5900 Hollis Street, Suite A **CONESTOGA-ROVERS** Emeryville, California 94608 & ASSOCIATES Telephone: (510) 420-0700 Fax: (510) 420-9170 www.CRAworld.com TRANSMITTAL DATE: May 3, 2011 **REFERENCE NO.:** 312264 Former Texaco 30-2733 **PROJECT NAME:** TO: Mr. Jerry Wickham RECEIVED ACEHS 9:50 am, May 04, 2011 1131 Harbor Bay Parkway, Suite 250 Alameda County Alameda, CA 94502 Environmental Health Please find enclosed: Draft Final \boxtimes Originals Other Prints Sent via: Mail Same Day Courier **Overnight Courier** \square Other Electronic Upload QUANTITY DESCRIPTION 1 Draft Corrective Action Plan \boxtimes As Requested For Review and Comment For Your Use **COMMENTS:** Please contact David Grunat at (510) 420-3363 with any questions or comments. Copy to: Mr. Tom Bauhs, Chevron Mr. Hyman Wong, Zone 7 Water Agency Mr. Chris Davidson, City of Livermore Mr. Eric Uranga, City of Livermore Economic Development Jun Completed by: David Grunat

[Please Print]

Signed:

Thomas Bauhs Project Manager Marketing Business Unit Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6231 Fax (925) 984-8373 tbauhs@chevron.com

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Former Texaco Service Station No. 30-7233 2259 First Street Livermore, California

I accept the Draft Corrective Action Plan dated May 3, 2011.

I agree with the conclusions and recommendations presented in this document. The information included is accurate to the best of my knowledge, and appears to meet local agency and Regional Board guidelines. This **Draft Corrective Action Plan** was prepared by Conestoga Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

1 Carlos

Thomas Bauhs Project Manager

Attachment: Draft Corrective Action Plan

DRAFT CORRECTIVE ACTION PLAN

FORMER TEXACO STATION 30-7233 2259 FIRST STREET LIVERMORE, CALIFORNIA ACEHS RO# 2908

Prepared For:

Mr. Jerry Wickham Alameda County Environmental Health (ACEH) 1131 Harbor Bay Parkway Alameda, California 94502

> Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700 Fax: (510) 420-9170

web: http://www.CRAworld.com

MAY 3, 2011 REF. NO. 312264 (10) This report is printed on recycled paper.

DRAFT CORRECTIVE ACTION PLAN

FORMER TEXACO STATION 30-7233 2259 FIRST STREET LIVERMORE, CALIFORNIA ACEHS RO# 2908

David Grunat

Abill

Brandon S. Wilken, PG #7564

MAY 3, 2011 REF. NO. 312264 (10) This report is printed on recycled paper.

Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700 Fax: (510) 420-9170

web: http://www.CRAworld.com

TABLE OF CONTENTS

1.0	INTROD	UCTION	1
2.0	SITE BAC	CKGROUND	1
	2.1	SITE DESCRIPTION	1
	2.2	PREVIOUS WORK	
	2.3	SITE GEOLOGY AND HYDROGEOLOGY	2
	2.4	PRODUCT RELEASES AND SOURCE AREA	2
	2.5	SENSITIVE RECEPTOR SURVEY	3
	2.6	PREFERENTIAL PATHWAY ANALYSIS	3
3.0	DISTRIB	UTION OF CONSTITUENTS OF CONCERN (COCS)	3
	3.1	HYDROCARBON DISTRIBUTION IN SOIL	
	3.2	HYDROCARBON DISTRIBUTION IN GROUNDWATER	4
	3.2.1	GEOCHEMICAL ANALYSIS	5
	3.3	HYDROCARBON DISTRIBUTION IN SOIL VAPOR	11
	3.4	LIGHT NON-AQUEOUS PHASE LIQUIDS	11
4.0	FEASIBII	LITY STUDY/CORRECTIVE ACTION PLAN	11
	4.1	REMEDIAL ACTION OBJECTIVES	
	4.2	GROUNDWATER CLEANUP GOALS	11
	4.3	SOIL CLEANUP GOALS	12
	4.4	REMEDIAL ALTERNATIVES DISCUSSION AND APPROACH	
	4.5	REMEDIAL ALTERNATIVES	
	4.5.1	MONITORED NATURAL ATTENUATION (MNA)	14
	4.5.1.1	FEASIBILITY AND COST EFFECTIVENESS	14
	4.5.2	IN-SITU CHEMICAL OXIDATION (ISCO)	15
	4.5.2.1	FEASIBILITY AND COST EFFECTIVENESS	16
	4.5.3	EXCAVATION	
	4.5.3.1	FEASIBILITY AND COST EFFECTIVENESS	
	4.5.4	SOIL VAPOR EXTRACTION WITH AIR SPARGING (SVE/AS)	
	4.5.4.1	FEASIBILITY AND COST EFFECTIVENESS	
	4.6	SUMMARY OF REMEDIAL ALTERNATIVES	19
5.0	CONCLU	JSION & RECOMENDATIONS	19
6.0	PROPOS	ED OFFSITE INVESTIGATION	20

LIST OF FIGURES

- FIGURE 1 VICINITY MAP
- FIGURE 2 SITE PLAN WITH PROPOSED MONITORING WELL LOCATIONS
- FIGURE 3 GEOLOGIC CROSS SECTION A-A'
- FIGURE 4 GEOLOGIC CROSS SECTION B-B'
- FIGURE 5 TPHg CONCENTRATIONS IN SHALLOW SOIL 20-40 fbg
- FIGURE 6 TPHg CONCENTRATIONS IN DEEP SOIL 40.5-50.8 fbg
- FIGURE 7 BENZENE CONCENTRATIONS IN SHALLOW SOIL 20-40FBG
- FIGURE 8 BENZENE CONCENTRATIONS IN DEEP SOIL 40.5-50.8 fbg
- FIGURE 9 TPHd CONCENTRATIONS IN SHALLOW GROUNDWATER -MARCH 7, 2011
- FIGURE 10 TPHg CONCENTRATIONS IN SHALLOW GROUNDWATER -MARCH 7, 2011
- FIGURE 11 BENZENE CONCENTRATIONS IN SHALLOW GROUNDWATER -MARCH 7, 2011

LIST OF TABLES (Following Text)

- TABLE 1WELL CONTRUCTION DETAILS
- TABLE 2CUMULATIVE SOIL ANALYTICAL DATA
- TABLE 3GROUNDWATER MONITORING AND SAMPLING DATA
- TABLE 4
 CUMULATIVE GRAB-GROUNDWATER ANALYTICAL DATA
- TABLE 5SOIL VAPOR ANALYTICAL DATA

LIST OF APPENDICES

- APPENDIX A REGULATORY CORRESPONDENCE
- APPENDIX B SITE HISTORY
- APPENDIX C HISTORICAL BORING AND WELL LOGS
- APPENDIX D MONITORING WELL INSTALLATION SOP

1.0 <u>INTRODUCTION</u>

Conestoga-Rovers & Associates (CRA) is submitting this *Feasibility Study and Corrective Action Plan* (FS/CAP) on behalf of Chevron Environmental Management Company (Chevron) for the former Texaco station located at 2259 First Street, Livermore. In a letter dated October 12, 2010 (Appendix A), Alameda County Environmental Health (ACEH) requested a "pilot test work plan or draft corrective action plan."

The FS/CAP presented below complies with California Code of Regulations, Title 23, Division 3, Chapter 16, Underground Storage Tank Regulations. Discussions of the site background, previous investigations at the site, quarterly monitoring activities, distribution of chemicals of concern, remediation goals, evaluation of remedial alternatives, and final remediation recommendations are presented herein.

2.0 <u>SITE BACKGROUND</u>

2.1 <u>SITE DESCRIPTION</u>

The site is located on the eastern corner of First Street and South Livermore Avenue in Livermore, California (Figure 1). Currently the site is Mill Square Park, owned by the City of Livermore. The park consists of grass and trees with a paved walkway and gazebo. Land use surrounding the park is primarily commercial.

The earliest available aerial photograph from 1959 shows a gasoline service station building located on the southern edge of the property and two dispenser islands located on the western portion of the property. A 1973 aerial photograph indicates that the station building and dispenser islands had been removed, leaving an unoccupied paved lot. By 1978, the property had been redeveloped as a park (Figure 2). The park remains in the same configuration as shown on a 1978 aerial photograph.

2.2 <u>PREVIOUS WORK</u>

Environmental assessment and remediation has been ongoing since 2003 which began with an investigation initiated by the City of Livermore Engineering Division to assess soil and groundwater conditions prior to further development to the park. To date, 31 soil borings, 6 soil vapor probes and 9 wells have been installed. In 2005, one orphaned underground storage tank (UST) and in 2007, two orphaned USTs and associated product piping were removed. A chronological summary of environmental investigations and remediation conducted to date is presented in Appendix B. Figure 2 shows the locations of all known historical monitoring wells, soil borings, and former USTs.

2.3 SITE GEOLOGY AND HYDROGEOLOGY

The site is approximately 485 feet above mean sea level and regional topography slopes gently to the north. According to the September 2005 *Groundwater Management Plan* prepared by the Zone 7 Water Agency (Zone 7), the site is located in the Mocho II Sub-Basin of the Main Livermore-Amadore Valley Groundwater Basin. Zone 7 Water Agency extracts groundwater from this basin for municipal drinking water. Sediments in this basin are described as recent alluvium consisting of sandy gravel and sandy clayey gravel from the surface to approximately 150 feet below grade (fbg). This alluvium overlies the Livermore Formation.

Sediments encountered beneath the site consist of silty sand, silty gravel, and sandy gravel from the surface to approximately 9 fbg. Silts and clays are encountered between approximately 9 and 45 fbg. Sands and gravels are predominately encountered from approximately 45 fbg to the total depth explored of 62 fbg.

A current network of nine onsite and offsite wells monitor groundwater in two water-bearing zones that have been identified below the site; Zone A at approximately 28 to 40 fbg and Zone B at approximately 55 fbg. Zone A is believed to be a seasonal perched Zone and is not horizontally continuous across the site as it was only encountered in the southern and eastern portion of the site. Groundwater in shallow Zone A ranges from approximately 25 to 37 fbg and flows toward the southwest. Groundwater in deep Zone B is confined, ranges from approximately 27 to 38 fbg, and flows toward the northwest. A well construction summary table is included as Table 1. Soil boring and monitoring well logs are presented in Appendix C. Geologic cross sections are presented as Figures 3 and 4.

2.4 PRODUCT RELEASES AND SOURCE AREA

The source of hydrocarbons in soil and groundwater appears to be primarily from the former USTs and dispenser islands that were removed in 2005 and 2007. The highest hydrocarbon concentrations in vadose Zone soil were detected in soil samples collected from beneath the USTs and borings SB-1, SB-3, SB-4, and SB-5 located adjacent to the former USTs and dispenser islands. The highest hydrocarbon concentrations in

groundwater are detected in Zone A well MW-7, located within the former UST pit. No release volumes are available.

2.5 <u>SENSITIVE RECEPTOR SURVEY</u>

A sensitive receptor survey has not been completed for this site.

2.6 PREFERENTIAL PATHWAY ANALYSIS

A preferential pathway study has not been completed for this site.

3.0 DISTRIBUTION OF CONSTITUENTS OF CONCERN (COCs)

The primary constituents of concern (COCs) are total petroleum hydrocarbons as diesel (TPHd), total petroleum hydrocarbons as gasoline (TPHg), and benzene. Other COCs are total petroleum hydrocarbons as motor oil (TPHmo), toluene, ethylbenzene, and xylenes. Methyl tertiary butyl ether (MTBE) is not a COC.

3.1 HYDROCARBON DISTRIBUTION IN SOIL

TPHmo is limited to soil beneath the former USTs in soil borings SB1 and SB5 at a maximum concentration of 11,000 milligrams per kilogram (mg/kg). The highest TPHd, TPHg, and benzene concentrations were detected in soil beneath the former UST pit in SB1 and SB5 and former dispenser islands in soil boring SB3 at maximum concentrations of 4,100 mg/kg TPHd, 8,700 mg/kg TPHg and 17 mg/kg benzene. TPHd, TPHg, and benzene soil impacts are centered beneath the former USTs and dispenser islands and are laterally defined in all directions except east of the former USTs; however, further investigation in this direction is prevented by the adjacent retail building (Figures 5 through 8). The vertical extent of hydrocarbons in soil is defined with no hydrocarbons detected in soil below 56 fbg (Figures 3 and 4). Elevated lead concentrations above the Environmental Screening Levels (ESLs)¹ were detected in soil collected from the UST pit and soil boring B2 at a maximum concentration of 3,700 mg/kg; however, these elevated concentrations are limited to shallow soil (<10 fbg) near the former USTs and are

¹ San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels – Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater – Interim Final November 2007 (Revised May 2008).

defined by 20 borings which contained lead concentrations below ESLs. Cumulative soil analytical results are presented in Table 2. Geologic cross sections illustrating the vertical extent of hydrocarbons in soil are presented as Figures 3 and 4. TPHg and benzene soil concentration maps illustrating the horizontal extent of hydrocarbons in shallow and deep soil are presented as Figures 5 through 8.

3.2 <u>HYDROCARBON DISTRIBUTION IN GROUNDWATER</u>

Groundwater has been monitored for 1 year using nine monitoring wells. Historical and current groundwater monitoring and sampling data are presented in Table 3. Grab-groundwater samples collected from soil borings are presented in Table 4. A summary of the March 7, 2011 groundwater monitoring data is presented in Table A below.

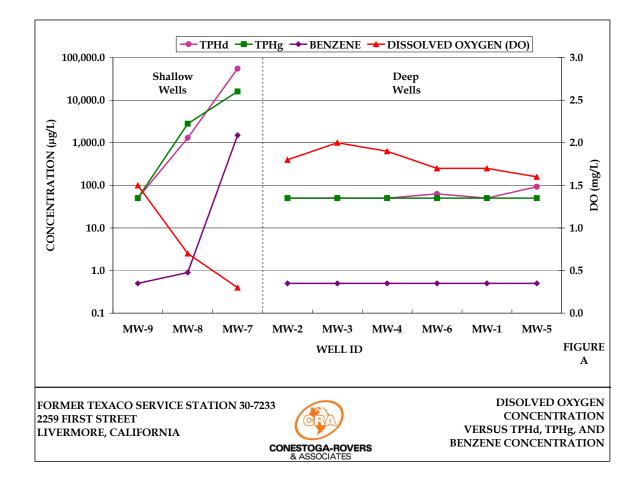
TABLE A: FIRST QUARTER 2011 GROUNDWATER ANALYTICAL DATA						
	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Total Xylenes
Well ID	micrograms per liter (µg/L)					
Drinking						
Water						
ESLs	100	100	1	40	30	20
	Deep Wells					
MW-1	<50	<50	<0.5	<0.5	<0.5	< 0.5
MW-2	<50	<50	<0.5	<0.5	<0.5	< 0.5
MW-3	<50	<50	<0.5	< 0.5	<0.5	< 0.5
MW-4	<50	<50	<0.5	< 0.5	<0.5	<0.5
MW-5	93	<50	<0.5	< 0.5	<0.5	< 0.5
MW-6	63	<50	<0.5	< 0.5	<0.5	< 0.5
	Shallow Wells					
MW-7	55,000	16,000	1,500	50	470	2,100
MW-8	1,300	2,800	0.9	0.7	12	2
MW-9	<50	<50	<0.5	<0.5	<0.5	<0.5

Hydrocarbons in shallow groundwater are localized around well MW-7 (source area), extending downgradient to MW-8, located in Livermore Avenue. Concentrations are defined crossgradient to the northwest by well MW-9 and to the north (upgradient) by the lack of groundwater encountered in borings SB9, SB10, SB11, and SB13. Additionally, no shallow groundwater was encountered in offsite CPT borings CPT4 and CPT5, located north and west of the site. Hydrocarbons in shallow groundwater

4

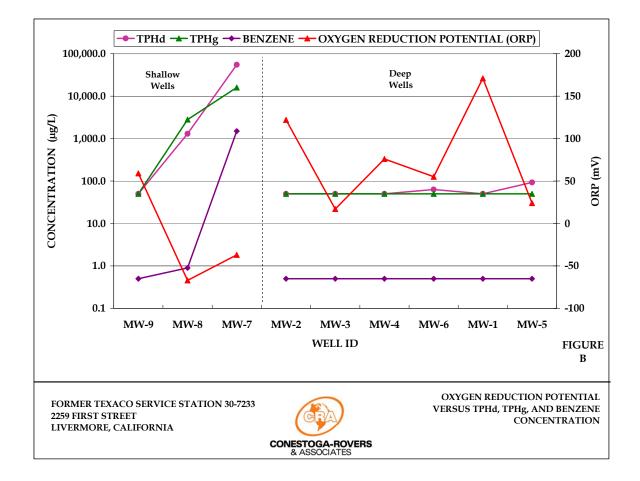
remain undefined downgradient, and cannot be defined crossgradient to the east due to the presence of the adjacent commercial building. The horizontal extent of hydrocarbons in shallow groundwater is illustrated in Figures 9 through 11. Hydrocarbons in groundwater are vertically defined as no TPHg or benzene, toluene, ethylbenzene, and xylenes (BTEX) are detected in deep groundwater wells, and the detected TPHd concentrations are below the drinking water ESL.

3.2.1 <u>GEOCHEMICAL ANALYSIS</u>

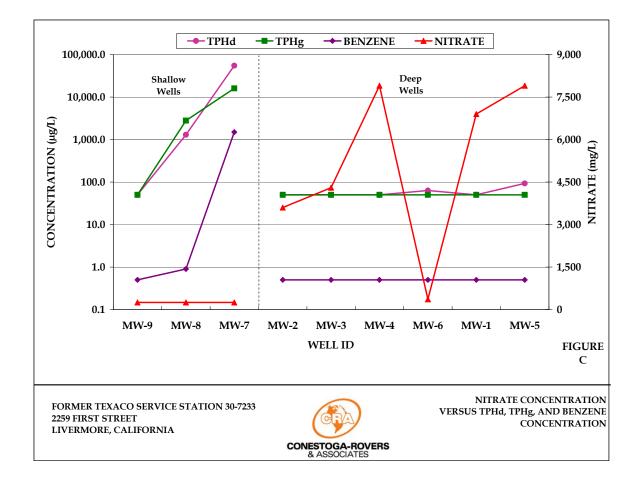

On March 7, 2011, groundwater samples from each well were measured in the field for pre-purge dissolved oxygen (DO) and oxidation reduction potential (ORP) and analyzed for nitrates, sulfates, and dissolved total ferrous iron. This data is presented on Table B below.

Active biodegradation is indicated by inverse relationships between hydrocarbon concentrations and DO, nitrate and sulfate concentrations, and direct relationships between hydrocarbon concentrations and total ferrous iron. Because of the complex system in which these reactions occur, individual geochemical parameters may not exhibit the specific expected relationships. Therefore, the data set should be viewed in total to assess whether hydrocarbons are biodegrading. The site-specific relationships are shown on Figures A through E and discussed below.

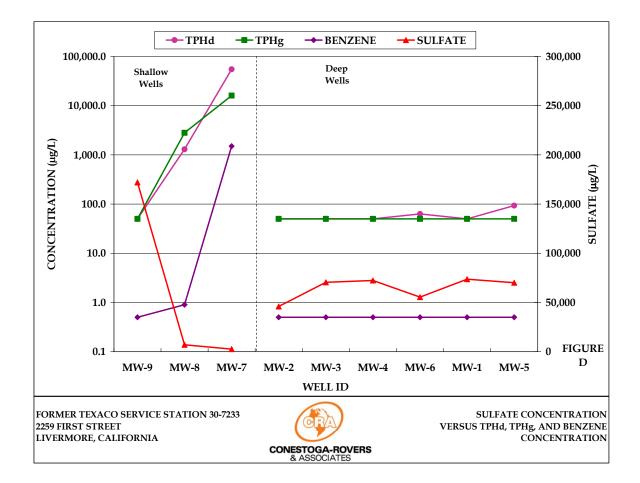
TABLE B: GEOCHEMICAL DATA								
Sample I.D.	TPHd	TPHg	Benzene	DO	ORP	Nitrate	Sulfate	Ferrous Iron
	(µg/L)	(µg/L)	(µg/L)	(<i>mg/</i> L)	(mV)	(µg/L)	(µg/L)	(µg/L)
MW-1	< 50	< 50	< 0.5	1.7	171	6,900	73,600	< 10
MW-2	< 50	< 50	< 0.5	1.8	122	3,600	45,900	20
MW-3	< 50	< 50	< 0.5	2.0	17	4,300	70,400	53
MW-4	< 50	< 50	< 0.5	1.9	76	7,900	72,300	15
MW-5	93	< 50	< 0.5	1.6	24	7,900	70,100	23
MW-6	63	< 50	< 0.5	1.7	55	360	55,400	33
MW-7	55,000	16,000	1,500	0.3	-37	< 250	2,600	2,800
MW-8	1,300	2,800	0.9	0.7	-67	< 250	7,000	820
MW-9	< 50	< 50	< 0.5	1.5	59	< 250	172,000	48
<u>Abbreviations & Notes:</u> mg/L = milligrams per liter mV = millivolts								


Dissolved Oxygen

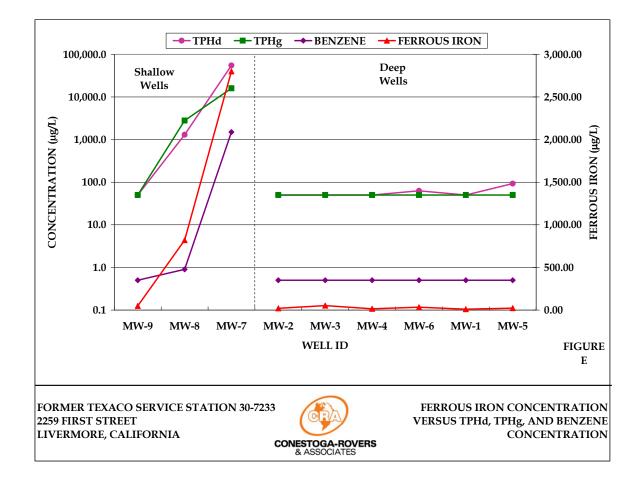
During aerobic biodegradation, DO concentrations are reduced as aerobic respiration occurs. Oxygen is the most thermodynamically-favored electron acceptor used in aerobic biodegradation of petroleum hydrocarbons. Inverse relationships between DO and hydrocarbon concentrations indicate the occurrence of aerobic degradation, provided that at least 1 to 2 milligrams per liter (mg/L) of DO is present in groundwater. During this monitoring event, DO concentrations in shallow wells ranged from 0.3 to 1.5 mg/L. As shown on Figure A, there is an inverse relationship between hydrocarbon and DO concentrations in shallow groundwater; however, only 0.3 mg/L DO is detected in shallow source area well MW-7 indicating aerobic conditions do not exist in the plume core. DO concentrations in deep groundwater ranged between 1.5 and 2.0 mg/L, indicating aerobic conditions exist in the deeper water-bearing zone.


Oxidation Reduction Potential

The ORP in groundwater is a measure of electron activity and is an indicator of the relative tendency of a solute species to gain or lose electrons. The ORP in groundwater generally ranges from -800 millivolts (mV) to +800 mV. ORP in groundwater is positive under oxidizing conditions, and negative under reducing conditions. Reducing conditions (negative ORP) suggests that anaerobic biodegradation is occurring. ORP in shallow groundwater during this monitoring event ranged from -67 to 59 mV (Figure B). The negative ORP associated with the higher hydrocarbon concentrations suggests anaerobic conditions in the plume core (MW-7 and MW-8). The positive ORP in all the deep wells suggests oxidizing conditions in deep groundwater.


Nitrate

After DO has been depleted in groundwater, nitrate may be used as an electron acceptor for anaerobic biodegradation. In this denitrification process, nitrate is reduced to nitrite. If nitrate concentrations vary inversely with hydrocarbon concentrations and if nitrates are depleted in the core of the plume, anaerobic biodegradation of fuel hydrocarbons is probably occurring. Nitrate concentrations are below detection limits (<250) in shallow wells, indicating that either nitrate has been depleted (anaerobic conditions) or no nitrate exists in the shallow water-bearing Zone (Figure C). Nitrate concentrations are detected in all six deep wells and no to low hydrocarbon concentrations are detected in the deep water-bearing zone.


Sulfate

After DO and nitrate have been depleted in groundwater, sulfate may be used as an electron acceptor for anaerobic biodegradation. If sulfate concentrations vary inversely with hydrocarbon concentrations, anaerobic biodegradation of fuel hydrocarbons is probably occurring. As shown in Figure D, in shallow groundwater, sulfate concentrations vary inversely with hydrocarbon concentrations, indicating that anaerobic biodegradation is likely occurring in the plume core (MW-7 and MW-8). Sulfate concentrations are detected in all six deep wells and no to low hydrocarbon concentrations are detected in the deep water-bearing zone.

Ferric Iron

In some cases ferric iron is used as an electron acceptor during anaerobic biodegradation of petroleum hydrocarbons. In this process, ferric iron is reduced to ferrous iron, which is soluble in water. As shown on Figure E, ferrous iron in shallow groundwater varies directly with hydrocarbon concentrations. The 2,800 and 820 μ g/L ferrous iron detected in shallow wells MW-7 and MW-8 indicate anaerobic biodegradation is likely occurring in the plume core. No to low ferrous iron concentrations are detected in all six deep wells and no to low hydrocarbon concentrations are detected in the deep water-bearing zone.

Intrinsic Bioremediation Summary

There is a strong correlation between the geochemical parameters and hydrocarbon concentrations in shallow groundwater wells that suggest anaerobic biodegradation is occurring within the shallow plume core. Additionally, the above geochemical parameters indicate aerobic conditions exist in deep groundwater. The decreasing hydrocarbon concentrations seen over the past year in deep groundwater suggest that aerobic biodegradation is occurring in the deep water-bearing zone.

3.3 <u>HYDROCARBON DISTRIBUTION IN SOIL VAPOR</u>

In March and November 2008, soil vapor samples were collected from nested vapor probes VP1 through VP3. No benzene, fuel oxygenates, or naphthalene were detected in vapor, and the detected TPHg, toluene, ethylbenzene, and xylenes concentrations were two to three orders of magnitude lower than both the residential and commercial/industrial land use ESLs (ESL Table E). Cumulative soil vapor results are summarized on Table 5.

3.4 <u>LIGHT NON-AQUEOUS PHASE LIQUIDS</u>

No light non-aqueous phase liquids (LNAPL) have been observed.

4.0 <u>FEASIBILITY STUDY/CORRECTIVE ACTION PLAN</u>

4.1 <u>REMEDIAL ACTION OBJECTIVES</u>

Groundwater and soil cleanup goals will be established based on the following:

- Background concentrations of individual COCs;
- Applicable water quality objectives (WQOs) and environmental screening levels based on human health and environmental risk; and
- Technologic and economic feasibility.

4.2 <u>GROUNDWATER CLEANUP GOALS</u>

According to the September 2005 *Groundwater Management Plan* prepared by the Alameda County Flood Control & Water Conservation District Zone 7 Water Agency

(Zone 7), the site is located in the Mocho II Sub-Basin of the Main Livermore-Amadore Valley Groundwater Basin. Zone 7 extracts groundwater from this basin for municipal drinking water. The COCs are TPHd, TPHg, and benzene. Table C presents the COCs, background levels, ESLs to protect designated beneficial use, highest historical concentrations, and current maximum concentrations (using March 7, 2011 monitoring well data) for this site.

TABLE C: COMPARISION OF SHALLOW GROUNDWATER HYDROCARBON						
CONCENTRATIONS AND ENVIRONENTAL SCREENING LEVELS						
			Historical			
		Environmental	Maximum	Current		
Constituent	Background	Screening Level	Detected	Maximum		
of Concern	Level	(ESLs)	Concentration	Concentration		
(COC)	(µg/L)	(µg/L)	(µg/L)	(µg/L)		
TPHd	<u><</u> 50	100	55,000	55,000		
TPHg	<u><</u> 50	100	47,000	16,000		
Benzene	<u><</u> 0.5	1	2,800	1,500		
Bold designates drinking water ESL exceedence.						

The background levels for all organic chemicals are assumed to be less than the typical analytical reporting limit. The current TPHd, TPHg, and/or benzene concentrations in shallow groundwater wells MW-7 and MW-8 exceed drinking water ESLs. CRA proposes groundwater cleanup goals that, along with decreasing COC concentration trends, would project to achieving ESLs in a reasonable timeframe (less than approximately 50 years). This is consistent with recent State Water Resources Board Resolution 2009-0042

4.3 <u>SOIL CLEANUP GOALS</u>

Maximum historical soil concentrations at the site were compared to San Francisco Bay RWQCB soil leaching and construction worker direct exposure ESLs for TPHd, TPHg, and benzene. The results are presented in the Table D.

TABLE D: COMPARISION OF HYDROCARBON CONCENTRATIONS IN SOIL AND							
ENVIRONMENTAL SCREENING LEVELS							
	Soil						
COC	Composituations (a)	Leaching Concerns ESLs	Construction Worker Direct				
LOL	Concentrations (a)	<i>(b)</i>	Exposure ESLs (C)				
	mg/kg						
TPHd	4,100	83	4,200				
TPHg	8,700	83	4,200				
Benzene	17	0.044	12				
Notes: (a) Soil concentrations based on highest historic detection (b) Applicable ESLs are Table G Soil Leaching Concerns (c) Applicable ESLs are Table K-3 Construction Worker Direct Exposure Bold designates exceedances to the respective ESLs.							

However, while removal of hydrocarbons in soil is a remediation objective, CRA recommends that reduction of dissolved concentrations of COCs in groundwater be used as the sole measures to define success of any remedial activities. The hydrocarbons detected in soil are aged and weathered, and the leachable fraction of hydrocarbons appears to be significantly less than the fraction sorbed to soil particles, as demonstrated by shallow and deep soil and groundwater concentrations. The site is currently a city park with no foreseeable redevelopment plans and the direct exposure pathway can be mitigated at the time of redevelopment with a soil management plan. In addition, no soil vapor intrusion ESLs have been exceeded. Therefore, exposure pathways to soil are limited and the advancement of soil confirmation borings to confirm that hydrocarbon concentrations in soil are below ESLs should not be required to confirm attainment of cleanup goals once the groundwater cleanup goal is achieved.

4.4 <u>REMEDIAL ALTERNATIVES DISCUSSION AND APPROACH</u>

The proposed remediation objectives are based on implementing the most cost-effective remedial approach that will protect human health and groundwater quality. Given site conditions, the remediation objectives are to reduce hydrocarbon concentrations in groundwater to the point that hydrocarbon concentrations trends would project achieving water quality objectives in a reasonable timeframe.

The remediation alternatives reviewed in this FS/CAP have been evaluated based on their potential to meet these objectives. No dissolved TPHg and BTEX concentrations are detected in the six deep groundwater monitoring wells and detected TPHd concentrations are below the drinking water ESL. Based on the information presented herein, remediation will focus on the shallow water-bearing Zone in the area of monitoring wells MW-7 and MW-8.

4.5 <u>REMEDIAL ALTERNATIVES</u>

The remedial technologies selected for evaluation include monitored natural attenuation (MNA), in-situ chemical oxidation (ISCO), soil vapor extraction with air sparging (SVE/AS), and excavation. These four alternatives are evaluated on the basis of technical feasibility and cost effectiveness.

4.5.1 MONITORED NATURAL ATTENUATION (MNA)

Biodegradation, adsorption, chemical reactions, and volatilization can all naturally degrade hydrocarbons. MNA is the process of hydrocarbon concentrations in groundwater to confirm that the concentrations are decreasing and will reach water quality objectives in a reasonable time frame. Concentration reductions in groundwater is a primary indicator of natural attenuation. Secondary indicators such as dissolved oxygen (DO) concentrations, oxidation-reduction potential (ORP), alkalinity, and nitrate, sulfate, ferrous iron concentrations, and ¹³C isotopes can be used to confirm natural attenuation and understand the specific attenuation mechanisms.

4.5.1.1 FEASIBILITY AND COST EFFECTIVENESS

MNA is technically feasible for this site based on the following: (1) MNA is an effective remediation technology for TPHd, TPHg, and benzene; (2) groundwater monitoring data shows concentrations below drinking water ESLs in the deep Zone indicating the deeper drinking water aquifer is likely not at an immediate risk from hydrocarbons originating from the shallow zone, and (3) the release likely occurred more than 50 years ago; therefore, if hydrocarbons were capable of migrating to the deeper aquifer, they would have already done so. To determine the time to reach water quality objectives, CRA would typically utilize the first-order decay equation to predict that TPHd (100 μ g/L), TPHg (100 μ g/L), and benzene (1 μ g/L) will reach the groundwater drinking water ESLs within a reasonable amount of time; however, currently there is insufficient data to make these predictions. The timeframe for achieving the cleanup levels in this area would be calculated upon collection of more data.

In general, DO measurements of less than 1 mg/L suggest that anaerobic conditions may exist. Aerobic biodegradation typically occurs in groundwater with >1 mg/L DO. Theoretically, aerobic degradation activity occurs at a highly positive

oxidation/reduction potential (ORP), while anaerobic microbial processes such as methanogenesis and sulfate reduction will occur at strongly negative ORP. During the first quarter 2011 groundwater monitoring and sampling event, DO concentrations in the shallow water-bearing Zone ranged from 0.3 to 1.5 mg/L, and ORP levels ranged from -67 to 59 mV. These levels indicate an anaerobic condition within the plume core, and a slightly more aggressive aerobic condition existing outside the plume. These data indicate that natural attenuation is not only feasible, but currently occurring.

Implementation of MNA will not result in a net increase in greenhouse gas emissions to reach water quality objectives except for the emissions from vehicles used to collect groundwater samples.

With current data, the cost of MNA and continued semi-annual sampling of well MW-1 and MW-9 cannot be calculated. Once better trends are developed, CRA can reevaluate MNA as a final remedial solution.

Recommendation: MNA is a viable remedial alternative and should be evaluated against other viable remedial options.

4.5.2 IN-SITU CHEMICAL OXIDATION (ISCO)

ISCO uses a strong oxidizing agent to promote a chemical reaction with hydrocarbons. During the reaction, the oxidizing agent breaks the carbon bonds in unsaturated compounds and converts them into carbon dioxide (CO₂) and water (H₂O). Another benefit of ISCO includes an increase in dissolved oxygen, which in turn accelerates naturally-occurring hydrocarbon biodegradation.

Common oxidizing agents include permanganate (MnO₄·), Fenton's reagent (hydrogen peroxide (H₂O₂) and ferrous iron (Fe⁺²)), oZone (O₃), and persulfate (S₂O₈²⁻). Persulfate, the strongest oxidizer from the referenced list, is commonly applied as sodium persulfate to effectively buffer the pH (Interstate Technology & Regulatory Council Guidance Documents, 2005). Because persulfate is also more persistent than H₂O₂ or ozone, the radius of influence will be greater. However, Fenton's reagent has been most commonly used and effective when treating hydrocarbon contamination (Environmental Protection Agency Guidance Documents, 2005).

4.5.2.1 FEASIBILITY AND COST EFFECTIVENESS

ISCO has been used to successfully reduce TPHd, TPHg, and benzene concentrations in soil and groundwater. The effectiveness of ISCO is limited by soil heterogeneities; however, the silt, sandy silt and gravel observed in the subsurface are not likely to inhibit ISCO effectiveness at this site.

There is an increased risk of fugitive vapors entering nearby buildings and/or conduits when using ISCO. This is a potential human health concern at this site due the adjacent commercial building, located less than 10 feet from the source area. Additionally, ISCO reactions are exothermic and are not recommended beneath buildings.

Bench-scale feasibility testing would be required to determine the appropriate oxidizing reagent, appropriate dosing rates, and to satisfy any applicable waste discharge requirements (WDRs). ISCO would be utilized at monitoring wells MW-7 and MW-8, which have the highest concentrations of COCs. In addition, CRA predicts that two more injection wells would need to be installed in the vicinity of MW-7 and MW-8 to ensure adequate ISCO dissemination. The reagent would likely be applied in batches at regular time intervals, as the area containing hydrocarbons is not large.

Recommendation: ISCO is not a feasible method for remediating soil and groundwater in the vicinity of wells MW-7 and MW-8. Due to the potential of fugitive hydrocarbon vapors entering the adjacent building and the potential exothermic reaction occurring beneath the building, this technology would create an unnecessary health risk to the buildings occupants. Therefore, CRA has deemed ISCO infeasible and does not recommend it at this site.

4.5.3 <u>EXCAVATION</u>

During excavation, contaminated soil is removed and transported to permitted off-site treatment and/or disposal facilities. In some cases, pre-treatment (via aeration, aboveground SVE, incineration, etc) of the contaminated media may be required in order to meet land disposal restrictions. Although excavation and offsite disposal alleviates the contaminant problem at the site, it does not treat the COCs. The type of COC and its concentration will impact offsite disposal requirements. The disposal of hazardous wastes is governed by the Resource Conservation and Recovery Act (RCRA) (40CFR Parts 261-265), and the U.S. Department of Transportation regulates the transport of hazardous materials (49 CFR Parts 172-179, 49 CFR Part 1387, and DOT-E 8876). Hazardous wastes must be treated to meet either RCRA or non-RCRA

treatment standards prior to land disposal. Transport and disposal of non-hazardous or special wastes are regulated by applicable California regulations.

Standard earth-moving equipment (backhoes, bobcats, loaders, etc.) is typically utilized for excavation. Depending on available space, this range of equipment can safely excavate to a depth of approximately 25 feet maximum due to site constraints. Entry into excavations deeper than 5 feet requires shoring or sloping per OSHA regulations. Deep excavations may require shoring to prevent collapse of the sidewalls and to prevent damage or undermining of neighboring structures, utilities, sidewalks, etc. Additionally, dewatering of the excavated area may be required depending on the groundwater depth and recharge rates. The extent of excavation is typically estimated in advance using available soil boring data, but is ultimately directed by field personnel using field monitoring equipment such as a photo-ionization detector to screen soils by measurement of soil headspace vapor concentrations. Soil samples are collected for chemical analysis to confirm that the excavation limits are sufficient to meet soil cleanup levels.

4.5.3.1 FEASIBILITY AND COST EFFECTIVENESS

Based on historical soil analytical data, CRA has estimated a 50-foot by 50-foot excavation area around the former orphaned USTs. However, to fully capture the extent of hydrocarbons in soil beneath the site, this excavation would have to extend to approximately 40 feet deep. This depth exceeds the standard depth limit for which an excavation can be cost-effectively performed. In addition, the highest concentrations in soil are too near the footprint of the adjacent building and sidewalk to be effectively removed. We are unaware of any site in the area that has been closed after remedial excavation where groundwater quality improvements are a prerequisite to closure. CRA has not estimated a cost to execute soil excavation due to these limitations.

Recommendation: Excavation would effectively remove some of the residual soil source mass; however, it would be difficult to remove sufficient soil source mass to guarantee improvement of water quality. Therefore, CRA has deemed excavation infeasible and does not recommend it at this site.

4.5.4 SOIL VAPOR EXTRACTION WITH AIR SPARGING (SVE/AS)

Soil Vapor Extraction (SVE) is an in-situ process used to remove volatile organic compounds (VOCs) from soil. SVE is a common remediation technology applied for

addressing gasoline in the subsurface, such as at this site. Air Sparging (AS) is a remedial technology whereby air is injected into the saturated Zone to remove VOCs from below the groundwater table. It is typically implemented to remove VOCs adsorbed to saturated soil, although it can also be implemented to remove LNAPL or dissolved-phase VOCs. AS is typically designed to operate at relatively high air injection rates (greater than 10 cubic feet per minute [cfm] per injection point) in order to volatilize the VOCs. AS usually operates in tandem with an SVE system that captures the VOCs stripped from the saturated zone. SVE/AS improves groundwater quality by removing source area VOC mass and by delivering oxygen to the subsurface to accelerate hydrocarbon biodegradation.

SVE system components would include appropriately constructed SVE wells, vapor conveyance piping, a vapor/liquid separator, a vapor extraction device, and a vapor treatment device. The vapor extraction device (blower) would be sized based on the radius of influence and applied vacuum of the vapor extraction wells observed during pilot testing. Extracted hydrocarbons are typically treated by granular activated carbon (GAC), a catalytic or thermal oxidizer, or an internal combustion engine. The treatment device is determined by the influent flow rate, hydrocarbon concentrations, air quality requirements, and operating duration. Equipment required to implement AS would include a compressed air source (air compressor/blower), compressed air conveyance piping, and specifically designed AS wells. The air compressor or blower size would be based on the number of injection points, pressure requirements, and minimum pressure and flow delivery at the injection depth.

4.5.4.1 FEASIBILITY AND COST EFFECTIVENESS

SVE/AS is an effective alternative for reducing dissolved concentrations of petroleum hydrocarbons. The limiting factors for a SVE/AS system include permeability of soils and volatility of constituents. At this site, soil permeability is within a range of 10⁻¹⁰ to 10⁻⁶ cm² (assumed), and the COCs are adequately volatile. Both factors are considered to be within the moderate to effective range for implementation of SVE/AS.

The site is not fully characterized; therefore, CRA is unable to adequately evaluate the equipment required to effectively remediate the hydrocarbon plume. Additionally, CRA contacted the City of Livermore to evaluate the possibility of installing a fixed remediation system compound onsite. Based on phone conversations with Ms. Lorraine Purcell of the City of Livermore Planning Department on March 29 and 31, 2011, a fixed remediation system would not be permitted on the site property.

Recommendation: SVE/AS is a not a viable remedial option because the City of Livermore will not allow a system to be placed on their small, active park in the middle of downtown Livermore.

4.6 <u>SUMMARY OF REMEDIAL ALTERNATIVES</u>

Of the four remedial alternatives evaluated, MNA is likely the most cost-effective, has the lowest greenhouse gas emissions, and is the only practical option. Costs can be further reduced if groundwater monitoring and sampling is reduced from quarterly to semi-annually, and will still meet requirements to close the site. Because MNA is the only alternative that is currently feasible, CRA recommends implementing MNA at least while completing groundwater assessment and further developing the site conceptual model (SCM).

5.0 <u>CONCLUSION & RECOMENDATIONS</u>

There is insufficient groundwater monitoring data from the current monitoring well network to predict that dissolved COC concentrations are declining and will achieve WQOs in a reasonable timeframe. However, geochemical parameter data collected at the site indicates that anaerobic biodegradation of COCs is likely occurring in the primary shallow source area in the vicinity of MW-7 and MW-8. Additionally, MNA appears to be the only cost-effective and technically feasible alternative to apply at the site. Therefore, CRA believes MNA is appropriate to implement, at least while finalizing a comprehensive SCM. Until the site can be further characterized, CRA cannot recommend that any active remedial alternative is appropriate.

To further develop the SCM, CRA proposes installing two shallow monitoring wells downgradient of wells MW-7 and MW-8 to further delineate shallow groundwater conditions CRA additionally proposes conducting a preferential pathway and sensitive receptor survey. These activities are further discussed below. In addition, CRA proposes a minimum of two additional years of groundwater monitoring to evaluate dissolved concentration trends at the site before active remedial alternatives could again be considered.

6.0 **PROPOSED OFFSITE INVESTIGATION**

To assess the downgradient extent of hydrocarbons in shallow groundwater, CRA proposes installing two shallow groundwater monitoring wells (Figure 2). In addition, CRA proposes conducting a sensitive receptor survey and preferential pathway study. In order to accomplish this scope of work, Chevron and CRA propose to conduct the following activities:

Permits

CRA will obtain a drilling permit from the Zone 7 water agency prior to beginning field operations. A minimum of 48 hours of notice will be given to ACEHS prior to beginning activities. Additionally, CRA will obtain encroachment permits for the work in the street and sidewalk as well as to access Mills Square Park.

Site Health and Safety Plan

CRA will prepare a site health and safety plan to provide safety guidelines to all site workers and visitors. The plan will be kept onsite at all times and followed by all site workers and visitors each day of operation.

Utility Location

CRA will mark the site for Underground Service Alert (USA) clearance. USA and a licensed geophysicist will be contacted a minimum of 48 hours prior to field activities to mark and identify locations of utilities near the boring and well locations and identify any potential preferential pathways.

Utility Clearance

Per Chevron and CRA safety requirements, each boring and well location will be cleared to 8 fbg using an air-knife assisted vacuum truck and/or hand augers to detect any unknown utilities prior to drilling.

Soil Boring and Monitoring Well Installation

After clearing to 8 fbg, the two wells will be advanced to 40 fbg using 8-inch diameter hollow stem augers. After soil samples are collected, two borings will be backfilled using neat Portland cement.

The borings will be located in the parking lane south of MW-7 and the landscaped planter west of MW-8 and will be completed as 2-inch diameter wells MW-10 and MW-11. The wells will be screened from approximately 35 to 40 fbg and will be constructed using 0.010 slotted 2-inch diameter Schedule 40 PVC pipe with Monterey Sand #2/12. The sand pack will be placed to a minimum of 1-foot above the screen. The

well annulus will have a 2-foot hydrated bentonite seal above the sand pack and be filled with neat Portland cement to approximately 1 fbg. The screen interval and well construction may be modified based on conditions encountered in the field. A well box equipped with a traffic rated lid will be installed at grade. Exact well locations and final depths will be based on site and utility constraints and the extent of soil impacts, if any, encountered at depth. CRA and Chevron safety protocol prohibits installation of monitoring wells in active roadways and within 5 feet of energized utility lines. If active utilities prevent installation of a monitoring well in the landscaped planter, CRA proposes advancing a soil boring in the roadway and collecting grab-groundwater samples. CRA's *Standard Field Procedures for Soil Boring and Monitoring Well Installation* is presented in Appendix D.

Well Development and Sampling

The well will be developed using agitation and pumping. Gettler-Ryan, Inc. will develop and sample the wells no sooner than 72 hours after installation.

Soil Sampling Protocol

CRA geologists will log collected soils using the ASTM D 2488-06 Unified Soil Classification System. Soil samples will be field-screened using a photo ionization detector (PID) and visual observations. Approximately one 6-inch soil sample will be collected every 5 feet for laboratory analysis and at obvious changes in soils, and where hydrocarbon staining or PID readings are observed. Soil samples above 8 fbg will be collected by driving steel tubes into disturbed sediments removed by a hand auger bucket. Soil samples below 8 fbg will be collected by either driving a modified California split spoon sampler lined with three 6-inch brass tubes or a 4-foot acetate lined direct push sampler into undisturbed sediments. All samples will be capped using Teflon tape and plastic caps, labeled, placed in a cooler with ice, and transported under chain-of-custody to a Chevron and State-approved laboratory for analysis.

Chemical Analysis

Selected soil and groundwater samples will be analyzed for the following:

- TPHd by EPA Method 8015 modified with silica gel cleanup
- TPHg by EPA Method 8015 modified
- Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8260B
- Total lead by EPA Method 6010 (waste composite soil samples only)

Soil Disposal

Soil cuttings, decontamination water, and groundwater will be temporarily stored onsite in properly labeled 55-gallon drums pending soil profiling results. The wastes will transported and disposed of at appropriate Chevron and State-approved disposal facilities.

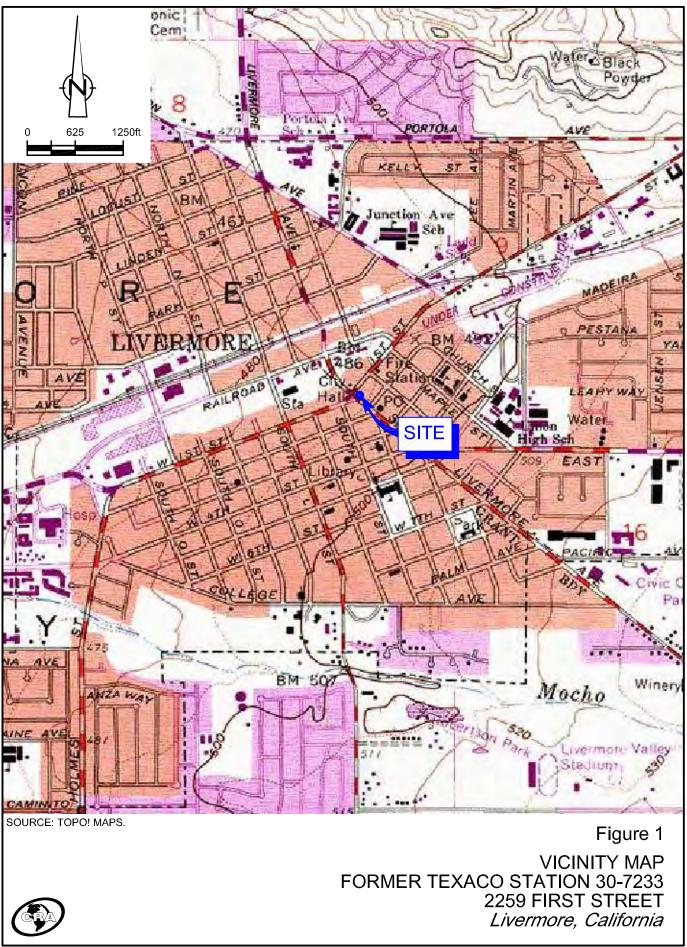
Preferential Pathway Study

CRA proposes to map the subsurface utility structures by noting exposed features (e.g. manhole covers) and underground service alert markings, and reviewing engineering drawings from the utility purveyors, and completing a private utility mark out onsite. CRA will attempt to determine the top and bottom of utility trenches. All utilities will be shown on a scaled site plan, and if available the diameter, depth, and flow direction of the utilities will also be represented. CRA will also identify underground utilities on scaled cross-sections.

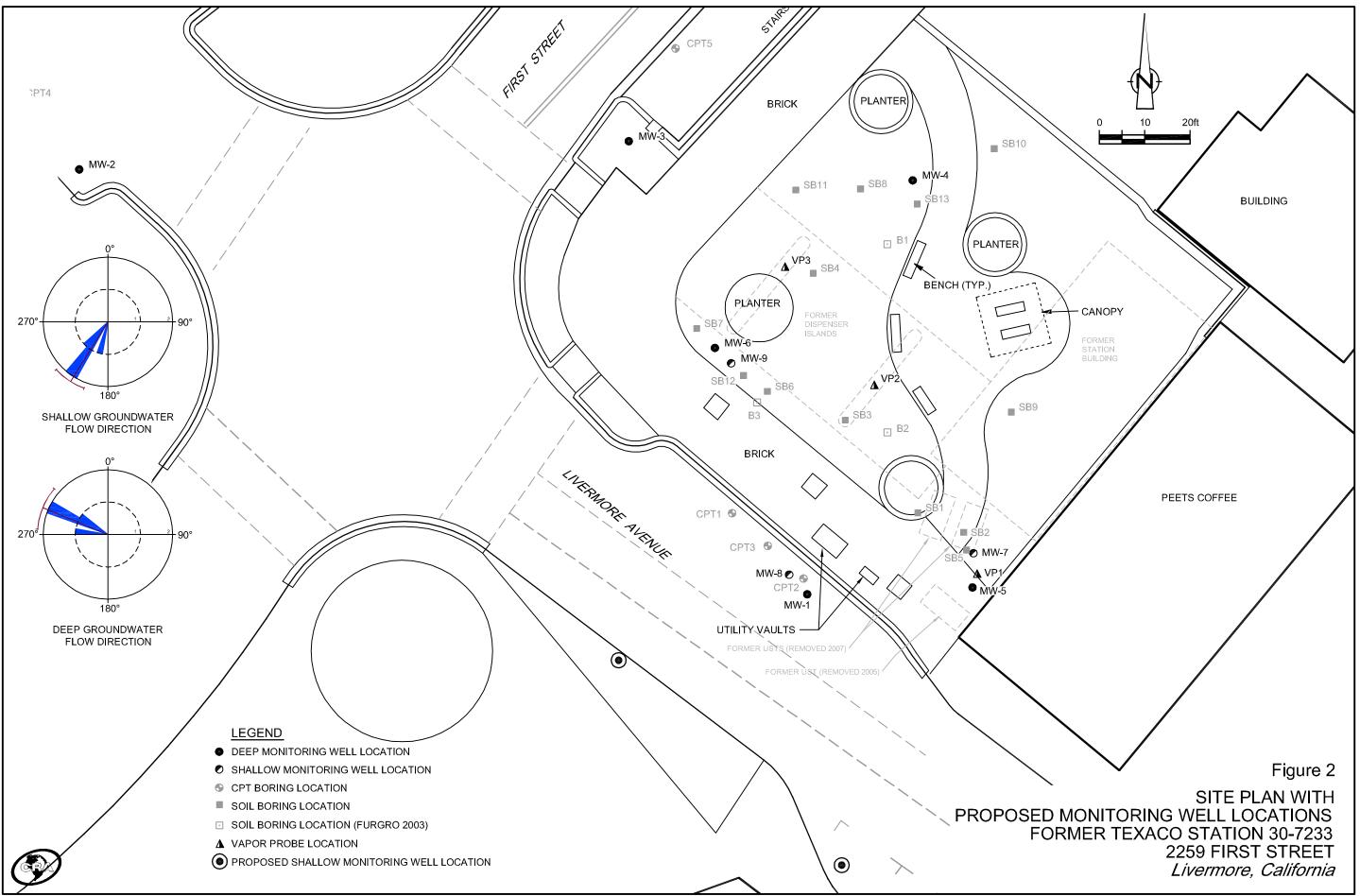
Well and Sensitive Receptor Survey

CRA will request the *Well Driller Completion Reports* from the California Department of Water Resources (DWR) for all wells located within a ¹/₂-mile radius of the site. In addition, CRA will contact Alameda County Public Works Agency to get a map and table of wells located within a ¹/₂-mile radius of the site. CRA will identify and discuss all surface water bodies within a ¹/₂-mile radius of the site. CRA will identify and discuss any sites with sensitive land usage (i.e. schools, daycare, hospitals, and etc.) within 500 feet of the site. In addition, CRA will contact local agencies to determine if any municipal wells are located in the vicinity of the site. All wells identified will be tabulated and represented on a scaled map and included in the site assessment.

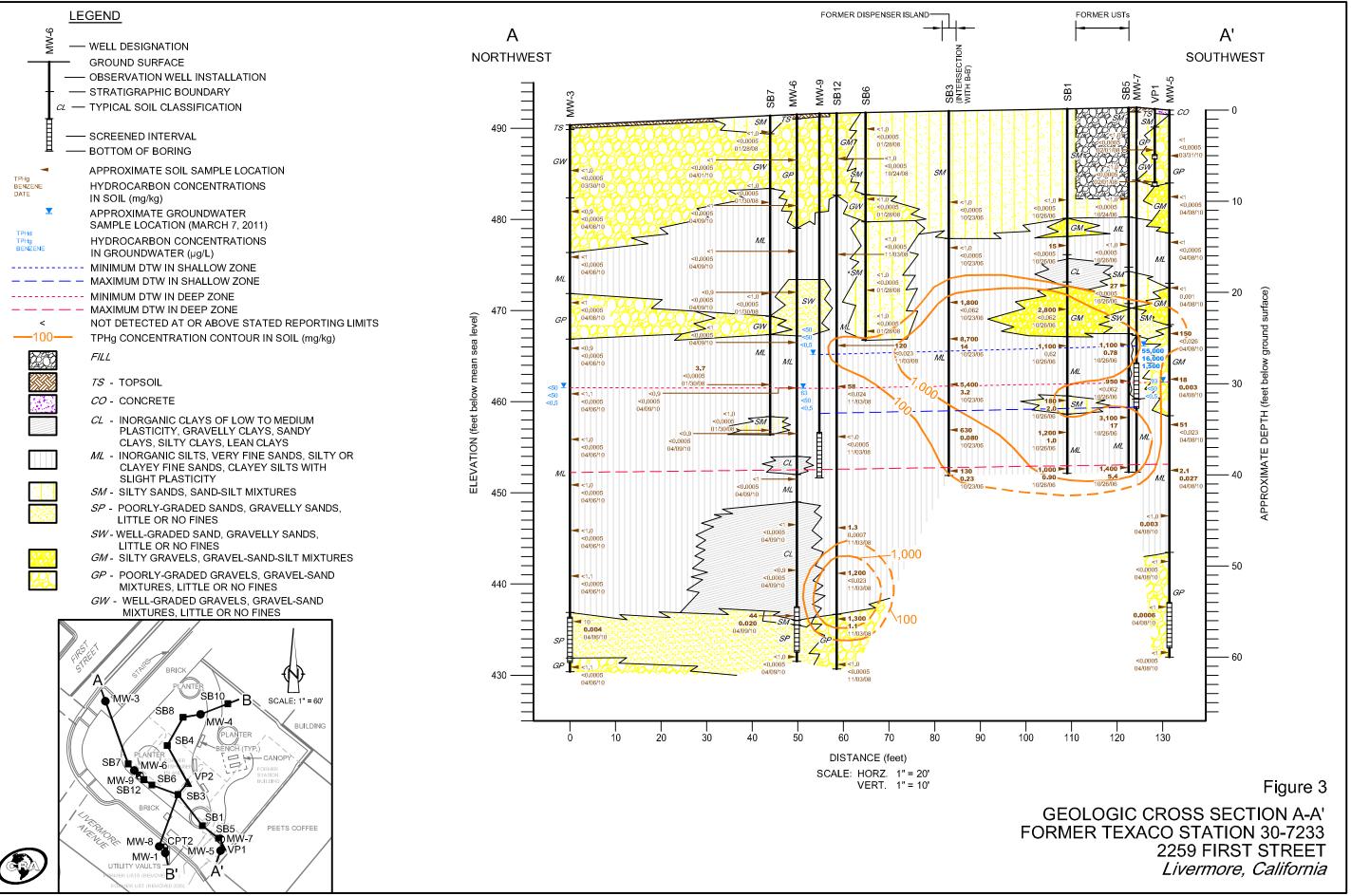
Reporting

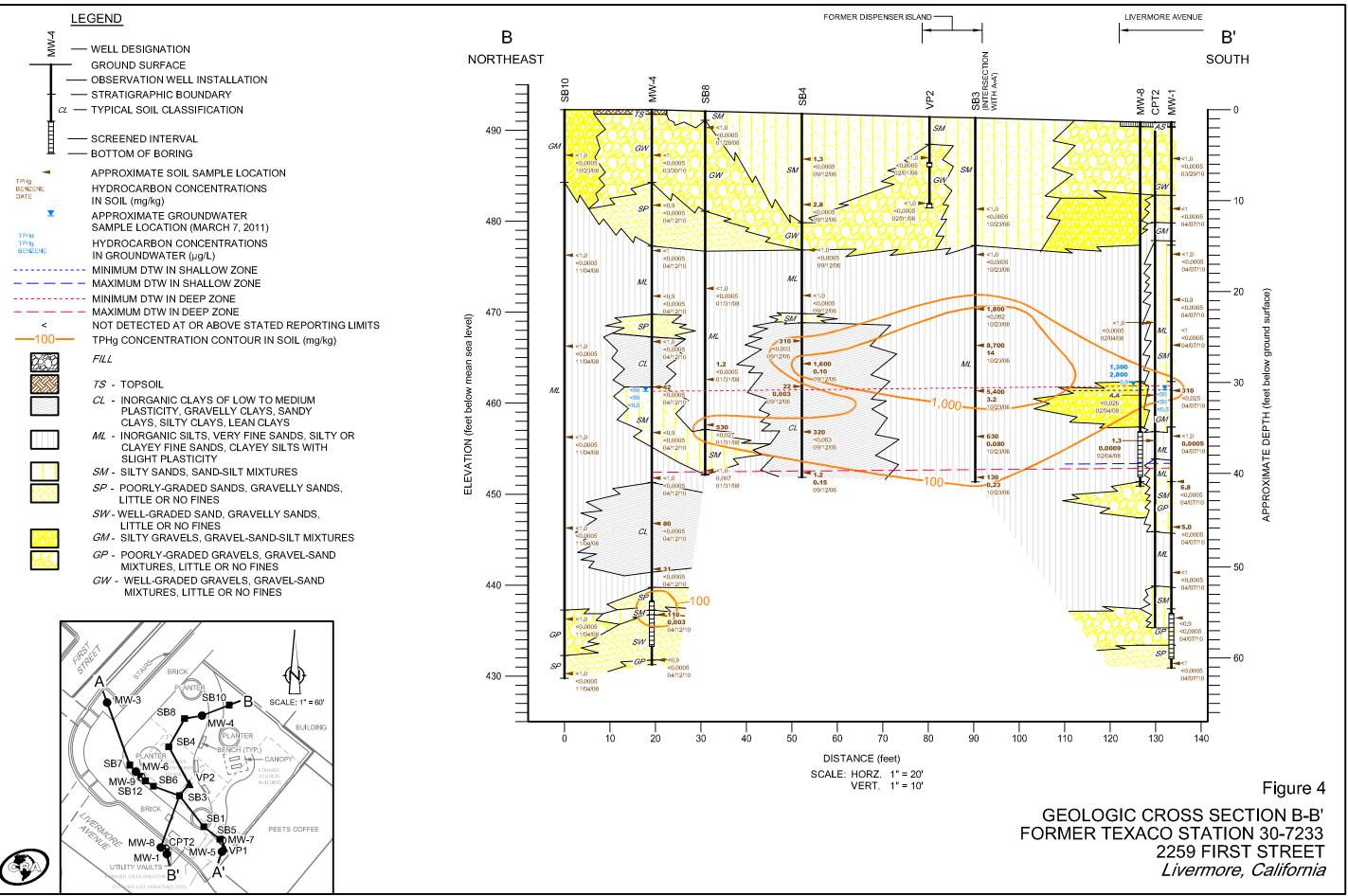

Upon completion of field activities and review of the analytical results, we will prepare an investigation report that at a minimum will contain:

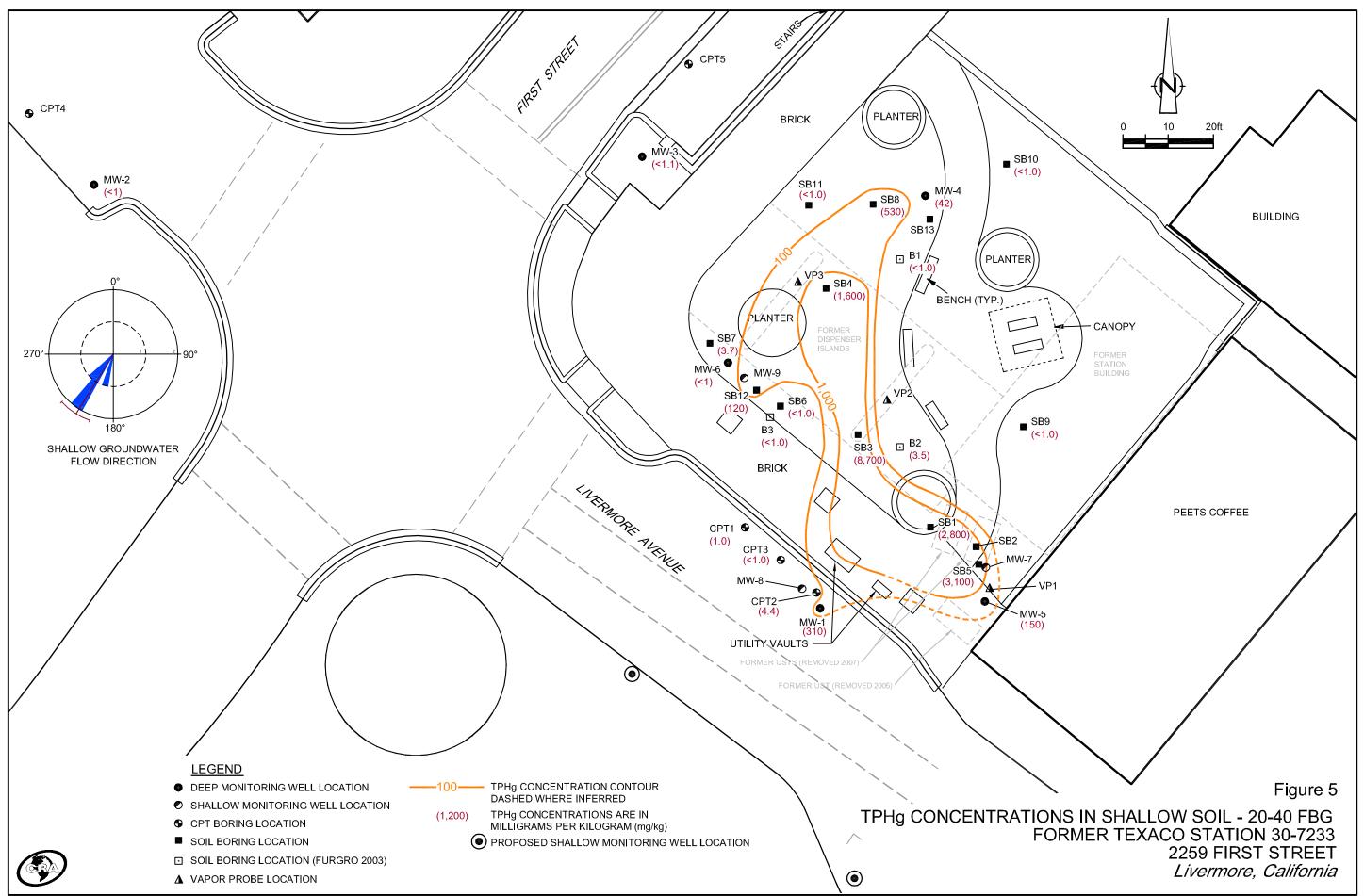
- Preferential Pathway Survey
- Sensitive Receptor Survey
- Descriptions of drilling and sampling methods
- Well installation details
- Tabulated soil and groundwater analytical results
- A figure illustrating the well locations
- Analytical reports and chain-of-custody forms
- Soil disposal methods


- An updated SCM with discussion of the hydrocarbon distribution in soil and groundwater
- Conclusions and recommendations

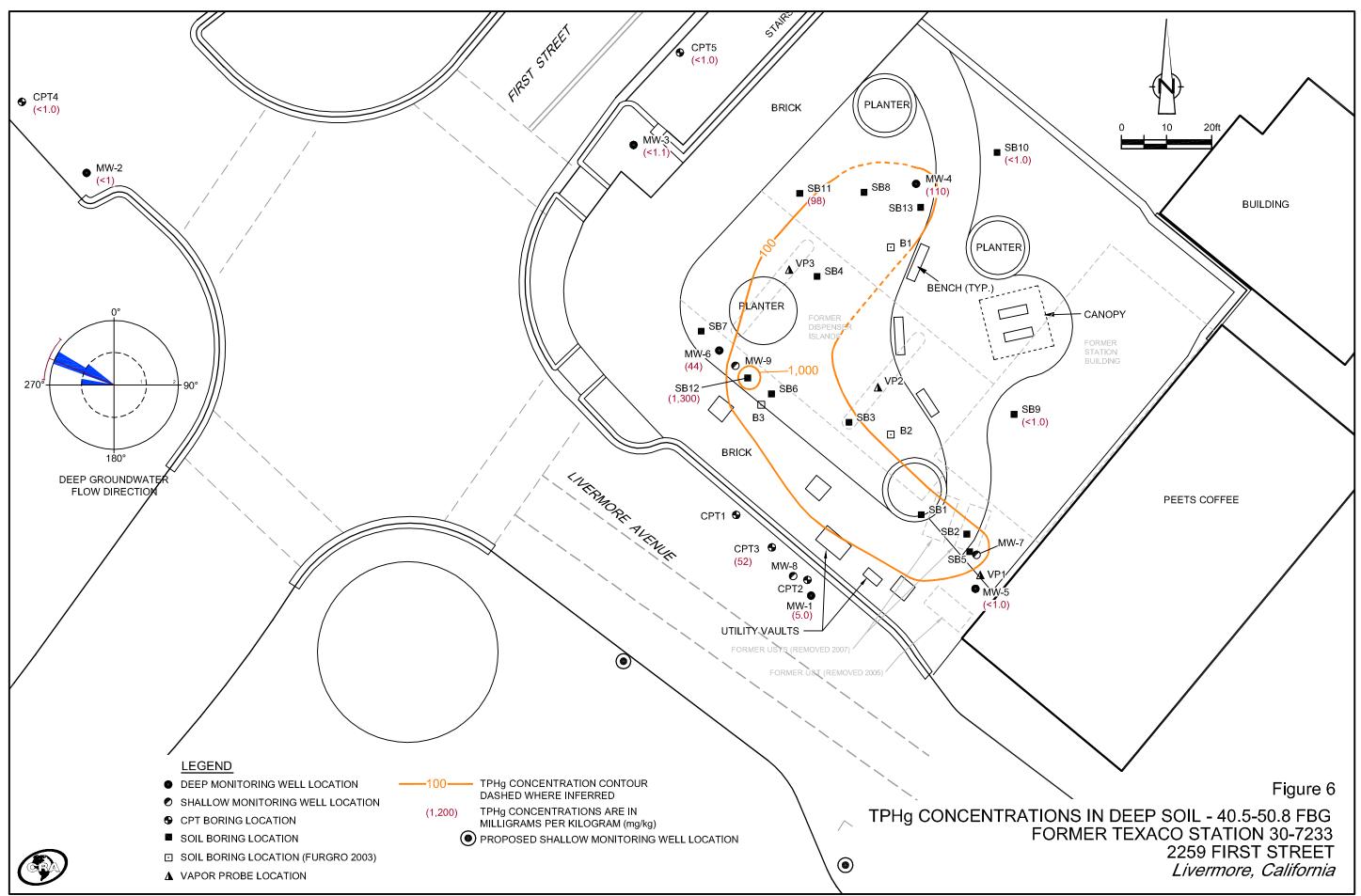
CRA will conduct this work following approval from the ACEHS. After approval, CRA will obtain the necessary permits, meet with utility service providers, and schedule a drilling subcontractor. CRA will submit the investigation report approximately 8 weeks after completion of field activities, which includes the development, and monitoring and sampling of the newly installed well. Based on the results of the proposed investigation and groundwater trends from onsite wells and the proposed well, CRA will update the FS/CAP if necessary.


FIGURES

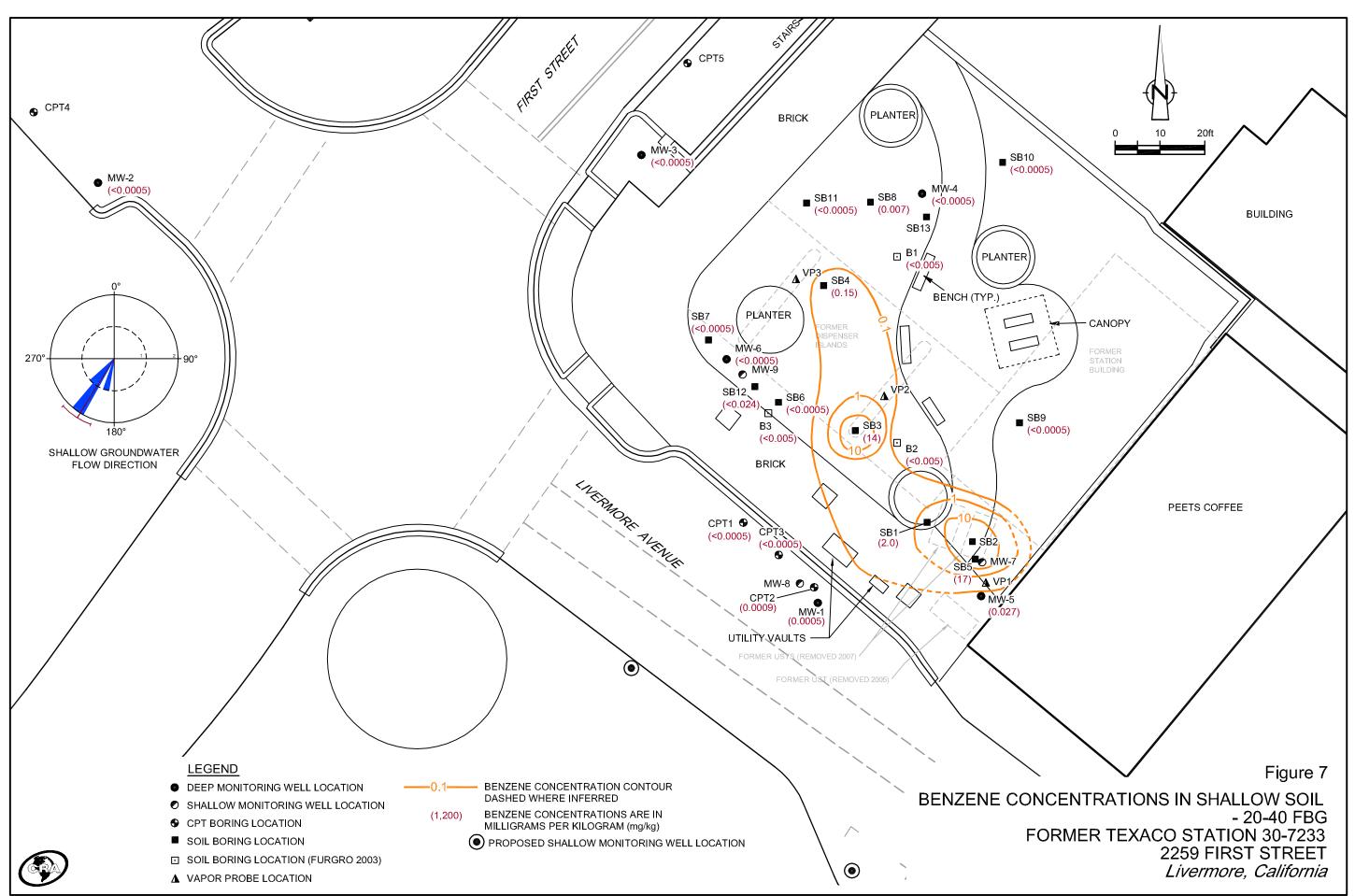

312264-95(010)GN-WA001 APR 06/2011


312264-95(010)GN-WA002 APR 14/2011

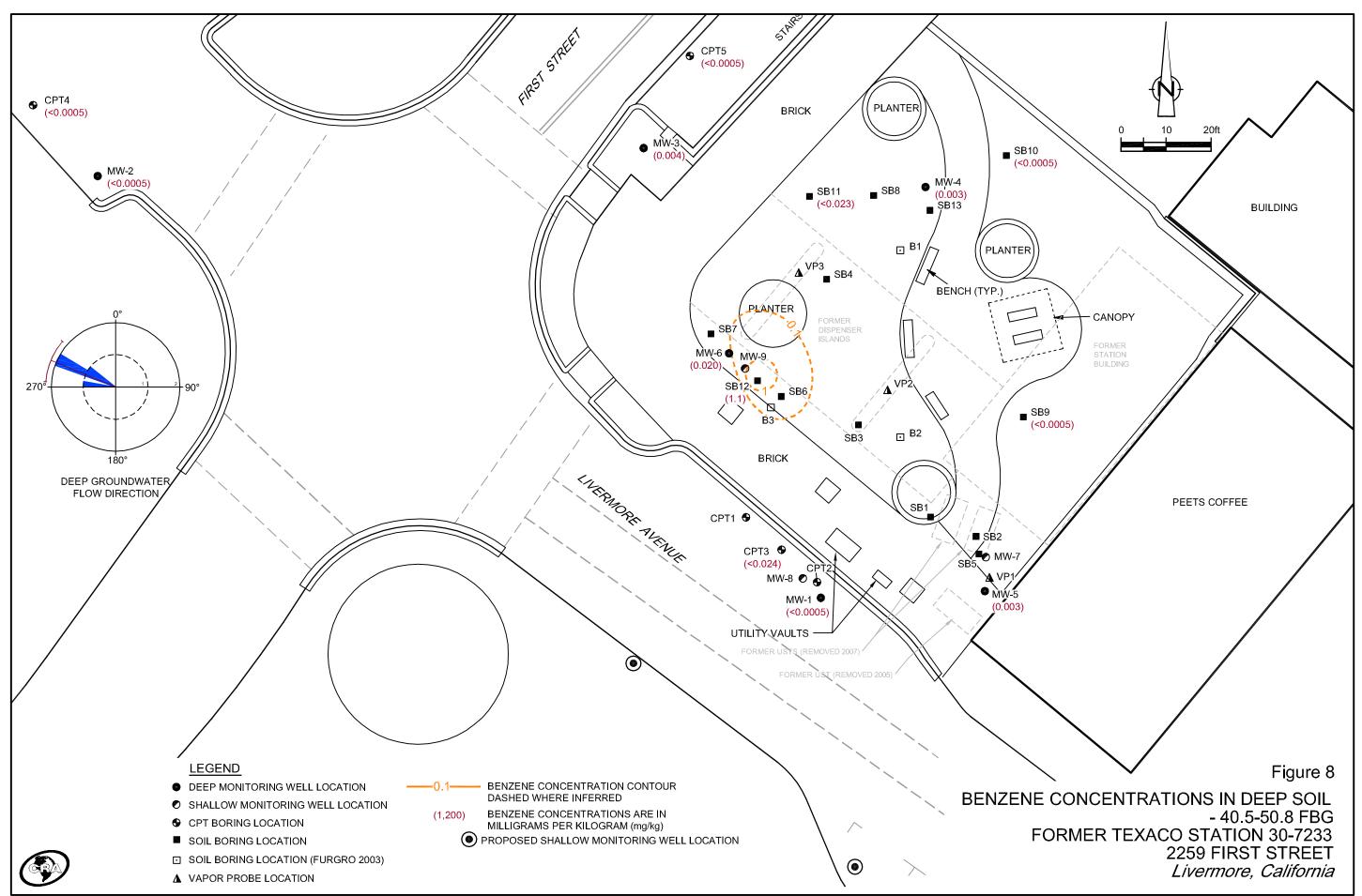
312264-95(010)GN-WA010 APR 08/2011

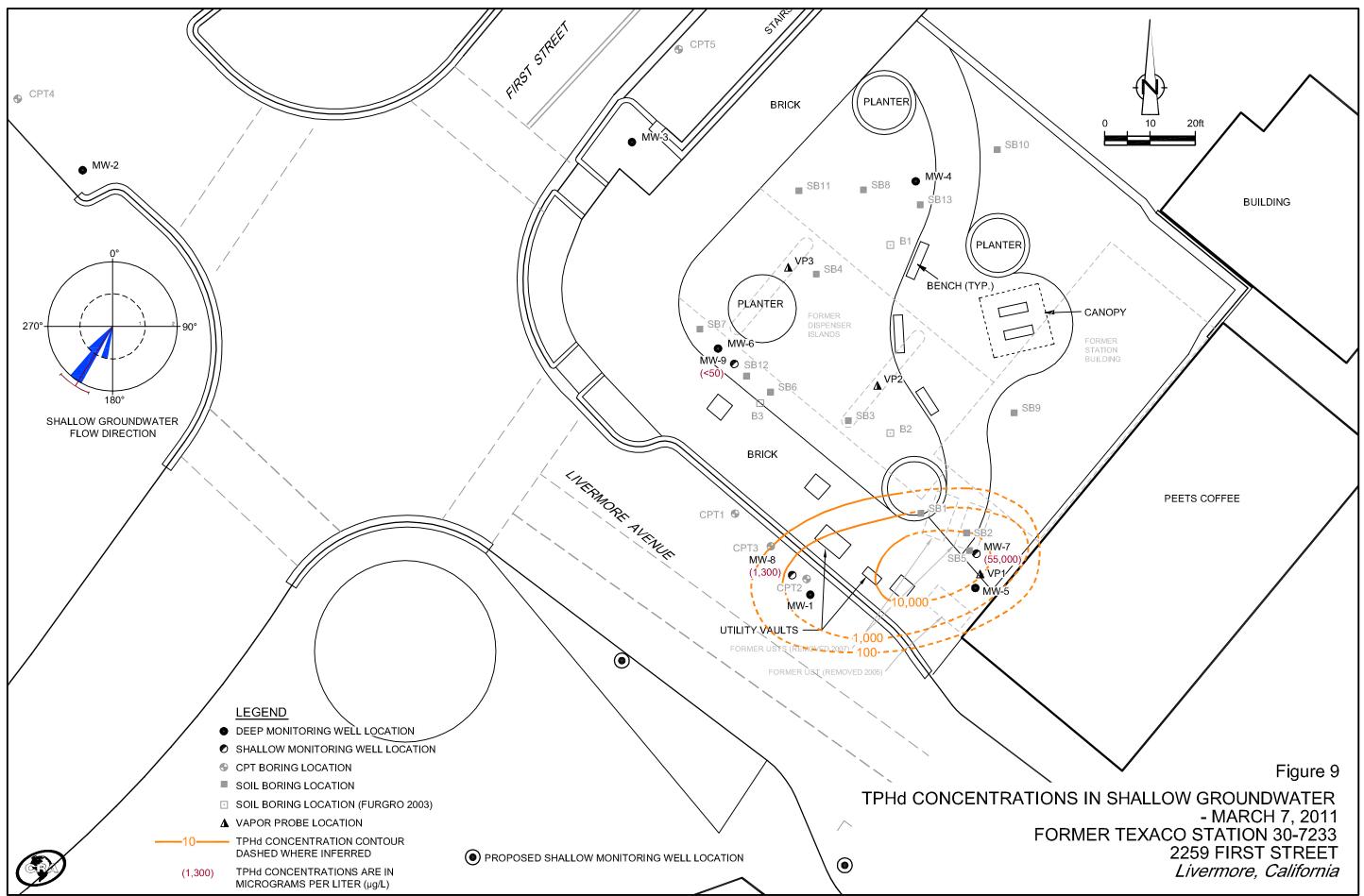


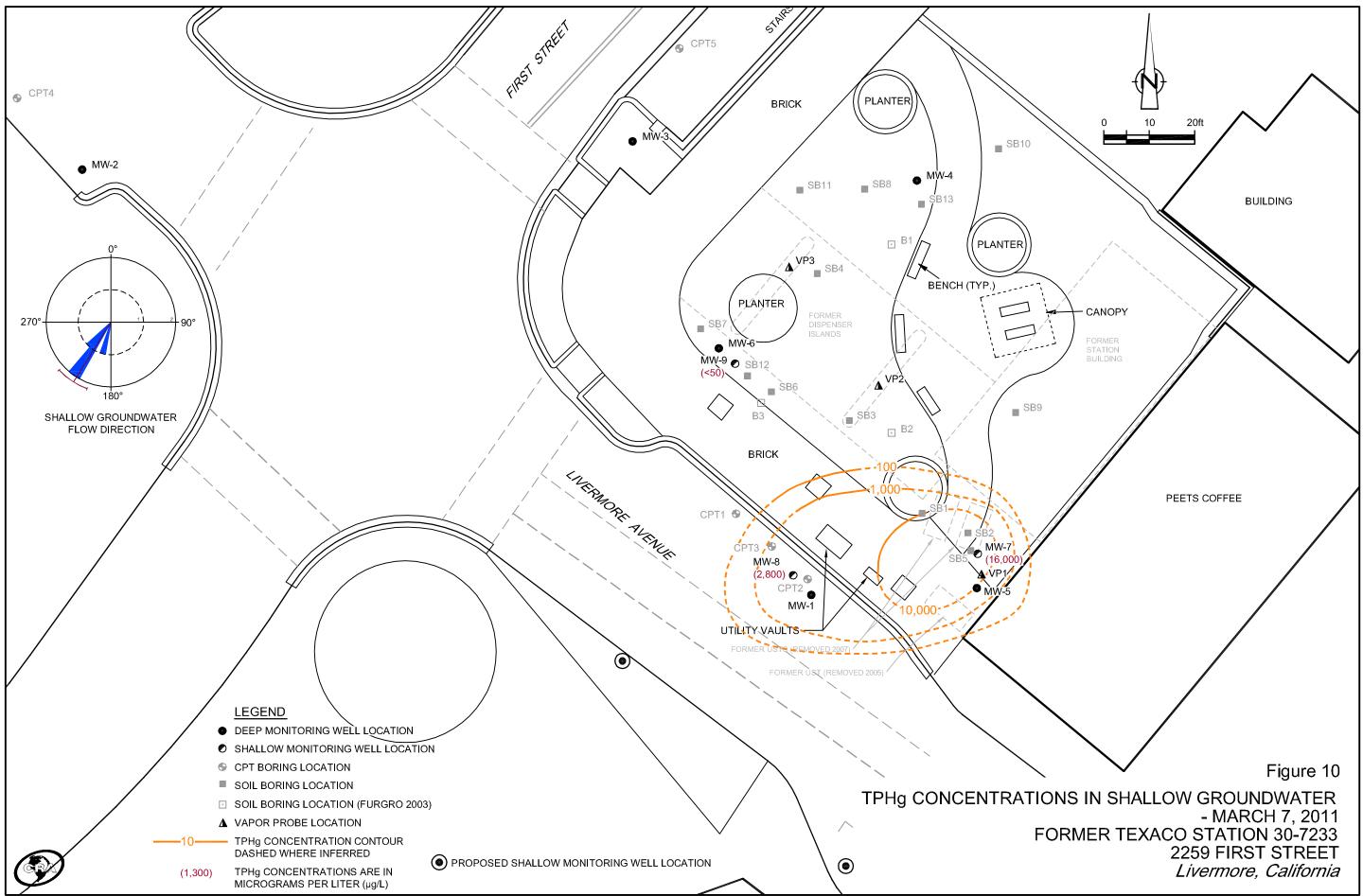
312264-95(010)GN-WA010 APR 08/2011



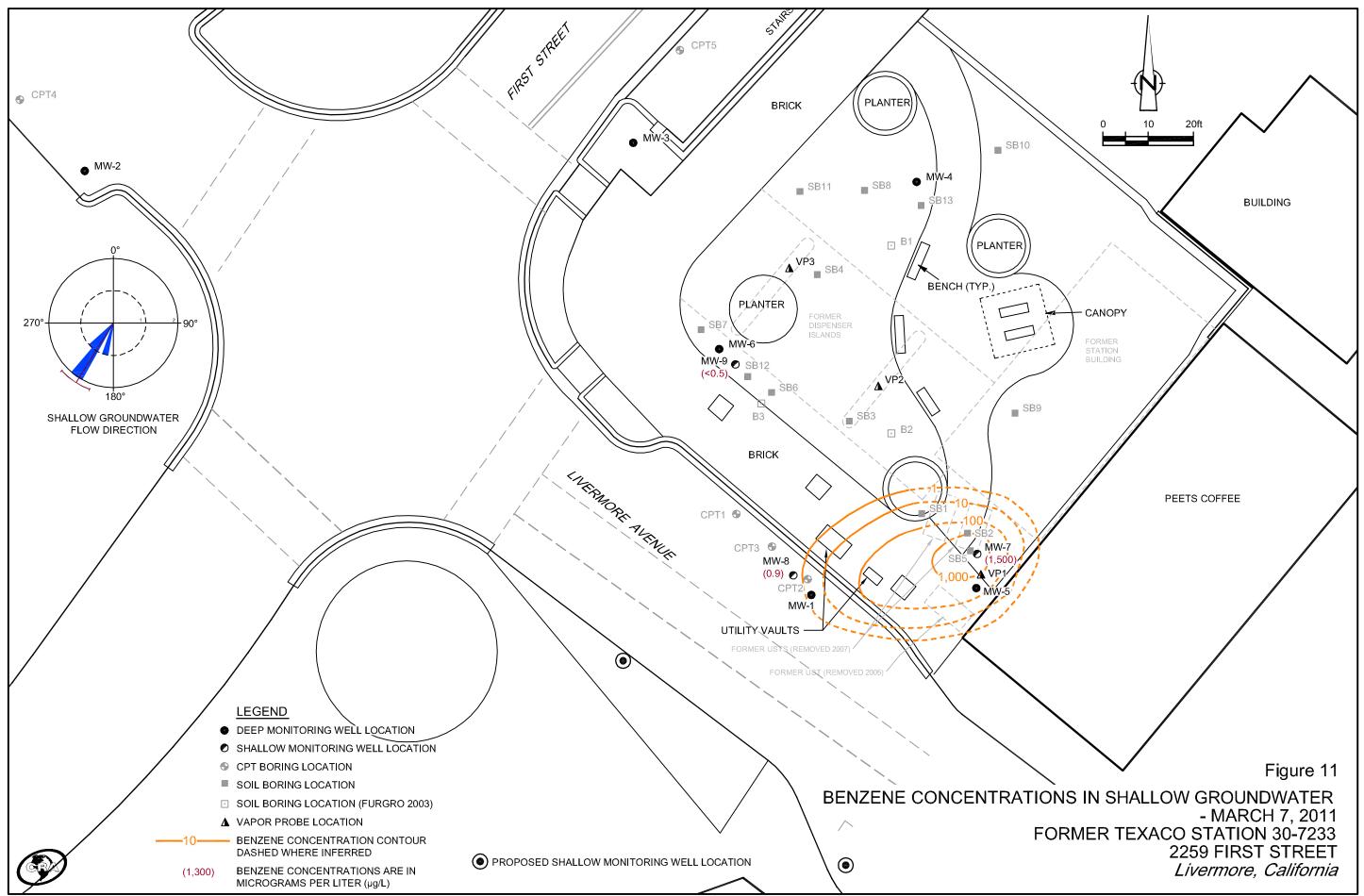
312264-95(010)GN-WA006 APR 14/2011


312264-95(010)GN-WA007 APR 14/2011





312264-95(010)GN-WA009 APR 14/2011



312264-95(010)GN-WA003 APR 14/2011

312264-95(010)GN-WA004 APR 14/2011

312264-95(010)GN-WA005 APR 14/2011

TABLE 1 WELL CONSTRUCTION DETAILS FORMER TEXACO STATION #30-7233 2259 FIRST STREET, LIVERMORE , CALIFORNIA

Well ID	Date Installed	ТОС	Total Depth (fbg)	Casing Diameter (inches)	Screen Interval (fbg)	Zone	Status
MW-1	4/7/2010	490.89	59	2	54-59	Zone B	Active/New
MW-2	4/5/2010	489.43	59	2	54-59	Zone B	Active/New
MW-3	4/6/2010	490.38	59	2	54-59	Zone B	Active/New
MW-4	4/12/2010	492.27	59	2	54-59	Zone B	Active/New
MW-5	4/8/2010	491.99	59	2	54-59	Zone B	Active/New
MW-6	4/9/2010	491.52	59	2	54-59	Zone B	Active/New
MW-7	4/8/2010	492.29	33	2	28-33	Zone A	Active/New
MW-8	4/7/2010	490.86	39	2	34-39	Zone A	Active/New
MW-9	4/9/2010	491.64	40	2	35-40	Zone A	Active/New

Abbreviations/Notes:

fbg = feet below grade

TOC = Top of casing elevation (feet above mean sea level)

TOC elevations for wells for all exisiting wells were surveyed by Morrow Surveying on April 19, 2010.

Zone A = Shallow perched water zone

Zone B = Deeper water zone

Sample ID	Date	Depth (fbg)	ТРНто	TPHd	0	Benzene			-		OXYs	Pb
					Rep	orted in n	tilligrams	s per kilog	gram (mg/	'kg)		
ESLs for Soil L (Drinking W	eaching Screen Vater Sourse) T	0	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	
ESLs for S Construction/1	oil Direct Expo French Worker F		12,000	4,200	4,200	12	650	210	420	2,800	Varies	750
2010 CRA Well	Installation											
MW-1	03/29/2010	4.0	<10	<4.0	<1.0	< 0.0005	< 0.0009	< 0.0009	< 0.0009			
MW-1	04/07/2010	9.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-1	04/07/2010	14.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-1	04/07/2010	19.5	<10	<4.0	<0.9	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-1	04/07/2010	24.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-1	04/07/2010	29.5	<10	31	310	< 0.025	< 0.049	< 0.049	< 0.049			
MW-1	04/07/2010	34.5	<10	<4.0	<1.0	0.0005	< 0.001	< 0.001	< 0.001			
MW-1	04/07/2010	39.5	<10	<4.0	6.8	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-1	04/07/2010	44.5	<10	<4.0	5.0	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-1	04/07/2010	49.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-1	04/07/2010	54.5	<10	<4.0	<0.9	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-1	04/07/2010	59.5	<10	<4.0	<1	< 0.0005	< 0.0009	< 0.0009	< 0.0009			
MW-2	04/05/2010	9.5	<10	<4.0	<1	< 0.0005	< 0.0009	< 0.0009	< 0.0009			
MW-2	04/05/2010	14.5	<10	<4.0	<1	< 0.0005	< 0.0009	< 0.0009	< 0.0009			
MW-2	04/05/2010	19.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-2	04/05/2010	24.5	<10	<4.0	<0.9	< 0.0005	< 0.0009	< 0.0009	< 0.0009			
MW-2	04/05/2010	29.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-2	04/05/2010	34.5	<10	<4.0	<1.0	< 0.0005	< 0.0009	< 0.0009	< 0.0009			
MW-2	04/05/2010	39.5	<10	<4.0	<1	< 0.0005	< 0.0009	< 0.0009	< 0.0009			
MW-2	04/05/2010	44.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-2	04/05/2010	49.5	<10	<4.0	<1.1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-2	04/05/2010	54.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-2	04/05/2010	59.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-3	03/30/2010	5.0	<10	8.8	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-3	04/06/2010	9.5	<10	<4.0	<0.9	< 0.0005	0.002	< 0.001	< 0.001			
MW-3	04/06/2010	14.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-3	04/06/2010	19.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-3	04/06/2010	24.5	<10	<4.0	<0.9	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-3	04/06/2010	29.5	<10	<4.0	<1.1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-3	04/06/2010	34.5	<10	<4.0	<1.0	< 0.0005	< 0.0009	< 0.0009	< 0.0009			
MW-3	04/06/2010	39.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-3	04/06/2010	44.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-3	04/06/2010	49.5	<10	<4.0	<1.1	< 0.0005	< 0.001	< 0.001	< 0.001			

Sample ID	Date	Depth (fbg)	ТРНто	TPHd	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	OXYs	Pb
					Rep	orted in n	iilligrams	s per kilog	gram (mg/	'kg)		
	Leaching Screen Water Sourse) To	0	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	
	· Soil Direct Expo /Trench Worker T		12,000	4,200	4,200	12	650	210	420	2,800	Varies	750
MW-3	04/06/2010	54.5	<10	<4.0	10	0.004	< 0.001	< 0.001	< 0.001			
MW-3	04/06/2010	59.5	<10	<4.0	<1.1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-4	03/30/2010	5.0	<10	<4.0	<1	<0.0005	< 0.001	< 0.001	< 0.001			
MW-4	04/12/2010	10.5	<10	<4.0	<0.9	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-4	04/12/2010	15.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-4	04/12/2010	20.5	<10	<4.0	< 0.9	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-4	04/12/2010	25.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-4	04/12/2010	30.5	<10	82	42	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-4	04/12/2010	35.5	<10	<4.0	<0.9	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-4	04/12/2010	40.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-4	04/12/2010	45.5	<10	<4.0	80	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-4	04/12/2010	50.5	<10	<4.0	31	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-4	04/12/2010	55.5	<10	4.7	110	0.003	0.001	0.019	0.007			
MW-4	04/12/2010	60.5	<10	<4.0	<0.9	< 0.0005	< 0.0009	< 0.0009	< 0.0009			
MW-5	03/31/2010	5.0	130	42	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-5	04/08/2010	9.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-5	04/08/2010	14.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-5	04/08/2010	19.5	<10	<4.0	<1	0.001	< 0.0009	< 0.0009	< 0.0009			
MW-5	04/08/2010	24.5	<10	5.9	150	< 0.026	< 0.053	< 0.053	< 0.053			
MW-5	04/08/2010	29.5	<10	8.1	18	0.003	< 0.001	0.038	0.022			
MW-5	04/08/2010	34.5	<10	29	51	< 0.023	< 0.046	< 0.046	< 0.046			
MW-5	04/08/2010	39.5	<10	<4.0	2.1	0.027	0.002	0.004	< 0.001			
MW-5	04/08/2010	44.5	<10	<4.0	<1.0	0.003	< 0.001	< 0.001	< 0.001			
MW-5	04/08/2010	49.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-5	04/08/2010	54.5	<10	<4.0	<1	0.0006	< 0.001	< 0.001	< 0.001			
MW-5	04/08/2010	59.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			

Sample ID	Date	Depth (fbg)	ТРНто	TPHd	0	Benzene ported in n			•		OXYs	Pb
•	Leaching Screen Water Sourse) Ta	0	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	
	Soil Direct Expo Trench Worker T		12,000	4,200	4,200	12	650	210	420	2,800	Varies	750
MW-6	04/01/2010	5.0	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-6	04/09/2010	10.0	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-6	04/09/2010	15.0	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-6	04/09/2010	19.5	<10	<4.0	<0.9	< 0.0005	< 0.0009	< 0.0009	< 0.0009			
MW-6	04/09/2010	25.0	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-6	04/09/2010	30.0	<10	<4.0	<0.9	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-6	04/09/2010	35.0	<10	<4.0	<0.9	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-6	04/09/2010	40.0	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-6	04/09/2010	45.0	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-6	04/09/2010	50.0	<10	<4.0	<0.9	< 0.0005	< 0.001	< 0.001	< 0.001			
MW-6	04/09/2010	55.0	<10	<4.0	44	0.020	0.003	0.006	0.002			
MW-6	04/09/2010	59.5	<10	<4.0	<1	< 0.0005	< 0.001	< 0.001	< 0.001			
2008 Subsurfa	ce Investigatior	ıs										
CPT1	02/05/2008	21.0	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
CPT1	02/05/2008	36.0	380	100	1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
CPT2	02/04/2008	22.0	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
CPT2	02/04/2008	30.0	<10	27	4.4	< 0.026	< 0.052	1.1	0.18	< 0.026	ND	
CPT2	02/04/2008	35.0	<12	<4.0	1.3	0.0009	< 0.001	< 0.001	0.002	< 0.0005	ND	
CPT3	11/04/2008	18.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
CPT3	11/04/2008	35.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
CPT3	11/04/2008	55.5	<10	7.1	52	< 0.024	< 0.047	< 0.047	< 0.047	< 0.024	ND	
CPT4	11/05/2008	50.0	<10	<4.0	<1.0	<0.0005	<0.001	<0.001	<0.001	<0.0005	ND	
CPT5	11/03/2008	51.5	<10	<4.0	<1.0	< 0.0005	<0.001	<0.001	<0.001	< 0.0005	ND	
SB6	01/28/2008	1-8***	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	6.13
SB6	01/28/2008	9.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	6.39
SB6	01/28/2008	19.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	5.79
SB6	01/28/2008	24.0	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	10.9

Sample ID	Date	Depth (fbg)	TPHmo	TPHd	-	Benzene orted in n					OXYs	Pb
	Leaching Screen Water Sourse) To	-	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	
	Soil Direct Expo Trench Worker T		12,000	4,200	4,200	12	650	210	420	2,800	Varies	750
SB7	01/28/2008	1-8***	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	8.57
SB7	01/30/2008	9.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	8.30
SB7	01/30/2008	19.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	4.70
SB7	01/30/2008	29.5	<10	<4.0	3.7	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	10.5
SB7	01/30/2008	34.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	11.6
SB8	01/28/2008	1-8***	53	18	<1.0	< 0.0005	<0.0009	<0.0009	<0.0009	< 0.0005	ND	21.9
SB8	01/31/2008	19.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	10.3
SB8	01/31/2008	29.5	<10	<4.0	1.2	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	8.29
SB8	01/31/2008	34.5	<10	67	530	< 0.027	< 0.054	0.10	< 0.054	< 0.027	ND	7.86
SB8	01/31/2008	39.5	<10	<4.0	<1.0	0.007	0.002	0.015	0.007	0.039	0.034 ^a	8.93
SB9	01/28/2008	1-8***	32	13	1.3	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	13.5
SB9	01/29/2008	15.0	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	6.36
SB9	01/29/2008	27.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	7.92
SB9	01/29/2008	34.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	12.3
SB9	01/29/2008	46.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	9.34
SB9	01/29/2008	54.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	5.77
SB10	10/23/2008	5.0	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB10	11/04/2008	16.0	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB10	11/04/2008	26.0	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB10	11/04/2008	36.0	<10	<4.0	<1.0	< 0.0005	< 0.0009	< 0.0009	< 0.0009	< 0.0005	ND	
SB10	11/04/2008	46.0	<10	4.2	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB10	11/04/2008	56.0	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB10	11/04/2008	62.0	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB11	10/24/2008	5.0	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB11	11/03/2008	11.0	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB11	11/03/2008	16.0	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB11	11/03/2008	26.0	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB11	11/03/2008	36.0	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB11	11/03/2008	45.5	<10	<4.0	59	< 0.0005	< 0.0009	< 0.0009	< 0.0009	< 0.0005	ND	
SB11	11/03/2008	50.5	<10	25	59	< 0.023	< 0.045	< 0.045	< 0.045	< 0.023	ND	
SB11	11/03/2008	56.0	<10	45	98	< 0.023	< 0.047	< 0.047	< 0.047	< 0.023	ND	
SB11	11/03/2008	61.0	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	

Sample ID	Date	Depth (fbg)	ТРНто	TPHd	0	Benzene orted in m			•		OXYs	Рb
	Leaching Screen Water Sourse) Te	0	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	
	Soil Direct Expo Trench Worker T		12,000	4,200	4,200	12	650	210	420	2,800	Varies	750
SB12	10/24/2008	5.0	<10	<4.0	<1.0	<0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB12	11/03/2008	15.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB12	11/03/2008	25.5	<10	<4.0	120	< 0.023	< 0.046	< 0.046	< 0.046	< 0.023	ND	
SB12	11/03/2008	30.0	<10	34	58	< 0.024	< 0.047	< 0.047	< 0.047	< 0.024	ND	
SB12	11/03/2008	35.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB12	11/03/2008	45.5	<10	<4.0	1.3	0.0007	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB12	11/03/2008	50.5	<10	65	1,200	< 0.023	< 0.046	< 0.046	< 0.046	< 0.023	ND	
SB12	11/03/2008	55.5	<10	55	1,300	1.1	0.15	2.0	3.7	< 0.024	ND	
SB12	11/03/2008	60.5	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SSB1	02/01/2008	1.5										9.52
SSB1	02/01/2008	2.5										52.9
SSB1	02/01/2008	4.5										7.34
SSB2	01/28/2008	1.5										17.4
SSB2	01/30/2008	2.5		11	1.2	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	40.6
SSB2	01/30/2008	4.5		4.4	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	15.0
SSB2	01/30/2008	8.0		<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	7.45
SSB3	01/30/2008	1.5										42.8
SSB3	02/06/2008	3.0										52.4
SSB3	02/06/2008	5.0										42.2
SSB4	02/01/2008	1.5										10.2
SSB4	02/01/2008	2.5										517
SSB4	02/01/2008	4.5										616
SSB4	02/01/2008	9.0										90.8
SSB5	02/06/2008	1.5										18.2
SSB5	02/06/2008	3.0										47.5
SSB5	02/06/2008	5.5										117
SSB5	02/06/2008	7.0										63.5
SSB6	02/06/2008	1.5										14.3
SSB6	02/06/2008	3.0										98.9

Sample ID	Date	Depth (fbg)	ТРНто	TPHd	U	Benzene orted in n			•		OXYs	Pb
•	Leaching Screen Water Sourse) Ta	0	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	
	Soil Direct Expo Trench Worker T		12,000	4,200	4,200	12	650	210	420	2,800	Varies	750
SSB7	02/06/2008	1.5										13.0
SSB7	02/06/2008	3.5										9.73
SSB7	02/06/2008	5.5										4.60
SSB7	02/06/2008	7.0										3.97
SSB8	02/01/2008	1.5										168
SSB8	02/01/2008	4.5										160
SSB8	02/01/2008	9.5										33.8
SSB9	02/06/2008	1.5										189
SSB9	02/06/2008	3.0										15.0
SSB9	02/06/2008	5.0										6.24
SSB9	02/06/2008	9.0										6.36
SSB10	01/31/2008	1.5										38.9
SSB10	02/06/2008	3.0										67.2
SSB10	02/06/2008	5.0										5.00
SSB10	02/06/2008	9.0										9.34
SSB11	02/06/2008	1.5										9.67
SSB11	02/06/2008	3.0										4.86
SSB11	02/06/2008	5.0										3.90
SSB11	02/06/2008	8.5										5.62
VP1	02/01/2008	4.5	<10	<4.0	<1.0	<0.0005	< 0.001	< 0.001	< 0.001	<0.0005	ND	6.10
VP1	02/01/2008	8.0	<10	<4.0	<1.0	< 0.0005	< 0.0009	< 0.0009	< 0.0009	< 0.0005	ND	9.03
VP2	02/01/2008	4.5	54	25	<1.0	< 0.0005	<0.0009	<0.0009	<0.0009	<0.0005	ND	75.4
VP2	02/01/2008	9.5	<10	<4.0	<1.0	< 0.0005	< 0.0009	< 0.0009	< 0.0009	< 0.0005	ND	15.6
VP3	02/01/2008	4.5	<10	<4.0	1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	6.12
VP3	02/01/2008	8.0	<10	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	4.22

Sample ID	Date	Depth (fbg)	TPHmo	TPHd	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	OXYs	Pb
					Rep	orted in n	iilligram	s per kilog	gram (mg	/kg)		
	Leaching Screen Nater Sourse) To		83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	
•	Soil Direct Expo											
Construction/	Trench Worker	Table K-3	12,000	4,200	4,200	12	650	210	420	2,800	Varies	750
2007 Tank Pul	1											
EX1	06/20/2007	7.0	<580	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	4.98
EX2	06/20/2007	7.0	<580	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	3.29
EX3	06/20/2007	7.0	<580	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	5.13
EX4	06/20/2007	8.0	11,000	2,800	<1.0	< 0.0005	0.001	< 0.001	< 0.001	< 0.0005	ND	1,170
EX4	06/20/2007	9.0	3,100	1,400	<100	< 0.0005	< 0.001	< 0.001	0.004	< 0.0005	ND	1,470
EX5	06/20/2007	8.0	<580	100	<10	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	190
EX6	06/20/2007	8.0	3,000	1,300	<400	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	1,500
P1	06/20/2007	5.0	<580	<4.0	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	27.1
October 2006 S	Subsurface Inve	estigation										
SB-1	10/26/2006	10.0	<10	<10	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB-1	10/26/2006	15.0	350	140	15	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB-1	10/26/2006	22.0	1,400	780	2,800	< 0.062	2.1	7.5	< 0.12	< 0.062	ND	
SB-1	10/26/2006	26.0	390	590	1,100	0.62	0.19	5.5	19	< 0.062	ND	
SB-1	10/26/2006	32.0	94	120	180	2.0	17	13	65	< 0.063	ND	
SB-1	10/26/2006	35.5	67	99	1,200	1.0	5.5	2.7	16	< 0.062	ND	
SB-1	10/26/2006	39.5	<10	20	1,000	0.90	0.93	2.5	11	< 0.063	ND	
SB-3	10/23/2006	10.0	<10	<10	<1.0	<0.0005	0.001	< 0.001	0.002	< 0.0005	ND	
SB-3	10/23/2006	15.0	<10	<10	<1.0	< 0.0005	< 0.001	< 0.001	0.002	< 0.0005	ND	
SB-3	10/23/2006	21.0	<20	82	1,800	< 0.062	< 0.12	4.8	15	< 0.062	ND	
SB-3	10/23/2006	25.0	88	3,000	8,700	14	410	120	770	< 0.31	ND	
SB-3	10/23/2006	30.0	<20	230	5,400	3.2	68	40	250	< 0.062	ND	
SB-3	10/23/2006	35.0	<10	17	630	0.080	< 0.12	0.56	1.1	< 0.062	ND	
SB-3	10/23/2006	39.5	<20	62	130	0.23	1.5	0.81	5.5	< 0.063	ND	
SB-4	09/12/2006	5.0	<18	33	1.3	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB-4	09/12/2006	10.0	<20	28	2.8	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB-4	09/12/2006	15.0	<20	<12	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB-4	09/12/2006	20.0	<20	<10	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB-4	09/12/2006	25.0	<20	24	310	< 0.003	< 0.005	0.008	< 0.005	< 0.003	ND	
SB-4	09/12/2006	27.5	<20	260	1,600	0.10	0.14	4.5	19	< 0.062	ND	
SB-4	09/12/2006	30.0	<20	<12	22	0.003	< 0.005	0.014	0.007	< 0.002	ND	
SB-4	09/12/2006	35.0	<20	45	320	< 0.063	< 0.13	< 0.13	<0.13	< 0.063	ND	
SB-4	09/12/2006	39.5	<16	<10	1.2	0.15	< 0.001	< 0.001	< 0.001	< 0.0005	ND	

Sample ID	Date	Depth (fbg)	TPHmo	TPHd	TDUa	Benzene	Toluona	Ethyl-	Total Xulanac	MTRE	OXYs	Pb
Sumple ID	Dute	(108)	11111110	11111	0	orted in n			U U		UAIS	ΓU
ESLs for Soil L	0	0					0	, .	<u> </u>	0		
(Drinking W	later Sourse) T	able G	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	
	oil Direct Expo											
Construction/T	rench Worker	Table K-3	12,000	4,200	4,200	12	650	210	420	2,800	Varies	750
SB-5	10/24/2006	10.0	<10	<10	<1.0	< 0.0005	0.001	< 0.001	0.002	< 0.0005	ND	
SB-5	10/26/2006	15.0	<10	<10	<1.0	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.0005	ND	
SB-5	10/26/2006	19.5	560	700	27	< 0.0005	< 0.001	< 0.001	0.001	< 0.0005	ND	
SB-5	10/26/2006	26.0	450	620	1,100	0.78	<0.13	8.5	12	< 0.063	ND	
SB-5	10/26/2006	30.0	140	320	950	< 0.062	< 0.12	1.1	2.0	< 0.062	ND	
SB-5	10/26/2006	34.0	290	630	3,100	17	67	38	130	<0.13	ND	
SB-5	10/26/2006	39.5	<10	80	1,400	5.4	2.6	13	73	< 0.062	ND	
2005 Consolida	ted Engineeri	ng Tank P	ull									
Sample (1) LFD	09/20/2005	3.0	<2,500	4,100		< 0.017	< 0.017	< 0.017	< 0.017	< 0.017	ND	
Sample (2)	09/20/2005	3.0	<250	1,300		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	
Sample (3)	09/20/2005	3.0	<200	670		< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	ND	
Sample (4)	09/20/2005	3.0	<50	1.0	<1.000	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	
Sample (5)	09/20/2005	3.0	54	140	<1.000	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	
Sample (6)	09/20/2005	3.0	<50	2.1	3	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	ND	
2004 Fugro Sub	surface Invest	tigation										
B-1	09/17/2003	3.0										21
B-1	09/17/2003	25.5	<50	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		
B-2	09/17/2003	3.0										3,700****
B-2	09/17/2003	15.5			<1.0	< 0.005	< 0.005	< 0.005	< 0.005			
B-2	09/17/2003	30.0	<50	9.6	3.5	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		
B-3	09/17/2003	3.0										4.8
B-3	09/17/2003	25.5	<50	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		

CUMULATIVE SOIL ANALYTICAL DATA FORMER TEXACO SERVICE STATION #30-7233 2259 FIRST STREET, LIVERMORE, CALIFORNIA

Sample ID	Date	Depth (fbg)	TPHmo	TPHd	0			Ethyl- benzene s per kilog			OXYs	Pb
ESLs for Soil Le (Drinking Wa	0	0	83	83	83	0.044	2.9	3.3	2.3	0.023	Varies	
ESLs for So Construction/Tr	il Direct Exp ench Worker		12,000	4,200	4,200	12	650	210	420	2,800	Varies	750

Notes:

Total petroleum hydrocarbons as motor oil (TPHmo) analyzed by EPA Method 8015B modified unless otherwise noted. Total petroleum hydrocarbons as diesel (TPHd) analyzed by EPA Method 8015B with silica gel cleanup unless otherwise noted. Total petroleum hydrocarbons as gasoline (TPHg) analyzed by EPA Method 8015B modified unless otherwise noted. Benzene, toluene, ethylbenzene, and total xylenes (BTEX); methyl tertiary-butyl ether (MTBE); t-butyl alcohol (TBA); di-isopropyl ether (DIPE); ethyl tertiary-butyl ether (ETBE); t-amyl methyl ether (TAME); 1,2-dichloroethane (1,2-DCA); 1,2-dibromoethane (EDB) analyzed by EPA method 8260B unless otherwise noted.

OXYs = TBA, DIPE, ETBE, TAME, 1,2,-DCA, and EDB

fbg = feet below grade.

< x = Not detected at reporting limit x.

ND = not detected at various laboratory method detection limits.

Environmental Screening Levels (ESLs) for commercial land use where groundwater is a current or potential drinking water source from *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater* presented by the California Regional Water Quality Control Board - San Francisco Bay Region Interim Final November 2007, revised May 2008.

NE = Not established

-- = Not applicable/not analyzed.

a = TBA, no other oxygenates detected

*** = Discrete sample could not be collected due to large cobbles, composite sample collected.

**** = Soluble Lead Toxicity Characteristic Leaching Potential (TCLP) analysis resulted in a concentration <0.50 milligrams per liter.

GROUNDWATER MONITORING AND SAMPLING DATA FORMER TEXACO SERVICE STATION 30-7233 2259 FIRST STREET LIVERMORE, CALIFORNIA

					I	IYDROCARBONS	s	Pl	RIMAF	RY VOC	CS	GENER	AL CHEN	AISTRY
Location	Date	ТОС	DTW	GWE	TPH-DRO	TPH-DRO w/Si Gel	TPH-GRO	В	Т	Ε	X	Nitrate Nitrogen	Sulfate	Ferrous Iron
	Units	ft	ft	ft-amsl	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg∕L	µg∕L	µg/L	µg∕L
MW-1	05/25/2010 ¹	490.86	30.62	460.24	-	-	-	-	-	-	-	-	-	-
MW-1	05/27/2010	490.86	30.65	460.21	<50	-	<50	<0.5	<0.5	<0.5	< 0.5	-	-	-
MW-1	09/13/2010	490.86	36.49	454.37	51	-	<50	<0.5	<0.5	<0.5	< 0.5	-	-	-
MW-1	12/20/2010	490.86	32.24	458.62	-	79	<50	<0.5	<0.5	<0.5	<0.5	-	-	-
MW-1	03/07/2011	490.86	27.86	463.00	-	<50	<50	<0.5	<0.5	<0.5	<0.5	6,900	73,600	<10
MW-2 MW-2	05/25/2010 ¹ 05/27/2010	489.43 489.43	31.18 31.11	458.25 458.32	- <50	- -	- <50	- <0.5	- <0.5	- <0.5	- <0.5	- -	-	- -
MW-2	09/13/2010	489.43	36.96	452.47	<50	-	<50	<0.5	<0.5	<0.5	<0.5	-	-	-
MW-2	12/20/2010	489.43	32.62	456.81	-	52	<50	<0.5	< 0.5	<0.5	< 0.5	-	-	-
MW-2	03/07/2011	489.43	28.26	461.17	-	<50	<50	<0.5	<0.5	<0.5	<0.5	3,600	45,900	20
MW-3	05/25/2010 ¹	490.38	30.17	460.21	-	-	-	-	-	-	-	-	-	-
MW-3	05/27/2010	490.38	30.98	459.40	610	-	2,100	2	<0.5	<0.5	0.9	-	-	-
MW-3	09/13/2010	490.38	36.77	453.61	<50	-	<50	<0.5	<0.5	<0.5	<0.5	-	-	-
MW-3	12/20/2010	490.38	32.41	457.97	-	97	<50	<0.5	<0.5	<0.5	<0.5	-	-	-
MW-3	03/07/2011	490.38	28.06	462.32	-	<50	<50	<0.5	<0.5	<0.5	<0.5	4,300	70,400	53
MW-4 MW-4	05/25/2010 ¹ 05/27/2010	492.27 492.27	32.21 32.26	460.06 460.01	- 230	-	- 1,800	- 1	- <0.5	- <0.5	- 0.7	-	-	-
MW-4	09/13/2010	492.27	38.14	454.13	<50	_	<50	<0.5	<0.5	<0.5	< 0.5	-	_	_
11111 1	07/10/2010	1/2.2/	00.11	101.10	-00		-00	-0.0	.0.0	-0.0	-0.0			

GROUNDWATER MONITORING AND SAMPLING DATA FORMER TEXACO SERVICE STATION 30-7233 2259 FIRST STREET LIVERMORE, CALIFORNIA

			-	_	I	IYDROCARBON	5	P	RIMAF	RY VOC	CS	GENER	AL CHEN	AISTRY
Location	Date	ТОС	DTW	GWE	ТРН-DRO	TPH-DRO w/Si Gel	TPH-GRO	В	Т	Ε	X	Nitrate Nitrogen	Sulfate	Ferrous Iron
	Units	ft	ft	ft-amsl	µg∕L	µg∕L	µg∕L	µg/L	µg/L	µg/L	µg∕L	µg/L	µg/L	µg∕L
MW-4 MW-4	12/20/2010 03/07/2011	492.27 492.27	33.80 29.42	458.47 462.85	- -	180 <50	<50 < 50	<0.5 <0.5	<0.5 < 0.5	<0.5 <0.5	<0.5 <0.5	- 7,900	- 72,300	- 15
MW-5	05/25/2010 ¹	491.99	31.39	460.60	-	-	-	-	-	-	-	-	-	-
MW-5	05/27/2010	491.99	31.42	460.57	120	-	420	2	<0.5	<0.5	1	-	-	-
MW-5	09/13/2010	491.99	37.25	454.74	700	-	<50	<0.5	< 0.5	<0.5	<0.5	-	-	-
MW-5	12/20/2010	491.99	33.01	458.98	-	74	<50	<0.5	<0.5	<0.5	<0.5	-	-	-
MW-5	03/07/2011	491.99	28.60	463.39	-	93	<50	<0.5	<0.5	<0.5	<0.5	7,900	70,100	23
MW-6 MW-6	05/25/2010 ¹ 05/27/2010	491.52 491.52	31.63 31.79	459.89 459.73	- 1,000	-	- 3,700	- 4	- <0.5	- <0.5	- 1	- -	-	-
MW-6	09/13/2010	491.52	37.64	453.88	68	-	<50	<0.5	<0.5	<0.5	<0.5	-	-	-
MW-6	12/20/2010	491.52	33.32	458.20	-	140	<50	<0.5	<0.5	<0.5	<0.5	-	-	-
MW-6	03/07/2011	491.52	28.96	462.56	-	63	<50	<0.5	<0.5	<0.5	<0.5	360	55,400	33
MW-7 MW-7 MW-7	05/25/2010 ¹ 05/27/2010 09/13/2010	492.29 492.29 492.29	28.69 28.61 31.75	463.60 463.68 460.54	- 2,800 40,000	- - -	- 14,000 16,000	- 1,800 1,700	- 35 33	- 320 460	- 660 600	- - -	- -	- -
MW-7	12/20/2010	492.29	27.96	464.33	-	6,200	15,000	2,800	59	450	530	-	-	-
MW-7	03/07/2011	492.29	24.98	467.31	-	55,000	16,000	1,500	50	470	2,100	<250	2,600	2,800

GROUNDWATER MONITORING AND SAMPLING DATA FORMER TEXACO SERVICE STATION 30-7233 2259 FIRST STREET LIVERMORE, CALIFORNIA

Unitsftftft-ams1 $\mu g/L$ </th <th></th> <th></th> <th></th> <th></th> <th></th> <th colspan="4">HYDROCARBONS</th> <th>RIMAF</th> <th>RY VOC</th> <th>CS</th> <th colspan="4">GENERAL CHEMISTRY</th>						HYDROCARBONS				RIMAF	RY VOC	CS	GENERAL CHEMISTRY			
Unitsftftft-ams1 $\mu g/L$ </th <th>Location</th> <th>Date</th> <th>тос</th> <th>DTW</th> <th>GWE</th> <th>TPH-DRO</th> <th>TPH-DRO w/Si Gel</th> <th>TPH-GRO</th> <th>В</th> <th>Т</th> <th>Ε</th> <th>X</th> <th>Nitrate Nitrogen</th> <th>Sulfate</th> <th>Ferrous Iron</th>	Location	Date	тос	DTW	GWE	TPH-DRO	TPH-DRO w/Si Gel	TPH-GRO	В	Т	Ε	X	Nitrate Nitrogen	Sulfate	Ferrous Iron	
MW-8 05/27/2010 490.89 30.78 460.11 750 . 3,100 36 3 <0.5 2 . . MW-8 09/13/2010 490.89 36.55 454.34 590 . 3,400 55 2 <0.5		Units	ft	ft	ft-amsl	µg∕L	µg/L	µg/L	µg/L	µg∕L	µg/L	µg/L	µg∕L		µg∕L	
MW-8 09/13/2010 490.89 36.55 454.34 590 - 3,400 5 2 <0.5 1 - - MW-8 12/20/2010 490.89 31.60 459.29 - 750 4,000 0.8 0.7 19 3 - - MW-8 03/07/2011 490.89 28.20 462.69 - 1,300 2,800 0.9 0.7 12 2 <205 7,000 8 MW-9 05/25/2010 ¹ 491.64 29.23 462.41 -							-	-	-	-	-	-	-	-	-	
MW-8 12/20/2010 490.89 31.60 459.29 - 750 4,000 0.8 0.7 19 3 - - MW-8 03/07/2011 490.89 28.20 462.69 - 1,300 2,800 0.9 0.7 12 2 <250 7,000 8 MW-9 05/25/2010 ¹ 491.64 29.23 462.41 -							-	·					-	-	-	
MW-8 03/07/2011 490.89 28.20 462.69 - 1,300 2,800 0.9 0.7 12 2 <250 7,000 8 MW-9 05/25/2010 ¹ 491.64 29.23 462.41 -						590	-						-	-	-	
MW-9 05/25/2010 ¹ 491.64 29.23 462.41 - <						-		,					-	-	-	
MW-9 05/27/2010 491.64 28.96 462.68 <50	MW-8	03/07/2011	490.89	28.20	462.69	-	1,300	2,800	0.9	0.7	12	2	<250	7,000	820	
MW-9 12/20/2010 491.64 28.95 462.69 - 56 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5						- <50	-	- <50	- <0.5	- <0.5	- <0.5	- <0.5	-	-	-	
MW-9 03/07/2011 491.64 25.67 465.97 - <50 <0.5 <0.5 <0.5 <0.5 <250 172,000 4 QA 05/27/2010 - - - - <50	MW-9	09/13/2010	491.64	31.85	459.79	30,000	-	<50	< 0.5	<0.5	<0.5	< 0.5	-	-	-	
QA 05/27/2010 QA 09/13/2010 	MW-9	12/20/2010	491.64	28.95	462.69	-	56	<50	< 0.5	< 0.5	<0.5	< 0.5	-	-	-	
QA 09/13/2010 <50 <0.5 <0.5 <0.5	MW-9	03/07/2011	491.64	25.67	465.97	-	<50	<50	<0.5	<0.5	<0.5	<0.5	<250	172,000	48	
QA 09/13/2010 <- <50 <0.5 <0.5 <0.5 <																
	QA	05/27/2010	-	-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	-	-	-	
QA 12/20/2010 <50 <0.5 <0.5 <0.5	QA	09/13/2010	-	-	-	-	-	<50	< 0.5	< 0.5	<0.5	< 0.5	-	-	-	
	QA	12/20/2010	-	-	-	-	-	<50	<0.5	<0.5	<0.5	< 0.5	-	-	-	
QA 03/07/2011	QA	03/07/2011	-	-	-	-	-	<50	<0.5	<0.5	<0.5	<0.5	-	-	-	

Abbreviations and Notes:

TOC = Top of Casing

DTW = Depth to Water

GWE = Groundwater elevation

GROUNDWATER MONITORING AND SAMPLING DATA FORMER TEXACO SERVICE STATION 30-7233 2259 FIRST STREET LIVERMORE, CALIFORNIA

		-		-	1	Р	RIMAI	RY VO	CS	GENERAL CHEMISTRY				
Location	Date	тос	DTW	GWE	ТРН-DRO	TPH-DRO w/ Si Gel	TPH-GRO	В	Т	Ε	X	Nitrate Nitrogen	Sulfate	Ferrous Iron
	Units	ft	ft	ft-amsl	μ g/L	µg∕L	µg∕L	µg∕L	µg/L	µg∕L	µg∕L	µg∕L	µg/L	µg∕L

(ft-amsl) = Feet Above Mean sea level

ft = Feet

 $\mu g/L$ = Micrograms per Liter

TPH-DRO = Total Petroleum Hydrocarbons - Diesel Range Organics

TPH-GRO = Total Petroleum Hydrocarbons - Gasoline Range Organics

VOCS = Volatile Organic Compounds

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylene

*

-- = Not available / not applicable

< x = Not detected above laboratory method detection limit

TOC elevations were surveyed on April 19, 2010 by Morrow Surveying. Vertical datum is NAVD 88 from GPS observations

1 Well development performed.

Page 1 of 2

Sample ID	Date	Sample Depth (fbg)	ТРНто	TPHd	TPHg	Benzene	Toluene Repo		Total Xylenes icrograms		TBA r (µg/L)	DIPE	ETBE	TAME	1,2-DCA	EDB
ESLs for Drink	ing Water Toxi	city (Table F-3)	210	210	210	1.0	150	300	1800	13	12	NE	NE	NE	0.5	0.05
,	tential Vapor In tercial/Industria			Uses soil gas	Uses soil gas	1,800	530,000	170,000	160,000	80,000	Uses soil gas	NE	NE	NE	690	510
CRA 2008 SSI																
CPT1	02/05/08	42	1,500	3,300	47,000	5	2	3	2	< 0.5	<2	<0.5	< 0.5	< 0.5	< 0.5	<0.5
CPT2	02/04/08	31	1,500	10,000	4,100	14	2	57	110	< 0.5	<2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
CPT3	11/04/08	56	4,500	36,000	29,000	200	140	740	1,100	<1	<4	<1	<1	<1	<1	<1
CPT4	11/05/08	54	720	400	<50	<0.5	<0.5	<0.5	<0.5	< 0.5	<2	< 0.5	<0.5	< 0.5	<0.5	< 0.5
CPT4	11/05/08	60	1,400	490	<50	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<2	<0.5	< 0.5	< 0.5	<0.5	< 0.5
CPT5	11/03/08	55	510	43,000	2,500	<0.5	<0.5	1	0.5	< 0.5	<2	<0.5	<0.5	< 0.5	< 0.5	< 0.5
CPT5	11/03/08	68	<400	340	70	<0.5	<0.5	<0.5	< 0.5	<0.5	<2	<0.5	<0.5	< 0.5	<0.5	<0.5
SB6	01/30/08	22	<400	300	110	3	<0.5	<0.5	< 0.5	<0.5	<2	<0.5	<0.5	< 0.5	<0.5	<0.5
SB7	01/30/08	31	<400	6,400	3,000	< 0.5	<0.5	< 0.5	< 0.5	<0.5	16	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
SB8	01/31/08	34		52,000	18,000	<1	<1	8	2	<1	<4	<1	<1	<1	<1	<1
SB9	01/29/08	55	450	490	1,100	< 0.5	<0.5	< 0.5	0.5	< 0.5	<2	<0.5	< 0.5	< 0.5	<0.5	< 0.5
SB10	11/04/08	50	<400	<320	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
SB11	11/03/08	50	<400	20,000	9,000	< 0.5	3	17	150	< 0.5	<2	<0.5	< 0.5	< 0.5	<0.5	< 0.5
SB12	11/03/08	50	<400	4,000	5,500	190	15	100	220	<0.5	<2	<0.5	<0.5	<0.5	<0.5	<0.5
2004 Fugro Subsurface Investigation																
B-1	9/17/2003	34-40	<1,000	1,100	1,600	<0.5	< 0.5	<0.5	< 0.5	<5.0						
B-2	9/17/2003	34-40	<500	57	90	< 0.5	< 0.5	< 0.5	< 0.5	<5.0						
B-3	9/17/2003	34-40	<10,000	42,000	18,000	140	47	120	1,000	<50						

Sample ID	Date	Sample Depth (fbg)	TPHmo	TPHd	TPHg	Benzene	Toluene Repor		Total Xylenes icrograms			DIPE	ETBE	TAME	1,2-DCA	EDB
ESLs for Drinki	ng Water Tox	cicity (Table F-3)	210	210	210	1.0	150	300	1800	13	12	NE	NE	NE	0.5	0.05
,	•	Intrusion Into ial (Table E-1a)		Uses soil gas	Uses soil gas	1,800	530,000	170,000	160,000	80,000	Uses soil gas	NE	NE	NE	690	510

Notes:

Total petroleum hydrocarbons as motor oil (TPHmo) analyzed by EPA Method 8015B modified.

Total petroleum hydrocarbons as diesel (TPHd) analyzed by EPA Method 8015B with silica gel cleanup.

Total petroleum hydrocarbons as gasoline (TPHg) analyzed by EPA Method 8015B modified.

Benzene, toluene, ethylbenzene, and total xylenes (BTEX); methyl tertiary-butyl ether (MTBE); t-butyl alcohol (TBA); di-isopropyl ether (DIPE); ethyl tertiary-butyl ether (ETBE); t-amyl methyl ether (TAME); 1,2-dichloroethane (1,2-DCA); 1,2-dibromoethane (EDB) analyzed by EPA Method 8260B.

Environmental Screening Levels (ESLs) for groundwater that is a current or potential drinking water source from *Screening for Environemental Concerns at Sites with Contaminated Soil and Groundwater* presented by the California Regional Water Quality Control Board - San Francisco Bay Region Interim Final November 2007, revised May 2008. fbg = feet below grade.

<x = Not detected at reporting limit x.

-- = Not applicable/not analyzed.

		Depth	ТРНа	Ronzono	Toluene	Ethyl- benzene	Total Xylenes ¹	MTBE	TBA	DIPE	ETBE	TAME	EDB	1.2-DCA	Naphalene	VOCs	Helium	Oxygen	CO 2
Sample ID	Date	(fbg)	mag	Denzene	10tuene	o en zene	nytenes					c meter (µ	_	1,2 0 011	itupiluiene			ted in % Vo	_
ESLs - Soil Gas	Residential	, ,	10,000	84	63,000	980	21,000	, 9,400					4.1	94	72				
ESLs - Soil Gas	Commercial		29,000	280	180,000	3,300	58,000	31,000					14	310	240				
VP1-5	03/10/08	5 - 5.5	940	<3.2	18	5.6	<4.4	<3.6	<31	<17	<17	<17	<7.8	<4.1	<21		0.24	38	0.36
VP1-5	LAB DUPL	ICATE		<3.2	13	<4.4	<4.4	<3.6	<31	<17	<17	<17	<7.8	<4.1	<21		0.20	38	0.36
VP1-5	11/07/08	5 - 5.5	<250	<3.9	<4.6	<5.2	<5.2	<4.4	<15	<20	<20	<20	<9.3	<4.9	<25	ND	< 0.12	19	2.5
VP1-5	LAB DUPL	ICATE															<0.12	19	2.5
VP1-10	03/10/08	9.5 - 10	<250	<3.9	<4.6	<5.2	<5.2	<4.4	<37	<20	<20	<20	<9.3	<4.9	<25		<0.12	20	1
VP1-10	11/07/08	9.5 - 10	260	<3.7	<4.4	<5.0	6.5	<4.2	<14	<19	<19	<19	<9.0	<4.7	<24	SEE LAB ANALYTICAL	< 0.12	19	2.1
VP1-10 Duplicate	11/07/08	9.5 - 10	270	<3.8	<4.5	<5.2	<5.2	<4.3	<14	<20	<20	<20	<9.1	<4.8	<25	SEE LAB ANALYTICAL	< 0.12	19	2.1
VP1-10 Duplicate	E LAB DUPL	ICATE	270																
VP2-5	03/10/08	5 - 5.5	500	<4.0	19	6.4	31	<4.6	<38	<21	<21	<21	<9.7	<5.1	<26		<0.13	17	2
VP2-5 DUP	03/10/08	5 - 5.5	<260	<4.0	<4.8	<5.5	<5.5	<4.6	<38	<21	<21	<21	<9.7	<5.1	<26		<0.13	17	2
VP2-10	03/10/08	9.5 - 10	450	<3.9	29	9.7	11	<4.4	<37	<21	<21	<21	<9.5	<5.0	<26		<0.12	18	1.6
VP3-5	03/10/08	5 - 5.5	<260	<4.0	<4.8	<5.5	6.3	<4.6	<38	<21	<21	<21	<9.7	<5.1	<26		<0.13	17	2.3
VP3-10	03/10/08	9.5 - 10	<250	<3.9	<4.6	<5.4	<5.4	<4.4	<37	<21	<21	<21	<9.5	<5.0	<26		<0.12	18	2.2

Notes:

Total petroleum hydrocarbons as gasoline (TPHg) by EPA Method TO-3

Benzene, Toluene, Ethylbenzene, Xylenes (BTEX), Ethanol, Methyl Tertiary Butyl Ether (MtBE), t-Butyl Alcohol (TBA), di-Isopropyl ether (DIPE), Ethyl t-butyl ether (ETBE), t-amyl methyl ether (TAME), 1,2-Dibromoethane (EDB) and 1,2-Dichloroethane (1,2-DCA) by EPA Method TO-15

Helium, Oxygen, and Carbon Dioxide (CO₂) by modified ASTM D-1946

fbg = Feet below grade

ESLs - Soil Gas = Environmental Screening Levels for shallow soil gas in commercial/industrial land (Table E-2) from Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater prepared by the California Regional Water Quality Control Board - San Francisco Bay Region Interim Final 2007, Revised May 2008.

<X = Not detected above laboratory method detection limit x

ND = Not detected above various laboratory method detection limits

-- = not analyzed or not applicable

1 = Values for highest value of Xylenes detected.

APPENDIX A

REGULATORY CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

ALEX BRISCOE, Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

November 15, 2010

Mr. Ian Robb (*Sent via E-mail to: <u>ianrobb@chevron.com</u>*) Chevron Environmental Management Company 6001 Bollinger Canyon Road San Ramon, CA 94583-2324

Mr. Eric Uranga (*Sent via E-mail to: <u>ejuranga @ci.livermore.ca.us</u>*) City of Livermore Economic Development 1052 S. Livermore Ave. Livermore, CA 94550

Subject: Review of Response to Request for Pilot Test Work Plan or Draft Corrective Action Plan for Fuel Leak Case No. RO0002908 and Geotracker Global ID T0600196622, Miller Square Park, 2259 First Street, Livermore, CA 94550

Dear Mr. Robb and Mr. Uranga:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the above referenced site including the most recently submitted document entitled, "*Response to Request for Pilot Test Work Plan or Draft Corrective Action Plan Installation Report, Former Texaco Station, 30-7233, 2259 First Street, Livermore, California,*" dated October 12, 2010, which was prepared on behalf of Chevron by Conestoga-Rovers & Associates. The October 12, 2010 Response requests the collection of groundwater monitoring data for a one year period prior to preparing a Pilot Test Work Plan or evaluating remedial options in a Draft Corrective Action Plan (CAP).

Although we are not entirely convinced this delay is necessary, we will grant an extension to May 3, 2011 for submittal of a Pilot Test Work Plan or Draft CAP. Please assure that no further delays occur in this submittal. We request that you perform the proposed work and send us the reports described below.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Jerry Wickham), according to the following schedule:

- January 10, 2011 Groundwater Monitoring Report Fourth Quarter 2010
- April 10, 2011 Groundwater Monitoring Report First Quarter 2011
- May 3, 2011 Pilot Test Work Plan or Draft Corrective Action Plan

Mr. Ian Robb Mr. Eric Uranga RO0002908 November 15, 2010 Page 2

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at jerry.wickham@acgov.org.

Sincerely,

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297 Senior Hazardous Materials Specialist

Attachment: Responsible Party(ies) Legal Requirements/Obligations

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Cheryl Dizon, QIC 80201, Zone 7 Water Agency, 100 North Canyons Parkway Livermore, CA 94551 (Sent via E-mail to: <u>cdizon@zone7water.com</u>)

Danielle Stefani, Livermore-Pleasanton Fire Department, 3560 Nevada Street Pleasanton, CA 94566 (Sent via E-mail to: <u>DStefani@lpfire.org</u>)

John Rigter, Livermore-Pleasanton Fire Department, 3560 Nevada Street Pleasanton, CA 94566(Sent via E-mail to: jrigter@lpfire.org)

Brandon Wilken, Conestoga-Rovers & Associates, 5900 Hollis Street, Suite A Emeryville, CA 94608 (Sent via E-mail to: <u>BWilken@craworld.com</u>)

Donna Drogos, ACEH (Sent via E-mail to: <u>donna.drogos@acgov.org</u>) Jerry Wickham, ACEH (Sent via E-mail to: <u>jerry.wickham@acgov.org</u>)

Geotracker, File

Attachment 1 <u>Responsible Party(ies) Legal Requirements/Obligations</u>

REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and <u>other</u> data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please visit the SWRCB website for more information on these requirements (<u>http://www.swrcb.ca.gov/ust/electronic_submittal/report_rqmts.shtml</u>.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup	REVISION DATE: July 20, 2010						
Oversight Programs	ISSUE DATE: July 5, 2005						
(LOP and SLIC)	PREVIOUS REVISIONS: October 31, 2005; December 16, 2005; March 27, 2009; July 8, 2010						
SECTION: Miscellaneous Administrative Topics & Procedures	SUBJECT: Electronic Report Upload (ftp) Instructions						

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Please <u>do not</u> submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection.
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- <u>Do not</u> password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password.
 Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i. Send an e-mail to <u>dehloptoxic@acgov.org</u>
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to <u>http://alcoftp1.acgov.org</u>
 - i. Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to <u>dehloptoxic@acgov.org</u> notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

APPENDIX B

SITE HISTORY

PREVIOUS ENVIRONMENTAL INVESTIGATION AND REMEDIATION

FORMER TEXACO SERVICE STATION 30-7233

September 2003 Investigation

The City of Livermore Engineering Division, as part of a redevelopment plan, retained Fugro West, Inc. (Fugro) to investigate soil and groundwater conditions beneath Mills Square Park to evaluate the potential presence of petroleum hydrocarbons resulting from the historic use of the site as a service station. Fugro advanced three soil borings onsite. Details can be found in Fugro's January 6, 2004 *Soil and Groundwater Investigation Report*.

September 2005 UST Removal

In September 2005, an orphan underground storage tank (UST) was encountered beneath the sidewalk on the southwest corner of the site. At the direction of the Livermore-Pleasanton Fire Department the UST was removed, soil samples collected, and the excavated soil was backfilled into the UST pit. Chevron was not involved with the tank removal and was contacted later by ACEH to investigate whether any other USTs remained in Mills Square Park. Additional information is available in Consolidated Engineering Laboratories' October 4, 2005, *Environmental Sampling, Testing and Evaluation of Soil* report.

August 2006 Geophysical Investigation

Cambria Environmental Technology, Inc. (Cambria), now Conestoga-Rovers & Associates (CRA), contracted NORCAL Geophysical Consultants, Inc. to determine if any USTs still remained in place. Two suspected tanks were identified in the southwest corner of the park, measuring approximately 5 by 7 feet and located approximately 3 fbg. More information is available in Cambria's December 22, 2006 *Subsurface Investigation Report*.

September and October 2006 Site Investigation

Cambria observed Woodward Drilling Company, Inc. advance borings SB1 through SB5 in the vicinity of the former dispenser islands and suspected USTs. More information is available in Cambria's December 22, 2006 *Subsurface Investigation Report*.

June 2007 Tank Removal

On June 20, 2007, CRA observed Gettler-Ryan Inc. remove two 750 gallon single-wall steel gasoline USTs (Tank 1 and Tank 2) and approximately 27 feet of associated product piping. CRA collected compliance soil samples from beneath the ends and middle of both Tank 1 and Tank 2 and from below the pipes protruding from the northwestern wall of the tank pit. More information is available in CRA's August 17, 2007 *Underground Storage Tank Removal and Compliance Sampling Report*.

January and February 2008 Site Investigation

CRA observed Gregg Drilling & Testing, Inc. (Gregg), RSI Drilling, and Vironex Environmental Field Services advance soil borings CPT1, CPT2 and SB6 through SB9, shallow soil borings SSB1 through SSB11, and install vapor probes VP-1 through VP 3, both on and offsite. More information is available in CRA's March 27, 2008 *Subsurface Investigation Report and Well Installation Workplan*.

October and November 2008 Site Investigation

CRA observed Gregg Drilling advance soil borings CPT3 through CPT5 and SB10 through SB12, both on and offsite. CRA re-sampled soil vapor probe VP1 to confirm previous soil vapor data. Additional information is available in CRA's March 5, 2009 *Subsurface Investigation Report*.

March and April 2010 Monitoring Well Installation:

On March 29 through April 12, 2010 CRA observed Gregg Drilling install deep wells MW-1 through MW-6 and shallow wells MW-7 through MW-9. Additional information is available in CRA's June 3, 2010 *Well Installation Report*.

APPENDIX C

HISTORICAL BORING AND WELL LOGS

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

ML

40

BORING / WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME MW-1	
JOB/SITE NAME	Chevron #30-7233	DRILLING STARTED29-Mar-10	
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED 07-Apr-10	
PROJECT NUMBER	312264	WELL DEVELOPMENT DATE (YIELD)	NA
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELEVATION	491.19 ft above msl
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATION	490.89 ft above msl
BORING DIAMETER	8-inch	SCREENED INTERVALS	54 to 59 fbg
LOGGED BY	Belew Yifru	DEPTH TO WATER (First Encountered	1) 29.00 fbg (07-Apr-10) 🖳
REVIEWED BY	B. Wilken, PG# 7564	DEPTH TO WATER (Static)	NA <u>Y</u>

REMARKS Utility cleared with an air-knife-assisted vacuum truck to 8 feet below grade CONTACT DEPTH (fbg) SAMPLE ID PID (ppm) BLOW COUNTS U.S.C.S. GRAPHIC LOG EXTENT DEPTH (fbg) LITHOLOGIC DESCRIPTION WELL DIAGRAM Flush-grade 12" well box ASPHALT 0.5 GRAVEL with sand: Brown; moist; non-plastic; gravel fine to coarse with cobbles up to 6 inches long. GW 0 MW-1- S-5 8.0 Silty GRAVEL with sand: Brown; moist; non-plastic. Numerous cobbles up to 6 inches long. 2 MW-1- S-9.5 0 GM 13.5 Sandy SILT with gravet Brown; moist; low plasticity. MW-1-S-14.5 3 ML 19.5 2 MW-1-S-19.5 SILT: Brown; moist; medium plasticity. 20 ML 23.5 Sandy SILT with gravel Brown; wet; non-plastic. 2 MW-1-S-24.5 25 Portland Type I/II ML 28.5 Silty GRAVEL with sand Grey; wet; non-plastic. V 324 MW-1-S-29.5 30 GM 33.5 SILT: Brown; wet; low plasticity. MW-1-S-34.5 17

39.5

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

Chevron Environmental Management Company BORING/WELL NAME

BORING / WELL LOG

CLIENT NAME JOB/SITE NAME LOCATION

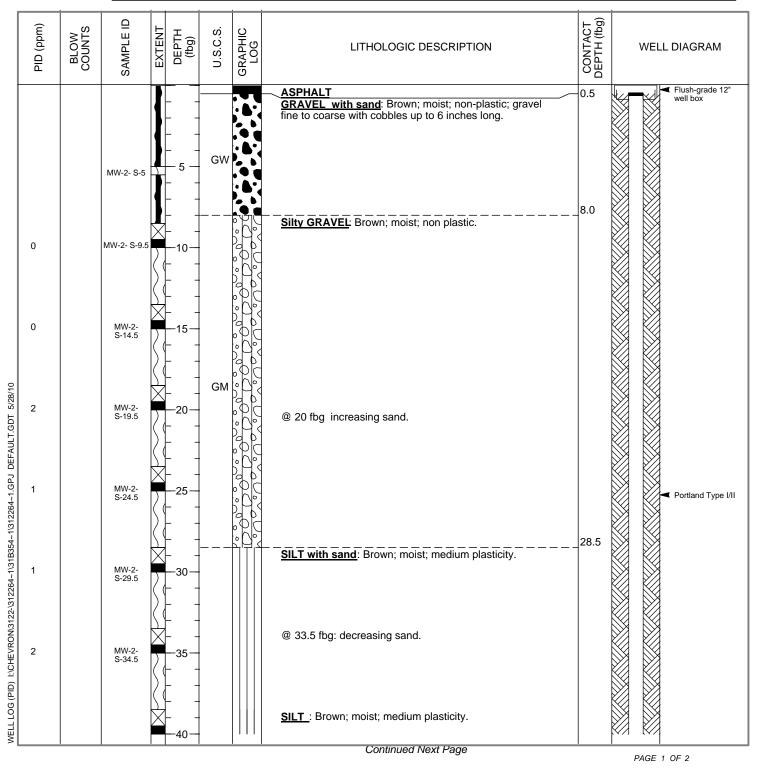
Chevron #30-7233 2259 First Street, Livermore, California DRILLING STARTED

MW-1 29-Mar-10

DRILLING COMPLETED 07-Apr-10

Continued from Previous Page

	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WEL	L DIAGRAM
	2 32		MW-1- S-39.5 MW-1- S-44.5					<u>GRAVEL with sand</u> : Grey; wet; non-plastic. <u>SILT</u> : Brown; wet; medium plasticity. Sand increases with depth.	43.5		
	2		MW-1- S-49.5	\mathbf{X}	50 50	ML			E2 E		 Bentonite Seal
	6		MW-1- S-54.5	$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	 55 	 GP		GRAVEL with sand Brown; wet; non-plastic.	53.5		 Monterey Sand #2/12 2"-diam., 0.010" Slotted Schedule 40 PVC
	5		MW-1- S-59.5	Ì	60	SP		<u>UNITO</u> . Diewil, wei, hen plastie. Obarse sand.	60.0		Bottom of Boring @ 60 fbg
WELL LOG (PID) I:\CHEVRON\3122-\312264~1\31B354~1\312264~1\312264~1\5284~1\57264~1\572											



Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

BORING / WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME	MW-2		
JOB/SITE NAME	Chevron #30-7233	DRILLING STARTED	29-Mar-10		
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED	05-Apr-10		
PROJECT NUMBER	312264	WELL DEVELOPMENT D	ATE (YIELD)	NA	
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELE	VATION _	490.08 ft above msl	
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVA		489.43 ft above msl	
BORING DIAMETER	8-inch	SCREENED INTERVALS	_	54 to 59 fbg	
LOGGED BY	Belew Yifru	DEPTH TO WATER (First	Encountered	44.00 fbg (05-Apr-10)	$\underline{\nabla}$
REVIEWED BY	B. Wilken, PG# 7564	DEPTH TO WATER (Stati	c)	NA	<u> </u>
REMARKS	Utility cleared with an air-knife-assisted vacuum tr	uck to 8 feet below grade			

Utility cleared with an air-knife-assisted vacuum truck to 8 feet below grade

BORING / WELL LOG

CLIENT NAME JOB/SITE NAME LOCATION

WELL LOG (PID) I:/CHEVRON/3122-/312264-1/31B354-1/312264-1.GPJ DEFAULT.GDT 5/28/10

Chevron Environmental Management Company Chevron #30-7233

2259 First Street, Livermore, California

MW-2 **BORING/WELL NAME DRILLING STARTED** DRILLING COMPLETED 05-Apr-10

29-Mar-10

Continued from Previous Page

CONTACT DEPTH (fbg) SAMPLE ID PID (ppm) BLOW COUNTS EXTENT U.S.C.S. GRAPHIC LOG DEPTH (fbg) LITHOLOGIC DESCRIPTION WELL DIAGRAM MW-2-S-39.5 2 MI Ţ @44 fbg: increasing sand; wet. MW-2-S-44.5 0 5 ML MW-2-S-49.5 2 Bentonite Seal 53.5 Sandy GRAVEL: Brown; wet; non-plastic. \circ MW-2-S-54.5 2 55 Monterey Sand #2/12 2"-diam., 0.010" GP Slotted Schedule 40 PVC 300 \circ 60.0 MW-2-S-59.5 1 60 Bottom of Boring @ 60 fbg PAGE 2 OF 2

BORING / WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME	/W-3		
JOB/SITE NAME	Chevron #30-7233	DRILLING STARTED 3	80-Mar-10		
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED)6-Apr-10		
PROJECT NUMBER	312264	WELL DEVELOPMENT DAT	E (YIELD)	NA	
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELEVA	TION _	490.63 ft above msl	
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATIO	DN	490.38 ft above msl	
BORING DIAMETER	8-inch	SCREENED INTERVALS		54 to 59 fbg	
LOGGED BY	Belew Yifru	DEPTH TO WATER (First E	ncountered	43.00 fbg (06-Apr-10)	Σ
REVIEWED BY	B. Wilken, PG# 7564	DEPTH TO WATER (Static)		NA	Ţ
REMARKS	Utility cleared with an air-knife-assisted vacuum tru	uck to 8 feet below grade			

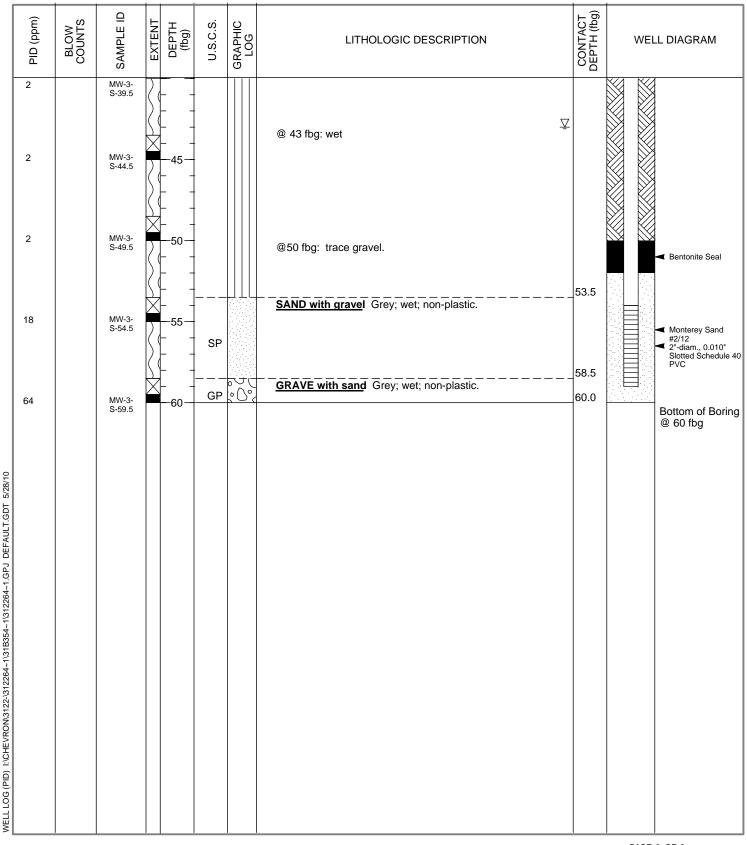
CONTACT DEPTH (fbg) SAMPLE ID BLOW COUNTS PID (ppm) U.S.C.S. EXTENT GRAPHIC LOG DEPTH (fbg) LITHOLOGIC DESCRIPTION WELL DIAGRAM Flush-grade 8" well box Top Soil 0.5 **<u>GRAVEL</u> with sand:** Brown; moist; fine to coarse sand; fine to coarse gravel; non-plastic. GW 0 MW-3- S-5 8.0 GRAVEL with sand: Brown; moist; non-plastic. 3 MW-3- S-9.5 10 GW 14.0 SILT: Brown; moist; medium plasticity; trace sand. MW-3-S-14.5 0 5 ML 18.5 WELL LOG (PID) I:\CHEVRON\3122-\312264~1\31B354~1\312264~1.GPJ DEFAULT.GDT 5/28/10 GRAVEL with silt and sand Brown; moist; non-plastic. 0° 4 MW-3-S-19.5 20 GP 00 23.5 SILT: Brown; moist; medium plasticity; trace sand. MW-3-S-24.5 1.4 Portland Type I/II MW-3-S-29.5 1 MW-3-S-34.5 2 ML 40

Continued Next Page

2259 First Street, Livermore, California

BORING / WELL LOG

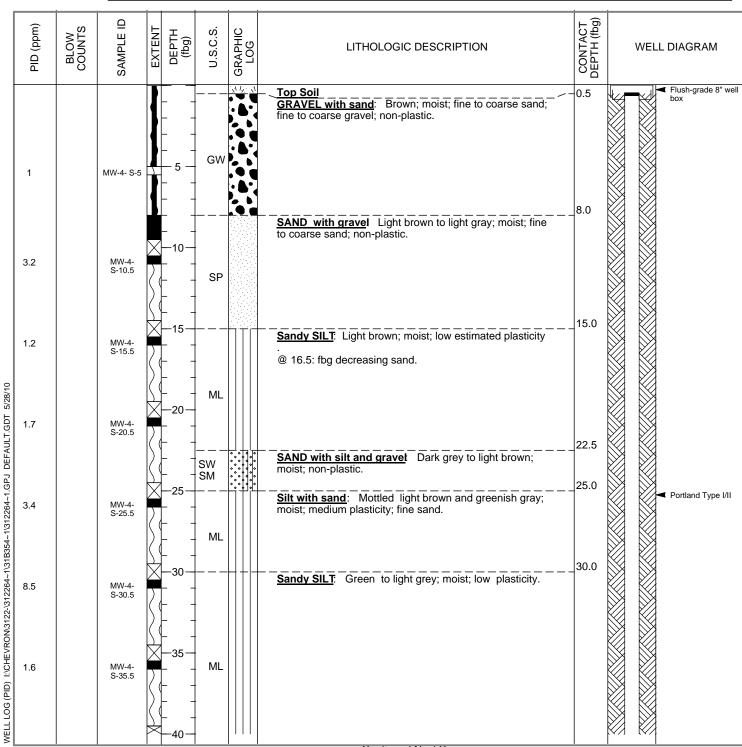
CLIENT NAME JOB/SITE NAME LOCATION


Chevron Environmental Management Company Chevron #30-7233

BORING/WELL NAME DRILLING STARTED

30-Mar-10

DRILLING COMPLETED 06-Apr-10


MW-3

BORING / WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME	MW-4		
JOB/SITE NAME	Chevron #30-7233	DRILLING STARTED	30-Mar-10		
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED	12-Apr-10		
PROJECT NUMBER	312264	WELL DEVELOPMENT D	ATE (YIELD)	NA	
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELE	VATION _	492.57 ft above msl	
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVAT		492.27 ft above msl	
BORING DIAMETER	8-inch	SCREENED INTERVALS	_	54 to 59 fbg	
LOGGED BY	Cortland Toczylowski	DEPTH TO WATER (First	Encountered	 41.00 fbg (12-Apr-10) 	$\overline{\Delta}$
REVIEWED BY	B. Wilken, PG# 7564	DEPTH TO WATER (Stati	c)	NA	Ţ
REMARKS	Utility cleared with an air-knife-assisted vacuum tru	uck to 8 feet below grade	-		

Continued Next Page

Chevron Environmental Management Company BORING/WELL NAME

BORING / WELL LOG

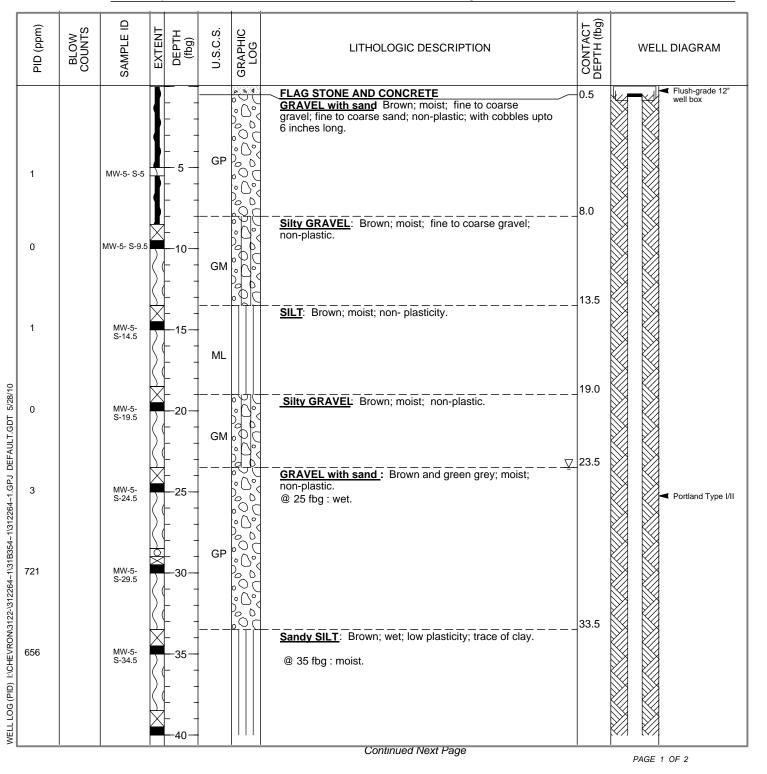
CLIENT NAME JOB/SITE NAME LOCATION

Chevron #30-7233 2259 First Street, Livermore, California DRILLING STARTED

D 30-Mar-10

DRILLING COMPLETED 12-Apr-10

MW-4


	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
	129		MW-4- S-40.5		 				41.0	
	19.1		MW-4- S-45.5		45 	ML				
	215		MW-4- S-50.5		50 			 @ 49 fbg: orange and light brown; motlling. <u>SAND</u>: Greenish gray to dark gray; wet; fine sand; 	_52.5	Bentonite Seal
	3.4		MW-4- S-55.5		 55 	SP _ SM		non-plastic. Silty SAND: Greenish gray to light gray; wet; fine sand; non-plastic. SAND with gravel: Greenish gray to light gray; wet; fine to coarse; non-plastic. @ 57.5 fbg: decreasing gravel; light brown.	55.0 55.5	 ✓ Monterey Sand #2/12 2"-diam., 0.010" Slotted Schedule 40 PVC
	3.6		MW-4- S-60.5		 60	SW 		@ 57.5 fbg: decreasing gravel; light brown. GRAVEL with sand: Brown; wet; non-plastic.	60.5 61.0	Bottom of Boring @ 60 fbg
01/82/9 105										
-1.6PJ DEFAULL										
-1/31B354~1/31Z264										
KUN/3122-1312204~										
WELL LOG (PID) I:\CHEVRON\3122-\312264~1\31B354~1\31Z264~1\GDI 5/28/10										
										PAGE 2 OF 2

BORING / WELL LOG

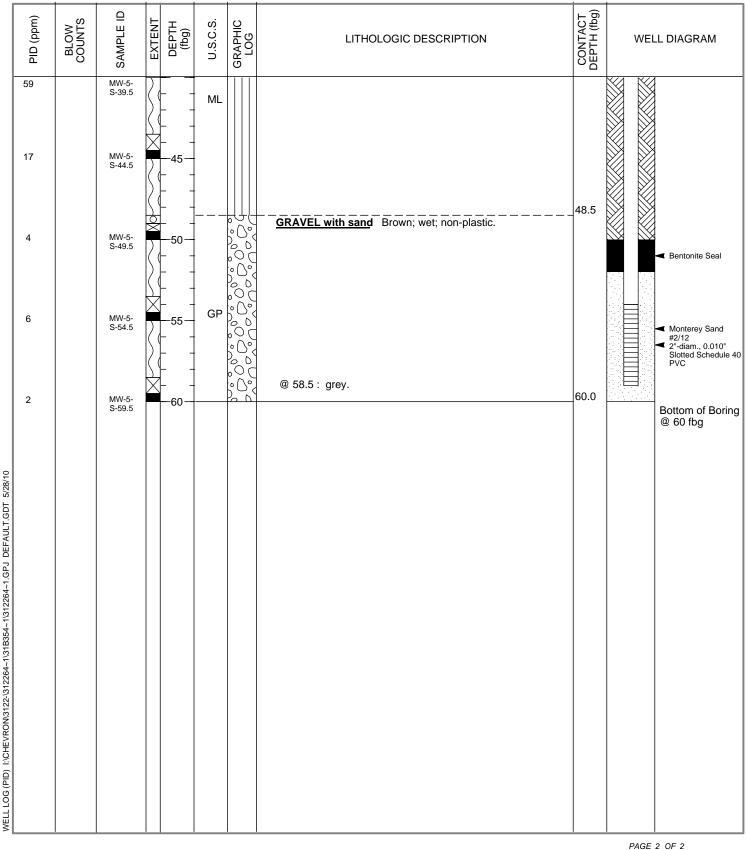
CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME	MW-5		
JOB/SITE NAME	Chevron #30-7233	DRILLING STARTED	31-Mar-10		
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED	08-Apr-10		
PROJECT NUMBER	312264	WELL DEVELOPMENT DA	ATE (YIELD)	NA	
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELE	ATION _	492.41 ft above msl	
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVAT		491.99 ft above msl	
BORING DIAMETER	8-inch	SCREENED INTERVALS		54 to 59 fbg	
LOGGED BY	Belew Yifru	DEPTH TO WATER (First	Encountered) 23.50 fbg (08-Apr-10)	Σ
REVIEWED BY	B. Wilken, PG# 7564	DEPTH TO WATER (Statio	:)	NA	Ţ
REMARKS	Utility cleared with an air-knife-assisted vacuum tr	uck to 8 feet below grade	-		

Utility cleared with an air-knife-assisted vacuum truck to 8 feet below grade

BORING / WELL LOG

CLIENT NAME JOB/SITE NAME LOCATION

Chevron Environmental Management Company Chevron #30-7233


BORING/WELL NAME DRILLING STARTED

31-Mar-10

DRILLING COMPLETED 08-Apr-10

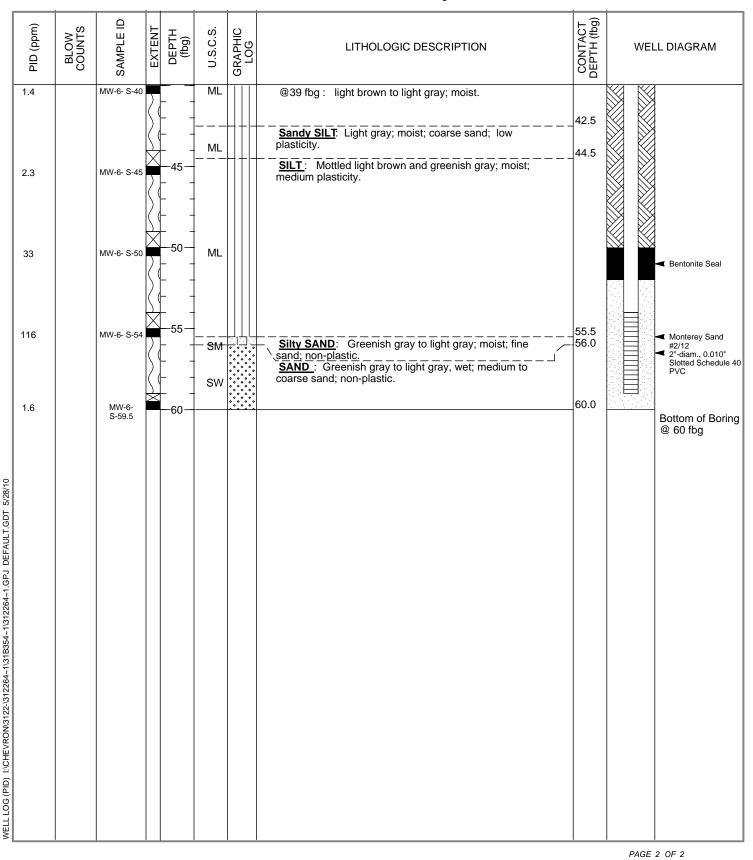
MW-5

BORING / WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME	MW-6		
JOB/SITE NAME	Chevron #30-7233	DRILLING STARTED	01-Apr-10		
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED	09-Apr-10		
PROJECT NUMBER	312264	WELL DEVELOPMENT D	ATE (YIELD)	NA	
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELE	VATION _	491.89 ft above msl	
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVAT		491.52 ft above msl	
BORING DIAMETER	8-inch	SCREENED INTERVALS	_	54 to 59 fbg	
LOGGED BY	Cortland Toczylowski	DEPTH TO WATER (First	Encountered	I) 37.50 fbg (09-Apr-10)	$\overline{\Delta}$
REVIEWED BY	B. Wilken, PG# 7564	DEPTH TO WATER (Stati	c)	NA	Ţ
REMARKS	Utility cleared with an air-knife-assisted vacuum tr	uck to 8 feet below grade			

Utility cleared with an air-knife-assisted vacuum truck to 8 feet below grade CONTACT DEPTH (fbg) SAMPLE ID PID (ppm) BLOW COUNTS GRAPHIC LOG EXTENT DEPTH (fbg) U.S.C.S. LITHOLOGIC DESCRIPTION WELL DIAGRAM Top Soil Flush-grade 8" well 0.5 box Silty GRAVEL with sand Light brown to light gray; \bigcirc moist; fine to coarse gravel; fine to coarse sand; non-plastic; cobbles up to 10 inches long. @ 2 fbg : wood and brick debris. \bigcirc D 4 MW-6- S-5 0 (GP Ο 6 Ó (@ 8 fbg : thin sandy silt lens; brown; moist; trace gravel. 0 D n 0 C 1.4 MW-6- S-10 000 D 12.5 Sandy SILT: Light brown; moist; low plasticity. ML MW-6- S-15 6.4 17.5 SAND with gravel Light grey; moist; fine to coarse WELL LOG (PID) I:/CHEVRON/3122-/312264-1/31B354-1/312264-1.GPJ DEFAULT.GDT 5/28/10 sand; non-plastic. 1.4 MW-6-S-19.5 20 SW 22.5 Sandy SILT: Light grey to greenish grey; moist; fine sand; low plasticity. 1.4 MW-6- S-25 Portland Type I/II 30 MW-6- S-30 ML 1.0 @34 fbg : light brown. MW-6- S-35 1.6 ____37.5 SILT with gravel: Light grey; wet; medium plasticity. 40

Continued Next Page


Chevron Environmental Management Company

BORING / WELL LOG

CLIENT NAME JOB/SITE NAME LOCATION

Chevron #30-7233 2259 First Street, Livermore, California **BORING/WELL NAME** MW-6 **DRILLING STARTED** DRILLING COMPLETED ____09-Apr-10

01-Apr-10

WELL LOG (PID) I:\CHEVRON\3122-\312264~1\31B354~1\312264~1.GPJ DEFAULT.GDT 5/28/10

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

BORING / WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME	/W-7		
JOB/SITE NAME	Chevron #30-7233	DRILLING STARTED 3	1-Mar-10		
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED 0	8-Apr-10		
PROJECT NUMBER	312264	WELL DEVELOPMENT DAT	E (YIELD)	NA	
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELEVA	TION _	492.69 ft above msl	
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATIO	N _	492.29 ft above msl	
BORING DIAMETER	8-inch	SCREENED INTERVALS		28 to 33 fbg	
LOGGED BY	Belew Yifru	DEPTH TO WATER (First Er	ncountered) NA	$\overline{\Delta}$
REVIEWED BY	B. Wilken, PG# 7564	DEPTH TO WATER (Static)		NA	Ţ
REMARKS	Utility cleared with an air-knife-assisted vacuum tru	uck to 8 feet below grade			

PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
					GP		TOP SOIL <u>Sandy GRAVEI</u> : Brown; moist; fine to coarse gravel; non-plastic; with cobbles u pto 5 inches long.	-0.5	Flush-grade 8" well box
							Not logged from 8 to 25 fbg due to adequate nearby data. Refer to MW-5 log.	25.0	Portland Type I/II
896 809				25 30 	SM		Silty SAND Olive grey; moist; coarse sand non-plastic.	_32.0	 Bentonite Seal Monterey Sand #2/12 2"-diam., 0.010" Slotted Schedule 40 PVC
234 850				 35 	ML			40.0	Bentonite Seal Portland Type I/II
				40			@ 40 fbg : significant motIling.		Bottom of Boring @ 40 fbg

BORING / WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAMEMW-8	
JOB/SITE NAME	Chevron #30-7233	DRILLING STARTED29-Ma	ır-10
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED 07-Ap	r-10
PROJECT NUMBER	312264	WELL DEVELOPMENT DATE (YI	ELD) NA
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELEVATION	491.30 ft above msl
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATION	490.86 ft above msl
BORING DIAMETER	8-inch	SCREENED INTERVALS	34 to 39 fbg
LOGGED BY	Belew Yifru	DEPTH TO WATER (First Encou	ntered) NA 💆
REVIEWED BY	B. Wilken, PG# 7564	DEPTH TO WATER (Static)	NA
REMARKS	Utility cleared with an air-knife-assisted vacuum tru	uck to 8 feet below grade	

PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
							FOR LITHOLOGICAL DESCRIPTION PLEASE REFERE D BORING LOG OF MW-1 WHICH IS 5 FEET FROM THIS WELL		Portland Type I/II
				 					Bentonite Seal
				35 					Monterey Sand #2/12 2"-diam., 0.010" Slotted Schedule 40 PVC
				40					Bottom of Boring @ 40 fbg

WELL LOG (PID) I:\CHEVRON\3122-\312264~1\31B354~1\312264~1.GPJ DEFAULT.GDT 5/28/10

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

BORING / WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME MW-9	
JOB/SITE NAME	Chevron #30-7233	DRILLING STARTED 01-Apr-10	
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED 09-Apr-10	
PROJECT NUMBER	312264	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELEVATION	491.98 ft above msl
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATION	498.64 ft above msl
BORING DIAMETER	8-inch	SCREENED INTERVALS	35 to 40 fbg
LOGGED BY	Cortland Toczylowski	DEPTH TO WATER (First Encountered	ed) NA 🕎
REVIEWED BY	B. Wilken, PG# 7564	DEPTH TO WATER (Static)	NA
REMARKS	Utility cleared with an air-knife-assisted vacuum tru	uck to 8 feet below grade	

PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
							FOR LITHOLOGICAL DESCRIPTION PLEASE REFERE TO BORING LOG OF MW-6 WHICH IS 5 FEET FROM THIS WELL		Portland Type I/II Portland Type I/II Bentonite Seal Monterey Sand #2/12 2"-diam, 0.010" Stoted Schedule 40 PVC Bottom of Boring @ 40 fbg

PAGE 1 OF 1

WELL LOG (PID) 1:/CHEVRON/307233~1/BORING~1/307233 BORING LOGS.GPJ DEFAULT.GDT 5/15/08

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

BORING/WELL LOG

CLIENT NAME Chevron Environmental Management Company JOB/SITE NAME 30-7233 LOCATION 2259 First Street, Livermore, California PROJECT NUMBER 312264 DRILLER Woodward Drilling Co., C57 #710079 DRILLING METHOD Hydraulic push BORING DIAMETER 2 3/8" LOGGED BY J. Williams and S. McNaboe REVIEWED BY R. Foss, PG #7445 REMARKS Cleared by air-knife-assisted vaccum truck to 8 fe (u MONO WOND Wo U H MARKS Cleared by air-knife-assisted vaccum truck to 8 fe (u MONO U H MARKS U MONO Y MONO Y MARKS U MARKS U MARKS U MARKS U MARKS U							re, California 7 #710079 De ed vaccum truck to 8 fee	DRILLING STARTED DRILLING COMPLETED_ WELL DEVELOPMENT DA GROUND SURFACE ELE TOP OF CASING ELEVAT SCREENED INTERVAL DEPTH TO WATER (First DEPTH TO WATER (Stati	23-Oct-06 26-Oct-06 ATE (YIELD) VATION TION NA NA Encountered	Oct-06 Oct-06 (YIELD) NA ON Not Surveyed NA NA			
ඩ 0 118	COL	SB-1-10 SB-1-15		 	SM GM MH		Silty SAND with gra silt, 10% gravel; non- Silty GRAVEL : Br non-plastic; high esti Clayey SILT : Brow moderate estimated	vel : Brown; dry; 70% sanc plastic, high estimated perm	silt; ow to neability.	12.0 14.0			
570 286 947		SB-1-22 SB-1-26 SB-1-32			CL GM ML SM		Silty GRAVEL : Gr 10% sand; non-plast permeability. SILT : Gray; moist plasticity; low estimated Silty SAND : Brown stimated plasticity; r SILT : Light Brown	plasticity; low estimated perr ay; moist; 70% gravel, 20% ic; moderate to high estimate ; 100% silt; moderate estima	neability. silt, ed ted	25.0 31.5 33.5		Portland Type I/II	

Continued Next Page

BORING/WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME	SB-1
JOB/SITE NAME	30-7233	DRILLING STARTED	23-Oct-06
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED	26-Oct-06

WELL LOG (PID) I:/CHEVRON\307233~1\BORING~1\307233 BORINGLOGS.GPJ DEFAULT.GDT 5/15/08

							Continued from Previous Page			
PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
778 1133		SB-1-35.5 SB-1-39.5		 	ML			40.0		
										Bottom of Boring @ 40 ft

WELL LOG (PID) 1:\CHEVRON\307233~1\BORING~1\307233 BORING LOGS.GPJ DEFAULT.GDT 5/15/08

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

BORING/WELL LOG

CLIENT JOB/SIT LOCATI PROJEC DRILLE DRILLE DRILLIN BORING LOGGEI REVIEW REMAR	E NAM ON CT NUM R IG MET G DIAMI D BY /ED BY KS	HOD	30-7 2259 3122 Woo Hydr 2 3/8 J. W R. Fe Clea	233) First S 264 dward I aulic pu aulic pu aulic pu s s s s c ed by a	itreet, L Drilling Jsh #7445 air-knife	ivermo	Anagement Company pre, California 57 #710079 	DRILLING STARTED DRILLING COMPLETED WELL DEVELOPMENT D GROUND SURFACE ELE TOP OF CASING ELEVA SCREENED INTERVAL DEPTH TO WATER (First DEPTH TO WATER (Stati	23-Oct-06 23-Oct-06 ATE (YIELD) VATION TION NA NA : Encountered	<u>Not Si</u> d) NA NA		
PID (ppm)	BLOW COUNTS	SAMPLE ID) EXTENT	T DEPTH (ft bgs)	N.S.C.S.	GRAPHIC LOG		DLOGIC DESCRIPTION	l; 20%	CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
										3.0		Bottom of Boring @ 3 ft

BORING/WELL LOG

CLIEN	IT NAME	C	hev	ron En	vironm	ental N	lanagement Company	BORING/WELL NAME	SB-3			
JOB/S	ITE NAM	E <u>3</u>	0-72	233				DRILLING STARTED				
LOCA	TION	2	259	First S	treet, L	ivermo	ore, California	DRILLING COMPLETED	23-Oct-06			
PROJ	ECT NUM	BER <u>3</u>	122	64				WELL DEVELOPMENT	DATE (YIELD)	NA		
DRILL	.ER	V	Vood	dward [Drilling	Co., C	57 #710079	GROUND SURFACE ELE	EVATION _	Not S	urveyed	
DRILL	ING MET	HOD H	lydra	aulic pu	ish			TOP OF CASING ELEVA	TION NA			
BORIN			3/8					SCREENED INTERVAL				
	ED BY			lliams				DEPTH TO WATER (Firs		d) NA	A ▼	
REVIE	WED BY	R	l. Fo	oss, PG	#7445	5		DEPTH TO WATER (Stat	tic)	NA	<u> </u>	
REMA	RKS _	C	lear	red by a	air-knif	e-assis	ted vaccum truck to 8 fee	et below grade				
		0								(st		
PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHC	DLOGIC DESCRIPTION		CONTACT DEPTH (ft bgs)	WELL DIAGRAM	
0 0 189 189 17773 1802 1905 1905 1906 1907 1907 1907 1907 1907 1907 1907 1907		SB3-5 SB3-10 SB3-15 SB3-21 SB3-25 SB3-30			SM		20% silt, 10% gravel permeability. Clayey SILT : Bro sand; high estimated permeability. @ 19 fbg - change in @ 21 fbg - color cha composition to 50% low estimated plastic @ 23.5 fbg - color ch to 70% silt, 30% clay @ 28.5 fbg - color ch	avel : Brown; damp; 70% s ; non-plastic; medium estim ; non-plastic; medium estim ; non-plastic; medium estim ; non-plastic; 75% silt, 20% cla plasticity; low estimated h composition to 70% silt, 30 nge to gray/brown; change i silt, 45% sand, 5% gravel; c silt, 45% sand, 5% gravel; c silt, 45% sand, 5% gravel; c r, change to gray; change in con ; change to gray; change in con ; change to brown with mottled phange to brown with mottled phange to brown with mottled phange to brown with mottled	ated ay, 5% of clay. of clay.	14.0	Portland Type I/II Cement	
3				-35-	[Co	ontinued Next Page		1	PAGE 1 OF	

BORING/WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME	SB-3
JOB/SITE NAME	30-7233	DRILLING STARTED	23-Oct-06
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED	23-Oct-06
	Questioned for	m Drovieus Dege	

WELL LOG (PID) 1:/CHEVRON/307233~1/BORING~1/307233 BORING LOGS.GPJ DEFAULT.GDT 5/15/08

Continued from Previous Page	

PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
120 402		SB3-35 SB3-39.5						40.0		
										Bottom of Boring @ 40 ft
										PAGE 2 OF 2

WELL LOG (PID) 1:\CHEVRON\307233~1\BORING~1\307233 BORING LOGS.GPJ DEFAULT.GDT 5/15/08

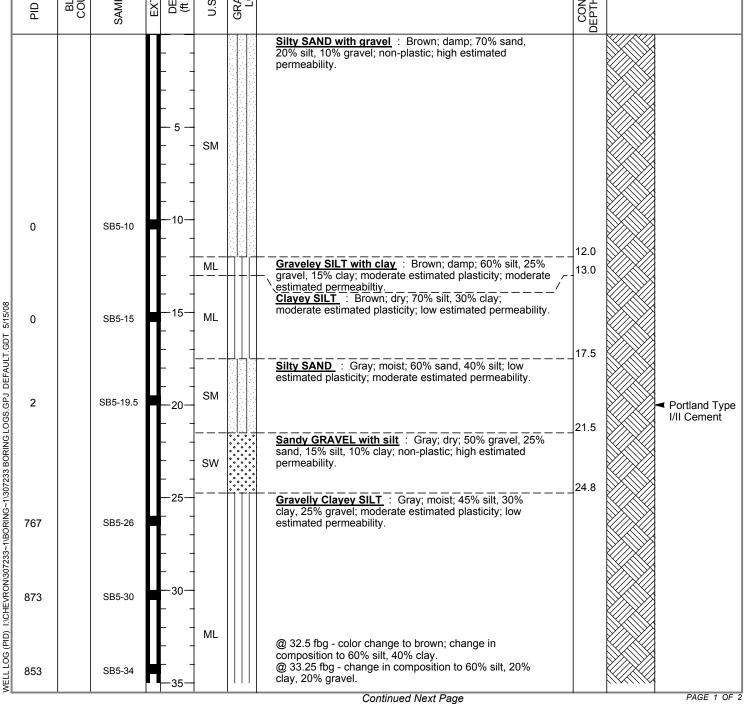
Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

BORING/WELL LOG

CLIENT	NAME		Che	vron Er	nvironm	ental N	lanagement Company	BORING/WELL NAME	SB-4			
JOB/SIT	E NAMI	E	30-7	233				DRILLING STARTED	11-Sep-06			
LOCATI			2259	9 First S	Street, L	ivermo	ore, California	DRILLING COMPLETED				
PROJEC	CT NUM		3122					WELL DEVELOPMENT DA	TE (YIELD)			
DRILLE	R		Woo	dward	Drilling	<u>Co., C</u>	57 #710079	GROUND SURFACE ELEV	ATION _	Not S	urveyed	
DRILLIN	G METI	HOD	Hyd	raulic p	ush			TOP OF CASING ELEVATI	ON NA			
BORING			2 3/8					SCREENED INTERVAL	NA			
LOGGEI	DBY _			lliams				DEPTH TO WATER (First E	Encountered	d) NA		$\underline{\nabla}$
REVIEW	ED BY		R. F	oss, PO	G #7445	5		DEPTH TO WATER (Static))	NA	۱.	Ţ
REMAR	KS _		Clea	red by	air-knife	e-assis	ted vaccum truck to 8 fee	et below grade				
		0								(st		
PID (ppm)	BLOW COUNTS	SAMPLE ID	FXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG		DLOGIC DESCRIPTION		CONTACT DEPTH (ft bgs)	WELL DIA	GRAM
0 347		SB4-10 SB4-15		- - - - - - - - - - - - - - - - - - -	GW		20% clay, 10% grave permeability. (@ 11.5 fbg - color ch to 75% sand, 15% sil <u>Gravely SAND</u> : Br 15% silt, 10% clay; n permeability. Clayey SILT : Brow	ange to gray; change in comp t, 5% clay, 5% gravel. Town; damp; 55% sand, 20% g on-plastic; medium to high es vn; moist; 60% silt, 40% clay; ow estimated permeability.	position gravel, timated	.12.0		
9		SB4-20		20- - · · - ·	 		 35% silt, 20% clay; m stimated permeabili 	<u>v</u> : Gray/brown; moist; 45% s oderate estimated plasticity; l ty. n; moist; 60% clay, 40% silt; h	low	22.0 23.0		tland Type Cement
76		SB4-25		25 - -	-			ow estimated permeability.				
825		SB4-27.5	5	-	+							
50		SB4-30		30 - - 			@ 33 fbg - color char 50% clay, 35% silt, 1	nge to gray; change in compo 5% sand.	sition to			

Continued Next Page

BORING/WELL LOG

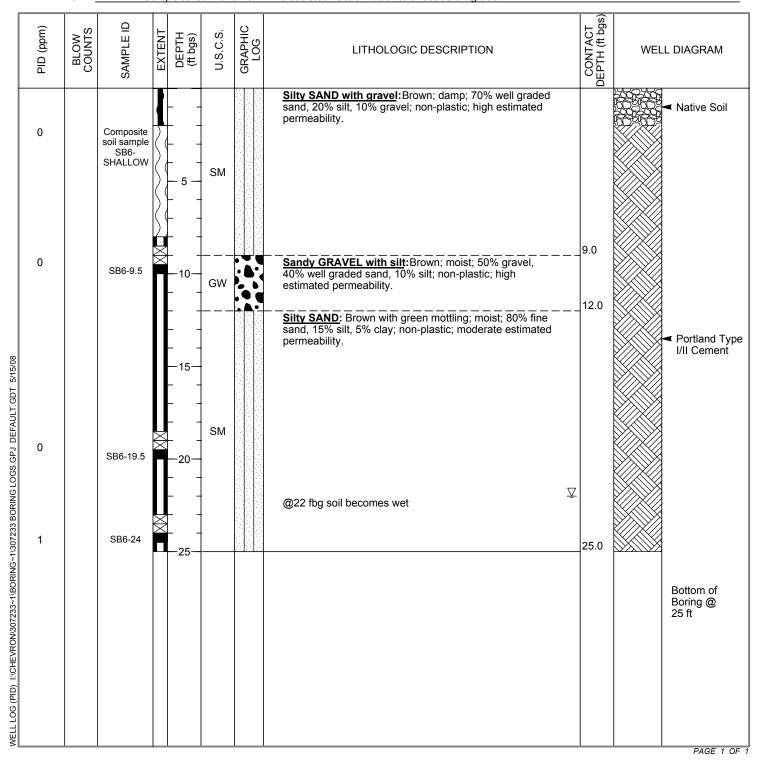

CLIENT NAME _	Chevron Environmental Management Company 30-7233	BORING/WELL NAME _	SB-4 11-Sep-06
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED	
	Continued fro	m Previous Page	

	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
	211 55		SB4-35 SB4-39.5		 	•			40.0		
											Bottom of Boring @ 40 ft
DEFAULT.GDT 5/15/08											
WELL LOG (PID) 1:/CHEVRON/307233-1/BORING~1/307233 BORING LOGS.GPJ DEFAULT.GDT 5/15/08											
VRON\307233~1\BORING~1\;											
WELL LOG (PID) I:\CHE											PAGE 2 OF 2

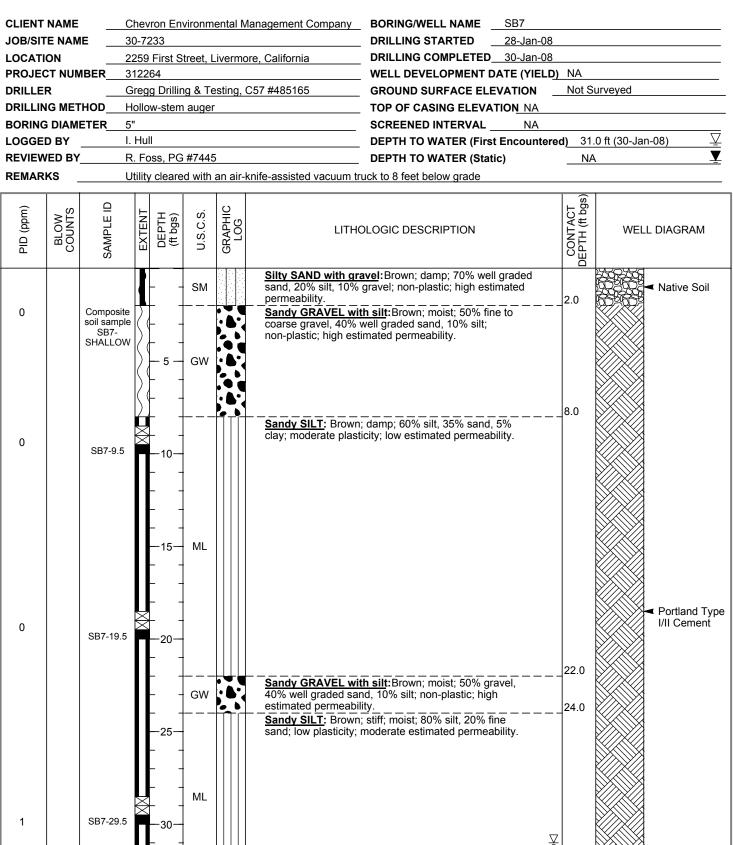
BORING/WELL LOG

CLIENT	NAME		Chev	ron Env	vironm	ental M	lanagement Company	BORING/WELL NAME	SB-5			
JOB/SIT	TE NAME		30-72	33				DRILLING STARTED	23-Oct-06			
LOCATI	ION		2259	First S	treet, l	ivermo	ore, California	DRILLING COMPLETED_	26-Oct-06			
PROJE	СТ NUMB	BER	31226	64				WELL DEVELOPMENT DATE (YIELD) NA				
DRILLER Woodward Drilling Co., C57 #710079 GROUND SURFACE ELEVATION								VATION	Not Su	irveyed		
DRILLING METHOD Hydraulic push TOP OF CASING ELEVATION								TION NA				
BORING DIAMETER 2 3/8" SCREENED INTERVAL							SCREENED INTERVAL	NA				
LOGGED BY			J. Wil	liams a	ind S.	McNab	oe	DEPTH TO WATER (First	Encountered)) NA	$\overline{\Delta}$	
REVIEW	VED BY		R. Foss, PG #7445					DEPTH TO WATER (Stati	c)	NA	Ţ	
REMAR	KS		Clear	ed by a	air-knif	e-assis	ted vaccum truck to 8 fee	t below grade				
PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHC	LOGIC DESCRIPTION		CONTACT EPTH (ft bgs)	WELL DIAGRAM	

BORING/WELL LOG


CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME	SB-5
JOB/SITE NAME	30-7233	DRILLING STARTED	23-Oct-06
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED	26-Oct-06
=	· · · · ·		

	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
	1129		SB5-39.5		 			@ 36 fbg - change in composition to 60% silt, 40% clay.	40.0		
											Bottom of Boring @ 40 ft
5/15/08											
WELL LOG (PID) I:\CHEVRON\307233~1\BORING~1\307233 BORING LOGS.GPJ DEFAULT.GDT 5/15/08											
ING~1\307233 BORING L											
HEVRON\307233~1\BOR											
WELL LOG (PID) I:\C											PAGE 2 OF 2


BORING/WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME SB6
JOB/SITE NAME	30-7233	DRILLING STARTED 28-Jan-08
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED 30-Jan-08
PROJECT NUMBER_	312264	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATION NA
BORING DIAMETER	5"	SCREENED INTERVAL NA
LOGGED BY	I. Hull	DEPTH TO WATER (First Encountered) 22.0 ft (30-Jan-08)
REVIEWED BY	R. Foss, PG #7445	DEPTH TO WATER (Static) NA
REMARKS	Utility cleared with an air-knife-assisted vacuum tr	ruck to 8 feet below grade

BORING/WELL LOG

0

SB7-34.5

Silty SAND: Grey; wet; 80% coarse sand, 20% silt;

@34 fbg sand becomes well graded, change in

non-plastic; high estimated permeability.

@31 fbg soil becomes wet

SM

35

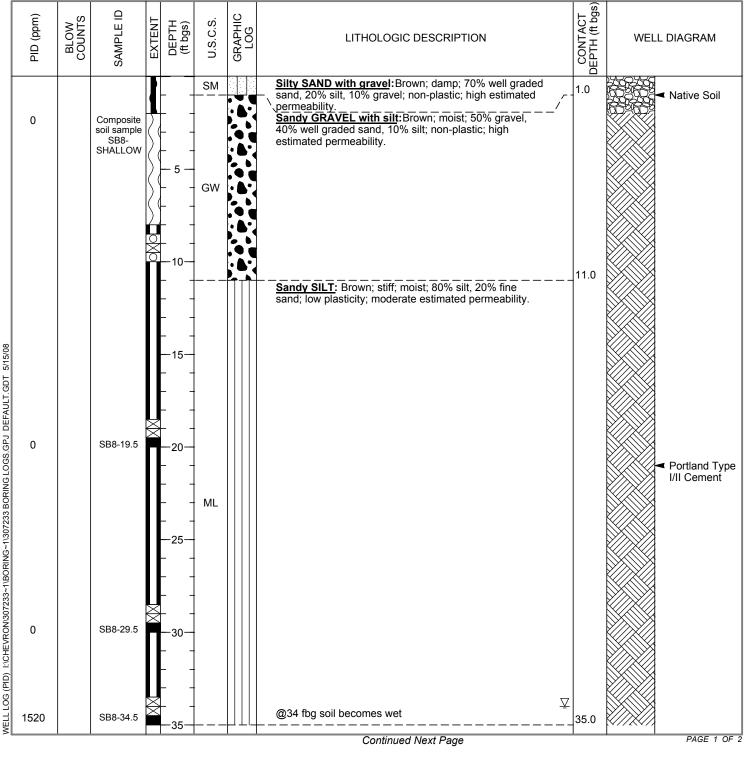
33.0

35.0

BORING/WELL LOG

CLIENT NAME Chevron Environmental Management Company BORING/WELL NAME JOB/SITE NAME 30-7233 DRILLING STARTED 2259 First Street, Livermore, California DRILLING COMPLETED 30-Jan-08 LOCATION

SB7


28-Jan-08

	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WELL DIAGRAM
/15/08	I) OIA	BTC CON	SAMP	EXTI	DEF (ft b	U.S.	GRAF	composition: 60% sand, 30% silt, 10% gravel.	CONT	WELL DIAGRAM Bottom of Boring @ 35 ft
WELL LOG (PID) 1:\CHEVRON\307233~1\BORING~1\307233 BORING LOGS.GPJ DEFAULT.GDT 5/15/08										

BORING/WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME	SB8
JOB/SITE NAME	30-7233	DRILLING STARTED	28-Jan-08
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED	31-Jan-08
PROJECT NUMBER	312264	WELL DEVELOPMENT DA	ATE (YIELD) NA
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELE	VATION Not Surveyed
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVAT	ION NA
BORING DIAMETER	5"	SCREENED INTERVAL	NA
LOGGED BY	I. Hull	DEPTH TO WATER (First	Encountered) 34.0 ft (31-Jan-08)
REVIEWED BY	R. Foss, PG #7445	DEPTH TO WATER (Statio	c) <u>NA </u>
REMARKS	Utility cleared with an air-knife-assisted vacuum tru	ick to 8 feet below grade	

BORING/WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL N
JOB/SITE NAME	30-7233	DRILLING START
LOCATION	2259 First Street, Livermore, California	DRILLING COMP

IAME SB8

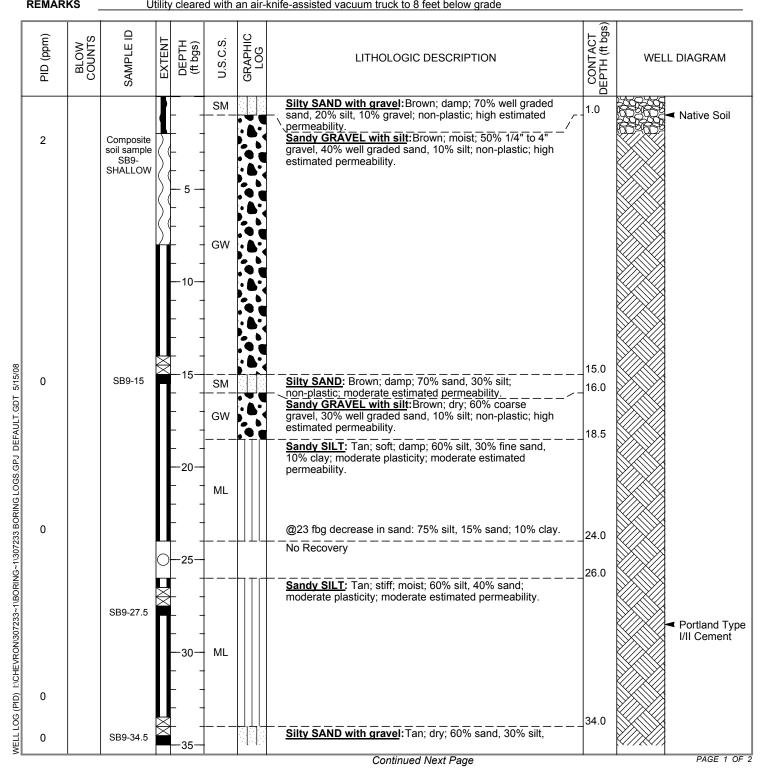
TED

an-08

1	2

COMPLETED	31-Ja

28-Jan-08


-			
ED	31	-Ja	n-C

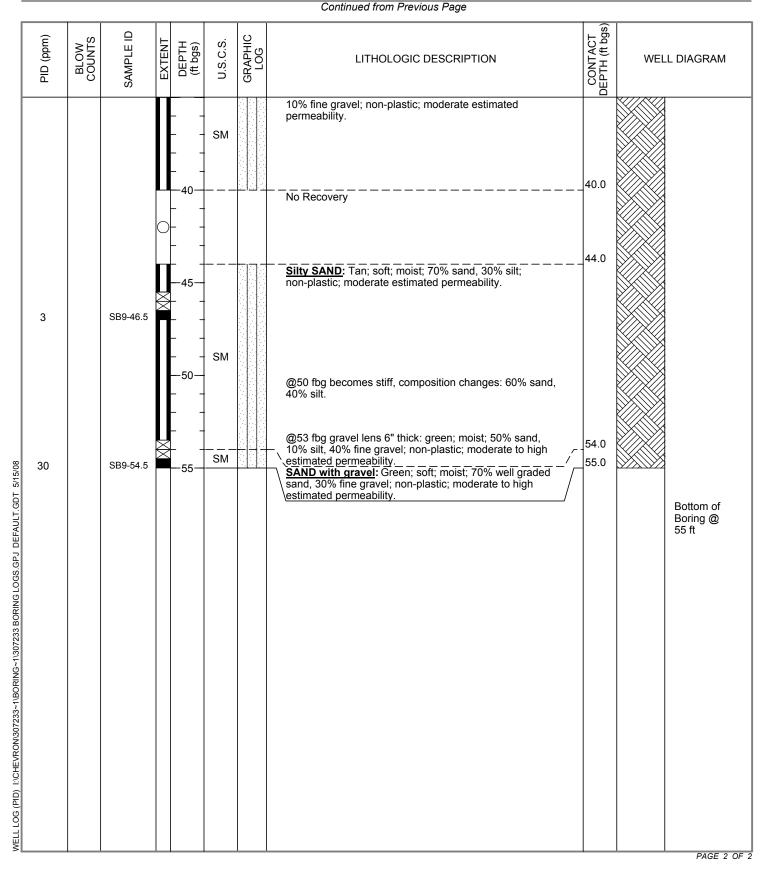
PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
23		SB8-39.5		 40	SM		<u>Silty SAND</u> : Brown; wet; 60% sand, 35% silt, 5% gravel; non-plastic; moderate estimated permeability.	40.0		
				70						Bottom of Boring @ 40 ft

BORING/WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME
JOB/SITE NAME	30-7233	DRILLING STARTED 28-Jan-08
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED 29-Jan-08
PROJECT NUMBER	312264	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push and Hollow-stem auger	TOP OF CASING ELEVATION NA
BORING DIAMETER	5"	SCREENED INTERVAL NA
LOGGED BY	I. Hull	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	R. Foss, PG #7445	DEPTH TO WATER (Static) NA
DEMADIZE	Litility algored with an air knife againted you up tr	usk to 9 faat halaw grada

BORING/WELL LOG

CLIENT NAME JOB/SITE NAME LOCATION


Chevron Environmental Management Company 30-7233

BORING/WELL NAME **DRILLING STARTED**

28-Jan-08 DRILLING COMPLETED 29-Jan-08

SB9

2259 First Street, Livermore, California

WELL LOG (PID) I:\CHEVRONI3122-\312264-1\312264-4\BORING-1\312264-BORING-1\312264-BORING LOGS.GPJ DEFAULT.GDT 3/5/09

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

BORING / WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME	SB10		
JOB/SITE NAME	Chevron site #30-7233	DRILLING STARTED	23-Oct-08		
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED	04-Nov-08		
PROJECT NUMBER	312264	WELL DEVELOPMENT D	ATE (YIELD)	NA	
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELE	ATION	NA	
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVAT		NA	
BORING DIAMETER	5"	SCREENED INTERVALS		NA	
LOGGED BY	Belew Yifru	DEPTH TO WATER (First	Encountered) NA	$\overline{\nabla}$
REVIEWED BY	Brandon S. Wilken, P.G. #7564	DEPTH TO WATER (Statio	c)	NA	Ţ
REMARKS	Utility cleared with an air-knife-assisted vacuum tr	uck to 8 feet below grade			

Utility cleared with an air-knife-assisted vacuum truck to 8 feet below grade

PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.		LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
0		SB10- S-5		 	GM		Sandy GRAVEL with cobbles Brown; damp; 10% silt, 30% sand, 60% sub-angular to rounded gravel; non-plastic; high estimated permeability.	_8.0	
0		SB10- S-16		 15 			Continued Next Page		Portland Type I/II Cement PAGE 1 OF 3

BORING / WELL LOG

WELL DIAGRAM

CONTACT DEPTH (fbg)

35.0

CLIENT NAME JOB/SITE NAME LOCATION

Chevron Environmental Management Company Chevron site #30-7233

GRAPHIC LOG

2259 First Street, Livermore, California

U.S.C.S.

BORING/WELL NAME SB10 DRILLING STARTED

23-Oct-08

DRILLING COMPLETED 04-Nov-08

Continued from Previous Page

LITHOLOGIC DESCRIPTION

BLOW COUNTS

PID (ppm)

SAMPLE ID

EXTENT

DEPTH (fbg)

				ML		
	0	SB10- S-26	 25 X 			
64-BORING LOGS.GPJ DEFAULT.GDT 3/5/09			30 			@ 30fbg composition changes to: 5% clay, 65% silt, 30% sand; low plasticity; low estimated permeability.
WELL LOG (PID) 1:/CHEVRON/3122-\312264~1\312264~4\BORING~1\312264-BORING LOGS.GPJ DEFAULT.GDT 3/5/09	0	SB10- S-36	35 		. == =	Clayey sandy SILT: Mottled brown; damp; 10% clay, 80% silt, 10% sand; medium plasticity; low estimated permeability.
< [<u> </u>			Continued Next Page

BORING / WELL LOG

WELL DIAGRAM

CONTACT DEPTH (fbg)

CLIENT NAME JOB/SITE NAME LOCATION

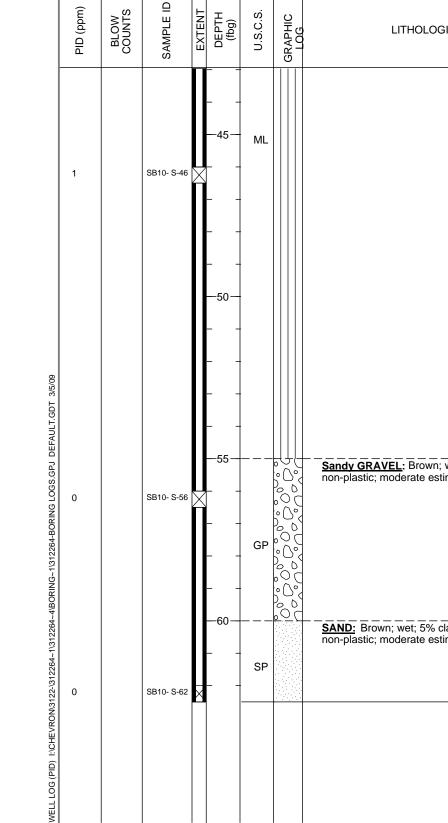
0

SB10- S-62

 \succ

Chevron Environmental Management Company Chevron site #30-7233

2259 First Street, Livermore, California


BORING/WELL NAME DRILLING STARTED

Continued from Previous Page

LITHOLOGIC DESCRIPTION

SB10 23-Oct-08

DRILLING COMPLETED ____04-Nov-08

Portland Type I/II Cement 55.0 Sandy GRAVEL: Brown; wet; 30% sand, 70% gravel; non-plastic; moderate estimated permeability. 60.0 **SAND:** Brown; wet; 5% clay, 5% silt, 90% sand; non-plastic; moderate estimated permeability. SP 62.5 Bottom of Boring @ 62.5 fbg PAGE 3 OF 3

BORING / WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME	SB11		
JOB/SITE NAME	Chevron site #30-7233	DRILLING STARTED	24-Oct-08		
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED	03-Nov-08		
PROJECT NUMBER	312264	WELL DEVELOPMENT DA	TE (YIELD)	NA	
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELE	ATION	NA	
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVAT	ION	NA	
BORING DIAMETER	5"	SCREENED INTERVALS		NA	
LOGGED BY	Belew Yifru	DEPTH TO WATER (First	Encountered) NA	$\overline{\Delta}$
REVIEWED BY	Brandon S. Wilken, P.G. #7564	DEPTH TO WATER (Statio	:)	NA	Ţ
REMARKS	Utility cleared with an air-knife-assisted vacuum tr	uck to 8 feet below grade			

Utility cleared with an air-knife-assisted vacuum truck to 8 feet below grade

PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
0		SB11- S-5			GM		Sandy GRAVEL with cobbles: Brown; damp; 10% silt, 20% sand, 70% gravel and round to angular cobbles up to 6" long; non-plastic; high estimated permeability.	10.0	
1		SB11- S-16		—10— 			Clayey sandy SILT: Brown; damp; 10% clay, 80% silt, 10% sand; medium plasticity; low estimated permeability.		Portland Type I/II Cement PAGE 1 OF 3

BORING / WELL LOG

CLIENT NAME JOB/SITE NAME LOCATION

Chevron Environmental Management Company BORING/WELL NAME Chevron site #30-7233

2259 First Street, Livermore, California

SB11 DRILLING STARTED

24-Oct-08

DRILLING COMPLETED 03-Nov-08

	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC	LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
WELL LOG (PID) I:\CHEVRON\3122-\312264~4\BORING~1\312264-4\BORING~1\312264-BORING LOGS.GPJ DEFAULT.GDT 3/5/09	0		SB11- S-26						@35 fbg composition and color change: mottled brown; 5% clay, 80% silt, 15% sand; low plasticity; low estimated permeability. @40 fbg, composition changes: 10% clay, 80% silt, 10% sand; low plasticity; low estimated permeability.	35.0	
									Continued Next Page		PAGE 2 OF 3

2259 First Street, Livermore, California

BORING / WELL LOG

CLIENT NAME JOB/SITE NAME LOCATION

Chevron Environmental Management Company Chevron site #30-7233

BORING/WELL NAME DRILLING STARTED

Continued from Previous Page

SB11 24-Oct-08

DRILLING COMPLETED 03-Nov-08

CONTACT DEPTH (fbg) SAMPLE ID PID (ppm) BLOW COUNTS EXTENT U.S.C.S. DEPTH (fbg) GRAPHIC LOG LITHOLOGIC DESCRIPTION WELL DIAGRAM 278 SB11-S-45.5 Portland Type I/II Cement 50.0 Silty SAND: Light brown; damp; 5% clay, 25% silt, 70% sand; non-plastic; moderate estimated permeability. 20 SB11- S-51 SM 55.0 5 Gravely SAND: Brown; wet; 10% clay, 80% silt, 10% sand; non-plastic; moderate estimated permeability. 74 SB11- S-56 SP 60 SB11- S-61 📉 5 61.5 Bottom of Boring @ 61.5 fbg

WELL LOG (PID) 1;1CHEVRON/3122-312264-41/312264-4/BORING~1/312264-BORING LOGS.GPJ DEFAULT.GDT 3/5/09

BORING / WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME	SB12		
JOB/SITE NAME	Chevron site #30-7233	DRILLING STARTED	24-Oct-08		
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED	03-Nov-08		
PROJECT NUMBER	312264	WELL DEVELOPMENT DA	TE (YIELD)	NA	
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELE	ATION	NA	
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVAT		NA	
BORING DIAMETER	5"	SCREENED INTERVALS		NA	
LOGGED BY	Belew Yifru	DEPTH TO WATER (First	Encountered) NA	$\overline{\nabla}$
REVIEWED BY	Brandon S. Wilken, P.G. #7564	DEPTH TO WATER (Statio	:)	NA	Ţ
REMARKS	Utility cleared with an air-knife-assisted vacuum tr	uck to 8 feet below grade	-		

Utility cleared with an air-knife-assisted vacuum truck to 8 feet below grade

PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC 1 OG		CONTACT DEPTH (fbg)	WELL DIAGRAM
0		SB12- 5			GM		Sandy GRAVEL with cobbles: Light to dark brown; damp; 10% silt, 35% sand, 55% gravel with round and angular cobbles up to 6" long; non-plastic; high estimated permeability.	_9.0	
0		SB12- 15.5					Clayey sandy SILT: Brown; damp; 10% clay, 80% silt, 10% sand; medium plasticity; low estimated permeability. @15 fbg addition of gravel: 10% clay, 75% silt, 10% sand, 5% gravel.		Portland Type I/II Cement

BORING / WELL LOG

CLIENT NAME JOB/SITE NAME LOCATION

Chevron Environmental Management Company BORING/WELL NAME Chevron site #30-7233

2259 First Street, Livermore, California

SB12 DRILLING STARTED

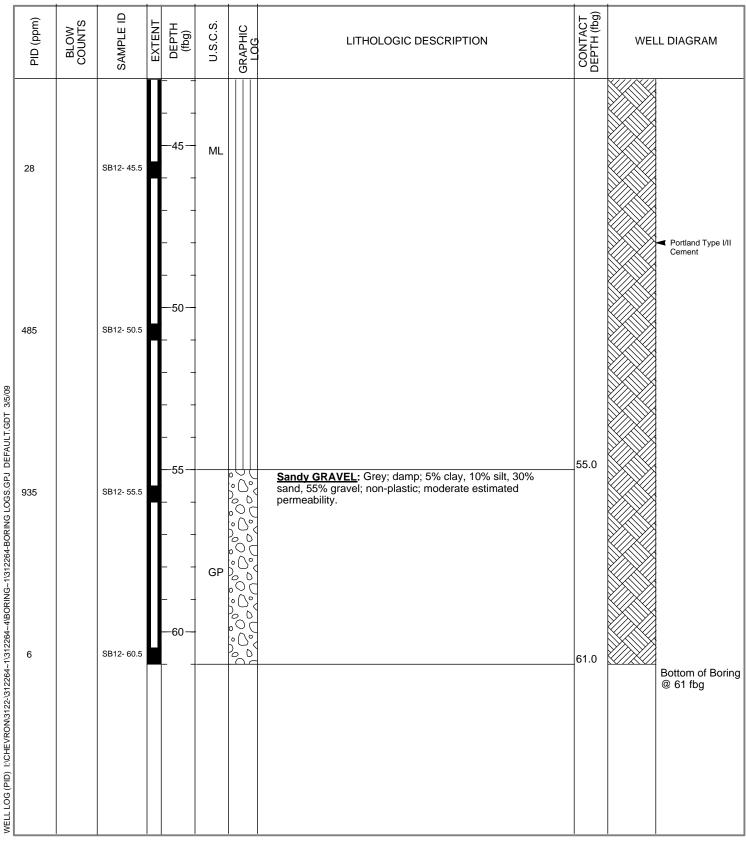
24-Oct-08

DRILLING COMPLETED 03-Nov-08

	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
WELL LOG (PID) 1:/CHEVRON3122-1312264-1312264-4/BORING-1/312264-BORING LOGS.GPJ DEFAULT.GDT 3/5/09	1		SB12- 25.5 SB12- 30 SB12- 35.5					@40 fbg composition and color change: mottled light brown and grey; 85% silt, 10% sand, 5% gravel.	35.0	
										PAGE 2 OF 3

2259 First Street, Livermore, California

BORING / WELL LOG


CLIENT NAME JOB/SITE NAME LOCATION

Chevron Environmental Management Company Chevron site #30-7233

BORING/WELL NAME SB12 **DRILLING STARTED** DRILLING COMPLETED 03-Nov-08

24-Oct-08

Continued from Previous Page

BORING / WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME SB13	
JOB/SITE NAME	Chevron #30-7233	DRILLING STARTED 30-Mar-	-10
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED 12-Apr-	10
PROJECT NUMBER	312264	WELL DEVELOPMENT DATE (YIE	LD) NA
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELEVATION	NA
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATION	NA
BORING DIAMETER	8-inch	SCREENED INTERVALS	NA
LOGGED BY	Cortland Toczylowski	DEPTH TO WATER (First Encount	tered) NA 💆
REVIEWED BY	B. Wilken, PG# 7564	DEPTH TO WATER (Static)	NA 💆

REMARKS

WELL LOG (PID) 1:/CHEVRON(3122-(312264-1\31B354-1\312264-GINT.GPJ DEFAULT.GDT 5/28/10

PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
					GW		Top Soil <u>GRAVEL with sand</u> : Brown; moist; gravel fine to coarse; non-plastic; cobbles up to 5-inches long.	8.0	
				 			Not Logged.	16.0	
			-	 - 20 	ML		Sandy SILT: Light brown; moist; fine sand; low plasticity. Sandy SILT with gravel: Light brown; moist; fine to coarse sand; low plasticity.	20.0	
			-	 - 25 	ML SM		 @ 22.5 fbg : decreasing sand. <u>Silty SAND</u>: Light brown; moist; fine to medium sand; non-pastic. <u>Sandy SILT</u>: Light brown; moist; fine sand; low estimated plasticity. 	24.0	Portland Type I/II
			-	 	ML		estimated plasticity. @ 34 fbg : decreasing sand.		
			-	35 - 40			Sandy SILT: Light brown; moist; fine sand; low estimated plasticity. Continued Next Page	37.0	

BORING / WELL LOG

CLIENT NAME JOB/SITE NAME LOCATION

WELL LOG (PID) I:\CHEVRON\3122-\312264~1\31B354~1\312264-GINT.GPJ DEFAULT.GDT 5/28/10

Chevron Environmental Management Company BORING/WELL NAME Chevron #30-7233

2259 First Street, Livermore, California

SB13 30-Mar-10 DRILLING STARTED DRILLING COMPLETED 12-Apr-10

Continued from Previous Page

PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC	LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WEI	LL DIAGRAM
					ML			@ 42 fbg : decreasing sand.	44.0		Bottom of Boring @ 44 fbg

					VIIOIIIII		lanagement Company				
JOB/SITE				233				DRILLING STARTED 31-Jan-08			
LOCATIO					treet, L		ore, California	DRILLING COMPLETED 01-Feb-08			
PROJECT			122							urveyed	
				Drilling						ourveyeu	
				I Auger							
BORING I				cNaboe				SCREENED INTERVAL NA DEPTH TO WATER (First Encounter	ad) N/	\	$\overline{\Sigma}$
LOGGED REVIEWE	-			oss, PG				DEPTH TO WATER (First Encounter DEPTH TO WATER (Static)	ed <u>) N</u> A		<u> </u>
	-									٩	<u> </u>
REMARK	э _	0	tility	/ cleare	a with	an air-i	knine-assisted vacuum tr	uck to 8 feet below grade			
PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG		DLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEL	LL DIAGRAM
0		SSB1-1.5			ML		sand, 40% 0.2-inch moderate estimated		2.0		 Native Soil
0		SSB1-2.5			GW		Sandy GRAVEL with coarse gravel, 40% non-plastic; high est	<u>h silt</u> :Brown; moist; 50% fine to well graded sand, 10% silt; mated permeability.			 Portland Type
0		SSB1-4.5	B	- 5 -		••••	Refusal @ 5 fbg		5.0		I/II Cement
WELL LOG (PID) 1:/CHEVRON/307233-1/BORING-1/307233 BORING LOGS.GPJ DEFAULT.GDT 5/15/08							Refusal @ 5 fbg				Bottom of Boring @ 5 ft

	CLIENT	NAME	C	he	ron En	vironm	ental N	lanagement Company	BORING/WELL NAME	SSB2			
	JOB/SIT		IE3	0-7	233				DRILLING STARTED	01-Feb-08			
	LOCATI	ON	2	259	First S	treet, L	.ivermo	ore, California	DRILLING COMPLETED	01-Feb-08			
	PROJEC	T NUN	IBER <u>3</u>	122	264				WELL DEVELOPMENT D	ATE (YIELD)	NA		
	DRILLE	R	R	SL	Drilling				GROUND SURFACE ELE	VATION _	Not S	urveyed	
	DRILLIN	G MET	нор <u>н</u>	and	d Auger	•			TOP OF CASING ELEVA	TION NA			
	BORING	DIAM							SCREENED INTERVAL	NA			
	LOGGEI				cNaboe				DEPTH TO WATER (First		d) NA		 ▼
	REVIEW	ED BY								ic)	NA	1	<u> </u>
	REMAR	KS _	U	tility	y cleare	d with	an air-	knife-assisted vacuum tr	uck to 8 feet below grade				
ſ			0	Γ							(st		
	PID (ppm)	BLOW COUNTS	SAMPLE ID	Ł	E 🔅	Ś	GRAPHIC LOG				CONTACT DEPTH (ft bgs)		
	d) (APL	EXTENT	DEPTH (ft bgs)	U.S.C.S.	RAP	LITHC	LOGIC DESCRIPTION		T T	WEL	L DIAGRAM
	PIC	шö	SAN	 🏛		⊃	GR				18E		
H								Silty SAND: Brown:	moist; 55% well graded san	d 40%			
				I		SM		silt, 5% gravel; low p	lasticity; moderate estimated	d			 Native Soil
	4		SSB2-1.5	% }				permeability.	h silt:Brown; moist; 50% fin		2.0		
	1		SSB2-2.5	<u>19</u>				coarse gravel, 40% v	vell graded sand, 10% silt;				
				I	L _			non-plastic; high esti	mated permeability.				
	0		SSB2-4.5	1 03	- 5	GW	i to						
						Gw							 Portland Type I/II Cement
				l	L _								
					L _								
	0		SSB2-8	19	-		. • •				8.5	K///X///	
								Refusal @ 8.5 fbg					
													Bottom of
													Boring @
													8.5 ft
_													
15/08													
T 5/													
1.G													
AUL:													
Ë													
GPJ													
GS.													
IG L(
N													
33 B													
3072													
6~1													
RIN													
1/BC													
233-													
1/307													
VRO													
SHE													
) :: (
EIC.													
POG													
WELL LOG (PID) 1:/CHEVRON/307233~1/BORING~1/307233 BORING LOGS.GPJ DEFAULT.GDT 5/15/08													
>				1	1	I	I	I			1	1	PAGE 1 OF 1

WELL LOG (PID) I:/CHEVRON\307233~1\BORING~1\307233 BORINGLOGS.GPJ DEFAULT.GDT 5/15/08

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

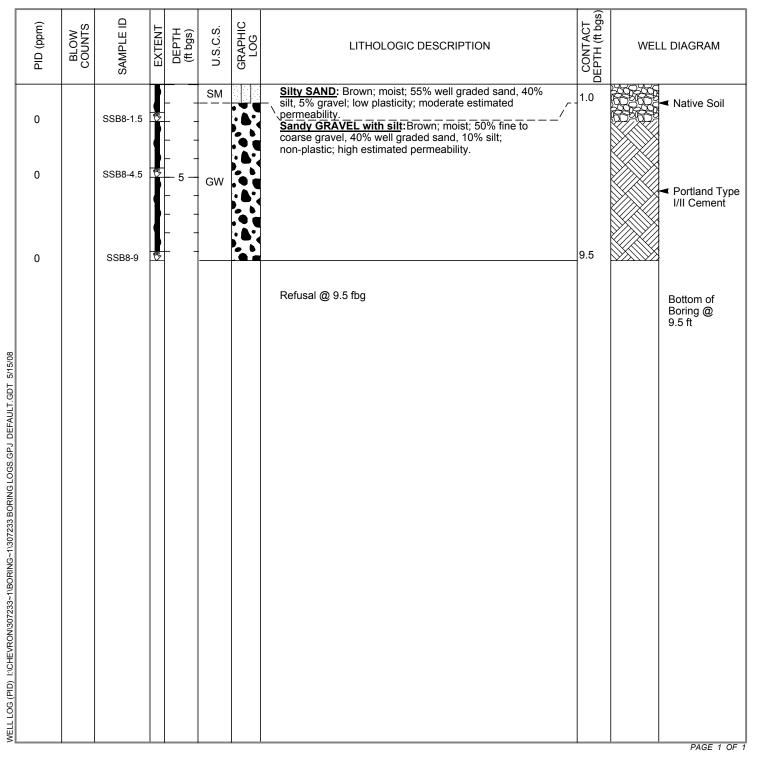
CLIENT NAME	C	hevroi	n Env	/ironme	ental M	lanagement Company	BORING/WELL NAME	SSB3			
JOB/SITE NAMI	E <u>3</u> 0)-7233	3				DRILLING STARTED _	30-Jan-08			
LOCATION	22	259 Fi	irst St	treet, L	ivermo	ore, California	DRILLING COMPLETED_	06-Feb-08			
PROJECT NUM	BER 3	2264					WELL DEVELOPMENT D				
DRILLER	-	SI Dril	lling				GROUND SURFACE ELE	VATION	Not Si	urveyed	
DRILLING METI		and A	uger				TOP OF CASING ELEVA				
BORING DIAME	-						SCREENED INTERVAL				
LOGGED BY		Hull					DEPTH TO WATER (First				<u>V</u>
REVIEWED BY				#7445			DEPTH TO WATER (Stati	ic)	NA		Ţ
REMARKS	U	tility cl	leared	d with a	an air-	knife-assisted vacuum tru	ick to 8 feet below grade				
PID (ppm) BLOW COUNTS	SAMPLE ID	EXTENT	UEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHC	LOGIC DESCRIPTION		CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
4	SSB3-1.5		-	SM		Silty SAND: Brown; silt, 5% gravel; low pl permeability.	moist; 55% well graded sam asticity; moderate estimated	d, 40%	3.0		 Native Soil
2	SSB3-3 SSB3-5		5 -	GW		Sandy GRAVEL with coarse gravel, 40% v non-plastic; high esti	n silt:Brown; moist; 50% fin vell graded sand, 10% silt; nated permeability.	e to	5.5		 Portland Type I/II Cement
						Refusal @ 5.5 fbg					Bottom of Boring @ 5.5 ft

CLIE	NT N	AME	C	hev	ron En	vironm	ental N	lanagement Company	BORING/WELL NAME	SSB4			
JOB	/SITE	NAM	E <u>3</u>	0-72	233				DRILLING STARTED 01-Feb-08				
LOC	ΑΤΙΟ	N	2	<u>25</u> 9	First S	treet, L	ivermo	ore, California	DRILLING COMPLETED	01-Feb-08			_
PRO	JECT	NUM	-	122					WELL DEVELOPMENT	DATE (YIELD)	NA		
DRIL	.LER		R	SI	Drilling				GROUND SURFACE ELE	EVATION	Not S	urveyed	
DRIL	LING	MET			I Auger				TOP OF CASING ELEVA	TION NA			
BOR			ETER 2						SCREENED INTERVAL	-			
	GED		-		amba				DEPTH TO WATER (Firs		d) NA		$\overline{\Delta}$
		-			oss, PG	#7445			DEPTH TO WATER (Stat		NA		Ī
	ARK	-							uck to 8 feet below grade	,		-	
		· _											
PID (ppm)		BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG		DLOGIC DESCRIPTION		CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
			SSB4-1.5	3		SM		Silty SAND: Brown; silt, 5% gravel; low p permeability.	moist; 55% well graded san lasticity; moderate estimate	nd, 40% d	2.0		 Native Soil
0				Ĭ.				Sandy GRAVEL wit	h silt: Brown; moist; 50% fin	ne to	10		
0			SSB4-2.5	Ŭ				coarse gravel, 40% v non-plastic; high esti	vell graded sand, 10% silt;				
				(.••	non-plastic, high esti	mateu permeability.				
0			SSB4-4.5		- 5 -								
						GW							 Portland Type I/II Cement
												$\mathbb{K}/\mathbb{K}/\mathbb{K}$	i/ii Cement
											0.5		
0			SSB4-9	10							9.5		
WELL LOG (PID) I:\CHEVRON\307233~1\BORING~1\307233 BORING LOGS.GPJ DEFAULT.GDT 5/15/08								Refusal @ 9.5 fbg					Bottom of Boring @ 9.5 ft
WELL LOG (PID) I:ICHEVRON													PAGE 1 OF 1

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME SSB5
JOB/SITE NAME	30-7233	DRILLING STARTED 06-Feb-08
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED 06-Feb-08
PROJECT NUMBER_	312264	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hand Auger	TOP OF CASING ELEVATION NA
BORING DIAMETER	2"	SCREENED INTERVAL NA
LOGGED BY	I. Hull	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	R. Foss, PG #7445	DEPTH TO WATER (Static) NA
REMARKS	Utility cleared with an air-knife-assisted vacuum tr	ruck to 8 feet below grade

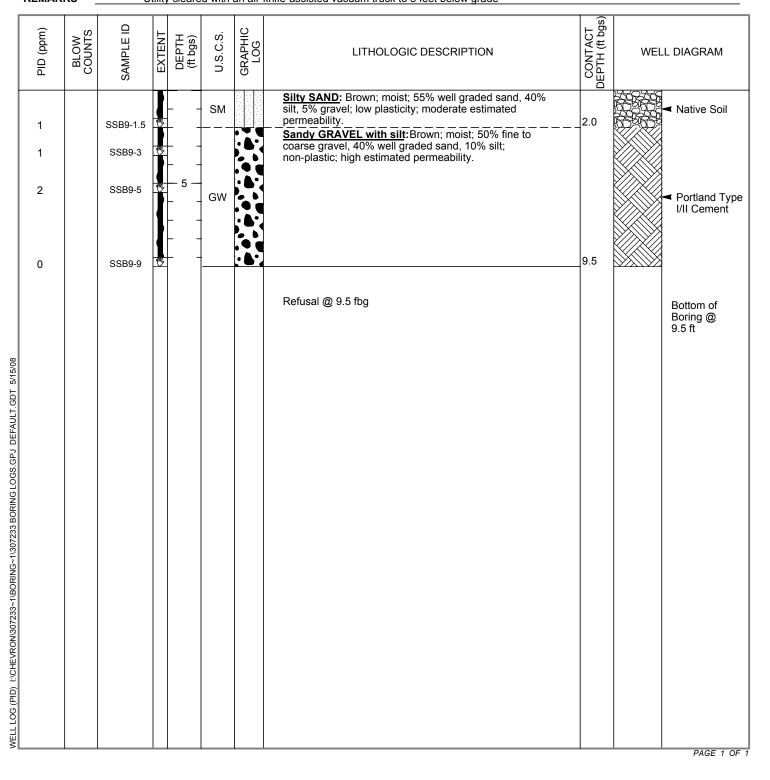
PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
2		SSB5-1.5			SM		<u>Silty SAND</u> : Brown; moist; 55% well graded sand, 40% silt, 5% gravel; low plasticity; moderate estimated permeability.	3.0		 Native Soil
1		SSB5-3		 	GW		Sandy GRAVEL with silt: Brown; moist; 50% fine to coarse gravel, 40% well graded sand, 10% silt; non-plastic; high estimated permeability.			 Portland Type I/II Cement
1		SSB5-5.5 SSB5-7						7.5		
							Refusal @ 7.5 fbg			Bottom of Boring @ 7.5 ft
JT 5/15/08										
DEFAULT.GI										
IG LOGS.GPJ										
807233 BORIN										
1/BORING~1\3										
WELL LOG (PID) I:ICHEVRON'307233~1/BORING~1/307233 BORING LOGS.GPJ DEFAULT.GDT 5/15/08										
PID) I:\CHEVI										
MELL LOG (I										PAGE 1 OF 1

CLIENT	NAME	C	hev	ron En	vironm	ental N	lanagement Company	BORING/WELL NAME	SSB6				
JOB/SI	TE NAN			233				DRILLING STARTED06-Feb-08					
LOCAT	ION	2	259	First S	treet, L	iverm	ore, California	DRILLING COMPLETED	06-Feb-08				
PROJE		IBER 3	122	64				WELL DEVELOPMENT D	DATE (YIELD)	NA			
DRILLE	R	R	SI	Drilling				GROUND SURFACE ELE	EVATION _	Not S	urveyed		
DRILLI	NG MET	HOD H	anc	I Auger				TOP OF CASING ELEVA	TION NA				
BORING	g diam	ETER 2'	•					SCREENED INTERVAL	NA				
LOGGE	D BY	I.	Hu					DEPTH TO WATER (First	t Encountere	d) NA	1	∑ ▼	
REVIEV	VED BY	<u> </u>	. Fo	oss, PG	#7445			DEPTH TO WATER (Stat	ic)	NA	<u> </u>		
REMAR	KS _	U	tility	/ cleare	d with	an air-	knife-assisted vacuum tr	uck to 8 feet below grade					
		_	Γ							(s	1		
PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG		DLOGIC DESCRIPTION		CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM	
3		SSB6-1.5 SSB6-3			SM		Silty SAND: Brown; silt, 5% gravel; low p permeability.	moist; 55% well graded san lasticity; moderate estimated	ıd, 40% d			Native Soil	
				 5	GW		Sandy GRAVEL wit coarse gravel, 40% v non-plastic; high esti	h silt :Brown; moist; 50% fin vell graded sand, 10% silt; mated permeability.	ne to	4.0 5.0		 Portland Type I/II Cement 	
FAULT.GDT 5/15/08							Refusal @ 5 fbg					Bottom of Boring @ 5 ft	
WELL LOG (PID) 1:/CHEVRON/307233-1/BORING-1/307233 BORING LOGS.GPJ DEFAULT.GL													



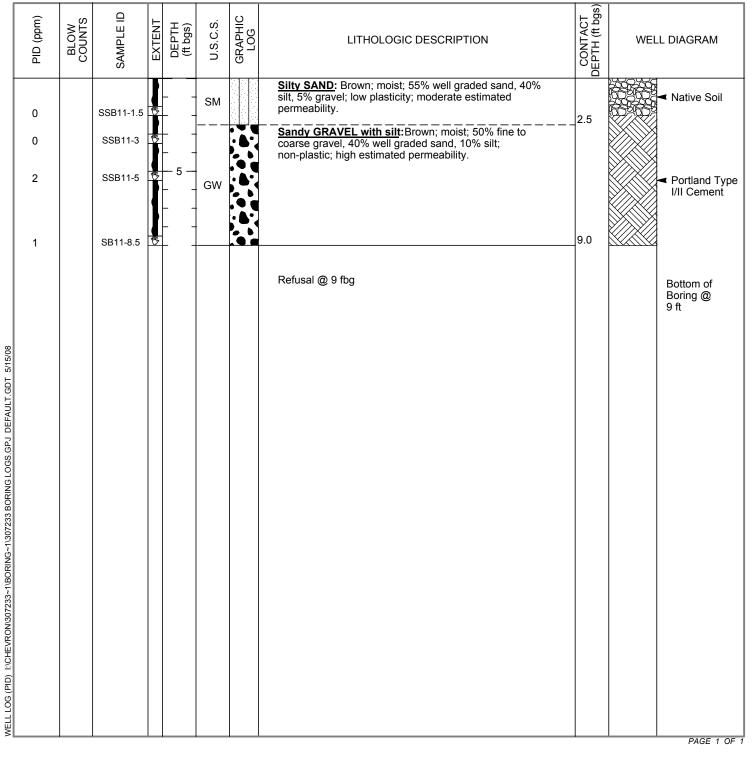
CLIENT	NAME		Chev	ron En	ivironm	ental N	lanagement Company	BORING/WELL NAME	SSB7		
JOB/SIT	E NAM	IE	30-7	233				DRILLING STARTED	06-Feb-08		
LOCATI	ON		2259	First S	Street, L	ivermo	ore, California	DRILLING COMPLETED	06-Feb-08		
PROJEC	CT NUN	IBER	3122	64				WELL DEVELOPMENT D	ATE (YIELD)	NA	
DRILLEI	R		Greg	g Drillir	ng & Te	esting,	C57 #485165	GROUND SURFACE ELE	VATION	Not Si	urveyed
DRILLIN	IG MET	HOD	Hand	d Auger	r			TOP OF CASING ELEVA	TION NA		
BORING		ETER	2"					SCREENED INTERVAL	NA		
LOGGE	D BY		J. Wi	illiams				DEPTH TO WATER (First	Encountered	I) NA	$\overline{\Delta}$
REVIEWED BY R. Foss, PG #						5		DEPTH TO WATER (Stat	ic)	NA	<u> </u>
REMAR	KS _		Utility	y cleare	ed with	an air-	knife-assisted vacuum tru	uck to 8 feet below grade			
PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHC	DLOGIC DESCRIPTION		CONTACT DEPTH (ft bgs)	WELL DIAGRAM
4		SSB7-1.5			SM		 silt, 5% gravel; low p permeability. Sandy GRAVEL wit 	moist; 55% well graded san lasticity; moderate estimated <u>h silt</u> :Brown; moist; 50% fin vell graded sand, 10% silt; mated permeability.	- __ لل	1.0	Native Soil

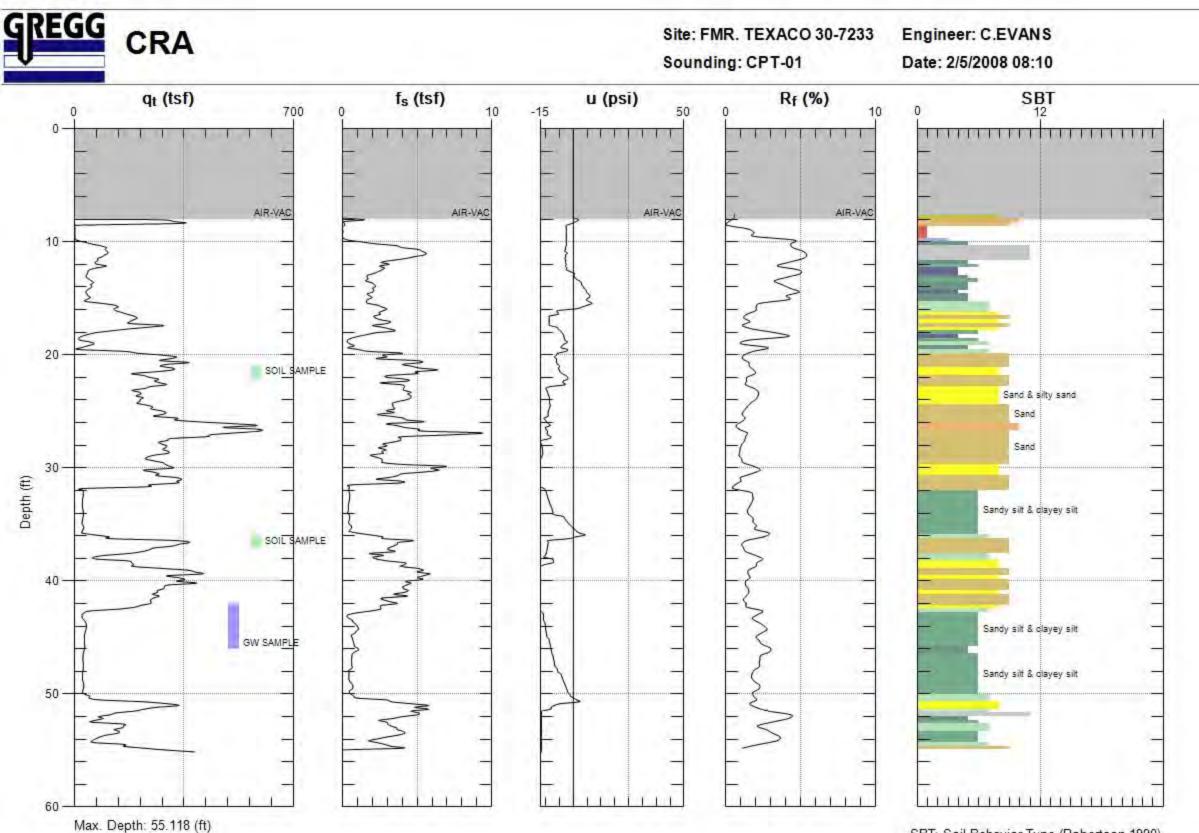
	PID (pp	SAMPLE	EXTEN	DEPT (ft bgs	U.S.C.	GRAPH LOG	LITHOLOGIC DESCRIPTION	CONTA DEPTH (ft	WEL	L DIAGRAM
	4	SSB7-1.5			SM		 <u>Silty SAND</u>: Brown; moist; 55% well graded sand, 40% silt, 5% gravel; low plasticity; moderate estimated permeability. <u>Sandy GRAVEL with silt</u>: Brown; moist; 50% fine to coarse gravel, 40% well graded sand, 10% silt; 	1.0		 Native Soil
	0	SSB7-3.5		 5	GW		non-plastic; high estimated permeability.			 Portland Type I/II Cement
	0	SSB7-5.5								in Cement
	3	SSB7-7	(2) (2)					7.5		
							Refusal @ 7.5 fbg			Bottom of Boring @ 7.5 ft
8										
WELL LOG (PID) 1:/CHEVRON/307233~1/BORING~1/307233 BORING LOGS.GPJ DEFAULT.GDT 5/15/08										
SPJ DEFAUL										
RING LOGS.C										
1\307233 BOI										
~1\BORING~										
RON\307233										
ID) I:\CHEV										
ELL LOG (F										
۶L										PAGE 1 OF 1



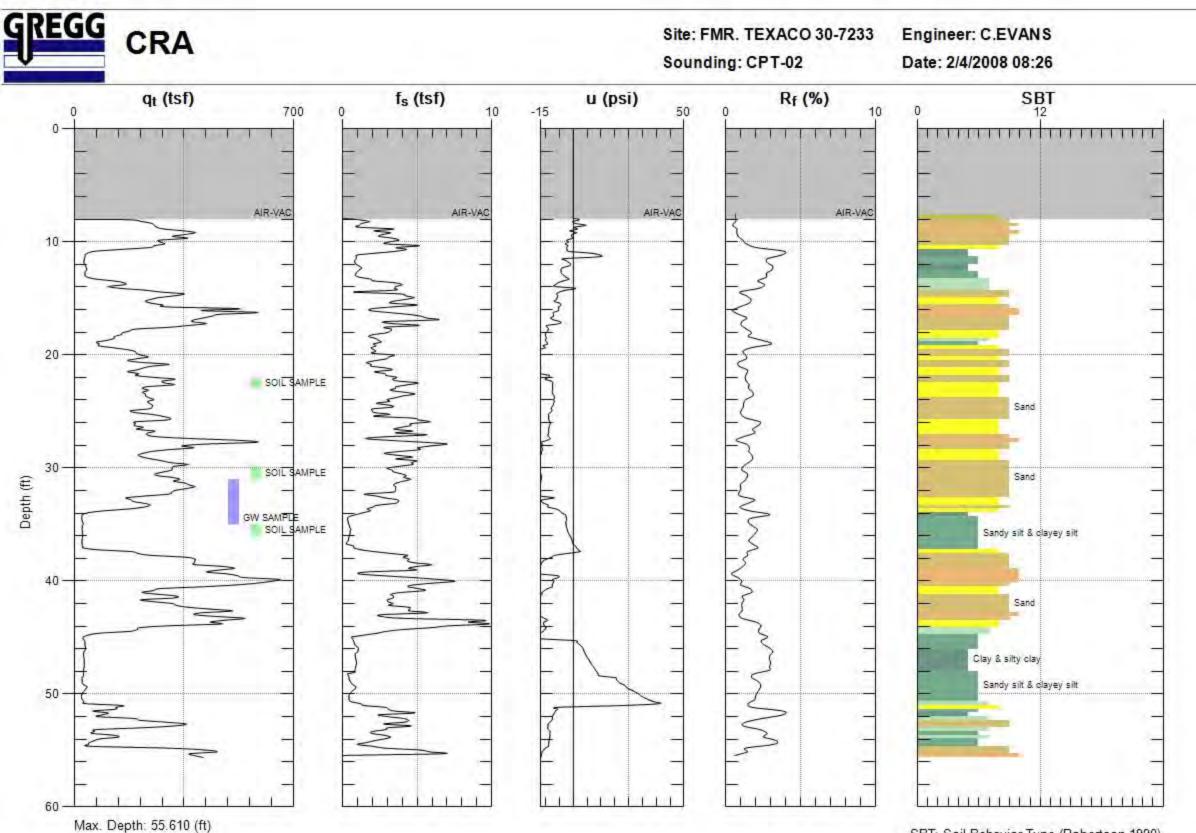
CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME SSB8
JOB/SITE NAME	30-7233	DRILLING STARTED 01-Feb-08
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED 01-Feb-08
PROJECT NUMBER	312264	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hand Auger	TOP OF CASING ELEVATION NA
BORING DIAMETER	2"	SCREENED INTERVAL NA
LOGGED BY	I. Hull	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	R. Foss, PG #7445	DEPTH TO WATER (Static) NA
REMARKS	Utility cleared with an air-knife-assisted vacuum tru	uck to 8 feet below grade

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME SSB9
JOB/SITE NAME	30-7233	DRILLING STARTED 06-Feb-08
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED 06-Feb-08
PROJECT NUMBER	312264	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hand Auger	TOP OF CASING ELEVATION NA
BORING DIAMETER	2"	SCREENED INTERVAL NA
LOGGED BY	J. Williams	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	R. Foss, PG #7445	DEPTH TO WATER (Static) NA
REMARKS	Utility cleared with an air-knife-assisted vacuum tre	uck to 8 feet below grade





CLIENT JOB/SIT LOCATIO PROJEC DRILLEN DRILLEN BORING LOGGEI REVIEW REMARI	e nam on t num g met diami diami diami diami diami diami diami	E 30 22 IBER 3 G HOD H ETER 2 J. R	0-72 259 1220 reg and Wil . Fo	233 First S 64 g Drillir I Auger Iliams oss, PG	Street, L ng & Te - 	esting,	Anagement Company pre, California C57 #485165 knife-assisted vacuum tru	DRILLING STARTED 06-Feb-08 DRILLING COMPLETED 06-Feb-08 WELL DEVELOPMENT DATE (YIELD) NA GROUND SURFACE ELEVATION Not Surveyed TOP OF CASING ELEVATION NA SCREENED INTERVAL NA DEPTH TO WATER (First Encountered) NA DEPTH TO WATER (Static) NA truck to 8 feet below grade NA				
PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG		DLOGIC DESCRIPTION		CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
0 0		SSB10-3 SSB10-5 SSB10-9		 5 5 	GW		silt, 5% gravel; low p permeability. Sandy GRAVEL wit	moist; 55% well graded sam lasticity; moderate estimated <u>h silt</u> :Brown; moist; 50% find vell graded sand, 10% silt; mated permeability.	i e to	2.0		 Native Soil Portland Type I/II Cement Bottom of Boring @ 9.5 ft

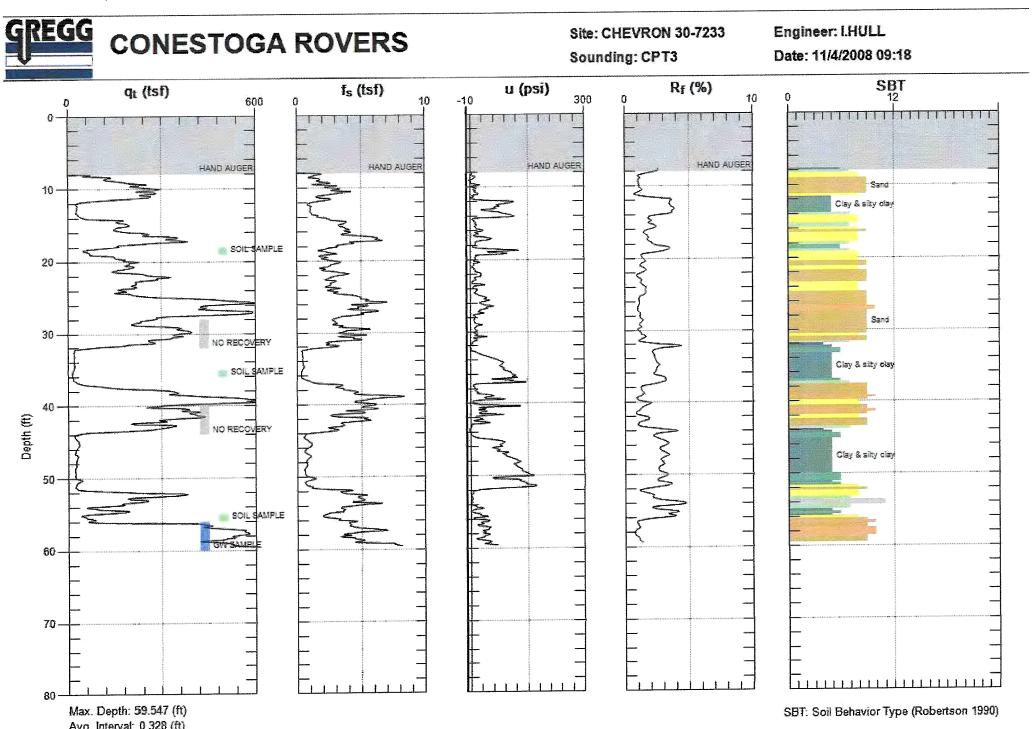

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME SSB11							
JOB/SITE NAME	30-7233	DRILLING STARTED 06-Feb-08							
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED 06-Feb-08							
PROJECT NUMBER	312264	WELL DEVELOPMENT DATE (YIELD) NA							
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELEVATION Not Surveyed							
DRILLING METHOD	Hand Auger	TOP OF CASING ELEVATION NA							
BORING DIAMETER	2"	SCREENED INTERVAL NA							
LOGGED BY	J. Williams	DEPTH TO WATER (First Encountered)	<u>NA</u>						
REVIEWED BY	R. Foss, PG #7445	DEPTH TO WATER (Static)	NA T						
REMARKS	Utility cleared with an air-knife-assisted vacuum tru	ick to 8 feet below grade							

Avg. Interval: 0.328 (ft)

SBT: Soil Behavior Type (Robertson 1990)

Avg. Interval: 0.328 (ft)

SBT: Soil Behavior Type (Robertson 1990)

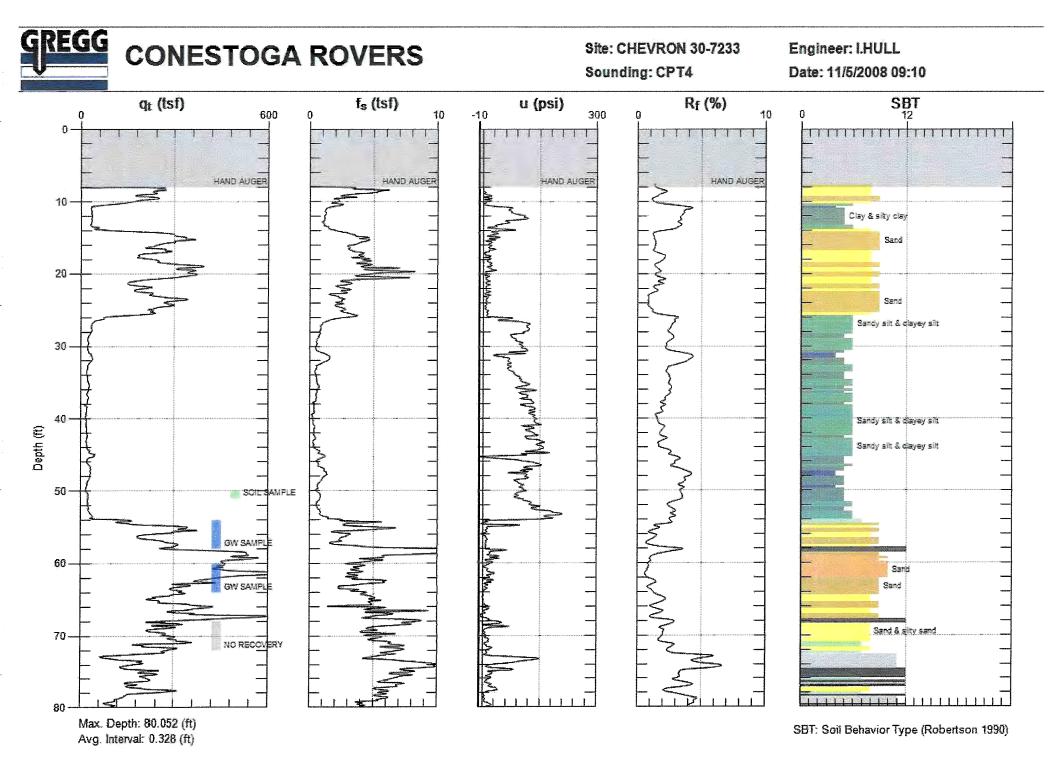


WELL LOG (PID) I:\CHEVRON\3122-\312264~1\31B354~1\312264-BORING LOGS.GPJ DEFAULT.GDT 2/19/09

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAMECPT3
JOB/SITE NAME	Chevron site #30-7233	DRILLING STARTED 23-Oct-08
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED 23-Oct-08
PROJECT NUMBER	312264	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELEVATION NA
DRILLING METHOD	Cone Penetration Testing (CPT)	TOP OF CASING ELEVATION NA
BORING DIAMETER	2"	SCREENED INTERVALS NA
LOGGED BY	Belew Yifru	DEPTH TO WATER (First Encountered) NA
REVIEWED BY	Brandon S. Wilken, P.G. #7564	DEPTH TO WATER (Static) NA
REMARKS	Utility cleared with an air-knife-assisted vacuum tr	uck to 8 feet below grade

Avg. Interval: 0.328 (ft)

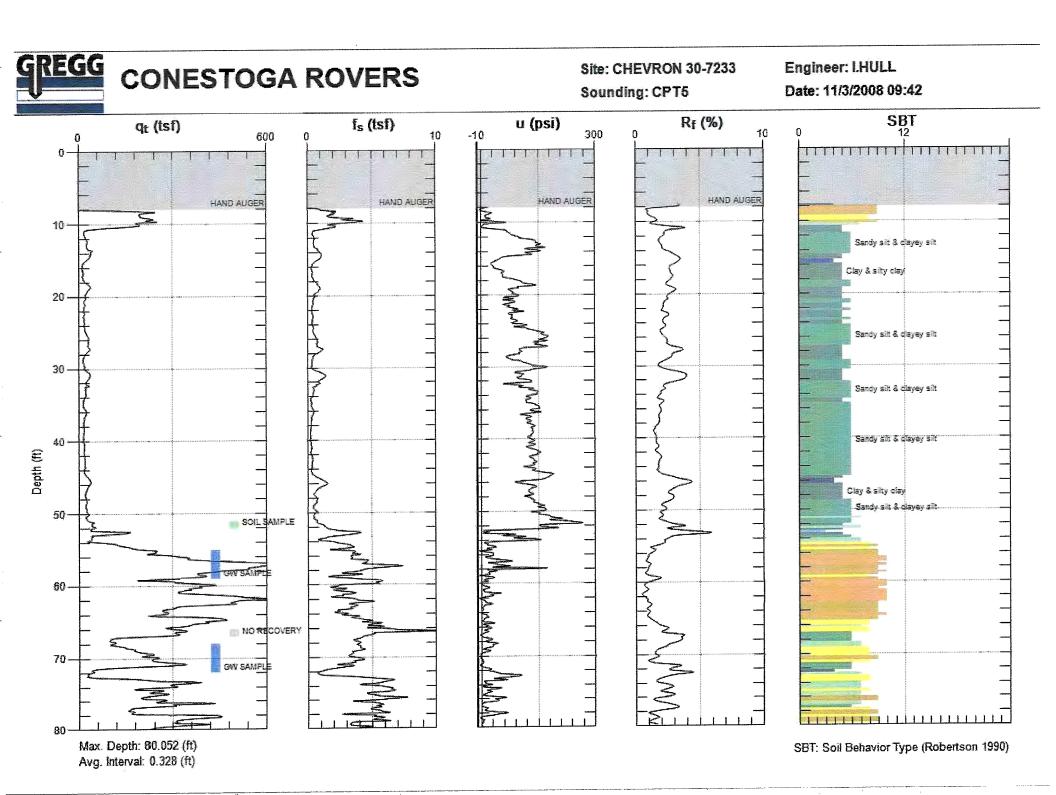


Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

BORING / WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME	CPT4
JOB/SITE NAME	Chevron site #30-7233	DRILLING STARTED	24-Oct-08
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED	24-Oct-08
PROJECT NUMBER	312264	WELL DEVELOPMENT DA	TE (YIELD) NA
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELEV	ATION NA
DRILLING METHOD	Cone Penetration Testing (CPT)	TOP OF CASING ELEVATI	ON NA
BORING DIAMETER	2"	SCREENED INTERVALS	_NA
LOGGED BY	Belew Yifru	DEPTH TO WATER (First E	Encountered) NA 💆
REVIEWED BY	Brandon S. Wilken, P.G. #7564	DEPTH TO WATER (Static) <u>NA </u>
REMARKS	Utility cleared with an air-knife-assisted vacuum tr	uck to 8 feet below grade	

CONTACT DEPTH (fbg) SAMPLE ID PID (ppm) BLOW COUNTS EXTENT U.S.C.S. DEPTH (fbg) GRAPHIC LOG LITHOLOGIC DESCRIPTION WELL DIAGRAM ASPHALT 1.0 Sandy GRAVEL with cobbles and silt:Light to dark brown; damp; 10% silt, 25% fine to coarse sand, 65% fine to coarse gravel; non-plastic; high estimated permeability. Portland Type I/II Cement GW 5 CPT4- 5 0) WELL LOG (PID) I:\CHEVRON\3122-\312264~1\31B354~1\312264-BORING LOGS.GPJ DEFAULT.GDT 2/19/09 8.0 Bottom of Boring @ 8 fbg Boring log continues in Gregg CPT report


Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

BORING / WELL LOG

CLIENT NAME	Chevron Environmental Management Company	BORING/WELL NAME	CPT5
JOB/SITE NAME	Chevron site #30-7233	DRILLING STARTED	31-Oct-08
LOCATION	2259 First Street, Livermore, California	DRILLING COMPLETED	31-Oct-08
PROJECT NUMBER	312264	WELL DEVELOPMENT D	ATE (YIELD) NA
DRILLER	Gregg Drilling & Testing, C57 #485165	GROUND SURFACE ELE	VATION NA
DRILLING METHOD	Cone Penetration Testing (CPT)	TOP OF CASING ELEVAT	NA
BORING DIAMETER	2"	SCREENED INTERVALS	_NA
LOGGED BY	Belew Yifru	DEPTH TO WATER (First	Encountered) NA
REVIEWED BY	Brandon S. Wilken, P.G. #7564	DEPTH TO WATER (Stati	c) NA 💆
REMARKS	Utility cleared with an air-knife-assisted vacuum tr	uck to 8 feet below grade	

CONTACT DEPTH (fbg) SAMPLE ID PID (ppm) BLOW COUNTS EXTENT U.S.C.S. DEPTH (fbg) GRAPHIC LOG LITHOLOGIC DESCRIPTION WELL DIAGRAM ASPHALT 1.0 Sandy GRAVEL with cobbles and silt:Light to dark brown; damp; 10% silt, 35% fine to coarse sand, 55% fine to coarse gravel; non-plastic; high estimated permeability. Portland Type I/II Cement GW 5 CPT5-5 0) WELL LOG (PID) I:\CHEVRON\3122-\312264~1\31B354~1\312264-BORING LOGS.GPJ DEFAULT.GDT 2/19/09 8.0 Bottom of Boring @ 8 fbg Boring log continues in Gregg CPT report

PAGE 1 OF 1

CLIENT N JOB/SITE LOCATIO PROJECT DRILLER DRILLING BORING LOGGED REVIEWE REMARK	E NAME DN T NUMB G METHO DIAMET BY ED BY	2259 First Street, Livermore, California BER 312264 Vironex, C57 #705927 HOD Hand Auger I. Hull R. Foss, PG #7445 Utility cleared with an air-knife-assisted vacuum tr						DRILLING STARTED 31-Jan-08 DRILLING COMPLETED 31-Jan-08 WELL DEVELOPMENT DATE (YIELD) NA GROUND SURFACE ELEVATION Not Surveyed TOP OF CASING ELEVATION NA SCREENED INTERVAL NA DEPTH TO WATER (First Encountered) NA DEPTH TO WATER (Static) NA n truck to 8 feet below grade NA					
PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHC	DLOGIC DESCRIPTION		CONTACT DEPTH (ft bgs)	WELL DIAGRAM		
WELL LOG (PID) 1:/CHEVRON/307233-1/BORING-1/307233 BORING LOGS.GPJ DEFAULT.GDT 5/15/08		VP1-4.5 VP1-8			GW		silt, 5% gravel; low p permeability. Sandy GRAVEL wit	moist; 55% well graded san asticity; moderate estimated <u>h silt</u> :Brown; moist; 50% fin vell graded sand, 10% silt; mated permeability.	d	2.0	 Portland Type I/II Cement Bentonite Seal Monterey Sand #2/12 Portland Type I/II Cement Bentonite Seal Monterey Sand #2/12 Vapor well installed past Belving Sy Belving Sy Belving Sy Belving rod. 		
N N											PAGE 1 OF 1		

JC LC PF DF BC LC RE	CLIENT NAME Chevron Environmental Management Company BORING/WELL NAME VP2 JOB/SITE NAME 30-7233 DRILLING STARTED 01-Feb-08 LOCATION 2259 First Street, Livermore, California DRILLING COMPLETED 01-Feb-08 PROJECT NUMBER 312264 WELL DEVELOPMENT DATE (YIELD) NA DRILLING METHOD Hand Auger GROUND SURFACE ELEVATION Not Surveyed DRILLING DIAMETER 2" SCREENED INTERVAL NA LOGGED BY I. Hull DEPTH TO WATER (First Encountered) NA REVIEWED BY R. Foss, PG #7445 DEPTH TO WATER (Static) NA REMARKS Utility cleared with an air-knife-assisted vacuum truck to 8 feet below grade Image: Construction of the state of										 		
	PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG		DLOGIC DESCRIPTION		CONTACT DEPTH (ft bgs)	WEI	LL DIAGRAM
	0		VP2-4.5 VP2-9.5		- 5 - 	SM		silt, 5% gravel; low p permeability. Sandy GRAVEL wit	moist; 55% well graded san lasticity; moderate estimated <u>h silt</u> :Brown; moist; 50% fin vell graded sand, 10% silt; mated permeability.	d	3.0		 Portland Type I/II Cement Bentonite Seal Monterey Sand #2/12 Portland Type I/II Cement Bentonite Seal Monterey Sand #2/12 Bottom of Boring @ 10 ft
WELL LOG (PID) I:\CHEVRON\30;													

CLIENT JOB/SIT				<u>ron En</u> 233	vironm	ental N	lanagement Company	BORING/WELL NAME VP3 DRILLING STARTED 01-Feb-08				
PROJE			122					-				
DRILLER Vironex, C57 #705927								-				
DRILLING METHOD Hand Auger								TOP OF CASING ELEVATION NA				
BORING	G DIAME	ETER 2	"					SCREENED INTERVAL NA				
LOGGE	DBY	S	5. M	cNaboe	:			DEPTH TO WATER (First Encounter	ed) N/	A <u>⊻</u>		
REVIEW	VED BY	F	R. Fo	oss, PG	#7445	5		DEPTH TO WATER (Static)	N/	A <u>Y</u>		
REMAR	KS _	L	Jtility	/ cleare	d with	an air-	knife-assisted vacuum tru	uck to 8 feet below grade				
PID (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHC	DLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WELL DIAGRAM		
WELL LOG (PID) I:/CHEVRON:307233-1/BORING-1/307233 BORING LOGS.GPJ DEFAULT.GDT 5/15/08		о VP3-4.5 VP3-8			GW		silt, 5% gravel; low p permeability. Sandy GRAVEL wit	moist; 55% well graded sand, 40% lasticity; moderate estimated <u>h silt</u> :Brown; moist; 50% fine to vell graded sand, 10% silt; mated permeability.	2.0	 Portland Type I/II Cement Bentonite Seal Monterey Sand #2/12 Portland Type I/II Cement Bentonite Seal Monterey Sand #2/12 Vapor well installed past Betwee by Bevenue of the seal Monterey Sand #2/12 Vapor well installed past Betwee by Bevenue of the seal Monterey Sand #2/12 Vapor well installed past Betwee by Bevenue of the seal Monterey Sand #2/12 Monterey Sand #2/12 Vapor well installed past Betwee of the seal Monterey Sand #2/12 Monterey Sand #2/		
MELL LOG (F										PAGE 1 OF 1		

APPENDIX D

MONITORING WELL INSTALLATION SOP

STANDARD FIELD PROCEDURES FOR SOIL BORING AND MONITORING WELL INSTALLATION

This document presents standard field methods for drilling and sampling soil borings and installing, developing and sampling groundwater monitoring wells. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

SOIL BORINGS

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor or staining, and to collect samples for analysis at a State-certified laboratory. All borings are logged using the ASTM D2488-06 Unified Soil Classification System by a trained geologist working under the supervision of a California Professional Geologist (PG).

Soil Boring and Sampling

Prior to drilling, the first 8 feet of the boring are cleared using an air or water knife and vacuum extraction or hand auger. This minimizes the potential for impacting utilities. Soil borings are typically drilled using hollow-stem augers or direct-push technologies such as the Geoprobe®. Soil samples are collected at least every five ft to characterize the subsurface sediments and for possible chemical analysis. Additional soil samples are collected near the water table and at lithologic changes. Samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments at the bottom of the borehole.

Drilling and sampling equipment is steam-cleaned prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Analysis

Sampling tubes chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4° C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Field Screening

One of the remaining tubes is partially emptied leaving about one-third of the soil in the tube. The tube is capped with plastic end caps and set aside to allow hydrocarbons to volatilize from the soil. After ten to fifteen minutes, a portable volatile vapor analyzer measures volatile hydrocarbon vapor concentrations in the tube headspace, extracting the vapor through a slit in the cap. Volatile vapor analyzer measurements are used along with the field observations, odors, stratigraphy and groundwater depth to select soil samples for analysis.

Water Sampling

Water samples, if they are collected from the boring, are either collected using a driven Hydropunch® type sampler or are collected from the open borehole using bailers. The groundwater samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

Grouting

If the borings are not completed as wells, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

MONITORING WELL INSTALLATION, DEVELOPMENT AND SAMPLING

Well Construction and Surveying

Groundwater monitoring wells are installed to monitor groundwater quality and determine the groundwater elevation, flow direction and gradient. Well depths and screen lengths are based on groundwater depth, occurrence of hydrocarbons or other compounds in the borehole, stratigraphy and State and local regulatory guidelines. Well screens typically extend 10 to 15 feet below and 5 feet above the static water level at the time of drilling. However, the well screen will generally not extend into or through a clay layer that is at least three feet thick.

Well casing and screen are flush-threaded, Schedule 40 PVC. Screen slot size varies according to the sediments screened, but slots are generally 0.010 or 0.020 inches wide. A rinsed and graded sand occupies the annular space between the boring and the well screen to about one to two feet above the well screen. A two feet thick hydrated bentonite seal separates the sand from the overlying sanitary surface seal composed of Portland type I, II cement.

Well-heads are secured by locking well-caps inside traffic-rated vaults finished flush with the ground surface. A stovepipe may be installed between the well-head and the vault cap for additional security.

The well top-of-casing elevation is surveyed with respect to mean sea level and the well is surveyed for horizontal location with respect to an onsite or nearby offsite landmark.

Well Development

Wells are generally developed using a combination of groundwater surging and extraction. Surging agitates the groundwater and dislodges fine sediments from the sand pack. After about ten minutes of surging, groundwater is extracted from the well using bailing, pumping and/or reverse air-lifting through an eductor pipe to remove the sediments from the well. Surging and extraction continue until at least ten well-casing volumes of groundwater are extracted and the sediment volume in the groundwater is negligible. This process usually occurs prior to installing the sanitary surface seal to ensure sand pack stabilization. If development occurs after surface seal installation, then development occurs 24 to 72 hours after seal installation to ensure that the Portland cement has set up correctly.

All equipment is steam-cleaned prior to use and air used for air-lifting is filtered to prevent oil entrained in the compressed air from entering the well. Wells that are developed using air-lift evacuation are not sampled until at least 24 hours after they are developed.

Groundwater Sampling

Depending on local regulatory guidelines, three to four well-casing volumes of groundwater are purged prior to sampling. Purging continues until groundwater pH, conductivity, and temperature have stabilized. Groundwater samples are collected using bailers or pumps and are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

Waste Handling and Disposal

Soil cuttings from drilling activities are usually stockpiled onsite and covered by plastic sheeting. At least three individual soil samples are collected from the stockpiles and composited at the analytic laboratory. The composite sample is analyzed for the same constituents analyzed in the borehole samples in addition to any analytes required by the receiving disposal facility. Soil cuttings are transported by licensed waste haulers and disposed in secure, licensed facilities based on the composite analytic results.

Groundwater removed during development and sampling is typically stored onsite in sealed 55-gallon drums. Each drum is labeled with the drum number, date of generation, suspected contents, generator identification and consultant contact. Upon receipt of analytic results, the water is either pumped out using a vacuum truck for transport to a licensed waste treatment/disposal facility or the individual drums are picked up and transported to the waste facility where the drum contents are removed and appropriately disposed.