

RECEIVED

Transmittal

By Alameda County Environmental Health 2:26 pm, Jan 14, 2016

Date:	January 14, 2016	Reference No.: 31	2264	
То:	Mr. Jerry Wickham			
	Alameda County Environmental Health Services (AC	EH)		
	1131 Harbor Bay Parkway, Suite 250			
	Alameda, California 94502-6577s			
Subject:	Revised IRAP			
				Т
No. of Copies	Description/Title		Drawing No./ Document Ref.	Issue
1	Revised IRAP			
Issued for	: ☐ Your information ☐ As requested ☐ Your approval/comments ☐ Returned to you	☐ Construct	_ :	uotation
Sent by:	☐ Overnight courier ☐ Same day courier ☐ Ma☐ Other:	ailed under separate	cover Mail er	nclosed
Remarks:				
Copy to:	Ms. Carryl MacLeod, Chevron (electronic copy) Mr. Eric Uranaga, City of Livermore Community Development by: Brian Silva Sigr	ned:		
•	[Please Print]			
Filing: C	Correspondence File			

Carryl MacLeod Project Manager Marketing Business Unit Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6506 cmacleod@chevron.com

January 14, 2016

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Former Standard Oil Service Station 307233 2259 First Street Livermore, California ACEHS Case RO0002908

I accept the Revised Interim Remedial Action Plan.

I agree with the scope of work presented in this document. The information included is accurate to the best of my knowledge, and appears to meet local agency and Regional Board guidelines. This document was prepared by GHD Services, Inc., upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

Carryl MacLeod Project Manager

Attachment: Revised Interim Remedial Action Plan

Interim Remedial Action Plan

Former Standard Oil Station 307233 2259 First Street, Livermore, California ACEH Case RO0002908

Prepared For:

Mr. Jerry Wickham Alameda County Environmental Health (ACEH) 1131 Harbor Parkway, Suite 250 Alameda, California 94502

Chevron Environmental Management Company

November 19, 2015 10969 Trade Center Drive, Suite 107, Rancho Cordova, California 95670 312264 | 2015.6 | 04.10 | Report No 38

Interim Remedial Action Plan

Former Standard Oil Station 307233 2259 First Street, Livermore, California ACEH Case RO0002908

Prepared For:

Mr. Jerry Wickham Alameda County Environmental Health (ACEH) 1131 Harbor Parkway, Suite 250 Alameda, California 94502

Brian Silva

Greg Barclay, PG 6260

GREG BARCLAY No. 6280

Chevron Environmental Management Company

November 19, 2015 10969 Trade Center Drive, Suite 107, Rancho Cordova, California 95670 312264 | 2015.6 | 04.10 | Report No 38

Table of Contents

1.	Intro	duction	1
2.	Site E	Background	1
	2.1	Site Description	1
	2.2	Site Geology and Hydrogeology	1
	2.3	Remedial Actions and Current Site Conditions	. 2
3.	Upda	ted Lead Risk Evaluation	2
4.	Soil N	Management during Park Renovation	2
	4.1	Description of Surface Cap	. 2
	4.2	Health and Safety Plan	. 3
	4.3	Excavation and Grading Protocols	. 3
	4.4	Management of Excavated Materials	. 3
	4.5	Inspection and Maintenance of the Surface Cap	. 3
	4.6	Institutional Controls	. 4
	4.7	Required Notifications and Approvals	. 4
	4.8	Contingency Plan	. 4
5.	Low-	Threat UST Case Closure Policy Evaluation	4

Figure Index

Figure 1 Vicinity Map Figure 2 Site Plan Figure 3 Extended Site Plan Figure 4 Residual Lead Concentrations to be Removed Figure 5 Residual Lead Concentrations Remaining Figure 6 Profile A-A' Figure 7 Profile B-B' Figure 8 Profile C-C'

Table Index

Table 1 Historical Soil Analytical Data

Appendices

Appendix A Regulatory Correspondence

Appendix B 1974 Grading Plan and Fugro West Inc. Report

Appendix C Summary of Previous Environmental Investigation

Appendix D Updated Lead Risk Evaluation

Appendix E Livermorium Park/Plaza Design Drawing

Appendix F Soil and Groundwater Management Plan

Appendix G Low-Threat Closure Request

1. Introduction

GHD Services Inc. (GHD) is submitting this *Interim Remedial Action Plan* (IRAP) for former Standard Oil Service Station 307233 located at 2259 First Street in Livermore, California (Figure 1) on behalf of Chevron Environmental Management Company (CEMC). In correspondence dated June 4, 2015 (Attachment A), Alameda County Environmental Health (ACEH) approved CRA's *Work Plan for Lead Delineation in Soil*, and requested that an IRAP be prepared. Subsequent ACEH correspondence dated August 27, 2015 (Appendix A) approved an extension for the submittal of the IRAP. A summary of the site background, low-threat closure evaluation, updated lead risk evaluation, and the IRAP are presented below.

2. Site Background

2.1 Site Description

The site is located on the eastern corner of First Street and South Livermore Avenue in Livermore, California (Figure 1). The earliest available aerial photograph from 1959 shows a gasoline service station building located on the southern edge of the property and two dispenser islands located on the western portion of the property. A 1973 aerial photograph indicates that the station building and dispenser islands had been removed, leaving an unoccupied paved lot. The City of Livermore purchased the site in 1974. By 1978, the Property had been redeveloped as Mills Square Park (Figure 2). The park remains in the same configuration as shown on a 1978 aerial photograph. The park consists of grass and trees with a paved walkway and gazebo. Land use surrounding the park is primarily commercial.

Since acquiring the Property from Standard Oil in 1974, the City has renovated the park on several occasions requiring digging and regrading (Appendix B). During the redevelopment activities, it is likely that lead-impacted fill was imported to the Property and/or spread across the Property. Fugro West Inc., the City's consultant for the redevelopment process in 2004, concluded in a January 6, 2004 *Soil and Groundwater Investigation Report* (Appendix B) that the source of the lead impacts at the Property was "unknown to Fugro," but "likely related to fill material at the Site".

2.2 Site Geology and Hydrogeology

The site is approximately 485 feet above mean sea level and regional topography slopes gently to the north. According to the September 2005 *Groundwater Management Plan* prepared by the Zone 7 Water Agency (Zone 7), the site is located in the Mocho II Sub-Basin of the Main Livermore-Amadore Valley Groundwater Basin. Zone 7 Water Agency extracts groundwater from this basin for municipal drinking water. Sediments in this basin are described as recent alluvium consisting of sandy gravel and sandy clayey gravel from the surface to approximately 150 feet below grade (fbg). This alluvium overlies the Livermore Formation.

Sediments encountered beneath the site during subsurface investigation consist of silty sand, silty gravel, and sandy gravel from the surface to approximately 9 fbg. Silt and clay are encountered between approximately 9 and 45 fbg, and sand and gravel are predominately encountered from approximately 45 fbg to the total depth explored of 62 fbg.

A current network of 12 onsite and offsite wells monitor groundwater in two water-bearing zones that have been identified below the site; Zone A at approximately 28 to 40 fbg and Zone B at approximately 55 fbg. Zone A is believed to be a seasonal perched zone that is not horizontally continuous across the site, as it was only encountered in the southern and eastern portions of the site, and wells MW-7 and MW-8 had insufficient groundwater to sample during the most recent sampling event. Groundwater in shallow Zone A ranges from approximately 25 to 37 fbg and flows toward the southwest. Groundwater in deeper Zone B is confined, ranges from approximately 27 to 38 fbg, and flows toward the northwest.

2.3 Remedial Actions and Current Site Conditions

Environmental assessment and remediation has been ongoing since 2003, beginning with an investigation initiated by the City of Livermore Engineering Division to assess soil and groundwater conditions prior to further development to the park. To date, 61 soil borings, 3 dual nested soil vapor probes and 12 wells have been installed. In 2005, one orphaned underground storage tank (UST) was removed and in 2007, two orphaned USTs and associated product piping were removed. A chronological summary of environmental investigation and remediation conducted to date is presented in Appendix C. The locations of all known monitoring wells, soil borings, and former USTs are presented on Figures 2 and 3.

Former UST locations and associated excavations are shown on Figure 2. Residual lead concentrations that will be removed during park renovations are shown on Figure 4. The extent of residual lead concentrations in soil remaining after the City's planned excavation associated with the park renovation are shown on Figure 5. Profile views showing the extent of lead concentrations, assumed excavation depths are shown on Figures 6 through 8. The management of excavated soil is described in the sections below.

3. Updated Lead Risk Evaluation

Lead data collected to date (Table 1) was used to perform a Tier 3 lead risk evaluation (RE). Risk exposure scenarios for child park users and commercial workers were evaluated following US Environmental Protection Agency (USEPA) and Department of Toxic Substances Control (DTSC) guidelines. Results of the evaluation show that the levels of lead within the soil beneath the park will not result in a concern for either a child or commercial worker. A more detailed summary of the RE and calculation tables are presented in Appendix D.

4. Soil Management during Park Renovation

Based on information provided by the City, the current park will be undergoing extensive renovations on behalf of the City and be renamed Livermorium Park/Plaza. A description of the renovation and procedures associated with the management of excavated soil are summarized below.

4.1 Description of Surface Cap

The majority of the site will be hardscaped (concrete or pavers) with the exception of a landscaped area in the western corner of the site (Appendix E). Further details on the hardscaping have not been provided by the City to date. Based on the design plans provided by the City, it is assumed

that the surface soil in the western corner landscaping will be replaced with new organically amended soil to promote growth for the new landscaping plants/trees. It is also assumed that the landscaped areas shown in the sidewalks along First Street and Livermore Avenue will not change or be similar to the current landscaping (flagstone sidewalk with trees planted in small exposed areas covered by steel grates).

4.2 Health and Safety Plan

A site-specific health and safety plan should be prepared by the contractor performing subsurface work, including excavation and grading, that addresses the proper safety of site workers and the public. In addition to specifying proper personal protection equipment (PPE) and monitoring equipment, establishing an exclusion zone around the work area needs to be included to prevent access to disturbed areas by the public during excavation activities.

4.3 Excavation and Grading Protocols

It is our understanding that the proposed renovations will require removal of approximately 1,400 cubic yards of soil from the site to facilitate sub-grade depth (assumed to be approximately 488 amsl) for the hardscaping, proposed depths for footings (for artwork and benches), removal of existing tree roots, and planting of new landscaping. Based on design plans provided by the City, it is assumed that soil excavated from the site will be disposed of offsite and new certified clean material (soil, engineered fill, concrete) will be used to replace the excavated soil. Excavated soils should not be used as surface fill or reused at another site.

During any activities disturbing site soils, it is recommended that water be applied on ground surfaces and/or uncovered soil stockpiles as needed such that there are no visible dust emissions beyond the construction zone boundary and no exceedances of the perimeter dust monitoring trigger levels. Although it is not anticipated that odor control will be necessary, in the event it is, odor control measures should consist of adding odor control agents such as simple green, Bio-Solve and/or F-500 to the dust suppression water.

The above procedures should also be followed if future repairs to new site utilities/landscaping are needed and extend below the base of the surface cap.

4.4 Management of Excavated Materials

Based on design plans provided by the City, it is assumed that any soil excavated from the site will be disposed of at an appropriately permitted disposal facility and not reused on or offsite. Based on waste disposal profiles from previous environmental investigation at the site, it is likely that any soil excavated during site renovation activities can be disposed of as non-hazardous. However, to facilitate any future soil disposal, GHD proposes to collect 4-point composite samples across the site that would facilitate soil disposal profiling of approximately 1,400 cubic yards.

4.5 Inspection and Maintenance of the Surface Cap

It is recommended that the surface cap be inspected annually at a minimum to ensure the integrity is maintained. If maintenance is required, ACEH should be notified and the repairs made in a timely manner following the appropriate procedures outlined above.

4.6 Institutional Controls

No institutional controls beyond what is described in the sections below are recommended.

4.7 Required Notifications and Approvals

Notification and approval by ACEH are required prior to implementation of any activities that disturb the surface cap or the subsurface. ACEH can be contacted at (510) 337-9335. Reference Fuel Leak Case RO0002908.

4.8 Contingency Plan

Based on data collected during previous investigation (soil borings, wells, and UST removal) and surveys performed by private utility locators using ground penetrating radar, it is not expected that any unknown features of environmental concern will be encountered during park renovation. However, in the event that unknown features of environmental concern are encountered during park renovation activities, the following steps should be implemented:

- Immediately stop work
- Notify ACEH at (510) 337-9335, reference Fuel Leak Case RO0002908
- Notify CEMC at (800) 338-5434, reference former Standard Oil Station 307233
- Do not proceed with work until approval from ACEH and CEMC is obtained

Additional contingency plan information is also included in CRA's previously submitted *Soil and Groundwater Management Plan*, dated May 2013 and included as Appendix F.

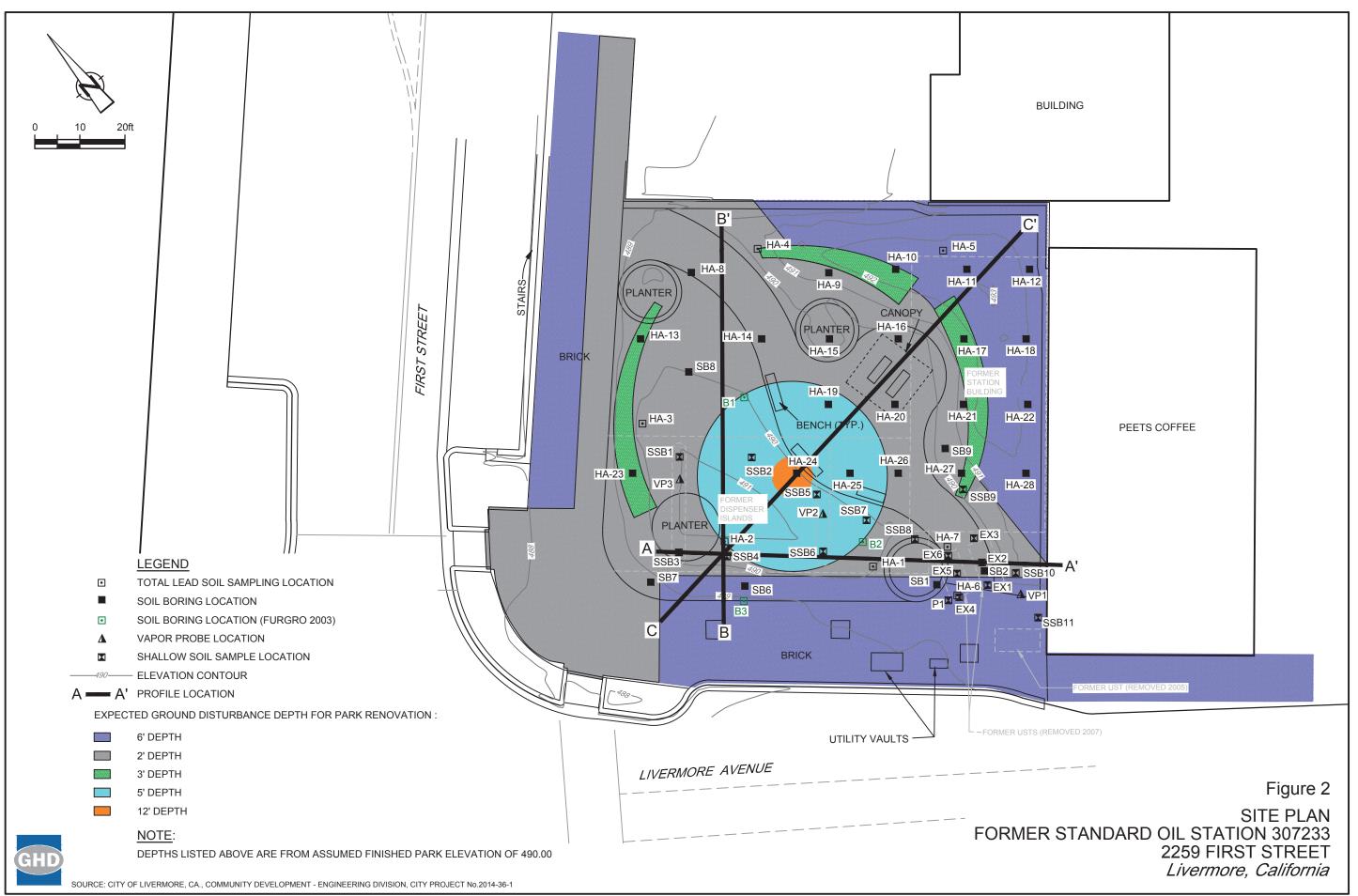
5. Low-Threat UST Case Closure Policy Evaluation

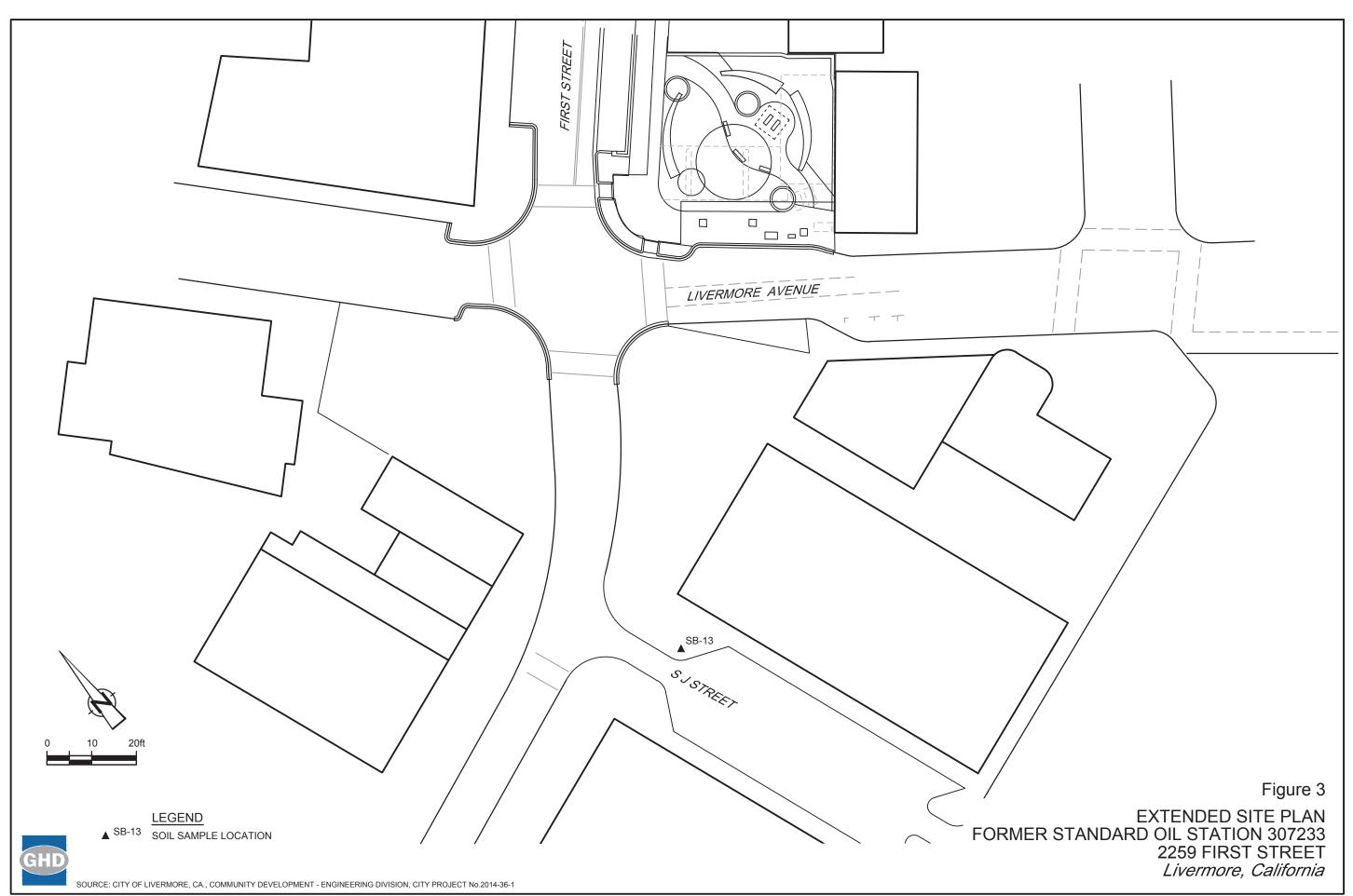
On August 17, 2012, the State Water Resource Control Board (SWRCB) adopted the low-threat UST case closure policy via Resolution 2012-0016. The intent of the policy is to increase cleanup process efficiency at petroleum release sites. A benefit of improved efficiency is the preservation of limited resources for mitigation of releases posing the greatest threat to human and environmental health. Under the policy, sites that meet the specified general and media-specific criteria pose a low threat to human health, safety, and the environment and are appropriate for case closure pursuant to Health and Safety Code section 25296.10. The policy further states that those sites that meet the criteria for low-threat closure do not require further corrective action and shall be issued a uniform closure letter. The general and media-specific criteria are described in Appendix G.

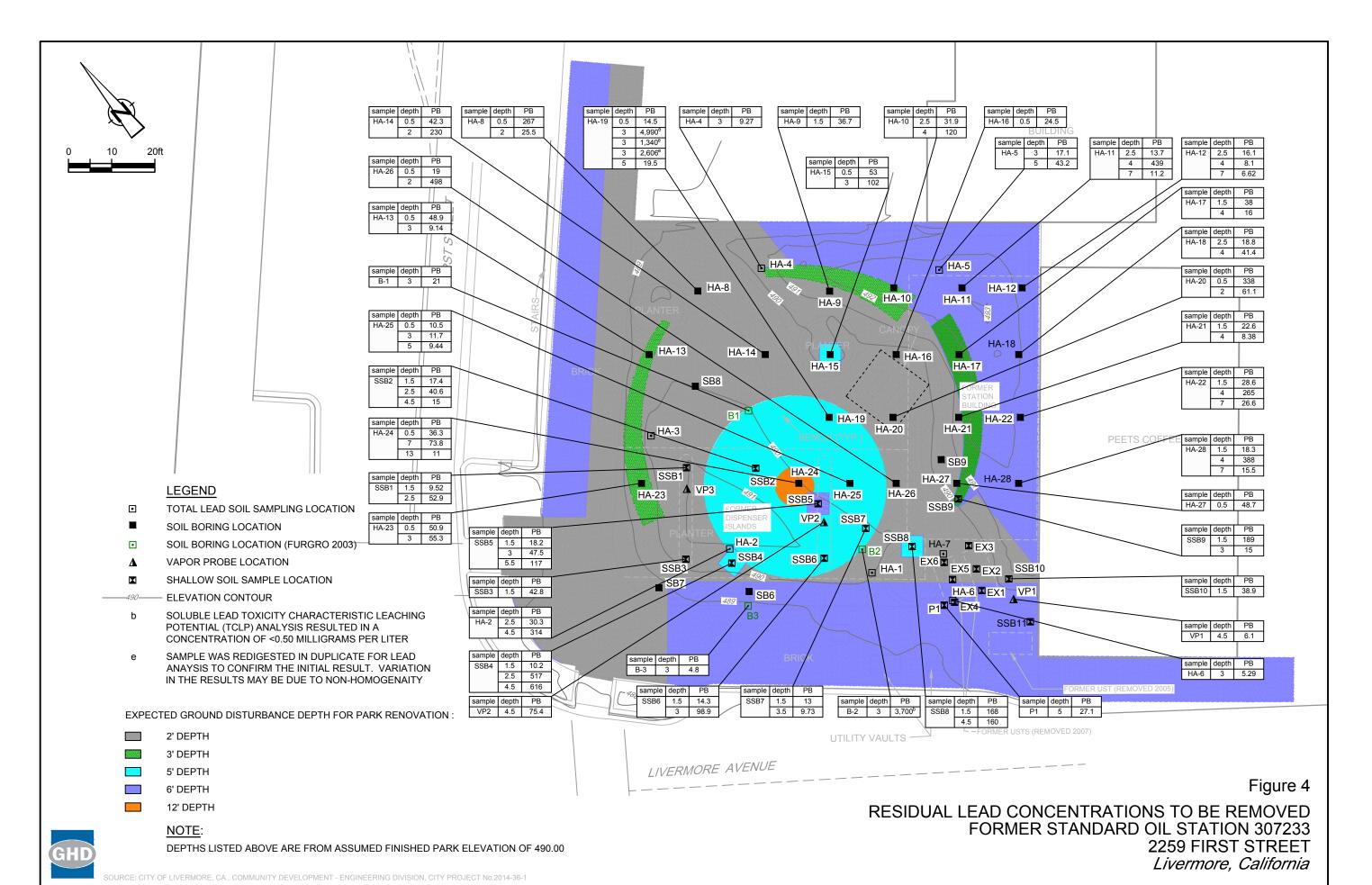
Based on the information presented in this and previous reports, site conditions meet the general and media-specific criteria of a low-threat UST release case established in the policy, and therefore pose a low threat to human health, safety, and the environment. A completed SWRCB low-threat checklist is included as Appendix E. The site satisfies the case closure requirements of Health and Safety Code section 25296.10, and case closure is consistent with Resolution 92-49 that requires cleanup goals be met within a reasonable time frame. Therefore, on behalf of CEMC, GHD

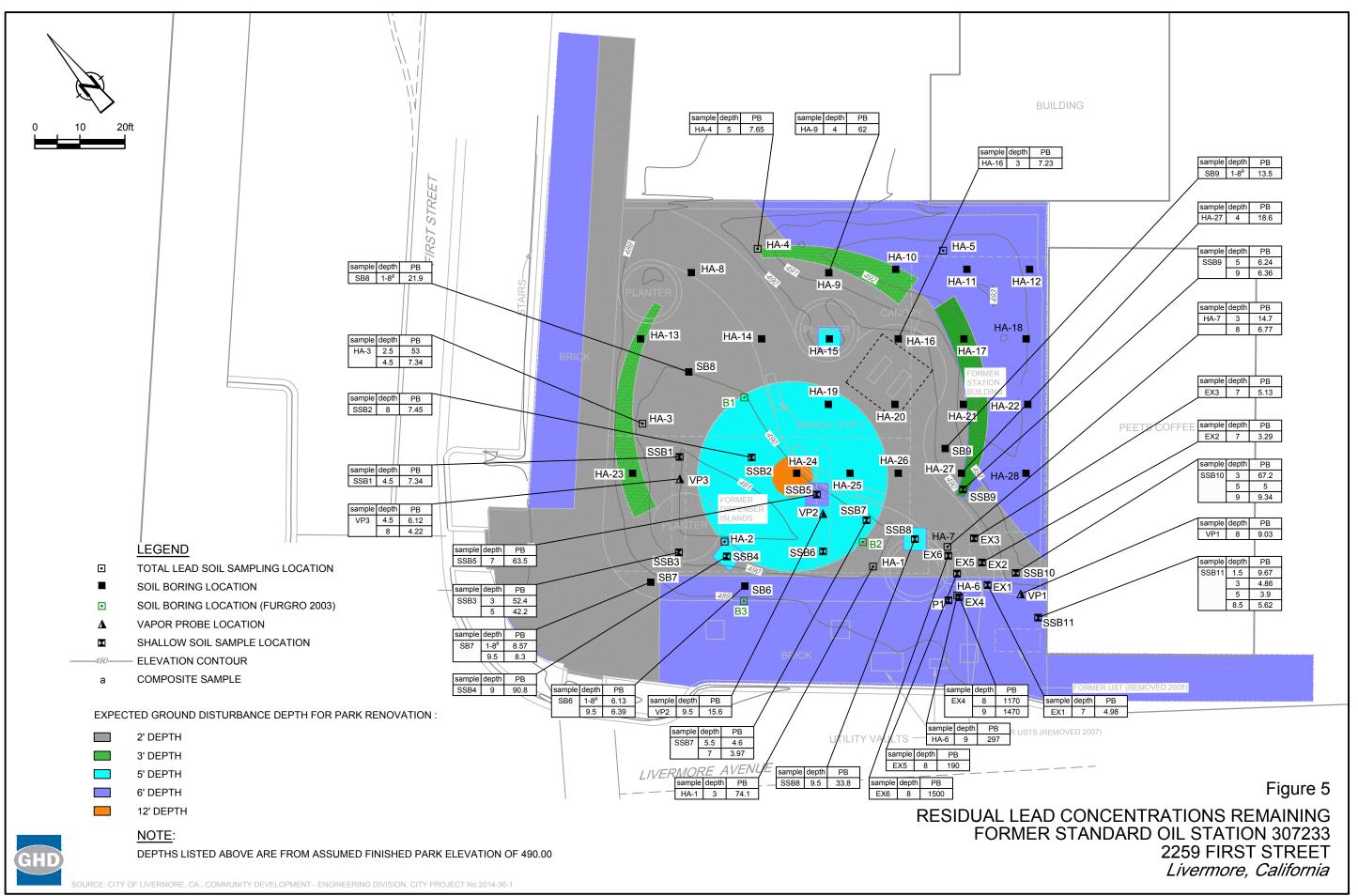
	7 Water Agenc	

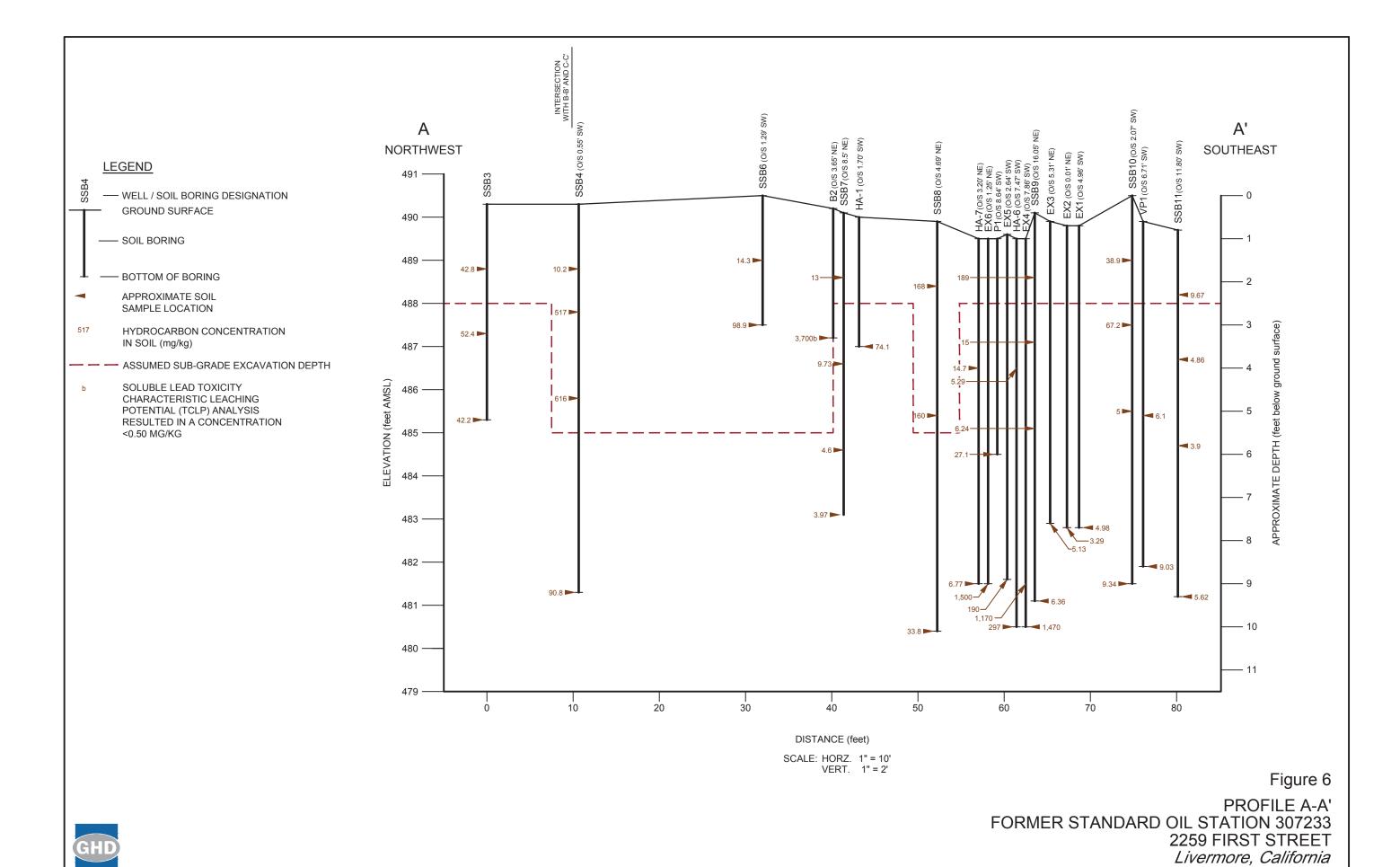
Figures

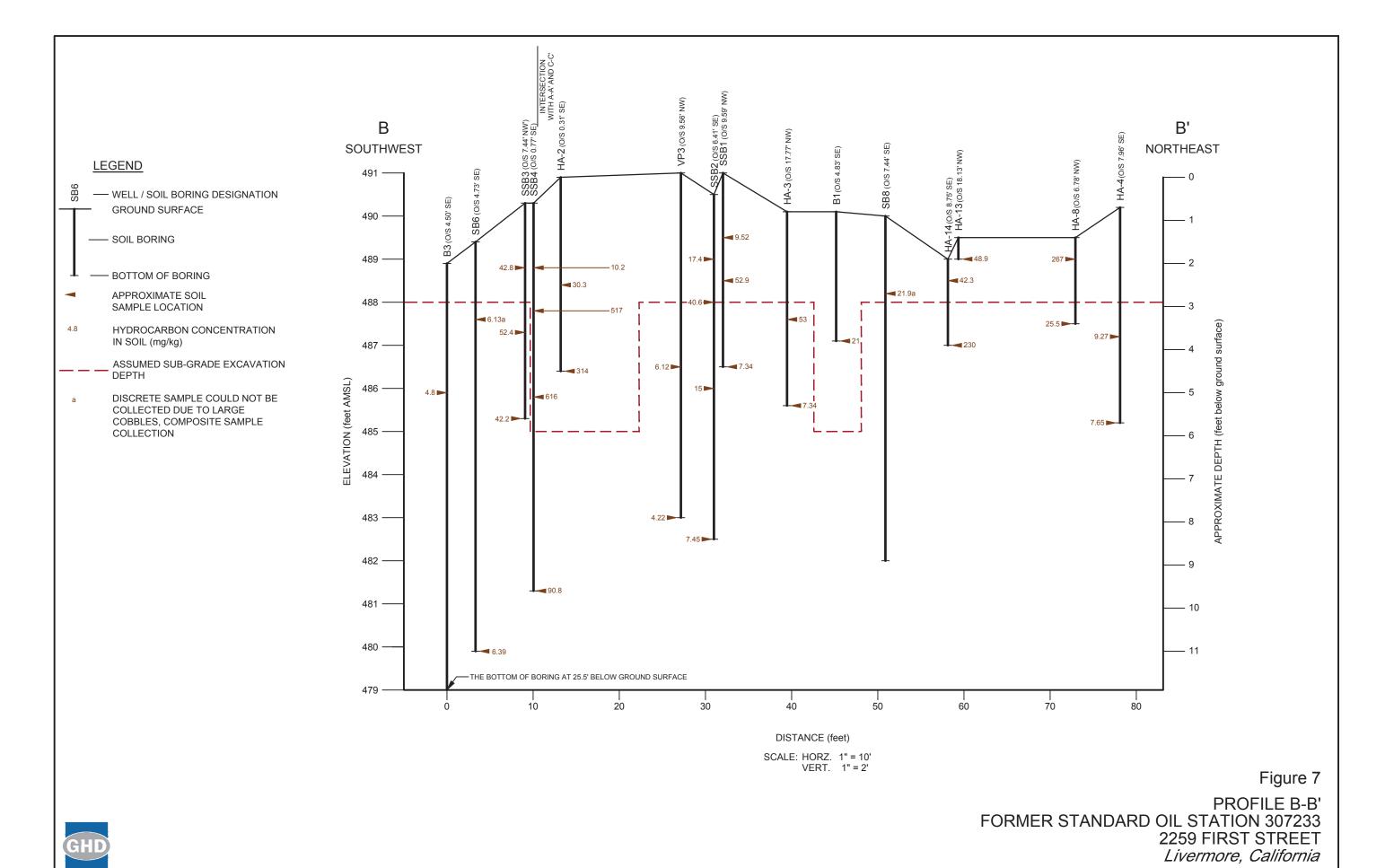


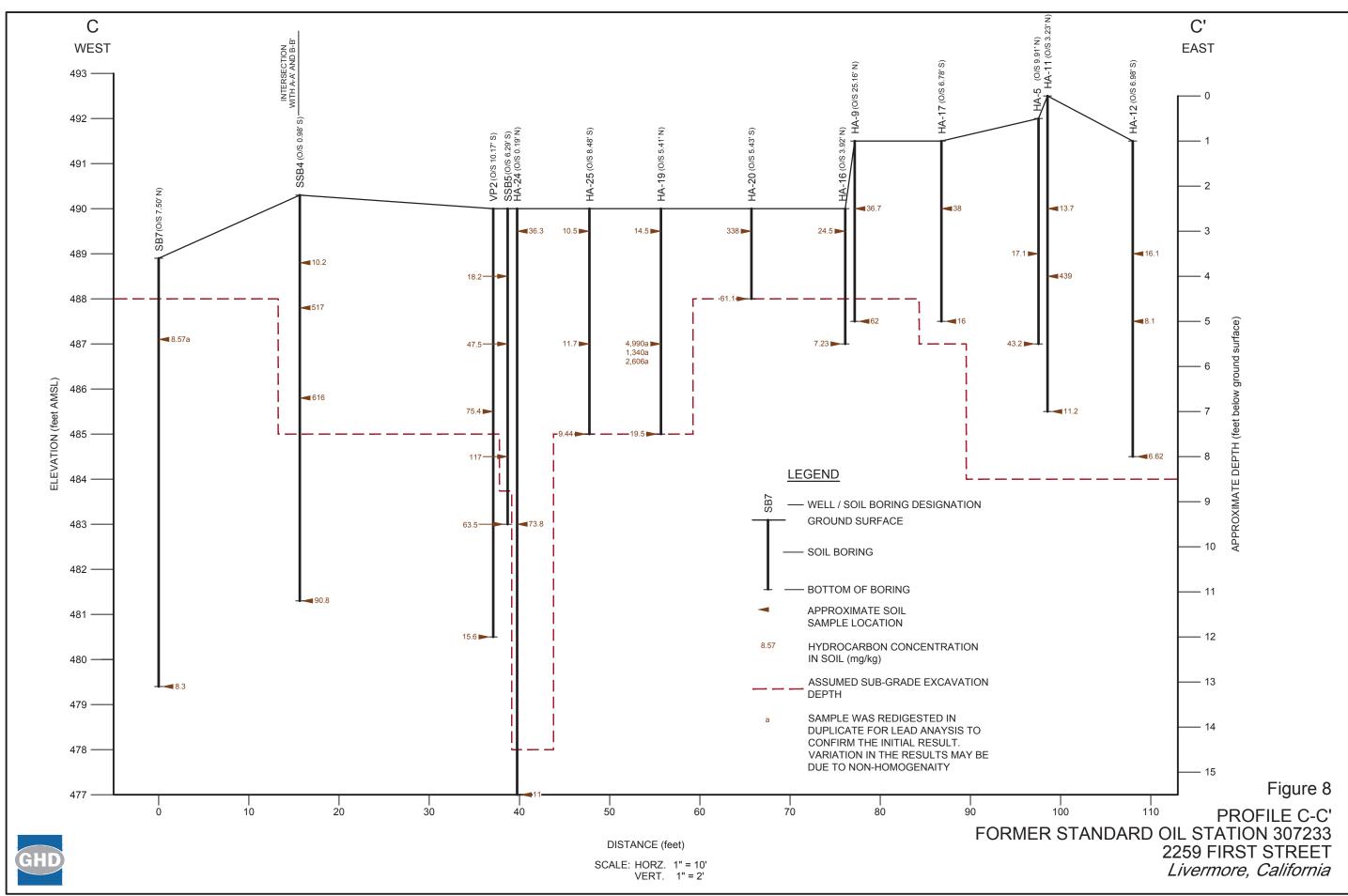

SOURCE: TOPO! MAPS.




GHD


VICINITY MAP FORMER STANDARD OIL STATION 307233 2259 FIRST STREET *Livermore, California*





Table

TABLE 1 Page 1 of 15

ESL	Sample ID	Date	Depth (fbg)	TPHmo	TPHd	_			Ethyl- benzene per kilogra	-	MTBE	<i>OXY</i> s	Pb
Table G Commercial/Industrial Sources * 83	ESL							g _[(9,	3 /		
Table G Sourse		Level (Drin	king Water										
Table K-2	Table G			83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
Table K-3								_					
Table K-3	Table K-2	Work	ker ^b	3,700	450	450	0.27	210	5	100	65	Varies	320
Commercial Land Use				•									
OEHAA Commercial Land Use - <td>Table K-3</td> <td>c</td> <td>;</td> <td>12,000</td> <td>4,200</td> <td>4,200</td> <td>12</td> <td>650</td> <td>210</td> <td>420</td> <td>2,800</td> <td>Varies</td> <td>320</td>	Table K-3	c	;	12,000	4,200	4,200	12	650	210	420	2,800	Varies	320
OEHAA Commercial Land Use - <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				-									
Description	OEHAA	Residentia	Land Use	-	-	-	-	-	-	-	-	-	80
Description													
0 to 5 fbg, Residential	OEHAA	Commercia	I Land Use	-	-	-	-	-	-	-	-	-	260
Sto 10 fbg, Residential, Outdoor Air NE	Low-Threat P	Policy - Direct Co	ntact and Outdo	oor Air Expo	sure	•						•	•
Sto 10 fbg, Residential, Outdoor Air NE													
Sto 10 fbg, Residential, Outdoor Air NE	O to 5 fbg Pos	sidential		NE	NE	NE	1.0	NE	21	NE	NE	NE	ME
NE NE NE NE NE NE NE NE	o to 5 lbg, ixes	Sideritiai		NL	NE	NE	1.5	NE	21	NE	NE	NE	NE
NE NE NE NE NE NE NE NE	5 to 10 fbg R6	esidential Outdoo	ar Δir	NE	NE	NE	2.8	NE	32	NE	NE	NE	NE
Ne	0 10 10 109, 110	Joidontial, Odlado	7 7 (1)	742	/42	/12	2.0	742	32	742	/42	/4_	/12
Ne	0 to 5 fbg C/L			NE	NF	NE	8.2	NE	89	NE	NF	NE	NF
0 to 10 fbg, Utility Worker	0 to 0 tog, 0/1			742	/12	/12	0.2	742	00	742	/42	/4_	/12
0 to 10 fbg, Utility Worker	5 to 10 fbg. C/	L Outdoor Air		NF	NF	NF	12	NF	134	NF	NF	NF	NF
Sugar Subsurface Investigation Subsurface	0 10 10 10g, 0/1	., • • • • • • • • • • • • • • • • • • •		712	/	742			101				/
Sugar Subsurface Investigation Subsurface	0 to 10 fbg. Ut	ility Worker		NE	NE	NE	14	NE	314	NE	NE	NE	NE
B-1													
B-1	2003 Fugro S	ubsurface Inves	tigation										
B-1	_		_										21
B-2				<50	<1.0	<1.0	<0.005	< 0.005	< 0.005	< 0.005	< 0.005		
B-2													
B-2 09/17/2003 30.0 <50 9.6 3.5 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.0													3,700****
B-3											- -		
B-3 09/17/2003 25.5 <	B-2	09/17/2003	30.0	<50	9.6	3.5	<0.005	<0.005	<0.005	<0.005	<0.005		
B-3 09/17/2003 25.5 <	B-3	09/17/2003	3.0										4.8
2005 Consolidated Engineering Tank Pull Sample (1) LFI				<50			< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		
Sample (1) LFI 09/20/2005 3.0 <2,500 4,100 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 <0.017 ND Sample (2) 09/20/2005 3.0 <250				100									
Sample (2) 09/20/2005 3.0 <250 1,300 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050			•										
Sample (3) 09/20/2005 3.0 <200 670 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <th< td=""><td> ,</td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	,			•									
Sample (4) 09/20/2005 3.0 <50 1.0 <1.000 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	. ,				•								
Sample (5) 09/20/2005 3.0 54 140 <1.000 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 ND Sample (6) 09/20/2005 3.0 <50													
Sample (6) 09/20/2005 3.0 <50 2.1 3 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.00	,												
October 2006 Subsurface Investigation SB-1 10/26/2006 10.0 <10 <1.0 <0.0005 <0.001 <0.001 <0.0005 ND SB-1 10/26/2006 15.0 350 140 15 <0.0005													
SB-1 10/26/2006 10.0 <10 <1.0 <0.0005 <0.001 <0.001 <0.0005 ND SB-1 10/26/2006 15.0 350 140 15 <0.0005	Sample (6)	09/20/2005	3.0	<50	2.1	3	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	ND	
SB-1 10/26/2006 10.0 <10 <1.0 <0.0005 <0.001 <0.001 <0.0005 ND SB-1 10/26/2006 15.0 350 140 15 <0.0005	October 2006	Subsurface Inve	estigation										
SB-1 10/26/2006 15.0 350 140 15 <0.0005 <0.001 <0.001 <0.001 <0.0005 ND SB-1 10/26/2006 22.0 1,400 780 2,800 <0.062			J	<10	<10	<1.0	<0.0005	<0.001	< 0.001	<0.001	<0.0005	ND	
SB-1 10/26/2006 22.0 1,400 780 2,800 <0.062 2.1 7.5 <0.12 <0.062 ND SB-1 10/26/2006 26.0 390 590 1,100 0.62 0.19 5.5 19 <0.062													
SB-1 10/26/2006 26.0 390 590 1,100 0.62 0.19 5.5 19 <0. 062 ND SB-1 10/26/2006 32.0 94 120 180 2.0 17 13 65 <0. 063 ND													
SB-1 10/26/2006 32.0 94 120 180 2.0 17 13 65 <0.063 ND													
SB-1 10/26/2006 35.5 67 99 1,200 1.0 5.5 2.7 16 <0.062 ND	SB-1	10/26/2006	35.5	67	99			5.5	2.7				
SB-1 10/26/2006 39.5 <10 20 1,000 0.90 0.93 2.5 11 <0.063 ND				٠.		1,200	1.0	0.0			<0.00Z	IND	

TABLE 1Page 2 of 15

Sample ID	Date	Depth (fbg)	ТРНто	TPHd	TPHg Repo			Ethyl- benzene per kilogra	-	MTBE g) ▲	<i>OXY</i> s	Pb
ESL	T					_						
	Level (Drini	_										
Table G	Sours		83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
	Commercial							_			l l	
Table K-2	Work		3,700	450	450	0.27	210	5	100	65	Varies	320
Table K 2	Construction/T		40.000	4 200	4 200	40	CEO	240	400	2 000	Varias	220
Table K-3			12,000	4,200	4,200	12	650	210	420	2,800	Varies	320
OEHAA	Residential	Land Uso	-	_	_	_	_	_	_	_	_	80
OEIIAA	Residential	Lanu Use			-	 	-				-	00
OEHAA	Commercial	I I and Use	_	_	_	_	_	_	_	_	_	260
	Policy - Direct Con		or Air Expo	sure		-					ļ	
0.4 5 % D						4.0		0.4				
0 to 5 fbg, Res	sidential		NE	NE	NE	1.9	NE	21	NE	NE	NE	NE
E to 10 fbg Da	soldential Outdoor	- Λ:-	ME	A/F	N/E	0.0	NE	20	A/F	A/F	N/E	A/F
5 to 10 lbg, Re	esidential, Outdoo	I All	NE	NE	NE	2.8	NE	32	NE	NE	NE	NE
0 to 5 fbg, C/I			NE	NE	NE	8.2	NE	89	NE	NE	NE	NE
0 to 3 lbg, C/I			NE	NE	NE	0.2	NE	09	IVE	NE	NE	NE
5 to 10 fbg, C/l	I Outdoor Air		NE	NE	NE	12	NE	134	NE	NE	NE	NE
0 to 10 lbg, 0/1	i, odiacoi / iii		742	/*_	742	12	***	104	742	/ \L	/12	/4_
0 to 10 fbg, Uti	ility Worker		NE	NE	NE	14	NE	314	NE	NE	NE	NE
SB-3	10/23/2006	10.0	<10	<10	<1.0	<0.0005	0.001	<0.001	0.002	<0.0005	ND	
SB-3	10/23/2006	15.0	<10	<10	<1.0	<0.0005		<0.001	0.002	<0.0005	ND	
SB-3	10/23/2006	21.0	<20	82	1,800	<0.062	<0.12	4.8	15	< 0.062	ND	
SB-3	10/23/2006	25.0	88	3,000	8,700	14	410	120	770	<0.31	ND	
SB-3	10/23/2006	30.0	<20	230	5,400	3.2	68	40	250	<0.062	ND	
SB-3	10/23/2006	35.0	<10	17	630	0.080	<0.12	0.56	1.1	<0.062	ND	
SB-3	10/23/2006	39.5	<20	62	130	0.23	1.5	0.81	5.5	< 0.063	ND	
SB-4	09/12/2006	5.0	<18	33	1.3	< 0.0005	< 0.001	< 0.001	< 0.001	<0.0005	ND	
SB-4	09/12/2006	10.0	<20	28	2.8	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB-4	09/12/2006	15.0	<20	<12	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB-4	09/12/2006	20.0	<20	<10	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB-4	09/12/2006	25.0	<20	24	310	< 0.003	< 0.005	0.008	< 0.005	< 0.003	ND	
SB-4	09/12/2006	27.5	<20	260	1,600	0.10	0.14	4.5	19	< 0.062	ND	
SB-4	09/12/2006	30.0	<20	<12	22	0.003	< 0.005	0.014	0.007	< 0.002	ND	
SB-4	09/12/2006	35.0	<20	45	320	< 0.063	<0.13	<0.13	<0.13	< 0.063	ND	
SB-4	09/12/2006	39.5	<16	<10	1.2	0.15	< 0.001	< 0.001	<0.001	< 0.0005	ND	
CD E	10/04/0000	10.0	-40	-10	-1.0	-0.0005	0.004	-0.004	0.000	-0.0005	ND	
SB-5	10/24/2006	10.0	<10	<10	<1.0	<0.0005		<0.001	0.002	<0.0005	ND	
SB-5	10/26/2006 10/26/2006	15.0 10.5	<10	<10 700	<1.0 27	<0.0005 <0.0005		<0.001 <0.001	<0.001 0.001	<0.0005	ND	
SB-5	10/26/2006	19.5	560 450	620		<0.0005 0.78	<0.001	<0.001 8.5	12	< 0.0005	ND	
SB-5		26.0	450 140	320	1,100 950	< 0.062		8.5 1.1	2.0	< 0.063	ND	
SB-5	10/26/2006 10/26/2006	30.0	140	630	3,100	<0.062 17	<0.12 67	38	∠.0 130	<0.062 <0.13	ND	
SB-5		34.0	290	80		5.4	2.6	36 13	73		ND	
SB-5	10/26/2006	39.5	<10	80	1,400	5.4	2.0	13	13	<0.062	ND	

TABLE 1Page 3 of 15

Sample ID	Date	Depth (fbg)	ТРНто	TPHd	•	Benzene rted in mi			-	MTBE g) ▲	<i>OXY</i> s	Pb
ESL	T			1	T							
Table G	Level (Dring Sours		83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
	Commercia	l/Industrial										
Table K-2	Work		3,700	450	450	0.27	210	5	100	65	Varies	320
Table K-3	Construction/T		12,000	4,200	4,200	12	650	210	420	2,800	Varies	320
			ĺ									
OEHAA	Residential	Land Use	-	-	-	-	-	-	-	-	-	80
OEHAA	Commercia	I Land Use	_	_	_	_	_	_	_	-	_	260
Low-Threat P	Policy - Direct Co.	ntact and Outdo	or Air Expo	sure	Į.	-					!!	
0 to 5 fbg, Res	sidential		NE	NE	NE	1.9	NE	21	NE	NE	NE	NE
5 to 10 fbg, Re	esidential, Outdoo	r Air	NE	NE	NE	2.8	NE	32	NE	NE	NE	NE
0 to 5 fbg, C/I			NE	NE	NE	8.2	NE	89	NE	NE	NE	NE
5 to 10 fbg, C/	I. Outdoor Air		NE	NE	NE	12	NE	134	NE	NE	NE	NE
3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	,											
0 to 10 fbg, Ut	ility Worker		NE	NE	NE	14	NE	314	NE	NE	NE	NE
2007 Tank Pu	II											
EX1	06/20/2007	7.0	<580	<4.0	<1.0	<0.0005	<0.001	< 0.001	<0.001	<0.0005	ND	4.98
EX2	06/20/2007	7.0	<580	<4.0	<1.0	< 0.0005		<0.001	<0.001	< 0.0005	ND	3.29
EX3	06/20/2007	7.0	<580	<4.0	<1.0	< 0.0005		< 0.001	<0.001	< 0.0005	ND	5.13
EX4	06/20/2007	8.0	11,000	2,800	<1.0	< 0.0005		< 0.001	< 0.001	< 0.0005	ND	1,170
EX4	06/20/2007	9.0	3,100	1,400	<100	< 0.0005		< 0.001	0.004	< 0.0005	ND	1,470
EX5	06/20/2007	8.0	<580	100	<10	< 0.0005		< 0.001	< 0.001	< 0.0005	ND	190
EX6	06/20/2007	8.0	3,000	1,300	<400	< 0.0005		< 0.001	< 0.001	< 0.0005	ND	1,500
P1	06/20/2007	5.0	<580	<4.0	<1.0	< 0.0005		< 0.001	< 0.001	< 0.0005	ND	27.1
2000 Cubaum												
CPT1	ace Investigation 02/05/2008	21.0	<10	<4.0	<1.0	<0.0005	-0.001	<0.001	<0.001	<0.0005	ND	
CPT1	02/05/2008	36.0	380	100	1.0	<0.0005		<0.001	<0.001	<0.0005	ND	
CPT2	02/04/2008	22.0	<10	<4.0	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	
CPT2	02/04/2008	30.0	<10	27	4.4	<0.026	<0.052	1.1	0.18	<0.026	ND	
CPT2	02/04/2008	35.0	<12	<4.0	1.3	0.0009	<0.001	<0.001	0.002	<0.0005	ND	==
CPT3	11/04/2008	18.5	<10	<4.0	<1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	ND	
CPT3	11/04/2008	35.5	<10	<4.0	<1.0	< 0.0005	<0.001	< 0.001	< 0.001	< 0.0005	ND	
CPT3	11/04/2008	55.5	<10	7.1	52	<0.024	<0.047	< 0.047	<0.047	< 0.024	ND	
CPT4	11/05/2008	50.0	<10	<4.0	<1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	ND	
CPT5	11/03/2008	51.5	<10	<4.0	<1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	ND	
SB6	01/28/2008	1-8***	<10	<4.0	<1.0	<0.0005	< 0.001	< 0.001	< 0.001	<0.0005	ND	6.13
SB6	01/28/2008	9.5	<10	<4.0	<1.0	<0.0005	<0.001	< 0.001	< 0.001	<0.0005	ND	6.39
SB6	01/28/2008	19.5	<10	<4.0	<1.0	<0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	5.79
SB6	01/28/2008	24.0	<10	<4.0	<1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	ND	10.9

TABLE 1 Page 4 of 15

Sample ID	Date	Depth (fbg)	ТРНто	TPHd	TPHg Repo	Benzene rted in mil			-	MTBE g) ◆	<i>OXY</i> s	Pb
ESL												
Table C	Level (Drini Sours	_	83	02	02	0.044	2.0	2.2	2.2	0.022	Vorion	ME
Table G	Commercial		03	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
Table K-2	Work		3,700	450	450	0.27	210	5	100	65	Varies	320
	Construction/T											
Table K-3	С		12,000	4,200	4,200	12	650	210	420	2,800	Varies	320
OEHAA	Residential	Land Use	-	-	-	-	-	-	-	-	-	80
ОЕНАА	Commercial	I I and I Iso	_		_	_	_	_	_	_	_	260
	olicy - Direct Co		or Air Eyno	SUITA								200
_OW-THICALF	Shoy - Direct COI	naci ana Gulul	JOI AII EADU	Jul 6								
01-54 5	dala a dal					4.0		0.1				
0 to 5 fbg, Res	sidential		NE	NE	NE	1.9	NE	21	NE	NE	NE	NE
5 to 10 fbg, Re	esidential, Outdoor	r Air	NE	NE	NE	2.8	NE	32	NE	NE	NE	NE
0 to 5 fbg, C/I			NE	NE	NE	8.2	NE	89	NE	NE	NE	NE
0 to 0 tog, 0/1			712		**-	0.2	742	00	/	/		
5 to 10 fbg, C/	I, Outdoor Air		NE	NE	NE	12	NE	134	NE	NE	NE	NE
0 to 10 fbg, Ut	ility Worker		NE	NE	NE	14	NE	314	NE	NE	NE	NE
SB7	01/28/2008	1-8***	<10	<4.0	<1.0	<0.0005	-0.001	<0.001	<0.001	<0.0005	ND	8.57
SB7	01/30/2008	9.5	<10	<4.0 <4.0	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	8.30
SB7	01/30/2008	19.5	<10	<4.0 <4.0	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	4.70
SB7	01/30/2008	29.5	<10	<4.0 <4.0	3.7	<0.0005		<0.001	<0.001	<0.0005	ND	10.5
SB7	01/30/2008	34.5	<10	<4.0	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	11.6
SB8	01/28/2008	1-8***	53	18	<1.0		<0.0009	<0.0009	<0.0009	<0.0005	ND	21.9
SB8	01/31/2008	19.5	<10	<4.0	<1.0	< 0.0005		< 0.001	<0.001	< 0.0005	ND	10.3
SB8	01/31/2008	29.5	<10	<4.0	1.2	< 0.0005		<0.001	<0.001	< 0.0005	ND	8.29
SB8	01/31/2008	34.5	<10	67	530	< 0.027	< 0.054	0.10	< 0.054	< 0.027	ND	7.86
SB8	01/31/2008	39.5	<10	<4.0	<1.0	0.007	0.002	0.015	0.007	0.039	0.034 ^d	8.93
SB9	01/28/2008	1-8***	32	13	1.3	<0.0005	<0.001	<0.001	<0.001	<0.0005	ND	13.5
SB9	01/29/2008	15.0	<10	<4.0	<1.0	< 0.0005	<0.001	< 0.001	<0.001	< 0.0005	ND	6.36
SB9	01/29/2008	27.5	<10	<4.0	<1.0	< 0.0005	<0.001	< 0.001	<0.001	< 0.0005	ND	7.92
SB9	01/29/2008	34.5	<10	<4.0	<1.0	< 0.0005	< 0.001	<0.001	<0.001	< 0.0005	ND	12.3
SB9	01/29/2008	46.5	<10	<4.0	<1.0	<0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	9.34
SB9	01/29/2008	54.5	<10	<4.0	<1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	ND	5.77
SB10	10/23/2008	5.0	<10	<4.0	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	
SB10	11/04/2008	16.0	<10	<4.0	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	
SB10	11/04/2008	26.0	<10	<4.0	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	
SB10	11/04/2008	36.0	<10	<4.0	<1.0	<0.0005	<0.0009	<0.0009	< 0.0009	<0.0005	ND	
SB10	11/04/2008	46.0	<10	4.2	<1.0	< 0.0005		<0.001	<0.001	< 0.0005	ND	
SB10	11/04/2008	56.0	<10	<4.0	<1.0	< 0.0005	<0.001	<0.001	<0.001	< 0.0005	ND	
SB10	11/04/2008	62.0	<10	<4.0	<1.0	< 0.0005	<0.001	<0.001	< 0.001	< 0.0005	ND	

TABLE 1Page 5 of 15

Sample ID	Date	Depth (fbg)	TPHmo	TPHd	TPHg Repo	Benzene rted in mil		Ethyl- benzene per kilogra	-	MTBE g) ⁴	OXYs \	Pb
ESL						1			г г			
	Level (Drin	-										
Table G	Sours		83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
	Commercia											
Table K-2	Work		3,700	450	450	0.27	210	5	100	65	Varies	320
	Construction/T											
Table K-3	С		12,000	4,200	4,200	12	650	210	420	2,800	Varies	320
051144												
OEHAA	Residential	Lana Use	-	-	-	-	-	-	-	-	-	80
OEHAA	Commercia	I Land Use	_	_	_	_	_	_	_	_	_	260
	Policy - Direct Co		or Air Expo	sure		 	<u> </u>		l .			
												
0 to 5 fbg, Res	sidential		NE	NE	NE	1.9	NE	21	NE	NE	NE	NE
5 to 10 fbg, Re	esidential, Outdoo	r Air	NE	NE	NE	2.8	NE	32	NE	NE	NE	NE
0 to 5 fb a 0/1						0.0		00				
0 to 5 fbg, C/I			NE	NE	NE	8.2	NE	89	NE	NE	NE	NE
5 to 10 fbg, C/	/I Outdoor Air		NE	NE	NE	12	NE	134	NE	NE	NE	NE
3 to 10 lbg, C/	i, Odladoi Ali		NE	NE	NE	12	NE	134	NE	NE	NE	NE
0 to 10 fbg, Ut	ility Worker		NE	NE	NE	14	NE	314	NE	NE	NE	NE
0044	40/04/0000	F 0	40	4.0	4.0	0.0005	0.004	0.004	0.004	0.0005	ND	
SB11	10/24/2008	5.0	<10	<4.0	<1.0	< 0.0005		< 0.001	<0.001	< 0.0005	ND	
SB11	11/03/2008	11.0	<10	<4.0	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	
SB11	11/03/2008	16.0	<10	<4.0	<1.0	< 0.0005		< 0.001	<0.001	<0.0005	ND	
SB11	11/03/2008	26.0	<10	<4.0	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	
SB11	11/03/2008	36.0	<10	<4.0	<1.0	<0.0005		<0.001	<0.001	<0.0005	ND	
SB11	11/03/2008	45.5	<10	<4.0	59 50		<0.0009	<0.0009	<0.0009	<0.0005	ND	
SB11	11/03/2008	50.5	<10	25	59	<0.023	<0.045	<0.045	<0.045	<0.023	ND	
SB11	11/03/2008	56.0	<10	45	98	<0.023	<0.047	<0.047	<0.047	<0.023	ND	
SB11	11/03/2008	61.0	<10	<4.0	<1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	ND	
SB12	10/24/2008	5.0	<10	<4.0	<1.0	<0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB12	11/03/2008	15.5	<10	<4.0	<1.0	< 0.0005		< 0.001	< 0.001	< 0.0005	ND	
SB12	11/03/2008	25.5	<10	<4.0	120		< 0.046	< 0.046	< 0.046	< 0.023	ND	
SB12	11/03/2008	30.0	<10	34	58	< 0.024		< 0.047	< 0.047	< 0.024	ND	
SB12	11/03/2008	35.5	<10	<4.0	<1.0	< 0.0005		< 0.001	<0.001	< 0.0005	ND	
SB12	11/03/2008	45.5	<10	<4.0	1.3	0.0007		<0.001	<0.001	< 0.0005	ND	
SB12	11/03/2008	50.5	<10	65	1,200	<0.023	<0.046	< 0.046	< 0.046	< 0.023	ND	
SB12	11/03/2008	55.5	<10	55	1,300	1.1	0.15	2.0	3.7	< 0.024	ND	
SB12	11/03/2008	60.5	<10	<4.0	<1.0	<0.0005		< 0.001	<0.001	< 0.0005	ND	
							'					c =-
SSB1	02/01/2008	1.5										9.52
SSB1	02/01/2008	2.5										52.9
SSB1	02/01/2008	4.5										7.34
SSB2	01/28/2008	1.5										17.4
SSB2	01/30/2008	2.5		11	1.2	<0.0005		<0.001	<0.001	<0.0005	ND	40.6
SSB2	01/30/2008	4.5		4.4	<1.0	< 0.0005		< 0.001	< 0.001	< 0.0005	ND	15.0
SSB2	01/30/2008	8.0		<4.0	<1.0	< 0.0005		<0.001	< 0.001	< 0.0005	ND	7.45

TABLE 1 Page 6 of 15

Sample ID	Date	Depth (fbg)	ТРНто	TPHd	TPHg Repo			Ethyl- benzene per kilogra	-	MTBE	OXYs 1	Pb
ESL	1			1	ı	1	ı	1		1	1	
Table G	Level (Dring Sours	-	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
	Commercia	l/Industrial										
Table K-2	Work	rer ^b	3,700	450	450	0.27	210	5	100	65	Varies	320
	Construction/T	rench Worker										
Table K-3	С		12,000	4,200	4,200	12	650	210	420	2,800	Varies	320
OEHAA	Residential	Land Use		-	-	-	-	-	-	-	-	80
ОЕНАА	Commercia	I Land Use	-	-	-	-	-	-	-	-	-	260
Low-Threat P	olicy - Direct Co.	ntact and Outdo	oor Air Expo	sure	2		<u>-</u>	•	•	•		
0 to 5 fbg, Res	sidential		NE	NE	NE	1.9	NE	21	NE	NE	NE	NE
5 to 10 fbg, Re	esidential, Outdoo	r Air	NE	NE	NE	2.8	NE	32	NE	NE	NE	NE
0 to 5 fbg, C/I			NE	NE	NE	8.2	NE	89	NE	NE	NE	NE
5 to 10 fbg, C/	I, Outdoor Air		NE	NE	NE	12	NE	134	NE	NE	NE	NE
0 to 10 fbg, Ut	ility Worker		NE	NE	NE	14	NE	314	NE	NE	NE	NE
SSB3	01/30/2008	1.5										42.8
SSB3	02/06/2008	3.0										52.4
SSB3	02/06/2008	5.0										42.2
	02/00/2000	3.0										72.2
SSB4	02/01/2008	1.5										10.2
SSB4	02/01/2008	2.5										517
SSB4	02/01/2008	4.5										616
SSB4	02/01/2008	9.0										90.8
SSB5	02/06/2008	1.5										18.2
SSB5		3.0	 									
SSB5	02/06/2008 02/06/2008	5.5										47.5 117
SSB5	02/06/2008	7.0	 									63.5
3303	02/00/2006	7.0										03.3
SSB6	02/06/2008	1.5										14.3
SSB6	02/06/2008	3.0										98.9
SSB7	02/06/2008	1.5										13.0
SSB7	02/06/2008	3.5										9.73
SSB7	02/06/2008	5.5										4.60
SSB7	02/06/2008	7.0										3.97
SSB8	02/04/2009	1.5										160
SSB8	02/01/2008 02/01/2008	1.5 4.5	==									168 160
SSB8	02/01/2008	4.5 9.5										33.8
			==									JJ.0
SSB9	02/06/2008	1.5										189
SSB9	02/06/2008	3.0										15.0
SSB9	02/06/2008	5.0										6.24
SSB9	02/06/2008	9.0										6.36

TABLE 1 Page 7 of 15

CUMULATIVE SOIL ANALYTICAL DATA FORMER STANDARD OIL SERVICE STATION 30-7233 2259 FIRST STREET, LIVERMORE, CALIFORNIA

Sample ID	Date	Depth (fbg)	ТРНто	TPHd	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylene	MTBE	<i>OXY</i> s	Pb
•		(0)			•	rted in mi			•			
ESL					-							
	Level (Drin	king Water										
Table G	Sour	/	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
	Commercia											
Table K-2	Work		3,700	450	450	0.27	210	5	100	65	Varies	320
T-11- 1/ 0	Construction/T		40.000	4.000	4.000	40	050	040	400	0.000	V	200
Table K-3			12,000	4,200	4,200	12	650	210	420	2,800	Varies	320
OEHAA	Residential	Land Use	_	_	_	_	_	_	_	_	_	80
OEHAA	Commercia		-	-	-	-	-	-	-	-	-	260
Low-Threat P	olicy - Direct Co	ntact and Outdo	oor Air Expo	sure								
0 to 5 fbg, Res	sidential		NE	NE	NE	1.9	NE	21	NE	NE	NE	NE
5 to 10 fbg, Re	esidential, Outdoo	r Air	NE	NE	NE	2.8	NE	32	NE	NE	NE	NE
0 to 5 fbg, C/I			NE	NE	NE	8.2	NE	89	NE	NE	NE	NE
5 to 10 fbg, C/	I, Outdoor Air		NE	NE	NE	12	NE	134	NE	NE	NE	NE
0 to 10 fbg, Uti	ilitv Worker		NE	NE	NE	14	NE	314	NE	NE	NE	NE
SSB10	04/24/2009	4.5										20.0
SSB10 SSB10	01/31/2008 02/06/2008	1.5 3.0	==									38.9 67.2
SSB10 SSB10	02/06/2008 02/06/2008	5.0 9.0										5.00 9.34
33510	02/00/2008	9.0										3.34
SSB11	02/06/2008	1.5										9.67
SSB11	02/06/2008	3.0										4.86
SSB11	02/06/2008	5.0										3.90
SSB11	02/06/2008	8.5										5.62
VP1	02/01/2008	4.5	<10	<4.0	<1.0	< 0.0005	<0.001	<0.001	<0.001	<0.0005	ND	6.10
VP1	02/01/2008	8.0	<10	<4.0	<1.0	< 0.0005	<0.0009	< 0.0009	< 0.0009	< 0.0005	ND	9.03
VP2	02/04/2009	4 5	ΕΛ	25	-1.0	-0.000E	-0.000	-0.000	-0.000	-0.000E	ND	75 /
VP2 VP2	02/01/2008 02/01/2008	4.5 9.5	54 <10	<4.0	<1.0 <1.0			<0.0009			ND ND	75.4 15.6
VFZ	02/01/2000	9.5	<10	<4.0	<1.0	<0.0003	<0.0003	<0.0009	<0.0009	<0.0003	ND	13.0
VP3	02/01/2008	4.5	<10	<4.0	1.0	< 0.0005		<0.001	<0.001	< 0.0005	ND	6.12
VP3	02/01/2008	8.0	<10	<4.0	<1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	ND	4.22
2010 CRA We	II Installation											
MW-1	03/29/2010	4.0	<10	<4.0	<1.0	< 0.0005	<0.0009	< 0.0009	< 0.0009			
MW-1	04/07/2010	9.5	<10	<4.0	<1	< 0.0005	< 0.001	<0.001	<0.001			
MW-1	04/07/2010	14.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-1	04/07/2010	19.5	<10	<4.0	< 0.9	<0.0005	< 0.001	< 0.001	<0.001			
MW-1	04/07/2010	24.5	<10	<4.0	<1	<0.0005	< 0.001	< 0.001	<0.001			
MW-1	04/07/2010	29.5	<10	31	310	< 0.025	< 0.049	< 0.049	< 0.049			
MW-1	04/07/2010	34.5	<10	<4.0	<1.0	0.0005		< 0.001	< 0.001			
MW-1	04/07/2010	39.5	<10	<4.0	6.8	< 0.0005		< 0.001	< 0.001			
MW-1	04/07/2010	44.5	<10	<4.0	5.0	< 0.0005		< 0.001	< 0.001			
MW-1	04/07/2010	49.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-1	04/07/2010	54.5	<10	<4.0	< 0.9	< 0.0005	< 0.001	<0.001	<0.001			
MW-1	04/07/2010	59.5	<10	<4.0	<1	<0.0005	<0.0009	<0.0009	<0.0009			
MW-2	04/05/2010	9.5	<10	<4.0	<1	<0.0005	<0.0009	<0.0009	<0.0009			
MW-2	04/05/2010	14.5	<10	<4.0	<1		<0.0009	<0.0009	<0.0009			
MW-2	04/05/2010	19.5	<10	<4.0	<1.0	< 0.0005		< 0.001	< 0.001			
MW-2	04/05/2010	24.5	<10	<4.0	<0.9			<0.0009				

GHD 312264 (38)

TABLE 1Page 8 of 15

Reported in milligrams per kilogram (mg/kg) A	Sample ID	Date	Depth (fbg)	TPHmo	TPHd	TPHq	Ronzono	Toluene	Ethyl-	Total Yylene	MTBE	<i>OXYs</i>	Pb
ESL Level (Drinking Water Sourse) a 83 83 83 0.044 2.9 3.3 2.3 0.023 Varies NE Commercial/Industrial Table K-2 Worker b 3,700 450 450 0.27 210 5 100 65 Varies 320 Construction/Trench Worker Table K-3 c 12,000 4,200 4,200 12 650 210 420 2,800 Varies 320 OEHAA Residential Land Use - - - - - - - - -	Sample ID	Date	(IDG)	TETHIO	iriu	•				-		UA 13	FD
Table G Sourse a 83 83 83 0.044 2.9 3.3 2.3 0.023 Varies NE	ESL					Керо	tea iii iiii	iigiaiiis p	oci kilogit	am (mg/ng	<i>1)</i>		
Table G Sourse) a 83 83 83 0.044 2.9 3.3 2.3 0.023 Varies NE Table K-2 Worker b 3,700 450 450 0.27 210 5 100 65 Varies 320 Construction/Trench Worker 12,000 4,200 4,200 12 650 210 420 2,800 Varies 320 OEHAA Residential Land Use -		Level (Drini	king Water										
Table K-2 Worker b 3,700 450 450 0.27 210 5 100 65 Varies 320	Table G		•	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
Table K-3 Construction/Trench Worker 12,000 4,200 4,200 12 650 210 420 2,800 Varies 320 OEHAA Residential Land Use - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></t<>								_					
Table K-3 c 12,000 4,200 4,200 12 650 210 420 2,800 Varies 320 OEHAA Residential Land Use - <td>Table K-2</td> <td>Work</td> <td>er ^b</td> <td>3,700</td> <td>450</td> <td>450</td> <td>0.27</td> <td>210</td> <td>5</td> <td>100</td> <td>65</td> <td>Varies</td> <td>320</td>	Table K-2	Work	er ^b	3,700	450	450	0.27	210	5	100	65	Varies	320
OEHAA Residential Land Use - <td></td> <td>Construction/T</td> <td>rench Worker</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Construction/T	rench Worker	-									
OEHAA Commercial Land Use - <td>Table K-3</td> <td>С</td> <td></td> <td>12,000</td> <td>4,200</td> <td>4,200</td> <td>12</td> <td>650</td> <td>210</td> <td>420</td> <td>2,800</td> <td>Varies</td> <td>320</td>	Table K-3	С		12,000	4,200	4,200	12	650	210	420	2,800	Varies	320
OEHAA Commercial Land Use - <td></td>													
Low-Threat Policy - Direct Contact and Outdoor Air Exposure 0 to 5 fbg, Residential	OEHAA	Residential	Land Use	-	-	-	-	-	-	-	-	-	80
0 to 5 fbg, Residential NE NE NE 1.9 NE 21 NE NE NE NE 5 to 10 fbg, Residential, Outdoor Air NE NE NE 2.8 NE 32 NE NE NE NE	OEHAA	Commercial	Land Use	-	-	-	-	-	-	-	-	-	260
5 to 10 fbg, Residential, Outdoor Air NE NE NE 2.8 NE 32 NE NE NE NE	ow-Threat F	Policy - Direct Cor	ntact and Outd	<u>oor Air Expo</u>	<u>sure</u>								
5 to 10 fbg, Residential, Outdoor Air NE NE NE 2.8 NE 32 NE NE NE NE													
	to 5 fbg, Res	sidential		NE	NE	NE	1.9	NE	21	NE	NE	NE	NE
0 to 5 fbg, C/I	to 10 fbg, R	esidential, Outdoor	r Air	NE	NE	NE	2.8	NE	32	NE	NE	NE	NE
	to 5 fbg, C/I			NE	NE	NE	8.2	NE	89	NE	NE	NE	NE
5 to 10 fbg, C/I, Outdoor Air	to 10 fbg, C	I, Outdoor Air		NE	NE	NE	12	NE	134	NE	NE	NE	NE
0 to 10 fbg, Utility Worker NE NE NE 14 NE 314 NE NE NE NE	to 10 fbg, Ut	tility Worker		NE	NE	NE	14	NE	314	NE	NE	NE	NE
MW-2 04/05/2010 29.5 <10 <4.0 <1 <0.0005 <0.001 <0.001 <0.001	1W-2	04/05/2010	29.5	<10	<4.0	<1	<0.0005	<0.001	<0.001	<0.001			
MW-2 04/05/2010 34.5 <10 <4.0 <1.0 <0.0005 <0.0009 <0.0009 <0.0009	1W-2	04/05/2010	34.5	<10	<4.0	<1.0	< 0.0005	<0.0009	< 0.0009	<0.0009			
MW-2 04/05/2010 39.5 <10 <4.0 <1 <0.0005 <0.0009 <0.0009 <0.0009	IW-2	04/05/2010	39.5	<10	<4.0	<1	< 0.0005	<0.0009	<0.0009	<0.0009			
MW-2 04/05/2010 44.5 <10 <4.0 <1 <0.0005 <0.001 <0.001 <	1W-2	04/05/2010	44.5	<10	<4.0	<1	< 0.0005	<0.001	<0.001	< 0.001			
MW-2 04/05/2010 49.5 <10 <4.0 <1.1 <0.0005 <0.001 <0.001 <0.001	1W-2	04/05/2010	49.5	<10	<4.0	<1.1	< 0.0005	<0.001	<0.001	< 0.001			
MW-2 04/05/2010 54.5 <10 <4.0 <1 <0.0005 <0.001 <0.001 <0.001	1W-2	04/05/2010	54.5	<10	<4.0	<1	< 0.0005	<0.001	<0.001	<0.001			
MW-2 04/05/2010 59.5 <10 <4.0 <1.0 <0.0005 <0.001 <0.001 <0.001	1W-2	04/05/2010	59.5	<10	<4.0	<1.0	< 0.0005	<0.001	<0.001	<0.001			
MW-3 03/30/2010 5.0 <10 8.8 <1.0 <0.0005 <0.001 <0.001 <0.001	1W-3	03/30/2010	5.0	<10	8.8	<1.0	<0.0005	<0.001	<0.001	<0.001			
MW-3 04/06/2010 9.5 <10 <4.0 <0.9 <0.0005 0.002 <0.001 <0.001													
MW-3 04/06/2010 14.5 <10 <4.0 <1 <0.0005 <0.001 <0.001 <													
MW-3 04/06/2010 19.5 <10 <4.0 <1 <0.0005 <0.001 <0.001 <													
MW-3 04/06/2010 24.5 <10 <4.0 <0.9 <0.0005 <0.001 <0.001 <0.001													
MW-3 04/06/2010 29.5 <10 <4.0 <1.1 <0.0005 <0.001 <0.001 <0.001							< 0.0005	< 0.001		< 0.001			
MW-3 04/06/2010 34.5 <10 <4.0 <1.0 <0.0005 <0.0009 <0.0009 <0.0009						<1.0				<0.0009			
MW-3 04/06/2010 39.5 <10 <4.0 <1.0 <0.0005 <0.001 <0.001 <0.001		04/06/2010			<4.0	<1.0	< 0.0005	< 0.001	<0.001	< 0.001			
MW-3 04/06/2010 44.5 <10 <4.0 <1.0 <0.0005 <0.001 <0.001 <0.001		04/06/2010		<10	<4.0	<1.0	< 0.0005	< 0.001	<0.001	<0.001			
MW-3 04/06/2010 49.5 <10 <4.0 <1.1 <0.0005 <0.001 <0.001 <0.001		04/06/2010	49.5	<10	<4.0	<1.1	< 0.0005	< 0.001	<0.001	<0.001			
MW-3 04/06/2010 54.5 <10 <4.0 10 0.004 <0.001 <0.001 <0.001				4.0	-10	40	0.004	.0.004	.0.004	.0.004			
MW-3 04/06/2010 59.5 <10 <4.0 <1.1 <0.0005 <0.001 <0.001 <0.001	1W-3	04/06/2010	54.5	<10	<4.0	10	0.004	<0.001	<0.001	<0.001			

TABLE 1Page 9 of 15

Sample ID	Date	Depth (fbg)	TPHmo	TPHd	TPHg Repo	Benzene rted in mil			-	MTBE	<i>OXY</i> s	Pb
ESL							-					
Table G	Level (Drin	-	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
Table K-2	Commercia Work		3,700	450	450	0.27	210	5	100	65	Varies	320
Table K-3	Construction/T	rench Worker	12,000	4,200	4,200	12	650	210	420	2,800	Varies	320
14516716			12,000	1,200	1,200				120	2,000	74.700	
OEHAA	Residential	Land Use	-	-	-	-	-		-	-	-	80
OEHAA	Commercia	I Land Use	_	_	_	_	_	_	_	_	_	260
<u> </u>	olicy - Direct Co		or Air Expo	sure		-			!!		!!	
0 to 5 fbg, Res	idential		NE	NE	NE	1.9	NE	21	NE	NE	NE	NE
5 to 10 fbg, Re	sidential, Outdoo	r Air	NE	NE	NE	2.8	NE	32	NE	NE	NE	NE
0 to 5 fbg, C/I			NE	NE	NE	8.2	NE	89	NE	NE	NE	NE
5 to 10 fbg, C/	l, Outdoor Air		NE	NE	NE	12	NE	134	NE	NE	NE	NE
0 to 10 fbg, Uti	lity Worker		NE	NE	NE	14	NE	314	NE	NE	NE	NE
MW-4	03/30/2010	5.0	<10	<4.0	<1	<0.0005	< 0.001	<0.001	< 0.001			
MW-4	04/12/2010	10.5	<10	<4.0	< 0.9	< 0.0005		<0.001	< 0.001			
MW-4	04/12/2010	15.5	<10	<4.0	<1	<0.0005		<0.001	< 0.001			
MW-4	04/12/2010	20.5	<10	<4.0	<0.9	<0.0005		<0.001	<0.001			
MW-4	04/12/2010	25.5	<10	<4.0	<1	< 0.0005		<0.001	<0.001			
MW-4	04/12/2010	30.5	<10	82	42	<0.0005 <0.0005		<0.001	< 0.001			
MW-4 MW-4	04/12/2010 04/12/2010	35.5 40.5	<10 <10	<4.0 <4.0	<0.9 <1.0	<0.0005		<0.001 <0.001	<0.001 <0.001			
MW-4	04/12/2010	45.5	<10	<4.0 <4.0	80	< 0.0005		< 0.001	< 0.001			
MW-4	04/12/2010	50.5	<10	<4.0	31	<0.0005		<0.001	<0.001			
MW-4	04/12/2010	55.5	<10	4.7	110	0.003	0.001	0.019	0.007			
MW-4	04/12/2010	60.5	<10	<4.0	<0.9		<0.0009	<0.0009	<0.0009			
MW-5	03/31/2010	5.0	130	42	<1	<0.0005		< 0.001	<0.001			
MW-5	04/08/2010	9.5	<10	<4.0	<1	< 0.0005		<0.001	< 0.001			
MW-5	04/08/2010	14.5	<10	<4.0	<1	<0.0005		<0.001	<0.001			
MW-5	04/08/2010	19.5	<10	<4.0	<1			< 0.0009				
MW-5	04/08/2010	24.5	<10	5.9	150		< 0.053	<0.053	< 0.053			
MW-5	04/08/2010	29.5	<10	8.1	18	0.003	< 0.001	0.038	0.022			
MW-5	04/08/2010	34.5	<10	29	51	<0.023		<0.046	<0.046			
MW-5	04/08/2010	39.5	<10	<4.0	2.1	0.027	0.002	0.004	< 0.001			
MW-5	04/08/2010	44.5 40.5	<10	<4.0	<1.0	0.003	<0.001	<0.001	<0.001			
MW-5 MW-5	04/08/2010 04/08/2010	49.5 54.5	<10	<4.0	<1 -1	<0.0005 0.0006		<0.001	<0.001			
MW-5	04/08/2010	54.5 59.5	<10 <10	<4.0 <4.0	<1 <1	< 0.0005		<0.001 <0.001	<0.001 <0.001			
MW-6	04/01/2010	5.0	<10	<4.0	<1	<0.0005	<0.001	<0.001	<0.001			
MW-6	04/09/2010	10.0	<10	<4.0	<1	<0.0005		< 0.001	< 0.001			
MW-6	04/09/2010	15.0	<10	<4.0	<1	<0.0005		<0.001	<0.001			

TABLE 1 Page 10 of 15

Table G Source Sou	Sample ID	Date	Depth (fbg)	ТРНто	TPHd	TPHg Repo	Benzene rted in mil		Ethyl- benzene per kilogra	•	MTBE	<i>OXY</i> s	Pb
Table G Sourse	ESL												
Table K-2		Level (Drink	king Water										
Table K-2 Worker More	Table G			83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
Table K-3 Construction/Trench Worker 12,000 4,200 4,200 12 650 210 420 2,800 Varies 320													
Table K-3 c 12,000 4,200 4,200 12 650 210 420 2,800 Varies 320 OEHAA Residential Land Use - </td <td>Table K-2</td> <td></td> <td></td> <td>3,700</td> <td>450</td> <td>450</td> <td>0.27</td> <td>210</td> <td>5</td> <td>100</td> <td>65</td> <td>Varies</td> <td>320</td>	Table K-2			3,700	450	450	0.27	210	5	100	65	Varies	320
			rench Worker										
OEHAA Commercial Land Use - <td>Table K-3</td> <td>С</td> <td></td> <td>12,000</td> <td>4,200</td> <td>4,200</td> <td>12</td> <td>650</td> <td>210</td> <td>420</td> <td>2,800</td> <td>Varies</td> <td>320</td>	Table K-3	С		12,000	4,200	4,200	12	650	210	420	2,800	Varies	320
Description	ОЕНАА	Residential	Land Use	-	-	-	_		1	-	-	-	80
Description	051144	0	1 111										000
0 to 5 fbg, Residential				-	-	-	-	-	-	L - 1	-	-	260
To 10 fbg, Residential, Outdoor Air NE NE NE NE Re Re Re Re Re Re Re R	LOW-THICAL P	Policy - Direct Col	nact and Outo	oor Air Expo	sure								
To 10 fbg, Residential, Outdoor Air NE NE NE NE Re Re Re Re Re Re Re R	0 to 5 fbg Res	sidential		NF	NE	NE	1 9	NE	21	NF	NE	NE	NE
NE N	o to o log, rec	oldornar		, v.	742	,,,_	1.0	742	21	***	/42	/ _	742
NE	5 to 10 fbg, Re	esidential, Outdoor	Air	NE	NE	NE	2.8	NE	32	NE	NE	NE	NE
MW-6	0 to 5 fbg, C/I			NE	NE	NE	8.2	NE	89	NE	NE	NE	NE
MW-6 04/09/2010 19.5 <10 <4.0 <0.9 <0.0005 <0.0009 <0.0009 <0.0009 <-0.0009 <-0.0009 <-0.0009 <-0.0009 <-0.0009 <-0.0009 <-0.0009 <-0.0009 <-0.0009 <-0.0009 <-0.0009 <-0.0009 <-0.0009 <-0.0009 <-0.0009 <-0.0009 <-0.0009 <-0.0009 <-0.0009 <-0.0001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001 <-0.001	5 to 10 fbg, C/	/I, Outdoor Air		NE	NE	NE	12	NE	134	NE	NE	NE	NE
MW-6 04/09/2010 25.0 <10 <4.0 <1 <0.0005 <0.001 <0.001	0 to 10 fbg, Ut	tility Worker		NE	NE	NE	14	NE	314	NE	NE	NE	NE
MW-6 04/09/2010 30.0 <10 <4.0 <0.9 <0.0005 <0.001 <0.001 <0.001 <	MW-6	04/09/2010	19.5	<10	<4.0	<0.9	<0.0005	<0.0009	<0.0009	<0.0009			
MW-6 04/09/2010 35.0 <10 <4.0 <0.9 <0.0005 < 0.001 <0.001 <0.001 MW-6 04/09/2010 40.0 <10 <4.0 <1 <0.0005 < 0.001 <0.001 <0.001 MW-6 04/09/2010 45.0 <10 <4.0 <1 <0.0005 < 0.001 <0.001 <0.001 MW-6 04/09/2010 55.0 <10 <4.0 <0.9 <0.0005 < 0.001 <0.001 <0.001 WW-6 04/09/2010 55.0 <10 <4.0 <44 0.020 0.003 <0.0005 <0.001 <0.0001 < < < < < < < < < < < < < < < < < < < < < < < < < < < <	MW-6	04/09/2010	25.0	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	<0.001			
MW-6	MW-6	04/09/2010	30.0	<10	<4.0	< 0.9	< 0.0005	< 0.001	< 0.001	<0.001			
MW-6 04/09/2010 45.0 <10 <4.0 <1 <0.0005 < 0.001 <0.001 <0.001 <	MW-6	04/09/2010	35.0	<10	<4.0	< 0.9	<0.0005	<0.001	<0.001	<0.001			
MW-6 04/09/2010 50.0 <10 <4.0 <0.9 <0.0005 < 0.001 <0.001 <0.001 <	MW-6	04/09/2010	40.0	<10		<1	<0.0005	< 0.001	<0.001	<0.001			
MW-6 04/09/2010 55.0 <10 <4.0 44 0.020 0.003 0.006 0.002		04/09/2010		<10									
MW-6 04/09/2010 59.5 <10 <4.0 <1 <0.0005 < 0.001 <0.001 <0.001													
2012 CRA Well Installation MW-10													
MW-10 2/14/2012 5 <4.0	MW-6	04/09/2010	59.5	<10	<4.0	<1	<0.0005	<0.001	<0.001	<0.001			
MW-10 2/15/2012 10 <4.0	2012 CRA W	ell Installation											
MW-10 2/15/2012 10 <4.0			5		<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-10 2/15/2012 15 <4.0							< 0.0005	< 0.001					
MW-10 2/15/2012 20 <4.0													
MW-10 2/15/2012 25 6.2 <1													
MW-10 2/15/2012 30 29 250 <0.023													
MW-10 2/15/2012 35 4.3 <1													
MW-10 2/15/2012 39.5 4.3 <1.0													
MW-11 2/16/2012 10 <4.0													
MW-11 2/16/2012 10 <4.0	MW-11	2/14/2012	5		5.5	<1.1	<0.0005	<0.001	<0.001	<0.001			
MW-11 2/16/2012 15 <4.0													
MW-11 2/16/2012 20 <4.0 <1 <0.0005 <0.001 <0.001 <0.001 MW-11 2/16/2012 30 4.1 <0.9 <0.0005 <0.001 <0.001 <0.001 MW-11 2/16/2012 35 <4.0 <1 <0.0005 <0.001 <0.001 <0.001													
MW-11 2/16/2012 30 4.1 <0.9 <0.0005 <0.001 <0.001 <0.001 MW-11 2/16/2012 35 <4.0 <1 <0.0005 <0.001 <0.001 <0.001	MW-11	2/16/2012					<0.0005	< 0.001		<0.001			
MW-11 2/16/2012 35 <4.0 <1 <0.0005 <0.001 <0.001 <	MW-11						< 0.0005	< 0.001		< 0.001			
	MW-11	2/16/2012			<4.0	<1	<0.0005	< 0.001		<0.001			
	MW-11	2/16/2012	39.5		<4.0	<1			<0.001	<0.001			

TABLE 1 Page 11 of 15

Sample ID	Date	Depth (fbg)	TPHmo	TPHd	TPHg Repo	Benzene rted in mi		Ethyl- benzene per kilogr	-	MTBE g) •	<i>OXY</i> s	Pb
ESL												
Table G	Level (Dring Sours	-	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
Table K-2	Commercial Work		3,700	450	450	0.27	210	5	100	65	Varies	320
Table K-3	Construction/T	rench Worker	12,000	4,200	4,200	12	650	210	420	2,800	Varies	320
OEHAA	Residential	I I and Use	-	-	-	-	-	-	-	-	-	80
ОЕНАА	Commercial			_	-	_	_	_	_	_	_	260
	Policy - Direct Co		or Air Eyno	SUITA							L	200
LOW TITICALT	Oney Direct Co.	made and Outa	OI All EXPO	Jui C								
0 to 5 fbg, Res	sidential		NE	NE	NE	1.9	NE	21	NE	NE	NE	NE
5 to 10 fbg, Re	esidential, Outdoo	r Air	NE	NE	NE	2.8	NE	32	NE	NE	NE	NE
0 to 5 fbg, C/I			NE	NE	NE	8.2	NE	89	NE	NE	NE	NE
5 to 10 fbg, C/	I, Outdoor Air		NE	NE	NE	12	NE	134	NE	NE	NE	NE
0 to 10 fbg, Ut	ility Worker		NE	NE	NE	14	NE	314	NE	NE	NE	NE
MW-12	2/16/2012	5		<4.0	<1	< 0.0005		<0.001	<0.001			
MW-12	2/17/2012	10		4.4	<1	< 0.0005		<0.001	< 0.001			
MW-12	2/17/2012	15		<4.0	<1	< 0.0005		<0.001	<0.001			
MW-12	2/17/2012	20		<4.0	<1	0.0006	<0.001	<0.001	< 0.001			
MW-12	2/17/2012	25		72	500	0.098	< 0.050	1.5	0.91			
MW-12	2/17/2012	30		65	24	0.002	<0.001	<0.001	<0.001			
MW-12	2/17/2012	35		300	1,400	0.15	< 0.20	4.8	11			
MW-12	2/17/2012	39.5		<4.0	1.5	0.062	0.001	< 0.001	0.002			
MW-12	2/17/2012	42		<4.0	<1.0	0.023	< 0.001	< 0.001	< 0.001			
MW-12	2/17/2012	44.5		<4.0	<1	0.021	< 0.001	< 0.01	< 0.001			
2044/2045 L	and Consisting	Investigation										
HA-1	ead Speciation 10/07/2014	3										74.1
HA-2	10/07/2014	2.5										30.3
HA-2	10/07/2014	4.5										314
HA-3	10/07/2014	2.5										53.0
HA-3	10/07/2014	4.5										7.34
HA-4	10/08/2014	3										9.27
HA-4	10/08/2014	5										7.65
HA-5	10/08/2014	3										17.1
HA-5	10/08/2014	5										43.2
HA-6 HA-6	01/20/2015 01/20/2015	3 9										5.29 297
HA-7	01/20/2015	3										14.7
HA-7 HA-7	01/20/2015	8										6.77
2015 Lead D	elineation and	Offsite Borina										
HA-8	09/14/2015	0.5										267
HA-8	09/14/2015	2.0										25.5
HA-9 HA-9	09/16/2015 09/16/2015	1.5 4.0	 						 			36.7 62.0

TABLE 1Page 12 of 15

		Depth						Ethyl-	Total			
Sample ID	Date	(fbg)	TPHmo	TPHd	-			benzene	-	MTBE	OXYs	Pb
ESL					Repor	tea in mil	iligrams	per kilogra	am (mg/k	g) -	•	
202	Level (Drini	king Water										
Table G	Sours	•	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
	Commercial	/Industrial										
Table K-2	Work	er ^b	3,700	450	450	0.27	210	5	100	65	Varies	320
	Construction/T											
Table K-3	С		12,000	4,200	4,200	12	650	210	420	2,800	Varies	320
051144	5											
OEHAA	Residential	Land Use	-	-	-	-	-	-	-	-	-	80
ОЕНАА	Commercial		-	-	-	-	-	-	-	-	-	260
Low-Threat P	olicy - Direct Co	ntact and Outdo	oor Air Expo	sure								
0 to 5 fbg, Res	sidential		NE	NE	NE	1.9	NE	21	NE	NE	NE	NE
5 to 10 fbg, Re	esidential, Outdoor	r Air	NE	NE	NE	2.8	NE	32	NE	NE	NE	NE
0 to 5 fbg, C/I			NE	NE	NE	8.2	NE	89	NE	NE	NE	NE
5 to 10 fbg, C/	I, Outdoor Air		NE	NE	NE	12	NE	134	NE	NE	NE	NE
0 to 10 fbg, Uti	ility Worker		NE	NE	NE	14	NE	314	NE	NE	NE	NE
HA-10	09/16/2015	2.5										31.9
HA-10	09/16/2015	4.0										120
	00/10/0015											40 =
HA-11 HA-11	09/16/2015 09/16/2015	2.5 4.0										13.7 439
HA-11	09/16/2015	7.0										11.2
10011	00/10/2010	7.0										111.2
HA-12	09/16/2015	2.5										16.1
HA-12	09/16/2015	4.0										8.10
HA-12	09/16/2015	7.0										6.62
HA-13	09/14/2015	0.5										48.9
HA-13	09/14/2015	3.0										9.14
HA-14	09/14/2015	0.5										42.3
HA-14	09/14/2015	2.0										230
HA-15	09/14/2015	0.5										53.0
HA-15	09/14/2015	3.0										102
HA-16	09/15/2015	0.5										24.5
HA-16	09/15/2015	3.0										7.23

TABLE 1 Page 13 of 15

Sample ID	Date	Depth (fbg)	TPHmo	TPHd	TPHg Repo			Ethyl- benzene per kilogra	-	MTBE	<i>OXY</i> s	Pb
ESL		<u>.</u>										
Table G	Level (Drink Sours	se) ^a	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
Table K-2	Commercial Work		3,700	450	450	0.27	210	5	100	65	Varies	320
Table K-3	Construction/T	rench Worker	12,000	4,200	4,200	12	650	210	420	2,800	Varies	320
ОЕНАА	Residential	Land Use	-	-	-	-	-	-	-	-	-	80
ОЕНАА	Commercial		-	-	-	-	-	-	_	-	_	260
Low-Threat P	Policy - Direct Cor	ntact and Outdo	or Air Expo	sure								
0 to 5 fbg, Res	sidential		NE	NE	NE	1.9	NE	21	NE	NE	NE	NE
5 to 10 fbg, Re	esidential, Outdoor	r Air	NE	NE	NE	2.8	NE	32	NE	NE	NE	NE
0 to 5 fbg, C/I			NE	NE	NE	8.2	NE	89	NE	NE	NE	NE
5 to 10 fbg, C/	I, Outdoor Air		NE	NE	NE	12	NE	134	NE	NE	NE	NE
0 to 10 fbg, Ut	ility Worker		NE	NE	NE	14	NE	314	NE	NE	NE	NE
HA-17 HA-17	09/15/2015 09/15/2015	1.5 4.0	 	 				 		 		38.0 16.0
HA-18 HA-18	09/16/2015 09/16/2015	2.5 4.0			 	 		 	 		 	18.8 41.4
11A-10	09/10/2013	4.0										41.4
HA-19	09/15/2015	0.5										14.5
HA-19 HA-19	09/15/2015 09/15/2015	3.0 3.0										4,990° 1,340°
HA-19	09/15/2015	3.0										2,606°
HA-19	09/15/2015	5.0										19.5
HA-20	09/15/2015	0.5										338
HA-20	09/15/2015	2.0										61.1
HA-21	09/15/2015	1.5										22.6
HA-21	09/15/2015	4.0										8.38
HA-22	09/17/2015	1.5										28.6
HA-22	09/17/2015	4.0										265
HA-22	09/17/2015	7.0										26.6
HA-23 HA-23	09/14/2015 09/14/2015	0.5 3.0										50.9 55.3
HA-24 HA-24	09/17/2015 09/17/2015	0.5 7.0										36.3 73.8
HA-24	09/17/2015	13.0										11.0

TABLE 1 Page 14 of 15

		Depth						Ethyl-	Total			
Sample ID	Date	(fbg)	TPHmo	TPHd	_	Benzene			-	MTBE	OXYs	Pb
ESL					Repo	rted in mi	ııgrams	per kilogr	am (mg∕k	9)	•	
	Level (Drink	king Water										
Table G	Sours	-	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
	Commercial	/Industrial										
Table K-2	Work		3,700	450	450	0.27	210	5	100	65	Varies	320
	Construction/T	rench Worker										
Table K-3	С		12,000	4,200	4,200	12	650	210	420	2,800	Varies	320
ОЕНАА	Residential	Land Use	-	-	-	-	-	-	-	-	-	80
OEHAA	Commercial Policy - Direct Cor		- Air Franc	-	-	-	-	-	-	-	-	260
Low-Inreat P	olicy - Direct Col	ntact and Outd	oor Air Expo	sure								
0 to 5 fbg, Res	sidential		NE	NE	NE	1.9	NE	21	NE	NE	NE	NE
5 1 10 II D		A :										
5 to 10 fbg, Re	esidential, Outdoor	r Air	NE	NE	NE	2.8	NE	32	NE	NE	NE	NE
0 to 5 fbg, C/I			NE	NE	NE	8.2	NE	89	NE	NE	NE	NE
5 to 10 fbg, C/	I, Outdoor Air		NE	NE	NE	12	NE	134	NE	NE	NE	NE
0 to 10 fbg, Ut	ility Worker		NE	NE	NE	14	NE	314	NE	NE	NE	NE
05	00/45/0045	0.5										40.5
HA-25 HA-25	09/15/2015 09/15/2015	0.5 3.0										10.5 11.7
HA-25	09/15/2015	5.0										9.44
HA-26	09/15/2015	0.5										19.0
HA-26	09/15/2015	2.0										498
HA-27	09/15/2015	0.5										48.7
HA-27	09/15/2015	4.0										18.6
	33, 13, 2010											. 5.0
HA-28	09/17/2015	1.5										18.3
HA-28	09/17/2015	4.0										388
HA-28	09/17/2015	7.0										15.5
SB-13	09/17/2015	35.0			<0.042	<0.0005	<0.001	<0.001	<0.001			

TABLE 1 Page 15 of 15

CUMULATIVE SOIL ANALYTICAL DATA FORMER STANDARD OIL SERVICE STATION 30-7233 2259 FIRST STREET, LIVERMORE, CALIFORNIA

Sample ID	Date	Depth (fbg)	TPHmo	TPHd	•			Ethyl- benzene per kilogra	-	MTBE g) ⁴	OXYs 4	Pb
ESL												
Table G	Level (Drink Sourse	•	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	NE
Table K-2	Commercial/ Worke	er ^b	3,700	450	450	0.27	210	5	100	65	Varies	320
Table K-3	Construction/Tr	ench Worker	12,000	4,200	4,200	12	650	210	420	2,800	Varies	320
ОЕНАА	Residential I	Land Use		_	-	_	-	-	_	-	_	80
ОЕНАА	Commercial	Land Use	-	-	•	-	-		-		-	260
Low-Threat F	Policy - Direct Con	tact and Outdo	oor Air Expo	<u>sure</u>								
0 to 5 fbg, Res	sidential		NE	NE	NE	1.9	NE	21	NE	NE	NE	NE
5 to 10 fbg, R	esidential, Outdoor	Air	NE	NE	NE	2.8	NE	32	NE	NE	NE	NE
0 to 5 fbg, C/I			NE	NE	NE	8.2	NE	89	NE	NE	NE	NE
5 to 10 fbg, C/	I, Outdoor Air		NE	NE	NE	12	NE	134	NE	NE	NE	NE
0 to 10 fbg, Ut	to 10 fbg, Utility Worker		NE	NE	NE	14	NE	314	NE	NE	NE	NE

Notes and Abbreviations:

Total petroleum hydrocarbons as motor oil (TPHmo) analyzed by EPA Method 8015B modified unless otherwise noted.

Total petroleum hydrocarbons as diesel (TPHd) analyzed by EPA Method 8015B with silica gel cleanup unless otherwise noted.

Total petroleum hydrocarbons as gasoline (TPHg) analyzed by EPA Method 8015B modified unless otherwise noted.

Denzene, toluene, ethylbenzene, and total xylenes (DTE), methyl tertiary-butyl ether (WTDE), t-butyl accorder (DDE), ethyl tertiary-butyl ether (ETBE); t-amyl methyl ether (TAME); 1,2-dichloroethane (1,2-DCA); 1,2-dibromoethane (EDB) analyzed by EPA method 8260B unless otherwise noted

unless otherwise noted OXYs = TBA, DIPE, ETBE, TAME, 1,2,-DCA, and EDB

fbg = feet below grade.

<x = Not detected at reporting limit x.

ND = not detected at various laboratory method detection limits.

ESLs = Environmental Screening Levels for commercial land use where groundwater is a current or potential drinking water source from *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater* presented by the California Regional Water Quality Control Board - San Francisco Bay Region Interim Final November 2007, revised May 2008.

OEHAA = Office of Environmental Health Hazard Assessment's Revised California Human Health Screening Level for Lead dated May 18, 2009 NE = Not established

- -- = Not applicable/not analyzed.
- a = Potential leaching of chemicals from vadose zone soils and subsequent impact on groundwater

to

- occur during moderate digging associated with routine maintenance and grounds-keeping activities
- c = Worker on a single onsite construction project with exposures to surface and subsurface soils (i.e. at depths of 0-10 fbg) during excavation, maintenance and building construction.
- d = TBA, no other oxygenates detected
- e = Sample was redigested in duplicate for lead analysis to confirm the initial result. Variation in the results may be due to non-homogenaity
- *** = Discrete sample could not be collected due to large cobbles, composite sample collected.
- **** = Soluble Lead Toxicity Characteristic Leaching Potential (TCLP) analysis resulted in a concentration <0.50 milligrams per liter.

Low-Threat Policy = State Water Resources Control Board (SWRCB) Low-Threat Underground Storage Tank Closure Policy, adopted on August 17, 2012.

Appendix A Regulatory Correspondence

ALEX BRISCOE, Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

December 15, 2015

Ms. Carryl MacLeod (Sent via E-mail to: cmacleod@chevron.com)
Chevron Environmental Management Company
6101 Bollinger Canyon Road
San Ramon, CA 94583

Mr. Eric Uranga (Sent via E-mail to: ejuranga @cityoflivermore.net)
City of Livermore Economic Development
1052 S. Livermore Ave.
Livermore, CA 94550

Subject: Review of Interim Remedial Action Plan for Fuel Leak Case No. RO0002908 and GeoTracker Global ID T0600196622, Miller Square Park, 2259 First Street, Livermore, CA 94550

Dear Ms. MacLeod and Mr. Uranga:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the above referenced site including the document entitled, "Interim Remedial Action Plan," dated November 19, 2015 (IRAP). In correspondence dated June 4, 2015, ACEH requested that an IRAP be submitted by August 13, 2015. However, due to delays in collecting soil data for delineation of lead, the IRAP was not submitted until November 19, 2015.

The IRAP discusses soil management during renovation of the site by the City of Livermore but does not meet the requirements for an Interim Remedial Action Plan. The IRAP must provide definitive plans for remediation of the site and not reference assumptions that work will be done. Due to these limitations, the IRAP is unacceptable and must be revised to address the technical comments below. We request that you address the following technical comments and submit a Revised IRAP no later than January 14, 2016.

TECHNICAL COMMENTS

- 1. Figures 4 and 5. Figures 4 and 5 present the Residual Lead to be Removed and the Residual Lead to Remain, respectively. These figures along with the cross sections clearly present the analytical data superimposed upon expected excavation depths. Thank you for preparing these figures as they provide a useful tool for visualizing the data and site.
- 2. Interim Remedial Action Plan. The IRAP discusses soil management during renovation of the site by the City of Livermore but does not meet the requirements for an Interim Remedial Action Plan. The IRAP must provide definitive plans for remediation of the site and not reference assumptions that work will be done. Please submit a revised IRAP by January 14, 2016 that clearly and definitively states the actions that will be taken.

Responsible Parties RO0002908 December 15, 2015 Page 2

- 3. Removal of Lead and Long-term Maintenance of Surface Cap. Figure 5 shows that the lead remaining after removal of the projected 1,400 cubic yards of soil is limited to two to three small areas of the site. Removal of a limited volume of soil within these areas would eliminate the need for institutional controls and long-term maintenance of a cap. It appears that the costs for institutional controls and reporting over the next 30 years would significantly exceed the costs of removing the soil with lead concentrations that exceed screening levels within the small areas shown on Figure 5. The IRAP must be revised to consider this option. The site management requirements currently described within the IRAP are not sufficient. An Environmental Covenant and Restriction on Property would be needed along with more definitive actions to prevent future exposure for construction workers along with more complete cap inspection and reporting requirements.
- **4. Management of Excavated Materials and Costs**. Please use the extensive data already collected for the site to identify the likely disposal destination for excavated soil. The Revised IRAP requested below must also include estimated costs for the removal action.
- 5. Site Management Plan. The IRAP includes a document entitled, "Soil and Groundwater Management Plan," dated May 20, 2013 as Appendix F. ACEH has provided previous comments on this document indicating that the document is highly limited in scope and is not consistent with industry standards for similar documents. The May 20, 2013 Work Plan is not acceptable for use at the site and should not be included in the revised IRAP requested below.
- **6. Well Destruction**. Destruction of monitoring wells at the site is acceptable in order to proceed with the removal action. Case closure will not be considered until the removal action for lead in soil is complete.

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACEH ftp site (Attention: Jerry Wickham), and to the State Water Resources Control Board's GeoTracker website according to the following schedule and file-naming convention:

January 14, 2016 – Revised Interim Remedial Action Plan File to be named: IRAP_ADEND_R_yyyy-mm-dd RO2908

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

Responsible Parties RO0002908 December 15, 2015 Page 3

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297 Senior Hazardous Materials Specialist

Attachments: Responsible Party(ies) Legal Requirements/Obligations

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Colleen Winey, QIC 80201, Zone 7 Water Agency, 100 North Canyons Parkway Livermore, CA 94551 (Sent via E-mail to: cwiney@zone7water.com)

Danielle Stefani, Livermore-Pleasanton Fire Department, 3560 Nevada Street Pleasanton, CA 94566 (Sent via E-mail to: DStefani@lpfire.org)

John Rigter, Livermore-Pleasanton Fire Department, 3560 Nevada Street Pleasanton, CA 94566(Sent via E-mail to: jrigter@lpfire.org)

Cheri Sheets, City of Livermore, (Sent via E-mail to: crsheets@cityoflivermore.net)

Rosy Ehlert, City of Livermore, (Sent via E-mail to: rmehlert@cityoflivermore.net)

Brian Silva, Conestoga-Rovers & Associates, 10969 Trade Center Drive, Suite 107 Rancho Cordova, CA 95670 (Sent via E-mail to: <u>bsilva@craworld.com</u>)

Jerry Wickham, ACEH (Sent via E-mail to: <u>jerry.wickham@acgov.org</u>) GeoTracker, eFile

Attachment 1

Responsible Party(ies) Legal Requirements / Obligations

REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please **SWRCB** visit the website for more information on these requirements (http://www.waterboards.ca.gov/water_issues/programs/ust/electronic_submittal/).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

<u>UNDERGROUND STORAGE TANK CLEANUP FUND</u>

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

REVISION DATE: May 15, 2014

ISSUE DATE: July 5, 2005

PREVIOUS REVISIONS: October 31, 2005;

December 16, 2005; March 27, 2009; July 8, 2010,

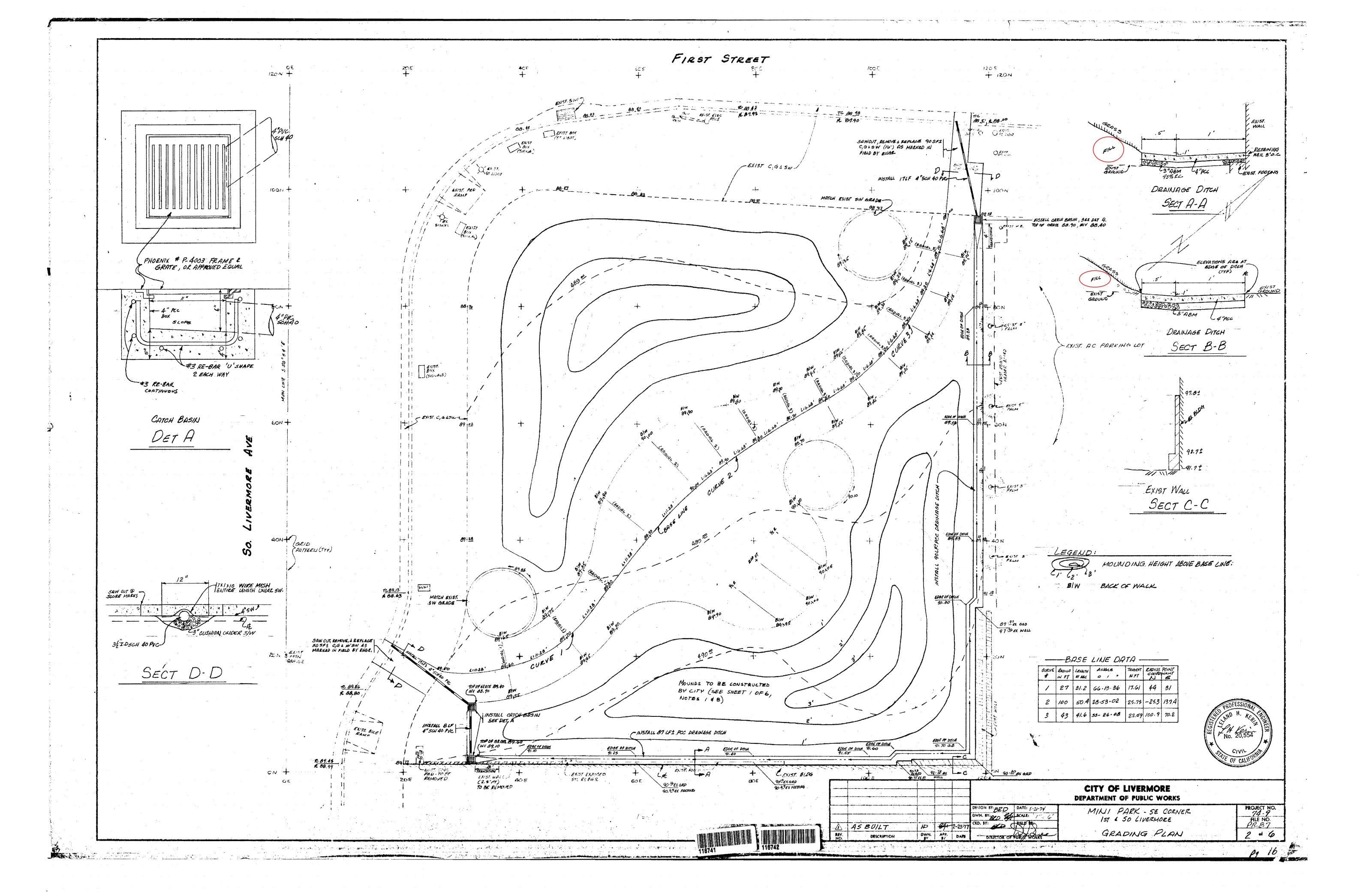
July 25, 2010

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS


- Please do not submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection.
- It is **preferable** that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- <u>Do not</u> password protect the document. Once indexed and inserted into the correct electronic case file, the
 document will be secured in compliance with the County's current security standards and a password. <u>Documents</u>
 with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to deh.loptoxic@acgov.org
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to deh.loptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

FUGRO WEST, INC.

1000 Broadway, Suite 200 Oakland, California 94607 **Tel: (510) 268-0461** Fax: (510) 268-0137

January 6, 2004 Project No. 1121.003

Mr. Neal Snedecor
City of Livermore
Engineering Division
1052 S. Livermore Avenue
Livermore, California 94550-4899

PERMET 23101

Subject:

Soil and Groundwater Investigation Report

Regional Performing Arts Theater Site

Livermore, California

Dear Mr. Snedecor:

With this letter, Fugro West, Inc. (Fugro) presents the results of the soil and groundwater investigation conducted during September 2003 at the referenced site. The purpose of this work was to investigate the potential presence of petroleum hydrocarbons in soil and/or groundwater at the site resulting from the historical use of the site as a service station. This work was conducted on behalf of the City of Livermore (City) as part of the City's redevelopment process. The Site location is illustrated on Plates 1 and 2.

BACKGROUND

Fugro understands that the City of Livermore (City) is considering the purchase of seven parcels that may comprise the future Regional Performing Arts Theater site. Fugro previously completed a Phase 1 Environmental Site Assessment (ESA) dated February 14, 2003, for these parcels. Based on those findings, Fugro recommended completing a subsurface investigation to evaluate soil and groundwater conditions at the Site for the purpose of evaluating potential impacts from the former on-site service station operations.

FIELD INVESTIGATION

Prior to drilling activities, Fugro procured a drilling permit from the Alameda County Zone 7 Water Agency. We also requested borehole clearance by Underground Service Alert (USA) and from a private utility locator at the proposed boring locations.

On September 17, 2003, Fugro advanced three soil probes (B-1 to B-3) to depths of approximately 40 feet below ground surface (bgs) using a limited-access hollow stem auger rig. The driller placed all of the cuttings from the drilling operations into labeled, 55-gallon drums which are stored on adjacent City property pending disposal.

Fugro's field geologist observed drilling operations and prepared detailed logs of the conditions encountered during drilling. Fugro collected soil samples and screened them in the field using an organic vapor meter (OVM) as well as olfactory methods. Soils were classified in accordance with the United Soil Classification System (USCS). Grab groundwater samples were also collected from Borings B-1 through B-3. Upon completions, borings were grouted with neat cement in accordance with permit requirements and the landscaping returned to pre-sampling conditions.

Subsurface Conditions

Based on our field observations, near-surface fill comprised of sand, gravel, silt, brick fragments and concrete debris was encountered from just below the sod to approximately 8 to 14 feet bgs. Near surface fill was underlain with interbedded silty sand, sand, and sandy clay in Borings B-1 through B-3 to approximately 40 feet below ground surface (bgs), the maximum depth explored. Groundwater was encountered in each boring approximately 34 feet bgs during drilling. No free phase hydrocarbons were observed. It should be noted the borings may not have been left open for a sufficient period of time to establish equilibrium groundwater conditions.

Slight staining and hydrocarbon odors were observed in Boring B-2 and Boring B-3 at approximately 23 feet bgs. Field screening of soil samples detected an OVM reading of 1.7 parts per million (ppm) for the soil sample obtained at 30 bgs in Boring B-2.

CHEMICAL TESTING PROGRAM

Soil and grab groundwater samples were retained in containers pre-cleaned by the supplier in accordance with EPA protocol. The samples were placed in a chilled cooler and transported under appropriate chain-of-custody documentation to STL, a State-certified laboratory. Selected samples were submitted for some or all of the following analyses:

- Total petroleum hydrocarbons as gasoline (TPHg) and benzene, toluene, ethylbenzene, and xylenes (BTEX) and Methyl tert butyl ether (MTBE) using EPA Method 8015m / 8020,
- Total petroleum hydrocarbons as diesel and motor oil (TPHd and TPHmo) using EPA Method 8015m and silica gel cleanup, and
- Total lead using EPA Methods 6010.

Based on the total lead results, soluble lead was also conducted on sample B-2@3' using the Toxicity Leachability Characteristic Proceedure (TCLP).

DISCUSSION OF RESULTS

The analytical testing results for the current field investigation and sampling event are summarized in Table 1 and 2. The analytical reports are presented in Appendix B.

Soil Samples

Except for 9.6 milligrams per kilogram (mg/kg) of TPHd and 3.5 mg/kg of TPHg detected in B-2@30', analyses detected no TPHd, TPHmo, TPHg, BTEX, or MTBE concentrations in soil samples from Borings B-1, B-2, and B-3. The detected TPHd and TPHg concentrations are significantly less than 100 mg/kg, the Environmental Screening Level (ESL) established by the Regional Water Quality Control Board¹ for a residential or commercial setting. Analyses detected 3,700 mg/kg of total lead sample B-2@3', which is significantly greater than ESL² criteria for a residential and commercial setting as well as greater than the Total Threshold Limit Concentration (TTLC), one of the criteria used by the State of California to determine whether a soil is considered a hazardous waste for disposal purposes. Analyses for soluble lead using TCLP methods detected no soluble lead in sample B-2@3'.

Grab Groundwater Samples

Analyses detected no TPHmo and MTBE concentrations in the grab groundwater samples from Borings B-1, B-2, and B-3. Analysis detected 1,100 mg/kg of TPHd and 1,600 mg/kg of TPHg in the grab groundwater sample from Boring B-1; 57 mg/kg of TPHd and 90 mg/kg of TPHg in the grab groundwater sample from Boring B-2; and 42,000 mg/kg of TPHd and 18,000 mg/kg of TPHg in the grab groundwater sample from Boring B-3. The detected TPHd and TPHg concentrations in the grab groundwater samples from Boring B-1 and B-2 exceed respective ESLs for drinking water and for ecological receptors at a surface water body. However, groundwater at the site is not considered a source of drinking water and does not discharge to a surface water body. There are no established indoor air quality ESLs for TPHg and TPHd.

No BTEX concentrations were detected in the grab groundwater samples from Borings B-1 and B-2. In the grab groundwater sample from Boring B-3, analysis detected 140 mg/kg of benzene, 47 mg/kg of ethylbenzene, 120 mg/kg of toluene and 1,000 mg/kg of xylenes. Detected benzene and xylene concentrations exceed respective ESLs for drinking water and ecological receptors; however, groundwater at the site is not considered a source of drinking water and does not discharge to a surface water body. Detected TPHd and TPHg concentrations do not exceed respective indoor air quality ESLs.

CONCLUSIONS AND RECOMMENDATIONS

Results of this investigation detected the presence of total lead in near-surface fill material and concentrations of petroleum hydrocarbons, including benzene, and xylene in the groundwater. It is Fugro's opinion that these detected lead and petroleum hydrocarbons contaminants do not pose a significant adverse human health risk to park maintenance workers and City Park users at this time assuming the park is maintained in it's current condition, namely

¹ Table A of the Screening For Environmental Concerns at Sites with Contaminated Soil and Groundwater - Interim Final. San Francisco Bay Regional Water Quality Control Board. July 2003

² Table A, B and K-3 of the Screening For Environmental Concerns at Sites with Contaminated Soil and Groundwater - Interim Final. San Francisco Bay Regional Water Quality Control Board. July 2003

covered with pavement and sod, and that shallow groundwater at the site is not used as a source of drinking water. Because detected petroleum hydrocarbon concentrations do not exceed respective indoor air quality ELS criteria, the presence of petroleum hydrocarbons in groundwater at the site does not pose a significant human health risk for the anticipated possible future use as a performing arts theater.

The source of elevated lead concentration is unknown to Fugro but is likely related to the fill material at the site. The source of detected petroleum hydrocarbons in groundwater is likely associated with the historical service station operations at the site.

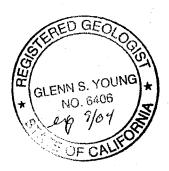
Based on our findings, Fugro presents the following recommendations for the City Park:

- If intrusive soil excavation or handling activities are conducted at the City Park, workers should be notified of the potential presence of elevated lead in shallow fill and appropriate dust mitigation should be implemented. Standard dust control methods such as the use of water spray should be sufficient to prevent exposure of workers to lead in the shallow fill.
- Based on the total lead results for sample B-2@3', if shallow fill is excavated
 from the site to be reused or disposed offsite, that soil should be tested to
 confirm that total lead concentrations are not hazardous for disposal purposes.

With respect to site redevelopment, Fugro presents the following recommendations:

- Results of this report should be provided to the developer and/or their contractor. Appropriate worker notification and a site-specific health and safety plan should be implemented to protect workers from lead in near-surface fill. In Fugro's opinion, standard dust control methods such as the use of water spray should be sufficient to prevent exposure of workers to lead in the shallow fill. The health and safety plan (HSP) should be prepared by a Certified Industrial Hygienist.
- If staining, chemical odors, or contaminated materials are encountered during the construction activities, we recommend that the City notify Fugro of such conditions and appropriate precautions, investigation, and/or mitigation should be implemented.
- Although it is Fugro's opinion that soil excavated from the site is likely non-hazardous for disposal purposes, results of analyses indicate the possibility that shallow fill may be considered a California Hazardous waste based on total lead concentrations exceeding 1,000 mg/kg. If soil is to be excavated from the site, Fugro recommends additional testing to confirm that disposal at a Class I hazardous waste landfill is not required.

LIMITATIONS


Fugro has prepared this report in a professional manner, using that degree of skill and care exercised for similar projects under similar conditions by reputable and competent environmental consultants. Fugro shall not be responsible for conditions or consequences arising from relevant facts that were concealed, withheld, or not fully disclosed at the time the report was prepared. Fugro also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report. Fugro believes that conclusions stated wherein to be factual, but no guarantee is made or implied. This report has been prepared for the benefit of the City of Livermore.

CLOSING STATEMENT

We believe this provides the information required at this time. Please call if you have any questions or if we can be of further assistance.

Sincerely,

FUGRO WEST, INC.

Melissa L. Pleva

Staff Engineer & Geologist

Glenn S. Young, RG Principal Geologist

MLP/GSY:kel

Attachments:

Table 1 - Chemical Constituents in Soil

Table 2 - Chemical Constituents in Groundwater

Plate 1 – Vicinity Map Plate 2 – Site Map

Appendix A - Log of Borings Appendix B - Analytical Reports

Copies Submitted: (3) Addressee

Table 1 Summary of Analytical Results - Soil Livermore Performing Arts Center Livermore, California

Analyte	Units	B-1 3'	B-1 25.5'	B-2 3'	B-2 15.5	B-2 30'	B-3 3'	B-3 25.5'	TTLC	STLC	ESL (Table B) Residential	ESL (Table B) Commercial/ industrial	DESL (Table K-3) (Trench/ Construction Worker)
Hydrocarbons													
TPHd ¹	mg/Kg		<1.0		-	9.6		<1.0	100		500	500	23,000
TPHmo ¹	mg/Kg		<50			<50		<50			500	1,000	23,000
TPHg	mg/Kg		<1.0		<1.0	3.5		<1.0			100	400	23,000
VOCs											<u> </u>		
Benzene	mg/Kg		<0.005		<0.005	<0.005		<0.005		İ	0.18	0.38	17
Ethylbenzene	mg/Kg		<0.005		<0.005	<0.005		<0.005	i	i	4.7	13	400
Toluene	mg/Kg		<0.005		<0.005	<0.005		<0.005			9.3	9.3	650
Xylenes	mg/Kg		<0.005		<0.005	<0.005		<0.005			1.5	1.5	420
Methyl-tert-butyl-ether (MTBE)	mg/Kg	-	<0.005	_	-	<0.005	_	<0.005		ja	2.0	5.6	2,800
Metals													
Lead	mg/Kg	21	-	3,700			4.8		1,000		200	750	750
Soluble Lead (TCLP)	mg/l		-	<0.50			<u></u>			5.0			<u></u>

Notes:

Soil Samples obtained on September 17, 2003
TPHd = Total Petroleum Hydrocarbons as diesel fuel
TPHmo= Total Petroleum Hydrocarbons as motor oil
TPHg= Total Petroleum Hydrocarbons as gasoline

1 = using silca gel cleanup

< = not detected at or above the listed analytical mg/kg = milligrams per kilogram

-- = Not Analyzed

Detected concentrations are shown in Bold

TTLC = Total Threshold Limit Concentration

STLC = Soluble Threshold Limit Concentration

TCLP = Toxicity Characteristic Leaching Potentiai

ESL = Environmental Screening Levels established by the SFBRWQCB

SFRWQCB = San Francisco Bay Regional Water Quality Control Board

Table B: ESL for Shallow Soils (≤3m bgs) Interim Final - July 2003

Groundwater is Not a Current or Potential Source of Drinking Water

Table K-3: Direct-Exposure Screening Level (DESL) Interim Final - July 2003

Construction/Trench Worker Exposure Scenario

Table 2
Summary of Analytical Results - Groundwater
Livermore Performing Arts Center
Livermore, California

Analyte	Units	B-1	B-2	B-3	ESL (Table B)	GSL (Table F-1b) Indoor Air Quality
Hydrocarbons TPHd ¹	μg/L	1,100	57	42,000	640	NE
TPHmo ¹	µg/L	<1,000	<500	<10,000	640	NE
TPHg		1,600	90	18,000	500	NE
VOCs						
Benzene	µg/L	<0.5	<0.5	140	46	530
Ethylbenzene	1	<0.5	<0.5	47	290	14,000
Toluene	1 - 1	<0.5	<0.5	120	130	500,000
Xylenes		<0.5	<0.5	1,000	13	150,000
Methyl-tert-butyl-ether (MTBE)		<5.0	<5.0	<50	1,800	24,000

Notes:

Soil Samples obtained September 17, 2003

TPHd = Total Petroleum Hydrocarbons as diesel fuel

TPHmo= Total Petroleum Hydrocarbons as motor oil

TPHg= Total Petroleum Hydrocarbons as gasoline

1 = using silca gel cleanup

< = not detected at or above the listed analytical reporting limit µg/L = micrograms per liter

-- = Not Analyzed

NE = Not Established

Detected concentrations are shown in Bold

ESL = Environmental Screening Levels established by the SFBRWQCB

GSL = Groundwater Screening Levels established by the SFBRWQCB

SFRWQCB = San Francisco Bay Regional Water Quality Control Board

Table B: ESL for Groundwater Interim Final - July 2003

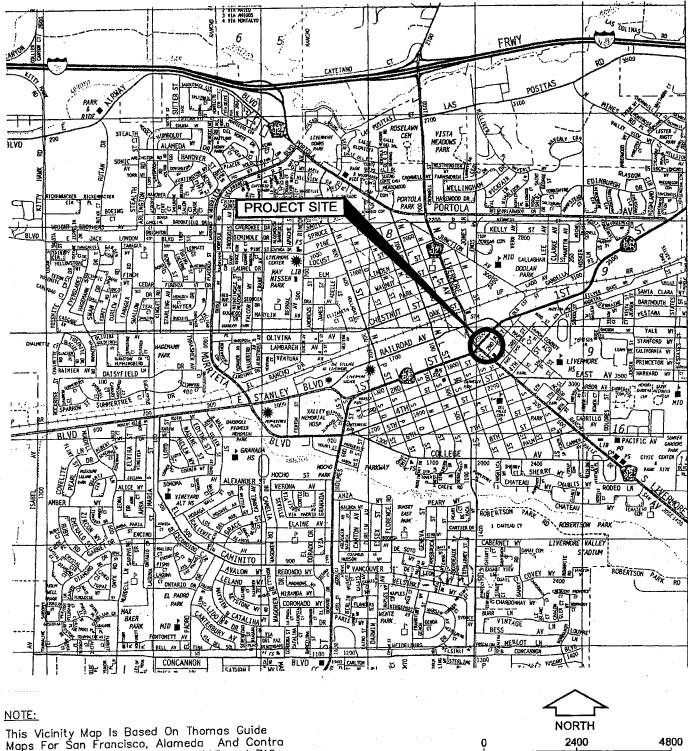
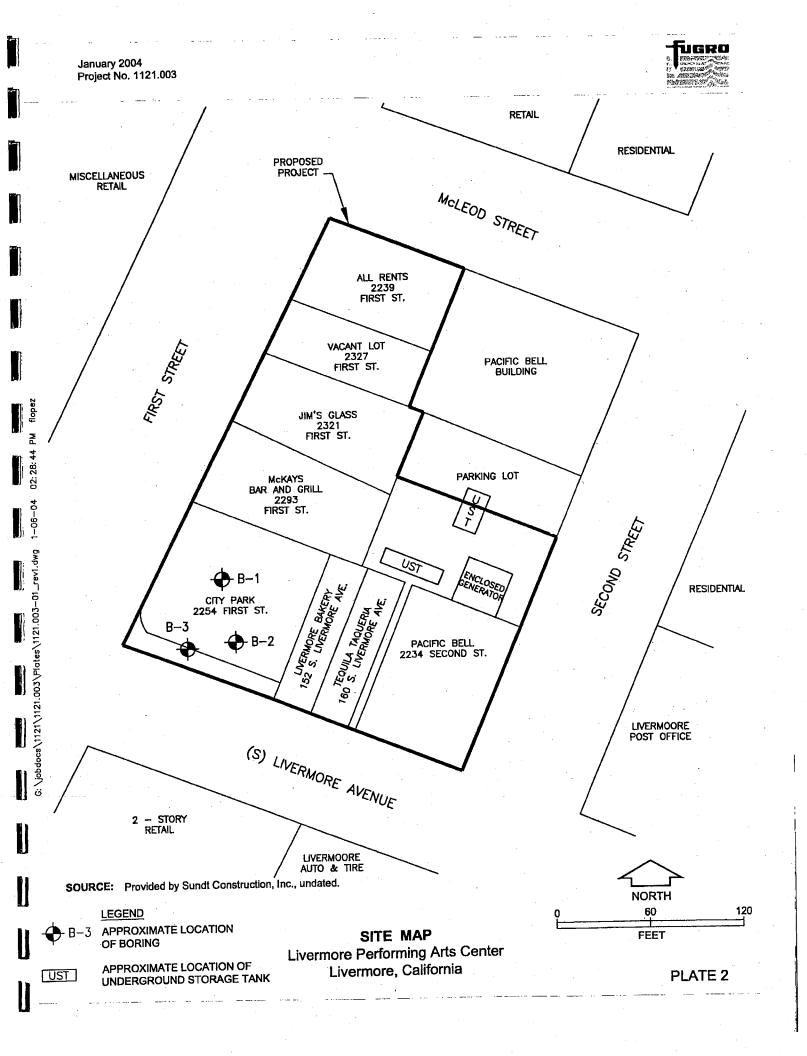

Groundwater is Not a Current or Potential Source of Drinking Water

Table F-1b: GSL for Groundwater is not a current or potential source of drinking water

Groundwater is Not a Current or Potential Source of Drinking Water



This Vicinity Map Is Based On Thomas Guide Maps For San Francisco, Alameda And Contra Costa Counties, California, Maps 695 and 715, YEAR 2000.

VICINITY MAP Livermore Performing Arts Center Livermore, California

PLATE 1

Submission#: 2003-09-0733

Fugro

October 06, 2003

1000 Broadway Suite 200 Oakland, CA 94607

Attn.:

Glenn Young

Project#:

1121.003

Project:

Livermore Performing Arts

Dear Mr. Young,

Attached is our report for your samples received on 09/18/2003 11:40 This report has been reviewed and approved for release. Reproduction of this report is permitted only in its entirety.

Please note that any unused portion of the samples will be discarded after 11/02/2003 unless you have requested otherwise.

We appreciate the opportunity to be of service to you. If you have any questions, please call me at (925) 484-1919.

You can also contact me via email. My email address is: tgranicher@stl-inc.com Sincerely,

___لاحے

Tod Granicher Project Manager

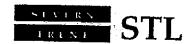
Total Lead

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137


Project: 1121.003

Livermore Performing Arts

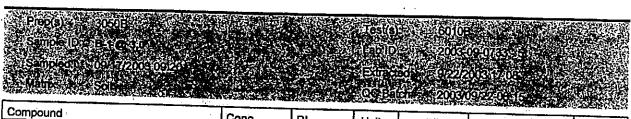
Received: 09/18/2003 11:40

Samples Reported

Sample Name	Sampled	Manual State	5070000
B-1 @ 3.0	09/17/2003 09:20	Soil	5
B-2 @ 3.0	09/17/2003 13:35	Soil	8
B-3 @ 3.0	09/17/2003 10:30	Soil	10

Submission #: 2003-09-0733

Total Lead


Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607 Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

Compound					The state of the s	S. T. S. C.
	Conc.	RL	Unit	Dilution	Analyzed	Floo
Lead	21	1.0	mg/Kg	1.00	09/23/2003 19:57	Flag

Total Lead

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

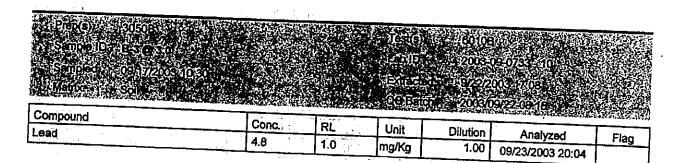
Livermore Performing Arts

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Lead	3700	10	mg/Kg	10.00	09/24/2003 13:47	

Submission #: 2003-09-0733

Total Lead

Fugro


Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project 1121.003

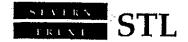
Livermore Performing Arts

Submission #: 2003-09-0733

Total Lead

Fugro

Attn.: Glenn Young


1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

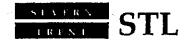
Titologotistan	Lead	ND	1.0	mg/Kg	09/23/2003 12:59	1
Ferriginal Confidence of the C		Conc.	RL	Unit	Analyzed	Flag
	Piero rosii Principlia Piero rozzo (Fri		E9]-		COESTA PROSECT Date Extract of 0100/2//	s):6010E /22/08/10 00/4/7/0

Total Lead

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607


Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

	KW - W - A W			A Not the control of
Prepara vosas				
				es(a) 6010B
40 Oratory Com	tollo	Service (Section 1997)	4 Carriers	309/22/08 5
LCSS - 2003/	07240-66-04	- 1 Encord (09/22/20)	3,507,607	3/2003 (3.03
AND THE PERSONS	6166-06 15-04 A	Extracted (09/22/200	Analyzed 09/2	3/2003 13:06

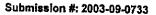
Compound	Conc.	mg/Kg	Exp.Conc.	Recovery %		RPD			Flags	
Lead	LCS	LCSD		LCS	LCSD	%	Rec.	RPD	LCS	LCSD
LCau	91.2	90.4	100.0	91.2	90,4	0.9	80-120	20		LCSD

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137


Project: 1121.003


Livermore Performing Arts

Received: 09/18/2003 11:40

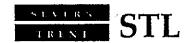
Samples Reported

Sample Name	Dafesampleds	Marrico S	Lab#
B-1	09/17/2003 11:30	Water	1
B-2	09/17/2003 15:35	Water	2
B-3	09/17/2003 18:40	Water	3
B-1 @ 25.5	09/17/2003 10:14	Soil	4
B-2 @ 30.0	09/17/2003 14:10	Soil	6
B-3 @ 25.5	09/17/2003 17:10	Soil	9

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

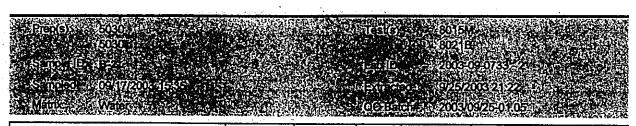

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

Compound	Conc.	RL	Unit	Dilution	Analyzed	Floo
Gasoline Benzene Toluene Ethyl benzene Kylene(s) MTBE <i>Surrogate(s)</i>	1600 ND ND ND ND ND	50 0.50 0.50 0.50 0.50 0.50 5.0	ug/L ug/L ug/L ug/L ug/L ug/L	1.00 1.00 1.00 1.00 1.00 1.00	09/25/2003 20:50 09/25/2003 20:50 09/25/2003 20:50 09/25/2003 20:50 09/25/2003 20:50 09/25/2003 20:50	Flag g
Trifluorotoluene 4-Bromofluorobenzene-FID	110.5 112.0	58-124 50-150	% %	1.00 1.00	09/25/2003 20:50 09/25/2003 20:50	

Fugro


Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607


Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

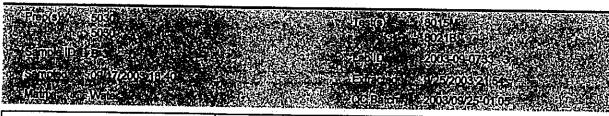
Livermore Performing Arts

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Gasoline	90	50	ug/L	1.00	09/25/2003 21:22	g
Benzene	ND	0.50	ug/L	1.00	09/25/2003 21:22	3
Toluene	ND	0.50	ug/L	1.00	09/25/2003 21:22	
Ethyl benzene	ND	0.50	ug/L·	1.00	09/25/2003 21:22	
Xylene(s)	ND	0.50	ug/L	1.00	09/25/2003 21:22	
MTBE	ND	5.0	ug/L	1.00	09/25/2003 21:22	
Surrogate(s)					70.20,2000 21.22	
Trifluorotoluene	112.4	58-124	%	1.00	09/25/2003 21:22	İ
4-Bromofluorobenzene-FiD	83.9	50-150	%	1.00	09/25/2003 21:22	

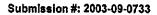
Submission #: 2003-09-0733

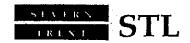
Gas/BTEX Compounds by 8015M/8021

Fugro


Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607


Phone: (510) 267-4424 Fax: (510) 268-0137


Project: 1121.003

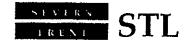
Livermore Performing Arts

Compound	Conc.	RL	Unit	Difution	Analyzed	Flag
Gasoline	18000	500	ug/L	10.00	09/25/2003 21:54	riag
Benzene	140	5.0	ug/L	10.00	09/25/2003 21:54	
Toluene	47	5.0	ug/L	10.00	09/25/2003 21:54	
Ethyl benzene	120	5.0	ug/L	10.00	09/25/2003 21:54	
Xylene(s)	1000	5.0	ug/L	10.00	09/25/2003 21:54	
MTBE	ND	50	ug/L	10.00	09/25/2003 21:54	
Surrogate(s)		· 1				
Trifluorotoluene	95.0	58-124	%	10.00	09/25/2003 21:54	
4-Bromofluorobenzene-FID	70.4	50-150	%	10.00	09/25/2003 21:54	

Fugro


Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607


Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

Compound	Conc.	RL	Unit	Dilution	Analyzed	Eloa
Gasoline	ND.	1.0	mg/Kg	1.00	09/25/2003 13:14	Flag
Benzene	ND	0.0050	mg/Kg	1.00	· f	
Toluene	ND	0.0050	1 1	1.00	09/25/2003 13:14	
Ethyl benzene	ND	0.0050	mg/Kg	1	09/25/2003 13:14	
Xylene(s)	ND	1	mg/Kg	1.00	09/25/2003 13:14	
MTBE	1	0.0050	mg/Kg	1.00	09/25/2003 13:14	
	ND	0.0050	mg/Kg	1.00	09/25/2003 13:14	
Surrogate(s)						
Trifluorotoluene	105.1	53-125	%	1.00	09/25/2003 13:14	
4-Bromofluorobenzene-FID	89.2	58-124	%	1.00	09/25/2003 13:14	

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121,003

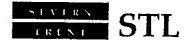
Livermore Performing Arts

Compound	Conc.	RL	Unit	Dilution	Analyzed	Floo
Gasoline	3.5	1.0	mg/Kg	1.00	09/25/2003 13:45	Flag
Benzene Toluene	ND ND	0.0050 0.0050	mg/Kg	1.00 1.00	09/25/2003 13:45	
Ethyl benzene	ND	0.0050	mg/Kg mg/Kg	1.00	09/25/2003 13:45 09/25/2003 13:45	
Xylene(s) MTBE	ND ND	0.0050	mg/Kg	1.00	09/25/2003 13:45	
Surrogate(s)	NO	0.0050	mg/Kg	1.00	09/25/2003 13:45	
Trifluorotoluene	108.2	53-125	%	1.00	09/25/2003 13:45	
Trifluorololuene-FID	115.7	53-125	%	1.00	09/25/2003 13:45	

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607


Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Gasoline	ND	1.0	mg/Kg	1.00	09/25/2003 18:18	, jug
Benzene	ND.	0.0050	mg/Kg	1.00	09/25/2003 18:18	
Toluene	ND	0.0050	mg/Kg	1.00		
Ethyl benzene	ND	0.0050	mg/Kg	1.00	09/25/2003 18:18	
Xylene(s)	ND	0.0050		1.00	09/25/2003 18:18	
MTBE	ND	0.0050	mg/Kg	1.00	09/25/2003 18:18	
Surrogate(s)	1.05	0.0050	mg/Kg	1,00	09/25/2003 18:18	
Trifluorotoluene	93.3					
4-Bromofluorobenzene-FID		53-125	%	1.00	09/25/2003 18:18	
Diomondologenzene-FID	91.0	58-124	%	1.00	09/25/2003 18:18	

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

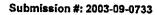
Project: 1121.003

Livermore Performing Arts

Gusta sad Mana Ban		ich QC Report.		CC Batch # 2003 0s	s) 80 125 01
WiE 2003/0925-01/01503				Udia Edinglic de 1977	003 07
Gasoline	Conc.	RL	Unit	Analyzed	Fla
Benzene	ND ND	1.0 0.0050	mg/Kg	09/25/2003 07:22	
Coluene	ND	0.0050	mg/Kg mg/Kg	09/25/2003 07:22 09/25/2003 07:22	
thyl benzene ylene(s)	ND	0.0050	mg/Kg	09/25/2003 07:22	
ITBE	ND ND	0.0050	mg/Kg	09/25/2003 07:22	
urrogates(s)	1,10	0.0050	mg/Kg	09/25/2003 07:22	
rifluorotoluene	97.6	53-125	%	00/75/2002 07-02	
-Bromoffuorobenzene-FiD	97.8	58-124	/% %	09/25/2003 07:22 09/25/2003 07:22	:

Fugro

Attn.: Glenn Young


1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

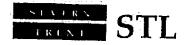
Project: 1121.003

Livermore Performing Arts

	43.4.353	<u> </u>			
	Bate Bate	h QC Report			
				ing ()4:ME// 7/2:47/
\$490E \$000009\$\$61001000				Date Extracted 06/25/2	A 100 CO
Compound	Conc.	RL	Unit	Analyzed	Flag
Gasoline	ND	1.0	mg/Kg	09/25/2003 10:01	
Benzene	ND	0.0050	mg/Kg	09/25/2003 10:01	
Toluene	ND	0.0050	mg/Kg	09/25/2003 10:01	
Ethyl benzene	ND	0.0050	mg/Kg	09/25/2003 10:01	
Xylene(s)	ND	0.0050	mg/Kg	09/25/2003 10:01	-
MTBE	ND	0.0050	mg/Kg	09/25/2003 10:01	
Surrogates(s)					
Trifluorotoluene	92.9	53-125	1%	09/25/2003 10:01	
4-Bromofluorobenzene-FID	82.8	58-124	%	09/25/2003 10:01	

Fugro

Attn.: Glenn Young


1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

Method Blank		tch QC Reporte Watel			s) 80 (5) 1/25 0 (10
4 MBy2003/09/25 01/05/00/20 *********************************			12:37 TAK 45 L. R. M. H. C.	Data Extracted 09/25/2	
Compound	Conc.	RL	Unit	Analyzed	Flag
Gasoline	ND	50	ug/L	09/25/2003 07:15	Flag
Benzene	ND	0.5	ug/L	09/25/2003 07:15	l
T <u>oluene</u>	ND	0.5	ug/L	09/25/2003 07:15]
Ethyl benzene	ND	0.5	ug/L	09/25/2003 07:15	1
Kylene(s)	ND	0.5	ug/L	09/25/2003 07:15	
MTBE	ND	5.0	ug/L	09/25/2003 07:15	[
Surrogates(s)			-3"	90/20/2003 07:15	<u> </u>
rifluorotoluene	98.7	58-124	%	09/25/2003 07:15	
4-Bromofluorobenzene-FID	80.0	50-150	1 %	09/25/2003 07:15	1

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

2003/06/25 Compound	Conc.	mg/Kg	Exp.Conc.	Reco	very %	RPD	Ctrl.Lim	(200),C its %	9/25/200 FI	3 08 26 ags
LCSD 2 2003/00/2	:U1:U1:U2:1VE		* EYRAGOORY	24244		612.8 992	AL SUBI	(Zed),C	9(25/200	3.08.26
Proposition (1914) Proposition (1914)	ici			: zie yi			eei		9613 00009/	1.041 2.010 6.17
			Each@ek	porte						

Compound	Conc.	mg/Kg	Exp.Conc.	Rec	overy %	RPD	Ctrl.Lim	its %	Fla	ags
	LCS	LCSD		LCS	LCSD	%	Rec.	RPD	LCS	LCSD
Berizene Toluene Ethyl berizene Xylene(s) Surrogates(s) Trifluorotoluene	0.0979 0.0953 0.0942 0.279	0.0989 0.0960 0.0964 0.286	0.1000 0.1000 0.1000 0.300	97.9 95.3 94.2 93.0	98.9 96.0 96.4 95.3	1.0 0.7 2.3 2,4	77-123 78-122 70-130 75-125	35 35 35 35		

Submission #: 2003-09-0733

Gas/BTEX Compounds by 8015M/8021

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project 1121.003

Livermore Performing Arts

Color Centro Spill	Compound	Сопс.	mg/Kg	Exp.Conc.	Recovery %	RPD	Ctrl.Limits %	Flags
Electron (Control Spile Control Control Spile Control Co								THE CASE OF PERSONS ASSESSED.
Fig. 10 - 1.5 Technologie	CONTRACTOR OF STATE O	WEAR MAN	2000年2月1日	A EXILACTED 2.0	S/25/2003976	21.00	Analyzed (9/25/2003 09:3
First Control	T SPECIAL ON A MODE OF			S CHARLES				30 PARTY STATE
First testing Sales and Sa	EUC 1877 17 2003/08/25 01:	01-006	大学性学	Extracted 0	9/25/2003E	1.	Analyzed (09/25/2003 08:5
First to the first		经联盟				100		
Fig. 10, 415.7	Calconiol y Control Spice	经 有条件		Section Soil	100	1.7	CC Batch #	2003/09/25-01.0
Fig. 15.5				S. S. R. Market		有人	1.0	ALC: NO.
Privo de la companya de la companya de la companya de la companya de la companya de la companya de la companya		克拉丁女	S	10.00	A 5 A 5 A 5 A 5 A 5 A 5 A 5 A 5 A 5 A 5	1. 2. 1.	是是从身份的	The Cale Market
	自19 19 19 19 19 19 19 19 19 19 19 19 19 1	a with			表表 (Sept. of April)		or halfdarkey	lestrs): 8015
	华德国安全教士 等企业有	**************************************			文學學學和學學		建筑工作	STATE OF THE STATE
			Lat Market Control	Parculate K	DOLL新教育的企業	多次是	通过的表现在	

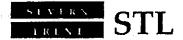
Compound	Сопс.	mg/Kg	Exp.Conc.	Reco	very %	RPD	Ctrl.Lim	its %	Fla	gs
	LCS	LCSD	, , , , , , , , , , , , , , , , ,	LCS	LCSD	%	Rec.	RPD	LCS	LCSD
Gasoline	0.472	0.527	0.500	94.4	105.4	11.0	75-125	35		
Surrogates(s)		1			1.					
4-Bromofluorobenzene-FID	445	512	500	89.0	102.4	ĺĺ	58-124	,		

Gas/BTEX Compounds by 8015M/8021

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607


Phone: (510) 267-4424 Fax: (510) 268-0137

Project 1121.003

Livermore Performing Arts

	Section of the Barnot	Report	
Arenes 5035 C			rest(s) 80.15M
2000/07/20	1 VIII		
LCSD - \$72003097250	wyoc sit is the second	0 09/25/2003C	yzed 09/25/2003 07:57 yzed 09/25/2003 07:57

Compound	Conc.	mg/Kg	Exp.Conc.	Reco	vегу %	RPD	Ctrl.Lim	its %	FI	ags
	LCS	LCSD	1,14	LCS	LCSD	%	Rec.	RPD	LCS	LCSD
Gasoline	0.494	0.485	0.500	98.8	97.0	1.8	75-125	35		
Surrogates(s) 4-Bromofluorobenzene-FID	475	512	500	95.0	102.4		58-124			

Gas/BTEX Compounds by 8015M/8021

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

	Bath Ce R	Ports of the Park	
Preper Location			7/ 91 Fiesi(s) 802(B)
alaborator (control sinite)		a a	atch # 2003/09/25-01-04
4 200/00/2E-040	O. E. E. C.	74720	(2007) 1yzed: 09/25/2003:10:33
LCSO\\ 2003/09/25-01 Q	economic Europia	V25/2003	yzed: 09/25/2003 09:30

Compound	Conc.	mg/Kg:	Exp.Conc.	Rec	overy %	RPD	Ctrl.Lim	its %	Fla	ags
1	LCS	LCSD		LCS	LCSD	%	Rec.	RPD	LCS	LCSD
Benzene Toluene Ethyl benzene Xylene(s) Surrogates(s) Trifluorotoluene	0.0923 0.0931 0.0946 0.278	0.0910 0.0909 0.0910 0.269	0.1000 0.1000 0.1000 0.300	92.3 93.1 94.6 92.7	91.0 90.9 91.0 89.7	1.4 2.4 3.9 3.3	77-123 78-122 70-130 75-125	35 35 35 35 35		2303

Gas/BTEX Compounds by 8015M/8021

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

Compound	Conc.	ug/L	Exp.Conc.	Rec	overy %	RPD	Ctrl.Lim	its %	Fi	igs
	LCS	LCSD	- 1 	LCS	LCSD	%	Rec.	RPD	LCS	LCSD
Benzene Toluene Ethyl benzene Xylene(s)	97.9 97.8 96.2 284	94.4 94.4 93.3 274	100.0 100.0 100.0 300	97.9 97.8 96.2 94.7	94.4 94.4 93.3 91.3	3.6 3.5 3.1 3.7	77-123 78-122 70-130 75-125	20 20 20 20 20		2000
Surrogates(s) 4-Bromofluorobenzene	594	470	500	118,8	94.0		50-150			

Gas/BTEX Compounds by 8015M/8021

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

				OC Réportes		
Prep(s)	G100					Tesi(a): 8015M
						Target State (Section Section
Laborato	y Control S				Acce Oc Bate	h # 2003/09/25 01:05
LC	2003/09/2	5-01.05-005	数字字子 》 [4]	@dr(00/25/2004/5/	Alaly Care	ed 09/25/2003 08:50
- BUSUM	2003/09/2	5-01:05-00 6	EXTRA	ted: 09/25/2003	A JAC AN LA Calyz	d 09/25/2003 09:22

Compound	Conc.	ug/L	Exp.Conc.	Reco	very %	RPD	Ctrl.Lim	its %	Fla	gs
	LCS	LCSD		LCS	LCSD	%	Rec.	RPD	LCS	LCSD
Gasoline Surrogates(s)	510	505	500	102.0	101.0	1.0	75-125	20		
4-Bromofluorobenzene-FID	400	392	500	80.0	78.4		50-150			

Gas/BTEX Compounds by 8015M/8021

Fugro

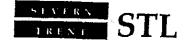
Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 287-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts


Received: 09/18/2003 11:40

Result Flag

g

Hydrocarbon reported in the gasoline range does not match our gasoline standard.

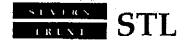
Gas/BTEX by 8015M/8021

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137


Project: 1121.003

Livermore Performing Arts

Received: 09/18/2003 11:40

Samples Reported

Sample Name	Date Sampled:	Matrix		
B-2 @ 15.5	09/17/2003 13:55	Soll	7	

Gas/BTEX by 8015M/8021

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

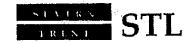
Livermore Performing Arts

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Gasoline	ND	1.0	mg/Kg	1.00	09/25/2003 14:17	
Benzene	ND .	0.0050	mg/Kg	1.00	09/25/2003 14:17	
Toluene	ND	0.0050	mg/Kg	1.00	09/25/2003 14:17	
Ethyl benzene	ND	0.0050	mg/Kg	1.00	09/25/2003 14:17	
Xylene(s)	ND	0.0050	mg/Kg	1.00	09/25/2003 14:17	
Surrogate(s)						
Trifluorotoluene	108.0	53-125	%	1.00	09/25/2003 14:17	
4-Bromofluorobenzene-FID	90.0	58-124	%	1.00	09/25/2003 14:17	

Gas/BTEX by 8015M/8021

Fugro

Attn.: Glenn Young


1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

	B	ier OC Ropon			s) : 801
MB: 2003/09/2: dr 04-007##\$	Conc.			QC Batch # 2003/6 Data Extracted / 09/25/2	
Gasoline Benzene Toluene Ethyl benzene Kylene(s)	ND ND ND ND ND	RL 1.0 0.0050 0.0050 0.0050 0.0050	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	Analyzed 09/25/2003 10:01 09/25/2003 10:01 09/25/2003 10:01 09/25/2003 10:01 09/25/2003 10:01	Fla
currogates(s) rifluorotoluene -Bromofluorobenzene-FID	92.9 82.8	53-125 58-124	% %	09/25/2003 10:01 09/25/2003 10:01	

Gas/BTEX by 8015M/8021

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

						1			
0.494	0.485	0.500	98.8	97.0	1.8	75-125	35	-	
	LCSD	4	LCS	LCSD	-%	Rec.	RPD	LCS	LCSD
	mg/Kg	Exp.Conc.	Rec	overy %	RPD	Ctrl.Lim	its %	Fla	gs
ľ	Conc. LCS 0.494	2-012 4-003 Conc: mg/Kg LCS LCSD	Conc. mg/Kg Exp.Conc. LCS LCSD	04:002\	Conc. mg/Kg Exp.Conc. Recovery %	Extracted 09/25/2003	Extracted 09/25/2003	Conc. mg/Kg Exp.Conc. Recovery % RPD Ctrl.Limits %	Description

Gas/BTEX by 8015M/8021

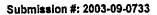
Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003


Livermore Performing Arts

Received: 09/18/2003 11:40

3, 3, 8, 6, 1, 7, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			NO FRANCISCO PROGRAMMA	
		Batch QC Reports		
Prep(s)2-503532			5 T	(s) 8021B
VS 420030		tem est a Sojue a	Carrier of Card Card III y 2000)	9925-01.04
20030		Extracted 09/25/200	Analyzed (1975)	2003-10-32
	AXS-01:04-008:41:21/27/	Extracted 09/25/200	Apalyzed 1975	2003 09-30

1.					TANKS TO STATE OF THE PARTY OF	KR WEAK		9260 2.0	3425/ZU	JJ 09:30
Compound	Conc.	mg/Kg	Exp.Conc.		очегу %	RPD				
Benzene	LCS	LCSD		LCS	LCSD	%	Rec.	RPD		ags
Toluene Ethyl benzene Xylene(s) Surrogates(s)	0.0923 0.0931 0.0946 0.278	0.0910 0.0909 0.0910 0.269	0.1000 0.1000 0.1000 0.300	92.3 93.1 94.6 92.7	91.0 90.9 91.0 89.7	1.4 2.4 3.9 3.3	77-123 78-122 70-130 75-125	35 35 35 35 35	LCS	LCSD
Trifluorotoluene	483	461	500	96.6	92.2		53-125			

Submission #: 2003-09-0733

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

Received: 09/18/2003 11:40

Samples Reported

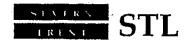
Sample Namer	Date Sampled		INPARAGRAM (S)
B-1 @ 25.5 B-2 @ 30.0 B-3 @ 25.5	09/17/2003 10:14 09/17/2003 14:10 09/17/2003 17:10	Soil Soil Soil	Lab # 4 6 9

TEPH w/ Silica Gel Clean-up

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607


Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

THE SECOND CONTRACTOR OF THE SECOND CONTRACTOR OF THE SECOND CONTRACTOR OF THE SECOND CONTRACTOR OF THE SECOND	VIII VIII I AND MORE TO THE STATE OF THE STA			
35508	15Mb	Tesrés	801574412572	THE RESERVE AND
B. C		د المالية المالية	2003.00.0733	
Sampled ou 77	0.57014 - 0.530	ENERGISCO E CONCENS		
Sols		CO Bachar		
Compound			xvvx(9/29-03-104-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	

Compound		200 100 100 100 100 100 100 100 100 100	大学的 发现在的		0/20-00310	
Diesel	Conc.	RL	Unit	Dilution	Analyzed	
Motor Oil	ND	1.0	mg/Kg		09/30/2003 00:04	Flag
Surrogate(s)	ND	50	mg/Kg		09/30/2003 00:04	
o-Terphenyl	99.1	60-130	%		09/30/2003 00:04	

TEPH w/ Silica Gel Clean-up

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

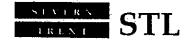
Compound	0	T_:				ALEXANDER PROPERTY.
	Сопс.	RL	Unit	Dilution	Anaivzed	Flag
Diesel Motor Oil	9.6 ND	1.0 50	mg/Kg mg/Kg	1.00 1.00	10/03/2003 08:30	ndp
Surrogate(s) o-Terphenyl	96.2	60-130	%	1.00	10/03/2003 08:30	
	1 444.5	100-100	1/0	1,00	10/03/2003 08:30	_

TEPH w/ Silica Gel Clean-up

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607


Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

	Por G. Gsorgi St. Sanore ID. Es a Sanore Os. 7/2021/10 Marroses			TOTO	9015 2003 3 97277 344 2003	007.32.03 003.82/g/ 77 923-06/g/
İ	Compound	Conc	ΡI	1.1-74		AND THE PERSON OF THE PERSON O

Compound	Conc.	RL	Unit	Dilution	Analyzed	
Diesel Motor Oil Surrogate(s)	ND ND	1.0 50	mg/Kg mg/Kg		10/03/2003 07:59 10/03/2003 07:59	Flag
o-Terphenyl	88.6	60-130	%	1.00	10/03/2003 07:59	

TEPH w/ Silica Gel Clean-up

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

		ch QQ Room to			ensum en
FreeOut 355060[576] McGrot Blank MB 20040672508-(650)				iger COEstant 2000 Undergreige 27) 80 5M V23-06 (0
Compound	Conc.	RL			
Diesel		I I I	Unit	Analyzed	Flag
Motor Oil	ND	17	mg/Kg	09/24/2003 09:34	
•	ND	50	mg/Kg	09/24/2003 09:34	
Surrogates(s)	1		! !		ĺ
o-Terphenyl	92.8	60-130	%	09/24/2003 09:34	l

TEPH w/ Silica Gel Clean-up

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

Erepte 3550/80 SM Method: Blank 5 MB:2003/09/28-03 (0.06)		- i Coltopor		GC Birgh # 2003/0	A STATE OF S
	AL SANCTON SERVICE SER			Pate Extracted (1920)	003/10/0
Compound	Conc.	ŘĹ	Linit	The state of the s	
Compound Diesel Motor Oil Surrogates(s)	Conc. ND ND	RL 1 50	Unit mg/Kg mg/Kg	Analyzed 09/29/2003 16:09 09/29/2003 16:09	Flag

TEPH w/ Silica Gel Clean-up

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

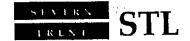
Livermore Performing Arts

		Adda a s		5.4	100 m	100	R. J. Des Car	N. 75'	W. S. T. SHOW	The Section of the
A MARKET AND A STORY	UM OR THE STATE OF	A CONTRACTOR OF THE CONTRACTOR	Batch QC R	Spores			的基础	in a		是加速
:::Freexs v.*:3550/8015M	400		2 / S 10 m		13 19 2	设务	通知 企业	地世界	经 模型	到秦公 安
				\$ 20 5		を配	中的音乐	中外各	eTest(s	8015M
Laboratory Control S			n ve le	v 1				表理的		
			44 30				TOCE	ich	2003/09/	23-06-10
THE COMPANY OF THE PARK OF THE						100		12 10 19		THE REPORT
20000426	-U0410-002378	全位从给 分	DV TO ASSESS	17.5	re: 2007	4.0	HER THE	19-640	1000	村 张 龙丸
ECSPE 2003/09/2 LCSD 2003/09/2	-08 10 002 37		Extraction (770		, 77°			9/24/20	
LCSD& 2003/09/23	06 10 003		Equation ((
LCSD& 2003/09/23	06 (0-003) Conc.	mg/Kg	Extracted 0 Exp.Conc.	8/23/20	08 88	IRPD	Anal	yzed (9/25/20	03 09 04
Compound	06 10 003		Extracted: 0	9/23/20 Rec	O3c	RPD	Anal Ctrl.Lim	yzeck (its %	9/25/20 Fi	03 08 33 03 09 04 ags
LCSD& 2003/09/23	06:10:003 Conc.	mg/Kg LCSD	Exp.Conc.	9/23/20 Red LCS	overy %	%	Anal	yzed (9/25/20	03 09 04
Compound	06 10 003 Conc. LCS	mg/Kg	Extracted: 0	9/23/20 Rec	O3c	 	Anal Ctrl.Lim	yzeck (its %	9/25/20 Fi	03 09:04 ags

TEPH w/ Silica Gel Clean-up

Fugro

Attn.: Glenn Young


1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

2003/09/29-03 10:0098	03.0		% Vuai	yzed: (9/29/200	105 (2) 27
Company		THE STATE OF	Anal	zed (19/29/200	12 15 70
	covery %	in the pas	Ctrl.Lim			
LCS LCSD LCS	LCSD	1%	Rec.			ags
Diesel 39.1 37.7 41.8 94.0 Surrogates(s)	90.6		60-130	RPD 25	LCS	LCSD

TEPH w/ Silica Gel Clean-up

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607 Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

Received: 09/18/2003 11:40

Legend and Notes: (4)

Result Flag

ndp

Hydrocarbon reported does not match the pattern of our Diesel standard

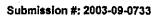
TEPH w/ Silica Gel Clean-up

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137


Project: 1121.003

Livermore Performing Arts

Received: 09/18/2003 11:40

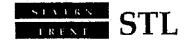
Samples Reported

Sample Name	Date Sampled		fice very many
B-1 B-2 B-3	09/17/2003 11:30 09/17/2003 15:35	Water Water	# Lab # 1 2
	09/17/2003 18:40	Water	3

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607


Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

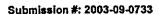
Livermore Performing Arts

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Diesel Motor Oil	1100 ND	100 1000	ug/L ug/L	2.00 2.00	09/27/2003 06:41 09/27/2003 06:41	ndp
Surrogate(s) o-Terphenyl	84.8	60-130	%	2.00	09/27/2003 06:41	

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607


Phone: (510) 267-4424 Fax: (510) 268-0137

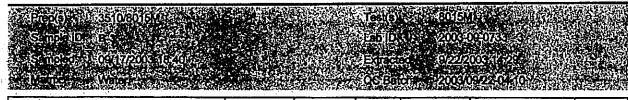
Project 1121,003

Livermore Performing Arts

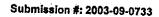
Prepos 35,10/8015M TellS Liv 8015M Semple B. 2 2003 090733 2 Sample C. 09/17/2003 (5.5) Merce C. Veter C. C. Betches 2003/09/22/04 (0.5)

Compound	10-2					
	Conc.	RL	Unit	Dilution	Analyzed	Flag
Diesel Motor Oil	57 ND	50	ug/L		09/26/2003 00:53	ndp
Surrogate(s)	140	500	ug/L	1.00	09/26/2003 00:53	
o-Terphenyl	65.5	60-130	%	1.00	09/26/2003 00:53	

Fugro


Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607


Phone: (510) 267-4424 Fax: (510) 268-0137

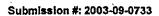
Project: 1121.003

Livermore Performing Arts

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Diesel	42000	1000	ug/L	20.00	09/29/2003 13:51	ndp
Motor Oil	ND	10000	ug/L	20.00	09/29/2003 13:51	
Surrogate(s)						
o-Terpheny!	NA NA	60-130	%	20.00	09/29/2003 13:51	sd

Fugro

Attn.: Glenn Young


1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

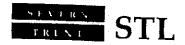
Project 1121.003

Livermore Performing Arts

Prep(s)2-3510/8016M		itch QC Report	E A	Tosi	12491.4
Method Blank MB1:2003/09/22-04:10:001		Water		QC Batch # 2003/09 Date Extracted: 09/22/2	<i>1</i> /22-04 1
		建 定面的。	LIA SALA		漢字系
Compound	Conc.	RL	Unit		
Compound Diesel Notor Oil	Conc. ND ND	RL 50 500	- contract of the contract of	Analyzed 09/24/2003 13:09 09/24/2003 13:09	Flag

Fugro

Attn.: Glenn Young


1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121.003

Livermore Performing Arts

841	852	1000	1		-				
LCS	LCSD		LCS	LCSD	%	Rec.	RPD		LCSD
Conc.	ug/L	Exp.Conc.	Rec	overy %	RPD	Ctrl.Lim	its %	FI	ags
	10-003	0-002 10-003 Conc. ug/L	0-002 Extracted 0 10-003 Extracted 0 Conc. ug/L Exp.Conc.	0-002 Extracted: 09/22/20 10-003 Extracted: 09/22/20 Conc. ug/L Exp.Conc. Rec	0-002 Extracted: 09/22/20034 10:003 Extracted: 09/22/2003 Conc. ug/L Exp.Conc. Recovery %	10-002: Extracted: 09/22/20034 10-003: Extracted: 09/22/2003 Conc. ug/L Exp.Conc. Recovery % RPD	10-0024	10-002	10-002

TEPH w/ Silica Gel Clean-up

Fugro

Attn.: Glenn Young

1000 Broadway Suite 200 Oakland, CA 94607

Phone: (510) 267-4424 Fax: (510) 268-0137

Project: 1121,003

Livermore Performing Arts

Received: 09/18/2003 11:40

Result Flag

ndp

Hydrocarbon reported does not match the pattern of our Diesel standard

sd

Surrogate recovery not reportable due to required dilution.

2003-09-0733

78847 PAGE 1 OF 1

ANALYSIS REQUESTED REQUESTED BY ON TO A PFROJECT NAME: LIVENTIMBLE PENTOMINAM BINTS PFROJECT CONTACT: P. LEWIN YOU'NG SAMPLED BY: - O'BY NO. E.L. ROJECT NO: 1121-003

	,							. z .					<u></u>				ı
7.	S UIT	ກ່ຽວໄດ	Circu									\perp					
1			303					:						,			ı.
	,				.										_		ľ
		Ġ				_				•					Γ		١
7	ष्ट्राप्ट	à b	LSH		*		۳			×			,		Γ		١
;; ;	7		beal	-	÷	1	-	X			X		×		⇈	1	۱
1			<u> </u>			- 1	÷	4	•		Ĥ	-			┢	H	١
4	eren zz				÷	-14	_	-		-	-	\vdash	-	-	╁╌	-	ı
			NOC:				_			-	<u>. </u>		_	H	÷	<u>. :</u>	ł
	KM-0				×	X	X		×	<u>.</u>		X	_	<u> </u> _	Ļ	1	1
76	BOTM.	_		_	X	*	·×	<u> </u>	×		L	×	Ŀ	L	Ŀ	1_	
			NOTE			1								<u> </u>			
'	1			0	1.3	٥	ij,	Q	0	ìV	47	2	'n	Γ	Ţ	T	1
î	ľ		<u>.</u>	33	-		-	1	-	ij	Ł	=	8	! -	†	亻	1
	Ľ	'		***		1	-	S	14.0		<u>:</u> ~	1	-	ŀ	╀	+-	-
	1 44		Γ.		150	80	۵	Ö	×	Ã	2	14	ع	<u>L</u>	<u> </u>	Ļ	
	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			<u>53</u>	-	بن	-	Ę	<u>;</u>	-	:=-	ا	=	ļ	1		
	SAMPLING DATE		3	*	**	8	×		W	1	*	V	_	Γ	Τ	T	1
			EAR	Ö				ō		1	S	e		↓	T	+	4
			,	·0				_	-	-	٠.	1 1	!	<u> </u>	╀	100	4
;	5			+	Ť	ç	5	d	1:0	应	10	C	Ċ	1	1	1	_
i	Į,			上	-	-		1	=	-		-	-	ľ			
			Ē	Þ	0	Ş	Ö	ø	8	×	0	8	0	Γ	T	Γ	
			ģ.	6	O	Ó	7	e		Š	ř	έ	ē	H	十	+-	٦
	-		NONE					<u> </u>	_	32	1	Ϊ	1'	⊢	+-	+	ļ
ľ	u	-			×		Ž	7	×	~	[]	×	×	1	_	┸	_
i	È		⊟HTO			<u> </u>			L	<u> </u>	L				L		
ŀ	≸		KE	×	¥	¥	~	Ϋ́	×	×	7	بخ	×	Γ	T		1
ľ	PRESERVATIVE	. 1	ONH				_	_		Γ		i –	-	H	╁	十	1
į.	8	-1	'oş'н	-	7					-	-	-	-	-	╀	╁	1
		-				_	÷		Ш	_	. 4, 5	<u> </u>	Ľ.	L	Ļ	1	j
			HCL	×	<u>'</u>	Y	٠	5					L		L.		
٠.	ľ														Γ	Γ	١
		_	. 7		T	7							<u> </u>	-	1	†-	ł
-1	NERS		38UT		1	- 1	_	-	ë 5			H	-		-	+-	Į
۰	 	+	TNIQ	╼┪	\dashv				\dashv	=	4			<u> </u>	1	1	I
	CONT	. ļ		_4	-	4			\sqcup								ľ
	٥		iajiu		1	4	_	_							Γ		١
Į			YON	W	M	~					7	7	7				I
		T			Ť	1	7	+	+	+			+		H	 -	ŀ
1	놝	十	725	\dashv	+	+	-+	-+	┵	\dashv	\dashv	\dashv		_		Щ	
ı	MATRIX	+	201L	-	+	4	4	4	_	4	_	\bot	4	j			
j	<u>=</u> }			_ _	_[_		ᆀ	<u> </u>	Ż,	×	×	×	×	7			
L		H3	TAW	X	×	Χ	T	T	T	1	7	1	1	_	7	3-	İ
ſ				7	+	-1.1	╁	+	十	╁	+	+	+		+		
ı		OT STAWNS THEIR	- 1			1,	١			ل					- 1	ı	
ŀ		퍼 -	j	-		Ì	١ (١	d	Ξ		9	W	d	-	ł		
ŀ		쿭					9,	W.	ñ.	4	cs.	Ŋ.	ᆏ	- [- 1	
	3	7		_ _	J r	ላ[1	24 (એ (9	3	તેં	9	-		- 1	
ľ	i	3		7	4 0	0 2	֓֡֞֞֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֡֡֡֓֓֓֡֡֡֡֓֡֡֡֡֡֡֡	7	16	₹.	4	Ħ,	4	1	[-	
	i				g c	45	٩,	d.	۱,	<u>ا</u> ا	ä	او	1				
۲	Š	 	- `	+-	+-	+	+	1	1:	1	1	B-30255	4	_	\downarrow		
	LA BORATORY									f				ſ		1	
	3	5	-				-			T.					1		
	Ğ,	Ē.		1						1					\cdot		
	. 4	ָם	: [1.		Ì			1.	1							
_	<u>ب</u>					1								1			
				_			•		.4				ŧ	1			

10.00		FUGRO WEST, INC.	Oakland, California 94607 Tel: 510.268:0461 Fax: 510.268:0137
COMMENTS & NOTES			///
	MACON MACON	DATESTIME	DATERIME
CHAIN OF CUSTODY RECORD	DATEITIME RECEIVED BY: (Signature) DATEITIME RECEIVED BY: (Signature)	RECEIVED BY: (Signatura)	RECEIVED BY: (Slonatura)
CUSTO	TIME 11.40 TIME	- }	표
	CAPANOLISHED BY: (SIGNAFUR) OATE RELINQUISHED BY: (SIGNAFUR) DATE	RELINQUISHED BY: (Signature) DATE/TIME	RELINQUISHED BY: (Signature) DATE/TIME

Appendix C Summary of Previous Environmental Investigation

PREVIOUS ENVIRONMENTAL INVESTIGATION AND REMEDIATION FORMER STANDARD OIL STATION 30-7233 2259 FIRST STREET, LIVERMORE, CALIFORNIA

September 2003 Investigation

The City of Livermore Engineering Division, as part of a redevelopment plan, retained Fugro West, Inc. (Fugro) to investigate soil and groundwater conditions beneath Mills Square Park to evaluate the potential presence of petroleum hydrocarbons resulting from the historic use of the site as a service station. Fugro advanced three soil borings onsite. Details can be found in Fugro's January 6, 2004 *Soil and Groundwater Investigation Report*.

September 2005 UST Removal

In September 2005, an orphan underground storage tank (UST) was encountered beneath the sidewalk on the southwest corner of the site. At the direction of the Livermore-Pleasanton Fire Department the UST was removed, soil samples collected, and the excavated soil was backfilled into the UST pit. Chevron was not involved with the tank removal and was contacted later by ACEH to investigate whether any other USTs remained in Mills Square Park. Additional information is available in Consolidated Engineering Laboratories' October 4, 2005, *Environmental Sampling, Testing and Evaluation of Soil* report.

August 2006 Geophysical Investigation

Cambria Environmental Technology, Inc. (Cambria), now Conestoga-Rovers & Associates (CRA), contracted NORCAL Geophysical Consultants, Inc. to determine if any USTs still remained in place. Two suspected tanks were identified in the southwest corner of the park, measuring approximately 5 by 7 feet and located approximately 3 feet below grade (fbg). More information is available in Cambria's December 22, 2006 Subsurface Investigation Report.

September and October 2006 Site Investigation

Cambria observed Woodward Drilling Company, Inc. advance borings SB1 through SB5 in the vicinity of the former dispenser islands and suspected USTs. More information is available in Cambria's December 22, 2006 Subsurface Investigation Report.

June 2007 Tank Removal

On June 20, 2007, CRA observed Gettler-Ryan Inc. remove two 750 gallon single-wall steel gasoline USTs (Tank 1 and Tank 2) and approximately 27 feet of associated product piping. CRA collected compliance soil samples from beneath the ends and middle of both Tank 1 and Tank 2 and from below the pipes protruding from the northwestern wall of the tank pit. More information is available in CRA's August 17, 2007 *Underground Storage Tank Removal and Compliance Sampling Report*.

January and February 2008 Site Investigation

CRA observed Gregg Drilling & Testing, Inc. (Gregg), RSI Drilling, and Vironex Environmental Field Services advance soil borings CPT1, CPT2 and SB6 through SB9, shallow soil borings SSB1 through SSB11 (for lead analysis), and install vapor probes VP-1 through VP 3, both on and offsite. More information is available in CRA's March 27, 2008 Subsurface Investigation Report and Well Installation Workplan.

October and November 2008 Site Investigation

CRA observed Gregg Drilling advance soil borings CPT3 through CPT5 and SB10 through SB12, both on and offsite. CRA re-sampled soil vapor probe VP1 to confirm previous soil vapor data. Additional information is available in CRA's March 5, 2009 Subsurface Investigation Report.

March and April 2010 Monitoring Well Installation:

On March 29 through April 12, 2010 CRA observed Gregg Drilling install deep wells MW-1 through MW-6 and shallow wells MW-7 through MW-9. Additional information is available in CRA's June 3, 2010 *Well Installation Report*.

2011 Corrective Action Plan

As requested by ACEH, CRA submittal a *Draft Corrective Action Plan* (CAP) dated May 3, 2011. In the CAP, CRA recommended monitored natural attenuation and additional site assessment to define the extent of hydrocarbons in groundwater. In response to the ACEH June 9, 2011 letter and a meeting with Jerry Wickham of ACEH on August 3, 2011, CRA submitted a *Work Plan for Feasibility Testing and Additional Assessment*. In the report CRA proposed surfactant to remove LNAPL detected in well MW-7, followed by a gypsum land application and sulfate canister installations in well MW-7 to enhance bioremediation of dissolved hydrocarbons. Additional onsite and offsite wells were also proposed.

2014 and 2015 Lead Investigation Activities

On October 7 and 8, 2014 (All Well Abandonment) and January 20, 2015 (Penecore Drilling) GHD oversaw the advancement of onsite shallow borings HA-1 through HA-7. On September 14 through 17, 2015, GHD oversaw Gregg Drilling advance onsite borings HA-8 through HA-28 and offsite boring SB-13. All onsite borings were advanced to assess lead levels in shallow soil. Detected concentrations of lead ranged from 5.29 milligrams per kilograms (mg/kg) (HA-6 @ 3fbg) to 4,990 mg/kg (HA-19 @ 3 fbg). In order to delineate the downgradient extent of petroleum hydrocarbons in shallow groundwater, offsite boring SB-13 was advanced to 36 fbg; however, no groundwater was observed in the boring after waiting an hour. This is most likely due to the ongoing drought. A soil sample was collected at 35 fbg in lieu of the groundwater sample. The soil was analyzed for total petroleum hydrocarbons as gasoline (TPHg) and benzene, toluene, ethylbenzene and total xylenes (BTEX). No concentrations were detected for TPHg or BTEX at or above the laboratory reporting limits. Additional information is available in GHD's November 5, 2015 Sampling Results Report.

Appendix D Updated Lead Risk Evaluation

Memorandum

To: Brian Silva Ref. No.: 312264

AGT.

From: Tina LePage/April Gowing/kf/2 Date: November 12, 2015

Re: Updated Lead Risk Evaluation, Former Standard Oil Station 307233

2259 First Street, Livermore, California

1. Introduction

On behalf of Chevron Environmental Management Company (CEMC), GHD has updated the 2012 lead Risk Evaluation (RE) for the Former Standard Oil Station 307233 located at 2259 First Street, California (Site). Soil sampling has been conducted at the Site since 2003, following the detection of lead in the shallow soils. The purpose of the RE was to incorporate new lead soil data collected in 2014 and 2015 and evaluate whether lead detected in site shallow soil could pose risks/hazards that are above acceptable levels to human health based the current use of the Site.

2. Analytical Data

2.1 Lead Soil Data

The soil analytical data set considered in the RE includes soil data collected during the years 2003, 2006, 2007, 2008, 2010, 2014, and 2015. In addition, the data set evaluated for the purposes of the RE was limited to include only those soil samples taken from depths of less than 10 feet below ground surface (ft bgs), as the receptors are not expected to be exposed to soil from depths greater than 10 ft bgs. The soil analytical data set applied in the RE therefore includes soil data collected from the following locations: SB6, SB7, SB8, SB9, SSB1, SSB2, SSB3, SSB4, SSB5, SSB6, SSB7, SSB8, SSB9, SSB10, SSB11, VP-1, VP-2, VP-3, EX1, EX2, EX3, EX4, EX5, EX6, P1, B1, B2, B3, HA-1, HA-2, HA-3, HA-4, HA-5, HA-6, HA-7, HA-8, HA-9, HA-10, HA-11, HA-12, HA-13, HA-14, HA-15, HA-16, HA-17, HA-18, HA-19, HA-20, HA-21, HA-22, HA-23, HA-24, HS-25, HA-26, HA-27, and HA-28. The maximum detected concentration for lead from this data set was compared to the revised screening level of 80 mg/kg under a residential land use scenario as presented in the document entitled, "Revised California Human Health Screening Level for Lead" dated May 18, 2009 (OEHHA, 2009). The residential screening level was exceeded by the lead maximum detected concentration of 3,700 milligrams per kilogram (mg/kg) (B-2; 3 ft bgs, 2003) and as such the RE was conducted. The soil sample from HA-19 at 3 ft bgs had an initial concentration of 4,990 mg/kg, however the sample was reanalyzed two additional times to confirm the result. The reanalyzed results were 1,340 mg/kg and 2,605 mg/kg. These three analytical results were averaged (2978.3 mg/kg) and this average concentration was used in the dataset.

2.2 Lead 95% Upper Confidence Level

For the RE, a 95 percent upper confidence limit (95% UCL) of the mean was calculated for lead. The 95% UCL was determined based on the observed data distribution and the percentage of censored data points (non-detected results) consistent with USEPA's ProUCL Version 5.0.00 software, which was released in September 2013. The methods incorporated in this software are described in USEPA (2013) which has been used as the primary reference document for the UCL methodologies. The 95% UCL of the lead in soil at the Site was determined to be 337 mg/kg as shown in Table 1. The ProUCL output for the 95% UCL is provided in Attachment A.

3. Lead Risk Evaluation

The basis of this RE was to evaluate the potential for risks to human health due to lead in Site soil. It should be noted that the Site is located in an area of commercial land use. The intended future land use for the Site is not expected to change and will continue to be used for parkland use. As such, the identified human receptors evaluated in the risk evaluation (RE) were limited to a parkland user (child) and commercial worker (adult) that may be exposed to direct contact with Site soils.

3.1 Parkland User

The parkland user could be a child that may be impacted by lead in soil. The DTSC (2011) lead risk assessment spreadsheet (Lead Spread8) for lead exposure in children was used to determine exposure levels for residents within the parkland, based on the assumption that the child resident is considered to be more sensitive than the adult resident. Given that there is no playground equipment or designated play areas within the park, it has been assumed that a child park user would only visit the park for half a day per week (0.5 day per week). Based on this exposure the Lead Spread8 spreadsheet (see Table 2) calculated a PRG-90 for a child of 1,079 mg/kg, which is above the 95% UCL of 337 mg/kg. The 95% UCL of 337 mg/kg was used as the exposure point concentration (EPC) for comparison to the calculated PRG-90.

3.2 Commercial Worker

The commercial worker would be an adult that may be impacted by lead in soil. The DTSC (2011) lead risk assessment spreadsheet is a modified version of USEPA's (2009) Adult Lead Model (ALM) which incorporates DTSC recommendations for evaluating commercial worker exposures to lead in soil. Due to the commercial worker mostly working indoors and having limited direct exposure to the lead in soil, it was assumed that the worker may be exposed for 100 days/year (2 day/week for 50 weeks/year) which resulted in the calculated PRG-90 of 795 mg/kg, which is above the soil 95 % UCL of 337 mg/kg for lead. Table 3 presents the calculated PRG-90 for the commercial worker. The 95% UCL of 337 mg/kg was used as the exposure point concentration (EPC) for comparison to the calculated PRG-90.

4. Summary and Conclusions

PRG90 values were calculated using the Lead Spread8 spreadsheet and ALM provided by DTSC. Based on the above exposure assumptions, the calculated PRG90 values (1,079 mg/kg for parkland user and 795 mg/kg for commercial worker) were above the 95% UCL (337 mg/kg) for lead. As a result, the levels of

312264Memo-2 2

lead within the soil of the park will not result in a concern for either a child or commercial worker use of the park.

5. References

- DTSC, 2011. Lead Risk Assessment Spreadsheet8, California Department of Toxic Substances Control (DTSC), September 2011.
- OEHHA, 2009. Revised California Human Health Screening Level for Lead, Office of Environmental Health Hazard Assessment (OEHHA), May 18, 2009.
- USEPA, 2009. Adult Lead Model (ALM) spreadsheet, United States Environmental Protection Agency, Washington, DC, (MS Excel). http://www.epa.gov/superfund/lead/products.htm
- USEPA, September 2013. ProUCL Version 5.0.00 Technical Guide. United States Environmental Protection Agency, Office of Research and Development, Washington DC. EPA/600/R-07/041.

312264Memo-2 3

Table 1

Exposure Point Concentration (EPC) Summary for Chemicals of Potential Concern in Soil Former Standard Oil Station 307233 2259 First Street Livermore, California

Scenario Timeframe: Current/Future

Medium: Soil

Exposure Medium: Soil

				Maximum	Location of			Reasonable Maximum Exposure	
Chemical of Potential Concern	Units	Mean ⁽¹⁾	Data Distribution ⁽²⁾	Detected Concentration	Maximum Concentration	EPC Units	Medium EPC Value	Medium EPC Statistic ⁽³⁾	Medium EPC Rationale
Metals Lead	mg/kg	1.50E+02	(a)	2.98E+03	B-2; 3 ftbgs (09/17/03)	mg/kg	3.37E+02	95% Chebyshev (Mean, Sd) UCL	(4)

Notes:

- (1) The Kaplan-Meier estimation method for non-detects was used, as per USEPA (2013).
- (2) Data Distribution (Note: data distribution calculated by ProUCL are based on detected values only):
 - (a) Data set is neither normally, gamma or lognormally distributed.
 - (b) Data set is lognormally distributed.
 - (c) Data set is gamma distributed.
 - (d) Data set is normally distributed.
- (3) Statistics (Note: 95% UCL values are calculated using ProUCL software, Version 5.0. See Appendix B for full ProUCL results):

95% Chebyshev (Mean, Sd) UCL = 95% Chebyshev UCL of mean and standard deviation using the Chebyshev Inequality

(4) ProUCL recommended value is used as the EPC value. In the event of more than one recommended EPC value, the higher EPC value is used.

Table 2

Lead Risk Assessment Spreadsheet 8 for Parkland User Former Standard Oil Station 307233 2259 First Street Livermore, California

Input	
Medium	Level
Lead in Soil/Dust (µg/g)	337
Respirable Dust (µg/m³)	1.5

Output						
Percentile Estimate of Blood Pb	(µg/dl)					PRG-90
	50th	90th	95th	98th	99th	(µg/g)
BLOOD Pb, CHILD	0.2	0.3	0.4	0.4	0.5	1079
BLOOD Pb, PICA CHILD	0.3	0.6	0.7	0.9	1.0	542

Exposure Parameters							
	units	children					
Days per week	days/wk	0.5					
Geometric Standard Deviation	unitless	1.6					
Blood lead level of concern	μg/dl	1					
Skin area, residential	cm ²	2900					
Soil adherence	μg/cm ²	200					
Dermal uptake constant	(µg/dl)/(µg/day)	0.0001					
Soil ingestion	mg/day	100					
Soil ingestion, pica	mg/day	200					
Ingestion constant	(µg/dl)/(µg/day)	0.16					
Bioavailability	unitless	0.44					
Breathing rate	m³/day	6.8					
Inhalation constant	(µg/dl)/(µg/day)	0.192					

Pathways						
	Typical			With pica		
	Pathway contribution			Pathway contribution		
Children	PEF	μg/dl	percent	PEF	μg/dl	percent
Soil Contact	4.1E-6	0.00	1%		0.00	0%
Soil Ingestion	5.0E-4	0.17	99%	1.0E-3	0.34	100%
Inhalation	1.4E-7	0.00	0%		0.00	0%

Sources:

- (1) Agency for Toxic Substances and Disease Registry (ATSDR). 1990. ATSDR, U.S. Public Health Service; Toxicological Profile for Lead.
- (2) Cal/EPA Office of Environmental Health Hazard Assessment (OEHHA). 2007. Development of Health Criteria for Schools Site Risk Assessment Pursuant to Health and Safety Code Section 901(q): Child-Specific Benchmark Change in Blood Lead Concentration for School Site Risk Assessment. (http://www.oehha.ca.gov/public info/public/kids/schools041707.html)
- (3) Chaney, R.L, H. W. Mielke, and S. B. Sterrett. 1988. Speciation, Mobility, and Bioavailability of Soil Lead; in B.E. Davies and B.G. Wixson (eds), Lead in Soil: Issues and Guidelines (Science Reviews Limited, Norwood, England) pp 105-129.
- (4) US Environmental Protection Agency. May 1996. Soil Screening Guidance: Technical Background Document, EPA/540/R-95/128, Office of Solid Waste and Emergency Response, Appendix D, Table 3.
- (5) Moore, M. R., P. A Meridith, W.S. Watson, D. J. Summer, M. K Taylor, and A Goldberg. 1980. The percutaneous absorption of lead-203 in humans from cosmetic preparations containing lead acetate as assessed by whole-body, counting and other techniques. Food Cosmet. Toxicol. 18: 636.
- (6) Ryu, J.E., E.E. Ziegler. S.E. Nelson, and S.J. Fomon. 1983. Dietary Intake of Lead and Blood Lead Concentration in Early Infancy. Am. J. Dis. Early Child.
- (7) US Environmental Protection Agency. 1986. Air Quality Criteria for Lead, EPA 600/8-83-028, June 1986, Environmental Criteria and Assessment Office.
- (8) US Environmental Protection Agency. 1998. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E Supplemental Guidance for Dermal Risk Assessment) Interim Guidance.
- (9) US Environmental Protection Agency. 1997. Exposure Factors Handbook EPA/600/P-95/002Fa, August, 1997, Office of Research and Development.
- (10) White, P.D., P. VanLeeuwen, B.D. Davis, M. Maddaloni, K.A. Hogan, A.H. Marcus, and R.W. Elias, 1998; Environ. Health Perspect 106, Suppl. 6; 151.

Table 3 Page 1 of 1

Calculations of Blood Lead Concentrations (PbBs) and Preliminary Remediation Goal (PRG) for Commercial Worker Former Standard Oil Station 307233 2259 First Street

Livermore, California

Variable	Description of Variable	Units	Value
PbS	Soil lead concentration	μg/g or ppm	337
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	µg/dL per ug/day	0.4
GSD _i	Geometric standard deviation PbB		1.8
PbB ₀	Baseline PbB	μg/dL	0.0
IR _s	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050
AF _{S, D}	Absorption fraction (same for soil and dust)		0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	days/yr	100
AT _{S, D}	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	μg/dL	0.2
PbB _{fetal, 0.90}	90th percentile PbB among fetuses of adult workers	μg/dL	0.4
PbB _t	Target PbB level of concern (e.g., 10 μg/dL)	μg/dL	1.0
$P(PbB_{fetal} > PbB_{t})$	Probability that fetal PbB > PbB _t , assuming lognormal distribution	%	0.3%

PRG90 795

Sources:

- (1) US Environmental Protection Agency. 2009a. Adult Lead Model (ALM) spreadsheet (MS Excel). http://www.epa.gov/superfund/lead/products.htm
- (2) US Environmental Protection Agency. 2009b. Update of the Adult Lead Methodology's Default Baseline Blood Lead Concentration and Geometric Standard Deviation Parameter, OSWER Dir #9200.2-82. June 2009.
- (3) US Environmental Protection Agency. 2003. Recommendations of the Technical Review Workgroup for Lead for an Approach to Assessing Risks Associated with Adult Exposures to Lead in Soil. Final (December 1996), EPA-540-R-03-001, January 2003.
- (4) US Environmental Protection Agency. 1991. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual Supplemental Guidance, Standard Default Exposure Factors, OSWER Directive 9285.6-03, Interim Final, March 25, 1991.

Attachment A

Table A.1

Summary of ProUCL Output Former Standard Oil Station 307233 2259 First Street Livermore, California

User Selected Options

Date/Time of Computation 10/9/2015 2:52:57 PM

From File WorkSheet.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Lead

General Statistics

Total Number of Observations	123	Number of Distinct Observations	120
		Number of Missing Observations	0
Minimum	3.29	Mean	150.2
Maximum	3700	Median	21
SD	475.4	Std. Error of Mean	42.86
Coefficient of Variation	3.164	Skewness	5.678

Normal GOF Test

Shapiro Wilk GOF Test	0.338	Shapiro Wilk Test Statistic
Data Not Normal at 5% Significance	0	5% Shapiro Wilk P Value
Lilliefors GOF Test	0.379	Lilliefors Test Statistic
Data Not Normal at 5% Significance	0.0799	5% Lilliefors Critical Value

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 221.3 95% Adjusted-CLT UCL (Chen-1995) 244.2 95% Modified-t UCL (Johnson-1978) 224.9

Gamma GOF Test

A-D Test Statistic	11.56	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.841	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.242	Kolmogrov-Smirnoff Gamma GOF Test
5% K-S Critical Value	0.0894	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	0.409	k star (bias corrected MLE)	0.404
Theta hat (MLE)	367.6	Theta star (bias corrected MLE)	
nu hat (MLE)	100.5	nu star (bias corrected)	99.41
MLE Mean (bias corrected)	150.2	MLE Sd (bias corrected)	236.3
		Approximate Chi Square Value (0.05)	77.41
Adjusted Level of Significance	0.048	Adjusted Chi Square Value	77.18

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 192.9 95% Adjusted Gamma UCL (use when n<50) 193.5

Table A.1

Summary of ProUCL Output Former Standard Oil Station 307233 2259 First Street Livermore, California

User Selected Options

Date/Time of Computation 10/9/2015 2:52:57 PM

From File WorkSheet.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Lead (cont.'d)

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.911 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk P Value 1.0727E-9 Data Not Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.108 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.0799 Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 1.191 Mean of logged Data 3.408
Maximum of Logged Data 8.216 SD of logged Data 1.536

Assuming Lognormal Distribution

 95% H-UCL
 143.4
 90% Chebyshev (MVUE) UCL
 152.7

 95% Chebyshev (MVUE) UCL
 178.3
 97.5% Chebyshev (MVUE) UCL
 213.8

 99% Chebyshev (MVUE) UCL
 283.6

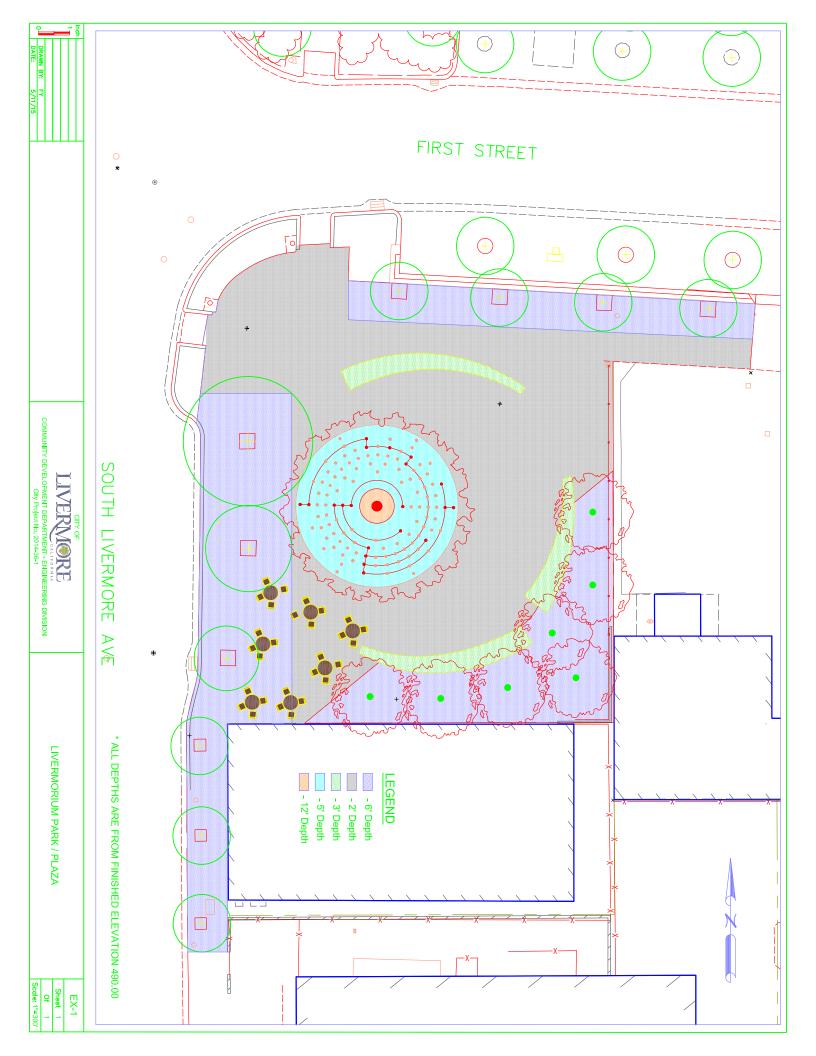
Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution (0.05)

Nonparametric Distribution Free UCLs

95% CLT UCL 220.7 95% Jackknife UCL 221.3 95% Standard Bootstrap UCL 221.5 95% Bootstrap-t UCL 288.9 95% Hall's Bootstrap UCL 315.8 95% Percentile Bootstrap UCL 226.8 95% BCA Bootstrap UCL 247.1 90% Chebyshev(Mean, Sd) UCL 278.8 95% Chebyshev(Mean, Sd) UCL 337.1 97.5% Chebyshev(Mean, Sd) UCL 417.9 99% Chebyshev(Mean, Sd) UCL 576.7

Suggested UCL to Use


95% Chebyshev (Mean, Sd) UCL 337.1

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

Ap	pendix E
Livermorium Park/Plaza Design	Drawing

Appendix F Low-Threat Closure Request

Appendix G

Low-Threat Closure Evaluation

Former Standard Oil Station 307233 2259 First Street, Livermore, California

PURPOSE OF THE LOW-THREAT UNDERGROUND STORAGE TANK CASE CLOSURE POLICY

On August 17, 2012, the SWRCB adopted the policy via Resolution 2012-0016. The intent of the policy is to increase cleanup process efficiency at petroleum release sites. A benefit of improved efficiency is the preservation of limited resources for mitigation of releases posing the greatest threat to human and environmental health. Per the policy, sites that meet the specified general and media-specific criteria pose a low threat to human health, safety, and the environment and are appropriate for case closure pursuant to Health and Safety Code section 25296.10. The policy further states that those sites that meet the criteria for low-threat closure do not require further corrective action and shall be issued a uniform closure letter. The general and media-specific criteria are described below.

GENERAL CRITERIA

The eight general criteria that must be satisfied by all candidate sites, and the site-specific evaluation for each of these criteria, are presented below.

a) The unauthorized release is located within the service area of a public water system.

<u>Satisfied:</u> Water for the site and surrounding vicinity is provided by the City of Livermore who obtains surface water from the State Water Project in the Sacramento-San Joaquin Delta and groundwater wells in Pleasanton, which are located greater than 1,000 feet from the site.

b) The unauthorized release consists only of petroleum.

<u>Satisfied</u>: The unauthorized release at the site has been characterized as a release of petroleum-based products (gasoline and related constituents).

c) The unauthorized ("primary") release from the UST system has been stopped.

<u>Satisfied</u>: The former service station and associated pumps were removed from the site in 1973. In 2005 an orphan UST was encountered and removed beneath the sidewalk on the southwest corner of the site. In 2007 two 750-gallon single-wall steel gasoline USTs and approximately 27 feet of associated piping were removed from the site.

d) Free product has been removed to the maximum extent practicable.

<u>Satisfied:</u> Only trace amounts of light non-aqueous phase liquid (LNAPL) are intermittently observed in well MW-7, typically when water levels are at their lowest. LNAPL was last

observed in MW-7 (0.02 ft) in March 2015. LNAPL had previously not been observed in MW-7 since August 2011.

e) A conceptual site model that assesses the nature, extent, and mobility of the release has been developed.

<u>Satisfied:</u> The elements of a conceptual site model (CSM) have been previously presented in CRA's *Subsurface Investigation Report* submitted on March 5, 2009, and *Draft Corrective Action Plan* submitted on May 3, 2011, Well Installation Report submitted on May 8, 2012, and *Human Health Risk Assessment for Lead* submitted on June 21, 2012.

f) Secondary source has been removed to the extent practicable.

<u>Satisfied:</u> The former service station and associated pumps were removed from the site in 1973. In 2005 an orphan UST was encountered and removed beneath the sidewalk on the southwest corner of the site. In 2007 two 750-gallon single-wall steel gasoline USTs and approximately 27 feet of associated piping were removed from the site.

g) Soil and groundwater has been tested for MTBE and results reported in accordance with Health and Safety Code section 25296.15.

<u>Satisfied:</u> Samples collected during subsurface investigations have been analyzed for MTBE, and reported in accordance with Health and Safety Code section 25296.15.

h) Nuisance as defined by Water Code section 13050 does not exist at the site.

Satisfied: Conditions defined as a "nuisance" in Water Code section 13050 do not exist at the site.

MEDIA-SPECIFIC CRITERIA

Impacts to human health and the environment can occur due to releases from USTs through contact with contaminated media (groundwater, surface water, soil, and soil vapor) via various exposure pathways. In the policy, the most common exposure scenarios have been combined into three media-specific criteria:

- Groundwater
- 2. Vapor Intrusion to Indoor Air
- 3. Direct Contact and Outdoor Air Exposure

Groundwater

It is a fundamental tenet of the policy that if the closure criteria described in the policy are satisfied at an unauthorized petroleum release site, attaining background water quality is not feasible, and applicable water quality objectives (WQOs) will be attained through natural attenuation within a reasonable amount of time, prior to the expected need for use of any affected groundwater. If a site has groundwater with a designated beneficial use that is

affected by an unauthorized release, to satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds WQOs must be stable or decreasing in aerial extent, and meet all of the additional characteristics of one of the five classes of sites listed in the policy:

Satisfied: The site satisfies the characteristics of Class 2.

- a. The contaminant plume that exceeds WQOs is less than 250 feet in length. The plume appears to be confined to the site boundaries. Impacted groundwater is defined by downgradient offsite shallow zoned well MW-9, and deep zoned well MW-1. Additionally, offsite soil boring SB-13 (downgradient of the shallow zone wells) was advanced to further delineate petroleum hydrocarbons in the shallow water-bearing zone. Similar to the onsite shallow wells, a zone of alternating fines and gravel was encountered from 22 fbg to 30 fbg. The layers of fines were no thicker than 2 inches and some, but not all, of the fine layers were wet. A temporary well was set and left in the open borehole to allow groundwater to accumulate; however, no groundwater was noted in the borehole after waiting for approximately one hour. It should be noted that several of the onsite shallow wells have recently gone dry, likely due to the ongoing drought, indicating that first encountered groundwater is limited. In-lieu of a groundwater sample, a soil sample was collected from the bottom of the borehole and analyzed for petroleum hydrocarbons. Results were below detection limits for all analytes.
- b. There is no free product. Only trace amounts of light non-aqueous phase liquid (LNAPL) are intermittently observed in well MW-7, typically when water levels are at their lowest. LNAPL was last observed in MW-7 (0.02 ft) in March 2015. LNAPL had previously not been observed in MW-7 since August 2011.
- c. The nearest existing water supply well or surface water body is greater than 1,000 feet from the defined plume boundary. The closest identified wells are located approximately 2,075 feet from the site (Appendix F1).
- d. The dissolved concentration of benzene is less than 3,000 micrograms per liter (μ g/L) and the dissolved concentration of MTBE is less than 1,000 μ g/L. Benzene was last detected at a maximum concentration of 18 μ g/L on September 24, 2015. Dissolved phase MTBE has not been reported.

Petroleum Vapor Intrusion to Indoor Air

The low-threat vapor intrusion criteria described below apply to sites where the release originated and impacted or potentially impacted adjacent parcels or (2) buildings for human occupancy are reasonably expected to be constructed when: (1) existing buildings are occupied or may be reasonably expected to be occupied in the future, on the future.

Petroleum release sites will satisfy the media-specific screening criteria for petroleum vapor intrusion if:

 a. Site-specific conditions at the release site satisfy all of the characteristics and criteria of scenarios 1 through 3 as applicable, or all of the characteristics and criteria of scenario 4 as applicable; or,

- b. A site-specific risk assessment for vapor intrusion is conducted and demonstrates that human health is protected to the satisfaction of the regulatory agency; or,
- c. The regulatory agency determines there is no significant risk of adversely affecting human health through the use of institutional or engineering controls.

Petroleum release sites shall satisfy the media-specific criteria for petroleum vapor intrusion to indoor air and be considered low-threat for the vapor intrusion to indoor air pathway if any of the above criteria are met.

<u>Satisfied:</u> A site-specific risk assessment for vapor intrusion was conducted and demonstrated that human health is not at risk (CRA, *Subsurface Investigation Report*, March 5, 2009). Additionally, the site satisfies the characteristics of Scenario 4B of criteria (a).

 Please see the table below comparing LTC criteria for direct soil gas with a bioattenuation zone.

	With Bioattenuat	ion Zone*	
Constituent	Residential	Commercial	Highest Detected Concentration
Benzene	<85,000	<280,000	<3.2
Ethylbenzene	<1,100,000	<3,600,000	9.7
Naphthalene	<93,000	<310,000	<21

^{*}Bioattentuation zone = total TPH <100 mg/kg in upper 5' of soil, and ≥4 percent oxygen in soil at 5 ft sample depth; a 1,000-fold bioattenuation of petroleum vapors is assumed for the zone.

Direct Contact and Outdoor Air Exposure

The policy describes conditions where direct contact with contaminated soil or inhalation of contaminants volatized to outdoor air poses an insignificant threat to human health. Release sites where human exposure may occur satisfy media-specific criteria for direct contact and outdoor air exposure and shall be considered low-threat if they meet any one of the following:

a. Maximum concentrations of petroleum constituents in soil are less than or equal to those listed in the table below for the specified depth below ground surface. The limits from 0 to 5 feet below grade (fbg) protect from ingestion, dermal contact, and outdoor inhalation of volatile and particulate emissions. The 5 to 10 fbg limits protect from inhalation of volatile emissions only; the ingestion and dermal contact pathways are not considered significant. In addition, if exposure to construction workers or utility trench workers is reasonably anticipated, the concentration limits for Utility Worker shall also be satisfied.

	Policy Cri	teria	Site Data				
	Residential		Commercial/Industrial		Utility Worker	Maximum Site Concentration	
		Volatilization to outdoor air		Volatilization to outdoor air			
	0–5 fbg	5–10 fbg	0–5 fbg	5–10 fbg	0–10 fbg	0–5 fbg	5–10 fbg
Constituent	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Benzene	1.9	2.8	8.2	12	14	<0.0005	<0.0005
Ethylbenzene	21	32	89	134	314	<0.001	<0.001
Naphthalene	9.7	9.7	45	45	219	ND	ND
PAH*	0.063	NA	0.68	NA	4.5	NA	NA

^{*} Based on the seven carcinogenic polycyclic aromatic hydrocarbons (PAHs) as benzo(a)pyrene toxicity equivalent [BaPe]. The PAH screening level is only applicable where soil is affected by either waste oil and/or Bunker C fuel. NA = not applicable

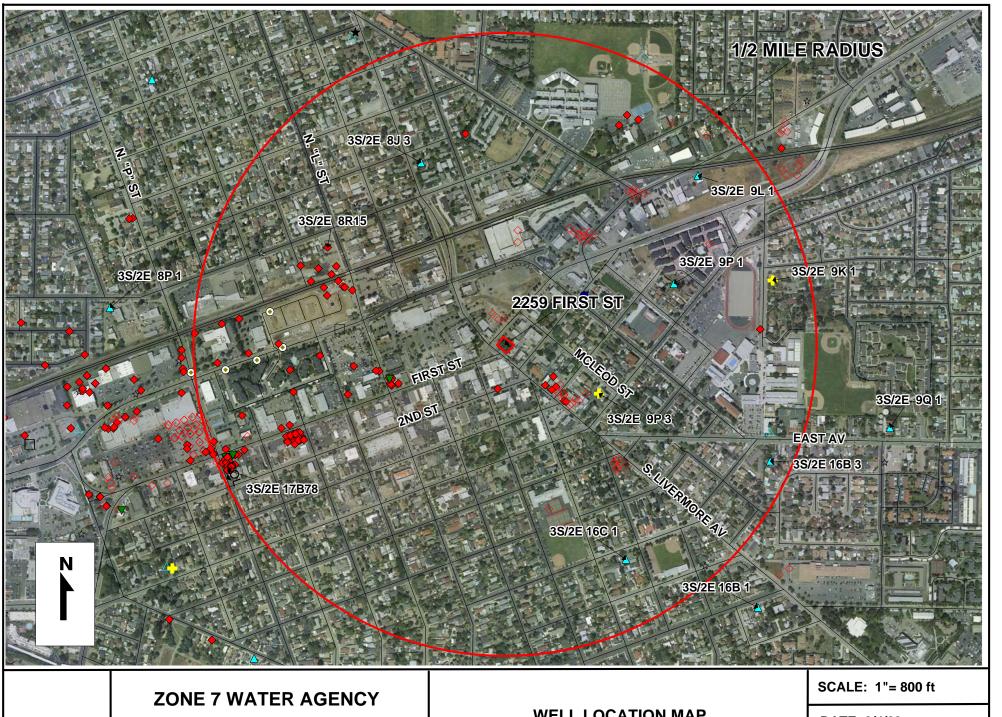
ND = not detected

- Maximum concentrations of petroleum constituents in soil are less than levels that a site-specific risk assessment demonstrates will have no significant risk of adversely affecting human health.
- c. As a result of controlling exposure through the use of mitigation measures or through the use of institutional or engineering controls, the regulatory agency determines that the concentrations of petroleum constituents in soil will have no significant risk of adversely affecting human health.

<u>Satisfied:</u> The site meets criteria (a) above for residential and commercial policy criteria. The site is currently zoned as commercial/industrial (city park) and will remain this way for the foreseeable future.

Site Name: Former Standard Oil Station 307233 Site Address: 2259 First Street, Livermore, CA

Site meets the criteria of the Low-Threat Underground Storage Tank (UST) Case Closure Policy as described below.¹


General Criteria General criteria that must be satisfied by all candidate sites:	
Is the unauthorized release located within the service area of a public water system?	⊠Yes □ No
Does the unauthorized release consist only of petroleum?	⊠ Yes □ No
	⊠ Yes □ No
Has the unauthorized ("primary") release from the UST system been stopped?	⊠ Yes □ No □ NA
Has free product been removed to the maximum extent practicable?	⊠ Yes □ No
Has a conceptual site model that assesses the nature, extent, and mobility of the release been developed?	⊠ Yes □ No
Has secondary source been removed to the extent practicable?	⊠ Yes □ No
Has soil or groundwater been tested for MTBE and results reported in accordance with Health and Safety Code Section 25296.15?	⊠ Yes □ No
Does nuisance as defined by Water Code section 13050 exist at the site?	☐ Yes ☒ No
Are there unique site attributes or site-specific conditions that demonstrably increase the risk associated with residual petroleum constituents?	
Media-Specific Criteria Candidate sites must satisfy all three of these media-specific criteria:	
1. Groundwater: To satisfy the media-specific criteria for groundwater, the contaminant plume that exceeds water quality objectives must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of sites:	
Is the contaminant plume that exceeds water quality objectives stable or decreasing in areal extent?	⊠ Yes □ No □ NA
Does the contaminant plume that exceeds water quality objectives meet all of the additional characteristics of one of the five classes of sites?	⊠ Yes □ No □ NA
If YES, check applicable class: □ 1 ☑ 2 □ 3 □ 4 □ 5	

¹ Refer to the Low-Threat Underground Storage Tank Case Closure Policy for closure criteria for low-threat petroleum UST sites.

Site Name: Former Standard Oil Station 307233 Site Address: 2259 First Street, Livermore, CA

For sites with releases that have not affected groundwater, do constituents (leachate, vapors, or light non-aqueous phase lique contain sufficient mobile constituents to cause groundwater to the groundwater criteria?	ids) □ Yes □ No ⋈ NA
2. Petroleum Vapor Intrusion to Indoor Air: The site is considered low-threat for vapor intrusion to indoor air if site-seconditions satisfy all of the characteristics of one of the three classes of (a through c) or if the exception for active commercial fueling facilities a	sites
Is the site an active commercial petroleum fueling facility? Exception: Satisfaction of the media-specific criteria for petroleum vapo to indoor air is not required at active commercial petroleum fueling facili except in cases where release characteristics can be reasonably believ pose an unacceptable health risk.	ies,
a. Do site-specific conditions at the release site satisfy all of tapplicable characteristics and criteria of scenarios 1 throug of the applicable characteristics and criteria of scenario 4?	
If YES, check applicable scenarios: ☐ 1 ☐ 2 ☒ 3 ☐ 4	
b. Has a site-specific risk assessment for the vapor intrusion points been conducted and demonstrates that human health is protected the satisfaction of the regulatory agency?	
c. As a result of controlling exposure through the use of mitig measures or through the use of institutional or engineering controls, has the regulatory agency determined that petrole vapors migrating from soil or groundwater will have no sign risk of adversely affecting human health?	um ☐ Yes ☐ No ☒ NA
3. Direct Contact and Outdoor Air Exposure: The site is considered low-threat for direct contact and outdoor air e site-specific conditions satisfy one of the three classes of sites (a th	•
a. Are maximum concentrations of petroleum constituents in than or equal to those listed in Table 1 for the specified dep ground surface (bgs)?	
 Are maximum concentrations of petroleum constituents in than levels that a site specific risk assessment demonstrate have no significant risk of adversely affecting human health 	es will
c. As a result of controlling exposure through the use of mitig measures or through the use of institutional or engineering controls, has the regulatory agency determined that the concentrations of petroleum constituents in soil will have n significant risk of adversely affecting human health?	☐ Yes ☐ No ☒ NA

Appendix G1 Zone 7 Water Agency Well Location Map

100 NORTH CANYONS PARKWAY LIVERMORE, CA 94551

WELL LOCATION MAP

DATE: 9/4/09

2259 First Street

Hull, lan

From: Hong, Wyman [WHong@zone7water.com]

Sent: Friday, September 04, 2009 2:37 PM

To: Hull, lan

Subject: 2259 First St **Attachments:** 2259 First St.pdf

lan,

Attached is the well location map of the area (1/2 mile radius) near 2259 First Street in Livermore you requested for you contamination study.

LEGEND

Blue triangle – water supply well Yellow cross – abandoned well Red diamond – monitoring well All open symbols – destroyed well

Wyman Hong Water Resources Specialist Zone 7 Water Agency 100 North Canyons Parkway Livermore, CA 94551

Phone: (925) 454-5056 Mobile: (925) 998-2350