

Carryl MacLeodProject Manager
Marketing Business Unit

Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583

Tel (925) 790-6506 cmacleod@chevron.com

RECEIVED

By Alameda County Environmental Health at 11:42 am, Mar 27, 2015

March 26, 2015

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re:

Former Texaco Service Station 307233

2259 First Street Livermore, California ACEHS Case RO0002908

I accept the Final Plans for Park Grade and Proposed Soil Sampling Depths.

I agree with the scope of work presented in this document. The information included is accurate to the best of my knowledge, and appears to meet local agency and Regional Board guidelines. This document was prepared by Conestoga Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

Carryl MacLeod Project Manager

Attachment: Final Plans for Park Grade and Proposed Soil Sampling Depths

10969 Trade Center Drive, Suite 107 Rancho Cordova, California 95670

Telephone: (916) 889-8900 Fax: (916) 889-8999

www.CRAworld.com

March 26, 2015 Reference No. 312264

Mr. Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Final Plans for Park Grade and Proposed Soil Sampling Depths

Former Chevron Service Station 307233

2259 First Street Livermore, California Agency Case RO2908

Dear Mr. Wickham:

On behalf of Chevron Environmental Management Company (Chevron), Conestoga-Rovers & Associates (CRA) is submitting *Final Plans for Park Grade and Proposed Soil Sampling Depths* associated with park redevelopment at the site referenced above (Figure 1). In a letter dated December 19, 2013 (Attachment A), Alameda County Environmental Health (ACEH) requested that Chevron and the City of Livermore (City) submit plans for the final park grade along with the proposed depths of the lead delineation soil samples. The submittal date for the document was subsequently extended to March 27, 2015 as outlined in e-mail correspondence on February 24, 2015. The City has stated that the park redevelopment is currently scheduled to begin in January 2016. The City provided a preliminary park design (Attachment B) to Chevron on January 8, 2015. The park redevelopment calls for removal of all current park features, including trees and soil berms (which are approximately 2 feet above the proposed finished grade). The City plans indicate the majority of the park will be covered by hardscaping.

In preparation for the planned Mills Square Park redevelopment, CRA collected additional soil samples from the site between October 2014 and January 2015. CRA performed a lead speciation study to provide additional analytical data for lead and to evaluate if shallow lead impacts detected across the site were of the same origin as those detected in the former underground storage tank (UST) area. A summary of the recent lead study and plan for removal of lead-impacted soil during redevelopment are presented below.

Equal Employment Opportunity Employer

March 26, 2015 Reference No. 312264

Lead Speciation Activities

In October 2014 and January 2015, CRA oversaw All Well Abandonment (October 2014) and Penecore Drilling (January 2015) advance soil borings HA-1 through HA-7 (Figure 2) to depths ranging from 2.5 to 9 feet below grade (fbg). Work was conducted under Zone 7 Water Agency drilling permits 2014141 and 2015002 (Attachment C). Soil samples were sent to Applied Speciation and Consulting, LLC for total lead and lead speciation analysis. The analytical report is included in Attachment D. The results are summarized in Table 1 and shown graphically on Figure 2.

Total lead results ranged from 5.29 milligrams per kilogram (mg/kg) in HA-6 at 3 fbg (former UST pit) to 314 mg/kg in HA-2 at 4.5 fbg (former pump island). Additionally, samples from HA-1, HA-6, and HA-7 were collected in the vicinity of the highest historic lead concentrations (EX1, EX6, and B2). As shown on Figure 2, the results from HA-1, HA-6, and HA-7 are an order of magnitude lower than the results from EX1, EX6, and B2, indicating that the highest lead results are, at a minimum, limited and localized. Lead speciation analysis indicates no significant difference in any of the samples except for HA-4, which had a different isotope signature.

Proposed Lead-Impacted Soil Management Plan

It does not appear that direct contact exposure to lead in shallow soils is likely at the site, given the nature of the redevelopment plans, and further soil sampling does not appear warranted. CRA reaches these conclusions for the following reasons:

- The City's park redevelopment plan will require that the site be excavated at least 1-foot below grade to facilitate compaction of sub-base for the hardscaping. As shown on Figure 2, only low lead concentrations were reported at depth in the planned landscaped area near the northeast corner of the site.
- A soil management plan (SMP) has been prepared and submitted to ACEH to address excavation and proper disposal of impacted soil. The SMP also addresses any soils that need to be excavated below the hardscape sub-grade for footings and landscaping.

March 26, 2015 Reference No. 312264

 A human health risk assessment for lead has been completed.¹ Results show that there is not a risk to park users or commercial workers from direct contact to current lead levels at the site; removal of a minimum of at least 1-foot of surface soil will further reduce any potential risk.

• Sufficient data, including that generated during the lead speciation study, has been collected for pre-profiling of soil that is planned to be excavated and disposed of.

Given these considerations, ACEH's concern for the direct contact exposure to lead has been addressed and further soil sampling does not appear warranted. The SMP addresses the proper disposal of lead impacted soil during redevelopment. Chevron and the City are currently discussing details of the park redevelopment and implementation of the SMP.

-

Human Health Risk Assessment, Conestoga Rovers and Associates, June 21, 2012

March 26, 2015 Reference No. 312264

Please contact Brian Silva at (916) 889-8908 if you have any questions or require additional information.

Sincerely,

Conestoga-Rovers & Associates

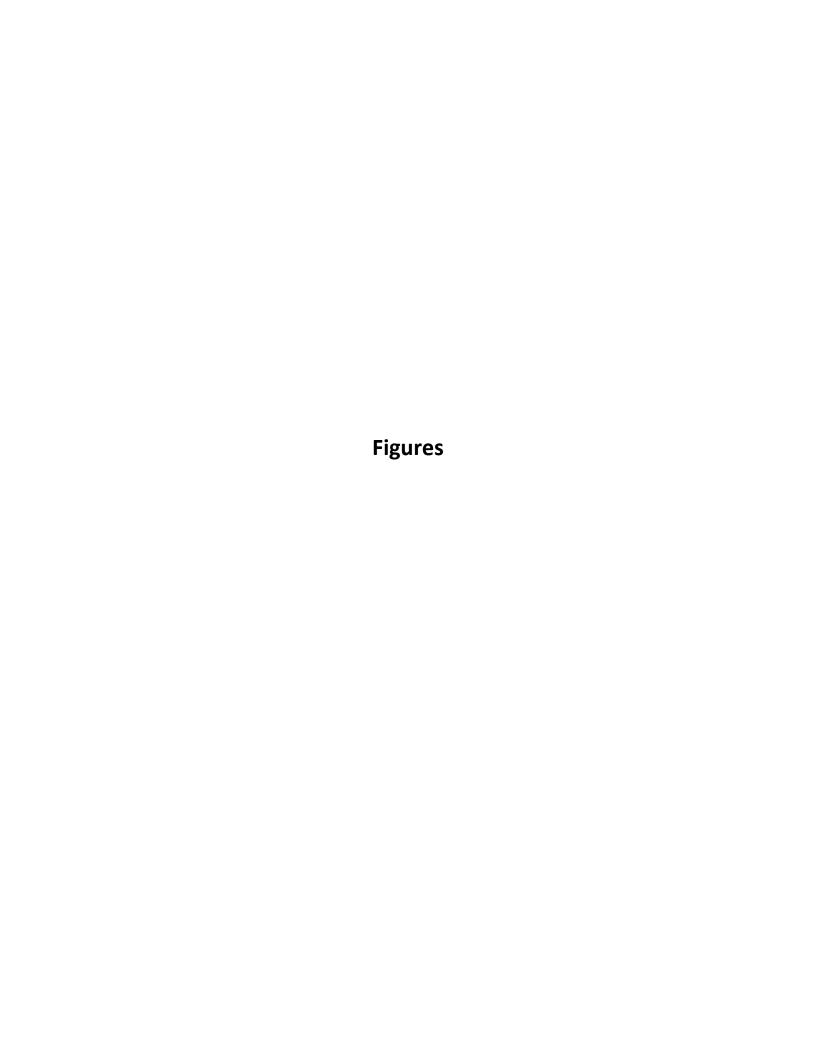
Greg Barclay, PG 6260

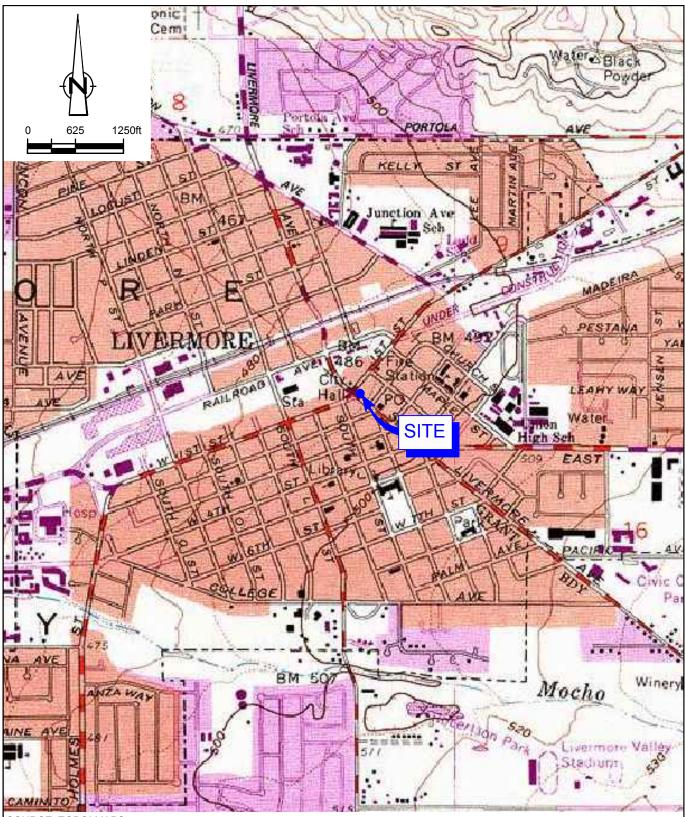
BAS/aa/34

Brian Silva

Figure 1 Vicinity Map

Figure 2 Site Plan with Proposed Shallow Soil Sample Locations


Table 1 Cumulative Soil Analytical Data


Attachment A Regulatory Correspondence
Attachment B Park Renovation Design Figure

Attachment C Zone 7 Water Agency Drilling Permits

Attachment D Laboratory Analytical Report

cc: Carryl MacLeod, Chevron Environmental Management Company (*electronic only*) Eric Uranaga, City of Livermore Community Development

SOURCE: TOPO! MAPS.

Figure 1

VICINITY MAP FORMER TEXACO STATION (CHEVRON SITE 307233) 2259 FIRST STREET Livermore, California

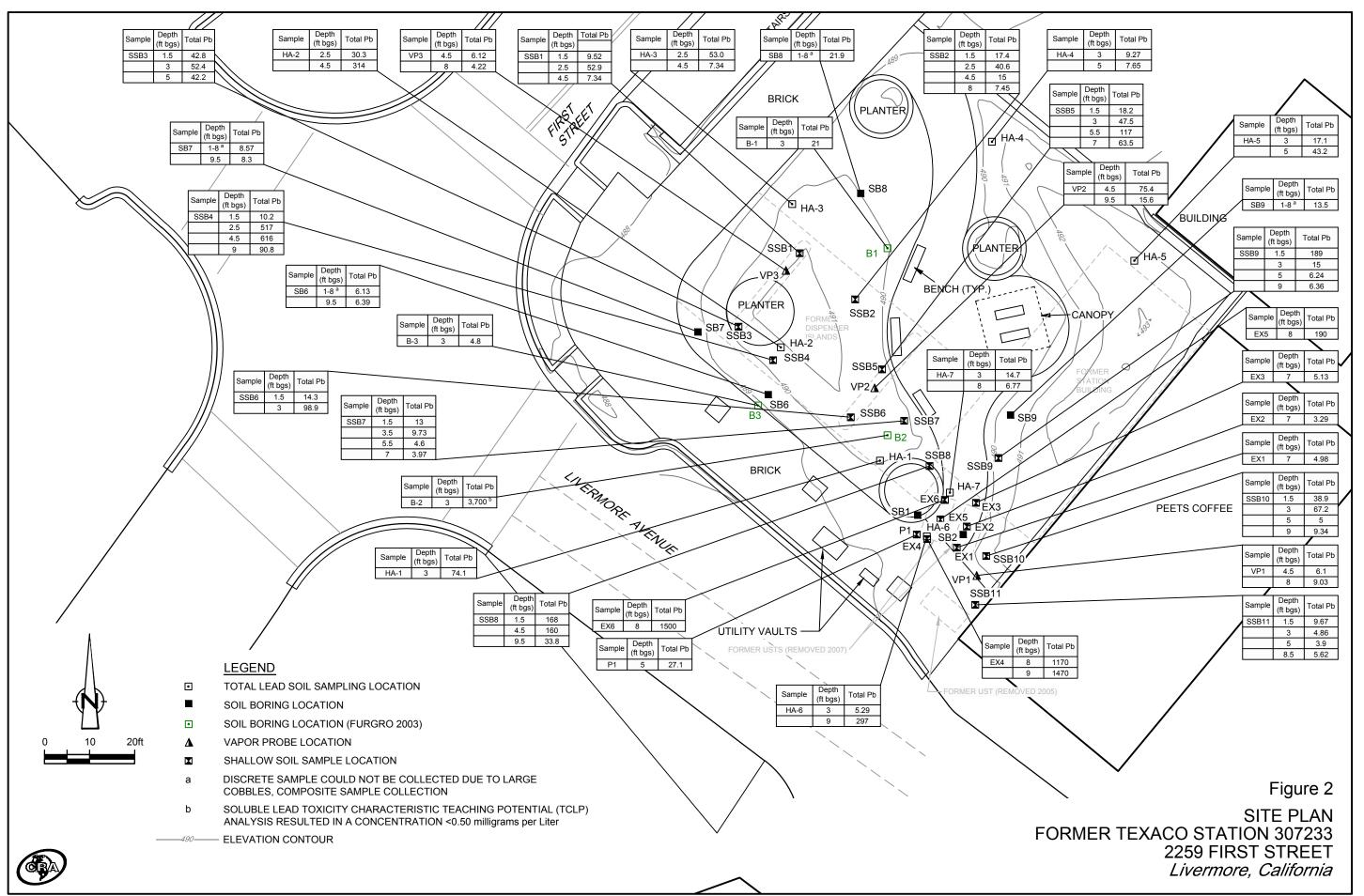


TABLE 1Page 1 of 8

Sample ID	Date	Depth (fbg)	ТРНто	TPHd	ТРНд	Renzene	Toluene	Ethyl- benzene	Total Xvlenes	MTBE	OXYs	Pb
	2440	0~97			-			er kilogra	•		1	. 2
ESL					-							
	Soil Leaching Sc	_										
Table G	(Drinking Wat		83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
Table K-2	Direct Ex Commercial/Ind Direct Ex	ustrial Worker	3,700	450	450	0.27	210	5	100	65	Varies	750
Table K-3	Construction/Tre		12,000	4,200	4,200	12	650	210	420	2,800	Varies	750
	, .,											
OEHAA	Residential	Lana Use	-	-	-	-	-	-	-	-	-	80
ОЕНАА	Commercial	Land Use	-	-	-	-	-	-	-	-	-	260
2012 CRA V	Vell Installation											
MW-10	2/14/2012	5		<4.0	<1.0	<0.0005	<0.001	< 0.001	< 0.001			
MW-10	2/15/2012	10		<4.0	< 0.9	<0.0005	< 0.001	<0.001	<0.001			
MW-10	2/15/2012	15		<4.0	<1.1	<0.0005		<0.001	< 0.001			
MW-10	2/15/2012	20		<4.0	<1.1	<0.0005		<0.001	< 0.001			
MW-10	2/15/2012	25		6.2	<1	<0.0005		<0.001	< 0.001			
MW-10	2/15/2012	30		29	250	<0.023	<0.046	<0.046	<0.046			
MW-10	2/15/2012	35		4.3	<1	0.0007	< 0.001	<0.001	< 0.001			
MW-10	2/15/2012	39.5		4.3	<1.0	<0.0005	<0.001	<0.001	<0.001			
MW-11	2/14/2012	5		5.5	<1.1	<0.0005	< 0.001	< 0.001	< 0.001			
MW-11	2/16/2012	10		<4.0	<1.0	<0.0005	< 0.001	< 0.001	< 0.001			
MW-11	2/16/2012	15		<4.0	<1	<0.0005	< 0.001	< 0.001	< 0.001			
MW-11	2/16/2012	20		<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-11	2/16/2012	30		4.1	< 0.9	<0.0005	< 0.001	< 0.001	< 0.001			
MW-11	2/16/2012	35		<4.0	<1	<0.0005	< 0.001	< 0.001	< 0.001			
MW-11	2/16/2012	39.5		<4.0	<1	<0.0005	<0.001	<0.001	< 0.001			
MW-12	2/16/2012	5		<4.0	<1	<0.0005	<0.001	<0.001	<0.001			
MW-12	2/17/2012	10		4.4	<1	<0.0005		< 0.001	< 0.001			
MW-12	2/17/2012	15		<4.0	<1	<0.0005		< 0.001	< 0.001			
MW-12	2/17/2012	20		<4.0	<1	0.0006	< 0.001	< 0.001	< 0.001			
MW-12	2/17/2012	25		72	500	0.098	< 0.050	1.5	0.91			
MW-12	2/17/2012	30		65	24	0.002	< 0.001	< 0.001	< 0.001			
MW-12	2/17/2012	35		300	1,400	0.15	< 0.20	4.8	11			
MW-12	2/17/2012	39.5		<4.0	1.5	0.062	0.001	< 0.001	0.002			
MW-12	2/17/2012	42		<4.0	<1.0	0.023	< 0.001	< 0.001	< 0.001			
MW-12	2/17/2012	44.5		<4.0	<1	0.021	<0.001	< 0.01	< 0.001			
	Vell Installation											
MW-1	03/29/2010	4.0	<10	<4.0	<1.0		<0.0009	<0.0009	<0.0009			
MW-1	04/07/2010	9.5	<10	<4.0	<1	<0.0005		< 0.001	<0.001			
MW-1	04/07/2010	14.5	<10	<4.0	<1.0	<0.0005		<0.001	<0.001			
MW-1	04/07/2010	19.5	<10	<4.0	<0.9	<0.0005		<0.001	<0.001			
MW-1	04/07/2010	24.5	<10	<4.0	<1	<0.0005		<0.001	<0.001			
MW-1	04/07/2010	29.5	<10	31	310	<0.025		< 0.049	<0.049			
MW-1	04/07/2010	34.5	<10	<4.0	<1.0	0.0005	<0.001	< 0.001	<0.001			
MW-1	04/07/2010	39.5	<10	<4.0	6.8	<0.0005		< 0.001	<0.001			
MW-1	04/07/2010	44.5	<10	<4.0	5.0	<0.0005		<0.001	<0.001			
MW-1	04/07/2010	49.5	<10	<4.0	<1	<0.0005		<0.001	<0.001			
MW-1	04/07/2010	54.5	<10	<4.0	<0.9	<0.0005		<0.001	<0.001			
MW-1	04/07/2010	59.5	<10	<4.0	<1	<0.0005	<0.0009	<0.0009	<0.0009			

TABLE 1Page 2 of 8

Sample ID	Date	Depth (fbg)	ТРНто	ТРНd	TPHg Repo			Ethyl- benzene er kiloara	Total Xylenes m (mg/kg)	MTBE	OXYs	Pb
ESL					•		<u> </u>		<u> </u>	,		
	Soil Leaching So	reening Level										
Table G	(Drinking Wat	ter Sourse) ^a	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
	Direct Ex	posure										
Table K-2	Commercial/Ind		3,700	450	450	0.27	210	5	100	65	Varies	<i>750</i>
	Direct Ex	-										
Table K-3	Construction/Tr	ench Worker ^c	12,000	4,200	4,200	12	650	210	420	2,800	Varies	750
MW-2	04/05/2010	9.5	<10	<4.0	<1	<0.0005	<0.0009	<0.0009	<0.0009			
MW-2	04/05/2010	14.5	<10	<4.0	<1		<0.0009	<0.0009	< 0.0009			
MW-2	04/05/2010	19.5	<10	<4.0	<1.0	< 0.0005		< 0.001	< 0.001			
MW-2	04/05/2010	24.5	<10	<4.0	< 0.9		<0.0009	<0.0009	<0.0009			
MW-2	04/05/2010	29.5	<10	<4.0	<1	<0.0005		< 0.001	< 0.001			
MW-2	04/05/2010	34.5	<10	<4.0	<1.0		<0.0009	<0.0009	< 0.0009			
MW-2	04/05/2010	39.5	<10	<4.0	<1	< 0.0005	<0.0009	<0.0009	<0.0009			
MW-2	04/05/2010	44.5	<10	<4.0	<1	<0.0005		< 0.001	< 0.001			
MW-2	04/05/2010	49.5	<10	<4.0	<1.1	<0.0005		< 0.001	< 0.001			
MW-2	04/05/2010	54.5	<10	<4.0	<1	<0.0005		< 0.001	< 0.001			
MW-2	04/05/2010	59.5	<10	<4.0	<1.0	<0.0005	<0.001	< 0.001	< 0.001			
MW-3	03/30/2010	5.0	<10	8.8	<1.0	<0.0005	<0.001	<0.001	<0.001			
MW-3	04/06/2010	9.5	<10	<4.0	< 0.9	<0.0005	0.002	< 0.001	< 0.001			
MW-3	04/06/2010	14.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-3	04/06/2010	19.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-3	04/06/2010	24.5	<10	<4.0	< 0.9	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-3	04/06/2010	29.5	<10	<4.0	<1.1	<0.0005	< 0.001	< 0.001	< 0.001			
MW-3	04/06/2010	34.5	<10	<4.0	<1.0	< 0.0005	<0.0009	< 0.0009	< 0.0009			
MW-3	04/06/2010	39.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-3	04/06/2010	44.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-3	04/06/2010	49.5	<10	<4.0	<1.1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-3	04/06/2010	54.5	<10	<4.0	10	0.004	< 0.001	< 0.001	< 0.001			
MW-3	04/06/2010	59.5	<10	<4.0	<1.1	<0.0005	<0.001	< 0.001	<0.001			
MW-4	03/30/2010	5.0	<10	<4.0	<1	<0.0005	<0.001	<0.001	<0.001			
MW-4	04/12/2010	10.5	<10	<4.0	< 0.9	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-4	04/12/2010	15.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-4	04/12/2010	20.5	<10	<4.0	< 0.9	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-4	04/12/2010	25.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-4	04/12/2010	30.5	<10	82	42	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-4	04/12/2010	35.5	<10	<4.0	< 0.9	<0.0005		< 0.001	< 0.001			
MW-4	04/12/2010	40.5	<10	<4.0	<1.0	<0.0005		< 0.001	< 0.001			
MW-4	04/12/2010	45.5	<10	<4.0	80	<0.0005		< 0.001	< 0.001			
MW-4	04/12/2010	50.5	<10	<4.0	31	<0.0005		< 0.001	< 0.001			
MW-4	04/12/2010	55.5	<10	4.7	110	0.003	0.001	0.019	0.007			
MW-4	04/12/2010	60.5	<10	<4.0	<0.9		<0.0009	<0.0009	<0.0009			

TABLE 1Page 3 of 8

Sample ID	Date	Depth (fbg)	ТРНто	ТРНd	TPHg Reno	Benzene rted in mil		Ethyl- benzene	•	MTBE	OXYs	Pb
ESL					керо	rteu III IIIII	ngrums p	er knogru	III (IIIY) KY	,	•	
	Soil Leaching Sc	reenina Level										
Table G	(Drinking Wat	_	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
Tubic G	Direct Exp			05	03	0.044	2.5	3.3	2.5	0.023	Varies	142
Table K-2	Commercial/Indi		3,700	450	450	0.27	210	5	100	65	Varies	750
Tuble K 2	Direct Ex		3,700	730	430	0.27			100		Varies	750
Table K-3	Construction/Tre		12,000	4,200	4,200	12	650	210	420	2,800	Varies	<i>750</i>
MW-5	03/31/2010	5.0	130	42	<1	<0.0005	< 0.001	< 0.001	< 0.001			
MW-5	04/08/2010	9.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-5	04/08/2010	14.5	<10	<4.0	<1	<0.0005	< 0.001	< 0.001	< 0.001			
MW-5	04/08/2010	19.5	<10	<4.0	<1	0.001	<0.0009	<0.0009	< 0.0009			
MW-5	04/08/2010	24.5	<10	5.9	150	< 0.026	< 0.053	< 0.053	< 0.053			
MW-5	04/08/2010	29.5	<10	8.1	18	0.003	< 0.001	0.038	0.022			
MW-5	04/08/2010	34.5	<10	29	51	< 0.023	< 0.046	< 0.046	< 0.046			
MW-5	04/08/2010	39.5	<10	<4.0	2.1	0.027	0.002	0.004	< 0.001			
MW-5	04/08/2010	44.5	<10	<4.0	<1.0	0.003	< 0.001	< 0.001	< 0.001			
MW-5	04/08/2010	49.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-5	04/08/2010	54.5	<10	<4.0	<1	0.0006	< 0.001	< 0.001	< 0.001			
MW-5	04/08/2010	59.5	<10	<4.0	<1	<0.0005	<0.001	<0.001	<0.001			
MW-6	04/01/2010	5.0	<10	<4.0	<1	<0.0005	<0.001	<0.001	< 0.001			
MW-6	04/09/2010	10.0	<10	<4.0	<1	<0.0005	< 0.001	< 0.001	< 0.001			
MW-6	04/09/2010	15.0	<10	<4.0	<1	<0.0005	< 0.001	< 0.001	< 0.001			
MW-6	04/09/2010	19.5	<10	<4.0	< 0.9	< 0.0005	< 0.0009	< 0.0009	< 0.0009			
MW-6	04/09/2010	25.0	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-6	04/09/2010	30.0	<10	<4.0	< 0.9	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-6	04/09/2010	35.0	<10	<4.0	< 0.9	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-6	04/09/2010	40.0	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-6	04/09/2010	45.0	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-6	04/09/2010	50.0	<10	<4.0	< 0.9	<0.0005	< 0.001	< 0.001	< 0.001			
MW-6	04/09/2010	55.0	<10	<4.0	44	0.020	0.003	0.006	0.002			
MW-6	04/09/2010	59.5	<10	<4.0	<1	<0.0005	<0.001	<0.001	<0.001			
2008 Subsu	ırface Investigatio	ons										
CPT1	02/05/2008	21.0	<10	<4.0	<1.0	<0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
CPT1	02/05/2008	36.0	380	100	1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	ND	
CPT2	02/04/2008	22.0	<10	<4.0	<1.0	<0.0005	< 0.001	< 0.001	< 0.001	<0.0005	ND	
CPT2	02/04/2008	30.0	<10	27	4.4	< 0.026	< 0.052	1.1	0.18	< 0.026	ND	
CPT2	02/04/2008	35.0	<12	<4.0	1.3	0.0009	<0.001	<0.001	0.002	<0.0005	ND	
CPT3	11/04/2008	18.5	<10	<4.0	<1.0	<0.0005	< 0.001	< 0.001	< 0.001	<0.0005	ND	
CPT3	11/04/2008	35.5	<10	<4.0	<1.0	<0.0005		< 0.001	< 0.001	<0.0005	ND	
CPT3	11/04/2008	55.5	<10	7.1	52	<0.024		< 0.047	< 0.047	< 0.024	ND	
CPT4	11/05/2008	50.0	<10	<4.0	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	
CPT5	11/03/2008	51.5	<10	<4.0	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	
		1-8***										
SB6	01/28/2008		<10	<4.0	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	6.13
SB6	01/28/2008	9.5 10.5	<10	<4.0	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	6.39
SB6	01/28/2008	19.5	<10	<4.0	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	5.79
SB6	01/28/2008	24.0	<10	<4.0	<1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	ND	10.9

TABLE 1Page 4 of 8

Sample ID	Date	Depth (fbg)	ТРНто	TPHd	TPHg Reno			Ethyl- benzene er kilogra	•	MTBE	OXYs	Pb
ESL					перы	tea III IIII	ngrams p	cr knogra	iii (iiig) kg	,		
	Soil Leaching So	reening Level										
Table G	(Drinking Wat	ter Sourse) ^a	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
100.00	Direct Ex					1				0.020		
Table K-2	Commercial/Ind	•	3,700	450	450	0.27	210	5	100	65	Varies	<i>750</i>
10.01010	Direct Ex			100		1						
Table K-3	Construction/Tr	ench Worker ^c	12,000	4,200	4,200	12	650	210	420	2,800	Varies	750
SB7	01/28/2008	1-8***	<10	<4.0	<1.0	<0.0005	-0.001	<0.001	<0.001	<0.0005	ND	8.57
SB7	01/30/2008	9.5	<10	<4.0 <4.0	<1.0 <1.0	<0.0005		<0.001	<0.001	<0.0005	ND ND	8.30
SB7	01/30/2008	19.5	<10	<4.0 <4.0	<1.0 <1.0	<0.0005		<0.001	<0.001	<0.0005	ND	4.70
SB7	01/30/2008	29.5	<10	<4.0 <4.0	3.7	<0.0005		<0.001	<0.001	<0.0005	ND	10.5
SB7	01/30/2008	34.5	<10	<4.0 <4.0	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	11.6
367	01/30/2008	34.3	\10	\4.0	\1.0	\0.0003	\0.001	\0.001	\0.001	\0.0003	ND	11.0
SB8	01/28/2008	1-8***	53	18	<1.0	<0.0005	<0.0009	<0.0009	< 0.0009	<0.0005	ND	21.9
SB8	01/31/2008	19.5	<10	<4.0	<1.0	<0.0005	< 0.001	< 0.001	< 0.001	<0.0005	ND	10.3
SB8	01/31/2008	29.5	<10	<4.0	1.2	<0.0005	< 0.001	< 0.001	< 0.001	<0.0005	ND	8.29
SB8	01/31/2008	34.5	<10	67	530	<0.027	< 0.054	0.10	< 0.054	<0.027	ND	7.86
SB8	01/31/2008	39.5	<10	<4.0	<1.0	0.007	0.002	0.015	0.007	0.039	0.034 ^d	8.93
SB9	01/28/2008	1-8***	32	13	1.3	<0.0005	< 0.001	<0.001	< 0.001	<0.0005	ND	13.5
SB9	01/29/2008	15.0	<10	<4.0	<1.0	<0.0005		< 0.001	< 0.001	< 0.0005	ND	6.36
SB9	01/29/2008	27.5	<10	<4.0	<1.0	<0.0005		< 0.001	< 0.001	< 0.0005	ND	7.92
SB9	01/29/2008	34.5	<10	<4.0	<1.0	<0.0005		< 0.001	< 0.001	< 0.0005	ND	12.3
SB9	01/29/2008	46.5	<10	<4.0	<1.0	<0.0005		< 0.001	< 0.001	< 0.0005	ND	9.34
SB9	01/29/2008	54.5	<10	<4.0	<1.0	<0.0005		< 0.001	< 0.001	<0.0005	ND	5.77
										0.0005	NID	
SB10	10/23/2008	5.0	<10	<4.0	<1.0	< 0.0005		< 0.001	<0.001	<0.0005	ND	
SB10	11/04/2008	16.0	<10	<4.0	<1.0	< 0.0005		< 0.001	<0.001	<0.0005	ND	
SB10	11/04/2008	26.0	<10	<4.0	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	
SB10	11/04/2008	36.0	<10	<4.0	<1.0		< 0.0009	<0.0009	<0.0009	<0.0005	ND	
SB10	11/04/2008	46.0	<10	4.2	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	
SB10 SB10	11/04/2008 11/04/2008	56.0 62.0	<10 <10	<4.0 <4.0	<1.0 <1.0	<0.0005 <0.0005		<0.001 <0.001	<0.001 <0.001	<0.0005 <0.0005	ND ND	
2010	11/04/2006	62.0	<10	\4.0	<1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	ND	
SB11	10/24/2008	5.0	<10	<4.0	<1.0	<0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB11	11/03/2008	11.0	<10	<4.0	<1.0	<0.0005	< 0.001	< 0.001	< 0.001	<0.0005	ND	
SB11	11/03/2008	16.0	<10	<4.0	<1.0	<0.0005	< 0.001	< 0.001	< 0.001	<0.0005	ND	
SB11	11/03/2008	26.0	<10	<4.0	<1.0	<0.0005		< 0.001	< 0.001	<0.0005	ND	
SB11	11/03/2008	36.0	<10	<4.0	<1.0	<0.0005		< 0.001	< 0.001	<0.0005	ND	
SB11	11/03/2008	45.5	<10	<4.0	59		<0.0009	<0.0009	<0.0009	<0.0005	ND	
SB11	11/03/2008	50.5	<10	25	59	<0.023		<0.045	<0.045	<0.023	ND	
SB11	11/03/2008	56.0	<10	45	98	<0.023	<0.047	<0.047	<0.047	<0.023	ND	
SB11	11/03/2008	61.0	<10	<4.0	<1.0	<0.0005	<0.001	< 0.001	<0.001	<0.0005	ND	
SB12	10/24/2008	5.0	<10	<4.0	<1.0	<0.0005	<0.001	< 0.001	< 0.001	<0.0005	ND	
SB12	11/03/2008	15.5	<10	<4.0	<1.0	<0.0005		< 0.001	< 0.001	< 0.0005	ND	
SB12	11/03/2008	25.5	<10	<4.0	120	<0.023	<0.046	< 0.046	< 0.046	< 0.023	ND	
SB12	11/03/2008	30.0	<10	34	58	< 0.024	< 0.047	< 0.047	< 0.047	< 0.024	ND	
SB12	11/03/2008	35.5	<10	<4.0	<1.0	<0.0005		< 0.001	<0.001	<0.0005	ND	
SB12	11/03/2008	45.5	<10	<4.0	1.3	0.0007	< 0.001	< 0.001	< 0.001	<0.0005	ND	
SB12	11/03/2008	50.5	<10	65	1,200	< 0.023	< 0.046	<0.046	<0.046	< 0.023	ND	
SB12	11/03/2008	55.5	<10	55	1,300	1.1	0.15	2.0	3.7	< 0.024	ND	
SB12	11/03/2008	60.5	<10	<4.0	<1.0	<0.0005	< 0.001	< 0.001	< 0.001	<0.0005	ND	

TABLE 1 Page 5 of 8

Sample ID	Date	Depth (fbg)	ТРНто	TPHd	TPHg Repo	Benzene rted in mil		Ethyl- benzene er kilogra	•	MTBE	<i>OXYs</i>	Pb
ESL												
	Soil Leaching Sc	_										
Table G	(Drinking Wat		83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
Table K-2	Direct Ex Commercial/Ind Direct Ex	ustrial Worker	3,700	450	450	0.27	210	5	100	65	Varies	750
Table K-3	Construction/Tre		12,000	4,200	4,200	12	650	210	420	2,800	Varies	750
SSB1	02/01/2008	1.5										9.52
SSB1	02/01/2008	2.5										52.9
SSB1	02/01/2008	4.5										7.34
SSB2	01/28/2008	1.5										17.4
SSB2	01/30/2008	2.5		11	1.2	<0.0005	< 0.001	< 0.001	< 0.001	<0.0005	ND	40.6
SSB2	01/30/2008	4.5		4.4	<1.0	<0.0005	< 0.001	<0.001	< 0.001	<0.0005	ND	15.0
SSB2	01/30/2008	8.0		<4.0	<1.0	<0.0005	< 0.001	<0.001	< 0.001	<0.0005	ND	7.45
SSB3	01/30/2008	1.5										42.8
SSB3	02/06/2008	3.0										52.4
SSB3	02/06/2008	5.0										42.2
SSB4	02/01/2008	1.5										10.2
SSB4	02/01/2008	2.5										517
SSB4	02/01/2008	4.5										616
SSB4	02/01/2008	9.0										90.8
SSB5	02/06/2008	1.5										18.2
SSB5	02/06/2008	3.0										47.5
SSB5	02/06/2008	5.5										117
SSB5	02/06/2008	7.0										63.5
SSB6	02/06/2008	1.5										14.3
SSB6	02/06/2008	3.0										98.9
SSB7	02/06/2008	1.5										13.0
SSB7	02/06/2008	3.5										9.73
SSB7	02/06/2008	5.5										4.60
SSB7	02/06/2008	7.0										3.97
SSB8	02/01/2008	1.5										168
SSB8	02/01/2008	4.5										160
SSB8	02/01/2008	9.5										33.8
SSB9	02/06/2008	1.5										189
SSB9	02/06/2008	3.0										15.0
SSB9	02/06/2008	5.0										6.24
SSB9	02/06/2008	9.0										6.36
SSB10	01/31/2008	1.5										38.9
SSB10	02/06/2008	3.0										67.2
SSB10	02/06/2008	5.0										5.00
SSB10	02/06/2008	9.0										9.34
SSB11	02/06/2008	1.5										9.67
SSB11	02/06/2008	3.0										4.86
SSB11	02/06/2008	5.0										3.90
SSB11	02/06/2008	8.5										5.62
JJD11	02,00,2000	0.5										5.02

TABLE 1Page 6 of 8

		Depth						Ethyl-	Total			
Sample ID	Date	(fbg)	TPHmo	TPHd	TPHg			benzene	•	MTBE	OXYs	Pb
					Repo	rted in mil	lligrams p	er kilogra	m (mg/kg) 4	<u> </u>	
ESL	Soil Leaching Sc	reenina Level							<u> </u>			
Table G	(Drinking Wat	_	83	83	83	0.044	2.9	<i>3.3</i>	2.3	0.023	Varies	NE
1000	Direct Ex									0.020	1	
Table K-2	Commercial/Ind		3,700	450	450	0.27	210	5	100	65	Varies	<i>750</i>
	Direct Ex											
Table K-3	Construction/Tre	ench Worker	12,000	4,200	4,200	12	650	210	420	2,800	Varies	750
VP1	02/01/2008	4.5	<10	<4.0	<1.0	<0.0005		< 0.001	<0.001	<0.0005	ND	6.10
VP1	02/01/2008	8.0	<10	<4.0	<1.0	<0.0005	<0.0009	<0.0009	<0.0009	<0.0005	ND	9.03
VP2	02/01/2008	4.5	54	25	<1.0	<0.0005	<0.0009	<0.0009	<0.0009	<0.0005	ND	75.4
VP2	02/01/2008	9.5	<10	<4.0	<1.0	< 0.0005	< 0.0009	<0.0009	<0.0009	< 0.0005	ND	15.6
VP3	02/01/2008	4.5	<10	<4.0	1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	ND	6.12
VP3	02/01/2008	8.0	<10	<4.0	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	4.22
		0.0			12.0			101001				
2007 Tank EX1	Pull 06/20/2007	7.0	<580	<4.0	<1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	ND	4.98
EX1	06/20/2007	7.0 7.0	<580 <580	<4.0 <4.0	<1.0 <1.0	<0.0005		<0.001	<0.001	<0.0005	ND ND	4.98 3.29
EX3	06/20/2007	7.0 7.0	<580	<4.0 <4.0	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	5.13
EX4	06/20/2007	8.0	11,000	2,800	<1.0	<0.0005	0.001	<0.001	<0.001	<0.0005	ND	1,170
EX4	06/20/2007	9.0	3,100	1,400	<100	< 0.0005		< 0.001	0.004	< 0.0005	ND	1,470
EX5	06/20/2007	8.0	<580	100	<10	<0.0005		< 0.001	< 0.001	< 0.0005	ND	190
EX6	06/20/2007	8.0	3,000	1,300	<400	<0.0005		< 0.001	< 0.001	< 0.0005	ND	1,500
P1	06/20/2007	5.0	<580	<4.0	<1.0	<0.0005		< 0.001	< 0.001	<0.0005	ND	27.1
October 20	06 Subsurface Inv	estigation										
SB-1	10/26/2006	10.0	<10	<10	<1.0	<0.0005	< 0.001	<0.001	<0.001	<0.0005	ND	
SB-1	10/26/2006	15.0	350	140	15	< 0.0005		< 0.001	< 0.001	< 0.0005	ND	
SB-1	10/26/2006	22.0	1,400	780	2,800	<0.062	2.1	7.5	<0.12	< 0.062	ND	
SB-1	10/26/2006	26.0	390	590	1,100	0.62	0.19	5.5	19	< 0.062	ND	
SB-1	10/26/2006	32.0	94	120	180	2.0	17	13	65	< 0.063	ND	
SB-1	10/26/2006	35.5	67	99	1,200	1.0	5.5	2.7	16	< 0.062	ND	
SB-1	10/26/2006	39.5	<10	20	1,000	0.90	0.93	2.5	11	< 0.063	ND	
SB-3	10/23/2006	10.0	<10	<10	<1.0	<0.0005	0.001	<0.001	0.002	<0.0005	ND	
SB-3	10/23/2006	15.0	<10	<10	<1.0	< 0.0005		<0.001	0.002	< 0.0005	ND	
SB-3	10/23/2006	21.0	<20	82	1,800	<0.062	<0.12	4.8	15	< 0.062	ND	
SB-3	10/23/2006	25.0	88	3,000	8,700	14	410	120	770	<0.31	ND	
SB-3	10/23/2006	30.0	<20	230	5,400	3.2	68	40	250	< 0.062	ND	
SB-3	10/23/2006	35.0	<10	17	630	0.080	<0.12	0.56	1.1	< 0.062	ND	
SB-3	10/23/2006	39.5	<20	62	130	0.23	1.5	0.81	5.5	< 0.063	ND	
SB-4	09/12/2006	5.0	<18	33	1.3	<0.0005	<0.001	<0.001	<0.001	<0.0005	ND	
SB-4	09/12/2006	10.0	<20	28	2.8	<0.0005		<0.001	<0.001	<0.0005	ND	
SB-4	09/12/2006	15.0	<20	<12	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	<u></u>
SB-4	09/12/2006	20.0	<20	<10	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	<u></u>
SB-4	09/12/2006	25.0	<20	24	310	<0.003	<0.001	0.001	<0.001	<0.003	ND	<u></u>
SB-4	09/12/2006	27.5	<20	260	1,600	0.10	0.14	4.5	19	<0.062	ND	
SB-4	09/12/2006	30.0	<20	<12	22	0.003	< 0.005	0.014	0.007	<0.002	ND	
SB-4	09/12/2006	35.0	<20	45	320	< 0.063	<0.13	<0.13	< 0.13	< 0.063	ND	
SB-4	09/12/2006	39.5	<16	<10	1.2	0.15	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
	- •			-		-	-	-	-			

TABLE 1Page 7 of 8

Part			Depth						Ethyl-	Total			
Table G Chrisking Nater Sourse 83	Sample ID	Date	(fbg)	TPHmo	TPHd	-				•		OXYs	Pb
Table Continent Water Source Source Continent Worker Source Source Continent Worker Source Source Continent Worker C						Repo	rted in mil	ligrams p	er kilogra	m (mg/kg) 4	\	
Table Commercial/Industrial/Worker Survey Survey	ESL	Soil Leachina Sc	reening Level				1						
Table K-2 Commercial/Industrial Worker 3,700 450 450 0.27 210 5 100 65 Varies 750	Table 6	_	_	02	02	02	0.044	2.0	2 2	2 2	0.022	Varios	NE
Paper Pape	Tuble G			<i>03</i>	03	03	0.044	2.9	3.3	2.3	0.023	vuries	IVE
Table K-3 Construction/Trench Worker 12,000	Table K-2			3.700	450	450	0.27	210	5	100	65	Varies	750
SB-5 10/24/2006 10.0													
Sept 10/26/2006 15.0 410 410 410 410 40.0005 40.001 40.001 40.001 40.001 40.005 40.	Table K-3	Construction/Tre	ench Worker ^c	12,000	4,200	4,200	12	650	210	420	2,800	Varies	750
Sept 10/26/2006 15.0 410 410 410 410 40.0005 40.001 40.001 40.001 40.001 40.005 40.	SB-5	10/24/2006	10.0	<10	<10	<1.0	<0.0005	0.001	<0.001	0.002	<0.0005	ND	
Sept 10/26/2006 19.5 560 700 27 0.0005 0.001 0.001 0.0005 ND 0.005 Sept 10/26/2006 34.0 290 630 3.00 5.00 5.00 5.00 3.00 0.005													
68-5 10/26/2006 26.0 450 62.0 1,00 0.08 c.013 8.5 12 <0.063 ND SB-5 10/26/2006 34.0 290 630 3,00 17 67 38 130 <0.05													
SB-5													
SB-5 10/26/2006 34.0 290 630 3,100 5.7 67.0 38 130 <0.13 ND SB-5 10/26/2006 33.5 21.0 80 1,400 5.4 2.6 13 20.0 0.0 ND 2005 Cooksulfacted Engineering Tank Pull Sample (1) 09/20/2005 3.0 <2,500						-							
SB-5													
Sample (1) 09/20/2005 3.0 <2.500 4.100 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <						-							
Sample (1) 09/20/2005 3.0 <2,500 4,100						•							
Sample (2) 09/20/2005 3.0 <250 1,300		~	-	<2 500	4 100		∠0 017	∠0.017	∠0.017	<0.017	<0.017	ND	
Sample (3) 09/20/2005 3.0 <200 670 <0.022 <0.022 <0.022 <0.022 <0.022 <0.005 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050					-								
Sample (4) 09/20/2005 3.0 <50 1.0 <1.00 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.005					-								
Sample (5) op/20/2005 3.0 op/20/2005 ND op/20/2005													
Sample (6) 09/20/2005 3.0 0.50 2.1 3 0.0050													
B-1													
B-1				\30	2.1	3	\0.0030	\0.0030	\0.0050	\0.0050	\0.0050	ND	
B-1	•		•										
B-2													21
B-2 09/17/2003 15.5 < 1.0 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	B-1	09/17/2003	25.5	<50	<1.0	<1.0	<0.005	<0.005	<0.005	<0.005	<0.005		
B-2 09/17/2003 30.0 <50 9.6 3.5 <0.005 <0.005 <0.005 <0.005 B-3 09/17/2003 25.5 <50	B-2	09/17/2003	3.0										3,700****
B-3 09/17/2003 3.0	B-2	09/17/2003	15.5			<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
Name	B-2	09/17/2003	30.0	<50	9.6	3.5	<0.005	<0.005	<0.005	<0.005	<0.005		
Name	R-3	09/17/2003	3.0										4.8
2014/2015 Lead Speciation Investigation HA-1							<0.005	< 0.005		<0.005	<0.005		
HA-1 10/07/2014 3 74.1 HA-2 10/07/2014 2.5 30.3 HA-2 10/07/2014 4.5 30.3 HA-3 10/07/2014 2.5					12.10	12.0	10.003	10.003	10.005	10.003	101003		
HA-2 10/07/2014 2.5 30.3 HA-2 10/07/2014 4.5 314 HA-3 10/07/2014 2.5		•	_										74.4
HA-2 10/07/2014 4.5	HA-1	10/07/2014	3										/4.1
HA-3	HA-2	10/07/2014	2.5										30.3
HA-3 10/07/2014 4.5	HA-2	10/07/2014	4.5										314
HA-3 10/07/2014 4.5	HA-3	10/07/2014	2.5										53.0
HA-4 10/08/2014 3		• •											
HA-4 10/08/2014 5 7.65 HA-5 10/08/2014 3													
HA-5 10/08/2014 3 17.1 HA-5 10/08/2014 5 17.1 HA-6 01/20/2015 3 5.29 HA-6 01/20/2015 3 14.7		· ·											
HA-5 10/08/2014 5 43.2 HA-6 01/20/2015 3 5.29 HA-6 01/20/2015 9 14.7	HA-4	10/08/2014	5										7.65
HA-6 01/20/2015 3 5.29 HA-6 01/20/2015 9 297	HA-5	10/08/2014	3										17.1
HA-6 01/20/2015 9 297 HA-7 01/20/2015 3 14.7	HA-5	10/08/2014	5										43.2
HA-6 01/20/2015 9 297 HA-7 01/20/2015 3 14.7	шле	01/20/2015	2										F 20
HA-7 01/20/2015 3 14.7		· ·											
	пи-р	01/20/2015	9										29/
HA-7 01/20/2015 8 6.77		• •	3										
	HA-7	01/20/2015	8										6.77

TABLE 1 Page 8 of 8

CUMULATIVE SOIL ANALYTICAL DATA FORMER TEXACO SERVICE STATION 30-7233 2259 FIRST STREET, LIVERMORE, CALIFORNIA

Sample ID	Depth Date (fbg)	ТРНто	TPHd	TPHg Repoi			Ethyl- benzene oer kilogra	•	MTBE	OXYs \	Pb
ESL	Coil Loughing Carooning Lough		T	ı		ī			ī		
	Soil Leaching Screening Level										
Table G	(Drinking Water Sourse) ^a	<i>83</i>	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
	Direct Exposure										
Table K-2	Commercial/Industrial Worker	3,700	450	450	0.27	210	5	100	65	Varies	<i>750</i>
	Direct Exposure										
Table K-3	Construction/Trench Worker c	12,000	4,200	4,200	12	650	210	420	2,800	Varies	<i>750</i>

Notes and Abbreviations:

Total petroleum hydrocarbons as motor oil (TPHmo) analyzed by EPA Method 8015B modified unless otherwise noted.

Total petroleum hydrocarbons as diesel (TPHd) analyzed by EPA Method 8015B with silica gel cleanup unless otherwise noted.

Total petroleum hydrocarbons as gasoline (TPHg) analyzed by EPA Method 8015B modified unless otherwise noted.

Benzene, toluene, ethylbenzene, and total xylenes (BTEX); methyl tertiary-butyl ether (MTBE); t-butyl alcohol (TBA); di-isopropyl ether (DIPE); ethyl tertiary-butyl ether (ETBE); t-amyl methyl ether (TAME); 1,2-dichloroethane (1,2-DCA); 1,2-dibromoethane (EDB) analyzed by EPA method 8260B unless otherwise noted.

OXYs = TBA, DIPE, ETBE, TAME, 1,2,-DCA, and EDB

fbg = feet below grade.

<x = Not detected at reporting limit x.

ND = not detected at various laboratory method detection limits.

ESLs = Environmental Screening Levels for commercial land use where groundwater is a current or potential drinking water source from *Screening* for Environmental Concerns at Sites with Contaminated Soil and Groundwater presented by the California Regional Water Quality Control Board - San Francisco Bay Region Interim Final November 2007, revised May 2008.

OEHAA = Office of Environmental Health Hazard Assessment's Revised California Human Health Screening Level for Lead dated May 18, 2009

NE = Not established

- -- = Not applicable/not analyzed.
- a = Potential leaching of chemicals from vadose zone soils and subsequent impact on groundwater
- b = Worker who regularly performs grounds-keeping activities. Exposure to surface ans shallow subsurface soils (i.e. at depths of 0-2 fbg) is expected to occur during moderate digging associated with routine maintenance and grounds-keeping activities
- c = Worker on a single onsite construction project with exposures to surface and subsurface soils (i.e. at depths of 0-10 fbg) during excavation, maintenance and building construction.
- d = TBA, no other oxygenates detected
- *** = Discrete sample could not be collected due to large cobbles, composite sample collected.
- **** = Soluble Lead Toxicity Characteristic Leaching Potential (TCLP) analysis resulted in a concentration <0.50 milligrams per liter.

Attachment A

Regulatory Correspondence

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

ALEX BRISCOE, Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

December 19, 2013

Ms. Carryl MacLeod (Sent via E-mail to: cmacleod@chevron.com)
Chevron Environmental Management Company
6101 Bollinger Canyon Road
San Ramon, CA 94583

Mr. Eric Uranga (Sent via E-mail to: ejuranga@ci.livermore.ca.us)
City of Livermore Economic Development
1052 S. Livermore Ave.
Livermore, CA 94550

Subject: Conditional Work Plan Approval for Fuel Leak Case No. RO0002908 and GeoTracker Global ID T0600196622, Miller Square Park, 2259 First Street, Livermore, CA 94550

Dear Ms. MacLeod and Mr. Uranga:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the above referenced site including the documents entitled, "Work Plan for Near-Surface Soil Sampling," dated October 13, 2013 (Work Plan). The Work Plan, which was prepared on behalf of Chevron Environmental Management Company by Conestoga Rovers & Associates (CRA), proposes the collection of soil samples in a grid pattern to adequately define the extent of lead in shallow soil. The depths for collection of the soil samples are not specified in the Work Plan and are to be based on the final plans for redevelopment of the park to assure that shallow soil containing elevated concentrations of lead is removed from the final grade for the park.

The Work Plan indicates that the City of Livermore expects to start park renovations in the spring of 2015. Based on this tentative schedule for park redevelopment, we request that you submit plans for the final park grade along with the proposed depths of the soil samples no later than January 15, 2015.

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACEH ftp site (Attention: Jerry Wickham), and to the State Water Resources Control Board's GeoTracker website according to the following schedule and file-naming convention:

- January 30, 2014 Quarterly Groundwater Monitoring Report and Summary of Sulfate Application – Fourth Quarter 2013
 - File to be named: GWM_IRR_R_yyyy-mm-dd RO2908
- January 15, 2015 Final Plans for Park Grade and Proposed Soil Sampling Depths
 File to be named: WP_R_yyyy-mm-dd RO2908

Responsible Parties RO0002908 December 19, 2013 Page 2

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297 Senior Hazardous Materials Specialist

Attachments: Responsible Party(ies) Legal Requirements/Obligations

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Colleen Winey, QIC 80201, Zone 7 Water Agency, 100 North Canyons Parkway Livermore, CA 94551 (Sent via E-mail to: cwiney@zone7water.com)

Danielle Stefani, Livermore-Pleasanton Fire Department, 3560 Nevada Street Pleasanton, CA 94566 (*Sent via E-mail to: DStefani@lpfire.org*)

John Rigter, Livermore-Pleasanton Fire Department, 3560 Nevada Street Pleasanton, CA 94566(Sent via E-mail to: <u>irigter@lpfire.org</u>)

Brian Silva, Conestoga-Rovers & Associates, 10969 Trade Center Drive, Suite 107 Rancho Cordova, CA 95670 (Sent via E-mail to: <u>bsilva@craworld.com</u>)

Jerry Wickham, ACEH (Sent via E-mail to: <u>jerry.wickham@acgov.org</u>) GeoTracker, eFile

Attachment 1

Responsible Party(ies) Legal Requirements/Obligations

REPORT/DATA REQUESTS

These reports/data are being requested pursuant to Division 7 of the California Water Code (Water Quality), Chapter 6.7 of Division 20 of the California Health and Safety Code (Underground Storage of Hazardous Substances), and Chapter 16 of Division 3 of Title 23 of the California Code of Regulations (Underground Storage Tank Regulations).

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (Local Oversight Program [LOP] for unauthorized releases from petroleum Underground Storage Tanks [USTs], and Site Cleanup Program [SCP] for unauthorized releases of non-petroleum hazardous substances) require submission of reports in electronic format pursuant to Chapter 3 of Division 7, Sections 13195 and 13197.5 of the California Water Code, and Chapter 30, Articles 1 and 2, Sections 3890 to 3895 of Division 3 of Title 23 of the California Code of Regulations (23 CCR). Instructions for submission of electronic documents to the ACEH FTP site are provided on the attached "Electronic Report Upload Instructions."

Submission of reports to the ACEH FTP site is in addition to requirements for electronic submittal of information (ESI) to the State Water Resources Control Board's (SWRCB) Geotracker website. In April 2001, the SWRCB adopted 23 CCR, Division 3, Chapter 16, Article 12, Sections 2729 and 2729.1 (Electronic Submission of Laboratory Data for UST Reports). Article 12 required electronic submittal of analytical laboratory data submitted in a report to a regulatory agency (effective September 1, 2001), and surveyed locations (latitude, longitude and elevation) of groundwater monitoring wells (effective January 1, 2002) in Electronic Deliverable Format (EDF) to Geotracker. Article 12 was subsequently repealed in 2004 and replaced with Article 30 (Electronic Submittal of Information) which expanded the ESI requirements to include electronic submittal of any report or data required by a regulatory agency from a cleanup site. The expanded ESI submittal requirements for petroleum UST sites subject to the requirements of 23 CCR, Division, 3, Chapter 16, Article 11, became effective December 16, 2004. All other electronic submittals required pursuant to Chapter 30 became effective January 1, 2005. Please visit the SWRCB website for more information on these requirements. (https://www.waterboards.ca.gov/water_issues/programs/ust/electronic_submittal/)

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 7835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, late reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup Oversight Programs (LOP and SCP)

REVISION DATE: July 25, 2012

ISSUE DATE: July 5, 2005

PREVIOUS REVISIONS: October 31, 2005; December 16, 2005; March 27, 2009; July 8, 2010

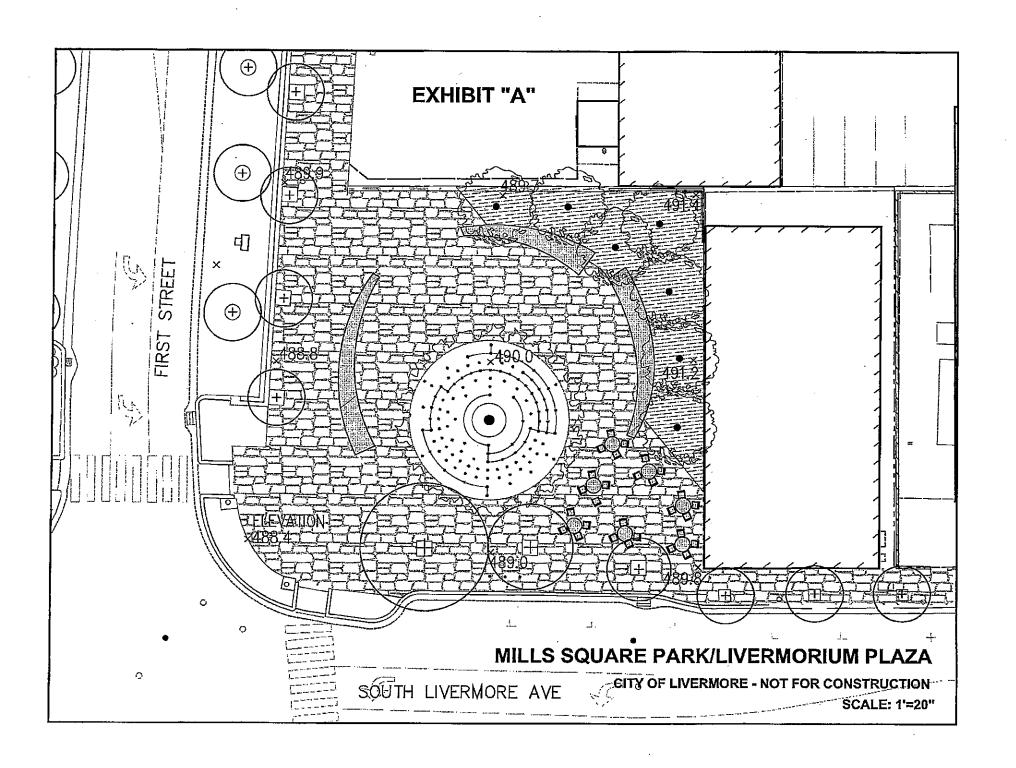
SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (petroleum UST and SCP) require submission of all reports in electronic form to the county's FTP site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Please do not submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single Portable Document Format (PDF) with no password protection.
- It is **preferable** that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- <u>Do not</u> password protect the document. Once indexed and inserted into the correct electronic case file, the
 document will be secured in compliance with the County's current security standards and a password.
 <u>Documents with password protection will not be accepted.</u>
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:


RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to .loptoxic@acgov.org
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ://alcoftp1.acgov.org
 - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to .loptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

Attachment B

Park Renovation Design Figure

Attachment C

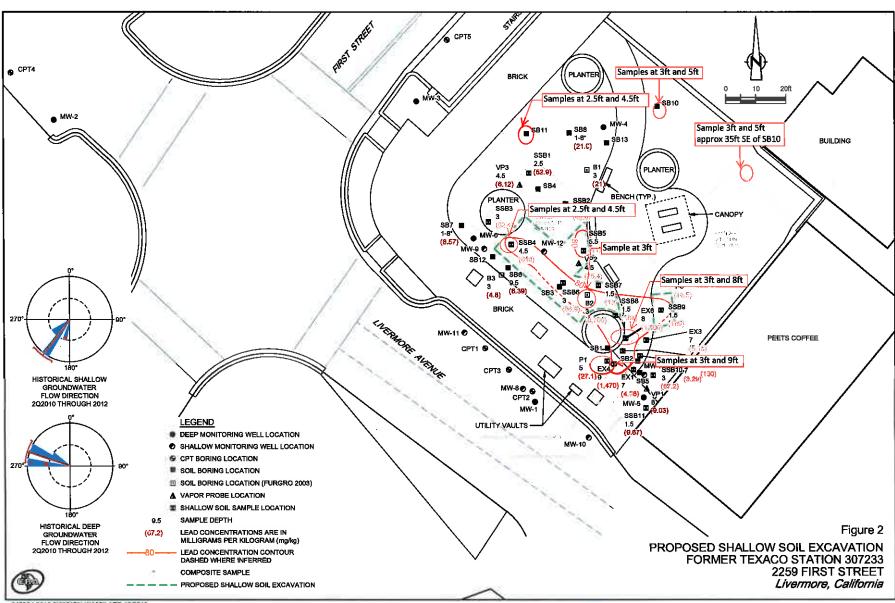
Zone 7 Water Agency Drilling Permits

THE STATE OF THE S

ATTACH SITE PLAN OR SKETCH

FOR APPLICANT TO COMPLETE

ZONE 7 WATER AGENCY


100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL who.ng/whiter.com

5054

FOR OFFICE USE

DRILLING PERMIT APPLICATION

LOCATION OF PROJECT 2259 First Street	PERMIT NUMBER 2014141
Livermon, CA	WELL NUMBER
	APN97-0110-005-03
Coordinates Sourceft. Accuracy∀ft. LAT:ft. LONG:ft.	PERMIT CONDITIONS
LAT:ft. LONG:ft.	(Circled Permit Requirements Apply)
CLIENT Name Constant Contert i Associates Address 10969 Trate Conter Dr. ste. 107 Phone 916-889-8900 City Roadan Cordova, CA Zip 95670 APPLICANT Name Bryan Sando! Email brandor@ Crawerla.com Fax 916-899-8999 Address 10969 Trate Center Dr. ste. 607 Phone 916-889-8916	A. GENERAL 1. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to your proposed starting date. 2. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report (DWR Form 188), signed by the driller. 3. Permit is void if project not begun within 90 days of approval date. 4. Notify Zone 7 at least 24 hours before the start of work.
City Rencho Cordova, CA Zip 95670	B. WATER SUPPLY WELLS
TYPE OF PROJECT: Well Construction	 Minimum surface seal diameter is four inches greater than the well casing diameter. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Grout placed by tremie. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. A sample port is required on the discharge pipe near the wellhead. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS Minimum surface seal diameter is four inches greater than the well or piezometer casing diameter. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet.
DRILLER'S LICENSE NO. 348 359	Grout placed by tremie.
WELL SPECIFICATIONS: N/A Drill Hole Diameter in. Maximum Casing Diameter in. Depth ft. Surface Seal Depth ft. Number	D. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.
SOIL BORINGS: Number of Borings 7 Maximum Hole Diameter 3 in. Depth 9 ft.	 E. CATHODIC. Fill hole above anode zone with concrete placed by tremie.
ESTIMATED STARTING DATE 10-7-14 ESTIMATED COMPLETION DATE 10-7-14	F. WELL DESTRUCTION. See attached. G. SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after completion of permitted work the well installation report
hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.	Including all soil and water laboratory analysis results.
APPLICANT'S Date 9-8-14	Approved Date 9/23/14 Wyman Hong

IS THE STATE OF TH

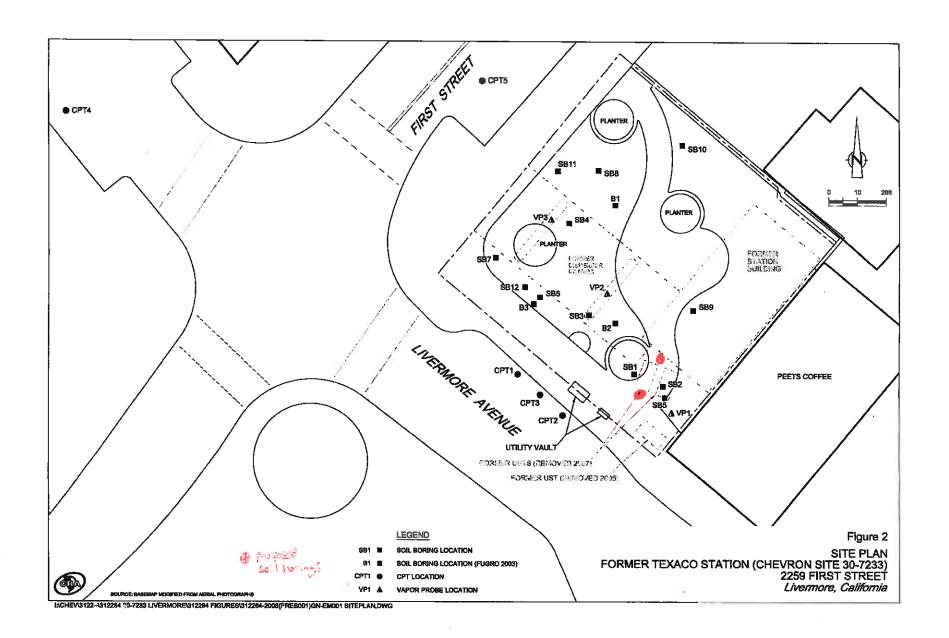
ZONE 7 WATER AGENCY

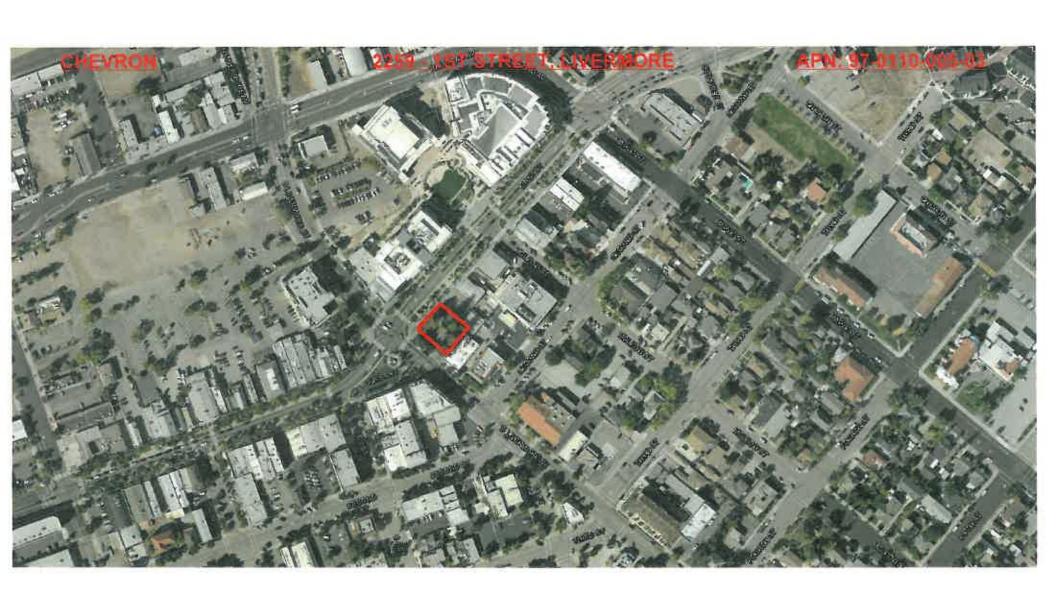
100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL whong@zone?water.com

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT Former Texaso 307233 Z259 First St. Livermore, CA	PERMIT NUMBER
Coordinates Sourceft. Accuracy∀ft. LAT:ft. LONG:ft. APN	PERMIT CONDITIONS (Circled Permit Requirements Apply) A. GENERAL
Name Chevron Emc Address GIEI Bollings Canyon & Phone City San Ramon Zip 94583 APPLICANT Name CRA - Co: Ben Summersett Email DSWMMERSETT QCGawrid.comFax 116-889-8999	 A permit application should be submitted so as to arrive at the Zone 7 office five days prior to your proposed starting date. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report (DWR Form 188), signed by the driller. Permit is void if project not begun within 90 days of approval date. Notify Zone 7 at least 24 hours before the start of work.
Address 10969 Trade Center Pr. #107 Phone 416-889-8976 City Ranche Cordova Zip 95670 TYPE OF PROJECT: Well Construction Geotechnical Investigation Cathodic Protection Other PROPOSED WELL USE: Domestic Irrigation Municipal Remediation Industrial Groundwater Monitoring Dewatering Other Soil boriass X	 WATER SUPPLY WELLS Minimum surface seal diameter is four inches greater than the well casing diameter. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Grout placed by tremie. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. A sample port is required on the discharge pipe near the wellhead.
DRILLING METHOD: Mud Rotary Air Rotary Hollow Stem Auger Cable Tool Direct Push Other Air Knife x DRILLING COMPANY VALUE TOOK	 C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS 1. Minimum surface seal diameter is four inches greater than the well or piezometer casing diameter. 2. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. 3. Grout placed by tremie.
WELL SPECIFICATIONS: Drill Hole Diameter in. Maximum Casing Diameter in. Depth ft. Surface Seal Depth ft. Number	D. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.
SOIL BORINGS: Number of Borings 2 Maximum Hole Diameter 8 in. Depth 10 ft. ESTIMATED STARTING DATE 2-3-2015 1-20-15 ESTIMATED COMPLETION DATE 2-3-2015	CATHODIC. Fill hole above anode zone with concrete placed by tremie. F. WELL DESTRUCTION. See attached. ORDER OF TRANSPORT CONTRACTOR OF TRANSP
I hereby agree to comply with all requirements of this permit and Alarneda County Ordinance No. 73-88	G.) SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after completion of permitted work the well installation report including all soil and water laboratory analysis results.

Date 12-19-14


Approved_


ATTACH SITE PLAN OR SKETCH

APPLICANT'S

SIGNATURE

Date 1/6/15

Attachment D

Laboratory Analytical Report

February 11, 2015

Brian Silva Conestoga-Rovers & Associates 10969 Trade Center Drive, Suite 107 Rancho Cordova, CA 95670 (916) 889-8908

Mr. Silva,

Attached is the report associated with thirteen (13) soil samples submitted for total lead and lead isotopic ratio testing on October 13, 2014 and January 21, 2015. The samples were received on October 14, 2014 and January 22, 2015 in sealed containers at -0.6°C and 1.7°C, respectively. Total lead quantitation was performed by inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). Lead isotopic ratio testing was performed by inductively coupled plasma dynamic reaction cell mass spectrometry (ICP-DRC-MS). Any issues associated with the analyses are addressed in the following report.

If you have any questions, please feel free to contact me at your convenience.

Sincerely,

Ben Wozniak Project Manager

Ben Wozniek

Applied Speciation and Consulting, LLC

Applied Speciation and Consulting, LLC

Report Prepared for:

Brian Silva Conestoga-Rovers & Associates 10969 Trade Center Drive, Suite 107 Rancho Cordova, CA 95670

February 11, 2015

1. Sample Reception

Thirteen (13) soil samples were submitted for total lead and lead isotopic ratio testing on October 13, 2014 and January 21, 2015. The samples were received in acceptable condition on October 14, 2014 and January 22, 2015 in sealed containers at -0.6°C and 1.7°C, respectively. All packing materials were intact and no visible signs of tampering were noticeable.

The samples were received on the day of reception in a laminar flow clean hood void of trace metals contamination and ultra-violet radiation. Upon reception, each sample was designated a discrete sample identifier. All solid samples were stored in a secure, monitored freezer (maintained at a temperature < -10°C), until digestion and analysis could be performed.

2. Sample Preparation

All sample preparation is performed in laminar flow clean hoods known to be free from trace metals contamination. All applied water for dilutions and sample preservatives are also monitored for contamination to account for any biases associated with the sample results.

<u>Digestion for Total Lead and Lead Isotopic Ratio Testing</u> Prior to all analyses, a known mass of each sample was weighed into a polypropylene vessel and then digested with aliquots of concentrated HNO₃ and concentrated HCl (*aqua regia*) in a hot block digestion apparatus. The resulting sample digests were then diluted to 50mL with reagent water prior to the analyses, as described below.

3. Sample Analysis

<u>Total Lead Quantitation by ICP-QQQ-MS</u> All sample digests for total lead quantitation were analyzed by inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). Aliquots of each sample digest are introduced into a radio frequency (RF) plasma where energy-transfer processes cause desolvation, atomization, and ionization. The ions are extracted from the plasma through a differentially-pumped vacuum interface and travel through an initial quadrupole (Q1), which filters the target masses prior to their entrance into

a second chamber. The second chamber contains specific reactive gasses or collision gasses that preferentially react with interfering ions of the same target mass to charge ratios (m/z). The ions then exit the collision/reaction chamber into the mass analyzer (Q2). A solid-state detector detects ions transmitted through the mass analyzer, on the basis of their mass-to-charge ratio (m/z), and the resulting current is processed by a data handling system.

<u>Lead Isotopic Ratio Testing by ICP-DRC-MS</u> All sample digests for isotopic ratio testing were analyzed by inductively coupled plasma dynamic reaction cell mass spectrometry (ICP-DRC-MS). Aliquots of each sample are introduced into a radio frequency (RF) plasma where energy-transfer processes cause desolvation, atomization, and ionization. The ions are extracted from the plasma through a differentially-pumped vacuum interface and travel through a pressurized chamber (DRC) containing a specific reactive gas which reduces the kinetic energy of the ions, producing a more homogenous ion beam. A solid-state detector detects ions transmitted through the mass analyzer, on the basis of their mass-to-charge ratio (m/z), and the resulting current is processed by a data handling system.

4. Analytical Issues

No significant issues were encountered with the requested analyses. All quality control parameters associated with these samples were within acceptance limits.

It should be noted that nine replicate analyses are performed for each sample for the lead isotopic ratio testing to attain internal counting statistics. The internal counting statistics are represented in the sample results section of this report as the percent relative standard deviation (% RSD). For each sample the standard deviation of the nine replicates is then multiplied by the student's t-value of 5.041 (corresponding to a 99.9% confidence level) to attain the internal variability associated with the measurement.

External quality control in the form of triplicate analyses is performed for the lead isotopic ratio testing to identify the external variability associated with the preparatory procedures and the analytical platform. The external precision identifies that the preparatory and replicate analyses of the samples has minimal impact on the representativeness of the lead isotopic ratio data presented in this report.

It should also be noted that the estimated method detection limit (eMDL) for total lead is calculated using the standard deviation of the four method blanks prepared and analyzed concurrently with the submitted samples.

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

Ben Wozniak

Project Manager

Applied Speciation and Consulting, LLC

Ben Wozniek

Sample ID	HA-1-3	HA-2-2.5	HA-2-4.5	HA-3-2.5
Sample Date	Sample Date 10/7/2014		10/7/2014	10/7/2014
Reception Date	10/14/2015	10/14/2015	10/14/2015	10/14/2015
Analysis Date	2/4/2015	2/5/2015	2/5/2015	2/5/2015
²⁰⁴ Pb/ ²⁰⁶ Pb Ratio*	0.05537 ± 0.00051	0.05505 ± 0.00035	0.05507 ± 0.00026	0.05492 ± 0.00040
% RSD**	0.181	0.126	0.093	0.145
²⁰⁷ Pb/ ²⁰⁶ Pb Ratio* % RSD**	0.85217 ± 0.00211 0.049	0.83368 ± 0.00272 0.065	0.85083 ± 0.00156 0.036	0.84380 ± 0.00223 0.052
²⁰⁸ Pb/ ²⁰⁶ Pb Ratio* % RSD**	2.0747 ± 0.0036 0.034	2.0407 ± 0.0069 0.067	2.0853 ± 0.0037 0.035	2.0600 ± 0.0050 0.048

^{*} All ratios are reported as the mean of nine replicate measurements \pm t*s (t=5.041, for 99.9% confidence level)

^{** %} RSD = Percent Relative Standard Deviation of the nine (9) replicates

Sample ID	HA-3-4.5	HA-4-3	HA-4-5		
Sample Date	10/7/2014	10/8/2014	10/8/2014		
Reception Date	10/14/2015	10/14/2015	10/14/2015		
Analysis Date	2/5/2015	2/5/2015	2/5/2015		
²⁰⁴ Pb/ ²⁰⁶ Pb Ratio*	0.05844 ± 0.00038	0.05641 ± 0.00038	0.05623 ± 0.00058		
% RSD**	0.128	0.135	0.205		
²⁰⁷ Pb/ ²⁰⁶ Pb Ratio*	0.80855 ± 0.00342	0.81079 ± 0.00304	0.81717 ± 0.00254		
% RSD**	0.084	0.074	0.062		
²⁰⁸ Pb/ ²⁰⁶ Pb Ratio*	1.9747 ± 0.0115	1.9775 ± 0.0099	1.9998 ± 0.0040		
% RSD**	0.115	0.100	0.040		

^{*} All ratios are reported as the mean of nine replicate measurements \pm t*s (t=5.041, for 99.9% confidence level)

^{** %} RSD = Percent Relative Standard Deviation of the nine (9) replicates

Sample ID	HA-5-3	HA-5-5	HA-6-3			
Sample Date	10/8/2015	10/8/2015	1/20/2015			
Reception Date	10/14/2015	10/14/2015	1/22/2015			
Analysis Date	2/5/2015	2/5/2015	2/5/2015			
²⁰⁴ Pb/ ²⁰⁶ Pb Ratio*	0.05432 ± 0.00048	0.05532 ± 0.00047	0.05985 ± 0.00049			
% RSD**	0.175	0.170	0.162			
²⁰⁷ Pb/ ²⁰⁶ Pb Ratio*	0.80304 ± 0.00320	0.84882 ± 0.00218	0.81252 ± 0.00405			
% RSD**	0.079	0.051	0.099			
²⁰⁸ Pb/ ²⁰⁶ Pb Ratio*	1.9818 ± 0.0049	2.0689 ± 0.0049	1.9932 ± 0.0094			
% RSD**	0.049	0.047	0.094			

^{*} All ratios are reported as the mean of nine replicate measurements \pm t*s (t=5.041, for 99.9% confidence level)

^{** %} RSD = Percent Relative Standard Deviation of the nine (9) replicates

Sample ID	HA-6-9	HA-7-3	HA-7-8			
Sample Date	1/20/2015	1/20/2015	1/20/2015			
Reception Date	1/22/2015	1/22/2015	1/22/2015			
Analysis Date	2/5/2015	2/5/2015	2/5/2015			
²⁰⁴ Pb/ ²⁰⁶ Pb Ratio*	0.05415 ± 0.00040	0.05509 ± 0.00036	0.05695 ± 0.00057			
% RSD**	0.148	0.130	0.197			
²⁰⁷ Pb/ ²⁰⁶ Pb Ratio*	0.84416 ± 0.00290	0.83448 ± 0.00249	0.82347 ± 0.00319			
% RSD**	0.068	0.059	0.077			
²⁰⁸ Pb/ ²⁰⁶ Pb Ratio*	2.0568 ± 0.0077	2.0456 ± 0.0063	2.0202 ± 0.0076			
% RSD**	0.075	0.061	0.074			

^{*} All ratios are reported as the mean of nine replicate measurements \pm t*s (t=5.041, for 99.9% confidence level)

^{** %} RSD = Percent Relative Standard Deviation of the nine (9) replicates

Date: February 11, 2015
Report Generated by: Ben Wozniak
Applied Speciation and Consulting, LLC

Pb Isotope QC

Sample ID	NIST 981	NIST 981	NIST 981		External Precision
Date Analyzed	2/4/2015	2/4/2015	2/4/2015		
	Rep 1	Rep 2	Rep 3	Mean	% RSD
²⁰⁴ Pb/ ²⁰⁶ Pb	0.05906 ± 0.00031	0.05905 ± 0.00042	0.05908 ± 0.00040	0.05906 ± 0.00038	0.024
% RSD	0.104	0.140	0.136	0.126	
207 Pb/ 206 Pb	0.91471 ± 0.00125	0.91455 ± 0.00103	0.91427 ± 0.00269	0.91451 ± 0.00166	0.024
% RSD	0.027	0.022	0.058	0.036	
$^{208}{ m Pb/}^{206}{ m Pb}$	2.1677 ± 0.0035	2.1673 ± 0.0049	2.1663 ± 0.0076	2.1671 ± 0.0053	0.033
% RSD	0.032	0.045	0.070	0.016	

External Precision = % RSD of the mean of three analyses of the sample, each consisting of nine replicates

Date: February 11, 2015
Report Generated by: Ben Wozniak
Applied Speciation and Consulting, LLC

Pb Isotope QC

Sample ID	HA-7-8	HA-7-8	HA-7-8		External Precision
Date Analyzed	2/5/2015	2/5/2015	2/5/2015		
	Rep 1	Rep 2	Rep 3	Mean	% RSD
²⁰⁴ Pb/ ²⁰⁶ Pb	0.05695 ± 0.00057	0.05690 ± 0.00060	0.05695 ± 0.00069	0.05694 ± 0.00062	0.051
% RSD	0.197	0.208	0.240	0.215	
$^{207}{ m Pb}/^{206}{ m Pb}$	0.82347 ± 0.00319	0.82394 ± 0.00188	0.82494 ± 0.00272	0.82412 ± 0.00259	0.091
% RSD	0.077	0.045	0.065	0.062	
$^{208}{ m Pb}/^{206}{ m Pb}$	2.0202 ± 0.0076	2.0225 ± 0.0036	2.0262 ± 0.0041	2.0230 ± 0.0051	0.150
% RSD	0.074	0.035	0.040	0.016	

External Precision = % RSD of the mean of three analyses of the sample, each consisting of nine replicates

Date: February 11, 2015 Report Generated by: Ben Wozniak Applied Speciation and Consulting, LLC

Sample Results

Sample ID	Sample Date	Reception Date	Analysis Date	Dilution Factor	Total Pb	eMDL	RL	Units
HA-1-3	10/7/2014	10/14/2014	1/29/2015	250	74.1	0.11	0.99	μg/g
HA-2-2.5	10/7/2014	10/14/2014	1/29/2015	250	30.3	0.11	0.99	μg/g
HA-2-4.5	10/7/2014	10/14/2014	1/29/2015	1000	314	0.44	4.0	μg/g
HA-3-2.5	10/7/2014	10/14/2014	1/29/2015	250	53.0	0.11	1.0	μg/g
HA-3-4.5	10/7/2014	10/14/2014	1/29/2015	50	7.34	0.022	0.20	μg/g
HA-4-3	10/8/2014	10/14/2014	1/29/2015	50	9.27	0.022	0.20	μg/g
HA-4-5	10/8/2014	10/14/2014	1/29/2015	50	7.65	0.022	0.20	μg/g
HA-5-3	10/8/2014	10/14/2014	1/29/2015	50	17.1	0.022	0.20	μg/g
HA-5-5	10/8/2014	10/14/2014	1/29/2015	250	43.2	0.11	1.0	μg/g
HA-6-3	1/20/2015	1/22/2015	1/29/2015	50	5.29	0.022	0.20	μg/g
HA-6-9	1/20/2015	1/22/2015	1/29/2015	1000	297	0.44	4.0	μg/g
HA-7-3	1/20/2015	1/22/2015	1/29/2015	50	14.7	0.022	0.20	μg/g
HA-7-8	1/20/2015	1/22/2015	1/29/2015	50	6.77	0.022	0.20	μg/g

All results reflect the applied dilution and are reported in µg/g (as received)

eMDL = Estimated Method Detection Limit

RL = Reporting Limit

U = Sample concentration is below the estimated method detection limit (eMDL)

J = Sample concentration is between the eMDL and the reporting limit (RL)

Date: February 11, 2015
Report Generated by: Ben Wozniak
Applied Speciation and Consulting, LLC

Quality Control Summary - Preparation Blank Summary

								eMDL*	
Analyte	Units	PB1	PB2	PB3	PB4	Mean	StdDev	50x	RL 50x
Total Pb	μg/g	0.000	0.001	0.000	0.015	0.004	0.007	0.022	0.20

eMDL = Estimated Method Detection Limit; RL = Reporting Limit

^{*}Please see narrative regarding eMDL calculations

Date: February 11, 2015
Report Generated by: Ben Wozniak
Applied Speciation and Consulting, LLC

Quality Control Summary - Certified Reference Materials

Analyte	Units	CRM	True Value	Result	Recovery
Total Pb	μg/g	LCS	20.00	21.53	107.6
Total Pb	μg/g	CRM 052-50G	82.6	90.05	109.0

Date: February 11, 2015
Report Generated by: Ben Wozniak
Applied Speciation and Consulting, LLC

Quality Control Summary - Matrix Duplicates

Analyte	Units	Sample ID	Rep 1	Rep 2	Mean	RPD
Total Pb	μg/g	HA-6-3	5.287	5.342	5.314	1.0

Quality Control Summary - Matrix Spike/ Matrix Spike Duplicate

Analyte	Units	Sample ID	Spike Conc	MS Result	Recovery	Spike Conc	MSD Result	Recovery	RPD
Total Pb	μg/g	HA-6-3	19.90	24.08	94.3	19.90	24.12	94.5	0.2

CHAIN OF CUSTODY RECORD

CONESTOGA-ROVERS & ASSOCIATES 10969 Trade Center Dr. Str. 107	SHIPPED TO (Lab Applied Specia	oratory ation a	Name)	onsulting, we	4	3300-410			
Ranchs Cordoya, CA 95670	<u>.</u>				Site! ZZS9 First St, Livermore CA				
SAMPLER'S PRINTE NAME	D E: Bryan Sand	2	iners			REMARKS			
SEQ. No. DATE TIME SAMPLE No.		SAMPLE TYPE	No. of Containers	# 2 X					
10/7/14 10:25 HA-1-3		SOIL	1	XX		* Aqua Regia Digestion			
10/7/14 10:55 HA-2-2.5		1		XX		** Pb Isotropic Ratio testing for			
10/7/14 11:37 HA-2-4.5				XX					
10/7/14 13:31 HA -3 -2.5				XX		204 Po/206 Pb,			
10/1/19 14:36 HA-3-4.5						207 pb/206 pb,			
10/8/14/10:01 HA-4-3				L X X		208 Pb/206 Pb			
10/8/14 10:38 HA - 4-5				XX					
10/8/14 11:25 HA-5-3						·			
10/8/14 11:45 HA-5-5		↓	1						
						Please send results to			
						Brian Silva			
						bsilva@craworldicom			
TOTAL NUMBER OF CONTAI	NERS		9	, HEA	ALTH/CHEMICAL	HAZARDS			
RELINQUISHED BY:	DATE: 10-13-14 TIME: 1530	F	RECENT	THE BEAT	fubry Ernst (DATE: 10/14/14 TIME: 11:00			
RELINQUISHED BY:	DATE:	F	RECEIV	ÆD BY:		DATE: -0.62 LIDA			
2	TIME:		2			TIME:			
RELINQUISHED BY:		-	'ED BY:		DATE:				
3	DATE: TIME:		3			TIME:			
METHOD OF SHIPMENT:			WAY BI	LL No.		1,			
	SAMPLE TEAM:				OR LABORATOR	RY BY:			
Yellow —Receiving Laboratory Copy					0.1.1.1.1.101.1.1101	Nº CRA 19744			
Pink —Shipper Copy					0				
Goldenrod —Sampler Copy				DATE:	TIME:				

CHAIN OF CUSTODY RECORD

	^	ANFOTA	OA DOVEDO O ACCOCIATEO	SHIPPED TO (Laboratory Name):						REFERENCE NUMBER: 307233				
			GA-ROVERS & ASSOCIATES	Applied Special	ion an	nd Consulting, LC SSOW#312264								
			Trade Center Dr. Stc. 107 Cordova, CA 95670	•					7	ite: 2	250	l Fi	rat St. Liv	ermore ca
SAN	//PLER'S		DDINTER)		1		~			$\overline{}$	7	777	7
SIGN	IATURE	:	RV NAME	Bryan Sand	<u> </u>	No. of Containers	ì	£ /	n*/*	12/	//	//		/ REMARKS
SEQ.					SAMPL	fi of intaii	N. S.	100	%),	Y/		//	///	ILMAIIIO
No.	DATE	TIME	SAMPLE No.		TYPE	28	PART PART	TN/ 7	\$\\E\		//			
	1-20-15	1100	HA-6-3		SOIL	. \		\propto	X				* Aqua	A Regia Digestion
	4	1250	HA-6-9			١	<u> </u>	_	 ' ' 			1	**Pb	s Isotropic Ratio
		945	HA-7-3			<u> </u>	<u> </u>		X					testing for
	<u> </u>	1130	HA-7-8		│ 	\\	<u></u> }	X	X	$\bot\bot$			204 P1	b/206 Pb,
					<u> </u>							_	207 P	b/206Pb;
								-		+			2007	6/206 Pb
					ļ			+		++	-			
								+	-	_	_	+		
							\vdash	+-				+		
								+		+ +	+	+-		
			-									1	- Plo	ase send results
											1	1		Brian Silva @
														va ecraworld.com
														889-8908
			TOTAL NUMBER OF CONTAIN	IERS				ŀ	HEAL	ГН/СНЕ	MICA	AL H	AZARDS	*
REL	INQUISI	HED BY	·	DATE: 1-21-15		RECEIV	/ED B	/:						DATE: 1/22/15
10-		1		TIME: 1400		1 Lan	u (كالك	<u>lia</u>					TIME: 0930
REL	INQUISI		:	DATE:		RECEIV	ÉB B	/ :						DATE:
2_				TIME:		②								TIME:
REL	.INQUIS	HED BY	/ :	DATE:		RECEIV	/ED B	Y :						DATE:
3_				TIME:		③							· · · · · · · · · · · · · · · · · · ·	TIME:
MET	HOD OF	SHIPM	1ENT:			WAY BI	LL No.							
White			—Fully Executed Copy S	AMPLE TEAM:			REC	EIVE	D FOI	R LABC	RATO	ORY	BY:	
Yello			-Receiving Laboratory Copy					nu	~	كلنب	a_		N	P CRA 19747
Pink			—Shipper Copy					. 6	1		4E. C	93		np: 1.7°C
Gold	enrod	•	—Sampler Copy				DAI	=: 44	<i>2</i> 2 15	111\	/IE: <u>U</u>	,, ,		APR 28/97(NF) REV .0 (F-15)