RECEIVED

Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 9:01 am, Jul 14, 2011 Alameda County Environmental Health

SUBJECT: Perjury Statement

To Whom It May Concern:

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached reports is true and correct to the best of my knowledge.

Signed: <u>ferre</u> a. allen

Date <u>7 - 10 - 11</u>

May 31, 2011

SEMIANNUAL GROUNDWATER MONITORING REPORT First Quarter 2011

325 Martin Luther King Jr. Way Oakland, California

> Project No. 277915 ACEH Site: RO0002930

> > Prepared For

Jane and Kimball Allen 2 Lone Tree Avenue Mill Valley, CA 94941

Prepared By

AEI Consultants 2500 Camino Diablo

Walnut Creek, CA 94597 (925) 746-6000

May 31, 2011

Jane and Kimball Allen 2 Lone Tree Avenue Mill Valley, California 94941

Subject: Semiannual Groundwater Monitoring Report First Quarter 2011 325 Martin Luther King Jr. Way Oakland, California AEI Project No. 277915

Dear Mr. and Mrs. Allen:

AEI Consultants (AEI) has prepared this report to document the ongoing groundwater investigation at the above referenced site (Figure 1, Site Location Map). The groundwater investigation is being performed in accordance with the requirements of the Alameda County Environmental Health (ACEH). The purpose of these activities is to monitor groundwater quality in the vicinity of the identified release of fuel products at the site. This report presents the findings of the First Quarter 2011 Semi-annual groundwater monitoring event conducted on March 24, 2011 at the site and includes progress monitoring of the H²O² infusion remediation project.

I Background

The subject property is located on the western corner of the intersection of Martin Luther King Jr. Way and 4th Street in a mixed commercial and industrial area of Oakland. The property measures approximately 100 feet along Martin Luther King and approximately 150 feet along 4th Street with the property building covering essentially 100% of the land area. The northwestern portion of the building along 4th Street has also had the address 671 4th Street. The building is currently vacant, but was previously occupied by Pucci Enterprises as warehouse space and cold storage freezers.

A Phase I Environmental Site Assessment (ESA) of the property dated November 1, 1993 identified a 10,000-gallon former fuel UST that currently exists below the north side of the building. The fuel UST was used to provide fuel for the Pucci Enterprises truck fleet.

On October 20, 1993, the tank was abandoned in place by pumping remaining sludge out of the tank, steam cleaning the tank, and filling the tank with concrete slurry. At the time of the UST closure, the eastern section of the building had not yet been built. However; the tank could not be removed because of its proximity to the footing of the 671 4th Street building.

After tank closure, the eastern portion of the building (325 Martin Luther King) was constructed. Although records show that the UST was abandoned following proper procedures at that time, no documentation was available of sampling around the tank prior to abandonment.

In May 2005, AEI performed a Phase II Subsurface Investigation. Soil borings SB-1 and SB-3 encountered refusal at 4 feet bgs, possibly the top of the concrete filled UST. Soil borings SB-2 and SB-4 were advanced into the groundwater. Total petroleum hydrocarbons as gasoline (TPH-g), as diesel (TPH-d), and benzene were reported in groundwater from boring SB-2 at concentrations up to 780 micrograms per liter (μ g/L), 420 μ g/L, and 53 μ g/L, respectively.

In September 2005, Terra Firma collected groundwater samples were collected from four (4) soil borings (labeled 50901-1 to 50901-4). Analysis of the groundwater samples reported the highest concentrations of hydrocarbons in soil boring 50901-3 to the south of the UST, where TPH-g, TPH-d, and benzene were reported at concentrations of 20,000 μ g/L, 3600 μ g/L, and 990 μ g/L, respectively.

In June 2006, Ceres Associates (Ceres) advanced five soil borings (SB5 through SB9). The highest concentrations of hydrocarbons in the soil were reported in boring SB-7 (located southeast of the UST) where TPH-g, TPH-d, and benzene were reported in sample SB-7-10 at concentrations of 20,000 mg/kg, 3,300 mg/kg, 200 mg/kg, respectively. Analysis of groundwater samples from SB7 reported TPH-g, TPH-d, and benzene at concentrations of 110,000 µg/l, 110,000 µg/l, and 3,300 µg/l, respectively. Concentrations of TPH-g in the other soil borings ranged from ND <50 µg/l (SB5-GW) to 610 µg/l (SB8-GW).

LRM Consulting prepared release notification documentation and a workplan for the ACEH in August 2006. The workplan included additional file and data base research into possible additional source locations (dispenser, piping, offsite releases, etc) and installing three (3) 2-inch diameter monitoring wells a screened interval of 5 to 20 feet bgs.

Following ACEH comments relating to the work plan and previous investigations, AEI was retained to prepare a comprehensive workplan. The *Site Characterization Workplan*, dated March 31, 2007, outlined the scope of work for installation of 12 additional soil borings and three groundwater monitoring wells to further characterize the release.

In May of 2007, AEI performed a soil and groundwater investigation which included the drilling of additional twelve (12) soil borings at the property. Significant concentrations of TPH-g, TPH-d, and benzene in the soil were reported only in monitoring well MW-3 (MW-3-10), located down gradient of abandoned UST, at concentrations of 1,500 mg/kg, 240 mg/kg, and 6.0 mg/kg, respectively. Low concentrations (<210 μ g/l) of TPH were reported down gradient of the abandoned UST in soil boring SB-10, SB-12, SB-13, SB-16, SB-17, SB-18, and SB-19.

Data from these investigations demonstrate that the dissolved hydrocarbon plume is limited to the eastern most portion of 325 Martin Luther King Jr. Way, immediately down gradient of the abandoned in place UST. On August 10, 2007, AEI installed three (3) groundwater monitoring

wells (MW-1 thru MW-3) down gradient of the abandoned in place UST. Significant concentrations of TPH-g, TPH-d and benzene were reported only in well MW-3 at concentrations of 24,000 μ g/l, 1,200 μ g/l, and 2,600 μ g/l, respectively. A site map and well construction details are contained in AEI's *Monitoring Well Installation Report*, dated September 21, 2008.

Chemical Oxidation Pilot Test

A *Corrective Action Pilot Test Workplan*, dated April 7, 2008, was prepared for the ACEH. The workplan proposed five injection points around monitoring well MW-3 using a RegenOx[™] solution. The workplan was approved by the ACEH in a letter dated May 13, 2008. On July 17 and 18, 2008, 720 lbs of RegenOx[™] was injected in five locations (IP-1 through IP-5) at spacing approximately five feet away from well MW-3.

Following the pilot test, groundwater samples collected on August 4, 2008 from well MW-3 reported an increase in TPH-g from pre-pilot concentration of 20,000 μ g/L to 110,000 μ g/L. Follow up sampling on August 20, 2008 reported TPH-g at a concentration of 120,000 μ g/L. At the time of the present monitoring event TPG-g in well MW-3 was reported at a concentration of 83,000 μ g/L. This increase was the result of release of hydrocarbons adsorbed to clay, silt and sand grains in the smear zone (between 9 - 11 feet bgs).

This significant increase indicated that the residual source area around the abandoned in place UST is significantly greater than had been anticipated and that several rounds of injection would be required to remediate the site. Based on the relative high cost of multiple direct push infusions using RegenOxTM, installation of permanent injection points and alternate remedial approaches were evaluated. AEI determined that H_2O_2 infusion through permanently installed wells was a lower cost approach to remediation. A *Hydrogen Peroxide Infusion Pilot Test Workplan*, dated August 12, 2009, was completed for the site and approved in a letter from the ACEH dated August 21, 2009.

<u>H²O² Infusion</u>

In December of 2009, a 2,400 gallon poly tank was placed on the site and manifolded to wells IW-1, IW-2 and IW-3. Between December 29, 2009, and January 29, 2010, 8,000 gallons of 0.5% H²O² was infused primarily into injection wells IW-2 and IW-3.

On February 8 and 24, 2010 following the infusion of 8,000 gallons of 0.5% H²O² solution, wells MW-3, IW-2, and IW-3 were sampled to determine the effects of the H²O² infusion. TPH-g in MW-3 decreased from 59,000 µg/L on October 30, 2009 to 16,000 µg/L on February 24, 2010. TPH-g in IW-2 decreased from 15,000 µg/L on October 30, 2009 to 3,500 µg/L on February 24, 2010. IW-3 decreased from 77,000 µg/L on November 23, 2009 to 36,000 µg/L on February 24, 2010.

On March 16, 2010, prior to starting a second round of H²O², AEI conducted the regularly scheduled groundwater-monitoring event at the site. TPH-g in wells MW-1 and MW-2 remained

below standard reporting limits. TPH-g concentrations in MW-3, IW-2, and IW-3 rebounded to $34,000 \mu g/L$, $20,000 \mu g/L$, and $44,000 \mu g/L$, respectively.

Between March 16, 2010 and May 12, 2010, 9,400 gallons of 0.5% H^2O^2 were infused into wells IW-2 and IW-3. Between May 24, 2010 and June 29, 2010, 4,900 gallons of 1.25% H^2O^2 were infused primarily into well IW-3.

Progress monitoring sampling was performed on May 24, July 19, and August 5, 2010. The results of the progress sampling through July 19, 2010 is summarized in Table 3 and in the *Hydrogen Peroxide Infusion Report* dated July 30, 2010.

Following the Third Quarter 2010 semi-annual monitoring event on September 9, 2010 hydrogen peroxide infusion into well IW-3 was resumed. Between September 21, 2010 and December 29, 2010 an additional 18,000 gallons of 0.5 % hydrogen peroxide was infused in well IW-3.

II Summary of Groundwater Sampling Activities

On December 12, 2010, following completion of infusion activities wells IW-2, IW-3, and MW-3 were sampled for TPH-g and MBTEX. These three wells were again sampled on February 7, 2011. All onsite wells were sampled during the regularly scheduled First Quarter 2011 semiannual monitoring event on March 24, 2011.

During each sampling event, the well cap was removed from each well to be sampled and the wells were allowed to equilibrate with the atmosphere for a minimum of 15 minutes. The depth to groundwater from the top of the well casing was measured with an electric water level indicator to \pm 0.01 ft. A peristaltic pump, with a drop tube set at a depth of 10 feet bgs, was used to purge the six wells. During purging, groundwater parameters of temperature, pH, specific conductivity, dissolved oxygen (DO), and oxidation- reduction potential (ORP) were measured during purging. A visual evaluation of turbidity was made and noted. Groundwater measurements recorded in the field are reported on the field sampling forms which are included in Appendix A. The depth to water measurements from this and previous quarterly monitoring events are summarized on Tables 3 and 3a.

When groundwater parameters of the purged water from each well stabilized, water samples were collected using the peristaltic pump. Samples for TPH-g, methyl tertiary-butyl ether (MTBE), benzene, toluene, ethylbenzene, and xylenes (BTEX) were collected in hydrochloric acid (HCl) preserved 40-milliliter (ml) volatile organic analysis vials (VOAs). During the semi annual sampling event groundwater samples were also analyzed for seven fuel additives. All samples were labeled with at minimum, project number, sample number, time, date, and sampler's name.

The samples were entered on an appropriate chain-of-custody form and placed on water ice in an ice chest pending same day transportation under chain of custody protocols to McCampbell

Analytical, Inc. of Pittsburg, California (Department of Health Services Certification # 1644). The samples were analyzed for TPH-g and MBTEX by EPA methods 8021B/8015Cm.

III Field Results

Groundwater elevations for the First Quarter 2011 groundwater monitoring event ranged from 7.21 (MW-1) to 7.88 (IW-1) feet above mean sea level (amsl). Based on these measurements, groundwater flows in a southwesterly direction at a gradient of approximately 0.009 ft/ft. The flow direction and hydraulic gradient are consistent with previous monitoring events.

Groundwater elevation data, flow direction, and hydraulic gradient are summarized in Table 2: Groundwater Elevation Data. The water table elevations and the estimated groundwater flow direction are presented on Figure 3: Water Gradient. Please refer to Appendix A for the Groundwater Monitoring Well Field Sampling Forms, which include water quality data and other parameters collected during well purging.

IV Groundwater Quality

<u>December 29, 2010</u>

On December 29, 2010, TPH-g and benzene in MW-3 decreased from 1,200 μ g/L and 57 μ g/L, respectively on September 9, 2010 of concentrations to 130 μ g/L and 0..79 μ g/L, respectively.

In well IW-2 TPH-g and benzene decreased from 5,100 μ g/L and 59 μ g/L, respectively on September 9, 2010 to concentrations of ND<50 μ g/L and ND<0.5 μ g/L, respectively.

In well IW-3 TPH-g and benzene decreased from 22,000 μ g/L and 1,800 μ g/L, respectively on September 9, 2010 to concentrations of ND<50 μ g/L and ND<0.5 μ g/L, respectively.

<u>February 7, 2011</u>

On February 7, 2011, TPH-g in MW-3 decreased from 130 μ g/L on December 29, 2010 to ND<50 μ g/L. Benzene increased from 0.79 μ g/L to 2.3 μ g/L.

In well IW-2 TPH-g and benzene remained stable at ND<50 $\mu g/L$ and ND<0.5 $\mu g/L,$ respectively.

In well IW-3 TPH-g and benzene increased from ND<50 μ g/L and ND<0.5 μ g/L, respectively on December 29, 2010 to concentrations of 2,700 μ g/L and 180 μ g/L, respectively.

<u>March 24, 2011</u>

No TPH-g or BTEX was reported in wells MW-1, MW-2, IW-1, or IW-2 at standard laboratory reporting limits.

TPH-g in well MW-3 rebounded to a concentration of to 140 μ g/L. Benzene increased to a concentration of 4.9 μ g/L. TPH-d was reported at a concentration of ND<50 μ g/L.

TPH-g in well IW-3 decreased to a concentration of to 390 μ g/L. Benzene increased to a concentration of 3.7. TPH-d was reported at a concentration of 290 μ g/L.

MTBE was reported at a concentration of 1.9 in well MW-1, and as non detectable at reporting limits ranging from 0.5 μ g/L to 5.0 μ g/L in the other wells. TAME, DIPE, and ETBE were reported as non detectable in all wells at reporting limits ranging from 0.5 μ g/L to 5.0 μ g/L.

TBA continued to be reported as ND<2.0 μ g/L in monitoring wells MW-1, MW-2 and IW-1. In well MW-3 the TBA concentration decreased from 430 μ g/L on March, 16 2010 to 10 μ g/L on March 24, 2011. The TBA concentration reported in well IW-2 decreased from 70 μ g/L on March 16, 2010 to 5.2 μ g/L on March 24, 2011. The TBA concentration reported in well IW-3 decreased from 120 μ g/L on March 16, 2010 to 47 μ g/L on March 24, 2011.

The concentration of EDB in wells MW-1, MW-2, and IW-1 remained non detectable at a reporting limit of 2.0 μ g/L. The EDB concentration reported in well MW-3 decreased 110 decreased from 110 μ g/L on March 16, 2010 to 2.2 μ g/L on March 24, 2011. The EDB concentration reported in well IW-2 decreased 110 decreased from 20 μ g/L on March 16, 2010 to ND<0.5 μ g/L on March 24, 2011. The EDB concentration reported in well IW-3 decreased from 230 μ g/L on March 16, 2010 to 22 μ g/L on March 24, 2011.

The concentration of 1,2-DCA in wells MW-2 and IW-1 remained nondetectable at a reporting limit of 0.5 μ g/L. The 1,2-DCA concentration reported in well MW-1, which did not change significantly was reported at as concentration of 9.3 μ g/L. The 1,2-DCA concentration reported in well MW-3 decreased from 130 μ g/L on March 16, 2010 to 0.61 μ g/L on March 24, 2011. The 1,2-DCA concentration reported in well IW-2 decreased 110 decreased from 15 μ g/L on March 16, 2010 to ND<0.5 μ g/L on March 24, 2011. The 1,2-DCA concentration reported in well IW-3 decreased from 220 μ g/L on March 16, 2010 to 13 μ g/L on March 24, 2011.

V Summary

This report documents the findings of the First Quarter 2011 (Semiannual) groundwater monitoring event at the site. Overall hydrocarbon concentrations at the site have decreased significantly following the last round of hydrogen peroxide infusion. Only a minor rebound of hydrocarbon concentrations has been observed in wells MW-3 and IW-3.

VI Low risk Case Closure

AEI believes the site is eligible for closure as a low risk case. This eligibility is discussed below.

<u>Leak Status</u>

The gasoline release was stopped in 1993 with the closure in place of the UST.

Site Characterization

Site characterization was completed during the May 2007 soil boring investigation and with the installation of infusion wells IW-1, IW-2, and IW-3 which completed vertical and lateral delineation of the hydrocarbon impact in the soil and groundwater.

Dissolved Plume Migration

Dissolved hydrocarbon concentrations in the shallow aquifer suggest that the plume stabilized shortly after the UST closure and were stable at the time of the initial RegenOx[™] injection event. The injection of the RegenOx[™] increased the concentration of dissolved hydrocarbons by causing the release of previously immobile hydrocarbons adhering to soil particles in the smear zone. The concentration of dissolved hydrocarbons dropped slightly but remained high between 2008 and December 2009. Since December 2009 hydrocarbon concentrations have dropped significantly with each infusion event and have remained low with little rebound since December 2010. Since March 2010 concentrations of EDB and 1,2-DCA have dropped significantly.

Sensitive Receptors

No water wells, drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted. The shallow relatively low permeability Merritt Sand that makes up the shallow aquifer is not suitable for production of significant groundwater.

Risk to Human Health and the Environmental

Groundwater at the site is not currently used as drinking water and is unlikely to be used within the life of the plume. Given the current low concentrations of hydrocarbons and VOCs present in the groundwater, vapor intrusion is unlikely to present a problem for current use. No pathways surface water, estuaries, or other sensitive receptors are complete.

VII Comparative Risk Evaluation

The following comparative risk evaluation has been made in an effort to help determine the potential risk posed by remaining contaminants in the groundwater. The most recent site specific analytical data is compared with environmental screening level (ESL) values presented in the RWQCB document *Screening for Environmental Concerns at Site with Contaminated Soil and Groundwater*, May 2008. The ESLs are risk-based values that have been prepared to

evaluate whether a particular contaminant presents possible threat to human health or the environment.

The highest detected concentrations of contaminants of concern (COCs) in groundwater are compared against the screening levels for the following exposure routes: gross contamination ceiling values where groundwater is a current source of drinking water and not a drinking water source, aquatic toxicity, drinking water toxicity, and vapor intrusion from groundwater

Contaminants of Concern

The primary remaining contaminants of concern detected in groundwater are MTBE and TBA. Maximum concentrations of MTBE and TBA, as well as TPH-g and BTEX (benzene, toluene/, ethylbenzene, and total xylenes), detected during the most recent monitoring event (3/24/2011) are summarized in the following table.

Shahow Zone (Range 7.5 – 9.04-feet bgs)									
Contaminant	Maximum Detected (Pre- 2008 RegenOx™ Injection) (μg/L)	Maximum Detected (Following 2008 RegenOx™ Injection) (µg/L)	March 24, 2011 Semi Annual Monitoring Event (µg/L)						
TPH-g	36,000	130,000	390						
TPH-d	5,400	27,000	290						
Benzene	4,900	11,000	4.9						
Toluene	3,500	19,000	2.4						
Ethylbenzene	590	1,800	7.4						
Xylenes (Total)	2,700	11,000	53						
MTBE	18	4.2	1.9						
TBA	ND<5.0	6.0	47						
EDB	34	200	22						
1,2-DCA	220	500	13						

Shallow Zone (Range 7.5 – 9.04-feet bgs)

5.2 ESL Comparison

The recent maximum concentrations of the contaminants detected in the groundwater are presented in the following table along with the five ESL values for the exposure pathways outlined above.

Contaminant	Maximum Detected	Vapor Intrusion ESL (C/I)*	Ceiling Value (NDW) ***	Aquatic Toxicity **	Ceiling Value (DW) **	Drinking Water Toxicity **			
TPH-g	390	Use Soil Gas	5,000	210	100	210			
TPH-d	290****	Use Soil Gas	2,500	210	100	210			
TPH-mo	<250		2,500	210	100	210			
Benzene	4.9	18,000	20,000	46	170	1.0			
Toluene	7.4	530,000	400	130	40	150			
Ethylbenzene	2.4	170,000	300	4 3	30	300			
Xylenes	53	160,000	5,300	100	20	1,800			
MTBE	1.9/ND<5.0	8,000	1,800	8,000	5.0	13			
TBA	47	Use Soil Gas	50,000	18,000	50,000	12			
EDB	22	150	50,000	1,400	50,000	0.05			
1,2-DCA	13	690	50,000	2,000	7,000	0.5			

Shallow Zone Groundwater

All values in micrograms per liter ($\mu g/I$)

All ESL from RWQCB (May 2008)

* From Table E-1b ** From Table F-1a *** From Table F-1b **** weathered gasoline

NDW = non-drinking water, DW = drinking water

ESL values shown in strikethrough (strikethrough) are from incomplete pathways.

The groundwater in the area of the site is considered of beneficial use in accordance with the RWQCB Basin Plan, however the shallow zone is not high yielding formation nor is it expected that the shallow zone is currently used as a drinking water source. Based on this, the Drinking Water Toxicity and Drinking Water Ceiling Value ESLs are considered overly conservative for this site. Due to the proximity of the release to the San Francisco Bay, the aquatic toxicity ESL value would be protective of aquatic receptors. In addition, as is currently required, the volatilization ESL is considered potentially complete. The non-drinking water ceiling value will also be considered relevant as representative of nuisance conditions.

The residual contaminant concentrations do not exceed the commercial/industrial ESL values of the potentially complete exposure pathways. All site concentrations are over one to several orders of magnitude lower that these ESL values. Based on this, no indication of a potential for vapor intrusion from groundwater, of groundwater discharge to nearby aquatic habitat, or of exceeding gross contaminant levels for groundwater are present around the former release area.

VIII Summary and Conclusions

This report has been prepared to summarize the environmental conditions relating to the release from the former gasoline UST system, including the following:

- A discussion of previous environmental investigations and remediation activities
- o Complete set of data collected, including sampling locations, monitoring, and analytical data
- Site geology and environmental setting
- o A discussion of the release occurrence
- Comparison of current groundwater conditions to relevant screening levels (ESLs)

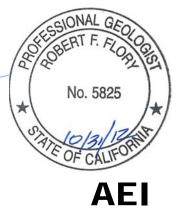
Groundwater treatment activities consisting of one RegenOx[™] injection approximately 2 years of hydrogen peroxide infusions have significantly reduced dissolved phase contaminants. Recent groundwater monitoring results revealed concentrations of contaminants below relevant ESLs for vapor intrusion and gross contaminant levels. No nearby wells were identified that are considered at risk for either being impacted by the release or that could act as vertical conduits for contaminant migration.

Review of this case by the ACEH is requested so that the formal case closure process for this site can begin.

VI Report Limitations

This report presents a summary of work completed by AEI Consultants. The completed work includes observations and descriptions of site conditions encountered. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide the requested information, but it cannot be assumed that they are representative of areas not sampled. All conclusions and/or recommendations are based on these analyses and observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices, in the environmental engineering field, which existed at the time and location of the work.


If you have any questions regarding our investigation, please do not hesitate to contact either of the undersigned at (925) 746-6000.

Sincerely, **AEI Consultants**

Adrian M. Angel Project Geologist

Kohnt 7

Robert F. Flory, PG Senior Geologist

Figures

Figure 1: Site Location Map Figure 2: Site Plan Figure 3: Water Table Elevations (3/24/2011) Figure 4: Groundwater Analytical Data (3/24/2011) Figure 5: TPH-g Concentrations (3/24/2011)

Tables

Table 1: Monitoring Well Construction Details Table 2: Groundwater Elevation Data Table 3: Groundwater Monitoring Sample Analytical Data Table 4: Groundwater Monitoring Sample Analytical Data – Fuel Additives

Appendix A: Groundwater Monitoring Well Field Sampling Forms

Appendix B: Laboratory Analyses with Chain of Custody Documentation

Previous Documentation

AEI Consultants, Phase II Subsurface Investigation Report, May 18, 2005

AEI Consultants, Site Characterization Workplan, March 8, 2007

AEI Consultants, Soil and Groundwater Investigation Report, September 21, 2007

AEI Consultants, Corrective Action Pilot Test Workplan, April 7, 2008

AEI Consultants, Hydrogen Peroxide Infusion Pilot Test Workplan, August 12, 2009

AEI Consultants, *Groundwater Monitoring Report, Semi-annual Third Quarter 2010*, September 30, 2010

Ceres Associates, Soil and Groundwater Investigation Report, June 8, 2006

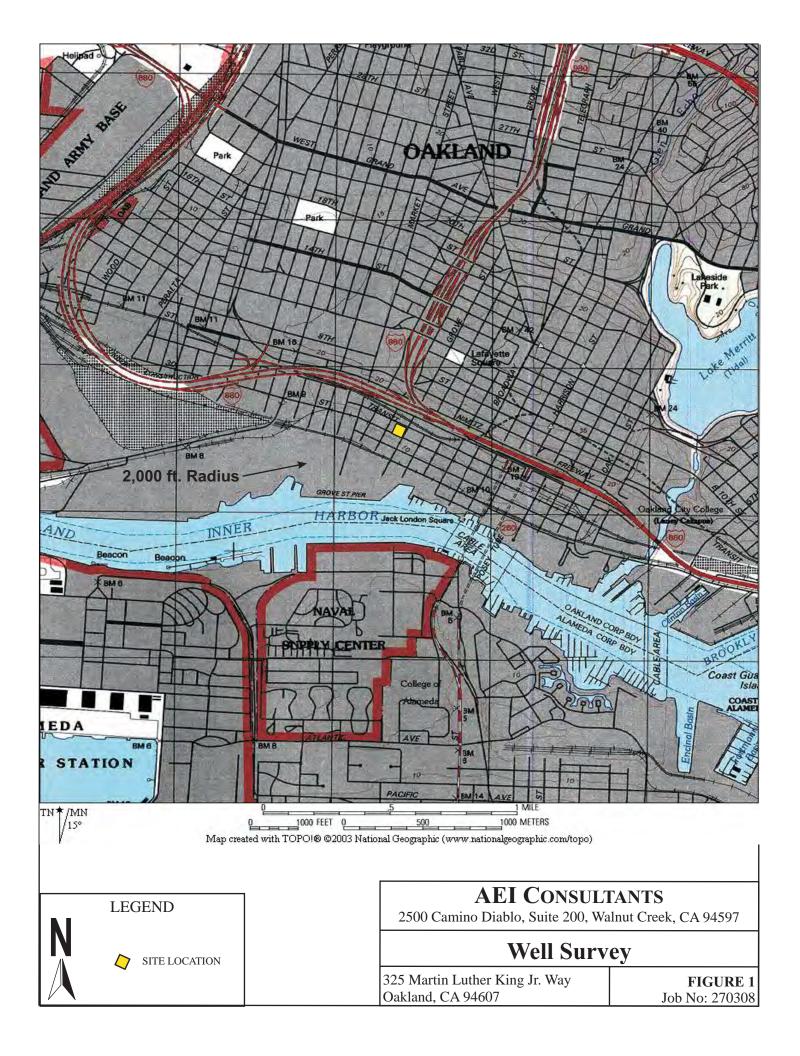
Helley, E.J., et al, *Quaternary Geology of Alameda County and Surrounding Areas, California*, 1997

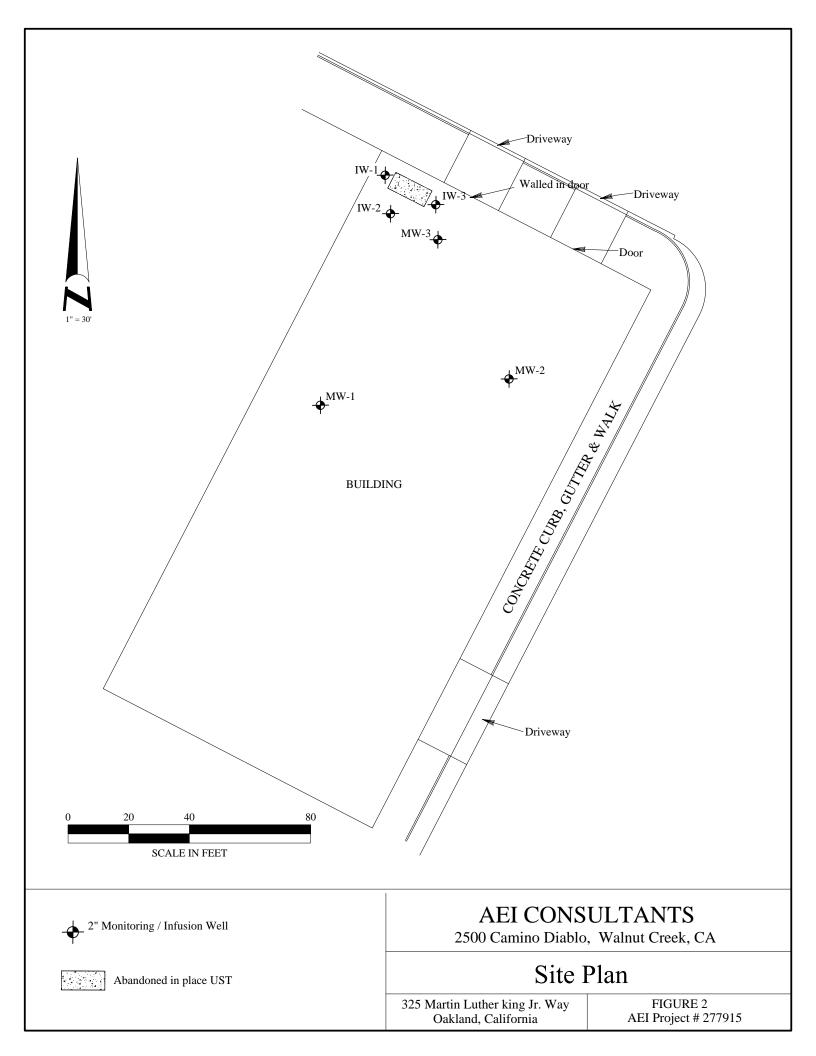
LRM Consulting, Inc., *Notice of Unauthorized Release* and *Supplemental Investigation Workplan,* August 29, 2006

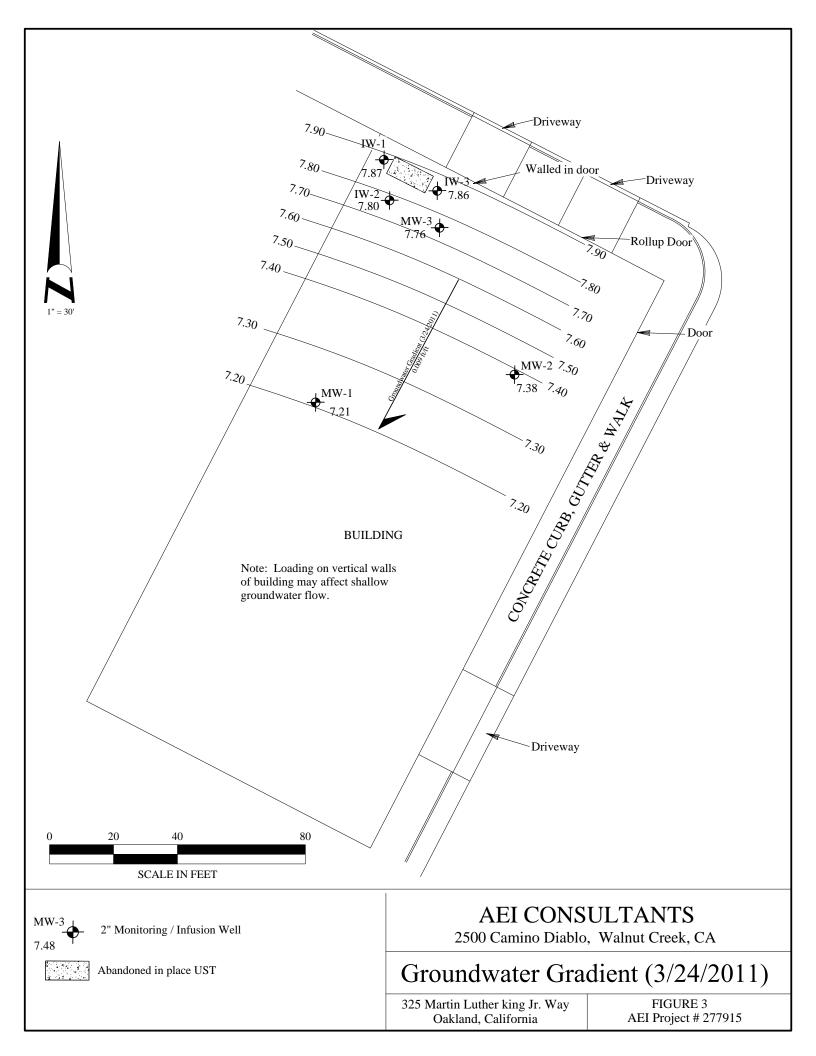
Terra Firma, Findings of Environmental Subsurface Investigation, September 16, 2005

Touchstone Developments, Phase I Investigation, November 1, 1993

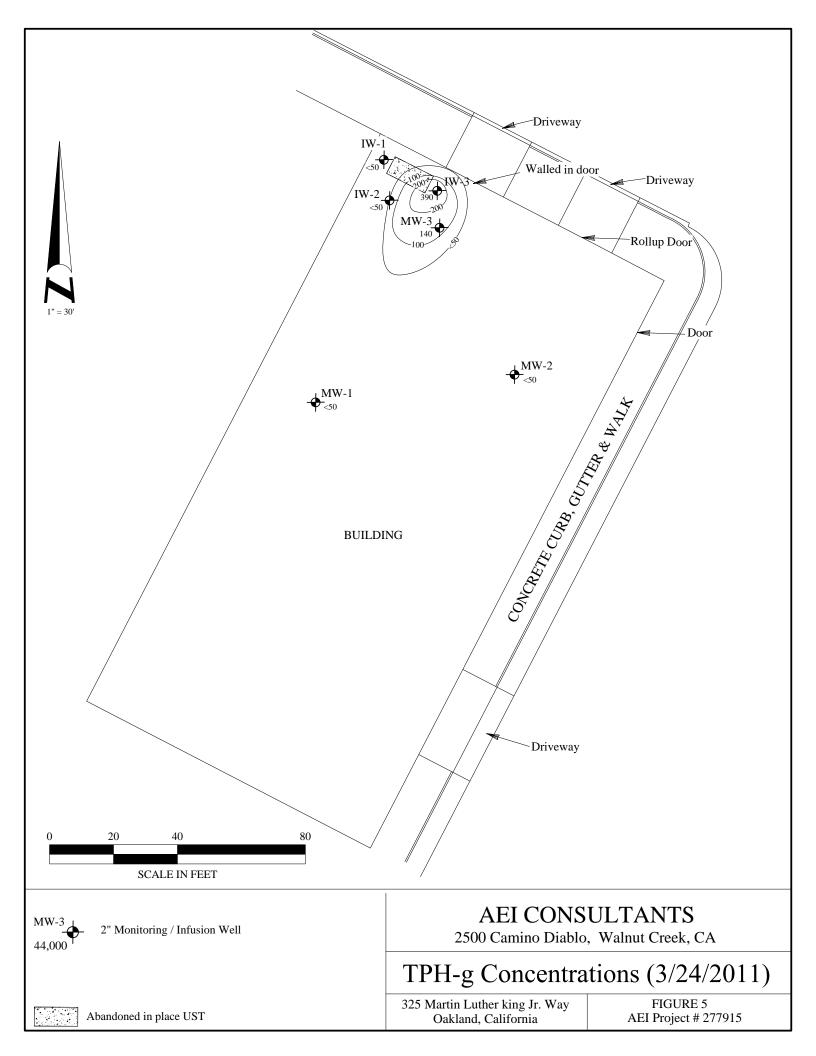
Distribution:


Jane and Kimball Allen (2 hard copies) 2 Lone Tree Way Mill Valley, CA 94549


Alameda County Environmental Health Services (ACEHS) (electronic) Attn: Mr. Jerry Wickham 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502


GeoTracker (electronic)

FIGURES



TABLES

Table 1 - Well Construction Details

AEI Project # 277915

Well ID	Date Installed	Top of Casing	Well Box	Well Depth	Slotted Casing	Slot Size	Sand Interval	Sand Size	Bentonite Interval	Grout Interval
		Elevation (ft amsl)	Elevation (ft amsl)	(ft)	(ft)	(in)	(ft)		(ft)	(ft)
MW-1	08/10/07	14.87*	15.34	18	8 - 18	0.010	7 - 18	# 2/12	7 - 8	0.75 - 7
MW-2	08/10/07	15.27	15.52	17	7 - 17	0.010	6 - 17	# 2/12	6 - 7	0.75 - 6
MW-3	08/10/07	15.11*	15.57	18	8 - 18	0.010	7 - 18	# 2/12	7 - 8	0.75 - 7
IW-1	02/09/10	15.23	15.61	15	5 - 15	0.010	4 - 15	2/12	3 - 4	0.5 - 3
IW-2	02/09/10	15.06	15.63	15	5 - 15	0.010	4 - 15	2/12	3 - 4	0.5 - 3
IW-3	02/09/10	15.30	15.6	15	5 - 15	0.010	4 - 15	2/12	3 - 4	0.5 - 3

Notes:

ft amsl = feet above mean sea level

 $14.87^* = Casing elevation changes, 02/09/10$

Table 2 - Groundwater Elevation Data

AEI Project # 277915

Well ID (Screen Interval)	Date Collected	Well Elevation (ft amsl)	Depth to Water (ft)	Groundwater Elevation (ft amsl)	Elevation Change (ft)
MW-1	8/21/2007	14.92	8.38	6.54	
(8 - 18)	11/21/2007	14.92	8.37	6.55	0.01
	2/26/2008	14.92	7.98	6.94	0.39
	6/18/2008	14.92	8.41	6.51	-0.43
	9/19/2008	14.92	8.56	6.36	-0.15
	12/29/2008	14.92	8.66	6.26	-0.10
	3/17/2009	14.92	7.84	7.08	0.82
	6/15/2009	14.92	8.31	6.61	-0.47
	9/18/2009	14.92	8.59	6.33	-0.28
	3/16/2010*	14.87	7.80	7.07	
	9/9/2010	14.87	8.75	6.12	-0.95
	3/24/2011	14.87	7.66	7.21	1.09
MW-2	8/21/2007	15.27	8.78	6.49	
(7 - 17)	11/21/2007	15.27	8.72	6.55	0.06
	2/26/2008	15.27	8.37	6.90	0.35
	6/18/2008	15.27	8.82	6.45	-0.45
	9/19/2008	15.27	8.92	6.35	-0.10
	12/29/2008	15.27	8.87	6.40	0.05
	3/17/2009	15.27	8.27	7.00	0.60
	6/15/2009	15.27	8.71	6.56	-0.44
	9/18/2009	15.27	8.98	6.29	-0.27
	3/16/2010	15.27	8.19	7.08	0.79
	9/9/2010	15.27	9.04	6.23	-0.85
	3/24/2011	15.27	7.89	7.38	1.15
MW-3	8/21/2007	15.26	8.59	6.67	
(8 - 18)	11/21/2007	15.26	8.55	6.71	0.04
	2/26/2008	15.26	8.11	7.15	0.44
	6/18/2008	15.26	8.62	6.64	-0.51
	8/4/2008	15.26	8.65	6.61	-0.03
	8/20/2008	15.26	8.68	6.58	-0.03
	9/19/2008	15.26	8.74	6.52	-0.06
	12/29/2008	15.26	8.67	6.59	0.07
	3/17/2009	15.26	7.96	7.30	0.71
	6/15/2009	15.26	8.47	6.79	-0.51
	9/18/2009	15.26	8.78	6.48	-0.31
	10/30/2009	15.26	8.62	6.64	-0.15
	3/16/2010	15.11	7.57	7.54	
	7/19/2010	15.11	8.53	6.58	-0.96
	9/9/2010	15.11	8.73	6.38	-0.20
	3/24/2011	15.11	7.35	7.76	1.38

IW-1	10/30/2009	15.23	8.53	6.70	
	3/16/2010	15.23	7.68	7.55	0.85
	9/9/2010	15.23	8.72	6.51	-1.04
	3/24/2011	15.23	7.36	7.87	1.36
IW-2	10/30/2009	15.06	8.37	6.69	
	3/16/2010	15.06	7.57	7.49	0.80
	7/19/2010	15.06	8.29	6.77	-0.72
	9/9/2010	15.06	8.62	6.44	-0.33
	3/24/2011	15.06	7.26	7.80	1.36
IW-3	10/30/2009	15.30	8.68	6.62	
	3/16/2010	15.30	7.82	7.48	0.86
	7/19/2010	15.30	8.51	6.79	-0.69
	9/9/2010	15.30	8.83	6.47	-0.32
	3/24/2011	15.30	7.44	7.86	1.39

Notes

 $14.87^* = Casing elevation changes, 02/09/10$

Event #	Date	Average Water Table Elevation (ft amsl)	Change from Previous Episode (ft)	Flow Direction (gradient) (ft/ft)
1	8/21/2007	6.57	NA	S (0.003)
2	11/21/2007	6.60	0.04	S (0.005)
3	2/26/2008	7.00	0.39	S (0.005)
4	6/18/2008	6.53	-0.46	SSE (0.004)
5	9/19/2008	6.41	-0.12	S (0.003)
6	12/29/2008	6.42	0.01	SSW (0.005)
7	3/17/2009	7.13	0.71	SW (0.006)
8	6/15/2009	6.65	-0.47	SW 0.004)
9	9/18/2009	6.37	-0.29	SW (0.006)
10**	3/16/2010	7.24		SW (0.006)
11	9/9/2010	6.36		SW (0.005)
12	3/24/2011	7.65	1.29	SW (0.009)

ft amsl = feet above mean sea level

All water level depths are measured from the top of casing ** Average calculated for all wells with 2/9/10 re-survey elevations

[†] = Average MW-3, IW-1, IW-3

Sample ID	Date	Depth to Water	TPHg	TPHd	MTBE	Benzene	Toluene	Ethyl benzene	Xylene
			Metho	d 8015		Μ	ethod 8021		
					1	μg/L			
MW-1	8/21/2007	8.38	<50	<50	15	< 0.5	<0.5	< 0.5	< 0.5
	11/21/2007	8.37	<50	<50	12	< 0.5	< 0.5	< 0.5	< 0.5
	2/26/2008	7.98	<50	<50	-	<0.5	< 0.5	< 0.5	< 0.5
	6/18/2008	8.41	<50	<50	-	<0.5	< 0.5	< 0.5	< 0.5
	9/19/2008	8.56	<50	<50	-	< 0.5	< 0.5	< 0.5	< 0.5
	12/29/2008	8.66	<50	<50	-	< 0.5	< 0.5	< 0.5	< 0.5
	3/17/2009	7.84	<50	<50	-	< 0.5	< 0.5	< 0.5	< 0.5
	6/15/2009	8.31	<50	<50	-	< 0.5	< 0.5	< 0.5	< 0.5
	9/18/2009	8.59	<50	<50	-	<0.5	<0.5	< 0.5	< 0.5
	3/16/2010	7.80	<50	_	-	<0.5	< 0.5	< 0.5	< 0.5
	9/9/2010	7.75	<50	-	-	<0.5	< 0.5	< 0.5	< 0.5
	3/24/2011	7.66	<50	-	-	<0.5	<0.5	<0.5	<0.5
	0/01/0007	0.70	50	50	5.0	0.5	0.5	0.5	0.5
MW-2	8/21/2007	8.78	<50	<50	<5.0	< 0.5	<0.5	<0.5	< 0.5
	11/21/2007	8.72	<50	<50	<5.0	< 0.5	<0.5	<0.5	< 0.5
	2/26/2008	8.37	<50	<50	-	<0.5	<0.5	<0.5	<0.5
	6/18/2008	53.00	<50	<50	-	<0.5	<0.5	<0.5	<0.5
	9/19/2008	8.92	<50	<50	-	<0.5	<0.5	<0.5	<0.5
	12/29/2008	8.87	<50	<50	-	< 0.5	<0.5	<0.5	< 0.5
	3/17/2009	8.27	<50	<50	-	<0.5	<0.5	<0.5	< 0.5
	6/15/2009	8.71	<50	<50	-	<0.5	<0.5	<0.5	< 0.5
	9/18/2009	8.98	<50	<50	-	<0.5	<0.5	<0.5	<0.5
	3/16/2010	8.19 9.04	<50	-	-	<0.5	<0.5	<0.5	<0.5
	9/9/2010 3/24/2011	9.04 7.89	<50 < 50	-	-	<0.5 < 0.5	<0.5 < 0.5	<0.5 < 0.5	<0.5 < 0.5
MW-3	8/21/2007	8.59	24,000	2,100	<180	2,600	3,500	450	2,400
	11/21/2007	8.55	36,000	3,800	<500	4,900	1,200	230	2,700
	2/26/2008	8.11	31,000	5,400	-	4,200	1,900	590	2,200
	6/18/2008	8.62	20,000	3,000	-	2,900	1,100	390	990
	8/4/2008	8.65	110,000	27,000	-	5,900	9,000	76	8,100
	8/20/2008	8.68	120,000	6,500	-	8,900	18,000	930	12,000
	9/19/2008	8.74	64,000	4,500	-	6,200	9,200	660	6,600
	12/29/2008	8.67	130,000	7,900	-	11,000	19,000	1,800	11,000
	3/17/2009	7.96	83,000	8,000	-	7,400	10,000	1,100	8,500
	6/15/2009	8.47	67,000	21,000	-	11,000	9,100	1,200	6,80
	9/18/2009	8.78	58,000	16,000	-	11,000	7,000	1,400	4,700
	10/30/2009	6.64	59,000	-	-	10,000	7,100	1,200	3,900
	2/8/2010	7.74	13,000	-	<50	840	1,500	120	1,700
	2/24/2010	8.03	16,000	-	<50	1,200	1,700	200	1,900
	3/16/2010	7.75	34,000	-	<250	3,000	4,100	580	4,100
	4/15/2010	-	-	-	-250	-	-	-	-
	5/24/2010	-	11,000	-	<250	910 27	1,600	120	2,400
	7/19/2010	8.33 8.35	270 250	-	<5.0	2.7	2.9	<0.5	4.8
	8/5/2010	8.35	350	-	<5.0	15.0 57.0	6.3 8 2	4	46
	9/9/2010	8.67	1,200	360	-	57.0	8.3	18 <0.5	160
	12/29/2010	-	130	-	<5.0	0.79	1.2	<0.5	3.1
	2/7/2011	-	<50	-	<5.0	2.3	1.0	<0.5	6.4
	3/24/2011	7.35	140	<50	<5.0	4.9	6.7	0.6	19.0

Table 3 - Groundwater Analytical DataAEI Project # 277915

Sample Date Depth to ID Water	Depth to Water	TPHg	TPHd	MTBE	Benzene	Toluene	Ethyl benzene	Xylene	
ID		water	Metho	d 8015		Μ	ethod 8021		
		-	Wietho	u 0015		μg/L		D	
						P-8 -			
IW-1	10/30/2009	8.53	<50	_	<5.0	<0.5	< 0.5	< 0.5	< 0.5
	3/16/2010	7.68	<50	<50	<5.0	< 0.5	<0.5	< 0.5	< 0.5
	9/9/2010	8.73	<50	-	-	< 0.5	< 0.5	< 0.5	< 0.5
	3/24/2011	7.36	<50	-	-	<0.5	<0.5	<0.5	<0.5
IW-2	10/30/2009	8.37	15,000	-	-	1,100	2,100	630	2,400
	2/8/2010	7.70	630	-	<5.0	4.4	17	3.7	78
	2/24/2010	-	3,500	-	<50	22	220	57	590
	3/16/2010	7.57	20,000	-	<100	320	2,100	450	4,000
	4/15/2010	-	-	-	-	-	-	-	-
	5/24/2010	-	190	-	<5.0	0.82	6.9	1.0	20
	7/19/2010	8.29	600	-	<5.0	5.8	43	5.3	110
	8/5/2010	8.39	340	-	<5.0	1.8	14	2.7	74
	9/9/2010	8.62	5,100	660	-	59.0	330	57.0	1,100
	12/29/2010	-	<50	-	< 5.0	< 0.5	< 0.5	< 0.5	0.62
	2/7/2011	-	<50	<50	< 5.0	< 0.5	< 0.5	< 0.5	0.98
	3/24/2011	7.26	<50	<50	<5.0	<0.5	<0.5	<0.5	<0.5
IW-3	10/30/2009	8.68	61,000	-	<1,000	10,000	14,000	1,400	9,800
	11/5/2009	8.60	64,000	-	<150	4,000	7,500	1,100	1,100
	11/23/2009	-	77,000	-	<250	6,700	11,000	430	11,00
	2/8/2010	7.74	18,000	-	<50	790	910	38	2,600
	2/24/2010	-	36,000	-	<250	2,400	4,300	320	460
	3/16/2010	7.82	44,000	-	<500	3,200	6,000	650	5,400
	4/15/2010	-	-	-	-	-	-	-	-
	5/24/2010	-	4,300	-	<60	170	430	19	680
	7/19/2010	8.51	4,100	-	<50	190	450	28	440
	8/5/2010	8.56	5,400	-	<50	360	780	62	730
	9/9/2010	8.83	22,000	3,230	-	1,800	3,900	310	3,300
	12/29/2010	-	<50	-	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5
	2/7/2011	-	2,700	870	<50	180	330	18	360
	3/24/2011	7.44	390	290	<5.0	3.7	7.4	2.4	53
W ESL (I	NDW) Gross	Contaminat	2,500	2,500	1,800	2,000	400	300	5,300
	NDW) Aquat		210	210	1,800	46	130	43	100

Table 3 - Groundwater Analytical DataAEI Project # 277915

Notes:

TPHg = total petroleum hydrocarbons as gasoline (C6-C12)

Benzene, toluene, ethylbenzene, and xylenes using EPA Method 8021B μ g/L= micrograms per liter

TPHd = total petroleum hydrocarbons as diesel (C10-MTBE = methyl-tertiary butyl ether

ND < 50 = non detect at respective reporting limit

AEI Project # 277915										
Sample	Date	TAME	TBA	EDB	1,2-DCA	DIPE	ETBE	MTBE		
ĪD			-		μg/L		-			
	1				• •					
MW-1	08/21/07	< 0.5	<5.0	< 0.5	5.2	< 0.5	< 0.5	18		
	11/21/07	-	-	-	-	-	-	-		
	02/26/08	-	-	< 0.5	6.9	-	-	16		
	06/18/08	-	-	< 0.5	5.4	-	-	15		
	09/19/08	-	-	< 0.5	6.8	-	-	4.2		
	12/29/08	-	-	< 0.5	6.8	-	-	0.62		
	03/17/09	-	-	< 0.5	4.6	-	-	11		
	06/15/09	-	-	< 0.5	5.8	-	-	8.1		
	09/18/09	-	-	< 0.5	5.2	-	-	0.7		
	03/24/11	<0.5	<2.0	<0.5	9.3	<0.5	<0.5	1.9		
MW-2	08/21/07	< 0.5	<5.0	<0.5	<0.5	<0.5	< 0.5	< 0.5		
	11/21/07	-	-	-	-	-	-	-		
	02/26/08	-	-	< 0.5	< 0.5	-	-	< 0.5		
	06/18/08	-	-	< 0.5	< 0.5	-	-	< 0.5		
	09/19/08	-	-	< 0.5	< 0.5	-	-	< 0.5		
	12/29/08	-	-	< 0.5	< 0.5	-	-	< 0.5		
	03/17/09	-	-	< 0.5	< 0.5	-	-	< 0.5		
	06/15/09	-	-	< 0.5	< 0.5	-	-	< 0.5		
	09/18/09	-	-	< 0.5	< 0.5	-	-	< 0.5		
	03/24/11	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5		
MW-3	08/21/07	<5.0	<50	34	140	<5.0	<5.0	<5.0		
	11/21/07	-	-	-	-	-	-	-		
	02/26/08	-	-	31	220	-	-	<12		
	06/18/08	-	-	21	190	-	-	< 5.0		
	08/04/08	-	-	220	410	-	-	< 50		
	08/20/08	-	-	330	410	-	-	< 50		
	09/19/08	-	-	160	320	-	-	<17		
	12/29/08	-	-	200	440	-	-	<50		
	03/17/09	-	-	98	370	-	-	<25		
	06/15/09	-	-	87	490	-	-	<50		
	09/18/09	-	-	110	500	-	-	<17		
	10/30/09	-	-	96	470	-	-	<50		
	02/08/10	-	-	42	42	-	-	<50		
	03/16/10	<25	430	110	130	<25	<25	<25		
	03/24/11	<0.5	10	2.2	0.61	<5.0	<5.0	<5.0		

Table 4 - Groundwater Analytical Data - Fuel Additives

AEI Project # 277915

AEI Project # 277915								
Sample	Date	TAME	TBA	EDB	1,2-DCA	DIPE	ETBE	MTBE
ID					μg/L			
IW-1	10/30/09	-	-	<0.5	<0.5	-	-	< 0.5
	03/16/10	< 0.5	<2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	03/24/11	<0.5	<2.0	<0.5	<0.5	<0.5	<0.5	<0.5
IW-2	10/30/09	-	-	13	51	-	-	<10
	02/08/10	-	-	5.1	3.9	-	-	
	03/16/10	<10	70	20	15	<10	<10	<10
	03/24/11	<0.5	5.2	<0.5	<0.5	<0.5	<0.5	<0.5
IW-3	10/30/09	-	-	220	480	-	-	<10
	02/08/10	-	-	94	82	-	-	
	03/16/10	<25	120	230	220	<25	<25	<25
	03/24/11	<5.0	47	22	13	<5.0	<5.0	<5.0
GW ESL (NI	DW) GC	-	54,000	50,000	50,000	-	-	1,800
GW ESL (NI		-	18,000	150	200	-	-	1,800
DW - Ceiling	Value	-	50,000	50,000	50,000	-	-	5
DW -VI		-	use soil gas	150	150	-	-	24,000
DW Toxicity		-	12	0.05	0.5	-	-	13

Table 4 - Groundwater Analytical Data - Fuel Additives

Notes:TAME - tert-amyl methyl ether $\mu g/L=$ micrograms per literTBA - tert-butyl alcoholND<50 = non detect at respective reporting limi</td>DIPE - diisopropyl etherMTBE - methyl tertiary butyl etherETBE - ethyl tert-butyl ether

APPENDIX A

MONITORING WELL FIELD SAMPLING FORMS

		Mor	nitoring Well Number:	MW-1			
Project Name:	ALLEN	Date of Sampling:	3/24/2011				
Job Number:	277915	Name of Sampler:	RFF				
Project Address:	325 Martin Luther King Jr Way, Oa						
	MONITORIN	<u>G WELL DA</u>	TA				
Well Casing Diame	eter (2"/4"/6")		2"				
Wellhead Condition	n	ОК		▼			
Elevation of Top of	Casing (feet above msl)	14.87					
Depth of Well			17.90				
Depth to Water (fro	om top of casing)		7 66				

	17.90				
Depth to Water (from top of casing)	7.66				
Water Elevation (feet above msl)		7.21			
Well Volumes Purged	Micropurged with peristaltic pump				
Actual Volume Purged (liters)	4.0				
Appearance of Purge Water	Clear				
Free Product Present?	No	Thickness (ft):			

		G	ROUNDWA	TER SAMPL	.ES		
Number of Sample	es/Container S	Size					
Time	Volume Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
	0.5	15.79	6.43	1,119	6.71	284.1	
	1.0	16.21	6.37	1,151	4.81	258.2	
	1.5	16.22	6.43	1,133	4.63	245.0	
	2.0	16.17	6.48	1,154	4.35	241.1	
	2.5	16.07	6.51	1,155	4.16	241.0	
	3.0	16.07	6.53	1,157	3.96	231.3	
	3.5	16.09	6.55	1,157	3.86	228.5	
	4.0	16.11	6.55	1,158	3.77	226.3	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Clear no odors

Purge line @ 10.0 ft b gs

		Mon	itoring Well Number:	MW-2		
Project Name:	ALLEN		Date of Sampling:	3/24/2011		
Job Number:	277915		Name of Sampler:	RFF		
Project Address:	325 Martin Luther King Jr Way, Oa	akland CA				
	MONITORIN	<u>G WELL DA</u>	TA			
Well Casing Diame	eter (2"/4"/6")	2"				
Wellhead Condition	า	ОК				
Elevation of Top of	Casing (feet above msl)	15.27				
Depth of Well		16.71				
Depth to Water (fro	om top of casing)	7.89				
Water Elevation (fe	eet above msl)	7.38				
Well Volumes Purg	ged	Micropurged with peristaltic pump				

Actual Volume Purged (liters)	4.0			
Appearance of Purge Water	Clear			
Free Product Present?	No	Thickness (ft):		

		G	ROUNDWA	TER SAMPL	.ES		
Number of Sample	es/Container	Size					
Time	Volume Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
	0.5	13.5	6.53	855	3.66	361.3	
	1.0	16.6	6.43	853	3.14	328.6	
	1.5	16.6	6.46	852	3.04	311.6	
	2.0	16.5	6.47	851	3.14	297.9	
	2.5	16.4	6.48	852	3.20	287.7	
	3.0	16.5	6.49	853	3.28	280.3	
	3.5	16.5	6.50	855	3.34	275.2	
	4.0	16.49	6.51	860	3.49	271.8	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Clear, no odor

Purge line @ 10.0 ft b gs

		Mon	itoring Well Number:	MW-3				
Project Name:	ALLEN		Date of Sampling:	3/24/2011				
Job Number:	277915		Name of Sampler:	RFF				
Project Address:	325 Martin Luther King Jr Way, Oa	akland CA						
	MONITORIN	<u>G WELL DA</u>	TA					
Well Casing Diame	eter (2"/4"/6")	2"						
Wellhead Condition	ו	ОК		▼				
Elevation of Top of	Casing (feet above msl)	15.26						
Depth of Well		17.80						
Depth to Water (fro	om top of casing)	7.44						
Water Elevation (feet above msl)			7.82					
Well Volumes Purged		Micropurged with peristaltic pump						

4.5

Clear

Thickness (ft):

		G	ROUNDWA	TER SAMPL	.ES		
Number of Sample	es/Container S	Size					
Time	Volume Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
	0.5	15.98	6.88	780	3.25	317.5	
	1.0	16.40	6.91	785	7.03	256.6	
	1.5	16.48	6.95	788	8.62	243.2	
	2.0	16.48	6.97	788	9.19	236.2	
	2.5	16.42	6.96	794	9.28	233.5	
	3.0	16.41	6.94	805	8.18	235.7	
	3.5	16.38	6.94	810	7.85	235.9	
	4.0	16.35	6.93	813	7.63	235.9	
	4.5	16.34	6.93	814	7.50	236.0	

No

Free Product Present?

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Clear, no odor

Purge line @ 10.0 ft b gs

Actual Volume Purged (liters)

Appearance of Purge Water

		Mon	IW-1		
Project Name:	ALLEN		Date of Sampling:	3/24/2011	
Job Number:	277915		Name of Sampler:	RFF	
Project Address:	325 Martin Luther King Jr Way, Oal				
	MONITORING	<u> WELL DA</u>	ΤΑ		
Well Casing Diame	eter (2"/4"/6")		2"		
Wellhead Condition	n	ОК			
Elevation of Top of	Casing (feet above msl)	15.26			
Depth of Well		14.65			
Depth to Water (fro	om top of casing)	7.35			
Water Elevation (fe	aet above mel)	7 01			

Water Elevation (feet above msl)	7.91				
Well Volumes Purged	Micropurged with peristaltic pump				
Actual Volume Purged (liters)		4.0			
Appearance of Purge Water	Clear				
Free Product Present?	No	Thickness (ft):			

	GROUNDWATER SAMPLES							
Number of Sample	es/Container S	Size						
Time	Volume Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments	
	0.5	15.44	6.35	663	2.13	125.5		
	1.0	15.29	6.38	659	2.77	122.8		
	1.5	15.31	6.42	657	1.32	143.5		
	2.0	15.29	6.40	655	2.26	156.0		
	2.5	15.29	6.41	655	2.00	166.3		
	3.0	15.31	6.43	656	3.28	168.1		
	3.5	15.36	6.44	656	2.41	166.2		
	4.0	15.37	6.45	657	2.29	166.6		

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Clear, no odors

Purge line @ 10.0 ft b gs

		Mon	itoring Well Number:	IW-2				
Project Name:	ALLEN		Date of Sampling:	3/24/2011				
Job Number:	277915		Name of Sampler:	RFF				
Project Address:	325 Martin Luther King Jr Way, Oa	akland CA						
	MONITORIN	<u>G WELL DA</u>	TA					
Well Casing Diame	eter (2"/4"/6")	2"						
Wellhead Condition	1	OK		▼				
Elevation of Top of	Casing (feet above msl)	15.26						
Depth of Well		15.75						
Depth to Water (fro	om top of casing)	7.76						
Water Elevation (feet above msl)		7.50						
Well Volumes Purg	jed	Micropurged with peristaltic pump						

Actual Volume Purged (liters)	4.0			
Appearance of Purge Water	Clear			
Free Product Present?	No	Thickness (ft):		

	GROUNDWATER SAMPLES							
Number of Sample	es/Container S	Size						
Time	Volume Removed (liters)	Temperature (deg C)	рН	Conductivity (µ sec/cm)	DO (mg/L)	ORP (meV)	Comments	
	0.5	15.86	6.17	704	2.70	206.8		
	1.0	15.94	6.17	704	2.83	206.5		
	1.5	15.96	6.21	703	2.37	207.4		
	2.0	15.96	6.22	702	2.38	208.9		
	2.5	15.95	6.24	702	2.17	208.9		
	3.0	15.95	6.21	702	2.07	208.7		
	3.5	15.95	6.24	704	2.26	209.8		
	4.0	15.95	6.25	704	2.37	208.2		

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Clear, no odor

Purge line @ 10.0 ft bgs

		Mon	IW-3					
Project Name:	ALLEN		Date of Sampling:	3/24/2011				
Job Number:	277915		Name of Sampler:	RFF				
Project Address:	325 Martin Luther King Jr Way, Oa							
			•					
MONITORING WELL DATA								
Well Casing Diameter (2"/4"/6")		2"						
Wellhead Condition		ОК						
Elevation of Top of Casing (feet above msl)		15.26						
Depth of Well		14.67						
Depth to Water (from top of casing)		8.73						
Water Elevation (feet above msl)		6.53						
Well Volumes Purged		Micropurged with peristaltic pump						
			· - · ·					

4.5

Clear

Thickness (ft):

GROUNDWATER SAMPLES									
Number of Samples/Container Size									
Time	Volume Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments		
	0.5	15.70	6.19	632	10.50	261.9			
	1.0	16.08	6.11	650	8.62	261.2			
	1.5	16.05	6.13	648	8.62	264.3			
	2.0	16.04	6.14	642	8.04	267.0			
	2.5	16.06	6.14	633	7.77	267.6			
	3.0	16.03	6.14	632	7.87	276.3			
	3.5	16.05	6.13	627	8.14	285.6			
	4.0	16.06	6.14	623	8.15	285.6			
	4.5	16.08	6.13	623	8.16	269.5			

No

Free Product Present?

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

clear, no odor

Purge line @ 10.0 ft b gs

Actual Volume Purged (liters)

Appearance of Purge Water

APPENDIX B

LABORATORY ANALYTICAL AND CHAIN OF CUSTODY DOCUMENTATION

McCampbell An "When Ouality"		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants	Client Project ID: #277915;	Allen	Date Sampled:	12/29/10					
2500 Camino Diablo, Ste. #200			Date Received:	12/30/10					
2500 Cumilo Diabio, 5tc. #200	Client Contact: Robert Flo	ry	Date Reported:	01/05/11					
Walnut Creek, CA 94597	Client P.O.: #WC082829		Date Completed:	01/05/11					

WorkOrder: 1012964

January 05, 2011

Dear Robert:

Enclosed within are:

- 1) The results of the **3** analyzed samples from your project: **#277915; Allen,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	MaCAN	APBELI		I VT	IC'A	T	INIC	7	_	_		_	_				_	_	-	_	TT	A T	D.L.		10	T			37.1		~	D	D		
	MCCAN		Willow Pas				un	~*							Т		DN		105						C	U	51	UI	DY I	(E)	CC	ж	D		
Talanha	ne: (925) 25		burg, CA 9	94565		Car	(01	5) 1	52 (026	0						KIN.	Ar		UIN	U I	u	III.									772		5 D	4.37
Telepho	ne: (945) 45	2-9202				ax:	(92	25) 2	34-3	920	9			ł	E	DE	Dee		. 49	_	-	Ve	-			USH		24 H		481			2 HF	5 D.	AY
														_														PDF	Report: YES						
Report To: Robe			1	Bill T	o: Sa	me		-			_	_	_	-	_	-	_	-		A	naly	sis	Rec	ques	st	_	_			⊢	0	ther		Comm	ents
Company: AEI 0								1						_			KF)														10	5			
	Camino Dia			- Ma	a. "a				1.			_		-		dr	F/B2								0					niu	(8)	070			
Tel: (925) 746-6	ut Creek, C	A 94391			il: rfl (925)				sulta	nts.	con	1		-	8015)	cant	E&	1							8310					non	200	5			
Project #:277915		7870			ct Na					-		-		-	+ 80	cel cl	Grease (5520 E&F/B&F)	418.							625/8270/					n, Cadmium, Total Chromium,	U (6 6			
Project Location:						me.	A	len						-	020	ica g	se (5	ons (Ŧ	020)					/ 82			6		Tot	eniu	0			
Sampler Signatur		maron				0								-	(602/8020	// sil	Grea	arbo	0 lis	2/8	80				625			601	8.6)	ium,	Sel .	in to X			
det.		SAMP		Inc		T		TR	IV	Т	M	ETH	IOL	5	Gas ()	5) w	8	droc	(801	V 60	/ 80	80	260		EPA			39.2	E218	mpe	PDI	BTF			
1		SAMP	LING	2	ner		IVIA	IR	IA	4	PRE	SE	RVE	ED	as C	(801	n Oi	0 Hy	260	EPA	608	/ 80	1/8		by	\$		11/2	ne ()	D'u	ou,	+ W	-15)		
SAMPLE ID	LOCATION			Containers	Type Containers										TPH as	TPH as Diesel (8015) w/ silica gel cleanup	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	HVOCs EPA 8260 (8010 list)	BTEX ONLY (EPA 602 / 8020)	Pesticides EPA 608 / 8080	PCBs EPA 608 / 8080	VOCs EPA 624 / 8260	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	Diss Hexachrome (E218.6)	Arsenic, Barium, Ca	Copper, total Iron, Lead, Selenium (E200.8) 5 Finel Additione FDB and 1 2 DCA (2260)	TPH-g (TO-3) + MBTEX (TO-15)	2-propanol (TO-15)		
(Field Point Name)	LOCATION	Date	Time	nta	S	1			3G				m	- 1	MBTEX &	s Di	Petro	Petro	SEI	NO	des	EPA	EP/	25/	/ bl	17 N	5 M	724(lexa	c, B	r, tol	ΪĔ	anol		
				ပီ	ype	Water	Soil	Air	Sludge	Other	lce	HCI	HNO3	Other	BTE	PH a	tal l	otal J	N00	LEX	stici	Bs	SCS	A 6	VH's	-MA	E) pes	ss H	Scni	oppe	A-Ho	doud		
				*		12	S	A	so c	2	-	Ŧ	Ħ	<u> </u>	Μ	F	Ĕ	Ĕ	H	'n	Pe	PC	>	E	P/	C	E	Z	D	A.	Ŭ v	Ē	2-		
MW-3	MN-3 NU-2	12/09/10	1700	3	vo/	X					X/	X		_	х																				
IW-2	NU-2	mizilo	1830	3	VO	X					X.	X			х																				
IW-3	IW3	12/29/10	174	3	in	X				1	P	X			Х																			· · · · ·	
		11	1000		1	Γ				T	Т	1													~										
	4									T																					+	-	+		
						\vdash			-	t			1	+	-														-		+	-	+		
			1.00		-	\vdash		-	+	$^{+}$	+	+	+	+	-		-			-		-	-					-		\vdash	+	-	+		101
				-	-	-		-	-	+	+	+	+	+	-	-			-	-	-		-					-		⊢	+	+-	+		
					-	+		-	-	+	-	+	+	+	_					_	-		_				_			⊢	+	-	-		
				10	-	-		-	-	+	-	-	-	-	_				6	_		_	-			_	_			-	_	-	-		
								_	_	+	_	_	_	_					~	_					1									-	
										Т																									
										T																		1							
Relinquished By:	0	Date:	Time:	Rece	eived B	y:	-	T	0		-	-	-	+						_	-	_		_		-				<u> </u>	_		-		
almana	l	12/3/10	susp		4	Q		Ya	l	C							L	1.	2											s/	0&G	1	IETA	LS OTHE	R
Relinquished By:		Date:	Time:	Rece	eived B	y:	-									CE/		ON	DIT	101	v .		1					TIO		<u></u>					_
																			CE A									RS							
Relinquished By:		Date:	Time:	Rece	eived B	y:								٦					NAT				В						IN LA	B_					
				1.1																															

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkOr	der: 101296	4 Clien	tCode: AEL		
	WaterTrax	writeOn	EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				Bil	II to:		Req	quested TAT:	5 days
Robert Flory	Email:	rflory@aeiconsult	tants.com		Jeanette Bro	own			
AEI Consultants	CC:				AEI Consulta	ants			
2500 Camino Diablo, Ste. #200	PO:	#WC082829			2500 Camin	o Diablo, Ste. #2	<u>200</u> Dat	te Received:	12/30/2010
Walnut Creek, CA 94597	ProjectNo:	#277915; Allen			Walnut Cree	ek, CA 94597	Dat	te Printed:	12/30/2010
(925) 283-6000 FAX (925) 283-6121					jbrown@aei	iconsultants.com			
						Requested Test	s (See legend t	pelow)	

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
				·						r					1	
1012964-001	MW-3	Water	12/29/2010 17:00		Α	Α										
1012964-002	IW-2	Water	12/29/2010 18:30		А											
1012964-003	IW-3	Water	12/29/2010 17:40		А											

Test Legend:

1	G-MBTEX_W
6	
11	

2	PREDF REPORT
7	
12	

3	
8	

4	
9	
3	

5			
10			

Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants					Da	ate an	nd Time Received:	12/30/2010	6:09:27 PM
Project Name:	#277915; Allen					Ch	neckli	ist completed and re	eviewed by:	Zoraida Cortez
WorkOrder N°:	1012964	Matrix	Water			Ca	arrier:	Client Drop-In		
			<u>Chain</u>	of Cu	stody (C	COC) Info	rmat	ion		
Chain of custody	present?			Yes	\checkmark	No				
Chain of custody	signed when relinquis	shed and	I received?	Yes	\checkmark	No [
Chain of custody	agrees with sample la	abels?		Yes	<	No				
Sample IDs noted	by Client on COC?			Yes	\checkmark	No				
Date and Time of	collection noted by Cli	ent on CC	C?	Yes	✓	No				
Sampler's name r	noted on COC?			Yes	✓	No				
			<u>Sa</u>	ample	Receipt	Informat	<u>tion</u>			
Custody seals int	tact on shipping contai	iner/coole	er?	Yes		No [NA 🔽	
Shipping containe	er/cooler in good condi	ition?		Yes	\checkmark	No [
Samples in prope	er containers/bottles?			Yes	✓	No [
Sample containe	rs intact?			Yes	\checkmark	No [
Sufficient sample	volume for indicated	test?		Yes	✓	No				
		Sar	mple Preser	vatior	n and Ho	old Time ((HT)	Information		
All samples recei	ved within holding time	ə?		Yes	✓	No				
Container/Temp E	Blank temperature			Coole	r Temp:	4.2°C			NA 🗆	
Water - VOA vial	ls have zero headspac	ce / no bu	ubbles?	Yes	✓	No		No VOA vials submi	tted 🗆	
Sample labels ch	necked for correct pres	servation	?	Yes	✓	No				
Metal - pH accept	table upon receipt (pH	<2)?		Yes		No [NA 🗹	
Samples Receive	ed on Ice?			Yes	✓	No				
			(Ice Type	e: WE	TICE)				
* NOTE: If the "N	lo" box is checked, se	e comme	ents below.							

Client contacted:

Date contacted:

Contacted by:

Comments:

۹.	McCampbe	ell An		l <u>, Inc.</u>	Wel	: www.mccamp	ass Road, Pittsburg bell.com E-mail: 77-252-9262 Fa	main@mccamp	bell.com					
AEI C	onsultants		Cli	ent Project ID:	#277915; Al	len	Date Sample	d: 12/29	9/10					
2500 (Camino Diablo, Ste. #2	200					Date Receive	ed: 12/30)/10					
2300 C		.00	Cli	ent Contact: Ro	obert Flory		Date Extracted: 01/04/11							
Walnu	t Creek, CA 94597		Cli	ent P.O.: #WC0	82829		Date Analyz	ed: 01/04	1/11					
	G	asoline F	Range (C6-0	C12) Volatile Hy	ydrocarbons as Gasoline with BTEX and MTBE*									
Extractio	n method: SW5030B			Analy	tical methods:	SW8021B/8015	Bm		Wor	k Order:	1012964			
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments			
001A	MW-3	W	130	ND	0.79	1.2	ND	3.1	1	116	d7,d9			
002A	IW-2	W	ND	ND	ND	ND	ND	0.62	1	115				
003A	IW-3	W	ND	ND	ND	ND	ND	ND	1	114				
	ting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5		μg/I				
	eans not detected at or re the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/k				

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram d9) no recognizable pattern

DHS ELAP Certification 1644

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water		(QC Matrix	k: Water			Batch	ID: 55360	WorkOrder 1012964					
EPA Method SW8021B/8015Bm	Extrac	ction SW	5030B					S	Spiked San	nple ID	: 1012917-0	01A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)			
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH(btex ^f)	ND	60	78.9	92.7	16.0	95	92.1	3.09	70 - 130	20	70 - 130	20		
MTBE	ND	10	123	121	2.11	115	111	2.90	70 - 130	20	70 - 130	20		
Benzene	ND	10	105	115	9.14	110	112	2.34	70 - 130	20	70 - 130	20		
Toluene	ND	10	92.9	101	8.44	97.9	99.2	1.30	70 - 130	20	70 - 130	20		
Ethylbenzene	ND	10	82.5	97.8	16.9	97.1	96.4	0.715	70 - 130	20	70 - 130	20		
Xylenes	ND	30	91.9	110	18.0	111	111	0	70 - 130	20	70 - 130	20		
%SS:	104	10	100	100	0	100	101	0.701	70 - 130	20	70 - 130	20		
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following o	exceptions:					

			BATCH 55360 SL	JMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1012964-001A	12/29/10 5:00 PM	I 01/04/11	01/04/11 11:26 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

A QA/QC Officer

DHS ELAP Certification 1644

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water		(QC Matrix	k: Water			Batch	ID: 55384	WorkOrder 1012964					
EPA Method SW8021B/8015Bm	Extrac	tion SW	5030B					5	Spiked San	nple ID	: 1012964-0	02A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)			
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH(btex)	ND	60	92.1	94.2	2.27	95.7	98.2	2.54	70 - 130	20	70 - 130	20		
MTBE	ND	10	119	117	1.49	125	116	7.73	70 - 130	20	70 - 130	20		
Benzene	ND	10	109	111	1.43	120	109	8.77	70 - 130	20	70 - 130	20		
Toluene	ND	10	93.1	94.1	1.08	106	96.8	8.95	70 - 130	20	70 - 130	20		
Ethylbenzene	ND	10	94.1	96.3	2.34	104	92.5	11.5	70 - 130	20	70 - 130	20		
Xylenes	0.62	30	104	106	1.76	117	106	10.0	70 - 130	20	70 - 130	20		
%SS:	115	10	103	102	1.32	104	104	0	70 - 130	20	70 - 130	20		
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:					

BATCH 55384 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1012964-002A	12/29/10 6:30 PM	1 01/04/11	01/04/11 3:39 AM	1012964-003A	12/29/10 5:40 PM	01/04/11	01/04/11 4:08 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

A QA/QC Officer

Page 7 of 7

McCampbell A "When Oualit		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants	Client Project ID: #270308;	325 Martin Luther King,	Date Sampled:	02/07/11					
2500 Camino Diablo, Ste. #200	Oakland, CA		Date Received:	02/07/11					
2500 Cumilio Diabio, 5tc. #200	Client Contact: Robert Flo	ory	Date Reported:	02/10/11					
Walnut Creek, CA 94597	Client P.O.:		Date Completed:	02/09/11					

WorkOrder: 1102183

February 10, 2011

Dear Robert:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: #270308; 325 Martin Luther King, Oakland, CA,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	We We	IcCAMP ebsite: <u>www.m</u> ephone: (877	ccampbel	Lcom En	LY] SS RO 4565-1 nail: n	ΓΙC. DAD 701 nain@ Fax	mcca	mpb	ell.co	om	33)			TUI Geo			OL	JNI) T	IM	E PD	F	RUS	SH Ex	-24 ccel	HR	1	48 I Vri	HR ite (On (I		x 5 DAY V) s required
	Report To: Robe	PT FLORE	\ \	I	Bill To	0: 5	AN	F	-										P	nal	ysis			_							ther	_	Comments
	Company: At	D Camino INUT CRE 16-6000	DIAD EK,	cA I	E-Ma	il: P	-F4	arr	æ					as Gas (602 / 8021 + 8015) / MTBE		ease (1664 / 5520 E/B&F)	rbons (418.1)	(HVOCs)	PA 602 / 8021)	esticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	cides)	(Herbicides)	DCs)	(OCs)	(Hs / PNAs)	0.8 / 6010 / 6020)	0.8 / 6010 / 6020)	6020)	VED metals analysis			**Indicate here if these samples are potentially dangerous to handle:
			SAMI	PLING		~	N	AT	RIX	(IOD	s (602		& Gr	roca	0/8	Y (El	(CLP	NO S	Pesti	die C	N) 05	10 (S1	0 (PA	7/2	7/20	6010	SOL			
	SAMPLE ID	LOCATION/ Field Point Name	Date	Time	# Containers	Type Containers	Water	Soil	Sludge	Other			HNO ₃ Other	HdT		Total Petroleum Oil & Grease (1664/5520	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic CI Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)	Filter sample for DISSOLVED			
+	-Tw-2	Iwa	2/2/11	1118	4	NOR	X				X	X		X	X																	t	
++	MW-3	MWS	1	HIF		1. 1.	1				1	1		Í	1																		
1)	IN-3	11-3	5	1150	V		V			_	5	V		4	1	-																-	
	**MAI clients MUST gloved, open air, samp allowing us to work sa	ole handling by															ject																
	Relinguished By:		Date: Date:	Time: 1350 Time:	2	cived B	A			C	A	L		G H D A	CE/t [*] OOD EAD ECH PPR	CON SPAC	NDIT CE A INAT	TED CO	IN I NTA		RS_	J						CO	MM	ENTS	ŝ:		
	Relinquished By:		Date:	Time:	Reco	eived B	By:								RESE			V		0	&G	MI pH•		s	OTI	yér							

.

1534 Willow Pass Rd CA 04565 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				1	Work	Order:	1102	183	C	ClientCo	ode: AEI					
	WaterTrax	WriteOn	EDF		Excel	[Fax	•	🖌 Email		HardCo	ру	Thirc	Party	J-	flag
Report to:	F ara ili	rflam (@aaiaan				Bill to:						Requ	uested [·]	TAT:	5 0	days
Robert Flory AEI Consultants 2500 Camino Diablo, Ste. #200 Walnut Creek, CA 94597	cc: PO:		sultants.com Martin Luther King,	9		AE 250		ultants nino Dia	iblo, Sto 94597)		e Recei e Printe		02/07/ 02/07/	
(925) 283-6000 FAX (925) 283-6121		Oakland, CA				jbro	own@a	eicons	ultants.	com						
								Req	uested	Tests (See lege	nd be	elow)			
Lab ID Client ID		Matrix	Collection Date H	lold	1	2	3	4	5	6	7	8	9	10	11	12

				•								
1102183-001	IW-2	Water	2/7/2011 11:18		А	А	В					
1102183-002	MW-3	Water	2/7/2011 12:17		А		В					
1102183-003	IW-3	Water	2/7/2011 11:50		А		В					

Test Legend:

1	G-MBTEX_W	
6		
11		

2	PREDF REPORT
7	
12	

3	TPH(D)WSG_W
8	

4	
9	

1	5	
	10	

Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants					Date	and T	Time Received:	2/7/2011 3	3:05:51 PM
Project Name:	#270308; 325 Mai	rtin Luthe	r King, Oa	kla	nd, CA	Chec	klist o	completed and re	eviewed by:	Zoraida Cortez
WorkOrder N°:	1102183	Matrix <u>Wa</u>	ater			Carrie	er:	Client Drop-In		
			<u>Chain o</u>	f Cu	istody (C	OC) Inform	ation	<u>1</u>		
Chain of custody	present?		`	Yes		No 🗌				
Chain of custody	signed when relinqui	shed and re	ceived?	Yes		No 🗆				
Chain of custody	agrees with sample l	abels?	•	Yes	\checkmark	No 🗆				
Sample IDs noted	by Client on COC?		•	Yes		No 🗆				
Date and Time of	collection noted by Cli	ent on COC	? `	Yes	\checkmark	No 🗆				
Sampler's name r	noted on COC?		`	Yes		No 🗆				
			<u>Sar</u>	nple	Receipt	Informatio	<u>n</u>			
Custody seals int	tact on shipping conta	iner/cooler?		Yes		No 🗆			NA 🗹	
Shipping containe	er/cooler in good cond	ition?	`	Yes		No 🗆				
Samples in prope	er containers/bottles?		•	Yes	\checkmark	No 🗆				
Sample container	rs intact?		•	Yes	\checkmark	No 🗆				
Sufficient sample	volume for indicated	test?	,	Yes	\checkmark	No 🗌				
		<u>Samp</u>	ole Preserv	atio	n and Ho	Id Time (H1	Γ) Inf	ormation		
All samples recei	ved within holding time	e?	•	Yes	\checkmark	No 🗆				
Container/Temp E	Blank temperature		(Coole	er Temp:	10.6°C			NA 🗆	
Water - VOA vial	s have zero headspa	ce / no bubb	oles?	Yes	\checkmark	No 🗆	No	VOA vials subm	itted	
Sample labels ch	necked for correct pres	servation?	`	Yes		No 🗌				
Metal - pH accep	table upon receipt (pH	l<2)?	`	Yes		No 🗆			NA 🗹	
Samples Receive	ed on Ice?		`	Yes		No 🗆				
			(Ice Type:	WE	TICE))				
* NOTE: If the "N	lo" box is checked, se	ee comment	ts below.							
		====	====			====		=====	=====	=======

Client contacted:

Date contacted:

Contacted by:

Comments:

	McCampbe	ell An en Ouality (Inc.	Web	: www.mccamp	Pass Road, Pittsburg bell.com E-mail: 277-252-9262 Fa	main@mccamp	bell.com		
AEI C	onsultants			nt Project ID:		5 Martin	Date Sample	ed: 02/07	7/11		
2500 (Camino Diablo, Ste. #2	200	Luth	er King, Oakla	nd, CA		Date Receiv	ed: 02/07	7/11		
2300 C		200	Clie	nt Contact: Ro	bert Flory		Date Extract	ed: 02/09	9/11		
Walnu	t Creek, CA 94597		Clie	nt P.O.:			Date Analyz	ed: 02/09	9/11		
	G	asoline F	Range (C6-C	12) Volatile Hy	drocarbons	as Gasoline	e with BTEX a	and MTBE [;]	k		
Extractio	n method: SW5030B			Analy	tical methods:	SW8021B/8015	Bm		Wor	k Order:	1102183
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	IW-2	w	ND	ND	ND	ND	ND	0.98	1	109	
002A	MW-3	W	ND	ND	2.3	1.0	ND	6.4	1	111	
003A	IW-3	w	2700	ND<50	180	330	18	360	10	107	d1
					<u> </u>			<u> </u>			
					 	<u> </u>			<u> </u>		
	ting Limit for $DF = 1$; eans not detected at or	W	50	5.0	0.5	0.5	0.5	0.5		μg/I	
	e the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/k	(g

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

	CCampbell Analyti "When Ouality Counts"	<u>cal, Inc.</u>	1534 Willow F Web: www.mccamp Telephone: 8		nail: main	@mccampl	bell.com
AEI Consulta	nts	Client Project ID: Luther King, Oakla	#270308; 325 Martin	Date Sam	pled:	02/07/1	1
2500 Camino	Diablo, Ste. #200	Lutilei Kilig, Oakia	liid, CA	Date Rec	eived:	02/07/1	1
		Client Contact: Ro	obert Flory	Date Extr	acted:	02/07/1	1
Walnut Creek	, CA 94597	Client P.O.:		Date Ana	lyzed	02/08/1	1-02/09/11
Extraction method	Total Extractal SW3510C/3630C	ble Petroleum Hydro Analytical n	nethods: SW8015B	Clean-Up		Work Orde	er: 1102183
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)		DF	% SS	Comments
1102183-001B	IW-2	W	ND		1	102	
1102183-002B	MW-3	W	ND		1	98	
1102183-003B	IW-3	W	870		1	96	e4,e2
-	orting Limit for DF =1;	W	50			μg	/L
	neans not detected at or ove the reporting limit	S	NA			N	

* water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract/matrix interference.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e2) diesel range compounds are significant; no recognizable pattern e4) gasoline range compounds are significant.

DHS ELAP Certification 1644

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water		(QC Matrix	k: Water			Batch	ID: 56072		WorkC	order 11021	83
EPA Method SW8021B/8015Bm	Extrac	tion SW	5030B					s	Spiked San	nple ID	: 1102172-0)41B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	1
, indigite	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	89.7	99.4	10.3	110	104	6.22	70 - 130	20	70 - 130	20
MTBE	ND	10	114	105	8.62	110	118	6.74	70 - 130	20	70 - 130	20
Benzene	ND	10	107	104	3.75	105	106	0.818	70 - 130	20	70 - 130	20
Toluene	ND	10	107	103	3.92	103	103	0	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	106	101	4.96	103	103	0	70 - 130	20	70 - 130	20
Xylenes	ND	30	109	104	5.01	106	106	0	70 - 130	20	70 - 130	20
%SS:	121	10	101	100	1.08	98	100	1.77	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following o	exceptions:			

BATCH 56072 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1102183-001A	02/07/11 11:18 AM	02/09/11	02/09/11 5:58 AM	1102183-002A	02/07/11 12:17 PM	02/09/11	02/09/11 7:27 AM
1102183-003A	02/07/11 11:50 AM	02/09/11	02/09/11 12:23 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QA/QC Officer

Page 7 of 8

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

C	QC Matrix	k: Water			Batch	ID: 56068		WorkC	Order 11021	83
Extraction SW3	3510C/36	530C				s	Spiked San	nple ID	: N/A	
mple Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
g/L µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
/A 1000	N/A	N/A	N/A	93.1	111	17.1	N/A	N/A	70 - 130	30
/A 625	N/A	N/A	N/A	89	82	8.82	N/A	N/A	70 - 130	20
/A 625	N/A	N/A	N/A	89	82	8.82	N/A			
1 [,	Extraction SW mple Spiked g/L µg/L i/A 1000 i/A 625	Extraction SW3510C/36 mple Spiked MS g/L µg/L % Rec. i/A 1000 N/A i/A 625 N/A	g/L μg/L % Rec. % Rec. //A 1000 N/A N/A //A 625 N/A N/A	Extraction SW3510C/3630C mple Spiked MS MSD MS-MSD g/L μg/L % Rec. % Rec. % RPD i/A 1000 N/A N/A N/A i/A 625 N/A N/A N/A	Extraction SW3510C/3630C mple Spiked MS MSD MS-MSD LCS g/L µg/L % Rec. % Rec. % RPD % Rec. i/A 1000 N/A N/A N/A 93.1 i/A 625 N/A N/A N/A 89	Extraction SW3510C/3630C mple Spiked MS MSD MS-MSD LCS LCSD g/L µg/L % Rec. % Rec. % RPD % Rec. % Rec. //A 1000 N/A N/A N/A 93.1 111 //A 625 N/A N/A N/A 89 82	Extraction SW3510C/3630C mple Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD g/L µg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD i/A 1000 N/A N/A N/A 93.1 111 17.1 i/A 625 N/A N/A N/A 89 82 8.82	Extraction SW3510C/3630C Spiked Sar mple Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Accord g/L μg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD //A 1000 N/A N/A N/A 93.1 111 17.1 N/A	Extraction SW3510C/3630C Spiked Sample ID mple Spiked MS MSD MS-MSD LCS LCSD Acceptance g/L µg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD % Rec. % RPD MS / MSD RPD i/A 1000 N/A N/A N/A 93.1 111 17.1 N/A N/A i/A 625 N/A N/A N/A 89 82 8.82 N/A N/A	Spiked Sample ID: N/A mple Spiked MS MSD MS-MSD LCS LCSD LCS-LCSD Acceptance Criteria (%) g/L µg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD % Rec. % Rec. % RPD LCS-LCSD MS MSD LCS/LCSD //A 1000 N/A N/A N/A 93.1 111 17.1 N/A N/A 70 - 130 //A 625 N/A N/A N/A 89 82 8.82 N/A N/A 70 - 130

BATCH 56068 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1102183-001B	02/07/11 11:18 AM	02/07/11	02/09/11 2:47 AM	1102183-002B	02/07/11 12:17 PM	02/07/11	02/08/11 7:07 AM
1102183-003B	02/07/11 11:50 AM	02/07/11	02/08/11 8:18 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

QA/QC Officer

WcCampbell An "When Ouality"		Web: www.mccampbe	s Road, Pittsburg, CA 9 Il.com E-mail: main@ '-252-9262 Fax: 925-2	mccampbell.com
AEI Consultants	Client Project ID: #277915;	Allen	Date Sampled:	03/24/11
2500 Camino Diablo, Ste. #200			Date Received:	03/24/11
2000 Cullino Diablo, 540. #200	Client Contact: Robert Flo	ry	Date Reported:	03/30/11
Walnut Creek, CA 94597	Client P.O.: #WC082829		Date Completed:	03/30/11

WorkOrder: 1103818

March 30, 2011

Dear Robert:

Enclosed within are:

- 1) The results of the **6** analyzed samples from your project: **#277915; Allen,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

McCAMPBELL ANALYTICAL INC. 1534 Willow Pass Road Pittsburg, CA 94565 Telephone: (925) 252-9262 Fax: (925) 252-9269	1	rui	RN	AF	201		HA D T			OF		US JSH		OD 24 H		48 H			HR	5 DAY
	E	DF	Req	uir	ed?			Yes	. [No		Em	ail I	PDF	Repo	rt:	YES	s	
Report To: Robert Flory Bill To: Same						An	alys	is F	Requ	uest							Oth	ier		Comments
Company: AEI Consultants			(H														6			
2500 Camino Diablo		e.	5/B&													(8)	826			
Walnut Creek, CA 94597 E-Mail: rflory@aciconsultants.com	8015)	eanu	E&F	=							8310					hrom =200	CA		199	
Tel: (925) 746-6000 Fax: (925) 946-6099 Project #:277915 PO WC082829 Project Name: Allen	+ 80	el cl	520	418.							EPA 625 / 8270 /					al C	2-D	2)		
Project #:277915 PO WC082829 Project Name: Allen Project Location: 325 Martin Luther King Jr. Way	020	ica g	se (5	ons (020)					/ 87			6		Tot	nd 1	1-0-I		
Sampler Signature:	(602/8020	// sil	Grea	carbo	10 lis	2/8	080				625			/09/	8.6)	d, Se	B, a	X		
METHOD	Gas (5) 4	18	/droe	(80]	A 60	8/8	80	260					39.2	E21	adm	ED	BTE	-	
SAMPLING 2 2 PRESERVED	a	(801	iO ii	m Hy	\$260	(EP.	V 608	8/8	4/8	0	s by	Is	- 20	21/2	me (nu, C	ves.	+ N	0-15	
SAMPLE ID (Field Point Name) Date Time # Containers Other Other Soul Type Containers # Containers # Containers # Containers	MBTEX & TPH	TPH as Diesel (8015) w/ silica gel cleanup	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	HVOCs EPA 8260 (8010 list)	BTEX ONLY (EPA 602 / 8020)	Pesticides EPA 608 / 8080	PCBs EPA 608 / 8080	VOCs EPA 624 / 8260	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)	Diss Hexachrome (E218.6)	Arsenic, Barium, Cadmium, Total Chromium, Copper, total Iron, Lead, Selenium (E200.8)	5 Fuel Additives, EDB, and 1,2-DCA (8260)	TPH-g (TO-3) + MBTEX (TO-15)	2-propanol (TO-15)	
MW-1 1191-1 2/24/11 1215 11 11	X	1								-	1						X			Hold it in
MW-2 MUU-7 1255 11	x	1								-	-						X			1/ JAn
MW-3 1111-5 1335 4	X	x	-							-			-				X		1	HOICPAN
IW-1 IV-1 ID 367 4	x	_		-						+	-		-				X	-	-	1 al da
	-	X	-		-		-	-	-	-	-	-	+	-	-	-	X	-	-	Heic fin
IW-2 $FW-Z$ $IOZOG$ IV		X	-	-		-		-	-	-	-		-	-		-	X	-	-	
1^{11-3} 1^{11}	^	-	-	-		-		-	-	-	-		-	-			0	-		
	\vdash	-	-	-	-	-	_	-	-	-	+	-	-	-			-	-	-	
		-		-		_	-	-	_	-	-	-	-	_	-	<u> </u>	-	-	-	
		-	-	-		-	-	_	-	-	-		-				-	-	-	
		-	-	_	_			-	-	-	-	_	_	_		<u> </u>	-		_	
		-	_			_	_	_	_	-	_	-	-	_		<u> </u>	-			
											_	-				-	1			
									-											
Retarguished By: Date: Time: Received By: 3/24/1545 Enviro - Jech SR.		ICE	/t°	3.	5				_	Р	RES	SER	VA	TIO		AS 0	&G	М	ETA	LS OTHER
Relinquished By: Enviro Jether 3/24 1758 Received By:			OD					_	-			ROP				/				
							ENT		B	С		TAI			INL	AB				
Relinquished By: Date: Time: Received By: John John John John John John John John		D ESC		on				J.L	_			-0.76		1.10						

1534 Willow Pass Rd Bitteburg CA 94565 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-92						Work	Order:	1103	818	C	lientCod	le: AE	L				
		WaterTrax	WriteOn	EDF		Excel	[Fax	Ŀ	🗸 Email]HardC	Сору	Thir	dParty	□ J-	flag
Report to:							Bill to:						Requ	uested	TAT:	5 c	days
Robert Flory AEI Consultants 2500 Camino Dia Walnut Creek, C/ (925) 283-6000	,	cc: PO:	flory@aeicon WC082829 277915; Aller				AE 25 Wa	alnut Cr	ultants nino Dia eek, CA	ablo, Ste A 94597 ultants.e				e Rece e Prin		03/24/ 03/24/	
					[Req	uested [·]	Tests (Se	ee lege	end be	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1103818-001	MW-1		Water	3/24/2011 12:15		В	Α	А									
1103818-002	MW-2		Water	3/24/2011 12:55		В	Α										
1103818-003	MW-3		Water	3/24/2011 13:35		С	Α		В								
1103818-004	IW-1		Water	3/24/2011 10:20		В	Α										
1103818-005	IW-2		Water	3/24/2011 10:50		С	Α		В								

Test Legend:

1	5-OXYS+PBSCV_W	
6		
11		

2	G-MBTEX_W
7	
12	

3	PREDF REPORT
8	

4	TPH(D)WSG_W
9	

5				
10	1			

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	nd Time Received:	3/24/2011	6:10:18 PM
Project Name:	#277915; Allen				Check	list completed and r	eviewed by:	Maria Venegas
WorkOrder N°:	1103818	Matrix <u>Water</u>			Carrier	: <u>Courier</u>		
		<u>Chain</u>	of Cu	<u>stody (C</u>	OC) Informa	tion		
Chain of custody	present?		Yes	✓	No 🗆			
Chain of custody	signed when relinqui	shed and received?	Yes	✓	No 🗆			
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	collection noted by Cli	ent on COC?	Yes	✓	No 🗆			
Sampler's name r	noted on COC?		Yes	✓	No 🗆			
		<u>Si</u>	ample	Receipt	Information			
Custody seals int	tact on shipping contai	iner/cooler?	Yes		No 🗆		NA 🔽	
Shipping containe	er/cooler in good cond	ition?	Yes	\checkmark	No 🗆			
Samples in prope	er containers/bottles?		Yes	✓	No 🗆			
Sample containe	rs intact?		Yes	\checkmark	No 🗆			
Sufficient sample	volume for indicated	test?	Yes	\checkmark	No 🗌			
		Sample Prese	vatior	n and Ho	old Time (HT)	Information		
All samples recei	ved within holding time	e?	Yes	✓	No 🗌			
Container/Temp E	Blank temperature		Coole	er Temp:	3.5°C		NA 🗆	
Water - VOA vial	s have zero headspac	ce / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted	
Sample labels ch	ecked for correct pres	servation?	Yes	✓	No 🗌			
Metal - pH accept	table upon receipt (pH	<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗆			
		(Ice Type	e: WE	TICE)			
* NOTE: If the "N	lo" box is checked, se	ee comments below.						
			===	:				

Client contacted:

Date contacted:

Contacted by:

Comments:

When Ouali		cai, In	<u>c.</u>		Web: www.mccampt	uss Road, Pittsburg, CA ell.com E-mail: main 17-252-9262 Fax: 925		om
AEI Consultants	tv Counts	Client Pr	oject ID: #2'	77915:		Date Sampled:		
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Date Received:		
2500 Camino Diablo, Ste. #200		Clicent C	anto st. Daha					
Webs (Co. 1. CA 04507			District: Robe		У	Date Extracted:		
Walnut Creek, CA 94597			Date Analyzed:	03/25/11				
	ted Vola				DCA by P&T a	and GC/MS*	Weste Orden	1102010
Extraction Method: SW5030B Lab ID	11038	Anal 18-001B	ytical Method: S 1103818-00		1103818-003C	1103818-004B	Work Order:	1103818
Client ID	M	W-1	MW-2		MW-3	IW-1	Reporting DF	
Matrix		W	W		W	W		
DF		1	1		1	1	S	W
Compound			C	Concent	tration		ug/kg	µg/L
tert-Amyl methyl ether (TAME)	1	ND	ND		ND	ND	NA	0.5
t-Butyl alcohol (TBA)	1	ND	ND		10	ND	NA	2.0
1,2-Dibromoethane (EDB)	1	ND	ND		2.2	ND	NA	0.5
1,2-Dichloroethane (1,2-DCA)	9	9.3	ND		0.61	ND	NA	0.5
Diisopropyl ether (DIPE)	1	ND	ND		ND	ND	NA	0.5
Ethyl tert-butyl ether (ETBE)	1	ND	ND		ND	ND	NA	0.5
Methyl-t-butyl ether (MTBE)		1.9	ND		ND	ND	NA	0.5
		Surr	ogate Recov	eries (%)			
		Bull						
%SS1:	1	106	106		108	108		

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell An "When Ouality"		cal, In	<u>c.</u>		Web: www.mccamp		94565-1701 @mccampbell.c 5-252-9269	com
AEI Consultants		Client Pro	oject ID:	#27791	5; Allen	Date Sampled:	03/24/11	
2500 Camino Diablo, Ste. #200						Date Received:	03/24/11	
2300 Camino Diabio, Ste. #200		Client Co	ontact: Re	obert Fl	ory	Date Extracted:	03/25/11	
Walnut Creek, CA 94597		Client P.O	D.: #WC0	82829		Date Analyzed:	03/25/11	
Oxygenate	ed Vola	tile Organ	ucs + EDE	B and 1,	2-DCA by P&T	and GC/MS*		
Extraction Method: SW5030B		Anal	ytical Method	l: SW826	0B		Work Order:	1103818
Lab ID	11038	18-005C	1103818	-006C				
Client ID	Г	W-2	IW-	3				Limit for
Matrix		W	W					
DF		1	10				S	W
Compound				Conce	entration		ug/kg	µg/L
tert-Amyl methyl ether (TAME)]	ND	ND<5	5.0			NA	0.5
t-Butyl alcohol (TBA)		5.2	47				NA	2.0
1,2-Dibromoethane (EDB)]	ND	22				NA	0.5
1,2-Dichloroethane (1,2-DCA)]	ND	13				NA	0.5
Diisopropyl ether (DIPE)]	ND	ND<5	5.0			NA	0.5
Ethyl tert-butyl ether (ETBE)]	ND	ND<5	5.0			NA	0.5
Methyl-t-butyl ether (MTBE)]	ND	ND<5	5.0			NA	0.5
		Surre	ogate Rec	overies	s (%)			
%SS1:		108	106	5				
Comments								
* water and vapor samples are reported in extracts are reported in mg/L, wipe sample ND means not detected above the reportin Recovery of Surrogate Standard; DF = D	es in μg/ ng limit/	wipe. method det	-					
Recovery of suffogate standard; $DF = D$	nution F	actor						

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	1	en Ouality C	alytical, I	<u>IIC.</u>	Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
AEI Co	onsultants			Project ID:	#277915; All		Date Sample				
		200					Date Receiv	ed: 03/24	/11		
2500 C	amino Diablo, Ste. #2	200	Client Contact: Robert Flory Date Extracted: 03/26/11-03/30/11								
Walnut	Creek, CA 94597		Client	P.O.: #WC0	82829		Date Analyz	ed: 03/26	5/11-03/	30/11	
	G	asoline Ra	ange (C6-C12) Volatile Hy	drocarbons	as Gasoline	e with BTEX a	and MTBE [;]	k		
Extraction	n method: SW5030B			Analy	tical methods:	SW8021B/8015	iBm		Wor		1103818
ab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comment
01A	MW-1	W	ND	ND	ND	ND	ND	ND	1	97	
02A	MW-2	W	ND	ND	ND	ND	ND	ND	1	104	
03A	MW-3	w	140	ND	4.9	6.7	0.60	19	1	98	d1
04A	IW-1	w	ND	ND	ND	ND	ND	ND	1	100	
05A	IW-2	W	ND	ND	ND	ND	ND	ND	1	100	
06A	IW-3	w	390	ND	3.7	7.4	2.4	53	1	107	d1
	ing Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5		μg/l	L
	ans not detected at or e the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/H	
	nd vapor samples are re SPLP extracts in mg/I		g/L, soil/sludge	solid samples	in mg/kg, wip	e samples in	ug/wipe, produc	t/oil/non-aque	ous liqu	id sample	s and all

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

	CCampbell Analyti	cal, Inc.	Web: www.mccamp	Pass Road, Pitts bell.com E-1 377-252-9262	nail: main	@mccampl	bell.com
AEI Consulta	unts	Client Project ID:	#277915; Allen	Date Sam	pled:	03/24/1	1
2500 Camino	Diablo, Ste. #200		Date Rec	Date Received: 03/24/11			
		Client Contact: Ro	obert Flory	Date Extr	acted:	03/24/1	1
Walnut Creek	, CA 94597	Client P.O.: #WC0	082829	Date Ana	lyzed	03/27/1	1-03/30/11
Extraction method	Total Extractal sw3510C/3630C	ble Petroleum Hydro Analytical n	ocarbons with Silica Gel nethods: SW8015B	Clean-Up*		Work Orde	er: 1103818
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)		DF	% SS	Comments
1103818-003B	MW-3	W	ND		1	97	
1103818-005B	IW-2	W	ND		1	95	
1103818-006B	IW-3	W	290		1	98	e4,e2
Repo	Dorting Limit for DF =1;	W	50			μg	/L
	neans not detected at or ove the reporting limit	S	NA			N	
* water samples	are reported in µg/L, wipe samples	s in µg/wipe, soil/solid/s	sludge samples in mg/kg, pro	oduct/oil/non	-aqueous	s liquid sa	amples in mg/L,

and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract/matrix interference.

SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

e2) diesel range compounds are significant; no recognizable pattern e4) gasoline range compounds are significant.

DHS ELAP Certification 1644

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water		x: Water			BatchID: 57143			WorkOrder 1103818				
EPA Method SW8260B	Extra	Extraction SW5030B Spiked Sample ID: 1103790-002									02B	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, individ	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	80.7	78.4	2.94	85.2	83.6	1.94	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	80.7	77	4.68	84.2	82.8	1.71	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	89.5	87.6	2.09	97.2	94.3	3.09	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	101	95.1	5.97	106	103	2.96	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	99.8	96.1	3.81	109	107	1.85	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	97.9	94.5	3.59	106	104	2.54	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	104	101	3.36	109	106	2.50	70 - 130	30	70 - 130	30
%SS1:	87	25	99	99	0	99	96	2.36	70 - 130	30	70 - 130	30
All target compounds in the Method NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:			

BATCH 57143 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1103818-001B	03/24/11 12:15 PM	03/25/11	03/25/11 3:56 PM	1103818-002B	03/24/11 12:55 PM	03/25/11	03/25/11 4:37 PM
1103818-003C	03/24/11 1:35 PM	03/25/11	03/25/11 6:01 PM	1103818-004B	03/24/11 10:20 AM	03/25/11	03/25/11 8:55 PM
1103818-005C	03/24/11 10:50 AM	03/25/11	03/25/11 9:43 PM	1103818-006C	03/24/11 11:30 AM	03/25/11	03/25/11 8:14 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	Sample Matrix: Water QC Matrix: Water						BatchID: 57155 WorkOrder 1103818					18
EPA Method SW8021B/8015Bm	Extraction SW5030B Spiked Sample ID: 11037							: 1103794-0	05B			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, mary to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f)	ND	60	96.2	106	9.64	93.5	91.7	2.02	70 - 130	20	70 - 130	20
MTBE	ND	10	121	115	5.61	116	112	3.76	70 - 130	20	70 - 130	20
Benzene	ND	10	107	108	1.35	108	105	3.40	70 - 130	20	70 - 130	20
Toluene	ND	10	96.8	100	3.43	96	93.1	3.06	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	98.6	98.5	0.127	97.8	95.9	1.93	70 - 130	20	70 - 130	20
Xylenes	ND	30	112	114	1.92	111	108	2.93	70 - 130	20	70 - 130	20
%SS:	102	10	103	104	0.952	100	99	0.946	70 - 130	20	70 - 130	20
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following o	exceptions:			

BATCH 57155 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1103818-001A	03/24/11 12:15 PM	I 03/30/11	03/30/11 4:01 PM	1103818-002A	03/24/11 12:55 PM	03/28/11	03/28/11 5:10 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

A QA/QC Officer

Page 10 of 13

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

QC Matrix: Water BatchID: 57180 WorkOrder 1103818 W.O. Sample Matrix: Water EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 1103843-003A MSD MS-MSD LCS LCSD LCS-LCSD Sample Spiked MS Acceptance Criteria (%) Analyte µg/L µg/L % Rec. % Rec. % RPD % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD RPD TPH(btex) ND 60 92 93 1.08 102 96.7 5.77 70 - 130 20 70 - 130 20 MTBE ND 10 110 109 0.772 116 107 8.47 70 - 130 20 70 - 130 20 ND 10 102 94.2 7.76 108 104 3.40 70 - 130 20 70 - 130 20 Benzene ND 10 93 86.3 7.48 95.3 90 5.64 70 - 130 20 70 - 130 20 Toluene 86.9 95.3 70 - 130 Ethylbenzene ND 10 92.9 6.68 92.7 2.8220 70 - 130 20 **Xylenes** ND 30 105 98.7 6.51 109 103 5.06 70 - 130 20 70 - 130 20 102 70 - 130 112 10 100 97 3.38 100 70 - 130 20 20 %SS: 2.51All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 57180 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1103818-003A	03/24/11 1:35 PM	03/26/11	03/26/11 6:45 PM	1103818-004A	03/24/11 10:20 AM	03/26/11	03/26/11 7:17 PM
1103818-005A	03/24/11 10:50 AM	03/26/11	03/26/11 7:49 PM	1103818-006A	03/24/11 11:30 AM	03/28/11	03/28/11 5:43 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

A QA/QC Officer

Page 11 of 13

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 57175 WorkOrder 1103818 Extraction SW3510C/3630C EPA Method SW8015B Spiked Sample ID: N/A MSD MS-MSD LCS LCSD LCS-LCSD Sample Spiked MS Acceptance Criteria (%) Analyte % RPD µg/L µg/L % Rec. % Rec. % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD RPD TPH-Diesel (C10-C23) N/A 1000 N/A N/A N/A 81.4 82.7 1.56 N/A N/A 70 - 130 30 %SS: N/A 625 N/A N/A N/A 93 94 1.36 N/A N/A 70 - 130 30 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 57175 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1103818-003B	03/24/11 1:35 PM	A 03/24/11	03/28/11 6:17 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

JR QA/QC Officer

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 57181 WorkOrder 1103818 Extraction SW3510C/3630C EPA Method SW8015B Spiked Sample ID: N/A MSD MS-MSD LCS LCSD LCS-LCSD Sample Spiked MS Acceptance Criteria (%) Analyte % RPD µg/L µg/L % Rec. % Rec. % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD RPD TPH-Diesel (C10-C23) N/A 1000 N/A N/A N/A 79.6 79.5 0.116 N/A N/A 70 - 130 30 %SS: N/A 625 N/A N/A N/A 91 91 0 N/A N/A 70 - 130 30 All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 57181 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1103818-005B	03/24/11 10:50 AM	03/24/11	03/30/11 4:45 AM	1103818-006B	03/24/11 11:30 AM	03/24/11	03/27/11 4:49 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

JR QA/QC Officer