
Sample containe	ers intact?			Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?		Yes		No 🗌			
		<u>Sar</u>	mple Prese	rvatio	n and Hold	<u>Time (HT</u>	<u>) Information</u>		
All samples rece	ived within holding time	e?		Yes		No 🗌			
Container/Temp	Blank temperature			Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ce / no bu	ubbles?	Yes		No 🗆	No VOA vials su	bmitted 🗹	
Sample labels cl	necked for correct pres	servation	?	Yes		No 🗌			
TTLC Metal - pH	acceptable upon recei	pt (pH<2))?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?			Yes		No 🗹			

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbell Analyti	cal, Inc.	We	1534 Willow P b: www.mccamp Telephone: 8	ass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccam 77-252-9262 Fax: 925-252-92	1701 pbell.com 69					
AEI Cons	sultants	Client Project ID:	#270308; Al	len	Date Sampled: 08/04/	08					
2500 Can	nino Diablo, Ste. #200				Date Received: 08/06/08						
		Client Contact:	Adrian Angel		Date Extracted: 08/07/08-08/13/08						
Walnut C	reek, CA 94597	Client P.O.:	lient P.O.: Date Analyzed: 08/07/08-08/13/0								
Extraction me	thod: TO15	Leak Chec Analytica	k Compound * I methods: TO15	*	Work O	rder: 080	08156				
Lab ID	Client ID	Matrix	Initial Pressure	Final Pressur	re Isopropyl Alcohol	DF	% SS				
001A	VS-1-Shallow-Dup	Soil Vapor	11.85	23.65	ND	1	N/A				
002A	VS-1-Shallow	Soil Vapor	11.85	23.56	ND	1	N/A				
003A	VS-2-Shallow	Soil Vapor	12.38	24.66	ND	1	N/A				
004A	VS-3-Shallow	Soil Vapor	11.6	23.14	ND	1	N/A				
005A	VS-4-Shallow	Soil Vapor	12.14	24.2	ND	1	N/A				
006A	VS-1-Deep	Soil Vapor	12.36	24.64	ND	4	N/A				
007A	VS-2-Deep	Soil Vapor	11.85	23.6	ND	1	N/A				
008A	VS-3-Deep	Soil Vapor	12.15	24.2	ND	1	N/A				
009A	VS-4-Deep	Soil Vapor	11.96	23.9	ND	1	N/A				
	Reporting Limit for DF =1;	W	psia	psia	NA	N	A				
	ND means not detected at or above the reporting limit	Soil Vapor	psia	psia	10	μ	g/L				

* leak check compound is reported in $\mu g/L$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

The IPA reference is:

DTSC, Advisory-Active Soil Gas Investigations, January 28, 2003, page 10, section 2.4.2

"Tracer compounds, such as ...isopropanol..., may be used as leak check compounds, if a detection limit of 10 ug/L or less can be achieved." This implies that 10ug/L is the cut off definition for a leak, which equals 10,000 ug/m3. The other low IPA hits may be due to extremely small leaks or may be naturally occuring in soil gas, particularly at biologically active sites.

DHS ELAP Certification 1644

	McCampbell Analyti	cal, Inc.	We	1534 Willow P b: www.mccamp Telephone: 8	ass Road, Pittsburg, CA 94565- bell.com E-mail: main@mccam 77-252-9262 Fax: 925-252-926	1701 pbell.com 69			
AEI Con	sultants	Client Project ID:	#270308; Al	len	Date Sampled: 08/04/	/08			
2500 Can	nino Diablo. Ste #200				Date Received: 08/06/08				
2500 Can	inio Diabio, 562. #200	Client Contact:	Adrian Angel		Date Extracted: 08/07/08-08/13/08				
Walnut C	Creek, CA 94597	Client P.O.:			Date Analyzed 08/07/	/08-08/1	3/08		
Extraction me	thod TO15	Leak Chec Analytica	k Compound [*] 1 methods TO15	k	Work O	rder: 080	08156		
Lab ID	Client ID	Matrix	Initial Pressure	Final Pressur	e Isopropyl Alcohol	DF	% SS		
001A	VS-1-Shallow-Dup	Soil Vapor	11.85	23.65	ND	1	N/A		
002A	VS-1-Shallow	Soil Vapor	11.85	23.56	ND	1	N/A		
003A	VS-2-Shallow	Soil Vapor	12.38	24.66	ND	1	N/A		
004A	VS-3-Shallow	Soil Vapor	11.6	23.14	ND	1	N/A		
005A	VS-4-Shallow	Soil Vapor	12.14	24.2	ND	1	N/A		
006A	VS-1-Deep	Soil Vapor	12.36	24.64	ND	4	N/A		
007A	VS-2-Deep	Soil Vapor	11.85	23.6	ND	1	N/A		
008A	VS-3-Deep	Soil Vapor	12.15	24.2	ND	1	N/A		
009A	VS-4-Deep	Soil Vapor	11.96	23.9	ND	1	N/A		
	Reporting Limit for DF =1;	W	psia	psia	NA	N	A		
	ND means not detected at or above the reporting limit	Soil Vapor	psia	psia	10	με	g/L		

* leak check compound is reported in $\mu g/L$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

The IPA reference is:

DTSC, Advisory-Active Soil Gas Investigations, January 28, 2003, page 10, section 2.4.2

"Tracer compounds, such as ...isopropanol..., may be used as leak check compounds, if a detection limit of 10 ug/L or less can be achieved." This implies that 10ug/L is the cut off definition for a leak, which equals 10,000 ug/m3. The other low IPA hits may be due to extremely small leaks or may be naturally occuring in soil gas, particularly at biologically active sites.

DHS ELAP Certification 1644

McCampbell An "When Ouality	nalyti Counts"	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
AEI Consultants		Client Pr	oject ID:	#27030	8; Allen	Date Sampled:	08/04/08			
2500 C : D: 11 C #200						Date Received:	08/06/08			
2500 Camino Diablo, Ste. #200		Client Co	ontact: A	drian A	ngel	Date Extracted: 08/07/08-08/08/08				
Walnut Creek, CA 94597		Client P.0	D.:			Date Analyzed	08/07/08-0	8/08/08		
	,	Volatile O	rganic Co	mpour	nds in µg/m ^{3*}					
Extraction Method: TO15		Anal	ytical Method	1: TO15	1.9		Work Order:	0808156		
Lab ID 080		56-001A	0808156	-002A	0808156-003A	0808156-004A				
Client ID VS-1-S		allow-Dup	VS-1-Sh	allow	VS-2-Shallow	VS-3-Shallow				
Matrix	Soil	Vapor	Soil Va	apor	Soil Vapor	Soil Vapor	Reporting DF	• Reporting Limit for DF =1		
Initial Pressure (psia)	1	1.85	11.8	5	12.38	11.6	- and Pressure Ratio (Final/Initial) = 2			
Final Pressure (psia)	2	3.65	23.5	6	24.66	23.14				
DF		1 1		1		1	Soil Vapor	W		
Compound				Conce	entration	u a/m3	ng/L			
Compound				Conte	.nu auon		μg/m-	••g/ ±		
Benzene		ND	ND		ND	ND	6.5	NA		
Benzene 1,2-Dibromoethane (EDB)		ND ND	ND ND		ND ND	ND ND	6.5 16	NA NA		
Benzene 1,2-Dibromoethane (EDB) Ethylbenzene		ND ND ND	ND ND ND		ND ND ND	ND ND ND	6.5 16 8.8	NA NA NA		
Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE)		ND ND ND ND	ND ND ND		ND ND ND ND	ND ND ND ND	6.5 16 8.8 7.3	NA NA NA NA		
Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene		ND ND ND ND ND	ND ND ND ND		ND ND ND ND ND ND	ND ND ND ND ND	μg/m 6.5 16 8.8 7.3 7.7	NA NA NA NA NA		
Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes		ND ND ND ND ND ND	ND ND ND ND ND		ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	μg/m 6.5 16 8.8 7.3 7.7 27	NA NA NA NA NA NA		
Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes		ND ND ND ND ND ND Surre	ND ND ND ND ND Ogate Rec	overies	ND ND ND ND ND ND S (%)	ND ND ND ND ND ND	μg/m 6.5 16 8.8 7.3 7.7 27	NA NA NA NA NA NA		
Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1:		ND ND ND ND ND Surre 97	ND ND ND ND ND Ogate Rec	overies	ND ND ND ND ND ND S(%)	ND ND ND ND ND ND	μg/m 6.5 16 8.8 7.3 7.7 27	NA NA NA NA NA		
Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2:		ND ND ND ND 97 98	ND ND ND ND ND Ogate Rec 103	overies	ND ND ND ND ND ND S(%)	ND ND ND ND ND ND 101 103	μg/m² 6.5 16 8.8 7.3 7.7 27	NA NA NA NA NA		
Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3:		ND ND ND ND ND 97 98 102	ND ND ND ND ND 0gate Rec 103 103	overie:	ND ND ND ND ND ND S (%) 102 103 108	ND ND ND ND ND ND 101 103 108	μg/m² 6.5 16 8.8 7.3 7.7 27	NA NA NA NA NA		
Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments		ND ND ND ND 97 98 102	ND ND ND ND 0gate Rec 103 103		ND ND ND ND ND S (%)	ND ND ND ND ND ND 101 103 108	μg/m 6.5 16 8.8 7.3 7.7 27	NA NA NA NA NA		
Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments *vapor samples are reported in µg/m³. ND means not detected above the reporti	ng limit;	ND ND ND ND 97 98 102 N/A means	ND ND ND ND Ogate Rec 103 103	overies	ND ND ND ND ND ND ND 102 103 108	ND ND ND ND ND ND 101 103 108	μg/m 6.5 16 8.8 7.3 7.7 27	NA NA NA NA NA		

McCampbell Ar "When Ouality	nalyti _{Counts"}	cal, In	<u>c.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
AEI Consultants		Client Pr	oject ID:	#27030	8; Allen	Date Sampled:	08/04/08			
2500 Coming Dickle Sta #200						Date Received:	08/06/08			
2300 Camino Diadio, Ste. #200		Client Co	ontact: A	drian A	ngel	Date Extracted: 08/07/08-08/08/08				
Walnut Creek, CA 94597		Client P.	D.:	Date Analyzed 08/07/08-08/0						
	Volatile O	rganic Co	mpour	nds in µg/m³*						
Extraction Method: TO15		Anal	ytical Method	1: TO15			Work Order:	0808156		
Lab ID 0808		56-005A	0808156	-006A	0808156-007A	0808156-008A				
Client ID VS-2		Shallow	VS-1-E	Deep	VS-2-Deep	VS-3-Deep		T : :/ C		
Matrix	Soil	Vapor	Soil Va	apor	Soil Vapor	Soil Vapor	Reporting Limit for DF =1			
Initial Pressure (psia)	11	2.14	12.3	6	11.85	12.15	and Pressure Ratio (Final/Initial) = 2			
Final Pressure (psia)	2	4.2	24.6	4	23.6	24.2				
DF		1 1			1	1	Soil Vapor	W		
Compound				~						
Compound				Conce	entration		$\mu g/m^3$	ug/L		
Benzene]	ND	ND	Conce	entration ND	ND	μg/m ³	ug/L NA		
Benzene 1,2-Dibromoethane (EDB)		ND	ND	Conce	ND ND	ND ND	μg/m ³ 6.5 16	ug/L NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene		ND ND ND	ND ND ND	Conce	ntration ND ND ND	ND ND ND	μg/m ³ 6.5 16 8.8	ug/L NA NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE)		ND ND ND ND	ND ND ND		ntration ND ND ND ND	ND ND ND ND	μg/m ³ 6.5 16 8.8 7.3	ug/L NA NA NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene		ND ND ND ND ND	ND ND ND ND		entration ND ND ND ND ND	ND ND ND ND ND	μg/m ³ 6.5 16 8.8 7.3 7.7	ug/L NA NA NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes		ND ND ND ND ND ND	ND ND ND ND ND		entration ND	ND ND ND ND ND ND	μg/m ³ 6.5 16 8.8 7.3 7.7 27	ug/L NA NA NA NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes		ND ND ND ND ND Surre	ND ND ND ND ND	overies	ND ND ND ND ND ND ND S (%)	ND ND ND ND ND ND	μg/m ³ 6.5 16 8.8 7.3 7.7 27	ug/L NA NA NA NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1:		ND ND ND ND ND Surre	ND ND ND ND ND Ogate Rec	overies	entration ND ND ND ND ND ND S (%)	ND ND ND ND ND ND 98	μg/m ³ 6.5 16 8.8 7.3 7.7 27	ug/L NA NA NA NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2:		ND ND ND ND ND Surre 100	ND ND ND ND Ogate Rec 98 98	overies	entration ND ND ND ND ND ND S (%) 98 101	ND ND ND ND ND 98 100	μg/m ³ 6.5 16 8.8 7.3 7.7 27	ug/L NA NA NA NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3:		ND ND ND ND ND 100 105	ND ND ND ND 0gate Rec 98 98 98	overies	ND ND ND ND ND ND S (%)	ND ND ND ND ND ND ND 100 104	μg/m ³ 6.5 16 8.8 7.3 7.7 27	ug/L NA NA NA NA NA		
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments		ND ND ND ND ND 100 105	ND ND ND ND Ogate Rec 98 98 98 103	overies	entration ND ND ND ND ND ND S(%)	ND ND ND ND ND ND 100 104	μg/m ³ 6.5 16 8.8 7.3 7.7 27	ug/L NA NA NA NA NA		

McCampbell Ar	cal, Inc	<u>-</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
AEI Consultants		Client Proj	ject ID: #	¥27030	8; Allen	Date Sampled:	08/04/08		
						Date Received:	08/06/08		
2500 Camino Diablo, Ste. #200		Client Cor	ntact: Ad	lrian A	ngel	Date Extracted: 08/07/08-08/08/08			
Walnut Creek, CA 94597		Client P O			8	Date Analyzed	d 08/07/08-08/08/08		
						Dute / maryzed	00/07/00 0	0/00/00	
Extraction Method: TO15		Analyt	tical Method:	111 pou 1 : TO15	ius in μg/m ^{ov}		Work Order:	0808156	
Lab ID	08081	56-009A							
Client ID VS		4-Deep							
Matrix	Soil	Vapor					- Reporting DF	Limit for =1	
Initial Pressure (psia)	1	1.96					and Press	ure Ratio	
Einel Pressure (psia)		2.0					-	(11a1) = 2	
		.5.9							
DF		1					Soil Vapor	W	
				0				ug/I	
Compound				Conce	entration		µg/m³	ug/L	
Benzene		ND		Conce			μg/m ³ 6.5	NA	
Compound Benzene 1,2-Dibromoethane (EDB)		ND ND		Conce			μg/m ³ 6.5 16	NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene		ND ND ND ND					μg/m ³ 6.5 16 8.8	NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE)		ND ND ND ND ND					μg/m³ 6.5 16 8.8 7.3	NA NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene		ND ND ND ND ND ND ND ND					μg/m³ 6.5 16 8.8 7.3 7.7	NA NA NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes		ND N					μg/m³ 6.5 16 8.8 7.3 7.7 27	NA NA NA NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes		ND ND ND ND ND ND ND ND Surrog	gate Reco	Diveries	s (%)		μg/m³ 6.5 16 8.8 7.3 7.7 27	NA NA NA NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1:		ND ND ND ND ND ND ND Surrog 98	gate Reco	overies	entration		μg/m³ 6.5 16 8.8 7.3 7.7 27	NA NA NA NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2:		ND 98 100	gate Reco	Deveries	s (%)		μg/m³ 6.5 16 8.8 7.3 7.7 27	NA NA NA NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3:		ND	gate Reco	Overies	s (%)		μg/m³ 6.5 16 8.8 7.3 7.7 27	NA NA NA NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments		ND 98 100 105 105 105 105 105 105 105 105 105	gate Reco	overies	s (%)		μg/m³ 6.5 16 8.8 7.3 7.7 27	NA NA NA NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments *vapor samples are reported in µg/m³.		ND ND ND ND ND ND ND ND 98 100 105 105 105 105 105 105 105 105 105	gate Reco	overies	entration		μg/m³ 6.5 16 8.8 7.3 7.7 27	NA NA NA NA NA NA	
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments *vapor samples are reported in µg/m³. ND means not detected above the reporti	ng limit;	ND ND ND ND ND ND ND 98 100 105 100 100	gate Reco	Conce	s (%)	s.	μg/m³ 6.5 16 8.8 7.3 7.7 27	NA NA NA NA NA NA	

WcCampbell Analytical, Inc.					1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
AEI Consultants Clie			oject ID:	#27030	8; Allen	Date Sampled: 08/04/08							
2500 Camino Diablo, Ste. #200						Date Received: 08/06/08							
		Client Co	ontact: A	drian A	ngel	Date Extracted: 08/07/08-08/08/08							
Walnut Creek, CA 94597 Cl		Client P.0	D.:		-	Date Analyzed	ate Analyzed 08/07/08-08/08/08						
		Volatile C)rganic Co	mnou	nds in nL/L*								
Extraction Method: TO15	Extraction Method: TO15 Analytical Method: TO15 Work Order: 0808156												
Lab ID	0808156-001A		0808156-002A		0808156-003A	0808156-004A	Reporting Limit for DF =1 and Pressure Ratio (Final/Initial) = 2						
Client ID	VS-1-Shallow-Dup		VS-1-Shallow		VS-2-Shallow	VS-3-Shallow							
Matrix	Soil Vapor		Soil Vapor		Soil Vapor	Soil Vapor							
Initial Pressure (psia)	11.85		11.85		12.38	11.6							
Final Pressure (psia)	23.65		23.56		24.66	23.14							
DF	1		1		1	1	Soil Vapor	W					
Compound				a									
Compound				Conce	entration		nL/L	ug/L					
Benzene		ND	ND	Conco	ntration ND	ND	nL/L 2.0	ug/L NA					
Benzene 1,2-Dibromoethane (EDB)		ND	ND	Conce	ND ND	ND ND	nL/L 2.0 2.0	ug/L NA NA					
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene		ND ND ND	ND ND ND	Conce	ND ND ND	ND ND ND	nL/L 2.0 2.0 2.0	ug/L NA NA NA					
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE)		ND ND ND ND	ND ND ND		ntration ND ND ND ND	ND ND ND ND	nL/L 2.0 2.0 2.0 2.0 2.0	ug/L NA NA NA NA					
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene		ND ND ND ND ND	ND ND ND ND		ND ND ND ND ND ND	ND ND ND ND ND	nL/L 2.0 2.0 2.0 2.0 2.0 2.0	ug/L NA NA NA NA NA					
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes		ND ND ND ND ND ND	ND ND ND ND ND		ND ND ND ND ND ND ND ND	ND ND ND ND ND ND	nL/L 2.0 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA					
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes		ND ND ND ND ND ND Surre	ND ND ND ND ND	overies	ND ND ND ND ND ND S(%)	ND ND ND ND ND ND	nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA					
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1:		ND ND ND ND ND Surre	ND ND ND ND ND ND ND 103	Conce	ND ND ND ND ND ND S (%)	ND ND ND ND ND ND 101	nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA					
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2:		ND ND ND ND ND 97 98	ND ND ND ND ND Ogate Rec 103	Conco overies	ND ND ND ND ND ND S(%) 102 103	ND ND ND ND ND ND 101 103	nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA					
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3:		ND ND ND ND ND 97 98 102	ND ND ND ND 0gate Rec 103 103	Conco overies	ND ND ND ND ND ND S (%) 102 103 108	ND ND ND ND ND 101 103 108	nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA					
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments		ND ND ND ND ND 97 98 102	ND ND ND ND 0gate Rec 103 103 110	Conco overies	ND ND ND ND ND ND S(%)	ND ND ND ND ND 101 103 108	nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA					
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments *vapor samples are reported in nL/L.		ND ND ND ND 97 98 102	ND ND ND ND 0gate Rec 103 103 110	overies	ND ND ND ND ND ND ND 102 103 108	ND ND ND ND ND 101 103 108	nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA					
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments *vapor samples are reported in nL/L. ND means not detected above the reportion	ng limit;	ND ND ND ND 97 98 102 N/A means	ND ND ND ND Ogate Rec 103 103	Conco overies 3 3 3) t applica	ND ND ND ND ND ND S (%)	ND ND ND ND ND 101 103 108	nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA					

When Ouality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
AEI Consultants Client Project			oject ID:	ID: #270308; Allen Date Sampled:				08/04/08	
2500 Camino Diablo, Ste. #200						Date Received: 08/06/08			
		Client Co	ontact: A	drian A	Date Extracted:	Date Extracted: 08/07/08-08/08/08			
Walnut Creek, CA 94597 C			D.:			Date Analyzed	Date Analyzed 08/07/08-08/08/08		
		Volatile C	Drganic Co	mpour	nds in nL/L*				
Extraction Method: TO15		Anal	ytical Method	1: TO15			Work Order:	0808156	
Lab ID	08081	56-005A	0808156-006A		0808156-007A	0808156-008A	Reporting Limit for DF =1		
Client ID	VS-4	Shallow	VS-1-Deep		VS-2-Deep	VS-3-Deep			
Matrix	Soil	Vapor	Soil Vapor		Soil Vapor	Soil Vapor			
Initial Pressure (psia)	12	2.14	12.36		11.85	12.15	- and Pressure Ratio (Final/Initial) = 2		
Final Pressure (psia)	24.2		24.64		23.6	24.2			
DF	1		1		1	1	Soil Vapor	W	
Compound				Conce	entration	•	nL/L	ug/L	
Benzene	ND		ND		ND	ND	2.0	NA	
1,2-Dibromoethane (EDB)	ND		ND		ND	ND	2.0	NA	
Ethylbenzene	ND		ND		ND	ND	2.0	NA	
Methyl-t-butyl ether (MTBE)		ND ND			ND	ND	2.0	NA	
Toluene	ND		ND		ND	ND	2.0	NA	
Xylenes	ylenes ND		ND		ND	ND	6.0	NA	
		Surro	ogate Rec	overies	s (%)				
%SS1: 100		00 98			98	98			
			98			1			
%SS2:		100	98		101	100			
%SS2: %SS3:		100	98 103	3	101 105	100			
%SS2: %SS3: Comments		100	98 103	3	101 105	100 104			
%SS2: %SS3: Comments *vapor samples are reported in nL/L.		100	98 103	}	101 105	100 104			
%SS2: %SS3: Comments *vapor samples are reported in nL/L. ND means not detected above the reporti	ng limit;	100 105 N/A means	98 103 s analyte no	3 t applica	101 105 able to this analysis	100 104			

Angela Rydelius, Lab Manager
McCampbell Ar	WcCampbell Analytical, Inc.				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
AEI Consultants		Client Project I	D: #27030	8; Allen	Date Sampled:	08/04/08							
2500 G					Date Received:	08/06/08							
2500 Camino Diablo, Ste. #200		Client Contact	08/07/08-08	8/08/08									
Walnut Creek. CA 94597		Client P O ·		0	Date Analyzed	08/07/08-02	8/08/08						
		Volotilo Organi	ia Compour	nda in nI /I *	Dute I mary zeu								
Extraction Method: TO15		Analytical M	fethod: TO15	ius in inc/c.		Work Order:	0808156						
Lab ID	08081	56-009A											
Client ID	VS-	4-Deep											
Matrix	Soil	Vapor				Reporting DF	Limit for =1						
Initial Pressure (psia)	1	1.96				and Pressu	ure Ratio						
Final Pressure (psia)	2	2.0					(fildi) = 2						
		.5.9					[
DF		1				Soil Vapor	W						
Compound			Conce	entration	-	nL/L	ug/L						
Compound Benzene		ND	Conce	entration		nL/L 2.0	ug/L NA						
Compound Benzene 1,2-Dibromoethane (EDB)]	ND ND	Conce	entration		nL/L 2.0 2.0	ug/L NA NA						
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene		ND ND ND	Conce	entration		nL/L 2.0 2.0 2.0	ug/L NA NA NA						
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE)		ND ND ND ND ND	Conce	entration		nL/L 2.0 2.0 2.0 2.0 2.0	ug/L NA NA NA NA						
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene		ND ND ND ND ND ND ND ND	Conce	entration		nL/L 2.0 2.0 2.0 2.0 2.0 2.0	ug/L NA NA NA NA						
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes		ND N	Conce	entration		nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA						
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes		ND Surrogate	Conco	entration		nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA						
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1:		ND ND ND ND ND ND ND Surrogate	Conce	entration		nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA						
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2:		ND ND ND ND ND ND ND ND Surrogate 98 100	Conce	entration		nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA						
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3:		ND	Conce	entration		nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA						
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments		ND	Conce	entration		nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA						
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments *vapor samples are reported in nL/L.		ND 100 100 100 100 100 100 100 100 100 10	Conce	entration		nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA						
Compound Benzene 1,2-Dibromoethane (EDB) Ethylbenzene Methyl-t-butyl ether (MTBE) Toluene Xylenes %SS1: %SS2: %SS3: Comments *vapor samples are reported in nL/L. ND means not detected above the reporti	ng limit;	ND ND ND ND ND ND ND Surrogate 98 100 105 N/A means analy	Conce Recoveries	entration	S.	nL/L 2.0 2.0 2.0 2.0 2.0 6.0	ug/L NA NA NA NA NA						

	McCampbell Analyti "When Ouality Counts"	ical, Inc.	We	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269										
AEI Consu	ltants	Client Project ID:	#270308; Al	len	Date Sampled: 08/04/08									
2500 Camir	no Diablo. Ste #200				Date Received: 08/06	/08								
2500 Callin	10 Diabio, 50. #200	Client Contact:	Adrian Angel		Date Extracted: 08/13/	/08								
Walnut Cre	ek, CA 94597	Client P.O.:			Date Analyzed 08/13	/08								
	Gasoline Range	(C6-C12) Volatile	C6-C12) Volatile Hydrocarbons as Gasoline in µg/m³*											
Extraction metho	d TO3	Analytical	l methods TO3		Work O	rder: 08	08156							
Lab ID	Client ID	Matrix	Initial Pressure	Final Pressure	e TPH(g)	DF	% SS							
001A	VS-1-Shallow-Dup	Soil Vapor	11.85	23.65	ND	1	N/A							
002A	VS-1-Shallow	Soil Vapor	11.85	23.66	ND	1	N/A							
003A	VS-2-Shallow	Soil Vapor	12.38	24.66	ND	1	N/A							
004A	VS-3-Shallow	Soil Vapor	11.6	23.14	ND	1	N/A							
005A	VS-4-Shallow	Soil Vapor	12.14	24.2	ND	1	N/A							
006A	VS-1-Deep	Soil Vapor	12.36	24.64	ND	1	N/A							
007A	VS-2-Deep	Soil Vapor	11.85	23.6	ND	1	N/A							
008A	VS-3-Deep	Soil Vapor	12.15	24.2	ND	1	N/A							
009A	VS-4-Deep	Soil Vapor	11.96	23.9	ND	1	N/A							
I	Reporting Limit for DF =1;	W	psia	psia	NA	N	JA							
Ň	ID means not detected at or above the reporting limit	Soil Vapor	psia	psia	1800	με	g/m³							
*soil vapor san	mples are reported in µg/m ³ .	; N/A means analyte :	not applicable to	o this analysis.										

surrogate diluted out of range or surrogate coelutes with another peak.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

	McCampbell Analyti "When Ouality Counts"	ical, Inc.	al, Inc. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.co Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Const	ultants	Client Project ID:	#270308; Al	len	Date Sampled: 08/04	/08				
2500 Cami	no Diablo Ste #200				Date Received: 08/06	: 08/06/08				
2500 Cam	nio Diabio, 50. #200	Client Contact:	/08							
Walnut Cr	eek, CA 94597	Client P.O.:	Client P.O.: Date Analyzed							
	Gasoline Range	e (C6-C12) Volatile	e Hydrocarbo	ns as Gasoli	ne in nL/L*					
Extraction meth	od TO3	Analytical	l methods TO3		Work C	Order: 08	08156			
Lab ID	Client ID	Matrix	Initial Pressure	Final Pressure	e TPH(g)	DF	% SS			
001A	VS-1-Shallow-Dup	Soil Vapor	11.85	23.65	ND	1	N/A			
002A	VS-1-Shallow	Soil Vapor	11.85	23.66	ND	1	N/A			
003A	VS-2-Shallow	Soil Vapor	12.38	24.66	ND	1	N/A			
004A	VS-3-Shallow	Soil Vapor	11.6	23.14	ND	1	N/A			
005A	VS-4-Shallow	Soil Vapor	12.14	24.2	ND	1	N/A			
006A	VS-1-Deep	Soil Vapor	12.36	24.64	ND	1	N/A			
007A	VS-2-Deep	Soil Vapor	11.85	23.6	ND	1	N/A			
008A	VS-3-Deep	Soil Vapor	12.15	24.2	ND	1	N/A			
009A	VS-4-Deep	Soil Vapor	11.96	23.9	ND	1	N/A			
							1			
	Reporting Limit for DF =1;	W	psia	psia	NA	N	JA			
	ND means not detected at or above the reporting limit	Soil Vapor	psia	psia	500	nl	L/L			
*soil vapor s	amples are reported in nL/L.	; N/A means analyte	not applicable to	o this analysis.						

surrogate diluted out of range or surrogate coelutes with another peak.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

"When Ouality Counts"

QC SUMMARY REPORT FOR TO15

W.O. Sample Matrix: Soil Vapor QC Matrix: Soil Vapor BatchID: 37316 WorkOrder: 0808156 **EPA Method TO15 Extraction TO15** Spiked Sample ID: N/A LCS-LCSD MSD MS-MSD LCS LCSD Spiked MS Sample Acceptance Criteria (%) Analyte % RPD MS / MSD RPD I CS/I CSD RPD nL/L nL/L % Rec. % Rec. % RPD % Rec. % Rec. 25 Acetone N/A N/A N/A N/A 80 83.5 4.34 N/A N/A 70 - 13030 30 25 N/A N/A N/A 117 118 0.938 N/A N/A 70 - 130Acrylonitrile N/A tert-Amyl methyl ether (TAME) N/A 25 N/A N/A N/A 115 116 0.626 N/A N/A 70 - 130 30 N/A 25 N/A N/A N/A 111 111 0 N/A N/A 70 - 13030 Benzene Benzyl chloride N/A 25 N/A N/A N/A 113 112 1.69 N/A N/A 70 - 130 30 Bromodichloromethane N/A 25 N/A N/A N/A 119 118 0.764 N/A N/A 70 - 13030 Bromoform N/A 25 N/A N/A N/A 102 102 0 N/A N/A 70 - 130 30 N/A Bromomethane N/A 2.5 N/A N/A N/A 116 116 0 N/A 70 - 130 30 2-Butanone (MEK) N/A 25 N/A N/A N/A 113 114 0.137 N/A N/A 70 - 13030 t-Butyl alcohol (TBA) N/A 25 N/A N/A N/A 102 106 4.02 N/A N/A 70 - 130 30 Carbon Disulfide N/A 25 N/A N/A N/A 109 108 0.407 N/A N/A 70 - 130 30 Carbon Tetrachloride N/A 25 N/A N/A N/A 128 129 0.905 N/A N/A 70 - 130 30 Chlorobenzene N/A 25 N/A N/A N/A 113 113 0 N/A N/A 70 - 130 30 Chloroethane N/A 25 N/A N/A N/A 107 106 0.974 N/A N/A 70 - 130 30 Chloroform 25 N/A N/A N/A 115 116 0.938 N/A N/A 70 - 130 30 N/A 70 - 130 Chloromethane 25 N/A 109 113 4.23 N/A 30 N/A N/A N/A N/A 25 N/A Cyclohexane N/A N/A N/A N/A 96.7 97.7 1.03 N/A 70 - 130 30 1,2-Dibromo-3-chloropropane 25 N/A N/A N/A 92.7 92.6 0.173 N/A N/A 70 - 130 30 N/A 25 0.855 1,2-Dibromoethane (EDB) N/A N/A N/A N/A 120 119 N/A N/A 70 - 13030 25 N/A N/A 103 103 0 N/A 70 - 13030 1.2-Dichlorobenzene N/A N/A N/A 1,3-Dichlorobenzene N/A 25 N/A N/A N/A 115 114 0.690 N/A N/A 70 - 130 30 1.4-Dichlorobenzene 25 N/A N/A N/A 115 1.81 N/A 70 - 130 30 N/A 113 N/A 2.5 N/A Dichlorodifluoromethane N/AN/A N/A N/A 102 104 2.03 N/A 70 - 130 30 1.1-Dichloroethane N/A 25 N/A N/A N/A 118 120 1.31 N/A N/A 70 - 13030 1,2-Dichloroethane (1,2-DCA) N/A 25 N/A N/A N/A 110 112 2.03 N/A N/A 70 - 130 30 1,1-Dichloroethene N/A 25 N/A N/A N/A 117 118 1.22 N/A N/A 70 - 130 30 cis-1.2-Dichloroethene 25 N/A N/A N/A 119 119 0 N/A N/A 70 - 13030 N/A trans-1,2-Dichloroethene 25 N/A N/A 124 1.42 N/A 70 - 130 N/A N/A 126 N/A 30 25 0 N/A N/A 108 108 N/A N/A 70 - 13030 1,2-Dichloropropane N/A N/A cis-1,3-Dichloropropene N/A 70 - 130 N/A 25 N/A N/A N/A 128 128 0 N/A 30 25 1.02 trans-1,3-Dichloropropene N/A N/A N/A N/A 122 123 N/A N/A 70 - 13030

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

QC SUMMARY REPORT FOR TO15

W.O. Sample Matrix: Soil Vapor QC Matrix: Soil Vapor BatchID: 37316 WorkOrder: 0808156 **EPA Method TO15 Extraction TO15** Spiked Sample ID: N/A LCS-LCSD MSD MS-MSD LCS LCSD Spiked MS Sample Acceptance Criteria (%) Analyte % RPD MS / MSD RPD I CS/I CSD RPD nL/L nL/L % Rec. % Rec. % Rec. % Rec. % RPD 1,2-Dichloro-1,1,2,2-tetrafluoroetha 25 70 - 130 N/A N/A N/A N/A 120 128 6.22 N/A N/A 30 30 Diisopropyl ether (DIPE) N/A 25 N/A N/A N/A 118 119 0.549 N/A N/A 70 - 1301,4-Dioxane N/A 25 N/A N/A N/A 86.7 86.2 0.535 N/A N/A 70 - 130 30 70 - 130 Ethanol N/A 25 N/A N/A N/A 96.1 94.6 1.64 N/A N/A 30 Ethyl acetate N/A 25 N/A N/A N/A 118 119 0.624 N/A N/A 70 - 130 30 Ethyl tert-butyl ether (ETBE) N/A 25 N/A N/A N/A 121 122 0.756 N/A N/A 70 - 13030 Ethylbenzene N/A 25 N/A N/A N/A 122 122 0 N/A N/A 70 - 130 30 25 1.03 N/A 4-Ethyltoluene N/A N/A N/A N/A 121 123 N/A 70 - 13030 Freon 113 N/A 25 N/A N/A N/A 128 129 0.687 N/A N/A 70 - 13030 Heptane N/A 25 N/A N/A N/A 111 111 0 N/A N/A 70 - 130 30 Hexachlorobutadiene N/A 25 N/A N/A N/A 105 104 0.833 N/A N/A 70 - 130 30 Hexane N/A 25 N/A N/A N/A 120 121 1.05 N/A N/A 70 - 130 30 2-Hexanone N/A 25 N/A N/A N/A 102 101 0.361 N/A N/A 70 - 130 30 Isopropyl Alcohol N/A 25 N/A N/A N/A 94.4 99.4 5.09 N/A N/A 70 - 130 30 4-Methyl-2-pentanone (MIBK) N/A 25 N/A N/A N/A 114 113 0.452 N/A N/A 70 - 130 30 70 - 130 25 N/A N/A N/A 128 130 2.17N/A N/A 30 Methyl-t-butyl ether (MTBE) N/A 25 N/A 106 108 1.92 N/A Methylene chloride N/A N/A N/A N/A 70 - 130 30 25 N/A N/A N/A 83.1 82.8 0.412 N/A N/A 70 - 130 30 Naphthalene N/A 25 0.747 Propene N/A N/A N/A N/A 86.5 85.8 N/A N/A 70 - 13030 Styrene 25 N/A N/A 129 0.238 N/A N/A 70 - 13030 N/A N/A 128 1,1,1,2-Tetrachloroethane N/A 25 N/A N/A N/A 129 129 0 N/A N/A 70 - 130 30 1.1.2.2-Tetrachloroethane N/A 25 N/A N/A N/A 114 114 0 N/A N/A 70 - 130 30 25 N/A 100 99.7 0.448 N/A 30 Tetrachloroethene N/AN/A N/A N/A 70 - 130 Tetrahydrofuran N/A 25 N/A N/A N/A 93.7 93.5 0.160 N/A N/A 70 - 130 30 Toluene N/A 25 N/A N/A N/A 112 112 0 N/A N/A 70 - 130 30 1,2,4-Trichlorobenzene N/A 25 N/A N/A N/A 85.7 84.9 0.884 N/A N/A 70 - 130 30 1,1,1-Trichloroethane 25 N/A N/A N/A 118 119 0.585 N/A N/A 70 - 13030 N/A 1,1,2-Trichloroethane 25 N/A N/A 112 113 0.791 N/A 70 - 130 30 N/A N/A N/A 25 0 N/A N/A N/A 117 117 N/A N/A 70 - 13030 Trichloroethene N/A Trichlorofluoromethane 25 N/A N/A 111 92.2 18.4 N/A 70 - 130 N/A N/A N/A 30 1.2,4-Trimethylbenzene 25 N/A N/A N/A N/A 116 116 0 N/A N/A 70 - 13030

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR TO15

WorkOrder: 0808156 W.O. Sample Matrix: Soil Vapor QC Matrix: Soil Vapor BatchID: 37316 **EPA Method TO15 Extraction TO15** Spiked Sample ID: N/A Sample MSD MS-MSD LCS LCSD LCS-LCSD Spiked MS Acceptance Criteria (%) Analyte % RPD MS / MSD RPD LCS/LCSD RPD nL/L nL/L % Rec. % Rec. % Rec. % Rec. % RPD 1,3,5-Trimethylbenzene N/A 25 120 2.31 70 - 130 N/A N/A N/A 118 N/A N/A 30 N/A 30 N/A 25 N/A N/A N/A 115 115 0 N/A 70 - 130 Vinyl Acetate Vinyl Chloride N/A 25 N/A N/A N/A 83.6 99.4 17.2 N/A N/A 70 - 130 30 Xylenes N/A 75 N/A N/A N/A 125 124 0.581 N/A N/A 70 - 130 30 %SS1: N/A 500 N/A N/A N/A 120 124 2.52 N/A N/A 70 - 130 30 %SS2: N/A 500 N/A N/A N/A 119 119 0 N/A N/A 70 - 130 30 %SS3: N/A 500 N/A N/A N/A 127 125 0.973 N/A N/A 70 - 130 30 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 37316 SUMMARY Lab ID **Date Sampled** Date Extracted Date Analyzed Lab ID **Date Sampled** Date Extracted Date Analyzed 0808156-001A 08/04/08 1:00 PM 08/07/08 08/07/08 3:36 PM 0808156-002A 08/04/08 12:45 PM 08/07/08 08/07/08 4:21 PM 0808156-003A 08/07/08 0808156-004A 08/07/08 08/07/08 5:53 PM 08/04/08 11:10 AM 08/07/08 5:07 PM 08/04/08 3:15 PM 0808156-005A 08/04/08 2:10 PM 08/08/08 08/08/08 5:18 PM 0808156-006A 08/04/08 1:45 PM 08/13/08 08/13/08 10:24 AM 08/08/08 08/08/08 7:35 PM 0808156-007A 08/08/08 08/08/08 6:54 PM 0808156-008A 08/04/08 3:30 PM 08/04/08 10:30 AM 0808156-009A 08/04/08 2:30 PM 08/08/08 08/08/08 8:17 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

<u>McCampbell Analytical, Inc.</u>

"When Ouality Counts"

QC SUMMARY REPORT FOR TO3

W.O. Sample Matrix: Soil Vapor QC Matrix: Soil Vapor BatchID: 37439 WorkOrder 0808156 **EPA Method TO3 Extraction TO3** Spiked Sample ID: N/A LCSD LCS-LCSD MSD MS-MSD LCS Sample Spiked MS Acceptance Criteria (%) Analyte nL/L % Rec. % RPD % Rec. % RPD MS / MSD RPD LCS/LCSD RPD nL/L % Rec. % Rec. TPH(g) N/A 1250 N/A N/A N/A 101 101 0 N/A N/A 70 - 130 20 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 37439 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0808156-001A	08/04/08 1:00 PM	08/13/08	08/13/08 1:28 PM	0808156-002A	08/04/08 12:45 PM	08/13/08	08/13/08 2:04 PM
0808156-003A	08/04/08 11:10 AM	08/13/08	08/13/08 2:40 PM	0808156-004A	08/04/08 3:15 PM	08/13/08	08/13/08 3:17 PM
0808156-005A	08/04/08 2:10 PM	08/13/08	08/13/08 3:53 PM	0808156-006A	08/04/08 1:45 PM	08/13/08	08/13/08 4:29 PM
0808156-007A	08/04/08 10:30 AM	08/13/08	08/13/08 5:05 PM	0808156-008A	08/04/08 3:30 PM	08/13/08	08/13/08 5:44 PM
0808156-009A	08/04/08 2:30 PM	08/13/08	08/13/08 6:21 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

APPENDIX D

April 3, 2013 Progress Monitoring Laboratory Analytical and Chain of Custody Documentation

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

AEI Consultants	Client Project ID: #277915; Allen	Date Sampled: 04/03/13
2500 Camino Diablo. Ste #200		Date Received: 04/04/13
	Client Contact: Robert Flory	Date Reported: 04/09/13
Walnut Creek, CA 94597	Client P.O.: #WC084040	Date Completed: 04/08/13

WorkOrder: 1304180

April 10, 2013

Dear Robert:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: **#277915; Allen,**
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

	McCAN	IPBELI 1534 W Pittsh	ANA Villow Passourg, CA 9	LYT s Road	ICA	LI	NC.							TU	RN	AF	ROI	UN	CHA D T		I O E	F	CU	JST	0	DY	RI	CC	RE)	
Telephone	: (925) 25	2-9262			F	ax:	(925)	252	-92	69					D		10				pas	-	RUS	SH	24	HR	48	HR	72	HR	5 DAY
													+	EDF	Rec	uir	ed?	_	-	Yes	<u>ا</u> ا	1	NO	E	mai	I PDI	F Re	port:	YE	s	
Report To: Robert	Flory		H	Sill To	: Sa	me	200						┢	-				A	naly	sis F	lequ	lest	_	-			+	0	ther		Comments
Company: AEI Col	nsultants	blo	P	0 #:	weu	085	845						-		&F)							-						-	-		
Walnut	Creek, C.	A 94597	F	C-Mai	l: rfl	nrva	aeico	nsul	tant	s cor	m			an	F/B							5	2				min	0.8)			
Tel: (925) 746-600	0	1 71077	F	ax: (925)	946-	6099		curre.				1	clean	DE&	(1)				1		0	00				hron	E20			
Project #:277915	PO: WC0	84040	F	rojec	t Nan	ne:	Aller	1						pel o	552((418		-				010	25				tal C	un un	15)	1	
Project Location: 3	25 Martin	Luther I	King Jr.	Way	1								0400	lica	ase (ons	st)	8020				0/2	070		0		P.	cleni	10		
Sampler Signature:	Soh	n Star	x										1000	N/ Si	Gre	carb	101	2/8	080			07.4	707	-	09/7	8.6)	mii	d, Se	X		
	0	SAMP	LING	~	ners	I	IAT	RIX		M	ESE	IOD RVE	0	(8015)	n Oil &	n Hydro	260 (80	(EPA 60	608/8	/ 8080	1/8260	ter co	oy Erv		21/239.2	ne (E21	n Cadm	on, Lea	+ MBTI	-15)	
SAMPLE ID (Field Point Name)	OCATION	Date	Time	# Container	Type Contai	Water	Soil	Sludge	Other	Ice	HCI	HNO ₃	MBTEV & TOU	TPH as Diesel	Total Petroleun	Total Petroleur	HVOCs EPA 8	BTEX ONLY	Pesticides EPA	PCBs EPA 608	VUCS EPA 62	1/26 / C20 ATH	CAM-17 Mater	LUFT 5 Metals	Lead (7240/742	Diss Hexachron	Arsenic Bariur	Copper, total Ir	TPH-g (TO-3)	2-propanol (TC	
MW-3		4313	1030	3		X				X	X		,	K										-		-			-		
IW-3		43-13	1100	3		X		1		X	X		1	K						-		-	-	-	-	-	+	-	-		
IW-4		4-2-12	1130	2		X				X	X		1,	K					-			-		-			+		-		
		1 3 1 2	1100	2				-			-	-	+								-	+	-	-	-	-	+				
				-			-						+						-		+	-		-		-	+		-		
					-								+								+			-	-	-	+		+		
							-				-	-	+	-	-		-			-	+	-	-	-	-	-	-				
							-			-	-	-	+	-	-	-	-	-	-	-	-	+	+	-	-	-	+		-		
								-	-	-	-	-	+		-		-		-	+	-	+	+		-	-	+		-		
				-			-	-		-	-	-	+	-	-	-	-	-	_	-	_		-	-	-	-	+	_	-		
							_	_	_	-	_	_	+	-			_	_	_	-	-	_	-	_		_	+			_	
					_		_	-		_	_	_	+	_				_	_	_			_	_			_				
Relinquished By:	r	Date: 4-4-13	Time: 1303 -	Rece	ived B	U	u	1	-	0	21	6			0	5 (2									vo	DAS	O&G	м	ETAL	S OTHER
Relinquished By:	J	Date:	Time:	Rece	ived B	y:			1				1	GO		CON	DIT	ION	ENT	\subseteq	-	PR	PRO	OPR	ATI	ON_E	7				
Relinquished By:		Date:	Time:	Rece	ived By	y:		-					1	DEC	HL	ORI	NAT	ED	INI	LAB	_	F	PER	SER	VED) IN I	LAB	-	_		

D	\mathbf{a}	C	1
Page		OT.	h
1 ugo	4	01	v

Page 1 of 1

Lab ID CI	ient ID	Matrix	Collection Date	Hold	1	2	3	Reques	sted Tes	sts (See le 6 7	egend b 8	pelow) 9	10	11	12
Robert Flory AEI Consultants 2500 Camino Diablo, Ste.#200 Walnut Creek, CA 94597 (408) 559-7600 FAX: (408) 55	Email: cc: PO: ProjectNo 59-7601	rflory@aeicons #WC084040 : #277915; Allen	ultants.com			Sara AEI (2500 Waln Acco	Guerin Consultar Camino nut Creek untsPaya	nts Diablo, S k, CA 9459 able@AEI	te. #20 97 Consul	0 Itants.c	Date Date	e Received: e Printed:	(04/04/20 04/05/20	013 013
Report to:					Bi	ll to:	LQUIO		411		Requ	lested TAT:	.y	5 d	ays
Pittsburg, CA 94565-1701 (925) 252-9262	- WotorTro			W	orkO	rder:	1304180		Client	Code: A	EL		4. /		~

1304180-001	MW-3	Water	4/3/2013 10:30	А	А				
1304180-002	IW-3	Water	4/3/2013 11:00	А					
1304180-003	IW-4	Water	4/3/2013 11:30	A					

Test Legend:

1	G-MBTEX_W
6	
11	

2	PREDF REPORT	
7		
12		

3	
8	

-		

4 9

5	
10	

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	4/4/2013 1:03:00 PM			
Project Name:	#277915; Allen				LogIn	Reviewed by:	Maria Venega	S		
WorkOrder N°:	1304180	Matrix: Water			Carrie	er: <u>Client Drop-In</u>				
		<u>Cha</u>	in of Cu	stody (C	COC) Informa	<u>ition</u>				
Chain of custody	present?		Yes	✓	No 🗌					
Chain of custody	signed when relinquis	shed and received?	Yes	✓	No 🗌					
Chain of custody	agrees with sample l	abels?	Yes	✓	No 🗌					
Sample IDs note	d by Client on COC?		Yes	✓	No 🗌					
Date and Time o	f collection noted by C	Client on COC?	Yes	✓	No 🗌					
Sampler's name	noted on COC?		Yes	✓	No 🗌					
Sample Receipt Information										
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗌		NA 🗹			
Shipping contain	er/cooler in good cond	dition?	Yes	✓	No 🗌					
Samples in prope	er containers/bottles?		Yes	✓	No 🗌					
Sample containe	ers intact?		Yes	✓	No 🗌					
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌					
		Sample Pres	ervation	n and Ho	old Time (HT)	Information				
All samples rece	ived within holding tim	ne?	Yes	✓	No 🗌					
Container/Temp	Blank temperature		Coole	r Temp:	3.8°C					
Water - VOA vial	ls have zero headspac	ce / no bubbles?	Yes	✓	No 🗌	No VOA vials subm	tted			
Sample labels ch	necked for correct pres	servation?	Yes	✓	No					
Metal - pH accep	otable upon receipt (pł	H<2)?	Yes		No 🗌		NA 🗹			
Samples Receive	ed on Ice?		Yes	✓	No 🗌					
		(Ice Typ	e: WE	TICE)					
* NOTE: If the "N	lo" box is checked, se	e comments below.								

Comments:

McCampbell Analytical, Inc. "When Quality Counts"			1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com										
AEI C	Consultants			Client I	Client Project ID: #277915; Allen				Date Sampled: 04/03/13				
2500 (Camino Diablo Stea	#200							red: 04/04	4/13			
				Client 0	Client Contact: Robert Flory				ted: 04/0	6/13-04	/09/13		
Walnu	ut Creek, CA 94597			Client l	P.O.: #WC0	84040		Date Analyz	zed: 04/0	6/13-04	/09/13		
Extractio	Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* Extraction method: SW5030B Analytical methods: SW8021B/8015Bm Work Order: 1304180												
Lab ID	Client ID	Matrix	TF	PH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments	
001A	MW-3	W	6	400	ND<150	2400	37	120	92	10	115	d1	
002A	IW-3	W	16	5,000	ND<500	2700	1100	200	2100	100	100	d1	
003A	IW-4	W	16	5,000	ND<500	1900	2300	240	1600	100	104	d1	

Reporting Limit for DF =1; ND means not detected at or above the reporting limit	W	50	5.0	0.5	0.5	0.5	0.5	µg/L
	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	QC Matrix: Water				BatchID	: 76222		WorkOrder: 1304180		
EPA Method: SW8021B/8015Bm Extraction: SW5030B						ę	Spiked Sam	ple ID:	1304181-009A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)	
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
TPH(btex) [£]	ND	60	98.9	99.4	0.423	97.3	70 - 130	20	70 - 130	
MTBE	ND	10	76.7	76.2	0.609	87.7	70 - 130	20	70 - 130	
Benzene	ND	10	109	110	0.756	98	70 - 130	20	70 - 130	
Toluene	ND	10	112	116	3.41	98.1	70 - 130	20	70 - 130	
Ethylbenzene	ND	10	109	109	0	98.6	70 - 130	20	70 - 130	
Xylenes	ND	30	110	108	1.90	99.3	70 - 130	20	70 - 130	
% SS:	102	10	104	111	5.96	100	70 - 130	20	70 - 130	
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with t	he following	g exceptior	18:			

BATCH 76222 SUMMARY									
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed		
1304180-001A	04/03/13 10:30 AM	04/06/13	04/06/13 3:03 AM	1304180-001A	04/03/13 10:30 AM	04/09/13	04/09/13 4:40 AM		
1304180-002A	04/03/13 11:00 AM	04/06/13	04/06/13 3:32 AM	1304180-003A	04/03/13 11:30 AM	04/06/13	04/06/13 4:02 AM		

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

APPENDIX E

Third Quarter 2013 Field Data Sheets

Monitoring Well Number: MW-1 Project Name: ALLEN Date of Sampling: 7/3/2013 Job Number: 277925 Name of Sampler: J. Sigg Project Address: 325 Martin Luther King Jr Way, Oakland CA Vertice Completed on the second second

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"								
Wellhead Condition	ОК	\checkmark							
Elevation of Top of Casing (feet above msl)		14.87							
Depth of Well		18.00							
Depth to Water (from top of casing)	8.69								
Water Elevation (feet above msl)	6.18						6.18		
Well Volumes Purged	Micropurged with peristaltic pump								
Actual Volume Purged (liters)	5.0								
Appearance of Purge Water	Clear								
Free Product Present?	nt? No Thickness (ft): -								

	GROUNDWATER SAMPLES									
Number of Sample										
Time	Volume Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments			
0658	1.0	17.89	7.30	1,043	7.44	235.2				
	2.0	17.85	7.15	1,040	2.96	117.1				
	3.0	17.86	7.02	1,035	2.17	165.4				
	4.0	17.89	7.00	1,032	1.80	165.0				
0708	5.0	17.92	7.00	1,030	1.65	164.7				

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Monitoring Well Number: MW-2

Project Name:	ALLEN	Date of Sampling: 7/3/2013
Job Number:	277925	Name of Sampler: J. Sigg
Project Address:	325 Martin Luther King Jr Way, Oakland CA	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2"				
Wellhead Condition	ОК		▼			
Elevation of Top of Casing (feet above msl)		15.27				
Depth of Well	17.00					
Depth to Water (from top of casing)	8.98					
Water Elevation (feet above msl)	6.29					
Well Volumes Purged	Micropurged with peristaltic pump					
Actual Valuma Burgad (litera)	5.0					
		5.0				
Appearance of Purge Water	Clear					
Free Product Present?	No	Thickness (ft):				

	GROUNDWATER SAMPLES									
Number of Samples/Container Size										
Time	Volume Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments			
0719	1.0	18.24	7.47	1,043	3.35	220.5				
	2.0	18.26	7.27	1,035	2.25	203.3				
	3.0	18.38	7.23	1,034	2.38	194.6				
	4.0	18.42	7.33	1,034	2.41	190.2				
0729	5.0	18.43	7.35	1,037	2.45	186.2				

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Monitoring Well Number: MW-3

Project Name:	ALLEN	Date of Sampling: 7/3/2013
Job Number:	277925	Name of Sampler: J. Sigg
Project Address:	325 Martin Luther King Jr Way, Oakland CA	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"			
Wellhead Condition	ОК			
Elevation of Top of Casing (feet above msl)	15.11			
Depth of Well		18.00		
Depth to Water (from top of casing)	8.55			
Water Elevation (feet above msl)	6.56			
Well Volumes Purged	Micropurged with peristaltic pump			
Actual Volume Purged (liters)	5.0			
Appearance of Purge Water	Clear			
Free Product Present?	No	Thickness (ft):		

		G	ROUNDWA	TER SAMPL	<u>_ES</u>		
Number of Sam	ples/Container S	Size					
Time	Volume Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
0741	1.0	18.04	7.26	1,157	7.70	-37.7	
	2.0	17.96	7.41	1,141	4.05	-39.9	
	3.0	17.95	7.35	1,120	2.88	-30.7	
	4.0	17.96	7.21	1,105	2.33	-21.4	
0851	5.0	17.98	7.10	1,098	2.11	-13.3	slight odor

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Monitoring Well Number: IW-1 Project Name: ALLEN Date of Sampling: 7/3/2013 Job Number: 277925 Name of Sampler: J. Sigg Project Address: 325 Martin Luther King Jr Way, Oakland CA Value of Sampler: Value of Sampler:

MONITORING WELL DATA							
Well Casing Diameter (2"/4"/6")	2"						
Wellhead Condition	ОК						
Elevation of Top of Casing (feet above msl)		15.20					
Depth of Well		18.00					
Depth to Water (from top of casing)	8.63						
Water Elevation (feet above msl)	6.57						
Well Volumes Purged	Micropurged with peristaltic pump						
Actual Volume Purged (liters)	5.0						
Appearance of Purge Water	Clear						
Free Product Present?	No	Thickness (ft):					

GROUNDWATER SAMPLES							
Number of Sampl	es/Container S	Size					
Time	Volume Removed (liters)	Temperature (deg C)	рН	Conductivity (µ sec/cm)	DO (mg/L)	ORP (meV)	Comments
0801	1.0	18.12	6.91	766	10.11	147.6	
	2.0	18.09	6.75	768	9.42	147.8	
	3.0	18.07	6.58	768	9.19	151.1	
	4.0	18.04	6.49	770	9.10	155.3	
0811	5.0	18.03	6.39	772	9.06	158.7	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Monitoring Well Number: IW-2

Project Name:	ALLEN	Date of Sampling: 7/3/2013
Job Number:	277925	Name of Sampler: J. Sigg
Project Address:	325 Martin Luther King Jr Way, Oakland CA	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"			
Wellhead Condition	ОК			
Elevation of Top of Casing (feet above msl)	15.04			
Depth of Well		18.00		
Depth to Water (from top of casing)		8.49		
Water Elevation (feet above msl)	6.55			
Well Volumes Purged	Micropurged with peristaltic pump			
Actual Volume Purged (liters)	5.0			
Appearance of Purge Water	Clear			
Free Product Present?	No	Thickness (ft):		

	GROUNDWATER SAMPLES							
Number of Samp	les/Container S	Size						
Time	Volume Removed (liters)	Temperature (deg C)	рН	Conductivity (µ sec/cm)	DO (mg/L)	ORP (meV)	Comments	
0820	1.0	18.06	6.67	660	11.27	86.2	Cloudy	
	2.0	18.05	6.52	651	2.87	90.6		
	3.0	18.05	6.48	646	2.30	95.1	Slight odor	
	4.0	18.05	6.34	644	2.00	99.4	Clear	
0830	5.0	18.04	6.19	646	1.65	104.9		

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Monitoring Well Number: IW-3 Project Name: ALLEN Date of Sampling: 7/3/2013 Job Number: 277925 Name of Sampler: J. Sigg Project Address: 325 Martin Luther King Jr Way, Oakland CA Value of Sampler: Value of Sampler:

MONITORING WELL DATA						
Well Casing Diameter (2"/4"/6")	2"					
Wellhead Condition	ОК	▼				
Elevation of Top of Casing (feet above msl)		15.29				
Depth of Well		18.00				
Depth to Water (from top of casing)	8.68					
Water Elevation (feet above msl)	6.61					
Well Volumes Purged	Micropurged with peristaltic pump					
Actual Volume Purged (liters)	5.0					
Appearance of Purge Water		Clear				
Free Product Present?	No	Thickness (ft):				

GROUNDWATER SAMPLES							
Number of Sample	es/Container S	Size					
Time	Volume Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
0843	1.0	18.39	8.00	430	4.51	21.8	Clear
	2.0	18.39	7.89	421	2.95	26.2	
	3.0	18.40	7.27	412	2.36	32.2	
	4.0	18.41	7.20	408	2.04	36.4	
0853	5.0	18.41	7.18	407	1.85	39.3	Slight odor

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Hydrocarbon odor

	Mon	itoring Well Number:	IW-4
Project Name:	ALLEN	Date of Sampling:	7/3/2013
Job Number:	277925	Name of Sampler:	J. Sigg
Project Address:	325 Martin Luther King Jr Way, Oakland CA		

MONITORING WELL DATA							
Well Casing Diameter (2"/4"/6")	2"						
Wellhead Condition	ОК	▼					
Elevation of Top of Casing (feet above msl)		14.74					
Depth of Well		15.00					
Depth to Water (from top of casing)	8.13						
Water Elevation (feet above msl)	6.61						
Well Volumes Purged	Micropurged with peristaltic pump						
Actual Volume Purged (liters)	5.0						
Appearance of Purge Water	Clear						
Free Product Present?	No	Thickness (ft):					

		G	ROUNDWA	<u>TER SAMPL</u>	<u>.ES</u>		
Number of Sampl	es/Container S	Size					
Time	Volume Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
0902	1.0	18.48	8.98	313	10.10	5.8	Clear
	2.0	18.44	7.57	300	6.19	17.1	
	3.0	18.42	7.27	290	3.26	23.9	
	4.0	18.41	7.20	286	2.55	30.4	
0912	5.0	18.42	7.18	284	2.22	36.4	Slight odor

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Strong hydrocarbon odor

Monitoring Well Number: IW-5 Project Name: ALLEN Date of Sampling: 7/3/2013 Job Number: 277925 Name of Sampler: J. Sigg Project Address: 325 Martin Luther King Jr Way, Oakland CA Vertice Vertice

MONITORIN	G WELL DA	ТА
Well Casing Diameter (2"/4"/6")		2"
Wellhead Condition	ОК	▼
Elevation of Top of Casing (feet above msl)		14.54
Depth of Well		15.00
Depth to Water (from top of casing)		7.83
Water Elevation (feet above msl)		6.71
Well Volumes Purged		Micropurged with peristaltic pump
Actual Volume Purged (liters)		5.0
Appearance of Purge Water		Clear
Free Product Present?	No	Thickness (ft):

		G	ROUNDWA	TER SAMPL	<u>ES</u>		
Number of Sampl	es/Container S	Size					
Time	Volume Removed (liters)	Temperature (deg C)	рН	Conductivity (µ sec/cm)	DO (mg/L)	ORP (meV)	Comments
09.18	1.0	18.37	8.03	430	6.09		
	2.0	18.17	7.90	418	4.02		
	3.0	18.12	7.49	410	3.31		
	4.0	18.10	7.32	406	2.76		
0928	5.0	18.07	7.02	405	2.37		

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

I.D	CANIster	Sampler	START	Finish	VAC
VS-1	6165	770	0958	1003	30/5
VS-2	A7518	823	1011	1015	29/5
US-3	6172	684	1021	1024	27/5
VS-4	A75PP	768	1030	1036	30/5
VS-5	A7529	814	1043	1048	30/5

Purge ul Camster Isoppopyl Alcohol LOAK check

	•										
McCAM 1534 WILLOW Website: www.m Telephon	PASS R CCAMPBE	L ANA OAD / PI <u>I.com</u> / E 252-9262	LYTICAL INC. TTSBURG, CA 94565- mail: main@mccampb / Fax: (925) 252-9269	-1701 ell.com	CHA TURN AROUND TI	IN OF ME		ODY R		D 72 HR 5 I	AY
Report To: Ruber P	-101-	<u></u>	Bill To: Se	internation			Lab Use	Only			
Company: DET	101 -	1				A Republic Contraction of the second se	اليون شدر ، رسان کردا اليون شدر ، رسان کردا مرکز مرکز و دارند - محمد ،		P	ressurizatio	on Gas
2500 Com	n Nex 12	Duch	lo [°]		Bressurize	d By		Date	and a state of the		
112 Hour Creat	945		E-Mail: Plany	Caercensolt	riule Corr			an a	1,2403	N2	He
Tele: (925) 7416-60	(<i>X</i>)		Fax: ()					ing the state of the			
Project #: 7.7.7.905	se.		Project Name: /	Hlen	Helium Shroud SN#:						
Project Location:	k l kin	1 Same			Other:	<u> </u>					
Sampler Signature:	Lair	<u></u>			Notes:						<u></u>
~ ~ ~			99		Isopocpyl	Alco	hol	LOAK	CH:	ak	
	Colle	ction	,	Manifold / Sampler	1						
(Location)			Canister SN#	Kit SN#	Analysis Requested	Indoor	Soil	Ca	nister Pre	essure/Vacu	um
	Date	Time				Air	Gas	Initial	Final	Receipt	Final (psi)
VS-1 .	13	.000	1:11 6-	2 and 5 may	-1		2. 2		jitter !		
	マクシン	0150	667	++-	1013 -Itto MISTER		Δ	30	5		
115-2	4.3.67	1011	A7518	823	FDB & DCA			30 29	5 5		
VS-2 VS-3		1011	A7518 6172	823 684	1013 -Ittrg Metex EDB & DC A 11			30 29 27	555		
VS-2 VS-3 VS-4		0750 1011 1021 1030	A7518 b172 A7519	823 684 768	1013 -111t-9 MATEX EDB & DC A 11 1		X X X X	30 29 27 30	S 5 6 5		
VS-2 VS-3 VS-4 VS-5		0750 1011 1021 1030 1043	A7518 b172 A7519 A7529	823 684 768 814	1013 -Ittry Mittex EDB & DC A 11 11 11			30 29 27 30 30	5565		
VS-2 VS-3 VS-4 VS-5		1011 1021 1030 1043	A7518 b172 A7519 A7529	823 684 768 814	1013 -111+9 METEX EDB & DC A 11 11 11			30 29 27 30 30	550 LA 67		
VS-2 VS-3 VS-4 VS-5		10750 1011 1021 1030 1043	A7518 b172 A7519 A7529	823 684 768 814	1013 -111t-9 Mister EDB & DC A 11 			30 29 27 30 30	S 5 15 15 15		
VS-2 VS-3 VS-4 VS-5		1011 1021 1030 1043	A7518 b172 A7519 A7529	823 684 768 814	1013 -111+9 METER EDB & DC A 11 11			30 29 27 30 30	<u>い</u> ちの ちら ち ち ち ち ち し し し し し し し し し し し し し		
VS-2 VS-3 VS-4 VS-5		1011 102-1 1030 1043	A7518 b172 A7519 A7529	823 684 768 814	1013 -111t-9 Miltex EDB & DC A 11 11 11			30 29 27 30 30	S 5 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6		
VS-2 VS-3 VS-4 VS-5		1011 1021 1030 1043	A7518 b172 A7519 A7529	823 684 768 814	1013 -111+9 METER EDB & DC A 11 11			30 29 27 30 30	<u>い</u> ちの 「 「 「 「 「 「 「 「 「 「 「 「 」		
VS-2 VS-3 VS-4 VS-5 Relinquished By:	Date:	1011 1021 1030 1043 1043	A7518 b172 A7519 A7529 A7529 Received By:	823 684 768 814	1013 -111+ g Mittex <u>FDB & DC A</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u>	Work Order	X X X X	30 29 27 30 30	<u>う</u> ちら 「 「 「 「 「 「 「 「 「 「 「 「 「		
NS-2 VS-3 VS-4 VS-5 Relinquished By: Rélinquished By:	Date:	1011 1021 1030 1043 1043 Time: 1143	A7518 b172 A7519 A7529 A7529 Received By:	823 684 768 814	IOIS III EDB * DC A II II II II Equipment Condition:	Work Order	X X X X X	30 29 27 30 30	5 5 5 5 5 5 6 6 7 7 7 6 7 7 7 7 7 7 7 7		
Relinquished By: Relinquished By: Relinquished By:	Date: 3-13 Date: Date:	0150 1011 1021 1030 1043 Time: Time: Time:	A 7518 b172 A7519 A7529 A7529 Received By: Received By:	823 684 768 814	1013 - 111-9 Millex EDB * DC A 11 '\ 11 '\ 11 '\ 11 '\ 11 '\ 11 '\ 11 '\ 11 '\ 11 '\ 11 '\ 11 '\ 11 '\ 11 '\ 11 '\ 12 Equipment Condition: Shipped Via:	Work Order	X X X X X	30 29 27 30 30	5 5 5 5 5 5 5 5 5 5 5 5 7 5 7 5 7 5 7 5		

÷

APPENDIX F

Third Quarter 2013 Laboratory Analytical and Chain of Custody Documentation

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

AEI Consultants	Client Project ID: #277915; Allen	Date Sampled: 07/03/13
2500 Camino Diablo. Ste #200		Date Received: 07/03/13
	Client Contact: Robert Flory	Date Reported: 07/10/13
Walnut Creek, CA 94597	Client P.O.: #WC084209	Date Completed: 07/10/13

WorkOrder: 1307103

July 11, 2013

Dear Robert:

Enclosed within are:

- 1) The results of the **8** analyzed samples from your project: **#277915; Allen,**
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

					0	\cup		C):	0																								
	McCAN	IPBELI	L ANAI	LYT	ICA	LI	NC.												C	H.	AI	N	OF	C	US	T	OL	DY I	REC	CO	RE)		
		1534 V Pitts	Villow Pass burg, CA 9	s Road 4565										T	UF	RN	AR	OI	JN	DI	ΓIN	1E												
Telephor	ne: (925) 25	2-9262	, city	1000	F	ax:	(925) 2	52-9	269					2									RU	JSH		24 H	IR	48 H	IR	72	2 HR	5 I	DAY
														EI	DF I	Req	uire	ed?			Yes	6		No	0	Em	nail	PDF	Repo	ort:	YE	s		
Report To: Robe	rt Flory		E	Bill To	o: Sa	me									_				A	naly	sis	Req	ues	t						0	ther		Com	ments
Company: AEI C	Consultants		P	0 #:	WCO	842	209	_								E																		
2500 0	Camino Dia	blo											_		d	/B&													er mi	(09)	1 mar			
Walnu	ut Creek, C.	A 94597	F	E-Mai	il: rfl	ory@	aeic	ons	sultan	ts.co	m		_	2)	cant	E&F	-							8310					rom	(82	-			
Tel: (925) 746-60)00		F	ax: ((925)	946	-6099	9				-	-	801	el cl	5201	118.1							101					40 H	DOU D	6			
Project #:277915			P	rojec	et Nar	ne:	Alle	n	_			_	-	120+	cas	e (5	ns (4	~	20)					82			_		Tota	1.2-1				
Project Location:	325 Martin	n Luther	King Jr.	Way									-	02/80	/ sili	reas	arboi) list	/ 80	00				625			010	(9	E S	pue	E			
Sampler Signatur	e:	JAW _	214	A-		_					AFT	HOI	-	as (6)	2) W	& G	Iroca	8010	602	808	02	09		A			9.2/6	218.	dmin	B. S	E			
	$\left(\right)$	SAMP	LING	P.	lers		MA	ΓR	IX	PR	ESI	RV	ED	as Gi	(801	0.1	Hyc	560 (EPA	608	/ 808	/ 82		by E			1/23	le (E	L Ca	- EI	MB	-15)		
SAMPLE ID				ner	tair									ΓPH	esel	eum	cum	A 8.	Y.C	PA	608	624	\$270	A's	etals	tals	742	hron	nium -	Hives	-3)+	E		
(Field Point Name)	LOCATION	Data	Time	Itai	Col	L.			e .					K.&.	s Di	etrol	etrol	s EP	INO	les F	AG	EPA	25/8	M	1 M	5 MG	240	exac	b. Ba	, www.	E	lout		
		Date	Time	Cor	pe	ate	=	-	udg	0	5	20	the	STE	Ha	tal P	tal P	20	EX	sticie	BsI	S	A 6.	H's	-WN	FT	ad (7	H ss	senic	el A	H-6	rops		
				#	E	12	S	Z i	S O	Ic	Ħ	H	ō	M	E	1°	To	H	BT	Pe	PC	ž		PA	C	E	Le	Di	An	기로	TP	2-1		
MW-1		7-3-13	5708	b	VoA	X				X	X		Т	Х																7	<	\square		
MW-2			0729	6	VOA	X				X	X			х																2	¢	\square		
MW-3			0751	6	VOA	X				X	X			Х																2	<			
IW-1			0811	6	NOA	X				X	X			х																2	<			
IW-2			0830	6	VOA	X				X	X		1	х																2	<			
IW-3			0853	6	VOA	X		1	-	x	X		-	х															-	7	<			
IW-4			DAIN	6	VOA	X			-	X	X		+	X																3	<			
IW-5			0920	10	in	x		+	-	x	x		+	x	-			-				_		-					1	7	×	\square		
		V	120	10	Ucm			+	-				+				-	-	_			_	-						-	-	1	\vdash		
	-			-	-			+	-	+			+	_		_	-	-		_		_	_	-	_	-	-		+	+	-	$\left \right $		
				-	-		-	+	-	-	_		+	-	_	-	-	-	_				-	-		-	-		+	+	-			
					-			-	-		_		-			_	_	_	_			_	_	_	_		-	_	-	+	-			
								_																					-	-				
Relinquished By:	nigen	Date: 7-3-13	Time: 1143-	Rece	rivedB	E.	a	a	a	10	7-	б	Τ					2	101								TIC	VO/	is c	G	м	ETAI	LS 01	HER
Relinquished By:	00	Date:	Time:	Reco	ived B	y:									GOO HEA		ON	DIT	IO	N_	<u>г</u>	-	A	PPI	ROI	RL/	ATE		7					
Relinquished By:		Date:	Time:	Rece	ived B	y:								Î	DEC	HLO	ORI	NAT	TED) IN	LA	B		PE	RSI	ERV	ED	IN L.	ĀB		_			

Page	2	of	1	3
				_

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262	2				W	orkO	rder: 1	1307103	6 Cli	entCode	: AEL				
		WaterTrax	WriteOn	✓ EDF	E	xcel		EQuIS	🖌 Email		HardCop	/ Thir	dParty	☐ J-fla	ag
Report to:						Bi	ll to:				R	equested T	AT:	5 (days
Robert Flory AEI Consultants 2500 Camino Dia Walnut Creek, CA (925) 283-6000	blo, Ste.#200 A 94597 FAX: (925) 283-6121	Email: cc: PO: ProjectNo:	rflory@aeiconst #WC084209 #277915; Allen	ultants.com			Sara AEI (2500 Waln Acco	Guerin Consulta Camino ut Creel untsPay	nts o Diablo, Ste. k, CA 94597 rable@AEICo	#200 nsultants	D D .c	ate Receiv ate Printe	ved: d:	07/03/2 07/03/2	2013 2013
					ſ				Requested	d Tests (S	ee legen	d below)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4 5	6	7	89	10	11	12
1307103-001	MW-1		Water	7/3/2013 7:08		В	A	А							
1307103-002	MW-2		Water	7/3/2013 7:29		В	Α								
1307103-003	MW-3		Water	7/3/2013 7:51		В	Α								
1307103-004	IW-1		Water	7/3/2013 8:11		В	Α								
1307103-005	IW-2		Water	7/3/2013 8:30		В	Α								
1307103-006	IW-3		Water	7/3/2013 8:53		В	Α								
1307103-007	IW-4		Water	7/3/2013 9:12		В	А								

Test Legend:

1307103-008

1	5-OXYS+PBSCV_W
6	
11	

2	G-MBTEX_W	
7		
12		

Water

IW-5

3	PREDF REPORT
8	

 \square

В

А

7/3/2013 9:28

4	
9	

5	
10	

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	7/3/2013 3	:52:07 PM
Project Name:	#277915; Allen				LogIn	Reviewed by:		Maria Venegas
WorkOrder N°:	1307103	Matrix: Water			Carrie	r: <u>Client Drop-In</u>		
		<u>Cha</u>	in of Cu	stody (C	OC) Information	tion		
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	signed when relinquis	shed and received?	Yes	✓	No 🗌			
Chain of custody	agrees with sample l	abels?	Yes	✓	No 🗌			
Sample IDs note	d by Client on COC?		Yes	✓	No 🗌			
Date and Time o	f collection noted by C	Client on COC?	Yes	✓	No			
Sampler's name	noted on COC?		Yes	✓	No 🗌			
			<u>Sample</u>	Receipt	Information			
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗌		NA 🔽	
Shipping contain	er/cooler in good cond	dition?	Yes	✓	No 🗌			
Samples in prope	er containers/bottles?		Yes	✓	No 🗌			
Sample containe	ers intact?		Yes	✓	No 🗌			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌			
		Sample Pres	ervation	n and Ho	old Time (HT)	Information		
All samples rece	ived within holding tim	ie?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	r Temp:	2.5°C		NA	
Water - VOA vial	ls have zero headspac	ce / no bubbles?	Yes	✓	No 🗌	No VOA vials submi	tted	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No			
Metal - pH accep	otable upon receipt (pł	H<2)?	Yes		No 🗌		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗌			
		(Ice Typ	be: WE	TICE)			
* NOTE: If the "N	lo" box is checked, se	e comments below.						

Comments:

McCampbell / "When Qua	Anal lity Cou	<u>ytical</u> unts''	<u>, Inc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com							
AEI Consultants		Client Pr	oject ID:	#2779	15; Allen	Date Sampled:	07/03/13				
2500 Camino Diablo Ste #200				07/03/13							
2500 Cullino Diuolo, 510.11200		Client Co	ontact: Re	bert Fl	ory	Date Extracted:	07/06/13-0	07/09/13			
Walnut Creek, CA 94597		Client P.	O.: #WC0	84209		Date Analyzed:	07/06/13-0	07/09/13			
Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 130710											
Lab ID	13071	03-001B	1307103	-002B	1307103-003B	1307103-004B					
Client ID	Μ	IW-1	MW	-2	MW-3	IW-1	Reporting DF	Limit for =1			
Matrix	W		W	W							
DF		1	1		10	1	S	W			
Compound				Conce	entration		ug/kg	µg/L			
tert-Amyl methyl ether (TAME)		ND	ND	1	ND<5.0	ND	NA	0.5			
t-Butyl alcohol (TBA)		4.5	ND	1	ND<20	ND	NA	2.0			
1,2-Dibromoethane (EDB)		ND	ND		ND<5.0	ND	NA	0.5			
1,2-Dichloroethane (1,2-DCA)		21	ND	1	120	ND	NA	0.5			
Diisopropyl ether (DIPE)		ND	ND		ND<5.0	ND	NA	0.5			
Ethyl tert-butyl ether (ETBE)		ND	ND		ND<5.0	ND	NA	0.5			
Methyl-t-butyl ether (MTBE)	().78	ND		ND<5.0	ND	NA	0.5			
		Surro	ogate Rec	overies	s (%)						
%SS1:		108	106	i	100	99					
Comments											
* water and vapor samples are reported in μ_{i} extracts are reported in mg/L, wipe samples	g/L, soil/ in µg/wi limit/me	sludge/solid pe.	samples in r	ng/kg, pr	oduct/oil/non-aqueo	us liquid samples and	all TCLP & S	SPLP Recovery of			
Surrogate Standard; DF = Dilution Factor	with anot	her neater e	low surross	te due to	matrix interference	e to uno unaryono, 700					

McCampbell / "When Qua	Anal Ality Col	lytical unts''	<u>, Inc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com						
AEI Consultants		Client Pr	oject ID:	#2779	915; Allen	Date Sampled:	07/03/13			
2500 Camino Diablo, Ste.#200						Date Received:	07/03/13			
		Client Co	ontact: Re	obert Fl	lory	Date Extracted:	07/06/13-0)7/09/13		
Walnut Creek, CA 94597		Client P.	.O.: #WC()84209		Date Analyzed:	07/06/13-0)7/09/13		
Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS* Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 1307										
Lab ID	13071	03-005B	1307103	-006B	1307103-007B	1307103-008B				
Client ID	Г	W-2	IW-	3	IW-4	IW-5	Reporting DF	Limit for		
Matrix	Matrix W W W									
DF		3.3	10)	10	1	S	W		
Compound				Conce	entration		ug/kg	µg/L		
tert-Amyl methyl ether (TAME)	N!	D<1.7	ND<:	5.0	ND<5.0	ND	NA	0.5		
t-Butyl alcohol (TBA)		33	ND<	20	ND<20	ND	NA	2.0		
1,2-Dibromoethane (EDB)	NI	D<1.7	31		87	ND	NA	0.5		
1,2-Dichloroethane (1,2-DCA)		29	170)	150	1.5	NA	0.5		
Diisopropyl ether (DIPE)	N!	D<1.7	ND<:	5.0	ND<5.0	ND	NA	0.5		
Ethyl tert-butyl ether (ETBE)	N!	D<1.7	ND<:	5.0	ND<5.0	ND	NA	0.5		
Methyl-t-butyl ether (MTBE)	N!	D<1.7	ND<	5.0	ND<5.0	ND	NA	0.5		
		Surro	ogate Rec	overies	s (%)					
%SS1:		103	100)	101	104				
Comments										
* water and vapor samples are reported in μ_{2} extracts are reported in mg/L, wipe samples	g/L, soil/ in µg/wi	'sludge/solid pe.	samples in r	mg/kg, pr	oduct/oil/non-aqueo	us liquid samples and	all TCLP & S	SPLP		
ND means not detected above the reporting Surrogate Standard; DF = Dilution Factor	limit/met	thod detectio	on limit; N/A	A means a	analyte not applicabl	le to this analysis; %S	S = Percent R	lecovery of		
# surrogate diluted out of range or coelutes v	with anot	ther peak; &) low surrog:	ate due to	matrix interference.					

McCampbell Analyt					l <u>, Inc.</u>	Tc http	1534 Willow F Il Free Telephoi ://www.mccamp	Pass Road, Pittsburg ne: (877) 252-9262 obell.com / E-mail:	g, CA 94565-170 / Fax: (925) 252 main@mccampb	01 -9269 ell.com		
AEI C	Consultants			Client F	Project ID:	#277915; A	llen	Date Sample	ed: 07/03	3/13		
2500	Camino Diablo. Ste.	#200						Date Receiv	ed: 07/03	3/13		
	,			Client C	Contact: Ro	bert Flory		Date Extract	ed: 07/04	4/13-07	/09/13	
Walnut Creek, CA 94597 Client P.O.: #W						84209		Date Analyz	ed: 07/04	4/13-07	/09/13	
	Gas	nge (C	C6-C12)	Volatile Hy	drocarbons	as Gasolii	ne with BTE	X and MTI	BE*		1005100	
Extractio	on method: SW5030B				Analyt	ical methods: S	W8021B/80151	Bm	X 1	WO	rk Order:	130/103
Lab ID	Client ID	Matrix	TI	γH(g)	MIBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	MW-1	W]	ND	ND	ND	ND	ND	ND	1	101	
002A	MW-2	W]	ND	ND	ND	ND	ND	ND	1	108	
003A	MW-3	W	7	100	ND<180	2200	35	170	72	10	127	d1
004A	IW-1	W]	ND	ND	ND	ND	ND	ND	1	104	
005A	IW-2	W	3	200	ND<25	59	6.0	55	360	5	129	d1
006A	IW-3	W	24	4,000	ND<500	3200	2500	230	3600	100	103	d1
007A	IW-4	W	38	3,000	ND<500	4700	7000	620	3300	100	108	d1
008A	IW-5	W		ND	ND	ND	ND	ND	ND	1	109	

Reporting Limit for DF =1; ND means not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	μg/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID): 79078		WorkO	rder: 1307103
EPA Method: SW8260B Extraction: S	W5030B					;	Spiked Sarr	ple ID:	1306813-003C
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, mayo	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	110	112	2.53	104	70 - 130	20	70 - 130
Benzene	ND	10	97.4	97	0.349	91	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	ND	40	117	121	3.35	95.6	70 - 130	20	70 - 130
Chlorobenzene	ND	10	93.1	94.7	1.69	88.5	70 - 130	20	70 - 130
1,2-Dibromoethane (EDB)	ND	10	110	115	3.85	100	70 - 130	20	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	101	103	1.33	96	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND	10	108	113	4.42	102	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	102	113	9.91	99	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	103	105	1.82	95.6	70 - 130	20	70 - 130
Toluene	ND	10	101	102	0.855	95.6	70 - 130	20	70 - 130
Trichloroethene	ND	10	96.1	96.3	0.152	92.5	70 - 130	20	70 - 130
%SS1:	96	25	108	106	1.96	96	70 - 130	20	70 - 130
All target compounds in the Method Blank of this extraction ba	tch were ND	less than th	e method	RL with th	he following	g exceptior	15:		

BATCH 79078 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1307103-001B	07/03/13 7:08 AM	07/06/13	07/06/13 5:32 AM	1307103-002B	07/03/13 7:29 AM	07/06/13	07/06/13 6:13 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

CDPH ELAP 1644 ♦ NELAP 12283CA

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 79124		WorkO	rder: 1307103
EPA Method: SW8260B	Extraction: SW5030B					ę	Spiked Sam	ple ID:	1307103-004B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	108	125	14.9	115	70 - 130	20	70 - 130
Benzene	ND	10	103	108	4.06	100	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	ND	40	96.3	132, F1	31, F1	120	70 - 130	20	70 - 130
Chlorobenzene	ND	10	101	108	6.65	99.2	70 - 130	20	70 - 130
1,2-Dibromoethane (EDB)	ND	10	109	127	15.2	117	70 - 130	20	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	104	116	10.6	106	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND	10	113	123	8.53	111	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	102	113	10.3	112	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	98.2	115	15.5	106	70 - 130	20	70 - 130
Toluene	ND	10	107	110	2.88	103	70 - 130	20	70 - 130
Trichloroethene	ND	10	103	109	4.83	100	70 - 130	20	70 - 130
%SS1:	99	25	104	106	2.11	105	70 - 130	20	70 - 130
All target compounds in the Method Blank on NONE	of this extraction batch were ND	less than th	e method	RL with the	he following	g exception	15:		
F1 = MS/MSD recovery and/or % RPD was	out of acceptance criteria: LCS v	alidated the	e nren hate	h					

BATCH 79124 SUMMARY										
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed			
1307103-004B	07/03/13 8:11 AM	07/06/13	07/06/13 1:36 PM							

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

K__QA/QC Officer

CDPH ELAP 1644 ♦ NELAP 12283CA

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 79157		WorkO	rder: 1307103
EPA Method: SW8260B Extraction: S	W5030B					ç	Spiked Sam	ple ID:	1307045-009A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	110	112	1.65	96.5	70 - 130	20	70 - 130
Benzene	ND	10	87.4	91.9	5.06	87.8	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	ND	40	121	122	0.702	94.6	70 - 130	20	70 - 130
Chlorobenzene	ND	10	89.7	92.3	2.86	88.5	70 - 130	20	70 - 130
1,2-Dibromoethane (EDB)	ND	10	109	110	1.19	95.4	70 - 130	20	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	97.2	98.2	1.02	89.4	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND	10	102	106	3.82	99.3	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	106	110	3.48	97.7	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	112	114	1.36	101	70 - 130	20	70 - 130
Toluene	ND	10	84.7	88.3	4.17	85.4	70 - 130	20	70 - 130
Trichloroethene	0.90	10	85.8	90.9	5.26	98.6	70 - 130	20	70 - 130
%SS1:	104	25	104	103	0.897	103	70 - 130	20	70 - 130
All target compounds in the Method Blank of this extraction ba	atch were ND	less than th	e method	RL with th	he following	g exception	IS:		

BATCH 79157 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1307103-003B	07/03/13 7:51 AM	07/09/13	07/09/13 2:12 AM	1307103-005B	07/03/13 8:30 AM	07/09/13	07/09/13 2:51 AM
1307103-006B	07/03/13 8:53 AM	07/09/13	07/09/13 3:29 AM	1307103-007B	07/03/13 9:12 AM	07/09/13	07/09/13 4:07 AM
1307103-008B	07/03/13 9:28 AM	07/09/13	07/09/13 4:45 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

CDPH ELAP 1644 ♦ NELAP 12283CA

K__QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	QC Matrix: Water				BatchID	: 79068		WorkOrder: 1307103			
EPA Method: SW8021B/8015Bm Extraction: S	W5030B					e,	Spiked Sam	ple ID:	1307072-001B		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)		
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
TPH(btex) [£]	ND	60	96.4	96.8	0.493	94.5	70 - 130	20	70 - 130		
MTBE	ND	10	107	107	0	108	70 - 130	20	70 - 130		
Benzene	ND	10	97.5	95.2	2.38	95	70 - 130	20	70 - 130		
Toluene	ND	10	98.6	96.7	1.91	95.4	70 - 130	20	70 - 130		
Ethylbenzene	ND	10	97.9	95.7	2.23	96.1	70 - 130	20	70 - 130		
Xylenes	ND	30	101	97	3.68	98	70 - 130	20	70 - 130		
%SS:	104	10	99	99	0	99	70 - 130	20	70 - 130		
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with th	ne following	g exception	s:				

			BATCH 79068 SI	UMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1307103-001A	07/03/13 7:08 AM	07/04/13	07/04/13 6:55 AM	1307103-002A	07/03/13 7:29 AM	07/04/13	07/04/13 7:25 AM
1307103-004A	07/03/13 8:11 AM	07/04/13	07/04/13 7:56 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

AL__QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	QC Matrix: Water				BatchID	: 79105		WorkOrder: 1307103			
EPA Method: SW8021B/8015Bm Extraction: SV	W5030B					ę	Spiked Sam	ple ID:	1307118-021A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)		
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
TPH(btex) [£]	ND	60	105	102	3.31	92.5	70 - 130	20	70 - 130		
MTBE	ND	10	93.9	98.4	4.69	85.6	70 - 130	20	70 - 130		
Benzene	ND	10	105	106	0.698	104	70 - 130	70 - 130			
Toluene	ND	10	106	105	0.731	105	70 - 130	20	70 - 130		
Ethylbenzene	ND	10	111	109	2.06	106	70 - 130	20	70 - 130		
Xylenes	ND	30	112	110	1.61	107	70 - 130	20	70 - 130		
%SS:	98	10	94	96	2.43	96	70 - 130	20	70 - 130		
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with th	ne following	g exception	s:				

			BATCH 79105 S	UMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1307103-003A	07/03/13 7:51 AM	07/06/13	07/06/13 9:15 AM	1307103-003A	07/03/13 7:51 AM	07/06/13	07/06/13 7:02 PM
1307103-005A	07/03/13 8:30 AM	07/06/13	07/06/13 6:31 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

AL__QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	QC Matrix: Water				BatchID	: 79169		WorkOrder: 1307103			
EPA Method: SW8021B/8015Bm Extraction: S	W5030B					ę	Spiked Sam	ple ID:	1307185-001A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)		
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
TPH(btex) [£]	ND	60	99.6	93.9	5.90	92.8	70 - 130	20	70 - 130		
MTBE	ND	10	103	96.6	6.24	94.8	70 - 130	20	70 - 130		
Benzene	ND	10	99.3	107	7.05	111	70 - 130 20 70 - 130				
Toluene	ND	10	102	108	5.75	113	70 - 130	20	70 - 130		
Ethylbenzene	ND	10	101	113	10.6	112	70 - 130	20	70 - 130		
Xylenes	ND	30	103	108	4.47	112	70 - 130	20	70 - 130		
%SS:	108	10	102	103	1.41	110	70 - 130	20	70 - 130		
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with th	ne following	g exception	IS:				

			BATCH 79169 S	UMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1307103-006A	07/03/13 8:53 AM	07/08/13	07/08/13 11:37 PM	1307103-007A	07/03/13 9:12 AM	07/09/13	07/09/13 1:36 AM
1307103-008A	07/03/13 9:28 AM	07/08/13	07/08/13 10:37 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

K__QA/QC Officer

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

AEI Consultants	Client Project ID: #277915; Allen	Date Sampled: 07/03/13
2500 Camino Diablo. Ste #200		Date Received: 07/03/13
	Client Contact: Robert Flory	Date Reported: 07/10/13
Walnut Creek, CA 94597	Client P.O.: #WC	Date Completed: 07/10/13

WorkOrder: 1307104

July 10, 2013

Dear Robert:

Enclosed within are:

- 1) The results of the **5** analyzed samples from your project: **#277915; Allen,**
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

			130	57104									
McCA 1534 WILLO Website: www. Teleph	MPBE W PASS	LL AN ROAD / H ell.com /)) 252-9262	ALYTICAL INC PITTSBURG, CA 9456 Email: main@mccamp 2 / Fax: (925) 252-9269	5-1701 bell.com	CHAIN OF CUSTODY RECORD TURN AROUND TIME RUSH 24 HR 48 HR 72 HR 5 DAY EDF Required? Coelt (Normal) No Write On (DW) No								
Report To: Robert	FLOC	4	Bill To: Sa	m			Lab Use	Only		Mar .			
Company: DET		1			Section States	all the second		14 15 44	P	ressurizat	ion Gas		
2500 000		Deal	do		Pressurize	d By		Date			tan tan tan tan		
uzada a Craet	asi	a	E-Mail: Cloco	Paraconault	- 1 C-				and the second	N2	He		
Tele: (925) Jelle ch	1-13	1.4	Fax: ()	Enciconsoli		ta dia ta dia ta dia dia dia dia dia dia dia dia dia di	10 10 10 10 10 10 10 10 10 10 10 10 10 1	14. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					
Project #	~		Project Name:	011 0	Helium Shroud SN#:	9 - 200 CA 1494	204 (1973)	A B Law and Lake		CALLAND AND A			
27790	>			Ittlen	Other				Sec. 1				
Project Location:	KIAn	D	1		Other:								
Field Sample ID	Coll	ection	99	Manifold / Sampler	Isopropyl	Alco	hol	LEAK	CH	ak			
(Location)			Canister SN#	Kit SN#	Analysis Requested	Indoor	Soil	Ca	nister Pre	essure/Vacu	um		
	Date	Time				Air	Gas	Initial	Final	Receipt	Final (nsi)		
VS-1	1-3-13	0958	6165	470	TO15-TPH-9, METER		X	30	5	S. Maria			
NS-2	1	1011	A7518	823	EDB & DCA		X	29	5	17-17-14-19-1 19-17-14-19-19-19-19-19-19-19-19-19-19-19-19-19-	1. T		
VS-3		1021	6172	684	1		X	27	5	No. 19 Contraction of the	14. A.		
VS-4		1030	A7-519	768	15		X	30	5	in an	1.1.1		
15-5	1	1043	A7529	814	il		X	30	5	3.5			
					1 1	1.5							
											1. 1. 1. 1.		
			- K							an MD of the second	1.1.1.1.1		
Relinquished By: Relinquished By:	Date: 7-3-13 Date:	Time: 143 Time:	Received By:	m 16	Temp (°C) : W Equipment Condition:	Vork Order	#:						
Relinquished By:	Date:	Time:	Received By:		Shipped Via:								

McCampbell Analytical, Inc.

Page 1 of 1

Pittsburg (925) 25	g, CA 94565-1701 52-9262				W	orkO	rder:	130710	4	Clie	ntCode:	AEL					
		WaterTra	x WriteOn	EDF	E	xcel		EQuIS	✓	Email	⊟Ha	ardCopy	у [ThirdPa	rty	_ J-fla	g
Report to:						Bi	ill to:					Re	eques	sted TAT:		5 d	ays
Robert Flory AEI Consult 2500 Camin Walnut Cree (925) 283-600	/ cants no Diablo, Ste.#200 ek, CA 94597 00 FAX: (925) 283-6121	Email: cc: PO: ProjectNo:	rflory@aeiconsi #WC #277915; Allen	ultants.com			Sara AEI (2500 Walr Acco	Guerin Consult Camin out Cree ountsPa	ants o Diablo ek, CA 9 yable@	o, Ste. # 94597 AEICon	200 sultants.c	Da Da	ate R ate P	Received: Printed:		07/03/20 07/03/20	013 013
									Ree	quested	Tests (See	e legen	d bel	ow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1307104-001	VS-1		Soil Gas	7/3/2013 9:58		А											
1307104-002	VS-2		Soil Gas	7/3/2013 10:11		А											
1307104-003	VS-3		Soil Gas	7/3/2013 10:21		А											

А

А

7/3/2013 10:30

7/3/2013 10:43

Test Legend:

1307104-004

1307104-005

1	TO15+GAS_SOIL(UG/M3)
6	
11	

2	
7	
12	

Soil Gas

Soil Gas

4	
9	

5	
10	

The following SampIDs: 001A, 002A, 003A, 004A, 005A contain testgroup.

VS-4

VS-5

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Maria Venegas

Sample Receipt Checklist

Client Name:	AEI Consultants				Date ar	nd Time Received:	7/3/2013 3:59:11 PM
Project Name:	#277915; Allen				LogIn F	Reviewed by:	Maria Venegas
WorkOrder N°:	1307104	Matrix: Soil Gas			Carrier	Client Drop-In	
		<u>Cha</u>	in of Cu	istody (COC) Informati	on	
Chain of custody	present?		Yes	\checkmark	No		
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No 🗌		
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌		
Sample IDs note	d by Client on COC?		Yes	✓	No		
Date and Time of	f collection noted by C	lient on COC?	Yes	✓	No		
Sampler's name	noted on COC?		Yes	\checkmark	No		
			<u>Sample</u>	Receipt Inf	ormation		
Custody seals int	tact on shipping conta	iner/cooler?	Yes		No 🗌		NA 🖌
Shipping contain	er/cooler in good cond	lition?	Yes	\checkmark	No 🗌		
Samples in prope	er containers/bottles?		Yes	✓	No 🗌		
Sample containe	rs intact?		Yes	✓	No 🗌		
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌		
		Sample Pres	servatio	n and Hold 1	<u> Time (HT) I</u>	nformation	
All samples recei	ived within holding tim	e?	Yes	\checkmark	No 🗌		
Container/Temp	Blank temperature		Coole	r Temp:			NA 🖌
Water - VOA vials have zero headspace / no bubbles?			Yes		No 🗌	No VOA vials subm	itted 🖌
Sample labels ch	necked for correct pres	servation?	Yes	✓	No		
Metal - pH accep	table upon receipt (pH	I<2)?	Yes		No 🗌		NA 🗹
Samples Receive	ed on Ice?		Yes		No 🗹		

* NOTE: If the "No" box is checked, see comments below.

Comments:

	Analytical, Inc. ulity Counts''	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com			
AEI Consultants	Client Project ID: #2779	15; Allen	Date Sampled:	07/03/13	
2500 Camino Diablo, Ste.#200			Date Received:	07/03/13	
Walnut Creek CA 94597	Client Contact: Robert Fl	ory	Date Reported:	07/10/13	
munut crock, cri 9+597	Client P.O.: #WC		Date Completed:	07/10/13	

Work Order: 1307104

July 10, 2013

CASE NARRATIVE REGARDING TO-15 ANALYSIS

All summa canisters are EVACUATED 5 days after the reporting of the results. Please call or email if a longer retention time is required.

In an effort to attain the lowest reporting limits possible for the majority of the TO-15 target list, high level compounds may be analyzed using EPA Method 8260B.

Polymer (Tedlar) bags are not recommended for TO15 samples. The disadvantages are listed in Appendix B of the DTSC Advisory of April 2012.

	Analytical	<u>, Inc.</u>	1534 Willow P Toll Free Telephor http://www.mccamp	ass Road, Pittsburg, CA ne: (877) 252-9262 / Fax: bbell.com / E-mail: main@	94565-1701 (925) 252-9269 mccampbell.co	m				
AEI Consultants	Client Pr	roject ID: #2779	15; Allen	Date Sampled: 07/03/13						
2500 Comino Diablo Sta #200				Date Received: 07/03/13						
2500 Camino Diabio, Ste.#200	Client Co	ontact: Robert Fl	ory	Date Extracted:	07/04/13					
Walnut Creek, CA 94597	Client P.	O.: #WC		Date Analyzed:	07/04/13					
TPH gas + Volatile Organic Compounds in ug/m ^{3*}										
Extraction Method: TO15 Analytical Method: TO15 Work Order: 1307104										
Lab ID	1307104-001A	1307104-002A	1307104-003A	1307104-004A						
Client ID	VS-1	VS-2	VS-3	VS-4	Doporting	Limit for				
Matrix	Soil Gas	Soil Gas	Soil Gas	Soil Gas	DF and Press	=1 ure Ratio				
Initial Pressure (psia)	12.71	12.42	11.25	12.78	(Final/In	itial) = 2				
Final Pressure (psia)	25.33	24.78	22.40	25.47						
DF	1	1	1	1	Soil Gas	W				
Compound		Conce	entration		µg/m³	ug/L				
Benzene	ND	ND	ND	ND	6.5	NA				
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	16	NA				
1,2-Dichloroethane (1,2-DCA)	ND	ND	ND	20	8.2	NA				
Ethylbenzene	ND	45	ND	ND	8.8	NA				
Methyl-t-butyl ether (MTBE)	ND	ND	ND	ND	7.3	NA				
Toluene	ND	ND	ND	ND	7.7	NA				
TPH(g)	ND	ND	ND	ND	1800	NA				
Xylenes, Total	ND	290	ND	ND	27	NA				
	Surro	ogate Recoveries	(%)							
%SS1:	126	129	126	129						
%SS2:	124	128	125	127						
%SS3:	119	122	120	121						
Comments										
 *vapor samples are reported in μg/m³. ND means not detected above the reporting I: # surrogate diluted out of range or surrogate 6 %SS = Percent Recovery of Surrogate Standard Stan	imit/method detection coelutes with another ard	n limit; N/A means ar • peak.	alyte not applicable	to this analysis.						

	<u>Analytical</u> <i>lity Counts''</i>	<u>, Inc.</u>		1534 Willow I Toll Free Telepho http://www.mccam	Pass Road, Pittsburg, CA ne: (877) 252-9262 / Fax: pbell.com / E-mail: main@	94565-1701 (925) 252-9269 mccampbell.co	m	
AEI Consultants	Client Pr	Client Project ID: #277915; Allen Date Sampled:			07/03/13			
2500 Camino Diablo Ste #200		Date Received:					07/03/13	
	Client C	ontact: Re	obert Fl	ory	Date Extracted:	07/04/13		
Walnut Creek, CA 94597	Client P.	O.: #WC			Date Analyzed:	07/04/13		
	TPH gas + Vola	tile Orga	nic Coı	npounds in µg/1	m ^{3*}			
Extraction Method: TO15	An	alytical Metho	d: TO15			Work Order:	1307104	
Lab ID	1307104-005A							
Client ID	VS-5					Reporting	Limit for	
Matrix	Soil Gas					DF and Press	=1 ure Ratio	
Initial Pressure (psia)	12.68					(Final/In	itial) = 2	
Final Pressure (psia)	25.29							
DF	1					Soil Gas	W	
Compound	Concentration						ug/L	
Benzene	ND					6.5	NA	
1,2-Dibromoethane (EDB)	ND					16	NA	
1,2-Dichloroethane (1,2-DCA)	ND					8.2	NA	
Ethylbenzene	ND					8.8	NA	
Methyl-t-butyl ether (MTBE)	ND					7.3	NA	
Toluene	ND					7.7	NA	
TPH(g)	ND					1800	NA	
Xylenes, Total	ND					27	NA	
	Surre	ogate Rec	overies	(%)				
%SS1:	129							
%SS2:	127							
%SS3:	122							
Comments								
 *vapor samples are reported in μg/m³. ND means not detected above the reporting I # surrogate diluted out of range or surrogate %SS = Percent Recovery of Surrogate Stand. DF = Dilution Factor 	imit/method detectio coelutes with another ard	n limit; N/A r peak.	means ar	nalyte not applicable	to this analysis.			

	McCampbell An	<u>alyticc</u> _{Counts''}	al, Inc.	15 Toll F http://w	534 Willow P Free Telephor www.mccamp	Pass Road, Pittsburg, CA 94565-170 ne: (877) 252-9262 / Fax: (925) 252- obell.com / E-mail: main@mccampbe	9269 91.com		
AEI C	Consultants	Client	Project ID:	#277915; Alle	en	Date Sampled: 07/03/	/13		
2500	Coming Dishla Sta #200					Date Received: 07/03/	/13		
2500 Camino Diablo, Ste.#200			Contact: Rol	pert Flory		Date Extracted: 07/04/	/13-07/0	5/13	
Waln	ut Creek, CA 94597	Client	P.O.: #WC			Date Analyzed: 07/04/	/13-07/0	5/13	
Extraction	on method: TO15		Leak Cl Analyt	heck Compou	und* D15		Work	Order: 1	307104
Lab ID	Client ID	Matrix	Initial Pressure	Final Pressure		Isopropyl Alcohol	DF	% SS	Comments
001A	VS-1	Soil Gas	12.71	25.33		ND	1	N/A	
002A	VS-2	Soil Gas	12.42	24.78		ND	1	N/A	
003A	VS-3	Soil Gas	11.25	22.40		ND	1	N/A	
004A	VS-4	Soil Gas	12.78	25.47		ND	1	N/A	
005A	VS-5	Soil Gas	12.68	25.29		ND	1	N/A	
	Reporting Limit for DF =1;	W	psia	psia		NA			NA
	above the reporting limit	SoilGas	psia	psia		50		ŀ	ug/m³
* leak cl ND mea The (liq DTSC, 4	neck compound is reported in µg/m ³ . Ins not detected above the reporting limit/ uid) Leak Check reference is: Advisory-Active Soil Gas Investigations,	method detec April 2012, p	ction limit; N/A r page 17, section 4	neans analyte not	t applicable	to this analysis.			
"The lat	poratory reports should quantify and anno	tate all detect	ions of the leak c	check compound	at the repor	rting limit of the target analytes	."		
% SS = I DF = Di	Percent Recovery of Surrogate Standard lution Factor								

QC SUMMARY REPORT FOR TO15

QC Matrix: Soilgas BatchID: 79066 WorkOrder: 1307104 W.O. Sample Matrix: Soilgas EPA Method: TO15 Extraction: TO15 Spiked Sample ID: N/A Sample Spiked MS MSD MS-MSD LCS Acceptance Criteria (%) Analyte nL/L nL/L % Rec. % Rec. % RPD % Rec. MS / MSD RPD LCS N/A 25 98.3 N/A N/A 60 - 140 Acrylonitrile N/A N/A N/A tert-Amyl methyl ether (TAME) N/A 25 N/A N/A N/A 105 N/A N/A 60 - 140 N/A 25 N/A N/A N/A 86.7 N/A N/A 60 - 140 Benzene Benzyl chloride N/A 25 N/A N/A N/A 105 N/A N/A 60 - 140 Bromodichloromethane N/A 25 N/A N/A N/A 93.2 N/A N/A 60 - 140 N/A 25 N/A N/A N/A 79.6 N/A N/A 60 - 140 Bromoform t-Butyl alcohol (TBA) N/A 25 N/A N/A N/A 90.6 N/A N/A 60 - 140 Carbon Disulfide N/A 25 N/A N/A N/A 98.2 N/A N/A 60 - 140 25 N/A Carbon Tetrachloride N/A N/A N/A N/A 94.2 N/A 60 - 140 Chlorobenzene N/A 25 N/A N/A N/A 90.4 N/A N/A 60 - 140 Chloroethane N/A 25 N/A N/A N/A 106 N/A N/A 60 - 140 N/A N/A Chloroform 25 N/A N/A N/A 92.2 N/A 60 - 140 Chloromethane N/A 25 N/A N/A N/A 95.8 N/A N/A 60 - 140 N/A 25 N/A N/A 91.9 N/A N/A 60 - 140 Dibromochloromethane N/A 1,2-Dibromo-3-chloropropane N/A 25 N/A N/A N/A 102 N/A N/A 60 - 140 N/A 25 N/A N/A 87.4 N/A N/A 60 - 140 1,2-Dibromoethane (EDB) N/A 1,3-Dichlorobenzene N/A 25 N/A N/A N/A 84 N/A N/A 60 - 140 N/A N/A 1,4-Dichlorobenzene N/A 25 N/A N/A N/A 77.8 60 - 140 Dichlorodifluoromethane N/A 25 N/A 92.7 N/A N/A N/A N/A 60 - 140 1,1-Dichloroethane N/A 25 N/A N/A N/A 89 N/A N/A 60 - 140 1,2-Dichloroethane (1,2-DCA) N/A 25 N/A N/A N/A 92.6 N/A N/A 60 - 140 cis-1,2-Dichloroethene N/A 25 N/A N/A N/A 94.1 N/A N/A 60 - 140 trans-1,2-Dichloroethene N/A 25 N/A N/A 95.3 N/A N/A N/A 60 - 140 1,2-Dichloropropane N/A 25 N/A N/A N/A 90.6 N/A N/A 60 - 140 cis-1,3-Dichloropropene N/A 25 N/A N/A N/A 99.6 N/A N/A 60 - 140 trans-1,3-Dichloropropene N/A 25 N/A N/A N/A 104 N/A N/A 60 - 140 1,2-Dichloro-1,1,2,2-tetrafluoroethane N/A 25 N/A N/A N/A 94 N/A N/A 60 - 140 Diisopropyl ether (DIPE) N/A 25 N/A N/A N/A 93.7 N/A N/A 60 - 140 1,4-Dioxane N/A 25 N/A N/A N/A 90.4 N/A N/A 60 - 140 Ethyl acetate N/A 25 N/A N/A N/A 93.2 N/A N/A 60 - 140 25 N/A Ethyl tert-butyl ether (ETBE) N/A N/A N/A N/A 101 N/A 60 - 140

LCS = Laboratory Control Sample

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

JR QA/QC Officer

QC SUMMARY REPORT FOR TO15

W.O. Sample Matrix: Soilgas	lgas QC Matrix: Soilgas BatchID: 79066 WorkOrder:					rder: 1307104						
EPA Method: TO15	Extraction: TO15	traction: TO15					Spiked Sample ID: N/A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	Criteria (%)				
N.O. Sample Matrix: Soilgas EPA Method: TO15 Analyte hylbenzene eon 113 xachlorobutadiene Methyl-2-pentanone (MIBK) ethyl-t-butyl ether (MTBE) ethylene chloride aphthalene yrene 1,1,2-Tetrachloroethane 1,2,2-Tetrachloroethane trachloroethene trahydrofuran oluene 2,4-Trichlorobenzene 1,1-Trichloroethane 1,2-Trichloroethane ichloroethene	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS			
Ethylbenzene	N/A	25	N/A	N/A	N/A	91.1	N/A	N/A	60 - 140			
Freon 113	N/A	25	N/A	N/A	N/A	93.5	N/A	N/A	60 - 140			
Hexachlorobutadiene	N/A	25	N/A	N/A	N/A	81.5	N/A	N/A	60 - 140			
4-Methyl-2-pentanone (MIBK)	N/A	25	N/A	N/A	N/A	94.3	N/A	N/A	60 - 140			
Methyl-t-butyl ether (MTBE)	N/A	25	N/A	N/A	N/A	95.3	N/A	N/A	60 - 140			
Methylene chloride	N/A	25	N/A	N/A	N/A	87.9	N/A	N/A	60 - 140			
Naphthalene	N/A	50	N/A	N/A	N/A	86.1	N/A	N/A	60 - 140			
Styrene	N/A	25	N/A	N/A	N/A	88.9	N/A	N/A	60 - 140			
1,1,1,2-Tetrachloroethane	N/A	25	N/A	N/A	N/A	95.5	N/A	N/A	60 - 140			
1,1,2,2-Tetrachloroethane	N/A	25	N/A	N/A	N/A	83.4	N/A	N/A	60 - 140			
Tetrachloroethene	N/A	25	N/A	N/A	N/A	84.3	N/A	N/A	60 - 140			
Tetrahydrofuran	N/A	25	N/A	N/A	N/A	104	N/A	N/A	60 - 140			
Toluene	N/A	25	N/A	N/A	N/A	99	N/A	N/A	60 - 140			
1,2,4-Trichlorobenzene	N/A	25	N/A	N/A	N/A	79.8	N/A	N/A	60 - 140			
1,1,1-Trichloroethane	N/A	25	N/A	N/A	N/A	92.3	N/A	N/A	60 - 140			
1,1,2-Trichloroethane	N/A	25	N/A	N/A	N/A	88.3	N/A	N/A	60 - 140			
Trichloroethene	N/A	25	N/A	N/A	N/A	91.4	N/A	N/A	60 - 140			
1,2,4-Trimethylbenzene	N/A	25	N/A	N/A	N/A	89.2	N/A	N/A	60 - 140			
1,3,5-Trimethylbenzene	N/A	25	N/A	N/A	N/A	90.8	N/A	N/A	60 - 140			
Vinyl Chloride	N/A	25	N/A	N/A	N/A	101	N/A	N/A	60 - 140			
Xylenes, Total	N/A	75	N/A	N/A	N/A	86.2	N/A	N/A	60 - 140			
%SS1:	N/A	500	N/A	N/A	N/A	123	N/A	N/A	60 - 140			
%SS2:	N/A	500	N/A	N/A	N/A	123	N/A	N/A	60 - 140			
%SS3:	N/A	500	N/A	N/A	N/A	118	N/A	N/A	60 - 140			

LCS = Laboratory Control Sample

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

ounts and a second s

QC SUMMARY REPORT FOR TO15

QC Matrix: Soilgas BatchID: 79066 WorkOrder: 1307104 W.O. Sample Matrix: Soilgas EPA Method: TO15 Extraction: TO15 Spiked Sample ID: N/A Sample Spiked MS MSD MS-MSD LCS Acceptance Criteria (%) Analyte MS/MSD RPD LCS nL/L nL/L % Rec. % Rec. % RPD % Rec. BATCH 79066 SUMMARY Lab ID Date Sampled Date Extracted Date Analyzed Lab ID **Date Sampled** Date Extracted Date Analyzed 1307104-001A 07/03/13 9:58 AM 07/04/13 07/04/13 8:10 AM 1307104-001A 07/03/13 9:58 AM 07/04/13 07/04/13 8:10 AM 1307104-002A 07/04/13 1307104-002A 07/04/13 07/03/13 10:11 AM 07/04/13 8:51 AM 07/03/13 10:11 AM 07/04/13 8:51 AM 1307104-003A 07/04/13 1307104-003A 07/04/13 07/04/13 9:32 AM 07/03/13 10:21 AM 07/04/13 9:32 AM 07/03/13 10:21 AM 1307104-004A 07/03/13 10:30 AM 07/04/13 07/04/13 10:13 AM 1307104-004A 07/03/13 10:30 AM 07/04/13 07/04/13 10:13 AM 1307104-005A 07/04/13 07/04/13 10:54 AM 1307104-005A 07/03/13 10:43 AM 07/04/13 07/04/13 10:54 AM 07/03/13 10:43 AM

LCS = Laboratory Control Sample

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

APPENDIX G

LCPT Checklist

AEI LTCP CHECK LIST SEPTEMBER 29, 2013

GENERAL CRITERIA A

The unauthorized release is located within the East Bay Municipal Utility District. The present the site has been blocked off from the larger warehouse facility and has no water service. No other water sources are on the property

GENERAL CRITERIA B

A 10,000 gallon gasoline UST was present on the site and supplied fuel for delivery trucks. The unauthorized release consists only of gasoline. One grab groundwater sample reported and one monitoring well groundwater sample have reported MTBE. Low levels of 1,2-dibromoethane (EDB) and 1,2 dichloroethane (1,2-DCA) have been reported in groundwater.

GENERAL CRITERIA C

The release was stopped when the UST was taken out of service and abandoned in place in 1993.

GENERAL CRITERIA D

Although analysis of one grab groundwater sample and groundwater samples following the ignition injection of RegenOxTM reported total hydrocarbons concentrations of hydrocarbons greater than 120,000 μ g/L, no free product has been reported at the site.

<u>GENERAL CRITERIA E</u>

A conceptual site model was developed and described in the September 12, 2007 Soil and Groundwater Investigation report. The report also contains the survey of wells in the area and a site utility survey. The shallow sediments underlying the site are predominantly relatively stratified fine grained silty sand. The results of soil sampling indicated that the residual hydrocarbons in the soil are restricted to a "smear zone" between the depths of approximate 8.5 to 12 feet bgs. The maximum TPH-g concentration was reported in sample SB-7-10 at a concentration of 2,000 mg/kg. Depth to groundwater in MW-3 has ranged from 7.35 (3/24/2011) to 8.78 (9/18/2009, 12/14/2009).

The survey of wells found no water supply wells within a ¹/₄ mile radius and no monitoring wells closer than 900 feet to the site. No public utilities intersect the groundwater plume which extends approximately 70 feet down gradient (southwest) from the abandoned in place UST.

The maximum concentration of TPH-g grab groundwater sample was reported in soil boring SB-7 at a concentration of 110,000 μ g/L. TPH-g concentrations in groundwater monitoring well MW-3 (located 7 feet from SB-7) during the first year of monitoring ranged from 20,000 μ g/L to 36,000 μ g/L. This suggests that the soil boring grab water samples were biased upward due to hydrocarbons adsorbed to sediment included in the grad water samples from the soil borings. Following the RegenOxTM injection, concentrations of TPH-g increased to 120,000 μ g/L, which suggests the residual hydrocarbons were initially immobile then mobilized by the injection of the RegenOxTM.

Between 2009 and 2012, dilute hydrogen peroxide was infused into wells around the abandoned UST. TPH-g concentrations in well MW-3 decreased from 59,000 μ g/L in 2009 to ND<50 μ g/L in September 21, 2012, then rebounded to 7,100 μ g/L on July 3, 2013. TPH-g concentrations in well IW-3 decreased from 77,000 μ g/L in 2009 to ND<50 μ g/L on July 27, 2012, then rebounded to 2,400 μ g/L on July 3, 2013. TPH-g concentrations in well IW-4 decreased from 95,000 μ g/L in 2011 to 270 μ g/L on July 27, 2012, and then rebounded to 38,000 μ g/L on July 3, 2013.

Concentrations of dissolved oxygen in the groundwater typically exceed 1.6 mg/L. A concentration above 1.0 mg/L is considered sufficient to maintain active biodegradation.

Eight soil vapor points (VS-1 through VS-4) were installed in 2008. Four were subslab sampling points and 4 shallow soil vapor points at a depth of 5 feet bgs. A) A fifth shallow soil vapor probe was installed in 2013. All of the vapor points were sampled in July and August of 2008. TPH-g, Benzene, EDB 1,2-DCA, Ethylbenzene, MTBE, Toluene, and Xylenes were all reported as non-detectable. In July of 2013, shallow vapor points VS-1 through VS-5 were sampled. Xlylenes were reported in VS-2 at a concentration of 290 μ g/m³ and 1,2-DCA was reported in VS-4 at a concentration of 20 μ g/m3. These concentrations are well below RWQCB ESLs for soil vapor intrusion

GENERAL CRITERIA F

Removal of the UST and excavation impacted soil was considered technically infeasible due to the close proximity of load bearing walls. An injection of the chemical oxidant RegenOxTM followed by infusion of 0.5% hydrogen peroxide into the have reduced the secondary source material to the point where groundwater impact is 1/3 of initial concentration and DO concentrations have more than doubled to 1.65 mg/L.

GENERAL CRITERIA G

Soil and groundwater have been tested for MTBE and the results are found in Tables A and B in this appendix.

GENERAL CRITERIA H

No Nuisance exists.

Soil and groundwater impact is limited to an area of less than 100 feet across. The site is covered by a warehouse building and the direct contact pathway to soil and groundwater is incomplete.

Shallow soil vapor and subslab vapor sampling no hydrocarbons above acceptable levels. Soil vapor data from 2008 and 2013 are discussed in the main body of this report and summarized in Table 4 of this report.

MEDIA SPECIFIC CRITERIA: GROUNDWATER

The plume that exceeds water quality objectives is less than 100 feet long. There is no free product and the nearest groundwater production well is more than 250 feet from the defined plume boundaries.

MEDIA SPECIFIC CRITERIA: SOIL VAPOR

The site is considered low-threat for vapor Intrusion. There is a minimum of 5 vertical feet between soil vapor measurement and the foundation of the building. The data from both 2008 soil vapor at 5 feet bgs and subslab soil vapor were non detectable and 2013 shallow (5 feet bgs) soil vapor are below soil gas criteria.

Soil analytical date from the depth of 8 feet bgs and shallower report TPH concentrations of less than 100 mg/kg (Table A Attached).

MEDIA SPECIFIC CRITERIA: DIRECT CONTACT AND OUTDOOR AIR EXPOSURE

The regulatory Agency has determined that the concentration of petroleum constituents in soil will have no significant risk or adversely affect human health (LTCP Checklist August 8, 2013)

Table A - Soil Sample Analytical DataAllen Project, 325 Martin Luther King Jr. Way, Oakland, CA

	Date	TPH-g	TPH-d	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	
Sample ID	Collected				mg/kg				
		Method	SW8015		Method SW8021B				
SB-2 12'	05/11/05	10	5.6	< 0.05	0.25	0.071	0.33	1.6	
SB-4 12'	05/11/05	<1.0	<1.0	< 0.05	<0.005	< 0.005	< 0.005	<0.005	
SB-5-10	06/06/06	<1.0	<1.0	< 0.05	<0.005	< 0.005	<0.005	<0.005	
SB-6-10	06/06/06	5.0	3.1	< 0.05	0.023	0.025	0.027	0.64	
SB-7-10	06/06/06	20,000	3,300	<45	200	980	320	1,400	
SB-7-17	06/06/06	9.2	3.4	<0.1	0.74	0.64	0.16	0.70	
SB-8-10	06/06/06	4.7	3.0	< 0.05	0.058	0.030	0.083	0.48	
SB-9-10	06/30/07	7.5	4.2	< 0.05	0.068	0.22	0.21	1.1	
SB-10-8'	06/30/07	<1.0	<1.0	< 0.05	<0.005	< 0.005	<0.005	< 0.005	
SB-10-16'	06/30/07	<1.0	<1.0	< 0.05	<0.005	< 0.005	<0.005	< 0.005	
SB-11-11'	06/30/07	<1.0	<1.0	< 0.05	<0.005	< 0.005	<0.005	< 0.005	
SB-11-16'	06/30/07	<1.0	<1.0	< 0.05	< 0.005	< 0.005	<0.005	< 0.005	
SB-12-7'	06/30/07	<1.0	<1.0	< 0.05	<0.005	< 0.005	<0.005	<0.005	
SB-12-12'	06/30/07	<1.0	<1.0	< 0.05	<0.005	< 0.005	<0.005	<0.005	
SB-13-8'	06/30/07	<1.0	<1.0	< 0.05	<0.005	< 0.005	<0.005	<0.005	
SB-13-14'	06/30/07	<1.0	<1.0	< 0.05	<0.005	< 0.005	<0.005	< 0.005	
SB-14-8'	06/30/07	<1.0	<1.0	< 0.05	<0.005	< 0.005	<0.005	< 0.005	
SB-14-12'	06/30/07	<1.0	<1.0	< 0.05	<0.005	< 0.005	<0.005	< 0.005	
SB-15-8'	06/30/07	<1.0	<1.0	< 0.05	<0.005	< 0.005	<0.005	< 0.005	
SB-15-12'	06/30/07	<1.0	<1.0	< 0.05	< 0.005	< 0.005	<0.005	< 0.005	
SB-16-8'	06/30/07	<1.0	<1.0	< 0.05	<0.005	< 0.005	<0.005	< 0.005	
SB-16-12'	06/30/07	<1.0	<1.0	< 0.05	< 0.005	< 0.005	<0.005	< 0.005	
SB-17-9'	06/30/07	<1.0	<1.0	< 0.05	<0.005	< 0.005	<0.005	< 0.005	
SB-17-12'	06/30/07	<1.0	2.7	< 0.05	< 0.005	<0.005	<0.005	< 0.005	
SB-18-8'	06/30/07	<1.0	<1.0	< 0.05	<0.005	< 0.005	<0.005	<0.005	
SB-18-12'	06/30/07	30	10	<0.17	0.049	0.22	0.36	1.8	
SB-19-8'	06/30/07	<1.0	<1.0	< 0.05	< 0.005	<0.005	<0.005	<0.005	
SB-19-12'	06/30/07	<1.0	<1.0	< 0.05	< 0.005	<0.005	<0.005	<0.005	
SB-20-8'	06/30/07	<1.0	<1.0	< 0.05	<0.005	< 0.005	<0.005	<0.005	
SB-20-12'	06/30/07	<1.0	<1.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	
SB-21-12'	06/30/07	<1.0	<1.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	
SB-21-17'	06/30/07	<1.0	<1.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	
MW-3-5'	08/10/07	<1.0	<1.0	< 0.05	<0.005	< 0.005	< 0.005	<0.005	
MW-3-10'	08/10/07	1,500	240	<10	6.0	42	12	120	

Notes:

mg/kg = milligrams per kilogram

TPH-g = Total Petroleum Hydrocarbons as gasoline

TPH-d = Total Petroleum Hydrocarbons as diesel

MTBE = Methyl tertiary butyl ether

Sample ID	Date	TPH-g	TPH-d	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	
	Collected				ug/L				
		Method SW8015 Method SW8021B							
SB-2W	05/11/05	780	420	<5.0	53	9.0	35	100	
SB-4W	05/11/05	<50	<50	<5.0	<0.5	<0.005	<0.005	0.76	
50901-1	09/08/05	860	740	-	6.0	7.5	22	100	
50901-2	09/08/05	13,000	3,600	-	410	1,200	390	1,700	
50901-3	09/08/05	20,000	2,000	-	990	3,100	590	2,300	
50901-4	09/08/05	550	230	-	20	17	19	56	
SB5-GW	06/06/06	<50	170	<5.0	<0.5	<0.5	<0.5	1.8	
SB6-GW	06/06/06	380	290	<5.0	3.4	1.8	3.8	51	
SB7-GW	06/06/06	100,000	110,000	<100	3,300	11,000	2,100	20,000	
SB8-GW	06/06/06	580	550	<5.0	8.4	3.6	18	47	
SB9-GW	06/06/06	610	360	<5.0	10	15	21	70	
SB-10-W	05/30/07	<50	71	<5.0	<0.5	<0.5	<0.5	<0.5	
SB-11-W	05/30/07	<50	<50	<5.0	<0.5	<0.5	<0.5	<0.5	
SB-12-W	05/30/07	<50	80	<5.0	<0.5	<0.5	<0.5	<0.5	
SB-13-W	05/30/07	<50	130	<5.0	<0.5	<0.5	<0.5	<0.5	
SB-14-W	05/30/07	<50	<50	<5.0	<0.5	<0.5	<0.5	<0.5	
SB-15-W	05/30/07	<50	<50	<5.0	<0.5	<0.5	<0.5	<0.5	
SB-16-W	05/30/07	<50	73	<5.0	<0.5	<0.5	<0.5	<0.5	
SB-17-W	05/30/07	<50	160	<5.0	<0.5	<0.5	<0.5	<0.5	
SB-18-W	05/30/07	330	64	14	2.1	5.4	8.9	31	
SB-19-W	05/30/07	<50	59	<5.0	<0.5	<0.5	<0.5	<0.5	
SB-20-W	05/30/07	<50	<50	<5.0	<0.5	<0.5	<0.5	<0.5	
SB-21-W	05/30/07	<50	<50	<5.0	<0.5	<0.5	<0.5	<0.5	

Table B - Groundwater Sample Analytical DataGroundwater Sample Analytical Data

Notes:

ug/L - microgram per liter

TPH-g - Total Petroleum Hydrocarbons as gasoline

TPH-d - Total Petroleum Hydrocarbons as diesel

MTBE = methyl tertiary butyl ether