4153832689

P.1/1

Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 RECEIVED

10:47 am, Aug 19, 2011 Alameda County Environmental Health

SUBJECT: Perjury Statement

To Whom it May Concern:

I declare, under penalty of perjury, that the information and/or recommendations contained in the requested attached reports in your letter dated August 8, 2011 are true and correct to the best of my knowledge.

Signed: Jone concer allen JANE A. ALLEN

July 30, 2010

HYDROGEN PEROXIDE INFUSION REPORT

325 Martin Luther King Jr. Way Oakland, California

Project No. 277915

Prepared For

Jane and Kimball Allen 2 Lone Tree Avenue Mill Valley, CA 94941

Prepared By

AEI Consultants 2500 Camino Diablo Walnut Creek, CA 94597 (925) 746-6000

ENVIRONMENTAL & ENGINEERING SERVICES

www.aeiconsultants.com

July 30, 2010

Jane and Kimball Allen 2 Lone Tree Avenue Mill Valley, California 94941

Subject: Hydrogen Peroxide Infusion Progress Report 325 Martin Luther King Jr. Way Oakland, California AEI Project No. 270308

Dear Mr. and Mrs. Allen:

AEI Consultants (AEI) has prepared this progress report to document the ongoing groundwater remediation at the above referenced site (Figure 1, Site Location Map). The groundwater remediation is being performed in accordance with the requirements of the Alameda County Environmental Health (ACEH). The purpose of these activities is to oxygenate the groundwater quality in the vicinity of the identified release of fuel products at the site by infusion of hydrogen peroxide in wells IW-1 through IW-3. This report presents the includes progress monitoring of the H²O² infusion through July 19, 2010.

I Background

The subject property is located on the western corner of the intersection of Martin Luther King Jr. Way and 4th Street in a mixed commercial and industrial area of Oakland. The property measures approximately 100 feet along Martin Luther King and approximately 150 feet along 4th Street with the property building covering essentially 100% of the land area. The northwestern portion of the building along 4th Street has also had the address 671 4th Street. The building is currently vacant, but was previously occupied by Pucci Enterprises as warehouse space and cold storage freezers.

A Phase I Environmental Site Assessment (ESA) of the property dated November 1, 1993 identified a 10,000-gallon former fuel UST that currently exists below the north side of the building. The fuel UST was used to provide fuel for the Pucci Enterprises truck fleet.

On October 20, 1993, the tank decommissioned by pumping remaining sludge out of the tank, steam cleaning the tank, and filling the tank with concrete slurry. At the time of the UST closure, the eastern section of the building had not yet been built. The tank could not be removed because of its proximity to the footing of the 671 4th Street building. After tank closure, the eastern portion of the building (325 Martin Luther King) was constructed. Although records show that the UST was abandoned following proper

procedures applicable at that time, no documentation was available of sampling around the tank prior to abandonment.

A number of site investigations were performed by several environmental consultants during 2005 and 2006.

In May 2005, AEI performed a Phase II Subsurface Investigation. Soil borings SB-1 and SB-3 encountered refusal at 4 feet bgs, possibly the top of the concrete filled UST. Soil borings SB-2 and SB-4 were advanced into the groundwater. Total petroleum hydrocarbons as gasoline (TPH-g), as diesel (TPH-d), and benzene were reported in groundwater from boring SB-2 at concentrations up to 780 micrograms per liter (μ g/L), 420 μ g/L, and 53 μ g/L, respectively.

In September 2005, an additional investigation was performed by Terra Firma. Groundwater samples were collected from four (4) soil borings (labeled 50901-1 to 50901-4). Analysis of groundwater reported the highest concentrations of from the two borings to the south of the UST, where TPH-g, TPH-d, and benzene were reported in boring 50901-3 at concentrations of 20,000 μ g/l, 3600 μ g/l, and 990 μ g/l, respectively.

In June 2006, Ceres Associated performed another subsurface investigation. The project included the analyses of soil and groundwater from five soil borings (SB-5 thru SB-9). The highest concentrations of hydrocarbons were reported in boring SB-7, located southeast of the UST. Maximum concentrations of TPH-g, TPH-d, and benzene were reported in sample SB-7-10 at concentrations of 20,000 mg/kg, 3,300 mg/kg, 200 mg/kg, respectively. Analysis of groundwater samples from SB-7 reported TPH-g, TPH-d, and benzene at concentrations of 110,000 μ g/l, 110,000 μ g/l, and 3,300 μ g/l, respectively.

LRM Consulting prepared release notification documentation and a workplan for the ACEH in August 2006. The workplan included additional file and data base research into possible additional source locations (dispenser, piping, offsite releases, etc) and installing three (3) 2-inch diameter monitoring wells a screened interval of 5 to 20 feet bgs.

Following ACEH comments relating to the work plan and previous investigations, AEI was retained to prepare a comprehensive workplan. The *Site Characterization Workplan*, dated March 31, 2007, outlined the scope of work for installation of 12 additional soil borings and three groundwater monitoring wells to further characterize the release.

In May of 2007, AEI performed a soil and groundwater investigation which included of drilling additional twelve (12) soil borings at the property. Low to moderate concentrations of petroleum hydrocarbons were detected in the soil adjacent to the abandoned UST and in groundwater. The investigation indicated that the dissolved contaminant plume is limited to the 325 Martin Luther King Jr. Way unit. On August 10, 2007, AEI installed three (3) groundwater monitoring wells (MW-1 thru MW-3) down

gradient of the abandoned in place UST. Wells MW-1 and MW-2 were hydrocarbon free. In well MW-3, which is located immediately down gradient of abandoned UST, TPH-g and MBTEX were reported at concentrations of 24,000 μ g/l, ND<180 μ g/l, 2,600 μ g/l, 3,500 μ g/l, 450 μ g/l, and 2,400 μ g/l, respectively. The details of well installation are contained in AEI's *Monitoring Well Installation Report*, dated September 21, 2008. The locations of the wells are shown on Figure 2, Site Plan

A *Corrective Action Pilot Test Workplan*, dated April 7, 2008, for a pilot-scale evaluation of in-situ chemical oxidation as a potential method of remediating the site was prepared fro the ACEH. The workplan proposed five injection points in the immediate area of source well MW-3, targeting the saturated zone as well as the lower vadose zone using the product RegenOxTM manufactured by Regenesis, Inc. The workplan was approved by the ACEH in a letter dated May 13, 2008. On July 17 and 18, 2008, 720 lbs of RegenOxTM was injected in five locations (IP-1 through IP-5) at spacing approximately five feet away from well MW-3.

Following the pilot test, groundwater samples collected on August 4, 2008 from well MW-3 reported an increase in TPH-g from pre-pilot concentration of 20,000 μ g/L to 110,000 μ g/L. Follow up sampling on August 20, 2008 reported TPH-g at a concentration of 120,000 μ g/L. At the time of the present monitoring event TPG-g in well MW-3 was reported at a concentration of 83,000 μ g/L. The marked increase in dissolved hydrocarbons concentrations appears to be the result of the release of hydrocarbons bonded to sediments in the capillary fringe saturated zone resulting from the treatment with RegenOxTM.

Following evaluation of the pilot test data, AEI selected H_2O_2 infusion through permanently installed wells as a lower cost approach to remediation. A *Hydrogen Peroxide Infusion Pilot Test Workplan*, dated August 12, 2009, was completed for the site and approved by the ACEH in a letter dated August 21, 2009.

On October 10, 2009, AEI installed three (3) 2-inch diameter infusion wells, IW-1 located at the north end of the abandoned UST, IW-2 located on the west side of the abandoned UST, and IW-3 located at the south end of the abandoned UST.

On October 30, 2009, following installation of wells IW-1 through IW-3 and prior to the infusion testing, infusion wells IW-1 through IW-3 and monitoring well MW-3 were sampled. Following collection of groundwater samples, AEI performed an injection/infusion test using clear water to determine the rate of fluid acceptance. Fluid acceptance ranged from 1.0 (IW-2) to 5.0 (IW-3) gallons per minute at 5.0 psi and 0.5 to 3 gallons per minute at 0.0 psi.

On November 5, 2009, prior to H^2O^2 infusion testing, well IW-3 was sampled following purging 3 liters of water with a peristaltic pump. AEI performed fluid acceptance test using 2.0 %, 1.0 % and 0.5 % H^2O^2 solution. Significant back pressure due to bubble block occurred at concentrations of 1.0% and 2.0 % H^2O^2 solution. Fluid acceptance of 0.5% H^2O^2 ranged from 0.5 gallons per minute (gpm) in IW-2 to 2.5 gpm in IW-3. Well IW-3 was re-sampled on November 23, 2009 the results of the groundwater analyses are shown on Table 3. Approximately 50 gallons of H^2O^2 were injected into they wells during the acceptance test.

II Summary of Hydrogen Peroxide Infusion and Sampling Activities

In December of 2009, a 2400 gallon poly tank was placed on the site and manifolded to wells IW-1, IW-2 and IW-3. Between December 29, 2009, and January 29, 2010, 8,000 gallons of 0.5% H^2O^2 was infused primarily into injection wells IW-2 through IW-3 with H^2O^2 infused into. Initial infusion total rate was approximately 2 gallons per minute. The infusion rate decreased to approximately 0.125 gallons per minute as the infusion progressed and oxygen levels increased to above saturation and bubbles created back pressure which impeded the movement of H^2O^2 through the fine grained sand.

On February 8 and 24, 2010 following the infusion of 8,000 gallons of 0.5% H²O² solution, wells MW-3, IW-2, and IW-3 were sampled to determine the effects of the H²O² infusion. The samples were analyzed for TPH-g and MBTEX by EPA Method 8021B/8015Cm.

TPH-g in MW-3 decreased from 59,000 μ g/L on October 30, 2009 to 13,000 μ g/L on February 8, 2010 and rebounded to 16,000 μ g/L on February 24, 2010. TPH-g in IW-2 decreased from 15,000 μ g/L on October 30, 2009 to 630 μ g/L on February 8, 2010 and rebounded to 3,500 μ g/L on February 24, 2010. IW-3 decreased from 77,000 μ g/L on November 23, 2009 to 18,000 μ g/L on February 8, 2010 and rebounded to 36,000 μ g/L on February 8, 2010 and rebounded to 36,000 μ g/L on February 24, 2010.

On March 16, 2010, prior to initiating a second phase of H^2O^2 infusion, AEI conducted the regularly scheduled groundwater-monitoring event at the site. The well caps were removed from well MW-3 and IW-1 through IW-3. The wells were allowed to equilibrate with the atmosphere for a minimum of 15 minutes. The depth from the top of the well casing to static groundwater was measured with an electric water level indicator to \pm 0.01 ft. A peristaltic pump, with a drop tube set at a depth of 10 feet bgs, was used to purge all wells on site. During purging, groundwater parameters of temperature, pH, specific conductivity, dissolved oxygen (DO), and oxidation- reduction potential (ORP) were measured during purging. A visual evaluation of turbidity was made and noted. Groundwater measurements recorded in the field are reported on the field sampling forms included in Appendix A. The depth to water measurements from this sampling event and previous quarterly monitoring or sampling events are summarized on Tables 3 and 3a.

When groundwater parameters of the purged water stabilized, water samples were collected using the peristaltic pump. Samples for TPH-g, MBTEX, and fuel oxygenates were collected in hydrochloric acid (HCl) preserved 40-milliliter (ml) volatile organic analysis vials (VOAs). All samples were labeled with at minimum, project number, sample number, time, date, and sampler's name.

The samples were then entered on an appropriate chain-of-custody form and placed on water ice in a cooler pending same day transportation under chain of custody protocols to McCampbell Analytical, Inc. of Pittsburg, California (Department of Health Services Certification # 1644).

TPH-g in wells MW-1 and MW-2 remained below standard reporting limits. TPH-g in MW-3 increased from 16,000 μ g/L on February 24, 2010 to 34,000 μ g/L on March 16, 2010. TPH-g in IW-2 increased from 3,500 μ g/L on February 24, 2010 to 20,000 μ g/L on March 16, 2010. IW-3 increased from 36,000 μ g/L on February 24, 2010 to 44,000 μ g/L on March 16, 2010.

On March 16, 2010 infusion of H^2O^2 was renewed into wells IW-2 and IW-3 directly manifolded to the 7,400 gallon Poly Tank as had been done previously. After several hours it became apparent that the well seals in IW-2 and IW-3 had failed and solution began flowing around the seals and charging the space below the floor slab. The infusion system was modified to include valves to restrict the flow in to the wells so that fluid inflow was such to maintain a fluid level in Wells IW-2 and IW-3 at just below ground level.

Between March 16, 2010 and May 12, 2010, 15,800 gallons of 0.5% H^2O^2 were infused into wells IW-2 and IW-3. Between May 24, 2010 and June 29, 2010, 7,900 gallons of 1.25% H^2O^2 were infused primarily into well IW-3.

III Post Infusion Groundwater Monitoring

On July 19, 2010 wells MW-3, IW-2, IW-3 were sampled for TPH-g, MBTEX as described above. TPH-g in MW-3 decreased from 34,000 μ g/L on March 16, 2010 to 270 μ g/L. TPH-g in IW-2 decreased from 20,000 μ g/L on March 16, 2010 to 600 μ g/L. IW-3 decreased from 44,000 μ g/L on March 16, 2010 to 4,100 μ g/L.

Field DO concentrations were reported as 31.92 mg/L in well MW-3, as 34.20 mg/L in well IW-1, and as 13.91 mg/L in well IW-3. All of these concentrations are significantly above the concentration of 2 mg/L to 3 mg/L typically reported in clean wells prior to H^2O^2 infusion.

The analytical results from the July 19, 2010 progress monitoring an previous sampling events are summarized in Table 2, Groundwater Elevation Data and Table 3, Groundwater Analytical Data. Groundwater Monitoring Well Field Sampling Forms,

which include water quality data and other parameters collected during well purging are attached as Appendix A.

IV Summary

This report documents the results to date of H^2O^2 infusion at the site. Overall hydrocarbon concentrations at the site have decreased significantly H^2O^2 infusion, as shown on Figure 5: MW-3 Hydrocarbons vs. Time.

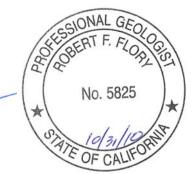
Concentrations of TPH-g in well MW-3 decreased from 59,000 μ g/L on October 30, 2009 to 270 μ g/L on July 19, 2010. Concentrations of TPH-g in well IW-2 increased from 15,000 μ g/L on October 30, 2009 to 20,000 μ g/L on March 16, 2010 suggesting that the initial infusion mobilized hydrocarbons that were adhered to the sediment then decreased to 600 μ g/L on July 19, 2010. Concentrations of TPH-g in well IW-3 increased from 61,000 μ g/L on October 30, 2009 to 77,000 μ g/L on November 23, 2009 suggesting that the initial infusion pilot testing mobilized hydrocarbons that were adhered to the sediment then decreased to 4,100 μ g/L on July 19, 2010.

Progress sampling of wells IW-1, IW-3, and MW-3 will continue through August 2010 or until DO concentration drop to pre-infusion levels to evaluate biodegradation rates and hydrocarbon concentrations. The semi-annual groundwater monitoring event is scheduled for mid-September 2010, unless as decision is made that an addition round of H^2O^2 infusion is required, in which case the monitoring event will occur immediately prior to initiation of the new infusion event.

V Report Limitations

This report presents a summary of work completed by AEI Consultants. The completed work includes observations and descriptions of site conditions encountered. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide the requested information, but it cannot be assumed that they are representative of areas not sampled. All conclusions and/or recommendations are based on these analyses and observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices, in the environmental engineering field, which existed at the time and location of the work.


Should you have any questions regarding our investigation, please do not hesitate to contact either of the undersigned at (925) 746-6000.

Sincerely, **AEI Consultants**

Adrian M. Angel, GIT Project Geologist

low

Robert F. Flory, PG Senior Geologist

Figures

Figure 1: Site Location Map Figure 2: Site Plan Figure 3: MW-3 TPH-g, Benzene vs. Time

Tables

Table 1: Monitoring Well Construction DetailsTable 2: Groundwater Elevation DataTable 3: Groundwater Monitoring Sample Analytical Data

Appendix A: Groundwater Monitoring Well Field Sampling Forms

Appendix B: Laboratory Analyses with Chain of Custody Documentation

Previous Documentation

AEI Consultants, Phase II Subsurface Investigation Report, May 18, 2005

AEI Consultants, Site Characterization Workplan, March 8, 2007

AEI Consultants, Soil and Groundwater Investigation Report, September 21, 2007

AEI Consultants, Corrective Action Pilot Test Workplan, April 7, 2008

AEI Consultants, Hydrogen Peroxide Infusion Pilot Test Workplan, August 12, 2009

Ceres Associates, Soil and Groundwater Investigation Report, June 8, 2006

Helley, E.J., et al, *Quaternary Geology of Alameda County and Surrounding Areas, California*, 1997

LRM Consulting, Inc., Notice of Unauthorized Release and Supplemental Investigation Workplan, August 29, 2006

Norfleet Consultants, Groundwater Study and Water Supply History of the East Bay Plain, Alameda and Contra Costa Counties, CA, June 19, 1998

Terra Firma, Findings of Environmental Subsurface Investigation, September 16, 2005

Touchstone Developments, Phase I Investigation, November 1, 1993

Distribution:

Jane and Kimball Allen (2 hard copies) 2 Lone Tree Way Mill Valley, CA 94549

Alameda County Environmental Health Services (ACEHS) (electronic) Attn: Mr. Jerry Wickham 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

GeoTracker (electronic)

FIGURES

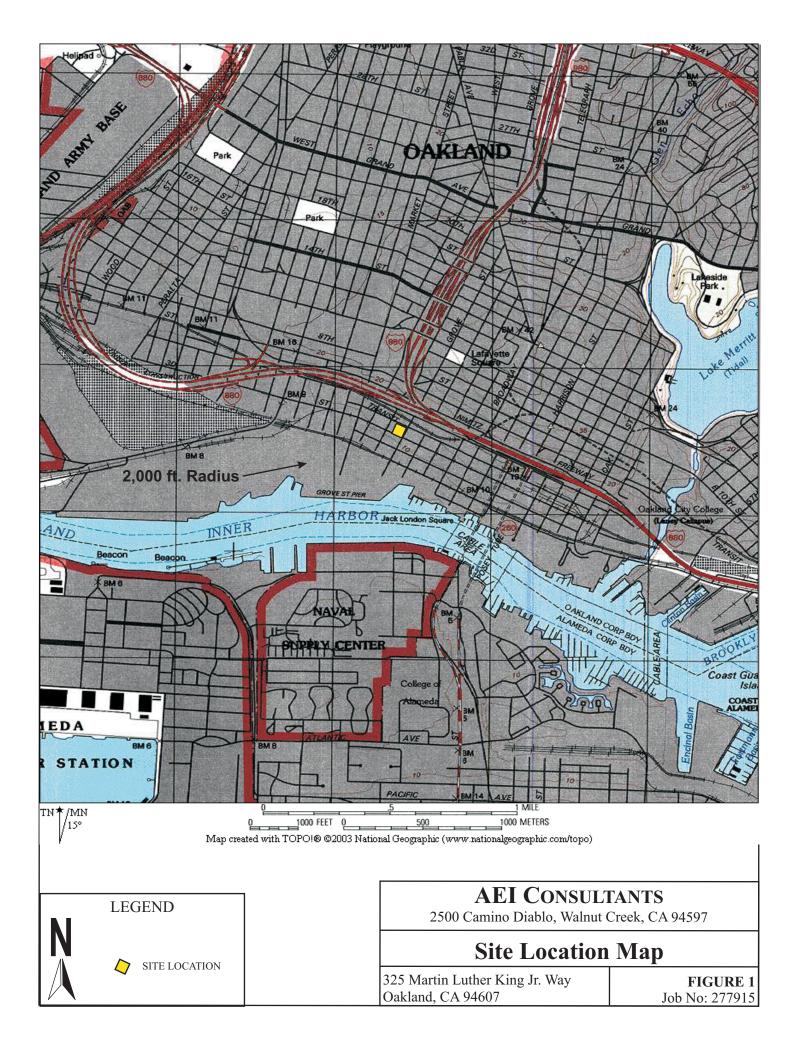
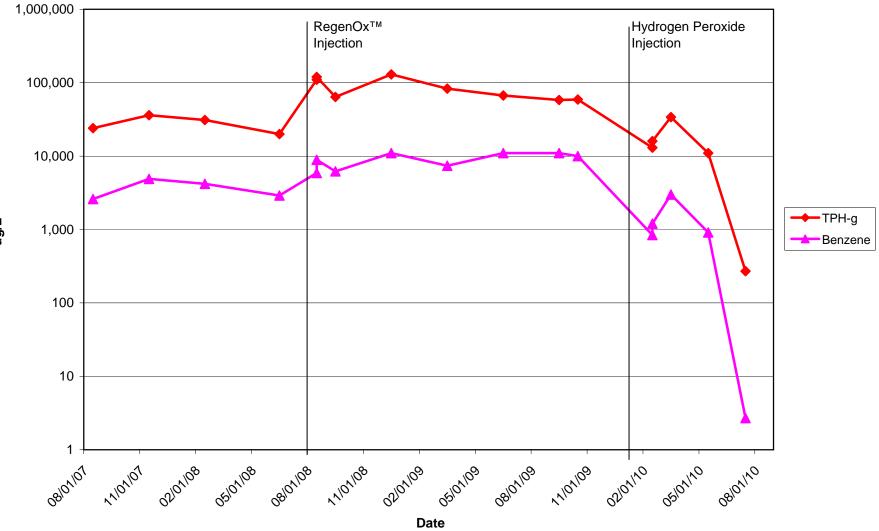



FIGURE 3 - MW-3 TPH-g, Benzene vs. Time

ng/L

TABLES

Table 1 - Well Construction Details

AEI Project # 277915

Well ID	Date Installed	Top of Casing	Well Box	Well Depth	Slotted Casing	Slot Size	Sand Interval	Sand Size	Bentonite Interval	Grout Interval
		Elevation (ft amsl)	Elevation (ft amsl)	(ft)	(ft)	(in)	(ft)		(ft)	(ft)
MW-1	08/10/07	14.87*	15.34	18	8 - 18	0.010	7 - 18	# 2/12	7 - 8	0.75 - 7
MW-2	08/10/07	15.27	15.52	17	7 - 17	0.010	6 - 17	# 2/12	6 - 7	0.75 - 6
MW-3	08/10/07	15.11*	15.57	18	8 - 18	0.010	7 - 18	# 2/12	7 - 8	0.75 - 7
IW-1	02/09/10	15.23	15.61	15	5 - 15	0.010	4 - 15	2/12	3 - 4	0.5 - 3
IW-2	02/09/10	15.06	15.63	15	5 - 15	0.010	4 - 15	2/12	3 - 4	0.5 - 3
IW-3	02/09/10	15.30	15.6	15	5 - 15	0.010	4 - 15	2/12	3 - 4	0.5 - 3

Notes:

ft amsl = feet above mean sea level

 $14.87^* = Casing elevation changes, 02/09/10$

Table 2 - Groundwater Elevation Data

AEI Project # 277915

Well ID (Screen Interval)	Date Collected	Well Elevation (ft amsl)	Depth to Water (ft)	Groundwater Elevation (ft amsl)	Elevation Change (ft)
MW-1	8/21/2007	14.92	8.38	6.54	
(8 - 18)	11/21/2007	14.92	8.37	6.55	0.01
	2/26/2008	14.92	7.98	6.94	0.39
	6/18/2008	14.92	8.41	6.51	-0.43
	9/19/2008	14.92	8.56	6.36	-0.15
	12/29/2008	14.92	8.66	6.26	-0.10
	3/17/2009	14.92	7.84	7.08	0.82
	6/15/2009	14.92	8.31	6.61	-0.47
	9/18/2009	14.92	8.59	6.33	-0.28
	3/16/2010*	14.87	7.80	7.07	
MW-2	8/21/2007	15.27	8.78	6.49	
(7 - 17)	11/21/2007	15.27	8.72	6.55	0.06
	2/26/2008	15.27	8.37	6.90	0.35
	6/18/2008	15.27	8.82	6.45	-0.45
	9/19/2008	15.27	8.92	6.35	-0.10
	12/29/2008	15.27	8.87	6.40	0.05
	3/17/2009	15.27	8.27	7.00	0.60
	6/15/2009	15.27	8.71	6.56	-0.44
	9/18/2009	15.27	8.98	6.29	-0.27
	3/16/2010	15.27	8.19	7.08	0.79
MW-3	8/21/2007	15.26	8.59	6.67	
(8 - 18)	11/21/2007	15.26	8.55	6.71	0.04
	2/26/2008	15.26	8.11	7.15	0.44
	6/18/2008	15.26	8.62	6.64	-0.51
	8/4/2008	15.26	8.65	6.61	-0.03
	8/20/2008	15.26	8.68	6.58	-0.03
	9/19/2008	15.26	8.74	6.52	-0.06
	12/29/2008	15.26	8.67	6.59	0.07
	3/17/2009	15.26	7.96	7.30	0.71
	6/15/2009	15.26	8.47	6.79	-0.51
	9/18/2009	15.26	8.78	6.48	-0.31
	10/30/2009	15.26	8.62	6.64	-0.15
	3/16/2010	15.11	7.57	7.54	
	7/19/2010	15.11	8.53	6.58	-0.96
IW-1	10/30/2009	15.23	8.53	6.70	
	3/16/2010	15.23	7.68	7.55	0.85
IW-2	10/30/2009	15.06	8.37	6.69	
	3/16/2010	15.06	7.57	7.49	0.80
	7/19/2010	15.06	8.29	6.77	-0.72
IW-3	10/30/2009	15.30	8.68	6.62	
	3/16/2010	15.30	7.82	7.48	0.86
	7/19/2010	15.30	8.51	6.79	-0.69

Notes 14.87* = Casing elevation changes, 02/09/10

Event #	Date	Average Water Table Elevation (ft amsl)	Change from Previous Episode (ft)	Flow Direction (gradient) (ft/ft)
1	8/21/2007	6.57	NA	S (0.003)
2	11/21/2007	6.60	0.04	S (0.005)
3	2/26/2008	7.00	0.39	S (0.005)
4	6/18/2008	6.53	-0.46	SSE (0.004)
5	9/19/2008	6.41	-0.12	S (0.003)
6	12/29/2008	6.42	0.01	SSW (0.005)
7	3/17/2009	7.13	0.71	SW (0.006)
8	6/15/2009	6.65	-0.47	SW 0.004)
9	9/18/2009	6.37	-0.29	SW (0.006)
10**	3/16/2010	7.24		SW (0.006)
11^{\dagger}	7/19/2010	8.44		SW (0.006)

ft amsl = feet above mean sea level

All water level depths are measured from the top of casing ** Average calculated for all wells with 2/9/10 re-survey elevations †= Average MW-3, IW-1, IW-3

Sample ID	Data	Depth to Water	TPHg	TPHd	MTBE	Benzene	Toluene	Ethyl benzene	Xylenes	Notes
Sample ID	Date		Metho	d 8015			Iethod 8021	В		
						μg/L				
MW-1	8/21/2007	8.38	<50	<50	15	<0.5	< 0.5	<0.5	<0.5	
	11/21/2007	8.37	<50	<50	12	< 0.5	< 0.5	< 0.5	< 0.5	
	2/26/2008	7.98	<50	<50	-	< 0.5	< 0.5	< 0.5	< 0.5	
	6/18/2008	8.41	<50	<50	-	< 0.5	< 0.5	< 0.5	<0.5	
	9/19/2008	8.56	<50	<50	-	< 0.5	< 0.5	< 0.5	< 0.5	
	12/29/2008	8.66	<50	<50	-	< 0.5	< 0.5	< 0.5	< 0.5	
	3/17/2009	7.84	<50	<50	-	< 0.5	< 0.5	< 0.5	< 0.5	
	6/15/2009	8.31	<50	<50	-	< 0.5	< 0.5	< 0.5	< 0.5	
	9/18/2009	8.59	<50	<50	-	< 0.5	< 0.5	< 0.5	< 0.5	
	3/16/2010		<50	-	-	< 0.5	< 0.5	< 0.5	<0.5	
MW-2	8/21/2007	8.78	<50	<50	<5.0	<0.5	<0.5	<0.5	<0.5	
	11/21/2007	8.72	<50	<50	<5.0	< 0.5	< 0.5	< 0.5	< 0.5	
	2/26/2008	8.37	<50	<50	-	< 0.5	< 0.5	< 0.5	< 0.5	
	6/18/2008	53.00	<50	<50	-	< 0.5	< 0.5	< 0.5	< 0.5	
	9/19/2008	8.92	<50	<50	-	< 0.5	< 0.5	< 0.5	< 0.5	
	12/29/2008	8.87	<50	<50	-	< 0.5	< 0.5	< 0.5	<0.5	
	3/17/2009	8.27	<50	<50	-	<0.5	< 0.5	< 0.5	< 0.5	
	6/15/2009	8.71	<50	<50	_	<0.5	< 0.5	<0.5	< 0.5	
	9/18/2009	8.98	<50	<50	-	< 0.5	< 0.5	< 0.5	< 0.5	
	3/16/2010		<50	-	-	< 0.5	< 0.5	< 0.5	<0.5	
MW-3	8/21/2007	8.59	24,000	2,100	<180	2,600	3,500	450	2,400	
	11/21/2007	8.55	36,000	3,800	<500	4,900	1,200	230	2,700	
	2/26/2008	8.11	31,000	5,400	-	4,200	1,900	590	2,200	
	6/18/2008	8.62	20,000	3,000	-	2,900	1,100	390	990	
	8/4/2008	8.65	110,000	27,000	-	5,900	9,000	76	8,100	
	8/20/2008	8.68	120,000	6,500	-	8,900	18,000	930	12,000	
	9/19/2008	8.74	64,000	4,500	-	6,200	9,200	660	6,600	
	12/29/2008	8.67	130,000	7,900	_	11,000	19,000	1,800	11,000	

Table 3 - Groundwater Analytical DataAEI Project # 277915

		Depth to	TPHg	TPHd	MTBE	Benzene	Toluene	Ethyl	Xylenes	Notes
Sample ID	Date	Water	Matha	d 8015		N	Method 8021	benzene		_
_			Metho	u 8015		μg/L		D		_
MW-3	3/17/2009	7.96	83,000	8,000	-	7,400	10,000	1,100	8,500	
continued	6/15/2009	8.47	67,000	21,000	-	11,000	9,100	1,200	6,80	
	9/18/2009	8.78	58,000	16,000	-	11,000	7,000	1,400	4,700	
	10/30/2009	6.64	59,000	-	-	10,000	7,100	1,200	3,900	
	2/8/2010	7.74	13,000	-	<50	840	1,500	120	1,700	After 8,000 0.5%
	2/24/2010	8.03	16,000	-	<50	1,200	1,700	200	1,900	
	3/16/2010	7.75	34,000	-	<250	3,000	4,100	580	4,100	3/16 start 7900 gal
	4/15/2010	-	-	-	-	-	-	-	-	4/15 start 7900 gal 0.5%
	5/24/2010	-	11,000	-	<250	910	1,600	120	2,400	5/24 start 7900 gal 1.25%
	7/19/2010	8.33	270	-	<5.0	2.7	2.9	<0.5	4.8	
IW-1	10/30/2009	8.53	<50	-	<5.0	<0.5	< 0.5	<0.5	< 0.5	
	3/16/2010	7.68	<50	<50	<5.0	<0.5	<0.5	< 0.5	<0.5	
IW-2	10/30/2009	8.37	15,000	_	_	1,100	2,100	630	2,400	
1 2	2/8/2010	7.70	630	-	<5.0	4.4	17	3.7	78	After 8,000 0.5%
	2/24/2010	-	3,500	-	<50	22	220	57	590	
	3/16/2010	7.57	20,000	_	<100	320	2,100	450	4,000	3/16 start 7900 gal
	4/15/2010	-	20,000	_	-	-	2,100		-,000	4/15 start 7900 gal 0.5%
	5/24/2010		190	-	<5.0	0.82	6.9	1.0	20	5/24 start 7900 gal 1.25%
	7/19/2010	8.29	600	-	< 5.0	5.8	43	5.3	110	5/24 start 7900 gai 1.25/0
IW-3	10/30/2009	8.68	61,000	_	<1,000	10,000	14,000	1,400	9,800	
100-5	11/5/2009	8.60	64,000	-	<1,000	4,000	7,500	1,400	1,100	after 20 gallons 0.16%
	11/23/2009		04,000 77,000		<250	4,000 6,700	11,000	430	1,100	30 gallons 0.5%
	2/8/2010	-	18,000	-	<230 <50	8,700 790	910	430 38		After 8,000 0.5%
		7.74	· · ·	-					2,600	AIICI 0,000 0.3%
	2/24/2010	-	36,000	-	<250	2,400	4,300	320	460	2/16
	3/16/2010	7.82	44,000	-	<500	3,200	6,000	650	5,400	3/16 start 7900 gal 0.5%
	4/15/2010	-	-	-	-	-	-	-	-	4/15 start 7900 gal 0.5%
	5/24/2010	-	4,300	-	<60	170	430	19	680	5/24 start 7900 gal 1.25%
	7/19/2010	8.51	4,100	-	<50	190	450	28	440	

Table 3 - Groundwater Analytical Data **AEI Project # 277915**

Notes:

TPHg = total petroleum hydrocarbons as gasoline (C6-C12)

Benzene, toluene, ethylbenzene, and xylenes using EPA Method 8021B

 $\mu g/L = micrograms per liter$

TPHd = total petroleum hydrocarbons as diesel (C10-C23)

MTBE = methyl-tertiary butyl ether ND<50 = non detect at respective reporting limit

APPENDIX A

MONITORING WELL FIELD SAMPLING FORMS

AEI CONSULTANTS GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring Well Number: MW-3

Project Name:	ALLEN	Date of Sampling: 7-19-10
Job Number:	270308	Name of Sampler: Adam Hawkins
Project Address:	325 Martin Luther King Jr Way, Oakland CA	

MONITORIN	G WELL DA	TA			
Well Casing Diameter (2"/4"/6")		2"			
Wellhead Condition	ок		•		
Elevation of Top of Casing (feet above msl)		15.26			
Depth of Well		18.00			
Depth to Water (from top of casing)	8.33				
Water Elevation (feet above msl)	15.26				
Well Volumes Purged		Micropurged with peristaltic pump			
Actual Volume Purged (liters)		3.0			
Appearance of Purge Water	<u> </u>	Clear			
Free Product Present?	No	Thickness (ft):			

		G	ROUNDWA	TER SAMPL	ES		
Number of Sample	es/Container S	Size					
Time	Volume Removed (liters)	Temperature (deg C)	pН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
1126	-1	16.27	6.92	770	13.40	312.4	Clear
1129	2	18.08	6.61	817	30.99	312,2	(())
1132	3	18.06	6.80	89	31.05	311.4	11.5
1135	L	18.09	6.80	88	31.35	310.7	11/1
1139	5	18.14	6,60	802	3192	310.2	
		¥					

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Purge line @ 10.0 tt b gs

.

AEI CONSULTANTS GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring Well Number: IW-2

Project Name:	ALLEN	Date of Sampling: 7-19-10
Job Number:	270308	Name of Sampler: Adam Hawkins
Project Address:	325 Martin Luther King Jr Way, Oakland CA	

MONITORI	NG WELL DATA					
Well Casing Diameter (2"/4"/6")	2"					
Wellhead Condition	ОК					
Elevation of Top of Casing (feet above msl)	15.26					
Depth of Well	18.00					
Depth to Water (from top of casing)	8.29					
Water Elevation (feet above msl)	15.26					
Well Volumes Purged	Micropurged with peristaltic pump					
Actual Volume Purged (liters)	3.0					
Appearance of Purge Water	Clear					
Free Product Present	? No Thickness (ft):					

		Ê	ROUNDW	ATER SAMPL	ES		
Number of Sample	es/Container S	Size •					
Time	Volume Removed (liters)	Temperature (deg C)	рН	Conductivity (µ sec/cm)	DO (mg/L)	ORP (meV)	Comments
1100	1	18.34	7,76	461	14.67	308.8	clear
1103	2	18.07	6.83	421	32.43	313.1	1411
1105	3	17.99	6.6	411	33.55	313,6	(1)
110%		17.96	6.58	413	34.15	3 3.0	
1111	5	17.95	6.57	414	34.20	312.4	(/ /)

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Purge line @ 10.0 ft b gs

AEI CONSULTANTS GROUNDWATER MONITORING WELL FIELD SAMPLING FORM

Monitoring Well Number: IW-3

Γ	Project Name:	ALLEN	Date of Sampling: 2/24/2010
	Job Number:	270308	Name of Sampler: Adam Hawkins
	Project Address:	325 Martin Luther King Jr Way, Oakland CA	

MONITORIN	G WELL DA	AT						
Well Casing Diameter (2"/4"/6")		2"						
Wellhead Condition	OK							
Elevation of Top of Casing (feet above msl)		15.26						
Depth of Well		18.00						
Depth to Water (from top of casing)		8.51						
Water Elevation (feet above msl)		15.26						
Well Volumes Purged		Micropurged with peristaltic pump						
Actual Volume Purged (liters)		3.0						
Appearance of Purge Water		Clear						
Free Product Present?	No	Thickness (ft):						

	AL AND ST	G	ROUNDW	TER SAMPL	ES		
Number of Sample	es/Container S	Size					
Time	Volume Removed (liters)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
1154	1	18.91	6.0%	243	3.14	306.7	Clear
1157	2	18.89	5.96	236	1.67	306.6	(⁽))
1200	3	18-90	6.93	233	1.83	305.7	101
1203	4	19.00	5.86	226	11.45	303.3	ι <i>'</i> //
1206	5	18.94	3.46	226	13.67	305.6	
1209	6	19.97	5.87	226	[3,9]	305.8	
					<u> </u>]	

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Purge line @ 10.0 ft b gs

APPENDIX B

LABORATORY ANALYTICAL AND CHAIN OF CUSTODY DOCUMENTATION

McCampbell An "When Ouality		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
AEI Consultants	Client Project ID: #277915;	Allen	Date Sampled:	07/19/10				
2500 Camino Diablo, Ste. #200			Date Received:	07/19/10				
2500 Cumilo Diablo, 50. #200	Client Contact: Robert Flo	ry	Date Reported:	07/23/10				
Walnut Creek, CA 94597	Client P.O.: #WC082527	Date Completed:	07/22/10					

WorkOrder: 1007484

July 23, 2010

Dear Robert:

Enclosed within are:

- 1) The results of the **3** analyzed samples from your project: **#277915; Allen,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

107484

Γ		Mc			ell Ana			nc.											(CH	AIN	N O	F	CU	ST	0	DY	R	EC	OR	D		
					LOW PAS										T	TUI	RN	AR	01	JND	TI	ME											
L	Telephor	ne: (925) 25						Fax:	(925) 25	2-92	69			\vdash	_		-	-	5	-	-		_	USH		24 H	IR		HR		2 HR	5 DAY
L														_	G	eo]	Frac	ker		FD		PD	_	\boxtimes		Exc	el		1	Writ	e Or	(DW)	Ц.
	Report To: Rober	rt Flory			B	Bill To	: Sa	me					_							Anal	ysis	Req	uest						0	ther		Com	
Ľ	Company: AEI C																G															Filter	
L		Camino Dia													BE		/B&			(0)													les for
L		ut Creek, C.	A 94	597		C-Mai		-			sulta	nts.	com		8015)/MTBE		E&F	~		/ 80				8270 / 8310								Metal Analy	
_	Tel: (925) 746-60					ax: (and the second second								015)		201	18.1	st.	602				10/									
	Project #: 277915					Projec				ħ					+		c (55	IS (4	sic 1	epa				827			_					Yes	/ No
	Project Location:		n Li	uther	King, Jr	. Way	y, Oa	ikla	nd						(602/8021B		reas	rbor	0 pa	h	5			625/			010						
L	Sampler Signatur	e:	_					-						0.0	02/8	(8015)	S G	roca	801	A O	000	S		PA (2/6						
			S	AMP	LING		ers		MA	ſRI	X		IETH ESEF		Gas (6	e (80	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	HVOCs EPA 8260 - 8010 basic list	MTBE, EDB, 1,2 DCA only (epa 602 / 8020)	PCBs FPA 608 / 8080	EPA 624 / 8260 VOCs		PAH's / PNA's by EPA			Lead (7240/7421/239.2/6010)						
	SAMPLE ID	LOCATION				Containers	Containers								윎	TPH- multirange	eum	cum	A 82	B, I,	608	3260	EPA 625 / 8270	A's	CAM-17 Metals	stals	742						
	SAMPLEID	(Field Point Name)				tai	Con								TPF	nulti	etrol	etrol	EP	ED	DA V	4/8	5/8	N IN	7 M	Mc	240			5			
		Name)	Da	te	Time	0	Type (Water	=	Sluden	Other		5	Other Other	BTEX & TPH	H- n	al P	al P	Ő	BE	BsF	A 62	A 62	H's	M-I	LUFT 5 Metals	L) pr			£.			
						#	L,	A	Soil	All	0	Ice	HCI	H O	BTI	TP	Tot	Tot	H	E a	PC	EP	B	PA	CA	3	Le						
1	MW-3	MW-3	7/	9/10	1145	3		X				X	$\overline{\mathbf{v}}$		X																		•
1	IW-2	IW-2	1	Y	1115	3		V		-	-		X		X						-	-											
	IW-3	IW-3		-	1210	3		Ŷ		+		7			x	-			+	+	+	+					-		-	-			
H			-		1210		-	1		+		L,	~	-		-		-	-	-	-	-	-		-	-	-	-	-	-			
_			_				<u> </u>	+		-	-		-		-	-		-		+	-	-	-			-	-	-		-			
L					-					_	_		_	_	-			_	_		_	_				_		_		_			
																												-					
														+-																			
										+	1		-	-	\vdash	-			-	-	+	-	-			-				+			
-			-				-	+		+			-	-	\vdash			-	-		+	+	-			-	-	-	-	-			
-			-				-	+		+			-	-	-	-		_	-	-	-	-			-	-	-	-	-	-			
L								-		_			_			-		_	-	_	-	-			_	_	_	-	_	_			
Γ	11																																
1	Relinquished Byz		Dat	19/10	Time: 233	Rece	ived I	By:	0	V	D	Ø		_	Γ				_		_	_			-			ve	AS	0.8.0		TALS	OTHE
Ļ	anna			5		D	V	Y		Y	C				1	ICE	/t°	1.2	è		1			PRE	SER	VA	тю		V	Jaco		a nato	OTHE
ľ	Relinquished By:		Dat	ie:	Time:	Rece	ived E	by:								GO	OD C	ON	DIT	ION	Y	_	1	APP	ROF	RL	ATE		1				
-	Dalinamiahad Dav		Det		Time	Der	lug d P	2					_			HE/	AD S	PAC	EA	BSE	NT_	AR	- '	CON				INI	AB				
11	Relinquished By:		Dat	e:	Time:	Rece	ived E	sy:									- DELA	JIM	1/3.1	E D D	1.7 1.4	5.1.2			IN DE	188 V	ELU.	117 1	UND .				

McCampbell Analytical, Inc.

	- 2	ø	Ū,
6			2
	7	4	9

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkOr	der: 100748	34 Client	Code: AEL		
	WaterTrax	WriteOn	EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				Bil	II to:		Rec	uested TAT:	5 days
Robert Flory	Email:	rflory@aeiconsul	tants.com		Denise Moc	kel			
AEI Consultants	CC:				AEI Consult	ants	_		
2500 Camino Diablo, Ste. #200	PO:	#WC082527			2500 Camin	no Diablo, Ste. #20	0 Dat	te Received:	07/19/2010
Walnut Creek, CA 94597	ProjectNo:	#277915; Allen			Walnut Cree	ek, CA 94597	Dat	te Printed:	07/19/2010
(925) 283-6000 FAX (925) 283-6121					dmockel@a	eiconsultants.com			
							(0 1 1)		

								Requ	uested	Tests (See leg	gend be	elow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
·,																
1007484-001	MW-3	Water	7/19/2010 11:45		А	Α										
1007484-002	IW-2	Water	7/19/2010 11:15		А											
1007484-003	IW-3	Water	7/19/2010 12:10		A											

Test Legend:

1	G-MBTEX_W
6	
11	

2	PREDF REPORT
7	
12	

3	
8	

_	
4	
9	
9	

5	
10	

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Ouality Counts"

Sample Receipt Checklist

Client Name: AEI Consultants			Date a	and Time Received:	7/19/2010 4:19:14 PM							
Project Name: #277915; Allen			Check	klist completed and re	eviewed by:	Melissa Valles						
WorkOrder N°: 1007484 Matrix Water			Carrie	r: <u>Client Drop-In</u>								
Chain of Custody (COC) Information												
Chain of custody present?	Yes		No 🗆									
Chain of custody signed when relinquished and received?	Yes		No 🗆									
Chain of custody agrees with sample labels?	Yes		No 🗌									
Sample IDs noted by Client on COC?	Yes		No 🗆									
Date and Time of collection noted by Client on COC?	Yes		No 🗆									
Sampler's name noted on COC?	Yes		No 🗹									
Sample Receipt Information												
Custody seals intact on shipping container/cooler?	Yes		No 🗆		NA 🔽							
Shipping container/cooler in good condition?	Yes		No 🗆									
Samples in proper containers/bottles?	Yes		No 🗆									
Sample containers intact?	Yes		No 🗆									
Sufficient sample volume for indicated test?	Yes		No 🗌									
Sample Prese	rvatio	n and Hold T	ime (HT	<u>) Information</u>								
All samples received within holding time?	Yes		No									
Container/Temp Blank temperature	Coole	r Temp: 11	.2°C		NA 🗆							
Water - VOA vials have zero headspace / no bubbles?	Yes		No 🗆	No VOA vials submi	itted 🗆							
Sample labels checked for correct preservation?	Yes		No									
Metal - pH acceptable upon receipt (pH<2)?	Yes		No 🗆		NA 🗹							
Samples Received on Ice?	Yes		No 🗆									
(Ісе Тур	e: WE	TICE)										
* NOTE: If the "No" box is checked, see comments below.												

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell Analytical, Inc.					We	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants Client Project ID: #					#277915; Al	len	Date Sampled: 07/19/10						
2500 Comine Dickle Ste #200						Date Rece			9/10				
2500 Camino Diablo, Ste. #200 Client Contact: Ro						obert Flory Date Extracted				/22/10			
Walnut Creek, CA 94597 Client P.O.: #WC0						Base Date Analyzed: 07/20/10-07/22/10							
	G	asoline Ra	ange (C	6-C12) Volatile 1	Hydrocarbons	as Gasoline	e with BTEX a	and MTBE [:]	*				
Extractio	n method: SW5030B			An	Analytical methods: SW8021B/8015Bm Work Order: 1007484						1007484		
Lab ID	Client ID	Matrix	TPH((g) MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments		
001A	MW-3	w	270) ND	2.7	2.9	ND	4.8	1	105	d1		
002A	IW-2	w	600) ND	5.8	43	5.3	110	1	109	d1		
003A	IW-3	w	410	0 ND<50	190	450	28	440	10	104	d1		
	ting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5		μg/I			
	eans not detected at or e the reporting limit	S	1.0		0.005	0.005	0.005	0.005	mg/Kg				

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Angela Rydelius, Lab Manager

d1) weakly modified or unmodified gasoline is significant

McCampbell Analytical, Inc. "When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

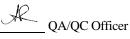
W.O. Sample Matrix: Water	QC Matrix: Water					BatchID: 51874			WorkOrder 1007484			
EPA Method SW8021B/8015Bm	Extrac	tion SW	5030B				Spiked Sample ID: 1007420-002A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	-LCSD Acceptance Criteria (%)			
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex ^f	ND	60	121	119	1.46	123	128	3.48	70 - 130	20	70 - 130	20
MTBE	ND	10	97.6	105	7.02	102	114	11.1	70 - 130	20	70 - 130	20
Benzene	ND	10	92.5	94.3	1.91	90.1	94.5	4.81	70 - 130	20	70 - 130	20
Toluene	ND	10	91.4	93.2	1.98	89	93.6	5.02	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	91.9	93.4	1.64	90.1	94.7	4.91	70 - 130	20	70 - 130	20
Xylenes	ND	30	91.6	93.3	1.89	89.7	94.6	5.37	70 - 130	20	70 - 130	20
%SS:	104	10	93	92	0.260	92	91	1.39	70 - 130	20	70 - 130	20
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE												

BATCH 51874 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1007484-001A	07/19/10 11:45 AM	07/22/10	07/22/10 1:14 AM	1007484-002A	07/19/10 11:15 AM	07/20/10	07/20/10 9:00 PM
1007484-003A	07/19/10 12:10 PM	07/20/10	07/20/10 9:32 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

